2004-04-03 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
756fe439 3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
afd7eef0 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
34e8f22d
RE
39
40#include "arm-tdep.h"
26216b98 41#include "gdb/sim-arm.h"
34e8f22d 42
082fc60d
RE
43#include "elf-bfd.h"
44#include "coff/internal.h"
97e03143 45#include "elf/arm.h"
c906108c 46
26216b98
AC
47#include "gdb_assert.h"
48
6529d2dd
AC
49static int arm_debug;
50
2a451106
KB
51/* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
3bb04bdd
AC
72#ifdef SIGCONTEXT_REGISTER_ADDRESS
73#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75#endif
76#else
77#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
79#endif
80
082fc60d
RE
81/* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 83 is used for this purpose.
082fc60d
RE
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
87
88#define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92#define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
afd7eef0
RE
95/* The list of available "set arm ..." and "show arm ..." commands. */
96static struct cmd_list_element *setarmcmdlist = NULL;
97static struct cmd_list_element *showarmcmdlist = NULL;
98
fd50bc42
RE
99/* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101static const char *fp_model_strings[] =
102{
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108};
109
110/* A variable that can be configured by the user. */
111static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112static const char *current_fp_model = "auto";
113
94c30b78 114/* Number of different reg name sets (options). */
afd7eef0 115static int num_disassembly_options;
bc90b915
FN
116
117/* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
94c30b78 120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 121
94c30b78 122/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 123static char * arm_register_name_strings[] =
da59e081
JM
124{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 130 "fps", "cpsr" }; /* 24 25 */
966fbf70 131static char **arm_register_names = arm_register_name_strings;
ed9a39eb 132
afd7eef0
RE
133/* Valid register name styles. */
134static const char **valid_disassembly_styles;
ed9a39eb 135
afd7eef0
RE
136/* Disassembly style to use. Default to "std" register names. */
137static const char *disassembly_style;
94c30b78 138/* Index to that option in the opcodes table. */
da3c6d4a 139static int current_option;
96baa820 140
ed9a39eb 141/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
142 style. */
143static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 144 struct cmd_list_element *);
afd7eef0 145static void set_disassembly_style (void);
ed9a39eb 146
b508a996
RE
147static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
ed9a39eb 151
9b8d791a 152struct arm_prologue_cache
c3b4394c 153{
eb5492fa
DJ
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
c3b4394c
RE
164 int framesize;
165 int frameoffset;
eb5492fa
DJ
166
167 /* The register used to hold the frame pointer for this frame. */
c3b4394c 168 int framereg;
eb5492fa
DJ
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
c3b4394c 172};
ed9a39eb 173
bc90b915
FN
174/* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176#define IS_THUMB_ADDR(addr) ((addr) & 1)
177#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
94c30b78 180/* Set to true if the 32-bit mode is in use. */
c906108c
SS
181
182int arm_apcs_32 = 1;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
c906108c
SS
189
190static int target_is_thumb;
191
ed9a39eb
JM
192/* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
195
196static int caller_is_thumb;
197
ed9a39eb
JM
198/* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
c906108c 200
34e8f22d 201int
2a451106 202arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 203{
c5aa993b 204 struct minimal_symbol *sym;
c906108c 205
ed9a39eb 206 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
ed9a39eb 210 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
c5aa993b 214 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
215 }
216 else
ed9a39eb
JM
217 {
218 return 0;
219 }
c906108c
SS
220}
221
ed9a39eb
JM
222/* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
c906108c 224
34e8f22d 225int
2a451106 226arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 227{
c5aa993b 228 CORE_ADDR sp = read_sp ();
c906108c 229
dfcd3bfb
JM
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 236 code regions as part of the stack (true for most practical purposes). */
ae45cd16 237 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
238 return caller_is_thumb;
239 else
240 return 0;
241}
242
181c1381 243/* Remove useless bits from addresses in a running program. */
34e8f22d 244static CORE_ADDR
ed9a39eb 245arm_addr_bits_remove (CORE_ADDR val)
c906108c 246{
a3a2ee65
JT
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 249 else
a3a2ee65 250 return (val & 0x03fffffc);
c906108c
SS
251}
252
181c1381
RE
253/* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
34e8f22d 255static CORE_ADDR
181c1381
RE
256arm_smash_text_address (CORE_ADDR val)
257{
258 return val & ~1;
259}
260
34e8f22d
RE
261/* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266static CORE_ADDR
ed9a39eb 267arm_saved_pc_after_call (struct frame_info *frame)
c906108c 268{
34e8f22d 269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
270}
271
0defa245
RE
272/* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
148754e5 276static int
ed9a39eb 277arm_frameless_function_invocation (struct frame_info *fi)
392a587b 278{
392a587b 279 CORE_ADDR func_start, after_prologue;
96baa820 280 int frameless;
ed9a39eb 281
0defa245
RE
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
8cf71652 294 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
7be570e7 295 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 296
96baa820 297 /* There are some frameless functions whose first two instructions
ed9a39eb 298 follow the standard APCS form, in which case after_prologue will
94c30b78 299 be func_start + 8. */
ed9a39eb 300
96baa820 301 frameless = (after_prologue < func_start + 12);
392a587b
JM
302 return frameless;
303}
304
c906108c 305/* A typical Thumb prologue looks like this:
c5aa993b
JM
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
c906108c 309 Sometimes the latter instruction may be replaced by:
da59e081
JM
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 331 */
c906108c
SS
332
333static CORE_ADDR
c7885828 334thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
335{
336 CORE_ADDR current_pc;
da3c6d4a
MS
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
94c30b78
MS
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 346 current_pc += 2)
c906108c
SS
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
94c30b78 350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 351 {
94c30b78 352 findmask |= 1; /* push found */
da59e081 353 }
da3c6d4a
MS
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
da59e081 356 {
94c30b78 357 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
358 continue;
359 else
94c30b78 360 findmask |= 4; /* add/sub sp found */
da59e081
JM
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
94c30b78 364 findmask |= 2; /* setting of r7 found */
da59e081
JM
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
94c30b78 368 findmask |= 2; /* setting of r7 found */
da59e081 369 }
3d74b771
FF
370 else if (findmask == (4+2+1))
371 {
da3c6d4a
MS
372 /* We have found one of each type of prologue instruction */
373 break;
3d74b771 374 }
da59e081 375 else
94c30b78 376 /* Something in the prolog that we don't care about or some
da3c6d4a 377 instruction from outside the prolog scheduled here for
94c30b78 378 optimization. */
da3c6d4a 379 continue;
c906108c
SS
380 }
381
382 return current_pc;
383}
384
da3c6d4a
MS
385/* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
34e8f22d
RE
387
388 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 389 prologue:
c906108c 390
c5aa993b
JM
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 399
34e8f22d 400static CORE_ADDR
ed9a39eb 401arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
402{
403 unsigned long inst;
404 CORE_ADDR skip_pc;
b8d5e71d 405 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 406 char *func_name;
c906108c
SS
407 struct symtab_and_line sal;
408
848cfffb 409 /* If we're in a dummy frame, don't even try to skip the prologue. */
ae45cd16 410 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
848cfffb
AC
411 return pc;
412
96baa820 413 /* See what the symbol table says. */
ed9a39eb 414
50f6fb4b 415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 416 {
50f6fb4b
CV
417 struct symbol *sym;
418
419 /* Found a function. */
176620f1 420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
94c30b78 423 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
c906108c
SS
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
c7885828 432 return thumb_skip_prologue (pc, func_end);
c906108c
SS
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 435 by disassembling the instructions. */
c906108c 436
b8d5e71d
MS
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
c906108c 440
b8d5e71d 441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 442 {
f43845b3 443 inst = read_memory_integer (skip_pc, 4);
f43845b3 444
b8d5e71d
MS
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
c906108c 448
28cd8767
JG
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
b8d5e71d
MS
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
c906108c 458
b8d5e71d
MS
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
c906108c 461
b8d5e71d
MS
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
11d3b27d 464
b8d5e71d
MS
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
f43845b3 468
b8d5e71d
MS
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
f43845b3 496 }
c906108c 497
b8d5e71d 498 return skip_pc; /* End of prologue */
c906108c 499}
94c30b78 500
c5aa993b 501/* *INDENT-OFF* */
c906108c
SS
502/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
c906108c 508
da59e081
JM
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
c906108c
SS
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
517 12 bytes. The frame register is R7.
518
da3c6d4a
MS
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
c5aa993b
JM
521/* *INDENT-ON* */
522
c906108c 523static void
eb5492fa 524thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
525{
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
94c30b78 529 /* Which register has been copied to register n? */
da3c6d4a
MS
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
c5aa993b 537 int i;
c906108c 538
eb5492fa 539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
94c30b78 543 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 544 prologue_end = prev_pc;
c906108c 545 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 546 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
547 }
548 else
da3c6d4a
MS
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
c906108c 552
eb5492fa 553 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
da59e081
JM
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
c906108c 563
9b8d791a 564 cache->framesize = 0;
da59e081
JM
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
c906108c
SS
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
c5aa993b 575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 576 {
da59e081 577 int mask;
94c30b78 578 findmask |= 1; /* push found */
c906108c
SS
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
da59e081 581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 582
b8d5e71d 583 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 585 if (mask & (1 << regno))
c5aa993b 586 {
9b8d791a 587 cache->framesize += 4;
eb5492fa 588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
c906108c
SS
591 }
592 }
da3c6d4a
MS
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
c906108c 595 {
b8d5e71d 596 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
597 continue;
598 else
94c30b78 599 findmask |= 4; /* add/sub sp found */
da59e081 600
94c30b78
MS
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 603 {
9b8d791a 604 cache->frameoffset += offset;
da59e081
JM
605 offset = -offset;
606 }
9b8d791a 607 cache->framesize -= offset;
c906108c
SS
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
94c30b78 611 findmask |= 2; /* setting of r7 found */
9b8d791a 612 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 613 /* get scaled offset */
9b8d791a 614 cache->frameoffset = (insn & 0xff) << 2;
c906108c 615 }
da59e081 616 else if (insn == 0x466f) /* mov r7, sp */
c906108c 617 {
94c30b78 618 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
34e8f22d 621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
da3c6d4a 625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
628 }
629 else
da3c6d4a
MS
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
c906108c
SS
634 }
635}
636
ed9a39eb 637/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
c906108c
SS
642 This information is stored in the "extra" fields of the frame_info.
643
96baa820
JM
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
ed9a39eb
JM
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
96baa820 651
c906108c 652 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
c906108c 660 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
ed9a39eb 667
96baa820
JM
668 A variable argument function call will look like:
669
ed9a39eb
JM
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
96baa820 675 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
96baa820
JM
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
ed9a39eb
JM
701
702 */
c906108c
SS
703
704static void
eb5492fa 705arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 706{
28cd8767 707 int regno, sp_offset, fp_offset, ip_offset;
c906108c 708 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 710
c906108c 711 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
c906108c
SS
715
716 /* Check for Thumb prologue. */
eb5492fa 717 if (arm_pc_is_thumb (prev_pc))
c906108c 718 {
eb5492fa 719 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 726 {
2a451106
KB
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
eb5492fa 733 prologue_end = prev_pc;
2a451106
KB
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
94c30b78 757 the scheduler. */
2a451106
KB
758
759 if (prologue_end > prologue_start + 64)
760 {
94c30b78 761 prologue_end = prologue_start + 64; /* See above. */
2a451106 762 }
c906108c
SS
763 }
764 else
765 {
eb5492fa
DJ
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 780 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 781 }
c906108c
SS
782 }
783
eb5492fa
DJ
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
c906108c 787 /* Now search the prologue looking for instructions that set up the
96baa820 788 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 789
96baa820
JM
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 793 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 798 if we don't see this as the first insn, we will stop.
c906108c 799
f43845b3
MS
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 802
f43845b3
MS
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
b8d5e71d 806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 807
28cd8767 808 sp_offset = fp_offset = ip_offset = 0;
f43845b3 809
94c30b78
MS
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
f43845b3 812 current_pc += 4)
96baa820 813 {
d4473757
KB
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
94c30b78 816 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 817 {
28cd8767
JG
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
f43845b3
MS
835 continue;
836 }
94c30b78 837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 838 {
e28a332c
JG
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
c906108c 847 {
d4473757 848 int mask = insn & 0xffff;
ed9a39eb 849
94c30b78 850 /* Calculate offsets of saved registers. */
34e8f22d 851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
eb5492fa 855 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
856 }
857 }
b8d5e71d
MS
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
d4473757
KB
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
94c30b78
MS
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 876 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 877 fp_offset = -imm + ip_offset;
9b8d791a 878 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
94c30b78
MS
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
34e8f22d 890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 891 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
94c30b78 898 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 899 {
d4473757
KB
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
96baa820 904 }
d4473757 905 else
96baa820 906 {
d4473757
KB
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
96baa820 911 }
d4473757 912
34e8f22d 913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
916 {
917 sp_offset -= 12;
eb5492fa 918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 919 }
c906108c 920 }
d4473757 921 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 922 break; /* Condition not true, exit early */
b8d5e71d 923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 924 break; /* Don't scan past a block load */
d4473757
KB
925 else
926 /* The optimizer might shove anything into the prologue,
94c30b78 927 so we just skip what we don't recognize. */
d4473757 928 continue;
c906108c
SS
929 }
930
94c30b78
MS
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
d4473757 937 else
9b8d791a 938 cache->frameoffset = 0;
c906108c
SS
939}
940
eb5492fa
DJ
941static struct arm_prologue_cache *
942arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 943{
eb5492fa
DJ
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
c5aa993b 947
eb5492fa
DJ
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 950
eb5492fa 951 arm_scan_prologue (next_frame, cache);
848cfffb 952
eb5492fa
DJ
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
c906108c 956
eb5492fa 957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 958
eb5492fa
DJ
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 962 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
c906108c
SS
966}
967
eb5492fa
DJ
968/* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
c906108c 970
148754e5 971static void
eb5492fa
DJ
972arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
c906108c 975{
eb5492fa
DJ
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
f079148d 979
eb5492fa
DJ
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
2a451106 983
eb5492fa 984 func = frame_func_unwind (next_frame);
2a451106 985
eb5492fa
DJ
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
9e815ec2 988 if (func <= LOWEST_PC)
eb5492fa 989 return;
5a203e44 990
eb5492fa
DJ
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
24de872b 994
eb5492fa 995 id = frame_id_build (cache->prev_sp, func);
c906108c 996
eb5492fa
DJ
997 /* Check that we're not going round in circles with the same frame
998 ID (but avoid applying the test to sentinel frames which do go
999 round in circles). */
1000 if (frame_relative_level (next_frame) >= 0
1001 && get_frame_type (next_frame) == NORMAL_FRAME
1002 && frame_id_eq (get_frame_id (next_frame), id))
1003 return;
1004
1005 *this_id = id;
c906108c
SS
1006}
1007
eb5492fa
DJ
1008static void
1009arm_prologue_prev_register (struct frame_info *next_frame,
1010 void **this_cache,
1011 int prev_regnum,
1012 int *optimized,
1013 enum lval_type *lvalp,
1014 CORE_ADDR *addrp,
1015 int *realnump,
1016 void *valuep)
24de872b
DJ
1017{
1018 struct arm_prologue_cache *cache;
1019
eb5492fa
DJ
1020 if (*this_cache == NULL)
1021 *this_cache = arm_make_prologue_cache (next_frame);
1022 cache = *this_cache;
24de872b 1023
eb5492fa
DJ
1024 /* If we are asked to unwind the PC, then we need to return the LR
1025 instead. The saved value of PC points into this frame's
1026 prologue, not the next frame's resume location. */
1027 if (prev_regnum == ARM_PC_REGNUM)
1028 prev_regnum = ARM_LR_REGNUM;
24de872b 1029
eb5492fa
DJ
1030 /* SP is generally not saved to the stack, but this frame is
1031 identified by NEXT_FRAME's stack pointer at the time of the call.
1032 The value was already reconstructed into PREV_SP. */
1033 if (prev_regnum == ARM_SP_REGNUM)
1034 {
1035 *lvalp = not_lval;
1036 if (valuep)
1037 store_unsigned_integer (valuep, 4, cache->prev_sp);
1038 return;
1039 }
1040
1041 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1042 optimized, lvalp, addrp, realnump, valuep);
1043}
1044
1045struct frame_unwind arm_prologue_unwind = {
1046 NORMAL_FRAME,
1047 arm_prologue_this_id,
1048 arm_prologue_prev_register
1049};
1050
1051static const struct frame_unwind *
1052arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1053{
1054 return &arm_prologue_unwind;
24de872b
DJ
1055}
1056
1057static CORE_ADDR
eb5492fa 1058arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1059{
1060 struct arm_prologue_cache *cache;
1061
eb5492fa
DJ
1062 if (*this_cache == NULL)
1063 *this_cache = arm_make_prologue_cache (next_frame);
1064 cache = *this_cache;
1065
1066 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1067}
1068
eb5492fa
DJ
1069struct frame_base arm_normal_base = {
1070 &arm_prologue_unwind,
1071 arm_normal_frame_base,
1072 arm_normal_frame_base,
1073 arm_normal_frame_base
1074};
1075
1076static struct arm_prologue_cache *
1077arm_make_sigtramp_cache (struct frame_info *next_frame)
24de872b
DJ
1078{
1079 struct arm_prologue_cache *cache;
eb5492fa
DJ
1080 int reg;
1081
1082 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
24de872b 1083
eb5492fa 1084 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
24de872b 1085
eb5492fa 1086 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
24de872b 1087
eb5492fa
DJ
1088 for (reg = 0; reg < NUM_REGS; reg++)
1089 cache->saved_regs[reg].addr
1090 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1091 frame_pc_unwind (next_frame), reg);
24de872b 1092
eb5492fa
DJ
1093 /* FIXME: What about thumb mode? */
1094 cache->framereg = ARM_SP_REGNUM;
1095 cache->prev_sp
1096 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
7a5ea0d4 1097 register_size (current_gdbarch, cache->framereg));
eb5492fa
DJ
1098
1099 return cache;
24de872b 1100}
c906108c 1101
eb5492fa
DJ
1102static void
1103arm_sigtramp_this_id (struct frame_info *next_frame,
1104 void **this_cache,
1105 struct frame_id *this_id)
1106{
1107 struct arm_prologue_cache *cache;
c906108c 1108
eb5492fa
DJ
1109 if (*this_cache == NULL)
1110 *this_cache = arm_make_sigtramp_cache (next_frame);
1111 cache = *this_cache;
c906108c 1112
eb5492fa
DJ
1113 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1114 the sigtramp frame; the PC should be the beginning of the trampoline. */
1115 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1116}
1117
1118static void
1119arm_sigtramp_prev_register (struct frame_info *next_frame,
1120 void **this_cache,
1121 int prev_regnum,
1122 int *optimized,
1123 enum lval_type *lvalp,
1124 CORE_ADDR *addrp,
1125 int *realnump,
1126 void *valuep)
c906108c 1127{
eb5492fa 1128 struct arm_prologue_cache *cache;
848cfffb 1129
eb5492fa
DJ
1130 if (*this_cache == NULL)
1131 *this_cache = arm_make_sigtramp_cache (next_frame);
1132 cache = *this_cache;
1133
1134 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1135 optimized, lvalp, addrp, realnump, valuep);
c906108c
SS
1136}
1137
eb5492fa
DJ
1138struct frame_unwind arm_sigtramp_unwind = {
1139 SIGTRAMP_FRAME,
1140 arm_sigtramp_this_id,
1141 arm_sigtramp_prev_register
1142};
c906108c 1143
eb5492fa
DJ
1144static const struct frame_unwind *
1145arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
c906108c 1146{
f561f026
AC
1147 /* Note: If an ARM DEPRECATED_PC_IN_SIGTRAMP method ever needs to
1148 compare against the name of the function, the code below will
1149 have to be changed to first fetch the name of the function and
1150 then pass this name to DEPRECATED_PC_IN_SIGTRAMP. */
eb5492fa
DJ
1151
1152 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
f561f026 1153 && DEPRECATED_PC_IN_SIGTRAMP (frame_pc_unwind (next_frame), (char *) 0))
eb5492fa
DJ
1154 return &arm_sigtramp_unwind;
1155
1156 return NULL;
c906108c
SS
1157}
1158
eb5492fa
DJ
1159/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1160 dummy frame. The frame ID's base needs to match the TOS value
1161 saved by save_dummy_frame_tos() and returned from
1162 arm_push_dummy_call, and the PC needs to match the dummy frame's
1163 breakpoint. */
c906108c 1164
eb5492fa
DJ
1165static struct frame_id
1166arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1167{
eb5492fa
DJ
1168 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1169 frame_pc_unwind (next_frame));
1170}
c3b4394c 1171
eb5492fa
DJ
1172/* Given THIS_FRAME, find the previous frame's resume PC (which will
1173 be used to construct the previous frame's ID, after looking up the
1174 containing function). */
c3b4394c 1175
eb5492fa
DJ
1176static CORE_ADDR
1177arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1178{
1179 CORE_ADDR pc;
1180 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1181 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1182}
1183
1184static CORE_ADDR
1185arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1186{
1187 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1188}
1189
b1e29e33 1190/* DEPRECATED_CALL_DUMMY_WORDS:
6eb69eab
RE
1191 This sequence of words is the instructions
1192
1193 mov lr,pc
1194 mov pc,r4
1195 illegal
1196
1197 Note this is 12 bytes. */
1198
34e8f22d 1199static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1200{
1201 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1202};
1203
2dd604e7
RE
1204/* When arguments must be pushed onto the stack, they go on in reverse
1205 order. The code below implements a FILO (stack) to do this. */
1206
1207struct stack_item
1208{
1209 int len;
1210 struct stack_item *prev;
1211 void *data;
1212};
1213
1214static struct stack_item *
1215push_stack_item (struct stack_item *prev, void *contents, int len)
1216{
1217 struct stack_item *si;
1218 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1219 si->data = xmalloc (len);
2dd604e7
RE
1220 si->len = len;
1221 si->prev = prev;
1222 memcpy (si->data, contents, len);
1223 return si;
1224}
1225
1226static struct stack_item *
1227pop_stack_item (struct stack_item *si)
1228{
1229 struct stack_item *dead = si;
1230 si = si->prev;
1231 xfree (dead->data);
1232 xfree (dead);
1233 return si;
1234}
1235
1236/* We currently only support passing parameters in integer registers. This
1237 conforms with GCC's default model. Several other variants exist and
1238 we should probably support some of them based on the selected ABI. */
1239
1240static CORE_ADDR
6a65450a
AC
1241arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1242 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1243 struct value **args, CORE_ADDR sp, int struct_return,
1244 CORE_ADDR struct_addr)
2dd604e7
RE
1245{
1246 int argnum;
1247 int argreg;
1248 int nstack;
1249 struct stack_item *si = NULL;
1250
6a65450a
AC
1251 /* Set the return address. For the ARM, the return breakpoint is
1252 always at BP_ADDR. */
2dd604e7 1253 /* XXX Fix for Thumb. */
6a65450a 1254 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1255
1256 /* Walk through the list of args and determine how large a temporary
1257 stack is required. Need to take care here as structs may be
1258 passed on the stack, and we have to to push them. */
1259 nstack = 0;
1260
1261 argreg = ARM_A1_REGNUM;
1262 nstack = 0;
1263
1264 /* Some platforms require a double-word aligned stack. Make sure sp
1265 is correctly aligned before we start. We always do this even if
1266 it isn't really needed -- it can never hurt things. */
b1e29e33 1267 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
2dd604e7
RE
1268
1269 /* The struct_return pointer occupies the first parameter
1270 passing register. */
1271 if (struct_return)
1272 {
1273 if (arm_debug)
1274 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1275 REGISTER_NAME (argreg), paddr (struct_addr));
1276 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1277 argreg++;
1278 }
1279
1280 for (argnum = 0; argnum < nargs; argnum++)
1281 {
1282 int len;
1283 struct type *arg_type;
1284 struct type *target_type;
1285 enum type_code typecode;
1286 char *val;
1287
1288 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1289 len = TYPE_LENGTH (arg_type);
1290 target_type = TYPE_TARGET_TYPE (arg_type);
1291 typecode = TYPE_CODE (arg_type);
1292 val = VALUE_CONTENTS (args[argnum]);
1293
1294 /* If the argument is a pointer to a function, and it is a
1295 Thumb function, create a LOCAL copy of the value and set
1296 the THUMB bit in it. */
1297 if (TYPE_CODE_PTR == typecode
1298 && target_type != NULL
1299 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1300 {
7c0b4a20 1301 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1302 if (arm_pc_is_thumb (regval))
1303 {
1304 val = alloca (len);
fbd9dcd3 1305 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1306 }
1307 }
1308
1309 /* Copy the argument to general registers or the stack in
1310 register-sized pieces. Large arguments are split between
1311 registers and stack. */
1312 while (len > 0)
1313 {
b1e29e33 1314 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1315
1316 if (argreg <= ARM_LAST_ARG_REGNUM)
1317 {
1318 /* The argument is being passed in a general purpose
1319 register. */
7c0b4a20 1320 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1321 if (arm_debug)
1322 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1323 argnum, REGISTER_NAME (argreg),
b1e29e33 1324 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1325 regcache_cooked_write_unsigned (regcache, argreg, regval);
1326 argreg++;
1327 }
1328 else
1329 {
1330 /* Push the arguments onto the stack. */
1331 if (arm_debug)
1332 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1333 argnum, nstack);
b1e29e33
AC
1334 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1335 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1336 }
1337
1338 len -= partial_len;
1339 val += partial_len;
1340 }
1341 }
1342 /* If we have an odd number of words to push, then decrement the stack
1343 by one word now, so first stack argument will be dword aligned. */
1344 if (nstack & 4)
1345 sp -= 4;
1346
1347 while (si)
1348 {
1349 sp -= si->len;
1350 write_memory (sp, si->data, si->len);
1351 si = pop_stack_item (si);
1352 }
1353
1354 /* Finally, update teh SP register. */
1355 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1356
1357 return sp;
1358}
1359
c906108c 1360static void
ed9a39eb 1361print_fpu_flags (int flags)
c906108c 1362{
c5aa993b
JM
1363 if (flags & (1 << 0))
1364 fputs ("IVO ", stdout);
1365 if (flags & (1 << 1))
1366 fputs ("DVZ ", stdout);
1367 if (flags & (1 << 2))
1368 fputs ("OFL ", stdout);
1369 if (flags & (1 << 3))
1370 fputs ("UFL ", stdout);
1371 if (flags & (1 << 4))
1372 fputs ("INX ", stdout);
1373 putchar ('\n');
c906108c
SS
1374}
1375
5e74b15c
RE
1376/* Print interesting information about the floating point processor
1377 (if present) or emulator. */
34e8f22d 1378static void
d855c300 1379arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1380 struct frame_info *frame, const char *args)
c906108c 1381{
52f0bd74 1382 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1383 int type;
1384
1385 type = (status >> 24) & 127;
1386 printf ("%s FPU type %d\n",
ed9a39eb 1387 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1388 type);
1389 fputs ("mask: ", stdout);
1390 print_fpu_flags (status >> 16);
1391 fputs ("flags: ", stdout);
1392 print_fpu_flags (status);
c906108c
SS
1393}
1394
34e8f22d
RE
1395/* Return the GDB type object for the "standard" data type of data in
1396 register N. */
1397
1398static struct type *
7a5ea0d4 1399arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1400{
34e8f22d 1401 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1402 {
d7449b42 1403 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1404 return builtin_type_arm_ext_big;
1405 else
1406 return builtin_type_arm_ext_littlebyte_bigword;
1407 }
1408 else
1409 return builtin_type_int32;
1410}
1411
34e8f22d
RE
1412/* Index within `registers' of the first byte of the space for
1413 register N. */
1414
1415static int
1416arm_register_byte (int regnum)
1417{
1418 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1419 return regnum * INT_REGISTER_SIZE;
34e8f22d 1420 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1421 return (NUM_GREGS * INT_REGISTER_SIZE
1422 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1423 else
7a5ea0d4
DJ
1424 return (NUM_GREGS * INT_REGISTER_SIZE
1425 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1426 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1427}
1428
26216b98
AC
1429/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1430static int
1431arm_register_sim_regno (int regnum)
1432{
1433 int reg = regnum;
1434 gdb_assert (reg >= 0 && reg < NUM_REGS);
1435
1436 if (reg < NUM_GREGS)
1437 return SIM_ARM_R0_REGNUM + reg;
1438 reg -= NUM_GREGS;
1439
1440 if (reg < NUM_FREGS)
1441 return SIM_ARM_FP0_REGNUM + reg;
1442 reg -= NUM_FREGS;
1443
1444 if (reg < NUM_SREGS)
1445 return SIM_ARM_FPS_REGNUM + reg;
1446 reg -= NUM_SREGS;
1447
1448 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1449}
34e8f22d 1450
a37b3cc0
AC
1451/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1452 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1453 It is thought that this is is the floating-point register format on
1454 little-endian systems. */
c906108c 1455
ed9a39eb 1456static void
b508a996
RE
1457convert_from_extended (const struct floatformat *fmt, const void *ptr,
1458 void *dbl)
c906108c 1459{
a37b3cc0 1460 DOUBLEST d;
d7449b42 1461 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1462 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1463 else
1464 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1465 ptr, &d);
b508a996 1466 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1467}
1468
34e8f22d 1469static void
b508a996 1470convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1471{
a37b3cc0 1472 DOUBLEST d;
b508a996 1473 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1474 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1475 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1476 else
1477 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1478 &d, dbl);
c906108c 1479}
ed9a39eb 1480
c906108c 1481static int
ed9a39eb 1482condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1483{
1484 if (cond == INST_AL || cond == INST_NV)
1485 return 1;
1486
1487 switch (cond)
1488 {
1489 case INST_EQ:
1490 return ((status_reg & FLAG_Z) != 0);
1491 case INST_NE:
1492 return ((status_reg & FLAG_Z) == 0);
1493 case INST_CS:
1494 return ((status_reg & FLAG_C) != 0);
1495 case INST_CC:
1496 return ((status_reg & FLAG_C) == 0);
1497 case INST_MI:
1498 return ((status_reg & FLAG_N) != 0);
1499 case INST_PL:
1500 return ((status_reg & FLAG_N) == 0);
1501 case INST_VS:
1502 return ((status_reg & FLAG_V) != 0);
1503 case INST_VC:
1504 return ((status_reg & FLAG_V) == 0);
1505 case INST_HI:
1506 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1507 case INST_LS:
1508 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1509 case INST_GE:
1510 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1511 case INST_LT:
1512 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1513 case INST_GT:
1514 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1515 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1516 case INST_LE:
1517 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1518 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1519 }
1520 return 1;
1521}
1522
9512d7fd 1523/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1524#define submask(x) ((1L << ((x) + 1)) - 1)
1525#define bit(obj,st) (((obj) >> (st)) & 1)
1526#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1527#define sbits(obj,st,fn) \
1528 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1529#define BranchDest(addr,instr) \
1530 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1531#define ARM_PC_32 1
1532
1533static unsigned long
ed9a39eb
JM
1534shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1535 unsigned long status_reg)
c906108c
SS
1536{
1537 unsigned long res, shift;
1538 int rm = bits (inst, 0, 3);
1539 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1540
1541 if (bit (inst, 4))
c906108c
SS
1542 {
1543 int rs = bits (inst, 8, 11);
1544 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1545 }
1546 else
1547 shift = bits (inst, 7, 11);
c5aa993b
JM
1548
1549 res = (rm == 15
c906108c 1550 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1551 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1552 : read_register (rm));
1553
1554 switch (shifttype)
1555 {
c5aa993b 1556 case 0: /* LSL */
c906108c
SS
1557 res = shift >= 32 ? 0 : res << shift;
1558 break;
c5aa993b
JM
1559
1560 case 1: /* LSR */
c906108c
SS
1561 res = shift >= 32 ? 0 : res >> shift;
1562 break;
1563
c5aa993b
JM
1564 case 2: /* ASR */
1565 if (shift >= 32)
1566 shift = 31;
c906108c
SS
1567 res = ((res & 0x80000000L)
1568 ? ~((~res) >> shift) : res >> shift);
1569 break;
1570
c5aa993b 1571 case 3: /* ROR/RRX */
c906108c
SS
1572 shift &= 31;
1573 if (shift == 0)
1574 res = (res >> 1) | (carry ? 0x80000000L : 0);
1575 else
c5aa993b 1576 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1577 break;
1578 }
1579
1580 return res & 0xffffffff;
1581}
1582
c906108c
SS
1583/* Return number of 1-bits in VAL. */
1584
1585static int
ed9a39eb 1586bitcount (unsigned long val)
c906108c
SS
1587{
1588 int nbits;
1589 for (nbits = 0; val != 0; nbits++)
c5aa993b 1590 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1591 return nbits;
1592}
1593
34e8f22d 1594CORE_ADDR
ed9a39eb 1595thumb_get_next_pc (CORE_ADDR pc)
c906108c 1596{
c5aa993b 1597 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1598 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1599 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1600 unsigned long offset;
1601
1602 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1603 {
1604 CORE_ADDR sp;
1605
1606 /* Fetch the saved PC from the stack. It's stored above
1607 all of the other registers. */
b1e29e33 1608 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1609 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1610 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1611 nextpc = ADDR_BITS_REMOVE (nextpc);
1612 if (nextpc == pc)
1613 error ("Infinite loop detected");
1614 }
1615 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1616 {
34e8f22d 1617 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1618 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1619 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1620 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1621 }
1622 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1623 {
1624 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1625 }
aa17d93e 1626 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c
SS
1627 {
1628 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1629 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1630 nextpc = pc_val + offset;
aa17d93e
DJ
1631 /* For BLX make sure to clear the low bits. */
1632 if (bits (inst2, 11, 12) == 1)
1633 nextpc = nextpc & 0xfffffffc;
c906108c 1634 }
aa17d93e 1635 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1636 {
1637 if (bits (inst1, 3, 6) == 0x0f)
1638 nextpc = pc_val;
1639 else
1640 nextpc = read_register (bits (inst1, 3, 6));
1641
1642 nextpc = ADDR_BITS_REMOVE (nextpc);
1643 if (nextpc == pc)
1644 error ("Infinite loop detected");
1645 }
c906108c
SS
1646
1647 return nextpc;
1648}
1649
34e8f22d 1650CORE_ADDR
ed9a39eb 1651arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1652{
1653 unsigned long pc_val;
1654 unsigned long this_instr;
1655 unsigned long status;
1656 CORE_ADDR nextpc;
1657
1658 if (arm_pc_is_thumb (pc))
1659 return thumb_get_next_pc (pc);
1660
1661 pc_val = (unsigned long) pc;
1662 this_instr = read_memory_integer (pc, 4);
34e8f22d 1663 status = read_register (ARM_PS_REGNUM);
c5aa993b 1664 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1665
1666 if (condition_true (bits (this_instr, 28, 31), status))
1667 {
1668 switch (bits (this_instr, 24, 27))
1669 {
c5aa993b 1670 case 0x0:
94c30b78 1671 case 0x1: /* data processing */
c5aa993b
JM
1672 case 0x2:
1673 case 0x3:
c906108c
SS
1674 {
1675 unsigned long operand1, operand2, result = 0;
1676 unsigned long rn;
1677 int c;
c5aa993b 1678
c906108c
SS
1679 if (bits (this_instr, 12, 15) != 15)
1680 break;
1681
1682 if (bits (this_instr, 22, 25) == 0
c5aa993b 1683 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1684 error ("Illegal update to pc in instruction");
1685
9498281f
DJ
1686 /* BX <reg>, BLX <reg> */
1687 if (bits (this_instr, 4, 28) == 0x12fff1
1688 || bits (this_instr, 4, 28) == 0x12fff3)
1689 {
1690 rn = bits (this_instr, 0, 3);
1691 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1692 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1693
1694 if (nextpc == pc)
1695 error ("Infinite loop detected");
1696
1697 return nextpc;
1698 }
1699
c906108c
SS
1700 /* Multiply into PC */
1701 c = (status & FLAG_C) ? 1 : 0;
1702 rn = bits (this_instr, 16, 19);
1703 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1704
c906108c
SS
1705 if (bit (this_instr, 25))
1706 {
1707 unsigned long immval = bits (this_instr, 0, 7);
1708 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1709 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1710 & 0xffffffff;
c906108c 1711 }
c5aa993b 1712 else /* operand 2 is a shifted register */
c906108c 1713 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1714
c906108c
SS
1715 switch (bits (this_instr, 21, 24))
1716 {
c5aa993b 1717 case 0x0: /*and */
c906108c
SS
1718 result = operand1 & operand2;
1719 break;
1720
c5aa993b 1721 case 0x1: /*eor */
c906108c
SS
1722 result = operand1 ^ operand2;
1723 break;
1724
c5aa993b 1725 case 0x2: /*sub */
c906108c
SS
1726 result = operand1 - operand2;
1727 break;
1728
c5aa993b 1729 case 0x3: /*rsb */
c906108c
SS
1730 result = operand2 - operand1;
1731 break;
1732
c5aa993b 1733 case 0x4: /*add */
c906108c
SS
1734 result = operand1 + operand2;
1735 break;
1736
c5aa993b 1737 case 0x5: /*adc */
c906108c
SS
1738 result = operand1 + operand2 + c;
1739 break;
1740
c5aa993b 1741 case 0x6: /*sbc */
c906108c
SS
1742 result = operand1 - operand2 + c;
1743 break;
1744
c5aa993b 1745 case 0x7: /*rsc */
c906108c
SS
1746 result = operand2 - operand1 + c;
1747 break;
1748
c5aa993b
JM
1749 case 0x8:
1750 case 0x9:
1751 case 0xa:
1752 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1753 result = (unsigned long) nextpc;
1754 break;
1755
c5aa993b 1756 case 0xc: /*orr */
c906108c
SS
1757 result = operand1 | operand2;
1758 break;
1759
c5aa993b 1760 case 0xd: /*mov */
c906108c
SS
1761 /* Always step into a function. */
1762 result = operand2;
c5aa993b 1763 break;
c906108c 1764
c5aa993b 1765 case 0xe: /*bic */
c906108c
SS
1766 result = operand1 & ~operand2;
1767 break;
1768
c5aa993b 1769 case 0xf: /*mvn */
c906108c
SS
1770 result = ~operand2;
1771 break;
1772 }
1773 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1774
1775 if (nextpc == pc)
1776 error ("Infinite loop detected");
1777 break;
1778 }
c5aa993b
JM
1779
1780 case 0x4:
1781 case 0x5: /* data transfer */
1782 case 0x6:
1783 case 0x7:
c906108c
SS
1784 if (bit (this_instr, 20))
1785 {
1786 /* load */
1787 if (bits (this_instr, 12, 15) == 15)
1788 {
1789 /* rd == pc */
c5aa993b 1790 unsigned long rn;
c906108c 1791 unsigned long base;
c5aa993b 1792
c906108c
SS
1793 if (bit (this_instr, 22))
1794 error ("Illegal update to pc in instruction");
1795
1796 /* byte write to PC */
1797 rn = bits (this_instr, 16, 19);
1798 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1799 if (bit (this_instr, 24))
1800 {
1801 /* pre-indexed */
1802 int c = (status & FLAG_C) ? 1 : 0;
1803 unsigned long offset =
c5aa993b 1804 (bit (this_instr, 25)
ed9a39eb 1805 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1806 : bits (this_instr, 0, 11));
c906108c
SS
1807
1808 if (bit (this_instr, 23))
1809 base += offset;
1810 else
1811 base -= offset;
1812 }
c5aa993b 1813 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1814 4);
c5aa993b 1815
c906108c
SS
1816 nextpc = ADDR_BITS_REMOVE (nextpc);
1817
1818 if (nextpc == pc)
1819 error ("Infinite loop detected");
1820 }
1821 }
1822 break;
c5aa993b
JM
1823
1824 case 0x8:
1825 case 0x9: /* block transfer */
c906108c
SS
1826 if (bit (this_instr, 20))
1827 {
1828 /* LDM */
1829 if (bit (this_instr, 15))
1830 {
1831 /* loading pc */
1832 int offset = 0;
1833
1834 if (bit (this_instr, 23))
1835 {
1836 /* up */
1837 unsigned long reglist = bits (this_instr, 0, 14);
1838 offset = bitcount (reglist) * 4;
c5aa993b 1839 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1840 offset += 4;
1841 }
1842 else if (bit (this_instr, 24))
1843 offset = -4;
c5aa993b 1844
c906108c 1845 {
c5aa993b
JM
1846 unsigned long rn_val =
1847 read_register (bits (this_instr, 16, 19));
c906108c
SS
1848 nextpc =
1849 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1850 + offset),
c906108c
SS
1851 4);
1852 }
1853 nextpc = ADDR_BITS_REMOVE (nextpc);
1854 if (nextpc == pc)
1855 error ("Infinite loop detected");
1856 }
1857 }
1858 break;
c5aa993b
JM
1859
1860 case 0xb: /* branch & link */
1861 case 0xa: /* branch */
c906108c
SS
1862 {
1863 nextpc = BranchDest (pc, this_instr);
1864
9498281f
DJ
1865 /* BLX */
1866 if (bits (this_instr, 28, 31) == INST_NV)
1867 nextpc |= bit (this_instr, 24) << 1;
1868
c906108c
SS
1869 nextpc = ADDR_BITS_REMOVE (nextpc);
1870 if (nextpc == pc)
1871 error ("Infinite loop detected");
1872 break;
1873 }
c5aa993b
JM
1874
1875 case 0xc:
1876 case 0xd:
1877 case 0xe: /* coproc ops */
1878 case 0xf: /* SWI */
c906108c
SS
1879 break;
1880
1881 default:
97e03143 1882 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1883 return (pc);
1884 }
1885 }
1886
1887 return nextpc;
1888}
1889
9512d7fd
FN
1890/* single_step() is called just before we want to resume the inferior,
1891 if we want to single-step it but there is no hardware or kernel
1892 single-step support. We find the target of the coming instruction
1893 and breakpoint it.
1894
94c30b78
MS
1895 single_step() is also called just after the inferior stops. If we
1896 had set up a simulated single-step, we undo our damage. */
9512d7fd 1897
34e8f22d
RE
1898static void
1899arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1900{
b8d5e71d 1901 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
1902 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1903
1904 if (insert_bpt)
1905 {
34e8f22d 1906 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1907 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
1908 }
1909 else
80fcf3f0 1910 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 1911}
9512d7fd 1912
c906108c
SS
1913#include "bfd-in2.h"
1914#include "libcoff.h"
1915
1916static int
ed9a39eb 1917gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1918{
1919 if (arm_pc_is_thumb (memaddr))
1920 {
c5aa993b
JM
1921 static asymbol *asym;
1922 static combined_entry_type ce;
1923 static struct coff_symbol_struct csym;
27cddce2 1924 static struct bfd fake_bfd;
c5aa993b 1925 static bfd_target fake_target;
c906108c
SS
1926
1927 if (csym.native == NULL)
1928 {
da3c6d4a
MS
1929 /* Create a fake symbol vector containing a Thumb symbol.
1930 This is solely so that the code in print_insn_little_arm()
1931 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1932 the presence of a Thumb symbol and switch to decoding
1933 Thumb instructions. */
c5aa993b
JM
1934
1935 fake_target.flavour = bfd_target_coff_flavour;
1936 fake_bfd.xvec = &fake_target;
c906108c 1937 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1938 csym.native = &ce;
1939 csym.symbol.the_bfd = &fake_bfd;
1940 csym.symbol.name = "fake";
1941 asym = (asymbol *) & csym;
c906108c 1942 }
c5aa993b 1943
c906108c 1944 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1945 info->symbols = &asym;
c906108c
SS
1946 }
1947 else
1948 info->symbols = NULL;
c5aa993b 1949
d7449b42 1950 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1951 return print_insn_big_arm (memaddr, info);
1952 else
1953 return print_insn_little_arm (memaddr, info);
1954}
1955
66e810cd
RE
1956/* The following define instruction sequences that will cause ARM
1957 cpu's to take an undefined instruction trap. These are used to
1958 signal a breakpoint to GDB.
1959
1960 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1961 modes. A different instruction is required for each mode. The ARM
1962 cpu's can also be big or little endian. Thus four different
1963 instructions are needed to support all cases.
1964
1965 Note: ARMv4 defines several new instructions that will take the
1966 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1967 not in fact add the new instructions. The new undefined
1968 instructions in ARMv4 are all instructions that had no defined
1969 behaviour in earlier chips. There is no guarantee that they will
1970 raise an exception, but may be treated as NOP's. In practice, it
1971 may only safe to rely on instructions matching:
1972
1973 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1974 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1975 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1976
1977 Even this may only true if the condition predicate is true. The
1978 following use a condition predicate of ALWAYS so it is always TRUE.
1979
1980 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1981 and NetBSD all use a software interrupt rather than an undefined
1982 instruction to force a trap. This can be handled by by the
1983 abi-specific code during establishment of the gdbarch vector. */
1984
1985
d7b486e7
RE
1986/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1987 override these definitions. */
66e810cd
RE
1988#ifndef ARM_LE_BREAKPOINT
1989#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1990#endif
1991#ifndef ARM_BE_BREAKPOINT
1992#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1993#endif
1994#ifndef THUMB_LE_BREAKPOINT
1995#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1996#endif
1997#ifndef THUMB_BE_BREAKPOINT
1998#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1999#endif
2000
2001static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2002static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2003static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2004static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2005
34e8f22d
RE
2006/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2007 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2008 breakpoint should be used. It returns a pointer to a string of
2009 bytes that encode a breakpoint instruction, stores the length of
2010 the string to *lenptr, and adjusts the program counter (if
2011 necessary) to point to the actual memory location where the
c906108c
SS
2012 breakpoint should be inserted. */
2013
34e8f22d
RE
2014/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2015 breakpoints and storing their handles instread of what was in
2016 memory. It is nice that this is the same size as a handle -
94c30b78 2017 otherwise remote-rdp will have to change. */
34e8f22d 2018
ab89facf 2019static const unsigned char *
ed9a39eb 2020arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2021{
66e810cd
RE
2022 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2023
c906108c
SS
2024 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2025 {
66e810cd
RE
2026 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2027 *lenptr = tdep->thumb_breakpoint_size;
2028 return tdep->thumb_breakpoint;
c906108c
SS
2029 }
2030 else
2031 {
66e810cd
RE
2032 *lenptr = tdep->arm_breakpoint_size;
2033 return tdep->arm_breakpoint;
c906108c
SS
2034 }
2035}
ed9a39eb
JM
2036
2037/* Extract from an array REGBUF containing the (raw) register state a
2038 function return value of type TYPE, and copy that, in virtual
2039 format, into VALBUF. */
2040
34e8f22d 2041static void
ed9a39eb 2042arm_extract_return_value (struct type *type,
b508a996
RE
2043 struct regcache *regs,
2044 void *dst)
ed9a39eb 2045{
b508a996
RE
2046 bfd_byte *valbuf = dst;
2047
ed9a39eb 2048 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2049 {
fd50bc42 2050 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2051 {
2052 case ARM_FLOAT_FPA:
b508a996
RE
2053 {
2054 /* The value is in register F0 in internal format. We need to
2055 extract the raw value and then convert it to the desired
2056 internal type. */
7a5ea0d4 2057 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2058
2059 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2060 convert_from_extended (floatformat_from_type (type), tmpbuf,
2061 valbuf);
2062 }
08216dd7
RE
2063 break;
2064
fd50bc42 2065 case ARM_FLOAT_SOFT_FPA:
08216dd7 2066 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2067 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2068 if (TYPE_LENGTH (type) > 4)
2069 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2070 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2071 break;
2072
2073 default:
2074 internal_error
2075 (__FILE__, __LINE__,
2076 "arm_extract_return_value: Floating point model not supported");
2077 break;
2078 }
2079 }
b508a996
RE
2080 else if (TYPE_CODE (type) == TYPE_CODE_INT
2081 || TYPE_CODE (type) == TYPE_CODE_CHAR
2082 || TYPE_CODE (type) == TYPE_CODE_BOOL
2083 || TYPE_CODE (type) == TYPE_CODE_PTR
2084 || TYPE_CODE (type) == TYPE_CODE_REF
2085 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2086 {
2087 /* If the the type is a plain integer, then the access is
2088 straight-forward. Otherwise we have to play around a bit more. */
2089 int len = TYPE_LENGTH (type);
2090 int regno = ARM_A1_REGNUM;
2091 ULONGEST tmp;
2092
2093 while (len > 0)
2094 {
2095 /* By using store_unsigned_integer we avoid having to do
2096 anything special for small big-endian values. */
2097 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2098 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2099 (len > INT_REGISTER_SIZE
2100 ? INT_REGISTER_SIZE : len),
b508a996 2101 tmp);
7a5ea0d4
DJ
2102 len -= INT_REGISTER_SIZE;
2103 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2104 }
2105 }
ed9a39eb 2106 else
b508a996
RE
2107 {
2108 /* For a structure or union the behaviour is as if the value had
2109 been stored to word-aligned memory and then loaded into
2110 registers with 32-bit load instruction(s). */
2111 int len = TYPE_LENGTH (type);
2112 int regno = ARM_A1_REGNUM;
7a5ea0d4 2113 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2114
2115 while (len > 0)
2116 {
2117 regcache_cooked_read (regs, regno++, tmpbuf);
2118 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2119 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2120 len -= INT_REGISTER_SIZE;
2121 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2122 }
2123 }
34e8f22d
RE
2124}
2125
67255d04
RE
2126/* Extract from an array REGBUF containing the (raw) register state
2127 the address in which a function should return its structure value. */
2128
2129static CORE_ADDR
95f95911 2130arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2131{
95f95911
MS
2132 ULONGEST ret;
2133
2134 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2135 return ret;
67255d04
RE
2136}
2137
2138/* Will a function return an aggregate type in memory or in a
2139 register? Return 0 if an aggregate type can be returned in a
2140 register, 1 if it must be returned in memory. */
2141
2142static int
2143arm_use_struct_convention (int gcc_p, struct type *type)
2144{
2145 int nRc;
52f0bd74 2146 enum type_code code;
67255d04 2147
44e1a9eb
DJ
2148 CHECK_TYPEDEF (type);
2149
67255d04
RE
2150 /* In the ARM ABI, "integer" like aggregate types are returned in
2151 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2152 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2153 offset of each addressable subfield must be zero. Note that bit
2154 fields are not addressable, and all addressable subfields of
2155 unions always start at offset zero.
67255d04
RE
2156
2157 This function is based on the behaviour of GCC 2.95.1.
2158 See: gcc/arm.c: arm_return_in_memory() for details.
2159
2160 Note: All versions of GCC before GCC 2.95.2 do not set up the
2161 parameters correctly for a function returning the following
2162 structure: struct { float f;}; This should be returned in memory,
2163 not a register. Richard Earnshaw sent me a patch, but I do not
2164 know of any way to detect if a function like the above has been
2165 compiled with the correct calling convention. */
2166
2167 /* All aggregate types that won't fit in a register must be returned
2168 in memory. */
b1e29e33 2169 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2170 {
2171 return 1;
2172 }
2173
2174 /* The only aggregate types that can be returned in a register are
2175 structs and unions. Arrays must be returned in memory. */
2176 code = TYPE_CODE (type);
2177 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2178 {
2179 return 1;
2180 }
2181
2182 /* Assume all other aggregate types can be returned in a register.
2183 Run a check for structures, unions and arrays. */
2184 nRc = 0;
2185
2186 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2187 {
2188 int i;
2189 /* Need to check if this struct/union is "integer" like. For
2190 this to be true, its size must be less than or equal to
b1e29e33
AC
2191 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2192 subfield must be zero. Note that bit fields are not
2193 addressable, and unions always start at offset zero. If any
2194 of the subfields is a floating point type, the struct/union
2195 cannot be an integer type. */
67255d04
RE
2196
2197 /* For each field in the object, check:
2198 1) Is it FP? --> yes, nRc = 1;
2199 2) Is it addressable (bitpos != 0) and
2200 not packed (bitsize == 0)?
2201 --> yes, nRc = 1
2202 */
2203
2204 for (i = 0; i < TYPE_NFIELDS (type); i++)
2205 {
2206 enum type_code field_type_code;
44e1a9eb 2207 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2208
2209 /* Is it a floating point type field? */
2210 if (field_type_code == TYPE_CODE_FLT)
2211 {
2212 nRc = 1;
2213 break;
2214 }
2215
2216 /* If bitpos != 0, then we have to care about it. */
2217 if (TYPE_FIELD_BITPOS (type, i) != 0)
2218 {
2219 /* Bitfields are not addressable. If the field bitsize is
2220 zero, then the field is not packed. Hence it cannot be
2221 a bitfield or any other packed type. */
2222 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2223 {
2224 nRc = 1;
2225 break;
2226 }
2227 }
2228 }
2229 }
2230
2231 return nRc;
2232}
2233
34e8f22d
RE
2234/* Write into appropriate registers a function return value of type
2235 TYPE, given in virtual format. */
2236
2237static void
b508a996
RE
2238arm_store_return_value (struct type *type, struct regcache *regs,
2239 const void *src)
34e8f22d 2240{
b508a996
RE
2241 const bfd_byte *valbuf = src;
2242
34e8f22d
RE
2243 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2244 {
7a5ea0d4 2245 char buf[MAX_REGISTER_SIZE];
34e8f22d 2246
fd50bc42 2247 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2248 {
2249 case ARM_FLOAT_FPA:
2250
b508a996
RE
2251 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2252 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2253 break;
2254
fd50bc42 2255 case ARM_FLOAT_SOFT_FPA:
08216dd7 2256 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2257 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2258 if (TYPE_LENGTH (type) > 4)
2259 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2260 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2261 break;
2262
2263 default:
2264 internal_error
2265 (__FILE__, __LINE__,
2266 "arm_store_return_value: Floating point model not supported");
2267 break;
2268 }
34e8f22d 2269 }
b508a996
RE
2270 else if (TYPE_CODE (type) == TYPE_CODE_INT
2271 || TYPE_CODE (type) == TYPE_CODE_CHAR
2272 || TYPE_CODE (type) == TYPE_CODE_BOOL
2273 || TYPE_CODE (type) == TYPE_CODE_PTR
2274 || TYPE_CODE (type) == TYPE_CODE_REF
2275 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2276 {
2277 if (TYPE_LENGTH (type) <= 4)
2278 {
2279 /* Values of one word or less are zero/sign-extended and
2280 returned in r0. */
7a5ea0d4 2281 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2282 LONGEST val = unpack_long (type, valbuf);
2283
7a5ea0d4 2284 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2285 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2286 }
2287 else
2288 {
2289 /* Integral values greater than one word are stored in consecutive
2290 registers starting with r0. This will always be a multiple of
2291 the regiser size. */
2292 int len = TYPE_LENGTH (type);
2293 int regno = ARM_A1_REGNUM;
2294
2295 while (len > 0)
2296 {
2297 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2298 len -= INT_REGISTER_SIZE;
2299 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2300 }
2301 }
2302 }
34e8f22d 2303 else
b508a996
RE
2304 {
2305 /* For a structure or union the behaviour is as if the value had
2306 been stored to word-aligned memory and then loaded into
2307 registers with 32-bit load instruction(s). */
2308 int len = TYPE_LENGTH (type);
2309 int regno = ARM_A1_REGNUM;
7a5ea0d4 2310 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2311
2312 while (len > 0)
2313 {
2314 memcpy (tmpbuf, valbuf,
7a5ea0d4 2315 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2316 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2317 len -= INT_REGISTER_SIZE;
2318 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2319 }
2320 }
34e8f22d
RE
2321}
2322
9df628e0
RE
2323static int
2324arm_get_longjmp_target (CORE_ADDR *pc)
2325{
2326 CORE_ADDR jb_addr;
7a5ea0d4 2327 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2328 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2329
2330 jb_addr = read_register (ARM_A1_REGNUM);
2331
2332 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2333 INT_REGISTER_SIZE))
9df628e0
RE
2334 return 0;
2335
7a5ea0d4 2336 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2337 return 1;
2338}
2339
ed9a39eb 2340/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2341
2342int
ed9a39eb 2343arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2344{
2345 CORE_ADDR start_addr;
2346
ed9a39eb
JM
2347 /* Find the starting address of the function containing the PC. If
2348 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2349 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2350 &start_addr, NULL))
c906108c
SS
2351 return 0;
2352
2353 return strncmp (name, "_call_via_r", 11) == 0;
2354}
2355
ed9a39eb
JM
2356/* If PC is in a Thumb call or return stub, return the address of the
2357 target PC, which is in a register. The thunk functions are called
2358 _called_via_xx, where x is the register name. The possible names
2359 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2360
2361CORE_ADDR
ed9a39eb 2362arm_skip_stub (CORE_ADDR pc)
c906108c 2363{
c5aa993b 2364 char *name;
c906108c
SS
2365 CORE_ADDR start_addr;
2366
2367 /* Find the starting address and name of the function containing the PC. */
2368 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2369 return 0;
2370
2371 /* Call thunks always start with "_call_via_". */
2372 if (strncmp (name, "_call_via_", 10) == 0)
2373 {
ed9a39eb
JM
2374 /* Use the name suffix to determine which register contains the
2375 target PC. */
c5aa993b
JM
2376 static char *table[15] =
2377 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2378 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2379 };
c906108c
SS
2380 int regno;
2381
2382 for (regno = 0; regno <= 14; regno++)
2383 if (strcmp (&name[10], table[regno]) == 0)
2384 return read_register (regno);
2385 }
ed9a39eb 2386
c5aa993b 2387 return 0; /* not a stub */
c906108c
SS
2388}
2389
afd7eef0
RE
2390static void
2391set_arm_command (char *args, int from_tty)
2392{
2393 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2394 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2395}
2396
2397static void
2398show_arm_command (char *args, int from_tty)
2399{
26304000 2400 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2401}
2402
fd50bc42
RE
2403enum arm_float_model
2404arm_get_fp_model (struct gdbarch *gdbarch)
2405{
2406 if (arm_fp_model == ARM_FLOAT_AUTO)
2407 return gdbarch_tdep (gdbarch)->fp_model;
2408
2409 return arm_fp_model;
2410}
2411
2412static void
2413arm_set_fp (struct gdbarch *gdbarch)
2414{
2415 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2416
2417 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2418 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2419 {
2420 set_gdbarch_double_format (gdbarch,
2421 &floatformat_ieee_double_littlebyte_bigword);
2422 set_gdbarch_long_double_format
2423 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2424 }
2425 else
2426 {
2427 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2428 set_gdbarch_long_double_format (gdbarch,
2429 &floatformat_ieee_double_little);
2430 }
2431}
2432
2433static void
2434set_fp_model_sfunc (char *args, int from_tty,
2435 struct cmd_list_element *c)
2436{
2437 enum arm_float_model fp_model;
2438
2439 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2440 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2441 {
2442 arm_fp_model = fp_model;
2443 break;
2444 }
2445
2446 if (fp_model == ARM_FLOAT_LAST)
2447 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2448 current_fp_model);
2449
2450 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2451 arm_set_fp (current_gdbarch);
2452}
2453
2454static void
2455show_fp_model (char *args, int from_tty,
2456 struct cmd_list_element *c)
2457{
2458 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2459
2460 if (arm_fp_model == ARM_FLOAT_AUTO
2461 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2462 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2463 fp_model_strings[tdep->fp_model]);
2464}
2465
afd7eef0
RE
2466/* If the user changes the register disassembly style used for info
2467 register and other commands, we have to also switch the style used
2468 in opcodes for disassembly output. This function is run in the "set
2469 arm disassembly" command, and does that. */
bc90b915
FN
2470
2471static void
afd7eef0 2472set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2473 struct cmd_list_element *c)
2474{
afd7eef0 2475 set_disassembly_style ();
bc90b915
FN
2476}
2477\f
966fbf70 2478/* Return the ARM register name corresponding to register I. */
a208b0cb 2479static const char *
34e8f22d 2480arm_register_name (int i)
966fbf70
RE
2481{
2482 return arm_register_names[i];
2483}
2484
bc90b915 2485static void
afd7eef0 2486set_disassembly_style (void)
bc90b915
FN
2487{
2488 const char *setname, *setdesc, **regnames;
2489 int numregs, j;
2490
afd7eef0 2491 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2492 int current = 0;
2493 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2494 while ((disassembly_style != setname)
2495 && (current < num_disassembly_options))
bc90b915
FN
2496 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2497 current_option = current;
2498
94c30b78 2499 /* Fill our copy. */
bc90b915
FN
2500 for (j = 0; j < numregs; j++)
2501 arm_register_names[j] = (char *) regnames[j];
2502
94c30b78 2503 /* Adjust case. */
34e8f22d 2504 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2505 {
34e8f22d
RE
2506 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2507 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2508 }
2509 else
2510 {
34e8f22d
RE
2511 arm_register_names[ARM_FPS_REGNUM] = "fps";
2512 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2513 }
2514
94c30b78 2515 /* Synchronize the disassembler. */
bc90b915
FN
2516 set_arm_regname_option (current);
2517}
2518
afd7eef0
RE
2519/* arm_othernames implements the "othernames" command. This is deprecated
2520 by the "set arm disassembly" command. */
bc90b915
FN
2521
2522static void
2523arm_othernames (char *names, int n)
2524{
94c30b78 2525 /* Circle through the various flavors. */
afd7eef0 2526 current_option = (current_option + 1) % num_disassembly_options;
bc90b915 2527
afd7eef0
RE
2528 disassembly_style = valid_disassembly_styles[current_option];
2529 set_disassembly_style ();
bc90b915
FN
2530}
2531
082fc60d
RE
2532/* Test whether the coff symbol specific value corresponds to a Thumb
2533 function. */
2534
2535static int
2536coff_sym_is_thumb (int val)
2537{
2538 return (val == C_THUMBEXT ||
2539 val == C_THUMBSTAT ||
2540 val == C_THUMBEXTFUNC ||
2541 val == C_THUMBSTATFUNC ||
2542 val == C_THUMBLABEL);
2543}
2544
2545/* arm_coff_make_msymbol_special()
2546 arm_elf_make_msymbol_special()
2547
2548 These functions test whether the COFF or ELF symbol corresponds to
2549 an address in thumb code, and set a "special" bit in a minimal
2550 symbol to indicate that it does. */
2551
34e8f22d 2552static void
082fc60d
RE
2553arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2554{
2555 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2556 STT_ARM_TFUNC). */
2557 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2558 == STT_LOPROC)
2559 MSYMBOL_SET_SPECIAL (msym);
2560}
2561
34e8f22d 2562static void
082fc60d
RE
2563arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2564{
2565 if (coff_sym_is_thumb (val))
2566 MSYMBOL_SET_SPECIAL (msym);
2567}
2568
756fe439
DJ
2569static void
2570arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2571{
2572 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2573
2574 /* If necessary, set the T bit. */
2575 if (arm_apcs_32)
2576 {
2577 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2578 if (arm_pc_is_thumb (pc))
2579 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2580 else
2581 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2582 }
2583}
97e03143 2584\f
70f80edf
JT
2585static enum gdb_osabi
2586arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2587{
70f80edf
JT
2588 unsigned int elfosabi, eflags;
2589 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2590
70f80edf 2591 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2592
70f80edf 2593 switch (elfosabi)
97e03143 2594 {
70f80edf
JT
2595 case ELFOSABI_NONE:
2596 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2597 file are conforming to the base specification for that machine
2598 (there are no OS-specific extensions). In order to determine the
2599 real OS in use we must look for OS notes that have been added. */
2600 bfd_map_over_sections (abfd,
2601 generic_elf_osabi_sniff_abi_tag_sections,
2602 &osabi);
2603 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2604 {
70f80edf
JT
2605 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2606 field for more information. */
2607 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2608 switch (eflags)
97e03143 2609 {
70f80edf
JT
2610 case EF_ARM_EABI_VER1:
2611 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2612 break;
2613
70f80edf
JT
2614 case EF_ARM_EABI_VER2:
2615 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2616 break;
2617
70f80edf
JT
2618 case EF_ARM_EABI_UNKNOWN:
2619 /* Assume GNU tools. */
2620 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2621 break;
2622
70f80edf
JT
2623 default:
2624 internal_error (__FILE__, __LINE__,
2625 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2626 "version 0x%x", eflags);
97e03143
RE
2627 }
2628 }
70f80edf 2629 break;
97e03143 2630
70f80edf
JT
2631 case ELFOSABI_ARM:
2632 /* GNU tools use this value. Check note sections in this case,
2633 as well. */
97e03143 2634 bfd_map_over_sections (abfd,
70f80edf
JT
2635 generic_elf_osabi_sniff_abi_tag_sections,
2636 &osabi);
2637 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2638 {
70f80edf
JT
2639 /* Assume APCS ABI. */
2640 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2641 }
2642 break;
2643
97e03143 2644 case ELFOSABI_FREEBSD:
70f80edf
JT
2645 osabi = GDB_OSABI_FREEBSD_ELF;
2646 break;
97e03143 2647
70f80edf
JT
2648 case ELFOSABI_NETBSD:
2649 osabi = GDB_OSABI_NETBSD_ELF;
2650 break;
97e03143 2651
70f80edf
JT
2652 case ELFOSABI_LINUX:
2653 osabi = GDB_OSABI_LINUX;
2654 break;
97e03143
RE
2655 }
2656
70f80edf 2657 return osabi;
97e03143
RE
2658}
2659
70f80edf 2660\f
da3c6d4a
MS
2661/* Initialize the current architecture based on INFO. If possible,
2662 re-use an architecture from ARCHES, which is a list of
2663 architectures already created during this debugging session.
97e03143 2664
da3c6d4a
MS
2665 Called e.g. at program startup, when reading a core file, and when
2666 reading a binary file. */
97e03143 2667
39bbf761
RE
2668static struct gdbarch *
2669arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2670{
97e03143 2671 struct gdbarch_tdep *tdep;
39bbf761
RE
2672 struct gdbarch *gdbarch;
2673
97e03143 2674 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2675
4be87837 2676 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2677 {
4be87837 2678 switch (bfd_get_flavour (info.abfd))
97e03143 2679 {
4be87837
DJ
2680 case bfd_target_aout_flavour:
2681 /* Assume it's an old APCS-style ABI. */
2682 info.osabi = GDB_OSABI_ARM_APCS;
2683 break;
97e03143 2684
4be87837
DJ
2685 case bfd_target_coff_flavour:
2686 /* Assume it's an old APCS-style ABI. */
2687 /* XXX WinCE? */
2688 info.osabi = GDB_OSABI_ARM_APCS;
2689 break;
97e03143 2690
4be87837
DJ
2691 default:
2692 /* Leave it as "unknown". */
50ceaba5 2693 break;
97e03143
RE
2694 }
2695 }
2696
4be87837
DJ
2697 /* If there is already a candidate, use it. */
2698 arches = gdbarch_list_lookup_by_info (arches, &info);
2699 if (arches != NULL)
2700 return arches->gdbarch;
97e03143
RE
2701
2702 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2703 gdbarch = gdbarch_alloc (&info, tdep);
2704
fd50bc42
RE
2705 /* We used to default to FPA for generic ARM, but almost nobody uses that
2706 now, and we now provide a way for the user to force the model. So
2707 default to the most useful variant. */
2708 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
08216dd7
RE
2709
2710 /* Breakpoints. */
67255d04
RE
2711 switch (info.byte_order)
2712 {
2713 case BFD_ENDIAN_BIG:
66e810cd
RE
2714 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2715 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2716 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2717 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2718
67255d04
RE
2719 break;
2720
2721 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2722 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2723 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2724 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2725 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2726
67255d04
RE
2727 break;
2728
2729 default:
2730 internal_error (__FILE__, __LINE__,
2731 "arm_gdbarch_init: bad byte order for float format");
2732 }
2733
d7b486e7
RE
2734 /* On ARM targets char defaults to unsigned. */
2735 set_gdbarch_char_signed (gdbarch, 0);
2736
9df628e0 2737 /* This should be low enough for everything. */
97e03143 2738 tdep->lowest_pc = 0x20;
94c30b78 2739 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2740
b1e29e33
AC
2741 set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
2742 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
848cfffb 2743
2dd604e7 2744 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2745
756fe439
DJ
2746 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2747
148754e5 2748 /* Frame handling. */
eb5492fa
DJ
2749 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2750 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2751 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2752
19772a2c 2753 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
eb5492fa
DJ
2754
2755 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2756
34e8f22d
RE
2757 /* Address manipulation. */
2758 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2759 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2760
34e8f22d
RE
2761 /* Advance PC across function entry code. */
2762 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2763
2764 /* Get the PC when a frame might not be available. */
6913c89a 2765 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2766
2767 /* The stack grows downward. */
2768 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2769
2770 /* Breakpoint manipulation. */
2771 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2772
2773 /* Information about registers, etc. */
2774 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2775 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2776 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2777 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2778 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
b8b527c5 2779 set_gdbarch_deprecated_register_bytes (gdbarch,
7a5ea0d4
DJ
2780 (NUM_GREGS * INT_REGISTER_SIZE
2781 + NUM_FREGS * FP_REGISTER_SIZE
b8b527c5 2782 + NUM_SREGS * STATUS_REGISTER_SIZE));
34e8f22d 2783 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2784 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2785
26216b98
AC
2786 /* Internal <-> external register number maps. */
2787 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2788
34e8f22d 2789 /* Integer registers are 4 bytes. */
b1e29e33 2790 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2791 set_gdbarch_register_name (gdbarch, arm_register_name);
2792
2793 /* Returning results. */
b508a996
RE
2794 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2795 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
67255d04 2796 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
74055713 2797 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
34e8f22d
RE
2798
2799 /* Single stepping. */
2800 /* XXX For an RDI target we should ask the target if it can single-step. */
2801 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2802
03d48a7d
RE
2803 /* Disassembly. */
2804 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2805
34e8f22d
RE
2806 /* Minsymbol frobbing. */
2807 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2808 set_gdbarch_coff_make_msymbol_special (gdbarch,
2809 arm_coff_make_msymbol_special);
2810
97e03143 2811 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2812 gdbarch_init_osabi (info, gdbarch);
97e03143 2813
eb5492fa
DJ
2814 /* Add some default predicates. */
2815 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2816 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2817
97e03143
RE
2818 /* Now we have tuned the configuration, set a few final things,
2819 based on what the OS ABI has told us. */
2820
9df628e0
RE
2821 if (tdep->jb_pc >= 0)
2822 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2823
08216dd7
RE
2824 /* Floating point sizes and format. */
2825 switch (info.byte_order)
2826 {
2827 case BFD_ENDIAN_BIG:
2828 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2829 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2830 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2831
2832 break;
2833
2834 case BFD_ENDIAN_LITTLE:
2835 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
fd50bc42 2836 arm_set_fp (gdbarch);
08216dd7
RE
2837 break;
2838
2839 default:
2840 internal_error (__FILE__, __LINE__,
2841 "arm_gdbarch_init: bad byte order for float format");
2842 }
2843
39bbf761
RE
2844 return gdbarch;
2845}
2846
97e03143
RE
2847static void
2848arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2849{
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2851
2852 if (tdep == NULL)
2853 return;
2854
97e03143
RE
2855 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2856 (unsigned long) tdep->lowest_pc);
2857}
2858
2859static void
2860arm_init_abi_eabi_v1 (struct gdbarch_info info,
2861 struct gdbarch *gdbarch)
2862{
2863 /* Place-holder. */
2864}
2865
2866static void
2867arm_init_abi_eabi_v2 (struct gdbarch_info info,
2868 struct gdbarch *gdbarch)
2869{
2870 /* Place-holder. */
2871}
2872
2873static void
2874arm_init_abi_apcs (struct gdbarch_info info,
2875 struct gdbarch *gdbarch)
2876{
2877 /* Place-holder. */
2878}
2879
a78f21af
AC
2880extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2881
c906108c 2882void
ed9a39eb 2883_initialize_arm_tdep (void)
c906108c 2884{
bc90b915
FN
2885 struct ui_file *stb;
2886 long length;
26304000 2887 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2888 const char *setname;
2889 const char *setdesc;
2890 const char **regnames;
bc90b915
FN
2891 int numregs, i, j;
2892 static char *helptext;
085dd6e6 2893
42cf1509 2894 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2895
70f80edf
JT
2896 /* Register an ELF OS ABI sniffer for ARM binaries. */
2897 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2898 bfd_target_elf_flavour,
2899 arm_elf_osabi_sniffer);
2900
97e03143 2901 /* Register some ABI variants for embedded systems. */
05816f70 2902 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 2903 arm_init_abi_eabi_v1);
05816f70 2904 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 2905 arm_init_abi_eabi_v2);
05816f70 2906 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 2907 arm_init_abi_apcs);
39bbf761 2908
94c30b78 2909 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2910 num_disassembly_options = get_arm_regname_num_options ();
2911
2912 /* Add root prefix command for all "set arm"/"show arm" commands. */
2913 add_prefix_cmd ("arm", no_class, set_arm_command,
2914 "Various ARM-specific commands.",
2915 &setarmcmdlist, "set arm ", 0, &setlist);
2916
2917 add_prefix_cmd ("arm", no_class, show_arm_command,
2918 "Various ARM-specific commands.",
2919 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2920
94c30b78 2921 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2922 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2923
94c30b78 2924 /* Begin creating the help text. */
bc90b915 2925 stb = mem_fileopen ();
afd7eef0
RE
2926 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2927 "The valid values are:\n");
ed9a39eb 2928
94c30b78 2929 /* Initialize the array that will be passed to add_set_enum_cmd(). */
afd7eef0
RE
2930 valid_disassembly_styles
2931 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2932 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2933 {
2934 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2935 valid_disassembly_styles[i] = setname;
bc90b915
FN
2936 fprintf_unfiltered (stb, "%s - %s\n", setname,
2937 setdesc);
94c30b78 2938 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2939 if (!strcmp (setname, "std"))
2940 {
afd7eef0 2941 disassembly_style = setname;
bc90b915
FN
2942 current_option = i;
2943 for (j = 0; j < numregs; j++)
2944 arm_register_names[j] = (char *) regnames[j];
2945 set_arm_regname_option (i);
2946 }
2947 }
94c30b78 2948 /* Mark the end of valid options. */
afd7eef0 2949 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2950
94c30b78 2951 /* Finish the creation of the help text. */
bc90b915
FN
2952 fprintf_unfiltered (stb, "The default is \"std\".");
2953 helptext = ui_file_xstrdup (stb, &length);
2954 ui_file_delete (stb);
ed9a39eb 2955
afd7eef0 2956 /* Add the deprecated disassembly-flavor command. */
26304000 2957 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
afd7eef0
RE
2958 valid_disassembly_styles,
2959 &disassembly_style,
bc90b915 2960 helptext,
ed9a39eb 2961 &setlist);
26304000
RE
2962 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2963 deprecate_cmd (new_set, "set arm disassembly");
2964 deprecate_cmd (add_show_from_set (new_set, &showlist),
afd7eef0
RE
2965 "show arm disassembly");
2966
2967 /* And now add the new interface. */
30757f90 2968 new_set = add_set_enum_cmd ("disassembler", no_class,
26304000
RE
2969 valid_disassembly_styles, &disassembly_style,
2970 helptext, &setarmcmdlist);
2971
fd50bc42 2972 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
26304000
RE
2973 add_show_from_set (new_set, &showarmcmdlist);
2974
2975 add_setshow_cmd_full ("apcs32", no_class,
2976 var_boolean, (char *) &arm_apcs_32,
2977 "Set usage of ARM 32-bit mode.",
2978 "Show usage of ARM 32-bit mode.",
2979 NULL, NULL,
2980 &setlist, &showlist, &new_set, &new_show);
2981 deprecate_cmd (new_set, "set arm apcs32");
2982 deprecate_cmd (new_show, "show arm apcs32");
2983
2984 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2985 "Set usage of ARM 32-bit mode. "
2986 "When off, a 26-bit PC will be used.",
2987 "Show usage of ARM 32-bit mode. "
2988 "When off, a 26-bit PC will be used.",
2989 NULL, NULL,
2990 &setarmcmdlist, &showarmcmdlist);
c906108c 2991
fd50bc42
RE
2992 /* Add a command to allow the user to force the FPU model. */
2993 new_set = add_set_enum_cmd
2994 ("fpu", no_class, fp_model_strings, &current_fp_model,
2995 "Set the floating point type.\n"
2996 "auto - Determine the FP typefrom the OS-ABI.\n"
2997 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2998 "fpa - FPA co-processor (GCC compiled).\n"
2999 "softvfp - Software FP with pure-endian doubles.\n"
3000 "vfp - VFP co-processor.",
3001 &setarmcmdlist);
3002 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3003 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3004
94c30b78 3005 /* Add the deprecated "othernames" command. */
afd7eef0
RE
3006 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3007 "Switch to the next set of register names."),
3008 "set arm disassembly");
c3b4394c 3009
6529d2dd 3010 /* Debugging flag. */
26304000
RE
3011 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3012 "Set ARM debugging. "
3013 "When on, arm-specific debugging is enabled.",
3014 "Show ARM debugging. "
3015 "When on, arm-specific debugging is enabled.",
3016 NULL, NULL,
3017 &setdebuglist, &showdebuglist);
c906108c 3018}
This page took 1.186855 seconds and 4 git commands to generate.