* configure.host: Add arm*-*-openbsd*.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904
AC
2
3 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c 22
34e8f22d
RE
23#include <ctype.h> /* XXX for isupper () */
24
c906108c
SS
25#include "defs.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
c906108c 30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
34e8f22d
RE
42
43#include "arm-tdep.h"
26216b98 44#include "gdb/sim-arm.h"
34e8f22d 45
082fc60d
RE
46#include "elf-bfd.h"
47#include "coff/internal.h"
97e03143 48#include "elf/arm.h"
c906108c 49
26216b98
AC
50#include "gdb_assert.h"
51
6529d2dd
AC
52static int arm_debug;
53
2a451106
KB
54/* Each OS has a different mechanism for accessing the various
55 registers stored in the sigcontext structure.
56
57 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
58 function pointer) which may be used to determine the addresses
59 of the various saved registers in the sigcontext structure.
60
61 For the ARM target, there are three parameters to this function.
62 The first is the pc value of the frame under consideration, the
63 second the stack pointer of this frame, and the last is the
64 register number to fetch.
65
66 If the tm.h file does not define this macro, then it's assumed that
67 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
68 be 0.
69
70 When it comes time to multi-arching this code, see the identically
71 named machinery in ia64-tdep.c for an example of how it could be
72 done. It should not be necessary to modify the code below where
73 this macro is used. */
74
3bb04bdd
AC
75#ifdef SIGCONTEXT_REGISTER_ADDRESS
76#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
77#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
78#endif
79#else
80#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
81#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
82#endif
83
082fc60d
RE
84/* Macros for setting and testing a bit in a minimal symbol that marks
85 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 86 is used for this purpose.
082fc60d
RE
87
88 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 89 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
90
91#define MSYMBOL_SET_SPECIAL(msym) \
92 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
93 | 0x80000000)
94
95#define MSYMBOL_IS_SPECIAL(msym) \
96 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
97
afd7eef0
RE
98/* The list of available "set arm ..." and "show arm ..." commands. */
99static struct cmd_list_element *setarmcmdlist = NULL;
100static struct cmd_list_element *showarmcmdlist = NULL;
101
fd50bc42
RE
102/* The type of floating-point to use. Keep this in sync with enum
103 arm_float_model, and the help string in _initialize_arm_tdep. */
104static const char *fp_model_strings[] =
105{
106 "auto",
107 "softfpa",
108 "fpa",
109 "softvfp",
28e97307
DJ
110 "vfp",
111 NULL
fd50bc42
RE
112};
113
114/* A variable that can be configured by the user. */
115static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
116static const char *current_fp_model = "auto";
117
28e97307
DJ
118/* The ABI to use. Keep this in sync with arm_abi_kind. */
119static const char *arm_abi_strings[] =
120{
121 "auto",
122 "APCS",
123 "AAPCS",
124 NULL
125};
126
127/* A variable that can be configured by the user. */
128static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
129static const char *arm_abi_string = "auto";
130
94c30b78 131/* Number of different reg name sets (options). */
afd7eef0 132static int num_disassembly_options;
bc90b915
FN
133
134/* We have more registers than the disassembler as gdb can print the value
135 of special registers as well.
136 The general register names are overwritten by whatever is being used by
94c30b78 137 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 138
94c30b78 139/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 140static char * arm_register_name_strings[] =
da59e081
JM
141{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
142 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
143 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
144 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
145 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
146 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 147 "fps", "cpsr" }; /* 24 25 */
966fbf70 148static char **arm_register_names = arm_register_name_strings;
ed9a39eb 149
afd7eef0
RE
150/* Valid register name styles. */
151static const char **valid_disassembly_styles;
ed9a39eb 152
afd7eef0
RE
153/* Disassembly style to use. Default to "std" register names. */
154static const char *disassembly_style;
94c30b78 155/* Index to that option in the opcodes table. */
da3c6d4a 156static int current_option;
96baa820 157
ed9a39eb 158/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
159 style. */
160static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 161 struct cmd_list_element *);
afd7eef0 162static void set_disassembly_style (void);
ed9a39eb 163
b508a996
RE
164static void convert_from_extended (const struct floatformat *, const void *,
165 void *);
166static void convert_to_extended (const struct floatformat *, void *,
167 const void *);
ed9a39eb 168
9b8d791a 169struct arm_prologue_cache
c3b4394c 170{
eb5492fa
DJ
171 /* The stack pointer at the time this frame was created; i.e. the
172 caller's stack pointer when this function was called. It is used
173 to identify this frame. */
174 CORE_ADDR prev_sp;
175
176 /* The frame base for this frame is just prev_sp + frame offset -
177 frame size. FRAMESIZE is the size of this stack frame, and
178 FRAMEOFFSET if the initial offset from the stack pointer (this
179 frame's stack pointer, not PREV_SP) to the frame base. */
180
c3b4394c
RE
181 int framesize;
182 int frameoffset;
eb5492fa
DJ
183
184 /* The register used to hold the frame pointer for this frame. */
c3b4394c 185 int framereg;
eb5492fa
DJ
186
187 /* Saved register offsets. */
188 struct trad_frame_saved_reg *saved_regs;
c3b4394c 189};
ed9a39eb 190
bc90b915
FN
191/* Addresses for calling Thumb functions have the bit 0 set.
192 Here are some macros to test, set, or clear bit 0 of addresses. */
193#define IS_THUMB_ADDR(addr) ((addr) & 1)
194#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
195#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
196
94c30b78 197/* Set to true if the 32-bit mode is in use. */
c906108c
SS
198
199int arm_apcs_32 = 1;
200
ed9a39eb
JM
201/* Determine if the program counter specified in MEMADDR is in a Thumb
202 function. */
c906108c 203
34e8f22d 204int
2a451106 205arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 206{
c5aa993b 207 struct minimal_symbol *sym;
c906108c 208
ed9a39eb 209 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
210 if (IS_THUMB_ADDR (memaddr))
211 return 1;
212
ed9a39eb 213 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
214 sym = lookup_minimal_symbol_by_pc (memaddr);
215 if (sym)
216 {
c5aa993b 217 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
218 }
219 else
ed9a39eb
JM
220 {
221 return 0;
222 }
c906108c
SS
223}
224
181c1381 225/* Remove useless bits from addresses in a running program. */
34e8f22d 226static CORE_ADDR
ed9a39eb 227arm_addr_bits_remove (CORE_ADDR val)
c906108c 228{
a3a2ee65
JT
229 if (arm_apcs_32)
230 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 231 else
a3a2ee65 232 return (val & 0x03fffffc);
c906108c
SS
233}
234
181c1381
RE
235/* When reading symbols, we need to zap the low bit of the address,
236 which may be set to 1 for Thumb functions. */
34e8f22d 237static CORE_ADDR
181c1381
RE
238arm_smash_text_address (CORE_ADDR val)
239{
240 return val & ~1;
241}
242
34e8f22d
RE
243/* Immediately after a function call, return the saved pc. Can't
244 always go through the frames for this because on some machines the
245 new frame is not set up until the new function executes some
246 instructions. */
247
248static CORE_ADDR
ed9a39eb 249arm_saved_pc_after_call (struct frame_info *frame)
c906108c 250{
34e8f22d 251 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
252}
253
254/* A typical Thumb prologue looks like this:
c5aa993b
JM
255 push {r7, lr}
256 add sp, sp, #-28
257 add r7, sp, #12
c906108c 258 Sometimes the latter instruction may be replaced by:
da59e081
JM
259 mov r7, sp
260
261 or like this:
262 push {r7, lr}
263 mov r7, sp
264 sub sp, #12
265
266 or, on tpcs, like this:
267 sub sp,#16
268 push {r7, lr}
269 (many instructions)
270 mov r7, sp
271 sub sp, #12
272
273 There is always one instruction of three classes:
274 1 - push
275 2 - setting of r7
276 3 - adjusting of sp
277
278 When we have found at least one of each class we are done with the prolog.
279 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 280 */
c906108c
SS
281
282static CORE_ADDR
c7885828 283thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
284{
285 CORE_ADDR current_pc;
da3c6d4a
MS
286 /* findmask:
287 bit 0 - push { rlist }
288 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
289 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
290 */
291 int findmask = 0;
292
94c30b78
MS
293 for (current_pc = pc;
294 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 295 current_pc += 2)
c906108c
SS
296 {
297 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
298
94c30b78 299 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 300 {
94c30b78 301 findmask |= 1; /* push found */
da59e081 302 }
da3c6d4a
MS
303 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
304 sub sp, #simm */
da59e081 305 {
94c30b78 306 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
307 continue;
308 else
94c30b78 309 findmask |= 4; /* add/sub sp found */
da59e081
JM
310 }
311 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
312 {
94c30b78 313 findmask |= 2; /* setting of r7 found */
da59e081
JM
314 }
315 else if (insn == 0x466f) /* mov r7, sp */
316 {
94c30b78 317 findmask |= 2; /* setting of r7 found */
da59e081 318 }
3d74b771
FF
319 else if (findmask == (4+2+1))
320 {
da3c6d4a
MS
321 /* We have found one of each type of prologue instruction */
322 break;
3d74b771 323 }
da59e081 324 else
94c30b78 325 /* Something in the prolog that we don't care about or some
da3c6d4a 326 instruction from outside the prolog scheduled here for
94c30b78 327 optimization. */
da3c6d4a 328 continue;
c906108c
SS
329 }
330
331 return current_pc;
332}
333
da3c6d4a
MS
334/* Advance the PC across any function entry prologue instructions to
335 reach some "real" code.
34e8f22d
RE
336
337 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 338 prologue:
c906108c 339
c5aa993b
JM
340 mov ip, sp
341 [stmfd sp!, {a1,a2,a3,a4}]
342 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
343 [stfe f7, [sp, #-12]!]
344 [stfe f6, [sp, #-12]!]
345 [stfe f5, [sp, #-12]!]
346 [stfe f4, [sp, #-12]!]
347 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 348
34e8f22d 349static CORE_ADDR
ed9a39eb 350arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
351{
352 unsigned long inst;
353 CORE_ADDR skip_pc;
b8d5e71d 354 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 355 char *func_name;
c906108c
SS
356 struct symtab_and_line sal;
357
848cfffb 358 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 359 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
360 return pc;
361
96baa820 362 /* See what the symbol table says. */
ed9a39eb 363
50f6fb4b 364 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 365 {
50f6fb4b
CV
366 struct symbol *sym;
367
368 /* Found a function. */
176620f1 369 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
370 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
371 {
94c30b78 372 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
373 sal = find_pc_line (func_addr, 0);
374 if ((sal.line != 0) && (sal.end < func_end))
375 return sal.end;
376 }
c906108c
SS
377 }
378
379 /* Check if this is Thumb code. */
380 if (arm_pc_is_thumb (pc))
c7885828 381 return thumb_skip_prologue (pc, func_end);
c906108c
SS
382
383 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 384 by disassembling the instructions. */
c906108c 385
b8d5e71d
MS
386 /* Like arm_scan_prologue, stop no later than pc + 64. */
387 if (func_end == 0 || func_end > pc + 64)
388 func_end = pc + 64;
c906108c 389
b8d5e71d 390 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 391 {
f43845b3 392 inst = read_memory_integer (skip_pc, 4);
f43845b3 393
b8d5e71d
MS
394 /* "mov ip, sp" is no longer a required part of the prologue. */
395 if (inst == 0xe1a0c00d) /* mov ip, sp */
396 continue;
c906108c 397
28cd8767
JG
398 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
402 continue;
403
b8d5e71d
MS
404 /* Some prologues begin with "str lr, [sp, #-4]!". */
405 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
406 continue;
c906108c 407
b8d5e71d
MS
408 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
409 continue;
c906108c 410
b8d5e71d
MS
411 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
412 continue;
11d3b27d 413
b8d5e71d
MS
414 /* Any insns after this point may float into the code, if it makes
415 for better instruction scheduling, so we skip them only if we
416 find them, but still consider the function to be frame-ful. */
f43845b3 417
b8d5e71d
MS
418 /* We may have either one sfmfd instruction here, or several stfe
419 insns, depending on the version of floating point code we
420 support. */
421 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
422 continue;
423
424 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
425 continue;
426
427 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
428 continue;
429
430 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
431 continue;
432
433 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
434 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
435 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
436 continue;
437
438 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
439 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
440 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
441 continue;
442
443 /* Un-recognized instruction; stop scanning. */
444 break;
f43845b3 445 }
c906108c 446
b8d5e71d 447 return skip_pc; /* End of prologue */
c906108c 448}
94c30b78 449
c5aa993b 450/* *INDENT-OFF* */
c906108c
SS
451/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
452 This function decodes a Thumb function prologue to determine:
453 1) the size of the stack frame
454 2) which registers are saved on it
455 3) the offsets of saved regs
456 4) the offset from the stack pointer to the frame pointer
c906108c 457
da59e081
JM
458 A typical Thumb function prologue would create this stack frame
459 (offsets relative to FP)
c906108c
SS
460 old SP -> 24 stack parameters
461 20 LR
462 16 R7
463 R7 -> 0 local variables (16 bytes)
464 SP -> -12 additional stack space (12 bytes)
465 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
466 12 bytes. The frame register is R7.
467
da3c6d4a
MS
468 The comments for thumb_skip_prolog() describe the algorithm we use
469 to detect the end of the prolog. */
c5aa993b
JM
470/* *INDENT-ON* */
471
c906108c 472static void
eb5492fa 473thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
474{
475 CORE_ADDR prologue_start;
476 CORE_ADDR prologue_end;
477 CORE_ADDR current_pc;
94c30b78 478 /* Which register has been copied to register n? */
da3c6d4a
MS
479 int saved_reg[16];
480 /* findmask:
481 bit 0 - push { rlist }
482 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
483 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
484 */
485 int findmask = 0;
c5aa993b 486 int i;
c906108c 487
eb5492fa 488 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
489 {
490 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
491
94c30b78 492 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 493 prologue_end = prev_pc;
c906108c 494 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 495 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
496 }
497 else
da3c6d4a
MS
498 /* We're in the boondocks: allow for
499 16 pushes, an add, and "mv fp,sp". */
500 prologue_end = prologue_start + 40;
c906108c 501
eb5492fa 502 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
503
504 /* Initialize the saved register map. When register H is copied to
505 register L, we will put H in saved_reg[L]. */
506 for (i = 0; i < 16; i++)
507 saved_reg[i] = i;
508
509 /* Search the prologue looking for instructions that set up the
da59e081
JM
510 frame pointer, adjust the stack pointer, and save registers.
511 Do this until all basic prolog instructions are found. */
c906108c 512
9b8d791a 513 cache->framesize = 0;
da59e081
JM
514 for (current_pc = prologue_start;
515 (current_pc < prologue_end) && ((findmask & 7) != 7);
516 current_pc += 2)
c906108c
SS
517 {
518 unsigned short insn;
519 int regno;
520 int offset;
521
522 insn = read_memory_unsigned_integer (current_pc, 2);
523
c5aa993b 524 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 525 {
da59e081 526 int mask;
94c30b78 527 findmask |= 1; /* push found */
c906108c
SS
528 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
529 whether to save LR (R14). */
da59e081 530 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 531
b8d5e71d 532 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 533 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 534 if (mask & (1 << regno))
c5aa993b 535 {
9b8d791a 536 cache->framesize += 4;
eb5492fa 537 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
538 /* Reset saved register map. */
539 saved_reg[regno] = regno;
c906108c
SS
540 }
541 }
da3c6d4a
MS
542 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
543 sub sp, #simm */
c906108c 544 {
b8d5e71d 545 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
546 continue;
547 else
94c30b78 548 findmask |= 4; /* add/sub sp found */
da59e081 549
94c30b78
MS
550 offset = (insn & 0x7f) << 2; /* get scaled offset */
551 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 552 {
9b8d791a 553 cache->frameoffset += offset;
da59e081
JM
554 offset = -offset;
555 }
9b8d791a 556 cache->framesize -= offset;
c906108c
SS
557 }
558 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
559 {
94c30b78 560 findmask |= 2; /* setting of r7 found */
9b8d791a 561 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 562 /* get scaled offset */
9b8d791a 563 cache->frameoffset = (insn & 0xff) << 2;
c906108c 564 }
da59e081 565 else if (insn == 0x466f) /* mov r7, sp */
c906108c 566 {
94c30b78 567 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
568 cache->framereg = THUMB_FP_REGNUM;
569 cache->frameoffset = 0;
34e8f22d 570 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
571 }
572 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
573 {
da3c6d4a 574 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 575 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 576 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
577 }
578 else
da3c6d4a
MS
579 /* Something in the prolog that we don't care about or some
580 instruction from outside the prolog scheduled here for
581 optimization. */
582 continue;
c906108c
SS
583 }
584}
585
ed9a39eb 586/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
587 1) the size of the stack frame
588 2) which registers are saved on it
589 3) the offsets of saved regs
590 4) the offset from the stack pointer to the frame pointer
c906108c
SS
591 This information is stored in the "extra" fields of the frame_info.
592
96baa820
JM
593 There are two basic forms for the ARM prologue. The fixed argument
594 function call will look like:
ed9a39eb
JM
595
596 mov ip, sp
597 stmfd sp!, {fp, ip, lr, pc}
598 sub fp, ip, #4
599 [sub sp, sp, #4]
96baa820 600
c906108c 601 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
602 IP -> 4 (caller's stack)
603 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
604 -4 LR (return address in caller)
605 -8 IP (copy of caller's SP)
606 -12 FP (caller's FP)
607 SP -> -28 Local variables
608
c906108c 609 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
610 28 bytes. The stmfd call can also save any of the vN registers it
611 plans to use, which increases the frame size accordingly.
612
613 Note: The stored PC is 8 off of the STMFD instruction that stored it
614 because the ARM Store instructions always store PC + 8 when you read
615 the PC register.
ed9a39eb 616
96baa820
JM
617 A variable argument function call will look like:
618
ed9a39eb
JM
619 mov ip, sp
620 stmfd sp!, {a1, a2, a3, a4}
621 stmfd sp!, {fp, ip, lr, pc}
622 sub fp, ip, #20
623
96baa820 624 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
625 IP -> 20 (caller's stack)
626 16 A4
627 12 A3
628 8 A2
629 4 A1
630 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
631 -4 LR (return address in caller)
632 -8 IP (copy of caller's SP)
633 -12 FP (caller's FP)
634 SP -> -28 Local variables
96baa820
JM
635
636 The frame size would thus be 48 bytes, and the frame offset would be
637 28 bytes.
638
639 There is another potential complication, which is that the optimizer
640 will try to separate the store of fp in the "stmfd" instruction from
641 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
642 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
643
644 Also, note, the original version of the ARM toolchain claimed that there
645 should be an
646
647 instruction at the end of the prologue. I have never seen GCC produce
648 this, and the ARM docs don't mention it. We still test for it below in
649 case it happens...
ed9a39eb
JM
650
651 */
c906108c
SS
652
653static void
eb5492fa 654arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 655{
28cd8767 656 int regno, sp_offset, fp_offset, ip_offset;
c906108c 657 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 658 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 659
c906108c 660 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
661 cache->framereg = ARM_SP_REGNUM;
662 cache->framesize = 0;
663 cache->frameoffset = 0;
c906108c
SS
664
665 /* Check for Thumb prologue. */
eb5492fa 666 if (arm_pc_is_thumb (prev_pc))
c906108c 667 {
eb5492fa 668 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
669 return;
670 }
671
672 /* Find the function prologue. If we can't find the function in
673 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 674 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 675 {
2a451106
KB
676 /* One way to find the end of the prologue (which works well
677 for unoptimized code) is to do the following:
678
679 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
680
681 if (sal.line == 0)
eb5492fa 682 prologue_end = prev_pc;
2a451106
KB
683 else if (sal.end < prologue_end)
684 prologue_end = sal.end;
685
686 This mechanism is very accurate so long as the optimizer
687 doesn't move any instructions from the function body into the
688 prologue. If this happens, sal.end will be the last
689 instruction in the first hunk of prologue code just before
690 the first instruction that the scheduler has moved from
691 the body to the prologue.
692
693 In order to make sure that we scan all of the prologue
694 instructions, we use a slightly less accurate mechanism which
695 may scan more than necessary. To help compensate for this
696 lack of accuracy, the prologue scanning loop below contains
697 several clauses which'll cause the loop to terminate early if
698 an implausible prologue instruction is encountered.
699
700 The expression
701
702 prologue_start + 64
703
704 is a suitable endpoint since it accounts for the largest
705 possible prologue plus up to five instructions inserted by
94c30b78 706 the scheduler. */
2a451106
KB
707
708 if (prologue_end > prologue_start + 64)
709 {
94c30b78 710 prologue_end = prologue_start + 64; /* See above. */
2a451106 711 }
c906108c
SS
712 }
713 else
714 {
eb5492fa
DJ
715 /* We have no symbol information. Our only option is to assume this
716 function has a standard stack frame and the normal frame register.
717 Then, we can find the value of our frame pointer on entrance to
718 the callee (or at the present moment if this is the innermost frame).
719 The value stored there should be the address of the stmfd + 8. */
720 CORE_ADDR frame_loc;
721 LONGEST return_value;
722
723 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
724 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
725 return;
726 else
727 {
728 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 729 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 730 }
c906108c
SS
731 }
732
eb5492fa
DJ
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
c906108c 736 /* Now search the prologue looking for instructions that set up the
96baa820 737 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 738
96baa820
JM
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 742 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 747 if we don't see this as the first insn, we will stop.
c906108c 748
f43845b3
MS
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 751
f43845b3
MS
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
b8d5e71d 755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 756
28cd8767 757 sp_offset = fp_offset = ip_offset = 0;
f43845b3 758
94c30b78
MS
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
f43845b3 761 current_pc += 4)
96baa820 762 {
d4473757
KB
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
94c30b78 765 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 766 {
28cd8767
JG
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
f43845b3
MS
784 continue;
785 }
94c30b78 786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 787 {
e28a332c
JG
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
c906108c 796 {
d4473757 797 int mask = insn & 0xffff;
ed9a39eb 798
94c30b78 799 /* Calculate offsets of saved registers. */
34e8f22d 800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
eb5492fa 804 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
805 }
806 }
b8d5e71d
MS
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
d4473757
KB
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
94c30b78
MS
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 825 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 826 fp_offset = -imm + ip_offset;
9b8d791a 827 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
94c30b78
MS
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
837 {
838 sp_offset -= 12;
34e8f22d 839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 840 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
841 }
842 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
843 {
844 int n_saved_fp_regs;
845 unsigned int fp_start_reg, fp_bound_reg;
846
94c30b78 847 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 848 {
d4473757
KB
849 if ((insn & 0x40000) == 0x40000) /* N1 is set */
850 n_saved_fp_regs = 3;
851 else
852 n_saved_fp_regs = 1;
96baa820 853 }
d4473757 854 else
96baa820 855 {
d4473757
KB
856 if ((insn & 0x40000) == 0x40000) /* N1 is set */
857 n_saved_fp_regs = 2;
858 else
859 n_saved_fp_regs = 4;
96baa820 860 }
d4473757 861
34e8f22d 862 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
863 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
864 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
865 {
866 sp_offset -= 12;
eb5492fa 867 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 868 }
c906108c 869 }
d4473757 870 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 871 break; /* Condition not true, exit early */
b8d5e71d 872 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 873 break; /* Don't scan past a block load */
d4473757
KB
874 else
875 /* The optimizer might shove anything into the prologue,
94c30b78 876 so we just skip what we don't recognize. */
d4473757 877 continue;
c906108c
SS
878 }
879
94c30b78
MS
880 /* The frame size is just the negative of the offset (from the
881 original SP) of the last thing thing we pushed on the stack.
882 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
883 cache->framesize = -sp_offset;
884 if (cache->framereg == ARM_FP_REGNUM)
885 cache->frameoffset = fp_offset - sp_offset;
d4473757 886 else
9b8d791a 887 cache->frameoffset = 0;
c906108c
SS
888}
889
eb5492fa
DJ
890static struct arm_prologue_cache *
891arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 892{
eb5492fa
DJ
893 int reg;
894 struct arm_prologue_cache *cache;
895 CORE_ADDR unwound_fp;
c5aa993b 896
eb5492fa
DJ
897 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
898 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 899
eb5492fa 900 arm_scan_prologue (next_frame, cache);
848cfffb 901
eb5492fa
DJ
902 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
903 if (unwound_fp == 0)
904 return cache;
c906108c 905
eb5492fa 906 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 907
eb5492fa
DJ
908 /* Calculate actual addresses of saved registers using offsets
909 determined by arm_scan_prologue. */
910 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 911 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
912 cache->saved_regs[reg].addr += cache->prev_sp;
913
914 return cache;
c906108c
SS
915}
916
eb5492fa
DJ
917/* Our frame ID for a normal frame is the current function's starting PC
918 and the caller's SP when we were called. */
c906108c 919
148754e5 920static void
eb5492fa
DJ
921arm_prologue_this_id (struct frame_info *next_frame,
922 void **this_cache,
923 struct frame_id *this_id)
c906108c 924{
eb5492fa
DJ
925 struct arm_prologue_cache *cache;
926 struct frame_id id;
927 CORE_ADDR func;
f079148d 928
eb5492fa
DJ
929 if (*this_cache == NULL)
930 *this_cache = arm_make_prologue_cache (next_frame);
931 cache = *this_cache;
2a451106 932
eb5492fa 933 func = frame_func_unwind (next_frame);
2a451106 934
eb5492fa
DJ
935 /* This is meant to halt the backtrace at "_start". Make sure we
936 don't halt it at a generic dummy frame. */
9e815ec2 937 if (func <= LOWEST_PC)
eb5492fa 938 return;
5a203e44 939
eb5492fa
DJ
940 /* If we've hit a wall, stop. */
941 if (cache->prev_sp == 0)
942 return;
24de872b 943
eb5492fa 944 id = frame_id_build (cache->prev_sp, func);
eb5492fa 945 *this_id = id;
c906108c
SS
946}
947
eb5492fa
DJ
948static void
949arm_prologue_prev_register (struct frame_info *next_frame,
950 void **this_cache,
951 int prev_regnum,
952 int *optimized,
953 enum lval_type *lvalp,
954 CORE_ADDR *addrp,
955 int *realnump,
956 void *valuep)
24de872b
DJ
957{
958 struct arm_prologue_cache *cache;
959
eb5492fa
DJ
960 if (*this_cache == NULL)
961 *this_cache = arm_make_prologue_cache (next_frame);
962 cache = *this_cache;
24de872b 963
eb5492fa
DJ
964 /* If we are asked to unwind the PC, then we need to return the LR
965 instead. The saved value of PC points into this frame's
966 prologue, not the next frame's resume location. */
967 if (prev_regnum == ARM_PC_REGNUM)
968 prev_regnum = ARM_LR_REGNUM;
24de872b 969
eb5492fa
DJ
970 /* SP is generally not saved to the stack, but this frame is
971 identified by NEXT_FRAME's stack pointer at the time of the call.
972 The value was already reconstructed into PREV_SP. */
973 if (prev_regnum == ARM_SP_REGNUM)
974 {
975 *lvalp = not_lval;
976 if (valuep)
977 store_unsigned_integer (valuep, 4, cache->prev_sp);
978 return;
979 }
980
1f67027d
AC
981 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
982 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
983}
984
985struct frame_unwind arm_prologue_unwind = {
986 NORMAL_FRAME,
987 arm_prologue_this_id,
988 arm_prologue_prev_register
989};
990
991static const struct frame_unwind *
992arm_prologue_unwind_sniffer (struct frame_info *next_frame)
993{
994 return &arm_prologue_unwind;
24de872b
DJ
995}
996
909cf6ea
DJ
997static struct arm_prologue_cache *
998arm_make_stub_cache (struct frame_info *next_frame)
999{
1000 int reg;
1001 struct arm_prologue_cache *cache;
1002 CORE_ADDR unwound_fp;
1003
1004 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1005 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1006
1007 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1008
1009 return cache;
1010}
1011
1012/* Our frame ID for a stub frame is the current SP and LR. */
1013
1014static void
1015arm_stub_this_id (struct frame_info *next_frame,
1016 void **this_cache,
1017 struct frame_id *this_id)
1018{
1019 struct arm_prologue_cache *cache;
1020
1021 if (*this_cache == NULL)
1022 *this_cache = arm_make_stub_cache (next_frame);
1023 cache = *this_cache;
1024
1025 *this_id = frame_id_build (cache->prev_sp,
1026 frame_pc_unwind (next_frame));
1027}
1028
1029struct frame_unwind arm_stub_unwind = {
1030 NORMAL_FRAME,
1031 arm_stub_this_id,
1032 arm_prologue_prev_register
1033};
1034
1035static const struct frame_unwind *
1036arm_stub_unwind_sniffer (struct frame_info *next_frame)
1037{
1038 char dummy[4];
1039
1040 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1041 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1042 return &arm_stub_unwind;
1043
1044 return NULL;
1045}
1046
24de872b 1047static CORE_ADDR
eb5492fa 1048arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1049{
1050 struct arm_prologue_cache *cache;
1051
eb5492fa
DJ
1052 if (*this_cache == NULL)
1053 *this_cache = arm_make_prologue_cache (next_frame);
1054 cache = *this_cache;
1055
1056 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1057}
1058
eb5492fa
DJ
1059struct frame_base arm_normal_base = {
1060 &arm_prologue_unwind,
1061 arm_normal_frame_base,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base
1064};
1065
1066static struct arm_prologue_cache *
1067arm_make_sigtramp_cache (struct frame_info *next_frame)
24de872b
DJ
1068{
1069 struct arm_prologue_cache *cache;
eb5492fa
DJ
1070 int reg;
1071
1072 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
24de872b 1073
eb5492fa 1074 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
24de872b 1075
eb5492fa 1076 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
24de872b 1077
eb5492fa
DJ
1078 for (reg = 0; reg < NUM_REGS; reg++)
1079 cache->saved_regs[reg].addr
1080 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1081 frame_pc_unwind (next_frame), reg);
24de872b 1082
eb5492fa
DJ
1083 /* FIXME: What about thumb mode? */
1084 cache->framereg = ARM_SP_REGNUM;
1085 cache->prev_sp
1086 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
7a5ea0d4 1087 register_size (current_gdbarch, cache->framereg));
eb5492fa
DJ
1088
1089 return cache;
24de872b 1090}
c906108c 1091
eb5492fa
DJ
1092static void
1093arm_sigtramp_this_id (struct frame_info *next_frame,
1094 void **this_cache,
1095 struct frame_id *this_id)
1096{
1097 struct arm_prologue_cache *cache;
c906108c 1098
eb5492fa
DJ
1099 if (*this_cache == NULL)
1100 *this_cache = arm_make_sigtramp_cache (next_frame);
1101 cache = *this_cache;
c906108c 1102
eb5492fa
DJ
1103 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1104 the sigtramp frame; the PC should be the beginning of the trampoline. */
1105 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1106}
1107
1108static void
1109arm_sigtramp_prev_register (struct frame_info *next_frame,
1110 void **this_cache,
1111 int prev_regnum,
1112 int *optimized,
1113 enum lval_type *lvalp,
1114 CORE_ADDR *addrp,
1115 int *realnump,
1116 void *valuep)
c906108c 1117{
eb5492fa 1118 struct arm_prologue_cache *cache;
848cfffb 1119
eb5492fa
DJ
1120 if (*this_cache == NULL)
1121 *this_cache = arm_make_sigtramp_cache (next_frame);
1122 cache = *this_cache;
1123
1f67027d
AC
1124 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1125 optimized, lvalp, addrp, realnump, valuep);
c906108c
SS
1126}
1127
eb5492fa
DJ
1128struct frame_unwind arm_sigtramp_unwind = {
1129 SIGTRAMP_FRAME,
1130 arm_sigtramp_this_id,
1131 arm_sigtramp_prev_register
1132};
c906108c 1133
eb5492fa
DJ
1134static const struct frame_unwind *
1135arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
c906108c 1136{
eb5492fa 1137 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
0b281939 1138 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
eb5492fa
DJ
1139 return &arm_sigtramp_unwind;
1140
1141 return NULL;
c906108c
SS
1142}
1143
eb5492fa
DJ
1144/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1145 dummy frame. The frame ID's base needs to match the TOS value
1146 saved by save_dummy_frame_tos() and returned from
1147 arm_push_dummy_call, and the PC needs to match the dummy frame's
1148 breakpoint. */
c906108c 1149
eb5492fa
DJ
1150static struct frame_id
1151arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1152{
eb5492fa
DJ
1153 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1154 frame_pc_unwind (next_frame));
1155}
c3b4394c 1156
eb5492fa
DJ
1157/* Given THIS_FRAME, find the previous frame's resume PC (which will
1158 be used to construct the previous frame's ID, after looking up the
1159 containing function). */
c3b4394c 1160
eb5492fa
DJ
1161static CORE_ADDR
1162arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1163{
1164 CORE_ADDR pc;
1165 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1166 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1167}
1168
1169static CORE_ADDR
1170arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1171{
1172 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1173}
1174
2dd604e7
RE
1175/* When arguments must be pushed onto the stack, they go on in reverse
1176 order. The code below implements a FILO (stack) to do this. */
1177
1178struct stack_item
1179{
1180 int len;
1181 struct stack_item *prev;
1182 void *data;
1183};
1184
1185static struct stack_item *
1186push_stack_item (struct stack_item *prev, void *contents, int len)
1187{
1188 struct stack_item *si;
1189 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1190 si->data = xmalloc (len);
2dd604e7
RE
1191 si->len = len;
1192 si->prev = prev;
1193 memcpy (si->data, contents, len);
1194 return si;
1195}
1196
1197static struct stack_item *
1198pop_stack_item (struct stack_item *si)
1199{
1200 struct stack_item *dead = si;
1201 si = si->prev;
1202 xfree (dead->data);
1203 xfree (dead);
1204 return si;
1205}
1206
1207/* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1210
1211static CORE_ADDR
7d9b040b 1212arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1214 struct value **args, CORE_ADDR sp, int struct_return,
1215 CORE_ADDR struct_addr)
2dd604e7
RE
1216{
1217 int argnum;
1218 int argreg;
1219 int nstack;
1220 struct stack_item *si = NULL;
1221
6a65450a
AC
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
2dd604e7 1224 /* XXX Fix for Thumb. */
6a65450a 1225 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1226
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1230 nstack = 0;
1231
1232 argreg = ARM_A1_REGNUM;
1233 nstack = 0;
1234
1235 /* Some platforms require a double-word aligned stack. Make sure sp
1236 is correctly aligned before we start. We always do this even if
1237 it isn't really needed -- it can never hurt things. */
b1e29e33 1238 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
2dd604e7
RE
1239
1240 /* The struct_return pointer occupies the first parameter
1241 passing register. */
1242 if (struct_return)
1243 {
1244 if (arm_debug)
1245 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1246 REGISTER_NAME (argreg), paddr (struct_addr));
1247 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1248 argreg++;
1249 }
1250
1251 for (argnum = 0; argnum < nargs; argnum++)
1252 {
1253 int len;
1254 struct type *arg_type;
1255 struct type *target_type;
1256 enum type_code typecode;
0fd88904 1257 bfd_byte *val;
2dd604e7 1258
df407dfe 1259 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1260 len = TYPE_LENGTH (arg_type);
1261 target_type = TYPE_TARGET_TYPE (arg_type);
1262 typecode = TYPE_CODE (arg_type);
0fd88904 1263 val = value_contents_writeable (args[argnum]);
2dd604e7
RE
1264
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
7c0b4a20 1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
fbd9dcd3 1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
b1e29e33 1285 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
7c0b4a20 1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1294 argnum, REGISTER_NAME (argreg),
b1e29e33 1295 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1296 regcache_cooked_write_unsigned (regcache, argreg, regval);
1297 argreg++;
1298 }
1299 else
1300 {
1301 /* Push the arguments onto the stack. */
1302 if (arm_debug)
1303 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1304 argnum, nstack);
b1e29e33
AC
1305 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1306 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1307 }
1308
1309 len -= partial_len;
1310 val += partial_len;
1311 }
1312 }
1313 /* If we have an odd number of words to push, then decrement the stack
1314 by one word now, so first stack argument will be dword aligned. */
1315 if (nstack & 4)
1316 sp -= 4;
1317
1318 while (si)
1319 {
1320 sp -= si->len;
1321 write_memory (sp, si->data, si->len);
1322 si = pop_stack_item (si);
1323 }
1324
1325 /* Finally, update teh SP register. */
1326 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1327
1328 return sp;
1329}
1330
c906108c 1331static void
ed9a39eb 1332print_fpu_flags (int flags)
c906108c 1333{
c5aa993b
JM
1334 if (flags & (1 << 0))
1335 fputs ("IVO ", stdout);
1336 if (flags & (1 << 1))
1337 fputs ("DVZ ", stdout);
1338 if (flags & (1 << 2))
1339 fputs ("OFL ", stdout);
1340 if (flags & (1 << 3))
1341 fputs ("UFL ", stdout);
1342 if (flags & (1 << 4))
1343 fputs ("INX ", stdout);
1344 putchar ('\n');
c906108c
SS
1345}
1346
5e74b15c
RE
1347/* Print interesting information about the floating point processor
1348 (if present) or emulator. */
34e8f22d 1349static void
d855c300 1350arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1351 struct frame_info *frame, const char *args)
c906108c 1352{
52f0bd74 1353 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1354 int type;
1355
1356 type = (status >> 24) & 127;
edefbb7c
AC
1357 if (status & (1 << 31))
1358 printf (_("Hardware FPU type %d\n"), type);
1359 else
1360 printf (_("Software FPU type %d\n"), type);
1361 /* i18n: [floating point unit] mask */
1362 fputs (_("mask: "), stdout);
c5aa993b 1363 print_fpu_flags (status >> 16);
edefbb7c
AC
1364 /* i18n: [floating point unit] flags */
1365 fputs (_("flags: "), stdout);
c5aa993b 1366 print_fpu_flags (status);
c906108c
SS
1367}
1368
34e8f22d
RE
1369/* Return the GDB type object for the "standard" data type of data in
1370 register N. */
1371
1372static struct type *
7a5ea0d4 1373arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1374{
34e8f22d 1375 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1376 {
d7449b42 1377 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1378 return builtin_type_arm_ext_big;
1379 else
1380 return builtin_type_arm_ext_littlebyte_bigword;
1381 }
1382 else
1383 return builtin_type_int32;
1384}
1385
34e8f22d
RE
1386/* Index within `registers' of the first byte of the space for
1387 register N. */
1388
1389static int
1390arm_register_byte (int regnum)
1391{
1392 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1393 return regnum * INT_REGISTER_SIZE;
34e8f22d 1394 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1395 return (NUM_GREGS * INT_REGISTER_SIZE
1396 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1397 else
7a5ea0d4
DJ
1398 return (NUM_GREGS * INT_REGISTER_SIZE
1399 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1400 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1401}
1402
26216b98
AC
1403/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1404static int
1405arm_register_sim_regno (int regnum)
1406{
1407 int reg = regnum;
1408 gdb_assert (reg >= 0 && reg < NUM_REGS);
1409
1410 if (reg < NUM_GREGS)
1411 return SIM_ARM_R0_REGNUM + reg;
1412 reg -= NUM_GREGS;
1413
1414 if (reg < NUM_FREGS)
1415 return SIM_ARM_FP0_REGNUM + reg;
1416 reg -= NUM_FREGS;
1417
1418 if (reg < NUM_SREGS)
1419 return SIM_ARM_FPS_REGNUM + reg;
1420 reg -= NUM_SREGS;
1421
edefbb7c 1422 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1423}
34e8f22d 1424
a37b3cc0
AC
1425/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1426 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1427 It is thought that this is is the floating-point register format on
1428 little-endian systems. */
c906108c 1429
ed9a39eb 1430static void
b508a996
RE
1431convert_from_extended (const struct floatformat *fmt, const void *ptr,
1432 void *dbl)
c906108c 1433{
a37b3cc0 1434 DOUBLEST d;
d7449b42 1435 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1436 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1437 else
1438 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1439 ptr, &d);
b508a996 1440 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1441}
1442
34e8f22d 1443static void
b508a996 1444convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1445{
a37b3cc0 1446 DOUBLEST d;
b508a996 1447 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1448 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1449 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1450 else
1451 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1452 &d, dbl);
c906108c 1453}
ed9a39eb 1454
c906108c 1455static int
ed9a39eb 1456condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1457{
1458 if (cond == INST_AL || cond == INST_NV)
1459 return 1;
1460
1461 switch (cond)
1462 {
1463 case INST_EQ:
1464 return ((status_reg & FLAG_Z) != 0);
1465 case INST_NE:
1466 return ((status_reg & FLAG_Z) == 0);
1467 case INST_CS:
1468 return ((status_reg & FLAG_C) != 0);
1469 case INST_CC:
1470 return ((status_reg & FLAG_C) == 0);
1471 case INST_MI:
1472 return ((status_reg & FLAG_N) != 0);
1473 case INST_PL:
1474 return ((status_reg & FLAG_N) == 0);
1475 case INST_VS:
1476 return ((status_reg & FLAG_V) != 0);
1477 case INST_VC:
1478 return ((status_reg & FLAG_V) == 0);
1479 case INST_HI:
1480 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1481 case INST_LS:
1482 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1483 case INST_GE:
1484 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1485 case INST_LT:
1486 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1487 case INST_GT:
1488 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1489 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1490 case INST_LE:
1491 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1492 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1493 }
1494 return 1;
1495}
1496
9512d7fd 1497/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1498#define submask(x) ((1L << ((x) + 1)) - 1)
1499#define bit(obj,st) (((obj) >> (st)) & 1)
1500#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1501#define sbits(obj,st,fn) \
1502 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1503#define BranchDest(addr,instr) \
1504 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1505#define ARM_PC_32 1
1506
1507static unsigned long
ed9a39eb
JM
1508shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1509 unsigned long status_reg)
c906108c
SS
1510{
1511 unsigned long res, shift;
1512 int rm = bits (inst, 0, 3);
1513 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1514
1515 if (bit (inst, 4))
c906108c
SS
1516 {
1517 int rs = bits (inst, 8, 11);
1518 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1519 }
1520 else
1521 shift = bits (inst, 7, 11);
c5aa993b
JM
1522
1523 res = (rm == 15
c906108c 1524 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1525 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1526 : read_register (rm));
1527
1528 switch (shifttype)
1529 {
c5aa993b 1530 case 0: /* LSL */
c906108c
SS
1531 res = shift >= 32 ? 0 : res << shift;
1532 break;
c5aa993b
JM
1533
1534 case 1: /* LSR */
c906108c
SS
1535 res = shift >= 32 ? 0 : res >> shift;
1536 break;
1537
c5aa993b
JM
1538 case 2: /* ASR */
1539 if (shift >= 32)
1540 shift = 31;
c906108c
SS
1541 res = ((res & 0x80000000L)
1542 ? ~((~res) >> shift) : res >> shift);
1543 break;
1544
c5aa993b 1545 case 3: /* ROR/RRX */
c906108c
SS
1546 shift &= 31;
1547 if (shift == 0)
1548 res = (res >> 1) | (carry ? 0x80000000L : 0);
1549 else
c5aa993b 1550 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1551 break;
1552 }
1553
1554 return res & 0xffffffff;
1555}
1556
c906108c
SS
1557/* Return number of 1-bits in VAL. */
1558
1559static int
ed9a39eb 1560bitcount (unsigned long val)
c906108c
SS
1561{
1562 int nbits;
1563 for (nbits = 0; val != 0; nbits++)
c5aa993b 1564 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1565 return nbits;
1566}
1567
34e8f22d 1568CORE_ADDR
ed9a39eb 1569thumb_get_next_pc (CORE_ADDR pc)
c906108c 1570{
c5aa993b 1571 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1572 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1573 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1574 unsigned long offset;
1575
1576 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1577 {
1578 CORE_ADDR sp;
1579
1580 /* Fetch the saved PC from the stack. It's stored above
1581 all of the other registers. */
b1e29e33 1582 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1583 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1584 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1585 nextpc = ADDR_BITS_REMOVE (nextpc);
1586 if (nextpc == pc)
edefbb7c 1587 error (_("Infinite loop detected"));
c906108c
SS
1588 }
1589 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1590 {
34e8f22d 1591 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1592 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1593 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1594 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1595 }
1596 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1597 {
1598 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1599 }
aa17d93e 1600 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c
SS
1601 {
1602 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1603 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1604 nextpc = pc_val + offset;
aa17d93e
DJ
1605 /* For BLX make sure to clear the low bits. */
1606 if (bits (inst2, 11, 12) == 1)
1607 nextpc = nextpc & 0xfffffffc;
c906108c 1608 }
aa17d93e 1609 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1610 {
1611 if (bits (inst1, 3, 6) == 0x0f)
1612 nextpc = pc_val;
1613 else
1614 nextpc = read_register (bits (inst1, 3, 6));
1615
1616 nextpc = ADDR_BITS_REMOVE (nextpc);
1617 if (nextpc == pc)
edefbb7c 1618 error (_("Infinite loop detected"));
9498281f 1619 }
c906108c
SS
1620
1621 return nextpc;
1622}
1623
34e8f22d 1624CORE_ADDR
ed9a39eb 1625arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1626{
1627 unsigned long pc_val;
1628 unsigned long this_instr;
1629 unsigned long status;
1630 CORE_ADDR nextpc;
1631
1632 if (arm_pc_is_thumb (pc))
1633 return thumb_get_next_pc (pc);
1634
1635 pc_val = (unsigned long) pc;
1636 this_instr = read_memory_integer (pc, 4);
34e8f22d 1637 status = read_register (ARM_PS_REGNUM);
c5aa993b 1638 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1639
1640 if (condition_true (bits (this_instr, 28, 31), status))
1641 {
1642 switch (bits (this_instr, 24, 27))
1643 {
c5aa993b 1644 case 0x0:
94c30b78 1645 case 0x1: /* data processing */
c5aa993b
JM
1646 case 0x2:
1647 case 0x3:
c906108c
SS
1648 {
1649 unsigned long operand1, operand2, result = 0;
1650 unsigned long rn;
1651 int c;
c5aa993b 1652
c906108c
SS
1653 if (bits (this_instr, 12, 15) != 15)
1654 break;
1655
1656 if (bits (this_instr, 22, 25) == 0
c5aa993b 1657 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1658 error (_("Invalid update to pc in instruction"));
c906108c 1659
9498281f
DJ
1660 /* BX <reg>, BLX <reg> */
1661 if (bits (this_instr, 4, 28) == 0x12fff1
1662 || bits (this_instr, 4, 28) == 0x12fff3)
1663 {
1664 rn = bits (this_instr, 0, 3);
1665 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1666 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1667
1668 if (nextpc == pc)
edefbb7c 1669 error (_("Infinite loop detected"));
9498281f
DJ
1670
1671 return nextpc;
1672 }
1673
c906108c
SS
1674 /* Multiply into PC */
1675 c = (status & FLAG_C) ? 1 : 0;
1676 rn = bits (this_instr, 16, 19);
1677 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1678
c906108c
SS
1679 if (bit (this_instr, 25))
1680 {
1681 unsigned long immval = bits (this_instr, 0, 7);
1682 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1683 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1684 & 0xffffffff;
c906108c 1685 }
c5aa993b 1686 else /* operand 2 is a shifted register */
c906108c 1687 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1688
c906108c
SS
1689 switch (bits (this_instr, 21, 24))
1690 {
c5aa993b 1691 case 0x0: /*and */
c906108c
SS
1692 result = operand1 & operand2;
1693 break;
1694
c5aa993b 1695 case 0x1: /*eor */
c906108c
SS
1696 result = operand1 ^ operand2;
1697 break;
1698
c5aa993b 1699 case 0x2: /*sub */
c906108c
SS
1700 result = operand1 - operand2;
1701 break;
1702
c5aa993b 1703 case 0x3: /*rsb */
c906108c
SS
1704 result = operand2 - operand1;
1705 break;
1706
c5aa993b 1707 case 0x4: /*add */
c906108c
SS
1708 result = operand1 + operand2;
1709 break;
1710
c5aa993b 1711 case 0x5: /*adc */
c906108c
SS
1712 result = operand1 + operand2 + c;
1713 break;
1714
c5aa993b 1715 case 0x6: /*sbc */
c906108c
SS
1716 result = operand1 - operand2 + c;
1717 break;
1718
c5aa993b 1719 case 0x7: /*rsc */
c906108c
SS
1720 result = operand2 - operand1 + c;
1721 break;
1722
c5aa993b
JM
1723 case 0x8:
1724 case 0x9:
1725 case 0xa:
1726 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1727 result = (unsigned long) nextpc;
1728 break;
1729
c5aa993b 1730 case 0xc: /*orr */
c906108c
SS
1731 result = operand1 | operand2;
1732 break;
1733
c5aa993b 1734 case 0xd: /*mov */
c906108c
SS
1735 /* Always step into a function. */
1736 result = operand2;
c5aa993b 1737 break;
c906108c 1738
c5aa993b 1739 case 0xe: /*bic */
c906108c
SS
1740 result = operand1 & ~operand2;
1741 break;
1742
c5aa993b 1743 case 0xf: /*mvn */
c906108c
SS
1744 result = ~operand2;
1745 break;
1746 }
1747 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1748
1749 if (nextpc == pc)
edefbb7c 1750 error (_("Infinite loop detected"));
c906108c
SS
1751 break;
1752 }
c5aa993b
JM
1753
1754 case 0x4:
1755 case 0x5: /* data transfer */
1756 case 0x6:
1757 case 0x7:
c906108c
SS
1758 if (bit (this_instr, 20))
1759 {
1760 /* load */
1761 if (bits (this_instr, 12, 15) == 15)
1762 {
1763 /* rd == pc */
c5aa993b 1764 unsigned long rn;
c906108c 1765 unsigned long base;
c5aa993b 1766
c906108c 1767 if (bit (this_instr, 22))
edefbb7c 1768 error (_("Invalid update to pc in instruction"));
c906108c
SS
1769
1770 /* byte write to PC */
1771 rn = bits (this_instr, 16, 19);
1772 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1773 if (bit (this_instr, 24))
1774 {
1775 /* pre-indexed */
1776 int c = (status & FLAG_C) ? 1 : 0;
1777 unsigned long offset =
c5aa993b 1778 (bit (this_instr, 25)
ed9a39eb 1779 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1780 : bits (this_instr, 0, 11));
c906108c
SS
1781
1782 if (bit (this_instr, 23))
1783 base += offset;
1784 else
1785 base -= offset;
1786 }
c5aa993b 1787 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1788 4);
c5aa993b 1789
c906108c
SS
1790 nextpc = ADDR_BITS_REMOVE (nextpc);
1791
1792 if (nextpc == pc)
edefbb7c 1793 error (_("Infinite loop detected"));
c906108c
SS
1794 }
1795 }
1796 break;
c5aa993b
JM
1797
1798 case 0x8:
1799 case 0x9: /* block transfer */
c906108c
SS
1800 if (bit (this_instr, 20))
1801 {
1802 /* LDM */
1803 if (bit (this_instr, 15))
1804 {
1805 /* loading pc */
1806 int offset = 0;
1807
1808 if (bit (this_instr, 23))
1809 {
1810 /* up */
1811 unsigned long reglist = bits (this_instr, 0, 14);
1812 offset = bitcount (reglist) * 4;
c5aa993b 1813 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1814 offset += 4;
1815 }
1816 else if (bit (this_instr, 24))
1817 offset = -4;
c5aa993b 1818
c906108c 1819 {
c5aa993b
JM
1820 unsigned long rn_val =
1821 read_register (bits (this_instr, 16, 19));
c906108c
SS
1822 nextpc =
1823 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1824 + offset),
c906108c
SS
1825 4);
1826 }
1827 nextpc = ADDR_BITS_REMOVE (nextpc);
1828 if (nextpc == pc)
edefbb7c 1829 error (_("Infinite loop detected"));
c906108c
SS
1830 }
1831 }
1832 break;
c5aa993b
JM
1833
1834 case 0xb: /* branch & link */
1835 case 0xa: /* branch */
c906108c
SS
1836 {
1837 nextpc = BranchDest (pc, this_instr);
1838
9498281f
DJ
1839 /* BLX */
1840 if (bits (this_instr, 28, 31) == INST_NV)
1841 nextpc |= bit (this_instr, 24) << 1;
1842
c906108c
SS
1843 nextpc = ADDR_BITS_REMOVE (nextpc);
1844 if (nextpc == pc)
edefbb7c 1845 error (_("Infinite loop detected"));
c906108c
SS
1846 break;
1847 }
c5aa993b
JM
1848
1849 case 0xc:
1850 case 0xd:
1851 case 0xe: /* coproc ops */
1852 case 0xf: /* SWI */
c906108c
SS
1853 break;
1854
1855 default:
edefbb7c 1856 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1857 return (pc);
1858 }
1859 }
1860
1861 return nextpc;
1862}
1863
9512d7fd
FN
1864/* single_step() is called just before we want to resume the inferior,
1865 if we want to single-step it but there is no hardware or kernel
1866 single-step support. We find the target of the coming instruction
1867 and breakpoint it.
1868
94c30b78
MS
1869 single_step() is also called just after the inferior stops. If we
1870 had set up a simulated single-step, we undo our damage. */
9512d7fd 1871
34e8f22d
RE
1872static void
1873arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1874{
b8d5e71d 1875 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
1876 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1877
1878 if (insert_bpt)
1879 {
34e8f22d 1880 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1881 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
1882 }
1883 else
80fcf3f0 1884 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 1885}
9512d7fd 1886
c906108c
SS
1887#include "bfd-in2.h"
1888#include "libcoff.h"
1889
1890static int
ed9a39eb 1891gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1892{
1893 if (arm_pc_is_thumb (memaddr))
1894 {
c5aa993b
JM
1895 static asymbol *asym;
1896 static combined_entry_type ce;
1897 static struct coff_symbol_struct csym;
27cddce2 1898 static struct bfd fake_bfd;
c5aa993b 1899 static bfd_target fake_target;
c906108c
SS
1900
1901 if (csym.native == NULL)
1902 {
da3c6d4a
MS
1903 /* Create a fake symbol vector containing a Thumb symbol.
1904 This is solely so that the code in print_insn_little_arm()
1905 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1906 the presence of a Thumb symbol and switch to decoding
1907 Thumb instructions. */
c5aa993b
JM
1908
1909 fake_target.flavour = bfd_target_coff_flavour;
1910 fake_bfd.xvec = &fake_target;
c906108c 1911 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1912 csym.native = &ce;
1913 csym.symbol.the_bfd = &fake_bfd;
1914 csym.symbol.name = "fake";
1915 asym = (asymbol *) & csym;
c906108c 1916 }
c5aa993b 1917
c906108c 1918 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1919 info->symbols = &asym;
c906108c
SS
1920 }
1921 else
1922 info->symbols = NULL;
c5aa993b 1923
d7449b42 1924 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1925 return print_insn_big_arm (memaddr, info);
1926 else
1927 return print_insn_little_arm (memaddr, info);
1928}
1929
66e810cd
RE
1930/* The following define instruction sequences that will cause ARM
1931 cpu's to take an undefined instruction trap. These are used to
1932 signal a breakpoint to GDB.
1933
1934 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1935 modes. A different instruction is required for each mode. The ARM
1936 cpu's can also be big or little endian. Thus four different
1937 instructions are needed to support all cases.
1938
1939 Note: ARMv4 defines several new instructions that will take the
1940 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1941 not in fact add the new instructions. The new undefined
1942 instructions in ARMv4 are all instructions that had no defined
1943 behaviour in earlier chips. There is no guarantee that they will
1944 raise an exception, but may be treated as NOP's. In practice, it
1945 may only safe to rely on instructions matching:
1946
1947 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1948 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1949 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1950
1951 Even this may only true if the condition predicate is true. The
1952 following use a condition predicate of ALWAYS so it is always TRUE.
1953
1954 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1955 and NetBSD all use a software interrupt rather than an undefined
1956 instruction to force a trap. This can be handled by by the
1957 abi-specific code during establishment of the gdbarch vector. */
1958
1959
d7b486e7
RE
1960/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1961 override these definitions. */
66e810cd
RE
1962#ifndef ARM_LE_BREAKPOINT
1963#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1964#endif
1965#ifndef ARM_BE_BREAKPOINT
1966#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1967#endif
1968#ifndef THUMB_LE_BREAKPOINT
1969#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1970#endif
1971#ifndef THUMB_BE_BREAKPOINT
1972#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1973#endif
1974
1975static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1976static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1977static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1978static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1979
34e8f22d
RE
1980/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1981 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1982 breakpoint should be used. It returns a pointer to a string of
1983 bytes that encode a breakpoint instruction, stores the length of
1984 the string to *lenptr, and adjusts the program counter (if
1985 necessary) to point to the actual memory location where the
c906108c
SS
1986 breakpoint should be inserted. */
1987
34e8f22d
RE
1988/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1989 breakpoints and storing their handles instread of what was in
1990 memory. It is nice that this is the same size as a handle -
94c30b78 1991 otherwise remote-rdp will have to change. */
34e8f22d 1992
ab89facf 1993static const unsigned char *
ed9a39eb 1994arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 1995{
66e810cd
RE
1996 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1997
4bf7064c 1998 if (arm_pc_is_thumb (*pcptr))
c906108c 1999 {
66e810cd
RE
2000 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2001 *lenptr = tdep->thumb_breakpoint_size;
2002 return tdep->thumb_breakpoint;
c906108c
SS
2003 }
2004 else
2005 {
66e810cd
RE
2006 *lenptr = tdep->arm_breakpoint_size;
2007 return tdep->arm_breakpoint;
c906108c
SS
2008 }
2009}
ed9a39eb
JM
2010
2011/* Extract from an array REGBUF containing the (raw) register state a
2012 function return value of type TYPE, and copy that, in virtual
2013 format, into VALBUF. */
2014
34e8f22d 2015static void
ed9a39eb 2016arm_extract_return_value (struct type *type,
b508a996
RE
2017 struct regcache *regs,
2018 void *dst)
ed9a39eb 2019{
b508a996
RE
2020 bfd_byte *valbuf = dst;
2021
ed9a39eb 2022 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2023 {
28e97307 2024 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2025 {
2026 case ARM_FLOAT_FPA:
b508a996
RE
2027 {
2028 /* The value is in register F0 in internal format. We need to
2029 extract the raw value and then convert it to the desired
2030 internal type. */
7a5ea0d4 2031 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2032
2033 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2034 convert_from_extended (floatformat_from_type (type), tmpbuf,
2035 valbuf);
2036 }
08216dd7
RE
2037 break;
2038
fd50bc42 2039 case ARM_FLOAT_SOFT_FPA:
08216dd7 2040 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2041 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2042 if (TYPE_LENGTH (type) > 4)
2043 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2044 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2045 break;
2046
2047 default:
2048 internal_error
2049 (__FILE__, __LINE__,
edefbb7c 2050 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2051 break;
2052 }
2053 }
b508a996
RE
2054 else if (TYPE_CODE (type) == TYPE_CODE_INT
2055 || TYPE_CODE (type) == TYPE_CODE_CHAR
2056 || TYPE_CODE (type) == TYPE_CODE_BOOL
2057 || TYPE_CODE (type) == TYPE_CODE_PTR
2058 || TYPE_CODE (type) == TYPE_CODE_REF
2059 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2060 {
2061 /* If the the type is a plain integer, then the access is
2062 straight-forward. Otherwise we have to play around a bit more. */
2063 int len = TYPE_LENGTH (type);
2064 int regno = ARM_A1_REGNUM;
2065 ULONGEST tmp;
2066
2067 while (len > 0)
2068 {
2069 /* By using store_unsigned_integer we avoid having to do
2070 anything special for small big-endian values. */
2071 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2072 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2073 (len > INT_REGISTER_SIZE
2074 ? INT_REGISTER_SIZE : len),
b508a996 2075 tmp);
7a5ea0d4
DJ
2076 len -= INT_REGISTER_SIZE;
2077 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2078 }
2079 }
ed9a39eb 2080 else
b508a996
RE
2081 {
2082 /* For a structure or union the behaviour is as if the value had
2083 been stored to word-aligned memory and then loaded into
2084 registers with 32-bit load instruction(s). */
2085 int len = TYPE_LENGTH (type);
2086 int regno = ARM_A1_REGNUM;
7a5ea0d4 2087 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2088
2089 while (len > 0)
2090 {
2091 regcache_cooked_read (regs, regno++, tmpbuf);
2092 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2093 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2094 len -= INT_REGISTER_SIZE;
2095 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2096 }
2097 }
34e8f22d
RE
2098}
2099
67255d04
RE
2100/* Extract from an array REGBUF containing the (raw) register state
2101 the address in which a function should return its structure value. */
2102
2103static CORE_ADDR
95f95911 2104arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2105{
95f95911
MS
2106 ULONGEST ret;
2107
2108 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2109 return ret;
67255d04
RE
2110}
2111
2112/* Will a function return an aggregate type in memory or in a
2113 register? Return 0 if an aggregate type can be returned in a
2114 register, 1 if it must be returned in memory. */
2115
2116static int
2117arm_use_struct_convention (int gcc_p, struct type *type)
2118{
2119 int nRc;
52f0bd74 2120 enum type_code code;
67255d04 2121
44e1a9eb
DJ
2122 CHECK_TYPEDEF (type);
2123
67255d04
RE
2124 /* In the ARM ABI, "integer" like aggregate types are returned in
2125 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2126 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2127 offset of each addressable subfield must be zero. Note that bit
2128 fields are not addressable, and all addressable subfields of
2129 unions always start at offset zero.
67255d04
RE
2130
2131 This function is based on the behaviour of GCC 2.95.1.
2132 See: gcc/arm.c: arm_return_in_memory() for details.
2133
2134 Note: All versions of GCC before GCC 2.95.2 do not set up the
2135 parameters correctly for a function returning the following
2136 structure: struct { float f;}; This should be returned in memory,
2137 not a register. Richard Earnshaw sent me a patch, but I do not
2138 know of any way to detect if a function like the above has been
2139 compiled with the correct calling convention. */
2140
2141 /* All aggregate types that won't fit in a register must be returned
2142 in memory. */
b1e29e33 2143 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2144 {
2145 return 1;
2146 }
2147
2148 /* The only aggregate types that can be returned in a register are
2149 structs and unions. Arrays must be returned in memory. */
2150 code = TYPE_CODE (type);
2151 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2152 {
2153 return 1;
2154 }
2155
2156 /* Assume all other aggregate types can be returned in a register.
2157 Run a check for structures, unions and arrays. */
2158 nRc = 0;
2159
2160 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2161 {
2162 int i;
2163 /* Need to check if this struct/union is "integer" like. For
2164 this to be true, its size must be less than or equal to
b1e29e33
AC
2165 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2166 subfield must be zero. Note that bit fields are not
2167 addressable, and unions always start at offset zero. If any
2168 of the subfields is a floating point type, the struct/union
2169 cannot be an integer type. */
67255d04
RE
2170
2171 /* For each field in the object, check:
2172 1) Is it FP? --> yes, nRc = 1;
2173 2) Is it addressable (bitpos != 0) and
2174 not packed (bitsize == 0)?
2175 --> yes, nRc = 1
2176 */
2177
2178 for (i = 0; i < TYPE_NFIELDS (type); i++)
2179 {
2180 enum type_code field_type_code;
44e1a9eb 2181 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2182
2183 /* Is it a floating point type field? */
2184 if (field_type_code == TYPE_CODE_FLT)
2185 {
2186 nRc = 1;
2187 break;
2188 }
2189
2190 /* If bitpos != 0, then we have to care about it. */
2191 if (TYPE_FIELD_BITPOS (type, i) != 0)
2192 {
2193 /* Bitfields are not addressable. If the field bitsize is
2194 zero, then the field is not packed. Hence it cannot be
2195 a bitfield or any other packed type. */
2196 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2197 {
2198 nRc = 1;
2199 break;
2200 }
2201 }
2202 }
2203 }
2204
2205 return nRc;
2206}
2207
34e8f22d
RE
2208/* Write into appropriate registers a function return value of type
2209 TYPE, given in virtual format. */
2210
2211static void
b508a996
RE
2212arm_store_return_value (struct type *type, struct regcache *regs,
2213 const void *src)
34e8f22d 2214{
b508a996
RE
2215 const bfd_byte *valbuf = src;
2216
34e8f22d
RE
2217 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2218 {
7a5ea0d4 2219 char buf[MAX_REGISTER_SIZE];
34e8f22d 2220
28e97307 2221 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2222 {
2223 case ARM_FLOAT_FPA:
2224
b508a996
RE
2225 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2226 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2227 break;
2228
fd50bc42 2229 case ARM_FLOAT_SOFT_FPA:
08216dd7 2230 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2231 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2232 if (TYPE_LENGTH (type) > 4)
2233 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2234 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2235 break;
2236
2237 default:
2238 internal_error
2239 (__FILE__, __LINE__,
edefbb7c 2240 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2241 break;
2242 }
34e8f22d 2243 }
b508a996
RE
2244 else if (TYPE_CODE (type) == TYPE_CODE_INT
2245 || TYPE_CODE (type) == TYPE_CODE_CHAR
2246 || TYPE_CODE (type) == TYPE_CODE_BOOL
2247 || TYPE_CODE (type) == TYPE_CODE_PTR
2248 || TYPE_CODE (type) == TYPE_CODE_REF
2249 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2250 {
2251 if (TYPE_LENGTH (type) <= 4)
2252 {
2253 /* Values of one word or less are zero/sign-extended and
2254 returned in r0. */
7a5ea0d4 2255 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2256 LONGEST val = unpack_long (type, valbuf);
2257
7a5ea0d4 2258 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2259 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2260 }
2261 else
2262 {
2263 /* Integral values greater than one word are stored in consecutive
2264 registers starting with r0. This will always be a multiple of
2265 the regiser size. */
2266 int len = TYPE_LENGTH (type);
2267 int regno = ARM_A1_REGNUM;
2268
2269 while (len > 0)
2270 {
2271 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2272 len -= INT_REGISTER_SIZE;
2273 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2274 }
2275 }
2276 }
34e8f22d 2277 else
b508a996
RE
2278 {
2279 /* For a structure or union the behaviour is as if the value had
2280 been stored to word-aligned memory and then loaded into
2281 registers with 32-bit load instruction(s). */
2282 int len = TYPE_LENGTH (type);
2283 int regno = ARM_A1_REGNUM;
7a5ea0d4 2284 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2285
2286 while (len > 0)
2287 {
2288 memcpy (tmpbuf, valbuf,
7a5ea0d4 2289 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2290 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2291 len -= INT_REGISTER_SIZE;
2292 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2293 }
2294 }
34e8f22d
RE
2295}
2296
9df628e0
RE
2297static int
2298arm_get_longjmp_target (CORE_ADDR *pc)
2299{
2300 CORE_ADDR jb_addr;
7a5ea0d4 2301 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2303
2304 jb_addr = read_register (ARM_A1_REGNUM);
2305
2306 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2307 INT_REGISTER_SIZE))
9df628e0
RE
2308 return 0;
2309
7a5ea0d4 2310 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2311 return 1;
2312}
2313
ed9a39eb 2314/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2315
2316int
ed9a39eb 2317arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2318{
2319 CORE_ADDR start_addr;
2320
ed9a39eb
JM
2321 /* Find the starting address of the function containing the PC. If
2322 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2323 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2324 &start_addr, NULL))
c906108c
SS
2325 return 0;
2326
2327 return strncmp (name, "_call_via_r", 11) == 0;
2328}
2329
ed9a39eb
JM
2330/* If PC is in a Thumb call or return stub, return the address of the
2331 target PC, which is in a register. The thunk functions are called
2332 _called_via_xx, where x is the register name. The possible names
2333 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2334
2335CORE_ADDR
ed9a39eb 2336arm_skip_stub (CORE_ADDR pc)
c906108c 2337{
c5aa993b 2338 char *name;
c906108c
SS
2339 CORE_ADDR start_addr;
2340
2341 /* Find the starting address and name of the function containing the PC. */
2342 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2343 return 0;
2344
2345 /* Call thunks always start with "_call_via_". */
2346 if (strncmp (name, "_call_via_", 10) == 0)
2347 {
ed9a39eb
JM
2348 /* Use the name suffix to determine which register contains the
2349 target PC. */
c5aa993b
JM
2350 static char *table[15] =
2351 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2352 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2353 };
c906108c
SS
2354 int regno;
2355
2356 for (regno = 0; regno <= 14; regno++)
2357 if (strcmp (&name[10], table[regno]) == 0)
2358 return read_register (regno);
2359 }
ed9a39eb 2360
c5aa993b 2361 return 0; /* not a stub */
c906108c
SS
2362}
2363
afd7eef0
RE
2364static void
2365set_arm_command (char *args, int from_tty)
2366{
edefbb7c
AC
2367 printf_unfiltered (_("\
2368\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2369 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2370}
2371
2372static void
2373show_arm_command (char *args, int from_tty)
2374{
26304000 2375 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2376}
2377
28e97307
DJ
2378static void
2379arm_update_current_architecture (void)
fd50bc42 2380{
28e97307 2381 struct gdbarch_info info;
fd50bc42 2382
28e97307
DJ
2383 /* If the current architecture is not ARM, we have nothing to do. */
2384 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2385 return;
fd50bc42 2386
28e97307
DJ
2387 /* Update the architecture. */
2388 gdbarch_info_init (&info);
fd50bc42 2389
28e97307
DJ
2390 if (!gdbarch_update_p (info))
2391 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2392}
2393
2394static void
2395set_fp_model_sfunc (char *args, int from_tty,
2396 struct cmd_list_element *c)
2397{
2398 enum arm_float_model fp_model;
2399
2400 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2401 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2402 {
2403 arm_fp_model = fp_model;
2404 break;
2405 }
2406
2407 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2408 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2409 current_fp_model);
2410
28e97307 2411 arm_update_current_architecture ();
fd50bc42
RE
2412}
2413
2414static void
08546159
AC
2415show_fp_model (struct ui_file *file, int from_tty,
2416 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2417{
2418 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2419
28e97307 2420 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2421 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2422 fprintf_filtered (file, _("\
2423The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2424 fp_model_strings[tdep->fp_model]);
2425 else
2426 fprintf_filtered (file, _("\
2427The current ARM floating point model is \"%s\".\n"),
2428 fp_model_strings[arm_fp_model]);
2429}
2430
2431static void
2432arm_set_abi (char *args, int from_tty,
2433 struct cmd_list_element *c)
2434{
2435 enum arm_abi_kind arm_abi;
2436
2437 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2438 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2439 {
2440 arm_abi_global = arm_abi;
2441 break;
2442 }
2443
2444 if (arm_abi == ARM_ABI_LAST)
2445 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2446 arm_abi_string);
2447
2448 arm_update_current_architecture ();
2449}
2450
2451static void
2452arm_show_abi (struct ui_file *file, int from_tty,
2453 struct cmd_list_element *c, const char *value)
2454{
2455 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2456
2457 if (arm_abi_global == ARM_ABI_AUTO
2458 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2459 fprintf_filtered (file, _("\
2460The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2461 arm_abi_strings[tdep->arm_abi]);
2462 else
2463 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2464 arm_abi_string);
fd50bc42
RE
2465}
2466
afd7eef0
RE
2467/* If the user changes the register disassembly style used for info
2468 register and other commands, we have to also switch the style used
2469 in opcodes for disassembly output. This function is run in the "set
2470 arm disassembly" command, and does that. */
bc90b915
FN
2471
2472static void
afd7eef0 2473set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2474 struct cmd_list_element *c)
2475{
afd7eef0 2476 set_disassembly_style ();
bc90b915
FN
2477}
2478\f
966fbf70 2479/* Return the ARM register name corresponding to register I. */
a208b0cb 2480static const char *
34e8f22d 2481arm_register_name (int i)
966fbf70
RE
2482{
2483 return arm_register_names[i];
2484}
2485
bc90b915 2486static void
afd7eef0 2487set_disassembly_style (void)
bc90b915
FN
2488{
2489 const char *setname, *setdesc, **regnames;
2490 int numregs, j;
2491
afd7eef0 2492 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2493 int current = 0;
2494 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2495 while ((disassembly_style != setname)
2496 && (current < num_disassembly_options))
bc90b915
FN
2497 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2498 current_option = current;
2499
94c30b78 2500 /* Fill our copy. */
bc90b915
FN
2501 for (j = 0; j < numregs; j++)
2502 arm_register_names[j] = (char *) regnames[j];
2503
94c30b78 2504 /* Adjust case. */
34e8f22d 2505 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2506 {
34e8f22d
RE
2507 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2508 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2509 }
2510 else
2511 {
34e8f22d
RE
2512 arm_register_names[ARM_FPS_REGNUM] = "fps";
2513 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2514 }
2515
94c30b78 2516 /* Synchronize the disassembler. */
bc90b915
FN
2517 set_arm_regname_option (current);
2518}
2519
082fc60d
RE
2520/* Test whether the coff symbol specific value corresponds to a Thumb
2521 function. */
2522
2523static int
2524coff_sym_is_thumb (int val)
2525{
2526 return (val == C_THUMBEXT ||
2527 val == C_THUMBSTAT ||
2528 val == C_THUMBEXTFUNC ||
2529 val == C_THUMBSTATFUNC ||
2530 val == C_THUMBLABEL);
2531}
2532
2533/* arm_coff_make_msymbol_special()
2534 arm_elf_make_msymbol_special()
2535
2536 These functions test whether the COFF or ELF symbol corresponds to
2537 an address in thumb code, and set a "special" bit in a minimal
2538 symbol to indicate that it does. */
2539
34e8f22d 2540static void
082fc60d
RE
2541arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2542{
2543 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2544 STT_ARM_TFUNC). */
2545 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2546 == STT_LOPROC)
2547 MSYMBOL_SET_SPECIAL (msym);
2548}
2549
34e8f22d 2550static void
082fc60d
RE
2551arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2552{
2553 if (coff_sym_is_thumb (val))
2554 MSYMBOL_SET_SPECIAL (msym);
2555}
2556
756fe439
DJ
2557static void
2558arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2559{
2560 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2561
2562 /* If necessary, set the T bit. */
2563 if (arm_apcs_32)
2564 {
2565 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2566 if (arm_pc_is_thumb (pc))
2567 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2568 else
2569 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2570 }
2571}
97e03143 2572\f
70f80edf
JT
2573static enum gdb_osabi
2574arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2575{
70f80edf
JT
2576 unsigned int elfosabi, eflags;
2577 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2578
70f80edf 2579 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2580
28e97307
DJ
2581 if (elfosabi == ELFOSABI_ARM)
2582 /* GNU tools use this value. Check note sections in this case,
2583 as well. */
2584 bfd_map_over_sections (abfd,
2585 generic_elf_osabi_sniff_abi_tag_sections,
2586 &osabi);
97e03143 2587
28e97307 2588 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2589 return osabi;
97e03143
RE
2590}
2591
70f80edf 2592\f
da3c6d4a
MS
2593/* Initialize the current architecture based on INFO. If possible,
2594 re-use an architecture from ARCHES, which is a list of
2595 architectures already created during this debugging session.
97e03143 2596
da3c6d4a
MS
2597 Called e.g. at program startup, when reading a core file, and when
2598 reading a binary file. */
97e03143 2599
39bbf761
RE
2600static struct gdbarch *
2601arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2602{
97e03143 2603 struct gdbarch_tdep *tdep;
39bbf761 2604 struct gdbarch *gdbarch;
28e97307
DJ
2605 struct gdbarch_list *best_arch;
2606 enum arm_abi_kind arm_abi = arm_abi_global;
2607 enum arm_float_model fp_model = arm_fp_model;
39bbf761 2608
28e97307
DJ
2609 /* If we have an object to base this architecture on, try to determine
2610 its ABI. */
39bbf761 2611
28e97307 2612 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2613 {
28e97307
DJ
2614 int ei_osabi;
2615
4be87837 2616 switch (bfd_get_flavour (info.abfd))
97e03143 2617 {
4be87837
DJ
2618 case bfd_target_aout_flavour:
2619 /* Assume it's an old APCS-style ABI. */
28e97307 2620 arm_abi = ARM_ABI_APCS;
4be87837 2621 break;
97e03143 2622
4be87837
DJ
2623 case bfd_target_coff_flavour:
2624 /* Assume it's an old APCS-style ABI. */
2625 /* XXX WinCE? */
28e97307
DJ
2626 arm_abi = ARM_ABI_APCS;
2627 break;
2628
2629 case bfd_target_elf_flavour:
2630 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2631 if (ei_osabi == ELFOSABI_ARM)
2632 {
2633 /* GNU tools used to use this value, but do not for EABI
2634 objects. There's nowhere to tag an EABI version anyway,
2635 so assume APCS. */
2636 arm_abi = ARM_ABI_APCS;
2637 }
2638 else if (ei_osabi == ELFOSABI_NONE)
2639 {
2640 int e_flags, eabi_ver;
2641
2642 e_flags = elf_elfheader (info.abfd)->e_flags;
2643 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2644
2645 switch (eabi_ver)
2646 {
2647 case EF_ARM_EABI_UNKNOWN:
2648 /* Assume GNU tools. */
2649 arm_abi = ARM_ABI_APCS;
2650 break;
2651
2652 case EF_ARM_EABI_VER4:
2653 arm_abi = ARM_ABI_AAPCS;
2654 break;
2655
2656 default:
2657 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2658 arm_abi = ARM_ABI_APCS;
2659 break;
2660 }
2661 }
4be87837 2662 break;
97e03143 2663
4be87837 2664 default:
28e97307 2665 /* Leave it as "auto". */
50ceaba5 2666 break;
97e03143
RE
2667 }
2668 }
2669
28e97307
DJ
2670 /* Now that we have inferred any architecture settings that we
2671 can, try to inherit from the last ARM ABI. */
4be87837 2672 if (arches != NULL)
28e97307
DJ
2673 {
2674 if (arm_abi == ARM_ABI_AUTO)
2675 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2676
2677 if (fp_model == ARM_FLOAT_AUTO)
2678 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2679 }
2680 else
2681 {
2682 /* There was no prior ARM architecture; fill in default values. */
2683
2684 if (arm_abi == ARM_ABI_AUTO)
2685 arm_abi = ARM_ABI_APCS;
2686
2687 /* We used to default to FPA for generic ARM, but almost nobody
2688 uses that now, and we now provide a way for the user to force
2689 the model. So default to the most useful variant. */
2690 if (fp_model == ARM_FLOAT_AUTO)
2691 fp_model = ARM_FLOAT_SOFT_FPA;
2692 }
2693
2694 /* If there is already a candidate, use it. */
2695 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2696 best_arch != NULL;
2697 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2698 {
2699 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2700 continue;
2701
2702 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2703 continue;
2704
2705 /* Found a match. */
2706 break;
2707 }
97e03143 2708
28e97307
DJ
2709 if (best_arch != NULL)
2710 return best_arch->gdbarch;
2711
2712 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2713 gdbarch = gdbarch_alloc (&info, tdep);
2714
28e97307
DJ
2715 /* Record additional information about the architecture we are defining.
2716 These are gdbarch discriminators, like the OSABI. */
2717 tdep->arm_abi = arm_abi;
2718 tdep->fp_model = fp_model;
08216dd7
RE
2719
2720 /* Breakpoints. */
67255d04
RE
2721 switch (info.byte_order)
2722 {
2723 case BFD_ENDIAN_BIG:
66e810cd
RE
2724 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2725 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2726 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2727 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2728
67255d04
RE
2729 break;
2730
2731 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2732 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2733 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2734 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2735 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2736
67255d04
RE
2737 break;
2738
2739 default:
2740 internal_error (__FILE__, __LINE__,
edefbb7c 2741 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2742 }
2743
d7b486e7
RE
2744 /* On ARM targets char defaults to unsigned. */
2745 set_gdbarch_char_signed (gdbarch, 0);
2746
9df628e0 2747 /* This should be low enough for everything. */
97e03143 2748 tdep->lowest_pc = 0x20;
94c30b78 2749 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2750
2dd604e7 2751 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2752
756fe439
DJ
2753 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2754
148754e5 2755 /* Frame handling. */
eb5492fa
DJ
2756 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2757 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2758 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2759
eb5492fa 2760 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2761
34e8f22d
RE
2762 /* Address manipulation. */
2763 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2764 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2765
34e8f22d
RE
2766 /* Advance PC across function entry code. */
2767 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2768
2769 /* Get the PC when a frame might not be available. */
6913c89a 2770 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2771
2772 /* The stack grows downward. */
2773 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2774
2775 /* Breakpoint manipulation. */
2776 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2777
2778 /* Information about registers, etc. */
2779 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2780 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2781 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2782 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2783 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
34e8f22d 2784 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2785 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2786
26216b98
AC
2787 /* Internal <-> external register number maps. */
2788 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2789
34e8f22d 2790 /* Integer registers are 4 bytes. */
b1e29e33 2791 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2792 set_gdbarch_register_name (gdbarch, arm_register_name);
2793
2794 /* Returning results. */
b508a996
RE
2795 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2796 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
b5622e8d 2797 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
74055713 2798 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
34e8f22d
RE
2799
2800 /* Single stepping. */
2801 /* XXX For an RDI target we should ask the target if it can single-step. */
2802 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2803
03d48a7d
RE
2804 /* Disassembly. */
2805 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2806
34e8f22d
RE
2807 /* Minsymbol frobbing. */
2808 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2809 set_gdbarch_coff_make_msymbol_special (gdbarch,
2810 arm_coff_make_msymbol_special);
2811
97e03143 2812 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2813 gdbarch_init_osabi (info, gdbarch);
97e03143 2814
eb5492fa 2815 /* Add some default predicates. */
909cf6ea 2816 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
eb5492fa 2817 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
842e1f1e 2818 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2819 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2820
97e03143
RE
2821 /* Now we have tuned the configuration, set a few final things,
2822 based on what the OS ABI has told us. */
2823
9df628e0
RE
2824 if (tdep->jb_pc >= 0)
2825 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2826
08216dd7
RE
2827 /* Floating point sizes and format. */
2828 switch (info.byte_order)
2829 {
2830 case BFD_ENDIAN_BIG:
2831 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2832 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2833 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
08216dd7
RE
2834 break;
2835
2836 case BFD_ENDIAN_LITTLE:
2837 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
28e97307
DJ
2838 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2839 {
2840 set_gdbarch_double_format
2841 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2842 set_gdbarch_long_double_format
2843 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2844 }
2845 else
2846 {
2847 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2848 set_gdbarch_long_double_format (gdbarch,
2849 &floatformat_ieee_double_little);
2850 }
08216dd7
RE
2851 break;
2852
2853 default:
2854 internal_error (__FILE__, __LINE__,
edefbb7c 2855 _("arm_gdbarch_init: bad byte order for float format"));
08216dd7
RE
2856 }
2857
39bbf761
RE
2858 return gdbarch;
2859}
2860
97e03143
RE
2861static void
2862arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2863{
2864 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2865
2866 if (tdep == NULL)
2867 return;
2868
edefbb7c 2869 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
2870 (unsigned long) tdep->lowest_pc);
2871}
2872
a78f21af
AC
2873extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2874
c906108c 2875void
ed9a39eb 2876_initialize_arm_tdep (void)
c906108c 2877{
bc90b915
FN
2878 struct ui_file *stb;
2879 long length;
26304000 2880 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2881 const char *setname;
2882 const char *setdesc;
2883 const char **regnames;
bc90b915
FN
2884 int numregs, i, j;
2885 static char *helptext;
edefbb7c
AC
2886 char regdesc[1024], *rdptr = regdesc;
2887 size_t rest = sizeof (regdesc);
085dd6e6 2888
42cf1509 2889 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2890
70f80edf
JT
2891 /* Register an ELF OS ABI sniffer for ARM binaries. */
2892 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2893 bfd_target_elf_flavour,
2894 arm_elf_osabi_sniffer);
2895
94c30b78 2896 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2897 num_disassembly_options = get_arm_regname_num_options ();
2898
2899 /* Add root prefix command for all "set arm"/"show arm" commands. */
2900 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 2901 _("Various ARM-specific commands."),
afd7eef0
RE
2902 &setarmcmdlist, "set arm ", 0, &setlist);
2903
2904 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 2905 _("Various ARM-specific commands."),
afd7eef0 2906 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2907
94c30b78 2908 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2909 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2910
eefe576e
AC
2911 /* Initialize the array that will be passed to
2912 add_setshow_enum_cmd(). */
afd7eef0
RE
2913 valid_disassembly_styles
2914 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2915 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2916 {
2917 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2918 valid_disassembly_styles[i] = setname;
edefbb7c
AC
2919 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2920 rdptr += length;
2921 rest -= length;
94c30b78 2922 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2923 if (!strcmp (setname, "std"))
2924 {
afd7eef0 2925 disassembly_style = setname;
bc90b915
FN
2926 current_option = i;
2927 for (j = 0; j < numregs; j++)
2928 arm_register_names[j] = (char *) regnames[j];
2929 set_arm_regname_option (i);
2930 }
2931 }
94c30b78 2932 /* Mark the end of valid options. */
afd7eef0 2933 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2934
edefbb7c
AC
2935 /* Create the help text. */
2936 stb = mem_fileopen ();
2937 fprintf_unfiltered (stb, "%s%s%s",
2938 _("The valid values are:\n"),
2939 regdesc,
2940 _("The default is \"std\"."));
bc90b915
FN
2941 helptext = ui_file_xstrdup (stb, &length);
2942 ui_file_delete (stb);
ed9a39eb 2943
edefbb7c
AC
2944 add_setshow_enum_cmd("disassembler", no_class,
2945 valid_disassembly_styles, &disassembly_style,
2946 _("Set the disassembly style."),
2947 _("Show the disassembly style."),
2948 helptext,
2c5b56ce 2949 set_disassembly_style_sfunc,
7915a72c 2950 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 2951 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
2952
2953 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2954 _("Set usage of ARM 32-bit mode."),
2955 _("Show usage of ARM 32-bit mode."),
2956 _("When off, a 26-bit PC will be used."),
2c5b56ce 2957 NULL,
7915a72c 2958 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 2959 &setarmcmdlist, &showarmcmdlist);
c906108c 2960
fd50bc42 2961 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
2962 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2963 _("Set the floating point type."),
2964 _("Show the floating point type."),
2965 _("auto - Determine the FP typefrom the OS-ABI.\n\
2966softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2967fpa - FPA co-processor (GCC compiled).\n\
2968softvfp - Software FP with pure-endian doubles.\n\
2969vfp - VFP co-processor."),
edefbb7c 2970 set_fp_model_sfunc, show_fp_model,
7376b4c2 2971 &setarmcmdlist, &showarmcmdlist);
fd50bc42 2972
28e97307
DJ
2973 /* Add a command to allow the user to force the ABI. */
2974 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2975 _("Set the ABI."),
2976 _("Show the ABI."),
2977 NULL, arm_set_abi, arm_show_abi,
2978 &setarmcmdlist, &showarmcmdlist);
2979
6529d2dd 2980 /* Debugging flag. */
edefbb7c
AC
2981 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2982 _("Set ARM debugging."),
2983 _("Show ARM debugging."),
2984 _("When on, arm-specific debugging is enabled."),
2c5b56ce 2985 NULL,
7915a72c 2986 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 2987 &setdebuglist, &showdebuglist);
c906108c 2988}
This page took 0.546743 seconds and 4 git commands to generate.