* infrun.c (adjust_pc_after_break): Do not assume software single-step
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c 22
34e8f22d
RE
23#include <ctype.h> /* XXX for isupper () */
24
c906108c
SS
25#include "defs.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
c906108c 30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
34e8f22d
RE
46
47#include "arm-tdep.h"
26216b98 48#include "gdb/sim-arm.h"
34e8f22d 49
082fc60d
RE
50#include "elf-bfd.h"
51#include "coff/internal.h"
97e03143 52#include "elf/arm.h"
c906108c 53
26216b98
AC
54#include "gdb_assert.h"
55
6529d2dd
AC
56static int arm_debug;
57
082fc60d
RE
58/* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 60 is used for this purpose.
082fc60d
RE
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
64
65#define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69#define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
afd7eef0
RE
72/* The list of available "set arm ..." and "show arm ..." commands. */
73static struct cmd_list_element *setarmcmdlist = NULL;
74static struct cmd_list_element *showarmcmdlist = NULL;
75
fd50bc42
RE
76/* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78static const char *fp_model_strings[] =
79{
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
28e97307
DJ
84 "vfp",
85 NULL
fd50bc42
RE
86};
87
88/* A variable that can be configured by the user. */
89static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90static const char *current_fp_model = "auto";
91
28e97307
DJ
92/* The ABI to use. Keep this in sync with arm_abi_kind. */
93static const char *arm_abi_strings[] =
94{
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99};
100
101/* A variable that can be configured by the user. */
102static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103static const char *arm_abi_string = "auto";
104
94c30b78 105/* Number of different reg name sets (options). */
afd7eef0 106static int num_disassembly_options;
bc90b915 107
123dc839
DJ
108/* The standard register names, and all the valid aliases for them. */
109static const struct
110{
111 const char *name;
112 int regnum;
113} arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157};
bc90b915 158
123dc839 159static const char *const arm_register_names[] =
da59e081
JM
160{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 166 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 167
afd7eef0
RE
168/* Valid register name styles. */
169static const char **valid_disassembly_styles;
ed9a39eb 170
afd7eef0
RE
171/* Disassembly style to use. Default to "std" register names. */
172static const char *disassembly_style;
96baa820 173
ed9a39eb 174/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
175 style. */
176static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 177 struct cmd_list_element *);
afd7eef0 178static void set_disassembly_style (void);
ed9a39eb 179
b508a996
RE
180static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
ed9a39eb 184
9b8d791a 185struct arm_prologue_cache
c3b4394c 186{
eb5492fa
DJ
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
c3b4394c
RE
197 int framesize;
198 int frameoffset;
eb5492fa
DJ
199
200 /* The register used to hold the frame pointer for this frame. */
c3b4394c 201 int framereg;
eb5492fa
DJ
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
c3b4394c 205};
ed9a39eb 206
bc90b915
FN
207/* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209#define IS_THUMB_ADDR(addr) ((addr) & 1)
210#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
94c30b78 213/* Set to true if the 32-bit mode is in use. */
c906108c
SS
214
215int arm_apcs_32 = 1;
216
ed9a39eb
JM
217/* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
c906108c 219
ad527d2e 220static int
2a451106 221arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 222{
c5aa993b 223 struct minimal_symbol *sym;
c906108c 224
ed9a39eb 225 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
ed9a39eb 229 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
c5aa993b 233 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
234 }
235 else
ed9a39eb
JM
236 {
237 return 0;
238 }
c906108c
SS
239}
240
181c1381 241/* Remove useless bits from addresses in a running program. */
34e8f22d 242static CORE_ADDR
ed9a39eb 243arm_addr_bits_remove (CORE_ADDR val)
c906108c 244{
a3a2ee65
JT
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 247 else
a3a2ee65 248 return (val & 0x03fffffc);
c906108c
SS
249}
250
181c1381
RE
251/* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
34e8f22d 253static CORE_ADDR
181c1381
RE
254arm_smash_text_address (CORE_ADDR val)
255{
256 return val & ~1;
257}
258
29d73ae4
DJ
259/* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
262
263static CORE_ADDR
29d73ae4
DJ
264thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
c906108c 267{
29d73ae4
DJ
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
da3c6d4a 273
29d73ae4
DJ
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
c906108c 288 {
29d73ae4
DJ
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
c906108c 292
94c30b78 293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 294 {
29d73ae4
DJ
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
da59e081 320 }
da3c6d4a
MS
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
da59e081 323 {
29d73ae4
DJ
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
da59e081 328 else
29d73ae4
DJ
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
da59e081
JM
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 336 {
29d73ae4
DJ
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
da59e081 340 }
29d73ae4 341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 342 {
29d73ae4
DJ
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 356 }
29d73ae4 357 else
3d74b771 358 {
29d73ae4
DJ
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
da3c6d4a 363 break;
3d74b771 364 }
29d73ae4
DJ
365
366 start += 2;
c906108c
SS
367 }
368
29d73ae4
DJ
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
c906108c
SS
409}
410
da3c6d4a
MS
411/* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
34e8f22d
RE
413
414 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 415 prologue:
c906108c 416
c5aa993b
JM
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 425
34e8f22d 426static CORE_ADDR
ed9a39eb 427arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
428{
429 unsigned long inst;
430 CORE_ADDR skip_pc;
b8d5e71d 431 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 432 char *func_name;
c906108c
SS
433 struct symtab_and_line sal;
434
848cfffb 435 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 436 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
437 return pc;
438
96baa820 439 /* See what the symbol table says. */
ed9a39eb 440
50f6fb4b 441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 442 {
50f6fb4b
CV
443 struct symbol *sym;
444
445 /* Found a function. */
176620f1 446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
94c30b78 449 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
c906108c
SS
454 }
455
c906108c 456 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 457 by disassembling the instructions. */
c906108c 458
b8d5e71d
MS
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
c906108c 462
29d73ae4
DJ
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
b8d5e71d 467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 468 {
1c5bada0 469 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 470
b8d5e71d
MS
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
c906108c 474
28cd8767
JG
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
b8d5e71d
MS
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
c906108c 484
b8d5e71d
MS
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
c906108c 487
b8d5e71d
MS
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
11d3b27d 490
b8d5e71d
MS
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
f43845b3 494
b8d5e71d
MS
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
f43845b3 522 }
c906108c 523
b8d5e71d 524 return skip_pc; /* End of prologue */
c906108c 525}
94c30b78 526
c5aa993b 527/* *INDENT-OFF* */
c906108c
SS
528/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
c906108c 534
da59e081
JM
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
c906108c
SS
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
543 12 bytes. The frame register is R7.
544
da3c6d4a
MS
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
c5aa993b
JM
547/* *INDENT-ON* */
548
c906108c 549static void
eb5492fa 550thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
551{
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
94c30b78 555 /* Which register has been copied to register n? */
da3c6d4a
MS
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
c5aa993b 563 int i;
c906108c 564
eb5492fa 565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
94c30b78 569 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 570 prologue_end = prev_pc;
c906108c 571 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 572 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
573 }
574 else
f7060f85
DJ
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
c906108c 578
eb5492fa 579 prologue_end = min (prologue_end, prev_pc);
c906108c 580
29d73ae4
DJ
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
c906108c
SS
583}
584
ed9a39eb 585/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
c906108c
SS
590 This information is stored in the "extra" fields of the frame_info.
591
96baa820
JM
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
ed9a39eb
JM
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
96baa820 599
c906108c 600 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
c906108c 608 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
ed9a39eb 615
96baa820
JM
616 A variable argument function call will look like:
617
ed9a39eb
JM
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
96baa820 623 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
96baa820
JM
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
ed9a39eb
JM
649
650 */
c906108c
SS
651
652static void
eb5492fa 653arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 654{
28cd8767 655 int regno, sp_offset, fp_offset, ip_offset;
c906108c 656 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 658
c906108c 659 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
c906108c
SS
663
664 /* Check for Thumb prologue. */
eb5492fa 665 if (arm_pc_is_thumb (prev_pc))
c906108c 666 {
eb5492fa 667 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 674 {
2a451106
KB
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
eb5492fa 681 prologue_end = prev_pc;
2a451106
KB
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
94c30b78 705 the scheduler. */
2a451106
KB
706
707 if (prologue_end > prologue_start + 64)
708 {
94c30b78 709 prologue_end = prologue_start + 64; /* See above. */
2a451106 710 }
c906108c
SS
711 }
712 else
713 {
eb5492fa
DJ
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
724 return;
725 else
726 {
bf6ae464
UW
727 prologue_start = gdbarch_addr_bits_remove
728 (current_gdbarch, return_value) - 8;
94c30b78 729 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 730 }
c906108c
SS
731 }
732
eb5492fa
DJ
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
c906108c 736 /* Now search the prologue looking for instructions that set up the
96baa820 737 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 738
96baa820
JM
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 742 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 747 if we don't see this as the first insn, we will stop.
c906108c 748
f43845b3
MS
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 751
f43845b3
MS
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
b8d5e71d 755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 756
28cd8767 757 sp_offset = fp_offset = ip_offset = 0;
f43845b3 758
94c30b78
MS
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
f43845b3 761 current_pc += 4)
96baa820 762 {
d4473757
KB
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
94c30b78 765 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 766 {
28cd8767
JG
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
f43845b3
MS
784 continue;
785 }
94c30b78 786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 787 {
e28a332c
JG
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
c906108c 796 {
d4473757 797 int mask = insn & 0xffff;
ed9a39eb 798
94c30b78 799 /* Calculate offsets of saved registers. */
34e8f22d 800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
eb5492fa 804 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
805 }
806 }
b8d5e71d
MS
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
d4473757
KB
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
94c30b78
MS
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 825 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 826 fp_offset = -imm + ip_offset;
9b8d791a 827 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
94c30b78
MS
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
ff6f572f
DJ
836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
837 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
838 {
839 sp_offset -= 12;
34e8f22d 840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 841 cache->saved_regs[regno].addr = sp_offset;
d4473757 842 }
ff6f572f
DJ
843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
844 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
845 {
846 int n_saved_fp_regs;
847 unsigned int fp_start_reg, fp_bound_reg;
848
94c30b78 849 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 850 {
d4473757
KB
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
852 n_saved_fp_regs = 3;
853 else
854 n_saved_fp_regs = 1;
96baa820 855 }
d4473757 856 else
96baa820 857 {
d4473757
KB
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 2;
860 else
861 n_saved_fp_regs = 4;
96baa820 862 }
d4473757 863
34e8f22d 864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
867 {
868 sp_offset -= 12;
eb5492fa 869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 870 }
c906108c 871 }
d4473757 872 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 873 break; /* Condition not true, exit early */
b8d5e71d 874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 875 break; /* Don't scan past a block load */
d4473757
KB
876 else
877 /* The optimizer might shove anything into the prologue,
94c30b78 878 so we just skip what we don't recognize. */
d4473757 879 continue;
c906108c
SS
880 }
881
94c30b78
MS
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
d4473757 888 else
9b8d791a 889 cache->frameoffset = 0;
c906108c
SS
890}
891
eb5492fa
DJ
892static struct arm_prologue_cache *
893arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 894{
eb5492fa
DJ
895 int reg;
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
c5aa993b 898
35d5d4ee 899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 901
eb5492fa 902 arm_scan_prologue (next_frame, cache);
848cfffb 903
eb5492fa
DJ
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
905 if (unwound_fp == 0)
906 return cache;
c906108c 907
eb5492fa 908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 909
eb5492fa
DJ
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
f57d151a 912 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
e28a332c 913 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
914 cache->saved_regs[reg].addr += cache->prev_sp;
915
916 return cache;
c906108c
SS
917}
918
eb5492fa
DJ
919/* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
c906108c 921
148754e5 922static void
eb5492fa
DJ
923arm_prologue_this_id (struct frame_info *next_frame,
924 void **this_cache,
925 struct frame_id *this_id)
c906108c 926{
eb5492fa
DJ
927 struct arm_prologue_cache *cache;
928 struct frame_id id;
929 CORE_ADDR func;
f079148d 930
eb5492fa
DJ
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
2a451106 934
93d42b30 935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 936
eb5492fa
DJ
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
9e815ec2 939 if (func <= LOWEST_PC)
eb5492fa 940 return;
5a203e44 941
eb5492fa
DJ
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
944 return;
24de872b 945
eb5492fa 946 id = frame_id_build (cache->prev_sp, func);
eb5492fa 947 *this_id = id;
c906108c
SS
948}
949
eb5492fa
DJ
950static void
951arm_prologue_prev_register (struct frame_info *next_frame,
952 void **this_cache,
953 int prev_regnum,
954 int *optimized,
955 enum lval_type *lvalp,
956 CORE_ADDR *addrp,
957 int *realnump,
9af75ef6 958 gdb_byte *valuep)
24de872b
DJ
959{
960 struct arm_prologue_cache *cache;
961
eb5492fa
DJ
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
964 cache = *this_cache;
24de872b 965
eb5492fa
DJ
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
24de872b 971
eb5492fa
DJ
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
976 {
977 *lvalp = not_lval;
978 if (valuep)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
980 return;
981 }
982
1f67027d
AC
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
985}
986
987struct frame_unwind arm_prologue_unwind = {
988 NORMAL_FRAME,
989 arm_prologue_this_id,
990 arm_prologue_prev_register
991};
992
993static const struct frame_unwind *
994arm_prologue_unwind_sniffer (struct frame_info *next_frame)
995{
996 return &arm_prologue_unwind;
24de872b
DJ
997}
998
909cf6ea
DJ
999static struct arm_prologue_cache *
1000arm_make_stub_cache (struct frame_info *next_frame)
1001{
1002 int reg;
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1005
35d5d4ee 1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1008
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1010
1011 return cache;
1012}
1013
1014/* Our frame ID for a stub frame is the current SP and LR. */
1015
1016static void
1017arm_stub_this_id (struct frame_info *next_frame,
1018 void **this_cache,
1019 struct frame_id *this_id)
1020{
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1026
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1029}
1030
1031struct frame_unwind arm_stub_unwind = {
1032 NORMAL_FRAME,
1033 arm_stub_this_id,
1034 arm_prologue_prev_register
1035};
1036
1037static const struct frame_unwind *
1038arm_stub_unwind_sniffer (struct frame_info *next_frame)
1039{
93d42b30 1040 CORE_ADDR addr_in_block;
909cf6ea
DJ
1041 char dummy[4];
1042
93d42b30
DJ
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1047
1048 return NULL;
1049}
1050
24de872b 1051static CORE_ADDR
eb5492fa 1052arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1053{
1054 struct arm_prologue_cache *cache;
1055
eb5492fa
DJ
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1059
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1061}
1062
eb5492fa
DJ
1063struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1068};
1069
eb5492fa
DJ
1070/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1074 breakpoint. */
c906108c 1075
eb5492fa
DJ
1076static struct frame_id
1077arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1078{
eb5492fa
DJ
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1081}
c3b4394c 1082
eb5492fa
DJ
1083/* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
c3b4394c 1086
eb5492fa
DJ
1087static CORE_ADDR
1088arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089{
1090 CORE_ADDR pc;
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1092 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1093}
1094
1095static CORE_ADDR
1096arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097{
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1099}
1100
2dd604e7
RE
1101/* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1103
1104struct stack_item
1105{
1106 int len;
1107 struct stack_item *prev;
1108 void *data;
1109};
1110
1111static struct stack_item *
1112push_stack_item (struct stack_item *prev, void *contents, int len)
1113{
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1116 si->data = xmalloc (len);
2dd604e7
RE
1117 si->len = len;
1118 si->prev = prev;
1119 memcpy (si->data, contents, len);
1120 return si;
1121}
1122
1123static struct stack_item *
1124pop_stack_item (struct stack_item *si)
1125{
1126 struct stack_item *dead = si;
1127 si = si->prev;
1128 xfree (dead->data);
1129 xfree (dead);
1130 return si;
1131}
1132
2af48f68
PB
1133
1134/* Return the alignment (in bytes) of the given type. */
1135
1136static int
1137arm_type_align (struct type *t)
1138{
1139 int n;
1140 int align;
1141 int falign;
1142
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1145 {
1146 default:
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1149 return 4;
1150
1151 case TYPE_CODE_PTR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_FLT:
1155 case TYPE_CODE_SET:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1162
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1167
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1170 align = 1;
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1172 {
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1174 if (falign > align)
1175 align = falign;
1176 }
1177 return align;
1178 }
1179}
1180
2dd604e7
RE
1181/* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1184
1185static CORE_ADDR
7d9b040b 1186arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
2dd604e7
RE
1190{
1191 int argnum;
1192 int argreg;
1193 int nstack;
1194 struct stack_item *si = NULL;
1195
6a65450a
AC
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
2dd604e7 1198 /* XXX Fix for Thumb. */
6a65450a 1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1200
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1204 nstack = 0;
1205
1206 argreg = ARM_A1_REGNUM;
1207 nstack = 0;
1208
2dd604e7
RE
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1211 if (struct_return)
1212 {
1213 if (arm_debug)
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
c9f4d572
UW
1215 gdbarch_register_name (current_gdbarch, argreg),
1216 paddr (struct_addr));
2dd604e7
RE
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1218 argreg++;
1219 }
1220
1221 for (argnum = 0; argnum < nargs; argnum++)
1222 {
1223 int len;
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
0fd88904 1227 bfd_byte *val;
2af48f68 1228 int align;
2dd604e7 1229
df407dfe 1230 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
0fd88904 1234 val = value_contents_writeable (args[argnum]);
2dd604e7 1235
2af48f68
PB
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1241 {
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1244 }
1245 else
1246 {
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1250 }
1251
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1254 {
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1257 }
1258
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1262 && argreg & 1)
1263 argreg++;
1264
2dd604e7
RE
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
7c0b4a20 1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
fbd9dcd3 1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
f0c9063c 1285 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7
RE
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
7c0b4a20 1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
8bf8793c
JM
1292 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1293 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
1294 if (arm_debug)
1295 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
1296 argnum,
1297 gdbarch_register_name
1298 (current_gdbarch, argreg),
f0c9063c 1299 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
1300 regcache_cooked_write_unsigned (regcache, argreg, regval);
1301 argreg++;
1302 }
1303 else
1304 {
1305 /* Push the arguments onto the stack. */
1306 if (arm_debug)
1307 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1308 argnum, nstack);
f0c9063c
UW
1309 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1310 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
1311 }
1312
1313 len -= partial_len;
1314 val += partial_len;
1315 }
1316 }
1317 /* If we have an odd number of words to push, then decrement the stack
1318 by one word now, so first stack argument will be dword aligned. */
1319 if (nstack & 4)
1320 sp -= 4;
1321
1322 while (si)
1323 {
1324 sp -= si->len;
1325 write_memory (sp, si->data, si->len);
1326 si = pop_stack_item (si);
1327 }
1328
1329 /* Finally, update teh SP register. */
1330 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1331
1332 return sp;
1333}
1334
f53f0d0b
PB
1335
1336/* Always align the frame to an 8-byte boundary. This is required on
1337 some platforms and harmless on the rest. */
1338
1339static CORE_ADDR
1340arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1341{
1342 /* Align the stack to eight bytes. */
1343 return sp & ~ (CORE_ADDR) 7;
1344}
1345
c906108c 1346static void
ed9a39eb 1347print_fpu_flags (int flags)
c906108c 1348{
c5aa993b
JM
1349 if (flags & (1 << 0))
1350 fputs ("IVO ", stdout);
1351 if (flags & (1 << 1))
1352 fputs ("DVZ ", stdout);
1353 if (flags & (1 << 2))
1354 fputs ("OFL ", stdout);
1355 if (flags & (1 << 3))
1356 fputs ("UFL ", stdout);
1357 if (flags & (1 << 4))
1358 fputs ("INX ", stdout);
1359 putchar ('\n');
c906108c
SS
1360}
1361
5e74b15c
RE
1362/* Print interesting information about the floating point processor
1363 (if present) or emulator. */
34e8f22d 1364static void
d855c300 1365arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1366 struct frame_info *frame, const char *args)
c906108c 1367{
9c9acae0 1368 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
1369 int type;
1370
1371 type = (status >> 24) & 127;
edefbb7c
AC
1372 if (status & (1 << 31))
1373 printf (_("Hardware FPU type %d\n"), type);
1374 else
1375 printf (_("Software FPU type %d\n"), type);
1376 /* i18n: [floating point unit] mask */
1377 fputs (_("mask: "), stdout);
c5aa993b 1378 print_fpu_flags (status >> 16);
edefbb7c
AC
1379 /* i18n: [floating point unit] flags */
1380 fputs (_("flags: "), stdout);
c5aa993b 1381 print_fpu_flags (status);
c906108c
SS
1382}
1383
34e8f22d
RE
1384/* Return the GDB type object for the "standard" data type of data in
1385 register N. */
1386
1387static struct type *
7a5ea0d4 1388arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1389{
34e8f22d 1390 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1391 return builtin_type_arm_ext;
e4c16157
DJ
1392 else if (regnum == ARM_SP_REGNUM)
1393 return builtin_type_void_data_ptr;
1394 else if (regnum == ARM_PC_REGNUM)
1395 return builtin_type_void_func_ptr;
ff6f572f
DJ
1396 else if (regnum >= ARRAY_SIZE (arm_register_names))
1397 /* These registers are only supported on targets which supply
1398 an XML description. */
1399 return builtin_type_int0;
032758dc 1400 else
e4c16157 1401 return builtin_type_uint32;
032758dc
AC
1402}
1403
ff6f572f
DJ
1404/* Map a DWARF register REGNUM onto the appropriate GDB register
1405 number. */
1406
1407static int
1408arm_dwarf_reg_to_regnum (int reg)
1409{
1410 /* Core integer regs. */
1411 if (reg >= 0 && reg <= 15)
1412 return reg;
1413
1414 /* Legacy FPA encoding. These were once used in a way which
1415 overlapped with VFP register numbering, so their use is
1416 discouraged, but GDB doesn't support the ARM toolchain
1417 which used them for VFP. */
1418 if (reg >= 16 && reg <= 23)
1419 return ARM_F0_REGNUM + reg - 16;
1420
1421 /* New assignments for the FPA registers. */
1422 if (reg >= 96 && reg <= 103)
1423 return ARM_F0_REGNUM + reg - 96;
1424
1425 /* WMMX register assignments. */
1426 if (reg >= 104 && reg <= 111)
1427 return ARM_WCGR0_REGNUM + reg - 104;
1428
1429 if (reg >= 112 && reg <= 127)
1430 return ARM_WR0_REGNUM + reg - 112;
1431
1432 if (reg >= 192 && reg <= 199)
1433 return ARM_WC0_REGNUM + reg - 192;
1434
1435 return -1;
1436}
1437
26216b98
AC
1438/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1439static int
1440arm_register_sim_regno (int regnum)
1441{
1442 int reg = regnum;
f57d151a 1443 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
26216b98 1444
ff6f572f
DJ
1445 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1446 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1447
1448 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1449 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1450
1451 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1452 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1453
26216b98
AC
1454 if (reg < NUM_GREGS)
1455 return SIM_ARM_R0_REGNUM + reg;
1456 reg -= NUM_GREGS;
1457
1458 if (reg < NUM_FREGS)
1459 return SIM_ARM_FP0_REGNUM + reg;
1460 reg -= NUM_FREGS;
1461
1462 if (reg < NUM_SREGS)
1463 return SIM_ARM_FPS_REGNUM + reg;
1464 reg -= NUM_SREGS;
1465
edefbb7c 1466 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1467}
34e8f22d 1468
a37b3cc0
AC
1469/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1470 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1471 It is thought that this is is the floating-point register format on
1472 little-endian systems. */
c906108c 1473
ed9a39eb 1474static void
b508a996
RE
1475convert_from_extended (const struct floatformat *fmt, const void *ptr,
1476 void *dbl)
c906108c 1477{
a37b3cc0 1478 DOUBLEST d;
4c6b5505 1479 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1480 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1481 else
1482 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1483 ptr, &d);
b508a996 1484 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1485}
1486
34e8f22d 1487static void
b508a996 1488convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1489{
a37b3cc0 1490 DOUBLEST d;
b508a996 1491 floatformat_to_doublest (fmt, ptr, &d);
4c6b5505 1492 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1493 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1494 else
1495 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1496 &d, dbl);
c906108c 1497}
ed9a39eb 1498
c906108c 1499static int
ed9a39eb 1500condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1501{
1502 if (cond == INST_AL || cond == INST_NV)
1503 return 1;
1504
1505 switch (cond)
1506 {
1507 case INST_EQ:
1508 return ((status_reg & FLAG_Z) != 0);
1509 case INST_NE:
1510 return ((status_reg & FLAG_Z) == 0);
1511 case INST_CS:
1512 return ((status_reg & FLAG_C) != 0);
1513 case INST_CC:
1514 return ((status_reg & FLAG_C) == 0);
1515 case INST_MI:
1516 return ((status_reg & FLAG_N) != 0);
1517 case INST_PL:
1518 return ((status_reg & FLAG_N) == 0);
1519 case INST_VS:
1520 return ((status_reg & FLAG_V) != 0);
1521 case INST_VC:
1522 return ((status_reg & FLAG_V) == 0);
1523 case INST_HI:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1525 case INST_LS:
1526 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1527 case INST_GE:
1528 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1529 case INST_LT:
1530 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1531 case INST_GT:
1532 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1533 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1534 case INST_LE:
1535 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1536 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1537 }
1538 return 1;
1539}
1540
9512d7fd 1541/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1542#define submask(x) ((1L << ((x) + 1)) - 1)
1543#define bit(obj,st) (((obj) >> (st)) & 1)
1544#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1545#define sbits(obj,st,fn) \
1546 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1547#define BranchDest(addr,instr) \
1548 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1549#define ARM_PC_32 1
1550
1551static unsigned long
0b1b3e42
UW
1552shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1553 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
1554{
1555 unsigned long res, shift;
1556 int rm = bits (inst, 0, 3);
1557 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1558
1559 if (bit (inst, 4))
c906108c
SS
1560 {
1561 int rs = bits (inst, 8, 11);
0b1b3e42
UW
1562 shift = (rs == 15 ? pc_val + 8
1563 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
1564 }
1565 else
1566 shift = bits (inst, 7, 11);
c5aa993b
JM
1567
1568 res = (rm == 15
c906108c 1569 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1570 + (bit (inst, 4) ? 12 : 8))
0b1b3e42 1571 : get_frame_register_unsigned (frame, rm));
c906108c
SS
1572
1573 switch (shifttype)
1574 {
c5aa993b 1575 case 0: /* LSL */
c906108c
SS
1576 res = shift >= 32 ? 0 : res << shift;
1577 break;
c5aa993b
JM
1578
1579 case 1: /* LSR */
c906108c
SS
1580 res = shift >= 32 ? 0 : res >> shift;
1581 break;
1582
c5aa993b
JM
1583 case 2: /* ASR */
1584 if (shift >= 32)
1585 shift = 31;
c906108c
SS
1586 res = ((res & 0x80000000L)
1587 ? ~((~res) >> shift) : res >> shift);
1588 break;
1589
c5aa993b 1590 case 3: /* ROR/RRX */
c906108c
SS
1591 shift &= 31;
1592 if (shift == 0)
1593 res = (res >> 1) | (carry ? 0x80000000L : 0);
1594 else
c5aa993b 1595 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1596 break;
1597 }
1598
1599 return res & 0xffffffff;
1600}
1601
c906108c
SS
1602/* Return number of 1-bits in VAL. */
1603
1604static int
ed9a39eb 1605bitcount (unsigned long val)
c906108c
SS
1606{
1607 int nbits;
1608 for (nbits = 0; val != 0; nbits++)
c5aa993b 1609 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1610 return nbits;
1611}
1612
ad527d2e 1613static CORE_ADDR
0b1b3e42 1614thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1615{
c5aa993b 1616 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1617 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1618 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1619 unsigned long offset;
1620
1621 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1622 {
1623 CORE_ADDR sp;
1624
1625 /* Fetch the saved PC from the stack. It's stored above
1626 all of the other registers. */
f0c9063c 1627 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 1628 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1c5bada0 1629 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
bf6ae464 1630 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
c906108c 1631 if (nextpc == pc)
edefbb7c 1632 error (_("Infinite loop detected"));
c906108c
SS
1633 }
1634 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1635 {
0b1b3e42 1636 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1637 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1638 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1639 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1640 }
1641 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1642 {
1643 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1644 }
aa17d93e 1645 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1646 {
1c5bada0 1647 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1648 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1649 nextpc = pc_val + offset;
aa17d93e
DJ
1650 /* For BLX make sure to clear the low bits. */
1651 if (bits (inst2, 11, 12) == 1)
1652 nextpc = nextpc & 0xfffffffc;
c906108c 1653 }
aa17d93e 1654 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1655 {
1656 if (bits (inst1, 3, 6) == 0x0f)
1657 nextpc = pc_val;
1658 else
0b1b3e42 1659 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 1660
bf6ae464 1661 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
9498281f 1662 if (nextpc == pc)
edefbb7c 1663 error (_("Infinite loop detected"));
9498281f 1664 }
c906108c
SS
1665
1666 return nextpc;
1667}
1668
ad527d2e 1669static CORE_ADDR
0b1b3e42 1670arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
1671{
1672 unsigned long pc_val;
1673 unsigned long this_instr;
1674 unsigned long status;
1675 CORE_ADDR nextpc;
1676
1677 if (arm_pc_is_thumb (pc))
0b1b3e42 1678 return thumb_get_next_pc (frame, pc);
c906108c
SS
1679
1680 pc_val = (unsigned long) pc;
1c5bada0 1681 this_instr = read_memory_unsigned_integer (pc, 4);
0b1b3e42 1682 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1683 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1684
1685 if (condition_true (bits (this_instr, 28, 31), status))
1686 {
1687 switch (bits (this_instr, 24, 27))
1688 {
c5aa993b 1689 case 0x0:
94c30b78 1690 case 0x1: /* data processing */
c5aa993b
JM
1691 case 0x2:
1692 case 0x3:
c906108c
SS
1693 {
1694 unsigned long operand1, operand2, result = 0;
1695 unsigned long rn;
1696 int c;
c5aa993b 1697
c906108c
SS
1698 if (bits (this_instr, 12, 15) != 15)
1699 break;
1700
1701 if (bits (this_instr, 22, 25) == 0
c5aa993b 1702 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1703 error (_("Invalid update to pc in instruction"));
c906108c 1704
9498281f 1705 /* BX <reg>, BLX <reg> */
e150acc7
PB
1706 if (bits (this_instr, 4, 27) == 0x12fff1
1707 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1708 {
1709 rn = bits (this_instr, 0, 3);
0b1b3e42
UW
1710 result = (rn == 15) ? pc_val + 8
1711 : get_frame_register_unsigned (frame, rn);
bf6ae464
UW
1712 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1713 (current_gdbarch, result);
9498281f
DJ
1714
1715 if (nextpc == pc)
edefbb7c 1716 error (_("Infinite loop detected"));
9498281f
DJ
1717
1718 return nextpc;
1719 }
1720
c906108c
SS
1721 /* Multiply into PC */
1722 c = (status & FLAG_C) ? 1 : 0;
1723 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1724 operand1 = (rn == 15) ? pc_val + 8
1725 : get_frame_register_unsigned (frame, rn);
c5aa993b 1726
c906108c
SS
1727 if (bit (this_instr, 25))
1728 {
1729 unsigned long immval = bits (this_instr, 0, 7);
1730 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1731 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1732 & 0xffffffff;
c906108c 1733 }
c5aa993b 1734 else /* operand 2 is a shifted register */
0b1b3e42 1735 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
c5aa993b 1736
c906108c
SS
1737 switch (bits (this_instr, 21, 24))
1738 {
c5aa993b 1739 case 0x0: /*and */
c906108c
SS
1740 result = operand1 & operand2;
1741 break;
1742
c5aa993b 1743 case 0x1: /*eor */
c906108c
SS
1744 result = operand1 ^ operand2;
1745 break;
1746
c5aa993b 1747 case 0x2: /*sub */
c906108c
SS
1748 result = operand1 - operand2;
1749 break;
1750
c5aa993b 1751 case 0x3: /*rsb */
c906108c
SS
1752 result = operand2 - operand1;
1753 break;
1754
c5aa993b 1755 case 0x4: /*add */
c906108c
SS
1756 result = operand1 + operand2;
1757 break;
1758
c5aa993b 1759 case 0x5: /*adc */
c906108c
SS
1760 result = operand1 + operand2 + c;
1761 break;
1762
c5aa993b 1763 case 0x6: /*sbc */
c906108c
SS
1764 result = operand1 - operand2 + c;
1765 break;
1766
c5aa993b 1767 case 0x7: /*rsc */
c906108c
SS
1768 result = operand2 - operand1 + c;
1769 break;
1770
c5aa993b
JM
1771 case 0x8:
1772 case 0x9:
1773 case 0xa:
1774 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1775 result = (unsigned long) nextpc;
1776 break;
1777
c5aa993b 1778 case 0xc: /*orr */
c906108c
SS
1779 result = operand1 | operand2;
1780 break;
1781
c5aa993b 1782 case 0xd: /*mov */
c906108c
SS
1783 /* Always step into a function. */
1784 result = operand2;
c5aa993b 1785 break;
c906108c 1786
c5aa993b 1787 case 0xe: /*bic */
c906108c
SS
1788 result = operand1 & ~operand2;
1789 break;
1790
c5aa993b 1791 case 0xf: /*mvn */
c906108c
SS
1792 result = ~operand2;
1793 break;
1794 }
bf6ae464
UW
1795 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1796 (current_gdbarch, result);
c906108c
SS
1797
1798 if (nextpc == pc)
edefbb7c 1799 error (_("Infinite loop detected"));
c906108c
SS
1800 break;
1801 }
c5aa993b
JM
1802
1803 case 0x4:
1804 case 0x5: /* data transfer */
1805 case 0x6:
1806 case 0x7:
c906108c
SS
1807 if (bit (this_instr, 20))
1808 {
1809 /* load */
1810 if (bits (this_instr, 12, 15) == 15)
1811 {
1812 /* rd == pc */
c5aa993b 1813 unsigned long rn;
c906108c 1814 unsigned long base;
c5aa993b 1815
c906108c 1816 if (bit (this_instr, 22))
edefbb7c 1817 error (_("Invalid update to pc in instruction"));
c906108c
SS
1818
1819 /* byte write to PC */
1820 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1821 base = (rn == 15) ? pc_val + 8
1822 : get_frame_register_unsigned (frame, rn);
c906108c
SS
1823 if (bit (this_instr, 24))
1824 {
1825 /* pre-indexed */
1826 int c = (status & FLAG_C) ? 1 : 0;
1827 unsigned long offset =
c5aa993b 1828 (bit (this_instr, 25)
0b1b3e42 1829 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 1830 : bits (this_instr, 0, 11));
c906108c
SS
1831
1832 if (bit (this_instr, 23))
1833 base += offset;
1834 else
1835 base -= offset;
1836 }
c5aa993b 1837 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1838 4);
c5aa993b 1839
bf6ae464 1840 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
c906108c
SS
1841
1842 if (nextpc == pc)
edefbb7c 1843 error (_("Infinite loop detected"));
c906108c
SS
1844 }
1845 }
1846 break;
c5aa993b
JM
1847
1848 case 0x8:
1849 case 0x9: /* block transfer */
c906108c
SS
1850 if (bit (this_instr, 20))
1851 {
1852 /* LDM */
1853 if (bit (this_instr, 15))
1854 {
1855 /* loading pc */
1856 int offset = 0;
1857
1858 if (bit (this_instr, 23))
1859 {
1860 /* up */
1861 unsigned long reglist = bits (this_instr, 0, 14);
1862 offset = bitcount (reglist) * 4;
c5aa993b 1863 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1864 offset += 4;
1865 }
1866 else if (bit (this_instr, 24))
1867 offset = -4;
c5aa993b 1868
c906108c 1869 {
c5aa993b 1870 unsigned long rn_val =
0b1b3e42
UW
1871 get_frame_register_unsigned (frame,
1872 bits (this_instr, 16, 19));
c906108c
SS
1873 nextpc =
1874 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1875 + offset),
c906108c
SS
1876 4);
1877 }
bf6ae464
UW
1878 nextpc = gdbarch_addr_bits_remove
1879 (current_gdbarch, nextpc);
c906108c 1880 if (nextpc == pc)
edefbb7c 1881 error (_("Infinite loop detected"));
c906108c
SS
1882 }
1883 }
1884 break;
c5aa993b
JM
1885
1886 case 0xb: /* branch & link */
1887 case 0xa: /* branch */
c906108c
SS
1888 {
1889 nextpc = BranchDest (pc, this_instr);
1890
9498281f
DJ
1891 /* BLX */
1892 if (bits (this_instr, 28, 31) == INST_NV)
1893 nextpc |= bit (this_instr, 24) << 1;
1894
bf6ae464 1895 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
c906108c 1896 if (nextpc == pc)
edefbb7c 1897 error (_("Infinite loop detected"));
c906108c
SS
1898 break;
1899 }
c5aa993b
JM
1900
1901 case 0xc:
1902 case 0xd:
1903 case 0xe: /* coproc ops */
1904 case 0xf: /* SWI */
c906108c
SS
1905 break;
1906
1907 default:
edefbb7c 1908 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1909 return (pc);
1910 }
1911 }
1912
1913 return nextpc;
1914}
1915
9512d7fd
FN
1916/* single_step() is called just before we want to resume the inferior,
1917 if we want to single-step it but there is no hardware or kernel
1918 single-step support. We find the target of the coming instruction
e0cd558a 1919 and breakpoint it. */
9512d7fd 1920
190dce09 1921int
0b1b3e42 1922arm_software_single_step (struct frame_info *frame)
9512d7fd 1923{
8181d85f
DJ
1924 /* NOTE: This may insert the wrong breakpoint instruction when
1925 single-stepping over a mode-changing instruction, if the
1926 CPSR heuristics are used. */
9512d7fd 1927
0b1b3e42 1928 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
e0cd558a 1929 insert_single_step_breakpoint (next_pc);
e6590a1b
UW
1930
1931 return 1;
9512d7fd 1932}
9512d7fd 1933
c906108c
SS
1934#include "bfd-in2.h"
1935#include "libcoff.h"
1936
1937static int
ed9a39eb 1938gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1939{
1940 if (arm_pc_is_thumb (memaddr))
1941 {
c5aa993b
JM
1942 static asymbol *asym;
1943 static combined_entry_type ce;
1944 static struct coff_symbol_struct csym;
27cddce2 1945 static struct bfd fake_bfd;
c5aa993b 1946 static bfd_target fake_target;
c906108c
SS
1947
1948 if (csym.native == NULL)
1949 {
da3c6d4a
MS
1950 /* Create a fake symbol vector containing a Thumb symbol.
1951 This is solely so that the code in print_insn_little_arm()
1952 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1953 the presence of a Thumb symbol and switch to decoding
1954 Thumb instructions. */
c5aa993b
JM
1955
1956 fake_target.flavour = bfd_target_coff_flavour;
1957 fake_bfd.xvec = &fake_target;
c906108c 1958 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1959 csym.native = &ce;
1960 csym.symbol.the_bfd = &fake_bfd;
1961 csym.symbol.name = "fake";
1962 asym = (asymbol *) & csym;
c906108c 1963 }
c5aa993b 1964
c906108c 1965 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1966 info->symbols = &asym;
c906108c
SS
1967 }
1968 else
1969 info->symbols = NULL;
c5aa993b 1970
4c6b5505 1971 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
1972 return print_insn_big_arm (memaddr, info);
1973 else
1974 return print_insn_little_arm (memaddr, info);
1975}
1976
66e810cd
RE
1977/* The following define instruction sequences that will cause ARM
1978 cpu's to take an undefined instruction trap. These are used to
1979 signal a breakpoint to GDB.
1980
1981 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1982 modes. A different instruction is required for each mode. The ARM
1983 cpu's can also be big or little endian. Thus four different
1984 instructions are needed to support all cases.
1985
1986 Note: ARMv4 defines several new instructions that will take the
1987 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1988 not in fact add the new instructions. The new undefined
1989 instructions in ARMv4 are all instructions that had no defined
1990 behaviour in earlier chips. There is no guarantee that they will
1991 raise an exception, but may be treated as NOP's. In practice, it
1992 may only safe to rely on instructions matching:
1993
1994 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1995 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1996 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1997
1998 Even this may only true if the condition predicate is true. The
1999 following use a condition predicate of ALWAYS so it is always TRUE.
2000
2001 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2002 and NetBSD all use a software interrupt rather than an undefined
2003 instruction to force a trap. This can be handled by by the
2004 abi-specific code during establishment of the gdbarch vector. */
2005
66e810cd 2006#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
66e810cd 2007#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
190dce09
UW
2008#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2009#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
66e810cd
RE
2010
2011static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2012static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2013static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2014static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2015
34e8f22d
RE
2016/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2017 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2018 breakpoint should be used. It returns a pointer to a string of
2019 bytes that encode a breakpoint instruction, stores the length of
2020 the string to *lenptr, and adjusts the program counter (if
2021 necessary) to point to the actual memory location where the
c906108c
SS
2022 breakpoint should be inserted. */
2023
ab89facf 2024static const unsigned char *
ed9a39eb 2025arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2026{
66e810cd
RE
2027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2028
4bf7064c 2029 if (arm_pc_is_thumb (*pcptr))
c906108c 2030 {
66e810cd
RE
2031 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2032 *lenptr = tdep->thumb_breakpoint_size;
2033 return tdep->thumb_breakpoint;
c906108c
SS
2034 }
2035 else
2036 {
66e810cd
RE
2037 *lenptr = tdep->arm_breakpoint_size;
2038 return tdep->arm_breakpoint;
c906108c
SS
2039 }
2040}
ed9a39eb
JM
2041
2042/* Extract from an array REGBUF containing the (raw) register state a
2043 function return value of type TYPE, and copy that, in virtual
2044 format, into VALBUF. */
2045
34e8f22d 2046static void
5238cf52
MK
2047arm_extract_return_value (struct type *type, struct regcache *regs,
2048 gdb_byte *valbuf)
ed9a39eb
JM
2049{
2050 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2051 {
28e97307 2052 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2053 {
2054 case ARM_FLOAT_FPA:
b508a996
RE
2055 {
2056 /* The value is in register F0 in internal format. We need to
2057 extract the raw value and then convert it to the desired
2058 internal type. */
7a5ea0d4 2059 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2060
2061 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2062 convert_from_extended (floatformat_from_type (type), tmpbuf,
2063 valbuf);
2064 }
08216dd7
RE
2065 break;
2066
fd50bc42 2067 case ARM_FLOAT_SOFT_FPA:
08216dd7 2068 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2069 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2070 if (TYPE_LENGTH (type) > 4)
2071 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2072 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2073 break;
2074
2075 default:
2076 internal_error
2077 (__FILE__, __LINE__,
edefbb7c 2078 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2079 break;
2080 }
2081 }
b508a996
RE
2082 else if (TYPE_CODE (type) == TYPE_CODE_INT
2083 || TYPE_CODE (type) == TYPE_CODE_CHAR
2084 || TYPE_CODE (type) == TYPE_CODE_BOOL
2085 || TYPE_CODE (type) == TYPE_CODE_PTR
2086 || TYPE_CODE (type) == TYPE_CODE_REF
2087 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2088 {
2089 /* If the the type is a plain integer, then the access is
2090 straight-forward. Otherwise we have to play around a bit more. */
2091 int len = TYPE_LENGTH (type);
2092 int regno = ARM_A1_REGNUM;
2093 ULONGEST tmp;
2094
2095 while (len > 0)
2096 {
2097 /* By using store_unsigned_integer we avoid having to do
2098 anything special for small big-endian values. */
2099 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2100 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2101 (len > INT_REGISTER_SIZE
2102 ? INT_REGISTER_SIZE : len),
b508a996 2103 tmp);
7a5ea0d4
DJ
2104 len -= INT_REGISTER_SIZE;
2105 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2106 }
2107 }
ed9a39eb 2108 else
b508a996
RE
2109 {
2110 /* For a structure or union the behaviour is as if the value had
2111 been stored to word-aligned memory and then loaded into
2112 registers with 32-bit load instruction(s). */
2113 int len = TYPE_LENGTH (type);
2114 int regno = ARM_A1_REGNUM;
7a5ea0d4 2115 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2116
2117 while (len > 0)
2118 {
2119 regcache_cooked_read (regs, regno++, tmpbuf);
2120 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2121 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2122 len -= INT_REGISTER_SIZE;
2123 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2124 }
2125 }
34e8f22d
RE
2126}
2127
67255d04
RE
2128
2129/* Will a function return an aggregate type in memory or in a
2130 register? Return 0 if an aggregate type can be returned in a
2131 register, 1 if it must be returned in memory. */
2132
2133static int
2af48f68 2134arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2135{
2136 int nRc;
52f0bd74 2137 enum type_code code;
67255d04 2138
44e1a9eb
DJ
2139 CHECK_TYPEDEF (type);
2140
67255d04
RE
2141 /* In the ARM ABI, "integer" like aggregate types are returned in
2142 registers. For an aggregate type to be integer like, its size
f0c9063c 2143 must be less than or equal to INT_REGISTER_SIZE and the
b1e29e33
AC
2144 offset of each addressable subfield must be zero. Note that bit
2145 fields are not addressable, and all addressable subfields of
2146 unions always start at offset zero.
67255d04
RE
2147
2148 This function is based on the behaviour of GCC 2.95.1.
2149 See: gcc/arm.c: arm_return_in_memory() for details.
2150
2151 Note: All versions of GCC before GCC 2.95.2 do not set up the
2152 parameters correctly for a function returning the following
2153 structure: struct { float f;}; This should be returned in memory,
2154 not a register. Richard Earnshaw sent me a patch, but I do not
2155 know of any way to detect if a function like the above has been
2156 compiled with the correct calling convention. */
2157
2158 /* All aggregate types that won't fit in a register must be returned
2159 in memory. */
f0c9063c 2160 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
67255d04
RE
2161 {
2162 return 1;
2163 }
2164
2af48f68
PB
2165 /* The AAPCS says all aggregates not larger than a word are returned
2166 in a register. */
2167 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2168 return 0;
2169
67255d04
RE
2170 /* The only aggregate types that can be returned in a register are
2171 structs and unions. Arrays must be returned in memory. */
2172 code = TYPE_CODE (type);
2173 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2174 {
2175 return 1;
2176 }
2177
2178 /* Assume all other aggregate types can be returned in a register.
2179 Run a check for structures, unions and arrays. */
2180 nRc = 0;
2181
2182 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2183 {
2184 int i;
2185 /* Need to check if this struct/union is "integer" like. For
2186 this to be true, its size must be less than or equal to
f0c9063c 2187 INT_REGISTER_SIZE and the offset of each addressable
b1e29e33
AC
2188 subfield must be zero. Note that bit fields are not
2189 addressable, and unions always start at offset zero. If any
2190 of the subfields is a floating point type, the struct/union
2191 cannot be an integer type. */
67255d04
RE
2192
2193 /* For each field in the object, check:
2194 1) Is it FP? --> yes, nRc = 1;
2195 2) Is it addressable (bitpos != 0) and
2196 not packed (bitsize == 0)?
2197 --> yes, nRc = 1
2198 */
2199
2200 for (i = 0; i < TYPE_NFIELDS (type); i++)
2201 {
2202 enum type_code field_type_code;
44e1a9eb 2203 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2204
2205 /* Is it a floating point type field? */
2206 if (field_type_code == TYPE_CODE_FLT)
2207 {
2208 nRc = 1;
2209 break;
2210 }
2211
2212 /* If bitpos != 0, then we have to care about it. */
2213 if (TYPE_FIELD_BITPOS (type, i) != 0)
2214 {
2215 /* Bitfields are not addressable. If the field bitsize is
2216 zero, then the field is not packed. Hence it cannot be
2217 a bitfield or any other packed type. */
2218 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2219 {
2220 nRc = 1;
2221 break;
2222 }
2223 }
2224 }
2225 }
2226
2227 return nRc;
2228}
2229
34e8f22d
RE
2230/* Write into appropriate registers a function return value of type
2231 TYPE, given in virtual format. */
2232
2233static void
b508a996 2234arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2235 const gdb_byte *valbuf)
34e8f22d
RE
2236{
2237 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2238 {
7a5ea0d4 2239 char buf[MAX_REGISTER_SIZE];
34e8f22d 2240
28e97307 2241 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2242 {
2243 case ARM_FLOAT_FPA:
2244
b508a996
RE
2245 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2246 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2247 break;
2248
fd50bc42 2249 case ARM_FLOAT_SOFT_FPA:
08216dd7 2250 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2251 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2252 if (TYPE_LENGTH (type) > 4)
2253 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2254 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2255 break;
2256
2257 default:
2258 internal_error
2259 (__FILE__, __LINE__,
edefbb7c 2260 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2261 break;
2262 }
34e8f22d 2263 }
b508a996
RE
2264 else if (TYPE_CODE (type) == TYPE_CODE_INT
2265 || TYPE_CODE (type) == TYPE_CODE_CHAR
2266 || TYPE_CODE (type) == TYPE_CODE_BOOL
2267 || TYPE_CODE (type) == TYPE_CODE_PTR
2268 || TYPE_CODE (type) == TYPE_CODE_REF
2269 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2270 {
2271 if (TYPE_LENGTH (type) <= 4)
2272 {
2273 /* Values of one word or less are zero/sign-extended and
2274 returned in r0. */
7a5ea0d4 2275 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2276 LONGEST val = unpack_long (type, valbuf);
2277
7a5ea0d4 2278 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2279 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2280 }
2281 else
2282 {
2283 /* Integral values greater than one word are stored in consecutive
2284 registers starting with r0. This will always be a multiple of
2285 the regiser size. */
2286 int len = TYPE_LENGTH (type);
2287 int regno = ARM_A1_REGNUM;
2288
2289 while (len > 0)
2290 {
2291 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2292 len -= INT_REGISTER_SIZE;
2293 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2294 }
2295 }
2296 }
34e8f22d 2297 else
b508a996
RE
2298 {
2299 /* For a structure or union the behaviour is as if the value had
2300 been stored to word-aligned memory and then loaded into
2301 registers with 32-bit load instruction(s). */
2302 int len = TYPE_LENGTH (type);
2303 int regno = ARM_A1_REGNUM;
7a5ea0d4 2304 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2305
2306 while (len > 0)
2307 {
2308 memcpy (tmpbuf, valbuf,
7a5ea0d4 2309 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2310 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2311 len -= INT_REGISTER_SIZE;
2312 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2313 }
2314 }
34e8f22d
RE
2315}
2316
2af48f68
PB
2317
2318/* Handle function return values. */
2319
2320static enum return_value_convention
2321arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2322 struct regcache *regcache, gdb_byte *readbuf,
2323 const gdb_byte *writebuf)
2af48f68 2324{
7c00367c
MK
2325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2326
2af48f68
PB
2327 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2328 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2329 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2330 {
7c00367c
MK
2331 if (tdep->struct_return == pcc_struct_return
2332 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2333 return RETURN_VALUE_STRUCT_CONVENTION;
2334 }
2335
2336 if (writebuf)
2337 arm_store_return_value (valtype, regcache, writebuf);
2338
2339 if (readbuf)
2340 arm_extract_return_value (valtype, regcache, readbuf);
2341
2342 return RETURN_VALUE_REGISTER_CONVENTION;
2343}
2344
2345
9df628e0 2346static int
60ade65d 2347arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0
RE
2348{
2349 CORE_ADDR jb_addr;
7a5ea0d4 2350 char buf[INT_REGISTER_SIZE];
60ade65d 2351 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
9df628e0 2352
60ade65d 2353 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
2354
2355 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2356 INT_REGISTER_SIZE))
9df628e0
RE
2357 return 0;
2358
7a5ea0d4 2359 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2360 return 1;
2361}
2362
ed9a39eb 2363/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2364
2365int
ed9a39eb 2366arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2367{
2368 CORE_ADDR start_addr;
2369
ed9a39eb
JM
2370 /* Find the starting address of the function containing the PC. If
2371 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2372 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2373 &start_addr, NULL))
c906108c
SS
2374 return 0;
2375
2376 return strncmp (name, "_call_via_r", 11) == 0;
2377}
2378
ed9a39eb
JM
2379/* If PC is in a Thumb call or return stub, return the address of the
2380 target PC, which is in a register. The thunk functions are called
2381 _called_via_xx, where x is the register name. The possible names
2382 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2383
2384CORE_ADDR
52f729a7 2385arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 2386{
c5aa993b 2387 char *name;
c906108c
SS
2388 CORE_ADDR start_addr;
2389
2390 /* Find the starting address and name of the function containing the PC. */
2391 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2392 return 0;
2393
2394 /* Call thunks always start with "_call_via_". */
2395 if (strncmp (name, "_call_via_", 10) == 0)
2396 {
ed9a39eb
JM
2397 /* Use the name suffix to determine which register contains the
2398 target PC. */
c5aa993b
JM
2399 static char *table[15] =
2400 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2401 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2402 };
c906108c
SS
2403 int regno;
2404
2405 for (regno = 0; regno <= 14; regno++)
2406 if (strcmp (&name[10], table[regno]) == 0)
52f729a7 2407 return get_frame_register_unsigned (frame, regno);
c906108c 2408 }
ed9a39eb 2409
c5aa993b 2410 return 0; /* not a stub */
c906108c
SS
2411}
2412
afd7eef0
RE
2413static void
2414set_arm_command (char *args, int from_tty)
2415{
edefbb7c
AC
2416 printf_unfiltered (_("\
2417\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2418 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2419}
2420
2421static void
2422show_arm_command (char *args, int from_tty)
2423{
26304000 2424 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2425}
2426
28e97307
DJ
2427static void
2428arm_update_current_architecture (void)
fd50bc42 2429{
28e97307 2430 struct gdbarch_info info;
fd50bc42 2431
28e97307
DJ
2432 /* If the current architecture is not ARM, we have nothing to do. */
2433 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2434 return;
fd50bc42 2435
28e97307
DJ
2436 /* Update the architecture. */
2437 gdbarch_info_init (&info);
fd50bc42 2438
28e97307
DJ
2439 if (!gdbarch_update_p (info))
2440 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2441}
2442
2443static void
2444set_fp_model_sfunc (char *args, int from_tty,
2445 struct cmd_list_element *c)
2446{
2447 enum arm_float_model fp_model;
2448
2449 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2450 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2451 {
2452 arm_fp_model = fp_model;
2453 break;
2454 }
2455
2456 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2457 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2458 current_fp_model);
2459
28e97307 2460 arm_update_current_architecture ();
fd50bc42
RE
2461}
2462
2463static void
08546159
AC
2464show_fp_model (struct ui_file *file, int from_tty,
2465 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2466{
2467 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2468
28e97307 2469 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2470 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2471 fprintf_filtered (file, _("\
2472The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2473 fp_model_strings[tdep->fp_model]);
2474 else
2475 fprintf_filtered (file, _("\
2476The current ARM floating point model is \"%s\".\n"),
2477 fp_model_strings[arm_fp_model]);
2478}
2479
2480static void
2481arm_set_abi (char *args, int from_tty,
2482 struct cmd_list_element *c)
2483{
2484 enum arm_abi_kind arm_abi;
2485
2486 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2487 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2488 {
2489 arm_abi_global = arm_abi;
2490 break;
2491 }
2492
2493 if (arm_abi == ARM_ABI_LAST)
2494 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2495 arm_abi_string);
2496
2497 arm_update_current_architecture ();
2498}
2499
2500static void
2501arm_show_abi (struct ui_file *file, int from_tty,
2502 struct cmd_list_element *c, const char *value)
2503{
2504 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2505
2506 if (arm_abi_global == ARM_ABI_AUTO
2507 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2508 fprintf_filtered (file, _("\
2509The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2510 arm_abi_strings[tdep->arm_abi]);
2511 else
2512 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2513 arm_abi_string);
fd50bc42
RE
2514}
2515
afd7eef0
RE
2516/* If the user changes the register disassembly style used for info
2517 register and other commands, we have to also switch the style used
2518 in opcodes for disassembly output. This function is run in the "set
2519 arm disassembly" command, and does that. */
bc90b915
FN
2520
2521static void
afd7eef0 2522set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2523 struct cmd_list_element *c)
2524{
afd7eef0 2525 set_disassembly_style ();
bc90b915
FN
2526}
2527\f
966fbf70 2528/* Return the ARM register name corresponding to register I. */
a208b0cb 2529static const char *
34e8f22d 2530arm_register_name (int i)
966fbf70 2531{
ff6f572f
DJ
2532 if (i >= ARRAY_SIZE (arm_register_names))
2533 /* These registers are only supported on targets which supply
2534 an XML description. */
2535 return "";
2536
966fbf70
RE
2537 return arm_register_names[i];
2538}
2539
bc90b915 2540static void
afd7eef0 2541set_disassembly_style (void)
bc90b915 2542{
123dc839 2543 int current;
bc90b915 2544
123dc839
DJ
2545 /* Find the style that the user wants. */
2546 for (current = 0; current < num_disassembly_options; current++)
2547 if (disassembly_style == valid_disassembly_styles[current])
2548 break;
2549 gdb_assert (current < num_disassembly_options);
bc90b915 2550
94c30b78 2551 /* Synchronize the disassembler. */
bc90b915
FN
2552 set_arm_regname_option (current);
2553}
2554
082fc60d
RE
2555/* Test whether the coff symbol specific value corresponds to a Thumb
2556 function. */
2557
2558static int
2559coff_sym_is_thumb (int val)
2560{
2561 return (val == C_THUMBEXT ||
2562 val == C_THUMBSTAT ||
2563 val == C_THUMBEXTFUNC ||
2564 val == C_THUMBSTATFUNC ||
2565 val == C_THUMBLABEL);
2566}
2567
2568/* arm_coff_make_msymbol_special()
2569 arm_elf_make_msymbol_special()
2570
2571 These functions test whether the COFF or ELF symbol corresponds to
2572 an address in thumb code, and set a "special" bit in a minimal
2573 symbol to indicate that it does. */
2574
34e8f22d 2575static void
082fc60d
RE
2576arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2577{
2578 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2579 STT_ARM_TFUNC). */
2580 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2581 == STT_LOPROC)
2582 MSYMBOL_SET_SPECIAL (msym);
2583}
2584
34e8f22d 2585static void
082fc60d
RE
2586arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2587{
2588 if (coff_sym_is_thumb (val))
2589 MSYMBOL_SET_SPECIAL (msym);
2590}
2591
756fe439 2592static void
61a1198a 2593arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 2594{
61a1198a 2595 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
2596
2597 /* If necessary, set the T bit. */
2598 if (arm_apcs_32)
2599 {
61a1198a
UW
2600 ULONGEST val;
2601 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
756fe439 2602 if (arm_pc_is_thumb (pc))
61a1198a 2603 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
756fe439 2604 else
61a1198a
UW
2605 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2606 val & ~(ULONGEST) 0x20);
756fe439
DJ
2607 }
2608}
123dc839
DJ
2609
2610static struct value *
2611value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2612{
2613 const int *reg_p = baton;
2614 return value_of_register (*reg_p, frame);
2615}
97e03143 2616\f
70f80edf
JT
2617static enum gdb_osabi
2618arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2619{
2af48f68 2620 unsigned int elfosabi;
70f80edf 2621 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2622
70f80edf 2623 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2624
28e97307
DJ
2625 if (elfosabi == ELFOSABI_ARM)
2626 /* GNU tools use this value. Check note sections in this case,
2627 as well. */
2628 bfd_map_over_sections (abfd,
2629 generic_elf_osabi_sniff_abi_tag_sections,
2630 &osabi);
97e03143 2631
28e97307 2632 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2633 return osabi;
97e03143
RE
2634}
2635
70f80edf 2636\f
da3c6d4a
MS
2637/* Initialize the current architecture based on INFO. If possible,
2638 re-use an architecture from ARCHES, which is a list of
2639 architectures already created during this debugging session.
97e03143 2640
da3c6d4a
MS
2641 Called e.g. at program startup, when reading a core file, and when
2642 reading a binary file. */
97e03143 2643
39bbf761
RE
2644static struct gdbarch *
2645arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646{
97e03143 2647 struct gdbarch_tdep *tdep;
39bbf761 2648 struct gdbarch *gdbarch;
28e97307
DJ
2649 struct gdbarch_list *best_arch;
2650 enum arm_abi_kind arm_abi = arm_abi_global;
2651 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2652 struct tdesc_arch_data *tdesc_data = NULL;
2653 int i;
ff6f572f 2654 int have_fpa_registers = 1;
123dc839
DJ
2655
2656 /* Check any target description for validity. */
2657 if (tdesc_has_registers (info.target_desc))
2658 {
2659 /* For most registers we require GDB's default names; but also allow
2660 the numeric names for sp / lr / pc, as a convenience. */
2661 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2662 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2663 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2664
2665 const struct tdesc_feature *feature;
2666 int i, valid_p;
2667
2668 feature = tdesc_find_feature (info.target_desc,
2669 "org.gnu.gdb.arm.core");
2670 if (feature == NULL)
2671 return NULL;
2672
2673 tdesc_data = tdesc_data_alloc ();
2674
2675 valid_p = 1;
2676 for (i = 0; i < ARM_SP_REGNUM; i++)
2677 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2678 arm_register_names[i]);
2679 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2680 ARM_SP_REGNUM,
2681 arm_sp_names);
2682 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2683 ARM_LR_REGNUM,
2684 arm_lr_names);
2685 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2686 ARM_PC_REGNUM,
2687 arm_pc_names);
2688 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2689 ARM_PS_REGNUM, "cpsr");
2690
2691 if (!valid_p)
2692 {
2693 tdesc_data_cleanup (tdesc_data);
2694 return NULL;
2695 }
2696
2697 feature = tdesc_find_feature (info.target_desc,
2698 "org.gnu.gdb.arm.fpa");
2699 if (feature != NULL)
2700 {
2701 valid_p = 1;
2702 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2703 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2704 arm_register_names[i]);
2705 if (!valid_p)
2706 {
2707 tdesc_data_cleanup (tdesc_data);
2708 return NULL;
2709 }
2710 }
ff6f572f
DJ
2711 else
2712 have_fpa_registers = 0;
2713
2714 feature = tdesc_find_feature (info.target_desc,
2715 "org.gnu.gdb.xscale.iwmmxt");
2716 if (feature != NULL)
2717 {
2718 static const char *const iwmmxt_names[] = {
2719 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2720 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2721 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2722 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2723 };
2724
2725 valid_p = 1;
2726 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2727 valid_p
2728 &= tdesc_numbered_register (feature, tdesc_data, i,
2729 iwmmxt_names[i - ARM_WR0_REGNUM]);
2730
2731 /* Check for the control registers, but do not fail if they
2732 are missing. */
2733 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2734 tdesc_numbered_register (feature, tdesc_data, i,
2735 iwmmxt_names[i - ARM_WR0_REGNUM]);
2736
2737 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2738 valid_p
2739 &= tdesc_numbered_register (feature, tdesc_data, i,
2740 iwmmxt_names[i - ARM_WR0_REGNUM]);
2741
2742 if (!valid_p)
2743 {
2744 tdesc_data_cleanup (tdesc_data);
2745 return NULL;
2746 }
2747 }
123dc839 2748 }
39bbf761 2749
28e97307
DJ
2750 /* If we have an object to base this architecture on, try to determine
2751 its ABI. */
39bbf761 2752
28e97307 2753 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2754 {
6b26d61a 2755 int ei_osabi, e_flags;
28e97307 2756
4be87837 2757 switch (bfd_get_flavour (info.abfd))
97e03143 2758 {
4be87837
DJ
2759 case bfd_target_aout_flavour:
2760 /* Assume it's an old APCS-style ABI. */
28e97307 2761 arm_abi = ARM_ABI_APCS;
4be87837 2762 break;
97e03143 2763
4be87837
DJ
2764 case bfd_target_coff_flavour:
2765 /* Assume it's an old APCS-style ABI. */
2766 /* XXX WinCE? */
28e97307
DJ
2767 arm_abi = ARM_ABI_APCS;
2768 break;
2769
2770 case bfd_target_elf_flavour:
2771 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2772 e_flags = elf_elfheader (info.abfd)->e_flags;
2773
28e97307
DJ
2774 if (ei_osabi == ELFOSABI_ARM)
2775 {
2776 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2777 objects. There's nowhere to tag an EABI version
2778 anyway, so assume APCS. */
28e97307
DJ
2779 arm_abi = ARM_ABI_APCS;
2780 }
2781 else if (ei_osabi == ELFOSABI_NONE)
2782 {
6b26d61a 2783 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2784
2785 switch (eabi_ver)
2786 {
2787 case EF_ARM_EABI_UNKNOWN:
2788 /* Assume GNU tools. */
2789 arm_abi = ARM_ABI_APCS;
2790 break;
2791
2792 case EF_ARM_EABI_VER4:
625b5003 2793 case EF_ARM_EABI_VER5:
28e97307 2794 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2795 /* EABI binaries default to VFP float ordering. */
2796 if (fp_model == ARM_FLOAT_AUTO)
2797 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2798 break;
2799
2800 default:
6b26d61a 2801 /* Leave it as "auto". */
28e97307 2802 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2803 break;
2804 }
2805 }
2806
2807 if (fp_model == ARM_FLOAT_AUTO)
2808 {
2809 int e_flags = elf_elfheader (info.abfd)->e_flags;
2810
2811 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2812 {
2813 case 0:
2814 /* Leave it as "auto". Strictly speaking this case
2815 means FPA, but almost nobody uses that now, and
2816 many toolchains fail to set the appropriate bits
2817 for the floating-point model they use. */
2818 break;
2819 case EF_ARM_SOFT_FLOAT:
2820 fp_model = ARM_FLOAT_SOFT_FPA;
2821 break;
2822 case EF_ARM_VFP_FLOAT:
2823 fp_model = ARM_FLOAT_VFP;
2824 break;
2825 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2826 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2827 break;
2828 }
2829 }
4be87837 2830 break;
97e03143 2831
4be87837 2832 default:
28e97307 2833 /* Leave it as "auto". */
50ceaba5 2834 break;
97e03143
RE
2835 }
2836 }
2837
28e97307
DJ
2838 /* Now that we have inferred any architecture settings that we
2839 can, try to inherit from the last ARM ABI. */
4be87837 2840 if (arches != NULL)
28e97307
DJ
2841 {
2842 if (arm_abi == ARM_ABI_AUTO)
2843 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2844
2845 if (fp_model == ARM_FLOAT_AUTO)
2846 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2847 }
2848 else
2849 {
2850 /* There was no prior ARM architecture; fill in default values. */
2851
2852 if (arm_abi == ARM_ABI_AUTO)
2853 arm_abi = ARM_ABI_APCS;
2854
2855 /* We used to default to FPA for generic ARM, but almost nobody
2856 uses that now, and we now provide a way for the user to force
2857 the model. So default to the most useful variant. */
2858 if (fp_model == ARM_FLOAT_AUTO)
2859 fp_model = ARM_FLOAT_SOFT_FPA;
2860 }
2861
2862 /* If there is already a candidate, use it. */
2863 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2864 best_arch != NULL;
2865 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2866 {
2867 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2868 continue;
2869
2870 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2871 continue;
2872
2873 /* Found a match. */
2874 break;
2875 }
97e03143 2876
28e97307 2877 if (best_arch != NULL)
123dc839
DJ
2878 {
2879 if (tdesc_data != NULL)
2880 tdesc_data_cleanup (tdesc_data);
2881 return best_arch->gdbarch;
2882 }
28e97307
DJ
2883
2884 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2885 gdbarch = gdbarch_alloc (&info, tdep);
2886
28e97307
DJ
2887 /* Record additional information about the architecture we are defining.
2888 These are gdbarch discriminators, like the OSABI. */
2889 tdep->arm_abi = arm_abi;
2890 tdep->fp_model = fp_model;
ff6f572f 2891 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2892
2893 /* Breakpoints. */
67255d04
RE
2894 switch (info.byte_order)
2895 {
2896 case BFD_ENDIAN_BIG:
66e810cd
RE
2897 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2898 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2899 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2900 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2901
67255d04
RE
2902 break;
2903
2904 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2905 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2906 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2907 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2908 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2909
67255d04
RE
2910 break;
2911
2912 default:
2913 internal_error (__FILE__, __LINE__,
edefbb7c 2914 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2915 }
2916
d7b486e7
RE
2917 /* On ARM targets char defaults to unsigned. */
2918 set_gdbarch_char_signed (gdbarch, 0);
2919
9df628e0 2920 /* This should be low enough for everything. */
97e03143 2921 tdep->lowest_pc = 0x20;
94c30b78 2922 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2923
7c00367c
MK
2924 /* The default, for both APCS and AAPCS, is to return small
2925 structures in registers. */
2926 tdep->struct_return = reg_struct_return;
2927
2dd604e7 2928 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2929 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2930
756fe439
DJ
2931 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2932
148754e5 2933 /* Frame handling. */
eb5492fa
DJ
2934 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2935 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2936 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2937
eb5492fa 2938 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2939
34e8f22d
RE
2940 /* Address manipulation. */
2941 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2942 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2943
34e8f22d
RE
2944 /* Advance PC across function entry code. */
2945 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2946
190dce09
UW
2947 /* Skip trampolines. */
2948 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2949
34e8f22d
RE
2950 /* The stack grows downward. */
2951 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2952
2953 /* Breakpoint manipulation. */
2954 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2955
2956 /* Information about registers, etc. */
0ba6dca9 2957 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2958 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2959 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 2960 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 2961 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2962
ff6f572f
DJ
2963 /* This "info float" is FPA-specific. Use the generic version if we
2964 do not have FPA. */
2965 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2966 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2967
26216b98 2968 /* Internal <-> external register number maps. */
ff6f572f
DJ
2969 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2970 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
2971 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2972
34e8f22d
RE
2973 set_gdbarch_register_name (gdbarch, arm_register_name);
2974
2975 /* Returning results. */
2af48f68 2976 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 2977
03d48a7d
RE
2978 /* Disassembly. */
2979 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2980
34e8f22d
RE
2981 /* Minsymbol frobbing. */
2982 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2983 set_gdbarch_coff_make_msymbol_special (gdbarch,
2984 arm_coff_make_msymbol_special);
2985
0d5de010
DJ
2986 /* Virtual tables. */
2987 set_gdbarch_vbit_in_delta (gdbarch, 1);
2988
97e03143 2989 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2990 gdbarch_init_osabi (info, gdbarch);
97e03143 2991
eb5492fa 2992 /* Add some default predicates. */
909cf6ea 2993 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2994 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2995 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2996
97e03143
RE
2997 /* Now we have tuned the configuration, set a few final things,
2998 based on what the OS ABI has told us. */
2999
9df628e0
RE
3000 if (tdep->jb_pc >= 0)
3001 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3002
08216dd7 3003 /* Floating point sizes and format. */
8da61cc4
DJ
3004 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3005 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
08216dd7 3006 {
8da61cc4
DJ
3007 set_gdbarch_double_format
3008 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3009 set_gdbarch_long_double_format
3010 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3011 }
3012 else
3013 {
3014 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3015 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3016 }
3017
123dc839
DJ
3018 if (tdesc_data)
3019 tdesc_use_registers (gdbarch, tdesc_data);
3020
3021 /* Add standard register aliases. We add aliases even for those
3022 nanes which are used by the current architecture - it's simpler,
3023 and does no harm, since nothing ever lists user registers. */
3024 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3025 user_reg_add (gdbarch, arm_register_aliases[i].name,
3026 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3027
39bbf761
RE
3028 return gdbarch;
3029}
3030
97e03143
RE
3031static void
3032arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3033{
3034 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3035
3036 if (tdep == NULL)
3037 return;
3038
edefbb7c 3039 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3040 (unsigned long) tdep->lowest_pc);
3041}
3042
a78f21af
AC
3043extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3044
c906108c 3045void
ed9a39eb 3046_initialize_arm_tdep (void)
c906108c 3047{
bc90b915
FN
3048 struct ui_file *stb;
3049 long length;
26304000 3050 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3051 const char *setname;
3052 const char *setdesc;
4bd7b427 3053 const char *const *regnames;
bc90b915
FN
3054 int numregs, i, j;
3055 static char *helptext;
edefbb7c
AC
3056 char regdesc[1024], *rdptr = regdesc;
3057 size_t rest = sizeof (regdesc);
085dd6e6 3058
42cf1509 3059 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3060
70f80edf
JT
3061 /* Register an ELF OS ABI sniffer for ARM binaries. */
3062 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3063 bfd_target_elf_flavour,
3064 arm_elf_osabi_sniffer);
3065
94c30b78 3066 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3067 num_disassembly_options = get_arm_regname_num_options ();
3068
3069 /* Add root prefix command for all "set arm"/"show arm" commands. */
3070 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3071 _("Various ARM-specific commands."),
afd7eef0
RE
3072 &setarmcmdlist, "set arm ", 0, &setlist);
3073
3074 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3075 _("Various ARM-specific commands."),
afd7eef0 3076 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3077
94c30b78 3078 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3079 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3080
eefe576e
AC
3081 /* Initialize the array that will be passed to
3082 add_setshow_enum_cmd(). */
afd7eef0
RE
3083 valid_disassembly_styles
3084 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3085 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3086 {
3087 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3088 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3089 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3090 rdptr += length;
3091 rest -= length;
123dc839
DJ
3092 /* When we find the default names, tell the disassembler to use
3093 them. */
bc90b915
FN
3094 if (!strcmp (setname, "std"))
3095 {
afd7eef0 3096 disassembly_style = setname;
bc90b915
FN
3097 set_arm_regname_option (i);
3098 }
3099 }
94c30b78 3100 /* Mark the end of valid options. */
afd7eef0 3101 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3102
edefbb7c
AC
3103 /* Create the help text. */
3104 stb = mem_fileopen ();
3105 fprintf_unfiltered (stb, "%s%s%s",
3106 _("The valid values are:\n"),
3107 regdesc,
3108 _("The default is \"std\"."));
bc90b915
FN
3109 helptext = ui_file_xstrdup (stb, &length);
3110 ui_file_delete (stb);
ed9a39eb 3111
edefbb7c
AC
3112 add_setshow_enum_cmd("disassembler", no_class,
3113 valid_disassembly_styles, &disassembly_style,
3114 _("Set the disassembly style."),
3115 _("Show the disassembly style."),
3116 helptext,
2c5b56ce 3117 set_disassembly_style_sfunc,
7915a72c 3118 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3119 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3120
3121 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3122 _("Set usage of ARM 32-bit mode."),
3123 _("Show usage of ARM 32-bit mode."),
3124 _("When off, a 26-bit PC will be used."),
2c5b56ce 3125 NULL,
7915a72c 3126 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3127 &setarmcmdlist, &showarmcmdlist);
c906108c 3128
fd50bc42 3129 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3130 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3131 _("Set the floating point type."),
3132 _("Show the floating point type."),
3133 _("auto - Determine the FP typefrom the OS-ABI.\n\
3134softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3135fpa - FPA co-processor (GCC compiled).\n\
3136softvfp - Software FP with pure-endian doubles.\n\
3137vfp - VFP co-processor."),
edefbb7c 3138 set_fp_model_sfunc, show_fp_model,
7376b4c2 3139 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3140
28e97307
DJ
3141 /* Add a command to allow the user to force the ABI. */
3142 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3143 _("Set the ABI."),
3144 _("Show the ABI."),
3145 NULL, arm_set_abi, arm_show_abi,
3146 &setarmcmdlist, &showarmcmdlist);
3147
6529d2dd 3148 /* Debugging flag. */
edefbb7c
AC
3149 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3150 _("Set ARM debugging."),
3151 _("Show ARM debugging."),
3152 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3153 NULL,
7915a72c 3154 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3155 &setdebuglist, &showdebuglist);
c906108c 3156}
This page took 0.64437 seconds and 4 git commands to generate.