Fix dwarf2_string_attr for -gsplit-dwarf
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
61baf725 3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
0baeab03
PA
20#include "defs.h"
21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
45741a9c 26#include "infrun.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "gdbcore.h"
0963b4bd 29#include "dis-asm.h" /* For register styles. */
e47ad6c0 30#include "disasm.h"
4e052eda 31#include "regcache.h"
54483882 32#include "reggroups.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
25f8c692 44#include "remote.h"
123dc839
DJ
45#include "target-descriptions.h"
46#include "user-regs.h"
0e9e9abd 47#include "observer.h"
34e8f22d 48
8689682c 49#include "arch/arm.h"
d9311bfa 50#include "arch/arm-get-next-pcs.h"
34e8f22d 51#include "arm-tdep.h"
26216b98 52#include "gdb/sim-arm.h"
34e8f22d 53
082fc60d
RE
54#include "elf-bfd.h"
55#include "coff/internal.h"
97e03143 56#include "elf/arm.h"
c906108c 57
60c5725c 58#include "vec.h"
26216b98 59
72508ac0 60#include "record.h"
d02ed0bb 61#include "record-full.h"
325fac50 62#include <algorithm>
72508ac0 63
0a69eedb
YQ
64#include "features/arm/arm-with-m.c"
65#include "features/arm/arm-with-m-fpa-layout.c"
66#include "features/arm/arm-with-m-vfp-d16.c"
67#include "features/arm/arm-with-iwmmxt.c"
68#include "features/arm/arm-with-vfpv2.c"
69#include "features/arm/arm-with-vfpv3.c"
70#include "features/arm/arm-with-neon.c"
9779414d 71
b121eeb9
YQ
72#if GDB_SELF_TEST
73#include "selftest.h"
74#endif
75
6529d2dd
AC
76static int arm_debug;
77
082fc60d
RE
78/* Macros for setting and testing a bit in a minimal symbol that marks
79 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 80 is used for this purpose.
082fc60d
RE
81
82 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 83 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 84
0963b4bd 85#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 86 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
87
88#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 89 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 90
60c5725c
DJ
91/* Per-objfile data used for mapping symbols. */
92static const struct objfile_data *arm_objfile_data_key;
93
94struct arm_mapping_symbol
95{
96 bfd_vma value;
97 char type;
98};
99typedef struct arm_mapping_symbol arm_mapping_symbol_s;
100DEF_VEC_O(arm_mapping_symbol_s);
101
102struct arm_per_objfile
103{
104 VEC(arm_mapping_symbol_s) **section_maps;
105};
106
afd7eef0
RE
107/* The list of available "set arm ..." and "show arm ..." commands. */
108static struct cmd_list_element *setarmcmdlist = NULL;
109static struct cmd_list_element *showarmcmdlist = NULL;
110
fd50bc42
RE
111/* The type of floating-point to use. Keep this in sync with enum
112 arm_float_model, and the help string in _initialize_arm_tdep. */
40478521 113static const char *const fp_model_strings[] =
fd50bc42
RE
114{
115 "auto",
116 "softfpa",
117 "fpa",
118 "softvfp",
28e97307
DJ
119 "vfp",
120 NULL
fd50bc42
RE
121};
122
123/* A variable that can be configured by the user. */
124static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
125static const char *current_fp_model = "auto";
126
28e97307 127/* The ABI to use. Keep this in sync with arm_abi_kind. */
40478521 128static const char *const arm_abi_strings[] =
28e97307
DJ
129{
130 "auto",
131 "APCS",
132 "AAPCS",
133 NULL
134};
135
136/* A variable that can be configured by the user. */
137static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
138static const char *arm_abi_string = "auto";
139
0428b8f5 140/* The execution mode to assume. */
40478521 141static const char *const arm_mode_strings[] =
0428b8f5
DJ
142 {
143 "auto",
144 "arm",
68770265
MGD
145 "thumb",
146 NULL
0428b8f5
DJ
147 };
148
149static const char *arm_fallback_mode_string = "auto";
150static const char *arm_force_mode_string = "auto";
151
f32bf4a4
YQ
152/* The standard register names, and all the valid aliases for them. Note
153 that `fp', `sp' and `pc' are not added in this alias list, because they
154 have been added as builtin user registers in
155 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
156static const struct
157{
158 const char *name;
159 int regnum;
160} arm_register_aliases[] = {
161 /* Basic register numbers. */
162 { "r0", 0 },
163 { "r1", 1 },
164 { "r2", 2 },
165 { "r3", 3 },
166 { "r4", 4 },
167 { "r5", 5 },
168 { "r6", 6 },
169 { "r7", 7 },
170 { "r8", 8 },
171 { "r9", 9 },
172 { "r10", 10 },
173 { "r11", 11 },
174 { "r12", 12 },
175 { "r13", 13 },
176 { "r14", 14 },
177 { "r15", 15 },
178 /* Synonyms (argument and variable registers). */
179 { "a1", 0 },
180 { "a2", 1 },
181 { "a3", 2 },
182 { "a4", 3 },
183 { "v1", 4 },
184 { "v2", 5 },
185 { "v3", 6 },
186 { "v4", 7 },
187 { "v5", 8 },
188 { "v6", 9 },
189 { "v7", 10 },
190 { "v8", 11 },
191 /* Other platform-specific names for r9. */
192 { "sb", 9 },
193 { "tr", 9 },
194 /* Special names. */
195 { "ip", 12 },
123dc839 196 { "lr", 14 },
123dc839
DJ
197 /* Names used by GCC (not listed in the ARM EABI). */
198 { "sl", 10 },
123dc839
DJ
199 /* A special name from the older ATPCS. */
200 { "wr", 7 },
201};
bc90b915 202
123dc839 203static const char *const arm_register_names[] =
da59e081
JM
204{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
205 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
206 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
207 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
208 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
209 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 210 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 211
65b48a81
PB
212/* Holds the current set of options to be passed to the disassembler. */
213static char *arm_disassembler_options;
214
afd7eef0
RE
215/* Valid register name styles. */
216static const char **valid_disassembly_styles;
ed9a39eb 217
afd7eef0
RE
218/* Disassembly style to use. Default to "std" register names. */
219static const char *disassembly_style;
96baa820 220
ed9a39eb 221/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
222 style. */
223static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 224 struct cmd_list_element *);
65b48a81
PB
225static void show_disassembly_style_sfunc (struct ui_file *, int,
226 struct cmd_list_element *,
227 const char *);
ed9a39eb 228
b508a996 229static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 230 void *, int);
b508a996 231static void convert_to_extended (const struct floatformat *, void *,
be8626e0 232 const void *, int);
ed9a39eb 233
05d1431c
PA
234static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
235 struct regcache *regcache,
236 int regnum, gdb_byte *buf);
58d6951d
DJ
237static void arm_neon_quad_write (struct gdbarch *gdbarch,
238 struct regcache *regcache,
239 int regnum, const gdb_byte *buf);
240
e7cf25a8 241static CORE_ADDR
553cb527 242 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
e7cf25a8
YQ
243
244
d9311bfa
AT
245/* get_next_pcs operations. */
246static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
247 arm_get_next_pcs_read_memory_unsigned_integer,
248 arm_get_next_pcs_syscall_next_pc,
249 arm_get_next_pcs_addr_bits_remove,
ed443b61
YQ
250 arm_get_next_pcs_is_thumb,
251 NULL,
d9311bfa
AT
252};
253
9b8d791a 254struct arm_prologue_cache
c3b4394c 255{
eb5492fa
DJ
256 /* The stack pointer at the time this frame was created; i.e. the
257 caller's stack pointer when this function was called. It is used
258 to identify this frame. */
259 CORE_ADDR prev_sp;
260
4be43953
DJ
261 /* The frame base for this frame is just prev_sp - frame size.
262 FRAMESIZE is the distance from the frame pointer to the
263 initial stack pointer. */
eb5492fa 264
c3b4394c 265 int framesize;
eb5492fa
DJ
266
267 /* The register used to hold the frame pointer for this frame. */
c3b4394c 268 int framereg;
eb5492fa
DJ
269
270 /* Saved register offsets. */
271 struct trad_frame_saved_reg *saved_regs;
c3b4394c 272};
ed9a39eb 273
0d39a070
DJ
274static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR prologue_start,
276 CORE_ADDR prologue_end,
277 struct arm_prologue_cache *cache);
278
cca44b1b
JB
279/* Architecture version for displaced stepping. This effects the behaviour of
280 certain instructions, and really should not be hard-wired. */
281
282#define DISPLACED_STEPPING_ARCH_VERSION 5
283
94c30b78 284/* Set to true if the 32-bit mode is in use. */
c906108c
SS
285
286int arm_apcs_32 = 1;
287
9779414d
DJ
288/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
289
478fd957 290int
9779414d
DJ
291arm_psr_thumb_bit (struct gdbarch *gdbarch)
292{
293 if (gdbarch_tdep (gdbarch)->is_m)
294 return XPSR_T;
295 else
296 return CPSR_T;
297}
298
d0e59a68
AT
299/* Determine if the processor is currently executing in Thumb mode. */
300
301int
302arm_is_thumb (struct regcache *regcache)
303{
304 ULONGEST cpsr;
305 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
306
307 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
308
309 return (cpsr & t_bit) != 0;
310}
311
b39cc962
DJ
312/* Determine if FRAME is executing in Thumb mode. */
313
25b41d01 314int
b39cc962
DJ
315arm_frame_is_thumb (struct frame_info *frame)
316{
317 CORE_ADDR cpsr;
9779414d 318 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
319
320 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
321 directly (from a signal frame or dummy frame) or by interpreting
322 the saved LR (from a prologue or DWARF frame). So consult it and
323 trust the unwinders. */
324 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
325
9779414d 326 return (cpsr & t_bit) != 0;
b39cc962
DJ
327}
328
60c5725c
DJ
329/* Callback for VEC_lower_bound. */
330
331static inline int
332arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
333 const struct arm_mapping_symbol *rhs)
334{
335 return lhs->value < rhs->value;
336}
337
f9d67f43
DJ
338/* Search for the mapping symbol covering MEMADDR. If one is found,
339 return its type. Otherwise, return 0. If START is non-NULL,
340 set *START to the location of the mapping symbol. */
c906108c 341
f9d67f43
DJ
342static char
343arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 344{
60c5725c 345 struct obj_section *sec;
0428b8f5 346
60c5725c
DJ
347 /* If there are mapping symbols, consult them. */
348 sec = find_pc_section (memaddr);
349 if (sec != NULL)
350 {
351 struct arm_per_objfile *data;
352 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
353 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
354 0 };
60c5725c
DJ
355 unsigned int idx;
356
9a3c8263
SM
357 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
358 arm_objfile_data_key);
60c5725c
DJ
359 if (data != NULL)
360 {
361 map = data->section_maps[sec->the_bfd_section->index];
362 if (!VEC_empty (arm_mapping_symbol_s, map))
363 {
364 struct arm_mapping_symbol *map_sym;
365
366 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
367 arm_compare_mapping_symbols);
368
369 /* VEC_lower_bound finds the earliest ordered insertion
370 point. If the following symbol starts at this exact
371 address, we use that; otherwise, the preceding
372 mapping symbol covers this address. */
373 if (idx < VEC_length (arm_mapping_symbol_s, map))
374 {
375 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
376 if (map_sym->value == map_key.value)
f9d67f43
DJ
377 {
378 if (start)
379 *start = map_sym->value + obj_section_addr (sec);
380 return map_sym->type;
381 }
60c5725c
DJ
382 }
383
384 if (idx > 0)
385 {
386 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
387 if (start)
388 *start = map_sym->value + obj_section_addr (sec);
389 return map_sym->type;
60c5725c
DJ
390 }
391 }
392 }
393 }
394
f9d67f43
DJ
395 return 0;
396}
397
398/* Determine if the program counter specified in MEMADDR is in a Thumb
399 function. This function should be called for addresses unrelated to
400 any executing frame; otherwise, prefer arm_frame_is_thumb. */
401
e3039479 402int
9779414d 403arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43 404{
7cbd4a93 405 struct bound_minimal_symbol sym;
f9d67f43 406 char type;
a42244db
YQ
407 struct displaced_step_closure* dsc
408 = get_displaced_step_closure_by_addr(memaddr);
409
410 /* If checking the mode of displaced instruction in copy area, the mode
411 should be determined by instruction on the original address. */
412 if (dsc)
413 {
414 if (debug_displaced)
415 fprintf_unfiltered (gdb_stdlog,
416 "displaced: check mode of %.8lx instead of %.8lx\n",
417 (unsigned long) dsc->insn_addr,
418 (unsigned long) memaddr);
419 memaddr = dsc->insn_addr;
420 }
f9d67f43
DJ
421
422 /* If bit 0 of the address is set, assume this is a Thumb address. */
423 if (IS_THUMB_ADDR (memaddr))
424 return 1;
425
426 /* If the user wants to override the symbol table, let him. */
427 if (strcmp (arm_force_mode_string, "arm") == 0)
428 return 0;
429 if (strcmp (arm_force_mode_string, "thumb") == 0)
430 return 1;
431
9779414d
DJ
432 /* ARM v6-M and v7-M are always in Thumb mode. */
433 if (gdbarch_tdep (gdbarch)->is_m)
434 return 1;
435
f9d67f43
DJ
436 /* If there are mapping symbols, consult them. */
437 type = arm_find_mapping_symbol (memaddr, NULL);
438 if (type)
439 return type == 't';
440
ed9a39eb 441 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c 442 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
443 if (sym.minsym)
444 return (MSYMBOL_IS_SPECIAL (sym.minsym));
0428b8f5
DJ
445
446 /* If the user wants to override the fallback mode, let them. */
447 if (strcmp (arm_fallback_mode_string, "arm") == 0)
448 return 0;
449 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
450 return 1;
451
452 /* If we couldn't find any symbol, but we're talking to a running
453 target, then trust the current value of $cpsr. This lets
454 "display/i $pc" always show the correct mode (though if there is
455 a symbol table we will not reach here, so it still may not be
18819fa6 456 displayed in the mode it will be executed). */
0428b8f5 457 if (target_has_registers)
18819fa6 458 return arm_frame_is_thumb (get_current_frame ());
0428b8f5
DJ
459
460 /* Otherwise we're out of luck; we assume ARM. */
461 return 0;
c906108c
SS
462}
463
ca90e760
FH
464/* Determine if the address specified equals any of these magic return
465 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
466 architectures.
467
468 From ARMv6-M Reference Manual B1.5.8
469 Table B1-5 Exception return behavior
470
471 EXC_RETURN Return To Return Stack
472 0xFFFFFFF1 Handler mode Main
473 0xFFFFFFF9 Thread mode Main
474 0xFFFFFFFD Thread mode Process
475
476 From ARMv7-M Reference Manual B1.5.8
477 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
478
479 EXC_RETURN Return To Return Stack
480 0xFFFFFFF1 Handler mode Main
481 0xFFFFFFF9 Thread mode Main
482 0xFFFFFFFD Thread mode Process
483
484 Table B1-9 EXC_RETURN definition of exception return behavior, with
485 FP
486
487 EXC_RETURN Return To Return Stack Frame Type
488 0xFFFFFFE1 Handler mode Main Extended
489 0xFFFFFFE9 Thread mode Main Extended
490 0xFFFFFFED Thread mode Process Extended
491 0xFFFFFFF1 Handler mode Main Basic
492 0xFFFFFFF9 Thread mode Main Basic
493 0xFFFFFFFD Thread mode Process Basic
494
495 For more details see "B1.5.8 Exception return behavior"
496 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
497
498static int
499arm_m_addr_is_magic (CORE_ADDR addr)
500{
501 switch (addr)
502 {
503 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
504 the exception return behavior. */
505 case 0xffffffe1:
506 case 0xffffffe9:
507 case 0xffffffed:
508 case 0xfffffff1:
509 case 0xfffffff9:
510 case 0xfffffffd:
511 /* Address is magic. */
512 return 1;
513
514 default:
515 /* Address is not magic. */
516 return 0;
517 }
518}
519
181c1381 520/* Remove useless bits from addresses in a running program. */
34e8f22d 521static CORE_ADDR
24568a2c 522arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 523{
2ae28aa9
YQ
524 /* On M-profile devices, do not strip the low bit from EXC_RETURN
525 (the magic exception return address). */
526 if (gdbarch_tdep (gdbarch)->is_m
ca90e760 527 && arm_m_addr_is_magic (val))
2ae28aa9
YQ
528 return val;
529
a3a2ee65 530 if (arm_apcs_32)
dd6be234 531 return UNMAKE_THUMB_ADDR (val);
c906108c 532 else
a3a2ee65 533 return (val & 0x03fffffc);
c906108c
SS
534}
535
0d39a070 536/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
537 can be safely ignored during prologue skipping. IS_THUMB is true
538 if the function is known to be a Thumb function due to the way it
539 is being called. */
0d39a070 540static int
e0634ccf 541skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 542{
e0634ccf 543 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7cbd4a93 544 struct bound_minimal_symbol msym;
0d39a070
DJ
545
546 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 547 if (msym.minsym != NULL
77e371c0 548 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
efd66ac6 549 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
e0634ccf 550 {
efd66ac6 551 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
0d39a070 552
e0634ccf
UW
553 /* The GNU linker's Thumb call stub to foo is named
554 __foo_from_thumb. */
555 if (strstr (name, "_from_thumb") != NULL)
556 name += 2;
0d39a070 557
e0634ccf
UW
558 /* On soft-float targets, __truncdfsf2 is called to convert promoted
559 arguments to their argument types in non-prototyped
560 functions. */
61012eef 561 if (startswith (name, "__truncdfsf2"))
e0634ccf 562 return 1;
61012eef 563 if (startswith (name, "__aeabi_d2f"))
e0634ccf 564 return 1;
0d39a070 565
e0634ccf 566 /* Internal functions related to thread-local storage. */
61012eef 567 if (startswith (name, "__tls_get_addr"))
e0634ccf 568 return 1;
61012eef 569 if (startswith (name, "__aeabi_read_tp"))
e0634ccf
UW
570 return 1;
571 }
572 else
573 {
574 /* If we run against a stripped glibc, we may be unable to identify
575 special functions by name. Check for one important case,
576 __aeabi_read_tp, by comparing the *code* against the default
577 implementation (this is hand-written ARM assembler in glibc). */
578
579 if (!is_thumb
198cd59d 580 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
e0634ccf 581 == 0xe3e00a0f /* mov r0, #0xffff0fff */
198cd59d 582 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
e0634ccf
UW
583 == 0xe240f01f) /* sub pc, r0, #31 */
584 return 1;
585 }
ec3d575a 586
0d39a070
DJ
587 return 0;
588}
589
621c6d5b
YQ
590/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
591 the first 16-bit of instruction, and INSN2 is the second 16-bit of
592 instruction. */
593#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
594 ((bits ((insn1), 0, 3) << 12) \
595 | (bits ((insn1), 10, 10) << 11) \
596 | (bits ((insn2), 12, 14) << 8) \
597 | bits ((insn2), 0, 7))
598
599/* Extract the immediate from instruction movw/movt of encoding A. INSN is
600 the 32-bit instruction. */
601#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
602 ((bits ((insn), 16, 19) << 12) \
603 | bits ((insn), 0, 11))
604
ec3d575a
UW
605/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
606
607static unsigned int
608thumb_expand_immediate (unsigned int imm)
609{
610 unsigned int count = imm >> 7;
611
612 if (count < 8)
613 switch (count / 2)
614 {
615 case 0:
616 return imm & 0xff;
617 case 1:
618 return (imm & 0xff) | ((imm & 0xff) << 16);
619 case 2:
620 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
621 case 3:
622 return (imm & 0xff) | ((imm & 0xff) << 8)
623 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
624 }
625
626 return (0x80 | (imm & 0x7f)) << (32 - count);
627}
628
540314bd
YQ
629/* Return 1 if the 16-bit Thumb instruction INSN restores SP in
630 epilogue, 0 otherwise. */
631
632static int
633thumb_instruction_restores_sp (unsigned short insn)
634{
635 return (insn == 0x46bd /* mov sp, r7 */
636 || (insn & 0xff80) == 0xb000 /* add sp, imm */
637 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
638}
639
29d73ae4
DJ
640/* Analyze a Thumb prologue, looking for a recognizable stack frame
641 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
642 clobber the stack frame unexpectedly, or an unknown instruction.
643 Return the last address which is definitely safe to skip for an
644 initial breakpoint. */
c906108c
SS
645
646static CORE_ADDR
29d73ae4
DJ
647thumb_analyze_prologue (struct gdbarch *gdbarch,
648 CORE_ADDR start, CORE_ADDR limit,
649 struct arm_prologue_cache *cache)
c906108c 650{
0d39a070 651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 652 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
653 int i;
654 pv_t regs[16];
655 struct pv_area *stack;
656 struct cleanup *back_to;
657 CORE_ADDR offset;
ec3d575a 658 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 659
29d73ae4
DJ
660 for (i = 0; i < 16; i++)
661 regs[i] = pv_register (i, 0);
55f960e1 662 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
663 back_to = make_cleanup_free_pv_area (stack);
664
29d73ae4 665 while (start < limit)
c906108c 666 {
29d73ae4
DJ
667 unsigned short insn;
668
198cd59d 669 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 670
94c30b78 671 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 672 {
29d73ae4
DJ
673 int regno;
674 int mask;
4be43953
DJ
675
676 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
677 break;
29d73ae4
DJ
678
679 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
680 whether to save LR (R14). */
681 mask = (insn & 0xff) | ((insn & 0x100) << 6);
682
683 /* Calculate offsets of saved R0-R7 and LR. */
684 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
685 if (mask & (1 << regno))
686 {
29d73ae4
DJ
687 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
688 -4);
689 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
690 }
da59e081 691 }
1db01f22 692 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
da59e081 693 {
29d73ae4 694 offset = (insn & 0x7f) << 2; /* get scaled offset */
1db01f22
YQ
695 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
696 -offset);
da59e081 697 }
808f7ab1
YQ
698 else if (thumb_instruction_restores_sp (insn))
699 {
700 /* Don't scan past the epilogue. */
701 break;
702 }
0d39a070
DJ
703 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
704 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
705 (insn & 0xff) << 2);
706 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
707 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
708 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
709 bits (insn, 6, 8));
710 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
711 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
712 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
713 bits (insn, 0, 7));
714 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
715 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
716 && pv_is_constant (regs[bits (insn, 3, 5)]))
717 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
718 regs[bits (insn, 6, 8)]);
719 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
720 && pv_is_constant (regs[bits (insn, 3, 6)]))
721 {
722 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
723 int rm = bits (insn, 3, 6);
724 regs[rd] = pv_add (regs[rd], regs[rm]);
725 }
29d73ae4 726 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 727 {
29d73ae4
DJ
728 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
729 int src_reg = (insn & 0x78) >> 3;
730 regs[dst_reg] = regs[src_reg];
da59e081 731 }
29d73ae4 732 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 733 {
29d73ae4
DJ
734 /* Handle stores to the stack. Normally pushes are used,
735 but with GCC -mtpcs-frame, there may be other stores
736 in the prologue to create the frame. */
737 int regno = (insn >> 8) & 0x7;
738 pv_t addr;
739
740 offset = (insn & 0xff) << 2;
741 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
742
743 if (pv_area_store_would_trash (stack, addr))
744 break;
745
746 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 747 }
0d39a070
DJ
748 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
749 {
750 int rd = bits (insn, 0, 2);
751 int rn = bits (insn, 3, 5);
752 pv_t addr;
753
754 offset = bits (insn, 6, 10) << 2;
755 addr = pv_add_constant (regs[rn], offset);
756
757 if (pv_area_store_would_trash (stack, addr))
758 break;
759
760 pv_area_store (stack, addr, 4, regs[rd]);
761 }
762 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
763 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
764 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
765 /* Ignore stores of argument registers to the stack. */
766 ;
767 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
768 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
769 /* Ignore block loads from the stack, potentially copying
770 parameters from memory. */
771 ;
772 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
773 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
774 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
775 /* Similarly ignore single loads from the stack. */
776 ;
777 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
778 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
779 /* Skip register copies, i.e. saves to another register
780 instead of the stack. */
781 ;
782 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
783 /* Recognize constant loads; even with small stacks these are necessary
784 on Thumb. */
785 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
786 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
787 {
788 /* Constant pool loads, for the same reason. */
789 unsigned int constant;
790 CORE_ADDR loc;
791
792 loc = start + 4 + bits (insn, 0, 7) * 4;
793 constant = read_memory_unsigned_integer (loc, 4, byte_order);
794 regs[bits (insn, 8, 10)] = pv_constant (constant);
795 }
db24da6d 796 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
0d39a070 797 {
0d39a070
DJ
798 unsigned short inst2;
799
198cd59d
YQ
800 inst2 = read_code_unsigned_integer (start + 2, 2,
801 byte_order_for_code);
0d39a070
DJ
802
803 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
804 {
805 /* BL, BLX. Allow some special function calls when
806 skipping the prologue; GCC generates these before
807 storing arguments to the stack. */
808 CORE_ADDR nextpc;
809 int j1, j2, imm1, imm2;
810
811 imm1 = sbits (insn, 0, 10);
812 imm2 = bits (inst2, 0, 10);
813 j1 = bit (inst2, 13);
814 j2 = bit (inst2, 11);
815
816 offset = ((imm1 << 12) + (imm2 << 1));
817 offset ^= ((!j2) << 22) | ((!j1) << 23);
818
819 nextpc = start + 4 + offset;
820 /* For BLX make sure to clear the low bits. */
821 if (bit (inst2, 12) == 0)
822 nextpc = nextpc & 0xfffffffc;
823
e0634ccf
UW
824 if (!skip_prologue_function (gdbarch, nextpc,
825 bit (inst2, 12) != 0))
0d39a070
DJ
826 break;
827 }
ec3d575a 828
0963b4bd
MS
829 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
830 { registers } */
ec3d575a
UW
831 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
832 {
833 pv_t addr = regs[bits (insn, 0, 3)];
834 int regno;
835
836 if (pv_area_store_would_trash (stack, addr))
837 break;
838
839 /* Calculate offsets of saved registers. */
840 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
841 if (inst2 & (1 << regno))
842 {
843 addr = pv_add_constant (addr, -4);
844 pv_area_store (stack, addr, 4, regs[regno]);
845 }
846
847 if (insn & 0x0020)
848 regs[bits (insn, 0, 3)] = addr;
849 }
850
0963b4bd
MS
851 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
852 [Rn, #+/-imm]{!} */
ec3d575a
UW
853 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
854 {
855 int regno1 = bits (inst2, 12, 15);
856 int regno2 = bits (inst2, 8, 11);
857 pv_t addr = regs[bits (insn, 0, 3)];
858
859 offset = inst2 & 0xff;
860 if (insn & 0x0080)
861 addr = pv_add_constant (addr, offset);
862 else
863 addr = pv_add_constant (addr, -offset);
864
865 if (pv_area_store_would_trash (stack, addr))
866 break;
867
868 pv_area_store (stack, addr, 4, regs[regno1]);
869 pv_area_store (stack, pv_add_constant (addr, 4),
870 4, regs[regno2]);
871
872 if (insn & 0x0020)
873 regs[bits (insn, 0, 3)] = addr;
874 }
875
876 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
877 && (inst2 & 0x0c00) == 0x0c00
878 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
879 {
880 int regno = bits (inst2, 12, 15);
881 pv_t addr = regs[bits (insn, 0, 3)];
882
883 offset = inst2 & 0xff;
884 if (inst2 & 0x0200)
885 addr = pv_add_constant (addr, offset);
886 else
887 addr = pv_add_constant (addr, -offset);
888
889 if (pv_area_store_would_trash (stack, addr))
890 break;
891
892 pv_area_store (stack, addr, 4, regs[regno]);
893
894 if (inst2 & 0x0100)
895 regs[bits (insn, 0, 3)] = addr;
896 }
897
898 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
899 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
900 {
901 int regno = bits (inst2, 12, 15);
902 pv_t addr;
903
904 offset = inst2 & 0xfff;
905 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
906
907 if (pv_area_store_would_trash (stack, addr))
908 break;
909
910 pv_area_store (stack, addr, 4, regs[regno]);
911 }
912
913 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 914 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 915 /* Ignore stores of argument registers to the stack. */
0d39a070 916 ;
ec3d575a
UW
917
918 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
919 && (inst2 & 0x0d00) == 0x0c00
0d39a070 920 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 921 /* Ignore stores of argument registers to the stack. */
0d39a070 922 ;
ec3d575a 923
0963b4bd
MS
924 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
925 { registers } */
ec3d575a
UW
926 && (inst2 & 0x8000) == 0x0000
927 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
928 /* Ignore block loads from the stack, potentially copying
929 parameters from memory. */
0d39a070 930 ;
ec3d575a 931
0963b4bd
MS
932 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
933 [Rn, #+/-imm] */
0d39a070 934 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 935 /* Similarly ignore dual loads from the stack. */
0d39a070 936 ;
ec3d575a
UW
937
938 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
939 && (inst2 & 0x0d00) == 0x0c00
0d39a070 940 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 941 /* Similarly ignore single loads from the stack. */
0d39a070 942 ;
ec3d575a
UW
943
944 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 945 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 946 /* Similarly ignore single loads from the stack. */
0d39a070 947 ;
ec3d575a
UW
948
949 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
950 && (inst2 & 0x8000) == 0x0000)
951 {
952 unsigned int imm = ((bits (insn, 10, 10) << 11)
953 | (bits (inst2, 12, 14) << 8)
954 | bits (inst2, 0, 7));
955
956 regs[bits (inst2, 8, 11)]
957 = pv_add_constant (regs[bits (insn, 0, 3)],
958 thumb_expand_immediate (imm));
959 }
960
961 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
962 && (inst2 & 0x8000) == 0x0000)
0d39a070 963 {
ec3d575a
UW
964 unsigned int imm = ((bits (insn, 10, 10) << 11)
965 | (bits (inst2, 12, 14) << 8)
966 | bits (inst2, 0, 7));
967
968 regs[bits (inst2, 8, 11)]
969 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
970 }
971
972 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
973 && (inst2 & 0x8000) == 0x0000)
974 {
975 unsigned int imm = ((bits (insn, 10, 10) << 11)
976 | (bits (inst2, 12, 14) << 8)
977 | bits (inst2, 0, 7));
978
979 regs[bits (inst2, 8, 11)]
980 = pv_add_constant (regs[bits (insn, 0, 3)],
981 - (CORE_ADDR) thumb_expand_immediate (imm));
982 }
983
984 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
985 && (inst2 & 0x8000) == 0x0000)
986 {
987 unsigned int imm = ((bits (insn, 10, 10) << 11)
988 | (bits (inst2, 12, 14) << 8)
989 | bits (inst2, 0, 7));
990
991 regs[bits (inst2, 8, 11)]
992 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
993 }
994
995 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
996 {
997 unsigned int imm = ((bits (insn, 10, 10) << 11)
998 | (bits (inst2, 12, 14) << 8)
999 | bits (inst2, 0, 7));
1000
1001 regs[bits (inst2, 8, 11)]
1002 = pv_constant (thumb_expand_immediate (imm));
1003 }
1004
1005 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1006 {
621c6d5b
YQ
1007 unsigned int imm
1008 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1009
1010 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1011 }
1012
1013 else if (insn == 0xea5f /* mov.w Rd,Rm */
1014 && (inst2 & 0xf0f0) == 0)
1015 {
1016 int dst_reg = (inst2 & 0x0f00) >> 8;
1017 int src_reg = inst2 & 0xf;
1018 regs[dst_reg] = regs[src_reg];
1019 }
1020
1021 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1022 {
1023 /* Constant pool loads. */
1024 unsigned int constant;
1025 CORE_ADDR loc;
1026
cac395ea 1027 offset = bits (inst2, 0, 11);
ec3d575a
UW
1028 if (insn & 0x0080)
1029 loc = start + 4 + offset;
1030 else
1031 loc = start + 4 - offset;
1032
1033 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1034 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1035 }
1036
1037 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1038 {
1039 /* Constant pool loads. */
1040 unsigned int constant;
1041 CORE_ADDR loc;
1042
cac395ea 1043 offset = bits (inst2, 0, 7) << 2;
ec3d575a
UW
1044 if (insn & 0x0080)
1045 loc = start + 4 + offset;
1046 else
1047 loc = start + 4 - offset;
1048
1049 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1050 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1051
1052 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1053 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1054 }
1055
1056 else if (thumb2_instruction_changes_pc (insn, inst2))
1057 {
1058 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1059 break;
1060 }
ec3d575a
UW
1061 else
1062 {
1063 /* The optimizer might shove anything into the prologue,
1064 so we just skip what we don't recognize. */
1065 unrecognized_pc = start;
1066 }
0d39a070
DJ
1067
1068 start += 2;
1069 }
ec3d575a 1070 else if (thumb_instruction_changes_pc (insn))
3d74b771 1071 {
ec3d575a 1072 /* Don't scan past anything that might change control flow. */
da3c6d4a 1073 break;
3d74b771 1074 }
ec3d575a
UW
1075 else
1076 {
1077 /* The optimizer might shove anything into the prologue,
1078 so we just skip what we don't recognize. */
1079 unrecognized_pc = start;
1080 }
29d73ae4
DJ
1081
1082 start += 2;
c906108c
SS
1083 }
1084
0d39a070
DJ
1085 if (arm_debug)
1086 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1087 paddress (gdbarch, start));
1088
ec3d575a
UW
1089 if (unrecognized_pc == 0)
1090 unrecognized_pc = start;
1091
29d73ae4
DJ
1092 if (cache == NULL)
1093 {
1094 do_cleanups (back_to);
ec3d575a 1095 return unrecognized_pc;
29d73ae4
DJ
1096 }
1097
29d73ae4
DJ
1098 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1099 {
1100 /* Frame pointer is fp. Frame size is constant. */
1101 cache->framereg = ARM_FP_REGNUM;
1102 cache->framesize = -regs[ARM_FP_REGNUM].k;
1103 }
1104 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1105 {
1106 /* Frame pointer is r7. Frame size is constant. */
1107 cache->framereg = THUMB_FP_REGNUM;
1108 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1109 }
72a2e3dc 1110 else
29d73ae4
DJ
1111 {
1112 /* Try the stack pointer... this is a bit desperate. */
1113 cache->framereg = ARM_SP_REGNUM;
1114 cache->framesize = -regs[ARM_SP_REGNUM].k;
1115 }
29d73ae4
DJ
1116
1117 for (i = 0; i < 16; i++)
1118 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1119 cache->saved_regs[i].addr = offset;
1120
1121 do_cleanups (back_to);
ec3d575a 1122 return unrecognized_pc;
c906108c
SS
1123}
1124
621c6d5b
YQ
1125
1126/* Try to analyze the instructions starting from PC, which load symbol
1127 __stack_chk_guard. Return the address of instruction after loading this
1128 symbol, set the dest register number to *BASEREG, and set the size of
1129 instructions for loading symbol in OFFSET. Return 0 if instructions are
1130 not recognized. */
1131
1132static CORE_ADDR
1133arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1134 unsigned int *destreg, int *offset)
1135{
1136 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1137 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1138 unsigned int low, high, address;
1139
1140 address = 0;
1141 if (is_thumb)
1142 {
1143 unsigned short insn1
198cd59d 1144 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
621c6d5b
YQ
1145
1146 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1147 {
1148 *destreg = bits (insn1, 8, 10);
1149 *offset = 2;
6ae274b7
YQ
1150 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1151 address = read_memory_unsigned_integer (address, 4,
1152 byte_order_for_code);
621c6d5b
YQ
1153 }
1154 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1155 {
1156 unsigned short insn2
198cd59d 1157 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
621c6d5b
YQ
1158
1159 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1160
1161 insn1
198cd59d 1162 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
621c6d5b 1163 insn2
198cd59d 1164 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
621c6d5b
YQ
1165
1166 /* movt Rd, #const */
1167 if ((insn1 & 0xfbc0) == 0xf2c0)
1168 {
1169 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1170 *destreg = bits (insn2, 8, 11);
1171 *offset = 8;
1172 address = (high << 16 | low);
1173 }
1174 }
1175 }
1176 else
1177 {
2e9e421f 1178 unsigned int insn
198cd59d 1179 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
2e9e421f 1180
6ae274b7 1181 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
2e9e421f 1182 {
6ae274b7
YQ
1183 address = bits (insn, 0, 11) + pc + 8;
1184 address = read_memory_unsigned_integer (address, 4,
1185 byte_order_for_code);
1186
2e9e421f
UW
1187 *destreg = bits (insn, 12, 15);
1188 *offset = 4;
1189 }
1190 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1191 {
1192 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1193
1194 insn
198cd59d 1195 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
2e9e421f
UW
1196
1197 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1198 {
1199 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1200 *destreg = bits (insn, 12, 15);
1201 *offset = 8;
1202 address = (high << 16 | low);
1203 }
1204 }
621c6d5b
YQ
1205 }
1206
1207 return address;
1208}
1209
1210/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1211 points to the first instruction of this sequence, return the address of
1212 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1213
1214 On arm, this sequence of instructions is composed of mainly three steps,
1215 Step 1: load symbol __stack_chk_guard,
1216 Step 2: load from address of __stack_chk_guard,
1217 Step 3: store it to somewhere else.
1218
1219 Usually, instructions on step 2 and step 3 are the same on various ARM
1220 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1221 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1222 instructions in step 1 vary from different ARM architectures. On ARMv7,
1223 they are,
1224
1225 movw Rn, #:lower16:__stack_chk_guard
1226 movt Rn, #:upper16:__stack_chk_guard
1227
1228 On ARMv5t, it is,
1229
1230 ldr Rn, .Label
1231 ....
1232 .Lable:
1233 .word __stack_chk_guard
1234
1235 Since ldr/str is a very popular instruction, we can't use them as
1236 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1237 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1238 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1239
1240static CORE_ADDR
1241arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1242{
1243 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
22e048c9 1244 unsigned int basereg;
7cbd4a93 1245 struct bound_minimal_symbol stack_chk_guard;
621c6d5b
YQ
1246 int offset;
1247 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1248 CORE_ADDR addr;
1249
1250 /* Try to parse the instructions in Step 1. */
1251 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1252 &basereg, &offset);
1253 if (!addr)
1254 return pc;
1255
1256 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
6041179a
JB
1257 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1258 Otherwise, this sequence cannot be for stack protector. */
1259 if (stack_chk_guard.minsym == NULL
61012eef 1260 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
621c6d5b
YQ
1261 return pc;
1262
1263 if (is_thumb)
1264 {
1265 unsigned int destreg;
1266 unsigned short insn
198cd59d 1267 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
621c6d5b
YQ
1268
1269 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1270 if ((insn & 0xf800) != 0x6800)
1271 return pc;
1272 if (bits (insn, 3, 5) != basereg)
1273 return pc;
1274 destreg = bits (insn, 0, 2);
1275
198cd59d
YQ
1276 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1277 byte_order_for_code);
621c6d5b
YQ
1278 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1279 if ((insn & 0xf800) != 0x6000)
1280 return pc;
1281 if (destreg != bits (insn, 0, 2))
1282 return pc;
1283 }
1284 else
1285 {
1286 unsigned int destreg;
1287 unsigned int insn
198cd59d 1288 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
621c6d5b
YQ
1289
1290 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1291 if ((insn & 0x0e500000) != 0x04100000)
1292 return pc;
1293 if (bits (insn, 16, 19) != basereg)
1294 return pc;
1295 destreg = bits (insn, 12, 15);
1296 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
198cd59d 1297 insn = read_code_unsigned_integer (pc + offset + 4,
621c6d5b
YQ
1298 4, byte_order_for_code);
1299 if ((insn & 0x0e500000) != 0x04000000)
1300 return pc;
1301 if (bits (insn, 12, 15) != destreg)
1302 return pc;
1303 }
1304 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1305 on arm. */
1306 if (is_thumb)
1307 return pc + offset + 4;
1308 else
1309 return pc + offset + 8;
1310}
1311
da3c6d4a
MS
1312/* Advance the PC across any function entry prologue instructions to
1313 reach some "real" code.
34e8f22d
RE
1314
1315 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1316 prologue:
c906108c 1317
c5aa993b
JM
1318 mov ip, sp
1319 [stmfd sp!, {a1,a2,a3,a4}]
1320 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1321 [stfe f7, [sp, #-12]!]
1322 [stfe f6, [sp, #-12]!]
1323 [stfe f5, [sp, #-12]!]
1324 [stfe f4, [sp, #-12]!]
0963b4bd 1325 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1326
34e8f22d 1327static CORE_ADDR
6093d2eb 1328arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1329{
a89fea3c 1330 CORE_ADDR func_addr, limit_pc;
c906108c 1331
a89fea3c
JL
1332 /* See if we can determine the end of the prologue via the symbol table.
1333 If so, then return either PC, or the PC after the prologue, whichever
1334 is greater. */
1335 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1336 {
d80b854b
UW
1337 CORE_ADDR post_prologue_pc
1338 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1339 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
0d39a070 1340
621c6d5b
YQ
1341 if (post_prologue_pc)
1342 post_prologue_pc
1343 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1344
1345
0d39a070
DJ
1346 /* GCC always emits a line note before the prologue and another
1347 one after, even if the two are at the same address or on the
1348 same line. Take advantage of this so that we do not need to
1349 know every instruction that might appear in the prologue. We
1350 will have producer information for most binaries; if it is
1351 missing (e.g. for -gstabs), assuming the GNU tools. */
1352 if (post_prologue_pc
43f3e411
DE
1353 && (cust == NULL
1354 || COMPUNIT_PRODUCER (cust) == NULL
61012eef
GB
1355 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1356 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
0d39a070
DJ
1357 return post_prologue_pc;
1358
a89fea3c 1359 if (post_prologue_pc != 0)
0d39a070
DJ
1360 {
1361 CORE_ADDR analyzed_limit;
1362
1363 /* For non-GCC compilers, make sure the entire line is an
1364 acceptable prologue; GDB will round this function's
1365 return value up to the end of the following line so we
1366 can not skip just part of a line (and we do not want to).
1367
1368 RealView does not treat the prologue specially, but does
1369 associate prologue code with the opening brace; so this
1370 lets us skip the first line if we think it is the opening
1371 brace. */
9779414d 1372 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1373 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1374 post_prologue_pc, NULL);
1375 else
1376 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1377 post_prologue_pc, NULL);
1378
1379 if (analyzed_limit != post_prologue_pc)
1380 return func_addr;
1381
1382 return post_prologue_pc;
1383 }
c906108c
SS
1384 }
1385
a89fea3c
JL
1386 /* Can't determine prologue from the symbol table, need to examine
1387 instructions. */
c906108c 1388
a89fea3c
JL
1389 /* Find an upper limit on the function prologue using the debug
1390 information. If the debug information could not be used to provide
1391 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1392 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1393 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1394 if (limit_pc == 0)
1395 limit_pc = pc + 64; /* Magic. */
1396
c906108c 1397
29d73ae4 1398 /* Check if this is Thumb code. */
9779414d 1399 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1400 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
21daaaaf
YQ
1401 else
1402 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
c906108c 1403}
94c30b78 1404
c5aa993b 1405/* *INDENT-OFF* */
c906108c
SS
1406/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1407 This function decodes a Thumb function prologue to determine:
1408 1) the size of the stack frame
1409 2) which registers are saved on it
1410 3) the offsets of saved regs
1411 4) the offset from the stack pointer to the frame pointer
c906108c 1412
da59e081
JM
1413 A typical Thumb function prologue would create this stack frame
1414 (offsets relative to FP)
c906108c
SS
1415 old SP -> 24 stack parameters
1416 20 LR
1417 16 R7
1418 R7 -> 0 local variables (16 bytes)
1419 SP -> -12 additional stack space (12 bytes)
1420 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1421 12 bytes. The frame register is R7.
da59e081 1422
da3c6d4a
MS
1423 The comments for thumb_skip_prolog() describe the algorithm we use
1424 to detect the end of the prolog. */
c5aa993b
JM
1425/* *INDENT-ON* */
1426
c906108c 1427static void
be8626e0 1428thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1429 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1430{
1431 CORE_ADDR prologue_start;
1432 CORE_ADDR prologue_end;
c906108c 1433
b39cc962
DJ
1434 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1435 &prologue_end))
c906108c 1436 {
ec3d575a
UW
1437 /* See comment in arm_scan_prologue for an explanation of
1438 this heuristics. */
1439 if (prologue_end > prologue_start + 64)
1440 {
1441 prologue_end = prologue_start + 64;
1442 }
c906108c
SS
1443 }
1444 else
f7060f85
DJ
1445 /* We're in the boondocks: we have no idea where the start of the
1446 function is. */
1447 return;
c906108c 1448
325fac50 1449 prologue_end = std::min (prologue_end, prev_pc);
c906108c 1450
be8626e0 1451 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1452}
1453
f303bc3e
YQ
1454/* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1455 otherwise. */
1456
1457static int
1458arm_instruction_restores_sp (unsigned int insn)
1459{
1460 if (bits (insn, 28, 31) != INST_NV)
1461 {
1462 if ((insn & 0x0df0f000) == 0x0080d000
1463 /* ADD SP (register or immediate). */
1464 || (insn & 0x0df0f000) == 0x0040d000
1465 /* SUB SP (register or immediate). */
1466 || (insn & 0x0ffffff0) == 0x01a0d000
1467 /* MOV SP. */
1468 || (insn & 0x0fff0000) == 0x08bd0000
1469 /* POP (LDMIA). */
1470 || (insn & 0x0fff0000) == 0x049d0000)
1471 /* POP of a single register. */
1472 return 1;
1473 }
1474
1475 return 0;
1476}
1477
0d39a070
DJ
1478/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1479 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1480 fill it in. Return the first address not recognized as a prologue
1481 instruction.
eb5492fa 1482
0d39a070
DJ
1483 We recognize all the instructions typically found in ARM prologues,
1484 plus harmless instructions which can be skipped (either for analysis
1485 purposes, or a more restrictive set that can be skipped when finding
1486 the end of the prologue). */
1487
1488static CORE_ADDR
1489arm_analyze_prologue (struct gdbarch *gdbarch,
1490 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1491 struct arm_prologue_cache *cache)
1492{
0d39a070
DJ
1493 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1494 int regno;
1495 CORE_ADDR offset, current_pc;
1496 pv_t regs[ARM_FPS_REGNUM];
1497 struct pv_area *stack;
1498 struct cleanup *back_to;
0d39a070
DJ
1499 CORE_ADDR unrecognized_pc = 0;
1500
1501 /* Search the prologue looking for instructions that set up the
96baa820 1502 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1503
96baa820
JM
1504 Be careful, however, and if it doesn't look like a prologue,
1505 don't try to scan it. If, for instance, a frameless function
1506 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1507 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1508 and other operations that rely on a knowledge of the stack
0d39a070 1509 traceback. */
d4473757 1510
4be43953
DJ
1511 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1512 regs[regno] = pv_register (regno, 0);
55f960e1 1513 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1514 back_to = make_cleanup_free_pv_area (stack);
1515
94c30b78
MS
1516 for (current_pc = prologue_start;
1517 current_pc < prologue_end;
f43845b3 1518 current_pc += 4)
96baa820 1519 {
e17a4113 1520 unsigned int insn
198cd59d 1521 = read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1522
94c30b78 1523 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1524 {
4be43953 1525 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1526 continue;
1527 }
0d39a070
DJ
1528 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1529 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1530 {
1531 unsigned imm = insn & 0xff; /* immediate value */
1532 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1533 int rd = bits (insn, 12, 15);
28cd8767 1534 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1535 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1536 continue;
1537 }
0d39a070
DJ
1538 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1539 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1540 {
1541 unsigned imm = insn & 0xff; /* immediate value */
1542 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1543 int rd = bits (insn, 12, 15);
28cd8767 1544 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1545 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1546 continue;
1547 }
0963b4bd
MS
1548 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1549 [sp, #-4]! */
f43845b3 1550 {
4be43953
DJ
1551 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1552 break;
1553 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1554 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1555 regs[bits (insn, 12, 15)]);
f43845b3
MS
1556 continue;
1557 }
1558 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1559 /* stmfd sp!, {..., fp, ip, lr, pc}
1560 or
1561 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1562 {
d4473757 1563 int mask = insn & 0xffff;
ed9a39eb 1564
4be43953
DJ
1565 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1566 break;
1567
94c30b78 1568 /* Calculate offsets of saved registers. */
34e8f22d 1569 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1570 if (mask & (1 << regno))
1571 {
0963b4bd
MS
1572 regs[ARM_SP_REGNUM]
1573 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1574 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1575 }
1576 }
0d39a070
DJ
1577 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1578 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1579 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1580 {
1581 /* No need to add this to saved_regs -- it's just an arg reg. */
1582 continue;
1583 }
0d39a070
DJ
1584 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1585 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1586 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1587 {
1588 /* No need to add this to saved_regs -- it's just an arg reg. */
1589 continue;
1590 }
0963b4bd
MS
1591 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1592 { registers } */
0d39a070
DJ
1593 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1594 {
1595 /* No need to add this to saved_regs -- it's just arg regs. */
1596 continue;
1597 }
d4473757
KB
1598 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1599 {
94c30b78
MS
1600 unsigned imm = insn & 0xff; /* immediate value */
1601 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1602 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1603 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1604 }
1605 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1606 {
94c30b78
MS
1607 unsigned imm = insn & 0xff; /* immediate value */
1608 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1609 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1610 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1611 }
0963b4bd
MS
1612 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1613 [sp, -#c]! */
2af46ca0 1614 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1615 {
4be43953
DJ
1616 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1617 break;
1618
1619 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1620 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1621 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1622 }
0963b4bd
MS
1623 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1624 [sp!] */
2af46ca0 1625 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1626 {
1627 int n_saved_fp_regs;
1628 unsigned int fp_start_reg, fp_bound_reg;
1629
4be43953
DJ
1630 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1631 break;
1632
94c30b78 1633 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1634 {
d4473757
KB
1635 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1636 n_saved_fp_regs = 3;
1637 else
1638 n_saved_fp_regs = 1;
96baa820 1639 }
d4473757 1640 else
96baa820 1641 {
d4473757
KB
1642 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1643 n_saved_fp_regs = 2;
1644 else
1645 n_saved_fp_regs = 4;
96baa820 1646 }
d4473757 1647
34e8f22d 1648 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1649 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1650 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1651 {
4be43953
DJ
1652 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1653 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1654 regs[fp_start_reg++]);
96baa820 1655 }
c906108c 1656 }
0d39a070
DJ
1657 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1658 {
1659 /* Allow some special function calls when skipping the
1660 prologue; GCC generates these before storing arguments to
1661 the stack. */
1662 CORE_ADDR dest = BranchDest (current_pc, insn);
1663
e0634ccf 1664 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1665 continue;
1666 else
1667 break;
1668 }
d4473757 1669 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1670 break; /* Condition not true, exit early. */
0d39a070
DJ
1671 else if (arm_instruction_changes_pc (insn))
1672 /* Don't scan past anything that might change control flow. */
1673 break;
f303bc3e
YQ
1674 else if (arm_instruction_restores_sp (insn))
1675 {
1676 /* Don't scan past the epilogue. */
1677 break;
1678 }
d19f7eee
UW
1679 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1680 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1681 /* Ignore block loads from the stack, potentially copying
1682 parameters from memory. */
1683 continue;
1684 else if ((insn & 0xfc500000) == 0xe4100000
1685 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1686 /* Similarly ignore single loads from the stack. */
1687 continue;
0d39a070
DJ
1688 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1689 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1690 register instead of the stack. */
d4473757 1691 continue;
0d39a070
DJ
1692 else
1693 {
21daaaaf
YQ
1694 /* The optimizer might shove anything into the prologue, if
1695 we build up cache (cache != NULL) from scanning prologue,
1696 we just skip what we don't recognize and scan further to
1697 make cache as complete as possible. However, if we skip
1698 prologue, we'll stop immediately on unrecognized
1699 instruction. */
0d39a070 1700 unrecognized_pc = current_pc;
21daaaaf
YQ
1701 if (cache != NULL)
1702 continue;
1703 else
1704 break;
0d39a070 1705 }
c906108c
SS
1706 }
1707
0d39a070
DJ
1708 if (unrecognized_pc == 0)
1709 unrecognized_pc = current_pc;
1710
0d39a070
DJ
1711 if (cache)
1712 {
4072f920
YQ
1713 int framereg, framesize;
1714
1715 /* The frame size is just the distance from the frame register
1716 to the original stack pointer. */
1717 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1718 {
1719 /* Frame pointer is fp. */
1720 framereg = ARM_FP_REGNUM;
1721 framesize = -regs[ARM_FP_REGNUM].k;
1722 }
1723 else
1724 {
1725 /* Try the stack pointer... this is a bit desperate. */
1726 framereg = ARM_SP_REGNUM;
1727 framesize = -regs[ARM_SP_REGNUM].k;
1728 }
1729
0d39a070
DJ
1730 cache->framereg = framereg;
1731 cache->framesize = framesize;
1732
1733 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1734 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1735 cache->saved_regs[regno].addr = offset;
1736 }
1737
1738 if (arm_debug)
1739 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1740 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1741
1742 do_cleanups (back_to);
0d39a070
DJ
1743 return unrecognized_pc;
1744}
1745
1746static void
1747arm_scan_prologue (struct frame_info *this_frame,
1748 struct arm_prologue_cache *cache)
1749{
1750 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1751 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bec2ab5a 1752 CORE_ADDR prologue_start, prologue_end;
0d39a070
DJ
1753 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1754 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
0d39a070
DJ
1755
1756 /* Assume there is no frame until proven otherwise. */
1757 cache->framereg = ARM_SP_REGNUM;
1758 cache->framesize = 0;
1759
1760 /* Check for Thumb prologue. */
1761 if (arm_frame_is_thumb (this_frame))
1762 {
1763 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1764 return;
1765 }
1766
1767 /* Find the function prologue. If we can't find the function in
1768 the symbol table, peek in the stack frame to find the PC. */
1769 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1770 &prologue_end))
1771 {
1772 /* One way to find the end of the prologue (which works well
1773 for unoptimized code) is to do the following:
1774
1775 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1776
1777 if (sal.line == 0)
1778 prologue_end = prev_pc;
1779 else if (sal.end < prologue_end)
1780 prologue_end = sal.end;
1781
1782 This mechanism is very accurate so long as the optimizer
1783 doesn't move any instructions from the function body into the
1784 prologue. If this happens, sal.end will be the last
1785 instruction in the first hunk of prologue code just before
1786 the first instruction that the scheduler has moved from
1787 the body to the prologue.
1788
1789 In order to make sure that we scan all of the prologue
1790 instructions, we use a slightly less accurate mechanism which
1791 may scan more than necessary. To help compensate for this
1792 lack of accuracy, the prologue scanning loop below contains
1793 several clauses which'll cause the loop to terminate early if
1794 an implausible prologue instruction is encountered.
1795
1796 The expression
1797
1798 prologue_start + 64
1799
1800 is a suitable endpoint since it accounts for the largest
1801 possible prologue plus up to five instructions inserted by
1802 the scheduler. */
1803
1804 if (prologue_end > prologue_start + 64)
1805 {
1806 prologue_end = prologue_start + 64; /* See above. */
1807 }
1808 }
1809 else
1810 {
1811 /* We have no symbol information. Our only option is to assume this
1812 function has a standard stack frame and the normal frame register.
1813 Then, we can find the value of our frame pointer on entrance to
1814 the callee (or at the present moment if this is the innermost frame).
1815 The value stored there should be the address of the stmfd + 8. */
1816 CORE_ADDR frame_loc;
7913a64c 1817 ULONGEST return_value;
0d39a070
DJ
1818
1819 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
7913a64c
YQ
1820 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1821 &return_value))
0d39a070
DJ
1822 return;
1823 else
1824 {
1825 prologue_start = gdbarch_addr_bits_remove
1826 (gdbarch, return_value) - 8;
1827 prologue_end = prologue_start + 64; /* See above. */
1828 }
1829 }
1830
1831 if (prev_pc < prologue_end)
1832 prologue_end = prev_pc;
1833
1834 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1835}
1836
eb5492fa 1837static struct arm_prologue_cache *
a262aec2 1838arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 1839{
eb5492fa
DJ
1840 int reg;
1841 struct arm_prologue_cache *cache;
1842 CORE_ADDR unwound_fp;
c5aa993b 1843
35d5d4ee 1844 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 1845 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1846
a262aec2 1847 arm_scan_prologue (this_frame, cache);
848cfffb 1848
a262aec2 1849 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
1850 if (unwound_fp == 0)
1851 return cache;
c906108c 1852
4be43953 1853 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 1854
eb5492fa
DJ
1855 /* Calculate actual addresses of saved registers using offsets
1856 determined by arm_scan_prologue. */
a262aec2 1857 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 1858 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
1859 cache->saved_regs[reg].addr += cache->prev_sp;
1860
1861 return cache;
c906108c
SS
1862}
1863
c1ee9414
LM
1864/* Implementation of the stop_reason hook for arm_prologue frames. */
1865
1866static enum unwind_stop_reason
1867arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1868 void **this_cache)
1869{
1870 struct arm_prologue_cache *cache;
1871 CORE_ADDR pc;
1872
1873 if (*this_cache == NULL)
1874 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1875 cache = (struct arm_prologue_cache *) *this_cache;
c1ee9414
LM
1876
1877 /* This is meant to halt the backtrace at "_start". */
1878 pc = get_frame_pc (this_frame);
1879 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1880 return UNWIND_OUTERMOST;
1881
1882 /* If we've hit a wall, stop. */
1883 if (cache->prev_sp == 0)
1884 return UNWIND_OUTERMOST;
1885
1886 return UNWIND_NO_REASON;
1887}
1888
eb5492fa
DJ
1889/* Our frame ID for a normal frame is the current function's starting PC
1890 and the caller's SP when we were called. */
c906108c 1891
148754e5 1892static void
a262aec2 1893arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
1894 void **this_cache,
1895 struct frame_id *this_id)
c906108c 1896{
eb5492fa
DJ
1897 struct arm_prologue_cache *cache;
1898 struct frame_id id;
2c404490 1899 CORE_ADDR pc, func;
f079148d 1900
eb5492fa 1901 if (*this_cache == NULL)
a262aec2 1902 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1903 cache = (struct arm_prologue_cache *) *this_cache;
2a451106 1904
0e9e9abd
UW
1905 /* Use function start address as part of the frame ID. If we cannot
1906 identify the start address (due to missing symbol information),
1907 fall back to just using the current PC. */
c1ee9414 1908 pc = get_frame_pc (this_frame);
2c404490 1909 func = get_frame_func (this_frame);
0e9e9abd
UW
1910 if (!func)
1911 func = pc;
1912
eb5492fa 1913 id = frame_id_build (cache->prev_sp, func);
eb5492fa 1914 *this_id = id;
c906108c
SS
1915}
1916
a262aec2
DJ
1917static struct value *
1918arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 1919 void **this_cache,
a262aec2 1920 int prev_regnum)
24de872b 1921{
24568a2c 1922 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
1923 struct arm_prologue_cache *cache;
1924
eb5492fa 1925 if (*this_cache == NULL)
a262aec2 1926 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1927 cache = (struct arm_prologue_cache *) *this_cache;
24de872b 1928
eb5492fa 1929 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
1930 instead. The prologue may save PC, but it will point into this
1931 frame's prologue, not the next frame's resume location. Also
1932 strip the saved T bit. A valid LR may have the low bit set, but
1933 a valid PC never does. */
eb5492fa 1934 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
1935 {
1936 CORE_ADDR lr;
1937
1938 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1939 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 1940 arm_addr_bits_remove (gdbarch, lr));
b39cc962 1941 }
24de872b 1942
eb5492fa 1943 /* SP is generally not saved to the stack, but this frame is
a262aec2 1944 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
1945 The value was already reconstructed into PREV_SP. */
1946 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 1947 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 1948
b39cc962
DJ
1949 /* The CPSR may have been changed by the call instruction and by the
1950 called function. The only bit we can reconstruct is the T bit,
1951 by checking the low bit of LR as of the call. This is a reliable
1952 indicator of Thumb-ness except for some ARM v4T pre-interworking
1953 Thumb code, which could get away with a clear low bit as long as
1954 the called function did not use bx. Guess that all other
1955 bits are unchanged; the condition flags are presumably lost,
1956 but the processor status is likely valid. */
1957 if (prev_regnum == ARM_PS_REGNUM)
1958 {
1959 CORE_ADDR lr, cpsr;
9779414d 1960 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
1961
1962 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1963 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1964 if (IS_THUMB_ADDR (lr))
9779414d 1965 cpsr |= t_bit;
b39cc962 1966 else
9779414d 1967 cpsr &= ~t_bit;
b39cc962
DJ
1968 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1969 }
1970
a262aec2
DJ
1971 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1972 prev_regnum);
eb5492fa
DJ
1973}
1974
1975struct frame_unwind arm_prologue_unwind = {
1976 NORMAL_FRAME,
c1ee9414 1977 arm_prologue_unwind_stop_reason,
eb5492fa 1978 arm_prologue_this_id,
a262aec2
DJ
1979 arm_prologue_prev_register,
1980 NULL,
1981 default_frame_sniffer
eb5492fa
DJ
1982};
1983
0e9e9abd
UW
1984/* Maintain a list of ARM exception table entries per objfile, similar to the
1985 list of mapping symbols. We only cache entries for standard ARM-defined
1986 personality routines; the cache will contain only the frame unwinding
1987 instructions associated with the entry (not the descriptors). */
1988
1989static const struct objfile_data *arm_exidx_data_key;
1990
1991struct arm_exidx_entry
1992{
1993 bfd_vma addr;
1994 gdb_byte *entry;
1995};
1996typedef struct arm_exidx_entry arm_exidx_entry_s;
1997DEF_VEC_O(arm_exidx_entry_s);
1998
1999struct arm_exidx_data
2000{
2001 VEC(arm_exidx_entry_s) **section_maps;
2002};
2003
2004static void
2005arm_exidx_data_free (struct objfile *objfile, void *arg)
2006{
9a3c8263 2007 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
0e9e9abd
UW
2008 unsigned int i;
2009
2010 for (i = 0; i < objfile->obfd->section_count; i++)
2011 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2012}
2013
2014static inline int
2015arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2016 const struct arm_exidx_entry *rhs)
2017{
2018 return lhs->addr < rhs->addr;
2019}
2020
2021static struct obj_section *
2022arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2023{
2024 struct obj_section *osect;
2025
2026 ALL_OBJFILE_OSECTIONS (objfile, osect)
2027 if (bfd_get_section_flags (objfile->obfd,
2028 osect->the_bfd_section) & SEC_ALLOC)
2029 {
2030 bfd_vma start, size;
2031 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2032 size = bfd_get_section_size (osect->the_bfd_section);
2033
2034 if (start <= vma && vma < start + size)
2035 return osect;
2036 }
2037
2038 return NULL;
2039}
2040
2041/* Parse contents of exception table and exception index sections
2042 of OBJFILE, and fill in the exception table entry cache.
2043
2044 For each entry that refers to a standard ARM-defined personality
2045 routine, extract the frame unwinding instructions (from either
2046 the index or the table section). The unwinding instructions
2047 are normalized by:
2048 - extracting them from the rest of the table data
2049 - converting to host endianness
2050 - appending the implicit 0xb0 ("Finish") code
2051
2052 The extracted and normalized instructions are stored for later
2053 retrieval by the arm_find_exidx_entry routine. */
2054
2055static void
2056arm_exidx_new_objfile (struct objfile *objfile)
2057{
3bb47e8b 2058 struct cleanup *cleanups;
0e9e9abd
UW
2059 struct arm_exidx_data *data;
2060 asection *exidx, *extab;
2061 bfd_vma exidx_vma = 0, extab_vma = 0;
2062 bfd_size_type exidx_size = 0, extab_size = 0;
2063 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2064 LONGEST i;
2065
2066 /* If we've already touched this file, do nothing. */
2067 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2068 return;
3bb47e8b 2069 cleanups = make_cleanup (null_cleanup, NULL);
0e9e9abd
UW
2070
2071 /* Read contents of exception table and index. */
a5eda10c 2072 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
0e9e9abd
UW
2073 if (exidx)
2074 {
2075 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2076 exidx_size = bfd_get_section_size (exidx);
224c3ddb 2077 exidx_data = (gdb_byte *) xmalloc (exidx_size);
0e9e9abd
UW
2078 make_cleanup (xfree, exidx_data);
2079
2080 if (!bfd_get_section_contents (objfile->obfd, exidx,
2081 exidx_data, 0, exidx_size))
2082 {
2083 do_cleanups (cleanups);
2084 return;
2085 }
2086 }
2087
2088 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2089 if (extab)
2090 {
2091 extab_vma = bfd_section_vma (objfile->obfd, extab);
2092 extab_size = bfd_get_section_size (extab);
224c3ddb 2093 extab_data = (gdb_byte *) xmalloc (extab_size);
0e9e9abd
UW
2094 make_cleanup (xfree, extab_data);
2095
2096 if (!bfd_get_section_contents (objfile->obfd, extab,
2097 extab_data, 0, extab_size))
2098 {
2099 do_cleanups (cleanups);
2100 return;
2101 }
2102 }
2103
2104 /* Allocate exception table data structure. */
2105 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2106 set_objfile_data (objfile, arm_exidx_data_key, data);
2107 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2108 objfile->obfd->section_count,
2109 VEC(arm_exidx_entry_s) *);
2110
2111 /* Fill in exception table. */
2112 for (i = 0; i < exidx_size / 8; i++)
2113 {
2114 struct arm_exidx_entry new_exidx_entry;
2115 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2116 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2117 bfd_vma addr = 0, word = 0;
2118 int n_bytes = 0, n_words = 0;
2119 struct obj_section *sec;
2120 gdb_byte *entry = NULL;
2121
2122 /* Extract address of start of function. */
2123 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2124 idx += exidx_vma + i * 8;
2125
2126 /* Find section containing function and compute section offset. */
2127 sec = arm_obj_section_from_vma (objfile, idx);
2128 if (sec == NULL)
2129 continue;
2130 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2131
2132 /* Determine address of exception table entry. */
2133 if (val == 1)
2134 {
2135 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2136 }
2137 else if ((val & 0xff000000) == 0x80000000)
2138 {
2139 /* Exception table entry embedded in .ARM.exidx
2140 -- must be short form. */
2141 word = val;
2142 n_bytes = 3;
2143 }
2144 else if (!(val & 0x80000000))
2145 {
2146 /* Exception table entry in .ARM.extab. */
2147 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2148 addr += exidx_vma + i * 8 + 4;
2149
2150 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2151 {
2152 word = bfd_h_get_32 (objfile->obfd,
2153 extab_data + addr - extab_vma);
2154 addr += 4;
2155
2156 if ((word & 0xff000000) == 0x80000000)
2157 {
2158 /* Short form. */
2159 n_bytes = 3;
2160 }
2161 else if ((word & 0xff000000) == 0x81000000
2162 || (word & 0xff000000) == 0x82000000)
2163 {
2164 /* Long form. */
2165 n_bytes = 2;
2166 n_words = ((word >> 16) & 0xff);
2167 }
2168 else if (!(word & 0x80000000))
2169 {
2170 bfd_vma pers;
2171 struct obj_section *pers_sec;
2172 int gnu_personality = 0;
2173
2174 /* Custom personality routine. */
2175 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2176 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2177
2178 /* Check whether we've got one of the variants of the
2179 GNU personality routines. */
2180 pers_sec = arm_obj_section_from_vma (objfile, pers);
2181 if (pers_sec)
2182 {
2183 static const char *personality[] =
2184 {
2185 "__gcc_personality_v0",
2186 "__gxx_personality_v0",
2187 "__gcj_personality_v0",
2188 "__gnu_objc_personality_v0",
2189 NULL
2190 };
2191
2192 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2193 int k;
2194
2195 for (k = 0; personality[k]; k++)
2196 if (lookup_minimal_symbol_by_pc_name
2197 (pc, personality[k], objfile))
2198 {
2199 gnu_personality = 1;
2200 break;
2201 }
2202 }
2203
2204 /* If so, the next word contains a word count in the high
2205 byte, followed by the same unwind instructions as the
2206 pre-defined forms. */
2207 if (gnu_personality
2208 && addr + 4 <= extab_vma + extab_size)
2209 {
2210 word = bfd_h_get_32 (objfile->obfd,
2211 extab_data + addr - extab_vma);
2212 addr += 4;
2213 n_bytes = 3;
2214 n_words = ((word >> 24) & 0xff);
2215 }
2216 }
2217 }
2218 }
2219
2220 /* Sanity check address. */
2221 if (n_words)
2222 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2223 n_words = n_bytes = 0;
2224
2225 /* The unwind instructions reside in WORD (only the N_BYTES least
2226 significant bytes are valid), followed by N_WORDS words in the
2227 extab section starting at ADDR. */
2228 if (n_bytes || n_words)
2229 {
224c3ddb
SM
2230 gdb_byte *p = entry
2231 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2232 n_bytes + n_words * 4 + 1);
0e9e9abd
UW
2233
2234 while (n_bytes--)
2235 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2236
2237 while (n_words--)
2238 {
2239 word = bfd_h_get_32 (objfile->obfd,
2240 extab_data + addr - extab_vma);
2241 addr += 4;
2242
2243 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2244 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2245 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2246 *p++ = (gdb_byte) (word & 0xff);
2247 }
2248
2249 /* Implied "Finish" to terminate the list. */
2250 *p++ = 0xb0;
2251 }
2252
2253 /* Push entry onto vector. They are guaranteed to always
2254 appear in order of increasing addresses. */
2255 new_exidx_entry.addr = idx;
2256 new_exidx_entry.entry = entry;
2257 VEC_safe_push (arm_exidx_entry_s,
2258 data->section_maps[sec->the_bfd_section->index],
2259 &new_exidx_entry);
2260 }
2261
2262 do_cleanups (cleanups);
2263}
2264
2265/* Search for the exception table entry covering MEMADDR. If one is found,
2266 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2267 set *START to the start of the region covered by this entry. */
2268
2269static gdb_byte *
2270arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2271{
2272 struct obj_section *sec;
2273
2274 sec = find_pc_section (memaddr);
2275 if (sec != NULL)
2276 {
2277 struct arm_exidx_data *data;
2278 VEC(arm_exidx_entry_s) *map;
2279 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2280 unsigned int idx;
2281
9a3c8263
SM
2282 data = ((struct arm_exidx_data *)
2283 objfile_data (sec->objfile, arm_exidx_data_key));
0e9e9abd
UW
2284 if (data != NULL)
2285 {
2286 map = data->section_maps[sec->the_bfd_section->index];
2287 if (!VEC_empty (arm_exidx_entry_s, map))
2288 {
2289 struct arm_exidx_entry *map_sym;
2290
2291 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2292 arm_compare_exidx_entries);
2293
2294 /* VEC_lower_bound finds the earliest ordered insertion
2295 point. If the following symbol starts at this exact
2296 address, we use that; otherwise, the preceding
2297 exception table entry covers this address. */
2298 if (idx < VEC_length (arm_exidx_entry_s, map))
2299 {
2300 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2301 if (map_sym->addr == map_key.addr)
2302 {
2303 if (start)
2304 *start = map_sym->addr + obj_section_addr (sec);
2305 return map_sym->entry;
2306 }
2307 }
2308
2309 if (idx > 0)
2310 {
2311 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2312 if (start)
2313 *start = map_sym->addr + obj_section_addr (sec);
2314 return map_sym->entry;
2315 }
2316 }
2317 }
2318 }
2319
2320 return NULL;
2321}
2322
2323/* Given the current frame THIS_FRAME, and its associated frame unwinding
2324 instruction list from the ARM exception table entry ENTRY, allocate and
2325 return a prologue cache structure describing how to unwind this frame.
2326
2327 Return NULL if the unwinding instruction list contains a "spare",
2328 "reserved" or "refuse to unwind" instruction as defined in section
2329 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2330 for the ARM Architecture" document. */
2331
2332static struct arm_prologue_cache *
2333arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2334{
2335 CORE_ADDR vsp = 0;
2336 int vsp_valid = 0;
2337
2338 struct arm_prologue_cache *cache;
2339 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2340 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2341
2342 for (;;)
2343 {
2344 gdb_byte insn;
2345
2346 /* Whenever we reload SP, we actually have to retrieve its
2347 actual value in the current frame. */
2348 if (!vsp_valid)
2349 {
2350 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2351 {
2352 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2353 vsp = get_frame_register_unsigned (this_frame, reg);
2354 }
2355 else
2356 {
2357 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2358 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2359 }
2360
2361 vsp_valid = 1;
2362 }
2363
2364 /* Decode next unwind instruction. */
2365 insn = *entry++;
2366
2367 if ((insn & 0xc0) == 0)
2368 {
2369 int offset = insn & 0x3f;
2370 vsp += (offset << 2) + 4;
2371 }
2372 else if ((insn & 0xc0) == 0x40)
2373 {
2374 int offset = insn & 0x3f;
2375 vsp -= (offset << 2) + 4;
2376 }
2377 else if ((insn & 0xf0) == 0x80)
2378 {
2379 int mask = ((insn & 0xf) << 8) | *entry++;
2380 int i;
2381
2382 /* The special case of an all-zero mask identifies
2383 "Refuse to unwind". We return NULL to fall back
2384 to the prologue analyzer. */
2385 if (mask == 0)
2386 return NULL;
2387
2388 /* Pop registers r4..r15 under mask. */
2389 for (i = 0; i < 12; i++)
2390 if (mask & (1 << i))
2391 {
2392 cache->saved_regs[4 + i].addr = vsp;
2393 vsp += 4;
2394 }
2395
2396 /* Special-case popping SP -- we need to reload vsp. */
2397 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2398 vsp_valid = 0;
2399 }
2400 else if ((insn & 0xf0) == 0x90)
2401 {
2402 int reg = insn & 0xf;
2403
2404 /* Reserved cases. */
2405 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2406 return NULL;
2407
2408 /* Set SP from another register and mark VSP for reload. */
2409 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2410 vsp_valid = 0;
2411 }
2412 else if ((insn & 0xf0) == 0xa0)
2413 {
2414 int count = insn & 0x7;
2415 int pop_lr = (insn & 0x8) != 0;
2416 int i;
2417
2418 /* Pop r4..r[4+count]. */
2419 for (i = 0; i <= count; i++)
2420 {
2421 cache->saved_regs[4 + i].addr = vsp;
2422 vsp += 4;
2423 }
2424
2425 /* If indicated by flag, pop LR as well. */
2426 if (pop_lr)
2427 {
2428 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2429 vsp += 4;
2430 }
2431 }
2432 else if (insn == 0xb0)
2433 {
2434 /* We could only have updated PC by popping into it; if so, it
2435 will show up as address. Otherwise, copy LR into PC. */
2436 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2437 cache->saved_regs[ARM_PC_REGNUM]
2438 = cache->saved_regs[ARM_LR_REGNUM];
2439
2440 /* We're done. */
2441 break;
2442 }
2443 else if (insn == 0xb1)
2444 {
2445 int mask = *entry++;
2446 int i;
2447
2448 /* All-zero mask and mask >= 16 is "spare". */
2449 if (mask == 0 || mask >= 16)
2450 return NULL;
2451
2452 /* Pop r0..r3 under mask. */
2453 for (i = 0; i < 4; i++)
2454 if (mask & (1 << i))
2455 {
2456 cache->saved_regs[i].addr = vsp;
2457 vsp += 4;
2458 }
2459 }
2460 else if (insn == 0xb2)
2461 {
2462 ULONGEST offset = 0;
2463 unsigned shift = 0;
2464
2465 do
2466 {
2467 offset |= (*entry & 0x7f) << shift;
2468 shift += 7;
2469 }
2470 while (*entry++ & 0x80);
2471
2472 vsp += 0x204 + (offset << 2);
2473 }
2474 else if (insn == 0xb3)
2475 {
2476 int start = *entry >> 4;
2477 int count = (*entry++) & 0xf;
2478 int i;
2479
2480 /* Only registers D0..D15 are valid here. */
2481 if (start + count >= 16)
2482 return NULL;
2483
2484 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2485 for (i = 0; i <= count; i++)
2486 {
2487 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2488 vsp += 8;
2489 }
2490
2491 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2492 vsp += 4;
2493 }
2494 else if ((insn & 0xf8) == 0xb8)
2495 {
2496 int count = insn & 0x7;
2497 int i;
2498
2499 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2500 for (i = 0; i <= count; i++)
2501 {
2502 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2503 vsp += 8;
2504 }
2505
2506 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2507 vsp += 4;
2508 }
2509 else if (insn == 0xc6)
2510 {
2511 int start = *entry >> 4;
2512 int count = (*entry++) & 0xf;
2513 int i;
2514
2515 /* Only registers WR0..WR15 are valid. */
2516 if (start + count >= 16)
2517 return NULL;
2518
2519 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2520 for (i = 0; i <= count; i++)
2521 {
2522 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2523 vsp += 8;
2524 }
2525 }
2526 else if (insn == 0xc7)
2527 {
2528 int mask = *entry++;
2529 int i;
2530
2531 /* All-zero mask and mask >= 16 is "spare". */
2532 if (mask == 0 || mask >= 16)
2533 return NULL;
2534
2535 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2536 for (i = 0; i < 4; i++)
2537 if (mask & (1 << i))
2538 {
2539 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2540 vsp += 4;
2541 }
2542 }
2543 else if ((insn & 0xf8) == 0xc0)
2544 {
2545 int count = insn & 0x7;
2546 int i;
2547
2548 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2549 for (i = 0; i <= count; i++)
2550 {
2551 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2552 vsp += 8;
2553 }
2554 }
2555 else if (insn == 0xc8)
2556 {
2557 int start = *entry >> 4;
2558 int count = (*entry++) & 0xf;
2559 int i;
2560
2561 /* Only registers D0..D31 are valid. */
2562 if (start + count >= 16)
2563 return NULL;
2564
2565 /* Pop VFP double-precision registers
2566 D[16+start]..D[16+start+count]. */
2567 for (i = 0; i <= count; i++)
2568 {
2569 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2570 vsp += 8;
2571 }
2572 }
2573 else if (insn == 0xc9)
2574 {
2575 int start = *entry >> 4;
2576 int count = (*entry++) & 0xf;
2577 int i;
2578
2579 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2580 for (i = 0; i <= count; i++)
2581 {
2582 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2583 vsp += 8;
2584 }
2585 }
2586 else if ((insn & 0xf8) == 0xd0)
2587 {
2588 int count = insn & 0x7;
2589 int i;
2590
2591 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2592 for (i = 0; i <= count; i++)
2593 {
2594 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2595 vsp += 8;
2596 }
2597 }
2598 else
2599 {
2600 /* Everything else is "spare". */
2601 return NULL;
2602 }
2603 }
2604
2605 /* If we restore SP from a register, assume this was the frame register.
2606 Otherwise just fall back to SP as frame register. */
2607 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2608 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2609 else
2610 cache->framereg = ARM_SP_REGNUM;
2611
2612 /* Determine offset to previous frame. */
2613 cache->framesize
2614 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2615
2616 /* We already got the previous SP. */
2617 cache->prev_sp = vsp;
2618
2619 return cache;
2620}
2621
2622/* Unwinding via ARM exception table entries. Note that the sniffer
2623 already computes a filled-in prologue cache, which is then used
2624 with the same arm_prologue_this_id and arm_prologue_prev_register
2625 routines also used for prologue-parsing based unwinding. */
2626
2627static int
2628arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2629 struct frame_info *this_frame,
2630 void **this_prologue_cache)
2631{
2632 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2633 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2634 CORE_ADDR addr_in_block, exidx_region, func_start;
2635 struct arm_prologue_cache *cache;
2636 gdb_byte *entry;
2637
2638 /* See if we have an ARM exception table entry covering this address. */
2639 addr_in_block = get_frame_address_in_block (this_frame);
2640 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2641 if (!entry)
2642 return 0;
2643
2644 /* The ARM exception table does not describe unwind information
2645 for arbitrary PC values, but is guaranteed to be correct only
2646 at call sites. We have to decide here whether we want to use
2647 ARM exception table information for this frame, or fall back
2648 to using prologue parsing. (Note that if we have DWARF CFI,
2649 this sniffer isn't even called -- CFI is always preferred.)
2650
2651 Before we make this decision, however, we check whether we
2652 actually have *symbol* information for the current frame.
2653 If not, prologue parsing would not work anyway, so we might
2654 as well use the exception table and hope for the best. */
2655 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2656 {
2657 int exc_valid = 0;
2658
2659 /* If the next frame is "normal", we are at a call site in this
2660 frame, so exception information is guaranteed to be valid. */
2661 if (get_next_frame (this_frame)
2662 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2663 exc_valid = 1;
2664
2665 /* We also assume exception information is valid if we're currently
2666 blocked in a system call. The system library is supposed to
d9311bfa
AT
2667 ensure this, so that e.g. pthread cancellation works. */
2668 if (arm_frame_is_thumb (this_frame))
0e9e9abd 2669 {
7913a64c 2670 ULONGEST insn;
416dc9c6 2671
7913a64c
YQ
2672 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2673 2, byte_order_for_code, &insn)
d9311bfa
AT
2674 && (insn & 0xff00) == 0xdf00 /* svc */)
2675 exc_valid = 1;
0e9e9abd 2676 }
d9311bfa
AT
2677 else
2678 {
7913a64c 2679 ULONGEST insn;
416dc9c6 2680
7913a64c
YQ
2681 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2682 4, byte_order_for_code, &insn)
d9311bfa
AT
2683 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2684 exc_valid = 1;
2685 }
2686
0e9e9abd
UW
2687 /* Bail out if we don't know that exception information is valid. */
2688 if (!exc_valid)
2689 return 0;
2690
2691 /* The ARM exception index does not mark the *end* of the region
2692 covered by the entry, and some functions will not have any entry.
2693 To correctly recognize the end of the covered region, the linker
2694 should have inserted dummy records with a CANTUNWIND marker.
2695
2696 Unfortunately, current versions of GNU ld do not reliably do
2697 this, and thus we may have found an incorrect entry above.
2698 As a (temporary) sanity check, we only use the entry if it
2699 lies *within* the bounds of the function. Note that this check
2700 might reject perfectly valid entries that just happen to cover
2701 multiple functions; therefore this check ought to be removed
2702 once the linker is fixed. */
2703 if (func_start > exidx_region)
2704 return 0;
2705 }
2706
2707 /* Decode the list of unwinding instructions into a prologue cache.
2708 Note that this may fail due to e.g. a "refuse to unwind" code. */
2709 cache = arm_exidx_fill_cache (this_frame, entry);
2710 if (!cache)
2711 return 0;
2712
2713 *this_prologue_cache = cache;
2714 return 1;
2715}
2716
2717struct frame_unwind arm_exidx_unwind = {
2718 NORMAL_FRAME,
8fbca658 2719 default_frame_unwind_stop_reason,
0e9e9abd
UW
2720 arm_prologue_this_id,
2721 arm_prologue_prev_register,
2722 NULL,
2723 arm_exidx_unwind_sniffer
2724};
2725
779aa56f
YQ
2726static struct arm_prologue_cache *
2727arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2728{
2729 struct arm_prologue_cache *cache;
779aa56f
YQ
2730 int reg;
2731
2732 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2733 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2734
2735 /* Still rely on the offset calculated from prologue. */
2736 arm_scan_prologue (this_frame, cache);
2737
2738 /* Since we are in epilogue, the SP has been restored. */
2739 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2740
2741 /* Calculate actual addresses of saved registers using offsets
2742 determined by arm_scan_prologue. */
2743 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2744 if (trad_frame_addr_p (cache->saved_regs, reg))
2745 cache->saved_regs[reg].addr += cache->prev_sp;
2746
2747 return cache;
2748}
2749
2750/* Implementation of function hook 'this_id' in
2751 'struct frame_uwnind' for epilogue unwinder. */
2752
2753static void
2754arm_epilogue_frame_this_id (struct frame_info *this_frame,
2755 void **this_cache,
2756 struct frame_id *this_id)
2757{
2758 struct arm_prologue_cache *cache;
2759 CORE_ADDR pc, func;
2760
2761 if (*this_cache == NULL)
2762 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2763 cache = (struct arm_prologue_cache *) *this_cache;
2764
2765 /* Use function start address as part of the frame ID. If we cannot
2766 identify the start address (due to missing symbol information),
2767 fall back to just using the current PC. */
2768 pc = get_frame_pc (this_frame);
2769 func = get_frame_func (this_frame);
fb3f3d25 2770 if (func == 0)
779aa56f
YQ
2771 func = pc;
2772
2773 (*this_id) = frame_id_build (cache->prev_sp, pc);
2774}
2775
2776/* Implementation of function hook 'prev_register' in
2777 'struct frame_uwnind' for epilogue unwinder. */
2778
2779static struct value *
2780arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2781 void **this_cache, int regnum)
2782{
779aa56f
YQ
2783 if (*this_cache == NULL)
2784 *this_cache = arm_make_epilogue_frame_cache (this_frame);
779aa56f
YQ
2785
2786 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2787}
2788
2789static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2790 CORE_ADDR pc);
2791static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2792 CORE_ADDR pc);
2793
2794/* Implementation of function hook 'sniffer' in
2795 'struct frame_uwnind' for epilogue unwinder. */
2796
2797static int
2798arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2799 struct frame_info *this_frame,
2800 void **this_prologue_cache)
2801{
2802 if (frame_relative_level (this_frame) == 0)
2803 {
2804 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2805 CORE_ADDR pc = get_frame_pc (this_frame);
2806
2807 if (arm_frame_is_thumb (this_frame))
2808 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2809 else
2810 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2811 }
2812 else
2813 return 0;
2814}
2815
2816/* Frame unwinder from epilogue. */
2817
2818static const struct frame_unwind arm_epilogue_frame_unwind =
2819{
2820 NORMAL_FRAME,
2821 default_frame_unwind_stop_reason,
2822 arm_epilogue_frame_this_id,
2823 arm_epilogue_frame_prev_register,
2824 NULL,
2825 arm_epilogue_frame_sniffer,
2826};
2827
80d8d390
YQ
2828/* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2829 trampoline, return the target PC. Otherwise return 0.
2830
2831 void call0a (char c, short s, int i, long l) {}
2832
2833 int main (void)
2834 {
2835 (*pointer_to_call0a) (c, s, i, l);
2836 }
2837
2838 Instead of calling a stub library function _call_via_xx (xx is
2839 the register name), GCC may inline the trampoline in the object
2840 file as below (register r2 has the address of call0a).
2841
2842 .global main
2843 .type main, %function
2844 ...
2845 bl .L1
2846 ...
2847 .size main, .-main
2848
2849 .L1:
2850 bx r2
2851
2852 The trampoline 'bx r2' doesn't belong to main. */
2853
2854static CORE_ADDR
2855arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2856{
2857 /* The heuristics of recognizing such trampoline is that FRAME is
2858 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2859 if (arm_frame_is_thumb (frame))
2860 {
2861 gdb_byte buf[2];
2862
2863 if (target_read_memory (pc, buf, 2) == 0)
2864 {
2865 struct gdbarch *gdbarch = get_frame_arch (frame);
2866 enum bfd_endian byte_order_for_code
2867 = gdbarch_byte_order_for_code (gdbarch);
2868 uint16_t insn
2869 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2870
2871 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2872 {
2873 CORE_ADDR dest
2874 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2875
2876 /* Clear the LSB so that gdb core sets step-resume
2877 breakpoint at the right address. */
2878 return UNMAKE_THUMB_ADDR (dest);
2879 }
2880 }
2881 }
2882
2883 return 0;
2884}
2885
909cf6ea 2886static struct arm_prologue_cache *
a262aec2 2887arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2888{
909cf6ea 2889 struct arm_prologue_cache *cache;
909cf6ea 2890
35d5d4ee 2891 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2892 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2893
a262aec2 2894 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2895
2896 return cache;
2897}
2898
2899/* Our frame ID for a stub frame is the current SP and LR. */
2900
2901static void
a262aec2 2902arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2903 void **this_cache,
2904 struct frame_id *this_id)
2905{
2906 struct arm_prologue_cache *cache;
2907
2908 if (*this_cache == NULL)
a262aec2 2909 *this_cache = arm_make_stub_cache (this_frame);
9a3c8263 2910 cache = (struct arm_prologue_cache *) *this_cache;
909cf6ea 2911
a262aec2 2912 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2913}
2914
a262aec2
DJ
2915static int
2916arm_stub_unwind_sniffer (const struct frame_unwind *self,
2917 struct frame_info *this_frame,
2918 void **this_prologue_cache)
909cf6ea 2919{
93d42b30 2920 CORE_ADDR addr_in_block;
948f8e3d 2921 gdb_byte dummy[4];
18d18ac8
YQ
2922 CORE_ADDR pc, start_addr;
2923 const char *name;
909cf6ea 2924
a262aec2 2925 addr_in_block = get_frame_address_in_block (this_frame);
18d18ac8 2926 pc = get_frame_pc (this_frame);
3e5d3a5a 2927 if (in_plt_section (addr_in_block)
fc36e839
DE
2928 /* We also use the stub winder if the target memory is unreadable
2929 to avoid having the prologue unwinder trying to read it. */
18d18ac8
YQ
2930 || target_read_memory (pc, dummy, 4) != 0)
2931 return 1;
2932
2933 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2934 && arm_skip_bx_reg (this_frame, pc) != 0)
a262aec2 2935 return 1;
909cf6ea 2936
a262aec2 2937 return 0;
909cf6ea
DJ
2938}
2939
a262aec2
DJ
2940struct frame_unwind arm_stub_unwind = {
2941 NORMAL_FRAME,
8fbca658 2942 default_frame_unwind_stop_reason,
a262aec2
DJ
2943 arm_stub_this_id,
2944 arm_prologue_prev_register,
2945 NULL,
2946 arm_stub_unwind_sniffer
2947};
2948
2ae28aa9
YQ
2949/* Put here the code to store, into CACHE->saved_regs, the addresses
2950 of the saved registers of frame described by THIS_FRAME. CACHE is
2951 returned. */
2952
2953static struct arm_prologue_cache *
2954arm_m_exception_cache (struct frame_info *this_frame)
2955{
2956 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2958 struct arm_prologue_cache *cache;
2959 CORE_ADDR unwound_sp;
2960 LONGEST xpsr;
2961
2962 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2963 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2964
2965 unwound_sp = get_frame_register_unsigned (this_frame,
2966 ARM_SP_REGNUM);
2967
2968 /* The hardware saves eight 32-bit words, comprising xPSR,
2969 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2970 "B1.5.6 Exception entry behavior" in
2971 "ARMv7-M Architecture Reference Manual". */
2972 cache->saved_regs[0].addr = unwound_sp;
2973 cache->saved_regs[1].addr = unwound_sp + 4;
2974 cache->saved_regs[2].addr = unwound_sp + 8;
2975 cache->saved_regs[3].addr = unwound_sp + 12;
2976 cache->saved_regs[12].addr = unwound_sp + 16;
2977 cache->saved_regs[14].addr = unwound_sp + 20;
2978 cache->saved_regs[15].addr = unwound_sp + 24;
2979 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2980
2981 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2982 aligner between the top of the 32-byte stack frame and the
2983 previous context's stack pointer. */
2984 cache->prev_sp = unwound_sp + 32;
2985 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2986 && (xpsr & (1 << 9)) != 0)
2987 cache->prev_sp += 4;
2988
2989 return cache;
2990}
2991
2992/* Implementation of function hook 'this_id' in
2993 'struct frame_uwnind'. */
2994
2995static void
2996arm_m_exception_this_id (struct frame_info *this_frame,
2997 void **this_cache,
2998 struct frame_id *this_id)
2999{
3000 struct arm_prologue_cache *cache;
3001
3002 if (*this_cache == NULL)
3003 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3004 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3005
3006 /* Our frame ID for a stub frame is the current SP and LR. */
3007 *this_id = frame_id_build (cache->prev_sp,
3008 get_frame_pc (this_frame));
3009}
3010
3011/* Implementation of function hook 'prev_register' in
3012 'struct frame_uwnind'. */
3013
3014static struct value *
3015arm_m_exception_prev_register (struct frame_info *this_frame,
3016 void **this_cache,
3017 int prev_regnum)
3018{
2ae28aa9
YQ
3019 struct arm_prologue_cache *cache;
3020
3021 if (*this_cache == NULL)
3022 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3023 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3024
3025 /* The value was already reconstructed into PREV_SP. */
3026 if (prev_regnum == ARM_SP_REGNUM)
3027 return frame_unwind_got_constant (this_frame, prev_regnum,
3028 cache->prev_sp);
3029
3030 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3031 prev_regnum);
3032}
3033
3034/* Implementation of function hook 'sniffer' in
3035 'struct frame_uwnind'. */
3036
3037static int
3038arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3039 struct frame_info *this_frame,
3040 void **this_prologue_cache)
3041{
3042 CORE_ADDR this_pc = get_frame_pc (this_frame);
3043
3044 /* No need to check is_m; this sniffer is only registered for
3045 M-profile architectures. */
3046
ca90e760
FH
3047 /* Check if exception frame returns to a magic PC value. */
3048 return arm_m_addr_is_magic (this_pc);
2ae28aa9
YQ
3049}
3050
3051/* Frame unwinder for M-profile exceptions. */
3052
3053struct frame_unwind arm_m_exception_unwind =
3054{
3055 SIGTRAMP_FRAME,
3056 default_frame_unwind_stop_reason,
3057 arm_m_exception_this_id,
3058 arm_m_exception_prev_register,
3059 NULL,
3060 arm_m_exception_unwind_sniffer
3061};
3062
24de872b 3063static CORE_ADDR
a262aec2 3064arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
3065{
3066 struct arm_prologue_cache *cache;
3067
eb5492fa 3068 if (*this_cache == NULL)
a262aec2 3069 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 3070 cache = (struct arm_prologue_cache *) *this_cache;
eb5492fa 3071
4be43953 3072 return cache->prev_sp - cache->framesize;
24de872b
DJ
3073}
3074
eb5492fa
DJ
3075struct frame_base arm_normal_base = {
3076 &arm_prologue_unwind,
3077 arm_normal_frame_base,
3078 arm_normal_frame_base,
3079 arm_normal_frame_base
3080};
3081
a262aec2 3082/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
3083 dummy frame. The frame ID's base needs to match the TOS value
3084 saved by save_dummy_frame_tos() and returned from
3085 arm_push_dummy_call, and the PC needs to match the dummy frame's
3086 breakpoint. */
c906108c 3087
eb5492fa 3088static struct frame_id
a262aec2 3089arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 3090{
0963b4bd
MS
3091 return frame_id_build (get_frame_register_unsigned (this_frame,
3092 ARM_SP_REGNUM),
a262aec2 3093 get_frame_pc (this_frame));
eb5492fa 3094}
c3b4394c 3095
eb5492fa
DJ
3096/* Given THIS_FRAME, find the previous frame's resume PC (which will
3097 be used to construct the previous frame's ID, after looking up the
3098 containing function). */
c3b4394c 3099
eb5492fa
DJ
3100static CORE_ADDR
3101arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3102{
3103 CORE_ADDR pc;
3104 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 3105 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
3106}
3107
3108static CORE_ADDR
3109arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3110{
3111 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
3112}
3113
b39cc962
DJ
3114static struct value *
3115arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3116 int regnum)
3117{
24568a2c 3118 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 3119 CORE_ADDR lr, cpsr;
9779414d 3120 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
3121
3122 switch (regnum)
3123 {
3124 case ARM_PC_REGNUM:
3125 /* The PC is normally copied from the return column, which
3126 describes saves of LR. However, that version may have an
3127 extra bit set to indicate Thumb state. The bit is not
3128 part of the PC. */
3129 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3130 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3131 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3132
3133 case ARM_PS_REGNUM:
3134 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3135 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3136 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3137 if (IS_THUMB_ADDR (lr))
9779414d 3138 cpsr |= t_bit;
b39cc962 3139 else
9779414d 3140 cpsr &= ~t_bit;
ca38c58e 3141 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3142
3143 default:
3144 internal_error (__FILE__, __LINE__,
3145 _("Unexpected register %d"), regnum);
3146 }
3147}
3148
3149static void
3150arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3151 struct dwarf2_frame_state_reg *reg,
3152 struct frame_info *this_frame)
3153{
3154 switch (regnum)
3155 {
3156 case ARM_PC_REGNUM:
3157 case ARM_PS_REGNUM:
3158 reg->how = DWARF2_FRAME_REG_FN;
3159 reg->loc.fn = arm_dwarf2_prev_register;
3160 break;
3161 case ARM_SP_REGNUM:
3162 reg->how = DWARF2_FRAME_REG_CFA;
3163 break;
3164 }
3165}
3166
c9cf6e20 3167/* Implement the stack_frame_destroyed_p gdbarch method. */
4024ca99
UW
3168
3169static int
c9cf6e20 3170thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
3171{
3172 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3173 unsigned int insn, insn2;
3174 int found_return = 0, found_stack_adjust = 0;
3175 CORE_ADDR func_start, func_end;
3176 CORE_ADDR scan_pc;
3177 gdb_byte buf[4];
3178
3179 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3180 return 0;
3181
3182 /* The epilogue is a sequence of instructions along the following lines:
3183
3184 - add stack frame size to SP or FP
3185 - [if frame pointer used] restore SP from FP
3186 - restore registers from SP [may include PC]
3187 - a return-type instruction [if PC wasn't already restored]
3188
3189 In a first pass, we scan forward from the current PC and verify the
3190 instructions we find as compatible with this sequence, ending in a
3191 return instruction.
3192
3193 However, this is not sufficient to distinguish indirect function calls
3194 within a function from indirect tail calls in the epilogue in some cases.
3195 Therefore, if we didn't already find any SP-changing instruction during
3196 forward scan, we add a backward scanning heuristic to ensure we actually
3197 are in the epilogue. */
3198
3199 scan_pc = pc;
3200 while (scan_pc < func_end && !found_return)
3201 {
3202 if (target_read_memory (scan_pc, buf, 2))
3203 break;
3204
3205 scan_pc += 2;
3206 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3207
3208 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3209 found_return = 1;
3210 else if (insn == 0x46f7) /* mov pc, lr */
3211 found_return = 1;
540314bd 3212 else if (thumb_instruction_restores_sp (insn))
4024ca99 3213 {
b7576e5c 3214 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
4024ca99
UW
3215 found_return = 1;
3216 }
db24da6d 3217 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
4024ca99
UW
3218 {
3219 if (target_read_memory (scan_pc, buf, 2))
3220 break;
3221
3222 scan_pc += 2;
3223 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3224
3225 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3226 {
4024ca99
UW
3227 if (insn2 & 0x8000) /* <registers> include PC. */
3228 found_return = 1;
3229 }
3230 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3231 && (insn2 & 0x0fff) == 0x0b04)
3232 {
4024ca99
UW
3233 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3234 found_return = 1;
3235 }
3236 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3237 && (insn2 & 0x0e00) == 0x0a00)
6b65d1b6 3238 ;
4024ca99
UW
3239 else
3240 break;
3241 }
3242 else
3243 break;
3244 }
3245
3246 if (!found_return)
3247 return 0;
3248
3249 /* Since any instruction in the epilogue sequence, with the possible
3250 exception of return itself, updates the stack pointer, we need to
3251 scan backwards for at most one instruction. Try either a 16-bit or
3252 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3253 too much about false positives. */
4024ca99 3254
6b65d1b6
YQ
3255 if (pc - 4 < func_start)
3256 return 0;
3257 if (target_read_memory (pc - 4, buf, 4))
3258 return 0;
4024ca99 3259
6b65d1b6
YQ
3260 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3261 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3262
3263 if (thumb_instruction_restores_sp (insn2))
3264 found_stack_adjust = 1;
3265 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3266 found_stack_adjust = 1;
3267 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3268 && (insn2 & 0x0fff) == 0x0b04)
3269 found_stack_adjust = 1;
3270 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3271 && (insn2 & 0x0e00) == 0x0a00)
3272 found_stack_adjust = 1;
4024ca99
UW
3273
3274 return found_stack_adjust;
3275}
3276
4024ca99 3277static int
c58b006a 3278arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
3279{
3280 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3281 unsigned int insn;
f303bc3e 3282 int found_return;
4024ca99
UW
3283 CORE_ADDR func_start, func_end;
3284
4024ca99
UW
3285 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3286 return 0;
3287
3288 /* We are in the epilogue if the previous instruction was a stack
3289 adjustment and the next instruction is a possible return (bx, mov
3290 pc, or pop). We could have to scan backwards to find the stack
3291 adjustment, or forwards to find the return, but this is a decent
3292 approximation. First scan forwards. */
3293
3294 found_return = 0;
3295 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3296 if (bits (insn, 28, 31) != INST_NV)
3297 {
3298 if ((insn & 0x0ffffff0) == 0x012fff10)
3299 /* BX. */
3300 found_return = 1;
3301 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3302 /* MOV PC. */
3303 found_return = 1;
3304 else if ((insn & 0x0fff0000) == 0x08bd0000
3305 && (insn & 0x0000c000) != 0)
3306 /* POP (LDMIA), including PC or LR. */
3307 found_return = 1;
3308 }
3309
3310 if (!found_return)
3311 return 0;
3312
3313 /* Scan backwards. This is just a heuristic, so do not worry about
3314 false positives from mode changes. */
3315
3316 if (pc < func_start + 4)
3317 return 0;
3318
3319 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
f303bc3e 3320 if (arm_instruction_restores_sp (insn))
4024ca99
UW
3321 return 1;
3322
3323 return 0;
3324}
3325
c58b006a
YQ
3326/* Implement the stack_frame_destroyed_p gdbarch method. */
3327
3328static int
3329arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3330{
3331 if (arm_pc_is_thumb (gdbarch, pc))
3332 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3333 else
3334 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3335}
4024ca99 3336
2dd604e7
RE
3337/* When arguments must be pushed onto the stack, they go on in reverse
3338 order. The code below implements a FILO (stack) to do this. */
3339
3340struct stack_item
3341{
3342 int len;
3343 struct stack_item *prev;
7c543f7b 3344 gdb_byte *data;
2dd604e7
RE
3345};
3346
3347static struct stack_item *
df3b6708 3348push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
2dd604e7
RE
3349{
3350 struct stack_item *si;
8d749320 3351 si = XNEW (struct stack_item);
7c543f7b 3352 si->data = (gdb_byte *) xmalloc (len);
2dd604e7
RE
3353 si->len = len;
3354 si->prev = prev;
3355 memcpy (si->data, contents, len);
3356 return si;
3357}
3358
3359static struct stack_item *
3360pop_stack_item (struct stack_item *si)
3361{
3362 struct stack_item *dead = si;
3363 si = si->prev;
3364 xfree (dead->data);
3365 xfree (dead);
3366 return si;
3367}
3368
2af48f68
PB
3369
3370/* Return the alignment (in bytes) of the given type. */
3371
3372static int
3373arm_type_align (struct type *t)
3374{
3375 int n;
3376 int align;
3377 int falign;
3378
3379 t = check_typedef (t);
3380 switch (TYPE_CODE (t))
3381 {
3382 default:
3383 /* Should never happen. */
3384 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3385 return 4;
3386
3387 case TYPE_CODE_PTR:
3388 case TYPE_CODE_ENUM:
3389 case TYPE_CODE_INT:
3390 case TYPE_CODE_FLT:
3391 case TYPE_CODE_SET:
3392 case TYPE_CODE_RANGE:
2af48f68 3393 case TYPE_CODE_REF:
aa006118 3394 case TYPE_CODE_RVALUE_REF:
2af48f68
PB
3395 case TYPE_CODE_CHAR:
3396 case TYPE_CODE_BOOL:
3397 return TYPE_LENGTH (t);
3398
3399 case TYPE_CODE_ARRAY:
c4312b19
YQ
3400 if (TYPE_VECTOR (t))
3401 {
3402 /* Use the natural alignment for vector types (the same for
3403 scalar type), but the maximum alignment is 64-bit. */
3404 if (TYPE_LENGTH (t) > 8)
3405 return 8;
3406 else
3407 return TYPE_LENGTH (t);
3408 }
3409 else
3410 return arm_type_align (TYPE_TARGET_TYPE (t));
2af48f68 3411 case TYPE_CODE_COMPLEX:
2af48f68
PB
3412 return arm_type_align (TYPE_TARGET_TYPE (t));
3413
3414 case TYPE_CODE_STRUCT:
3415 case TYPE_CODE_UNION:
3416 align = 1;
3417 for (n = 0; n < TYPE_NFIELDS (t); n++)
3418 {
3419 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3420 if (falign > align)
3421 align = falign;
3422 }
3423 return align;
3424 }
3425}
3426
90445bd3
DJ
3427/* Possible base types for a candidate for passing and returning in
3428 VFP registers. */
3429
3430enum arm_vfp_cprc_base_type
3431{
3432 VFP_CPRC_UNKNOWN,
3433 VFP_CPRC_SINGLE,
3434 VFP_CPRC_DOUBLE,
3435 VFP_CPRC_VEC64,
3436 VFP_CPRC_VEC128
3437};
3438
3439/* The length of one element of base type B. */
3440
3441static unsigned
3442arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3443{
3444 switch (b)
3445 {
3446 case VFP_CPRC_SINGLE:
3447 return 4;
3448 case VFP_CPRC_DOUBLE:
3449 return 8;
3450 case VFP_CPRC_VEC64:
3451 return 8;
3452 case VFP_CPRC_VEC128:
3453 return 16;
3454 default:
3455 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3456 (int) b);
3457 }
3458}
3459
3460/* The character ('s', 'd' or 'q') for the type of VFP register used
3461 for passing base type B. */
3462
3463static int
3464arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3465{
3466 switch (b)
3467 {
3468 case VFP_CPRC_SINGLE:
3469 return 's';
3470 case VFP_CPRC_DOUBLE:
3471 return 'd';
3472 case VFP_CPRC_VEC64:
3473 return 'd';
3474 case VFP_CPRC_VEC128:
3475 return 'q';
3476 default:
3477 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3478 (int) b);
3479 }
3480}
3481
3482/* Determine whether T may be part of a candidate for passing and
3483 returning in VFP registers, ignoring the limit on the total number
3484 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3485 classification of the first valid component found; if it is not
3486 VFP_CPRC_UNKNOWN, all components must have the same classification
3487 as *BASE_TYPE. If it is found that T contains a type not permitted
3488 for passing and returning in VFP registers, a type differently
3489 classified from *BASE_TYPE, or two types differently classified
3490 from each other, return -1, otherwise return the total number of
3491 base-type elements found (possibly 0 in an empty structure or
817e0957
YQ
3492 array). Vector types are not currently supported, matching the
3493 generic AAPCS support. */
90445bd3
DJ
3494
3495static int
3496arm_vfp_cprc_sub_candidate (struct type *t,
3497 enum arm_vfp_cprc_base_type *base_type)
3498{
3499 t = check_typedef (t);
3500 switch (TYPE_CODE (t))
3501 {
3502 case TYPE_CODE_FLT:
3503 switch (TYPE_LENGTH (t))
3504 {
3505 case 4:
3506 if (*base_type == VFP_CPRC_UNKNOWN)
3507 *base_type = VFP_CPRC_SINGLE;
3508 else if (*base_type != VFP_CPRC_SINGLE)
3509 return -1;
3510 return 1;
3511
3512 case 8:
3513 if (*base_type == VFP_CPRC_UNKNOWN)
3514 *base_type = VFP_CPRC_DOUBLE;
3515 else if (*base_type != VFP_CPRC_DOUBLE)
3516 return -1;
3517 return 1;
3518
3519 default:
3520 return -1;
3521 }
3522 break;
3523
817e0957
YQ
3524 case TYPE_CODE_COMPLEX:
3525 /* Arguments of complex T where T is one of the types float or
3526 double get treated as if they are implemented as:
3527
3528 struct complexT
3529 {
3530 T real;
3531 T imag;
5f52445b
YQ
3532 };
3533
3534 */
817e0957
YQ
3535 switch (TYPE_LENGTH (t))
3536 {
3537 case 8:
3538 if (*base_type == VFP_CPRC_UNKNOWN)
3539 *base_type = VFP_CPRC_SINGLE;
3540 else if (*base_type != VFP_CPRC_SINGLE)
3541 return -1;
3542 return 2;
3543
3544 case 16:
3545 if (*base_type == VFP_CPRC_UNKNOWN)
3546 *base_type = VFP_CPRC_DOUBLE;
3547 else if (*base_type != VFP_CPRC_DOUBLE)
3548 return -1;
3549 return 2;
3550
3551 default:
3552 return -1;
3553 }
3554 break;
3555
90445bd3
DJ
3556 case TYPE_CODE_ARRAY:
3557 {
c4312b19 3558 if (TYPE_VECTOR (t))
90445bd3 3559 {
c4312b19
YQ
3560 /* A 64-bit or 128-bit containerized vector type are VFP
3561 CPRCs. */
3562 switch (TYPE_LENGTH (t))
3563 {
3564 case 8:
3565 if (*base_type == VFP_CPRC_UNKNOWN)
3566 *base_type = VFP_CPRC_VEC64;
3567 return 1;
3568 case 16:
3569 if (*base_type == VFP_CPRC_UNKNOWN)
3570 *base_type = VFP_CPRC_VEC128;
3571 return 1;
3572 default:
3573 return -1;
3574 }
3575 }
3576 else
3577 {
3578 int count;
3579 unsigned unitlen;
3580
3581 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3582 base_type);
3583 if (count == -1)
3584 return -1;
3585 if (TYPE_LENGTH (t) == 0)
3586 {
3587 gdb_assert (count == 0);
3588 return 0;
3589 }
3590 else if (count == 0)
3591 return -1;
3592 unitlen = arm_vfp_cprc_unit_length (*base_type);
3593 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3594 return TYPE_LENGTH (t) / unitlen;
90445bd3 3595 }
90445bd3
DJ
3596 }
3597 break;
3598
3599 case TYPE_CODE_STRUCT:
3600 {
3601 int count = 0;
3602 unsigned unitlen;
3603 int i;
3604 for (i = 0; i < TYPE_NFIELDS (t); i++)
3605 {
1040b979
YQ
3606 int sub_count = 0;
3607
3608 if (!field_is_static (&TYPE_FIELD (t, i)))
3609 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3610 base_type);
90445bd3
DJ
3611 if (sub_count == -1)
3612 return -1;
3613 count += sub_count;
3614 }
3615 if (TYPE_LENGTH (t) == 0)
3616 {
3617 gdb_assert (count == 0);
3618 return 0;
3619 }
3620 else if (count == 0)
3621 return -1;
3622 unitlen = arm_vfp_cprc_unit_length (*base_type);
3623 if (TYPE_LENGTH (t) != unitlen * count)
3624 return -1;
3625 return count;
3626 }
3627
3628 case TYPE_CODE_UNION:
3629 {
3630 int count = 0;
3631 unsigned unitlen;
3632 int i;
3633 for (i = 0; i < TYPE_NFIELDS (t); i++)
3634 {
3635 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3636 base_type);
3637 if (sub_count == -1)
3638 return -1;
3639 count = (count > sub_count ? count : sub_count);
3640 }
3641 if (TYPE_LENGTH (t) == 0)
3642 {
3643 gdb_assert (count == 0);
3644 return 0;
3645 }
3646 else if (count == 0)
3647 return -1;
3648 unitlen = arm_vfp_cprc_unit_length (*base_type);
3649 if (TYPE_LENGTH (t) != unitlen * count)
3650 return -1;
3651 return count;
3652 }
3653
3654 default:
3655 break;
3656 }
3657
3658 return -1;
3659}
3660
3661/* Determine whether T is a VFP co-processor register candidate (CPRC)
3662 if passed to or returned from a non-variadic function with the VFP
3663 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3664 *BASE_TYPE to the base type for T and *COUNT to the number of
3665 elements of that base type before returning. */
3666
3667static int
3668arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3669 int *count)
3670{
3671 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3672 int c = arm_vfp_cprc_sub_candidate (t, &b);
3673 if (c <= 0 || c > 4)
3674 return 0;
3675 *base_type = b;
3676 *count = c;
3677 return 1;
3678}
3679
3680/* Return 1 if the VFP ABI should be used for passing arguments to and
3681 returning values from a function of type FUNC_TYPE, 0
3682 otherwise. */
3683
3684static int
3685arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3686{
3687 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3688 /* Variadic functions always use the base ABI. Assume that functions
3689 without debug info are not variadic. */
3690 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3691 return 0;
3692 /* The VFP ABI is only supported as a variant of AAPCS. */
3693 if (tdep->arm_abi != ARM_ABI_AAPCS)
3694 return 0;
3695 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3696}
3697
3698/* We currently only support passing parameters in integer registers, which
3699 conforms with GCC's default model, and VFP argument passing following
3700 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3701 we should probably support some of them based on the selected ABI. */
3702
3703static CORE_ADDR
7d9b040b 3704arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3705 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3706 struct value **args, CORE_ADDR sp, int struct_return,
3707 CORE_ADDR struct_addr)
2dd604e7 3708{
e17a4113 3709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3710 int argnum;
3711 int argreg;
3712 int nstack;
3713 struct stack_item *si = NULL;
90445bd3
DJ
3714 int use_vfp_abi;
3715 struct type *ftype;
3716 unsigned vfp_regs_free = (1 << 16) - 1;
3717
3718 /* Determine the type of this function and whether the VFP ABI
3719 applies. */
3720 ftype = check_typedef (value_type (function));
3721 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3722 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3723 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3724
6a65450a
AC
3725 /* Set the return address. For the ARM, the return breakpoint is
3726 always at BP_ADDR. */
9779414d 3727 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3728 bp_addr |= 1;
6a65450a 3729 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3730
3731 /* Walk through the list of args and determine how large a temporary
3732 stack is required. Need to take care here as structs may be
7a9dd1b2 3733 passed on the stack, and we have to push them. */
2dd604e7
RE
3734 nstack = 0;
3735
3736 argreg = ARM_A1_REGNUM;
3737 nstack = 0;
3738
2dd604e7
RE
3739 /* The struct_return pointer occupies the first parameter
3740 passing register. */
3741 if (struct_return)
3742 {
3743 if (arm_debug)
5af949e3 3744 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3745 gdbarch_register_name (gdbarch, argreg),
5af949e3 3746 paddress (gdbarch, struct_addr));
2dd604e7
RE
3747 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3748 argreg++;
3749 }
3750
3751 for (argnum = 0; argnum < nargs; argnum++)
3752 {
3753 int len;
3754 struct type *arg_type;
3755 struct type *target_type;
3756 enum type_code typecode;
8c6363cf 3757 const bfd_byte *val;
2af48f68 3758 int align;
90445bd3
DJ
3759 enum arm_vfp_cprc_base_type vfp_base_type;
3760 int vfp_base_count;
3761 int may_use_core_reg = 1;
2dd604e7 3762
df407dfe 3763 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3764 len = TYPE_LENGTH (arg_type);
3765 target_type = TYPE_TARGET_TYPE (arg_type);
3766 typecode = TYPE_CODE (arg_type);
8c6363cf 3767 val = value_contents (args[argnum]);
2dd604e7 3768
2af48f68
PB
3769 align = arm_type_align (arg_type);
3770 /* Round alignment up to a whole number of words. */
3771 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3772 /* Different ABIs have different maximum alignments. */
3773 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3774 {
3775 /* The APCS ABI only requires word alignment. */
3776 align = INT_REGISTER_SIZE;
3777 }
3778 else
3779 {
3780 /* The AAPCS requires at most doubleword alignment. */
3781 if (align > INT_REGISTER_SIZE * 2)
3782 align = INT_REGISTER_SIZE * 2;
3783 }
3784
90445bd3
DJ
3785 if (use_vfp_abi
3786 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3787 &vfp_base_count))
3788 {
3789 int regno;
3790 int unit_length;
3791 int shift;
3792 unsigned mask;
3793
3794 /* Because this is a CPRC it cannot go in a core register or
3795 cause a core register to be skipped for alignment.
3796 Either it goes in VFP registers and the rest of this loop
3797 iteration is skipped for this argument, or it goes on the
3798 stack (and the stack alignment code is correct for this
3799 case). */
3800 may_use_core_reg = 0;
3801
3802 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3803 shift = unit_length / 4;
3804 mask = (1 << (shift * vfp_base_count)) - 1;
3805 for (regno = 0; regno < 16; regno += shift)
3806 if (((vfp_regs_free >> regno) & mask) == mask)
3807 break;
3808
3809 if (regno < 16)
3810 {
3811 int reg_char;
3812 int reg_scaled;
3813 int i;
3814
3815 vfp_regs_free &= ~(mask << regno);
3816 reg_scaled = regno / shift;
3817 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3818 for (i = 0; i < vfp_base_count; i++)
3819 {
3820 char name_buf[4];
3821 int regnum;
58d6951d
DJ
3822 if (reg_char == 'q')
3823 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3824 val + i * unit_length);
58d6951d
DJ
3825 else
3826 {
8c042590
PM
3827 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3828 reg_char, reg_scaled + i);
58d6951d
DJ
3829 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3830 strlen (name_buf));
3831 regcache_cooked_write (regcache, regnum,
3832 val + i * unit_length);
3833 }
90445bd3
DJ
3834 }
3835 continue;
3836 }
3837 else
3838 {
3839 /* This CPRC could not go in VFP registers, so all VFP
3840 registers are now marked as used. */
3841 vfp_regs_free = 0;
3842 }
3843 }
3844
2af48f68
PB
3845 /* Push stack padding for dowubleword alignment. */
3846 if (nstack & (align - 1))
3847 {
3848 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3849 nstack += INT_REGISTER_SIZE;
3850 }
3851
3852 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3853 if (may_use_core_reg
3854 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3855 && align > INT_REGISTER_SIZE
3856 && argreg & 1)
3857 argreg++;
3858
2dd604e7
RE
3859 /* If the argument is a pointer to a function, and it is a
3860 Thumb function, create a LOCAL copy of the value and set
3861 the THUMB bit in it. */
3862 if (TYPE_CODE_PTR == typecode
3863 && target_type != NULL
f96b8fa0 3864 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3865 {
e17a4113 3866 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3867 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3868 {
224c3ddb 3869 bfd_byte *copy = (bfd_byte *) alloca (len);
8c6363cf 3870 store_unsigned_integer (copy, len, byte_order,
e17a4113 3871 MAKE_THUMB_ADDR (regval));
8c6363cf 3872 val = copy;
2dd604e7
RE
3873 }
3874 }
3875
3876 /* Copy the argument to general registers or the stack in
3877 register-sized pieces. Large arguments are split between
3878 registers and stack. */
3879 while (len > 0)
3880 {
f0c9063c 3881 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
ef9bd0b8
YQ
3882 CORE_ADDR regval
3883 = extract_unsigned_integer (val, partial_len, byte_order);
2dd604e7 3884
90445bd3 3885 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3886 {
3887 /* The argument is being passed in a general purpose
3888 register. */
e17a4113 3889 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3890 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3891 if (arm_debug)
3892 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3893 argnum,
3894 gdbarch_register_name
2af46ca0 3895 (gdbarch, argreg),
f0c9063c 3896 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3897 regcache_cooked_write_unsigned (regcache, argreg, regval);
3898 argreg++;
3899 }
3900 else
3901 {
ef9bd0b8
YQ
3902 gdb_byte buf[INT_REGISTER_SIZE];
3903
3904 memset (buf, 0, sizeof (buf));
3905 store_unsigned_integer (buf, partial_len, byte_order, regval);
3906
2dd604e7
RE
3907 /* Push the arguments onto the stack. */
3908 if (arm_debug)
3909 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3910 argnum, nstack);
ef9bd0b8 3911 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
f0c9063c 3912 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3913 }
3914
3915 len -= partial_len;
3916 val += partial_len;
3917 }
3918 }
3919 /* If we have an odd number of words to push, then decrement the stack
3920 by one word now, so first stack argument will be dword aligned. */
3921 if (nstack & 4)
3922 sp -= 4;
3923
3924 while (si)
3925 {
3926 sp -= si->len;
3927 write_memory (sp, si->data, si->len);
3928 si = pop_stack_item (si);
3929 }
3930
3931 /* Finally, update teh SP register. */
3932 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3933
3934 return sp;
3935}
3936
f53f0d0b
PB
3937
3938/* Always align the frame to an 8-byte boundary. This is required on
3939 some platforms and harmless on the rest. */
3940
3941static CORE_ADDR
3942arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3943{
3944 /* Align the stack to eight bytes. */
3945 return sp & ~ (CORE_ADDR) 7;
3946}
3947
c906108c 3948static void
12b27276 3949print_fpu_flags (struct ui_file *file, int flags)
c906108c 3950{
c5aa993b 3951 if (flags & (1 << 0))
12b27276 3952 fputs_filtered ("IVO ", file);
c5aa993b 3953 if (flags & (1 << 1))
12b27276 3954 fputs_filtered ("DVZ ", file);
c5aa993b 3955 if (flags & (1 << 2))
12b27276 3956 fputs_filtered ("OFL ", file);
c5aa993b 3957 if (flags & (1 << 3))
12b27276 3958 fputs_filtered ("UFL ", file);
c5aa993b 3959 if (flags & (1 << 4))
12b27276
WN
3960 fputs_filtered ("INX ", file);
3961 fputc_filtered ('\n', file);
c906108c
SS
3962}
3963
5e74b15c
RE
3964/* Print interesting information about the floating point processor
3965 (if present) or emulator. */
34e8f22d 3966static void
d855c300 3967arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3968 struct frame_info *frame, const char *args)
c906108c 3969{
9c9acae0 3970 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3971 int type;
3972
3973 type = (status >> 24) & 127;
edefbb7c 3974 if (status & (1 << 31))
12b27276 3975 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
edefbb7c 3976 else
12b27276 3977 fprintf_filtered (file, _("Software FPU type %d\n"), type);
edefbb7c 3978 /* i18n: [floating point unit] mask */
12b27276
WN
3979 fputs_filtered (_("mask: "), file);
3980 print_fpu_flags (file, status >> 16);
edefbb7c 3981 /* i18n: [floating point unit] flags */
12b27276
WN
3982 fputs_filtered (_("flags: "), file);
3983 print_fpu_flags (file, status);
c906108c
SS
3984}
3985
27067745
UW
3986/* Construct the ARM extended floating point type. */
3987static struct type *
3988arm_ext_type (struct gdbarch *gdbarch)
3989{
3990 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3991
3992 if (!tdep->arm_ext_type)
3993 tdep->arm_ext_type
e9bb382b 3994 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3995 floatformats_arm_ext);
3996
3997 return tdep->arm_ext_type;
3998}
3999
58d6951d
DJ
4000static struct type *
4001arm_neon_double_type (struct gdbarch *gdbarch)
4002{
4003 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4004
4005 if (tdep->neon_double_type == NULL)
4006 {
4007 struct type *t, *elem;
4008
4009 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4010 TYPE_CODE_UNION);
4011 elem = builtin_type (gdbarch)->builtin_uint8;
4012 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4013 elem = builtin_type (gdbarch)->builtin_uint16;
4014 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4015 elem = builtin_type (gdbarch)->builtin_uint32;
4016 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4017 elem = builtin_type (gdbarch)->builtin_uint64;
4018 append_composite_type_field (t, "u64", elem);
4019 elem = builtin_type (gdbarch)->builtin_float;
4020 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4021 elem = builtin_type (gdbarch)->builtin_double;
4022 append_composite_type_field (t, "f64", elem);
4023
4024 TYPE_VECTOR (t) = 1;
4025 TYPE_NAME (t) = "neon_d";
4026 tdep->neon_double_type = t;
4027 }
4028
4029 return tdep->neon_double_type;
4030}
4031
4032/* FIXME: The vector types are not correctly ordered on big-endian
4033 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4034 bits of d0 - regardless of what unit size is being held in d0. So
4035 the offset of the first uint8 in d0 is 7, but the offset of the
4036 first float is 4. This code works as-is for little-endian
4037 targets. */
4038
4039static struct type *
4040arm_neon_quad_type (struct gdbarch *gdbarch)
4041{
4042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4043
4044 if (tdep->neon_quad_type == NULL)
4045 {
4046 struct type *t, *elem;
4047
4048 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4049 TYPE_CODE_UNION);
4050 elem = builtin_type (gdbarch)->builtin_uint8;
4051 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4052 elem = builtin_type (gdbarch)->builtin_uint16;
4053 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4054 elem = builtin_type (gdbarch)->builtin_uint32;
4055 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4056 elem = builtin_type (gdbarch)->builtin_uint64;
4057 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4058 elem = builtin_type (gdbarch)->builtin_float;
4059 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4060 elem = builtin_type (gdbarch)->builtin_double;
4061 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4062
4063 TYPE_VECTOR (t) = 1;
4064 TYPE_NAME (t) = "neon_q";
4065 tdep->neon_quad_type = t;
4066 }
4067
4068 return tdep->neon_quad_type;
4069}
4070
34e8f22d
RE
4071/* Return the GDB type object for the "standard" data type of data in
4072 register N. */
4073
4074static struct type *
7a5ea0d4 4075arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 4076{
58d6951d
DJ
4077 int num_regs = gdbarch_num_regs (gdbarch);
4078
4079 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4080 && regnum >= num_regs && regnum < num_regs + 32)
4081 return builtin_type (gdbarch)->builtin_float;
4082
4083 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4084 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4085 return arm_neon_quad_type (gdbarch);
4086
4087 /* If the target description has register information, we are only
4088 in this function so that we can override the types of
4089 double-precision registers for NEON. */
4090 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4091 {
4092 struct type *t = tdesc_register_type (gdbarch, regnum);
4093
4094 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4095 && TYPE_CODE (t) == TYPE_CODE_FLT
4096 && gdbarch_tdep (gdbarch)->have_neon)
4097 return arm_neon_double_type (gdbarch);
4098 else
4099 return t;
4100 }
4101
34e8f22d 4102 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
4103 {
4104 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4105 return builtin_type (gdbarch)->builtin_void;
4106
4107 return arm_ext_type (gdbarch);
4108 }
e4c16157 4109 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 4110 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 4111 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 4112 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
4113 else if (regnum >= ARRAY_SIZE (arm_register_names))
4114 /* These registers are only supported on targets which supply
4115 an XML description. */
df4df182 4116 return builtin_type (gdbarch)->builtin_int0;
032758dc 4117 else
df4df182 4118 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
4119}
4120
ff6f572f
DJ
4121/* Map a DWARF register REGNUM onto the appropriate GDB register
4122 number. */
4123
4124static int
d3f73121 4125arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
4126{
4127 /* Core integer regs. */
4128 if (reg >= 0 && reg <= 15)
4129 return reg;
4130
4131 /* Legacy FPA encoding. These were once used in a way which
4132 overlapped with VFP register numbering, so their use is
4133 discouraged, but GDB doesn't support the ARM toolchain
4134 which used them for VFP. */
4135 if (reg >= 16 && reg <= 23)
4136 return ARM_F0_REGNUM + reg - 16;
4137
4138 /* New assignments for the FPA registers. */
4139 if (reg >= 96 && reg <= 103)
4140 return ARM_F0_REGNUM + reg - 96;
4141
4142 /* WMMX register assignments. */
4143 if (reg >= 104 && reg <= 111)
4144 return ARM_WCGR0_REGNUM + reg - 104;
4145
4146 if (reg >= 112 && reg <= 127)
4147 return ARM_WR0_REGNUM + reg - 112;
4148
4149 if (reg >= 192 && reg <= 199)
4150 return ARM_WC0_REGNUM + reg - 192;
4151
58d6951d
DJ
4152 /* VFP v2 registers. A double precision value is actually
4153 in d1 rather than s2, but the ABI only defines numbering
4154 for the single precision registers. This will "just work"
4155 in GDB for little endian targets (we'll read eight bytes,
4156 starting in s0 and then progressing to s1), but will be
4157 reversed on big endian targets with VFP. This won't
4158 be a problem for the new Neon quad registers; you're supposed
4159 to use DW_OP_piece for those. */
4160 if (reg >= 64 && reg <= 95)
4161 {
4162 char name_buf[4];
4163
8c042590 4164 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
58d6951d
DJ
4165 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4166 strlen (name_buf));
4167 }
4168
4169 /* VFP v3 / Neon registers. This range is also used for VFP v2
4170 registers, except that it now describes d0 instead of s0. */
4171 if (reg >= 256 && reg <= 287)
4172 {
4173 char name_buf[4];
4174
8c042590 4175 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
58d6951d
DJ
4176 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4177 strlen (name_buf));
4178 }
4179
ff6f572f
DJ
4180 return -1;
4181}
4182
26216b98
AC
4183/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4184static int
e7faf938 4185arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4186{
4187 int reg = regnum;
e7faf938 4188 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4189
ff6f572f
DJ
4190 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4191 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4192
4193 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4194 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4195
4196 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4197 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4198
26216b98
AC
4199 if (reg < NUM_GREGS)
4200 return SIM_ARM_R0_REGNUM + reg;
4201 reg -= NUM_GREGS;
4202
4203 if (reg < NUM_FREGS)
4204 return SIM_ARM_FP0_REGNUM + reg;
4205 reg -= NUM_FREGS;
4206
4207 if (reg < NUM_SREGS)
4208 return SIM_ARM_FPS_REGNUM + reg;
4209 reg -= NUM_SREGS;
4210
edefbb7c 4211 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4212}
34e8f22d 4213
a37b3cc0
AC
4214/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4215 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4216 It is thought that this is is the floating-point register format on
4217 little-endian systems. */
c906108c 4218
ed9a39eb 4219static void
b508a996 4220convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4221 void *dbl, int endianess)
c906108c 4222{
a37b3cc0 4223 DOUBLEST d;
be8626e0
MD
4224
4225 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4226 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4227 else
4228 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4229 ptr, &d);
b508a996 4230 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4231}
4232
34e8f22d 4233static void
be8626e0
MD
4234convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4235 int endianess)
c906108c 4236{
a37b3cc0 4237 DOUBLEST d;
be8626e0 4238
b508a996 4239 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4240 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4241 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4242 else
4243 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4244 &d, dbl);
c906108c 4245}
ed9a39eb 4246
d9311bfa
AT
4247/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4248 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4249 NULL if an error occurs. BUF is freed. */
c906108c 4250
d9311bfa
AT
4251static gdb_byte *
4252extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4253 int old_len, int new_len)
4254{
4255 gdb_byte *new_buf;
4256 int bytes_to_read = new_len - old_len;
c906108c 4257
d9311bfa
AT
4258 new_buf = (gdb_byte *) xmalloc (new_len);
4259 memcpy (new_buf + bytes_to_read, buf, old_len);
4260 xfree (buf);
198cd59d 4261 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
d9311bfa
AT
4262 {
4263 xfree (new_buf);
4264 return NULL;
c906108c 4265 }
d9311bfa 4266 return new_buf;
c906108c
SS
4267}
4268
d9311bfa
AT
4269/* An IT block is at most the 2-byte IT instruction followed by
4270 four 4-byte instructions. The furthest back we must search to
4271 find an IT block that affects the current instruction is thus
4272 2 + 3 * 4 == 14 bytes. */
4273#define MAX_IT_BLOCK_PREFIX 14
177321bd 4274
d9311bfa
AT
4275/* Use a quick scan if there are more than this many bytes of
4276 code. */
4277#define IT_SCAN_THRESHOLD 32
177321bd 4278
d9311bfa
AT
4279/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4280 A breakpoint in an IT block may not be hit, depending on the
4281 condition flags. */
ad527d2e 4282static CORE_ADDR
d9311bfa 4283arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
c906108c 4284{
d9311bfa
AT
4285 gdb_byte *buf;
4286 char map_type;
4287 CORE_ADDR boundary, func_start;
4288 int buf_len;
4289 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4290 int i, any, last_it, last_it_count;
177321bd 4291
d9311bfa
AT
4292 /* If we are using BKPT breakpoints, none of this is necessary. */
4293 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4294 return bpaddr;
177321bd 4295
d9311bfa
AT
4296 /* ARM mode does not have this problem. */
4297 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4298 return bpaddr;
177321bd 4299
d9311bfa
AT
4300 /* We are setting a breakpoint in Thumb code that could potentially
4301 contain an IT block. The first step is to find how much Thumb
4302 code there is; we do not need to read outside of known Thumb
4303 sequences. */
4304 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4305 if (map_type == 0)
4306 /* Thumb-2 code must have mapping symbols to have a chance. */
4307 return bpaddr;
9dca5578 4308
d9311bfa 4309 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
177321bd 4310
d9311bfa
AT
4311 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4312 && func_start > boundary)
4313 boundary = func_start;
9dca5578 4314
d9311bfa
AT
4315 /* Search for a candidate IT instruction. We have to do some fancy
4316 footwork to distinguish a real IT instruction from the second
4317 half of a 32-bit instruction, but there is no need for that if
4318 there's no candidate. */
325fac50 4319 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
d9311bfa
AT
4320 if (buf_len == 0)
4321 /* No room for an IT instruction. */
4322 return bpaddr;
c906108c 4323
d9311bfa 4324 buf = (gdb_byte *) xmalloc (buf_len);
198cd59d 4325 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
d9311bfa
AT
4326 return bpaddr;
4327 any = 0;
4328 for (i = 0; i < buf_len; i += 2)
c906108c 4329 {
d9311bfa
AT
4330 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4331 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
25b41d01 4332 {
d9311bfa
AT
4333 any = 1;
4334 break;
25b41d01 4335 }
c906108c 4336 }
d9311bfa
AT
4337
4338 if (any == 0)
c906108c 4339 {
d9311bfa
AT
4340 xfree (buf);
4341 return bpaddr;
f9d67f43
DJ
4342 }
4343
4344 /* OK, the code bytes before this instruction contain at least one
4345 halfword which resembles an IT instruction. We know that it's
4346 Thumb code, but there are still two possibilities. Either the
4347 halfword really is an IT instruction, or it is the second half of
4348 a 32-bit Thumb instruction. The only way we can tell is to
4349 scan forwards from a known instruction boundary. */
4350 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4351 {
4352 int definite;
4353
4354 /* There's a lot of code before this instruction. Start with an
4355 optimistic search; it's easy to recognize halfwords that can
4356 not be the start of a 32-bit instruction, and use that to
4357 lock on to the instruction boundaries. */
4358 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4359 if (buf == NULL)
4360 return bpaddr;
4361 buf_len = IT_SCAN_THRESHOLD;
4362
4363 definite = 0;
4364 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4365 {
4366 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4367 if (thumb_insn_size (inst1) == 2)
4368 {
4369 definite = 1;
4370 break;
4371 }
4372 }
4373
4374 /* At this point, if DEFINITE, BUF[I] is the first place we
4375 are sure that we know the instruction boundaries, and it is far
4376 enough from BPADDR that we could not miss an IT instruction
4377 affecting BPADDR. If ! DEFINITE, give up - start from a
4378 known boundary. */
4379 if (! definite)
4380 {
0963b4bd
MS
4381 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4382 bpaddr - boundary);
f9d67f43
DJ
4383 if (buf == NULL)
4384 return bpaddr;
4385 buf_len = bpaddr - boundary;
4386 i = 0;
4387 }
4388 }
4389 else
4390 {
4391 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4392 if (buf == NULL)
4393 return bpaddr;
4394 buf_len = bpaddr - boundary;
4395 i = 0;
4396 }
4397
4398 /* Scan forwards. Find the last IT instruction before BPADDR. */
4399 last_it = -1;
4400 last_it_count = 0;
4401 while (i < buf_len)
4402 {
4403 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4404 last_it_count--;
4405 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4406 {
4407 last_it = i;
4408 if (inst1 & 0x0001)
4409 last_it_count = 4;
4410 else if (inst1 & 0x0002)
4411 last_it_count = 3;
4412 else if (inst1 & 0x0004)
4413 last_it_count = 2;
4414 else
4415 last_it_count = 1;
4416 }
4417 i += thumb_insn_size (inst1);
4418 }
4419
4420 xfree (buf);
4421
4422 if (last_it == -1)
4423 /* There wasn't really an IT instruction after all. */
4424 return bpaddr;
4425
4426 if (last_it_count < 1)
4427 /* It was too far away. */
4428 return bpaddr;
4429
4430 /* This really is a trouble spot. Move the breakpoint to the IT
4431 instruction. */
4432 return bpaddr - buf_len + last_it;
4433}
4434
cca44b1b 4435/* ARM displaced stepping support.
c906108c 4436
cca44b1b 4437 Generally ARM displaced stepping works as follows:
c906108c 4438
cca44b1b 4439 1. When an instruction is to be single-stepped, it is first decoded by
2ba163c8
SM
4440 arm_process_displaced_insn. Depending on the type of instruction, it is
4441 then copied to a scratch location, possibly in a modified form. The
4442 copy_* set of functions performs such modification, as necessary. A
4443 breakpoint is placed after the modified instruction in the scratch space
4444 to return control to GDB. Note in particular that instructions which
4445 modify the PC will no longer do so after modification.
c5aa993b 4446
cca44b1b
JB
4447 2. The instruction is single-stepped, by setting the PC to the scratch
4448 location address, and resuming. Control returns to GDB when the
4449 breakpoint is hit.
c5aa993b 4450
cca44b1b
JB
4451 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4452 function used for the current instruction. This function's job is to
4453 put the CPU/memory state back to what it would have been if the
4454 instruction had been executed unmodified in its original location. */
c5aa993b 4455
cca44b1b
JB
4456/* NOP instruction (mov r0, r0). */
4457#define ARM_NOP 0xe1a00000
34518530 4458#define THUMB_NOP 0x4600
cca44b1b
JB
4459
4460/* Helper for register reads for displaced stepping. In particular, this
4461 returns the PC as it would be seen by the instruction at its original
4462 location. */
4463
4464ULONGEST
36073a92
YQ
4465displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4466 int regno)
cca44b1b
JB
4467{
4468 ULONGEST ret;
36073a92 4469 CORE_ADDR from = dsc->insn_addr;
cca44b1b 4470
bf9f652a 4471 if (regno == ARM_PC_REGNUM)
cca44b1b 4472 {
4db71c0b
YQ
4473 /* Compute pipeline offset:
4474 - When executing an ARM instruction, PC reads as the address of the
4475 current instruction plus 8.
4476 - When executing a Thumb instruction, PC reads as the address of the
4477 current instruction plus 4. */
4478
36073a92 4479 if (!dsc->is_thumb)
4db71c0b
YQ
4480 from += 8;
4481 else
4482 from += 4;
4483
cca44b1b
JB
4484 if (debug_displaced)
4485 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4db71c0b
YQ
4486 (unsigned long) from);
4487 return (ULONGEST) from;
cca44b1b 4488 }
c906108c 4489 else
cca44b1b
JB
4490 {
4491 regcache_cooked_read_unsigned (regs, regno, &ret);
4492 if (debug_displaced)
4493 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4494 regno, (unsigned long) ret);
4495 return ret;
4496 }
c906108c
SS
4497}
4498
cca44b1b
JB
4499static int
4500displaced_in_arm_mode (struct regcache *regs)
4501{
4502 ULONGEST ps;
9779414d 4503 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 4504
cca44b1b 4505 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 4506
9779414d 4507 return (ps & t_bit) == 0;
cca44b1b 4508}
66e810cd 4509
cca44b1b 4510/* Write to the PC as from a branch instruction. */
c906108c 4511
cca44b1b 4512static void
36073a92
YQ
4513branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4514 ULONGEST val)
c906108c 4515{
36073a92 4516 if (!dsc->is_thumb)
cca44b1b
JB
4517 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4518 architecture versions < 6. */
0963b4bd
MS
4519 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4520 val & ~(ULONGEST) 0x3);
cca44b1b 4521 else
0963b4bd
MS
4522 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4523 val & ~(ULONGEST) 0x1);
cca44b1b 4524}
66e810cd 4525
cca44b1b
JB
4526/* Write to the PC as from a branch-exchange instruction. */
4527
4528static void
4529bx_write_pc (struct regcache *regs, ULONGEST val)
4530{
4531 ULONGEST ps;
9779414d 4532 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
4533
4534 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4535
4536 if ((val & 1) == 1)
c906108c 4537 {
9779414d 4538 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
4539 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4540 }
4541 else if ((val & 2) == 0)
4542 {
9779414d 4543 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 4544 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
4545 }
4546 else
4547 {
cca44b1b
JB
4548 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4549 mode, align dest to 4 bytes). */
4550 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 4551 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 4552 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
4553 }
4554}
ed9a39eb 4555
cca44b1b 4556/* Write to the PC as if from a load instruction. */
ed9a39eb 4557
34e8f22d 4558static void
36073a92
YQ
4559load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4560 ULONGEST val)
ed9a39eb 4561{
cca44b1b
JB
4562 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4563 bx_write_pc (regs, val);
4564 else
36073a92 4565 branch_write_pc (regs, dsc, val);
cca44b1b 4566}
be8626e0 4567
cca44b1b
JB
4568/* Write to the PC as if from an ALU instruction. */
4569
4570static void
36073a92
YQ
4571alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4572 ULONGEST val)
cca44b1b 4573{
36073a92 4574 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
cca44b1b
JB
4575 bx_write_pc (regs, val);
4576 else
36073a92 4577 branch_write_pc (regs, dsc, val);
cca44b1b
JB
4578}
4579
4580/* Helper for writing to registers for displaced stepping. Writing to the PC
4581 has a varying effects depending on the instruction which does the write:
4582 this is controlled by the WRITE_PC argument. */
4583
4584void
4585displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4586 int regno, ULONGEST val, enum pc_write_style write_pc)
4587{
bf9f652a 4588 if (regno == ARM_PC_REGNUM)
08216dd7 4589 {
cca44b1b
JB
4590 if (debug_displaced)
4591 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4592 (unsigned long) val);
4593 switch (write_pc)
08216dd7 4594 {
cca44b1b 4595 case BRANCH_WRITE_PC:
36073a92 4596 branch_write_pc (regs, dsc, val);
08216dd7
RE
4597 break;
4598
cca44b1b
JB
4599 case BX_WRITE_PC:
4600 bx_write_pc (regs, val);
4601 break;
4602
4603 case LOAD_WRITE_PC:
36073a92 4604 load_write_pc (regs, dsc, val);
cca44b1b
JB
4605 break;
4606
4607 case ALU_WRITE_PC:
36073a92 4608 alu_write_pc (regs, dsc, val);
cca44b1b
JB
4609 break;
4610
4611 case CANNOT_WRITE_PC:
4612 warning (_("Instruction wrote to PC in an unexpected way when "
4613 "single-stepping"));
08216dd7
RE
4614 break;
4615
4616 default:
97b9747c
JB
4617 internal_error (__FILE__, __LINE__,
4618 _("Invalid argument to displaced_write_reg"));
08216dd7 4619 }
b508a996 4620
cca44b1b 4621 dsc->wrote_to_pc = 1;
b508a996 4622 }
ed9a39eb 4623 else
b508a996 4624 {
cca44b1b
JB
4625 if (debug_displaced)
4626 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4627 regno, (unsigned long) val);
4628 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 4629 }
34e8f22d
RE
4630}
4631
cca44b1b
JB
4632/* This function is used to concisely determine if an instruction INSN
4633 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
4634 corresponding fields of BITMASK set to 0b1111. The function
4635 returns return 1 if any of these fields in INSN reference the PC
4636 (also 0b1111, r15), else it returns 0. */
67255d04
RE
4637
4638static int
cca44b1b 4639insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 4640{
cca44b1b 4641 uint32_t lowbit = 1;
67255d04 4642
cca44b1b
JB
4643 while (bitmask != 0)
4644 {
4645 uint32_t mask;
44e1a9eb 4646
cca44b1b
JB
4647 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4648 ;
67255d04 4649
cca44b1b
JB
4650 if (!lowbit)
4651 break;
67255d04 4652
cca44b1b 4653 mask = lowbit * 0xf;
67255d04 4654
cca44b1b
JB
4655 if ((insn & mask) == mask)
4656 return 1;
4657
4658 bitmask &= ~mask;
67255d04
RE
4659 }
4660
cca44b1b
JB
4661 return 0;
4662}
2af48f68 4663
cca44b1b
JB
4664/* The simplest copy function. Many instructions have the same effect no
4665 matter what address they are executed at: in those cases, use this. */
67255d04 4666
cca44b1b 4667static int
7ff120b4
YQ
4668arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4669 const char *iname, struct displaced_step_closure *dsc)
cca44b1b
JB
4670{
4671 if (debug_displaced)
4672 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4673 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4674 iname);
67255d04 4675
cca44b1b 4676 dsc->modinsn[0] = insn;
67255d04 4677
cca44b1b
JB
4678 return 0;
4679}
4680
34518530
YQ
4681static int
4682thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4683 uint16_t insn2, const char *iname,
4684 struct displaced_step_closure *dsc)
4685{
4686 if (debug_displaced)
4687 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4688 "opcode/class '%s' unmodified\n", insn1, insn2,
4689 iname);
4690
4691 dsc->modinsn[0] = insn1;
4692 dsc->modinsn[1] = insn2;
4693 dsc->numinsns = 2;
4694
4695 return 0;
4696}
4697
4698/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4699 modification. */
4700static int
615234c1 4701thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
34518530
YQ
4702 const char *iname,
4703 struct displaced_step_closure *dsc)
4704{
4705 if (debug_displaced)
4706 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4707 "opcode/class '%s' unmodified\n", insn,
4708 iname);
4709
4710 dsc->modinsn[0] = insn;
4711
4712 return 0;
4713}
4714
cca44b1b
JB
4715/* Preload instructions with immediate offset. */
4716
4717static void
6e39997a 4718cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
4719 struct regcache *regs, struct displaced_step_closure *dsc)
4720{
4721 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4722 if (!dsc->u.preload.immed)
4723 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4724}
4725
7ff120b4
YQ
4726static void
4727install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4728 struct displaced_step_closure *dsc, unsigned int rn)
cca44b1b 4729{
cca44b1b 4730 ULONGEST rn_val;
cca44b1b
JB
4731 /* Preload instructions:
4732
4733 {pli/pld} [rn, #+/-imm]
4734 ->
4735 {pli/pld} [r0, #+/-imm]. */
4736
36073a92
YQ
4737 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4738 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 4739 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
cca44b1b
JB
4740 dsc->u.preload.immed = 1;
4741
cca44b1b 4742 dsc->cleanup = &cleanup_preload;
cca44b1b
JB
4743}
4744
cca44b1b 4745static int
7ff120b4 4746arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
cca44b1b
JB
4747 struct displaced_step_closure *dsc)
4748{
4749 unsigned int rn = bits (insn, 16, 19);
cca44b1b 4750
7ff120b4
YQ
4751 if (!insn_references_pc (insn, 0x000f0000ul))
4752 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
cca44b1b
JB
4753
4754 if (debug_displaced)
4755 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4756 (unsigned long) insn);
4757
7ff120b4
YQ
4758 dsc->modinsn[0] = insn & 0xfff0ffff;
4759
4760 install_preload (gdbarch, regs, dsc, rn);
4761
4762 return 0;
4763}
4764
34518530
YQ
4765static int
4766thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4767 struct regcache *regs, struct displaced_step_closure *dsc)
4768{
4769 unsigned int rn = bits (insn1, 0, 3);
4770 unsigned int u_bit = bit (insn1, 7);
4771 int imm12 = bits (insn2, 0, 11);
4772 ULONGEST pc_val;
4773
4774 if (rn != ARM_PC_REGNUM)
4775 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4776
4777 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4778 PLD (literal) Encoding T1. */
4779 if (debug_displaced)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4782 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4783 imm12);
4784
4785 if (!u_bit)
4786 imm12 = -1 * imm12;
4787
4788 /* Rewrite instruction {pli/pld} PC imm12 into:
4789 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4790
4791 {pli/pld} [r0, r1]
4792
4793 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4794
4795 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4796 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4797
4798 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4799
4800 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4801 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4802 dsc->u.preload.immed = 0;
4803
4804 /* {pli/pld} [r0, r1] */
4805 dsc->modinsn[0] = insn1 & 0xfff0;
4806 dsc->modinsn[1] = 0xf001;
4807 dsc->numinsns = 2;
4808
4809 dsc->cleanup = &cleanup_preload;
4810 return 0;
4811}
4812
7ff120b4
YQ
4813/* Preload instructions with register offset. */
4814
4815static void
4816install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4817 struct displaced_step_closure *dsc, unsigned int rn,
4818 unsigned int rm)
4819{
4820 ULONGEST rn_val, rm_val;
4821
cca44b1b
JB
4822 /* Preload register-offset instructions:
4823
4824 {pli/pld} [rn, rm {, shift}]
4825 ->
4826 {pli/pld} [r0, r1 {, shift}]. */
4827
36073a92
YQ
4828 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4829 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4830 rn_val = displaced_read_reg (regs, dsc, rn);
4831 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
4832 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4833 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
4834 dsc->u.preload.immed = 0;
4835
cca44b1b 4836 dsc->cleanup = &cleanup_preload;
7ff120b4
YQ
4837}
4838
4839static int
4840arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4841 struct regcache *regs,
4842 struct displaced_step_closure *dsc)
4843{
4844 unsigned int rn = bits (insn, 16, 19);
4845 unsigned int rm = bits (insn, 0, 3);
4846
4847
4848 if (!insn_references_pc (insn, 0x000f000ful))
4849 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4850
4851 if (debug_displaced)
4852 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4853 (unsigned long) insn);
4854
4855 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
cca44b1b 4856
7ff120b4 4857 install_preload_reg (gdbarch, regs, dsc, rn, rm);
cca44b1b
JB
4858 return 0;
4859}
4860
4861/* Copy/cleanup coprocessor load and store instructions. */
4862
4863static void
6e39997a 4864cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
4865 struct regcache *regs,
4866 struct displaced_step_closure *dsc)
4867{
36073a92 4868 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
4869
4870 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4871
4872 if (dsc->u.ldst.writeback)
4873 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4874}
4875
7ff120b4
YQ
4876static void
4877install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4878 struct displaced_step_closure *dsc,
4879 int writeback, unsigned int rn)
cca44b1b 4880{
cca44b1b 4881 ULONGEST rn_val;
cca44b1b 4882
cca44b1b
JB
4883 /* Coprocessor load/store instructions:
4884
4885 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4886 ->
4887 {stc/stc2} [r0, #+/-imm].
4888
4889 ldc/ldc2 are handled identically. */
4890
36073a92
YQ
4891 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4892 rn_val = displaced_read_reg (regs, dsc, rn);
2b16b2e3
YQ
4893 /* PC should be 4-byte aligned. */
4894 rn_val = rn_val & 0xfffffffc;
cca44b1b
JB
4895 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4896
7ff120b4 4897 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
4898 dsc->u.ldst.rn = rn;
4899
7ff120b4
YQ
4900 dsc->cleanup = &cleanup_copro_load_store;
4901}
4902
4903static int
4904arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4905 struct regcache *regs,
4906 struct displaced_step_closure *dsc)
4907{
4908 unsigned int rn = bits (insn, 16, 19);
4909
4910 if (!insn_references_pc (insn, 0x000f0000ul))
4911 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4912
4913 if (debug_displaced)
4914 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4915 "load/store insn %.8lx\n", (unsigned long) insn);
4916
cca44b1b
JB
4917 dsc->modinsn[0] = insn & 0xfff0ffff;
4918
7ff120b4 4919 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
cca44b1b
JB
4920
4921 return 0;
4922}
4923
34518530
YQ
4924static int
4925thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4926 uint16_t insn2, struct regcache *regs,
4927 struct displaced_step_closure *dsc)
4928{
4929 unsigned int rn = bits (insn1, 0, 3);
4930
4931 if (rn != ARM_PC_REGNUM)
4932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4933 "copro load/store", dsc);
4934
4935 if (debug_displaced)
4936 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4937 "load/store insn %.4x%.4x\n", insn1, insn2);
4938
4939 dsc->modinsn[0] = insn1 & 0xfff0;
4940 dsc->modinsn[1] = insn2;
4941 dsc->numinsns = 2;
4942
4943 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4944 doesn't support writeback, so pass 0. */
4945 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4946
4947 return 0;
4948}
4949
cca44b1b
JB
4950/* Clean up branch instructions (actually perform the branch, by setting
4951 PC). */
4952
4953static void
6e39997a 4954cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
4955 struct displaced_step_closure *dsc)
4956{
36073a92 4957 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
4958 int branch_taken = condition_true (dsc->u.branch.cond, status);
4959 enum pc_write_style write_pc = dsc->u.branch.exchange
4960 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4961
4962 if (!branch_taken)
4963 return;
4964
4965 if (dsc->u.branch.link)
4966 {
8c8dba6d
YQ
4967 /* The value of LR should be the next insn of current one. In order
4968 not to confuse logic hanlding later insn `bx lr', if current insn mode
4969 is Thumb, the bit 0 of LR value should be set to 1. */
4970 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4971
4972 if (dsc->is_thumb)
4973 next_insn_addr |= 0x1;
4974
4975 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4976 CANNOT_WRITE_PC);
cca44b1b
JB
4977 }
4978
bf9f652a 4979 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
4980}
4981
4982/* Copy B/BL/BLX instructions with immediate destinations. */
4983
7ff120b4
YQ
4984static void
4985install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4986 struct displaced_step_closure *dsc,
4987 unsigned int cond, int exchange, int link, long offset)
4988{
4989 /* Implement "BL<cond> <label>" as:
4990
4991 Preparation: cond <- instruction condition
4992 Insn: mov r0, r0 (nop)
4993 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4994
4995 B<cond> similar, but don't set r14 in cleanup. */
4996
4997 dsc->u.branch.cond = cond;
4998 dsc->u.branch.link = link;
4999 dsc->u.branch.exchange = exchange;
5000
2b16b2e3
YQ
5001 dsc->u.branch.dest = dsc->insn_addr;
5002 if (link && exchange)
5003 /* For BLX, offset is computed from the Align (PC, 4). */
5004 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
5005
7ff120b4 5006 if (dsc->is_thumb)
2b16b2e3 5007 dsc->u.branch.dest += 4 + offset;
7ff120b4 5008 else
2b16b2e3 5009 dsc->u.branch.dest += 8 + offset;
7ff120b4
YQ
5010
5011 dsc->cleanup = &cleanup_branch;
5012}
cca44b1b 5013static int
7ff120b4
YQ
5014arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5015 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5016{
5017 unsigned int cond = bits (insn, 28, 31);
5018 int exchange = (cond == 0xf);
5019 int link = exchange || bit (insn, 24);
cca44b1b
JB
5020 long offset;
5021
5022 if (debug_displaced)
5023 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5024 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5025 (unsigned long) insn);
cca44b1b
JB
5026 if (exchange)
5027 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5028 then arrange the switch into Thumb mode. */
5029 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5030 else
5031 offset = bits (insn, 0, 23) << 2;
5032
5033 if (bit (offset, 25))
5034 offset = offset | ~0x3ffffff;
5035
cca44b1b
JB
5036 dsc->modinsn[0] = ARM_NOP;
5037
7ff120b4 5038 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
cca44b1b
JB
5039 return 0;
5040}
5041
34518530
YQ
5042static int
5043thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5044 uint16_t insn2, struct regcache *regs,
5045 struct displaced_step_closure *dsc)
5046{
5047 int link = bit (insn2, 14);
5048 int exchange = link && !bit (insn2, 12);
5049 int cond = INST_AL;
5050 long offset = 0;
5051 int j1 = bit (insn2, 13);
5052 int j2 = bit (insn2, 11);
5053 int s = sbits (insn1, 10, 10);
5054 int i1 = !(j1 ^ bit (insn1, 10));
5055 int i2 = !(j2 ^ bit (insn1, 10));
5056
5057 if (!link && !exchange) /* B */
5058 {
5059 offset = (bits (insn2, 0, 10) << 1);
5060 if (bit (insn2, 12)) /* Encoding T4 */
5061 {
5062 offset |= (bits (insn1, 0, 9) << 12)
5063 | (i2 << 22)
5064 | (i1 << 23)
5065 | (s << 24);
5066 cond = INST_AL;
5067 }
5068 else /* Encoding T3 */
5069 {
5070 offset |= (bits (insn1, 0, 5) << 12)
5071 | (j1 << 18)
5072 | (j2 << 19)
5073 | (s << 20);
5074 cond = bits (insn1, 6, 9);
5075 }
5076 }
5077 else
5078 {
5079 offset = (bits (insn1, 0, 9) << 12);
5080 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5081 offset |= exchange ?
5082 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5083 }
5084
5085 if (debug_displaced)
5086 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5087 "%.4x %.4x with offset %.8lx\n",
5088 link ? (exchange) ? "blx" : "bl" : "b",
5089 insn1, insn2, offset);
5090
5091 dsc->modinsn[0] = THUMB_NOP;
5092
5093 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5094 return 0;
5095}
5096
5097/* Copy B Thumb instructions. */
5098static int
615234c1 5099thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
34518530
YQ
5100 struct displaced_step_closure *dsc)
5101{
5102 unsigned int cond = 0;
5103 int offset = 0;
5104 unsigned short bit_12_15 = bits (insn, 12, 15);
5105 CORE_ADDR from = dsc->insn_addr;
5106
5107 if (bit_12_15 == 0xd)
5108 {
5109 /* offset = SignExtend (imm8:0, 32) */
5110 offset = sbits ((insn << 1), 0, 8);
5111 cond = bits (insn, 8, 11);
5112 }
5113 else if (bit_12_15 == 0xe) /* Encoding T2 */
5114 {
5115 offset = sbits ((insn << 1), 0, 11);
5116 cond = INST_AL;
5117 }
5118
5119 if (debug_displaced)
5120 fprintf_unfiltered (gdb_stdlog,
5121 "displaced: copying b immediate insn %.4x "
5122 "with offset %d\n", insn, offset);
5123
5124 dsc->u.branch.cond = cond;
5125 dsc->u.branch.link = 0;
5126 dsc->u.branch.exchange = 0;
5127 dsc->u.branch.dest = from + 4 + offset;
5128
5129 dsc->modinsn[0] = THUMB_NOP;
5130
5131 dsc->cleanup = &cleanup_branch;
5132
5133 return 0;
5134}
5135
cca44b1b
JB
5136/* Copy BX/BLX with register-specified destinations. */
5137
7ff120b4
YQ
5138static void
5139install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5140 struct displaced_step_closure *dsc, int link,
5141 unsigned int cond, unsigned int rm)
cca44b1b 5142{
cca44b1b
JB
5143 /* Implement {BX,BLX}<cond> <reg>" as:
5144
5145 Preparation: cond <- instruction condition
5146 Insn: mov r0, r0 (nop)
5147 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5148
5149 Don't set r14 in cleanup for BX. */
5150
36073a92 5151 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5152
5153 dsc->u.branch.cond = cond;
5154 dsc->u.branch.link = link;
cca44b1b 5155
7ff120b4 5156 dsc->u.branch.exchange = 1;
cca44b1b
JB
5157
5158 dsc->cleanup = &cleanup_branch;
7ff120b4 5159}
cca44b1b 5160
7ff120b4
YQ
5161static int
5162arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5163 struct regcache *regs, struct displaced_step_closure *dsc)
5164{
5165 unsigned int cond = bits (insn, 28, 31);
5166 /* BX: x12xxx1x
5167 BLX: x12xxx3x. */
5168 int link = bit (insn, 5);
5169 unsigned int rm = bits (insn, 0, 3);
5170
5171 if (debug_displaced)
5172 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5173 (unsigned long) insn);
5174
5175 dsc->modinsn[0] = ARM_NOP;
5176
5177 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
cca44b1b
JB
5178 return 0;
5179}
5180
34518530
YQ
5181static int
5182thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5183 struct regcache *regs,
5184 struct displaced_step_closure *dsc)
5185{
5186 int link = bit (insn, 7);
5187 unsigned int rm = bits (insn, 3, 6);
5188
5189 if (debug_displaced)
5190 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5191 (unsigned short) insn);
5192
5193 dsc->modinsn[0] = THUMB_NOP;
5194
5195 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5196
5197 return 0;
5198}
5199
5200
0963b4bd 5201/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
5202
5203static void
6e39997a 5204cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
5205 struct regcache *regs, struct displaced_step_closure *dsc)
5206{
36073a92 5207 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5208 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5209 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5210 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5211}
5212
5213static int
7ff120b4
YQ
5214arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5215 struct displaced_step_closure *dsc)
cca44b1b
JB
5216{
5217 unsigned int rn = bits (insn, 16, 19);
5218 unsigned int rd = bits (insn, 12, 15);
5219 unsigned int op = bits (insn, 21, 24);
5220 int is_mov = (op == 0xd);
5221 ULONGEST rd_val, rn_val;
cca44b1b
JB
5222
5223 if (!insn_references_pc (insn, 0x000ff000ul))
7ff120b4 5224 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
cca44b1b
JB
5225
5226 if (debug_displaced)
5227 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5228 "%.8lx\n", is_mov ? "move" : "ALU",
5229 (unsigned long) insn);
5230
5231 /* Instruction is of form:
5232
5233 <op><cond> rd, [rn,] #imm
5234
5235 Rewrite as:
5236
5237 Preparation: tmp1, tmp2 <- r0, r1;
5238 r0, r1 <- rd, rn
5239 Insn: <op><cond> r0, r1, #imm
5240 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5241 */
5242
36073a92
YQ
5243 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5244 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5245 rn_val = displaced_read_reg (regs, dsc, rn);
5246 rd_val = displaced_read_reg (regs, dsc, rd);
cca44b1b
JB
5247 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5248 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5249 dsc->rd = rd;
5250
5251 if (is_mov)
5252 dsc->modinsn[0] = insn & 0xfff00fff;
5253 else
5254 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5255
5256 dsc->cleanup = &cleanup_alu_imm;
5257
5258 return 0;
5259}
5260
34518530
YQ
5261static int
5262thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5263 uint16_t insn2, struct regcache *regs,
5264 struct displaced_step_closure *dsc)
5265{
5266 unsigned int op = bits (insn1, 5, 8);
5267 unsigned int rn, rm, rd;
5268 ULONGEST rd_val, rn_val;
5269
5270 rn = bits (insn1, 0, 3); /* Rn */
5271 rm = bits (insn2, 0, 3); /* Rm */
5272 rd = bits (insn2, 8, 11); /* Rd */
5273
5274 /* This routine is only called for instruction MOV. */
5275 gdb_assert (op == 0x2 && rn == 0xf);
5276
5277 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5278 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5279
5280 if (debug_displaced)
5281 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5282 "ALU", insn1, insn2);
5283
5284 /* Instruction is of form:
5285
5286 <op><cond> rd, [rn,] #imm
5287
5288 Rewrite as:
5289
5290 Preparation: tmp1, tmp2 <- r0, r1;
5291 r0, r1 <- rd, rn
5292 Insn: <op><cond> r0, r1, #imm
5293 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5294 */
5295
5296 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5297 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5298 rn_val = displaced_read_reg (regs, dsc, rn);
5299 rd_val = displaced_read_reg (regs, dsc, rd);
5300 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5301 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5302 dsc->rd = rd;
5303
5304 dsc->modinsn[0] = insn1;
5305 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5306 dsc->numinsns = 2;
5307
5308 dsc->cleanup = &cleanup_alu_imm;
5309
5310 return 0;
5311}
5312
cca44b1b
JB
5313/* Copy/cleanup arithmetic/logic insns with register RHS. */
5314
5315static void
6e39997a 5316cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5317 struct regcache *regs, struct displaced_step_closure *dsc)
5318{
5319 ULONGEST rd_val;
5320 int i;
5321
36073a92 5322 rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5323
5324 for (i = 0; i < 3; i++)
5325 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5326
5327 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5328}
5329
7ff120b4
YQ
5330static void
5331install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5332 struct displaced_step_closure *dsc,
5333 unsigned int rd, unsigned int rn, unsigned int rm)
cca44b1b 5334{
cca44b1b 5335 ULONGEST rd_val, rn_val, rm_val;
cca44b1b 5336
cca44b1b
JB
5337 /* Instruction is of form:
5338
5339 <op><cond> rd, [rn,] rm [, <shift>]
5340
5341 Rewrite as:
5342
5343 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5344 r0, r1, r2 <- rd, rn, rm
ef713951 5345 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
cca44b1b
JB
5346 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5347 */
5348
36073a92
YQ
5349 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5350 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5351 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5352 rd_val = displaced_read_reg (regs, dsc, rd);
5353 rn_val = displaced_read_reg (regs, dsc, rn);
5354 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5355 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5356 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5357 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5358 dsc->rd = rd;
5359
7ff120b4
YQ
5360 dsc->cleanup = &cleanup_alu_reg;
5361}
5362
5363static int
5364arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5365 struct displaced_step_closure *dsc)
5366{
5367 unsigned int op = bits (insn, 21, 24);
5368 int is_mov = (op == 0xd);
5369
5370 if (!insn_references_pc (insn, 0x000ff00ful))
5371 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5372
5373 if (debug_displaced)
5374 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5375 is_mov ? "move" : "ALU", (unsigned long) insn);
5376
cca44b1b
JB
5377 if (is_mov)
5378 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5379 else
5380 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5381
7ff120b4
YQ
5382 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5383 bits (insn, 0, 3));
cca44b1b
JB
5384 return 0;
5385}
5386
34518530
YQ
5387static int
5388thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5389 struct regcache *regs,
5390 struct displaced_step_closure *dsc)
5391{
ef713951 5392 unsigned rm, rd;
34518530 5393
ef713951
YQ
5394 rm = bits (insn, 3, 6);
5395 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
34518530 5396
ef713951 5397 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
34518530
YQ
5398 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5399
5400 if (debug_displaced)
ef713951
YQ
5401 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5402 (unsigned short) insn);
34518530 5403
ef713951 5404 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
34518530 5405
ef713951 5406 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
34518530
YQ
5407
5408 return 0;
5409}
5410
cca44b1b
JB
5411/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5412
5413static void
6e39997a 5414cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5415 struct regcache *regs,
5416 struct displaced_step_closure *dsc)
5417{
36073a92 5418 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5419 int i;
5420
5421 for (i = 0; i < 4; i++)
5422 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5423
5424 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5425}
5426
7ff120b4
YQ
5427static void
5428install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5429 struct displaced_step_closure *dsc,
5430 unsigned int rd, unsigned int rn, unsigned int rm,
5431 unsigned rs)
cca44b1b 5432{
7ff120b4 5433 int i;
cca44b1b 5434 ULONGEST rd_val, rn_val, rm_val, rs_val;
cca44b1b 5435
cca44b1b
JB
5436 /* Instruction is of form:
5437
5438 <op><cond> rd, [rn,] rm, <shift> rs
5439
5440 Rewrite as:
5441
5442 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5443 r0, r1, r2, r3 <- rd, rn, rm, rs
5444 Insn: <op><cond> r0, r1, r2, <shift> r3
5445 Cleanup: tmp5 <- r0
5446 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5447 rd <- tmp5
5448 */
5449
5450 for (i = 0; i < 4; i++)
36073a92 5451 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b 5452
36073a92
YQ
5453 rd_val = displaced_read_reg (regs, dsc, rd);
5454 rn_val = displaced_read_reg (regs, dsc, rn);
5455 rm_val = displaced_read_reg (regs, dsc, rm);
5456 rs_val = displaced_read_reg (regs, dsc, rs);
cca44b1b
JB
5457 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5458 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5459 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5460 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5461 dsc->rd = rd;
7ff120b4
YQ
5462 dsc->cleanup = &cleanup_alu_shifted_reg;
5463}
5464
5465static int
5466arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5467 struct regcache *regs,
5468 struct displaced_step_closure *dsc)
5469{
5470 unsigned int op = bits (insn, 21, 24);
5471 int is_mov = (op == 0xd);
5472 unsigned int rd, rn, rm, rs;
5473
5474 if (!insn_references_pc (insn, 0x000fff0ful))
5475 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5476
5477 if (debug_displaced)
5478 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5479 "%.8lx\n", is_mov ? "move" : "ALU",
5480 (unsigned long) insn);
5481
5482 rn = bits (insn, 16, 19);
5483 rm = bits (insn, 0, 3);
5484 rs = bits (insn, 8, 11);
5485 rd = bits (insn, 12, 15);
cca44b1b
JB
5486
5487 if (is_mov)
5488 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5489 else
5490 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5491
7ff120b4 5492 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
cca44b1b
JB
5493
5494 return 0;
5495}
5496
5497/* Clean up load instructions. */
5498
5499static void
6e39997a 5500cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5501 struct displaced_step_closure *dsc)
5502{
5503 ULONGEST rt_val, rt_val2 = 0, rn_val;
cca44b1b 5504
36073a92 5505 rt_val = displaced_read_reg (regs, dsc, 0);
cca44b1b 5506 if (dsc->u.ldst.xfersize == 8)
36073a92
YQ
5507 rt_val2 = displaced_read_reg (regs, dsc, 1);
5508 rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5509
5510 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5511 if (dsc->u.ldst.xfersize > 4)
5512 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5513 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5514 if (!dsc->u.ldst.immed)
5515 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5516
5517 /* Handle register writeback. */
5518 if (dsc->u.ldst.writeback)
5519 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5520 /* Put result in right place. */
5521 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5522 if (dsc->u.ldst.xfersize == 8)
5523 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5524}
5525
5526/* Clean up store instructions. */
5527
5528static void
6e39997a 5529cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5530 struct displaced_step_closure *dsc)
5531{
36073a92 5532 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5533
5534 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5535 if (dsc->u.ldst.xfersize > 4)
5536 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5537 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5538 if (!dsc->u.ldst.immed)
5539 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5540 if (!dsc->u.ldst.restore_r4)
5541 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5542
5543 /* Writeback. */
5544 if (dsc->u.ldst.writeback)
5545 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5546}
5547
5548/* Copy "extra" load/store instructions. These are halfword/doubleword
5549 transfers, which have a different encoding to byte/word transfers. */
5550
5551static int
550dc4e2 5552arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
7ff120b4 5553 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5554{
5555 unsigned int op1 = bits (insn, 20, 24);
5556 unsigned int op2 = bits (insn, 5, 6);
5557 unsigned int rt = bits (insn, 12, 15);
5558 unsigned int rn = bits (insn, 16, 19);
5559 unsigned int rm = bits (insn, 0, 3);
5560 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5561 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5562 int immed = (op1 & 0x4) != 0;
5563 int opcode;
5564 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
cca44b1b
JB
5565
5566 if (!insn_references_pc (insn, 0x000ff00ful))
7ff120b4 5567 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
cca44b1b
JB
5568
5569 if (debug_displaced)
5570 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
550dc4e2 5571 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
cca44b1b
JB
5572 (unsigned long) insn);
5573
5574 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5575
5576 if (opcode < 0)
5577 internal_error (__FILE__, __LINE__,
5578 _("copy_extra_ld_st: instruction decode error"));
5579
36073a92
YQ
5580 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5581 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5582 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5583 if (!immed)
36073a92 5584 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5585
36073a92 5586 rt_val = displaced_read_reg (regs, dsc, rt);
cca44b1b 5587 if (bytesize[opcode] == 8)
36073a92
YQ
5588 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5589 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5590 if (!immed)
36073a92 5591 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5592
5593 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5594 if (bytesize[opcode] == 8)
5595 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5596 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5597 if (!immed)
5598 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5599
5600 dsc->rd = rt;
5601 dsc->u.ldst.xfersize = bytesize[opcode];
5602 dsc->u.ldst.rn = rn;
5603 dsc->u.ldst.immed = immed;
5604 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5605 dsc->u.ldst.restore_r4 = 0;
5606
5607 if (immed)
5608 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5609 ->
5610 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5611 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5612 else
5613 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5614 ->
5615 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5616 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5617
5618 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5619
5620 return 0;
5621}
5622
0f6f04ba 5623/* Copy byte/half word/word loads and stores. */
cca44b1b 5624
7ff120b4 5625static void
0f6f04ba
YQ
5626install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5627 struct displaced_step_closure *dsc, int load,
5628 int immed, int writeback, int size, int usermode,
5629 int rt, int rm, int rn)
cca44b1b 5630{
cca44b1b 5631 ULONGEST rt_val, rn_val, rm_val = 0;
cca44b1b 5632
36073a92
YQ
5633 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5634 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5635 if (!immed)
36073a92 5636 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5637 if (!load)
36073a92 5638 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
cca44b1b 5639
36073a92
YQ
5640 rt_val = displaced_read_reg (regs, dsc, rt);
5641 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5642 if (!immed)
36073a92 5643 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5644
5645 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5646 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5647 if (!immed)
5648 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
cca44b1b 5649 dsc->rd = rt;
0f6f04ba 5650 dsc->u.ldst.xfersize = size;
cca44b1b
JB
5651 dsc->u.ldst.rn = rn;
5652 dsc->u.ldst.immed = immed;
7ff120b4 5653 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
5654
5655 /* To write PC we can do:
5656
494e194e
YQ
5657 Before this sequence of instructions:
5658 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5659 r2 is the Rn value got from dispalced_read_reg.
5660
5661 Insn1: push {pc} Write address of STR instruction + offset on stack
5662 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5663 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5664 = addr(Insn1) + offset - addr(Insn3) - 8
5665 = offset - 16
5666 Insn4: add r4, r4, #8 r4 = offset - 8
5667 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5668 = from + offset
5669 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
5670
5671 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
5672 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5673 of this can be found in Section "Saving from r15" in
5674 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 5675
7ff120b4
YQ
5676 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5677}
5678
34518530
YQ
5679
5680static int
5681thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5682 uint16_t insn2, struct regcache *regs,
5683 struct displaced_step_closure *dsc, int size)
5684{
5685 unsigned int u_bit = bit (insn1, 7);
5686 unsigned int rt = bits (insn2, 12, 15);
5687 int imm12 = bits (insn2, 0, 11);
5688 ULONGEST pc_val;
5689
5690 if (debug_displaced)
5691 fprintf_unfiltered (gdb_stdlog,
5692 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5693 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5694 imm12);
5695
5696 if (!u_bit)
5697 imm12 = -1 * imm12;
5698
5699 /* Rewrite instruction LDR Rt imm12 into:
5700
5701 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5702
5703 LDR R0, R2, R3,
5704
5705 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5706
5707
5708 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5709 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5710 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5711
5712 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5713
5714 pc_val = pc_val & 0xfffffffc;
5715
5716 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5717 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5718
5719 dsc->rd = rt;
5720
5721 dsc->u.ldst.xfersize = size;
5722 dsc->u.ldst.immed = 0;
5723 dsc->u.ldst.writeback = 0;
5724 dsc->u.ldst.restore_r4 = 0;
5725
5726 /* LDR R0, R2, R3 */
5727 dsc->modinsn[0] = 0xf852;
5728 dsc->modinsn[1] = 0x3;
5729 dsc->numinsns = 2;
5730
5731 dsc->cleanup = &cleanup_load;
5732
5733 return 0;
5734}
5735
5736static int
5737thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5738 uint16_t insn2, struct regcache *regs,
5739 struct displaced_step_closure *dsc,
5740 int writeback, int immed)
5741{
5742 unsigned int rt = bits (insn2, 12, 15);
5743 unsigned int rn = bits (insn1, 0, 3);
5744 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5745 /* In LDR (register), there is also a register Rm, which is not allowed to
5746 be PC, so we don't have to check it. */
5747
5748 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5749 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5750 dsc);
5751
5752 if (debug_displaced)
5753 fprintf_unfiltered (gdb_stdlog,
5754 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5755 rt, rn, insn1, insn2);
5756
5757 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5758 0, rt, rm, rn);
5759
5760 dsc->u.ldst.restore_r4 = 0;
5761
5762 if (immed)
5763 /* ldr[b]<cond> rt, [rn, #imm], etc.
5764 ->
5765 ldr[b]<cond> r0, [r2, #imm]. */
5766 {
5767 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5768 dsc->modinsn[1] = insn2 & 0x0fff;
5769 }
5770 else
5771 /* ldr[b]<cond> rt, [rn, rm], etc.
5772 ->
5773 ldr[b]<cond> r0, [r2, r3]. */
5774 {
5775 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5776 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5777 }
5778
5779 dsc->numinsns = 2;
5780
5781 return 0;
5782}
5783
5784
7ff120b4
YQ
5785static int
5786arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5787 struct regcache *regs,
5788 struct displaced_step_closure *dsc,
0f6f04ba 5789 int load, int size, int usermode)
7ff120b4
YQ
5790{
5791 int immed = !bit (insn, 25);
5792 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5793 unsigned int rt = bits (insn, 12, 15);
5794 unsigned int rn = bits (insn, 16, 19);
5795 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5796
5797 if (!insn_references_pc (insn, 0x000ff00ful))
5798 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5799
5800 if (debug_displaced)
5801 fprintf_unfiltered (gdb_stdlog,
5802 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
0f6f04ba
YQ
5803 load ? (size == 1 ? "ldrb" : "ldr")
5804 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
7ff120b4
YQ
5805 rt, rn,
5806 (unsigned long) insn);
5807
0f6f04ba
YQ
5808 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5809 usermode, rt, rm, rn);
7ff120b4 5810
bf9f652a 5811 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
5812 {
5813 dsc->u.ldst.restore_r4 = 0;
5814
5815 if (immed)
5816 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5817 ->
5818 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5819 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5820 else
5821 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5822 ->
5823 {ldr,str}[b]<cond> r0, [r2, r3]. */
5824 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5825 }
5826 else
5827 {
5828 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5829 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
5830 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5831 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
5832 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5833 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5834 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5835
5836 /* As above. */
5837 if (immed)
5838 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5839 else
5840 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5841
cca44b1b
JB
5842 dsc->numinsns = 6;
5843 }
5844
5845 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5846
5847 return 0;
5848}
5849
5850/* Cleanup LDM instructions with fully-populated register list. This is an
5851 unfortunate corner case: it's impossible to implement correctly by modifying
5852 the instruction. The issue is as follows: we have an instruction,
5853
5854 ldm rN, {r0-r15}
5855
5856 which we must rewrite to avoid loading PC. A possible solution would be to
5857 do the load in two halves, something like (with suitable cleanup
5858 afterwards):
5859
5860 mov r8, rN
5861 ldm[id][ab] r8!, {r0-r7}
5862 str r7, <temp>
5863 ldm[id][ab] r8, {r7-r14}
5864 <bkpt>
5865
5866 but at present there's no suitable place for <temp>, since the scratch space
5867 is overwritten before the cleanup routine is called. For now, we simply
5868 emulate the instruction. */
5869
5870static void
5871cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5872 struct displaced_step_closure *dsc)
5873{
cca44b1b
JB
5874 int inc = dsc->u.block.increment;
5875 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5876 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5877 uint32_t regmask = dsc->u.block.regmask;
5878 int regno = inc ? 0 : 15;
5879 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5880 int exception_return = dsc->u.block.load && dsc->u.block.user
5881 && (regmask & 0x8000) != 0;
36073a92 5882 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5883 int do_transfer = condition_true (dsc->u.block.cond, status);
5884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5885
5886 if (!do_transfer)
5887 return;
5888
5889 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5890 sensible we can do here. Complain loudly. */
5891 if (exception_return)
5892 error (_("Cannot single-step exception return"));
5893
5894 /* We don't handle any stores here for now. */
5895 gdb_assert (dsc->u.block.load != 0);
5896
5897 if (debug_displaced)
5898 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5899 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5900 dsc->u.block.increment ? "inc" : "dec",
5901 dsc->u.block.before ? "before" : "after");
5902
5903 while (regmask)
5904 {
5905 uint32_t memword;
5906
5907 if (inc)
bf9f652a 5908 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
5909 regno++;
5910 else
5911 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5912 regno--;
5913
5914 xfer_addr += bump_before;
5915
5916 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5917 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5918
5919 xfer_addr += bump_after;
5920
5921 regmask &= ~(1 << regno);
5922 }
5923
5924 if (dsc->u.block.writeback)
5925 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5926 CANNOT_WRITE_PC);
5927}
5928
5929/* Clean up an STM which included the PC in the register list. */
5930
5931static void
5932cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5933 struct displaced_step_closure *dsc)
5934{
36073a92 5935 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5936 int store_executed = condition_true (dsc->u.block.cond, status);
5937 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5938 CORE_ADDR stm_insn_addr;
5939 uint32_t pc_val;
5940 long offset;
5941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5942
5943 /* If condition code fails, there's nothing else to do. */
5944 if (!store_executed)
5945 return;
5946
5947 if (dsc->u.block.increment)
5948 {
5949 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5950
5951 if (dsc->u.block.before)
5952 pc_stored_at += 4;
5953 }
5954 else
5955 {
5956 pc_stored_at = dsc->u.block.xfer_addr;
5957
5958 if (dsc->u.block.before)
5959 pc_stored_at -= 4;
5960 }
5961
5962 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5963 stm_insn_addr = dsc->scratch_base;
5964 offset = pc_val - stm_insn_addr;
5965
5966 if (debug_displaced)
5967 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5968 "STM instruction\n", offset);
5969
5970 /* Rewrite the stored PC to the proper value for the non-displaced original
5971 instruction. */
5972 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5973 dsc->insn_addr + offset);
5974}
5975
5976/* Clean up an LDM which includes the PC in the register list. We clumped all
5977 the registers in the transferred list into a contiguous range r0...rX (to
5978 avoid loading PC directly and losing control of the debugged program), so we
5979 must undo that here. */
5980
5981static void
6e39997a 5982cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
5983 struct regcache *regs,
5984 struct displaced_step_closure *dsc)
5985{
36073a92 5986 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
22e048c9 5987 int load_executed = condition_true (dsc->u.block.cond, status);
bf9f652a 5988 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
cca44b1b
JB
5989 unsigned int regs_loaded = bitcount (mask);
5990 unsigned int num_to_shuffle = regs_loaded, clobbered;
5991
5992 /* The method employed here will fail if the register list is fully populated
5993 (we need to avoid loading PC directly). */
5994 gdb_assert (num_to_shuffle < 16);
5995
5996 if (!load_executed)
5997 return;
5998
5999 clobbered = (1 << num_to_shuffle) - 1;
6000
6001 while (num_to_shuffle > 0)
6002 {
6003 if ((mask & (1 << write_reg)) != 0)
6004 {
6005 unsigned int read_reg = num_to_shuffle - 1;
6006
6007 if (read_reg != write_reg)
6008 {
36073a92 6009 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
cca44b1b
JB
6010 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6011 if (debug_displaced)
6012 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6013 "loaded register r%d to r%d\n"), read_reg,
6014 write_reg);
6015 }
6016 else if (debug_displaced)
6017 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6018 "r%d already in the right place\n"),
6019 write_reg);
6020
6021 clobbered &= ~(1 << write_reg);
6022
6023 num_to_shuffle--;
6024 }
6025
6026 write_reg--;
6027 }
6028
6029 /* Restore any registers we scribbled over. */
6030 for (write_reg = 0; clobbered != 0; write_reg++)
6031 {
6032 if ((clobbered & (1 << write_reg)) != 0)
6033 {
6034 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6035 CANNOT_WRITE_PC);
6036 if (debug_displaced)
6037 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6038 "clobbered register r%d\n"), write_reg);
6039 clobbered &= ~(1 << write_reg);
6040 }
6041 }
6042
6043 /* Perform register writeback manually. */
6044 if (dsc->u.block.writeback)
6045 {
6046 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6047
6048 if (dsc->u.block.increment)
6049 new_rn_val += regs_loaded * 4;
6050 else
6051 new_rn_val -= regs_loaded * 4;
6052
6053 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6054 CANNOT_WRITE_PC);
6055 }
6056}
6057
6058/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6059 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6060
6061static int
7ff120b4
YQ
6062arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6063 struct regcache *regs,
6064 struct displaced_step_closure *dsc)
cca44b1b
JB
6065{
6066 int load = bit (insn, 20);
6067 int user = bit (insn, 22);
6068 int increment = bit (insn, 23);
6069 int before = bit (insn, 24);
6070 int writeback = bit (insn, 21);
6071 int rn = bits (insn, 16, 19);
cca44b1b 6072
0963b4bd
MS
6073 /* Block transfers which don't mention PC can be run directly
6074 out-of-line. */
bf9f652a 6075 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
7ff120b4 6076 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
cca44b1b 6077
bf9f652a 6078 if (rn == ARM_PC_REGNUM)
cca44b1b 6079 {
0963b4bd
MS
6080 warning (_("displaced: Unpredictable LDM or STM with "
6081 "base register r15"));
7ff120b4 6082 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
cca44b1b
JB
6083 }
6084
6085 if (debug_displaced)
6086 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6087 "%.8lx\n", (unsigned long) insn);
6088
36073a92 6089 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
6090 dsc->u.block.rn = rn;
6091
6092 dsc->u.block.load = load;
6093 dsc->u.block.user = user;
6094 dsc->u.block.increment = increment;
6095 dsc->u.block.before = before;
6096 dsc->u.block.writeback = writeback;
6097 dsc->u.block.cond = bits (insn, 28, 31);
6098
6099 dsc->u.block.regmask = insn & 0xffff;
6100
6101 if (load)
6102 {
6103 if ((insn & 0xffff) == 0xffff)
6104 {
6105 /* LDM with a fully-populated register list. This case is
6106 particularly tricky. Implement for now by fully emulating the
6107 instruction (which might not behave perfectly in all cases, but
6108 these instructions should be rare enough for that not to matter
6109 too much). */
6110 dsc->modinsn[0] = ARM_NOP;
6111
6112 dsc->cleanup = &cleanup_block_load_all;
6113 }
6114 else
6115 {
6116 /* LDM of a list of registers which includes PC. Implement by
6117 rewriting the list of registers to be transferred into a
6118 contiguous chunk r0...rX before doing the transfer, then shuffling
6119 registers into the correct places in the cleanup routine. */
6120 unsigned int regmask = insn & 0xffff;
bec2ab5a
SM
6121 unsigned int num_in_list = bitcount (regmask), new_regmask;
6122 unsigned int i;
cca44b1b
JB
6123
6124 for (i = 0; i < num_in_list; i++)
36073a92 6125 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b
JB
6126
6127 /* Writeback makes things complicated. We need to avoid clobbering
6128 the base register with one of the registers in our modified
6129 register list, but just using a different register can't work in
6130 all cases, e.g.:
6131
6132 ldm r14!, {r0-r13,pc}
6133
6134 which would need to be rewritten as:
6135
6136 ldm rN!, {r0-r14}
6137
6138 but that can't work, because there's no free register for N.
6139
6140 Solve this by turning off the writeback bit, and emulating
6141 writeback manually in the cleanup routine. */
6142
6143 if (writeback)
6144 insn &= ~(1 << 21);
6145
6146 new_regmask = (1 << num_in_list) - 1;
6147
6148 if (debug_displaced)
6149 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6150 "{..., pc}: original reg list %.4x, modified "
6151 "list %.4x\n"), rn, writeback ? "!" : "",
6152 (int) insn & 0xffff, new_regmask);
6153
6154 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6155
6156 dsc->cleanup = &cleanup_block_load_pc;
6157 }
6158 }
6159 else
6160 {
6161 /* STM of a list of registers which includes PC. Run the instruction
6162 as-is, but out of line: this will store the wrong value for the PC,
6163 so we must manually fix up the memory in the cleanup routine.
6164 Doing things this way has the advantage that we can auto-detect
6165 the offset of the PC write (which is architecture-dependent) in
6166 the cleanup routine. */
6167 dsc->modinsn[0] = insn;
6168
6169 dsc->cleanup = &cleanup_block_store_pc;
6170 }
6171
6172 return 0;
6173}
6174
34518530
YQ
6175static int
6176thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6177 struct regcache *regs,
6178 struct displaced_step_closure *dsc)
cca44b1b 6179{
34518530
YQ
6180 int rn = bits (insn1, 0, 3);
6181 int load = bit (insn1, 4);
6182 int writeback = bit (insn1, 5);
cca44b1b 6183
34518530
YQ
6184 /* Block transfers which don't mention PC can be run directly
6185 out-of-line. */
6186 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6187 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
7ff120b4 6188
34518530
YQ
6189 if (rn == ARM_PC_REGNUM)
6190 {
6191 warning (_("displaced: Unpredictable LDM or STM with "
6192 "base register r15"));
6193 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6194 "unpredictable ldm/stm", dsc);
6195 }
cca44b1b
JB
6196
6197 if (debug_displaced)
34518530
YQ
6198 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6199 "%.4x%.4x\n", insn1, insn2);
cca44b1b 6200
34518530
YQ
6201 /* Clear bit 13, since it should be always zero. */
6202 dsc->u.block.regmask = (insn2 & 0xdfff);
6203 dsc->u.block.rn = rn;
cca44b1b 6204
34518530
YQ
6205 dsc->u.block.load = load;
6206 dsc->u.block.user = 0;
6207 dsc->u.block.increment = bit (insn1, 7);
6208 dsc->u.block.before = bit (insn1, 8);
6209 dsc->u.block.writeback = writeback;
6210 dsc->u.block.cond = INST_AL;
6211 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b 6212
34518530
YQ
6213 if (load)
6214 {
6215 if (dsc->u.block.regmask == 0xffff)
6216 {
6217 /* This branch is impossible to happen. */
6218 gdb_assert (0);
6219 }
6220 else
6221 {
6222 unsigned int regmask = dsc->u.block.regmask;
bec2ab5a
SM
6223 unsigned int num_in_list = bitcount (regmask), new_regmask;
6224 unsigned int i;
34518530
YQ
6225
6226 for (i = 0; i < num_in_list; i++)
6227 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6228
6229 if (writeback)
6230 insn1 &= ~(1 << 5);
6231
6232 new_regmask = (1 << num_in_list) - 1;
6233
6234 if (debug_displaced)
6235 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6236 "{..., pc}: original reg list %.4x, modified "
6237 "list %.4x\n"), rn, writeback ? "!" : "",
6238 (int) dsc->u.block.regmask, new_regmask);
6239
6240 dsc->modinsn[0] = insn1;
6241 dsc->modinsn[1] = (new_regmask & 0xffff);
6242 dsc->numinsns = 2;
6243
6244 dsc->cleanup = &cleanup_block_load_pc;
6245 }
6246 }
6247 else
6248 {
6249 dsc->modinsn[0] = insn1;
6250 dsc->modinsn[1] = insn2;
6251 dsc->numinsns = 2;
6252 dsc->cleanup = &cleanup_block_store_pc;
6253 }
6254 return 0;
6255}
6256
d9311bfa
AT
6257/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6258 This is used to avoid a dependency on BFD's bfd_endian enum. */
6259
6260ULONGEST
6261arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6262 int byte_order)
6263{
5f2dfcfd
AT
6264 return read_memory_unsigned_integer (memaddr, len,
6265 (enum bfd_endian) byte_order);
d9311bfa
AT
6266}
6267
6268/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6269
6270CORE_ADDR
6271arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6272 CORE_ADDR val)
6273{
6274 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6275}
6276
6277/* Wrapper over syscall_next_pc for use in get_next_pcs. */
6278
e7cf25a8 6279static CORE_ADDR
553cb527 6280arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
d9311bfa 6281{
d9311bfa
AT
6282 return 0;
6283}
6284
6285/* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6286
6287int
6288arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6289{
6290 return arm_is_thumb (self->regcache);
6291}
6292
6293/* single_step() is called just before we want to resume the inferior,
6294 if we want to single-step it but there is no hardware or kernel
6295 single-step support. We find the target of the coming instructions
6296 and breakpoint them. */
6297
a0ff9e1a 6298std::vector<CORE_ADDR>
f5ea389a 6299arm_software_single_step (struct regcache *regcache)
d9311bfa 6300{
d9311bfa 6301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d9311bfa 6302 struct arm_get_next_pcs next_pcs_ctx;
d9311bfa
AT
6303
6304 arm_get_next_pcs_ctor (&next_pcs_ctx,
6305 &arm_get_next_pcs_ops,
6306 gdbarch_byte_order (gdbarch),
6307 gdbarch_byte_order_for_code (gdbarch),
1b451dda 6308 0,
d9311bfa
AT
6309 regcache);
6310
a0ff9e1a 6311 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
d9311bfa 6312
a0ff9e1a
SM
6313 for (CORE_ADDR &pc_ref : next_pcs)
6314 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
d9311bfa 6315
93f9a11f 6316 return next_pcs;
d9311bfa
AT
6317}
6318
34518530
YQ
6319/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6320 for Linux, where some SVC instructions must be treated specially. */
6321
6322static void
6323cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6324 struct displaced_step_closure *dsc)
6325{
6326 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6327
6328 if (debug_displaced)
6329 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6330 "%.8lx\n", (unsigned long) resume_addr);
6331
6332 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6333}
6334
6335
6336/* Common copy routine for svc instruciton. */
6337
6338static int
6339install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6340 struct displaced_step_closure *dsc)
6341{
6342 /* Preparation: none.
6343 Insn: unmodified svc.
6344 Cleanup: pc <- insn_addr + insn_size. */
6345
6346 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6347 instruction. */
6348 dsc->wrote_to_pc = 1;
6349
6350 /* Allow OS-specific code to override SVC handling. */
bd18283a
YQ
6351 if (dsc->u.svc.copy_svc_os)
6352 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6353 else
6354 {
6355 dsc->cleanup = &cleanup_svc;
6356 return 0;
6357 }
34518530
YQ
6358}
6359
6360static int
6361arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6362 struct regcache *regs, struct displaced_step_closure *dsc)
6363{
6364
6365 if (debug_displaced)
6366 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6367 (unsigned long) insn);
6368
6369 dsc->modinsn[0] = insn;
6370
6371 return install_svc (gdbarch, regs, dsc);
6372}
6373
6374static int
6375thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6376 struct regcache *regs, struct displaced_step_closure *dsc)
6377{
6378
6379 if (debug_displaced)
6380 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6381 insn);
bd18283a 6382
34518530
YQ
6383 dsc->modinsn[0] = insn;
6384
6385 return install_svc (gdbarch, regs, dsc);
cca44b1b
JB
6386}
6387
6388/* Copy undefined instructions. */
6389
6390static int
7ff120b4
YQ
6391arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6392 struct displaced_step_closure *dsc)
cca44b1b
JB
6393{
6394 if (debug_displaced)
0963b4bd
MS
6395 fprintf_unfiltered (gdb_stdlog,
6396 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
6397 (unsigned long) insn);
6398
6399 dsc->modinsn[0] = insn;
6400
6401 return 0;
6402}
6403
34518530
YQ
6404static int
6405thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6406 struct displaced_step_closure *dsc)
6407{
6408
6409 if (debug_displaced)
6410 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6411 "%.4x %.4x\n", (unsigned short) insn1,
6412 (unsigned short) insn2);
6413
6414 dsc->modinsn[0] = insn1;
6415 dsc->modinsn[1] = insn2;
6416 dsc->numinsns = 2;
6417
6418 return 0;
6419}
6420
cca44b1b
JB
6421/* Copy unpredictable instructions. */
6422
6423static int
7ff120b4
YQ
6424arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6425 struct displaced_step_closure *dsc)
cca44b1b
JB
6426{
6427 if (debug_displaced)
6428 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6429 "%.8lx\n", (unsigned long) insn);
6430
6431 dsc->modinsn[0] = insn;
6432
6433 return 0;
6434}
6435
6436/* The decode_* functions are instruction decoding helpers. They mostly follow
6437 the presentation in the ARM ARM. */
6438
6439static int
7ff120b4
YQ
6440arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6441 struct regcache *regs,
6442 struct displaced_step_closure *dsc)
cca44b1b
JB
6443{
6444 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6445 unsigned int rn = bits (insn, 16, 19);
6446
6447 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
7ff120b4 6448 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
cca44b1b 6449 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
7ff120b4 6450 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
cca44b1b 6451 else if ((op1 & 0x60) == 0x20)
7ff120b4 6452 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
cca44b1b 6453 else if ((op1 & 0x71) == 0x40)
7ff120b4
YQ
6454 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6455 dsc);
cca44b1b 6456 else if ((op1 & 0x77) == 0x41)
7ff120b4 6457 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6458 else if ((op1 & 0x77) == 0x45)
7ff120b4 6459 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
cca44b1b
JB
6460 else if ((op1 & 0x77) == 0x51)
6461 {
6462 if (rn != 0xf)
7ff120b4 6463 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b 6464 else
7ff120b4 6465 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6466 }
6467 else if ((op1 & 0x77) == 0x55)
7ff120b4 6468 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b
JB
6469 else if (op1 == 0x57)
6470 switch (op2)
6471 {
7ff120b4
YQ
6472 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6473 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6474 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6475 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6476 default: return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6477 }
6478 else if ((op1 & 0x63) == 0x43)
7ff120b4 6479 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6480 else if ((op2 & 0x1) == 0x0)
6481 switch (op1 & ~0x80)
6482 {
6483 case 0x61:
7ff120b4 6484 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6485 case 0x65:
7ff120b4 6486 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
cca44b1b
JB
6487 case 0x71: case 0x75:
6488 /* pld/pldw reg. */
7ff120b4 6489 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
cca44b1b 6490 case 0x63: case 0x67: case 0x73: case 0x77:
7ff120b4 6491 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b 6492 default:
7ff120b4 6493 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6494 }
6495 else
7ff120b4 6496 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
cca44b1b
JB
6497}
6498
6499static int
7ff120b4
YQ
6500arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6501 struct regcache *regs,
6502 struct displaced_step_closure *dsc)
cca44b1b
JB
6503{
6504 if (bit (insn, 27) == 0)
7ff120b4 6505 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
cca44b1b
JB
6506 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6507 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6508 {
6509 case 0x0: case 0x2:
7ff120b4 6510 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
cca44b1b
JB
6511
6512 case 0x1: case 0x3:
7ff120b4 6513 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
cca44b1b
JB
6514
6515 case 0x4: case 0x5: case 0x6: case 0x7:
7ff120b4 6516 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b
JB
6517
6518 case 0x8:
6519 switch ((insn & 0xe00000) >> 21)
6520 {
6521 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6522 /* stc/stc2. */
7ff120b4 6523 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6524
6525 case 0x2:
7ff120b4 6526 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b
JB
6527
6528 default:
7ff120b4 6529 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6530 }
6531
6532 case 0x9:
6533 {
6534 int rn_f = (bits (insn, 16, 19) == 0xf);
6535 switch ((insn & 0xe00000) >> 21)
6536 {
6537 case 0x1: case 0x3:
6538 /* ldc/ldc2 imm (undefined for rn == pc). */
7ff120b4
YQ
6539 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6540 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6541
6542 case 0x2:
7ff120b4 6543 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6544
6545 case 0x4: case 0x5: case 0x6: case 0x7:
6546 /* ldc/ldc2 lit (undefined for rn != pc). */
7ff120b4
YQ
6547 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6548 : arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6549
6550 default:
7ff120b4 6551 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6552 }
6553 }
6554
6555 case 0xa:
7ff120b4 6556 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
cca44b1b
JB
6557
6558 case 0xb:
6559 if (bits (insn, 16, 19) == 0xf)
6560 /* ldc/ldc2 lit. */
7ff120b4 6561 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6562 else
7ff120b4 6563 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6564
6565 case 0xc:
6566 if (bit (insn, 4))
7ff120b4 6567 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6568 else
7ff120b4 6569 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6570
6571 case 0xd:
6572 if (bit (insn, 4))
7ff120b4 6573 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6574 else
7ff120b4 6575 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6576
6577 default:
7ff120b4 6578 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6579 }
6580}
6581
6582/* Decode miscellaneous instructions in dp/misc encoding space. */
6583
6584static int
7ff120b4
YQ
6585arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6586 struct regcache *regs,
6587 struct displaced_step_closure *dsc)
cca44b1b
JB
6588{
6589 unsigned int op2 = bits (insn, 4, 6);
6590 unsigned int op = bits (insn, 21, 22);
cca44b1b
JB
6591
6592 switch (op2)
6593 {
6594 case 0x0:
7ff120b4 6595 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
cca44b1b
JB
6596
6597 case 0x1:
6598 if (op == 0x1) /* bx. */
7ff120b4 6599 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
cca44b1b 6600 else if (op == 0x3)
7ff120b4 6601 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
cca44b1b 6602 else
7ff120b4 6603 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6604
6605 case 0x2:
6606 if (op == 0x1)
6607 /* Not really supported. */
7ff120b4 6608 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
cca44b1b 6609 else
7ff120b4 6610 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6611
6612 case 0x3:
6613 if (op == 0x1)
7ff120b4 6614 return arm_copy_bx_blx_reg (gdbarch, insn,
0963b4bd 6615 regs, dsc); /* blx register. */
cca44b1b 6616 else
7ff120b4 6617 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6618
6619 case 0x5:
7ff120b4 6620 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
cca44b1b
JB
6621
6622 case 0x7:
6623 if (op == 0x1)
7ff120b4 6624 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
cca44b1b
JB
6625 else if (op == 0x3)
6626 /* Not really supported. */
7ff120b4 6627 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
cca44b1b
JB
6628
6629 default:
7ff120b4 6630 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6631 }
6632}
6633
6634static int
7ff120b4
YQ
6635arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6636 struct regcache *regs,
6637 struct displaced_step_closure *dsc)
cca44b1b
JB
6638{
6639 if (bit (insn, 25))
6640 switch (bits (insn, 20, 24))
6641 {
6642 case 0x10:
7ff120b4 6643 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
cca44b1b
JB
6644
6645 case 0x14:
7ff120b4 6646 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
cca44b1b
JB
6647
6648 case 0x12: case 0x16:
7ff120b4 6649 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
cca44b1b
JB
6650
6651 default:
7ff120b4 6652 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
cca44b1b
JB
6653 }
6654 else
6655 {
6656 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6657
6658 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
7ff120b4 6659 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
cca44b1b 6660 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
7ff120b4 6661 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
cca44b1b 6662 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
7ff120b4 6663 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
cca44b1b 6664 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
7ff120b4 6665 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
cca44b1b 6666 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
7ff120b4 6667 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
cca44b1b 6668 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
7ff120b4 6669 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
cca44b1b 6670 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
550dc4e2 6671 /* 2nd arg means "unprivileged". */
7ff120b4
YQ
6672 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6673 dsc);
cca44b1b
JB
6674 }
6675
6676 /* Should be unreachable. */
6677 return 1;
6678}
6679
6680static int
7ff120b4
YQ
6681arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6682 struct regcache *regs,
6683 struct displaced_step_closure *dsc)
cca44b1b
JB
6684{
6685 int a = bit (insn, 25), b = bit (insn, 4);
6686 uint32_t op1 = bits (insn, 20, 24);
cca44b1b
JB
6687
6688 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6689 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
0f6f04ba 6690 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
cca44b1b
JB
6691 else if ((!a && (op1 & 0x17) == 0x02)
6692 || (a && (op1 & 0x17) == 0x02 && !b))
0f6f04ba 6693 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
cca44b1b
JB
6694 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6695 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
0f6f04ba 6696 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
cca44b1b
JB
6697 else if ((!a && (op1 & 0x17) == 0x03)
6698 || (a && (op1 & 0x17) == 0x03 && !b))
0f6f04ba 6699 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
cca44b1b
JB
6700 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6701 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
7ff120b4 6702 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
cca44b1b
JB
6703 else if ((!a && (op1 & 0x17) == 0x06)
6704 || (a && (op1 & 0x17) == 0x06 && !b))
7ff120b4 6705 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
cca44b1b
JB
6706 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6707 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
7ff120b4 6708 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
cca44b1b
JB
6709 else if ((!a && (op1 & 0x17) == 0x07)
6710 || (a && (op1 & 0x17) == 0x07 && !b))
7ff120b4 6711 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
cca44b1b
JB
6712
6713 /* Should be unreachable. */
6714 return 1;
6715}
6716
6717static int
7ff120b4
YQ
6718arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6719 struct displaced_step_closure *dsc)
cca44b1b
JB
6720{
6721 switch (bits (insn, 20, 24))
6722 {
6723 case 0x00: case 0x01: case 0x02: case 0x03:
7ff120b4 6724 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
cca44b1b
JB
6725
6726 case 0x04: case 0x05: case 0x06: case 0x07:
7ff120b4 6727 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
cca44b1b
JB
6728
6729 case 0x08: case 0x09: case 0x0a: case 0x0b:
6730 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7ff120b4 6731 return arm_copy_unmodified (gdbarch, insn,
cca44b1b
JB
6732 "decode/pack/unpack/saturate/reverse", dsc);
6733
6734 case 0x18:
6735 if (bits (insn, 5, 7) == 0) /* op2. */
6736 {
6737 if (bits (insn, 12, 15) == 0xf)
7ff120b4 6738 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
cca44b1b 6739 else
7ff120b4 6740 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
cca44b1b
JB
6741 }
6742 else
7ff120b4 6743 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6744
6745 case 0x1a: case 0x1b:
6746 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6747 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
cca44b1b 6748 else
7ff120b4 6749 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6750
6751 case 0x1c: case 0x1d:
6752 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6753 {
6754 if (bits (insn, 0, 3) == 0xf)
7ff120b4 6755 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
cca44b1b 6756 else
7ff120b4 6757 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
cca44b1b
JB
6758 }
6759 else
7ff120b4 6760 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6761
6762 case 0x1e: case 0x1f:
6763 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6764 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
cca44b1b 6765 else
7ff120b4 6766 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6767 }
6768
6769 /* Should be unreachable. */
6770 return 1;
6771}
6772
6773static int
615234c1 6774arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4
YQ
6775 struct regcache *regs,
6776 struct displaced_step_closure *dsc)
cca44b1b
JB
6777{
6778 if (bit (insn, 25))
7ff120b4 6779 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b 6780 else
7ff120b4 6781 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
cca44b1b
JB
6782}
6783
6784static int
7ff120b4
YQ
6785arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6786 struct regcache *regs,
6787 struct displaced_step_closure *dsc)
cca44b1b
JB
6788{
6789 unsigned int opcode = bits (insn, 20, 24);
6790
6791 switch (opcode)
6792 {
6793 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7ff120b4 6794 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
cca44b1b
JB
6795
6796 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6797 case 0x12: case 0x16:
7ff120b4 6798 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
cca44b1b
JB
6799
6800 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6801 case 0x13: case 0x17:
7ff120b4 6802 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
cca44b1b
JB
6803
6804 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6805 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6806 /* Note: no writeback for these instructions. Bit 25 will always be
6807 zero though (via caller), so the following works OK. */
7ff120b4 6808 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6809 }
6810
6811 /* Should be unreachable. */
6812 return 1;
6813}
6814
34518530
YQ
6815/* Decode shifted register instructions. */
6816
6817static int
6818thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6819 uint16_t insn2, struct regcache *regs,
6820 struct displaced_step_closure *dsc)
6821{
6822 /* PC is only allowed to be used in instruction MOV. */
6823
6824 unsigned int op = bits (insn1, 5, 8);
6825 unsigned int rn = bits (insn1, 0, 3);
6826
6827 if (op == 0x2 && rn == 0xf) /* MOV */
6828 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6829 else
6830 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6831 "dp (shift reg)", dsc);
6832}
6833
6834
6835/* Decode extension register load/store. Exactly the same as
6836 arm_decode_ext_reg_ld_st. */
6837
6838static int
6839thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6840 uint16_t insn2, struct regcache *regs,
6841 struct displaced_step_closure *dsc)
6842{
6843 unsigned int opcode = bits (insn1, 4, 8);
6844
6845 switch (opcode)
6846 {
6847 case 0x04: case 0x05:
6848 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6849 "vfp/neon vmov", dsc);
6850
6851 case 0x08: case 0x0c: /* 01x00 */
6852 case 0x0a: case 0x0e: /* 01x10 */
6853 case 0x12: case 0x16: /* 10x10 */
6854 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6855 "vfp/neon vstm/vpush", dsc);
6856
6857 case 0x09: case 0x0d: /* 01x01 */
6858 case 0x0b: case 0x0f: /* 01x11 */
6859 case 0x13: case 0x17: /* 10x11 */
6860 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6861 "vfp/neon vldm/vpop", dsc);
6862
6863 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6864 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6865 "vstr", dsc);
6866 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6867 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6868 }
6869
6870 /* Should be unreachable. */
6871 return 1;
6872}
6873
cca44b1b 6874static int
12545665 6875arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4 6876 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
6877{
6878 unsigned int op1 = bits (insn, 20, 25);
6879 int op = bit (insn, 4);
6880 unsigned int coproc = bits (insn, 8, 11);
cca44b1b
JB
6881
6882 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
7ff120b4 6883 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
cca44b1b
JB
6884 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6885 && (coproc & 0xe) != 0xa)
6886 /* stc/stc2. */
7ff120b4 6887 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6888 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6889 && (coproc & 0xe) != 0xa)
6890 /* ldc/ldc2 imm/lit. */
7ff120b4 6891 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6892 else if ((op1 & 0x3e) == 0x00)
7ff120b4 6893 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b 6894 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
7ff120b4 6895 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
cca44b1b 6896 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
7ff120b4 6897 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b 6898 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
7ff120b4 6899 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6900 else if ((op1 & 0x30) == 0x20 && !op)
6901 {
6902 if ((coproc & 0xe) == 0xa)
7ff120b4 6903 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
cca44b1b 6904 else
7ff120b4 6905 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6906 }
6907 else if ((op1 & 0x30) == 0x20 && op)
7ff120b4 6908 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
cca44b1b 6909 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
7ff120b4 6910 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6911 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
7ff120b4 6912 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6913 else if ((op1 & 0x30) == 0x30)
7ff120b4 6914 return arm_copy_svc (gdbarch, insn, regs, dsc);
cca44b1b 6915 else
7ff120b4 6916 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
cca44b1b
JB
6917}
6918
34518530
YQ
6919static int
6920thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6921 uint16_t insn2, struct regcache *regs,
6922 struct displaced_step_closure *dsc)
6923{
6924 unsigned int coproc = bits (insn2, 8, 11);
34518530
YQ
6925 unsigned int bit_5_8 = bits (insn1, 5, 8);
6926 unsigned int bit_9 = bit (insn1, 9);
6927 unsigned int bit_4 = bit (insn1, 4);
34518530
YQ
6928
6929 if (bit_9 == 0)
6930 {
6931 if (bit_5_8 == 2)
6932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6933 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6934 dsc);
6935 else if (bit_5_8 == 0) /* UNDEFINED. */
6936 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6937 else
6938 {
6939 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6940 if ((coproc & 0xe) == 0xa)
6941 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6942 dsc);
6943 else /* coproc is not 101x. */
6944 {
6945 if (bit_4 == 0) /* STC/STC2. */
6946 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6947 "stc/stc2", dsc);
6948 else /* LDC/LDC2 {literal, immeidate}. */
6949 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6950 regs, dsc);
6951 }
6952 }
6953 }
6954 else
6955 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6956
6957 return 0;
6958}
6959
6960static void
6961install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6962 struct displaced_step_closure *dsc, int rd)
6963{
6964 /* ADR Rd, #imm
6965
6966 Rewrite as:
6967
6968 Preparation: Rd <- PC
6969 Insn: ADD Rd, #imm
6970 Cleanup: Null.
6971 */
6972
6973 /* Rd <- PC */
6974 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6975 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6976}
6977
6978static int
6979thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6980 struct displaced_step_closure *dsc,
6981 int rd, unsigned int imm)
6982{
6983
6984 /* Encoding T2: ADDS Rd, #imm */
6985 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6986
6987 install_pc_relative (gdbarch, regs, dsc, rd);
6988
6989 return 0;
6990}
6991
6992static int
6993thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6994 struct regcache *regs,
6995 struct displaced_step_closure *dsc)
6996{
6997 unsigned int rd = bits (insn, 8, 10);
6998 unsigned int imm8 = bits (insn, 0, 7);
6999
7000 if (debug_displaced)
7001 fprintf_unfiltered (gdb_stdlog,
7002 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7003 rd, imm8, insn);
7004
7005 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7006}
7007
7008static int
7009thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7010 uint16_t insn2, struct regcache *regs,
7011 struct displaced_step_closure *dsc)
7012{
7013 unsigned int rd = bits (insn2, 8, 11);
7014 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7015 extract raw immediate encoding rather than computing immediate. When
7016 generating ADD or SUB instruction, we can simply perform OR operation to
7017 set immediate into ADD. */
7018 unsigned int imm_3_8 = insn2 & 0x70ff;
7019 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7020
7021 if (debug_displaced)
7022 fprintf_unfiltered (gdb_stdlog,
7023 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7024 rd, imm_i, imm_3_8, insn1, insn2);
7025
7026 if (bit (insn1, 7)) /* Encoding T2 */
7027 {
7028 /* Encoding T3: SUB Rd, Rd, #imm */
7029 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7030 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7031 }
7032 else /* Encoding T3 */
7033 {
7034 /* Encoding T3: ADD Rd, Rd, #imm */
7035 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7036 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7037 }
7038 dsc->numinsns = 2;
7039
7040 install_pc_relative (gdbarch, regs, dsc, rd);
7041
7042 return 0;
7043}
7044
7045static int
615234c1 7046thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
34518530
YQ
7047 struct regcache *regs,
7048 struct displaced_step_closure *dsc)
7049{
7050 unsigned int rt = bits (insn1, 8, 10);
7051 unsigned int pc;
7052 int imm8 = (bits (insn1, 0, 7) << 2);
34518530
YQ
7053
7054 /* LDR Rd, #imm8
7055
7056 Rwrite as:
7057
7058 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7059
7060 Insn: LDR R0, [R2, R3];
7061 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7062
7063 if (debug_displaced)
7064 fprintf_unfiltered (gdb_stdlog,
7065 "displaced: copying thumb ldr r%d [pc #%d]\n"
7066 , rt, imm8);
7067
7068 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7069 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7070 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7071 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7072 /* The assembler calculates the required value of the offset from the
7073 Align(PC,4) value of this instruction to the label. */
7074 pc = pc & 0xfffffffc;
7075
7076 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7077 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7078
7079 dsc->rd = rt;
7080 dsc->u.ldst.xfersize = 4;
7081 dsc->u.ldst.rn = 0;
7082 dsc->u.ldst.immed = 0;
7083 dsc->u.ldst.writeback = 0;
7084 dsc->u.ldst.restore_r4 = 0;
7085
7086 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7087
7088 dsc->cleanup = &cleanup_load;
7089
7090 return 0;
7091}
7092
7093/* Copy Thumb cbnz/cbz insruction. */
7094
7095static int
7096thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7097 struct regcache *regs,
7098 struct displaced_step_closure *dsc)
7099{
7100 int non_zero = bit (insn1, 11);
7101 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7102 CORE_ADDR from = dsc->insn_addr;
7103 int rn = bits (insn1, 0, 2);
7104 int rn_val = displaced_read_reg (regs, dsc, rn);
7105
7106 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7107 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7108 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7109 condition is false, let it be, cleanup_branch will do nothing. */
7110 if (dsc->u.branch.cond)
7111 {
7112 dsc->u.branch.cond = INST_AL;
7113 dsc->u.branch.dest = from + 4 + imm5;
7114 }
7115 else
7116 dsc->u.branch.dest = from + 2;
7117
7118 dsc->u.branch.link = 0;
7119 dsc->u.branch.exchange = 0;
7120
7121 if (debug_displaced)
7122 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7123 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7124 rn, rn_val, insn1, dsc->u.branch.dest);
7125
7126 dsc->modinsn[0] = THUMB_NOP;
7127
7128 dsc->cleanup = &cleanup_branch;
7129 return 0;
7130}
7131
7132/* Copy Table Branch Byte/Halfword */
7133static int
7134thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7135 uint16_t insn2, struct regcache *regs,
7136 struct displaced_step_closure *dsc)
7137{
7138 ULONGEST rn_val, rm_val;
7139 int is_tbh = bit (insn2, 4);
7140 CORE_ADDR halfwords = 0;
7141 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7142
7143 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7144 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7145
7146 if (is_tbh)
7147 {
7148 gdb_byte buf[2];
7149
7150 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7151 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7152 }
7153 else
7154 {
7155 gdb_byte buf[1];
7156
7157 target_read_memory (rn_val + rm_val, buf, 1);
7158 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7159 }
7160
7161 if (debug_displaced)
7162 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7163 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7164 (unsigned int) rn_val, (unsigned int) rm_val,
7165 (unsigned int) halfwords);
7166
7167 dsc->u.branch.cond = INST_AL;
7168 dsc->u.branch.link = 0;
7169 dsc->u.branch.exchange = 0;
7170 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7171
7172 dsc->cleanup = &cleanup_branch;
7173
7174 return 0;
7175}
7176
7177static void
7178cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7179 struct displaced_step_closure *dsc)
7180{
7181 /* PC <- r7 */
7182 int val = displaced_read_reg (regs, dsc, 7);
7183 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7184
7185 /* r7 <- r8 */
7186 val = displaced_read_reg (regs, dsc, 8);
7187 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7188
7189 /* r8 <- tmp[0] */
7190 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7191
7192}
7193
7194static int
615234c1 7195thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
34518530
YQ
7196 struct regcache *regs,
7197 struct displaced_step_closure *dsc)
7198{
7199 dsc->u.block.regmask = insn1 & 0x00ff;
7200
7201 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7202 to :
7203
7204 (1) register list is full, that is, r0-r7 are used.
7205 Prepare: tmp[0] <- r8
7206
7207 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7208 MOV r8, r7; Move value of r7 to r8;
7209 POP {r7}; Store PC value into r7.
7210
7211 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7212
7213 (2) register list is not full, supposing there are N registers in
7214 register list (except PC, 0 <= N <= 7).
7215 Prepare: for each i, 0 - N, tmp[i] <- ri.
7216
7217 POP {r0, r1, ...., rN};
7218
7219 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7220 from tmp[] properly.
7221 */
7222 if (debug_displaced)
7223 fprintf_unfiltered (gdb_stdlog,
7224 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7225 dsc->u.block.regmask, insn1);
7226
7227 if (dsc->u.block.regmask == 0xff)
7228 {
7229 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7230
7231 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7232 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7233 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7234
7235 dsc->numinsns = 3;
7236 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7237 }
7238 else
7239 {
7240 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
bec2ab5a
SM
7241 unsigned int i;
7242 unsigned int new_regmask;
34518530
YQ
7243
7244 for (i = 0; i < num_in_list + 1; i++)
7245 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7246
7247 new_regmask = (1 << (num_in_list + 1)) - 1;
7248
7249 if (debug_displaced)
7250 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7251 "{..., pc}: original reg list %.4x,"
7252 " modified list %.4x\n"),
7253 (int) dsc->u.block.regmask, new_regmask);
7254
7255 dsc->u.block.regmask |= 0x8000;
7256 dsc->u.block.writeback = 0;
7257 dsc->u.block.cond = INST_AL;
7258
7259 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7260
7261 dsc->cleanup = &cleanup_block_load_pc;
7262 }
7263
7264 return 0;
7265}
7266
7267static void
7268thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7269 struct regcache *regs,
7270 struct displaced_step_closure *dsc)
7271{
7272 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7273 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7274 int err = 0;
7275
7276 /* 16-bit thumb instructions. */
7277 switch (op_bit_12_15)
7278 {
7279 /* Shift (imme), add, subtract, move and compare. */
7280 case 0: case 1: case 2: case 3:
7281 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7282 "shift/add/sub/mov/cmp",
7283 dsc);
7284 break;
7285 case 4:
7286 switch (op_bit_10_11)
7287 {
7288 case 0: /* Data-processing */
7289 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7290 "data-processing",
7291 dsc);
7292 break;
7293 case 1: /* Special data instructions and branch and exchange. */
7294 {
7295 unsigned short op = bits (insn1, 7, 9);
7296 if (op == 6 || op == 7) /* BX or BLX */
7297 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7298 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7299 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7300 else
7301 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7302 dsc);
7303 }
7304 break;
7305 default: /* LDR (literal) */
7306 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7307 }
7308 break;
7309 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7310 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7311 break;
7312 case 10:
7313 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7314 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7315 else /* Generate SP-relative address */
7316 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7317 break;
7318 case 11: /* Misc 16-bit instructions */
7319 {
7320 switch (bits (insn1, 8, 11))
7321 {
7322 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7323 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7324 break;
7325 case 12: case 13: /* POP */
7326 if (bit (insn1, 8)) /* PC is in register list. */
7327 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7328 else
7329 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7330 break;
7331 case 15: /* If-Then, and hints */
7332 if (bits (insn1, 0, 3))
7333 /* If-Then makes up to four following instructions conditional.
7334 IT instruction itself is not conditional, so handle it as a
7335 common unmodified instruction. */
7336 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7337 dsc);
7338 else
7339 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7340 break;
7341 default:
7342 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7343 }
7344 }
7345 break;
7346 case 12:
7347 if (op_bit_10_11 < 2) /* Store multiple registers */
7348 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7349 else /* Load multiple registers */
7350 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7351 break;
7352 case 13: /* Conditional branch and supervisor call */
7353 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7354 err = thumb_copy_b (gdbarch, insn1, dsc);
7355 else
7356 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7357 break;
7358 case 14: /* Unconditional branch */
7359 err = thumb_copy_b (gdbarch, insn1, dsc);
7360 break;
7361 default:
7362 err = 1;
7363 }
7364
7365 if (err)
7366 internal_error (__FILE__, __LINE__,
7367 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7368}
7369
7370static int
7371decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7372 uint16_t insn1, uint16_t insn2,
7373 struct regcache *regs,
7374 struct displaced_step_closure *dsc)
7375{
7376 int rt = bits (insn2, 12, 15);
7377 int rn = bits (insn1, 0, 3);
7378 int op1 = bits (insn1, 7, 8);
34518530
YQ
7379
7380 switch (bits (insn1, 5, 6))
7381 {
7382 case 0: /* Load byte and memory hints */
7383 if (rt == 0xf) /* PLD/PLI */
7384 {
7385 if (rn == 0xf)
7386 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7387 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7388 else
7389 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7390 "pli/pld", dsc);
7391 }
7392 else
7393 {
7394 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7395 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7396 1);
7397 else
7398 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7399 "ldrb{reg, immediate}/ldrbt",
7400 dsc);
7401 }
7402
7403 break;
7404 case 1: /* Load halfword and memory hints. */
7405 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7406 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7407 "pld/unalloc memhint", dsc);
7408 else
7409 {
7410 if (rn == 0xf)
7411 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7412 2);
7413 else
7414 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7415 "ldrh/ldrht", dsc);
7416 }
7417 break;
7418 case 2: /* Load word */
7419 {
7420 int insn2_bit_8_11 = bits (insn2, 8, 11);
7421
7422 if (rn == 0xf)
7423 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7424 else if (op1 == 0x1) /* Encoding T3 */
7425 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7426 0, 1);
7427 else /* op1 == 0x0 */
7428 {
7429 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7430 /* LDR (immediate) */
7431 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7432 dsc, bit (insn2, 8), 1);
7433 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7434 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7435 "ldrt", dsc);
7436 else
7437 /* LDR (register) */
7438 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7439 dsc, 0, 0);
7440 }
7441 break;
7442 }
7443 default:
7444 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7445 break;
7446 }
7447 return 0;
7448}
7449
7450static void
7451thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7452 uint16_t insn2, struct regcache *regs,
7453 struct displaced_step_closure *dsc)
7454{
7455 int err = 0;
7456 unsigned short op = bit (insn2, 15);
7457 unsigned int op1 = bits (insn1, 11, 12);
7458
7459 switch (op1)
7460 {
7461 case 1:
7462 {
7463 switch (bits (insn1, 9, 10))
7464 {
7465 case 0:
7466 if (bit (insn1, 6))
7467 {
7468 /* Load/store {dual, execlusive}, table branch. */
7469 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7470 && bits (insn2, 5, 7) == 0)
7471 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7472 dsc);
7473 else
7474 /* PC is not allowed to use in load/store {dual, exclusive}
7475 instructions. */
7476 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7477 "load/store dual/ex", dsc);
7478 }
7479 else /* load/store multiple */
7480 {
7481 switch (bits (insn1, 7, 8))
7482 {
7483 case 0: case 3: /* SRS, RFE */
7484 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7485 "srs/rfe", dsc);
7486 break;
7487 case 1: case 2: /* LDM/STM/PUSH/POP */
7488 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7489 break;
7490 }
7491 }
7492 break;
7493
7494 case 1:
7495 /* Data-processing (shift register). */
7496 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7497 dsc);
7498 break;
7499 default: /* Coprocessor instructions. */
7500 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7501 break;
7502 }
7503 break;
7504 }
7505 case 2: /* op1 = 2 */
7506 if (op) /* Branch and misc control. */
7507 {
7508 if (bit (insn2, 14) /* BLX/BL */
7509 || bit (insn2, 12) /* Unconditional branch */
7510 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7511 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7512 else
7513 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7514 "misc ctrl", dsc);
7515 }
7516 else
7517 {
7518 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7519 {
7520 int op = bits (insn1, 4, 8);
7521 int rn = bits (insn1, 0, 3);
7522 if ((op == 0 || op == 0xa) && rn == 0xf)
7523 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7524 regs, dsc);
7525 else
7526 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7527 "dp/pb", dsc);
7528 }
7529 else /* Data processing (modified immeidate) */
7530 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7531 "dp/mi", dsc);
7532 }
7533 break;
7534 case 3: /* op1 = 3 */
7535 switch (bits (insn1, 9, 10))
7536 {
7537 case 0:
7538 if (bit (insn1, 4))
7539 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7540 regs, dsc);
7541 else /* NEON Load/Store and Store single data item */
7542 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7543 "neon elt/struct load/store",
7544 dsc);
7545 break;
7546 case 1: /* op1 = 3, bits (9, 10) == 1 */
7547 switch (bits (insn1, 7, 8))
7548 {
7549 case 0: case 1: /* Data processing (register) */
7550 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7551 "dp(reg)", dsc);
7552 break;
7553 case 2: /* Multiply and absolute difference */
7554 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7555 "mul/mua/diff", dsc);
7556 break;
7557 case 3: /* Long multiply and divide */
7558 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7559 "lmul/lmua", dsc);
7560 break;
7561 }
7562 break;
7563 default: /* Coprocessor instructions */
7564 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7565 break;
7566 }
7567 break;
7568 default:
7569 err = 1;
7570 }
7571
7572 if (err)
7573 internal_error (__FILE__, __LINE__,
7574 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7575
7576}
7577
b434a28f
YQ
7578static void
7579thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
12545665 7580 struct regcache *regs,
b434a28f
YQ
7581 struct displaced_step_closure *dsc)
7582{
34518530
YQ
7583 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7584 uint16_t insn1
7585 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7586
7587 if (debug_displaced)
7588 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7589 "at %.8lx\n", insn1, (unsigned long) from);
7590
7591 dsc->is_thumb = 1;
7592 dsc->insn_size = thumb_insn_size (insn1);
7593 if (thumb_insn_size (insn1) == 4)
7594 {
7595 uint16_t insn2
7596 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7597 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7598 }
7599 else
7600 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
b434a28f
YQ
7601}
7602
cca44b1b 7603void
b434a28f
YQ
7604arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7605 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
7606 struct displaced_step_closure *dsc)
7607{
7608 int err = 0;
b434a28f
YQ
7609 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7610 uint32_t insn;
cca44b1b
JB
7611
7612 /* Most displaced instructions use a 1-instruction scratch space, so set this
7613 here and override below if/when necessary. */
7614 dsc->numinsns = 1;
7615 dsc->insn_addr = from;
7616 dsc->scratch_base = to;
7617 dsc->cleanup = NULL;
7618 dsc->wrote_to_pc = 0;
7619
b434a28f 7620 if (!displaced_in_arm_mode (regs))
12545665 7621 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
b434a28f 7622
4db71c0b
YQ
7623 dsc->is_thumb = 0;
7624 dsc->insn_size = 4;
b434a28f
YQ
7625 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7626 if (debug_displaced)
7627 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7628 "at %.8lx\n", (unsigned long) insn,
7629 (unsigned long) from);
7630
cca44b1b 7631 if ((insn & 0xf0000000) == 0xf0000000)
7ff120b4 7632 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
cca44b1b
JB
7633 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7634 {
7635 case 0x0: case 0x1: case 0x2: case 0x3:
7ff120b4 7636 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
cca44b1b
JB
7637 break;
7638
7639 case 0x4: case 0x5: case 0x6:
7ff120b4 7640 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
cca44b1b
JB
7641 break;
7642
7643 case 0x7:
7ff120b4 7644 err = arm_decode_media (gdbarch, insn, dsc);
cca44b1b
JB
7645 break;
7646
7647 case 0x8: case 0x9: case 0xa: case 0xb:
7ff120b4 7648 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
cca44b1b
JB
7649 break;
7650
7651 case 0xc: case 0xd: case 0xe: case 0xf:
12545665 7652 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
cca44b1b
JB
7653 break;
7654 }
7655
7656 if (err)
7657 internal_error (__FILE__, __LINE__,
7658 _("arm_process_displaced_insn: Instruction decode error"));
7659}
7660
7661/* Actually set up the scratch space for a displaced instruction. */
7662
7663void
7664arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7665 CORE_ADDR to, struct displaced_step_closure *dsc)
7666{
7667 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4db71c0b 7668 unsigned int i, len, offset;
cca44b1b 7669 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4db71c0b 7670 int size = dsc->is_thumb? 2 : 4;
948f8e3d 7671 const gdb_byte *bkp_insn;
cca44b1b 7672
4db71c0b 7673 offset = 0;
cca44b1b
JB
7674 /* Poke modified instruction(s). */
7675 for (i = 0; i < dsc->numinsns; i++)
7676 {
7677 if (debug_displaced)
4db71c0b
YQ
7678 {
7679 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7680 if (size == 4)
7681 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7682 dsc->modinsn[i]);
7683 else if (size == 2)
7684 fprintf_unfiltered (gdb_stdlog, "%.4x",
7685 (unsigned short)dsc->modinsn[i]);
7686
7687 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7688 (unsigned long) to + offset);
7689
7690 }
7691 write_memory_unsigned_integer (to + offset, size,
7692 byte_order_for_code,
cca44b1b 7693 dsc->modinsn[i]);
4db71c0b
YQ
7694 offset += size;
7695 }
7696
7697 /* Choose the correct breakpoint instruction. */
7698 if (dsc->is_thumb)
7699 {
7700 bkp_insn = tdep->thumb_breakpoint;
7701 len = tdep->thumb_breakpoint_size;
7702 }
7703 else
7704 {
7705 bkp_insn = tdep->arm_breakpoint;
7706 len = tdep->arm_breakpoint_size;
cca44b1b
JB
7707 }
7708
7709 /* Put breakpoint afterwards. */
4db71c0b 7710 write_memory (to + offset, bkp_insn, len);
cca44b1b
JB
7711
7712 if (debug_displaced)
7713 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7714 paddress (gdbarch, from), paddress (gdbarch, to));
7715}
7716
cca44b1b
JB
7717/* Entry point for cleaning things up after a displaced instruction has been
7718 single-stepped. */
7719
7720void
7721arm_displaced_step_fixup (struct gdbarch *gdbarch,
7722 struct displaced_step_closure *dsc,
7723 CORE_ADDR from, CORE_ADDR to,
7724 struct regcache *regs)
7725{
7726 if (dsc->cleanup)
7727 dsc->cleanup (gdbarch, regs, dsc);
7728
7729 if (!dsc->wrote_to_pc)
4db71c0b
YQ
7730 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7731 dsc->insn_addr + dsc->insn_size);
7732
cca44b1b
JB
7733}
7734
7735#include "bfd-in2.h"
7736#include "libcoff.h"
7737
7738static int
7739gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7740{
e47ad6c0
YQ
7741 gdb_disassembler *di
7742 = static_cast<gdb_disassembler *>(info->application_data);
7743 struct gdbarch *gdbarch = di->arch ();
9779414d
DJ
7744
7745 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
7746 {
7747 static asymbol *asym;
7748 static combined_entry_type ce;
7749 static struct coff_symbol_struct csym;
7750 static struct bfd fake_bfd;
7751 static bfd_target fake_target;
7752
7753 if (csym.native == NULL)
7754 {
7755 /* Create a fake symbol vector containing a Thumb symbol.
7756 This is solely so that the code in print_insn_little_arm()
7757 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7758 the presence of a Thumb symbol and switch to decoding
7759 Thumb instructions. */
7760
7761 fake_target.flavour = bfd_target_coff_flavour;
7762 fake_bfd.xvec = &fake_target;
7763 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7764 csym.native = &ce;
7765 csym.symbol.the_bfd = &fake_bfd;
7766 csym.symbol.name = "fake";
7767 asym = (asymbol *) & csym;
7768 }
7769
7770 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7771 info->symbols = &asym;
7772 }
7773 else
7774 info->symbols = NULL;
7775
6394c606 7776 return default_print_insn (memaddr, info);
cca44b1b
JB
7777}
7778
7779/* The following define instruction sequences that will cause ARM
7780 cpu's to take an undefined instruction trap. These are used to
7781 signal a breakpoint to GDB.
7782
7783 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7784 modes. A different instruction is required for each mode. The ARM
7785 cpu's can also be big or little endian. Thus four different
7786 instructions are needed to support all cases.
7787
7788 Note: ARMv4 defines several new instructions that will take the
7789 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7790 not in fact add the new instructions. The new undefined
7791 instructions in ARMv4 are all instructions that had no defined
7792 behaviour in earlier chips. There is no guarantee that they will
7793 raise an exception, but may be treated as NOP's. In practice, it
7794 may only safe to rely on instructions matching:
7795
7796 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7797 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7798 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7799
0963b4bd 7800 Even this may only true if the condition predicate is true. The
cca44b1b
JB
7801 following use a condition predicate of ALWAYS so it is always TRUE.
7802
7803 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7804 and NetBSD all use a software interrupt rather than an undefined
7805 instruction to force a trap. This can be handled by by the
7806 abi-specific code during establishment of the gdbarch vector. */
7807
7808#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7809#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7810#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7811#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7812
948f8e3d
PA
7813static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7814static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7815static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7816static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
cca44b1b 7817
cd6c3b4f
YQ
7818/* Implement the breakpoint_kind_from_pc gdbarch method. */
7819
d19280ad
YQ
7820static int
7821arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cca44b1b
JB
7822{
7823 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 7824 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 7825
9779414d 7826 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
7827 {
7828 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
7829
7830 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7831 check whether we are replacing a 32-bit instruction. */
7832 if (tdep->thumb2_breakpoint != NULL)
7833 {
7834 gdb_byte buf[2];
d19280ad 7835
177321bd
DJ
7836 if (target_read_memory (*pcptr, buf, 2) == 0)
7837 {
7838 unsigned short inst1;
d19280ad 7839
177321bd 7840 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
db24da6d 7841 if (thumb_insn_size (inst1) == 4)
d19280ad 7842 return ARM_BP_KIND_THUMB2;
177321bd
DJ
7843 }
7844 }
7845
d19280ad 7846 return ARM_BP_KIND_THUMB;
cca44b1b
JB
7847 }
7848 else
d19280ad
YQ
7849 return ARM_BP_KIND_ARM;
7850
7851}
7852
cd6c3b4f
YQ
7853/* Implement the sw_breakpoint_from_kind gdbarch method. */
7854
d19280ad
YQ
7855static const gdb_byte *
7856arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7857{
7858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7859
7860 switch (kind)
cca44b1b 7861 {
d19280ad
YQ
7862 case ARM_BP_KIND_ARM:
7863 *size = tdep->arm_breakpoint_size;
cca44b1b 7864 return tdep->arm_breakpoint;
d19280ad
YQ
7865 case ARM_BP_KIND_THUMB:
7866 *size = tdep->thumb_breakpoint_size;
7867 return tdep->thumb_breakpoint;
7868 case ARM_BP_KIND_THUMB2:
7869 *size = tdep->thumb2_breakpoint_size;
7870 return tdep->thumb2_breakpoint;
7871 default:
7872 gdb_assert_not_reached ("unexpected arm breakpoint kind");
cca44b1b
JB
7873 }
7874}
7875
833b7ab5
YQ
7876/* Implement the breakpoint_kind_from_current_state gdbarch method. */
7877
7878static int
7879arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7880 struct regcache *regcache,
7881 CORE_ADDR *pcptr)
7882{
7883 gdb_byte buf[4];
7884
7885 /* Check the memory pointed by PC is readable. */
7886 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7887 {
7888 struct arm_get_next_pcs next_pcs_ctx;
833b7ab5
YQ
7889
7890 arm_get_next_pcs_ctor (&next_pcs_ctx,
7891 &arm_get_next_pcs_ops,
7892 gdbarch_byte_order (gdbarch),
7893 gdbarch_byte_order_for_code (gdbarch),
7894 0,
7895 regcache);
7896
a0ff9e1a 7897 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
833b7ab5
YQ
7898
7899 /* If MEMADDR is the next instruction of current pc, do the
7900 software single step computation, and get the thumb mode by
7901 the destination address. */
a0ff9e1a 7902 for (CORE_ADDR pc : next_pcs)
833b7ab5
YQ
7903 {
7904 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7905 {
833b7ab5
YQ
7906 if (IS_THUMB_ADDR (pc))
7907 {
7908 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7909 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7910 }
7911 else
7912 return ARM_BP_KIND_ARM;
7913 }
7914 }
833b7ab5
YQ
7915 }
7916
7917 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7918}
7919
cca44b1b
JB
7920/* Extract from an array REGBUF containing the (raw) register state a
7921 function return value of type TYPE, and copy that, in virtual
7922 format, into VALBUF. */
7923
7924static void
7925arm_extract_return_value (struct type *type, struct regcache *regs,
7926 gdb_byte *valbuf)
7927{
7928 struct gdbarch *gdbarch = get_regcache_arch (regs);
7929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7930
7931 if (TYPE_CODE_FLT == TYPE_CODE (type))
7932 {
7933 switch (gdbarch_tdep (gdbarch)->fp_model)
7934 {
7935 case ARM_FLOAT_FPA:
7936 {
7937 /* The value is in register F0 in internal format. We need to
7938 extract the raw value and then convert it to the desired
7939 internal type. */
7940 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7941
7942 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7943 convert_from_extended (floatformat_from_type (type), tmpbuf,
7944 valbuf, gdbarch_byte_order (gdbarch));
7945 }
7946 break;
7947
7948 case ARM_FLOAT_SOFT_FPA:
7949 case ARM_FLOAT_SOFT_VFP:
7950 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7951 not using the VFP ABI code. */
7952 case ARM_FLOAT_VFP:
7953 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7954 if (TYPE_LENGTH (type) > 4)
7955 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7956 valbuf + INT_REGISTER_SIZE);
7957 break;
7958
7959 default:
0963b4bd
MS
7960 internal_error (__FILE__, __LINE__,
7961 _("arm_extract_return_value: "
7962 "Floating point model not supported"));
cca44b1b
JB
7963 break;
7964 }
7965 }
7966 else if (TYPE_CODE (type) == TYPE_CODE_INT
7967 || TYPE_CODE (type) == TYPE_CODE_CHAR
7968 || TYPE_CODE (type) == TYPE_CODE_BOOL
7969 || TYPE_CODE (type) == TYPE_CODE_PTR
aa006118 7970 || TYPE_IS_REFERENCE (type)
cca44b1b
JB
7971 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7972 {
b021a221
MS
7973 /* If the type is a plain integer, then the access is
7974 straight-forward. Otherwise we have to play around a bit
7975 more. */
cca44b1b
JB
7976 int len = TYPE_LENGTH (type);
7977 int regno = ARM_A1_REGNUM;
7978 ULONGEST tmp;
7979
7980 while (len > 0)
7981 {
7982 /* By using store_unsigned_integer we avoid having to do
7983 anything special for small big-endian values. */
7984 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7985 store_unsigned_integer (valbuf,
7986 (len > INT_REGISTER_SIZE
7987 ? INT_REGISTER_SIZE : len),
7988 byte_order, tmp);
7989 len -= INT_REGISTER_SIZE;
7990 valbuf += INT_REGISTER_SIZE;
7991 }
7992 }
7993 else
7994 {
7995 /* For a structure or union the behaviour is as if the value had
7996 been stored to word-aligned memory and then loaded into
7997 registers with 32-bit load instruction(s). */
7998 int len = TYPE_LENGTH (type);
7999 int regno = ARM_A1_REGNUM;
8000 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8001
8002 while (len > 0)
8003 {
8004 regcache_cooked_read (regs, regno++, tmpbuf);
8005 memcpy (valbuf, tmpbuf,
8006 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8007 len -= INT_REGISTER_SIZE;
8008 valbuf += INT_REGISTER_SIZE;
8009 }
8010 }
8011}
8012
8013
8014/* Will a function return an aggregate type in memory or in a
8015 register? Return 0 if an aggregate type can be returned in a
8016 register, 1 if it must be returned in memory. */
8017
8018static int
8019arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8020{
cca44b1b
JB
8021 enum type_code code;
8022
f168693b 8023 type = check_typedef (type);
cca44b1b 8024
b13c8ab2
YQ
8025 /* Simple, non-aggregate types (ie not including vectors and
8026 complex) are always returned in a register (or registers). */
8027 code = TYPE_CODE (type);
8028 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8029 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8030 return 0;
cca44b1b 8031
c4312b19
YQ
8032 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8033 {
8034 /* Vector values should be returned using ARM registers if they
8035 are not over 16 bytes. */
8036 return (TYPE_LENGTH (type) > 16);
8037 }
8038
b13c8ab2 8039 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
cca44b1b 8040 {
b13c8ab2
YQ
8041 /* The AAPCS says all aggregates not larger than a word are returned
8042 in a register. */
8043 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8044 return 0;
8045
cca44b1b
JB
8046 return 1;
8047 }
b13c8ab2
YQ
8048 else
8049 {
8050 int nRc;
cca44b1b 8051
b13c8ab2
YQ
8052 /* All aggregate types that won't fit in a register must be returned
8053 in memory. */
8054 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8055 return 1;
cca44b1b 8056
b13c8ab2
YQ
8057 /* In the ARM ABI, "integer" like aggregate types are returned in
8058 registers. For an aggregate type to be integer like, its size
8059 must be less than or equal to INT_REGISTER_SIZE and the
8060 offset of each addressable subfield must be zero. Note that bit
8061 fields are not addressable, and all addressable subfields of
8062 unions always start at offset zero.
cca44b1b 8063
b13c8ab2
YQ
8064 This function is based on the behaviour of GCC 2.95.1.
8065 See: gcc/arm.c: arm_return_in_memory() for details.
cca44b1b 8066
b13c8ab2
YQ
8067 Note: All versions of GCC before GCC 2.95.2 do not set up the
8068 parameters correctly for a function returning the following
8069 structure: struct { float f;}; This should be returned in memory,
8070 not a register. Richard Earnshaw sent me a patch, but I do not
8071 know of any way to detect if a function like the above has been
8072 compiled with the correct calling convention. */
8073
8074 /* Assume all other aggregate types can be returned in a register.
8075 Run a check for structures, unions and arrays. */
8076 nRc = 0;
67255d04 8077
b13c8ab2
YQ
8078 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8079 {
8080 int i;
8081 /* Need to check if this struct/union is "integer" like. For
8082 this to be true, its size must be less than or equal to
8083 INT_REGISTER_SIZE and the offset of each addressable
8084 subfield must be zero. Note that bit fields are not
8085 addressable, and unions always start at offset zero. If any
8086 of the subfields is a floating point type, the struct/union
8087 cannot be an integer type. */
8088
8089 /* For each field in the object, check:
8090 1) Is it FP? --> yes, nRc = 1;
8091 2) Is it addressable (bitpos != 0) and
8092 not packed (bitsize == 0)?
8093 --> yes, nRc = 1
8094 */
8095
8096 for (i = 0; i < TYPE_NFIELDS (type); i++)
67255d04 8097 {
b13c8ab2
YQ
8098 enum type_code field_type_code;
8099
8100 field_type_code
8101 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8102 i)));
8103
8104 /* Is it a floating point type field? */
8105 if (field_type_code == TYPE_CODE_FLT)
67255d04
RE
8106 {
8107 nRc = 1;
8108 break;
8109 }
b13c8ab2
YQ
8110
8111 /* If bitpos != 0, then we have to care about it. */
8112 if (TYPE_FIELD_BITPOS (type, i) != 0)
8113 {
8114 /* Bitfields are not addressable. If the field bitsize is
8115 zero, then the field is not packed. Hence it cannot be
8116 a bitfield or any other packed type. */
8117 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8118 {
8119 nRc = 1;
8120 break;
8121 }
8122 }
67255d04
RE
8123 }
8124 }
67255d04 8125
b13c8ab2
YQ
8126 return nRc;
8127 }
67255d04
RE
8128}
8129
34e8f22d
RE
8130/* Write into appropriate registers a function return value of type
8131 TYPE, given in virtual format. */
8132
8133static void
b508a996 8134arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 8135 const gdb_byte *valbuf)
34e8f22d 8136{
be8626e0 8137 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 8138 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 8139
34e8f22d
RE
8140 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8141 {
64403bd1 8142 gdb_byte buf[FP_REGISTER_SIZE];
34e8f22d 8143
be8626e0 8144 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
8145 {
8146 case ARM_FLOAT_FPA:
8147
be8626e0
MD
8148 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8149 gdbarch_byte_order (gdbarch));
b508a996 8150 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
8151 break;
8152
fd50bc42 8153 case ARM_FLOAT_SOFT_FPA:
08216dd7 8154 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
8155 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8156 not using the VFP ABI code. */
8157 case ARM_FLOAT_VFP:
b508a996
RE
8158 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8159 if (TYPE_LENGTH (type) > 4)
8160 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 8161 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
8162 break;
8163
8164 default:
9b20d036
MS
8165 internal_error (__FILE__, __LINE__,
8166 _("arm_store_return_value: Floating "
8167 "point model not supported"));
08216dd7
RE
8168 break;
8169 }
34e8f22d 8170 }
b508a996
RE
8171 else if (TYPE_CODE (type) == TYPE_CODE_INT
8172 || TYPE_CODE (type) == TYPE_CODE_CHAR
8173 || TYPE_CODE (type) == TYPE_CODE_BOOL
8174 || TYPE_CODE (type) == TYPE_CODE_PTR
aa006118 8175 || TYPE_IS_REFERENCE (type)
b508a996
RE
8176 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8177 {
8178 if (TYPE_LENGTH (type) <= 4)
8179 {
8180 /* Values of one word or less are zero/sign-extended and
8181 returned in r0. */
7a5ea0d4 8182 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
8183 LONGEST val = unpack_long (type, valbuf);
8184
e17a4113 8185 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
8186 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8187 }
8188 else
8189 {
8190 /* Integral values greater than one word are stored in consecutive
8191 registers starting with r0. This will always be a multiple of
8192 the regiser size. */
8193 int len = TYPE_LENGTH (type);
8194 int regno = ARM_A1_REGNUM;
8195
8196 while (len > 0)
8197 {
8198 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
8199 len -= INT_REGISTER_SIZE;
8200 valbuf += INT_REGISTER_SIZE;
b508a996
RE
8201 }
8202 }
8203 }
34e8f22d 8204 else
b508a996
RE
8205 {
8206 /* For a structure or union the behaviour is as if the value had
8207 been stored to word-aligned memory and then loaded into
8208 registers with 32-bit load instruction(s). */
8209 int len = TYPE_LENGTH (type);
8210 int regno = ARM_A1_REGNUM;
7a5ea0d4 8211 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
8212
8213 while (len > 0)
8214 {
8215 memcpy (tmpbuf, valbuf,
7a5ea0d4 8216 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 8217 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
8218 len -= INT_REGISTER_SIZE;
8219 valbuf += INT_REGISTER_SIZE;
b508a996
RE
8220 }
8221 }
34e8f22d
RE
8222}
8223
2af48f68
PB
8224
8225/* Handle function return values. */
8226
8227static enum return_value_convention
6a3a010b 8228arm_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
8229 struct type *valtype, struct regcache *regcache,
8230 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 8231{
7c00367c 8232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 8233 struct type *func_type = function ? value_type (function) : NULL;
90445bd3
DJ
8234 enum arm_vfp_cprc_base_type vfp_base_type;
8235 int vfp_base_count;
8236
8237 if (arm_vfp_abi_for_function (gdbarch, func_type)
8238 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8239 {
8240 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8241 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8242 int i;
8243 for (i = 0; i < vfp_base_count; i++)
8244 {
58d6951d
DJ
8245 if (reg_char == 'q')
8246 {
8247 if (writebuf)
8248 arm_neon_quad_write (gdbarch, regcache, i,
8249 writebuf + i * unit_length);
8250
8251 if (readbuf)
8252 arm_neon_quad_read (gdbarch, regcache, i,
8253 readbuf + i * unit_length);
8254 }
8255 else
8256 {
8257 char name_buf[4];
8258 int regnum;
8259
8c042590 8260 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
58d6951d
DJ
8261 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8262 strlen (name_buf));
8263 if (writebuf)
8264 regcache_cooked_write (regcache, regnum,
8265 writebuf + i * unit_length);
8266 if (readbuf)
8267 regcache_cooked_read (regcache, regnum,
8268 readbuf + i * unit_length);
8269 }
90445bd3
DJ
8270 }
8271 return RETURN_VALUE_REGISTER_CONVENTION;
8272 }
7c00367c 8273
2af48f68
PB
8274 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8275 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8276 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8277 {
7c00367c
MK
8278 if (tdep->struct_return == pcc_struct_return
8279 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
8280 return RETURN_VALUE_STRUCT_CONVENTION;
8281 }
b13c8ab2
YQ
8282 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8283 {
8284 if (arm_return_in_memory (gdbarch, valtype))
8285 return RETURN_VALUE_STRUCT_CONVENTION;
8286 }
7052e42c 8287
2af48f68
PB
8288 if (writebuf)
8289 arm_store_return_value (valtype, regcache, writebuf);
8290
8291 if (readbuf)
8292 arm_extract_return_value (valtype, regcache, readbuf);
8293
8294 return RETURN_VALUE_REGISTER_CONVENTION;
8295}
8296
8297
9df628e0 8298static int
60ade65d 8299arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 8300{
e17a4113
UW
8301 struct gdbarch *gdbarch = get_frame_arch (frame);
8302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 8304 CORE_ADDR jb_addr;
e362b510 8305 gdb_byte buf[INT_REGISTER_SIZE];
9df628e0 8306
60ade65d 8307 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
8308
8309 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 8310 INT_REGISTER_SIZE))
9df628e0
RE
8311 return 0;
8312
e17a4113 8313 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
8314 return 1;
8315}
8316
faa95490
DJ
8317/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8318 return the target PC. Otherwise return 0. */
c906108c
SS
8319
8320CORE_ADDR
52f729a7 8321arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 8322{
2c02bd72 8323 const char *name;
faa95490 8324 int namelen;
c906108c
SS
8325 CORE_ADDR start_addr;
8326
8327 /* Find the starting address and name of the function containing the PC. */
8328 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
80d8d390
YQ
8329 {
8330 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8331 check here. */
8332 start_addr = arm_skip_bx_reg (frame, pc);
8333 if (start_addr != 0)
8334 return start_addr;
8335
8336 return 0;
8337 }
c906108c 8338
faa95490
DJ
8339 /* If PC is in a Thumb call or return stub, return the address of the
8340 target PC, which is in a register. The thunk functions are called
8341 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
8342 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8343 functions, named __ARM_call_via_r[0-7]. */
61012eef
GB
8344 if (startswith (name, "_call_via_")
8345 || startswith (name, "__ARM_call_via_"))
c906108c 8346 {
ed9a39eb
JM
8347 /* Use the name suffix to determine which register contains the
8348 target PC. */
a121b7c1 8349 static const char *table[15] =
c5aa993b
JM
8350 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8351 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8352 };
c906108c 8353 int regno;
faa95490 8354 int offset = strlen (name) - 2;
c906108c
SS
8355
8356 for (regno = 0; regno <= 14; regno++)
faa95490 8357 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 8358 return get_frame_register_unsigned (frame, regno);
c906108c 8359 }
ed9a39eb 8360
faa95490
DJ
8361 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8362 non-interworking calls to foo. We could decode the stubs
8363 to find the target but it's easier to use the symbol table. */
8364 namelen = strlen (name);
8365 if (name[0] == '_' && name[1] == '_'
8366 && ((namelen > 2 + strlen ("_from_thumb")
61012eef 8367 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
faa95490 8368 || (namelen > 2 + strlen ("_from_arm")
61012eef 8369 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
faa95490
DJ
8370 {
8371 char *target_name;
8372 int target_len = namelen - 2;
3b7344d5 8373 struct bound_minimal_symbol minsym;
faa95490
DJ
8374 struct objfile *objfile;
8375 struct obj_section *sec;
8376
8377 if (name[namelen - 1] == 'b')
8378 target_len -= strlen ("_from_thumb");
8379 else
8380 target_len -= strlen ("_from_arm");
8381
224c3ddb 8382 target_name = (char *) alloca (target_len + 1);
faa95490
DJ
8383 memcpy (target_name, name + 2, target_len);
8384 target_name[target_len] = '\0';
8385
8386 sec = find_pc_section (pc);
8387 objfile = (sec == NULL) ? NULL : sec->objfile;
8388 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
3b7344d5 8389 if (minsym.minsym != NULL)
77e371c0 8390 return BMSYMBOL_VALUE_ADDRESS (minsym);
faa95490
DJ
8391 else
8392 return 0;
8393 }
8394
c5aa993b 8395 return 0; /* not a stub */
c906108c
SS
8396}
8397
afd7eef0
RE
8398static void
8399set_arm_command (char *args, int from_tty)
8400{
edefbb7c
AC
8401 printf_unfiltered (_("\
8402\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
8403 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8404}
8405
8406static void
8407show_arm_command (char *args, int from_tty)
8408{
26304000 8409 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
8410}
8411
28e97307
DJ
8412static void
8413arm_update_current_architecture (void)
fd50bc42 8414{
28e97307 8415 struct gdbarch_info info;
fd50bc42 8416
28e97307 8417 /* If the current architecture is not ARM, we have nothing to do. */
f5656ead 8418 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
28e97307 8419 return;
fd50bc42 8420
28e97307
DJ
8421 /* Update the architecture. */
8422 gdbarch_info_init (&info);
fd50bc42 8423
28e97307 8424 if (!gdbarch_update_p (info))
9b20d036 8425 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
8426}
8427
8428static void
8429set_fp_model_sfunc (char *args, int from_tty,
8430 struct cmd_list_element *c)
8431{
570dc176 8432 int fp_model;
fd50bc42
RE
8433
8434 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8435 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8436 {
aead7601 8437 arm_fp_model = (enum arm_float_model) fp_model;
fd50bc42
RE
8438 break;
8439 }
8440
8441 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 8442 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
8443 current_fp_model);
8444
28e97307 8445 arm_update_current_architecture ();
fd50bc42
RE
8446}
8447
8448static void
08546159
AC
8449show_fp_model (struct ui_file *file, int from_tty,
8450 struct cmd_list_element *c, const char *value)
fd50bc42 8451{
f5656ead 8452 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
fd50bc42 8453
28e97307 8454 if (arm_fp_model == ARM_FLOAT_AUTO
f5656ead 8455 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
8456 fprintf_filtered (file, _("\
8457The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8458 fp_model_strings[tdep->fp_model]);
8459 else
8460 fprintf_filtered (file, _("\
8461The current ARM floating point model is \"%s\".\n"),
8462 fp_model_strings[arm_fp_model]);
8463}
8464
8465static void
8466arm_set_abi (char *args, int from_tty,
8467 struct cmd_list_element *c)
8468{
570dc176 8469 int arm_abi;
28e97307
DJ
8470
8471 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8472 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8473 {
aead7601 8474 arm_abi_global = (enum arm_abi_kind) arm_abi;
28e97307
DJ
8475 break;
8476 }
8477
8478 if (arm_abi == ARM_ABI_LAST)
8479 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8480 arm_abi_string);
8481
8482 arm_update_current_architecture ();
8483}
8484
8485static void
8486arm_show_abi (struct ui_file *file, int from_tty,
8487 struct cmd_list_element *c, const char *value)
8488{
f5656ead 8489 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
28e97307
DJ
8490
8491 if (arm_abi_global == ARM_ABI_AUTO
f5656ead 8492 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
8493 fprintf_filtered (file, _("\
8494The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8495 arm_abi_strings[tdep->arm_abi]);
8496 else
8497 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8498 arm_abi_string);
fd50bc42
RE
8499}
8500
0428b8f5
DJ
8501static void
8502arm_show_fallback_mode (struct ui_file *file, int from_tty,
8503 struct cmd_list_element *c, const char *value)
8504{
0963b4bd
MS
8505 fprintf_filtered (file,
8506 _("The current execution mode assumed "
8507 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
8508 arm_fallback_mode_string);
8509}
8510
8511static void
8512arm_show_force_mode (struct ui_file *file, int from_tty,
8513 struct cmd_list_element *c, const char *value)
8514{
0963b4bd
MS
8515 fprintf_filtered (file,
8516 _("The current execution mode assumed "
8517 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
8518 arm_force_mode_string);
8519}
8520
afd7eef0
RE
8521/* If the user changes the register disassembly style used for info
8522 register and other commands, we have to also switch the style used
8523 in opcodes for disassembly output. This function is run in the "set
8524 arm disassembly" command, and does that. */
bc90b915
FN
8525
8526static void
afd7eef0 8527set_disassembly_style_sfunc (char *args, int from_tty,
65b48a81 8528 struct cmd_list_element *c)
bc90b915 8529{
65b48a81
PB
8530 /* Convert the short style name into the long style name (eg, reg-names-*)
8531 before calling the generic set_disassembler_options() function. */
8532 std::string long_name = std::string ("reg-names-") + disassembly_style;
8533 set_disassembler_options (&long_name[0]);
8534}
8535
8536static void
8537show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
8538 struct cmd_list_element *c, const char *value)
8539{
8540 struct gdbarch *gdbarch = get_current_arch ();
8541 char *options = get_disassembler_options (gdbarch);
8542 const char *style = "";
8543 int len = 0;
f995bbe8 8544 const char *opt;
65b48a81
PB
8545
8546 FOR_EACH_DISASSEMBLER_OPTION (opt, options)
8547 if (CONST_STRNEQ (opt, "reg-names-"))
8548 {
8549 style = &opt[strlen ("reg-names-")];
8550 len = strcspn (style, ",");
8551 }
8552
8553 fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style);
bc90b915
FN
8554}
8555\f
966fbf70 8556/* Return the ARM register name corresponding to register I. */
a208b0cb 8557static const char *
d93859e2 8558arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 8559{
58d6951d
DJ
8560 const int num_regs = gdbarch_num_regs (gdbarch);
8561
8562 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8563 && i >= num_regs && i < num_regs + 32)
8564 {
8565 static const char *const vfp_pseudo_names[] = {
8566 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8567 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8568 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8569 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8570 };
8571
8572 return vfp_pseudo_names[i - num_regs];
8573 }
8574
8575 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8576 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8577 {
8578 static const char *const neon_pseudo_names[] = {
8579 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8580 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8581 };
8582
8583 return neon_pseudo_names[i - num_regs - 32];
8584 }
8585
ff6f572f
DJ
8586 if (i >= ARRAY_SIZE (arm_register_names))
8587 /* These registers are only supported on targets which supply
8588 an XML description. */
8589 return "";
8590
966fbf70
RE
8591 return arm_register_names[i];
8592}
8593
082fc60d
RE
8594/* Test whether the coff symbol specific value corresponds to a Thumb
8595 function. */
8596
8597static int
8598coff_sym_is_thumb (int val)
8599{
f8bf5763
PM
8600 return (val == C_THUMBEXT
8601 || val == C_THUMBSTAT
8602 || val == C_THUMBEXTFUNC
8603 || val == C_THUMBSTATFUNC
8604 || val == C_THUMBLABEL);
082fc60d
RE
8605}
8606
8607/* arm_coff_make_msymbol_special()
8608 arm_elf_make_msymbol_special()
8609
8610 These functions test whether the COFF or ELF symbol corresponds to
8611 an address in thumb code, and set a "special" bit in a minimal
8612 symbol to indicate that it does. */
8613
34e8f22d 8614static void
082fc60d
RE
8615arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8616{
39d911fc
TP
8617 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8618
8619 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
467d42c4 8620 == ST_BRANCH_TO_THUMB)
082fc60d
RE
8621 MSYMBOL_SET_SPECIAL (msym);
8622}
8623
34e8f22d 8624static void
082fc60d
RE
8625arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8626{
8627 if (coff_sym_is_thumb (val))
8628 MSYMBOL_SET_SPECIAL (msym);
8629}
8630
60c5725c 8631static void
c1bd65d0 8632arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c 8633{
9a3c8263 8634 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
60c5725c
DJ
8635 unsigned int i;
8636
8637 for (i = 0; i < objfile->obfd->section_count; i++)
8638 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8639}
8640
8641static void
8642arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8643 asymbol *sym)
8644{
8645 const char *name = bfd_asymbol_name (sym);
8646 struct arm_per_objfile *data;
8647 VEC(arm_mapping_symbol_s) **map_p;
8648 struct arm_mapping_symbol new_map_sym;
8649
8650 gdb_assert (name[0] == '$');
8651 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8652 return;
8653
9a3c8263
SM
8654 data = (struct arm_per_objfile *) objfile_data (objfile,
8655 arm_objfile_data_key);
60c5725c
DJ
8656 if (data == NULL)
8657 {
8658 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8659 struct arm_per_objfile);
8660 set_objfile_data (objfile, arm_objfile_data_key, data);
8661 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8662 objfile->obfd->section_count,
8663 VEC(arm_mapping_symbol_s) *);
8664 }
8665 map_p = &data->section_maps[bfd_get_section (sym)->index];
8666
8667 new_map_sym.value = sym->value;
8668 new_map_sym.type = name[1];
8669
8670 /* Assume that most mapping symbols appear in order of increasing
8671 value. If they were randomly distributed, it would be faster to
8672 always push here and then sort at first use. */
8673 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8674 {
8675 struct arm_mapping_symbol *prev_map_sym;
8676
8677 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8678 if (prev_map_sym->value >= sym->value)
8679 {
8680 unsigned int idx;
8681 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8682 arm_compare_mapping_symbols);
8683 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8684 return;
8685 }
8686 }
8687
8688 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8689}
8690
756fe439 8691static void
61a1198a 8692arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 8693{
9779414d 8694 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 8695 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
8696
8697 /* If necessary, set the T bit. */
8698 if (arm_apcs_32)
8699 {
9779414d 8700 ULONGEST val, t_bit;
61a1198a 8701 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
8702 t_bit = arm_psr_thumb_bit (gdbarch);
8703 if (arm_pc_is_thumb (gdbarch, pc))
8704 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8705 val | t_bit);
756fe439 8706 else
61a1198a 8707 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 8708 val & ~t_bit);
756fe439
DJ
8709 }
8710}
123dc839 8711
58d6951d
DJ
8712/* Read the contents of a NEON quad register, by reading from two
8713 double registers. This is used to implement the quad pseudo
8714 registers, and for argument passing in case the quad registers are
8715 missing; vectors are passed in quad registers when using the VFP
8716 ABI, even if a NEON unit is not present. REGNUM is the index of
8717 the quad register, in [0, 15]. */
8718
05d1431c 8719static enum register_status
58d6951d
DJ
8720arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8721 int regnum, gdb_byte *buf)
8722{
8723 char name_buf[4];
8724 gdb_byte reg_buf[8];
8725 int offset, double_regnum;
05d1431c 8726 enum register_status status;
58d6951d 8727
8c042590 8728 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
8729 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8730 strlen (name_buf));
8731
8732 /* d0 is always the least significant half of q0. */
8733 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8734 offset = 8;
8735 else
8736 offset = 0;
8737
05d1431c
PA
8738 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8739 if (status != REG_VALID)
8740 return status;
58d6951d
DJ
8741 memcpy (buf + offset, reg_buf, 8);
8742
8743 offset = 8 - offset;
05d1431c
PA
8744 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8745 if (status != REG_VALID)
8746 return status;
58d6951d 8747 memcpy (buf + offset, reg_buf, 8);
05d1431c
PA
8748
8749 return REG_VALID;
58d6951d
DJ
8750}
8751
05d1431c 8752static enum register_status
58d6951d
DJ
8753arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8754 int regnum, gdb_byte *buf)
8755{
8756 const int num_regs = gdbarch_num_regs (gdbarch);
8757 char name_buf[4];
8758 gdb_byte reg_buf[8];
8759 int offset, double_regnum;
8760
8761 gdb_assert (regnum >= num_regs);
8762 regnum -= num_regs;
8763
8764 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8765 /* Quad-precision register. */
05d1431c 8766 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
58d6951d
DJ
8767 else
8768 {
05d1431c
PA
8769 enum register_status status;
8770
58d6951d
DJ
8771 /* Single-precision register. */
8772 gdb_assert (regnum < 32);
8773
8774 /* s0 is always the least significant half of d0. */
8775 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8776 offset = (regnum & 1) ? 0 : 4;
8777 else
8778 offset = (regnum & 1) ? 4 : 0;
8779
8c042590 8780 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
8781 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8782 strlen (name_buf));
8783
05d1431c
PA
8784 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8785 if (status == REG_VALID)
8786 memcpy (buf, reg_buf + offset, 4);
8787 return status;
58d6951d
DJ
8788 }
8789}
8790
8791/* Store the contents of BUF to a NEON quad register, by writing to
8792 two double registers. This is used to implement the quad pseudo
8793 registers, and for argument passing in case the quad registers are
8794 missing; vectors are passed in quad registers when using the VFP
8795 ABI, even if a NEON unit is not present. REGNUM is the index
8796 of the quad register, in [0, 15]. */
8797
8798static void
8799arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8800 int regnum, const gdb_byte *buf)
8801{
8802 char name_buf[4];
58d6951d
DJ
8803 int offset, double_regnum;
8804
8c042590 8805 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
8806 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8807 strlen (name_buf));
8808
8809 /* d0 is always the least significant half of q0. */
8810 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8811 offset = 8;
8812 else
8813 offset = 0;
8814
8815 regcache_raw_write (regcache, double_regnum, buf + offset);
8816 offset = 8 - offset;
8817 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8818}
8819
8820static void
8821arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8822 int regnum, const gdb_byte *buf)
8823{
8824 const int num_regs = gdbarch_num_regs (gdbarch);
8825 char name_buf[4];
8826 gdb_byte reg_buf[8];
8827 int offset, double_regnum;
8828
8829 gdb_assert (regnum >= num_regs);
8830 regnum -= num_regs;
8831
8832 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8833 /* Quad-precision register. */
8834 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8835 else
8836 {
8837 /* Single-precision register. */
8838 gdb_assert (regnum < 32);
8839
8840 /* s0 is always the least significant half of d0. */
8841 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8842 offset = (regnum & 1) ? 0 : 4;
8843 else
8844 offset = (regnum & 1) ? 4 : 0;
8845
8c042590 8846 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
8847 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8848 strlen (name_buf));
8849
8850 regcache_raw_read (regcache, double_regnum, reg_buf);
8851 memcpy (reg_buf + offset, buf, 4);
8852 regcache_raw_write (regcache, double_regnum, reg_buf);
8853 }
8854}
8855
123dc839
DJ
8856static struct value *
8857value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8858{
9a3c8263 8859 const int *reg_p = (const int *) baton;
123dc839
DJ
8860 return value_of_register (*reg_p, frame);
8861}
97e03143 8862\f
70f80edf
JT
8863static enum gdb_osabi
8864arm_elf_osabi_sniffer (bfd *abfd)
97e03143 8865{
2af48f68 8866 unsigned int elfosabi;
70f80edf 8867 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 8868
70f80edf 8869 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 8870
28e97307
DJ
8871 if (elfosabi == ELFOSABI_ARM)
8872 /* GNU tools use this value. Check note sections in this case,
8873 as well. */
8874 bfd_map_over_sections (abfd,
8875 generic_elf_osabi_sniff_abi_tag_sections,
8876 &osabi);
97e03143 8877
28e97307 8878 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 8879 return osabi;
97e03143
RE
8880}
8881
54483882
YQ
8882static int
8883arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8884 struct reggroup *group)
8885{
2c291032
YQ
8886 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8887 this, FPS register belongs to save_regroup, restore_reggroup, and
8888 all_reggroup, of course. */
54483882 8889 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
8890 return (group == float_reggroup
8891 || group == save_reggroup
8892 || group == restore_reggroup
8893 || group == all_reggroup);
54483882
YQ
8894 else
8895 return default_register_reggroup_p (gdbarch, regnum, group);
8896}
8897
25f8c692
JL
8898\f
8899/* For backward-compatibility we allow two 'g' packet lengths with
8900 the remote protocol depending on whether FPA registers are
8901 supplied. M-profile targets do not have FPA registers, but some
8902 stubs already exist in the wild which use a 'g' packet which
8903 supplies them albeit with dummy values. The packet format which
8904 includes FPA registers should be considered deprecated for
8905 M-profile targets. */
8906
8907static void
8908arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8909{
8910 if (gdbarch_tdep (gdbarch)->is_m)
8911 {
8912 /* If we know from the executable this is an M-profile target,
8913 cater for remote targets whose register set layout is the
8914 same as the FPA layout. */
8915 register_remote_g_packet_guess (gdbarch,
03145bf4 8916 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
25f8c692
JL
8917 (16 * INT_REGISTER_SIZE)
8918 + (8 * FP_REGISTER_SIZE)
8919 + (2 * INT_REGISTER_SIZE),
8920 tdesc_arm_with_m_fpa_layout);
8921
8922 /* The regular M-profile layout. */
8923 register_remote_g_packet_guess (gdbarch,
8924 /* r0-r12,sp,lr,pc; xpsr */
8925 (16 * INT_REGISTER_SIZE)
8926 + INT_REGISTER_SIZE,
8927 tdesc_arm_with_m);
3184d3f9
JL
8928
8929 /* M-profile plus M4F VFP. */
8930 register_remote_g_packet_guess (gdbarch,
8931 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8932 (16 * INT_REGISTER_SIZE)
8933 + (16 * VFP_REGISTER_SIZE)
8934 + (2 * INT_REGISTER_SIZE),
8935 tdesc_arm_with_m_vfp_d16);
25f8c692
JL
8936 }
8937
8938 /* Otherwise we don't have a useful guess. */
8939}
8940
7eb89530
YQ
8941/* Implement the code_of_frame_writable gdbarch method. */
8942
8943static int
8944arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8945{
8946 if (gdbarch_tdep (gdbarch)->is_m
8947 && get_frame_type (frame) == SIGTRAMP_FRAME)
8948 {
8949 /* M-profile exception frames return to some magic PCs, where
8950 isn't writable at all. */
8951 return 0;
8952 }
8953 else
8954 return 1;
8955}
8956
70f80edf 8957\f
da3c6d4a
MS
8958/* Initialize the current architecture based on INFO. If possible,
8959 re-use an architecture from ARCHES, which is a list of
8960 architectures already created during this debugging session.
97e03143 8961
da3c6d4a
MS
8962 Called e.g. at program startup, when reading a core file, and when
8963 reading a binary file. */
97e03143 8964
39bbf761
RE
8965static struct gdbarch *
8966arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8967{
97e03143 8968 struct gdbarch_tdep *tdep;
39bbf761 8969 struct gdbarch *gdbarch;
28e97307
DJ
8970 struct gdbarch_list *best_arch;
8971 enum arm_abi_kind arm_abi = arm_abi_global;
8972 enum arm_float_model fp_model = arm_fp_model;
123dc839 8973 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 8974 int i, is_m = 0;
330c6ca9 8975 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
a56cc1ce 8976 int have_wmmx_registers = 0;
58d6951d 8977 int have_neon = 0;
ff6f572f 8978 int have_fpa_registers = 1;
9779414d
DJ
8979 const struct target_desc *tdesc = info.target_desc;
8980
8981 /* If we have an object to base this architecture on, try to determine
8982 its ABI. */
8983
8984 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8985 {
8986 int ei_osabi, e_flags;
8987
8988 switch (bfd_get_flavour (info.abfd))
8989 {
9779414d
DJ
8990 case bfd_target_coff_flavour:
8991 /* Assume it's an old APCS-style ABI. */
8992 /* XXX WinCE? */
8993 arm_abi = ARM_ABI_APCS;
8994 break;
8995
8996 case bfd_target_elf_flavour:
8997 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8998 e_flags = elf_elfheader (info.abfd)->e_flags;
8999
9000 if (ei_osabi == ELFOSABI_ARM)
9001 {
9002 /* GNU tools used to use this value, but do not for EABI
9003 objects. There's nowhere to tag an EABI version
9004 anyway, so assume APCS. */
9005 arm_abi = ARM_ABI_APCS;
9006 }
d403db27 9007 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9779414d
DJ
9008 {
9009 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9010 int attr_arch, attr_profile;
9011
9012 switch (eabi_ver)
9013 {
9014 case EF_ARM_EABI_UNKNOWN:
9015 /* Assume GNU tools. */
9016 arm_abi = ARM_ABI_APCS;
9017 break;
9018
9019 case EF_ARM_EABI_VER4:
9020 case EF_ARM_EABI_VER5:
9021 arm_abi = ARM_ABI_AAPCS;
9022 /* EABI binaries default to VFP float ordering.
9023 They may also contain build attributes that can
9024 be used to identify if the VFP argument-passing
9025 ABI is in use. */
9026 if (fp_model == ARM_FLOAT_AUTO)
9027 {
9028#ifdef HAVE_ELF
9029 switch (bfd_elf_get_obj_attr_int (info.abfd,
9030 OBJ_ATTR_PROC,
9031 Tag_ABI_VFP_args))
9032 {
b35b0298 9033 case AEABI_VFP_args_base:
9779414d
DJ
9034 /* "The user intended FP parameter/result
9035 passing to conform to AAPCS, base
9036 variant". */
9037 fp_model = ARM_FLOAT_SOFT_VFP;
9038 break;
b35b0298 9039 case AEABI_VFP_args_vfp:
9779414d
DJ
9040 /* "The user intended FP parameter/result
9041 passing to conform to AAPCS, VFP
9042 variant". */
9043 fp_model = ARM_FLOAT_VFP;
9044 break;
b35b0298 9045 case AEABI_VFP_args_toolchain:
9779414d
DJ
9046 /* "The user intended FP parameter/result
9047 passing to conform to tool chain-specific
9048 conventions" - we don't know any such
9049 conventions, so leave it as "auto". */
9050 break;
b35b0298 9051 case AEABI_VFP_args_compatible:
5c294fee
TG
9052 /* "Code is compatible with both the base
9053 and VFP variants; the user did not permit
9054 non-variadic functions to pass FP
9055 parameters/results" - leave it as
9056 "auto". */
9057 break;
9779414d
DJ
9058 default:
9059 /* Attribute value not mentioned in the
5c294fee 9060 November 2012 ABI, so leave it as
9779414d
DJ
9061 "auto". */
9062 break;
9063 }
9064#else
9065 fp_model = ARM_FLOAT_SOFT_VFP;
9066#endif
9067 }
9068 break;
9069
9070 default:
9071 /* Leave it as "auto". */
9072 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9073 break;
9074 }
9075
9076#ifdef HAVE_ELF
9077 /* Detect M-profile programs. This only works if the
9078 executable file includes build attributes; GCC does
9079 copy them to the executable, but e.g. RealView does
9080 not. */
9081 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9082 Tag_CPU_arch);
0963b4bd
MS
9083 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9084 OBJ_ATTR_PROC,
9779414d
DJ
9085 Tag_CPU_arch_profile);
9086 /* GCC specifies the profile for v6-M; RealView only
9087 specifies the profile for architectures starting with
9088 V7 (as opposed to architectures with a tag
9089 numerically greater than TAG_CPU_ARCH_V7). */
9090 if (!tdesc_has_registers (tdesc)
9091 && (attr_arch == TAG_CPU_ARCH_V6_M
9092 || attr_arch == TAG_CPU_ARCH_V6S_M
9093 || attr_profile == 'M'))
25f8c692 9094 is_m = 1;
9779414d
DJ
9095#endif
9096 }
9097
9098 if (fp_model == ARM_FLOAT_AUTO)
9099 {
9100 int e_flags = elf_elfheader (info.abfd)->e_flags;
9101
9102 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9103 {
9104 case 0:
9105 /* Leave it as "auto". Strictly speaking this case
9106 means FPA, but almost nobody uses that now, and
9107 many toolchains fail to set the appropriate bits
9108 for the floating-point model they use. */
9109 break;
9110 case EF_ARM_SOFT_FLOAT:
9111 fp_model = ARM_FLOAT_SOFT_FPA;
9112 break;
9113 case EF_ARM_VFP_FLOAT:
9114 fp_model = ARM_FLOAT_VFP;
9115 break;
9116 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9117 fp_model = ARM_FLOAT_SOFT_VFP;
9118 break;
9119 }
9120 }
9121
9122 if (e_flags & EF_ARM_BE8)
9123 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9124
9125 break;
9126
9127 default:
9128 /* Leave it as "auto". */
9129 break;
9130 }
9131 }
123dc839
DJ
9132
9133 /* Check any target description for validity. */
9779414d 9134 if (tdesc_has_registers (tdesc))
123dc839
DJ
9135 {
9136 /* For most registers we require GDB's default names; but also allow
9137 the numeric names for sp / lr / pc, as a convenience. */
9138 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9139 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9140 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9141
9142 const struct tdesc_feature *feature;
58d6951d 9143 int valid_p;
123dc839 9144
9779414d 9145 feature = tdesc_find_feature (tdesc,
123dc839
DJ
9146 "org.gnu.gdb.arm.core");
9147 if (feature == NULL)
9779414d
DJ
9148 {
9149 feature = tdesc_find_feature (tdesc,
9150 "org.gnu.gdb.arm.m-profile");
9151 if (feature == NULL)
9152 return NULL;
9153 else
9154 is_m = 1;
9155 }
123dc839
DJ
9156
9157 tdesc_data = tdesc_data_alloc ();
9158
9159 valid_p = 1;
9160 for (i = 0; i < ARM_SP_REGNUM; i++)
9161 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9162 arm_register_names[i]);
9163 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9164 ARM_SP_REGNUM,
9165 arm_sp_names);
9166 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9167 ARM_LR_REGNUM,
9168 arm_lr_names);
9169 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9170 ARM_PC_REGNUM,
9171 arm_pc_names);
9779414d
DJ
9172 if (is_m)
9173 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9174 ARM_PS_REGNUM, "xpsr");
9175 else
9176 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9177 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
9178
9179 if (!valid_p)
9180 {
9181 tdesc_data_cleanup (tdesc_data);
9182 return NULL;
9183 }
9184
9779414d 9185 feature = tdesc_find_feature (tdesc,
123dc839
DJ
9186 "org.gnu.gdb.arm.fpa");
9187 if (feature != NULL)
9188 {
9189 valid_p = 1;
9190 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9191 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9192 arm_register_names[i]);
9193 if (!valid_p)
9194 {
9195 tdesc_data_cleanup (tdesc_data);
9196 return NULL;
9197 }
9198 }
ff6f572f
DJ
9199 else
9200 have_fpa_registers = 0;
9201
9779414d 9202 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
9203 "org.gnu.gdb.xscale.iwmmxt");
9204 if (feature != NULL)
9205 {
9206 static const char *const iwmmxt_names[] = {
9207 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9208 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9209 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9210 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9211 };
9212
9213 valid_p = 1;
9214 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9215 valid_p
9216 &= tdesc_numbered_register (feature, tdesc_data, i,
9217 iwmmxt_names[i - ARM_WR0_REGNUM]);
9218
9219 /* Check for the control registers, but do not fail if they
9220 are missing. */
9221 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9222 tdesc_numbered_register (feature, tdesc_data, i,
9223 iwmmxt_names[i - ARM_WR0_REGNUM]);
9224
9225 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9226 valid_p
9227 &= tdesc_numbered_register (feature, tdesc_data, i,
9228 iwmmxt_names[i - ARM_WR0_REGNUM]);
9229
9230 if (!valid_p)
9231 {
9232 tdesc_data_cleanup (tdesc_data);
9233 return NULL;
9234 }
a56cc1ce
YQ
9235
9236 have_wmmx_registers = 1;
ff6f572f 9237 }
58d6951d
DJ
9238
9239 /* If we have a VFP unit, check whether the single precision registers
9240 are present. If not, then we will synthesize them as pseudo
9241 registers. */
9779414d 9242 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
9243 "org.gnu.gdb.arm.vfp");
9244 if (feature != NULL)
9245 {
9246 static const char *const vfp_double_names[] = {
9247 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9248 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9249 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9250 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9251 };
9252
9253 /* Require the double precision registers. There must be either
9254 16 or 32. */
9255 valid_p = 1;
9256 for (i = 0; i < 32; i++)
9257 {
9258 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9259 ARM_D0_REGNUM + i,
9260 vfp_double_names[i]);
9261 if (!valid_p)
9262 break;
9263 }
2b9e5ea6
UW
9264 if (!valid_p && i == 16)
9265 valid_p = 1;
58d6951d 9266
2b9e5ea6
UW
9267 /* Also require FPSCR. */
9268 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9269 ARM_FPSCR_REGNUM, "fpscr");
9270 if (!valid_p)
58d6951d
DJ
9271 {
9272 tdesc_data_cleanup (tdesc_data);
9273 return NULL;
9274 }
9275
9276 if (tdesc_unnumbered_register (feature, "s0") == 0)
9277 have_vfp_pseudos = 1;
9278
330c6ca9 9279 vfp_register_count = i;
58d6951d
DJ
9280
9281 /* If we have VFP, also check for NEON. The architecture allows
9282 NEON without VFP (integer vector operations only), but GDB
9283 does not support that. */
9779414d 9284 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
9285 "org.gnu.gdb.arm.neon");
9286 if (feature != NULL)
9287 {
9288 /* NEON requires 32 double-precision registers. */
9289 if (i != 32)
9290 {
9291 tdesc_data_cleanup (tdesc_data);
9292 return NULL;
9293 }
9294
9295 /* If there are quad registers defined by the stub, use
9296 their type; otherwise (normally) provide them with
9297 the default type. */
9298 if (tdesc_unnumbered_register (feature, "q0") == 0)
9299 have_neon_pseudos = 1;
9300
9301 have_neon = 1;
9302 }
9303 }
123dc839 9304 }
39bbf761 9305
28e97307
DJ
9306 /* If there is already a candidate, use it. */
9307 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9308 best_arch != NULL;
9309 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9310 {
b8926edc
DJ
9311 if (arm_abi != ARM_ABI_AUTO
9312 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
9313 continue;
9314
b8926edc
DJ
9315 if (fp_model != ARM_FLOAT_AUTO
9316 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
9317 continue;
9318
58d6951d
DJ
9319 /* There are various other properties in tdep that we do not
9320 need to check here: those derived from a target description,
9321 since gdbarches with a different target description are
9322 automatically disqualified. */
9323
9779414d
DJ
9324 /* Do check is_m, though, since it might come from the binary. */
9325 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9326 continue;
9327
28e97307
DJ
9328 /* Found a match. */
9329 break;
9330 }
97e03143 9331
28e97307 9332 if (best_arch != NULL)
123dc839
DJ
9333 {
9334 if (tdesc_data != NULL)
9335 tdesc_data_cleanup (tdesc_data);
9336 return best_arch->gdbarch;
9337 }
28e97307 9338
8d749320 9339 tdep = XCNEW (struct gdbarch_tdep);
97e03143
RE
9340 gdbarch = gdbarch_alloc (&info, tdep);
9341
28e97307
DJ
9342 /* Record additional information about the architecture we are defining.
9343 These are gdbarch discriminators, like the OSABI. */
9344 tdep->arm_abi = arm_abi;
9345 tdep->fp_model = fp_model;
9779414d 9346 tdep->is_m = is_m;
ff6f572f 9347 tdep->have_fpa_registers = have_fpa_registers;
a56cc1ce 9348 tdep->have_wmmx_registers = have_wmmx_registers;
330c6ca9
YQ
9349 gdb_assert (vfp_register_count == 0
9350 || vfp_register_count == 16
9351 || vfp_register_count == 32);
9352 tdep->vfp_register_count = vfp_register_count;
58d6951d
DJ
9353 tdep->have_vfp_pseudos = have_vfp_pseudos;
9354 tdep->have_neon_pseudos = have_neon_pseudos;
9355 tdep->have_neon = have_neon;
08216dd7 9356
25f8c692
JL
9357 arm_register_g_packet_guesses (gdbarch);
9358
08216dd7 9359 /* Breakpoints. */
9d4fde75 9360 switch (info.byte_order_for_code)
67255d04
RE
9361 {
9362 case BFD_ENDIAN_BIG:
66e810cd
RE
9363 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9364 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9365 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9366 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9367
67255d04
RE
9368 break;
9369
9370 case BFD_ENDIAN_LITTLE:
66e810cd
RE
9371 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9372 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9373 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9374 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9375
67255d04
RE
9376 break;
9377
9378 default:
9379 internal_error (__FILE__, __LINE__,
edefbb7c 9380 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
9381 }
9382
d7b486e7
RE
9383 /* On ARM targets char defaults to unsigned. */
9384 set_gdbarch_char_signed (gdbarch, 0);
9385
53375380
PA
9386 /* wchar_t is unsigned under the AAPCS. */
9387 if (tdep->arm_abi == ARM_ABI_AAPCS)
9388 set_gdbarch_wchar_signed (gdbarch, 0);
9389 else
9390 set_gdbarch_wchar_signed (gdbarch, 1);
53375380 9391
cca44b1b
JB
9392 /* Note: for displaced stepping, this includes the breakpoint, and one word
9393 of additional scratch space. This setting isn't used for anything beside
9394 displaced stepping at present. */
9395 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9396
9df628e0 9397 /* This should be low enough for everything. */
97e03143 9398 tdep->lowest_pc = 0x20;
94c30b78 9399 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 9400
7c00367c
MK
9401 /* The default, for both APCS and AAPCS, is to return small
9402 structures in registers. */
9403 tdep->struct_return = reg_struct_return;
9404
2dd604e7 9405 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 9406 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 9407
7eb89530
YQ
9408 if (is_m)
9409 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9410
756fe439
DJ
9411 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9412
148754e5 9413 /* Frame handling. */
a262aec2 9414 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
9415 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9416 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9417
eb5492fa 9418 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 9419
34e8f22d 9420 /* Address manipulation. */
34e8f22d
RE
9421 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9422
34e8f22d
RE
9423 /* Advance PC across function entry code. */
9424 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9425
c9cf6e20
MG
9426 /* Detect whether PC is at a point where the stack has been destroyed. */
9427 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
4024ca99 9428
190dce09
UW
9429 /* Skip trampolines. */
9430 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9431
34e8f22d
RE
9432 /* The stack grows downward. */
9433 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9434
9435 /* Breakpoint manipulation. */
04180708
YQ
9436 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9437 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
833b7ab5
YQ
9438 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9439 arm_breakpoint_kind_from_current_state);
34e8f22d
RE
9440
9441 /* Information about registers, etc. */
34e8f22d
RE
9442 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9443 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 9444 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 9445 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 9446 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 9447
ff6f572f
DJ
9448 /* This "info float" is FPA-specific. Use the generic version if we
9449 do not have FPA. */
9450 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9451 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9452
26216b98 9453 /* Internal <-> external register number maps. */
ff6f572f 9454 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
9455 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9456
34e8f22d
RE
9457 set_gdbarch_register_name (gdbarch, arm_register_name);
9458
9459 /* Returning results. */
2af48f68 9460 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 9461
03d48a7d
RE
9462 /* Disassembly. */
9463 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9464
34e8f22d
RE
9465 /* Minsymbol frobbing. */
9466 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9467 set_gdbarch_coff_make_msymbol_special (gdbarch,
9468 arm_coff_make_msymbol_special);
60c5725c 9469 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 9470
f9d67f43
DJ
9471 /* Thumb-2 IT block support. */
9472 set_gdbarch_adjust_breakpoint_address (gdbarch,
9473 arm_adjust_breakpoint_address);
9474
0d5de010
DJ
9475 /* Virtual tables. */
9476 set_gdbarch_vbit_in_delta (gdbarch, 1);
9477
97e03143 9478 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 9479 gdbarch_init_osabi (info, gdbarch);
97e03143 9480
b39cc962
DJ
9481 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9482
eb5492fa 9483 /* Add some default predicates. */
2ae28aa9
YQ
9484 if (is_m)
9485 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
a262aec2
DJ
9486 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9487 dwarf2_append_unwinders (gdbarch);
0e9e9abd 9488 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
779aa56f 9489 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
a262aec2 9490 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 9491
97e03143
RE
9492 /* Now we have tuned the configuration, set a few final things,
9493 based on what the OS ABI has told us. */
9494
b8926edc
DJ
9495 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9496 binaries are always marked. */
9497 if (tdep->arm_abi == ARM_ABI_AUTO)
9498 tdep->arm_abi = ARM_ABI_APCS;
9499
e3039479
UW
9500 /* Watchpoints are not steppable. */
9501 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9502
b8926edc
DJ
9503 /* We used to default to FPA for generic ARM, but almost nobody
9504 uses that now, and we now provide a way for the user to force
9505 the model. So default to the most useful variant. */
9506 if (tdep->fp_model == ARM_FLOAT_AUTO)
9507 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9508
9df628e0
RE
9509 if (tdep->jb_pc >= 0)
9510 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9511
08216dd7 9512 /* Floating point sizes and format. */
8da61cc4 9513 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 9514 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 9515 {
8da61cc4
DJ
9516 set_gdbarch_double_format
9517 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9518 set_gdbarch_long_double_format
9519 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9520 }
9521 else
9522 {
9523 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9524 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
9525 }
9526
58d6951d
DJ
9527 if (have_vfp_pseudos)
9528 {
9529 /* NOTE: These are the only pseudo registers used by
9530 the ARM target at the moment. If more are added, a
9531 little more care in numbering will be needed. */
9532
9533 int num_pseudos = 32;
9534 if (have_neon_pseudos)
9535 num_pseudos += 16;
9536 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9537 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9538 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9539 }
9540
123dc839 9541 if (tdesc_data)
58d6951d
DJ
9542 {
9543 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9544
9779414d 9545 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
9546
9547 /* Override tdesc_register_type to adjust the types of VFP
9548 registers for NEON. */
9549 set_gdbarch_register_type (gdbarch, arm_register_type);
9550 }
123dc839
DJ
9551
9552 /* Add standard register aliases. We add aliases even for those
9553 nanes which are used by the current architecture - it's simpler,
9554 and does no harm, since nothing ever lists user registers. */
9555 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9556 user_reg_add (gdbarch, arm_register_aliases[i].name,
9557 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9558
65b48a81
PB
9559 set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
9560 set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
9561
39bbf761
RE
9562 return gdbarch;
9563}
9564
97e03143 9565static void
2af46ca0 9566arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 9567{
2af46ca0 9568 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
9569
9570 if (tdep == NULL)
9571 return;
9572
edefbb7c 9573 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
9574 (unsigned long) tdep->lowest_pc);
9575}
9576
0d4c07af 9577#if GDB_SELF_TEST
b121eeb9
YQ
9578namespace selftests
9579{
9580static void arm_record_test (void);
9581}
0d4c07af 9582#endif
b121eeb9 9583
a78f21af
AC
9584extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9585
c906108c 9586void
ed9a39eb 9587_initialize_arm_tdep (void)
c906108c 9588{
bc90b915 9589 long length;
53904c9e
AC
9590 const char *setname;
9591 const char *setdesc;
65b48a81 9592 int i, j;
edefbb7c
AC
9593 char regdesc[1024], *rdptr = regdesc;
9594 size_t rest = sizeof (regdesc);
085dd6e6 9595
42cf1509 9596 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 9597
60c5725c 9598 arm_objfile_data_key
c1bd65d0 9599 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 9600
0e9e9abd
UW
9601 /* Add ourselves to objfile event chain. */
9602 observer_attach_new_objfile (arm_exidx_new_objfile);
9603 arm_exidx_data_key
9604 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9605
70f80edf
JT
9606 /* Register an ELF OS ABI sniffer for ARM binaries. */
9607 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9608 bfd_target_elf_flavour,
9609 arm_elf_osabi_sniffer);
9610
9779414d
DJ
9611 /* Initialize the standard target descriptions. */
9612 initialize_tdesc_arm_with_m ();
25f8c692 9613 initialize_tdesc_arm_with_m_fpa_layout ();
3184d3f9 9614 initialize_tdesc_arm_with_m_vfp_d16 ();
ef7e8358
UW
9615 initialize_tdesc_arm_with_iwmmxt ();
9616 initialize_tdesc_arm_with_vfpv2 ();
9617 initialize_tdesc_arm_with_vfpv3 ();
9618 initialize_tdesc_arm_with_neon ();
9779414d 9619
afd7eef0
RE
9620 /* Add root prefix command for all "set arm"/"show arm" commands. */
9621 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 9622 _("Various ARM-specific commands."),
afd7eef0
RE
9623 &setarmcmdlist, "set arm ", 0, &setlist);
9624
9625 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 9626 _("Various ARM-specific commands."),
afd7eef0 9627 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 9628
c5aa993b 9629
65b48a81
PB
9630 arm_disassembler_options = xstrdup ("reg-names-std");
9631 const disasm_options_t *disasm_options = disassembler_options_arm ();
9632 int num_disassembly_styles = 0;
9633 for (i = 0; disasm_options->name[i] != NULL; i++)
9634 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9635 num_disassembly_styles++;
9636
9637 /* Initialize the array that will be passed to add_setshow_enum_cmd(). */
8d749320 9638 valid_disassembly_styles = XNEWVEC (const char *,
65b48a81
PB
9639 num_disassembly_styles + 1);
9640 for (i = j = 0; disasm_options->name[i] != NULL; i++)
9641 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9642 {
9643 size_t offset = strlen ("reg-names-");
9644 const char *style = disasm_options->name[i];
9645 valid_disassembly_styles[j++] = &style[offset];
9646 length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
9647 disasm_options->description[i]);
9648 rdptr += length;
9649 rest -= length;
9650 }
94c30b78 9651 /* Mark the end of valid options. */
65b48a81 9652 valid_disassembly_styles[num_disassembly_styles] = NULL;
c906108c 9653
edefbb7c 9654 /* Create the help text. */
d7e74731
PA
9655 std::string helptext = string_printf ("%s%s%s",
9656 _("The valid values are:\n"),
9657 regdesc,
9658 _("The default is \"std\"."));
ed9a39eb 9659
edefbb7c
AC
9660 add_setshow_enum_cmd("disassembler", no_class,
9661 valid_disassembly_styles, &disassembly_style,
9662 _("Set the disassembly style."),
9663 _("Show the disassembly style."),
09b0e4b0 9664 helptext.c_str (),
2c5b56ce 9665 set_disassembly_style_sfunc,
65b48a81 9666 show_disassembly_style_sfunc,
7376b4c2 9667 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
9668
9669 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9670 _("Set usage of ARM 32-bit mode."),
9671 _("Show usage of ARM 32-bit mode."),
9672 _("When off, a 26-bit PC will be used."),
2c5b56ce 9673 NULL,
0963b4bd
MS
9674 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9675 mode is %s. */
26304000 9676 &setarmcmdlist, &showarmcmdlist);
c906108c 9677
fd50bc42 9678 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
9679 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9680 _("Set the floating point type."),
9681 _("Show the floating point type."),
9682 _("auto - Determine the FP typefrom the OS-ABI.\n\
9683softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9684fpa - FPA co-processor (GCC compiled).\n\
9685softvfp - Software FP with pure-endian doubles.\n\
9686vfp - VFP co-processor."),
edefbb7c 9687 set_fp_model_sfunc, show_fp_model,
7376b4c2 9688 &setarmcmdlist, &showarmcmdlist);
fd50bc42 9689
28e97307
DJ
9690 /* Add a command to allow the user to force the ABI. */
9691 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9692 _("Set the ABI."),
9693 _("Show the ABI."),
9694 NULL, arm_set_abi, arm_show_abi,
9695 &setarmcmdlist, &showarmcmdlist);
9696
0428b8f5
DJ
9697 /* Add two commands to allow the user to force the assumed
9698 execution mode. */
9699 add_setshow_enum_cmd ("fallback-mode", class_support,
9700 arm_mode_strings, &arm_fallback_mode_string,
9701 _("Set the mode assumed when symbols are unavailable."),
9702 _("Show the mode assumed when symbols are unavailable."),
9703 NULL, NULL, arm_show_fallback_mode,
9704 &setarmcmdlist, &showarmcmdlist);
9705 add_setshow_enum_cmd ("force-mode", class_support,
9706 arm_mode_strings, &arm_force_mode_string,
9707 _("Set the mode assumed even when symbols are available."),
9708 _("Show the mode assumed even when symbols are available."),
9709 NULL, NULL, arm_show_force_mode,
9710 &setarmcmdlist, &showarmcmdlist);
9711
6529d2dd 9712 /* Debugging flag. */
edefbb7c
AC
9713 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9714 _("Set ARM debugging."),
9715 _("Show ARM debugging."),
9716 _("When on, arm-specific debugging is enabled."),
2c5b56ce 9717 NULL,
7915a72c 9718 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 9719 &setdebuglist, &showdebuglist);
b121eeb9
YQ
9720
9721#if GDB_SELF_TEST
9722 register_self_test (selftests::arm_record_test);
9723#endif
9724
c906108c 9725}
72508ac0
PO
9726
9727/* ARM-reversible process record data structures. */
9728
9729#define ARM_INSN_SIZE_BYTES 4
9730#define THUMB_INSN_SIZE_BYTES 2
9731#define THUMB2_INSN_SIZE_BYTES 4
9732
9733
71e396f9
LM
9734/* Position of the bit within a 32-bit ARM instruction
9735 that defines whether the instruction is a load or store. */
72508ac0
PO
9736#define INSN_S_L_BIT_NUM 20
9737
9738#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9739 do \
9740 { \
9741 unsigned int reg_len = LENGTH; \
9742 if (reg_len) \
9743 { \
9744 REGS = XNEWVEC (uint32_t, reg_len); \
9745 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9746 } \
9747 } \
9748 while (0)
9749
9750#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9751 do \
9752 { \
9753 unsigned int mem_len = LENGTH; \
9754 if (mem_len) \
9755 { \
9756 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9757 memcpy(&MEMS->len, &RECORD_BUF[0], \
9758 sizeof(struct arm_mem_r) * LENGTH); \
9759 } \
9760 } \
9761 while (0)
9762
9763/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9764#define INSN_RECORDED(ARM_RECORD) \
9765 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9766
9767/* ARM memory record structure. */
9768struct arm_mem_r
9769{
9770 uint32_t len; /* Record length. */
bfbbec00 9771 uint32_t addr; /* Memory address. */
72508ac0
PO
9772};
9773
9774/* ARM instruction record contains opcode of current insn
9775 and execution state (before entry to decode_insn()),
9776 contains list of to-be-modified registers and
9777 memory blocks (on return from decode_insn()). */
9778
9779typedef struct insn_decode_record_t
9780{
9781 struct gdbarch *gdbarch;
9782 struct regcache *regcache;
9783 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9784 uint32_t arm_insn; /* Should accommodate thumb. */
9785 uint32_t cond; /* Condition code. */
9786 uint32_t opcode; /* Insn opcode. */
9787 uint32_t decode; /* Insn decode bits. */
9788 uint32_t mem_rec_count; /* No of mem records. */
9789 uint32_t reg_rec_count; /* No of reg records. */
9790 uint32_t *arm_regs; /* Registers to be saved for this record. */
9791 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9792} insn_decode_record;
9793
9794
9795/* Checks ARM SBZ and SBO mandatory fields. */
9796
9797static int
9798sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9799{
9800 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9801
9802 if (!len)
9803 return 1;
9804
9805 if (!sbo)
9806 ones = ~ones;
9807
9808 while (ones)
9809 {
9810 if (!(ones & sbo))
9811 {
9812 return 0;
9813 }
9814 ones = ones >> 1;
9815 }
9816 return 1;
9817}
9818
c6ec2b30
OJ
9819enum arm_record_result
9820{
9821 ARM_RECORD_SUCCESS = 0,
9822 ARM_RECORD_FAILURE = 1
9823};
9824
72508ac0
PO
9825typedef enum
9826{
9827 ARM_RECORD_STRH=1,
9828 ARM_RECORD_STRD
9829} arm_record_strx_t;
9830
9831typedef enum
9832{
9833 ARM_RECORD=1,
9834 THUMB_RECORD,
9835 THUMB2_RECORD
9836} record_type_t;
9837
9838
9839static int
9840arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9841 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9842{
9843
9844 struct regcache *reg_cache = arm_insn_r->regcache;
9845 ULONGEST u_regval[2]= {0};
9846
9847 uint32_t reg_src1 = 0, reg_src2 = 0;
9848 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
72508ac0
PO
9849
9850 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9851 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
72508ac0
PO
9852
9853 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9854 {
9855 /* 1) Handle misc store, immediate offset. */
9856 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9857 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9858 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9859 regcache_raw_read_unsigned (reg_cache, reg_src1,
9860 &u_regval[0]);
9861 if (ARM_PC_REGNUM == reg_src1)
9862 {
9863 /* If R15 was used as Rn, hence current PC+8. */
9864 u_regval[0] = u_regval[0] + 8;
9865 }
9866 offset_8 = (immed_high << 4) | immed_low;
9867 /* Calculate target store address. */
9868 if (14 == arm_insn_r->opcode)
9869 {
9870 tgt_mem_addr = u_regval[0] + offset_8;
9871 }
9872 else
9873 {
9874 tgt_mem_addr = u_regval[0] - offset_8;
9875 }
9876 if (ARM_RECORD_STRH == str_type)
9877 {
9878 record_buf_mem[0] = 2;
9879 record_buf_mem[1] = tgt_mem_addr;
9880 arm_insn_r->mem_rec_count = 1;
9881 }
9882 else if (ARM_RECORD_STRD == str_type)
9883 {
9884 record_buf_mem[0] = 4;
9885 record_buf_mem[1] = tgt_mem_addr;
9886 record_buf_mem[2] = 4;
9887 record_buf_mem[3] = tgt_mem_addr + 4;
9888 arm_insn_r->mem_rec_count = 2;
9889 }
9890 }
9891 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9892 {
9893 /* 2) Store, register offset. */
9894 /* Get Rm. */
9895 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9896 /* Get Rn. */
9897 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9898 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9899 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9900 if (15 == reg_src2)
9901 {
9902 /* If R15 was used as Rn, hence current PC+8. */
9903 u_regval[0] = u_regval[0] + 8;
9904 }
9905 /* Calculate target store address, Rn +/- Rm, register offset. */
9906 if (12 == arm_insn_r->opcode)
9907 {
9908 tgt_mem_addr = u_regval[0] + u_regval[1];
9909 }
9910 else
9911 {
9912 tgt_mem_addr = u_regval[1] - u_regval[0];
9913 }
9914 if (ARM_RECORD_STRH == str_type)
9915 {
9916 record_buf_mem[0] = 2;
9917 record_buf_mem[1] = tgt_mem_addr;
9918 arm_insn_r->mem_rec_count = 1;
9919 }
9920 else if (ARM_RECORD_STRD == str_type)
9921 {
9922 record_buf_mem[0] = 4;
9923 record_buf_mem[1] = tgt_mem_addr;
9924 record_buf_mem[2] = 4;
9925 record_buf_mem[3] = tgt_mem_addr + 4;
9926 arm_insn_r->mem_rec_count = 2;
9927 }
9928 }
9929 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9930 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9931 {
9932 /* 3) Store, immediate pre-indexed. */
9933 /* 5) Store, immediate post-indexed. */
9934 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9935 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9936 offset_8 = (immed_high << 4) | immed_low;
9937 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9938 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9939 /* Calculate target store address, Rn +/- Rm, register offset. */
9940 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9941 {
9942 tgt_mem_addr = u_regval[0] + offset_8;
9943 }
9944 else
9945 {
9946 tgt_mem_addr = u_regval[0] - offset_8;
9947 }
9948 if (ARM_RECORD_STRH == str_type)
9949 {
9950 record_buf_mem[0] = 2;
9951 record_buf_mem[1] = tgt_mem_addr;
9952 arm_insn_r->mem_rec_count = 1;
9953 }
9954 else if (ARM_RECORD_STRD == str_type)
9955 {
9956 record_buf_mem[0] = 4;
9957 record_buf_mem[1] = tgt_mem_addr;
9958 record_buf_mem[2] = 4;
9959 record_buf_mem[3] = tgt_mem_addr + 4;
9960 arm_insn_r->mem_rec_count = 2;
9961 }
9962 /* Record Rn also as it changes. */
9963 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9964 arm_insn_r->reg_rec_count = 1;
9965 }
9966 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9967 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9968 {
9969 /* 4) Store, register pre-indexed. */
9970 /* 6) Store, register post -indexed. */
9971 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9972 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9973 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9974 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9975 /* Calculate target store address, Rn +/- Rm, register offset. */
9976 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9977 {
9978 tgt_mem_addr = u_regval[0] + u_regval[1];
9979 }
9980 else
9981 {
9982 tgt_mem_addr = u_regval[1] - u_regval[0];
9983 }
9984 if (ARM_RECORD_STRH == str_type)
9985 {
9986 record_buf_mem[0] = 2;
9987 record_buf_mem[1] = tgt_mem_addr;
9988 arm_insn_r->mem_rec_count = 1;
9989 }
9990 else if (ARM_RECORD_STRD == str_type)
9991 {
9992 record_buf_mem[0] = 4;
9993 record_buf_mem[1] = tgt_mem_addr;
9994 record_buf_mem[2] = 4;
9995 record_buf_mem[3] = tgt_mem_addr + 4;
9996 arm_insn_r->mem_rec_count = 2;
9997 }
9998 /* Record Rn also as it changes. */
9999 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
10000 arm_insn_r->reg_rec_count = 1;
10001 }
10002 return 0;
10003}
10004
10005/* Handling ARM extension space insns. */
10006
10007static int
10008arm_record_extension_space (insn_decode_record *arm_insn_r)
10009{
10010 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10011 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10012 uint32_t record_buf[8], record_buf_mem[8];
10013 uint32_t reg_src1 = 0;
72508ac0
PO
10014 struct regcache *reg_cache = arm_insn_r->regcache;
10015 ULONGEST u_regval = 0;
10016
10017 gdb_assert (!INSN_RECORDED(arm_insn_r));
10018 /* Handle unconditional insn extension space. */
10019
10020 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10021 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10022 if (arm_insn_r->cond)
10023 {
10024 /* PLD has no affect on architectural state, it just affects
10025 the caches. */
10026 if (5 == ((opcode1 & 0xE0) >> 5))
10027 {
10028 /* BLX(1) */
10029 record_buf[0] = ARM_PS_REGNUM;
10030 record_buf[1] = ARM_LR_REGNUM;
10031 arm_insn_r->reg_rec_count = 2;
10032 }
10033 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10034 }
10035
10036
10037 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10038 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10039 {
10040 ret = -1;
10041 /* Undefined instruction on ARM V5; need to handle if later
10042 versions define it. */
10043 }
10044
10045 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10046 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10047 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10048
10049 /* Handle arithmetic insn extension space. */
10050 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10051 && !INSN_RECORDED(arm_insn_r))
10052 {
10053 /* Handle MLA(S) and MUL(S). */
10054 if (0 <= insn_op1 && 3 >= insn_op1)
10055 {
10056 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10057 record_buf[1] = ARM_PS_REGNUM;
10058 arm_insn_r->reg_rec_count = 2;
10059 }
10060 else if (4 <= insn_op1 && 15 >= insn_op1)
10061 {
10062 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10063 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10064 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10065 record_buf[2] = ARM_PS_REGNUM;
10066 arm_insn_r->reg_rec_count = 3;
10067 }
10068 }
10069
10070 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10071 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10072 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10073
10074 /* Handle control insn extension space. */
10075
10076 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10077 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10078 {
10079 if (!bit (arm_insn_r->arm_insn,25))
10080 {
10081 if (!bits (arm_insn_r->arm_insn, 4, 7))
10082 {
10083 if ((0 == insn_op1) || (2 == insn_op1))
10084 {
10085 /* MRS. */
10086 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10087 arm_insn_r->reg_rec_count = 1;
10088 }
10089 else if (1 == insn_op1)
10090 {
10091 /* CSPR is going to be changed. */
10092 record_buf[0] = ARM_PS_REGNUM;
10093 arm_insn_r->reg_rec_count = 1;
10094 }
10095 else if (3 == insn_op1)
10096 {
10097 /* SPSR is going to be changed. */
10098 /* We need to get SPSR value, which is yet to be done. */
72508ac0
PO
10099 return -1;
10100 }
10101 }
10102 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10103 {
10104 if (1 == insn_op1)
10105 {
10106 /* BX. */
10107 record_buf[0] = ARM_PS_REGNUM;
10108 arm_insn_r->reg_rec_count = 1;
10109 }
10110 else if (3 == insn_op1)
10111 {
10112 /* CLZ. */
10113 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10114 arm_insn_r->reg_rec_count = 1;
10115 }
10116 }
10117 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10118 {
10119 /* BLX. */
10120 record_buf[0] = ARM_PS_REGNUM;
10121 record_buf[1] = ARM_LR_REGNUM;
10122 arm_insn_r->reg_rec_count = 2;
10123 }
10124 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10125 {
10126 /* QADD, QSUB, QDADD, QDSUB */
10127 record_buf[0] = ARM_PS_REGNUM;
10128 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10129 arm_insn_r->reg_rec_count = 2;
10130 }
10131 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10132 {
10133 /* BKPT. */
10134 record_buf[0] = ARM_PS_REGNUM;
10135 record_buf[1] = ARM_LR_REGNUM;
10136 arm_insn_r->reg_rec_count = 2;
10137
10138 /* Save SPSR also;how? */
72508ac0
PO
10139 return -1;
10140 }
10141 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10142 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10143 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10144 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10145 )
10146 {
10147 if (0 == insn_op1 || 1 == insn_op1)
10148 {
10149 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10150 /* We dont do optimization for SMULW<y> where we
10151 need only Rd. */
10152 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10153 record_buf[1] = ARM_PS_REGNUM;
10154 arm_insn_r->reg_rec_count = 2;
10155 }
10156 else if (2 == insn_op1)
10157 {
10158 /* SMLAL<x><y>. */
10159 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10160 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10161 arm_insn_r->reg_rec_count = 2;
10162 }
10163 else if (3 == insn_op1)
10164 {
10165 /* SMUL<x><y>. */
10166 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10167 arm_insn_r->reg_rec_count = 1;
10168 }
10169 }
10170 }
10171 else
10172 {
10173 /* MSR : immediate form. */
10174 if (1 == insn_op1)
10175 {
10176 /* CSPR is going to be changed. */
10177 record_buf[0] = ARM_PS_REGNUM;
10178 arm_insn_r->reg_rec_count = 1;
10179 }
10180 else if (3 == insn_op1)
10181 {
10182 /* SPSR is going to be changed. */
10183 /* we need to get SPSR value, which is yet to be done */
72508ac0
PO
10184 return -1;
10185 }
10186 }
10187 }
10188
10189 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10190 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10191 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10192
10193 /* Handle load/store insn extension space. */
10194
10195 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10196 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10197 && !INSN_RECORDED(arm_insn_r))
10198 {
10199 /* SWP/SWPB. */
10200 if (0 == insn_op1)
10201 {
10202 /* These insn, changes register and memory as well. */
10203 /* SWP or SWPB insn. */
10204 /* Get memory address given by Rn. */
10205 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10206 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10207 /* SWP insn ?, swaps word. */
10208 if (8 == arm_insn_r->opcode)
10209 {
10210 record_buf_mem[0] = 4;
10211 }
10212 else
10213 {
10214 /* SWPB insn, swaps only byte. */
10215 record_buf_mem[0] = 1;
10216 }
10217 record_buf_mem[1] = u_regval;
10218 arm_insn_r->mem_rec_count = 1;
10219 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10220 arm_insn_r->reg_rec_count = 1;
10221 }
10222 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10223 {
10224 /* STRH. */
10225 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10226 ARM_RECORD_STRH);
10227 }
10228 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10229 {
10230 /* LDRD. */
10231 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10232 record_buf[1] = record_buf[0] + 1;
10233 arm_insn_r->reg_rec_count = 2;
10234 }
10235 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10236 {
10237 /* STRD. */
10238 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10239 ARM_RECORD_STRD);
10240 }
10241 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10242 {
10243 /* LDRH, LDRSB, LDRSH. */
10244 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10245 arm_insn_r->reg_rec_count = 1;
10246 }
10247
10248 }
10249
10250 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10251 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10252 && !INSN_RECORDED(arm_insn_r))
10253 {
10254 ret = -1;
10255 /* Handle coprocessor insn extension space. */
10256 }
10257
10258 /* To be done for ARMv5 and later; as of now we return -1. */
10259 if (-1 == ret)
ca92db2d 10260 return ret;
72508ac0
PO
10261
10262 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10263 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10264
10265 return ret;
10266}
10267
10268/* Handling opcode 000 insns. */
10269
10270static int
10271arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10272{
10273 struct regcache *reg_cache = arm_insn_r->regcache;
10274 uint32_t record_buf[8], record_buf_mem[8];
10275 ULONGEST u_regval[2] = {0};
10276
bec2ab5a 10277 uint32_t reg_src1 = 0, reg_dest = 0;
72508ac0
PO
10278 uint32_t opcode1 = 0;
10279
10280 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10281 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10282 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10283
10284 /* Data processing insn /multiply insn. */
10285 if (9 == arm_insn_r->decode
10286 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10287 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10288 {
10289 /* Handle multiply instructions. */
10290 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10291 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10292 {
10293 /* Handle MLA and MUL. */
10294 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10295 record_buf[1] = ARM_PS_REGNUM;
10296 arm_insn_r->reg_rec_count = 2;
10297 }
10298 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10299 {
10300 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10301 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10302 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10303 record_buf[2] = ARM_PS_REGNUM;
10304 arm_insn_r->reg_rec_count = 3;
10305 }
10306 }
10307 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10308 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10309 {
10310 /* Handle misc load insns, as 20th bit (L = 1). */
10311 /* LDR insn has a capability to do branching, if
10312 MOV LR, PC is precceded by LDR insn having Rn as R15
10313 in that case, it emulates branch and link insn, and hence we
10314 need to save CSPR and PC as well. I am not sure this is right
10315 place; as opcode = 010 LDR insn make this happen, if R15 was
10316 used. */
10317 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10318 if (15 != reg_dest)
10319 {
10320 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10321 arm_insn_r->reg_rec_count = 1;
10322 }
10323 else
10324 {
10325 record_buf[0] = reg_dest;
10326 record_buf[1] = ARM_PS_REGNUM;
10327 arm_insn_r->reg_rec_count = 2;
10328 }
10329 }
10330 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10331 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10332 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10333 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10334 {
10335 /* Handle MSR insn. */
10336 if (9 == arm_insn_r->opcode)
10337 {
10338 /* CSPR is going to be changed. */
10339 record_buf[0] = ARM_PS_REGNUM;
10340 arm_insn_r->reg_rec_count = 1;
10341 }
10342 else
10343 {
10344 /* SPSR is going to be changed. */
10345 /* How to read SPSR value? */
72508ac0
PO
10346 return -1;
10347 }
10348 }
10349 else if (9 == arm_insn_r->decode
10350 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10351 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10352 {
10353 /* Handling SWP, SWPB. */
10354 /* These insn, changes register and memory as well. */
10355 /* SWP or SWPB insn. */
10356
10357 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10358 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10359 /* SWP insn ?, swaps word. */
10360 if (8 == arm_insn_r->opcode)
10361 {
10362 record_buf_mem[0] = 4;
10363 }
10364 else
10365 {
10366 /* SWPB insn, swaps only byte. */
10367 record_buf_mem[0] = 1;
10368 }
10369 record_buf_mem[1] = u_regval[0];
10370 arm_insn_r->mem_rec_count = 1;
10371 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10372 arm_insn_r->reg_rec_count = 1;
10373 }
10374 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10375 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10376 {
10377 /* Handle BLX, branch and link/exchange. */
10378 if (9 == arm_insn_r->opcode)
10379 {
10380 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10381 and R14 stores the return address. */
10382 record_buf[0] = ARM_PS_REGNUM;
10383 record_buf[1] = ARM_LR_REGNUM;
10384 arm_insn_r->reg_rec_count = 2;
10385 }
10386 }
10387 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10388 {
10389 /* Handle enhanced software breakpoint insn, BKPT. */
10390 /* CPSR is changed to be executed in ARM state, disabling normal
10391 interrupts, entering abort mode. */
10392 /* According to high vector configuration PC is set. */
10393 /* user hit breakpoint and type reverse, in
10394 that case, we need to go back with previous CPSR and
10395 Program Counter. */
10396 record_buf[0] = ARM_PS_REGNUM;
10397 record_buf[1] = ARM_LR_REGNUM;
10398 arm_insn_r->reg_rec_count = 2;
10399
10400 /* Save SPSR also; how? */
72508ac0
PO
10401 return -1;
10402 }
10403 else if (11 == arm_insn_r->decode
10404 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10405 {
10406 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10407
10408 /* Handle str(x) insn */
10409 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10410 ARM_RECORD_STRH);
10411 }
10412 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10413 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10414 {
10415 /* Handle BX, branch and link/exchange. */
10416 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10417 record_buf[0] = ARM_PS_REGNUM;
10418 arm_insn_r->reg_rec_count = 1;
10419 }
10420 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10421 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10422 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10423 {
10424 /* Count leading zeros: CLZ. */
10425 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10426 arm_insn_r->reg_rec_count = 1;
10427 }
10428 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10429 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10430 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10431 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10432 )
10433 {
10434 /* Handle MRS insn. */
10435 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10436 arm_insn_r->reg_rec_count = 1;
10437 }
10438 else if (arm_insn_r->opcode <= 15)
10439 {
10440 /* Normal data processing insns. */
10441 /* Out of 11 shifter operands mode, all the insn modifies destination
10442 register, which is specified by 13-16 decode. */
10443 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10444 record_buf[1] = ARM_PS_REGNUM;
10445 arm_insn_r->reg_rec_count = 2;
10446 }
10447 else
10448 {
10449 return -1;
10450 }
10451
10452 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10453 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10454 return 0;
10455}
10456
10457/* Handling opcode 001 insns. */
10458
10459static int
10460arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10461{
10462 uint32_t record_buf[8], record_buf_mem[8];
10463
10464 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10465 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10466
10467 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10468 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10469 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10470 )
10471 {
10472 /* Handle MSR insn. */
10473 if (9 == arm_insn_r->opcode)
10474 {
10475 /* CSPR is going to be changed. */
10476 record_buf[0] = ARM_PS_REGNUM;
10477 arm_insn_r->reg_rec_count = 1;
10478 }
10479 else
10480 {
10481 /* SPSR is going to be changed. */
10482 }
10483 }
10484 else if (arm_insn_r->opcode <= 15)
10485 {
10486 /* Normal data processing insns. */
10487 /* Out of 11 shifter operands mode, all the insn modifies destination
10488 register, which is specified by 13-16 decode. */
10489 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10490 record_buf[1] = ARM_PS_REGNUM;
10491 arm_insn_r->reg_rec_count = 2;
10492 }
10493 else
10494 {
10495 return -1;
10496 }
10497
10498 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10499 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10500 return 0;
10501}
10502
c55978a6
YQ
10503static int
10504arm_record_media (insn_decode_record *arm_insn_r)
10505{
10506 uint32_t record_buf[8];
10507
10508 switch (bits (arm_insn_r->arm_insn, 22, 24))
10509 {
10510 case 0:
10511 /* Parallel addition and subtraction, signed */
10512 case 1:
10513 /* Parallel addition and subtraction, unsigned */
10514 case 2:
10515 case 3:
10516 /* Packing, unpacking, saturation and reversal */
10517 {
10518 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10519
10520 record_buf[arm_insn_r->reg_rec_count++] = rd;
10521 }
10522 break;
10523
10524 case 4:
10525 case 5:
10526 /* Signed multiplies */
10527 {
10528 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10529 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10530
10531 record_buf[arm_insn_r->reg_rec_count++] = rd;
10532 if (op1 == 0x0)
10533 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10534 else if (op1 == 0x4)
10535 record_buf[arm_insn_r->reg_rec_count++]
10536 = bits (arm_insn_r->arm_insn, 12, 15);
10537 }
10538 break;
10539
10540 case 6:
10541 {
10542 if (bit (arm_insn_r->arm_insn, 21)
10543 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10544 {
10545 /* SBFX */
10546 record_buf[arm_insn_r->reg_rec_count++]
10547 = bits (arm_insn_r->arm_insn, 12, 15);
10548 }
10549 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10550 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10551 {
10552 /* USAD8 and USADA8 */
10553 record_buf[arm_insn_r->reg_rec_count++]
10554 = bits (arm_insn_r->arm_insn, 16, 19);
10555 }
10556 }
10557 break;
10558
10559 case 7:
10560 {
10561 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10562 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10563 {
10564 /* Permanently UNDEFINED */
10565 return -1;
10566 }
10567 else
10568 {
10569 /* BFC, BFI and UBFX */
10570 record_buf[arm_insn_r->reg_rec_count++]
10571 = bits (arm_insn_r->arm_insn, 12, 15);
10572 }
10573 }
10574 break;
10575
10576 default:
10577 return -1;
10578 }
10579
10580 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10581
10582 return 0;
10583}
10584
71e396f9 10585/* Handle ARM mode instructions with opcode 010. */
72508ac0
PO
10586
10587static int
10588arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10589{
10590 struct regcache *reg_cache = arm_insn_r->regcache;
10591
71e396f9
LM
10592 uint32_t reg_base , reg_dest;
10593 uint32_t offset_12, tgt_mem_addr;
72508ac0 10594 uint32_t record_buf[8], record_buf_mem[8];
71e396f9
LM
10595 unsigned char wback;
10596 ULONGEST u_regval;
72508ac0 10597
71e396f9
LM
10598 /* Calculate wback. */
10599 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10600 || (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0 10601
71e396f9
LM
10602 arm_insn_r->reg_rec_count = 0;
10603 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0
PO
10604
10605 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10606 {
71e396f9
LM
10607 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10608 and LDRT. */
10609
72508ac0 10610 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
71e396f9
LM
10611 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10612
10613 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10614 preceeds a LDR instruction having R15 as reg_base, it
10615 emulates a branch and link instruction, and hence we need to save
10616 CPSR and PC as well. */
10617 if (ARM_PC_REGNUM == reg_dest)
10618 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10619
10620 /* If wback is true, also save the base register, which is going to be
10621 written to. */
10622 if (wback)
10623 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
10624 }
10625 else
10626 {
71e396f9
LM
10627 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10628
72508ac0 10629 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
71e396f9
LM
10630 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10631
10632 /* Handle bit U. */
72508ac0 10633 if (bit (arm_insn_r->arm_insn, 23))
71e396f9
LM
10634 {
10635 /* U == 1: Add the offset. */
10636 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10637 }
72508ac0 10638 else
71e396f9
LM
10639 {
10640 /* U == 0: subtract the offset. */
10641 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10642 }
10643
10644 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10645 bytes. */
10646 if (bit (arm_insn_r->arm_insn, 22))
10647 {
10648 /* STRB and STRBT: 1 byte. */
10649 record_buf_mem[0] = 1;
10650 }
10651 else
10652 {
10653 /* STR and STRT: 4 bytes. */
10654 record_buf_mem[0] = 4;
10655 }
10656
10657 /* Handle bit P. */
10658 if (bit (arm_insn_r->arm_insn, 24))
10659 record_buf_mem[1] = tgt_mem_addr;
10660 else
10661 record_buf_mem[1] = (uint32_t) u_regval;
72508ac0 10662
72508ac0
PO
10663 arm_insn_r->mem_rec_count = 1;
10664
71e396f9
LM
10665 /* If wback is true, also save the base register, which is going to be
10666 written to. */
10667 if (wback)
10668 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
10669 }
10670
10671 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10672 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10673 return 0;
10674}
10675
10676/* Handling opcode 011 insns. */
10677
10678static int
10679arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10680{
10681 struct regcache *reg_cache = arm_insn_r->regcache;
10682
10683 uint32_t shift_imm = 0;
10684 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10685 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10686 uint32_t record_buf[8], record_buf_mem[8];
10687
10688 LONGEST s_word;
10689 ULONGEST u_regval[2];
10690
c55978a6
YQ
10691 if (bit (arm_insn_r->arm_insn, 4))
10692 return arm_record_media (arm_insn_r);
10693
72508ac0
PO
10694 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10695 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10696
10697 /* Handle enhanced store insns and LDRD DSP insn,
10698 order begins according to addressing modes for store insns
10699 STRH insn. */
10700
10701 /* LDR or STR? */
10702 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10703 {
10704 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10705 /* LDR insn has a capability to do branching, if
10706 MOV LR, PC is precedded by LDR insn having Rn as R15
10707 in that case, it emulates branch and link insn, and hence we
10708 need to save CSPR and PC as well. */
10709 if (15 != reg_dest)
10710 {
10711 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10712 arm_insn_r->reg_rec_count = 1;
10713 }
10714 else
10715 {
10716 record_buf[0] = reg_dest;
10717 record_buf[1] = ARM_PS_REGNUM;
10718 arm_insn_r->reg_rec_count = 2;
10719 }
10720 }
10721 else
10722 {
10723 if (! bits (arm_insn_r->arm_insn, 4, 11))
10724 {
10725 /* Store insn, register offset and register pre-indexed,
10726 register post-indexed. */
10727 /* Get Rm. */
10728 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10729 /* Get Rn. */
10730 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10731 regcache_raw_read_unsigned (reg_cache, reg_src1
10732 , &u_regval[0]);
10733 regcache_raw_read_unsigned (reg_cache, reg_src2
10734 , &u_regval[1]);
10735 if (15 == reg_src2)
10736 {
10737 /* If R15 was used as Rn, hence current PC+8. */
10738 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10739 u_regval[0] = u_regval[0] + 8;
10740 }
10741 /* Calculate target store address, Rn +/- Rm, register offset. */
10742 /* U == 1. */
10743 if (bit (arm_insn_r->arm_insn, 23))
10744 {
10745 tgt_mem_addr = u_regval[0] + u_regval[1];
10746 }
10747 else
10748 {
10749 tgt_mem_addr = u_regval[1] - u_regval[0];
10750 }
10751
10752 switch (arm_insn_r->opcode)
10753 {
10754 /* STR. */
10755 case 8:
10756 case 12:
10757 /* STR. */
10758 case 9:
10759 case 13:
10760 /* STRT. */
10761 case 1:
10762 case 5:
10763 /* STR. */
10764 case 0:
10765 case 4:
10766 record_buf_mem[0] = 4;
10767 break;
10768
10769 /* STRB. */
10770 case 10:
10771 case 14:
10772 /* STRB. */
10773 case 11:
10774 case 15:
10775 /* STRBT. */
10776 case 3:
10777 case 7:
10778 /* STRB. */
10779 case 2:
10780 case 6:
10781 record_buf_mem[0] = 1;
10782 break;
10783
10784 default:
10785 gdb_assert_not_reached ("no decoding pattern found");
10786 break;
10787 }
10788 record_buf_mem[1] = tgt_mem_addr;
10789 arm_insn_r->mem_rec_count = 1;
10790
10791 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10792 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10793 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10794 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10795 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10796 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10797 )
10798 {
10799 /* Rn is going to be changed in pre-indexed mode and
10800 post-indexed mode as well. */
10801 record_buf[0] = reg_src2;
10802 arm_insn_r->reg_rec_count = 1;
10803 }
10804 }
10805 else
10806 {
10807 /* Store insn, scaled register offset; scaled pre-indexed. */
10808 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10809 /* Get Rm. */
10810 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10811 /* Get Rn. */
10812 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10813 /* Get shift_imm. */
10814 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10815 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10816 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10817 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10818 /* Offset_12 used as shift. */
10819 switch (offset_12)
10820 {
10821 case 0:
10822 /* Offset_12 used as index. */
10823 offset_12 = u_regval[0] << shift_imm;
10824 break;
10825
10826 case 1:
10827 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10828 break;
10829
10830 case 2:
10831 if (!shift_imm)
10832 {
10833 if (bit (u_regval[0], 31))
10834 {
10835 offset_12 = 0xFFFFFFFF;
10836 }
10837 else
10838 {
10839 offset_12 = 0;
10840 }
10841 }
10842 else
10843 {
10844 /* This is arithmetic shift. */
10845 offset_12 = s_word >> shift_imm;
10846 }
10847 break;
10848
10849 case 3:
10850 if (!shift_imm)
10851 {
10852 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10853 &u_regval[1]);
10854 /* Get C flag value and shift it by 31. */
10855 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10856 | (u_regval[0]) >> 1);
10857 }
10858 else
10859 {
10860 offset_12 = (u_regval[0] >> shift_imm) \
10861 | (u_regval[0] <<
10862 (sizeof(uint32_t) - shift_imm));
10863 }
10864 break;
10865
10866 default:
10867 gdb_assert_not_reached ("no decoding pattern found");
10868 break;
10869 }
10870
10871 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10872 /* bit U set. */
10873 if (bit (arm_insn_r->arm_insn, 23))
10874 {
10875 tgt_mem_addr = u_regval[1] + offset_12;
10876 }
10877 else
10878 {
10879 tgt_mem_addr = u_regval[1] - offset_12;
10880 }
10881
10882 switch (arm_insn_r->opcode)
10883 {
10884 /* STR. */
10885 case 8:
10886 case 12:
10887 /* STR. */
10888 case 9:
10889 case 13:
10890 /* STRT. */
10891 case 1:
10892 case 5:
10893 /* STR. */
10894 case 0:
10895 case 4:
10896 record_buf_mem[0] = 4;
10897 break;
10898
10899 /* STRB. */
10900 case 10:
10901 case 14:
10902 /* STRB. */
10903 case 11:
10904 case 15:
10905 /* STRBT. */
10906 case 3:
10907 case 7:
10908 /* STRB. */
10909 case 2:
10910 case 6:
10911 record_buf_mem[0] = 1;
10912 break;
10913
10914 default:
10915 gdb_assert_not_reached ("no decoding pattern found");
10916 break;
10917 }
10918 record_buf_mem[1] = tgt_mem_addr;
10919 arm_insn_r->mem_rec_count = 1;
10920
10921 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10922 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10923 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10924 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10925 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10926 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10927 )
10928 {
10929 /* Rn is going to be changed in register scaled pre-indexed
10930 mode,and scaled post indexed mode. */
10931 record_buf[0] = reg_src2;
10932 arm_insn_r->reg_rec_count = 1;
10933 }
10934 }
10935 }
10936
10937 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10938 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10939 return 0;
10940}
10941
71e396f9 10942/* Handle ARM mode instructions with opcode 100. */
72508ac0
PO
10943
10944static int
10945arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10946{
10947 struct regcache *reg_cache = arm_insn_r->regcache;
71e396f9
LM
10948 uint32_t register_count = 0, register_bits;
10949 uint32_t reg_base, addr_mode;
72508ac0 10950 uint32_t record_buf[24], record_buf_mem[48];
71e396f9
LM
10951 uint32_t wback;
10952 ULONGEST u_regval;
72508ac0 10953
71e396f9
LM
10954 /* Fetch the list of registers. */
10955 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10956 arm_insn_r->reg_rec_count = 0;
10957
10958 /* Fetch the base register that contains the address we are loading data
10959 to. */
10960 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0 10961
71e396f9
LM
10962 /* Calculate wback. */
10963 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0
PO
10964
10965 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10966 {
71e396f9 10967 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
72508ac0 10968
71e396f9 10969 /* Find out which registers are going to be loaded from memory. */
72508ac0 10970 while (register_bits)
71e396f9
LM
10971 {
10972 if (register_bits & 0x00000001)
10973 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10974 register_bits = register_bits >> 1;
10975 register_count++;
10976 }
72508ac0 10977
71e396f9
LM
10978
10979 /* If wback is true, also save the base register, which is going to be
10980 written to. */
10981 if (wback)
10982 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10983
10984 /* Save the CPSR register. */
10985 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
72508ac0
PO
10986 }
10987 else
10988 {
71e396f9 10989 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
72508ac0 10990
71e396f9
LM
10991 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10992
10993 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10994
10995 /* Find out how many registers are going to be stored to memory. */
72508ac0 10996 while (register_bits)
71e396f9
LM
10997 {
10998 if (register_bits & 0x00000001)
10999 register_count++;
11000 register_bits = register_bits >> 1;
11001 }
72508ac0
PO
11002
11003 switch (addr_mode)
71e396f9
LM
11004 {
11005 /* STMDA (STMED): Decrement after. */
11006 case 0:
11007 record_buf_mem[1] = (uint32_t) u_regval
11008 - register_count * INT_REGISTER_SIZE + 4;
11009 break;
11010 /* STM (STMIA, STMEA): Increment after. */
11011 case 1:
11012 record_buf_mem[1] = (uint32_t) u_regval;
11013 break;
11014 /* STMDB (STMFD): Decrement before. */
11015 case 2:
11016 record_buf_mem[1] = (uint32_t) u_regval
11017 - register_count * INT_REGISTER_SIZE;
11018 break;
11019 /* STMIB (STMFA): Increment before. */
11020 case 3:
11021 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11022 break;
11023 default:
11024 gdb_assert_not_reached ("no decoding pattern found");
11025 break;
11026 }
72508ac0 11027
71e396f9
LM
11028 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11029 arm_insn_r->mem_rec_count = 1;
11030
11031 /* If wback is true, also save the base register, which is going to be
11032 written to. */
11033 if (wback)
11034 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
11035 }
11036
11037 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11038 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11039 return 0;
11040}
11041
11042/* Handling opcode 101 insns. */
11043
11044static int
11045arm_record_b_bl (insn_decode_record *arm_insn_r)
11046{
11047 uint32_t record_buf[8];
11048
11049 /* Handle B, BL, BLX(1) insns. */
11050 /* B simply branches so we do nothing here. */
11051 /* Note: BLX(1) doesnt fall here but instead it falls into
11052 extension space. */
11053 if (bit (arm_insn_r->arm_insn, 24))
11054 {
11055 record_buf[0] = ARM_LR_REGNUM;
11056 arm_insn_r->reg_rec_count = 1;
11057 }
11058
11059 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11060
11061 return 0;
11062}
11063
72508ac0 11064static int
c6ec2b30 11065arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
72508ac0
PO
11066{
11067 printf_unfiltered (_("Process record does not support instruction "
01e57735
YQ
11068 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11069 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
72508ac0
PO
11070
11071 return -1;
11072}
11073
5a578da5
OJ
11074/* Record handler for vector data transfer instructions. */
11075
11076static int
11077arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11078{
11079 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11080 uint32_t record_buf[4];
11081
5a578da5
OJ
11082 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11083 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11084 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11085 bit_l = bit (arm_insn_r->arm_insn, 20);
11086 bit_c = bit (arm_insn_r->arm_insn, 8);
11087
11088 /* Handle VMOV instruction. */
11089 if (bit_l && bit_c)
11090 {
11091 record_buf[0] = reg_t;
11092 arm_insn_r->reg_rec_count = 1;
11093 }
11094 else if (bit_l && !bit_c)
11095 {
11096 /* Handle VMOV instruction. */
11097 if (bits_a == 0x00)
11098 {
f1771dce 11099 record_buf[0] = reg_t;
5a578da5
OJ
11100 arm_insn_r->reg_rec_count = 1;
11101 }
11102 /* Handle VMRS instruction. */
11103 else if (bits_a == 0x07)
11104 {
11105 if (reg_t == 15)
11106 reg_t = ARM_PS_REGNUM;
11107
11108 record_buf[0] = reg_t;
11109 arm_insn_r->reg_rec_count = 1;
11110 }
11111 }
11112 else if (!bit_l && !bit_c)
11113 {
11114 /* Handle VMOV instruction. */
11115 if (bits_a == 0x00)
11116 {
f1771dce 11117 record_buf[0] = ARM_D0_REGNUM + reg_v;
5a578da5
OJ
11118
11119 arm_insn_r->reg_rec_count = 1;
11120 }
11121 /* Handle VMSR instruction. */
11122 else if (bits_a == 0x07)
11123 {
11124 record_buf[0] = ARM_FPSCR_REGNUM;
11125 arm_insn_r->reg_rec_count = 1;
11126 }
11127 }
11128 else if (!bit_l && bit_c)
11129 {
11130 /* Handle VMOV instruction. */
11131 if (!(bits_a & 0x04))
11132 {
11133 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11134 + ARM_D0_REGNUM;
11135 arm_insn_r->reg_rec_count = 1;
11136 }
11137 /* Handle VDUP instruction. */
11138 else
11139 {
11140 if (bit (arm_insn_r->arm_insn, 21))
11141 {
11142 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11143 record_buf[0] = reg_v + ARM_D0_REGNUM;
11144 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11145 arm_insn_r->reg_rec_count = 2;
11146 }
11147 else
11148 {
11149 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11150 record_buf[0] = reg_v + ARM_D0_REGNUM;
11151 arm_insn_r->reg_rec_count = 1;
11152 }
11153 }
11154 }
11155
11156 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11157 return 0;
11158}
11159
f20f80dd
OJ
11160/* Record handler for extension register load/store instructions. */
11161
11162static int
11163arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11164{
11165 uint32_t opcode, single_reg;
11166 uint8_t op_vldm_vstm;
11167 uint32_t record_buf[8], record_buf_mem[128];
11168 ULONGEST u_regval = 0;
11169
11170 struct regcache *reg_cache = arm_insn_r->regcache;
f20f80dd
OJ
11171
11172 opcode = bits (arm_insn_r->arm_insn, 20, 24);
9fde51ed 11173 single_reg = !bit (arm_insn_r->arm_insn, 8);
f20f80dd
OJ
11174 op_vldm_vstm = opcode & 0x1b;
11175
11176 /* Handle VMOV instructions. */
11177 if ((opcode & 0x1e) == 0x04)
11178 {
9fde51ed 11179 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
01e57735
YQ
11180 {
11181 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11182 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11183 arm_insn_r->reg_rec_count = 2;
11184 }
f20f80dd 11185 else
01e57735 11186 {
9fde51ed
YQ
11187 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11188 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
f20f80dd 11189
9fde51ed 11190 if (single_reg)
01e57735 11191 {
9fde51ed
YQ
11192 /* The first S register number m is REG_M:M (M is bit 5),
11193 the corresponding D register number is REG_M:M / 2, which
11194 is REG_M. */
11195 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11196 /* The second S register number is REG_M:M + 1, the
11197 corresponding D register number is (REG_M:M + 1) / 2.
11198 IOW, if bit M is 1, the first and second S registers
11199 are mapped to different D registers, otherwise, they are
11200 in the same D register. */
11201 if (bit_m)
11202 {
11203 record_buf[arm_insn_r->reg_rec_count++]
11204 = ARM_D0_REGNUM + reg_m + 1;
11205 }
01e57735
YQ
11206 }
11207 else
11208 {
9fde51ed 11209 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
01e57735
YQ
11210 arm_insn_r->reg_rec_count = 1;
11211 }
11212 }
f20f80dd
OJ
11213 }
11214 /* Handle VSTM and VPUSH instructions. */
11215 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
01e57735 11216 || op_vldm_vstm == 0x12)
f20f80dd
OJ
11217 {
11218 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11219 uint32_t memory_index = 0;
11220
11221 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11222 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11223 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 11224 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
11225 memory_count = imm_off8;
11226
11227 if (bit (arm_insn_r->arm_insn, 23))
01e57735 11228 start_address = u_regval;
f20f80dd 11229 else
01e57735 11230 start_address = u_regval - imm_off32;
f20f80dd
OJ
11231
11232 if (bit (arm_insn_r->arm_insn, 21))
01e57735
YQ
11233 {
11234 record_buf[0] = reg_rn;
11235 arm_insn_r->reg_rec_count = 1;
11236 }
f20f80dd
OJ
11237
11238 while (memory_count > 0)
01e57735 11239 {
9fde51ed 11240 if (single_reg)
01e57735 11241 {
9fde51ed
YQ
11242 record_buf_mem[memory_index] = 4;
11243 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
11244 start_address = start_address + 4;
11245 memory_index = memory_index + 2;
11246 }
11247 else
11248 {
9fde51ed
YQ
11249 record_buf_mem[memory_index] = 4;
11250 record_buf_mem[memory_index + 1] = start_address;
11251 record_buf_mem[memory_index + 2] = 4;
11252 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
11253 start_address = start_address + 8;
11254 memory_index = memory_index + 4;
11255 }
11256 memory_count--;
11257 }
f20f80dd
OJ
11258 arm_insn_r->mem_rec_count = (memory_index >> 1);
11259 }
11260 /* Handle VLDM instructions. */
11261 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
01e57735 11262 || op_vldm_vstm == 0x13)
f20f80dd
OJ
11263 {
11264 uint32_t reg_count, reg_vd;
11265 uint32_t reg_index = 0;
9fde51ed 11266 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
f20f80dd
OJ
11267
11268 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11269 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11270
9fde51ed
YQ
11271 /* REG_VD is the first D register number. If the instruction
11272 loads memory to S registers (SINGLE_REG is TRUE), the register
11273 number is (REG_VD << 1 | bit D), so the corresponding D
11274 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11275 if (!single_reg)
11276 reg_vd = reg_vd | (bit_d << 4);
f20f80dd 11277
9fde51ed 11278 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
01e57735 11279 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
f20f80dd 11280
9fde51ed
YQ
11281 /* If the instruction loads memory to D register, REG_COUNT should
11282 be divided by 2, according to the ARM Architecture Reference
11283 Manual. If the instruction loads memory to S register, divide by
11284 2 as well because two S registers are mapped to D register. */
11285 reg_count = reg_count / 2;
11286 if (single_reg && bit_d)
01e57735 11287 {
9fde51ed
YQ
11288 /* Increase the register count if S register list starts from
11289 an odd number (bit d is one). */
11290 reg_count++;
11291 }
f20f80dd 11292
9fde51ed
YQ
11293 while (reg_count > 0)
11294 {
11295 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
01e57735
YQ
11296 reg_count--;
11297 }
f20f80dd
OJ
11298 arm_insn_r->reg_rec_count = reg_index;
11299 }
11300 /* VSTR Vector store register. */
11301 else if ((opcode & 0x13) == 0x10)
11302 {
bec2ab5a 11303 uint32_t start_address, reg_rn, imm_off32, imm_off8;
f20f80dd
OJ
11304 uint32_t memory_index = 0;
11305
11306 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11307 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11308 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 11309 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
11310
11311 if (bit (arm_insn_r->arm_insn, 23))
01e57735 11312 start_address = u_regval + imm_off32;
f20f80dd 11313 else
01e57735 11314 start_address = u_regval - imm_off32;
f20f80dd
OJ
11315
11316 if (single_reg)
01e57735 11317 {
9fde51ed
YQ
11318 record_buf_mem[memory_index] = 4;
11319 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
11320 arm_insn_r->mem_rec_count = 1;
11321 }
f20f80dd 11322 else
01e57735 11323 {
9fde51ed
YQ
11324 record_buf_mem[memory_index] = 4;
11325 record_buf_mem[memory_index + 1] = start_address;
11326 record_buf_mem[memory_index + 2] = 4;
11327 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
11328 arm_insn_r->mem_rec_count = 2;
11329 }
f20f80dd
OJ
11330 }
11331 /* VLDR Vector load register. */
11332 else if ((opcode & 0x13) == 0x11)
11333 {
11334 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11335
11336 if (!single_reg)
01e57735
YQ
11337 {
11338 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11339 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11340 }
f20f80dd 11341 else
01e57735
YQ
11342 {
11343 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
9fde51ed
YQ
11344 /* Record register D rather than pseudo register S. */
11345 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
01e57735 11346 }
f20f80dd
OJ
11347 arm_insn_r->reg_rec_count = 1;
11348 }
11349
11350 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11351 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11352 return 0;
11353}
11354
851f26ae
OJ
11355/* Record handler for arm/thumb mode VFP data processing instructions. */
11356
11357static int
11358arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11359{
11360 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11361 uint32_t record_buf[4];
11362 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11363 enum insn_types curr_insn_type = INSN_INV;
11364
11365 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11366 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11367 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11368 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11369 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11370 bit_d = bit (arm_insn_r->arm_insn, 22);
11371 opc1 = opc1 & 0x04;
11372
11373 /* Handle VMLA, VMLS. */
11374 if (opc1 == 0x00)
11375 {
11376 if (bit (arm_insn_r->arm_insn, 10))
11377 {
11378 if (bit (arm_insn_r->arm_insn, 6))
11379 curr_insn_type = INSN_T0;
11380 else
11381 curr_insn_type = INSN_T1;
11382 }
11383 else
11384 {
11385 if (dp_op_sz)
11386 curr_insn_type = INSN_T1;
11387 else
11388 curr_insn_type = INSN_T2;
11389 }
11390 }
11391 /* Handle VNMLA, VNMLS, VNMUL. */
11392 else if (opc1 == 0x01)
11393 {
11394 if (dp_op_sz)
11395 curr_insn_type = INSN_T1;
11396 else
11397 curr_insn_type = INSN_T2;
11398 }
11399 /* Handle VMUL. */
11400 else if (opc1 == 0x02 && !(opc3 & 0x01))
11401 {
11402 if (bit (arm_insn_r->arm_insn, 10))
11403 {
11404 if (bit (arm_insn_r->arm_insn, 6))
11405 curr_insn_type = INSN_T0;
11406 else
11407 curr_insn_type = INSN_T1;
11408 }
11409 else
11410 {
11411 if (dp_op_sz)
11412 curr_insn_type = INSN_T1;
11413 else
11414 curr_insn_type = INSN_T2;
11415 }
11416 }
11417 /* Handle VADD, VSUB. */
11418 else if (opc1 == 0x03)
11419 {
11420 if (!bit (arm_insn_r->arm_insn, 9))
11421 {
11422 if (bit (arm_insn_r->arm_insn, 6))
11423 curr_insn_type = INSN_T0;
11424 else
11425 curr_insn_type = INSN_T1;
11426 }
11427 else
11428 {
11429 if (dp_op_sz)
11430 curr_insn_type = INSN_T1;
11431 else
11432 curr_insn_type = INSN_T2;
11433 }
11434 }
11435 /* Handle VDIV. */
11436 else if (opc1 == 0x0b)
11437 {
11438 if (dp_op_sz)
11439 curr_insn_type = INSN_T1;
11440 else
11441 curr_insn_type = INSN_T2;
11442 }
11443 /* Handle all other vfp data processing instructions. */
11444 else if (opc1 == 0x0b)
11445 {
11446 /* Handle VMOV. */
11447 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11448 {
11449 if (bit (arm_insn_r->arm_insn, 4))
11450 {
11451 if (bit (arm_insn_r->arm_insn, 6))
11452 curr_insn_type = INSN_T0;
11453 else
11454 curr_insn_type = INSN_T1;
11455 }
11456 else
11457 {
11458 if (dp_op_sz)
11459 curr_insn_type = INSN_T1;
11460 else
11461 curr_insn_type = INSN_T2;
11462 }
11463 }
11464 /* Handle VNEG and VABS. */
11465 else if ((opc2 == 0x01 && opc3 == 0x01)
11466 || (opc2 == 0x00 && opc3 == 0x03))
11467 {
11468 if (!bit (arm_insn_r->arm_insn, 11))
11469 {
11470 if (bit (arm_insn_r->arm_insn, 6))
11471 curr_insn_type = INSN_T0;
11472 else
11473 curr_insn_type = INSN_T1;
11474 }
11475 else
11476 {
11477 if (dp_op_sz)
11478 curr_insn_type = INSN_T1;
11479 else
11480 curr_insn_type = INSN_T2;
11481 }
11482 }
11483 /* Handle VSQRT. */
11484 else if (opc2 == 0x01 && opc3 == 0x03)
11485 {
11486 if (dp_op_sz)
11487 curr_insn_type = INSN_T1;
11488 else
11489 curr_insn_type = INSN_T2;
11490 }
11491 /* Handle VCVT. */
11492 else if (opc2 == 0x07 && opc3 == 0x03)
11493 {
11494 if (!dp_op_sz)
11495 curr_insn_type = INSN_T1;
11496 else
11497 curr_insn_type = INSN_T2;
11498 }
11499 else if (opc3 & 0x01)
11500 {
11501 /* Handle VCVT. */
11502 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11503 {
11504 if (!bit (arm_insn_r->arm_insn, 18))
11505 curr_insn_type = INSN_T2;
11506 else
11507 {
11508 if (dp_op_sz)
11509 curr_insn_type = INSN_T1;
11510 else
11511 curr_insn_type = INSN_T2;
11512 }
11513 }
11514 /* Handle VCVT. */
11515 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11516 {
11517 if (dp_op_sz)
11518 curr_insn_type = INSN_T1;
11519 else
11520 curr_insn_type = INSN_T2;
11521 }
11522 /* Handle VCVTB, VCVTT. */
11523 else if ((opc2 & 0x0e) == 0x02)
11524 curr_insn_type = INSN_T2;
11525 /* Handle VCMP, VCMPE. */
11526 else if ((opc2 & 0x0e) == 0x04)
11527 curr_insn_type = INSN_T3;
11528 }
11529 }
11530
11531 switch (curr_insn_type)
11532 {
11533 case INSN_T0:
11534 reg_vd = reg_vd | (bit_d << 4);
11535 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11536 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11537 arm_insn_r->reg_rec_count = 2;
11538 break;
11539
11540 case INSN_T1:
11541 reg_vd = reg_vd | (bit_d << 4);
11542 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11543 arm_insn_r->reg_rec_count = 1;
11544 break;
11545
11546 case INSN_T2:
11547 reg_vd = (reg_vd << 1) | bit_d;
11548 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11549 arm_insn_r->reg_rec_count = 1;
11550 break;
11551
11552 case INSN_T3:
11553 record_buf[0] = ARM_FPSCR_REGNUM;
11554 arm_insn_r->reg_rec_count = 1;
11555 break;
11556
11557 default:
11558 gdb_assert_not_reached ("no decoding pattern found");
11559 break;
11560 }
11561
11562 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11563 return 0;
11564}
11565
60cc5e93
OJ
11566/* Handling opcode 110 insns. */
11567
11568static int
11569arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11570{
bec2ab5a 11571 uint32_t op1, op1_ebit, coproc;
60cc5e93
OJ
11572
11573 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11574 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11575 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11576
11577 if ((coproc & 0x0e) == 0x0a)
11578 {
11579 /* Handle extension register ld/st instructions. */
11580 if (!(op1 & 0x20))
f20f80dd 11581 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
11582
11583 /* 64-bit transfers between arm core and extension registers. */
11584 if ((op1 & 0x3e) == 0x04)
f20f80dd 11585 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
11586 }
11587 else
11588 {
11589 /* Handle coprocessor ld/st instructions. */
11590 if (!(op1 & 0x3a))
11591 {
11592 /* Store. */
11593 if (!op1_ebit)
11594 return arm_record_unsupported_insn (arm_insn_r);
11595 else
11596 /* Load. */
11597 return arm_record_unsupported_insn (arm_insn_r);
11598 }
11599
11600 /* Move to coprocessor from two arm core registers. */
11601 if (op1 == 0x4)
11602 return arm_record_unsupported_insn (arm_insn_r);
11603
11604 /* Move to two arm core registers from coprocessor. */
11605 if (op1 == 0x5)
11606 {
11607 uint32_t reg_t[2];
11608
11609 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11610 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11611 arm_insn_r->reg_rec_count = 2;
11612
11613 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11614 return 0;
11615 }
11616 }
11617 return arm_record_unsupported_insn (arm_insn_r);
11618}
11619
72508ac0
PO
11620/* Handling opcode 111 insns. */
11621
11622static int
11623arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11624{
60cc5e93 11625 uint32_t op, op1_sbit, op1_ebit, coproc;
72508ac0
PO
11626 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11627 struct regcache *reg_cache = arm_insn_r->regcache;
72508ac0
PO
11628
11629 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
60cc5e93
OJ
11630 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11631 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11632 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11633 op = bit (arm_insn_r->arm_insn, 4);
97dfe206
OJ
11634
11635 /* Handle arm SWI/SVC system call instructions. */
60cc5e93 11636 if (op1_sbit)
97dfe206
OJ
11637 {
11638 if (tdep->arm_syscall_record != NULL)
11639 {
11640 ULONGEST svc_operand, svc_number;
11641
11642 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11643
11644 if (svc_operand) /* OABI. */
11645 svc_number = svc_operand - 0x900000;
11646 else /* EABI. */
11647 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11648
60cc5e93 11649 return tdep->arm_syscall_record (reg_cache, svc_number);
97dfe206
OJ
11650 }
11651 else
11652 {
11653 printf_unfiltered (_("no syscall record support\n"));
60cc5e93 11654 return -1;
97dfe206
OJ
11655 }
11656 }
60cc5e93
OJ
11657
11658 if ((coproc & 0x0e) == 0x0a)
11659 {
11660 /* VFP data-processing instructions. */
11661 if (!op1_sbit && !op)
851f26ae 11662 return arm_record_vfp_data_proc_insn (arm_insn_r);
60cc5e93
OJ
11663
11664 /* Advanced SIMD, VFP instructions. */
11665 if (!op1_sbit && op)
5a578da5 11666 return arm_record_vdata_transfer_insn (arm_insn_r);
60cc5e93 11667 }
97dfe206
OJ
11668 else
11669 {
60cc5e93
OJ
11670 /* Coprocessor data operations. */
11671 if (!op1_sbit && !op)
11672 return arm_record_unsupported_insn (arm_insn_r);
11673
11674 /* Move to Coprocessor from ARM core register. */
11675 if (!op1_sbit && !op1_ebit && op)
11676 return arm_record_unsupported_insn (arm_insn_r);
11677
11678 /* Move to arm core register from coprocessor. */
11679 if (!op1_sbit && op1_ebit && op)
11680 {
11681 uint32_t record_buf[1];
11682
11683 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11684 if (record_buf[0] == 15)
11685 record_buf[0] = ARM_PS_REGNUM;
11686
11687 arm_insn_r->reg_rec_count = 1;
11688 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11689 record_buf);
11690 return 0;
11691 }
97dfe206 11692 }
72508ac0 11693
60cc5e93 11694 return arm_record_unsupported_insn (arm_insn_r);
72508ac0
PO
11695}
11696
11697/* Handling opcode 000 insns. */
11698
11699static int
11700thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11701{
11702 uint32_t record_buf[8];
11703 uint32_t reg_src1 = 0;
11704
11705 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11706
11707 record_buf[0] = ARM_PS_REGNUM;
11708 record_buf[1] = reg_src1;
11709 thumb_insn_r->reg_rec_count = 2;
11710
11711 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11712
11713 return 0;
11714}
11715
11716
11717/* Handling opcode 001 insns. */
11718
11719static int
11720thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11721{
11722 uint32_t record_buf[8];
11723 uint32_t reg_src1 = 0;
11724
11725 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11726
11727 record_buf[0] = ARM_PS_REGNUM;
11728 record_buf[1] = reg_src1;
11729 thumb_insn_r->reg_rec_count = 2;
11730
11731 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11732
11733 return 0;
11734}
11735
11736/* Handling opcode 010 insns. */
11737
11738static int
11739thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11740{
11741 struct regcache *reg_cache = thumb_insn_r->regcache;
11742 uint32_t record_buf[8], record_buf_mem[8];
11743
11744 uint32_t reg_src1 = 0, reg_src2 = 0;
11745 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11746
11747 ULONGEST u_regval[2] = {0};
11748
11749 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11750
11751 if (bit (thumb_insn_r->arm_insn, 12))
11752 {
11753 /* Handle load/store register offset. */
b121eeb9
YQ
11754 uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
11755
11756 if (opB >= 4 && opB <= 7)
72508ac0
PO
11757 {
11758 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11759 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11760 record_buf[0] = reg_src1;
11761 thumb_insn_r->reg_rec_count = 1;
11762 }
b121eeb9 11763 else if (opB >= 0 && opB <= 2)
72508ac0
PO
11764 {
11765 /* STR(2), STRB(2), STRH(2) . */
11766 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11767 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11768 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11769 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
b121eeb9 11770 if (0 == opB)
72508ac0 11771 record_buf_mem[0] = 4; /* STR (2). */
b121eeb9 11772 else if (2 == opB)
72508ac0 11773 record_buf_mem[0] = 1; /* STRB (2). */
b121eeb9 11774 else if (1 == opB)
72508ac0
PO
11775 record_buf_mem[0] = 2; /* STRH (2). */
11776 record_buf_mem[1] = u_regval[0] + u_regval[1];
11777 thumb_insn_r->mem_rec_count = 1;
11778 }
11779 }
11780 else if (bit (thumb_insn_r->arm_insn, 11))
11781 {
11782 /* Handle load from literal pool. */
11783 /* LDR(3). */
11784 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11785 record_buf[0] = reg_src1;
11786 thumb_insn_r->reg_rec_count = 1;
11787 }
11788 else if (opcode1)
11789 {
b121eeb9 11790 /* Special data instructions and branch and exchange */
72508ac0
PO
11791 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11792 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11793 if ((3 == opcode2) && (!opcode3))
11794 {
11795 /* Branch with exchange. */
11796 record_buf[0] = ARM_PS_REGNUM;
11797 thumb_insn_r->reg_rec_count = 1;
11798 }
11799 else
11800 {
1f33efec
YQ
11801 /* Format 8; special data processing insns. */
11802 record_buf[0] = ARM_PS_REGNUM;
11803 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11804 | bits (thumb_insn_r->arm_insn, 0, 2));
72508ac0
PO
11805 thumb_insn_r->reg_rec_count = 2;
11806 }
11807 }
11808 else
11809 {
11810 /* Format 5; data processing insns. */
11811 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11812 if (bit (thumb_insn_r->arm_insn, 7))
11813 {
11814 reg_src1 = reg_src1 + 8;
11815 }
11816 record_buf[0] = ARM_PS_REGNUM;
11817 record_buf[1] = reg_src1;
11818 thumb_insn_r->reg_rec_count = 2;
11819 }
11820
11821 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11822 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11823 record_buf_mem);
11824
11825 return 0;
11826}
11827
11828/* Handling opcode 001 insns. */
11829
11830static int
11831thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11832{
11833 struct regcache *reg_cache = thumb_insn_r->regcache;
11834 uint32_t record_buf[8], record_buf_mem[8];
11835
11836 uint32_t reg_src1 = 0;
11837 uint32_t opcode = 0, immed_5 = 0;
11838
11839 ULONGEST u_regval = 0;
11840
11841 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11842
11843 if (opcode)
11844 {
11845 /* LDR(1). */
11846 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11847 record_buf[0] = reg_src1;
11848 thumb_insn_r->reg_rec_count = 1;
11849 }
11850 else
11851 {
11852 /* STR(1). */
11853 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11854 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11855 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11856 record_buf_mem[0] = 4;
11857 record_buf_mem[1] = u_regval + (immed_5 * 4);
11858 thumb_insn_r->mem_rec_count = 1;
11859 }
11860
11861 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11862 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11863 record_buf_mem);
11864
11865 return 0;
11866}
11867
11868/* Handling opcode 100 insns. */
11869
11870static int
11871thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11872{
11873 struct regcache *reg_cache = thumb_insn_r->regcache;
11874 uint32_t record_buf[8], record_buf_mem[8];
11875
11876 uint32_t reg_src1 = 0;
11877 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11878
11879 ULONGEST u_regval = 0;
11880
11881 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11882
11883 if (3 == opcode)
11884 {
11885 /* LDR(4). */
11886 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11887 record_buf[0] = reg_src1;
11888 thumb_insn_r->reg_rec_count = 1;
11889 }
11890 else if (1 == opcode)
11891 {
11892 /* LDRH(1). */
11893 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11894 record_buf[0] = reg_src1;
11895 thumb_insn_r->reg_rec_count = 1;
11896 }
11897 else if (2 == opcode)
11898 {
11899 /* STR(3). */
11900 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11901 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11902 record_buf_mem[0] = 4;
11903 record_buf_mem[1] = u_regval + (immed_8 * 4);
11904 thumb_insn_r->mem_rec_count = 1;
11905 }
11906 else if (0 == opcode)
11907 {
11908 /* STRH(1). */
11909 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11910 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11911 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11912 record_buf_mem[0] = 2;
11913 record_buf_mem[1] = u_regval + (immed_5 * 2);
11914 thumb_insn_r->mem_rec_count = 1;
11915 }
11916
11917 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11918 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11919 record_buf_mem);
11920
11921 return 0;
11922}
11923
11924/* Handling opcode 101 insns. */
11925
11926static int
11927thumb_record_misc (insn_decode_record *thumb_insn_r)
11928{
11929 struct regcache *reg_cache = thumb_insn_r->regcache;
11930
b121eeb9 11931 uint32_t opcode = 0;
72508ac0 11932 uint32_t register_bits = 0, register_count = 0;
bec2ab5a 11933 uint32_t index = 0, start_address = 0;
72508ac0
PO
11934 uint32_t record_buf[24], record_buf_mem[48];
11935 uint32_t reg_src1;
11936
11937 ULONGEST u_regval = 0;
11938
11939 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
72508ac0 11940
b121eeb9 11941 if (opcode == 0 || opcode == 1)
72508ac0 11942 {
b121eeb9
YQ
11943 /* ADR and ADD (SP plus immediate) */
11944
72508ac0
PO
11945 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11946 record_buf[0] = reg_src1;
11947 thumb_insn_r->reg_rec_count = 1;
11948 }
b121eeb9 11949 else
72508ac0 11950 {
b121eeb9
YQ
11951 /* Miscellaneous 16-bit instructions */
11952 uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
11953
11954 switch (opcode2)
11955 {
11956 case 6:
11957 /* SETEND and CPS */
11958 break;
11959 case 0:
11960 /* ADD/SUB (SP plus immediate) */
11961 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11962 record_buf[0] = ARM_SP_REGNUM;
11963 thumb_insn_r->reg_rec_count = 1;
11964 break;
11965 case 1: /* fall through */
11966 case 3: /* fall through */
11967 case 9: /* fall through */
11968 case 11:
11969 /* CBNZ, CBZ */
b121eeb9
YQ
11970 break;
11971 case 2:
11972 /* SXTH, SXTB, UXTH, UXTB */
11973 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
11974 thumb_insn_r->reg_rec_count = 1;
11975 break;
11976 case 4: /* fall through */
11977 case 5:
11978 /* PUSH. */
11979 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11980 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11981 while (register_bits)
11982 {
11983 if (register_bits & 0x00000001)
11984 register_count++;
11985 register_bits = register_bits >> 1;
11986 }
11987 start_address = u_regval - \
11988 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11989 thumb_insn_r->mem_rec_count = register_count;
11990 while (register_count)
11991 {
11992 record_buf_mem[(register_count * 2) - 1] = start_address;
11993 record_buf_mem[(register_count * 2) - 2] = 4;
11994 start_address = start_address + 4;
11995 register_count--;
11996 }
11997 record_buf[0] = ARM_SP_REGNUM;
11998 thumb_insn_r->reg_rec_count = 1;
11999 break;
12000 case 10:
12001 /* REV, REV16, REVSH */
ba14f379
YQ
12002 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12003 thumb_insn_r->reg_rec_count = 1;
b121eeb9
YQ
12004 break;
12005 case 12: /* fall through */
12006 case 13:
12007 /* POP. */
12008 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12009 while (register_bits)
12010 {
12011 if (register_bits & 0x00000001)
12012 record_buf[index++] = register_count;
12013 register_bits = register_bits >> 1;
12014 register_count++;
12015 }
12016 record_buf[index++] = ARM_PS_REGNUM;
12017 record_buf[index++] = ARM_SP_REGNUM;
12018 thumb_insn_r->reg_rec_count = index;
12019 break;
12020 case 0xe:
12021 /* BKPT insn. */
12022 /* Handle enhanced software breakpoint insn, BKPT. */
12023 /* CPSR is changed to be executed in ARM state, disabling normal
12024 interrupts, entering abort mode. */
12025 /* According to high vector configuration PC is set. */
12026 /* User hits breakpoint and type reverse, in that case, we need to go back with
12027 previous CPSR and Program Counter. */
12028 record_buf[0] = ARM_PS_REGNUM;
12029 record_buf[1] = ARM_LR_REGNUM;
12030 thumb_insn_r->reg_rec_count = 2;
12031 /* We need to save SPSR value, which is not yet done. */
12032 printf_unfiltered (_("Process record does not support instruction "
12033 "0x%0x at address %s.\n"),
12034 thumb_insn_r->arm_insn,
12035 paddress (thumb_insn_r->gdbarch,
12036 thumb_insn_r->this_addr));
12037 return -1;
12038
12039 case 0xf:
12040 /* If-Then, and hints */
12041 break;
12042 default:
12043 return -1;
12044 };
72508ac0
PO
12045 }
12046
12047 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12048 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12049 record_buf_mem);
12050
12051 return 0;
12052}
12053
12054/* Handling opcode 110 insns. */
12055
12056static int
12057thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12058{
12059 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12060 struct regcache *reg_cache = thumb_insn_r->regcache;
12061
12062 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12063 uint32_t reg_src1 = 0;
12064 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
bec2ab5a 12065 uint32_t index = 0, start_address = 0;
72508ac0
PO
12066 uint32_t record_buf[24], record_buf_mem[48];
12067
12068 ULONGEST u_regval = 0;
12069
12070 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12071 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12072
12073 if (1 == opcode2)
12074 {
12075
12076 /* LDMIA. */
12077 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12078 /* Get Rn. */
12079 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12080 while (register_bits)
12081 {
12082 if (register_bits & 0x00000001)
f969241e 12083 record_buf[index++] = register_count;
72508ac0 12084 register_bits = register_bits >> 1;
f969241e 12085 register_count++;
72508ac0 12086 }
f969241e
OJ
12087 record_buf[index++] = reg_src1;
12088 thumb_insn_r->reg_rec_count = index;
72508ac0
PO
12089 }
12090 else if (0 == opcode2)
12091 {
12092 /* It handles both STMIA. */
12093 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12094 /* Get Rn. */
12095 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12096 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12097 while (register_bits)
12098 {
12099 if (register_bits & 0x00000001)
12100 register_count++;
12101 register_bits = register_bits >> 1;
12102 }
12103 start_address = u_regval;
12104 thumb_insn_r->mem_rec_count = register_count;
12105 while (register_count)
12106 {
12107 record_buf_mem[(register_count * 2) - 1] = start_address;
12108 record_buf_mem[(register_count * 2) - 2] = 4;
12109 start_address = start_address + 4;
12110 register_count--;
12111 }
12112 }
12113 else if (0x1F == opcode1)
12114 {
12115 /* Handle arm syscall insn. */
97dfe206 12116 if (tdep->arm_syscall_record != NULL)
72508ac0 12117 {
97dfe206
OJ
12118 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12119 ret = tdep->arm_syscall_record (reg_cache, u_regval);
72508ac0
PO
12120 }
12121 else
12122 {
12123 printf_unfiltered (_("no syscall record support\n"));
12124 return -1;
12125 }
12126 }
12127
12128 /* B (1), conditional branch is automatically taken care in process_record,
12129 as PC is saved there. */
12130
12131 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12132 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12133 record_buf_mem);
12134
12135 return ret;
12136}
12137
12138/* Handling opcode 111 insns. */
12139
12140static int
12141thumb_record_branch (insn_decode_record *thumb_insn_r)
12142{
12143 uint32_t record_buf[8];
12144 uint32_t bits_h = 0;
12145
12146 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12147
12148 if (2 == bits_h || 3 == bits_h)
12149 {
12150 /* BL */
12151 record_buf[0] = ARM_LR_REGNUM;
12152 thumb_insn_r->reg_rec_count = 1;
12153 }
12154 else if (1 == bits_h)
12155 {
12156 /* BLX(1). */
12157 record_buf[0] = ARM_PS_REGNUM;
12158 record_buf[1] = ARM_LR_REGNUM;
12159 thumb_insn_r->reg_rec_count = 2;
12160 }
12161
12162 /* B(2) is automatically taken care in process_record, as PC is
12163 saved there. */
12164
12165 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12166
12167 return 0;
12168}
12169
c6ec2b30
OJ
12170/* Handler for thumb2 load/store multiple instructions. */
12171
12172static int
12173thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12174{
12175 struct regcache *reg_cache = thumb2_insn_r->regcache;
12176
12177 uint32_t reg_rn, op;
12178 uint32_t register_bits = 0, register_count = 0;
12179 uint32_t index = 0, start_address = 0;
12180 uint32_t record_buf[24], record_buf_mem[48];
12181
12182 ULONGEST u_regval = 0;
12183
12184 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12185 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12186
12187 if (0 == op || 3 == op)
12188 {
12189 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12190 {
12191 /* Handle RFE instruction. */
12192 record_buf[0] = ARM_PS_REGNUM;
12193 thumb2_insn_r->reg_rec_count = 1;
12194 }
12195 else
12196 {
12197 /* Handle SRS instruction after reading banked SP. */
12198 return arm_record_unsupported_insn (thumb2_insn_r);
12199 }
12200 }
12201 else if (1 == op || 2 == op)
12202 {
12203 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12204 {
12205 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12206 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12207 while (register_bits)
12208 {
12209 if (register_bits & 0x00000001)
12210 record_buf[index++] = register_count;
12211
12212 register_count++;
12213 register_bits = register_bits >> 1;
12214 }
12215 record_buf[index++] = reg_rn;
12216 record_buf[index++] = ARM_PS_REGNUM;
12217 thumb2_insn_r->reg_rec_count = index;
12218 }
12219 else
12220 {
12221 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12222 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12223 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12224 while (register_bits)
12225 {
12226 if (register_bits & 0x00000001)
12227 register_count++;
12228
12229 register_bits = register_bits >> 1;
12230 }
12231
12232 if (1 == op)
12233 {
12234 /* Start address calculation for LDMDB/LDMEA. */
12235 start_address = u_regval;
12236 }
12237 else if (2 == op)
12238 {
12239 /* Start address calculation for LDMDB/LDMEA. */
12240 start_address = u_regval - register_count * 4;
12241 }
12242
12243 thumb2_insn_r->mem_rec_count = register_count;
12244 while (register_count)
12245 {
12246 record_buf_mem[register_count * 2 - 1] = start_address;
12247 record_buf_mem[register_count * 2 - 2] = 4;
12248 start_address = start_address + 4;
12249 register_count--;
12250 }
12251 record_buf[0] = reg_rn;
12252 record_buf[1] = ARM_PS_REGNUM;
12253 thumb2_insn_r->reg_rec_count = 2;
12254 }
12255 }
12256
12257 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12258 record_buf_mem);
12259 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12260 record_buf);
12261 return ARM_RECORD_SUCCESS;
12262}
12263
12264/* Handler for thumb2 load/store (dual/exclusive) and table branch
12265 instructions. */
12266
12267static int
12268thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12269{
12270 struct regcache *reg_cache = thumb2_insn_r->regcache;
12271
12272 uint32_t reg_rd, reg_rn, offset_imm;
12273 uint32_t reg_dest1, reg_dest2;
12274 uint32_t address, offset_addr;
12275 uint32_t record_buf[8], record_buf_mem[8];
12276 uint32_t op1, op2, op3;
c6ec2b30
OJ
12277
12278 ULONGEST u_regval[2];
12279
12280 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12281 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12282 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12283
12284 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12285 {
12286 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12287 {
12288 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12289 record_buf[0] = reg_dest1;
12290 record_buf[1] = ARM_PS_REGNUM;
12291 thumb2_insn_r->reg_rec_count = 2;
12292 }
12293
12294 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12295 {
12296 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12297 record_buf[2] = reg_dest2;
12298 thumb2_insn_r->reg_rec_count = 3;
12299 }
12300 }
12301 else
12302 {
12303 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12304 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12305
12306 if (0 == op1 && 0 == op2)
12307 {
12308 /* Handle STREX. */
12309 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12310 address = u_regval[0] + (offset_imm * 4);
12311 record_buf_mem[0] = 4;
12312 record_buf_mem[1] = address;
12313 thumb2_insn_r->mem_rec_count = 1;
12314 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12315 record_buf[0] = reg_rd;
12316 thumb2_insn_r->reg_rec_count = 1;
12317 }
12318 else if (1 == op1 && 0 == op2)
12319 {
12320 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12321 record_buf[0] = reg_rd;
12322 thumb2_insn_r->reg_rec_count = 1;
12323 address = u_regval[0];
12324 record_buf_mem[1] = address;
12325
12326 if (4 == op3)
12327 {
12328 /* Handle STREXB. */
12329 record_buf_mem[0] = 1;
12330 thumb2_insn_r->mem_rec_count = 1;
12331 }
12332 else if (5 == op3)
12333 {
12334 /* Handle STREXH. */
12335 record_buf_mem[0] = 2 ;
12336 thumb2_insn_r->mem_rec_count = 1;
12337 }
12338 else if (7 == op3)
12339 {
12340 /* Handle STREXD. */
12341 address = u_regval[0];
12342 record_buf_mem[0] = 4;
12343 record_buf_mem[2] = 4;
12344 record_buf_mem[3] = address + 4;
12345 thumb2_insn_r->mem_rec_count = 2;
12346 }
12347 }
12348 else
12349 {
12350 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12351
12352 if (bit (thumb2_insn_r->arm_insn, 24))
12353 {
12354 if (bit (thumb2_insn_r->arm_insn, 23))
12355 offset_addr = u_regval[0] + (offset_imm * 4);
12356 else
12357 offset_addr = u_regval[0] - (offset_imm * 4);
12358
12359 address = offset_addr;
12360 }
12361 else
12362 address = u_regval[0];
12363
12364 record_buf_mem[0] = 4;
12365 record_buf_mem[1] = address;
12366 record_buf_mem[2] = 4;
12367 record_buf_mem[3] = address + 4;
12368 thumb2_insn_r->mem_rec_count = 2;
12369 record_buf[0] = reg_rn;
12370 thumb2_insn_r->reg_rec_count = 1;
12371 }
12372 }
12373
12374 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12375 record_buf);
12376 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12377 record_buf_mem);
12378 return ARM_RECORD_SUCCESS;
12379}
12380
12381/* Handler for thumb2 data processing (shift register and modified immediate)
12382 instructions. */
12383
12384static int
12385thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12386{
12387 uint32_t reg_rd, op;
12388 uint32_t record_buf[8];
12389
12390 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12391 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12392
12393 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12394 {
12395 record_buf[0] = ARM_PS_REGNUM;
12396 thumb2_insn_r->reg_rec_count = 1;
12397 }
12398 else
12399 {
12400 record_buf[0] = reg_rd;
12401 record_buf[1] = ARM_PS_REGNUM;
12402 thumb2_insn_r->reg_rec_count = 2;
12403 }
12404
12405 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12406 record_buf);
12407 return ARM_RECORD_SUCCESS;
12408}
12409
12410/* Generic handler for thumb2 instructions which effect destination and PS
12411 registers. */
12412
12413static int
12414thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12415{
12416 uint32_t reg_rd;
12417 uint32_t record_buf[8];
12418
12419 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12420
12421 record_buf[0] = reg_rd;
12422 record_buf[1] = ARM_PS_REGNUM;
12423 thumb2_insn_r->reg_rec_count = 2;
12424
12425 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12426 record_buf);
12427 return ARM_RECORD_SUCCESS;
12428}
12429
12430/* Handler for thumb2 branch and miscellaneous control instructions. */
12431
12432static int
12433thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12434{
12435 uint32_t op, op1, op2;
12436 uint32_t record_buf[8];
12437
12438 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12439 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12440 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12441
12442 /* Handle MSR insn. */
12443 if (!(op1 & 0x2) && 0x38 == op)
12444 {
12445 if (!(op2 & 0x3))
12446 {
12447 /* CPSR is going to be changed. */
12448 record_buf[0] = ARM_PS_REGNUM;
12449 thumb2_insn_r->reg_rec_count = 1;
12450 }
12451 else
12452 {
12453 arm_record_unsupported_insn(thumb2_insn_r);
12454 return -1;
12455 }
12456 }
12457 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12458 {
12459 /* BLX. */
12460 record_buf[0] = ARM_PS_REGNUM;
12461 record_buf[1] = ARM_LR_REGNUM;
12462 thumb2_insn_r->reg_rec_count = 2;
12463 }
12464
12465 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12466 record_buf);
12467 return ARM_RECORD_SUCCESS;
12468}
12469
12470/* Handler for thumb2 store single data item instructions. */
12471
12472static int
12473thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12474{
12475 struct regcache *reg_cache = thumb2_insn_r->regcache;
12476
12477 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12478 uint32_t address, offset_addr;
12479 uint32_t record_buf[8], record_buf_mem[8];
12480 uint32_t op1, op2;
12481
12482 ULONGEST u_regval[2];
12483
12484 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12485 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12486 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12487 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12488
12489 if (bit (thumb2_insn_r->arm_insn, 23))
12490 {
12491 /* T2 encoding. */
12492 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12493 offset_addr = u_regval[0] + offset_imm;
12494 address = offset_addr;
12495 }
12496 else
12497 {
12498 /* T3 encoding. */
12499 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12500 {
12501 /* Handle STRB (register). */
12502 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12503 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12504 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12505 offset_addr = u_regval[1] << shift_imm;
12506 address = u_regval[0] + offset_addr;
12507 }
12508 else
12509 {
12510 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12511 if (bit (thumb2_insn_r->arm_insn, 10))
12512 {
12513 if (bit (thumb2_insn_r->arm_insn, 9))
12514 offset_addr = u_regval[0] + offset_imm;
12515 else
12516 offset_addr = u_regval[0] - offset_imm;
12517
12518 address = offset_addr;
12519 }
12520 else
12521 address = u_regval[0];
12522 }
12523 }
12524
12525 switch (op1)
12526 {
12527 /* Store byte instructions. */
12528 case 4:
12529 case 0:
12530 record_buf_mem[0] = 1;
12531 break;
12532 /* Store half word instructions. */
12533 case 1:
12534 case 5:
12535 record_buf_mem[0] = 2;
12536 break;
12537 /* Store word instructions. */
12538 case 2:
12539 case 6:
12540 record_buf_mem[0] = 4;
12541 break;
12542
12543 default:
12544 gdb_assert_not_reached ("no decoding pattern found");
12545 break;
12546 }
12547
12548 record_buf_mem[1] = address;
12549 thumb2_insn_r->mem_rec_count = 1;
12550 record_buf[0] = reg_rn;
12551 thumb2_insn_r->reg_rec_count = 1;
12552
12553 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12554 record_buf);
12555 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12556 record_buf_mem);
12557 return ARM_RECORD_SUCCESS;
12558}
12559
12560/* Handler for thumb2 load memory hints instructions. */
12561
12562static int
12563thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12564{
12565 uint32_t record_buf[8];
12566 uint32_t reg_rt, reg_rn;
12567
12568 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12569 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12570
12571 if (ARM_PC_REGNUM != reg_rt)
12572 {
12573 record_buf[0] = reg_rt;
12574 record_buf[1] = reg_rn;
12575 record_buf[2] = ARM_PS_REGNUM;
12576 thumb2_insn_r->reg_rec_count = 3;
12577
12578 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12579 record_buf);
12580 return ARM_RECORD_SUCCESS;
12581 }
12582
12583 return ARM_RECORD_FAILURE;
12584}
12585
12586/* Handler for thumb2 load word instructions. */
12587
12588static int
12589thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12590{
c6ec2b30
OJ
12591 uint32_t record_buf[8];
12592
12593 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12594 record_buf[1] = ARM_PS_REGNUM;
12595 thumb2_insn_r->reg_rec_count = 2;
12596
12597 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12598 record_buf);
12599 return ARM_RECORD_SUCCESS;
12600}
12601
12602/* Handler for thumb2 long multiply, long multiply accumulate, and
12603 divide instructions. */
12604
12605static int
12606thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12607{
12608 uint32_t opcode1 = 0, opcode2 = 0;
12609 uint32_t record_buf[8];
c6ec2b30
OJ
12610
12611 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12612 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12613
12614 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12615 {
12616 /* Handle SMULL, UMULL, SMULAL. */
12617 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12618 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12619 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12620 record_buf[2] = ARM_PS_REGNUM;
12621 thumb2_insn_r->reg_rec_count = 3;
12622 }
12623 else if (1 == opcode1 || 3 == opcode2)
12624 {
12625 /* Handle SDIV and UDIV. */
12626 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12627 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12628 record_buf[2] = ARM_PS_REGNUM;
12629 thumb2_insn_r->reg_rec_count = 3;
12630 }
12631 else
12632 return ARM_RECORD_FAILURE;
12633
12634 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12635 record_buf);
12636 return ARM_RECORD_SUCCESS;
12637}
12638
60cc5e93
OJ
12639/* Record handler for thumb32 coprocessor instructions. */
12640
12641static int
12642thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12643{
12644 if (bit (thumb2_insn_r->arm_insn, 25))
12645 return arm_record_coproc_data_proc (thumb2_insn_r);
12646 else
12647 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12648}
12649
1e1b6563
OJ
12650/* Record handler for advance SIMD structure load/store instructions. */
12651
12652static int
12653thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12654{
12655 struct regcache *reg_cache = thumb2_insn_r->regcache;
12656 uint32_t l_bit, a_bit, b_bits;
12657 uint32_t record_buf[128], record_buf_mem[128];
bec2ab5a 12658 uint32_t reg_rn, reg_vd, address, f_elem;
1e1b6563
OJ
12659 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12660 uint8_t f_ebytes;
12661
12662 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12663 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12664 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12665 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12666 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12667 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12668 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
1e1b6563
OJ
12669 f_elem = 8 / f_ebytes;
12670
12671 if (!l_bit)
12672 {
12673 ULONGEST u_regval = 0;
12674 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12675 address = u_regval;
12676
12677 if (!a_bit)
12678 {
12679 /* Handle VST1. */
12680 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12681 {
12682 if (b_bits == 0x07)
12683 bf_regs = 1;
12684 else if (b_bits == 0x0a)
12685 bf_regs = 2;
12686 else if (b_bits == 0x06)
12687 bf_regs = 3;
12688 else if (b_bits == 0x02)
12689 bf_regs = 4;
12690 else
12691 bf_regs = 0;
12692
12693 for (index_r = 0; index_r < bf_regs; index_r++)
12694 {
12695 for (index_e = 0; index_e < f_elem; index_e++)
12696 {
12697 record_buf_mem[index_m++] = f_ebytes;
12698 record_buf_mem[index_m++] = address;
12699 address = address + f_ebytes;
12700 thumb2_insn_r->mem_rec_count += 1;
12701 }
12702 }
12703 }
12704 /* Handle VST2. */
12705 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12706 {
12707 if (b_bits == 0x09 || b_bits == 0x08)
12708 bf_regs = 1;
12709 else if (b_bits == 0x03)
12710 bf_regs = 2;
12711 else
12712 bf_regs = 0;
12713
12714 for (index_r = 0; index_r < bf_regs; index_r++)
12715 for (index_e = 0; index_e < f_elem; index_e++)
12716 {
12717 for (loop_t = 0; loop_t < 2; loop_t++)
12718 {
12719 record_buf_mem[index_m++] = f_ebytes;
12720 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12721 thumb2_insn_r->mem_rec_count += 1;
12722 }
12723 address = address + (2 * f_ebytes);
12724 }
12725 }
12726 /* Handle VST3. */
12727 else if ((b_bits & 0x0e) == 0x04)
12728 {
12729 for (index_e = 0; index_e < f_elem; index_e++)
12730 {
12731 for (loop_t = 0; loop_t < 3; loop_t++)
12732 {
12733 record_buf_mem[index_m++] = f_ebytes;
12734 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12735 thumb2_insn_r->mem_rec_count += 1;
12736 }
12737 address = address + (3 * f_ebytes);
12738 }
12739 }
12740 /* Handle VST4. */
12741 else if (!(b_bits & 0x0e))
12742 {
12743 for (index_e = 0; index_e < f_elem; index_e++)
12744 {
12745 for (loop_t = 0; loop_t < 4; loop_t++)
12746 {
12747 record_buf_mem[index_m++] = f_ebytes;
12748 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12749 thumb2_insn_r->mem_rec_count += 1;
12750 }
12751 address = address + (4 * f_ebytes);
12752 }
12753 }
12754 }
12755 else
12756 {
12757 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12758
12759 if (bft_size == 0x00)
12760 f_ebytes = 1;
12761 else if (bft_size == 0x01)
12762 f_ebytes = 2;
12763 else if (bft_size == 0x02)
12764 f_ebytes = 4;
12765 else
12766 f_ebytes = 0;
12767
12768 /* Handle VST1. */
12769 if (!(b_bits & 0x0b) || b_bits == 0x08)
12770 thumb2_insn_r->mem_rec_count = 1;
12771 /* Handle VST2. */
12772 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12773 thumb2_insn_r->mem_rec_count = 2;
12774 /* Handle VST3. */
12775 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12776 thumb2_insn_r->mem_rec_count = 3;
12777 /* Handle VST4. */
12778 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12779 thumb2_insn_r->mem_rec_count = 4;
12780
12781 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12782 {
12783 record_buf_mem[index_m] = f_ebytes;
12784 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12785 }
12786 }
12787 }
12788 else
12789 {
12790 if (!a_bit)
12791 {
12792 /* Handle VLD1. */
12793 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12794 thumb2_insn_r->reg_rec_count = 1;
12795 /* Handle VLD2. */
12796 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12797 thumb2_insn_r->reg_rec_count = 2;
12798 /* Handle VLD3. */
12799 else if ((b_bits & 0x0e) == 0x04)
12800 thumb2_insn_r->reg_rec_count = 3;
12801 /* Handle VLD4. */
12802 else if (!(b_bits & 0x0e))
12803 thumb2_insn_r->reg_rec_count = 4;
12804 }
12805 else
12806 {
12807 /* Handle VLD1. */
12808 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12809 thumb2_insn_r->reg_rec_count = 1;
12810 /* Handle VLD2. */
12811 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12812 thumb2_insn_r->reg_rec_count = 2;
12813 /* Handle VLD3. */
12814 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12815 thumb2_insn_r->reg_rec_count = 3;
12816 /* Handle VLD4. */
12817 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12818 thumb2_insn_r->reg_rec_count = 4;
12819
12820 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12821 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12822 }
12823 }
12824
12825 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12826 {
12827 record_buf[index_r] = reg_rn;
12828 thumb2_insn_r->reg_rec_count += 1;
12829 }
12830
12831 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12832 record_buf);
12833 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12834 record_buf_mem);
12835 return 0;
12836}
12837
c6ec2b30
OJ
12838/* Decodes thumb2 instruction type and invokes its record handler. */
12839
12840static unsigned int
12841thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12842{
12843 uint32_t op, op1, op2;
12844
12845 op = bit (thumb2_insn_r->arm_insn, 15);
12846 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12847 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12848
12849 if (op1 == 0x01)
12850 {
12851 if (!(op2 & 0x64 ))
12852 {
12853 /* Load/store multiple instruction. */
12854 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12855 }
b121eeb9 12856 else if ((op2 & 0x64) == 0x4)
c6ec2b30
OJ
12857 {
12858 /* Load/store (dual/exclusive) and table branch instruction. */
12859 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12860 }
b121eeb9 12861 else if ((op2 & 0x60) == 0x20)
c6ec2b30
OJ
12862 {
12863 /* Data-processing (shifted register). */
12864 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12865 }
12866 else if (op2 & 0x40)
12867 {
12868 /* Co-processor instructions. */
60cc5e93 12869 return thumb2_record_coproc_insn (thumb2_insn_r);
c6ec2b30
OJ
12870 }
12871 }
12872 else if (op1 == 0x02)
12873 {
12874 if (op)
12875 {
12876 /* Branches and miscellaneous control instructions. */
12877 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12878 }
12879 else if (op2 & 0x20)
12880 {
12881 /* Data-processing (plain binary immediate) instruction. */
12882 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12883 }
12884 else
12885 {
12886 /* Data-processing (modified immediate). */
12887 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12888 }
12889 }
12890 else if (op1 == 0x03)
12891 {
12892 if (!(op2 & 0x71 ))
12893 {
12894 /* Store single data item. */
12895 return thumb2_record_str_single_data (thumb2_insn_r);
12896 }
12897 else if (!((op2 & 0x71) ^ 0x10))
12898 {
12899 /* Advanced SIMD or structure load/store instructions. */
1e1b6563 12900 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
c6ec2b30
OJ
12901 }
12902 else if (!((op2 & 0x67) ^ 0x01))
12903 {
12904 /* Load byte, memory hints instruction. */
12905 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12906 }
12907 else if (!((op2 & 0x67) ^ 0x03))
12908 {
12909 /* Load halfword, memory hints instruction. */
12910 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12911 }
12912 else if (!((op2 & 0x67) ^ 0x05))
12913 {
12914 /* Load word instruction. */
12915 return thumb2_record_ld_word (thumb2_insn_r);
12916 }
12917 else if (!((op2 & 0x70) ^ 0x20))
12918 {
12919 /* Data-processing (register) instruction. */
12920 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12921 }
12922 else if (!((op2 & 0x78) ^ 0x30))
12923 {
12924 /* Multiply, multiply accumulate, abs diff instruction. */
12925 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12926 }
12927 else if (!((op2 & 0x78) ^ 0x38))
12928 {
12929 /* Long multiply, long multiply accumulate, and divide. */
12930 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12931 }
12932 else if (op2 & 0x40)
12933 {
12934 /* Co-processor instructions. */
60cc5e93 12935 return thumb2_record_coproc_insn (thumb2_insn_r);
c6ec2b30
OJ
12936 }
12937 }
12938
12939 return -1;
12940}
72508ac0 12941
ffdbe864 12942namespace {
728a7913
YQ
12943/* Abstract memory reader. */
12944
12945class abstract_memory_reader
12946{
12947public:
12948 /* Read LEN bytes of target memory at address MEMADDR, placing the
12949 results in GDB's memory at BUF. Return true on success. */
12950
12951 virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0;
12952};
12953
12954/* Instruction reader from real target. */
12955
12956class instruction_reader : public abstract_memory_reader
12957{
12958 public:
12959 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
12960 {
12961 if (target_read_memory (memaddr, buf, len))
12962 return false;
12963 else
12964 return true;
12965 }
12966};
12967
ffdbe864
YQ
12968} // namespace
12969
72508ac0
PO
12970/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12971and positive val on fauilure. */
12972
12973static int
728a7913
YQ
12974extract_arm_insn (abstract_memory_reader& reader,
12975 insn_decode_record *insn_record, uint32_t insn_size)
72508ac0
PO
12976{
12977 gdb_byte buf[insn_size];
12978
12979 memset (&buf[0], 0, insn_size);
12980
728a7913 12981 if (!reader.read (insn_record->this_addr, buf, insn_size))
72508ac0
PO
12982 return 1;
12983 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12984 insn_size,
2959fed9 12985 gdbarch_byte_order_for_code (insn_record->gdbarch));
72508ac0
PO
12986 return 0;
12987}
12988
12989typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12990
12991/* Decode arm/thumb insn depending on condition cods and opcodes; and
12992 dispatch it. */
12993
12994static int
728a7913
YQ
12995decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record,
12996 record_type_t record_type, uint32_t insn_size)
72508ac0
PO
12997{
12998
01e57735
YQ
12999 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
13000 instruction. */
0fa9c223 13001 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
72508ac0
PO
13002 {
13003 arm_record_data_proc_misc_ld_str, /* 000. */
13004 arm_record_data_proc_imm, /* 001. */
13005 arm_record_ld_st_imm_offset, /* 010. */
13006 arm_record_ld_st_reg_offset, /* 011. */
13007 arm_record_ld_st_multiple, /* 100. */
13008 arm_record_b_bl, /* 101. */
60cc5e93 13009 arm_record_asimd_vfp_coproc, /* 110. */
72508ac0
PO
13010 arm_record_coproc_data_proc /* 111. */
13011 };
13012
01e57735
YQ
13013 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
13014 instruction. */
0fa9c223 13015 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
72508ac0
PO
13016 { \
13017 thumb_record_shift_add_sub, /* 000. */
13018 thumb_record_add_sub_cmp_mov, /* 001. */
13019 thumb_record_ld_st_reg_offset, /* 010. */
13020 thumb_record_ld_st_imm_offset, /* 011. */
13021 thumb_record_ld_st_stack, /* 100. */
13022 thumb_record_misc, /* 101. */
13023 thumb_record_ldm_stm_swi, /* 110. */
13024 thumb_record_branch /* 111. */
13025 };
13026
13027 uint32_t ret = 0; /* return value: negative:failure 0:success. */
13028 uint32_t insn_id = 0;
13029
728a7913 13030 if (extract_arm_insn (reader, arm_record, insn_size))
72508ac0
PO
13031 {
13032 if (record_debug)
01e57735
YQ
13033 {
13034 printf_unfiltered (_("Process record: error reading memory at "
13035 "addr %s len = %d.\n"),
13036 paddress (arm_record->gdbarch,
13037 arm_record->this_addr), insn_size);
13038 }
72508ac0
PO
13039 return -1;
13040 }
13041 else if (ARM_RECORD == record_type)
13042 {
13043 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
13044 insn_id = bits (arm_record->arm_insn, 25, 27);
ca92db2d
YQ
13045
13046 if (arm_record->cond == 0xf)
13047 ret = arm_record_extension_space (arm_record);
13048 else
01e57735 13049 {
ca92db2d
YQ
13050 /* If this insn has fallen into extension space
13051 then we need not decode it anymore. */
01e57735
YQ
13052 ret = arm_handle_insn[insn_id] (arm_record);
13053 }
ca92db2d
YQ
13054 if (ret != ARM_RECORD_SUCCESS)
13055 {
13056 arm_record_unsupported_insn (arm_record);
13057 ret = -1;
13058 }
72508ac0
PO
13059 }
13060 else if (THUMB_RECORD == record_type)
13061 {
13062 /* As thumb does not have condition codes, we set negative. */
13063 arm_record->cond = -1;
13064 insn_id = bits (arm_record->arm_insn, 13, 15);
13065 ret = thumb_handle_insn[insn_id] (arm_record);
ca92db2d
YQ
13066 if (ret != ARM_RECORD_SUCCESS)
13067 {
13068 arm_record_unsupported_insn (arm_record);
13069 ret = -1;
13070 }
72508ac0
PO
13071 }
13072 else if (THUMB2_RECORD == record_type)
13073 {
c6ec2b30
OJ
13074 /* As thumb does not have condition codes, we set negative. */
13075 arm_record->cond = -1;
13076
13077 /* Swap first half of 32bit thumb instruction with second half. */
13078 arm_record->arm_insn
01e57735 13079 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
c6ec2b30 13080
ca92db2d 13081 ret = thumb2_record_decode_insn_handler (arm_record);
c6ec2b30 13082
ca92db2d 13083 if (ret != ARM_RECORD_SUCCESS)
01e57735
YQ
13084 {
13085 arm_record_unsupported_insn (arm_record);
13086 ret = -1;
13087 }
72508ac0
PO
13088 }
13089 else
13090 {
13091 /* Throw assertion. */
13092 gdb_assert_not_reached ("not a valid instruction, could not decode");
13093 }
13094
13095 return ret;
13096}
13097
b121eeb9
YQ
13098#if GDB_SELF_TEST
13099namespace selftests {
13100
13101/* Provide both 16-bit and 32-bit thumb instructions. */
13102
13103class instruction_reader_thumb : public abstract_memory_reader
13104{
13105public:
13106 template<size_t SIZE>
13107 instruction_reader_thumb (enum bfd_endian endian,
13108 const uint16_t (&insns)[SIZE])
13109 : m_endian (endian), m_insns (insns), m_insns_size (SIZE)
13110 {}
13111
13112 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
13113 {
13114 SELF_CHECK (len == 4 || len == 2);
13115 SELF_CHECK (memaddr % 2 == 0);
13116 SELF_CHECK ((memaddr / 2) < m_insns_size);
13117
13118 store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]);
13119 if (len == 4)
13120 {
13121 store_unsigned_integer (&buf[2], 2, m_endian,
13122 m_insns[memaddr / 2 + 1]);
13123 }
13124 return true;
13125 }
13126
13127private:
13128 enum bfd_endian m_endian;
13129 const uint16_t *m_insns;
13130 size_t m_insns_size;
13131};
13132
13133static void
13134arm_record_test (void)
13135{
13136 struct gdbarch_info info;
13137 gdbarch_info_init (&info);
13138 info.bfd_arch_info = bfd_scan_arch ("arm");
13139
13140 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
13141
13142 SELF_CHECK (gdbarch != NULL);
13143
13144 /* 16-bit Thumb instructions. */
13145 {
13146 insn_decode_record arm_record;
13147
13148 memset (&arm_record, 0, sizeof (insn_decode_record));
13149 arm_record.gdbarch = gdbarch;
13150
13151 static const uint16_t insns[] = {
13152 /* db b2 uxtb r3, r3 */
13153 0xb2db,
13154 /* cd 58 ldr r5, [r1, r3] */
13155 0x58cd,
13156 };
13157
13158 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13159 instruction_reader_thumb reader (endian, insns);
13160 int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13161 THUMB_INSN_SIZE_BYTES);
13162
13163 SELF_CHECK (ret == 0);
13164 SELF_CHECK (arm_record.mem_rec_count == 0);
13165 SELF_CHECK (arm_record.reg_rec_count == 1);
13166 SELF_CHECK (arm_record.arm_regs[0] == 3);
13167
13168 arm_record.this_addr += 2;
13169 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13170 THUMB_INSN_SIZE_BYTES);
13171
13172 SELF_CHECK (ret == 0);
13173 SELF_CHECK (arm_record.mem_rec_count == 0);
13174 SELF_CHECK (arm_record.reg_rec_count == 1);
13175 SELF_CHECK (arm_record.arm_regs[0] == 5);
13176 }
13177
13178 /* 32-bit Thumb-2 instructions. */
13179 {
13180 insn_decode_record arm_record;
13181
13182 memset (&arm_record, 0, sizeof (insn_decode_record));
13183 arm_record.gdbarch = gdbarch;
13184
13185 static const uint16_t insns[] = {
13186 /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */
13187 0xee1d, 0x7f70,
13188 };
13189
13190 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13191 instruction_reader_thumb reader (endian, insns);
13192 int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13193 THUMB2_INSN_SIZE_BYTES);
13194
13195 SELF_CHECK (ret == 0);
13196 SELF_CHECK (arm_record.mem_rec_count == 0);
13197 SELF_CHECK (arm_record.reg_rec_count == 1);
13198 SELF_CHECK (arm_record.arm_regs[0] == 7);
13199 }
13200}
13201} // namespace selftests
13202#endif /* GDB_SELF_TEST */
72508ac0
PO
13203
13204/* Cleans up local record registers and memory allocations. */
13205
13206static void
13207deallocate_reg_mem (insn_decode_record *record)
13208{
13209 xfree (record->arm_regs);
13210 xfree (record->arm_mems);
13211}
13212
13213
01e57735 13214/* Parse the current instruction and record the values of the registers and
72508ac0
PO
13215 memory that will be changed in current instruction to record_arch_list".
13216 Return -1 if something is wrong. */
13217
13218int
01e57735
YQ
13219arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13220 CORE_ADDR insn_addr)
72508ac0
PO
13221{
13222
72508ac0
PO
13223 uint32_t no_of_rec = 0;
13224 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13225 ULONGEST t_bit = 0, insn_id = 0;
13226
13227 ULONGEST u_regval = 0;
13228
13229 insn_decode_record arm_record;
13230
13231 memset (&arm_record, 0, sizeof (insn_decode_record));
13232 arm_record.regcache = regcache;
13233 arm_record.this_addr = insn_addr;
13234 arm_record.gdbarch = gdbarch;
13235
13236
13237 if (record_debug > 1)
13238 {
13239 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
01e57735 13240 "addr = %s\n",
72508ac0
PO
13241 paddress (gdbarch, arm_record.this_addr));
13242 }
13243
728a7913
YQ
13244 instruction_reader reader;
13245 if (extract_arm_insn (reader, &arm_record, 2))
72508ac0
PO
13246 {
13247 if (record_debug)
01e57735
YQ
13248 {
13249 printf_unfiltered (_("Process record: error reading memory at "
13250 "addr %s len = %d.\n"),
13251 paddress (arm_record.gdbarch,
13252 arm_record.this_addr), 2);
13253 }
72508ac0
PO
13254 return -1;
13255 }
13256
13257 /* Check the insn, whether it is thumb or arm one. */
13258
13259 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13260 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13261
13262
13263 if (!(u_regval & t_bit))
13264 {
13265 /* We are decoding arm insn. */
728a7913 13266 ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
72508ac0
PO
13267 }
13268 else
13269 {
13270 insn_id = bits (arm_record.arm_insn, 11, 15);
13271 /* is it thumb2 insn? */
13272 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
01e57735 13273 {
728a7913 13274 ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
01e57735
YQ
13275 THUMB2_INSN_SIZE_BYTES);
13276 }
72508ac0 13277 else
01e57735
YQ
13278 {
13279 /* We are decoding thumb insn. */
728a7913
YQ
13280 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13281 THUMB_INSN_SIZE_BYTES);
01e57735 13282 }
72508ac0
PO
13283 }
13284
13285 if (0 == ret)
13286 {
13287 /* Record registers. */
25ea693b 13288 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
72508ac0 13289 if (arm_record.arm_regs)
01e57735
YQ
13290 {
13291 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13292 {
13293 if (record_full_arch_list_add_reg
25ea693b 13294 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
01e57735
YQ
13295 ret = -1;
13296 }
13297 }
72508ac0
PO
13298 /* Record memories. */
13299 if (arm_record.arm_mems)
01e57735
YQ
13300 {
13301 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13302 {
13303 if (record_full_arch_list_add_mem
13304 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
25ea693b 13305 arm_record.arm_mems[no_of_rec].len))
01e57735
YQ
13306 ret = -1;
13307 }
13308 }
72508ac0 13309
25ea693b 13310 if (record_full_arch_list_add_end ())
01e57735 13311 ret = -1;
72508ac0
PO
13312 }
13313
13314
13315 deallocate_reg_mem (&arm_record);
13316
13317 return ret;
13318}
This page took 1.874077 seconds and 4 git commands to generate.