2003-03-13 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
1e698235 3 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
e8b09175 31#include "dis-asm.h" /* For register flavors. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
4be87837 37#include "osabi.h"
34e8f22d
RE
38
39#include "arm-tdep.h"
26216b98 40#include "gdb/sim-arm.h"
34e8f22d 41
082fc60d
RE
42#include "elf-bfd.h"
43#include "coff/internal.h"
97e03143 44#include "elf/arm.h"
c906108c 45
26216b98
AC
46#include "gdb_assert.h"
47
6529d2dd
AC
48static int arm_debug;
49
2a451106
KB
50/* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
3bb04bdd
AC
71#ifdef SIGCONTEXT_REGISTER_ADDRESS
72#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74#endif
75#else
76#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
78#endif
79
082fc60d
RE
80/* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92#define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96#define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99#define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 101
94c30b78 102/* Number of different reg name sets (options). */
bc90b915
FN
103static int num_flavor_options;
104
105/* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
94c30b78 108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 109
94c30b78 110/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 111static char * arm_register_name_strings[] =
da59e081
JM
112{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 118 "fps", "cpsr" }; /* 24 25 */
966fbf70 119static char **arm_register_names = arm_register_name_strings;
ed9a39eb 120
bc90b915 121/* Valid register name flavors. */
53904c9e 122static const char **valid_flavors;
ed9a39eb 123
94c30b78 124/* Disassembly flavor to use. Default to "std" register names. */
53904c9e 125static const char *disassembly_flavor;
94c30b78 126/* Index to that option in the opcodes table. */
da3c6d4a 127static int current_option;
96baa820 128
ed9a39eb
JM
129/* This is used to keep the bfd arch_info in sync with the disassembly
130 flavor. */
131static void set_disassembly_flavor_sfunc(char *, int,
132 struct cmd_list_element *);
133static void set_disassembly_flavor (void);
134
b508a996
RE
135static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
ed9a39eb
JM
139
140/* Define other aspects of the stack frame. We keep the offsets of
141 all saved registers, 'cause we need 'em a lot! We also keep the
142 current size of the stack frame, and the offset of the frame
143 pointer from the stack pointer (for frameless functions, and when
94c30b78 144 we're still in the prologue of a function with a frame). */
ed9a39eb
JM
145
146struct frame_extra_info
c3b4394c
RE
147{
148 int framesize;
149 int frameoffset;
150 int framereg;
151};
ed9a39eb 152
bc90b915
FN
153/* Addresses for calling Thumb functions have the bit 0 set.
154 Here are some macros to test, set, or clear bit 0 of addresses. */
155#define IS_THUMB_ADDR(addr) ((addr) & 1)
156#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
157#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
158
39bbf761 159static int
ed9a39eb 160arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 161{
8bedc050 162 return (DEPRECATED_FRAME_SAVED_PC (thisframe) >= LOWEST_PC);
c906108c
SS
163}
164
94c30b78 165/* Set to true if the 32-bit mode is in use. */
c906108c
SS
166
167int arm_apcs_32 = 1;
168
ed9a39eb
JM
169/* Flag set by arm_fix_call_dummy that tells whether the target
170 function is a Thumb function. This flag is checked by
171 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
172 its use in valops.c) to pass the function address as an additional
173 parameter. */
c906108c
SS
174
175static int target_is_thumb;
176
ed9a39eb
JM
177/* Flag set by arm_fix_call_dummy that tells whether the calling
178 function is a Thumb function. This flag is checked by
179 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
180
181static int caller_is_thumb;
182
ed9a39eb
JM
183/* Determine if the program counter specified in MEMADDR is in a Thumb
184 function. */
c906108c 185
34e8f22d 186int
2a451106 187arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 188{
c5aa993b 189 struct minimal_symbol *sym;
c906108c 190
ed9a39eb 191 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
192 if (IS_THUMB_ADDR (memaddr))
193 return 1;
194
ed9a39eb 195 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
196 sym = lookup_minimal_symbol_by_pc (memaddr);
197 if (sym)
198 {
c5aa993b 199 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
200 }
201 else
ed9a39eb
JM
202 {
203 return 0;
204 }
c906108c
SS
205}
206
ed9a39eb
JM
207/* Determine if the program counter specified in MEMADDR is in a call
208 dummy being called from a Thumb function. */
c906108c 209
34e8f22d 210int
2a451106 211arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 212{
c5aa993b 213 CORE_ADDR sp = read_sp ();
c906108c 214
dfcd3bfb
JM
215 /* FIXME: Until we switch for the new call dummy macros, this heuristic
216 is the best we can do. We are trying to determine if the pc is on
217 the stack, which (hopefully) will only happen in a call dummy.
218 We hope the current stack pointer is not so far alway from the dummy
219 frame location (true if we have not pushed large data structures or
220 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 221 code regions as part of the stack (true for most practical purposes). */
ae45cd16 222 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
223 return caller_is_thumb;
224 else
225 return 0;
226}
227
181c1381 228/* Remove useless bits from addresses in a running program. */
34e8f22d 229static CORE_ADDR
ed9a39eb 230arm_addr_bits_remove (CORE_ADDR val)
c906108c 231{
a3a2ee65
JT
232 if (arm_apcs_32)
233 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 234 else
a3a2ee65 235 return (val & 0x03fffffc);
c906108c
SS
236}
237
181c1381
RE
238/* When reading symbols, we need to zap the low bit of the address,
239 which may be set to 1 for Thumb functions. */
34e8f22d 240static CORE_ADDR
181c1381
RE
241arm_smash_text_address (CORE_ADDR val)
242{
243 return val & ~1;
244}
245
34e8f22d
RE
246/* Immediately after a function call, return the saved pc. Can't
247 always go through the frames for this because on some machines the
248 new frame is not set up until the new function executes some
249 instructions. */
250
251static CORE_ADDR
ed9a39eb 252arm_saved_pc_after_call (struct frame_info *frame)
c906108c 253{
34e8f22d 254 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
255}
256
0defa245
RE
257/* Determine whether the function invocation represented by FI has a
258 frame on the stack associated with it. If it does return zero,
259 otherwise return 1. */
260
148754e5 261static int
ed9a39eb 262arm_frameless_function_invocation (struct frame_info *fi)
392a587b 263{
392a587b 264 CORE_ADDR func_start, after_prologue;
96baa820 265 int frameless;
ed9a39eb 266
0defa245
RE
267 /* Sometimes we have functions that do a little setup (like saving the
268 vN registers with the stmdb instruction, but DO NOT set up a frame.
269 The symbol table will report this as a prologue. However, it is
270 important not to try to parse these partial frames as frames, or we
271 will get really confused.
272
273 So I will demand 3 instructions between the start & end of the
274 prologue before I call it a real prologue, i.e. at least
275 mov ip, sp,
276 stmdb sp!, {}
277 sub sp, ip, #4. */
278
50abf9e5 279 func_start = (get_pc_function_start (get_frame_pc (fi)) + FUNCTION_START_OFFSET);
7be570e7 280 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 281
96baa820 282 /* There are some frameless functions whose first two instructions
ed9a39eb 283 follow the standard APCS form, in which case after_prologue will
94c30b78 284 be func_start + 8. */
ed9a39eb 285
96baa820 286 frameless = (after_prologue < func_start + 12);
392a587b
JM
287 return frameless;
288}
289
0defa245 290/* The address of the arguments in the frame. */
148754e5 291static CORE_ADDR
0defa245
RE
292arm_frame_args_address (struct frame_info *fi)
293{
1e2330ba 294 return get_frame_base (fi);
0defa245
RE
295}
296
297/* The address of the local variables in the frame. */
148754e5 298static CORE_ADDR
0defa245
RE
299arm_frame_locals_address (struct frame_info *fi)
300{
1e2330ba 301 return get_frame_base (fi);
0defa245
RE
302}
303
304/* The number of arguments being passed in the frame. */
148754e5 305static int
0defa245
RE
306arm_frame_num_args (struct frame_info *fi)
307{
308 /* We have no way of knowing. */
309 return -1;
310}
311
c906108c 312/* A typical Thumb prologue looks like this:
c5aa993b
JM
313 push {r7, lr}
314 add sp, sp, #-28
315 add r7, sp, #12
c906108c 316 Sometimes the latter instruction may be replaced by:
da59e081
JM
317 mov r7, sp
318
319 or like this:
320 push {r7, lr}
321 mov r7, sp
322 sub sp, #12
323
324 or, on tpcs, like this:
325 sub sp,#16
326 push {r7, lr}
327 (many instructions)
328 mov r7, sp
329 sub sp, #12
330
331 There is always one instruction of three classes:
332 1 - push
333 2 - setting of r7
334 3 - adjusting of sp
335
336 When we have found at least one of each class we are done with the prolog.
337 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 338 */
c906108c
SS
339
340static CORE_ADDR
c7885828 341thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
342{
343 CORE_ADDR current_pc;
da3c6d4a
MS
344 /* findmask:
345 bit 0 - push { rlist }
346 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
347 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
348 */
349 int findmask = 0;
350
94c30b78
MS
351 for (current_pc = pc;
352 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 353 current_pc += 2)
c906108c
SS
354 {
355 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
356
94c30b78 357 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 358 {
94c30b78 359 findmask |= 1; /* push found */
da59e081 360 }
da3c6d4a
MS
361 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
362 sub sp, #simm */
da59e081 363 {
94c30b78 364 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
365 continue;
366 else
94c30b78 367 findmask |= 4; /* add/sub sp found */
da59e081
JM
368 }
369 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
370 {
94c30b78 371 findmask |= 2; /* setting of r7 found */
da59e081
JM
372 }
373 else if (insn == 0x466f) /* mov r7, sp */
374 {
94c30b78 375 findmask |= 2; /* setting of r7 found */
da59e081 376 }
3d74b771
FF
377 else if (findmask == (4+2+1))
378 {
da3c6d4a
MS
379 /* We have found one of each type of prologue instruction */
380 break;
3d74b771 381 }
da59e081 382 else
94c30b78 383 /* Something in the prolog that we don't care about or some
da3c6d4a 384 instruction from outside the prolog scheduled here for
94c30b78 385 optimization. */
da3c6d4a 386 continue;
c906108c
SS
387 }
388
389 return current_pc;
390}
391
da3c6d4a
MS
392/* Advance the PC across any function entry prologue instructions to
393 reach some "real" code.
34e8f22d
RE
394
395 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 396 prologue:
c906108c 397
c5aa993b
JM
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 406
34e8f22d 407static CORE_ADDR
ed9a39eb 408arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
409{
410 unsigned long inst;
411 CORE_ADDR skip_pc;
b8d5e71d 412 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 413 char *func_name;
c906108c
SS
414 struct symtab_and_line sal;
415
848cfffb 416 /* If we're in a dummy frame, don't even try to skip the prologue. */
ae45cd16 417 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
848cfffb
AC
418 return pc;
419
96baa820 420 /* See what the symbol table says. */
ed9a39eb 421
50f6fb4b 422 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 423 {
50f6fb4b
CV
424 struct symbol *sym;
425
426 /* Found a function. */
427 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
428 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
429 {
94c30b78 430 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
431 sal = find_pc_line (func_addr, 0);
432 if ((sal.line != 0) && (sal.end < func_end))
433 return sal.end;
434 }
c906108c
SS
435 }
436
437 /* Check if this is Thumb code. */
438 if (arm_pc_is_thumb (pc))
c7885828 439 return thumb_skip_prologue (pc, func_end);
c906108c
SS
440
441 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 442 by disassembling the instructions. */
c906108c 443
b8d5e71d
MS
444 /* Like arm_scan_prologue, stop no later than pc + 64. */
445 if (func_end == 0 || func_end > pc + 64)
446 func_end = pc + 64;
c906108c 447
b8d5e71d 448 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 449 {
f43845b3 450 inst = read_memory_integer (skip_pc, 4);
f43845b3 451
b8d5e71d
MS
452 /* "mov ip, sp" is no longer a required part of the prologue. */
453 if (inst == 0xe1a0c00d) /* mov ip, sp */
454 continue;
c906108c 455
b8d5e71d
MS
456 /* Some prologues begin with "str lr, [sp, #-4]!". */
457 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
458 continue;
c906108c 459
b8d5e71d
MS
460 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
461 continue;
c906108c 462
b8d5e71d
MS
463 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
464 continue;
11d3b27d 465
b8d5e71d
MS
466 /* Any insns after this point may float into the code, if it makes
467 for better instruction scheduling, so we skip them only if we
468 find them, but still consider the function to be frame-ful. */
f43845b3 469
b8d5e71d
MS
470 /* We may have either one sfmfd instruction here, or several stfe
471 insns, depending on the version of floating point code we
472 support. */
473 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
474 continue;
475
476 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
477 continue;
478
479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
480 continue;
481
482 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
483 continue;
484
485 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
486 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
487 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
488 continue;
489
490 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
491 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
492 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
493 continue;
494
495 /* Un-recognized instruction; stop scanning. */
496 break;
f43845b3 497 }
c906108c 498
b8d5e71d 499 return skip_pc; /* End of prologue */
c906108c 500}
94c30b78 501
c5aa993b 502/* *INDENT-OFF* */
c906108c
SS
503/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
504 This function decodes a Thumb function prologue to determine:
505 1) the size of the stack frame
506 2) which registers are saved on it
507 3) the offsets of saved regs
508 4) the offset from the stack pointer to the frame pointer
509 This information is stored in the "extra" fields of the frame_info.
510
da59e081
JM
511 A typical Thumb function prologue would create this stack frame
512 (offsets relative to FP)
c906108c
SS
513 old SP -> 24 stack parameters
514 20 LR
515 16 R7
516 R7 -> 0 local variables (16 bytes)
517 SP -> -12 additional stack space (12 bytes)
518 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
519 12 bytes. The frame register is R7.
520
da3c6d4a
MS
521 The comments for thumb_skip_prolog() describe the algorithm we use
522 to detect the end of the prolog. */
c5aa993b
JM
523/* *INDENT-ON* */
524
c906108c 525static void
ed9a39eb 526thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
527{
528 CORE_ADDR prologue_start;
529 CORE_ADDR prologue_end;
530 CORE_ADDR current_pc;
94c30b78 531 /* Which register has been copied to register n? */
da3c6d4a
MS
532 int saved_reg[16];
533 /* findmask:
534 bit 0 - push { rlist }
535 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
536 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
537 */
538 int findmask = 0;
c5aa993b 539 int i;
c906108c 540
848cfffb 541 /* Don't try to scan dummy frames. */
07555a72 542 if (fi != NULL
50abf9e5 543 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb
AC
544 return;
545
50abf9e5 546 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c
SS
547 {
548 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
549
94c30b78 550 if (sal.line == 0) /* no line info, use current PC */
50abf9e5 551 prologue_end = get_frame_pc (fi);
c906108c 552 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 553 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
554 }
555 else
da3c6d4a
MS
556 /* We're in the boondocks: allow for
557 16 pushes, an add, and "mv fp,sp". */
558 prologue_end = prologue_start + 40;
c906108c 559
50abf9e5 560 prologue_end = min (prologue_end, get_frame_pc (fi));
c906108c
SS
561
562 /* Initialize the saved register map. When register H is copied to
563 register L, we will put H in saved_reg[L]. */
564 for (i = 0; i < 16; i++)
565 saved_reg[i] = i;
566
567 /* Search the prologue looking for instructions that set up the
da59e081
JM
568 frame pointer, adjust the stack pointer, and save registers.
569 Do this until all basic prolog instructions are found. */
c906108c 570
da50a4b7 571 get_frame_extra_info (fi)->framesize = 0;
da59e081
JM
572 for (current_pc = prologue_start;
573 (current_pc < prologue_end) && ((findmask & 7) != 7);
574 current_pc += 2)
c906108c
SS
575 {
576 unsigned short insn;
577 int regno;
578 int offset;
579
580 insn = read_memory_unsigned_integer (current_pc, 2);
581
c5aa993b 582 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 583 {
da59e081 584 int mask;
94c30b78 585 findmask |= 1; /* push found */
c906108c
SS
586 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
587 whether to save LR (R14). */
da59e081 588 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 589
b8d5e71d 590 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 591 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 592 if (mask & (1 << regno))
c5aa993b 593 {
da50a4b7 594 get_frame_extra_info (fi)->framesize += 4;
b2fb4676 595 get_frame_saved_regs (fi)[saved_reg[regno]] =
da50a4b7 596 -(get_frame_extra_info (fi)->framesize);
da3c6d4a
MS
597 /* Reset saved register map. */
598 saved_reg[regno] = regno;
c906108c
SS
599 }
600 }
da3c6d4a
MS
601 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
602 sub sp, #simm */
c906108c 603 {
b8d5e71d 604 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
605 continue;
606 else
94c30b78 607 findmask |= 4; /* add/sub sp found */
da59e081 608
94c30b78
MS
609 offset = (insn & 0x7f) << 2; /* get scaled offset */
610 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 611 {
da50a4b7 612 get_frame_extra_info (fi)->frameoffset += offset;
da59e081
JM
613 offset = -offset;
614 }
da50a4b7 615 get_frame_extra_info (fi)->framesize -= offset;
c906108c
SS
616 }
617 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
618 {
94c30b78 619 findmask |= 2; /* setting of r7 found */
da50a4b7 620 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
c3b4394c 621 /* get scaled offset */
da50a4b7 622 get_frame_extra_info (fi)->frameoffset = (insn & 0xff) << 2;
c906108c 623 }
da59e081 624 else if (insn == 0x466f) /* mov r7, sp */
c906108c 625 {
94c30b78 626 findmask |= 2; /* setting of r7 found */
da50a4b7
AC
627 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
628 get_frame_extra_info (fi)->frameoffset = 0;
34e8f22d 629 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
630 }
631 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
632 {
da3c6d4a 633 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 634 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 635 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
636 }
637 else
da3c6d4a
MS
638 /* Something in the prolog that we don't care about or some
639 instruction from outside the prolog scheduled here for
640 optimization. */
641 continue;
c906108c
SS
642 }
643}
644
ed9a39eb
JM
645/* Check if prologue for this frame's PC has already been scanned. If
646 it has, copy the relevant information about that prologue and
c906108c
SS
647 return non-zero. Otherwise do not copy anything and return zero.
648
649 The information saved in the cache includes:
c5aa993b
JM
650 * the frame register number;
651 * the size of the stack frame;
652 * the offsets of saved regs (relative to the old SP); and
653 * the offset from the stack pointer to the frame pointer
c906108c 654
ed9a39eb
JM
655 The cache contains only one entry, since this is adequate for the
656 typical sequence of prologue scan requests we get. When performing
657 a backtrace, GDB will usually ask to scan the same function twice
658 in a row (once to get the frame chain, and once to fill in the
659 extra frame information). */
c906108c 660
15a5b3ee 661static struct frame_info *prologue_cache;
c906108c
SS
662
663static int
ed9a39eb 664check_prologue_cache (struct frame_info *fi)
c906108c
SS
665{
666 int i;
667
15a5b3ee 668 if (get_frame_pc (fi) == get_frame_pc (prologue_cache))
c906108c 669 {
da50a4b7
AC
670 get_frame_extra_info (fi)->framereg = get_frame_extra_info (prologue_cache)->framereg;
671 get_frame_extra_info (fi)->framesize = get_frame_extra_info (prologue_cache)->framesize;
672 get_frame_extra_info (fi)->frameoffset = get_frame_extra_info (prologue_cache)->frameoffset;
c3b4394c 673 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
15a5b3ee 674 get_frame_saved_regs (fi)[i] = get_frame_saved_regs (prologue_cache)[i];
c906108c
SS
675 return 1;
676 }
677 else
678 return 0;
679}
680
681
ed9a39eb 682/* Copy the prologue information from fi to the prologue cache. */
c906108c
SS
683
684static void
ed9a39eb 685save_prologue_cache (struct frame_info *fi)
c906108c
SS
686{
687 int i;
688
15a5b3ee 689 deprecated_update_frame_pc_hack (prologue_cache, get_frame_pc (fi));
da50a4b7
AC
690 get_frame_extra_info (prologue_cache)->framereg = get_frame_extra_info (fi)->framereg;
691 get_frame_extra_info (prologue_cache)->framesize = get_frame_extra_info (fi)->framesize;
692 get_frame_extra_info (prologue_cache)->frameoffset = get_frame_extra_info (fi)->frameoffset;
c5aa993b 693
c3b4394c 694 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
15a5b3ee 695 get_frame_saved_regs (prologue_cache)[i] = get_frame_saved_regs (fi)[i];
c906108c
SS
696}
697
698
ed9a39eb 699/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
700 1) the size of the stack frame
701 2) which registers are saved on it
702 3) the offsets of saved regs
703 4) the offset from the stack pointer to the frame pointer
c906108c
SS
704 This information is stored in the "extra" fields of the frame_info.
705
96baa820
JM
706 There are two basic forms for the ARM prologue. The fixed argument
707 function call will look like:
ed9a39eb
JM
708
709 mov ip, sp
710 stmfd sp!, {fp, ip, lr, pc}
711 sub fp, ip, #4
712 [sub sp, sp, #4]
96baa820 713
c906108c 714 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
715 IP -> 4 (caller's stack)
716 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
717 -4 LR (return address in caller)
718 -8 IP (copy of caller's SP)
719 -12 FP (caller's FP)
720 SP -> -28 Local variables
721
c906108c 722 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
723 28 bytes. The stmfd call can also save any of the vN registers it
724 plans to use, which increases the frame size accordingly.
725
726 Note: The stored PC is 8 off of the STMFD instruction that stored it
727 because the ARM Store instructions always store PC + 8 when you read
728 the PC register.
ed9a39eb 729
96baa820
JM
730 A variable argument function call will look like:
731
ed9a39eb
JM
732 mov ip, sp
733 stmfd sp!, {a1, a2, a3, a4}
734 stmfd sp!, {fp, ip, lr, pc}
735 sub fp, ip, #20
736
96baa820 737 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
738 IP -> 20 (caller's stack)
739 16 A4
740 12 A3
741 8 A2
742 4 A1
743 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
744 -4 LR (return address in caller)
745 -8 IP (copy of caller's SP)
746 -12 FP (caller's FP)
747 SP -> -28 Local variables
96baa820
JM
748
749 The frame size would thus be 48 bytes, and the frame offset would be
750 28 bytes.
751
752 There is another potential complication, which is that the optimizer
753 will try to separate the store of fp in the "stmfd" instruction from
754 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
755 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
756
757 Also, note, the original version of the ARM toolchain claimed that there
758 should be an
759
760 instruction at the end of the prologue. I have never seen GCC produce
761 this, and the ARM docs don't mention it. We still test for it below in
762 case it happens...
ed9a39eb
JM
763
764 */
c906108c
SS
765
766static void
ed9a39eb 767arm_scan_prologue (struct frame_info *fi)
c906108c
SS
768{
769 int regno, sp_offset, fp_offset;
16a0f3e7 770 LONGEST return_value;
c906108c
SS
771 CORE_ADDR prologue_start, prologue_end, current_pc;
772
94c30b78 773 /* Check if this function is already in the cache of frame information. */
c906108c
SS
774 if (check_prologue_cache (fi))
775 return;
776
777 /* Assume there is no frame until proven otherwise. */
da50a4b7
AC
778 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
779 get_frame_extra_info (fi)->framesize = 0;
780 get_frame_extra_info (fi)->frameoffset = 0;
c906108c
SS
781
782 /* Check for Thumb prologue. */
50abf9e5 783 if (arm_pc_is_thumb (get_frame_pc (fi)))
c906108c
SS
784 {
785 thumb_scan_prologue (fi);
786 save_prologue_cache (fi);
787 return;
788 }
789
790 /* Find the function prologue. If we can't find the function in
791 the symbol table, peek in the stack frame to find the PC. */
50abf9e5 792 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c 793 {
2a451106
KB
794 /* One way to find the end of the prologue (which works well
795 for unoptimized code) is to do the following:
796
797 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
798
799 if (sal.line == 0)
50abf9e5 800 prologue_end = get_frame_pc (fi);
2a451106
KB
801 else if (sal.end < prologue_end)
802 prologue_end = sal.end;
803
804 This mechanism is very accurate so long as the optimizer
805 doesn't move any instructions from the function body into the
806 prologue. If this happens, sal.end will be the last
807 instruction in the first hunk of prologue code just before
808 the first instruction that the scheduler has moved from
809 the body to the prologue.
810
811 In order to make sure that we scan all of the prologue
812 instructions, we use a slightly less accurate mechanism which
813 may scan more than necessary. To help compensate for this
814 lack of accuracy, the prologue scanning loop below contains
815 several clauses which'll cause the loop to terminate early if
816 an implausible prologue instruction is encountered.
817
818 The expression
819
820 prologue_start + 64
821
822 is a suitable endpoint since it accounts for the largest
823 possible prologue plus up to five instructions inserted by
94c30b78 824 the scheduler. */
2a451106
KB
825
826 if (prologue_end > prologue_start + 64)
827 {
94c30b78 828 prologue_end = prologue_start + 64; /* See above. */
2a451106 829 }
c906108c
SS
830 }
831 else
832 {
94c30b78
MS
833 /* Get address of the stmfd in the prologue of the callee;
834 the saved PC is the address of the stmfd + 8. */
1e2330ba 835 if (!safe_read_memory_integer (get_frame_base (fi), 4, &return_value))
16a0f3e7
EZ
836 return;
837 else
838 {
839 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 840 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 841 }
c906108c
SS
842 }
843
844 /* Now search the prologue looking for instructions that set up the
96baa820 845 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 846
96baa820
JM
847 Be careful, however, and if it doesn't look like a prologue,
848 don't try to scan it. If, for instance, a frameless function
849 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 850 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
851 and other operations that rely on a knowledge of the stack
852 traceback.
853
854 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 855 if we don't see this as the first insn, we will stop.
c906108c 856
f43845b3
MS
857 [Note: This doesn't seem to be true any longer, so it's now an
858 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 859
f43845b3
MS
860 [Note further: The "mov ip,sp" only seems to be missing in
861 frameless functions at optimization level "-O2" or above,
862 in which case it is often (but not always) replaced by
b8d5e71d 863 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 864
f43845b3
MS
865 sp_offset = fp_offset = 0;
866
94c30b78
MS
867 for (current_pc = prologue_start;
868 current_pc < prologue_end;
f43845b3 869 current_pc += 4)
96baa820 870 {
d4473757
KB
871 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
872
94c30b78 873 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3
MS
874 {
875 continue;
876 }
94c30b78 877 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3
MS
878 {
879 /* Function is frameless: extra_info defaults OK? */
880 continue;
881 }
882 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
883 /* stmfd sp!, {..., fp, ip, lr, pc}
884 or
885 stmfd sp!, {a1, a2, a3, a4} */
c906108c 886 {
d4473757 887 int mask = insn & 0xffff;
ed9a39eb 888
94c30b78 889 /* Calculate offsets of saved registers. */
34e8f22d 890 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
891 if (mask & (1 << regno))
892 {
893 sp_offset -= 4;
b2fb4676 894 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
895 }
896 }
b8d5e71d
MS
897 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
898 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
899 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
900 {
901 /* No need to add this to saved_regs -- it's just an arg reg. */
902 continue;
903 }
904 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
905 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
906 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
907 {
908 /* No need to add this to saved_regs -- it's just an arg reg. */
909 continue;
910 }
d4473757
KB
911 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
912 {
94c30b78
MS
913 unsigned imm = insn & 0xff; /* immediate value */
914 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
915 imm = (imm >> rot) | (imm << (32 - rot));
916 fp_offset = -imm;
da50a4b7 917 get_frame_extra_info (fi)->framereg = ARM_FP_REGNUM;
d4473757
KB
918 }
919 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
920 {
94c30b78
MS
921 unsigned imm = insn & 0xff; /* immediate value */
922 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
923 imm = (imm >> rot) | (imm << (32 - rot));
924 sp_offset -= imm;
925 }
926 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
927 {
928 sp_offset -= 12;
34e8f22d 929 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
b2fb4676 930 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
931 }
932 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
933 {
934 int n_saved_fp_regs;
935 unsigned int fp_start_reg, fp_bound_reg;
936
94c30b78 937 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 938 {
d4473757
KB
939 if ((insn & 0x40000) == 0x40000) /* N1 is set */
940 n_saved_fp_regs = 3;
941 else
942 n_saved_fp_regs = 1;
96baa820 943 }
d4473757 944 else
96baa820 945 {
d4473757
KB
946 if ((insn & 0x40000) == 0x40000) /* N1 is set */
947 n_saved_fp_regs = 2;
948 else
949 n_saved_fp_regs = 4;
96baa820 950 }
d4473757 951
34e8f22d 952 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
953 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
954 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
955 {
956 sp_offset -= 12;
b2fb4676 957 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
96baa820 958 }
c906108c 959 }
d4473757 960 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 961 break; /* Condition not true, exit early */
b8d5e71d 962 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 963 break; /* Don't scan past a block load */
d4473757
KB
964 else
965 /* The optimizer might shove anything into the prologue,
94c30b78 966 so we just skip what we don't recognize. */
d4473757 967 continue;
c906108c
SS
968 }
969
94c30b78
MS
970 /* The frame size is just the negative of the offset (from the
971 original SP) of the last thing thing we pushed on the stack.
972 The frame offset is [new FP] - [new SP]. */
da50a4b7
AC
973 get_frame_extra_info (fi)->framesize = -sp_offset;
974 if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM)
975 get_frame_extra_info (fi)->frameoffset = fp_offset - sp_offset;
d4473757 976 else
da50a4b7 977 get_frame_extra_info (fi)->frameoffset = 0;
ed9a39eb 978
c906108c
SS
979 save_prologue_cache (fi);
980}
981
ed9a39eb
JM
982/* Find REGNUM on the stack. Otherwise, it's in an active register.
983 One thing we might want to do here is to check REGNUM against the
984 clobber mask, and somehow flag it as invalid if it isn't saved on
985 the stack somewhere. This would provide a graceful failure mode
986 when trying to get the value of caller-saves registers for an inner
987 frame. */
c906108c
SS
988
989static CORE_ADDR
ed9a39eb 990arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c 991{
848cfffb
AC
992 /* NOTE: cagney/2002-05-03: This function really shouldn't be
993 needed. Instead the (still being written) register unwind
994 function could be called directly. */
11c02a10 995 for (; fi; fi = get_next_frame (fi))
848cfffb 996 {
50abf9e5 997 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 998 {
1e2330ba
AC
999 return deprecated_read_register_dummy (get_frame_pc (fi),
1000 get_frame_base (fi), regnum);
848cfffb 1001 }
b2fb4676 1002 else if (get_frame_saved_regs (fi)[regnum] != 0)
848cfffb
AC
1003 {
1004 /* NOTE: cagney/2002-05-03: This would normally need to
1005 handle ARM_SP_REGNUM as a special case as, according to
1006 the frame.h comments, saved_regs[SP_REGNUM] contains the
1007 SP value not its address. It appears that the ARM isn't
1008 doing this though. */
b2fb4676 1009 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
848cfffb
AC
1010 REGISTER_RAW_SIZE (regnum));
1011 }
1012 }
c906108c
SS
1013 return read_register (regnum);
1014}
148754e5
RE
1015/* Function: frame_chain Given a GDB frame, determine the address of
1016 the calling function's frame. This will be used to create a new
e9582e71 1017 GDB frame struct, and then DEPRECATED_INIT_EXTRA_FRAME_INFO and
a5afb99f
AC
1018 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
1019 ARM, we save the frame size when we initialize the frame_info. */
c5aa993b 1020
148754e5 1021static CORE_ADDR
ed9a39eb 1022arm_frame_chain (struct frame_info *fi)
c906108c 1023{
848cfffb 1024 CORE_ADDR caller_pc;
da50a4b7 1025 int framereg = get_frame_extra_info (fi)->framereg;
c906108c 1026
50abf9e5 1027 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 1028 /* A generic call dummy's frame is the same as caller's. */
1e2330ba 1029 return get_frame_base (fi);
848cfffb 1030
50abf9e5 1031 if (get_frame_pc (fi) < LOWEST_PC)
c906108c
SS
1032 return 0;
1033
1034 /* If the caller is the startup code, we're at the end of the chain. */
8bedc050 1035 caller_pc = DEPRECATED_FRAME_SAVED_PC (fi);
c906108c
SS
1036
1037 /* If the caller is Thumb and the caller is ARM, or vice versa,
1038 the frame register of the caller is different from ours.
1039 So we must scan the prologue of the caller to determine its
94c30b78 1040 frame register number. */
c3b4394c
RE
1041 /* XXX Fixme, we should try to do this without creating a temporary
1042 caller_fi. */
50abf9e5 1043 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
c906108c 1044 {
f6c609c4
AC
1045 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1046 struct frame_info *caller_fi =
1047 deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
1048 sizeof (struct frame_extra_info));
c3b4394c
RE
1049
1050 /* Now, scan the prologue and obtain the frame register. */
f6c609c4
AC
1051 deprecated_update_frame_pc_hack (caller_fi, caller_pc);
1052 arm_scan_prologue (caller_fi);
da50a4b7 1053 framereg = get_frame_extra_info (caller_fi)->framereg;
c3b4394c
RE
1054
1055 /* Deallocate the storage associated with the temporary frame
1056 created above. */
1057 do_cleanups (old_chain);
c906108c
SS
1058 }
1059
1060 /* If the caller used a frame register, return its value.
1061 Otherwise, return the caller's stack pointer. */
34e8f22d 1062 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1063 return arm_find_callers_reg (fi, framereg);
1064 else
da50a4b7 1065 return get_frame_base (fi) + get_frame_extra_info (fi)->framesize;
c906108c
SS
1066}
1067
ed9a39eb
JM
1068/* This function actually figures out the frame address for a given pc
1069 and sp. This is tricky because we sometimes don't use an explicit
1070 frame pointer, and the previous stack pointer isn't necessarily
1071 recorded on the stack. The only reliable way to get this info is
1072 to examine the prologue. FROMLEAF is a little confusing, it means
1073 this is the next frame up the chain AFTER a frameless function. If
1074 this is true, then the frame value for this frame is still in the
1075 fp register. */
c906108c 1076
148754e5 1077static void
ed9a39eb 1078arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1079{
1080 int reg;
f079148d 1081 CORE_ADDR sp;
c906108c 1082
b2fb4676 1083 if (get_frame_saved_regs (fi) == NULL)
c3b4394c
RE
1084 frame_saved_regs_zalloc (fi);
1085
a00a19e9 1086 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
c3b4394c 1087
da50a4b7
AC
1088 get_frame_extra_info (fi)->framesize = 0;
1089 get_frame_extra_info (fi)->frameoffset = 0;
1090 get_frame_extra_info (fi)->framereg = 0;
c3b4394c 1091
11c02a10 1092 if (get_next_frame (fi))
8bedc050 1093 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
c906108c 1094
b2fb4676 1095 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
c906108c 1096
da3c6d4a
MS
1097 /* Compute stack pointer for this frame. We use this value for both
1098 the sigtramp and call dummy cases. */
11c02a10 1099 if (!get_next_frame (fi))
f079148d 1100 sp = read_sp();
11c02a10 1101 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
848cfffb
AC
1102 /* For generic dummy frames, pull the value direct from the frame.
1103 Having an unwind function to do this would be nice. */
11c02a10
AC
1104 sp = deprecated_read_register_dummy (get_frame_pc (get_next_frame (fi)),
1105 get_frame_base (get_next_frame (fi)),
135c175f 1106 ARM_SP_REGNUM);
f079148d 1107 else
da50a4b7
AC
1108 sp = (get_frame_base (get_next_frame (fi))
1109 - get_frame_extra_info (get_next_frame (fi))->frameoffset
1110 + get_frame_extra_info (get_next_frame (fi))->framesize);
f079148d 1111
d7bd68ca 1112 /* Determine whether or not we're in a sigtramp frame.
5a203e44
AC
1113 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1114 == SIGTRAMP_FRAME) because this value is sometimes set after
e9582e71 1115 invoking DEPRECATED_INIT_EXTRA_FRAME_INFO. So we test *both*
5a203e44
AC
1116 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1117 determine if we need to use the sigcontext addresses for the
1118 saved registers.
2a451106 1119
d7bd68ca
AC
1120 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1121 against the name of the function, the code below will have to be
1122 changed to first fetch the name of the function and then pass
1123 this name to PC_IN_SIGTRAMP. */
2a451106 1124
5a203e44
AC
1125 /* FIXME: cagney/2002-11-18: This problem will go away once
1126 frame.c:get_prev_frame() is modified to set the frame's type
1127 before calling functions like this. */
1128
3bb04bdd 1129 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
50abf9e5 1130 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
2a451106 1131 {
2a451106 1132 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1133 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
2a451106 1134
94c30b78 1135 /* FIXME: What about thumb mode? */
da50a4b7
AC
1136 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
1137 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (fi)[get_frame_extra_info (fi)->framereg], REGISTER_RAW_SIZE (get_frame_extra_info (fi)->framereg)));
1138 get_frame_extra_info (fi)->framesize = 0;
1139 get_frame_extra_info (fi)->frameoffset = 0;
2a451106
KB
1140
1141 }
1142 else
c906108c
SS
1143 {
1144 arm_scan_prologue (fi);
1145
11c02a10 1146 if (!get_next_frame (fi))
94c30b78 1147 /* This is the innermost frame? */
da50a4b7 1148 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
11c02a10 1149 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
848cfffb
AC
1150 /* Next inner most frame is a dummy, just grab its frame.
1151 Dummy frames always have the same FP as their caller. */
11c02a10 1152 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
da50a4b7
AC
1153 else if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM
1154 || get_frame_extra_info (fi)->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1155 {
1156 /* not the innermost frame */
94c30b78 1157 /* If we have an FP, the callee saved it. */
da50a4b7
AC
1158 if (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg] != 0)
1159 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg], 4));
ed9a39eb
JM
1160 else if (fromleaf)
1161 /* If we were called by a frameless fn. then our frame is
94c30b78 1162 still in the frame pointer register on the board... */
b0c6b05c 1163 deprecated_update_frame_base_hack (fi, read_fp ());
ed9a39eb 1164 }
c906108c 1165
ed9a39eb
JM
1166 /* Calculate actual addresses of saved registers using offsets
1167 determined by arm_scan_prologue. */
c906108c 1168 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1169 if (get_frame_saved_regs (fi)[reg] != 0)
da50a4b7
AC
1170 get_frame_saved_regs (fi)[reg]
1171 += (get_frame_base (fi)
1172 + get_frame_extra_info (fi)->framesize
1173 - get_frame_extra_info (fi)->frameoffset);
c906108c
SS
1174 }
1175}
1176
1177
34e8f22d 1178/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1179 is saved in the stack anywhere, otherwise we get it from the
1180 registers.
c906108c
SS
1181
1182 The old definition of this function was a macro:
c5aa993b 1183 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1184 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1185
148754e5 1186static CORE_ADDR
ed9a39eb 1187arm_frame_saved_pc (struct frame_info *fi)
c906108c 1188{
848cfffb 1189 /* If a dummy frame, pull the PC out of the frame's register buffer. */
50abf9e5 1190 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1e2330ba
AC
1191 return deprecated_read_register_dummy (get_frame_pc (fi),
1192 get_frame_base (fi), ARM_PC_REGNUM);
848cfffb 1193
1e2330ba
AC
1194 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1195 (get_frame_base (fi)
da50a4b7 1196 - get_frame_extra_info (fi)->frameoffset),
1e2330ba 1197 get_frame_base (fi)))
f079148d 1198 {
b2fb4676 1199 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
34e8f22d 1200 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1201 }
1202 else
c906108c 1203 {
34e8f22d 1204 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1205 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1206 }
1207}
1208
c906108c
SS
1209/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1210 Examine the Program Status Register to decide which state we're in. */
1211
148754e5
RE
1212static CORE_ADDR
1213arm_read_fp (void)
c906108c 1214{
34e8f22d 1215 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1216 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1217 else
34e8f22d 1218 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1219}
1220
148754e5
RE
1221/* Store into a struct frame_saved_regs the addresses of the saved
1222 registers of frame described by FRAME_INFO. This includes special
1223 registers such as PC and FP saved in special ways in the stack
1224 frame. SP is even more special: the address we return for it IS
1225 the sp for the next frame. */
c906108c 1226
148754e5 1227static void
c3b4394c 1228arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1229{
c3b4394c 1230
b2fb4676 1231 if (get_frame_saved_regs (fip))
c3b4394c
RE
1232 return;
1233
1234 arm_init_extra_frame_info (0, fip);
c906108c
SS
1235}
1236
848cfffb
AC
1237/* Set the return address for a generic dummy frame. ARM uses the
1238 entry point. */
1239
1240static CORE_ADDR
1241arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1242{
1243 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1244 return sp;
1245}
1246
148754e5
RE
1247/* Push an empty stack frame, to record the current PC, etc. */
1248
1249static void
ed9a39eb 1250arm_push_dummy_frame (void)
c906108c 1251{
34e8f22d 1252 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1253 CORE_ADDR sp = old_sp;
1254 CORE_ADDR fp, prologue_start;
1255 int regnum;
1256
1257 /* Push the two dummy prologue instructions in reverse order,
1258 so that they'll be in the correct low-to-high order in memory. */
1259 /* sub fp, ip, #4 */
1260 sp = push_word (sp, 0xe24cb004);
1261 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1262 prologue_start = sp = push_word (sp, 0xe92ddfff);
1263
ed9a39eb
JM
1264 /* Push a pointer to the dummy prologue + 12, because when stm
1265 instruction stores the PC, it stores the address of the stm
c906108c
SS
1266 instruction itself plus 12. */
1267 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1268
f079148d 1269 /* Push the processor status. */
34e8f22d 1270 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1271
1272 /* Push all 16 registers starting with r15. */
34e8f22d 1273 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1274 sp = push_word (sp, read_register (regnum));
c5aa993b 1275
f079148d 1276 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1277 write_register (ARM_FP_REGNUM, fp);
c906108c 1278 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1279 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1280}
1281
6eb69eab
RE
1282/* CALL_DUMMY_WORDS:
1283 This sequence of words is the instructions
1284
1285 mov lr,pc
1286 mov pc,r4
1287 illegal
1288
1289 Note this is 12 bytes. */
1290
34e8f22d 1291static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1292{
1293 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1294};
1295
3fb4b924
RE
1296/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1297 breakpoint to the proper address in the call dummy, so that
1298 `finish' after a stop in a call dummy works.
1299
d7b486e7
RE
1300 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1301 optimal solution, but the call to arm_fix_call_dummy is immediately
1302 followed by a call to run_stack_dummy, which is the only function
1303 where call_dummy_breakpoint_offset is actually used. */
3fb4b924
RE
1304
1305
1306static void
1307arm_set_call_dummy_breakpoint_offset (void)
1308{
1309 if (caller_is_thumb)
1310 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1311 else
1312 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1313}
1314
c906108c 1315/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1316 in Thumb or ARM mode, and whether the target function is Thumb or
1317 ARM. There are three different situations requiring three
c906108c
SS
1318 different dummies:
1319
1320 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1321 been copied into the dummy parameter to this function.
c906108c 1322 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1323 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1324 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1325 works for calling both ARM and Thumb functions.
c906108c 1326
ed9a39eb
JM
1327 All three call dummies expect to receive the target function
1328 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1329
34e8f22d 1330static void
ed9a39eb 1331arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1332 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1333{
1334 static short thumb_dummy[4] =
1335 {
c5aa993b
JM
1336 0xf000, 0xf801, /* bl label */
1337 0xdf18, /* swi 24 */
1338 0x4720, /* label: bx r4 */
c906108c
SS
1339 };
1340 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1341
94c30b78 1342 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1343 caller_is_thumb = arm_pc_is_thumb (read_pc ());
3fb4b924 1344 arm_set_call_dummy_breakpoint_offset ();
c906108c 1345
ed9a39eb
JM
1346 /* If the target function is Thumb, set the low bit of the function
1347 address. And if the CPU is currently in ARM mode, patch the
1348 second instruction of call dummy to use a BX instruction to
1349 switch to Thumb mode. */
c906108c
SS
1350 target_is_thumb = arm_pc_is_thumb (fun);
1351 if (target_is_thumb)
1352 {
1353 fun |= 1;
1354 if (!caller_is_thumb)
1355 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1356 }
1357
1358 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1359 instead of the ARM one that's already been copied. This will
1360 work for both Thumb and ARM target functions. */
1361 if (caller_is_thumb)
1362 {
1363 int i;
1364 char *p = dummy;
1365 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1366
1367 for (i = 0; i < len; i++)
1368 {
1369 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1370 p += sizeof (thumb_dummy[0]);
1371 }
1372 }
1373
ed9a39eb 1374 /* Put the target address in r4; the call dummy will copy this to
94c30b78 1375 the PC. */
c906108c
SS
1376 write_register (4, fun);
1377}
1378
ed9a39eb
JM
1379/* Note: ScottB
1380
1381 This function does not support passing parameters using the FPA
1382 variant of the APCS. It passes any floating point arguments in the
1383 general registers and/or on the stack. */
c906108c 1384
39bbf761 1385static CORE_ADDR
ea7c478f 1386arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1387 int struct_return, CORE_ADDR struct_addr)
c906108c 1388{
6529d2dd
AC
1389 CORE_ADDR fp;
1390 int argnum;
1391 int argreg;
1392 int nstack;
1393 int simd_argreg;
1394 int second_pass;
1395 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
ed9a39eb
JM
1396
1397 /* Walk through the list of args and determine how large a temporary
1398 stack is required. Need to take care here as structs may be
6529d2dd
AC
1399 passed on the stack, and we have to to push them. On the second
1400 pass, do the store. */
1401 nstack = 0;
1402 fp = sp;
1403 for (second_pass = 0; second_pass < 2; second_pass++)
c906108c 1404 {
6529d2dd
AC
1405 /* Compute the FP using the information computed during the
1406 first pass. */
1407 if (second_pass)
1408 fp = sp - nstack;
1409
1410 simd_argreg = 0;
1411 argreg = ARM_A1_REGNUM;
1412 nstack = 0;
1413
1414 /* The struct_return pointer occupies the first parameter
1415 passing register. */
1416 if (struct_return)
c906108c 1417 {
6529d2dd
AC
1418 if (second_pass)
1419 {
1420 if (arm_debug)
1421 fprintf_unfiltered (gdb_stdlog,
1422 "struct return in %s = 0x%s\n",
1423 REGISTER_NAME (argreg),
1424 paddr (struct_addr));
1425 write_register (argreg, struct_addr);
1426 }
1427 argreg++;
c906108c 1428 }
ed9a39eb 1429
6529d2dd
AC
1430 for (argnum = 0; argnum < nargs; argnum++)
1431 {
1432 int len;
1433 struct type *arg_type;
1434 struct type *target_type;
1435 enum type_code typecode;
1436 char *val;
1437
1438 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1439 len = TYPE_LENGTH (arg_type);
1440 target_type = TYPE_TARGET_TYPE (arg_type);
1441 typecode = TYPE_CODE (arg_type);
1442 val = VALUE_CONTENTS (args[argnum]);
1443
1444 /* If the argument is a pointer to a function, and it is a
1445 Thumb function, create a LOCAL copy of the value and set
1446 the THUMB bit in it. */
1447 if (second_pass
1448 && TYPE_CODE_PTR == typecode
1449 && target_type != NULL
1450 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1451 {
6529d2dd
AC
1452 CORE_ADDR regval = extract_address (val, len);
1453 if (arm_pc_is_thumb (regval))
1454 {
1455 val = alloca (len);
1456 store_address (val, len, MAKE_THUMB_ADDR (regval));
1457 }
c906108c 1458 }
6529d2dd
AC
1459
1460 /* Copy the argument to general registers or the stack in
1461 register-sized pieces. Large arguments are split between
1462 registers and stack. */
1463 while (len > 0)
ed9a39eb 1464 {
6529d2dd
AC
1465 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1466
1467 if (argreg <= ARM_LAST_ARG_REGNUM)
1468 {
1469 /* The argument is being passed in a general purpose
1470 register. */
1471 if (second_pass)
1472 {
1473 CORE_ADDR regval = extract_address (val,
1474 partial_len);
1475 if (arm_debug)
1476 fprintf_unfiltered (gdb_stdlog,
1477 "arg %d in %s = 0x%s\n",
1478 argnum,
1479 REGISTER_NAME (argreg),
1480 phex (regval, REGISTER_SIZE));
1481 write_register (argreg, regval);
1482 }
1483 argreg++;
1484 }
1485 else
1486 {
1487 if (second_pass)
1488 {
1489 /* Push the arguments onto the stack. */
1490 if (arm_debug)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "arg %d @ 0x%s + %d\n",
1493 argnum, paddr (fp), nstack);
1494 write_memory (fp + nstack, val, REGISTER_SIZE);
1495 }
1496 nstack += REGISTER_SIZE;
1497 }
1498
1499 len -= partial_len;
1500 val += partial_len;
ed9a39eb
JM
1501 }
1502
c906108c
SS
1503 }
1504 }
c906108c 1505
f211c6d4 1506 /* Return the bottom of the argument list (pointed to by fp). */
6529d2dd 1507 return fp;
c906108c
SS
1508}
1509
da3c6d4a
MS
1510/* Pop the current frame. So long as the frame info has been
1511 initialized properly (see arm_init_extra_frame_info), this code
1512 works for dummy frames as well as regular frames. I.e, there's no
1513 need to have a special case for dummy frames. */
148754e5 1514static void
ed9a39eb 1515arm_pop_frame (void)
c906108c 1516{
c906108c 1517 int regnum;
8b93c638 1518 struct frame_info *frame = get_current_frame ();
da50a4b7
AC
1519 CORE_ADDR old_SP = (get_frame_base (frame)
1520 - get_frame_extra_info (frame)->frameoffset
1521 + get_frame_extra_info (frame)->framesize);
c906108c 1522
1e2330ba
AC
1523 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1524 get_frame_base (frame),
1525 get_frame_base (frame)))
848cfffb
AC
1526 {
1527 generic_pop_dummy_frame ();
1528 flush_cached_frames ();
1529 return;
1530 }
1531
f079148d 1532 for (regnum = 0; regnum < NUM_REGS; regnum++)
b2fb4676 1533 if (get_frame_saved_regs (frame)[regnum] != 0)
f079148d 1534 write_register (regnum,
b2fb4676 1535 read_memory_integer (get_frame_saved_regs (frame)[regnum],
f079148d 1536 REGISTER_RAW_SIZE (regnum)));
8b93c638 1537
8bedc050 1538 write_register (ARM_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
34e8f22d 1539 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1540
1541 flush_cached_frames ();
1542}
1543
1544static void
ed9a39eb 1545print_fpu_flags (int flags)
c906108c 1546{
c5aa993b
JM
1547 if (flags & (1 << 0))
1548 fputs ("IVO ", stdout);
1549 if (flags & (1 << 1))
1550 fputs ("DVZ ", stdout);
1551 if (flags & (1 << 2))
1552 fputs ("OFL ", stdout);
1553 if (flags & (1 << 3))
1554 fputs ("UFL ", stdout);
1555 if (flags & (1 << 4))
1556 fputs ("INX ", stdout);
1557 putchar ('\n');
c906108c
SS
1558}
1559
5e74b15c
RE
1560/* Print interesting information about the floating point processor
1561 (if present) or emulator. */
34e8f22d 1562static void
d855c300 1563arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1564 struct frame_info *frame, const char *args)
c906108c 1565{
34e8f22d 1566 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1567 int type;
1568
1569 type = (status >> 24) & 127;
1570 printf ("%s FPU type %d\n",
ed9a39eb 1571 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1572 type);
1573 fputs ("mask: ", stdout);
1574 print_fpu_flags (status >> 16);
1575 fputs ("flags: ", stdout);
1576 print_fpu_flags (status);
c906108c
SS
1577}
1578
34e8f22d
RE
1579/* Return the GDB type object for the "standard" data type of data in
1580 register N. */
1581
1582static struct type *
032758dc
AC
1583arm_register_type (int regnum)
1584{
34e8f22d 1585 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1586 {
d7449b42 1587 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1588 return builtin_type_arm_ext_big;
1589 else
1590 return builtin_type_arm_ext_littlebyte_bigword;
1591 }
1592 else
1593 return builtin_type_int32;
1594}
1595
34e8f22d
RE
1596/* Index within `registers' of the first byte of the space for
1597 register N. */
1598
1599static int
1600arm_register_byte (int regnum)
1601{
1602 if (regnum < ARM_F0_REGNUM)
1603 return regnum * INT_REGISTER_RAW_SIZE;
1604 else if (regnum < ARM_PS_REGNUM)
1605 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1606 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1607 else
1608 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1609 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1610 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1611}
1612
1613/* Number of bytes of storage in the actual machine representation for
1614 register N. All registers are 4 bytes, except fp0 - fp7, which are
1615 12 bytes in length. */
1616
1617static int
1618arm_register_raw_size (int regnum)
1619{
1620 if (regnum < ARM_F0_REGNUM)
1621 return INT_REGISTER_RAW_SIZE;
1622 else if (regnum < ARM_FPS_REGNUM)
1623 return FP_REGISTER_RAW_SIZE;
1624 else
1625 return STATUS_REGISTER_SIZE;
1626}
1627
1628/* Number of bytes of storage in a program's representation
1629 for register N. */
1630static int
1631arm_register_virtual_size (int regnum)
1632{
1633 if (regnum < ARM_F0_REGNUM)
1634 return INT_REGISTER_VIRTUAL_SIZE;
1635 else if (regnum < ARM_FPS_REGNUM)
1636 return FP_REGISTER_VIRTUAL_SIZE;
1637 else
1638 return STATUS_REGISTER_SIZE;
1639}
1640
26216b98
AC
1641/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1642static int
1643arm_register_sim_regno (int regnum)
1644{
1645 int reg = regnum;
1646 gdb_assert (reg >= 0 && reg < NUM_REGS);
1647
1648 if (reg < NUM_GREGS)
1649 return SIM_ARM_R0_REGNUM + reg;
1650 reg -= NUM_GREGS;
1651
1652 if (reg < NUM_FREGS)
1653 return SIM_ARM_FP0_REGNUM + reg;
1654 reg -= NUM_FREGS;
1655
1656 if (reg < NUM_SREGS)
1657 return SIM_ARM_FPS_REGNUM + reg;
1658 reg -= NUM_SREGS;
1659
1660 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1661}
34e8f22d 1662
a37b3cc0
AC
1663/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1664 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1665 It is thought that this is is the floating-point register format on
1666 little-endian systems. */
c906108c 1667
ed9a39eb 1668static void
b508a996
RE
1669convert_from_extended (const struct floatformat *fmt, const void *ptr,
1670 void *dbl)
c906108c 1671{
a37b3cc0 1672 DOUBLEST d;
d7449b42 1673 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1674 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1675 else
1676 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1677 ptr, &d);
b508a996 1678 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1679}
1680
34e8f22d 1681static void
b508a996 1682convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1683{
a37b3cc0 1684 DOUBLEST d;
b508a996 1685 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1686 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1687 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1688 else
1689 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1690 &d, dbl);
c906108c 1691}
ed9a39eb 1692
c906108c 1693static int
ed9a39eb 1694condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1695{
1696 if (cond == INST_AL || cond == INST_NV)
1697 return 1;
1698
1699 switch (cond)
1700 {
1701 case INST_EQ:
1702 return ((status_reg & FLAG_Z) != 0);
1703 case INST_NE:
1704 return ((status_reg & FLAG_Z) == 0);
1705 case INST_CS:
1706 return ((status_reg & FLAG_C) != 0);
1707 case INST_CC:
1708 return ((status_reg & FLAG_C) == 0);
1709 case INST_MI:
1710 return ((status_reg & FLAG_N) != 0);
1711 case INST_PL:
1712 return ((status_reg & FLAG_N) == 0);
1713 case INST_VS:
1714 return ((status_reg & FLAG_V) != 0);
1715 case INST_VC:
1716 return ((status_reg & FLAG_V) == 0);
1717 case INST_HI:
1718 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1719 case INST_LS:
1720 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1721 case INST_GE:
1722 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1723 case INST_LT:
1724 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1725 case INST_GT:
1726 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1727 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1728 case INST_LE:
1729 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1730 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1731 }
1732 return 1;
1733}
1734
9512d7fd 1735/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1736#define submask(x) ((1L << ((x) + 1)) - 1)
1737#define bit(obj,st) (((obj) >> (st)) & 1)
1738#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1739#define sbits(obj,st,fn) \
1740 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1741#define BranchDest(addr,instr) \
1742 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1743#define ARM_PC_32 1
1744
1745static unsigned long
ed9a39eb
JM
1746shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1747 unsigned long status_reg)
c906108c
SS
1748{
1749 unsigned long res, shift;
1750 int rm = bits (inst, 0, 3);
1751 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1752
1753 if (bit (inst, 4))
c906108c
SS
1754 {
1755 int rs = bits (inst, 8, 11);
1756 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1757 }
1758 else
1759 shift = bits (inst, 7, 11);
c5aa993b
JM
1760
1761 res = (rm == 15
c906108c 1762 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1763 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1764 : read_register (rm));
1765
1766 switch (shifttype)
1767 {
c5aa993b 1768 case 0: /* LSL */
c906108c
SS
1769 res = shift >= 32 ? 0 : res << shift;
1770 break;
c5aa993b
JM
1771
1772 case 1: /* LSR */
c906108c
SS
1773 res = shift >= 32 ? 0 : res >> shift;
1774 break;
1775
c5aa993b
JM
1776 case 2: /* ASR */
1777 if (shift >= 32)
1778 shift = 31;
c906108c
SS
1779 res = ((res & 0x80000000L)
1780 ? ~((~res) >> shift) : res >> shift);
1781 break;
1782
c5aa993b 1783 case 3: /* ROR/RRX */
c906108c
SS
1784 shift &= 31;
1785 if (shift == 0)
1786 res = (res >> 1) | (carry ? 0x80000000L : 0);
1787 else
c5aa993b 1788 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1789 break;
1790 }
1791
1792 return res & 0xffffffff;
1793}
1794
c906108c
SS
1795/* Return number of 1-bits in VAL. */
1796
1797static int
ed9a39eb 1798bitcount (unsigned long val)
c906108c
SS
1799{
1800 int nbits;
1801 for (nbits = 0; val != 0; nbits++)
c5aa993b 1802 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1803 return nbits;
1804}
1805
34e8f22d 1806CORE_ADDR
ed9a39eb 1807thumb_get_next_pc (CORE_ADDR pc)
c906108c 1808{
c5aa993b 1809 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1810 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1811 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1812 unsigned long offset;
1813
1814 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1815 {
1816 CORE_ADDR sp;
1817
1818 /* Fetch the saved PC from the stack. It's stored above
1819 all of the other registers. */
1820 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1821 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1822 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1823 nextpc = ADDR_BITS_REMOVE (nextpc);
1824 if (nextpc == pc)
1825 error ("Infinite loop detected");
1826 }
1827 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1828 {
34e8f22d 1829 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1830 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1831 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1832 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1833 }
1834 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1835 {
1836 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1837 }
1838 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1839 {
1840 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1841 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1842 nextpc = pc_val + offset;
1843 }
1844
1845 return nextpc;
1846}
1847
34e8f22d 1848CORE_ADDR
ed9a39eb 1849arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1850{
1851 unsigned long pc_val;
1852 unsigned long this_instr;
1853 unsigned long status;
1854 CORE_ADDR nextpc;
1855
1856 if (arm_pc_is_thumb (pc))
1857 return thumb_get_next_pc (pc);
1858
1859 pc_val = (unsigned long) pc;
1860 this_instr = read_memory_integer (pc, 4);
34e8f22d 1861 status = read_register (ARM_PS_REGNUM);
c5aa993b 1862 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1863
1864 if (condition_true (bits (this_instr, 28, 31), status))
1865 {
1866 switch (bits (this_instr, 24, 27))
1867 {
c5aa993b 1868 case 0x0:
94c30b78 1869 case 0x1: /* data processing */
c5aa993b
JM
1870 case 0x2:
1871 case 0x3:
c906108c
SS
1872 {
1873 unsigned long operand1, operand2, result = 0;
1874 unsigned long rn;
1875 int c;
c5aa993b 1876
c906108c
SS
1877 if (bits (this_instr, 12, 15) != 15)
1878 break;
1879
1880 if (bits (this_instr, 22, 25) == 0
c5aa993b 1881 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1882 error ("Illegal update to pc in instruction");
1883
1884 /* Multiply into PC */
1885 c = (status & FLAG_C) ? 1 : 0;
1886 rn = bits (this_instr, 16, 19);
1887 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1888
c906108c
SS
1889 if (bit (this_instr, 25))
1890 {
1891 unsigned long immval = bits (this_instr, 0, 7);
1892 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1893 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1894 & 0xffffffff;
c906108c 1895 }
c5aa993b 1896 else /* operand 2 is a shifted register */
c906108c 1897 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1898
c906108c
SS
1899 switch (bits (this_instr, 21, 24))
1900 {
c5aa993b 1901 case 0x0: /*and */
c906108c
SS
1902 result = operand1 & operand2;
1903 break;
1904
c5aa993b 1905 case 0x1: /*eor */
c906108c
SS
1906 result = operand1 ^ operand2;
1907 break;
1908
c5aa993b 1909 case 0x2: /*sub */
c906108c
SS
1910 result = operand1 - operand2;
1911 break;
1912
c5aa993b 1913 case 0x3: /*rsb */
c906108c
SS
1914 result = operand2 - operand1;
1915 break;
1916
c5aa993b 1917 case 0x4: /*add */
c906108c
SS
1918 result = operand1 + operand2;
1919 break;
1920
c5aa993b 1921 case 0x5: /*adc */
c906108c
SS
1922 result = operand1 + operand2 + c;
1923 break;
1924
c5aa993b 1925 case 0x6: /*sbc */
c906108c
SS
1926 result = operand1 - operand2 + c;
1927 break;
1928
c5aa993b 1929 case 0x7: /*rsc */
c906108c
SS
1930 result = operand2 - operand1 + c;
1931 break;
1932
c5aa993b
JM
1933 case 0x8:
1934 case 0x9:
1935 case 0xa:
1936 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1937 result = (unsigned long) nextpc;
1938 break;
1939
c5aa993b 1940 case 0xc: /*orr */
c906108c
SS
1941 result = operand1 | operand2;
1942 break;
1943
c5aa993b 1944 case 0xd: /*mov */
c906108c
SS
1945 /* Always step into a function. */
1946 result = operand2;
c5aa993b 1947 break;
c906108c 1948
c5aa993b 1949 case 0xe: /*bic */
c906108c
SS
1950 result = operand1 & ~operand2;
1951 break;
1952
c5aa993b 1953 case 0xf: /*mvn */
c906108c
SS
1954 result = ~operand2;
1955 break;
1956 }
1957 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1958
1959 if (nextpc == pc)
1960 error ("Infinite loop detected");
1961 break;
1962 }
c5aa993b
JM
1963
1964 case 0x4:
1965 case 0x5: /* data transfer */
1966 case 0x6:
1967 case 0x7:
c906108c
SS
1968 if (bit (this_instr, 20))
1969 {
1970 /* load */
1971 if (bits (this_instr, 12, 15) == 15)
1972 {
1973 /* rd == pc */
c5aa993b 1974 unsigned long rn;
c906108c 1975 unsigned long base;
c5aa993b 1976
c906108c
SS
1977 if (bit (this_instr, 22))
1978 error ("Illegal update to pc in instruction");
1979
1980 /* byte write to PC */
1981 rn = bits (this_instr, 16, 19);
1982 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1983 if (bit (this_instr, 24))
1984 {
1985 /* pre-indexed */
1986 int c = (status & FLAG_C) ? 1 : 0;
1987 unsigned long offset =
c5aa993b 1988 (bit (this_instr, 25)
ed9a39eb 1989 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1990 : bits (this_instr, 0, 11));
c906108c
SS
1991
1992 if (bit (this_instr, 23))
1993 base += offset;
1994 else
1995 base -= offset;
1996 }
c5aa993b 1997 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1998 4);
c5aa993b 1999
c906108c
SS
2000 nextpc = ADDR_BITS_REMOVE (nextpc);
2001
2002 if (nextpc == pc)
2003 error ("Infinite loop detected");
2004 }
2005 }
2006 break;
c5aa993b
JM
2007
2008 case 0x8:
2009 case 0x9: /* block transfer */
c906108c
SS
2010 if (bit (this_instr, 20))
2011 {
2012 /* LDM */
2013 if (bit (this_instr, 15))
2014 {
2015 /* loading pc */
2016 int offset = 0;
2017
2018 if (bit (this_instr, 23))
2019 {
2020 /* up */
2021 unsigned long reglist = bits (this_instr, 0, 14);
2022 offset = bitcount (reglist) * 4;
c5aa993b 2023 if (bit (this_instr, 24)) /* pre */
c906108c
SS
2024 offset += 4;
2025 }
2026 else if (bit (this_instr, 24))
2027 offset = -4;
c5aa993b 2028
c906108c 2029 {
c5aa993b
JM
2030 unsigned long rn_val =
2031 read_register (bits (this_instr, 16, 19));
c906108c
SS
2032 nextpc =
2033 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 2034 + offset),
c906108c
SS
2035 4);
2036 }
2037 nextpc = ADDR_BITS_REMOVE (nextpc);
2038 if (nextpc == pc)
2039 error ("Infinite loop detected");
2040 }
2041 }
2042 break;
c5aa993b
JM
2043
2044 case 0xb: /* branch & link */
2045 case 0xa: /* branch */
c906108c
SS
2046 {
2047 nextpc = BranchDest (pc, this_instr);
2048
2049 nextpc = ADDR_BITS_REMOVE (nextpc);
2050 if (nextpc == pc)
2051 error ("Infinite loop detected");
2052 break;
2053 }
c5aa993b
JM
2054
2055 case 0xc:
2056 case 0xd:
2057 case 0xe: /* coproc ops */
2058 case 0xf: /* SWI */
c906108c
SS
2059 break;
2060
2061 default:
97e03143 2062 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
2063 return (pc);
2064 }
2065 }
2066
2067 return nextpc;
2068}
2069
9512d7fd
FN
2070/* single_step() is called just before we want to resume the inferior,
2071 if we want to single-step it but there is no hardware or kernel
2072 single-step support. We find the target of the coming instruction
2073 and breakpoint it.
2074
94c30b78
MS
2075 single_step() is also called just after the inferior stops. If we
2076 had set up a simulated single-step, we undo our damage. */
9512d7fd 2077
34e8f22d
RE
2078static void
2079arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 2080{
b8d5e71d 2081 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
2082 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2083
2084 if (insert_bpt)
2085 {
34e8f22d 2086 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 2087 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2088 }
2089 else
80fcf3f0 2090 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2091}
9512d7fd 2092
c906108c
SS
2093#include "bfd-in2.h"
2094#include "libcoff.h"
2095
2096static int
ed9a39eb 2097gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2098{
2099 if (arm_pc_is_thumb (memaddr))
2100 {
c5aa993b
JM
2101 static asymbol *asym;
2102 static combined_entry_type ce;
2103 static struct coff_symbol_struct csym;
27cddce2 2104 static struct bfd fake_bfd;
c5aa993b 2105 static bfd_target fake_target;
c906108c
SS
2106
2107 if (csym.native == NULL)
2108 {
da3c6d4a
MS
2109 /* Create a fake symbol vector containing a Thumb symbol.
2110 This is solely so that the code in print_insn_little_arm()
2111 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2112 the presence of a Thumb symbol and switch to decoding
2113 Thumb instructions. */
c5aa993b
JM
2114
2115 fake_target.flavour = bfd_target_coff_flavour;
2116 fake_bfd.xvec = &fake_target;
c906108c 2117 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2118 csym.native = &ce;
2119 csym.symbol.the_bfd = &fake_bfd;
2120 csym.symbol.name = "fake";
2121 asym = (asymbol *) & csym;
c906108c 2122 }
c5aa993b 2123
c906108c 2124 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2125 info->symbols = &asym;
c906108c
SS
2126 }
2127 else
2128 info->symbols = NULL;
c5aa993b 2129
d7449b42 2130 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2131 return print_insn_big_arm (memaddr, info);
2132 else
2133 return print_insn_little_arm (memaddr, info);
2134}
2135
66e810cd
RE
2136/* The following define instruction sequences that will cause ARM
2137 cpu's to take an undefined instruction trap. These are used to
2138 signal a breakpoint to GDB.
2139
2140 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2141 modes. A different instruction is required for each mode. The ARM
2142 cpu's can also be big or little endian. Thus four different
2143 instructions are needed to support all cases.
2144
2145 Note: ARMv4 defines several new instructions that will take the
2146 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2147 not in fact add the new instructions. The new undefined
2148 instructions in ARMv4 are all instructions that had no defined
2149 behaviour in earlier chips. There is no guarantee that they will
2150 raise an exception, but may be treated as NOP's. In practice, it
2151 may only safe to rely on instructions matching:
2152
2153 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2154 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2155 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2156
2157 Even this may only true if the condition predicate is true. The
2158 following use a condition predicate of ALWAYS so it is always TRUE.
2159
2160 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2161 and NetBSD all use a software interrupt rather than an undefined
2162 instruction to force a trap. This can be handled by by the
2163 abi-specific code during establishment of the gdbarch vector. */
2164
2165
d7b486e7
RE
2166/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2167 override these definitions. */
66e810cd
RE
2168#ifndef ARM_LE_BREAKPOINT
2169#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2170#endif
2171#ifndef ARM_BE_BREAKPOINT
2172#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2173#endif
2174#ifndef THUMB_LE_BREAKPOINT
2175#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2176#endif
2177#ifndef THUMB_BE_BREAKPOINT
2178#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2179#endif
2180
2181static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2182static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2183static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2184static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2185
34e8f22d
RE
2186/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2187 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2188 breakpoint should be used. It returns a pointer to a string of
2189 bytes that encode a breakpoint instruction, stores the length of
2190 the string to *lenptr, and adjusts the program counter (if
2191 necessary) to point to the actual memory location where the
c906108c
SS
2192 breakpoint should be inserted. */
2193
34e8f22d
RE
2194/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2195 breakpoints and storing their handles instread of what was in
2196 memory. It is nice that this is the same size as a handle -
94c30b78 2197 otherwise remote-rdp will have to change. */
34e8f22d 2198
ab89facf 2199static const unsigned char *
ed9a39eb 2200arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2201{
66e810cd
RE
2202 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2203
c906108c
SS
2204 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2205 {
66e810cd
RE
2206 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2207 *lenptr = tdep->thumb_breakpoint_size;
2208 return tdep->thumb_breakpoint;
c906108c
SS
2209 }
2210 else
2211 {
66e810cd
RE
2212 *lenptr = tdep->arm_breakpoint_size;
2213 return tdep->arm_breakpoint;
c906108c
SS
2214 }
2215}
ed9a39eb
JM
2216
2217/* Extract from an array REGBUF containing the (raw) register state a
2218 function return value of type TYPE, and copy that, in virtual
2219 format, into VALBUF. */
2220
34e8f22d 2221static void
ed9a39eb 2222arm_extract_return_value (struct type *type,
b508a996
RE
2223 struct regcache *regs,
2224 void *dst)
ed9a39eb 2225{
b508a996
RE
2226 bfd_byte *valbuf = dst;
2227
ed9a39eb 2228 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7
RE
2229 {
2230 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2231
2232 switch (tdep->fp_model)
2233 {
2234 case ARM_FLOAT_FPA:
b508a996
RE
2235 {
2236 /* The value is in register F0 in internal format. We need to
2237 extract the raw value and then convert it to the desired
2238 internal type. */
2239 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2240
2241 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2242 convert_from_extended (floatformat_from_type (type), tmpbuf,
2243 valbuf);
2244 }
08216dd7
RE
2245 break;
2246
2247 case ARM_FLOAT_SOFT:
2248 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2249 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2250 if (TYPE_LENGTH (type) > 4)
2251 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2252 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2253 break;
2254
2255 default:
2256 internal_error
2257 (__FILE__, __LINE__,
2258 "arm_extract_return_value: Floating point model not supported");
2259 break;
2260 }
2261 }
b508a996
RE
2262 else if (TYPE_CODE (type) == TYPE_CODE_INT
2263 || TYPE_CODE (type) == TYPE_CODE_CHAR
2264 || TYPE_CODE (type) == TYPE_CODE_BOOL
2265 || TYPE_CODE (type) == TYPE_CODE_PTR
2266 || TYPE_CODE (type) == TYPE_CODE_REF
2267 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2268 {
2269 /* If the the type is a plain integer, then the access is
2270 straight-forward. Otherwise we have to play around a bit more. */
2271 int len = TYPE_LENGTH (type);
2272 int regno = ARM_A1_REGNUM;
2273 ULONGEST tmp;
2274
2275 while (len > 0)
2276 {
2277 /* By using store_unsigned_integer we avoid having to do
2278 anything special for small big-endian values. */
2279 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2280 store_unsigned_integer (valbuf,
2281 (len > INT_REGISTER_RAW_SIZE
2282 ? INT_REGISTER_RAW_SIZE : len),
2283 tmp);
2284 len -= INT_REGISTER_RAW_SIZE;
2285 valbuf += INT_REGISTER_RAW_SIZE;
2286 }
2287 }
ed9a39eb 2288 else
b508a996
RE
2289 {
2290 /* For a structure or union the behaviour is as if the value had
2291 been stored to word-aligned memory and then loaded into
2292 registers with 32-bit load instruction(s). */
2293 int len = TYPE_LENGTH (type);
2294 int regno = ARM_A1_REGNUM;
2295 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2296
2297 while (len > 0)
2298 {
2299 regcache_cooked_read (regs, regno++, tmpbuf);
2300 memcpy (valbuf, tmpbuf,
2301 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2302 len -= INT_REGISTER_RAW_SIZE;
2303 valbuf += INT_REGISTER_RAW_SIZE;
2304 }
2305 }
34e8f22d
RE
2306}
2307
67255d04
RE
2308/* Extract from an array REGBUF containing the (raw) register state
2309 the address in which a function should return its structure value. */
2310
2311static CORE_ADDR
95f95911 2312arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2313{
95f95911
MS
2314 ULONGEST ret;
2315
2316 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2317 return ret;
67255d04
RE
2318}
2319
2320/* Will a function return an aggregate type in memory or in a
2321 register? Return 0 if an aggregate type can be returned in a
2322 register, 1 if it must be returned in memory. */
2323
2324static int
2325arm_use_struct_convention (int gcc_p, struct type *type)
2326{
2327 int nRc;
2328 register enum type_code code;
2329
2330 /* In the ARM ABI, "integer" like aggregate types are returned in
2331 registers. For an aggregate type to be integer like, its size
2332 must be less than or equal to REGISTER_SIZE and the offset of
2333 each addressable subfield must be zero. Note that bit fields are
2334 not addressable, and all addressable subfields of unions always
2335 start at offset zero.
2336
2337 This function is based on the behaviour of GCC 2.95.1.
2338 See: gcc/arm.c: arm_return_in_memory() for details.
2339
2340 Note: All versions of GCC before GCC 2.95.2 do not set up the
2341 parameters correctly for a function returning the following
2342 structure: struct { float f;}; This should be returned in memory,
2343 not a register. Richard Earnshaw sent me a patch, but I do not
2344 know of any way to detect if a function like the above has been
2345 compiled with the correct calling convention. */
2346
2347 /* All aggregate types that won't fit in a register must be returned
2348 in memory. */
2349 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2350 {
2351 return 1;
2352 }
2353
2354 /* The only aggregate types that can be returned in a register are
2355 structs and unions. Arrays must be returned in memory. */
2356 code = TYPE_CODE (type);
2357 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2358 {
2359 return 1;
2360 }
2361
2362 /* Assume all other aggregate types can be returned in a register.
2363 Run a check for structures, unions and arrays. */
2364 nRc = 0;
2365
2366 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2367 {
2368 int i;
2369 /* Need to check if this struct/union is "integer" like. For
2370 this to be true, its size must be less than or equal to
2371 REGISTER_SIZE and the offset of each addressable subfield
2372 must be zero. Note that bit fields are not addressable, and
2373 unions always start at offset zero. If any of the subfields
2374 is a floating point type, the struct/union cannot be an
2375 integer type. */
2376
2377 /* For each field in the object, check:
2378 1) Is it FP? --> yes, nRc = 1;
2379 2) Is it addressable (bitpos != 0) and
2380 not packed (bitsize == 0)?
2381 --> yes, nRc = 1
2382 */
2383
2384 for (i = 0; i < TYPE_NFIELDS (type); i++)
2385 {
2386 enum type_code field_type_code;
2387 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2388
2389 /* Is it a floating point type field? */
2390 if (field_type_code == TYPE_CODE_FLT)
2391 {
2392 nRc = 1;
2393 break;
2394 }
2395
2396 /* If bitpos != 0, then we have to care about it. */
2397 if (TYPE_FIELD_BITPOS (type, i) != 0)
2398 {
2399 /* Bitfields are not addressable. If the field bitsize is
2400 zero, then the field is not packed. Hence it cannot be
2401 a bitfield or any other packed type. */
2402 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2403 {
2404 nRc = 1;
2405 break;
2406 }
2407 }
2408 }
2409 }
2410
2411 return nRc;
2412}
2413
34e8f22d
RE
2414/* Write into appropriate registers a function return value of type
2415 TYPE, given in virtual format. */
2416
2417static void
b508a996
RE
2418arm_store_return_value (struct type *type, struct regcache *regs,
2419 const void *src)
34e8f22d 2420{
b508a996
RE
2421 const bfd_byte *valbuf = src;
2422
34e8f22d
RE
2423 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2424 {
08216dd7 2425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7bbcf283 2426 char buf[ARM_MAX_REGISTER_RAW_SIZE];
34e8f22d 2427
08216dd7
RE
2428 switch (tdep->fp_model)
2429 {
2430 case ARM_FLOAT_FPA:
2431
b508a996
RE
2432 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2433 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2434 break;
2435
2436 case ARM_FLOAT_SOFT:
2437 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2438 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2439 if (TYPE_LENGTH (type) > 4)
2440 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2441 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2442 break;
2443
2444 default:
2445 internal_error
2446 (__FILE__, __LINE__,
2447 "arm_store_return_value: Floating point model not supported");
2448 break;
2449 }
34e8f22d 2450 }
b508a996
RE
2451 else if (TYPE_CODE (type) == TYPE_CODE_INT
2452 || TYPE_CODE (type) == TYPE_CODE_CHAR
2453 || TYPE_CODE (type) == TYPE_CODE_BOOL
2454 || TYPE_CODE (type) == TYPE_CODE_PTR
2455 || TYPE_CODE (type) == TYPE_CODE_REF
2456 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2457 {
2458 if (TYPE_LENGTH (type) <= 4)
2459 {
2460 /* Values of one word or less are zero/sign-extended and
2461 returned in r0. */
2462 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2463 LONGEST val = unpack_long (type, valbuf);
2464
2465 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2466 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2467 }
2468 else
2469 {
2470 /* Integral values greater than one word are stored in consecutive
2471 registers starting with r0. This will always be a multiple of
2472 the regiser size. */
2473 int len = TYPE_LENGTH (type);
2474 int regno = ARM_A1_REGNUM;
2475
2476 while (len > 0)
2477 {
2478 regcache_cooked_write (regs, regno++, valbuf);
2479 len -= INT_REGISTER_RAW_SIZE;
2480 valbuf += INT_REGISTER_RAW_SIZE;
2481 }
2482 }
2483 }
34e8f22d 2484 else
b508a996
RE
2485 {
2486 /* For a structure or union the behaviour is as if the value had
2487 been stored to word-aligned memory and then loaded into
2488 registers with 32-bit load instruction(s). */
2489 int len = TYPE_LENGTH (type);
2490 int regno = ARM_A1_REGNUM;
2491 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2492
2493 while (len > 0)
2494 {
2495 memcpy (tmpbuf, valbuf,
2496 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2497 regcache_cooked_write (regs, regno++, tmpbuf);
2498 len -= INT_REGISTER_RAW_SIZE;
2499 valbuf += INT_REGISTER_RAW_SIZE;
2500 }
2501 }
34e8f22d
RE
2502}
2503
2504/* Store the address of the place in which to copy the structure the
94c30b78 2505 subroutine will return. This is called from call_function. */
34e8f22d
RE
2506
2507static void
2508arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2509{
2510 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2511}
2512
9df628e0
RE
2513static int
2514arm_get_longjmp_target (CORE_ADDR *pc)
2515{
2516 CORE_ADDR jb_addr;
2517 char buf[INT_REGISTER_RAW_SIZE];
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2519
2520 jb_addr = read_register (ARM_A1_REGNUM);
2521
2522 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2523 INT_REGISTER_RAW_SIZE))
2524 return 0;
2525
2526 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2527 return 1;
2528}
2529
ed9a39eb 2530/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2531
2532int
ed9a39eb 2533arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2534{
2535 CORE_ADDR start_addr;
2536
ed9a39eb
JM
2537 /* Find the starting address of the function containing the PC. If
2538 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2539 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2540 &start_addr, NULL))
c906108c
SS
2541 return 0;
2542
2543 return strncmp (name, "_call_via_r", 11) == 0;
2544}
2545
ed9a39eb
JM
2546/* If PC is in a Thumb call or return stub, return the address of the
2547 target PC, which is in a register. The thunk functions are called
2548 _called_via_xx, where x is the register name. The possible names
2549 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2550
2551CORE_ADDR
ed9a39eb 2552arm_skip_stub (CORE_ADDR pc)
c906108c 2553{
c5aa993b 2554 char *name;
c906108c
SS
2555 CORE_ADDR start_addr;
2556
2557 /* Find the starting address and name of the function containing the PC. */
2558 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2559 return 0;
2560
2561 /* Call thunks always start with "_call_via_". */
2562 if (strncmp (name, "_call_via_", 10) == 0)
2563 {
ed9a39eb
JM
2564 /* Use the name suffix to determine which register contains the
2565 target PC. */
c5aa993b
JM
2566 static char *table[15] =
2567 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2568 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2569 };
c906108c
SS
2570 int regno;
2571
2572 for (regno = 0; regno <= 14; regno++)
2573 if (strcmp (&name[10], table[regno]) == 0)
2574 return read_register (regno);
2575 }
ed9a39eb 2576
c5aa993b 2577 return 0; /* not a stub */
c906108c
SS
2578}
2579
da3c6d4a
MS
2580/* If the user changes the register disassembly flavor used for info
2581 register and other commands, we have to also switch the flavor used
2582 in opcodes for disassembly output. This function is run in the set
94c30b78 2583 disassembly_flavor command, and does that. */
bc90b915
FN
2584
2585static void
2586set_disassembly_flavor_sfunc (char *args, int from_tty,
2587 struct cmd_list_element *c)
2588{
2589 set_disassembly_flavor ();
2590}
2591\f
966fbf70 2592/* Return the ARM register name corresponding to register I. */
a208b0cb 2593static const char *
34e8f22d 2594arm_register_name (int i)
966fbf70
RE
2595{
2596 return arm_register_names[i];
2597}
2598
bc90b915
FN
2599static void
2600set_disassembly_flavor (void)
2601{
2602 const char *setname, *setdesc, **regnames;
2603 int numregs, j;
2604
94c30b78 2605 /* Find the flavor that the user wants in the opcodes table. */
bc90b915
FN
2606 int current = 0;
2607 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2608 while ((disassembly_flavor != setname)
2609 && (current < num_flavor_options))
2610 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2611 current_option = current;
2612
94c30b78 2613 /* Fill our copy. */
bc90b915
FN
2614 for (j = 0; j < numregs; j++)
2615 arm_register_names[j] = (char *) regnames[j];
2616
94c30b78 2617 /* Adjust case. */
34e8f22d 2618 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2619 {
34e8f22d
RE
2620 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2621 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2622 }
2623 else
2624 {
34e8f22d
RE
2625 arm_register_names[ARM_FPS_REGNUM] = "fps";
2626 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2627 }
2628
94c30b78 2629 /* Synchronize the disassembler. */
bc90b915
FN
2630 set_arm_regname_option (current);
2631}
2632
2633/* arm_othernames implements the "othernames" command. This is kind
2634 of hacky, and I prefer the set-show disassembly-flavor which is
2635 also used for the x86 gdb. I will keep this around, however, in
94c30b78 2636 case anyone is actually using it. */
bc90b915
FN
2637
2638static void
2639arm_othernames (char *names, int n)
2640{
94c30b78 2641 /* Circle through the various flavors. */
bc90b915
FN
2642 current_option = (current_option + 1) % num_flavor_options;
2643
2644 disassembly_flavor = valid_flavors[current_option];
94c30b78 2645 set_disassembly_flavor ();
bc90b915
FN
2646}
2647
a42dd537
KB
2648/* Fetch, and possibly build, an appropriate link_map_offsets structure
2649 for ARM linux targets using the struct offsets defined in <link.h>.
2650 Note, however, that link.h is not actually referred to in this file.
2651 Instead, the relevant structs offsets were obtained from examining
2652 link.h. (We can't refer to link.h from this file because the host
2653 system won't necessarily have it, or if it does, the structs which
94c30b78 2654 it defines will refer to the host system, not the target). */
a42dd537
KB
2655
2656struct link_map_offsets *
2657arm_linux_svr4_fetch_link_map_offsets (void)
2658{
2659 static struct link_map_offsets lmo;
2660 static struct link_map_offsets *lmp = 0;
2661
2662 if (lmp == 0)
2663 {
2664 lmp = &lmo;
2665
2666 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
94c30b78 2667 need. */
a42dd537
KB
2668
2669 lmo.r_map_offset = 4;
2670 lmo.r_map_size = 4;
2671
2672 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
94c30b78 2673 need. */
a42dd537
KB
2674
2675 lmo.l_addr_offset = 0;
2676 lmo.l_addr_size = 4;
2677
2678 lmo.l_name_offset = 4;
2679 lmo.l_name_size = 4;
2680
2681 lmo.l_next_offset = 12;
2682 lmo.l_next_size = 4;
2683
2684 lmo.l_prev_offset = 16;
2685 lmo.l_prev_size = 4;
2686 }
2687
2688 return lmp;
2689}
2690
082fc60d
RE
2691/* Test whether the coff symbol specific value corresponds to a Thumb
2692 function. */
2693
2694static int
2695coff_sym_is_thumb (int val)
2696{
2697 return (val == C_THUMBEXT ||
2698 val == C_THUMBSTAT ||
2699 val == C_THUMBEXTFUNC ||
2700 val == C_THUMBSTATFUNC ||
2701 val == C_THUMBLABEL);
2702}
2703
2704/* arm_coff_make_msymbol_special()
2705 arm_elf_make_msymbol_special()
2706
2707 These functions test whether the COFF or ELF symbol corresponds to
2708 an address in thumb code, and set a "special" bit in a minimal
2709 symbol to indicate that it does. */
2710
34e8f22d 2711static void
082fc60d
RE
2712arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2713{
2714 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2715 STT_ARM_TFUNC). */
2716 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2717 == STT_LOPROC)
2718 MSYMBOL_SET_SPECIAL (msym);
2719}
2720
34e8f22d 2721static void
082fc60d
RE
2722arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2723{
2724 if (coff_sym_is_thumb (val))
2725 MSYMBOL_SET_SPECIAL (msym);
2726}
2727
97e03143 2728\f
70f80edf
JT
2729static enum gdb_osabi
2730arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2731{
70f80edf
JT
2732 unsigned int elfosabi, eflags;
2733 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2734
70f80edf 2735 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2736
70f80edf 2737 switch (elfosabi)
97e03143 2738 {
70f80edf
JT
2739 case ELFOSABI_NONE:
2740 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2741 file are conforming to the base specification for that machine
2742 (there are no OS-specific extensions). In order to determine the
2743 real OS in use we must look for OS notes that have been added. */
2744 bfd_map_over_sections (abfd,
2745 generic_elf_osabi_sniff_abi_tag_sections,
2746 &osabi);
2747 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2748 {
70f80edf
JT
2749 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2750 field for more information. */
2751 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2752 switch (eflags)
97e03143 2753 {
70f80edf
JT
2754 case EF_ARM_EABI_VER1:
2755 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2756 break;
2757
70f80edf
JT
2758 case EF_ARM_EABI_VER2:
2759 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2760 break;
2761
70f80edf
JT
2762 case EF_ARM_EABI_UNKNOWN:
2763 /* Assume GNU tools. */
2764 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2765 break;
2766
70f80edf
JT
2767 default:
2768 internal_error (__FILE__, __LINE__,
2769 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2770 "version 0x%x", eflags);
97e03143
RE
2771 }
2772 }
70f80edf 2773 break;
97e03143 2774
70f80edf
JT
2775 case ELFOSABI_ARM:
2776 /* GNU tools use this value. Check note sections in this case,
2777 as well. */
97e03143 2778 bfd_map_over_sections (abfd,
70f80edf
JT
2779 generic_elf_osabi_sniff_abi_tag_sections,
2780 &osabi);
2781 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2782 {
70f80edf
JT
2783 /* Assume APCS ABI. */
2784 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2785 }
2786 break;
2787
97e03143 2788 case ELFOSABI_FREEBSD:
70f80edf
JT
2789 osabi = GDB_OSABI_FREEBSD_ELF;
2790 break;
97e03143 2791
70f80edf
JT
2792 case ELFOSABI_NETBSD:
2793 osabi = GDB_OSABI_NETBSD_ELF;
2794 break;
97e03143 2795
70f80edf
JT
2796 case ELFOSABI_LINUX:
2797 osabi = GDB_OSABI_LINUX;
2798 break;
97e03143
RE
2799 }
2800
70f80edf 2801 return osabi;
97e03143
RE
2802}
2803
70f80edf 2804\f
da3c6d4a
MS
2805/* Initialize the current architecture based on INFO. If possible,
2806 re-use an architecture from ARCHES, which is a list of
2807 architectures already created during this debugging session.
97e03143 2808
da3c6d4a
MS
2809 Called e.g. at program startup, when reading a core file, and when
2810 reading a binary file. */
97e03143 2811
39bbf761
RE
2812static struct gdbarch *
2813arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2814{
97e03143 2815 struct gdbarch_tdep *tdep;
39bbf761
RE
2816 struct gdbarch *gdbarch;
2817
97e03143 2818 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2819
4be87837 2820 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2821 {
4be87837 2822 switch (bfd_get_flavour (info.abfd))
97e03143 2823 {
4be87837
DJ
2824 case bfd_target_aout_flavour:
2825 /* Assume it's an old APCS-style ABI. */
2826 info.osabi = GDB_OSABI_ARM_APCS;
2827 break;
97e03143 2828
4be87837
DJ
2829 case bfd_target_coff_flavour:
2830 /* Assume it's an old APCS-style ABI. */
2831 /* XXX WinCE? */
2832 info.osabi = GDB_OSABI_ARM_APCS;
2833 break;
97e03143 2834
4be87837
DJ
2835 default:
2836 /* Leave it as "unknown". */
50ceaba5 2837 break;
97e03143
RE
2838 }
2839 }
2840
4be87837
DJ
2841 /* If there is already a candidate, use it. */
2842 arches = gdbarch_list_lookup_by_info (arches, &info);
2843 if (arches != NULL)
2844 return arches->gdbarch;
97e03143
RE
2845
2846 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2847 gdbarch = gdbarch_alloc (&info, tdep);
2848
a5afb99f
AC
2849 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2850 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2851 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2852
08216dd7
RE
2853 /* This is the way it has always defaulted. */
2854 tdep->fp_model = ARM_FLOAT_FPA;
2855
2856 /* Breakpoints. */
67255d04
RE
2857 switch (info.byte_order)
2858 {
2859 case BFD_ENDIAN_BIG:
66e810cd
RE
2860 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2861 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2862 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2863 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2864
67255d04
RE
2865 break;
2866
2867 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2868 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2869 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2870 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2871 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2872
67255d04
RE
2873 break;
2874
2875 default:
2876 internal_error (__FILE__, __LINE__,
2877 "arm_gdbarch_init: bad byte order for float format");
2878 }
2879
d7b486e7
RE
2880 /* On ARM targets char defaults to unsigned. */
2881 set_gdbarch_char_signed (gdbarch, 0);
2882
9df628e0 2883 /* This should be low enough for everything. */
97e03143 2884 tdep->lowest_pc = 0x20;
94c30b78 2885 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2886
848cfffb
AC
2887 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2888 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2889
2890 set_gdbarch_call_dummy_p (gdbarch, 1);
2891 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2892
2893 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2894 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2895 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2896 set_gdbarch_call_dummy_length (gdbarch, 0);
2897
2898 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
848cfffb
AC
2899
2900 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2901 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
39bbf761 2902
39bbf761
RE
2903 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2904
148754e5 2905 /* Frame handling. */
39bbf761 2906 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
e9582e71 2907 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
148754e5
RE
2908 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2909 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2910 set_gdbarch_frameless_function_invocation
2911 (gdbarch, arm_frameless_function_invocation);
8bedc050 2912 set_gdbarch_deprecated_frame_saved_pc (gdbarch, arm_frame_saved_pc);
148754e5
RE
2913 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2914 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2915 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2916 set_gdbarch_frame_args_skip (gdbarch, 0);
f30ee0bc 2917 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
749b82f6 2918 set_gdbarch_deprecated_pop_frame (gdbarch, arm_pop_frame);
148754e5 2919
34e8f22d
RE
2920 /* Address manipulation. */
2921 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2922 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2923
2924 /* Offset from address of function to start of its code. */
2925 set_gdbarch_function_start_offset (gdbarch, 0);
2926
2927 /* Advance PC across function entry code. */
2928 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2929
2930 /* Get the PC when a frame might not be available. */
2931 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2932
2933 /* The stack grows downward. */
2934 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2935
2936 /* Breakpoint manipulation. */
2937 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2938 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2939
2940 /* Information about registers, etc. */
2941 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
94c30b78 2942 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2943 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2944 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2945 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2946 set_gdbarch_register_bytes (gdbarch,
2947 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2948 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2949 + NUM_SREGS * STATUS_REGISTER_SIZE));
2950 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2951 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2952 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
a0ed5532
AC
2953 set_gdbarch_deprecated_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2954 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
34e8f22d
RE
2955 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2956
26216b98
AC
2957 /* Internal <-> external register number maps. */
2958 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2959
34e8f22d
RE
2960 /* Integer registers are 4 bytes. */
2961 set_gdbarch_register_size (gdbarch, 4);
2962 set_gdbarch_register_name (gdbarch, arm_register_name);
2963
2964 /* Returning results. */
b508a996
RE
2965 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2966 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
34e8f22d 2967 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
67255d04 2968 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
95f95911 2969 set_gdbarch_extract_struct_value_address (gdbarch,
67255d04 2970 arm_extract_struct_value_address);
34e8f22d
RE
2971
2972 /* Single stepping. */
2973 /* XXX For an RDI target we should ask the target if it can single-step. */
2974 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2975
2976 /* Minsymbol frobbing. */
2977 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2978 set_gdbarch_coff_make_msymbol_special (gdbarch,
2979 arm_coff_make_msymbol_special);
2980
97e03143 2981 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2982 gdbarch_init_osabi (info, gdbarch);
97e03143
RE
2983
2984 /* Now we have tuned the configuration, set a few final things,
2985 based on what the OS ABI has told us. */
2986
9df628e0
RE
2987 if (tdep->jb_pc >= 0)
2988 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2989
08216dd7
RE
2990 /* Floating point sizes and format. */
2991 switch (info.byte_order)
2992 {
2993 case BFD_ENDIAN_BIG:
2994 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2995 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2996 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2997
2998 break;
2999
3000 case BFD_ENDIAN_LITTLE:
3001 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
3002 if (tdep->fp_model == ARM_FLOAT_VFP
3003 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
3004 {
3005 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
3006 set_gdbarch_long_double_format (gdbarch,
3007 &floatformat_ieee_double_little);
3008 }
3009 else
3010 {
3011 set_gdbarch_double_format
3012 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3013 set_gdbarch_long_double_format
3014 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3015 }
3016 break;
3017
3018 default:
3019 internal_error (__FILE__, __LINE__,
3020 "arm_gdbarch_init: bad byte order for float format");
3021 }
3022
97e03143 3023 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
34e8f22d
RE
3024 references the old architecture vector, not the one we are
3025 building here. */
15a5b3ee
AC
3026 if (get_frame_saved_regs (prologue_cache) != NULL)
3027 xfree (get_frame_saved_regs (prologue_cache));
34e8f22d 3028
a0abec03
AC
3029 /* We can't use NUM_REGS nor NUM_PSEUDO_REGS here, since that still
3030 references the old architecture vector, not the one we are
3031 building here. */
7b5849cc
AC
3032 {
3033 CORE_ADDR *saved_regs = xcalloc (1, (sizeof (CORE_ADDR)
3034 * (gdbarch_num_regs (gdbarch)
3035 + gdbarch_num_pseudo_regs (gdbarch))));
3036 deprecated_set_frame_saved_regs_hack (prologue_cache, saved_regs);
3037 }
39bbf761
RE
3038
3039 return gdbarch;
3040}
3041
97e03143
RE
3042static void
3043arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3044{
3045 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3046
3047 if (tdep == NULL)
3048 return;
3049
97e03143
RE
3050 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3051 (unsigned long) tdep->lowest_pc);
3052}
3053
3054static void
3055arm_init_abi_eabi_v1 (struct gdbarch_info info,
3056 struct gdbarch *gdbarch)
3057{
3058 /* Place-holder. */
3059}
3060
3061static void
3062arm_init_abi_eabi_v2 (struct gdbarch_info info,
3063 struct gdbarch *gdbarch)
3064{
3065 /* Place-holder. */
3066}
3067
3068static void
3069arm_init_abi_apcs (struct gdbarch_info info,
3070 struct gdbarch *gdbarch)
3071{
3072 /* Place-holder. */
3073}
3074
c906108c 3075void
ed9a39eb 3076_initialize_arm_tdep (void)
c906108c 3077{
bc90b915
FN
3078 struct ui_file *stb;
3079 long length;
96baa820 3080 struct cmd_list_element *new_cmd;
53904c9e
AC
3081 const char *setname;
3082 const char *setdesc;
3083 const char **regnames;
bc90b915
FN
3084 int numregs, i, j;
3085 static char *helptext;
085dd6e6 3086
39bbf761 3087 if (GDB_MULTI_ARCH)
97e03143
RE
3088 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3089
70f80edf
JT
3090 /* Register an ELF OS ABI sniffer for ARM binaries. */
3091 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3092 bfd_target_elf_flavour,
3093 arm_elf_osabi_sniffer);
3094
97e03143 3095 /* Register some ABI variants for embedded systems. */
05816f70 3096 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 3097 arm_init_abi_eabi_v1);
05816f70 3098 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 3099 arm_init_abi_eabi_v2);
05816f70 3100 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 3101 arm_init_abi_apcs);
39bbf761 3102
c906108c 3103 tm_print_insn = gdb_print_insn_arm;
ed9a39eb 3104
94c30b78 3105 /* Get the number of possible sets of register names defined in opcodes. */
bc90b915
FN
3106 num_flavor_options = get_arm_regname_num_options ();
3107
94c30b78 3108 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3109 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3110
94c30b78 3111 /* Begin creating the help text. */
bc90b915
FN
3112 stb = mem_fileopen ();
3113 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3114The valid values are:\n");
ed9a39eb 3115
94c30b78 3116 /* Initialize the array that will be passed to add_set_enum_cmd(). */
bc90b915
FN
3117 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3118 for (i = 0; i < num_flavor_options; i++)
3119 {
3120 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
53904c9e 3121 valid_flavors[i] = setname;
bc90b915
FN
3122 fprintf_unfiltered (stb, "%s - %s\n", setname,
3123 setdesc);
94c30b78 3124 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
3125 if (!strcmp (setname, "std"))
3126 {
53904c9e 3127 disassembly_flavor = setname;
bc90b915
FN
3128 current_option = i;
3129 for (j = 0; j < numregs; j++)
3130 arm_register_names[j] = (char *) regnames[j];
3131 set_arm_regname_option (i);
3132 }
3133 }
94c30b78 3134 /* Mark the end of valid options. */
bc90b915 3135 valid_flavors[num_flavor_options] = NULL;
c906108c 3136
94c30b78 3137 /* Finish the creation of the help text. */
bc90b915
FN
3138 fprintf_unfiltered (stb, "The default is \"std\".");
3139 helptext = ui_file_xstrdup (stb, &length);
3140 ui_file_delete (stb);
ed9a39eb 3141
94c30b78 3142 /* Add the disassembly-flavor command. */
96baa820 3143 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
ed9a39eb 3144 valid_flavors,
1ed2a135 3145 &disassembly_flavor,
bc90b915 3146 helptext,
ed9a39eb 3147 &setlist);
9f60d481 3148 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
ed9a39eb
JM
3149 add_show_from_set (new_cmd, &showlist);
3150
c906108c
SS
3151 /* ??? Maybe this should be a boolean. */
3152 add_show_from_set (add_set_cmd ("apcs32", no_class,
ed9a39eb 3153 var_zinteger, (char *) &arm_apcs_32,
96baa820 3154 "Set usage of ARM 32-bit mode.\n", &setlist),
ed9a39eb 3155 &showlist);
c906108c 3156
94c30b78 3157 /* Add the deprecated "othernames" command. */
bc90b915
FN
3158
3159 add_com ("othernames", class_obscure, arm_othernames,
3160 "Switch to the next set of register names.");
c3b4394c 3161
15a5b3ee
AC
3162 /* Allocate the prologue_cache. */
3163 prologue_cache = deprecated_frame_xmalloc ();
3164 deprecated_set_frame_extra_info_hack (prologue_cache, xcalloc (1, sizeof (struct frame_extra_info)));
6529d2dd
AC
3165
3166 /* Debugging flag. */
3167 add_show_from_set (add_set_cmd ("arm", class_maintenance, var_zinteger,
3168 &arm_debug, "Set arm debugging.\n\
3169When non-zero, arm specific debugging is enabled.", &setdebuglist),
3170 &showdebuglist);
c906108c 3171}
This page took 0.437741 seconds and 4 git commands to generate.