* regcache.c (register_buffer): Consitify first argument.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
51603483 2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
8818c391
TR
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
de18ac1f 22/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
4add8633
TR
28#include "frame.h"
29#include "frame-unwind.h"
30#include "frame-base.h"
31#include "trad-frame.h"
8818c391
TR
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
5f8a3188 38#include "gdb_string.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74#undef EXTRACT_INSN
75#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
76
77/* Constants: prefixed with AVR_ to avoid name space clashes */
78
79enum
2e5ff58c
TR
80{
81 AVR_REG_W = 24,
82 AVR_REG_X = 26,
83 AVR_REG_Y = 28,
84 AVR_FP_REGNUM = 28,
85 AVR_REG_Z = 30,
86
87 AVR_SREG_REGNUM = 32,
88 AVR_SP_REGNUM = 33,
89 AVR_PC_REGNUM = 34,
90
91 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
93
94 AVR_PC_REG_INDEX = 35, /* index into array of registers */
95
4add8633 96 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c
TR
97
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 AVR_MAX_PUSHES = 18,
100
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM = 17,
103
4add8633
TR
104 AVR_ARG1_REGNUM = 24, /* Single byte argument */
105 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
106
107 AVR_RET1_REGNUM = 24, /* Single byte return value */
108 AVR_RETN_REGNUM = 25, /* Multi byte return value */
109
2e5ff58c
TR
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
113
114 Note: I chose these values so as to be consistent with bfd vma
115 addresses.
116
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
120 AVR_MEM_MASK.
121
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
125
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
131
132 AVR_IMEM_START = 0x00000000, /* INSN memory */
133 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 134#if 1
2e5ff58c
TR
135 /* No eeprom mask defined */
136 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 137#else
2e5ff58c
TR
138 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 140#endif
2e5ff58c 141};
8818c391 142
4add8633
TR
143/* Prologue types:
144
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
147
148enum {
149 AVR_PROLOGUE_NONE, /* No prologue */
150 AVR_PROLOGUE_NORMAL,
151 AVR_PROLOGUE_CALL, /* -mcall-prologues */
152 AVR_PROLOGUE_MAIN,
153 AVR_PROLOGUE_INTR, /* interrupt handler */
154 AVR_PROLOGUE_SIG, /* signal handler */
155};
156
8818c391
TR
157/* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
160 LOCALS0
161 SAVED FP
162 SAVED R3
163 SAVED R2
164 RET PC
165 FIRST ARG
166 SECOND ARG */
167
4add8633 168struct avr_unwind_cache
2e5ff58c 169{
4add8633
TR
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
172 CORE_ADDR prev_sp;
173 /* The frame's base, optionally used by the high-level debug info. */
174 CORE_ADDR base;
175 int size;
176 int prologue_type;
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 179};
8818c391
TR
180
181struct gdbarch_tdep
2e5ff58c
TR
182{
183 /* FIXME: TRoth: is there anything to put here? */
184 int foo;
185};
8818c391
TR
186
187/* Lookup the name of a register given it's number. */
188
fa88f677 189static const char *
8818c391
TR
190avr_register_name (int regnum)
191{
2e5ff58c
TR
192 static char *register_names[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
197 "SREG", "SP", "PC"
198 };
199 if (regnum < 0)
200 return NULL;
201 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[regnum];
204}
205
8818c391
TR
206/* Return the GDB type object for the "standard" data type
207 of data in register N. */
208
209static struct type *
866b76ea 210avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 211{
866b76ea
TR
212 if (reg_nr == AVR_PC_REGNUM)
213 return builtin_type_uint32;
866b76ea
TR
214 if (reg_nr == AVR_SP_REGNUM)
215 return builtin_type_void_data_ptr;
216 else
217 return builtin_type_uint8;
8818c391
TR
218}
219
220/* Instruction address checks and convertions. */
221
222static CORE_ADDR
223avr_make_iaddr (CORE_ADDR x)
224{
225 return ((x) | AVR_IMEM_START);
226}
227
228static int
229avr_iaddr_p (CORE_ADDR x)
230{
231 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
232}
233
234/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
236
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
238
239static CORE_ADDR
240avr_convert_iaddr_to_raw (CORE_ADDR x)
241{
242 return ((x) & 0xffffffff);
243}
244
245/* SRAM address checks and convertions. */
246
247static CORE_ADDR
248avr_make_saddr (CORE_ADDR x)
249{
250 return ((x) | AVR_SMEM_START);
251}
252
253static int
254avr_saddr_p (CORE_ADDR x)
255{
256 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
257}
258
259static CORE_ADDR
260avr_convert_saddr_to_raw (CORE_ADDR x)
261{
262 return ((x) & 0xffffffff);
263}
264
265/* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271/* static CORE_ADDR */
272/* avr_make_eaddr (CORE_ADDR x) */
273/* { */
274/* return ((x) | AVR_EMEM_START); */
275/* } */
276
277/* static int */
278/* avr_eaddr_p (CORE_ADDR x) */
279/* { */
280/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281/* } */
282
283/* static CORE_ADDR */
284/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285/* { */
286/* return ((x) & 0xffffffff); */
287/* } */
288
289/* Convert from address to pointer and vice-versa. */
290
291static void
292avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
293{
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
297 {
2e5ff58c 298 store_unsigned_integer (buf, TYPE_LENGTH (type),
4ea2465e 299 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
300 }
301 else
302 {
303 /* Strip off any upper segment bits. */
2e5ff58c
TR
304 store_unsigned_integer (buf, TYPE_LENGTH (type),
305 avr_convert_saddr_to_raw (addr));
8818c391
TR
306 }
307}
308
309static CORE_ADDR
66140c26 310avr_pointer_to_address (struct type *type, const void *buf)
8818c391 311{
7c0b4a20 312 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
8818c391 313
8818c391
TR
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 318 return avr_make_iaddr (addr << 1);
8818c391
TR
319 else
320 return avr_make_saddr (addr);
321}
322
323static CORE_ADDR
324avr_read_pc (ptid_t ptid)
325{
326 ptid_t save_ptid;
8619218d 327 ULONGEST pc;
8818c391
TR
328 CORE_ADDR retval;
329
330 save_ptid = inferior_ptid;
331 inferior_ptid = ptid;
8619218d 332 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
8818c391
TR
333 inferior_ptid = save_ptid;
334 retval = avr_make_iaddr (pc);
335 return retval;
336}
337
338static void
339avr_write_pc (CORE_ADDR val, ptid_t ptid)
340{
341 ptid_t save_ptid;
342
343 save_ptid = inferior_ptid;
344 inferior_ptid = ptid;
345 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
346 inferior_ptid = save_ptid;
347}
348
349static CORE_ADDR
350avr_read_sp (void)
351{
8619218d
TR
352 ULONGEST sp;
353
354 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
355 return (avr_make_saddr (sp));
8818c391
TR
356}
357
4add8633
TR
358static int
359avr_scan_arg_moves (int vpc, unsigned char *prologue)
8818c391 360{
4add8633 361 unsigned short insn;
866b76ea 362
4add8633
TR
363 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
364 {
365 insn = EXTRACT_INSN (&prologue[vpc]);
366 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
367 continue;
368 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
369 continue;
370 else
371 break;
372 }
373
374 return vpc;
8818c391
TR
375}
376
4add8633 377/* Function: avr_scan_prologue
8818c391 378
4add8633 379 This function decodes an AVR function prologue to determine:
8818c391
TR
380 1) the size of the stack frame
381 2) which registers are saved on it
382 3) the offsets of saved regs
4add8633 383 This information is stored in the avr_unwind_cache structure.
8818c391 384
e3d8b004
TR
385 Some devices lack the sbiw instruction, so on those replace this:
386 sbiw r28, XX
387 with this:
388 subi r28,lo8(XX)
389 sbci r29,hi8(XX)
390
391 A typical AVR function prologue with a frame pointer might look like this:
392 push rXX ; saved regs
393 ...
394 push r28
395 push r29
396 in r28,__SP_L__
397 in r29,__SP_H__
398 sbiw r28,<LOCALS_SIZE>
399 in __tmp_reg__,__SREG__
8818c391 400 cli
e3d8b004 401 out __SP_H__,r29
72fab697
TR
402 out __SREG__,__tmp_reg__
403 out __SP_L__,r28
e3d8b004
TR
404
405 A typical AVR function prologue without a frame pointer might look like
406 this:
407 push rXX ; saved regs
408 ...
409
410 A main function prologue looks like this:
411 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
412 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
413 out __SP_H__,r29
414 out __SP_L__,r28
415
416 A signal handler prologue looks like this:
417 push __zero_reg__
418 push __tmp_reg__
419 in __tmp_reg__, __SREG__
420 push __tmp_reg__
421 clr __zero_reg__
422 push rXX ; save registers r18:r27, r30:r31
423 ...
424 push r28 ; save frame pointer
425 push r29
426 in r28, __SP_L__
427 in r29, __SP_H__
428 sbiw r28, <LOCALS_SIZE>
429 out __SP_H__, r29
430 out __SP_L__, r28
431
432 A interrupt handler prologue looks like this:
433 sei
434 push __zero_reg__
435 push __tmp_reg__
436 in __tmp_reg__, __SREG__
437 push __tmp_reg__
438 clr __zero_reg__
439 push rXX ; save registers r18:r27, r30:r31
440 ...
441 push r28 ; save frame pointer
442 push r29
443 in r28, __SP_L__
444 in r29, __SP_H__
445 sbiw r28, <LOCALS_SIZE>
446 cli
447 out __SP_H__, r29
448 sei
449 out __SP_L__, r28
450
451 A `-mcall-prologues' prologue looks like this (Note that the megas use a
452 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
453 32 bit insn and rjmp is a 16 bit insn):
454 ldi r26,lo8(<LOCALS_SIZE>)
455 ldi r27,hi8(<LOCALS_SIZE>)
456 ldi r30,pm_lo8(.L_foo_body)
457 ldi r31,pm_hi8(.L_foo_body)
458 rjmp __prologue_saves__+RRR
459 .L_foo_body: */
8818c391 460
4add8633
TR
461/* Not really part of a prologue, but still need to scan for it, is when a
462 function prologue moves values passed via registers as arguments to new
463 registers. In this case, all local variables live in registers, so there
464 may be some register saves. This is what it looks like:
465 movw rMM, rNN
466 ...
467
468 There could be multiple movw's. If the target doesn't have a movw insn, it
469 will use two mov insns. This could be done after any of the above prologue
470 types. */
471
472static CORE_ADDR
473avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
8818c391 474{
2e5ff58c
TR
475 int i;
476 unsigned short insn;
2e5ff58c 477 int scan_stage = 0;
8818c391 478 struct minimal_symbol *msymbol;
8818c391
TR
479 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
480 int vpc = 0;
481
4add8633
TR
482 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
483 reading in the bytes of the prologue. The problem is that the figuring
484 out where the end of the prologue is is a bit difficult. The old code
485 tried to do that, but failed quite often. */
486 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
8818c391
TR
487
488 /* Scanning main()'s prologue
489 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
490 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
491 out __SP_H__,r29
492 out __SP_L__,r28 */
493
4add8633 494 if (1)
8818c391
TR
495 {
496 CORE_ADDR locals;
2e5ff58c
TR
497 unsigned char img[] = {
498 0xde, 0xbf, /* out __SP_H__,r29 */
499 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
500 };
501
8818c391
TR
502 insn = EXTRACT_INSN (&prologue[vpc]);
503 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
504 if ((insn & 0xf0f0) == 0xe0c0)
505 {
506 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
507 insn = EXTRACT_INSN (&prologue[vpc + 2]);
508 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
509 if ((insn & 0xf0f0) == 0xe0d0)
510 {
511 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
512 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
513 {
4add8633
TR
514 info->prologue_type = AVR_PROLOGUE_MAIN;
515 info->base = locals;
516 return pc + 4;
2e5ff58c
TR
517 }
518 }
519 }
8818c391 520 }
2e5ff58c 521
4add8633
TR
522 /* Scanning `-mcall-prologues' prologue
523 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 524
e3d8b004 525 while (1) /* Using a while to avoid many goto's */
8818c391
TR
526 {
527 int loc_size;
528 int body_addr;
529 unsigned num_pushes;
4add8633 530 int pc_offset = 0;
2e5ff58c 531
8818c391
TR
532 insn = EXTRACT_INSN (&prologue[vpc]);
533 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
534 if ((insn & 0xf0f0) != 0xe0a0)
535 break;
8818c391 536 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 537 pc_offset += 2;
2e5ff58c 538
8818c391
TR
539 insn = EXTRACT_INSN (&prologue[vpc + 2]);
540 /* ldi r27,<LOCALS_SIZE> / 256 */
541 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 542 break;
8818c391 543 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 544 pc_offset += 2;
2e5ff58c 545
8818c391
TR
546 insn = EXTRACT_INSN (&prologue[vpc + 4]);
547 /* ldi r30,pm_lo8(.L_foo_body) */
548 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 549 break;
8818c391 550 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 551 pc_offset += 2;
8818c391
TR
552
553 insn = EXTRACT_INSN (&prologue[vpc + 6]);
554 /* ldi r31,pm_hi8(.L_foo_body) */
555 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 556 break;
8818c391 557 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 558 pc_offset += 2;
8818c391 559
8818c391
TR
560 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
561 if (!msymbol)
2e5ff58c 562 break;
8818c391 563
8818c391
TR
564 insn = EXTRACT_INSN (&prologue[vpc + 8]);
565 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
566 if ((insn & 0xf000) == 0xc000)
567 {
568 /* Extract PC relative offset from RJMP */
569 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
570 /* Convert offset to byte addressable mode */
571 i *= 2;
572 /* Destination address */
4add8633 573 i += pc + 10;
e3d8b004 574
4add8633 575 if (body_addr != (pc + 10)/2)
e3d8b004 576 break;
4add8633
TR
577
578 pc_offset += 2;
e3d8b004 579 }
e3d8b004
TR
580 else if ((insn & 0xfe0e) == 0x940c)
581 {
582 /* Extract absolute PC address from JMP */
583 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
584 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
585 /* Convert address to byte addressable mode */
586 i *= 2;
587
4add8633 588 if (body_addr != (pc + 12)/2)
e3d8b004 589 break;
4add8633
TR
590
591 pc_offset += 4;
e3d8b004
TR
592 }
593 else
594 break;
2e5ff58c 595
4add8633 596 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
597 Which is a pushes count in `-mcall-prologues' mode */
598 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
599
600 if (num_pushes > AVR_MAX_PUSHES)
4add8633
TR
601 {
602 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
603 num_pushes);
604 num_pushes = 0;
605 }
2e5ff58c 606
8818c391 607 if (num_pushes)
2e5ff58c
TR
608 {
609 int from;
4add8633
TR
610
611 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 612 if (num_pushes >= 2)
4add8633
TR
613 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
614
2e5ff58c
TR
615 i = 0;
616 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
617 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 618 info->saved_regs [from].addr = ++i;
2e5ff58c 619 }
4add8633
TR
620 info->size = loc_size + num_pushes;
621 info->prologue_type = AVR_PROLOGUE_CALL;
622
623 return pc + pc_offset;
8818c391
TR
624 }
625
4add8633
TR
626 /* Scan for the beginning of the prologue for an interrupt or signal
627 function. Note that we have to set the prologue type here since the
628 third stage of the prologue may not be present (e.g. no saved registered
629 or changing of the SP register). */
8818c391 630
4add8633 631 if (1)
8818c391 632 {
2e5ff58c
TR
633 unsigned char img[] = {
634 0x78, 0x94, /* sei */
635 0x1f, 0x92, /* push r1 */
636 0x0f, 0x92, /* push r0 */
637 0x0f, 0xb6, /* in r0,0x3f SREG */
638 0x0f, 0x92, /* push r0 */
639 0x11, 0x24 /* clr r1 */
8818c391
TR
640 };
641 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 642 {
4add8633 643 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 644 vpc += sizeof (img);
4add8633
TR
645 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
646 info->saved_regs[0].addr = 2;
647 info->saved_regs[1].addr = 1;
648 info->size += 3;
2e5ff58c 649 }
4add8633 650 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 651 {
4add8633
TR
652 info->prologue_type = AVR_PROLOGUE_SIG;
653 vpc += sizeof (img) - 2;
654 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
655 info->saved_regs[0].addr = 2;
656 info->saved_regs[1].addr = 1;
657 info->size += 3;
2e5ff58c 658 }
8818c391
TR
659 }
660
661 /* First stage of the prologue scanning.
4add8633 662 Scan pushes (saved registers) */
8818c391 663
4add8633 664 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
8818c391
TR
665 {
666 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
667 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
668 {
669 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
670 int regno = (insn & 0x1f0) >> 4;
671 info->size++;
672 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
673 scan_stage = 1;
674 }
8818c391 675 else
2e5ff58c 676 break;
8818c391
TR
677 }
678
4add8633
TR
679 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
680 fprintf_unfiltered (gdb_stderr,
681 "Hit end of prologue while scanning pushes\n");
682
8818c391
TR
683 /* Second stage of the prologue scanning.
684 Scan:
685 in r28,__SP_L__
686 in r29,__SP_H__ */
687
4add8633 688 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391 689 {
2e5ff58c
TR
690 unsigned char img[] = {
691 0xcd, 0xb7, /* in r28,__SP_L__ */
692 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
693 };
694 unsigned short insn1;
2e5ff58c 695
8818c391 696 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
697 {
698 vpc += 4;
2e5ff58c
TR
699 scan_stage = 2;
700 }
8818c391
TR
701 }
702
703 /* Third stage of the prologue scanning. (Really two stages)
704 Scan for:
705 sbiw r28,XX or subi r28,lo8(XX)
72fab697 706 sbci r29,hi8(XX)
8818c391
TR
707 in __tmp_reg__,__SREG__
708 cli
e3d8b004 709 out __SP_H__,r29
8818c391 710 out __SREG__,__tmp_reg__
e3d8b004 711 out __SP_L__,r28 */
8818c391 712
4add8633 713 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391
TR
714 {
715 int locals_size = 0;
2e5ff58c
TR
716 unsigned char img[] = {
717 0x0f, 0xb6, /* in r0,0x3f */
718 0xf8, 0x94, /* cli */
e3d8b004 719 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 720 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 721 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 722 };
2e5ff58c 723 unsigned char img_sig[] = {
e3d8b004
TR
724 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
725 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 726 };
2e5ff58c
TR
727 unsigned char img_int[] = {
728 0xf8, 0x94, /* cli */
e3d8b004 729 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 730 0x78, 0x94, /* sei */
e3d8b004 731 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 732 };
2e5ff58c 733
8818c391
TR
734 insn = EXTRACT_INSN (&prologue[vpc]);
735 vpc += 2;
2e5ff58c
TR
736 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
737 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
738 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
739 {
740 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
741 insn = EXTRACT_INSN (&prologue[vpc]);
742 vpc += 2;
743 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
744 }
8818c391 745 else
4add8633
TR
746 return pc + vpc;
747
748 /* Scan the last part of the prologue. May not be present for interrupt
749 or signal handler functions, which is why we set the prologue type
750 when we saw the beginning of the prologue previously. */
751
752 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
753 {
754 vpc += sizeof (img_sig);
755 }
756 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
757 {
758 vpc += sizeof (img_int);
759 }
760 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
761 {
762 info->prologue_type = AVR_PROLOGUE_NORMAL;
763 vpc += sizeof (img);
764 }
765
766 info->size += locals_size;
767
768 return pc + avr_scan_arg_moves (vpc, prologue);
8818c391 769 }
4add8633
TR
770
771 /* If we got this far, we could not scan the prologue, so just return the pc
772 of the frame plus an adjustment for argument move insns. */
773
774 return pc + avr_scan_arg_moves (vpc, prologue);;
8818c391
TR
775}
776
4add8633
TR
777static CORE_ADDR
778avr_skip_prologue (CORE_ADDR pc)
779{
780 CORE_ADDR func_addr, func_end;
781 CORE_ADDR prologue_end = pc;
8818c391 782
4add8633 783 /* See what the symbol table says */
8818c391 784
4add8633
TR
785 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
786 {
787 struct symtab_and_line sal;
788 struct avr_unwind_cache info = {0};
789 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
2e5ff58c 790
4add8633 791 info.saved_regs = saved_regs;
8818c391 792
4add8633
TR
793 /* Need to run the prologue scanner to figure out if the function has a
794 prologue and possibly skip over moving arguments passed via registers
795 to other registers. */
2e5ff58c 796
4add8633 797 prologue_end = avr_scan_prologue (pc, &info);
8818c391 798
3b85b0f1
TR
799 if (info.prologue_type == AVR_PROLOGUE_NONE)
800 return pc;
801 else
4add8633
TR
802 {
803 sal = find_pc_line (func_addr, 0);
8818c391 804
4add8633
TR
805 if (sal.line != 0 && sal.end < func_end)
806 return sal.end;
807 }
808 }
2e5ff58c 809
4add8633
TR
810/* Either we didn't find the start of this function (nothing we can do),
811 or there's no line info, or the line after the prologue is after
812 the end of the function (there probably isn't a prologue). */
2e5ff58c 813
4add8633
TR
814 return prologue_end;
815}
8818c391 816
4add8633
TR
817/* Not all avr devices support the BREAK insn. Those that don't should treat
818 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
819 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 820
4add8633
TR
821static const unsigned char *
822avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
823{
824 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
825 *lenptr = sizeof (avr_break_insn);
826 return avr_break_insn;
8818c391
TR
827}
828
4add8633
TR
829/* Given a return value in `regbuf' with a type `valtype',
830 extract and copy its value into `valbuf'.
831
832 Return values are always passed via registers r25:r24:... */
8818c391
TR
833
834static void
4add8633
TR
835avr_extract_return_value (struct type *type, struct regcache *regcache,
836 void *valbuf)
8818c391 837{
4add8633
TR
838 ULONGEST r24, r25;
839 ULONGEST c;
840 int len;
841 if (TYPE_LENGTH (type) == 1)
8818c391 842 {
4add8633
TR
843 regcache_cooked_read_unsigned (regcache, 24, &c);
844 store_unsigned_integer (valbuf, 1, c);
8818c391
TR
845 }
846 else
847 {
4add8633
TR
848 int i;
849 /* The MSB of the return value is always in r25, calculate which
850 register holds the LSB. */
851 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
8818c391 852
4add8633
TR
853 for (i=0; i< TYPE_LENGTH (type); i++)
854 {
855 regcache_cooked_read (regcache, lsb_reg + i,
856 (bfd_byte *) valbuf + i);
4add8633
TR
857 }
858 }
859}
8818c391 860
4add8633
TR
861/* Put here the code to store, into fi->saved_regs, the addresses of
862 the saved registers of frame described by FRAME_INFO. This
863 includes special registers such as pc and fp saved in special ways
864 in the stack frame. sp is even more special: the address we return
865 for it IS the sp for the next frame. */
8818c391 866
4add8633
TR
867struct avr_unwind_cache *
868avr_frame_unwind_cache (struct frame_info *next_frame,
869 void **this_prologue_cache)
8818c391 870{
4add8633
TR
871 CORE_ADDR pc;
872 ULONGEST prev_sp;
873 ULONGEST this_base;
874 struct avr_unwind_cache *info;
875 int i;
876
877 if ((*this_prologue_cache))
878 return (*this_prologue_cache);
879
880 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
881 (*this_prologue_cache) = info;
882 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
883
884 info->size = 0;
885 info->prologue_type = AVR_PROLOGUE_NONE;
886
887 pc = frame_func_unwind (next_frame);
888
889 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
890 avr_scan_prologue (pc, info);
891
3b85b0f1
TR
892 if ((info->prologue_type != AVR_PROLOGUE_NONE)
893 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
894 {
895 ULONGEST high_base; /* High byte of FP */
896
897 /* The SP was moved to the FP. This indicates that a new frame
898 was created. Get THIS frame's FP value by unwinding it from
899 the next frame. */
900 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
901 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
902 this_base += (high_base << 8);
903
904 /* The FP points at the last saved register. Adjust the FP back
905 to before the first saved register giving the SP. */
906 prev_sp = this_base + info->size;
907 }
8818c391 908 else
4add8633
TR
909 {
910 /* Assume that the FP is this frame's SP but with that pushed
911 stack space added back. */
912 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
913 prev_sp = this_base + info->size;
914 }
915
916 /* Add 1 here to adjust for the post-decrement nature of the push
917 instruction.*/
918 info->prev_sp = avr_make_saddr (prev_sp+1);
919
920 info->base = avr_make_saddr (this_base);
921
922 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 923 offsets. */
4add8633
TR
924 for (i = 0; i < NUM_REGS - 1; i++)
925 if (info->saved_regs[i].addr)
926 {
927 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
928 }
929
930 /* Except for the main and startup code, the return PC is always saved on
931 the stack and is at the base of the frame. */
932
933 if (info->prologue_type != AVR_PROLOGUE_MAIN)
934 {
935 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
936 }
937
3b85b0f1
TR
938 /* The previous frame's SP needed to be computed. Save the computed
939 value. */
940 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
941
4add8633 942 return info;
8818c391
TR
943}
944
945static CORE_ADDR
4add8633 946avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 947{
4add8633
TR
948 ULONGEST pc;
949
950 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
951
952 return avr_make_iaddr (pc);
8818c391
TR
953}
954
4add8633
TR
955/* Given a GDB frame, determine the address of the calling function's
956 frame. This will be used to create a new GDB frame struct. */
8818c391 957
4add8633
TR
958static void
959avr_frame_this_id (struct frame_info *next_frame,
960 void **this_prologue_cache,
961 struct frame_id *this_id)
8818c391 962{
4add8633
TR
963 struct avr_unwind_cache *info
964 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
965 CORE_ADDR base;
966 CORE_ADDR func;
967 struct frame_id id;
968
969 /* The FUNC is easy. */
970 func = frame_func_unwind (next_frame);
971
972 /* This is meant to halt the backtrace at "_start". Make sure we
973 don't halt it at a generic dummy frame. */
974 if (inside_entry_file (func))
975 return;
976
977 /* Hopefully the prologue analysis either correctly determined the
978 frame's base (which is the SP from the previous frame), or set
979 that base to "NULL". */
980 base = info->prev_sp;
981 if (base == 0)
982 return;
983
984 id = frame_id_build (base, func);
985
986 /* Check that we're not going round in circles with the same frame
987 ID (but avoid applying the test to sentinel frames which do go
988 round in circles). Can't use frame_id_eq() as that doesn't yet
989 compare the frame's PC value. */
990 if (frame_relative_level (next_frame) >= 0
991 && get_frame_type (next_frame) != DUMMY_FRAME
992 && frame_id_eq (get_frame_id (next_frame), id))
993 return;
994
995 (*this_id) = id;
8818c391
TR
996}
997
4add8633
TR
998static void
999avr_frame_prev_register (struct frame_info *next_frame,
1000 void **this_prologue_cache,
1001 int regnum, int *optimizedp,
1002 enum lval_type *lvalp, CORE_ADDR *addrp,
1003 int *realnump, void *bufferp)
8818c391 1004{
4add8633
TR
1005 struct avr_unwind_cache *info
1006 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
8818c391 1007
3b85b0f1
TR
1008 if (regnum == AVR_PC_REGNUM)
1009 {
1010 if (trad_frame_addr_p (info->saved_regs, regnum))
1011 {
1012 *optimizedp = 0;
1013 *lvalp = lval_memory;
1014 *addrp = info->saved_regs[regnum].addr;
1015 *realnump = -1;
1016 if (bufferp != NULL)
1017 {
1018 /* Reading the return PC from the PC register is slightly
1019 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1020 but in reality, only two bytes (3 in upcoming mega256) are
1021 stored on the stack.
1022
1023 Also, note that the value on the stack is an addr to a word
1024 not a byte, so we will need to multiply it by two at some
1025 point.
1026
1027 And to confuse matters even more, the return address stored
1028 on the stack is in big endian byte order, even though most
1029 everything else about the avr is little endian. Ick! */
1030
1031 /* FIXME: number of bytes read here will need updated for the
1032 mega256 when it is available. */
1033
1034 ULONGEST pc;
1035 unsigned char tmp;
1036 unsigned char buf[2];
1037
1038 read_memory (info->saved_regs[regnum].addr, buf, 2);
1039
1040 /* Convert the PC read from memory as a big-endian to
1041 little-endian order. */
1042 tmp = buf[0];
1043 buf[0] = buf[1];
1044 buf[1] = tmp;
1045
1046 pc = (extract_unsigned_integer (buf, 2) * 2);
1047 store_unsigned_integer (bufferp,
1048 register_size (current_gdbarch, regnum),
1049 pc);
1050 }
1051 }
1052 }
1053 else
1054 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1055 optimizedp, lvalp, addrp, realnump, bufferp);
4add8633 1056}
8818c391 1057
4add8633
TR
1058static const struct frame_unwind avr_frame_unwind = {
1059 NORMAL_FRAME,
1060 avr_frame_this_id,
1061 avr_frame_prev_register
1062};
1063
1064const struct frame_unwind *
336d1bba 1065avr_frame_sniffer (struct frame_info *next_frame)
4add8633
TR
1066{
1067 return &avr_frame_unwind;
8818c391
TR
1068}
1069
1070static CORE_ADDR
4add8633 1071avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
8818c391 1072{
4add8633
TR
1073 struct avr_unwind_cache *info
1074 = avr_frame_unwind_cache (next_frame, this_cache);
8818c391 1075
4add8633
TR
1076 return info->base;
1077}
8818c391 1078
4add8633
TR
1079static const struct frame_base avr_frame_base = {
1080 &avr_frame_unwind,
1081 avr_frame_base_address,
1082 avr_frame_base_address,
1083 avr_frame_base_address
1084};
ced15480 1085
4add8633
TR
1086/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1087 dummy frame. The frame ID's base needs to match the TOS value
1088 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1089 breakpoint. */
8818c391 1090
4add8633
TR
1091static struct frame_id
1092avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1093{
1094 ULONGEST base;
8818c391 1095
4add8633
TR
1096 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1097 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
8818c391
TR
1098}
1099
4add8633
TR
1100/* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The below implements a FILO (stack) to do this. */
8818c391 1102
4add8633
TR
1103struct stack_item
1104{
1105 int len;
1106 struct stack_item *prev;
1107 void *data;
1108};
8818c391 1109
4add8633
TR
1110static struct stack_item *push_stack_item (struct stack_item *prev,
1111 void *contents, int len);
1112static struct stack_item *
1113push_stack_item (struct stack_item *prev, void *contents, int len)
8818c391 1114{
4add8633
TR
1115 struct stack_item *si;
1116 si = xmalloc (sizeof (struct stack_item));
1117 si->data = xmalloc (len);
1118 si->len = len;
1119 si->prev = prev;
1120 memcpy (si->data, contents, len);
1121 return si;
8818c391
TR
1122}
1123
4add8633
TR
1124static struct stack_item *pop_stack_item (struct stack_item *si);
1125static struct stack_item *
1126pop_stack_item (struct stack_item *si)
8818c391 1127{
4add8633
TR
1128 struct stack_item *dead = si;
1129 si = si->prev;
1130 xfree (dead->data);
1131 xfree (dead);
1132 return si;
8818c391
TR
1133}
1134
8818c391
TR
1135/* Setup the function arguments for calling a function in the inferior.
1136
1137 On the AVR architecture, there are 18 registers (R25 to R8) which are
1138 dedicated for passing function arguments. Up to the first 18 arguments
1139 (depending on size) may go into these registers. The rest go on the stack.
1140
4add8633
TR
1141 All arguments are aligned to start in even-numbered registers (odd-sized
1142 arguments, including char, have one free register above them). For example,
1143 an int in arg1 and a char in arg2 would be passed as such:
1144
1145 arg1 -> r25:r24
1146 arg2 -> r22
1147
1148 Arguments that are larger than 2 bytes will be split between two or more
1149 registers as available, but will NOT be split between a register and the
1150 stack. Arguments that go onto the stack are pushed last arg first (this is
1151 similar to the d10v). */
1152
1153/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1154 inaccurate.
8818c391
TR
1155
1156 An exceptional case exists for struct arguments (and possibly other
1157 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1158 not a multiple of WORDSIZE bytes. In this case the argument is never split
1159 between the registers and the stack, but instead is copied in its entirety
1160 onto the stack, AND also copied into as many registers as there is room
1161 for. In other words, space in registers permitting, two copies of the same
1162 argument are passed in. As far as I can tell, only the one on the stack is
1163 used, although that may be a function of the level of compiler
1164 optimization. I suspect this is a compiler bug. Arguments of these odd
1165 sizes are left-justified within the word (as opposed to arguments smaller
1166 than WORDSIZE bytes, which are right-justified).
1167
1168 If the function is to return an aggregate type such as a struct, the caller
1169 must allocate space into which the callee will copy the return value. In
1170 this case, a pointer to the return value location is passed into the callee
1171 in register R0, which displaces one of the other arguments passed in via
1172 registers R0 to R2. */
1173
1174static CORE_ADDR
4add8633
TR
1175avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1176 struct regcache *regcache, CORE_ADDR bp_addr,
1177 int nargs, struct value **args, CORE_ADDR sp,
1178 int struct_return, CORE_ADDR struct_addr)
8818c391 1179{
4add8633
TR
1180 int i;
1181 unsigned char buf[2];
1182 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1183 int regnum = AVR_ARGN_REGNUM;
1184 struct stack_item *si = NULL;
8818c391 1185
8818c391 1186#if 0
4add8633
TR
1187 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1188 if (struct_return)
8818c391 1189 {
4add8633
TR
1190 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1191 write_register (argreg--, struct_addr & 0xff);
1192 write_register (argreg--, (struct_addr >>8) & 0xff);
8818c391 1193 }
4add8633 1194#endif
8818c391 1195
4add8633 1196 for (i = 0; i < nargs; i++)
8818c391 1197 {
4add8633
TR
1198 int last_regnum;
1199 int j;
1200 struct value *arg = args[i];
1201 struct type *type = check_typedef (VALUE_TYPE (arg));
1202 char *contents = VALUE_CONTENTS (arg);
1203 int len = TYPE_LENGTH (type);
1204
1205 /* Calculate the potential last register needed. */
1206 last_regnum = regnum - (len + (len & 1));
1207
1208 /* If there are registers available, use them. Once we start putting
1209 stuff on the stack, all subsequent args go on stack. */
1210 if ((si == NULL) && (last_regnum >= 8))
1211 {
1212 ULONGEST val;
1213
1214 /* Skip a register for odd length args. */
1215 if (len & 1)
1216 regnum--;
1217
1218 val = extract_unsigned_integer (contents, len);
1219 for (j=0; j<len; j++)
1220 {
1221 regcache_cooked_write_unsigned (regcache, regnum--,
1222 val >> (8*(len-j-1)));
1223 }
1224 }
1225 /* No registers available, push the args onto the stack. */
1226 else
1227 {
1228 /* From here on, we don't care about regnum. */
1229 si = push_stack_item (si, contents, len);
1230 }
8818c391 1231 }
909cd28e 1232
4add8633
TR
1233 /* Push args onto the stack. */
1234 while (si)
1235 {
1236 sp -= si->len;
1237 /* Add 1 to sp here to account for post decr nature of pushes. */
1238 write_memory (sp+1, si->data, si->len);
1239 si = pop_stack_item (si);
1240 }
3605c34a 1241
4add8633
TR
1242 /* Set the return address. For the avr, the return address is the BP_ADDR.
1243 Need to push the return address onto the stack noting that it needs to be
1244 in big-endian order on the stack. */
1245 buf[0] = (return_pc >> 8) & 0xff;
1246 buf[1] = return_pc & 0xff;
3605c34a 1247
4add8633
TR
1248 sp -= 2;
1249 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
3605c34a 1250
4add8633
TR
1251 /* Finally, update the SP register. */
1252 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1253 avr_convert_saddr_to_raw (sp));
3605c34a 1254
4add8633 1255 return sp;
3605c34a
TR
1256}
1257
8818c391
TR
1258/* Initialize the gdbarch structure for the AVR's. */
1259
1260static struct gdbarch *
2e5ff58c
TR
1261avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1262{
2e5ff58c
TR
1263 struct gdbarch *gdbarch;
1264 struct gdbarch_tdep *tdep;
8818c391
TR
1265
1266 /* Find a candidate among the list of pre-declared architectures. */
1267 arches = gdbarch_list_lookup_by_info (arches, &info);
1268 if (arches != NULL)
1269 return arches->gdbarch;
1270
1271 /* None found, create a new architecture from the information provided. */
1272 tdep = XMALLOC (struct gdbarch_tdep);
1273 gdbarch = gdbarch_alloc (&info, tdep);
1274
1275 /* If we ever need to differentiate the device types, do it here. */
1276 switch (info.bfd_arch_info->mach)
1277 {
1278 case bfd_mach_avr1:
1279 case bfd_mach_avr2:
1280 case bfd_mach_avr3:
1281 case bfd_mach_avr4:
1282 case bfd_mach_avr5:
1283 break;
1284 }
1285
1286 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1287 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1288 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1289 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1290 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1292
1293 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1294 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1295 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1296
1297 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1298 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1299 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1300
1301 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1302 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391 1303 set_gdbarch_read_sp (gdbarch, avr_read_sp);
8818c391
TR
1304
1305 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1306
1307 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1308 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1309
1310 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1311 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1312
3605c34a 1313 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1314 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1315
4add8633 1316 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391
TR
1317
1318 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1319 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8818c391 1320
8818c391 1321 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
8818c391 1322
8818c391 1323 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1324 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1325
1326 set_gdbarch_decr_pc_after_break (gdbarch, 0);
909cd28e 1327 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391
TR
1328
1329 set_gdbarch_function_start_offset (gdbarch, 0);
98be1e77 1330
8818c391 1331 set_gdbarch_frame_args_skip (gdbarch, 0);
4add8633
TR
1332 set_gdbarch_frameless_function_invocation (gdbarch,
1333 frameless_look_for_prologue);
4add8633 1334
336d1bba 1335 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
4add8633
TR
1336 frame_base_set_default (gdbarch, &avr_frame_base);
1337
1338 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1339
1340 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
8818c391 1341
8818c391
TR
1342 return gdbarch;
1343}
1344
1345/* Send a query request to the avr remote target asking for values of the io
1346 registers. If args parameter is not NULL, then the user has requested info
1347 on a specific io register [This still needs implemented and is ignored for
1348 now]. The query string should be one of these forms:
1349
1350 "Ravr.io_reg" -> reply is "NN" number of io registers
1351
1352 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1353 registers to be read. The reply should be "<NAME>,VV;" for each io register
1354 where, <NAME> is a string, and VV is the hex value of the register.
1355
1356 All io registers are 8-bit. */
1357
1358static void
1359avr_io_reg_read_command (char *args, int from_tty)
1360{
2e5ff58c
TR
1361 int bufsiz = 0;
1362 char buf[400];
1363 char query[400];
1364 char *p;
1365 unsigned int nreg = 0;
1366 unsigned int val;
1367 int i, j, k, step;
8818c391 1368
2e5ff58c 1369 if (!current_target.to_query)
8818c391 1370 {
2e5ff58c 1371 fprintf_unfiltered (gdb_stderr,
98be1e77
TR
1372 "ERR: info io_registers NOT supported by current "
1373 "target\n");
8818c391
TR
1374 return;
1375 }
1376
1377 /* Just get the maximum buffer size. */
1378 target_query ((int) 'R', 0, 0, &bufsiz);
2e5ff58c
TR
1379 if (bufsiz > sizeof (buf))
1380 bufsiz = sizeof (buf);
8818c391
TR
1381
1382 /* Find out how many io registers the target has. */
1383 strcpy (query, "avr.io_reg");
2e5ff58c 1384 target_query ((int) 'R', query, buf, &bufsiz);
8818c391
TR
1385
1386 if (strncmp (buf, "", bufsiz) == 0)
1387 {
2e5ff58c
TR
1388 fprintf_unfiltered (gdb_stderr,
1389 "info io_registers NOT supported by target\n");
8818c391
TR
1390 return;
1391 }
1392
2e5ff58c 1393 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1394 {
2e5ff58c
TR
1395 fprintf_unfiltered (gdb_stderr,
1396 "Error fetching number of io registers\n");
8818c391
TR
1397 return;
1398 }
1399
2e5ff58c 1400 reinitialize_more_filter ();
8818c391
TR
1401
1402 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1403
1404 /* only fetch up to 8 registers at a time to keep the buffer small */
1405 step = 8;
1406
2e5ff58c 1407 for (i = 0; i < nreg; i += step)
8818c391 1408 {
91ccbfc1
TR
1409 /* how many registers this round? */
1410 j = step;
1411 if ((i+j) >= nreg)
1412 j = nreg - i; /* last block is less than 8 registers */
8818c391 1413
2e5ff58c 1414 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8818c391
TR
1415 target_query ((int) 'R', query, buf, &bufsiz);
1416
1417 p = buf;
2e5ff58c
TR
1418 for (k = i; k < (i + j); k++)
1419 {
1420 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1421 {
1422 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1423 while ((*p != ';') && (*p != '\0'))
1424 p++;
1425 p++; /* skip over ';' */
1426 if (*p == '\0')
1427 break;
1428 }
1429 }
8818c391
TR
1430 }
1431}
1432
a78f21af
AC
1433extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1434
8818c391
TR
1435void
1436_initialize_avr_tdep (void)
1437{
1438 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1439
1440 /* Add a new command to allow the user to query the avr remote target for
1441 the values of the io space registers in a saner way than just using
1442 `x/NNNb ADDR`. */
1443
1444 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1445 io_registers' to signify it is not available on other platforms. */
1446
1447 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1448 "query remote avr target for io space register values", &infolist);
8818c391 1449}
This page took 0.193256 seconds and 4 git commands to generate.