Commit | Line | Data |
---|---|---|
8818c391 | 1 | /* Target-dependent code for Atmel AVR, for GDB. |
0fd88904 | 2 | |
42a4f53d | 3 | Copyright (C) 1996-2019 Free Software Foundation, Inc. |
8818c391 TR |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
8818c391 TR |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8818c391 | 19 | |
de18ac1f | 20 | /* Contributed by Theodore A. Roth, troth@openavr.org */ |
8818c391 TR |
21 | |
22 | /* Portions of this file were taken from the original gdb-4.18 patch developed | |
23 | by Denis Chertykov, denisc@overta.ru */ | |
24 | ||
25 | #include "defs.h" | |
d55e5aa6 | 26 | #include "frame.h" |
4de283e4 TT |
27 | #include "frame-unwind.h" |
28 | #include "frame-base.h" | |
29 | #include "trad-frame.h" | |
8818c391 TR |
30 | #include "gdbcmd.h" |
31 | #include "gdbcore.h" | |
e6bb342a | 32 | #include "gdbtypes.h" |
8818c391 | 33 | #include "inferior.h" |
d55e5aa6 | 34 | #include "symfile.h" |
4de283e4 TT |
35 | #include "arch-utils.h" |
36 | #include "regcache.h" | |
37 | #include "dis-asm.h" | |
38 | #include "objfiles.h" | |
39 | #include <algorithm> | |
8818c391 TR |
40 | |
41 | /* AVR Background: | |
42 | ||
43 | (AVR micros are pure Harvard Architecture processors.) | |
44 | ||
45 | The AVR family of microcontrollers have three distinctly different memory | |
0963b4bd MS |
46 | spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for |
47 | the most part to store program instructions. The sram is 8 bits wide and is | |
48 | used for the stack and the heap. Some devices lack sram and some can have | |
8818c391 TR |
49 | an additional external sram added on as a peripheral. |
50 | ||
51 | The eeprom is 8 bits wide and is used to store data when the device is | |
0963b4bd MS |
52 | powered down. Eeprom is not directly accessible, it can only be accessed |
53 | via io-registers using a special algorithm. Accessing eeprom via gdb's | |
8818c391 TR |
54 | remote serial protocol ('m' or 'M' packets) looks difficult to do and is |
55 | not included at this time. | |
56 | ||
57 | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | |
58 | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to | |
59 | work, the remote target must be able to handle eeprom accesses and perform | |
60 | the address translation.] | |
61 | ||
0963b4bd | 62 | All three memory spaces have physical addresses beginning at 0x0. In |
8818c391 TR |
63 | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit |
64 | bytes instead of the 16 bit wide words used by the real device for the | |
65 | Program Counter. | |
66 | ||
67 | In order for remote targets to work correctly, extra bits must be added to | |
68 | addresses before they are send to the target or received from the target | |
0963b4bd MS |
69 | via the remote serial protocol. The extra bits are the MSBs and are used to |
70 | decode which memory space the address is referring to. */ | |
8818c391 | 71 | |
8818c391 TR |
72 | /* Constants: prefixed with AVR_ to avoid name space clashes */ |
73 | ||
487d9753 PL |
74 | /* Address space flags */ |
75 | ||
76 | /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address | |
77 | space. */ | |
78 | ||
79 | #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1 | |
80 | #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \ | |
81 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | |
82 | ||
83 | ||
8818c391 | 84 | enum |
2e5ff58c TR |
85 | { |
86 | AVR_REG_W = 24, | |
87 | AVR_REG_X = 26, | |
88 | AVR_REG_Y = 28, | |
89 | AVR_FP_REGNUM = 28, | |
90 | AVR_REG_Z = 30, | |
91 | ||
92 | AVR_SREG_REGNUM = 32, | |
93 | AVR_SP_REGNUM = 33, | |
94 | AVR_PC_REGNUM = 34, | |
95 | ||
96 | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | |
97 | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | |
98 | ||
7d2552b4 TG |
99 | /* Pseudo registers. */ |
100 | AVR_PSEUDO_PC_REGNUM = 35, | |
101 | AVR_NUM_PSEUDO_REGS = 1, | |
102 | ||
2e5ff58c TR |
103 | AVR_PC_REG_INDEX = 35, /* index into array of registers */ |
104 | ||
4add8633 | 105 | AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ |
2e5ff58c | 106 | |
0963b4bd | 107 | /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ |
2e5ff58c TR |
108 | AVR_MAX_PUSHES = 18, |
109 | ||
0963b4bd | 110 | /* Number of the last pushed register. r17 for current avr-gcc */ |
2e5ff58c TR |
111 | AVR_LAST_PUSHED_REGNUM = 17, |
112 | ||
4add8633 TR |
113 | AVR_ARG1_REGNUM = 24, /* Single byte argument */ |
114 | AVR_ARGN_REGNUM = 25, /* Multi byte argments */ | |
cb86f388 | 115 | AVR_LAST_ARG_REGNUM = 8, /* Last argument register */ |
4add8633 TR |
116 | |
117 | AVR_RET1_REGNUM = 24, /* Single byte return value */ | |
118 | AVR_RETN_REGNUM = 25, /* Multi byte return value */ | |
119 | ||
2e5ff58c | 120 | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 |
0963b4bd | 121 | bits? Do these have to match the bfd vma values? It sure would make |
2e5ff58c TR |
122 | things easier in the future if they didn't need to match. |
123 | ||
124 | Note: I chose these values so as to be consistent with bfd vma | |
125 | addresses. | |
126 | ||
127 | TRoth/2002-04-08: There is already a conflict with very large programs | |
0963b4bd | 128 | in the mega128. The mega128 has 128K instruction bytes (64K words), |
2e5ff58c TR |
129 | thus the Most Significant Bit is 0x10000 which gets masked off my |
130 | AVR_MEM_MASK. | |
131 | ||
132 | The problem manifests itself when trying to set a breakpoint in a | |
133 | function which resides in the upper half of the instruction space and | |
134 | thus requires a 17-bit address. | |
135 | ||
136 | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | |
0963b4bd | 137 | from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, |
2e5ff58c TR |
138 | but could be for some remote targets by just adding the correct offset |
139 | to the address and letting the remote target handle the low-level | |
0963b4bd | 140 | details of actually accessing the eeprom. */ |
2e5ff58c TR |
141 | |
142 | AVR_IMEM_START = 0x00000000, /* INSN memory */ | |
143 | AVR_SMEM_START = 0x00800000, /* SRAM memory */ | |
8818c391 | 144 | #if 1 |
2e5ff58c TR |
145 | /* No eeprom mask defined */ |
146 | AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ | |
8818c391 | 147 | #else |
2e5ff58c TR |
148 | AVR_EMEM_START = 0x00810000, /* EEPROM memory */ |
149 | AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ | |
8818c391 | 150 | #endif |
2e5ff58c | 151 | }; |
8818c391 | 152 | |
4add8633 TR |
153 | /* Prologue types: |
154 | ||
155 | NORMAL and CALL are the typical types (the -mcall-prologues gcc option | |
156 | causes the generation of the CALL type prologues). */ | |
157 | ||
158 | enum { | |
159 | AVR_PROLOGUE_NONE, /* No prologue */ | |
160 | AVR_PROLOGUE_NORMAL, | |
161 | AVR_PROLOGUE_CALL, /* -mcall-prologues */ | |
162 | AVR_PROLOGUE_MAIN, | |
163 | AVR_PROLOGUE_INTR, /* interrupt handler */ | |
164 | AVR_PROLOGUE_SIG, /* signal handler */ | |
165 | }; | |
166 | ||
8818c391 TR |
167 | /* Any function with a frame looks like this |
168 | ....... <-SP POINTS HERE | |
169 | LOCALS1 <-FP POINTS HERE | |
170 | LOCALS0 | |
171 | SAVED FP | |
172 | SAVED R3 | |
173 | SAVED R2 | |
174 | RET PC | |
175 | FIRST ARG | |
176 | SECOND ARG */ | |
177 | ||
4add8633 | 178 | struct avr_unwind_cache |
2e5ff58c | 179 | { |
4add8633 TR |
180 | /* The previous frame's inner most stack address. Used as this |
181 | frame ID's stack_addr. */ | |
182 | CORE_ADDR prev_sp; | |
183 | /* The frame's base, optionally used by the high-level debug info. */ | |
184 | CORE_ADDR base; | |
185 | int size; | |
186 | int prologue_type; | |
187 | /* Table indicating the location of each and every register. */ | |
188 | struct trad_frame_saved_reg *saved_regs; | |
2e5ff58c | 189 | }; |
8818c391 TR |
190 | |
191 | struct gdbarch_tdep | |
2e5ff58c | 192 | { |
4e99ad69 | 193 | /* Number of bytes stored to the stack by call instructions. |
9c97a070 | 194 | 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */ |
4e99ad69 | 195 | int call_length; |
7d2552b4 TG |
196 | |
197 | /* Type for void. */ | |
198 | struct type *void_type; | |
199 | /* Type for a function returning void. */ | |
200 | struct type *func_void_type; | |
201 | /* Type for a pointer to a function. Used for the type of PC. */ | |
202 | struct type *pc_type; | |
2e5ff58c | 203 | }; |
8818c391 | 204 | |
0963b4bd | 205 | /* Lookup the name of a register given it's number. */ |
8818c391 | 206 | |
fa88f677 | 207 | static const char * |
d93859e2 | 208 | avr_register_name (struct gdbarch *gdbarch, int regnum) |
8818c391 | 209 | { |
4e99ad69 | 210 | static const char * const register_names[] = { |
2e5ff58c TR |
211 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
212 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
8818c391 TR |
213 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
214 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
7d2552b4 TG |
215 | "SREG", "SP", "PC2", |
216 | "pc" | |
8818c391 TR |
217 | }; |
218 | if (regnum < 0) | |
219 | return NULL; | |
220 | if (regnum >= (sizeof (register_names) / sizeof (*register_names))) | |
221 | return NULL; | |
222 | return register_names[regnum]; | |
223 | } | |
224 | ||
8818c391 TR |
225 | /* Return the GDB type object for the "standard" data type |
226 | of data in register N. */ | |
227 | ||
228 | static struct type * | |
866b76ea | 229 | avr_register_type (struct gdbarch *gdbarch, int reg_nr) |
8818c391 | 230 | { |
866b76ea | 231 | if (reg_nr == AVR_PC_REGNUM) |
df4df182 | 232 | return builtin_type (gdbarch)->builtin_uint32; |
7d2552b4 TG |
233 | if (reg_nr == AVR_PSEUDO_PC_REGNUM) |
234 | return gdbarch_tdep (gdbarch)->pc_type; | |
866b76ea | 235 | if (reg_nr == AVR_SP_REGNUM) |
0dfff4cb | 236 | return builtin_type (gdbarch)->builtin_data_ptr; |
7d2552b4 | 237 | return builtin_type (gdbarch)->builtin_uint8; |
8818c391 TR |
238 | } |
239 | ||
0963b4bd | 240 | /* Instruction address checks and convertions. */ |
8818c391 TR |
241 | |
242 | static CORE_ADDR | |
243 | avr_make_iaddr (CORE_ADDR x) | |
244 | { | |
245 | return ((x) | AVR_IMEM_START); | |
246 | } | |
247 | ||
0963b4bd | 248 | /* FIXME: TRoth: Really need to use a larger mask for instructions. Some |
8818c391 TR |
249 | devices are already up to 128KBytes of flash space. |
250 | ||
0963b4bd | 251 | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ |
8818c391 TR |
252 | |
253 | static CORE_ADDR | |
254 | avr_convert_iaddr_to_raw (CORE_ADDR x) | |
255 | { | |
256 | return ((x) & 0xffffffff); | |
257 | } | |
258 | ||
0963b4bd | 259 | /* SRAM address checks and convertions. */ |
8818c391 TR |
260 | |
261 | static CORE_ADDR | |
262 | avr_make_saddr (CORE_ADDR x) | |
263 | { | |
ee143e81 TG |
264 | /* Return 0 for NULL. */ |
265 | if (x == 0) | |
266 | return 0; | |
267 | ||
8818c391 TR |
268 | return ((x) | AVR_SMEM_START); |
269 | } | |
270 | ||
8818c391 TR |
271 | static CORE_ADDR |
272 | avr_convert_saddr_to_raw (CORE_ADDR x) | |
273 | { | |
274 | return ((x) & 0xffffffff); | |
275 | } | |
276 | ||
0963b4bd MS |
277 | /* EEPROM address checks and convertions. I don't know if these will ever |
278 | actually be used, but I've added them just the same. TRoth */ | |
8818c391 TR |
279 | |
280 | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | |
0963b4bd | 281 | programs in the mega128. */ |
8818c391 TR |
282 | |
283 | /* static CORE_ADDR */ | |
284 | /* avr_make_eaddr (CORE_ADDR x) */ | |
285 | /* { */ | |
286 | /* return ((x) | AVR_EMEM_START); */ | |
287 | /* } */ | |
288 | ||
289 | /* static int */ | |
290 | /* avr_eaddr_p (CORE_ADDR x) */ | |
291 | /* { */ | |
292 | /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | |
293 | /* } */ | |
294 | ||
295 | /* static CORE_ADDR */ | |
296 | /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ | |
297 | /* { */ | |
298 | /* return ((x) & 0xffffffff); */ | |
299 | /* } */ | |
300 | ||
0963b4bd | 301 | /* Convert from address to pointer and vice-versa. */ |
8818c391 TR |
302 | |
303 | static void | |
9898f801 UW |
304 | avr_address_to_pointer (struct gdbarch *gdbarch, |
305 | struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
8818c391 | 306 | { |
e17a4113 UW |
307 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
308 | ||
487d9753 PL |
309 | /* Is it a data address in flash? */ |
310 | if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) | |
311 | { | |
7d0d9d2b | 312 | /* A data pointer in flash is byte addressed. */ |
487d9753 PL |
313 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
314 | avr_convert_iaddr_to_raw (addr)); | |
315 | } | |
8818c391 | 316 | /* Is it a code address? */ |
487d9753 PL |
317 | else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC |
318 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
8818c391 | 319 | { |
7d0d9d2b PL |
320 | /* A code pointer is word (16 bits) addressed. We shift the address down |
321 | by 1 bit to convert it to a pointer. */ | |
e17a4113 | 322 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
4ea2465e | 323 | avr_convert_iaddr_to_raw (addr >> 1)); |
8818c391 TR |
324 | } |
325 | else | |
326 | { | |
327 | /* Strip off any upper segment bits. */ | |
e17a4113 | 328 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
2e5ff58c | 329 | avr_convert_saddr_to_raw (addr)); |
8818c391 TR |
330 | } |
331 | } | |
332 | ||
333 | static CORE_ADDR | |
9898f801 UW |
334 | avr_pointer_to_address (struct gdbarch *gdbarch, |
335 | struct type *type, const gdb_byte *buf) | |
8818c391 | 336 | { |
e17a4113 UW |
337 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
338 | CORE_ADDR addr | |
339 | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | |
8818c391 | 340 | |
487d9753 PL |
341 | /* Is it a data address in flash? */ |
342 | if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) | |
7d0d9d2b PL |
343 | { |
344 | /* A data pointer in flash is already byte addressed. */ | |
345 | return avr_make_iaddr (addr); | |
346 | } | |
8818c391 | 347 | /* Is it a code address? */ |
487d9753 PL |
348 | else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC |
349 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
350 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) | |
7d0d9d2b PL |
351 | { |
352 | /* A code pointer is word (16 bits) addressed so we shift it up | |
353 | by 1 bit to convert it to an address. */ | |
354 | return avr_make_iaddr (addr << 1); | |
355 | } | |
8818c391 TR |
356 | else |
357 | return avr_make_saddr (addr); | |
358 | } | |
359 | ||
8a1d23b2 TG |
360 | static CORE_ADDR |
361 | avr_integer_to_address (struct gdbarch *gdbarch, | |
362 | struct type *type, const gdb_byte *buf) | |
363 | { | |
364 | ULONGEST addr = unpack_long (type, buf); | |
365 | ||
366 | return avr_make_saddr (addr); | |
367 | } | |
368 | ||
8818c391 | 369 | static CORE_ADDR |
c113ed0c | 370 | avr_read_pc (readable_regcache *regcache) |
8818c391 | 371 | { |
8619218d | 372 | ULONGEST pc; |
c113ed0c YQ |
373 | |
374 | regcache->cooked_read (AVR_PC_REGNUM, &pc); | |
61a1198a | 375 | return avr_make_iaddr (pc); |
8818c391 TR |
376 | } |
377 | ||
378 | static void | |
61a1198a | 379 | avr_write_pc (struct regcache *regcache, CORE_ADDR val) |
8818c391 | 380 | { |
61a1198a | 381 | regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, |
7d2552b4 TG |
382 | avr_convert_iaddr_to_raw (val)); |
383 | } | |
384 | ||
05d1431c | 385 | static enum register_status |
849d0ba8 | 386 | avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
7d2552b4 TG |
387 | int regnum, gdb_byte *buf) |
388 | { | |
389 | ULONGEST val; | |
05d1431c | 390 | enum register_status status; |
7d2552b4 TG |
391 | |
392 | switch (regnum) | |
393 | { | |
394 | case AVR_PSEUDO_PC_REGNUM: | |
03f50fc8 | 395 | status = regcache->raw_read (AVR_PC_REGNUM, &val); |
05d1431c PA |
396 | if (status != REG_VALID) |
397 | return status; | |
7d2552b4 TG |
398 | val >>= 1; |
399 | store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); | |
05d1431c | 400 | return status; |
7d2552b4 TG |
401 | default: |
402 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
403 | } | |
404 | } | |
405 | ||
406 | static void | |
407 | avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
408 | int regnum, const gdb_byte *buf) | |
409 | { | |
410 | ULONGEST val; | |
411 | ||
412 | switch (regnum) | |
413 | { | |
414 | case AVR_PSEUDO_PC_REGNUM: | |
415 | val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); | |
416 | val <<= 1; | |
417 | regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); | |
418 | break; | |
419 | default: | |
420 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
421 | } | |
8818c391 TR |
422 | } |
423 | ||
4add8633 | 424 | /* Function: avr_scan_prologue |
8818c391 | 425 | |
4add8633 | 426 | This function decodes an AVR function prologue to determine: |
8818c391 TR |
427 | 1) the size of the stack frame |
428 | 2) which registers are saved on it | |
429 | 3) the offsets of saved regs | |
4add8633 | 430 | This information is stored in the avr_unwind_cache structure. |
8818c391 | 431 | |
e3d8b004 TR |
432 | Some devices lack the sbiw instruction, so on those replace this: |
433 | sbiw r28, XX | |
434 | with this: | |
435 | subi r28,lo8(XX) | |
436 | sbci r29,hi8(XX) | |
437 | ||
438 | A typical AVR function prologue with a frame pointer might look like this: | |
439 | push rXX ; saved regs | |
440 | ... | |
441 | push r28 | |
442 | push r29 | |
443 | in r28,__SP_L__ | |
444 | in r29,__SP_H__ | |
445 | sbiw r28,<LOCALS_SIZE> | |
446 | in __tmp_reg__,__SREG__ | |
8818c391 | 447 | cli |
e3d8b004 | 448 | out __SP_H__,r29 |
72fab697 TR |
449 | out __SREG__,__tmp_reg__ |
450 | out __SP_L__,r28 | |
e3d8b004 TR |
451 | |
452 | A typical AVR function prologue without a frame pointer might look like | |
453 | this: | |
454 | push rXX ; saved regs | |
455 | ... | |
456 | ||
457 | A main function prologue looks like this: | |
458 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
459 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
460 | out __SP_H__,r29 | |
461 | out __SP_L__,r28 | |
462 | ||
463 | A signal handler prologue looks like this: | |
464 | push __zero_reg__ | |
465 | push __tmp_reg__ | |
466 | in __tmp_reg__, __SREG__ | |
467 | push __tmp_reg__ | |
468 | clr __zero_reg__ | |
469 | push rXX ; save registers r18:r27, r30:r31 | |
470 | ... | |
471 | push r28 ; save frame pointer | |
472 | push r29 | |
473 | in r28, __SP_L__ | |
474 | in r29, __SP_H__ | |
475 | sbiw r28, <LOCALS_SIZE> | |
476 | out __SP_H__, r29 | |
477 | out __SP_L__, r28 | |
478 | ||
479 | A interrupt handler prologue looks like this: | |
480 | sei | |
481 | push __zero_reg__ | |
482 | push __tmp_reg__ | |
483 | in __tmp_reg__, __SREG__ | |
484 | push __tmp_reg__ | |
485 | clr __zero_reg__ | |
486 | push rXX ; save registers r18:r27, r30:r31 | |
487 | ... | |
488 | push r28 ; save frame pointer | |
489 | push r29 | |
490 | in r28, __SP_L__ | |
491 | in r29, __SP_H__ | |
492 | sbiw r28, <LOCALS_SIZE> | |
493 | cli | |
494 | out __SP_H__, r29 | |
495 | sei | |
496 | out __SP_L__, r28 | |
497 | ||
498 | A `-mcall-prologues' prologue looks like this (Note that the megas use a | |
499 | jmp instead of a rjmp, thus the prologue is one word larger since jmp is a | |
500 | 32 bit insn and rjmp is a 16 bit insn): | |
501 | ldi r26,lo8(<LOCALS_SIZE>) | |
502 | ldi r27,hi8(<LOCALS_SIZE>) | |
503 | ldi r30,pm_lo8(.L_foo_body) | |
504 | ldi r31,pm_hi8(.L_foo_body) | |
505 | rjmp __prologue_saves__+RRR | |
506 | .L_foo_body: */ | |
8818c391 | 507 | |
4add8633 TR |
508 | /* Not really part of a prologue, but still need to scan for it, is when a |
509 | function prologue moves values passed via registers as arguments to new | |
0963b4bd MS |
510 | registers. In this case, all local variables live in registers, so there |
511 | may be some register saves. This is what it looks like: | |
4add8633 TR |
512 | movw rMM, rNN |
513 | ... | |
514 | ||
0963b4bd MS |
515 | There could be multiple movw's. If the target doesn't have a movw insn, it |
516 | will use two mov insns. This could be done after any of the above prologue | |
4add8633 TR |
517 | types. */ |
518 | ||
519 | static CORE_ADDR | |
e17a4113 | 520 | avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, |
4e99ad69 | 521 | struct avr_unwind_cache *info) |
8818c391 | 522 | { |
e17a4113 | 523 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2e5ff58c TR |
524 | int i; |
525 | unsigned short insn; | |
2e5ff58c | 526 | int scan_stage = 0; |
3b7344d5 | 527 | struct bound_minimal_symbol msymbol; |
8818c391 TR |
528 | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; |
529 | int vpc = 0; | |
4e99ad69 TG |
530 | int len; |
531 | ||
532 | len = pc_end - pc_beg; | |
533 | if (len > AVR_MAX_PROLOGUE_SIZE) | |
534 | len = AVR_MAX_PROLOGUE_SIZE; | |
8818c391 | 535 | |
4add8633 | 536 | /* FIXME: TRoth/2003-06-11: This could be made more efficient by only |
0963b4bd MS |
537 | reading in the bytes of the prologue. The problem is that the figuring |
538 | out where the end of the prologue is is a bit difficult. The old code | |
4add8633 | 539 | tried to do that, but failed quite often. */ |
4e99ad69 | 540 | read_memory (pc_beg, prologue, len); |
8818c391 TR |
541 | |
542 | /* Scanning main()'s prologue | |
543 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
544 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
545 | out __SP_H__,r29 | |
546 | out __SP_L__,r28 */ | |
547 | ||
4e99ad69 | 548 | if (len >= 4) |
8818c391 TR |
549 | { |
550 | CORE_ADDR locals; | |
4e99ad69 | 551 | static const unsigned char img[] = { |
2e5ff58c TR |
552 | 0xde, 0xbf, /* out __SP_H__,r29 */ |
553 | 0xcd, 0xbf /* out __SP_L__,r28 */ | |
8818c391 TR |
554 | }; |
555 | ||
e17a4113 | 556 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
8818c391 | 557 | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ |
2e5ff58c TR |
558 | if ((insn & 0xf0f0) == 0xe0c0) |
559 | { | |
560 | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | |
e17a4113 | 561 | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); |
2e5ff58c TR |
562 | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ |
563 | if ((insn & 0xf0f0) == 0xe0d0) | |
564 | { | |
565 | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | |
4e99ad69 TG |
566 | if (vpc + 4 + sizeof (img) < len |
567 | && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | |
2e5ff58c | 568 | { |
4add8633 TR |
569 | info->prologue_type = AVR_PROLOGUE_MAIN; |
570 | info->base = locals; | |
4e99ad69 | 571 | return pc_beg + 4; |
2e5ff58c TR |
572 | } |
573 | } | |
574 | } | |
8818c391 | 575 | } |
2e5ff58c | 576 | |
4add8633 TR |
577 | /* Scanning `-mcall-prologues' prologue |
578 | Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ | |
8818c391 | 579 | |
e3d8b004 | 580 | while (1) /* Using a while to avoid many goto's */ |
8818c391 TR |
581 | { |
582 | int loc_size; | |
583 | int body_addr; | |
584 | unsigned num_pushes; | |
4add8633 | 585 | int pc_offset = 0; |
2e5ff58c | 586 | |
4e99ad69 TG |
587 | /* At least the fifth instruction must have been executed to |
588 | modify frame shape. */ | |
589 | if (len < 10) | |
590 | break; | |
591 | ||
e17a4113 | 592 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
8818c391 | 593 | /* ldi r26,<LOCALS_SIZE> */ |
2e5ff58c TR |
594 | if ((insn & 0xf0f0) != 0xe0a0) |
595 | break; | |
8818c391 | 596 | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 597 | pc_offset += 2; |
2e5ff58c | 598 | |
e17a4113 | 599 | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); |
8818c391 TR |
600 | /* ldi r27,<LOCALS_SIZE> / 256 */ |
601 | if ((insn & 0xf0f0) != 0xe0b0) | |
2e5ff58c | 602 | break; |
8818c391 | 603 | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 604 | pc_offset += 2; |
2e5ff58c | 605 | |
e17a4113 | 606 | insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); |
8818c391 TR |
607 | /* ldi r30,pm_lo8(.L_foo_body) */ |
608 | if ((insn & 0xf0f0) != 0xe0e0) | |
2e5ff58c | 609 | break; |
8818c391 | 610 | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 611 | pc_offset += 2; |
8818c391 | 612 | |
e17a4113 | 613 | insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); |
8818c391 TR |
614 | /* ldi r31,pm_hi8(.L_foo_body) */ |
615 | if ((insn & 0xf0f0) != 0xe0f0) | |
2e5ff58c | 616 | break; |
8818c391 | 617 | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 618 | pc_offset += 2; |
8818c391 | 619 | |
8818c391 | 620 | msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); |
3b7344d5 | 621 | if (!msymbol.minsym) |
2e5ff58c | 622 | break; |
8818c391 | 623 | |
e17a4113 | 624 | insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); |
8818c391 | 625 | /* rjmp __prologue_saves__+RRR */ |
e3d8b004 TR |
626 | if ((insn & 0xf000) == 0xc000) |
627 | { | |
628 | /* Extract PC relative offset from RJMP */ | |
629 | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | |
630 | /* Convert offset to byte addressable mode */ | |
631 | i *= 2; | |
632 | /* Destination address */ | |
4e99ad69 | 633 | i += pc_beg + 10; |
e3d8b004 | 634 | |
4e99ad69 | 635 | if (body_addr != (pc_beg + 10)/2) |
e3d8b004 | 636 | break; |
4add8633 TR |
637 | |
638 | pc_offset += 2; | |
e3d8b004 | 639 | } |
e3d8b004 TR |
640 | else if ((insn & 0xfe0e) == 0x940c) |
641 | { | |
642 | /* Extract absolute PC address from JMP */ | |
643 | i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) | |
e17a4113 UW |
644 | | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) |
645 | & 0xffff)); | |
e3d8b004 TR |
646 | /* Convert address to byte addressable mode */ |
647 | i *= 2; | |
648 | ||
4e99ad69 | 649 | if (body_addr != (pc_beg + 12)/2) |
e3d8b004 | 650 | break; |
4add8633 TR |
651 | |
652 | pc_offset += 4; | |
e3d8b004 TR |
653 | } |
654 | else | |
655 | break; | |
2e5ff58c | 656 | |
4add8633 | 657 | /* Resolve offset (in words) from __prologue_saves__ symbol. |
8818c391 | 658 | Which is a pushes count in `-mcall-prologues' mode */ |
77e371c0 | 659 | num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2; |
8818c391 TR |
660 | |
661 | if (num_pushes > AVR_MAX_PUSHES) | |
4add8633 | 662 | { |
edefbb7c | 663 | fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), |
4add8633 TR |
664 | num_pushes); |
665 | num_pushes = 0; | |
666 | } | |
2e5ff58c | 667 | |
8818c391 | 668 | if (num_pushes) |
2e5ff58c TR |
669 | { |
670 | int from; | |
4add8633 TR |
671 | |
672 | info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; | |
2e5ff58c | 673 | if (num_pushes >= 2) |
4add8633 TR |
674 | info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; |
675 | ||
2e5ff58c TR |
676 | i = 0; |
677 | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | |
678 | from <= AVR_LAST_PUSHED_REGNUM; ++from) | |
4add8633 | 679 | info->saved_regs [from].addr = ++i; |
2e5ff58c | 680 | } |
4add8633 TR |
681 | info->size = loc_size + num_pushes; |
682 | info->prologue_type = AVR_PROLOGUE_CALL; | |
683 | ||
4e99ad69 | 684 | return pc_beg + pc_offset; |
8818c391 TR |
685 | } |
686 | ||
4add8633 TR |
687 | /* Scan for the beginning of the prologue for an interrupt or signal |
688 | function. Note that we have to set the prologue type here since the | |
689 | third stage of the prologue may not be present (e.g. no saved registered | |
690 | or changing of the SP register). */ | |
8818c391 | 691 | |
4add8633 | 692 | if (1) |
8818c391 | 693 | { |
4e99ad69 | 694 | static const unsigned char img[] = { |
2e5ff58c TR |
695 | 0x78, 0x94, /* sei */ |
696 | 0x1f, 0x92, /* push r1 */ | |
697 | 0x0f, 0x92, /* push r0 */ | |
698 | 0x0f, 0xb6, /* in r0,0x3f SREG */ | |
699 | 0x0f, 0x92, /* push r0 */ | |
700 | 0x11, 0x24 /* clr r1 */ | |
8818c391 | 701 | }; |
4e99ad69 TG |
702 | if (len >= sizeof (img) |
703 | && memcmp (prologue, img, sizeof (img)) == 0) | |
2e5ff58c | 704 | { |
4add8633 | 705 | info->prologue_type = AVR_PROLOGUE_INTR; |
2e5ff58c | 706 | vpc += sizeof (img); |
4add8633 TR |
707 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; |
708 | info->saved_regs[0].addr = 2; | |
709 | info->saved_regs[1].addr = 1; | |
710 | info->size += 3; | |
2e5ff58c | 711 | } |
4e99ad69 TG |
712 | else if (len >= sizeof (img) - 2 |
713 | && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) | |
2e5ff58c | 714 | { |
4add8633 TR |
715 | info->prologue_type = AVR_PROLOGUE_SIG; |
716 | vpc += sizeof (img) - 2; | |
717 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; | |
718 | info->saved_regs[0].addr = 2; | |
719 | info->saved_regs[1].addr = 1; | |
243e2c5d | 720 | info->size += 2; |
2e5ff58c | 721 | } |
8818c391 TR |
722 | } |
723 | ||
724 | /* First stage of the prologue scanning. | |
4add8633 | 725 | Scan pushes (saved registers) */ |
8818c391 | 726 | |
4e99ad69 | 727 | for (; vpc < len; vpc += 2) |
8818c391 | 728 | { |
e17a4113 | 729 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c TR |
730 | if ((insn & 0xfe0f) == 0x920f) /* push rXX */ |
731 | { | |
0963b4bd | 732 | /* Bits 4-9 contain a mask for registers R0-R32. */ |
4add8633 TR |
733 | int regno = (insn & 0x1f0) >> 4; |
734 | info->size++; | |
735 | info->saved_regs[regno].addr = info->size; | |
2e5ff58c TR |
736 | scan_stage = 1; |
737 | } | |
8818c391 | 738 | else |
2e5ff58c | 739 | break; |
8818c391 TR |
740 | } |
741 | ||
243e2c5d | 742 | gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); |
4add8633 | 743 | |
1bd0bb72 TG |
744 | /* Handle static small stack allocation using rcall or push. */ |
745 | ||
746 | while (scan_stage == 1 && vpc < len) | |
747 | { | |
748 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | |
749 | if (insn == 0xd000) /* rcall .+0 */ | |
750 | { | |
751 | info->size += gdbarch_tdep (gdbarch)->call_length; | |
752 | vpc += 2; | |
753 | } | |
7588d2ec | 754 | else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */ |
1bd0bb72 TG |
755 | { |
756 | info->size += 1; | |
757 | vpc += 2; | |
758 | } | |
759 | else | |
760 | break; | |
761 | } | |
762 | ||
8818c391 TR |
763 | /* Second stage of the prologue scanning. |
764 | Scan: | |
765 | in r28,__SP_L__ | |
766 | in r29,__SP_H__ */ | |
767 | ||
4e99ad69 | 768 | if (scan_stage == 1 && vpc < len) |
8818c391 | 769 | { |
4e99ad69 | 770 | static const unsigned char img[] = { |
2e5ff58c TR |
771 | 0xcd, 0xb7, /* in r28,__SP_L__ */ |
772 | 0xde, 0xb7 /* in r29,__SP_H__ */ | |
8818c391 | 773 | }; |
2e5ff58c | 774 | |
4e99ad69 TG |
775 | if (vpc + sizeof (img) < len |
776 | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
2e5ff58c TR |
777 | { |
778 | vpc += 4; | |
2e5ff58c TR |
779 | scan_stage = 2; |
780 | } | |
8818c391 TR |
781 | } |
782 | ||
0963b4bd | 783 | /* Third stage of the prologue scanning. (Really two stages). |
8818c391 TR |
784 | Scan for: |
785 | sbiw r28,XX or subi r28,lo8(XX) | |
72fab697 | 786 | sbci r29,hi8(XX) |
8818c391 TR |
787 | in __tmp_reg__,__SREG__ |
788 | cli | |
e3d8b004 | 789 | out __SP_H__,r29 |
8818c391 | 790 | out __SREG__,__tmp_reg__ |
e3d8b004 | 791 | out __SP_L__,r28 */ |
8818c391 | 792 | |
4e99ad69 | 793 | if (scan_stage == 2 && vpc < len) |
8818c391 TR |
794 | { |
795 | int locals_size = 0; | |
4e99ad69 | 796 | static const unsigned char img[] = { |
2e5ff58c TR |
797 | 0x0f, 0xb6, /* in r0,0x3f */ |
798 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 799 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 800 | 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ |
e3d8b004 | 801 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 802 | }; |
4e99ad69 | 803 | static const unsigned char img_sig[] = { |
e3d8b004 TR |
804 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
805 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ | |
8818c391 | 806 | }; |
4e99ad69 | 807 | static const unsigned char img_int[] = { |
2e5ff58c | 808 | 0xf8, 0x94, /* cli */ |
e3d8b004 | 809 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 810 | 0x78, 0x94, /* sei */ |
e3d8b004 | 811 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 812 | }; |
2e5ff58c | 813 | |
e17a4113 | 814 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c | 815 | if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ |
1bd0bb72 TG |
816 | { |
817 | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | |
818 | vpc += 2; | |
819 | } | |
2e5ff58c TR |
820 | else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ |
821 | { | |
822 | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | |
1bd0bb72 | 823 | vpc += 2; |
e17a4113 | 824 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c | 825 | vpc += 2; |
1bd0bb72 | 826 | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; |
2e5ff58c | 827 | } |
8818c391 | 828 | else |
1bd0bb72 | 829 | return pc_beg + vpc; |
4add8633 | 830 | |
0963b4bd | 831 | /* Scan the last part of the prologue. May not be present for interrupt |
4add8633 TR |
832 | or signal handler functions, which is why we set the prologue type |
833 | when we saw the beginning of the prologue previously. */ | |
834 | ||
4e99ad69 TG |
835 | if (vpc + sizeof (img_sig) < len |
836 | && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) | |
4add8633 TR |
837 | { |
838 | vpc += sizeof (img_sig); | |
839 | } | |
4e99ad69 TG |
840 | else if (vpc + sizeof (img_int) < len |
841 | && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) | |
4add8633 TR |
842 | { |
843 | vpc += sizeof (img_int); | |
844 | } | |
4e99ad69 TG |
845 | if (vpc + sizeof (img) < len |
846 | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
4add8633 TR |
847 | { |
848 | info->prologue_type = AVR_PROLOGUE_NORMAL; | |
849 | vpc += sizeof (img); | |
850 | } | |
851 | ||
852 | info->size += locals_size; | |
853 | ||
4e99ad69 | 854 | /* Fall through. */ |
8818c391 | 855 | } |
4add8633 TR |
856 | |
857 | /* If we got this far, we could not scan the prologue, so just return the pc | |
858 | of the frame plus an adjustment for argument move insns. */ | |
859 | ||
4e99ad69 TG |
860 | for (; vpc < len; vpc += 2) |
861 | { | |
e17a4113 | 862 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
4e99ad69 TG |
863 | if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ |
864 | continue; | |
865 | else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ | |
866 | continue; | |
867 | else | |
868 | break; | |
869 | } | |
870 | ||
871 | return pc_beg + vpc; | |
8818c391 TR |
872 | } |
873 | ||
4add8633 | 874 | static CORE_ADDR |
6093d2eb | 875 | avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
4add8633 TR |
876 | { |
877 | CORE_ADDR func_addr, func_end; | |
8c201e54 | 878 | CORE_ADDR post_prologue_pc; |
8818c391 | 879 | |
4add8633 | 880 | /* See what the symbol table says */ |
8818c391 | 881 | |
8c201e54 TG |
882 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
883 | return pc; | |
2e5ff58c | 884 | |
8c201e54 TG |
885 | post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); |
886 | if (post_prologue_pc != 0) | |
325fac50 | 887 | return std::max (pc, post_prologue_pc); |
8818c391 | 888 | |
8c201e54 TG |
889 | { |
890 | CORE_ADDR prologue_end = pc; | |
891 | struct avr_unwind_cache info = {0}; | |
892 | struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; | |
8818c391 | 893 | |
8c201e54 TG |
894 | info.saved_regs = saved_regs; |
895 | ||
896 | /* Need to run the prologue scanner to figure out if the function has a | |
897 | prologue and possibly skip over moving arguments passed via registers | |
898 | to other registers. */ | |
899 | ||
900 | prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); | |
901 | ||
902 | if (info.prologue_type != AVR_PROLOGUE_NONE) | |
903 | return prologue_end; | |
904 | } | |
2e5ff58c | 905 | |
4e99ad69 TG |
906 | /* Either we didn't find the start of this function (nothing we can do), |
907 | or there's no line info, or the line after the prologue is after | |
0963b4bd | 908 | the end of the function (there probably isn't a prologue). */ |
2e5ff58c | 909 | |
8c201e54 | 910 | return pc; |
4add8633 | 911 | } |
8818c391 | 912 | |
0963b4bd MS |
913 | /* Not all avr devices support the BREAK insn. Those that don't should treat |
914 | it as a NOP. Thus, it should be ok. Since the avr is currently a remote | |
915 | only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ | |
8818c391 | 916 | |
04180708 | 917 | constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 }; |
598cc9dc | 918 | |
04180708 | 919 | typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint; |
8818c391 | 920 | |
4c8b6ae0 UW |
921 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
922 | should be returned. If it is supposed to be returned in registers, | |
923 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
924 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
925 | from WRITEBUF into REGCACHE. */ | |
926 | ||
63807e1d | 927 | static enum return_value_convention |
6a3a010b | 928 | avr_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
929 | struct type *valtype, struct regcache *regcache, |
930 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 | 931 | { |
1bd0bb72 TG |
932 | int i; |
933 | /* Single byte are returned in r24. | |
934 | Otherwise, the MSB of the return value is always in r25, calculate which | |
935 | register holds the LSB. */ | |
936 | int lsb_reg; | |
937 | ||
938 | if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
939 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
940 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
941 | && TYPE_LENGTH (valtype) > 8) | |
942 | return RETURN_VALUE_STRUCT_CONVENTION; | |
943 | ||
944 | if (TYPE_LENGTH (valtype) <= 2) | |
945 | lsb_reg = 24; | |
946 | else if (TYPE_LENGTH (valtype) <= 4) | |
947 | lsb_reg = 22; | |
948 | else if (TYPE_LENGTH (valtype) <= 8) | |
949 | lsb_reg = 18; | |
950 | else | |
f3574227 | 951 | gdb_assert_not_reached ("unexpected type length"); |
4c8b6ae0 UW |
952 | |
953 | if (writebuf != NULL) | |
954 | { | |
1bd0bb72 | 955 | for (i = 0; i < TYPE_LENGTH (valtype); i++) |
b66f5587 | 956 | regcache->cooked_write (lsb_reg + i, writebuf + i); |
4c8b6ae0 UW |
957 | } |
958 | ||
959 | if (readbuf != NULL) | |
960 | { | |
1bd0bb72 | 961 | for (i = 0; i < TYPE_LENGTH (valtype); i++) |
dca08e1f | 962 | regcache->cooked_read (lsb_reg + i, readbuf + i); |
4c8b6ae0 UW |
963 | } |
964 | ||
1bd0bb72 | 965 | return RETURN_VALUE_REGISTER_CONVENTION; |
4c8b6ae0 UW |
966 | } |
967 | ||
968 | ||
4add8633 TR |
969 | /* Put here the code to store, into fi->saved_regs, the addresses of |
970 | the saved registers of frame described by FRAME_INFO. This | |
971 | includes special registers such as pc and fp saved in special ways | |
972 | in the stack frame. sp is even more special: the address we return | |
0963b4bd | 973 | for it IS the sp for the next frame. */ |
8818c391 | 974 | |
63807e1d | 975 | static struct avr_unwind_cache * |
94afd7a6 | 976 | avr_frame_unwind_cache (struct frame_info *this_frame, |
4add8633 | 977 | void **this_prologue_cache) |
8818c391 | 978 | { |
4e99ad69 | 979 | CORE_ADDR start_pc, current_pc; |
4add8633 TR |
980 | ULONGEST prev_sp; |
981 | ULONGEST this_base; | |
982 | struct avr_unwind_cache *info; | |
4e99ad69 TG |
983 | struct gdbarch *gdbarch; |
984 | struct gdbarch_tdep *tdep; | |
4add8633 TR |
985 | int i; |
986 | ||
4e99ad69 | 987 | if (*this_prologue_cache) |
9a3c8263 | 988 | return (struct avr_unwind_cache *) *this_prologue_cache; |
4add8633 TR |
989 | |
990 | info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); | |
4e99ad69 | 991 | *this_prologue_cache = info; |
94afd7a6 | 992 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
4add8633 TR |
993 | |
994 | info->size = 0; | |
995 | info->prologue_type = AVR_PROLOGUE_NONE; | |
996 | ||
4e99ad69 TG |
997 | start_pc = get_frame_func (this_frame); |
998 | current_pc = get_frame_pc (this_frame); | |
999 | if ((start_pc > 0) && (start_pc <= current_pc)) | |
e17a4113 UW |
1000 | avr_scan_prologue (get_frame_arch (this_frame), |
1001 | start_pc, current_pc, info); | |
4add8633 | 1002 | |
3b85b0f1 TR |
1003 | if ((info->prologue_type != AVR_PROLOGUE_NONE) |
1004 | && (info->prologue_type != AVR_PROLOGUE_MAIN)) | |
4add8633 TR |
1005 | { |
1006 | ULONGEST high_base; /* High byte of FP */ | |
1007 | ||
1008 | /* The SP was moved to the FP. This indicates that a new frame | |
1009 | was created. Get THIS frame's FP value by unwinding it from | |
1010 | the next frame. */ | |
94afd7a6 | 1011 | this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); |
4e99ad69 | 1012 | high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); |
4add8633 TR |
1013 | this_base += (high_base << 8); |
1014 | ||
1015 | /* The FP points at the last saved register. Adjust the FP back | |
1016 | to before the first saved register giving the SP. */ | |
1017 | prev_sp = this_base + info->size; | |
1018 | } | |
8818c391 | 1019 | else |
4add8633 TR |
1020 | { |
1021 | /* Assume that the FP is this frame's SP but with that pushed | |
1022 | stack space added back. */ | |
94afd7a6 | 1023 | this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
4add8633 TR |
1024 | prev_sp = this_base + info->size; |
1025 | } | |
1026 | ||
1027 | /* Add 1 here to adjust for the post-decrement nature of the push | |
1028 | instruction.*/ | |
4e99ad69 | 1029 | info->prev_sp = avr_make_saddr (prev_sp + 1); |
4add8633 TR |
1030 | info->base = avr_make_saddr (this_base); |
1031 | ||
4e99ad69 TG |
1032 | gdbarch = get_frame_arch (this_frame); |
1033 | ||
4add8633 | 1034 | /* Adjust all the saved registers so that they contain addresses and not |
3b85b0f1 | 1035 | offsets. */ |
4e99ad69 TG |
1036 | for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) |
1037 | if (info->saved_regs[i].addr > 0) | |
1038 | info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr; | |
4add8633 TR |
1039 | |
1040 | /* Except for the main and startup code, the return PC is always saved on | |
0963b4bd | 1041 | the stack and is at the base of the frame. */ |
4add8633 TR |
1042 | |
1043 | if (info->prologue_type != AVR_PROLOGUE_MAIN) | |
4e99ad69 | 1044 | info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; |
4add8633 | 1045 | |
3b85b0f1 TR |
1046 | /* The previous frame's SP needed to be computed. Save the computed |
1047 | value. */ | |
4e99ad69 TG |
1048 | tdep = gdbarch_tdep (gdbarch); |
1049 | trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, | |
1050 | info->prev_sp - 1 + tdep->call_length); | |
3b85b0f1 | 1051 | |
4add8633 | 1052 | return info; |
8818c391 TR |
1053 | } |
1054 | ||
1055 | static CORE_ADDR | |
4add8633 | 1056 | avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
8818c391 | 1057 | { |
4add8633 TR |
1058 | ULONGEST pc; |
1059 | ||
11411de3 | 1060 | pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); |
4add8633 TR |
1061 | |
1062 | return avr_make_iaddr (pc); | |
8818c391 TR |
1063 | } |
1064 | ||
30244cd8 UW |
1065 | static CORE_ADDR |
1066 | avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1067 | { | |
1068 | ULONGEST sp; | |
1069 | ||
11411de3 | 1070 | sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); |
30244cd8 UW |
1071 | |
1072 | return avr_make_saddr (sp); | |
1073 | } | |
1074 | ||
4add8633 TR |
1075 | /* Given a GDB frame, determine the address of the calling function's |
1076 | frame. This will be used to create a new GDB frame struct. */ | |
8818c391 | 1077 | |
4add8633 | 1078 | static void |
94afd7a6 | 1079 | avr_frame_this_id (struct frame_info *this_frame, |
4add8633 TR |
1080 | void **this_prologue_cache, |
1081 | struct frame_id *this_id) | |
8818c391 | 1082 | { |
4add8633 | 1083 | struct avr_unwind_cache *info |
94afd7a6 | 1084 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
4add8633 TR |
1085 | CORE_ADDR base; |
1086 | CORE_ADDR func; | |
1087 | struct frame_id id; | |
1088 | ||
1089 | /* The FUNC is easy. */ | |
94afd7a6 | 1090 | func = get_frame_func (this_frame); |
4add8633 | 1091 | |
4add8633 TR |
1092 | /* Hopefully the prologue analysis either correctly determined the |
1093 | frame's base (which is the SP from the previous frame), or set | |
1094 | that base to "NULL". */ | |
1095 | base = info->prev_sp; | |
1096 | if (base == 0) | |
1097 | return; | |
1098 | ||
1099 | id = frame_id_build (base, func); | |
4add8633 | 1100 | (*this_id) = id; |
8818c391 TR |
1101 | } |
1102 | ||
94afd7a6 UW |
1103 | static struct value * |
1104 | avr_frame_prev_register (struct frame_info *this_frame, | |
4e99ad69 | 1105 | void **this_prologue_cache, int regnum) |
8818c391 | 1106 | { |
4add8633 | 1107 | struct avr_unwind_cache *info |
94afd7a6 | 1108 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
8818c391 | 1109 | |
7d2552b4 | 1110 | if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) |
3b85b0f1 | 1111 | { |
7d2552b4 | 1112 | if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM)) |
3b85b0f1 | 1113 | { |
94afd7a6 UW |
1114 | /* Reading the return PC from the PC register is slightly |
1115 | abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, | |
1116 | but in reality, only two bytes (3 in upcoming mega256) are | |
1117 | stored on the stack. | |
1118 | ||
1119 | Also, note that the value on the stack is an addr to a word | |
1120 | not a byte, so we will need to multiply it by two at some | |
1121 | point. | |
1122 | ||
1123 | And to confuse matters even more, the return address stored | |
1124 | on the stack is in big endian byte order, even though most | |
0963b4bd | 1125 | everything else about the avr is little endian. Ick! */ |
94afd7a6 | 1126 | ULONGEST pc; |
4e99ad69 | 1127 | int i; |
e362b510 | 1128 | gdb_byte buf[3]; |
4e99ad69 TG |
1129 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1130 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
94afd7a6 | 1131 | |
7d2552b4 TG |
1132 | read_memory (info->saved_regs[AVR_PC_REGNUM].addr, |
1133 | buf, tdep->call_length); | |
94afd7a6 | 1134 | |
4e99ad69 TG |
1135 | /* Extract the PC read from memory as a big-endian. */ |
1136 | pc = 0; | |
1137 | for (i = 0; i < tdep->call_length; i++) | |
1138 | pc = (pc << 8) | buf[i]; | |
94afd7a6 | 1139 | |
7d2552b4 TG |
1140 | if (regnum == AVR_PC_REGNUM) |
1141 | pc <<= 1; | |
1142 | ||
1143 | return frame_unwind_got_constant (this_frame, regnum, pc); | |
3b85b0f1 | 1144 | } |
94afd7a6 UW |
1145 | |
1146 | return frame_unwind_got_optimized (this_frame, regnum); | |
3b85b0f1 | 1147 | } |
94afd7a6 UW |
1148 | |
1149 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
4add8633 | 1150 | } |
8818c391 | 1151 | |
4add8633 TR |
1152 | static const struct frame_unwind avr_frame_unwind = { |
1153 | NORMAL_FRAME, | |
8fbca658 | 1154 | default_frame_unwind_stop_reason, |
4add8633 | 1155 | avr_frame_this_id, |
94afd7a6 UW |
1156 | avr_frame_prev_register, |
1157 | NULL, | |
1158 | default_frame_sniffer | |
4add8633 TR |
1159 | }; |
1160 | ||
8818c391 | 1161 | static CORE_ADDR |
94afd7a6 | 1162 | avr_frame_base_address (struct frame_info *this_frame, void **this_cache) |
8818c391 | 1163 | { |
4add8633 | 1164 | struct avr_unwind_cache *info |
94afd7a6 | 1165 | = avr_frame_unwind_cache (this_frame, this_cache); |
8818c391 | 1166 | |
4add8633 TR |
1167 | return info->base; |
1168 | } | |
8818c391 | 1169 | |
4add8633 TR |
1170 | static const struct frame_base avr_frame_base = { |
1171 | &avr_frame_unwind, | |
1172 | avr_frame_base_address, | |
1173 | avr_frame_base_address, | |
1174 | avr_frame_base_address | |
1175 | }; | |
ced15480 | 1176 | |
94afd7a6 UW |
1177 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1178 | frame. The frame ID's base needs to match the TOS value saved by | |
1179 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
8818c391 | 1180 | |
4add8633 | 1181 | static struct frame_id |
94afd7a6 | 1182 | avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
4add8633 TR |
1183 | { |
1184 | ULONGEST base; | |
8818c391 | 1185 | |
94afd7a6 UW |
1186 | base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
1187 | return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); | |
8818c391 TR |
1188 | } |
1189 | ||
4add8633 | 1190 | /* When arguments must be pushed onto the stack, they go on in reverse |
0963b4bd | 1191 | order. The below implements a FILO (stack) to do this. */ |
8818c391 | 1192 | |
4add8633 TR |
1193 | struct stack_item |
1194 | { | |
1195 | int len; | |
1196 | struct stack_item *prev; | |
7c543f7b | 1197 | gdb_byte *data; |
4add8633 | 1198 | }; |
8818c391 | 1199 | |
4add8633 | 1200 | static struct stack_item * |
0fd88904 | 1201 | push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) |
8818c391 | 1202 | { |
4add8633 | 1203 | struct stack_item *si; |
8d749320 | 1204 | si = XNEW (struct stack_item); |
7c543f7b | 1205 | si->data = (gdb_byte *) xmalloc (len); |
4add8633 TR |
1206 | si->len = len; |
1207 | si->prev = prev; | |
1208 | memcpy (si->data, contents, len); | |
1209 | return si; | |
8818c391 TR |
1210 | } |
1211 | ||
4add8633 TR |
1212 | static struct stack_item *pop_stack_item (struct stack_item *si); |
1213 | static struct stack_item * | |
1214 | pop_stack_item (struct stack_item *si) | |
8818c391 | 1215 | { |
4add8633 TR |
1216 | struct stack_item *dead = si; |
1217 | si = si->prev; | |
1218 | xfree (dead->data); | |
1219 | xfree (dead); | |
1220 | return si; | |
8818c391 TR |
1221 | } |
1222 | ||
8818c391 TR |
1223 | /* Setup the function arguments for calling a function in the inferior. |
1224 | ||
1225 | On the AVR architecture, there are 18 registers (R25 to R8) which are | |
1226 | dedicated for passing function arguments. Up to the first 18 arguments | |
1227 | (depending on size) may go into these registers. The rest go on the stack. | |
1228 | ||
4add8633 | 1229 | All arguments are aligned to start in even-numbered registers (odd-sized |
0963b4bd | 1230 | arguments, including char, have one free register above them). For example, |
4add8633 TR |
1231 | an int in arg1 and a char in arg2 would be passed as such: |
1232 | ||
1233 | arg1 -> r25:r24 | |
1234 | arg2 -> r22 | |
1235 | ||
1236 | Arguments that are larger than 2 bytes will be split between two or more | |
1237 | registers as available, but will NOT be split between a register and the | |
0963b4bd | 1238 | stack. Arguments that go onto the stack are pushed last arg first (this is |
4add8633 TR |
1239 | similar to the d10v). */ |
1240 | ||
1241 | /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be | |
1242 | inaccurate. | |
8818c391 TR |
1243 | |
1244 | An exceptional case exists for struct arguments (and possibly other | |
1245 | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | |
1246 | not a multiple of WORDSIZE bytes. In this case the argument is never split | |
1247 | between the registers and the stack, but instead is copied in its entirety | |
1248 | onto the stack, AND also copied into as many registers as there is room | |
1249 | for. In other words, space in registers permitting, two copies of the same | |
1250 | argument are passed in. As far as I can tell, only the one on the stack is | |
1251 | used, although that may be a function of the level of compiler | |
1252 | optimization. I suspect this is a compiler bug. Arguments of these odd | |
1253 | sizes are left-justified within the word (as opposed to arguments smaller | |
1254 | than WORDSIZE bytes, which are right-justified). | |
1255 | ||
1256 | If the function is to return an aggregate type such as a struct, the caller | |
1257 | must allocate space into which the callee will copy the return value. In | |
1258 | this case, a pointer to the return value location is passed into the callee | |
1259 | in register R0, which displaces one of the other arguments passed in via | |
0963b4bd | 1260 | registers R0 to R2. */ |
8818c391 TR |
1261 | |
1262 | static CORE_ADDR | |
7d9b040b | 1263 | avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
4add8633 TR |
1264 | struct regcache *regcache, CORE_ADDR bp_addr, |
1265 | int nargs, struct value **args, CORE_ADDR sp, | |
cf84fa6b AH |
1266 | function_call_return_method return_method, |
1267 | CORE_ADDR struct_addr) | |
8818c391 | 1268 | { |
4add8633 | 1269 | int i; |
e362b510 | 1270 | gdb_byte buf[3]; |
6d1915d4 | 1271 | int call_length = gdbarch_tdep (gdbarch)->call_length; |
4add8633 TR |
1272 | CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); |
1273 | int regnum = AVR_ARGN_REGNUM; | |
1274 | struct stack_item *si = NULL; | |
8818c391 | 1275 | |
cf84fa6b | 1276 | if (return_method == return_method_struct) |
8818c391 | 1277 | { |
fd6d6815 TG |
1278 | regcache_cooked_write_unsigned |
1279 | (regcache, regnum--, (struct_addr >> 8) & 0xff); | |
1280 | regcache_cooked_write_unsigned | |
1281 | (regcache, regnum--, struct_addr & 0xff); | |
1282 | /* SP being post decremented, we need to reserve one byte so that the | |
1283 | return address won't overwrite the result (or vice-versa). */ | |
1284 | if (sp == struct_addr) | |
1285 | sp--; | |
8818c391 TR |
1286 | } |
1287 | ||
4add8633 | 1288 | for (i = 0; i < nargs; i++) |
8818c391 | 1289 | { |
4add8633 TR |
1290 | int last_regnum; |
1291 | int j; | |
1292 | struct value *arg = args[i]; | |
4991999e | 1293 | struct type *type = check_typedef (value_type (arg)); |
0fd88904 | 1294 | const bfd_byte *contents = value_contents (arg); |
4add8633 TR |
1295 | int len = TYPE_LENGTH (type); |
1296 | ||
cb86f388 DC |
1297 | /* Calculate the potential last register needed. |
1298 | E.g. For length 2, registers regnum and regnum-1 (say 25 and 24) | |
1299 | shall be used. So, last needed register will be regnum-1(24). */ | |
1300 | last_regnum = regnum - (len + (len & 1)) + 1; | |
4add8633 | 1301 | |
0963b4bd MS |
1302 | /* If there are registers available, use them. Once we start putting |
1303 | stuff on the stack, all subsequent args go on stack. */ | |
cb86f388 | 1304 | if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM)) |
4add8633 | 1305 | { |
0963b4bd | 1306 | /* Skip a register for odd length args. */ |
4add8633 TR |
1307 | if (len & 1) |
1308 | regnum--; | |
1309 | ||
cb86f388 DC |
1310 | /* Write MSB of argument into register and subsequent bytes in |
1311 | decreasing register numbers. */ | |
6d1915d4 TG |
1312 | for (j = 0; j < len; j++) |
1313 | regcache_cooked_write_unsigned | |
cb86f388 | 1314 | (regcache, regnum--, contents[len - j - 1]); |
4add8633 | 1315 | } |
0963b4bd | 1316 | /* No registers available, push the args onto the stack. */ |
4add8633 TR |
1317 | else |
1318 | { | |
0963b4bd | 1319 | /* From here on, we don't care about regnum. */ |
4add8633 TR |
1320 | si = push_stack_item (si, contents, len); |
1321 | } | |
8818c391 | 1322 | } |
909cd28e | 1323 | |
0963b4bd | 1324 | /* Push args onto the stack. */ |
4add8633 TR |
1325 | while (si) |
1326 | { | |
1327 | sp -= si->len; | |
0963b4bd | 1328 | /* Add 1 to sp here to account for post decr nature of pushes. */ |
4e99ad69 | 1329 | write_memory (sp + 1, si->data, si->len); |
4add8633 TR |
1330 | si = pop_stack_item (si); |
1331 | } | |
3605c34a | 1332 | |
4add8633 TR |
1333 | /* Set the return address. For the avr, the return address is the BP_ADDR. |
1334 | Need to push the return address onto the stack noting that it needs to be | |
1335 | in big-endian order on the stack. */ | |
6d1915d4 TG |
1336 | for (i = 1; i <= call_length; i++) |
1337 | { | |
1338 | buf[call_length - i] = return_pc & 0xff; | |
1339 | return_pc >>= 8; | |
1340 | } | |
3605c34a | 1341 | |
6d1915d4 | 1342 | sp -= call_length; |
0963b4bd | 1343 | /* Use 'sp + 1' since pushes are post decr ops. */ |
6d1915d4 | 1344 | write_memory (sp + 1, buf, call_length); |
3605c34a | 1345 | |
0963b4bd | 1346 | /* Finally, update the SP register. */ |
4add8633 TR |
1347 | regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, |
1348 | avr_convert_saddr_to_raw (sp)); | |
3605c34a | 1349 | |
6d1915d4 TG |
1350 | /* Return SP value for the dummy frame, where the return address hasn't been |
1351 | pushed. */ | |
1352 | return sp + call_length; | |
3605c34a TR |
1353 | } |
1354 | ||
53f6a2c9 TG |
1355 | /* Unfortunately dwarf2 register for SP is 32. */ |
1356 | ||
1357 | static int | |
1358 | avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | |
1359 | { | |
1360 | if (reg >= 0 && reg < 32) | |
1361 | return reg; | |
1362 | if (reg == 32) | |
1363 | return AVR_SP_REGNUM; | |
53f6a2c9 TG |
1364 | return -1; |
1365 | } | |
1366 | ||
487d9753 PL |
1367 | /* Implementation of `address_class_type_flags' gdbarch method. |
1368 | ||
1369 | This method maps DW_AT_address_class attributes to a | |
1370 | type_instance_flag_value. */ | |
1371 | ||
1372 | static int | |
1373 | avr_address_class_type_flags (int byte_size, int dwarf2_addr_class) | |
1374 | { | |
1375 | /* The value 1 of the DW_AT_address_class attribute corresponds to the | |
1376 | __flash qualifier. Note that this attribute is only valid with | |
1377 | pointer types and therefore the flag is set to the pointer type and | |
1378 | not its target type. */ | |
1379 | if (dwarf2_addr_class == 1 && byte_size == 2) | |
1380 | return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; | |
1381 | return 0; | |
1382 | } | |
1383 | ||
1384 | /* Implementation of `address_class_type_flags_to_name' gdbarch method. | |
1385 | ||
1386 | Convert a type_instance_flag_value to an address space qualifier. */ | |
1387 | ||
1388 | static const char* | |
1389 | avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) | |
1390 | { | |
1391 | if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH) | |
1392 | return "flash"; | |
1393 | else | |
1394 | return NULL; | |
1395 | } | |
1396 | ||
1397 | /* Implementation of `address_class_name_to_type_flags' gdbarch method. | |
1398 | ||
1399 | Convert an address space qualifier to a type_instance_flag_value. */ | |
1400 | ||
1401 | static int | |
1402 | avr_address_class_name_to_type_flags (struct gdbarch *gdbarch, | |
1403 | const char* name, | |
1404 | int *type_flags_ptr) | |
1405 | { | |
1406 | if (strcmp (name, "flash") == 0) | |
1407 | { | |
1408 | *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; | |
1409 | return 1; | |
1410 | } | |
1411 | else | |
1412 | return 0; | |
1413 | } | |
1414 | ||
0963b4bd | 1415 | /* Initialize the gdbarch structure for the AVR's. */ |
8818c391 TR |
1416 | |
1417 | static struct gdbarch * | |
2e5ff58c TR |
1418 | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1419 | { | |
2e5ff58c TR |
1420 | struct gdbarch *gdbarch; |
1421 | struct gdbarch_tdep *tdep; | |
4e99ad69 TG |
1422 | struct gdbarch_list *best_arch; |
1423 | int call_length; | |
8818c391 | 1424 | |
4e99ad69 | 1425 | /* Avr-6 call instructions save 3 bytes. */ |
8818c391 TR |
1426 | switch (info.bfd_arch_info->mach) |
1427 | { | |
1428 | case bfd_mach_avr1: | |
9c97a070 | 1429 | case bfd_mach_avrxmega1: |
8818c391 | 1430 | case bfd_mach_avr2: |
9c97a070 | 1431 | case bfd_mach_avrxmega2: |
8818c391 | 1432 | case bfd_mach_avr3: |
9c97a070 | 1433 | case bfd_mach_avrxmega3: |
8818c391 | 1434 | case bfd_mach_avr4: |
9c97a070 | 1435 | case bfd_mach_avrxmega4: |
8818c391 | 1436 | case bfd_mach_avr5: |
9c97a070 | 1437 | case bfd_mach_avrxmega5: |
4e99ad69 TG |
1438 | default: |
1439 | call_length = 2; | |
1440 | break; | |
1441 | case bfd_mach_avr6: | |
9c97a070 PL |
1442 | case bfd_mach_avrxmega6: |
1443 | case bfd_mach_avrxmega7: | |
4e99ad69 | 1444 | call_length = 3; |
8818c391 TR |
1445 | break; |
1446 | } | |
1447 | ||
4e99ad69 TG |
1448 | /* If there is already a candidate, use it. */ |
1449 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
1450 | best_arch != NULL; | |
1451 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
1452 | { | |
1453 | if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length) | |
1454 | return best_arch->gdbarch; | |
1455 | } | |
1456 | ||
0963b4bd | 1457 | /* None found, create a new architecture from the information provided. */ |
cdd238da | 1458 | tdep = XCNEW (struct gdbarch_tdep); |
4e99ad69 TG |
1459 | gdbarch = gdbarch_alloc (&info, tdep); |
1460 | ||
1461 | tdep->call_length = call_length; | |
1462 | ||
7d2552b4 TG |
1463 | /* Create a type for PC. We can't use builtin types here, as they may not |
1464 | be defined. */ | |
77b7c781 UW |
1465 | tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
1466 | "void"); | |
7d2552b4 | 1467 | tdep->func_void_type = make_function_type (tdep->void_type, NULL); |
88dfca6c UW |
1468 | tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL, |
1469 | tdep->func_void_type); | |
7d2552b4 | 1470 | |
8818c391 TR |
1471 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1472 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1473 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1474 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1475 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1476 | set_gdbarch_addr_bit (gdbarch, 32); | |
8818c391 | 1477 | |
53375380 PA |
1478 | set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1479 | set_gdbarch_wchar_signed (gdbarch, 1); | |
1480 | ||
8818c391 TR |
1481 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
1482 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1483 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1484 | ||
8da61cc4 DJ |
1485 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1486 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
1487 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
8818c391 TR |
1488 | |
1489 | set_gdbarch_read_pc (gdbarch, avr_read_pc); | |
1490 | set_gdbarch_write_pc (gdbarch, avr_write_pc); | |
8818c391 TR |
1491 | |
1492 | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | |
1493 | ||
1494 | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | |
8818c391 TR |
1495 | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); |
1496 | ||
1497 | set_gdbarch_register_name (gdbarch, avr_register_name); | |
866b76ea | 1498 | set_gdbarch_register_type (gdbarch, avr_register_type); |
8818c391 | 1499 | |
7d2552b4 TG |
1500 | set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); |
1501 | set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); | |
1502 | set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write); | |
1503 | ||
4c8b6ae0 | 1504 | set_gdbarch_return_value (gdbarch, avr_return_value); |
8818c391 | 1505 | |
4add8633 | 1506 | set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); |
8818c391 | 1507 | |
53f6a2c9 TG |
1508 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); |
1509 | ||
8818c391 TR |
1510 | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); |
1511 | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | |
8a1d23b2 | 1512 | set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); |
8818c391 | 1513 | |
8818c391 | 1514 | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); |
8818c391 TR |
1515 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
1516 | ||
04180708 YQ |
1517 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc); |
1518 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind); | |
8818c391 | 1519 | |
94afd7a6 | 1520 | frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); |
4add8633 TR |
1521 | frame_base_set_default (gdbarch, &avr_frame_base); |
1522 | ||
94afd7a6 | 1523 | set_gdbarch_dummy_id (gdbarch, avr_dummy_id); |
4add8633 TR |
1524 | |
1525 | set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); | |
30244cd8 | 1526 | set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); |
8818c391 | 1527 | |
487d9753 PL |
1528 | set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags); |
1529 | set_gdbarch_address_class_name_to_type_flags | |
1530 | (gdbarch, avr_address_class_name_to_type_flags); | |
1531 | set_gdbarch_address_class_type_flags_to_name | |
1532 | (gdbarch, avr_address_class_type_flags_to_name); | |
1533 | ||
8818c391 TR |
1534 | return gdbarch; |
1535 | } | |
1536 | ||
1537 | /* Send a query request to the avr remote target asking for values of the io | |
0963b4bd | 1538 | registers. If args parameter is not NULL, then the user has requested info |
8818c391 | 1539 | on a specific io register [This still needs implemented and is ignored for |
0963b4bd | 1540 | now]. The query string should be one of these forms: |
8818c391 TR |
1541 | |
1542 | "Ravr.io_reg" -> reply is "NN" number of io registers | |
1543 | ||
1544 | "Ravr.io_reg:addr,len" where addr is first register and len is number of | |
0963b4bd | 1545 | registers to be read. The reply should be "<NAME>,VV;" for each io register |
8818c391 TR |
1546 | where, <NAME> is a string, and VV is the hex value of the register. |
1547 | ||
0963b4bd | 1548 | All io registers are 8-bit. */ |
8818c391 TR |
1549 | |
1550 | static void | |
1d12d88f | 1551 | avr_io_reg_read_command (const char *args, int from_tty) |
8818c391 | 1552 | { |
2e5ff58c | 1553 | char query[400]; |
2e5ff58c TR |
1554 | unsigned int nreg = 0; |
1555 | unsigned int val; | |
8818c391 | 1556 | |
0963b4bd | 1557 | /* Find out how many io registers the target has. */ |
9018be22 | 1558 | gdb::optional<gdb::byte_vector> buf |
8b88a78e | 1559 | = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, "avr.io_reg"); |
8818c391 | 1560 | |
9018be22 | 1561 | if (!buf) |
8818c391 | 1562 | { |
2e5ff58c | 1563 | fprintf_unfiltered (gdb_stderr, |
13547ab6 DJ |
1564 | _("ERR: info io_registers NOT supported " |
1565 | "by current target\n")); | |
8818c391 TR |
1566 | return; |
1567 | } | |
1568 | ||
9018be22 SM |
1569 | const char *bufstr = (const char *) buf->data (); |
1570 | ||
001f13d8 | 1571 | if (sscanf (bufstr, "%x", &nreg) != 1) |
8818c391 | 1572 | { |
2e5ff58c | 1573 | fprintf_unfiltered (gdb_stderr, |
edefbb7c | 1574 | _("Error fetching number of io registers\n")); |
8818c391 TR |
1575 | return; |
1576 | } | |
1577 | ||
2e5ff58c | 1578 | reinitialize_more_filter (); |
8818c391 | 1579 | |
edefbb7c | 1580 | printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); |
8818c391 TR |
1581 | |
1582 | /* only fetch up to 8 registers at a time to keep the buffer small */ | |
9018be22 | 1583 | int step = 8; |
8818c391 | 1584 | |
9018be22 | 1585 | for (int i = 0; i < nreg; i += step) |
8818c391 | 1586 | { |
91ccbfc1 | 1587 | /* how many registers this round? */ |
9018be22 | 1588 | int j = step; |
91ccbfc1 TR |
1589 | if ((i+j) >= nreg) |
1590 | j = nreg - i; /* last block is less than 8 registers */ | |
8818c391 | 1591 | |
2e5ff58c | 1592 | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); |
8b88a78e | 1593 | buf = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, query); |
9018be22 SM |
1594 | |
1595 | if (!buf) | |
1596 | { | |
1597 | fprintf_unfiltered (gdb_stderr, | |
1598 | _("ERR: error reading avr.io_reg:%x,%x\n"), | |
1599 | i, j); | |
1600 | return; | |
1601 | } | |
8818c391 | 1602 | |
9018be22 SM |
1603 | const char *p = (const char *) buf->data (); |
1604 | for (int k = i; k < (i + j); k++) | |
2e5ff58c TR |
1605 | { |
1606 | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | |
1607 | { | |
1608 | printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); | |
1609 | while ((*p != ';') && (*p != '\0')) | |
1610 | p++; | |
1611 | p++; /* skip over ';' */ | |
1612 | if (*p == '\0') | |
1613 | break; | |
1614 | } | |
1615 | } | |
8818c391 TR |
1616 | } |
1617 | } | |
1618 | ||
1619 | void | |
1620 | _initialize_avr_tdep (void) | |
1621 | { | |
1622 | register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); | |
1623 | ||
1624 | /* Add a new command to allow the user to query the avr remote target for | |
1625 | the values of the io space registers in a saner way than just using | |
0963b4bd | 1626 | `x/NNNb ADDR`. */ |
8818c391 TR |
1627 | |
1628 | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | |
0963b4bd | 1629 | io_registers' to signify it is not available on other platforms. */ |
8818c391 | 1630 | |
5f515954 | 1631 | add_info ("io_registers", avr_io_reg_read_command, |
c6170c2c | 1632 | _("Query remote AVR target for I/O space register values.")); |
8818c391 | 1633 | } |