* dwarf2read.c (create_addrmap_from_index): Ignore bad address table
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
28e7fd62 3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
5f8a3188 37#include "gdb_string.h"
a89aa300 38#include "dis-asm.h"
eb14d406 39#include "linux-tdep.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391 71
8818c391
TR
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
74enum
2e5ff58c
TR
75{
76 AVR_REG_W = 24,
77 AVR_REG_X = 26,
78 AVR_REG_Y = 28,
79 AVR_FP_REGNUM = 28,
80 AVR_REG_Z = 30,
81
82 AVR_SREG_REGNUM = 32,
83 AVR_SP_REGNUM = 33,
84 AVR_PC_REGNUM = 34,
85
86 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
87 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
88
7d2552b4
TG
89 /* Pseudo registers. */
90 AVR_PSEUDO_PC_REGNUM = 35,
91 AVR_NUM_PSEUDO_REGS = 1,
92
2e5ff58c
TR
93 AVR_PC_REG_INDEX = 35, /* index into array of registers */
94
4add8633 95 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 96
0963b4bd 97 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
98 AVR_MAX_PUSHES = 18,
99
0963b4bd 100 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
101 AVR_LAST_PUSHED_REGNUM = 17,
102
4add8633
TR
103 AVR_ARG1_REGNUM = 24, /* Single byte argument */
104 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
105
106 AVR_RET1_REGNUM = 24, /* Single byte return value */
107 AVR_RETN_REGNUM = 25, /* Multi byte return value */
108
2e5ff58c 109 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 110 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
111 things easier in the future if they didn't need to match.
112
113 Note: I chose these values so as to be consistent with bfd vma
114 addresses.
115
116 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 117 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
118 thus the Most Significant Bit is 0x10000 which gets masked off my
119 AVR_MEM_MASK.
120
121 The problem manifests itself when trying to set a breakpoint in a
122 function which resides in the upper half of the instruction space and
123 thus requires a 17-bit address.
124
125 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 126 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
127 but could be for some remote targets by just adding the correct offset
128 to the address and letting the remote target handle the low-level
0963b4bd 129 details of actually accessing the eeprom. */
2e5ff58c
TR
130
131 AVR_IMEM_START = 0x00000000, /* INSN memory */
132 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 133#if 1
2e5ff58c
TR
134 /* No eeprom mask defined */
135 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 136#else
2e5ff58c
TR
137 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
138 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 139#endif
2e5ff58c 140};
8818c391 141
4add8633
TR
142/* Prologue types:
143
144 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
145 causes the generation of the CALL type prologues). */
146
147enum {
148 AVR_PROLOGUE_NONE, /* No prologue */
149 AVR_PROLOGUE_NORMAL,
150 AVR_PROLOGUE_CALL, /* -mcall-prologues */
151 AVR_PROLOGUE_MAIN,
152 AVR_PROLOGUE_INTR, /* interrupt handler */
153 AVR_PROLOGUE_SIG, /* signal handler */
154};
155
8818c391
TR
156/* Any function with a frame looks like this
157 ....... <-SP POINTS HERE
158 LOCALS1 <-FP POINTS HERE
159 LOCALS0
160 SAVED FP
161 SAVED R3
162 SAVED R2
163 RET PC
164 FIRST ARG
165 SECOND ARG */
166
4add8633 167struct avr_unwind_cache
2e5ff58c 168{
4add8633
TR
169 /* The previous frame's inner most stack address. Used as this
170 frame ID's stack_addr. */
171 CORE_ADDR prev_sp;
172 /* The frame's base, optionally used by the high-level debug info. */
173 CORE_ADDR base;
174 int size;
175 int prologue_type;
176 /* Table indicating the location of each and every register. */
177 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 178};
8818c391
TR
179
180struct gdbarch_tdep
2e5ff58c 181{
4e99ad69
TG
182 /* Number of bytes stored to the stack by call instructions.
183 2 bytes for avr1-5, 3 bytes for avr6. */
184 int call_length;
7d2552b4
TG
185
186 /* Type for void. */
187 struct type *void_type;
188 /* Type for a function returning void. */
189 struct type *func_void_type;
190 /* Type for a pointer to a function. Used for the type of PC. */
191 struct type *pc_type;
2e5ff58c 192};
8818c391 193
eb14d406
SDJ
194/* This enum represents the signals' numbers on the AVR
195 architecture. It just contains the signal definitions which are
196 different from the generic implementation.
197
198 It is derived from the file <arch/avr32/include/uapi/asm/signal.h>,
199 from the Linux kernel tree. */
200
201enum
202 {
203 AVR_LINUX_SIGRTMIN = 32,
204 AVR_LINUX_SIGRTMAX = 63,
205 };
206
0963b4bd 207/* Lookup the name of a register given it's number. */
8818c391 208
fa88f677 209static const char *
d93859e2 210avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 211{
4e99ad69 212 static const char * const register_names[] = {
2e5ff58c
TR
213 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
214 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
215 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
216 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
217 "SREG", "SP", "PC2",
218 "pc"
8818c391
TR
219 };
220 if (regnum < 0)
221 return NULL;
222 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
223 return NULL;
224 return register_names[regnum];
225}
226
8818c391
TR
227/* Return the GDB type object for the "standard" data type
228 of data in register N. */
229
230static struct type *
866b76ea 231avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 232{
866b76ea 233 if (reg_nr == AVR_PC_REGNUM)
df4df182 234 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
235 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
236 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 237 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 238 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 239 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
240}
241
0963b4bd 242/* Instruction address checks and convertions. */
8818c391
TR
243
244static CORE_ADDR
245avr_make_iaddr (CORE_ADDR x)
246{
247 return ((x) | AVR_IMEM_START);
248}
249
0963b4bd 250/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
251 devices are already up to 128KBytes of flash space.
252
0963b4bd 253 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
254
255static CORE_ADDR
256avr_convert_iaddr_to_raw (CORE_ADDR x)
257{
258 return ((x) & 0xffffffff);
259}
260
0963b4bd 261/* SRAM address checks and convertions. */
8818c391
TR
262
263static CORE_ADDR
264avr_make_saddr (CORE_ADDR x)
265{
ee143e81
TG
266 /* Return 0 for NULL. */
267 if (x == 0)
268 return 0;
269
8818c391
TR
270 return ((x) | AVR_SMEM_START);
271}
272
8818c391
TR
273static CORE_ADDR
274avr_convert_saddr_to_raw (CORE_ADDR x)
275{
276 return ((x) & 0xffffffff);
277}
278
0963b4bd
MS
279/* EEPROM address checks and convertions. I don't know if these will ever
280 actually be used, but I've added them just the same. TRoth */
8818c391
TR
281
282/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 283 programs in the mega128. */
8818c391
TR
284
285/* static CORE_ADDR */
286/* avr_make_eaddr (CORE_ADDR x) */
287/* { */
288/* return ((x) | AVR_EMEM_START); */
289/* } */
290
291/* static int */
292/* avr_eaddr_p (CORE_ADDR x) */
293/* { */
294/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
295/* } */
296
297/* static CORE_ADDR */
298/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
299/* { */
300/* return ((x) & 0xffffffff); */
301/* } */
302
0963b4bd 303/* Convert from address to pointer and vice-versa. */
8818c391
TR
304
305static void
9898f801
UW
306avr_address_to_pointer (struct gdbarch *gdbarch,
307 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 308{
e17a4113
UW
309 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
310
8818c391
TR
311 /* Is it a code address? */
312 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
313 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
314 {
e17a4113 315 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 316 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
317 }
318 else
319 {
320 /* Strip off any upper segment bits. */
e17a4113 321 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 322 avr_convert_saddr_to_raw (addr));
8818c391
TR
323 }
324}
325
326static CORE_ADDR
9898f801
UW
327avr_pointer_to_address (struct gdbarch *gdbarch,
328 struct type *type, const gdb_byte *buf)
8818c391 329{
e17a4113
UW
330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
331 CORE_ADDR addr
332 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 333
8818c391
TR
334 /* Is it a code address? */
335 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
336 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 337 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 338 return avr_make_iaddr (addr << 1);
8818c391
TR
339 else
340 return avr_make_saddr (addr);
341}
342
8a1d23b2
TG
343static CORE_ADDR
344avr_integer_to_address (struct gdbarch *gdbarch,
345 struct type *type, const gdb_byte *buf)
346{
347 ULONGEST addr = unpack_long (type, buf);
348
349 return avr_make_saddr (addr);
350}
351
8818c391 352static CORE_ADDR
61a1198a 353avr_read_pc (struct regcache *regcache)
8818c391 354{
8619218d 355 ULONGEST pc;
61a1198a
UW
356 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
357 return avr_make_iaddr (pc);
8818c391
TR
358}
359
360static void
61a1198a 361avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 362{
61a1198a 363 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
364 avr_convert_iaddr_to_raw (val));
365}
366
05d1431c 367static enum register_status
7d2552b4
TG
368avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
369 int regnum, gdb_byte *buf)
370{
371 ULONGEST val;
05d1431c 372 enum register_status status;
7d2552b4
TG
373
374 switch (regnum)
375 {
376 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
377 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
378 if (status != REG_VALID)
379 return status;
7d2552b4
TG
380 val >>= 1;
381 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 382 return status;
7d2552b4
TG
383 default:
384 internal_error (__FILE__, __LINE__, _("invalid regnum"));
385 }
386}
387
388static void
389avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
390 int regnum, const gdb_byte *buf)
391{
392 ULONGEST val;
393
394 switch (regnum)
395 {
396 case AVR_PSEUDO_PC_REGNUM:
397 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
398 val <<= 1;
399 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
400 break;
401 default:
402 internal_error (__FILE__, __LINE__, _("invalid regnum"));
403 }
8818c391
TR
404}
405
4add8633 406/* Function: avr_scan_prologue
8818c391 407
4add8633 408 This function decodes an AVR function prologue to determine:
8818c391
TR
409 1) the size of the stack frame
410 2) which registers are saved on it
411 3) the offsets of saved regs
4add8633 412 This information is stored in the avr_unwind_cache structure.
8818c391 413
e3d8b004
TR
414 Some devices lack the sbiw instruction, so on those replace this:
415 sbiw r28, XX
416 with this:
417 subi r28,lo8(XX)
418 sbci r29,hi8(XX)
419
420 A typical AVR function prologue with a frame pointer might look like this:
421 push rXX ; saved regs
422 ...
423 push r28
424 push r29
425 in r28,__SP_L__
426 in r29,__SP_H__
427 sbiw r28,<LOCALS_SIZE>
428 in __tmp_reg__,__SREG__
8818c391 429 cli
e3d8b004 430 out __SP_H__,r29
72fab697
TR
431 out __SREG__,__tmp_reg__
432 out __SP_L__,r28
e3d8b004
TR
433
434 A typical AVR function prologue without a frame pointer might look like
435 this:
436 push rXX ; saved regs
437 ...
438
439 A main function prologue looks like this:
440 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
441 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
442 out __SP_H__,r29
443 out __SP_L__,r28
444
445 A signal handler prologue looks like this:
446 push __zero_reg__
447 push __tmp_reg__
448 in __tmp_reg__, __SREG__
449 push __tmp_reg__
450 clr __zero_reg__
451 push rXX ; save registers r18:r27, r30:r31
452 ...
453 push r28 ; save frame pointer
454 push r29
455 in r28, __SP_L__
456 in r29, __SP_H__
457 sbiw r28, <LOCALS_SIZE>
458 out __SP_H__, r29
459 out __SP_L__, r28
460
461 A interrupt handler prologue looks like this:
462 sei
463 push __zero_reg__
464 push __tmp_reg__
465 in __tmp_reg__, __SREG__
466 push __tmp_reg__
467 clr __zero_reg__
468 push rXX ; save registers r18:r27, r30:r31
469 ...
470 push r28 ; save frame pointer
471 push r29
472 in r28, __SP_L__
473 in r29, __SP_H__
474 sbiw r28, <LOCALS_SIZE>
475 cli
476 out __SP_H__, r29
477 sei
478 out __SP_L__, r28
479
480 A `-mcall-prologues' prologue looks like this (Note that the megas use a
481 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
482 32 bit insn and rjmp is a 16 bit insn):
483 ldi r26,lo8(<LOCALS_SIZE>)
484 ldi r27,hi8(<LOCALS_SIZE>)
485 ldi r30,pm_lo8(.L_foo_body)
486 ldi r31,pm_hi8(.L_foo_body)
487 rjmp __prologue_saves__+RRR
488 .L_foo_body: */
8818c391 489
4add8633
TR
490/* Not really part of a prologue, but still need to scan for it, is when a
491 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
492 registers. In this case, all local variables live in registers, so there
493 may be some register saves. This is what it looks like:
4add8633
TR
494 movw rMM, rNN
495 ...
496
0963b4bd
MS
497 There could be multiple movw's. If the target doesn't have a movw insn, it
498 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
499 types. */
500
501static CORE_ADDR
e17a4113 502avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 503 struct avr_unwind_cache *info)
8818c391 504{
e17a4113 505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
506 int i;
507 unsigned short insn;
2e5ff58c 508 int scan_stage = 0;
8818c391 509 struct minimal_symbol *msymbol;
8818c391
TR
510 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
511 int vpc = 0;
4e99ad69
TG
512 int len;
513
514 len = pc_end - pc_beg;
515 if (len > AVR_MAX_PROLOGUE_SIZE)
516 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 517
4add8633 518 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
519 reading in the bytes of the prologue. The problem is that the figuring
520 out where the end of the prologue is is a bit difficult. The old code
4add8633 521 tried to do that, but failed quite often. */
4e99ad69 522 read_memory (pc_beg, prologue, len);
8818c391
TR
523
524 /* Scanning main()'s prologue
525 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
526 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
527 out __SP_H__,r29
528 out __SP_L__,r28 */
529
4e99ad69 530 if (len >= 4)
8818c391
TR
531 {
532 CORE_ADDR locals;
4e99ad69 533 static const unsigned char img[] = {
2e5ff58c
TR
534 0xde, 0xbf, /* out __SP_H__,r29 */
535 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
536 };
537
e17a4113 538 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 539 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
540 if ((insn & 0xf0f0) == 0xe0c0)
541 {
542 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 543 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
544 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
545 if ((insn & 0xf0f0) == 0xe0d0)
546 {
547 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
548 if (vpc + 4 + sizeof (img) < len
549 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 550 {
4add8633
TR
551 info->prologue_type = AVR_PROLOGUE_MAIN;
552 info->base = locals;
4e99ad69 553 return pc_beg + 4;
2e5ff58c
TR
554 }
555 }
556 }
8818c391 557 }
2e5ff58c 558
4add8633
TR
559 /* Scanning `-mcall-prologues' prologue
560 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 561
e3d8b004 562 while (1) /* Using a while to avoid many goto's */
8818c391
TR
563 {
564 int loc_size;
565 int body_addr;
566 unsigned num_pushes;
4add8633 567 int pc_offset = 0;
2e5ff58c 568
4e99ad69
TG
569 /* At least the fifth instruction must have been executed to
570 modify frame shape. */
571 if (len < 10)
572 break;
573
e17a4113 574 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 575 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
576 if ((insn & 0xf0f0) != 0xe0a0)
577 break;
8818c391 578 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 579 pc_offset += 2;
2e5ff58c 580
e17a4113 581 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
582 /* ldi r27,<LOCALS_SIZE> / 256 */
583 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 584 break;
8818c391 585 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 586 pc_offset += 2;
2e5ff58c 587
e17a4113 588 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
589 /* ldi r30,pm_lo8(.L_foo_body) */
590 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 591 break;
8818c391 592 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 593 pc_offset += 2;
8818c391 594
e17a4113 595 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
596 /* ldi r31,pm_hi8(.L_foo_body) */
597 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 598 break;
8818c391 599 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 600 pc_offset += 2;
8818c391 601
8818c391
TR
602 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
603 if (!msymbol)
2e5ff58c 604 break;
8818c391 605
e17a4113 606 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 607 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
608 if ((insn & 0xf000) == 0xc000)
609 {
610 /* Extract PC relative offset from RJMP */
611 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
612 /* Convert offset to byte addressable mode */
613 i *= 2;
614 /* Destination address */
4e99ad69 615 i += pc_beg + 10;
e3d8b004 616
4e99ad69 617 if (body_addr != (pc_beg + 10)/2)
e3d8b004 618 break;
4add8633
TR
619
620 pc_offset += 2;
e3d8b004 621 }
e3d8b004
TR
622 else if ((insn & 0xfe0e) == 0x940c)
623 {
624 /* Extract absolute PC address from JMP */
625 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
626 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
627 & 0xffff));
e3d8b004
TR
628 /* Convert address to byte addressable mode */
629 i *= 2;
630
4e99ad69 631 if (body_addr != (pc_beg + 12)/2)
e3d8b004 632 break;
4add8633
TR
633
634 pc_offset += 4;
e3d8b004
TR
635 }
636 else
637 break;
2e5ff58c 638
4add8633 639 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
640 Which is a pushes count in `-mcall-prologues' mode */
641 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
642
643 if (num_pushes > AVR_MAX_PUSHES)
4add8633 644 {
edefbb7c 645 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
646 num_pushes);
647 num_pushes = 0;
648 }
2e5ff58c 649
8818c391 650 if (num_pushes)
2e5ff58c
TR
651 {
652 int from;
4add8633
TR
653
654 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 655 if (num_pushes >= 2)
4add8633
TR
656 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
657
2e5ff58c
TR
658 i = 0;
659 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
660 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 661 info->saved_regs [from].addr = ++i;
2e5ff58c 662 }
4add8633
TR
663 info->size = loc_size + num_pushes;
664 info->prologue_type = AVR_PROLOGUE_CALL;
665
4e99ad69 666 return pc_beg + pc_offset;
8818c391
TR
667 }
668
4add8633
TR
669 /* Scan for the beginning of the prologue for an interrupt or signal
670 function. Note that we have to set the prologue type here since the
671 third stage of the prologue may not be present (e.g. no saved registered
672 or changing of the SP register). */
8818c391 673
4add8633 674 if (1)
8818c391 675 {
4e99ad69 676 static const unsigned char img[] = {
2e5ff58c
TR
677 0x78, 0x94, /* sei */
678 0x1f, 0x92, /* push r1 */
679 0x0f, 0x92, /* push r0 */
680 0x0f, 0xb6, /* in r0,0x3f SREG */
681 0x0f, 0x92, /* push r0 */
682 0x11, 0x24 /* clr r1 */
8818c391 683 };
4e99ad69
TG
684 if (len >= sizeof (img)
685 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 686 {
4add8633 687 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 688 vpc += sizeof (img);
4add8633
TR
689 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
690 info->saved_regs[0].addr = 2;
691 info->saved_regs[1].addr = 1;
692 info->size += 3;
2e5ff58c 693 }
4e99ad69
TG
694 else if (len >= sizeof (img) - 2
695 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 696 {
4add8633
TR
697 info->prologue_type = AVR_PROLOGUE_SIG;
698 vpc += sizeof (img) - 2;
699 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
700 info->saved_regs[0].addr = 2;
701 info->saved_regs[1].addr = 1;
243e2c5d 702 info->size += 2;
2e5ff58c 703 }
8818c391
TR
704 }
705
706 /* First stage of the prologue scanning.
4add8633 707 Scan pushes (saved registers) */
8818c391 708
4e99ad69 709 for (; vpc < len; vpc += 2)
8818c391 710 {
e17a4113 711 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
712 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
713 {
0963b4bd 714 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
715 int regno = (insn & 0x1f0) >> 4;
716 info->size++;
717 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
718 scan_stage = 1;
719 }
8818c391 720 else
2e5ff58c 721 break;
8818c391
TR
722 }
723
243e2c5d 724 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 725
1bd0bb72
TG
726 /* Handle static small stack allocation using rcall or push. */
727
728 while (scan_stage == 1 && vpc < len)
729 {
730 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
731 if (insn == 0xd000) /* rcall .+0 */
732 {
733 info->size += gdbarch_tdep (gdbarch)->call_length;
734 vpc += 2;
735 }
736 else if (insn == 0x920f) /* push r0 */
737 {
738 info->size += 1;
739 vpc += 2;
740 }
741 else
742 break;
743 }
744
8818c391
TR
745 /* Second stage of the prologue scanning.
746 Scan:
747 in r28,__SP_L__
748 in r29,__SP_H__ */
749
4e99ad69 750 if (scan_stage == 1 && vpc < len)
8818c391 751 {
4e99ad69 752 static const unsigned char img[] = {
2e5ff58c
TR
753 0xcd, 0xb7, /* in r28,__SP_L__ */
754 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 755 };
2e5ff58c 756
4e99ad69
TG
757 if (vpc + sizeof (img) < len
758 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
759 {
760 vpc += 4;
2e5ff58c
TR
761 scan_stage = 2;
762 }
8818c391
TR
763 }
764
0963b4bd 765 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
766 Scan for:
767 sbiw r28,XX or subi r28,lo8(XX)
72fab697 768 sbci r29,hi8(XX)
8818c391
TR
769 in __tmp_reg__,__SREG__
770 cli
e3d8b004 771 out __SP_H__,r29
8818c391 772 out __SREG__,__tmp_reg__
e3d8b004 773 out __SP_L__,r28 */
8818c391 774
4e99ad69 775 if (scan_stage == 2 && vpc < len)
8818c391
TR
776 {
777 int locals_size = 0;
4e99ad69 778 static const unsigned char img[] = {
2e5ff58c
TR
779 0x0f, 0xb6, /* in r0,0x3f */
780 0xf8, 0x94, /* cli */
e3d8b004 781 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 782 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 783 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 784 };
4e99ad69 785 static const unsigned char img_sig[] = {
e3d8b004
TR
786 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
787 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 788 };
4e99ad69 789 static const unsigned char img_int[] = {
2e5ff58c 790 0xf8, 0x94, /* cli */
e3d8b004 791 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 792 0x78, 0x94, /* sei */
e3d8b004 793 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 794 };
2e5ff58c 795
e17a4113 796 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 797 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
798 {
799 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
800 vpc += 2;
801 }
2e5ff58c
TR
802 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
803 {
804 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 805 vpc += 2;
e17a4113 806 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 807 vpc += 2;
1bd0bb72 808 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 809 }
8818c391 810 else
1bd0bb72 811 return pc_beg + vpc;
4add8633 812
0963b4bd 813 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
814 or signal handler functions, which is why we set the prologue type
815 when we saw the beginning of the prologue previously. */
816
4e99ad69
TG
817 if (vpc + sizeof (img_sig) < len
818 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
819 {
820 vpc += sizeof (img_sig);
821 }
4e99ad69
TG
822 else if (vpc + sizeof (img_int) < len
823 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
824 {
825 vpc += sizeof (img_int);
826 }
4e99ad69
TG
827 if (vpc + sizeof (img) < len
828 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
829 {
830 info->prologue_type = AVR_PROLOGUE_NORMAL;
831 vpc += sizeof (img);
832 }
833
834 info->size += locals_size;
835
4e99ad69 836 /* Fall through. */
8818c391 837 }
4add8633
TR
838
839 /* If we got this far, we could not scan the prologue, so just return the pc
840 of the frame plus an adjustment for argument move insns. */
841
4e99ad69
TG
842 for (; vpc < len; vpc += 2)
843 {
e17a4113 844 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
845 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
846 continue;
847 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
848 continue;
849 else
850 break;
851 }
852
853 return pc_beg + vpc;
8818c391
TR
854}
855
4add8633 856static CORE_ADDR
6093d2eb 857avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
858{
859 CORE_ADDR func_addr, func_end;
8c201e54 860 CORE_ADDR post_prologue_pc;
8818c391 861
4add8633 862 /* See what the symbol table says */
8818c391 863
8c201e54
TG
864 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
865 return pc;
2e5ff58c 866
8c201e54
TG
867 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
868 if (post_prologue_pc != 0)
869 return max (pc, post_prologue_pc);
8818c391 870
8c201e54
TG
871 {
872 CORE_ADDR prologue_end = pc;
873 struct avr_unwind_cache info = {0};
874 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 875
8c201e54
TG
876 info.saved_regs = saved_regs;
877
878 /* Need to run the prologue scanner to figure out if the function has a
879 prologue and possibly skip over moving arguments passed via registers
880 to other registers. */
881
882 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
883
884 if (info.prologue_type != AVR_PROLOGUE_NONE)
885 return prologue_end;
886 }
2e5ff58c 887
4e99ad69
TG
888 /* Either we didn't find the start of this function (nothing we can do),
889 or there's no line info, or the line after the prologue is after
0963b4bd 890 the end of the function (there probably isn't a prologue). */
2e5ff58c 891
8c201e54 892 return pc;
4add8633 893}
8818c391 894
0963b4bd
MS
895/* Not all avr devices support the BREAK insn. Those that don't should treat
896 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
897 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 898
4add8633 899static const unsigned char *
0963b4bd
MS
900avr_breakpoint_from_pc (struct gdbarch *gdbarch,
901 CORE_ADDR *pcptr, int *lenptr)
4add8633 902{
4e99ad69 903 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
904 *lenptr = sizeof (avr_break_insn);
905 return avr_break_insn;
8818c391
TR
906}
907
4c8b6ae0
UW
908/* Determine, for architecture GDBARCH, how a return value of TYPE
909 should be returned. If it is supposed to be returned in registers,
910 and READBUF is non-zero, read the appropriate value from REGCACHE,
911 and copy it into READBUF. If WRITEBUF is non-zero, write the value
912 from WRITEBUF into REGCACHE. */
913
63807e1d 914static enum return_value_convention
6a3a010b 915avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
916 struct type *valtype, struct regcache *regcache,
917 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 918{
1bd0bb72
TG
919 int i;
920 /* Single byte are returned in r24.
921 Otherwise, the MSB of the return value is always in r25, calculate which
922 register holds the LSB. */
923 int lsb_reg;
924
925 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
926 || TYPE_CODE (valtype) == TYPE_CODE_UNION
927 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
928 && TYPE_LENGTH (valtype) > 8)
929 return RETURN_VALUE_STRUCT_CONVENTION;
930
931 if (TYPE_LENGTH (valtype) <= 2)
932 lsb_reg = 24;
933 else if (TYPE_LENGTH (valtype) <= 4)
934 lsb_reg = 22;
935 else if (TYPE_LENGTH (valtype) <= 8)
936 lsb_reg = 18;
937 else
f3574227 938 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
939
940 if (writebuf != NULL)
941 {
1bd0bb72
TG
942 for (i = 0; i < TYPE_LENGTH (valtype); i++)
943 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
944 }
945
946 if (readbuf != NULL)
947 {
1bd0bb72
TG
948 for (i = 0; i < TYPE_LENGTH (valtype); i++)
949 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
950 }
951
1bd0bb72 952 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
953}
954
955
4add8633
TR
956/* Put here the code to store, into fi->saved_regs, the addresses of
957 the saved registers of frame described by FRAME_INFO. This
958 includes special registers such as pc and fp saved in special ways
959 in the stack frame. sp is even more special: the address we return
0963b4bd 960 for it IS the sp for the next frame. */
8818c391 961
63807e1d 962static struct avr_unwind_cache *
94afd7a6 963avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 964 void **this_prologue_cache)
8818c391 965{
4e99ad69 966 CORE_ADDR start_pc, current_pc;
4add8633
TR
967 ULONGEST prev_sp;
968 ULONGEST this_base;
969 struct avr_unwind_cache *info;
4e99ad69
TG
970 struct gdbarch *gdbarch;
971 struct gdbarch_tdep *tdep;
4add8633
TR
972 int i;
973
4e99ad69
TG
974 if (*this_prologue_cache)
975 return *this_prologue_cache;
4add8633
TR
976
977 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 978 *this_prologue_cache = info;
94afd7a6 979 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
980
981 info->size = 0;
982 info->prologue_type = AVR_PROLOGUE_NONE;
983
4e99ad69
TG
984 start_pc = get_frame_func (this_frame);
985 current_pc = get_frame_pc (this_frame);
986 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
987 avr_scan_prologue (get_frame_arch (this_frame),
988 start_pc, current_pc, info);
4add8633 989
3b85b0f1
TR
990 if ((info->prologue_type != AVR_PROLOGUE_NONE)
991 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
992 {
993 ULONGEST high_base; /* High byte of FP */
994
995 /* The SP was moved to the FP. This indicates that a new frame
996 was created. Get THIS frame's FP value by unwinding it from
997 the next frame. */
94afd7a6 998 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 999 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1000 this_base += (high_base << 8);
1001
1002 /* The FP points at the last saved register. Adjust the FP back
1003 to before the first saved register giving the SP. */
1004 prev_sp = this_base + info->size;
1005 }
8818c391 1006 else
4add8633
TR
1007 {
1008 /* Assume that the FP is this frame's SP but with that pushed
1009 stack space added back. */
94afd7a6 1010 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1011 prev_sp = this_base + info->size;
1012 }
1013
1014 /* Add 1 here to adjust for the post-decrement nature of the push
1015 instruction.*/
4e99ad69 1016 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1017 info->base = avr_make_saddr (this_base);
1018
4e99ad69
TG
1019 gdbarch = get_frame_arch (this_frame);
1020
4add8633 1021 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1022 offsets. */
4e99ad69
TG
1023 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1024 if (info->saved_regs[i].addr > 0)
1025 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1026
1027 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1028 the stack and is at the base of the frame. */
4add8633
TR
1029
1030 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1031 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1032
3b85b0f1
TR
1033 /* The previous frame's SP needed to be computed. Save the computed
1034 value. */
4e99ad69
TG
1035 tdep = gdbarch_tdep (gdbarch);
1036 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1037 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1038
4add8633 1039 return info;
8818c391
TR
1040}
1041
1042static CORE_ADDR
4add8633 1043avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1044{
4add8633
TR
1045 ULONGEST pc;
1046
11411de3 1047 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1048
1049 return avr_make_iaddr (pc);
8818c391
TR
1050}
1051
30244cd8
UW
1052static CORE_ADDR
1053avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1054{
1055 ULONGEST sp;
1056
11411de3 1057 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1058
1059 return avr_make_saddr (sp);
1060}
1061
4add8633
TR
1062/* Given a GDB frame, determine the address of the calling function's
1063 frame. This will be used to create a new GDB frame struct. */
8818c391 1064
4add8633 1065static void
94afd7a6 1066avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1067 void **this_prologue_cache,
1068 struct frame_id *this_id)
8818c391 1069{
4add8633 1070 struct avr_unwind_cache *info
94afd7a6 1071 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1072 CORE_ADDR base;
1073 CORE_ADDR func;
1074 struct frame_id id;
1075
1076 /* The FUNC is easy. */
94afd7a6 1077 func = get_frame_func (this_frame);
4add8633 1078
4add8633
TR
1079 /* Hopefully the prologue analysis either correctly determined the
1080 frame's base (which is the SP from the previous frame), or set
1081 that base to "NULL". */
1082 base = info->prev_sp;
1083 if (base == 0)
1084 return;
1085
1086 id = frame_id_build (base, func);
4add8633 1087 (*this_id) = id;
8818c391
TR
1088}
1089
94afd7a6
UW
1090static struct value *
1091avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1092 void **this_prologue_cache, int regnum)
8818c391 1093{
e17a4113
UW
1094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1095 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1096 struct avr_unwind_cache *info
94afd7a6 1097 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1098
7d2552b4 1099 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1100 {
7d2552b4 1101 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1102 {
94afd7a6
UW
1103 /* Reading the return PC from the PC register is slightly
1104 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1105 but in reality, only two bytes (3 in upcoming mega256) are
1106 stored on the stack.
1107
1108 Also, note that the value on the stack is an addr to a word
1109 not a byte, so we will need to multiply it by two at some
1110 point.
1111
1112 And to confuse matters even more, the return address stored
1113 on the stack is in big endian byte order, even though most
0963b4bd 1114 everything else about the avr is little endian. Ick! */
94afd7a6 1115 ULONGEST pc;
4e99ad69 1116 int i;
e362b510 1117 gdb_byte buf[3];
4e99ad69
TG
1118 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1120
7d2552b4
TG
1121 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1122 buf, tdep->call_length);
94afd7a6 1123
4e99ad69
TG
1124 /* Extract the PC read from memory as a big-endian. */
1125 pc = 0;
1126 for (i = 0; i < tdep->call_length; i++)
1127 pc = (pc << 8) | buf[i];
94afd7a6 1128
7d2552b4
TG
1129 if (regnum == AVR_PC_REGNUM)
1130 pc <<= 1;
1131
1132 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1133 }
94afd7a6
UW
1134
1135 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1136 }
94afd7a6
UW
1137
1138 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1139}
8818c391 1140
4add8633
TR
1141static const struct frame_unwind avr_frame_unwind = {
1142 NORMAL_FRAME,
8fbca658 1143 default_frame_unwind_stop_reason,
4add8633 1144 avr_frame_this_id,
94afd7a6
UW
1145 avr_frame_prev_register,
1146 NULL,
1147 default_frame_sniffer
4add8633
TR
1148};
1149
8818c391 1150static CORE_ADDR
94afd7a6 1151avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1152{
4add8633 1153 struct avr_unwind_cache *info
94afd7a6 1154 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1155
4add8633
TR
1156 return info->base;
1157}
8818c391 1158
4add8633
TR
1159static const struct frame_base avr_frame_base = {
1160 &avr_frame_unwind,
1161 avr_frame_base_address,
1162 avr_frame_base_address,
1163 avr_frame_base_address
1164};
ced15480 1165
94afd7a6
UW
1166/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1167 frame. The frame ID's base needs to match the TOS value saved by
1168 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1169
4add8633 1170static struct frame_id
94afd7a6 1171avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1172{
1173 ULONGEST base;
8818c391 1174
94afd7a6
UW
1175 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1176 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1177}
1178
4add8633 1179/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1180 order. The below implements a FILO (stack) to do this. */
8818c391 1181
4add8633
TR
1182struct stack_item
1183{
1184 int len;
1185 struct stack_item *prev;
1186 void *data;
1187};
8818c391 1188
4add8633 1189static struct stack_item *
0fd88904 1190push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1191{
4add8633
TR
1192 struct stack_item *si;
1193 si = xmalloc (sizeof (struct stack_item));
1194 si->data = xmalloc (len);
1195 si->len = len;
1196 si->prev = prev;
1197 memcpy (si->data, contents, len);
1198 return si;
8818c391
TR
1199}
1200
4add8633
TR
1201static struct stack_item *pop_stack_item (struct stack_item *si);
1202static struct stack_item *
1203pop_stack_item (struct stack_item *si)
8818c391 1204{
4add8633
TR
1205 struct stack_item *dead = si;
1206 si = si->prev;
1207 xfree (dead->data);
1208 xfree (dead);
1209 return si;
8818c391
TR
1210}
1211
8818c391
TR
1212/* Setup the function arguments for calling a function in the inferior.
1213
1214 On the AVR architecture, there are 18 registers (R25 to R8) which are
1215 dedicated for passing function arguments. Up to the first 18 arguments
1216 (depending on size) may go into these registers. The rest go on the stack.
1217
4add8633 1218 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1219 arguments, including char, have one free register above them). For example,
4add8633
TR
1220 an int in arg1 and a char in arg2 would be passed as such:
1221
1222 arg1 -> r25:r24
1223 arg2 -> r22
1224
1225 Arguments that are larger than 2 bytes will be split between two or more
1226 registers as available, but will NOT be split between a register and the
0963b4bd 1227 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1228 similar to the d10v). */
1229
1230/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1231 inaccurate.
8818c391
TR
1232
1233 An exceptional case exists for struct arguments (and possibly other
1234 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1235 not a multiple of WORDSIZE bytes. In this case the argument is never split
1236 between the registers and the stack, but instead is copied in its entirety
1237 onto the stack, AND also copied into as many registers as there is room
1238 for. In other words, space in registers permitting, two copies of the same
1239 argument are passed in. As far as I can tell, only the one on the stack is
1240 used, although that may be a function of the level of compiler
1241 optimization. I suspect this is a compiler bug. Arguments of these odd
1242 sizes are left-justified within the word (as opposed to arguments smaller
1243 than WORDSIZE bytes, which are right-justified).
1244
1245 If the function is to return an aggregate type such as a struct, the caller
1246 must allocate space into which the callee will copy the return value. In
1247 this case, a pointer to the return value location is passed into the callee
1248 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1249 registers R0 to R2. */
8818c391
TR
1250
1251static CORE_ADDR
7d9b040b 1252avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1253 struct regcache *regcache, CORE_ADDR bp_addr,
1254 int nargs, struct value **args, CORE_ADDR sp,
1255 int struct_return, CORE_ADDR struct_addr)
8818c391 1256{
e17a4113 1257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1258 int i;
e362b510 1259 gdb_byte buf[3];
6d1915d4 1260 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1261 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1262 int regnum = AVR_ARGN_REGNUM;
1263 struct stack_item *si = NULL;
8818c391 1264
4add8633 1265 if (struct_return)
8818c391 1266 {
fd6d6815
TG
1267 regcache_cooked_write_unsigned
1268 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1269 regcache_cooked_write_unsigned
1270 (regcache, regnum--, struct_addr & 0xff);
1271 /* SP being post decremented, we need to reserve one byte so that the
1272 return address won't overwrite the result (or vice-versa). */
1273 if (sp == struct_addr)
1274 sp--;
8818c391
TR
1275 }
1276
4add8633 1277 for (i = 0; i < nargs; i++)
8818c391 1278 {
4add8633
TR
1279 int last_regnum;
1280 int j;
1281 struct value *arg = args[i];
4991999e 1282 struct type *type = check_typedef (value_type (arg));
0fd88904 1283 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1284 int len = TYPE_LENGTH (type);
1285
0963b4bd 1286 /* Calculate the potential last register needed. */
4add8633
TR
1287 last_regnum = regnum - (len + (len & 1));
1288
0963b4bd
MS
1289 /* If there are registers available, use them. Once we start putting
1290 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1291 if ((si == NULL) && (last_regnum >= 8))
1292 {
1293 ULONGEST val;
1294
0963b4bd 1295 /* Skip a register for odd length args. */
4add8633
TR
1296 if (len & 1)
1297 regnum--;
1298
e17a4113 1299 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1300 for (j = 0; j < len; j++)
1301 regcache_cooked_write_unsigned
1302 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1303 }
0963b4bd 1304 /* No registers available, push the args onto the stack. */
4add8633
TR
1305 else
1306 {
0963b4bd 1307 /* From here on, we don't care about regnum. */
4add8633
TR
1308 si = push_stack_item (si, contents, len);
1309 }
8818c391 1310 }
909cd28e 1311
0963b4bd 1312 /* Push args onto the stack. */
4add8633
TR
1313 while (si)
1314 {
1315 sp -= si->len;
0963b4bd 1316 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1317 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1318 si = pop_stack_item (si);
1319 }
3605c34a 1320
4add8633
TR
1321 /* Set the return address. For the avr, the return address is the BP_ADDR.
1322 Need to push the return address onto the stack noting that it needs to be
1323 in big-endian order on the stack. */
6d1915d4
TG
1324 for (i = 1; i <= call_length; i++)
1325 {
1326 buf[call_length - i] = return_pc & 0xff;
1327 return_pc >>= 8;
1328 }
3605c34a 1329
6d1915d4 1330 sp -= call_length;
0963b4bd 1331 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1332 write_memory (sp + 1, buf, call_length);
3605c34a 1333
0963b4bd 1334 /* Finally, update the SP register. */
4add8633
TR
1335 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1336 avr_convert_saddr_to_raw (sp));
3605c34a 1337
6d1915d4
TG
1338 /* Return SP value for the dummy frame, where the return address hasn't been
1339 pushed. */
1340 return sp + call_length;
3605c34a
TR
1341}
1342
53f6a2c9
TG
1343/* Unfortunately dwarf2 register for SP is 32. */
1344
1345static int
1346avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1347{
1348 if (reg >= 0 && reg < 32)
1349 return reg;
1350 if (reg == 32)
1351 return AVR_SP_REGNUM;
1352
1353 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1354
1355 return -1;
1356}
1357
eb14d406
SDJ
1358/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1359 gdbarch.h. */
1360
1361static enum gdb_signal
1362avr_linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1363{
1364 if (signal >= AVR_LINUX_SIGRTMIN && signal <= AVR_LINUX_SIGRTMAX)
1365 {
1366 int offset = signal - AVR_LINUX_SIGRTMIN;
1367
1368 if (offset == 0)
1369 return GDB_SIGNAL_REALTIME_32;
1370 else
1371 return (enum gdb_signal) (offset - 1
1372 + (int) GDB_SIGNAL_REALTIME_33);
1373 }
1374 else if (signal > AVR_LINUX_SIGRTMAX)
1375 return GDB_SIGNAL_UNKNOWN;
1376
1377 return linux_gdb_signal_from_target (gdbarch, signal);
1378}
1379
1380/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1381 gdbarch.h. */
1382
1383static int
1384avr_linux_gdb_signal_to_target (struct gdbarch *gdbarch,
1385 enum gdb_signal signal)
1386{
1387 switch (signal)
1388 {
1389 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1390 therefore we have to handle it here. */
1391 case GDB_SIGNAL_REALTIME_32:
1392 return AVR_LINUX_SIGRTMIN;
1393
1394 /* GDB_SIGNAL_REALTIME_64 is not valid on AVR. */
1395 case GDB_SIGNAL_REALTIME_64:
1396 return -1;
1397 }
1398
1399 /* GDB_SIGNAL_REALTIME_33 to _63 are continuous.
1400 AVR does not have _64. */
1401 if (signal >= GDB_SIGNAL_REALTIME_33
1402 && signal <= GDB_SIGNAL_REALTIME_63)
1403 {
1404 int offset = signal - GDB_SIGNAL_REALTIME_33;
1405
1406 return AVR_LINUX_SIGRTMIN + 1 + offset;
1407 }
1408
1409 return linux_gdb_signal_to_target (gdbarch, signal);
1410}
1411
0963b4bd 1412/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1413
1414static struct gdbarch *
2e5ff58c
TR
1415avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1416{
2e5ff58c
TR
1417 struct gdbarch *gdbarch;
1418 struct gdbarch_tdep *tdep;
4e99ad69
TG
1419 struct gdbarch_list *best_arch;
1420 int call_length;
8818c391 1421
4e99ad69 1422 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1423 switch (info.bfd_arch_info->mach)
1424 {
1425 case bfd_mach_avr1:
1426 case bfd_mach_avr2:
1427 case bfd_mach_avr3:
1428 case bfd_mach_avr4:
1429 case bfd_mach_avr5:
4e99ad69
TG
1430 default:
1431 call_length = 2;
1432 break;
1433 case bfd_mach_avr6:
1434 call_length = 3;
8818c391
TR
1435 break;
1436 }
1437
4e99ad69
TG
1438 /* If there is already a candidate, use it. */
1439 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1440 best_arch != NULL;
1441 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1442 {
1443 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1444 return best_arch->gdbarch;
1445 }
1446
0963b4bd 1447 /* None found, create a new architecture from the information provided. */
4e99ad69
TG
1448 tdep = XMALLOC (struct gdbarch_tdep);
1449 gdbarch = gdbarch_alloc (&info, tdep);
1450
1451 tdep->call_length = call_length;
1452
7d2552b4
TG
1453 /* Create a type for PC. We can't use builtin types here, as they may not
1454 be defined. */
1455 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1456 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1457 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1458 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1459 TYPE_UNSIGNED (tdep->pc_type) = 1;
1460
8818c391
TR
1461 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1462 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1463 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1464 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1465 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1466 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1467
1468 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1469 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1470 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1471
8da61cc4
DJ
1472 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1473 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1474 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1475
1476 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1477 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1478
1479 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1480
1481 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1482 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1483
1484 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1485 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1486
7d2552b4
TG
1487 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1488 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1489 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1490
4c8b6ae0 1491 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1492 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1493
4add8633 1494 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1495
53f6a2c9
TG
1496 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1497
8818c391
TR
1498 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1499 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1500 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1501
8818c391 1502 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1503 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1504
909cd28e 1505 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1506
94afd7a6 1507 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1508 frame_base_set_default (gdbarch, &avr_frame_base);
1509
94afd7a6 1510 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1511
1512 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1513 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1514
eb14d406
SDJ
1515 set_gdbarch_gdb_signal_from_target (gdbarch,
1516 avr_linux_gdb_signal_from_target);
1517 set_gdbarch_gdb_signal_to_target (gdbarch,
1518 avr_linux_gdb_signal_to_target);
1519
8818c391
TR
1520 return gdbarch;
1521}
1522
1523/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1524 registers. If args parameter is not NULL, then the user has requested info
8818c391 1525 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1526 now]. The query string should be one of these forms:
8818c391
TR
1527
1528 "Ravr.io_reg" -> reply is "NN" number of io registers
1529
1530 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1531 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1532 where, <NAME> is a string, and VV is the hex value of the register.
1533
0963b4bd 1534 All io registers are 8-bit. */
8818c391
TR
1535
1536static void
1537avr_io_reg_read_command (char *args, int from_tty)
1538{
1e3ff5ad 1539 LONGEST bufsiz = 0;
13547ab6 1540 gdb_byte *buf;
001f13d8 1541 const char *bufstr;
2e5ff58c 1542 char query[400];
001f13d8 1543 const char *p;
2e5ff58c
TR
1544 unsigned int nreg = 0;
1545 unsigned int val;
1546 int i, j, k, step;
8818c391 1547
0963b4bd 1548 /* Find out how many io registers the target has. */
13547ab6
DJ
1549 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1550 "avr.io_reg", &buf);
001f13d8 1551 bufstr = (const char *) buf;
8818c391 1552
13547ab6 1553 if (bufsiz <= 0)
8818c391 1554 {
2e5ff58c 1555 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1556 _("ERR: info io_registers NOT supported "
1557 "by current target\n"));
8818c391
TR
1558 return;
1559 }
1560
001f13d8 1561 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1562 {
2e5ff58c 1563 fprintf_unfiltered (gdb_stderr,
edefbb7c 1564 _("Error fetching number of io registers\n"));
13547ab6 1565 xfree (buf);
8818c391
TR
1566 return;
1567 }
1568
13547ab6
DJ
1569 xfree (buf);
1570
2e5ff58c 1571 reinitialize_more_filter ();
8818c391 1572
edefbb7c 1573 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1574
1575 /* only fetch up to 8 registers at a time to keep the buffer small */
1576 step = 8;
1577
2e5ff58c 1578 for (i = 0; i < nreg; i += step)
8818c391 1579 {
91ccbfc1
TR
1580 /* how many registers this round? */
1581 j = step;
1582 if ((i+j) >= nreg)
1583 j = nreg - i; /* last block is less than 8 registers */
8818c391 1584
2e5ff58c 1585 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1586 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1587 query, &buf);
8818c391 1588
001f13d8 1589 p = (const char *) buf;
2e5ff58c
TR
1590 for (k = i; k < (i + j); k++)
1591 {
1592 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1593 {
1594 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1595 while ((*p != ';') && (*p != '\0'))
1596 p++;
1597 p++; /* skip over ';' */
1598 if (*p == '\0')
1599 break;
1600 }
1601 }
13547ab6
DJ
1602
1603 xfree (buf);
8818c391
TR
1604 }
1605}
1606
a78f21af
AC
1607extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1608
8818c391
TR
1609void
1610_initialize_avr_tdep (void)
1611{
1612 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1613
1614 /* Add a new command to allow the user to query the avr remote target for
1615 the values of the io space registers in a saner way than just using
0963b4bd 1616 `x/NNNb ADDR`. */
8818c391
TR
1617
1618 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1619 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1620
1621 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1622 _("query remote avr target for io space register values"),
1623 &infolist);
8818c391 1624}
This page took 0.784135 seconds and 4 git commands to generate.