Use RAII to save and restore scalars
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
618f726f 3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
a89aa300 37#include "dis-asm.h"
77e371c0 38#include "objfiles.h"
325fac50 39#include <algorithm>
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391 71
8818c391
TR
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
487d9753
PL
74/* Address space flags */
75
76/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
8818c391 84enum
2e5ff58c
TR
85{
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
7d2552b4
TG
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
2e5ff58c
TR
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
4add8633 105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 106
0963b4bd 107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
108 AVR_MAX_PUSHES = 18,
109
0963b4bd 110 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
111 AVR_LAST_PUSHED_REGNUM = 17,
112
4add8633
TR
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
cb86f388 115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
4add8633
TR
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
2e5ff58c 120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 121 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 128 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
0963b4bd 140 details of actually accessing the eeprom. */
2e5ff58c
TR
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 144#if 1
2e5ff58c
TR
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 147#else
2e5ff58c
TR
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 150#endif
2e5ff58c 151};
8818c391 152
4add8633
TR
153/* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165};
166
8818c391
TR
167/* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
4add8633 178struct avr_unwind_cache
2e5ff58c 179{
4add8633
TR
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 189};
8818c391
TR
190
191struct gdbarch_tdep
2e5ff58c 192{
4e99ad69 193 /* Number of bytes stored to the stack by call instructions.
9c97a070 194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 195 int call_length;
7d2552b4
TG
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
2e5ff58c 203};
8818c391 204
0963b4bd 205/* Lookup the name of a register given it's number. */
8818c391 206
fa88f677 207static const char *
d93859e2 208avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 209{
4e99ad69 210 static const char * const register_names[] = {
2e5ff58c
TR
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
215 "SREG", "SP", "PC2",
216 "pc"
8818c391
TR
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223}
224
8818c391
TR
225/* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228static struct type *
866b76ea 229avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 230{
866b76ea 231 if (reg_nr == AVR_PC_REGNUM)
df4df182 232 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 235 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 236 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 237 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
238}
239
0963b4bd 240/* Instruction address checks and convertions. */
8818c391
TR
241
242static CORE_ADDR
243avr_make_iaddr (CORE_ADDR x)
244{
245 return ((x) | AVR_IMEM_START);
246}
247
0963b4bd 248/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
249 devices are already up to 128KBytes of flash space.
250
0963b4bd 251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
252
253static CORE_ADDR
254avr_convert_iaddr_to_raw (CORE_ADDR x)
255{
256 return ((x) & 0xffffffff);
257}
258
0963b4bd 259/* SRAM address checks and convertions. */
8818c391
TR
260
261static CORE_ADDR
262avr_make_saddr (CORE_ADDR x)
263{
ee143e81
TG
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
8818c391
TR
268 return ((x) | AVR_SMEM_START);
269}
270
8818c391
TR
271static CORE_ADDR
272avr_convert_saddr_to_raw (CORE_ADDR x)
273{
274 return ((x) & 0xffffffff);
275}
276
0963b4bd
MS
277/* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
8818c391
TR
279
280/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 281 programs in the mega128. */
8818c391
TR
282
283/* static CORE_ADDR */
284/* avr_make_eaddr (CORE_ADDR x) */
285/* { */
286/* return ((x) | AVR_EMEM_START); */
287/* } */
288
289/* static int */
290/* avr_eaddr_p (CORE_ADDR x) */
291/* { */
292/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293/* } */
294
295/* static CORE_ADDR */
296/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297/* { */
298/* return ((x) & 0xffffffff); */
299/* } */
300
0963b4bd 301/* Convert from address to pointer and vice-versa. */
8818c391
TR
302
303static void
9898f801
UW
304avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 306{
e17a4113
UW
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
487d9753
PL
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
7d0d9d2b 312 /* A data pointer in flash is byte addressed. */
487d9753
PL
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
8818c391 316 /* Is it a code address? */
487d9753
PL
317 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
318 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
8818c391 319 {
7d0d9d2b
PL
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
e17a4113 322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 323 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
e17a4113 328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 329 avr_convert_saddr_to_raw (addr));
8818c391
TR
330 }
331}
332
333static CORE_ADDR
9898f801
UW
334avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
8818c391 336{
e17a4113
UW
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 340
487d9753
PL
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
7d0d9d2b
PL
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
8818c391 347 /* Is it a code address? */
487d9753
PL
348 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
349 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
7d0d9d2b
PL
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
8818c391
TR
356 else
357 return avr_make_saddr (addr);
358}
359
8a1d23b2
TG
360static CORE_ADDR
361avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363{
364 ULONGEST addr = unpack_long (type, buf);
365
366 return avr_make_saddr (addr);
367}
368
8818c391 369static CORE_ADDR
61a1198a 370avr_read_pc (struct regcache *regcache)
8818c391 371{
8619218d 372 ULONGEST pc;
61a1198a
UW
373 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
374 return avr_make_iaddr (pc);
8818c391
TR
375}
376
377static void
61a1198a 378avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 379{
61a1198a 380 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
381 avr_convert_iaddr_to_raw (val));
382}
383
05d1431c 384static enum register_status
7d2552b4
TG
385avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
386 int regnum, gdb_byte *buf)
387{
388 ULONGEST val;
05d1431c 389 enum register_status status;
7d2552b4
TG
390
391 switch (regnum)
392 {
393 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
394 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
395 if (status != REG_VALID)
396 return status;
7d2552b4
TG
397 val >>= 1;
398 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 399 return status;
7d2552b4
TG
400 default:
401 internal_error (__FILE__, __LINE__, _("invalid regnum"));
402 }
403}
404
405static void
406avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
407 int regnum, const gdb_byte *buf)
408{
409 ULONGEST val;
410
411 switch (regnum)
412 {
413 case AVR_PSEUDO_PC_REGNUM:
414 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
415 val <<= 1;
416 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
417 break;
418 default:
419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
420 }
8818c391
TR
421}
422
4add8633 423/* Function: avr_scan_prologue
8818c391 424
4add8633 425 This function decodes an AVR function prologue to determine:
8818c391
TR
426 1) the size of the stack frame
427 2) which registers are saved on it
428 3) the offsets of saved regs
4add8633 429 This information is stored in the avr_unwind_cache structure.
8818c391 430
e3d8b004
TR
431 Some devices lack the sbiw instruction, so on those replace this:
432 sbiw r28, XX
433 with this:
434 subi r28,lo8(XX)
435 sbci r29,hi8(XX)
436
437 A typical AVR function prologue with a frame pointer might look like this:
438 push rXX ; saved regs
439 ...
440 push r28
441 push r29
442 in r28,__SP_L__
443 in r29,__SP_H__
444 sbiw r28,<LOCALS_SIZE>
445 in __tmp_reg__,__SREG__
8818c391 446 cli
e3d8b004 447 out __SP_H__,r29
72fab697
TR
448 out __SREG__,__tmp_reg__
449 out __SP_L__,r28
e3d8b004
TR
450
451 A typical AVR function prologue without a frame pointer might look like
452 this:
453 push rXX ; saved regs
454 ...
455
456 A main function prologue looks like this:
457 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
458 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
459 out __SP_H__,r29
460 out __SP_L__,r28
461
462 A signal handler prologue looks like this:
463 push __zero_reg__
464 push __tmp_reg__
465 in __tmp_reg__, __SREG__
466 push __tmp_reg__
467 clr __zero_reg__
468 push rXX ; save registers r18:r27, r30:r31
469 ...
470 push r28 ; save frame pointer
471 push r29
472 in r28, __SP_L__
473 in r29, __SP_H__
474 sbiw r28, <LOCALS_SIZE>
475 out __SP_H__, r29
476 out __SP_L__, r28
477
478 A interrupt handler prologue looks like this:
479 sei
480 push __zero_reg__
481 push __tmp_reg__
482 in __tmp_reg__, __SREG__
483 push __tmp_reg__
484 clr __zero_reg__
485 push rXX ; save registers r18:r27, r30:r31
486 ...
487 push r28 ; save frame pointer
488 push r29
489 in r28, __SP_L__
490 in r29, __SP_H__
491 sbiw r28, <LOCALS_SIZE>
492 cli
493 out __SP_H__, r29
494 sei
495 out __SP_L__, r28
496
497 A `-mcall-prologues' prologue looks like this (Note that the megas use a
498 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
499 32 bit insn and rjmp is a 16 bit insn):
500 ldi r26,lo8(<LOCALS_SIZE>)
501 ldi r27,hi8(<LOCALS_SIZE>)
502 ldi r30,pm_lo8(.L_foo_body)
503 ldi r31,pm_hi8(.L_foo_body)
504 rjmp __prologue_saves__+RRR
505 .L_foo_body: */
8818c391 506
4add8633
TR
507/* Not really part of a prologue, but still need to scan for it, is when a
508 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
509 registers. In this case, all local variables live in registers, so there
510 may be some register saves. This is what it looks like:
4add8633
TR
511 movw rMM, rNN
512 ...
513
0963b4bd
MS
514 There could be multiple movw's. If the target doesn't have a movw insn, it
515 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
516 types. */
517
518static CORE_ADDR
e17a4113 519avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 520 struct avr_unwind_cache *info)
8818c391 521{
e17a4113 522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
523 int i;
524 unsigned short insn;
2e5ff58c 525 int scan_stage = 0;
3b7344d5 526 struct bound_minimal_symbol msymbol;
8818c391
TR
527 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
528 int vpc = 0;
4e99ad69
TG
529 int len;
530
531 len = pc_end - pc_beg;
532 if (len > AVR_MAX_PROLOGUE_SIZE)
533 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 534
4add8633 535 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
536 reading in the bytes of the prologue. The problem is that the figuring
537 out where the end of the prologue is is a bit difficult. The old code
4add8633 538 tried to do that, but failed quite often. */
4e99ad69 539 read_memory (pc_beg, prologue, len);
8818c391
TR
540
541 /* Scanning main()'s prologue
542 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
543 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
544 out __SP_H__,r29
545 out __SP_L__,r28 */
546
4e99ad69 547 if (len >= 4)
8818c391
TR
548 {
549 CORE_ADDR locals;
4e99ad69 550 static const unsigned char img[] = {
2e5ff58c
TR
551 0xde, 0xbf, /* out __SP_H__,r29 */
552 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
553 };
554
e17a4113 555 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 556 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
557 if ((insn & 0xf0f0) == 0xe0c0)
558 {
559 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 560 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
561 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
562 if ((insn & 0xf0f0) == 0xe0d0)
563 {
564 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
565 if (vpc + 4 + sizeof (img) < len
566 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 567 {
4add8633
TR
568 info->prologue_type = AVR_PROLOGUE_MAIN;
569 info->base = locals;
4e99ad69 570 return pc_beg + 4;
2e5ff58c
TR
571 }
572 }
573 }
8818c391 574 }
2e5ff58c 575
4add8633
TR
576 /* Scanning `-mcall-prologues' prologue
577 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 578
e3d8b004 579 while (1) /* Using a while to avoid many goto's */
8818c391
TR
580 {
581 int loc_size;
582 int body_addr;
583 unsigned num_pushes;
4add8633 584 int pc_offset = 0;
2e5ff58c 585
4e99ad69
TG
586 /* At least the fifth instruction must have been executed to
587 modify frame shape. */
588 if (len < 10)
589 break;
590
e17a4113 591 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 592 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
593 if ((insn & 0xf0f0) != 0xe0a0)
594 break;
8818c391 595 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 596 pc_offset += 2;
2e5ff58c 597
e17a4113 598 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
599 /* ldi r27,<LOCALS_SIZE> / 256 */
600 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 601 break;
8818c391 602 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 603 pc_offset += 2;
2e5ff58c 604
e17a4113 605 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
606 /* ldi r30,pm_lo8(.L_foo_body) */
607 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 608 break;
8818c391 609 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 610 pc_offset += 2;
8818c391 611
e17a4113 612 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
613 /* ldi r31,pm_hi8(.L_foo_body) */
614 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 615 break;
8818c391 616 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 617 pc_offset += 2;
8818c391 618
8818c391 619 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 620 if (!msymbol.minsym)
2e5ff58c 621 break;
8818c391 622
e17a4113 623 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 624 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
625 if ((insn & 0xf000) == 0xc000)
626 {
627 /* Extract PC relative offset from RJMP */
628 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
629 /* Convert offset to byte addressable mode */
630 i *= 2;
631 /* Destination address */
4e99ad69 632 i += pc_beg + 10;
e3d8b004 633
4e99ad69 634 if (body_addr != (pc_beg + 10)/2)
e3d8b004 635 break;
4add8633
TR
636
637 pc_offset += 2;
e3d8b004 638 }
e3d8b004
TR
639 else if ((insn & 0xfe0e) == 0x940c)
640 {
641 /* Extract absolute PC address from JMP */
642 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
643 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
644 & 0xffff));
e3d8b004
TR
645 /* Convert address to byte addressable mode */
646 i *= 2;
647
4e99ad69 648 if (body_addr != (pc_beg + 12)/2)
e3d8b004 649 break;
4add8633
TR
650
651 pc_offset += 4;
e3d8b004
TR
652 }
653 else
654 break;
2e5ff58c 655
4add8633 656 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 657 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 658 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
659
660 if (num_pushes > AVR_MAX_PUSHES)
4add8633 661 {
edefbb7c 662 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
663 num_pushes);
664 num_pushes = 0;
665 }
2e5ff58c 666
8818c391 667 if (num_pushes)
2e5ff58c
TR
668 {
669 int from;
4add8633
TR
670
671 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 672 if (num_pushes >= 2)
4add8633
TR
673 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
674
2e5ff58c
TR
675 i = 0;
676 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
677 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 678 info->saved_regs [from].addr = ++i;
2e5ff58c 679 }
4add8633
TR
680 info->size = loc_size + num_pushes;
681 info->prologue_type = AVR_PROLOGUE_CALL;
682
4e99ad69 683 return pc_beg + pc_offset;
8818c391
TR
684 }
685
4add8633
TR
686 /* Scan for the beginning of the prologue for an interrupt or signal
687 function. Note that we have to set the prologue type here since the
688 third stage of the prologue may not be present (e.g. no saved registered
689 or changing of the SP register). */
8818c391 690
4add8633 691 if (1)
8818c391 692 {
4e99ad69 693 static const unsigned char img[] = {
2e5ff58c
TR
694 0x78, 0x94, /* sei */
695 0x1f, 0x92, /* push r1 */
696 0x0f, 0x92, /* push r0 */
697 0x0f, 0xb6, /* in r0,0x3f SREG */
698 0x0f, 0x92, /* push r0 */
699 0x11, 0x24 /* clr r1 */
8818c391 700 };
4e99ad69
TG
701 if (len >= sizeof (img)
702 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 703 {
4add8633 704 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 705 vpc += sizeof (img);
4add8633
TR
706 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
707 info->saved_regs[0].addr = 2;
708 info->saved_regs[1].addr = 1;
709 info->size += 3;
2e5ff58c 710 }
4e99ad69
TG
711 else if (len >= sizeof (img) - 2
712 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 713 {
4add8633
TR
714 info->prologue_type = AVR_PROLOGUE_SIG;
715 vpc += sizeof (img) - 2;
716 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
717 info->saved_regs[0].addr = 2;
718 info->saved_regs[1].addr = 1;
243e2c5d 719 info->size += 2;
2e5ff58c 720 }
8818c391
TR
721 }
722
723 /* First stage of the prologue scanning.
4add8633 724 Scan pushes (saved registers) */
8818c391 725
4e99ad69 726 for (; vpc < len; vpc += 2)
8818c391 727 {
e17a4113 728 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
729 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
730 {
0963b4bd 731 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
732 int regno = (insn & 0x1f0) >> 4;
733 info->size++;
734 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
735 scan_stage = 1;
736 }
8818c391 737 else
2e5ff58c 738 break;
8818c391
TR
739 }
740
243e2c5d 741 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 742
1bd0bb72
TG
743 /* Handle static small stack allocation using rcall or push. */
744
745 while (scan_stage == 1 && vpc < len)
746 {
747 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
748 if (insn == 0xd000) /* rcall .+0 */
749 {
750 info->size += gdbarch_tdep (gdbarch)->call_length;
751 vpc += 2;
752 }
7588d2ec 753 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
754 {
755 info->size += 1;
756 vpc += 2;
757 }
758 else
759 break;
760 }
761
8818c391
TR
762 /* Second stage of the prologue scanning.
763 Scan:
764 in r28,__SP_L__
765 in r29,__SP_H__ */
766
4e99ad69 767 if (scan_stage == 1 && vpc < len)
8818c391 768 {
4e99ad69 769 static const unsigned char img[] = {
2e5ff58c
TR
770 0xcd, 0xb7, /* in r28,__SP_L__ */
771 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 772 };
2e5ff58c 773
4e99ad69
TG
774 if (vpc + sizeof (img) < len
775 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
776 {
777 vpc += 4;
2e5ff58c
TR
778 scan_stage = 2;
779 }
8818c391
TR
780 }
781
0963b4bd 782 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
783 Scan for:
784 sbiw r28,XX or subi r28,lo8(XX)
72fab697 785 sbci r29,hi8(XX)
8818c391
TR
786 in __tmp_reg__,__SREG__
787 cli
e3d8b004 788 out __SP_H__,r29
8818c391 789 out __SREG__,__tmp_reg__
e3d8b004 790 out __SP_L__,r28 */
8818c391 791
4e99ad69 792 if (scan_stage == 2 && vpc < len)
8818c391
TR
793 {
794 int locals_size = 0;
4e99ad69 795 static const unsigned char img[] = {
2e5ff58c
TR
796 0x0f, 0xb6, /* in r0,0x3f */
797 0xf8, 0x94, /* cli */
e3d8b004 798 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 799 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 800 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 801 };
4e99ad69 802 static const unsigned char img_sig[] = {
e3d8b004
TR
803 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
804 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 805 };
4e99ad69 806 static const unsigned char img_int[] = {
2e5ff58c 807 0xf8, 0x94, /* cli */
e3d8b004 808 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 809 0x78, 0x94, /* sei */
e3d8b004 810 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 811 };
2e5ff58c 812
e17a4113 813 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 814 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
815 {
816 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
817 vpc += 2;
818 }
2e5ff58c
TR
819 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
820 {
821 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 822 vpc += 2;
e17a4113 823 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 824 vpc += 2;
1bd0bb72 825 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 826 }
8818c391 827 else
1bd0bb72 828 return pc_beg + vpc;
4add8633 829
0963b4bd 830 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
831 or signal handler functions, which is why we set the prologue type
832 when we saw the beginning of the prologue previously. */
833
4e99ad69
TG
834 if (vpc + sizeof (img_sig) < len
835 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
836 {
837 vpc += sizeof (img_sig);
838 }
4e99ad69
TG
839 else if (vpc + sizeof (img_int) < len
840 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
841 {
842 vpc += sizeof (img_int);
843 }
4e99ad69
TG
844 if (vpc + sizeof (img) < len
845 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
846 {
847 info->prologue_type = AVR_PROLOGUE_NORMAL;
848 vpc += sizeof (img);
849 }
850
851 info->size += locals_size;
852
4e99ad69 853 /* Fall through. */
8818c391 854 }
4add8633
TR
855
856 /* If we got this far, we could not scan the prologue, so just return the pc
857 of the frame plus an adjustment for argument move insns. */
858
4e99ad69
TG
859 for (; vpc < len; vpc += 2)
860 {
e17a4113 861 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
862 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
863 continue;
864 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
865 continue;
866 else
867 break;
868 }
869
870 return pc_beg + vpc;
8818c391
TR
871}
872
4add8633 873static CORE_ADDR
6093d2eb 874avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
875{
876 CORE_ADDR func_addr, func_end;
8c201e54 877 CORE_ADDR post_prologue_pc;
8818c391 878
4add8633 879 /* See what the symbol table says */
8818c391 880
8c201e54
TG
881 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
882 return pc;
2e5ff58c 883
8c201e54
TG
884 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
885 if (post_prologue_pc != 0)
325fac50 886 return std::max (pc, post_prologue_pc);
8818c391 887
8c201e54
TG
888 {
889 CORE_ADDR prologue_end = pc;
890 struct avr_unwind_cache info = {0};
891 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 892
8c201e54
TG
893 info.saved_regs = saved_regs;
894
895 /* Need to run the prologue scanner to figure out if the function has a
896 prologue and possibly skip over moving arguments passed via registers
897 to other registers. */
898
899 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
900
901 if (info.prologue_type != AVR_PROLOGUE_NONE)
902 return prologue_end;
903 }
2e5ff58c 904
4e99ad69
TG
905 /* Either we didn't find the start of this function (nothing we can do),
906 or there's no line info, or the line after the prologue is after
0963b4bd 907 the end of the function (there probably isn't a prologue). */
2e5ff58c 908
8c201e54 909 return pc;
4add8633 910}
8818c391 911
0963b4bd
MS
912/* Not all avr devices support the BREAK insn. Those that don't should treat
913 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
914 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 915
4add8633 916static const unsigned char *
0963b4bd
MS
917avr_breakpoint_from_pc (struct gdbarch *gdbarch,
918 CORE_ADDR *pcptr, int *lenptr)
4add8633 919{
4e99ad69 920 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
921 *lenptr = sizeof (avr_break_insn);
922 return avr_break_insn;
8818c391
TR
923}
924
4c8b6ae0
UW
925/* Determine, for architecture GDBARCH, how a return value of TYPE
926 should be returned. If it is supposed to be returned in registers,
927 and READBUF is non-zero, read the appropriate value from REGCACHE,
928 and copy it into READBUF. If WRITEBUF is non-zero, write the value
929 from WRITEBUF into REGCACHE. */
930
63807e1d 931static enum return_value_convention
6a3a010b 932avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
933 struct type *valtype, struct regcache *regcache,
934 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 935{
1bd0bb72
TG
936 int i;
937 /* Single byte are returned in r24.
938 Otherwise, the MSB of the return value is always in r25, calculate which
939 register holds the LSB. */
940 int lsb_reg;
941
942 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
943 || TYPE_CODE (valtype) == TYPE_CODE_UNION
944 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
945 && TYPE_LENGTH (valtype) > 8)
946 return RETURN_VALUE_STRUCT_CONVENTION;
947
948 if (TYPE_LENGTH (valtype) <= 2)
949 lsb_reg = 24;
950 else if (TYPE_LENGTH (valtype) <= 4)
951 lsb_reg = 22;
952 else if (TYPE_LENGTH (valtype) <= 8)
953 lsb_reg = 18;
954 else
f3574227 955 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
956
957 if (writebuf != NULL)
958 {
1bd0bb72
TG
959 for (i = 0; i < TYPE_LENGTH (valtype); i++)
960 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
961 }
962
963 if (readbuf != NULL)
964 {
1bd0bb72
TG
965 for (i = 0; i < TYPE_LENGTH (valtype); i++)
966 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
967 }
968
1bd0bb72 969 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
970}
971
972
4add8633
TR
973/* Put here the code to store, into fi->saved_regs, the addresses of
974 the saved registers of frame described by FRAME_INFO. This
975 includes special registers such as pc and fp saved in special ways
976 in the stack frame. sp is even more special: the address we return
0963b4bd 977 for it IS the sp for the next frame. */
8818c391 978
63807e1d 979static struct avr_unwind_cache *
94afd7a6 980avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 981 void **this_prologue_cache)
8818c391 982{
4e99ad69 983 CORE_ADDR start_pc, current_pc;
4add8633
TR
984 ULONGEST prev_sp;
985 ULONGEST this_base;
986 struct avr_unwind_cache *info;
4e99ad69
TG
987 struct gdbarch *gdbarch;
988 struct gdbarch_tdep *tdep;
4add8633
TR
989 int i;
990
4e99ad69 991 if (*this_prologue_cache)
9a3c8263 992 return (struct avr_unwind_cache *) *this_prologue_cache;
4add8633
TR
993
994 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 995 *this_prologue_cache = info;
94afd7a6 996 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
997
998 info->size = 0;
999 info->prologue_type = AVR_PROLOGUE_NONE;
1000
4e99ad69
TG
1001 start_pc = get_frame_func (this_frame);
1002 current_pc = get_frame_pc (this_frame);
1003 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
1004 avr_scan_prologue (get_frame_arch (this_frame),
1005 start_pc, current_pc, info);
4add8633 1006
3b85b0f1
TR
1007 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1008 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1009 {
1010 ULONGEST high_base; /* High byte of FP */
1011
1012 /* The SP was moved to the FP. This indicates that a new frame
1013 was created. Get THIS frame's FP value by unwinding it from
1014 the next frame. */
94afd7a6 1015 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1016 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1017 this_base += (high_base << 8);
1018
1019 /* The FP points at the last saved register. Adjust the FP back
1020 to before the first saved register giving the SP. */
1021 prev_sp = this_base + info->size;
1022 }
8818c391 1023 else
4add8633
TR
1024 {
1025 /* Assume that the FP is this frame's SP but with that pushed
1026 stack space added back. */
94afd7a6 1027 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1028 prev_sp = this_base + info->size;
1029 }
1030
1031 /* Add 1 here to adjust for the post-decrement nature of the push
1032 instruction.*/
4e99ad69 1033 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1034 info->base = avr_make_saddr (this_base);
1035
4e99ad69
TG
1036 gdbarch = get_frame_arch (this_frame);
1037
4add8633 1038 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1039 offsets. */
4e99ad69
TG
1040 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1041 if (info->saved_regs[i].addr > 0)
1042 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1043
1044 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1045 the stack and is at the base of the frame. */
4add8633
TR
1046
1047 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1048 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1049
3b85b0f1
TR
1050 /* The previous frame's SP needed to be computed. Save the computed
1051 value. */
4e99ad69
TG
1052 tdep = gdbarch_tdep (gdbarch);
1053 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1054 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1055
4add8633 1056 return info;
8818c391
TR
1057}
1058
1059static CORE_ADDR
4add8633 1060avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1061{
4add8633
TR
1062 ULONGEST pc;
1063
11411de3 1064 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1065
1066 return avr_make_iaddr (pc);
8818c391
TR
1067}
1068
30244cd8
UW
1069static CORE_ADDR
1070avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1071{
1072 ULONGEST sp;
1073
11411de3 1074 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1075
1076 return avr_make_saddr (sp);
1077}
1078
4add8633
TR
1079/* Given a GDB frame, determine the address of the calling function's
1080 frame. This will be used to create a new GDB frame struct. */
8818c391 1081
4add8633 1082static void
94afd7a6 1083avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1084 void **this_prologue_cache,
1085 struct frame_id *this_id)
8818c391 1086{
4add8633 1087 struct avr_unwind_cache *info
94afd7a6 1088 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1089 CORE_ADDR base;
1090 CORE_ADDR func;
1091 struct frame_id id;
1092
1093 /* The FUNC is easy. */
94afd7a6 1094 func = get_frame_func (this_frame);
4add8633 1095
4add8633
TR
1096 /* Hopefully the prologue analysis either correctly determined the
1097 frame's base (which is the SP from the previous frame), or set
1098 that base to "NULL". */
1099 base = info->prev_sp;
1100 if (base == 0)
1101 return;
1102
1103 id = frame_id_build (base, func);
4add8633 1104 (*this_id) = id;
8818c391
TR
1105}
1106
94afd7a6
UW
1107static struct value *
1108avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1109 void **this_prologue_cache, int regnum)
8818c391 1110{
4add8633 1111 struct avr_unwind_cache *info
94afd7a6 1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1113
7d2552b4 1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1115 {
7d2552b4 1116 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1117 {
94afd7a6
UW
1118 /* Reading the return PC from the PC register is slightly
1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1120 but in reality, only two bytes (3 in upcoming mega256) are
1121 stored on the stack.
1122
1123 Also, note that the value on the stack is an addr to a word
1124 not a byte, so we will need to multiply it by two at some
1125 point.
1126
1127 And to confuse matters even more, the return address stored
1128 on the stack is in big endian byte order, even though most
0963b4bd 1129 everything else about the avr is little endian. Ick! */
94afd7a6 1130 ULONGEST pc;
4e99ad69 1131 int i;
e362b510 1132 gdb_byte buf[3];
4e99ad69
TG
1133 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1135
7d2552b4
TG
1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1137 buf, tdep->call_length);
94afd7a6 1138
4e99ad69
TG
1139 /* Extract the PC read from memory as a big-endian. */
1140 pc = 0;
1141 for (i = 0; i < tdep->call_length; i++)
1142 pc = (pc << 8) | buf[i];
94afd7a6 1143
7d2552b4
TG
1144 if (regnum == AVR_PC_REGNUM)
1145 pc <<= 1;
1146
1147 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1148 }
94afd7a6
UW
1149
1150 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1151 }
94afd7a6
UW
1152
1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1154}
8818c391 1155
4add8633
TR
1156static const struct frame_unwind avr_frame_unwind = {
1157 NORMAL_FRAME,
8fbca658 1158 default_frame_unwind_stop_reason,
4add8633 1159 avr_frame_this_id,
94afd7a6
UW
1160 avr_frame_prev_register,
1161 NULL,
1162 default_frame_sniffer
4add8633
TR
1163};
1164
8818c391 1165static CORE_ADDR
94afd7a6 1166avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1167{
4add8633 1168 struct avr_unwind_cache *info
94afd7a6 1169 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1170
4add8633
TR
1171 return info->base;
1172}
8818c391 1173
4add8633
TR
1174static const struct frame_base avr_frame_base = {
1175 &avr_frame_unwind,
1176 avr_frame_base_address,
1177 avr_frame_base_address,
1178 avr_frame_base_address
1179};
ced15480 1180
94afd7a6
UW
1181/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1182 frame. The frame ID's base needs to match the TOS value saved by
1183 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1184
4add8633 1185static struct frame_id
94afd7a6 1186avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1187{
1188 ULONGEST base;
8818c391 1189
94afd7a6
UW
1190 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1191 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1192}
1193
4add8633 1194/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1195 order. The below implements a FILO (stack) to do this. */
8818c391 1196
4add8633
TR
1197struct stack_item
1198{
1199 int len;
1200 struct stack_item *prev;
7c543f7b 1201 gdb_byte *data;
4add8633 1202};
8818c391 1203
4add8633 1204static struct stack_item *
0fd88904 1205push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1206{
4add8633 1207 struct stack_item *si;
8d749320 1208 si = XNEW (struct stack_item);
7c543f7b 1209 si->data = (gdb_byte *) xmalloc (len);
4add8633
TR
1210 si->len = len;
1211 si->prev = prev;
1212 memcpy (si->data, contents, len);
1213 return si;
8818c391
TR
1214}
1215
4add8633
TR
1216static struct stack_item *pop_stack_item (struct stack_item *si);
1217static struct stack_item *
1218pop_stack_item (struct stack_item *si)
8818c391 1219{
4add8633
TR
1220 struct stack_item *dead = si;
1221 si = si->prev;
1222 xfree (dead->data);
1223 xfree (dead);
1224 return si;
8818c391
TR
1225}
1226
8818c391
TR
1227/* Setup the function arguments for calling a function in the inferior.
1228
1229 On the AVR architecture, there are 18 registers (R25 to R8) which are
1230 dedicated for passing function arguments. Up to the first 18 arguments
1231 (depending on size) may go into these registers. The rest go on the stack.
1232
4add8633 1233 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1234 arguments, including char, have one free register above them). For example,
4add8633
TR
1235 an int in arg1 and a char in arg2 would be passed as such:
1236
1237 arg1 -> r25:r24
1238 arg2 -> r22
1239
1240 Arguments that are larger than 2 bytes will be split between two or more
1241 registers as available, but will NOT be split between a register and the
0963b4bd 1242 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1243 similar to the d10v). */
1244
1245/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1246 inaccurate.
8818c391
TR
1247
1248 An exceptional case exists for struct arguments (and possibly other
1249 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1250 not a multiple of WORDSIZE bytes. In this case the argument is never split
1251 between the registers and the stack, but instead is copied in its entirety
1252 onto the stack, AND also copied into as many registers as there is room
1253 for. In other words, space in registers permitting, two copies of the same
1254 argument are passed in. As far as I can tell, only the one on the stack is
1255 used, although that may be a function of the level of compiler
1256 optimization. I suspect this is a compiler bug. Arguments of these odd
1257 sizes are left-justified within the word (as opposed to arguments smaller
1258 than WORDSIZE bytes, which are right-justified).
1259
1260 If the function is to return an aggregate type such as a struct, the caller
1261 must allocate space into which the callee will copy the return value. In
1262 this case, a pointer to the return value location is passed into the callee
1263 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1264 registers R0 to R2. */
8818c391
TR
1265
1266static CORE_ADDR
7d9b040b 1267avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1268 struct regcache *regcache, CORE_ADDR bp_addr,
1269 int nargs, struct value **args, CORE_ADDR sp,
1270 int struct_return, CORE_ADDR struct_addr)
8818c391 1271{
4add8633 1272 int i;
e362b510 1273 gdb_byte buf[3];
6d1915d4 1274 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1275 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1276 int regnum = AVR_ARGN_REGNUM;
1277 struct stack_item *si = NULL;
8818c391 1278
4add8633 1279 if (struct_return)
8818c391 1280 {
fd6d6815
TG
1281 regcache_cooked_write_unsigned
1282 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1283 regcache_cooked_write_unsigned
1284 (regcache, regnum--, struct_addr & 0xff);
1285 /* SP being post decremented, we need to reserve one byte so that the
1286 return address won't overwrite the result (or vice-versa). */
1287 if (sp == struct_addr)
1288 sp--;
8818c391
TR
1289 }
1290
4add8633 1291 for (i = 0; i < nargs; i++)
8818c391 1292 {
4add8633
TR
1293 int last_regnum;
1294 int j;
1295 struct value *arg = args[i];
4991999e 1296 struct type *type = check_typedef (value_type (arg));
0fd88904 1297 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1298 int len = TYPE_LENGTH (type);
1299
cb86f388
DC
1300 /* Calculate the potential last register needed.
1301 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1302 shall be used. So, last needed register will be regnum-1(24). */
1303 last_regnum = regnum - (len + (len & 1)) + 1;
4add8633 1304
0963b4bd
MS
1305 /* If there are registers available, use them. Once we start putting
1306 stuff on the stack, all subsequent args go on stack. */
cb86f388 1307 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
4add8633 1308 {
0963b4bd 1309 /* Skip a register for odd length args. */
4add8633
TR
1310 if (len & 1)
1311 regnum--;
1312
cb86f388
DC
1313 /* Write MSB of argument into register and subsequent bytes in
1314 decreasing register numbers. */
6d1915d4
TG
1315 for (j = 0; j < len; j++)
1316 regcache_cooked_write_unsigned
cb86f388 1317 (regcache, regnum--, contents[len - j - 1]);
4add8633 1318 }
0963b4bd 1319 /* No registers available, push the args onto the stack. */
4add8633
TR
1320 else
1321 {
0963b4bd 1322 /* From here on, we don't care about regnum. */
4add8633
TR
1323 si = push_stack_item (si, contents, len);
1324 }
8818c391 1325 }
909cd28e 1326
0963b4bd 1327 /* Push args onto the stack. */
4add8633
TR
1328 while (si)
1329 {
1330 sp -= si->len;
0963b4bd 1331 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1332 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1333 si = pop_stack_item (si);
1334 }
3605c34a 1335
4add8633
TR
1336 /* Set the return address. For the avr, the return address is the BP_ADDR.
1337 Need to push the return address onto the stack noting that it needs to be
1338 in big-endian order on the stack. */
6d1915d4
TG
1339 for (i = 1; i <= call_length; i++)
1340 {
1341 buf[call_length - i] = return_pc & 0xff;
1342 return_pc >>= 8;
1343 }
3605c34a 1344
6d1915d4 1345 sp -= call_length;
0963b4bd 1346 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1347 write_memory (sp + 1, buf, call_length);
3605c34a 1348
0963b4bd 1349 /* Finally, update the SP register. */
4add8633
TR
1350 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1351 avr_convert_saddr_to_raw (sp));
3605c34a 1352
6d1915d4
TG
1353 /* Return SP value for the dummy frame, where the return address hasn't been
1354 pushed. */
1355 return sp + call_length;
3605c34a
TR
1356}
1357
53f6a2c9
TG
1358/* Unfortunately dwarf2 register for SP is 32. */
1359
1360static int
1361avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1362{
1363 if (reg >= 0 && reg < 32)
1364 return reg;
1365 if (reg == 32)
1366 return AVR_SP_REGNUM;
53f6a2c9
TG
1367 return -1;
1368}
1369
487d9753
PL
1370/* Implementation of `address_class_type_flags' gdbarch method.
1371
1372 This method maps DW_AT_address_class attributes to a
1373 type_instance_flag_value. */
1374
1375static int
1376avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1377{
1378 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1379 __flash qualifier. Note that this attribute is only valid with
1380 pointer types and therefore the flag is set to the pointer type and
1381 not its target type. */
1382 if (dwarf2_addr_class == 1 && byte_size == 2)
1383 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1384 return 0;
1385}
1386
1387/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1388
1389 Convert a type_instance_flag_value to an address space qualifier. */
1390
1391static const char*
1392avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1393{
1394 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1395 return "flash";
1396 else
1397 return NULL;
1398}
1399
1400/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1401
1402 Convert an address space qualifier to a type_instance_flag_value. */
1403
1404static int
1405avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1406 const char* name,
1407 int *type_flags_ptr)
1408{
1409 if (strcmp (name, "flash") == 0)
1410 {
1411 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1412 return 1;
1413 }
1414 else
1415 return 0;
1416}
1417
0963b4bd 1418/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1419
1420static struct gdbarch *
2e5ff58c
TR
1421avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1422{
2e5ff58c
TR
1423 struct gdbarch *gdbarch;
1424 struct gdbarch_tdep *tdep;
4e99ad69
TG
1425 struct gdbarch_list *best_arch;
1426 int call_length;
8818c391 1427
4e99ad69 1428 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1429 switch (info.bfd_arch_info->mach)
1430 {
1431 case bfd_mach_avr1:
9c97a070 1432 case bfd_mach_avrxmega1:
8818c391 1433 case bfd_mach_avr2:
9c97a070 1434 case bfd_mach_avrxmega2:
8818c391 1435 case bfd_mach_avr3:
9c97a070 1436 case bfd_mach_avrxmega3:
8818c391 1437 case bfd_mach_avr4:
9c97a070 1438 case bfd_mach_avrxmega4:
8818c391 1439 case bfd_mach_avr5:
9c97a070 1440 case bfd_mach_avrxmega5:
4e99ad69
TG
1441 default:
1442 call_length = 2;
1443 break;
1444 case bfd_mach_avr6:
9c97a070
PL
1445 case bfd_mach_avrxmega6:
1446 case bfd_mach_avrxmega7:
4e99ad69 1447 call_length = 3;
8818c391
TR
1448 break;
1449 }
1450
4e99ad69
TG
1451 /* If there is already a candidate, use it. */
1452 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1453 best_arch != NULL;
1454 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1455 {
1456 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1457 return best_arch->gdbarch;
1458 }
1459
0963b4bd 1460 /* None found, create a new architecture from the information provided. */
70ba0933 1461 tdep = XNEW (struct gdbarch_tdep);
4e99ad69
TG
1462 gdbarch = gdbarch_alloc (&info, tdep);
1463
1464 tdep->call_length = call_length;
1465
7d2552b4
TG
1466 /* Create a type for PC. We can't use builtin types here, as they may not
1467 be defined. */
1468 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1469 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
88dfca6c
UW
1470 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1471 tdep->func_void_type);
7d2552b4 1472
8818c391
TR
1473 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1474 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1475 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1476 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1477 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1479
1480 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1481 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1482 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1483
8da61cc4
DJ
1484 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1486 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1487
1488 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1489 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1490
1491 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1492
1493 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1494 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1495
1496 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1497 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1498
7d2552b4
TG
1499 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1500 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1501 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1502
4c8b6ae0 1503 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1504 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1505
4add8633 1506 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1507
53f6a2c9
TG
1508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1509
8818c391
TR
1510 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1511 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1512 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1513
8818c391 1514 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1516
909cd28e 1517 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1518
94afd7a6 1519 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1520 frame_base_set_default (gdbarch, &avr_frame_base);
1521
94afd7a6 1522 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1523
1524 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1525 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1526
487d9753
PL
1527 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1528 set_gdbarch_address_class_name_to_type_flags
1529 (gdbarch, avr_address_class_name_to_type_flags);
1530 set_gdbarch_address_class_type_flags_to_name
1531 (gdbarch, avr_address_class_type_flags_to_name);
1532
8818c391
TR
1533 return gdbarch;
1534}
1535
1536/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1537 registers. If args parameter is not NULL, then the user has requested info
8818c391 1538 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1539 now]. The query string should be one of these forms:
8818c391
TR
1540
1541 "Ravr.io_reg" -> reply is "NN" number of io registers
1542
1543 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1544 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1545 where, <NAME> is a string, and VV is the hex value of the register.
1546
0963b4bd 1547 All io registers are 8-bit. */
8818c391
TR
1548
1549static void
1550avr_io_reg_read_command (char *args, int from_tty)
1551{
1e3ff5ad 1552 LONGEST bufsiz = 0;
13547ab6 1553 gdb_byte *buf;
001f13d8 1554 const char *bufstr;
2e5ff58c 1555 char query[400];
001f13d8 1556 const char *p;
2e5ff58c
TR
1557 unsigned int nreg = 0;
1558 unsigned int val;
1559 int i, j, k, step;
8818c391 1560
0963b4bd 1561 /* Find out how many io registers the target has. */
13547ab6
DJ
1562 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1563 "avr.io_reg", &buf);
001f13d8 1564 bufstr = (const char *) buf;
8818c391 1565
13547ab6 1566 if (bufsiz <= 0)
8818c391 1567 {
2e5ff58c 1568 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1569 _("ERR: info io_registers NOT supported "
1570 "by current target\n"));
8818c391
TR
1571 return;
1572 }
1573
001f13d8 1574 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1575 {
2e5ff58c 1576 fprintf_unfiltered (gdb_stderr,
edefbb7c 1577 _("Error fetching number of io registers\n"));
13547ab6 1578 xfree (buf);
8818c391
TR
1579 return;
1580 }
1581
13547ab6
DJ
1582 xfree (buf);
1583
2e5ff58c 1584 reinitialize_more_filter ();
8818c391 1585
edefbb7c 1586 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1587
1588 /* only fetch up to 8 registers at a time to keep the buffer small */
1589 step = 8;
1590
2e5ff58c 1591 for (i = 0; i < nreg; i += step)
8818c391 1592 {
91ccbfc1
TR
1593 /* how many registers this round? */
1594 j = step;
1595 if ((i+j) >= nreg)
1596 j = nreg - i; /* last block is less than 8 registers */
8818c391 1597
2e5ff58c 1598 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1599 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1600 query, &buf);
8818c391 1601
001f13d8 1602 p = (const char *) buf;
2e5ff58c
TR
1603 for (k = i; k < (i + j); k++)
1604 {
1605 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1606 {
1607 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1608 while ((*p != ';') && (*p != '\0'))
1609 p++;
1610 p++; /* skip over ';' */
1611 if (*p == '\0')
1612 break;
1613 }
1614 }
13547ab6
DJ
1615
1616 xfree (buf);
8818c391
TR
1617 }
1618}
1619
a78f21af
AC
1620extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1621
8818c391
TR
1622void
1623_initialize_avr_tdep (void)
1624{
1625 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1626
1627 /* Add a new command to allow the user to query the avr remote target for
1628 the values of the io space registers in a saner way than just using
0963b4bd 1629 `x/NNNb ADDR`. */
8818c391
TR
1630
1631 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1632 io_registers' to signify it is not available on other platforms. */
8818c391 1633
5f515954
AB
1634 add_info ("io_registers", avr_io_reg_read_command,
1635 _("query remote avr target for io space register values"));
8818c391 1636}
This page took 1.001892 seconds and 4 git commands to generate.