2003-04-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / config / i386 / tm-symmetry.h
CommitLineData
2fbce691
AC
1// OBSOLETE /* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
2// OBSOLETE with Weitek 1167 and i387 support.
3// OBSOLETE
4// OBSOLETE Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 2003 Free
5// OBSOLETE Software Foundation, Inc.
6// OBSOLETE
7// OBSOLETE Symmetry version by Jay Vosburgh (fubar@sequent.com).
8// OBSOLETE
9// OBSOLETE This file is part of GDB.
10// OBSOLETE
11// OBSOLETE This program is free software; you can redistribute it and/or modify
12// OBSOLETE it under the terms of the GNU General Public License as published by
13// OBSOLETE the Free Software Foundation; either version 2 of the License, or
14// OBSOLETE (at your option) any later version.
15// OBSOLETE
16// OBSOLETE This program is distributed in the hope that it will be useful,
17// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
18// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// OBSOLETE GNU General Public License for more details.
20// OBSOLETE
21// OBSOLETE You should have received a copy of the GNU General Public License
22// OBSOLETE along with this program; if not, write to the Free Software
23// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
24// OBSOLETE Boston, MA 02111-1307, USA. */
25// OBSOLETE
26// OBSOLETE #ifndef TM_SYMMETRY_H
27// OBSOLETE #define TM_SYMMETRY_H 1
28// OBSOLETE
29// OBSOLETE #include "regcache.h"
30// OBSOLETE #include "doublest.h"
31// OBSOLETE
32// OBSOLETE /* I don't know if this will work for cross-debugging, even if you do get
33// OBSOLETE a copy of the right include file. */
34// OBSOLETE #include <machine/reg.h>
35// OBSOLETE
36// OBSOLETE #include "i386/tm-i386.h"
37// OBSOLETE
38// OBSOLETE /* Amount PC must be decremented by after a breakpoint. This is often the
39// OBSOLETE number of bytes in BREAKPOINT but not always (such as now). */
40// OBSOLETE
41// OBSOLETE #undef DECR_PC_AFTER_BREAK
42// OBSOLETE #define DECR_PC_AFTER_BREAK 0
43// OBSOLETE
44// OBSOLETE /* Number of machine registers */
45// OBSOLETE
46// OBSOLETE #undef NUM_REGS
47// OBSOLETE #define NUM_REGS 49
48// OBSOLETE
49// OBSOLETE /* Initializer for an array of names of registers.
50// OBSOLETE There should be NUM_REGS strings in this initializer. */
51// OBSOLETE
52// OBSOLETE /* Initializer for an array of names of registers. There should be at least
53// OBSOLETE NUM_REGS strings in this initializer. Any excess ones are simply ignored.
54// OBSOLETE Symmetry registers are in this weird order to match the register numbers
55// OBSOLETE in the symbol table entries. If you change the order, things will probably
56// OBSOLETE break mysteriously for no apparent reason. Also note that the st(0)...
57// OBSOLETE st(7) 387 registers are represented as st0...st7. */
58// OBSOLETE
59// OBSOLETE #undef REGISTER_NAME
60// OBSOLETE #define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
61// OBSOLETE "ebx", "esi", "edi", "st2", "st3", \
62// OBSOLETE "st4", "st5", "st6", "st7", "esp", \
63// OBSOLETE "ebp", "eip", "eflags","fp1", "fp2", \
64// OBSOLETE "fp3", "fp4", "fp5", "fp6", "fp7", \
65// OBSOLETE "fp8", "fp9", "fp10", "fp11", "fp12", \
66// OBSOLETE "fp13", "fp14", "fp15", "fp16", "fp17", \
67// OBSOLETE "fp18", "fp19", "fp20", "fp21", "fp22", \
68// OBSOLETE "fp23", "fp24", "fp25", "fp26", "fp27", \
69// OBSOLETE "fp28", "fp29", "fp30", "fp31" }
70// OBSOLETE
71// OBSOLETE /* Register numbers of various important registers.
72// OBSOLETE Note that some of these values are "real" register numbers,
73// OBSOLETE and correspond to the general registers of the machine,
74// OBSOLETE and some are "phony" register numbers which are too large
75// OBSOLETE to be actual register numbers as far as the user is concerned
76// OBSOLETE but do serve to get the desired values when passed to read_register. */
77// OBSOLETE
78// OBSOLETE #define EAX_REGNUM 0
79// OBSOLETE #define EDX_REGNUM 1
80// OBSOLETE #define ECX_REGNUM 2
81// OBSOLETE #define ST0_REGNUM 3
82// OBSOLETE #define ST1_REGNUM 4
83// OBSOLETE #define EBX_REGNUM 5
84// OBSOLETE #define ESI_REGNUM 6
85// OBSOLETE #define EDI_REGNUM 7
86// OBSOLETE #define ST2_REGNUM 8
87// OBSOLETE #define ST3_REGNUM 9
88// OBSOLETE
89// OBSOLETE #define ST4_REGNUM 10
90// OBSOLETE #define ST5_REGNUM 11
91// OBSOLETE #define ST6_REGNUM 12
92// OBSOLETE #define ST7_REGNUM 13
93// OBSOLETE
94// OBSOLETE #define FP1_REGNUM 18 /* first 1167 register */
95// OBSOLETE /* Get %fp2 - %fp31 by addition, since they are contiguous */
96// OBSOLETE
97// OBSOLETE #undef SP_REGNUM
98// OBSOLETE #define SP_REGNUM 14 /* (usp) Contains address of top of stack */
99// OBSOLETE #define ESP_REGNUM 14
100// OBSOLETE #undef FP_REGNUM
101// OBSOLETE #define FP_REGNUM 15 /* (ebp) Contains address of executing stack frame */
102// OBSOLETE #define EBP_REGNUM 15
103// OBSOLETE #undef PC_REGNUM
104// OBSOLETE #define PC_REGNUM 16 /* (eip) Contains program counter */
105// OBSOLETE #define EIP_REGNUM 16
106// OBSOLETE #undef PS_REGNUM
107// OBSOLETE #define PS_REGNUM 17 /* (ps) Contains processor status */
108// OBSOLETE #define EFLAGS_REGNUM 17
109// OBSOLETE
110// OBSOLETE /*
111// OBSOLETE * Following macro translates i386 opcode register numbers to Symmetry
112// OBSOLETE * register numbers. This is used by i386_frame_find_saved_regs.
113// OBSOLETE *
114// OBSOLETE * %eax %ecx %edx %ebx %esp %ebp %esi %edi
115// OBSOLETE * i386 0 1 2 3 4 5 6 7
116// OBSOLETE * Symmetry 0 2 1 5 14 15 6 7
117// OBSOLETE *
118// OBSOLETE */
119// OBSOLETE #define I386_REGNO_TO_SYMMETRY(n) \
120// OBSOLETE ((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?5 :(n)==4?14 :(n)==5?15 :(n))
121// OBSOLETE
122// OBSOLETE /* The magic numbers below are offsets into u_ar0 in the user struct.
123// OBSOLETE * They live in <machine/reg.h>. Gdb calls this macro with blockend
124// OBSOLETE * holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
125// OBSOLETE * saved in the u area (along with a few others that aren't useful
126// OBSOLETE * here. See <machine/reg.h>).
127// OBSOLETE */
128// OBSOLETE
129// OBSOLETE #define REGISTER_U_ADDR(addr, blockend, regno) \
130// OBSOLETE { struct user foo; /* needed for finding fpu regs */ \
131// OBSOLETE switch (regno) { \
132// OBSOLETE case 0: \
133// OBSOLETE addr = blockend + EAX * sizeof(int); break; \
134// OBSOLETE case 1: \
135// OBSOLETE addr = blockend + EDX * sizeof(int); break; \
136// OBSOLETE case 2: \
137// OBSOLETE addr = blockend + ECX * sizeof(int); break; \
138// OBSOLETE case 3: /* st(0) */ \
139// OBSOLETE addr = ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
140// OBSOLETE break; \
141// OBSOLETE case 4: /* st(1) */ \
142// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
143// OBSOLETE break; \
144// OBSOLETE case 5: \
145// OBSOLETE addr = blockend + EBX * sizeof(int); break; \
146// OBSOLETE case 6: \
147// OBSOLETE addr = blockend + ESI * sizeof(int); break; \
148// OBSOLETE case 7: \
149// OBSOLETE addr = blockend + EDI * sizeof(int); break; \
150// OBSOLETE case 8: /* st(2) */ \
151// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
152// OBSOLETE break; \
153// OBSOLETE case 9: /* st(3) */ \
154// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
155// OBSOLETE break; \
156// OBSOLETE case 10: /* st(4) */ \
157// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
158// OBSOLETE break; \
159// OBSOLETE case 11: /* st(5) */ \
160// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
161// OBSOLETE break; \
162// OBSOLETE case 12: /* st(6) */ \
163// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
164// OBSOLETE break; \
165// OBSOLETE case 13: /* st(7) */ \
166// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
167// OBSOLETE break; \
168// OBSOLETE case 14: \
169// OBSOLETE addr = blockend + ESP * sizeof(int); break; \
170// OBSOLETE case 15: \
171// OBSOLETE addr = blockend + EBP * sizeof(int); break; \
172// OBSOLETE case 16: \
173// OBSOLETE addr = blockend + EIP * sizeof(int); break; \
174// OBSOLETE case 17: \
175// OBSOLETE addr = blockend + FLAGS * sizeof(int); break; \
176// OBSOLETE case 18: /* fp1 */ \
177// OBSOLETE case 19: /* fp2 */ \
178// OBSOLETE case 20: /* fp3 */ \
179// OBSOLETE case 21: /* fp4 */ \
180// OBSOLETE case 22: /* fp5 */ \
181// OBSOLETE case 23: /* fp6 */ \
182// OBSOLETE case 24: /* fp7 */ \
183// OBSOLETE case 25: /* fp8 */ \
184// OBSOLETE case 26: /* fp9 */ \
185// OBSOLETE case 27: /* fp10 */ \
186// OBSOLETE case 28: /* fp11 */ \
187// OBSOLETE case 29: /* fp12 */ \
188// OBSOLETE case 30: /* fp13 */ \
189// OBSOLETE case 31: /* fp14 */ \
190// OBSOLETE case 32: /* fp15 */ \
191// OBSOLETE case 33: /* fp16 */ \
192// OBSOLETE case 34: /* fp17 */ \
193// OBSOLETE case 35: /* fp18 */ \
194// OBSOLETE case 36: /* fp19 */ \
195// OBSOLETE case 37: /* fp20 */ \
196// OBSOLETE case 38: /* fp21 */ \
197// OBSOLETE case 39: /* fp22 */ \
198// OBSOLETE case 40: /* fp23 */ \
199// OBSOLETE case 41: /* fp24 */ \
200// OBSOLETE case 42: /* fp25 */ \
201// OBSOLETE case 43: /* fp26 */ \
202// OBSOLETE case 44: /* fp27 */ \
203// OBSOLETE case 45: /* fp28 */ \
204// OBSOLETE case 46: /* fp29 */ \
205// OBSOLETE case 47: /* fp30 */ \
206// OBSOLETE case 48: /* fp31 */ \
207// OBSOLETE addr = ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
208// OBSOLETE } \
209// OBSOLETE }
210// OBSOLETE
211// OBSOLETE /* Total amount of space needed to store our copies of the machine's
212// OBSOLETE register state, the array `registers'. 10 i*86 registers, 8 i387
213// OBSOLETE registers, and 31 Weitek 1167 registers */
214// OBSOLETE
215// OBSOLETE #undef REGISTER_BYTES
216// OBSOLETE #define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
217// OBSOLETE
218// OBSOLETE /* Nonzero if register N requires conversion
219// OBSOLETE from raw format to virtual format. */
220// OBSOLETE
221// OBSOLETE #undef REGISTER_CONVERTIBLE
222// OBSOLETE #define REGISTER_CONVERTIBLE(N) \
223// OBSOLETE (((N) < 3) ? 0 : \
224// OBSOLETE ((N) < 5) ? 1 : \
225// OBSOLETE ((N) < 8) ? 0 : \
226// OBSOLETE ((N) < 14) ? 1 : \
227// OBSOLETE 0)
228// OBSOLETE
229// OBSOLETE #include "floatformat.h"
230// OBSOLETE
231// OBSOLETE /* Convert data from raw format for register REGNUM in buffer FROM
232// OBSOLETE to virtual format with type TYPE in buffer TO. */
233// OBSOLETE
234// OBSOLETE #undef REGISTER_CONVERT_TO_VIRTUAL
235// OBSOLETE #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
236// OBSOLETE { \
237// OBSOLETE DOUBLEST val; \
238// OBSOLETE floatformat_to_doublest (&floatformat_i387_ext, (FROM), &val); \
239// OBSOLETE deprecated_store_floating ((TO), TYPE_LENGTH (TYPE), val); \
240// OBSOLETE }
241// OBSOLETE
242// OBSOLETE /* Convert data from virtual format with type TYPE in buffer FROM
243// OBSOLETE to raw format for register REGNUM in buffer TO. */
244// OBSOLETE
245// OBSOLETE #undef REGISTER_CONVERT_TO_RAW
246// OBSOLETE #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
247// OBSOLETE { \
248// OBSOLETE DOUBLEST val = deprecated_extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
249// OBSOLETE floatformat_from_doublest (&floatformat_i387_ext, &val, (TO)); \
250// OBSOLETE }
251// OBSOLETE
252// OBSOLETE /* Return the GDB type object for the "standard" data type
253// OBSOLETE of data in register N. */
254// OBSOLETE
255// OBSOLETE #undef REGISTER_VIRTUAL_TYPE
256// OBSOLETE #define REGISTER_VIRTUAL_TYPE(N) \
257// OBSOLETE ((N < 3) ? builtin_type_int : \
258// OBSOLETE (N < 5) ? builtin_type_double : \
259// OBSOLETE (N < 8) ? builtin_type_int : \
260// OBSOLETE (N < 14) ? builtin_type_double : \
261// OBSOLETE builtin_type_int)
262// OBSOLETE
263// OBSOLETE /* Store the address of the place in which to copy the structure the
264// OBSOLETE subroutine will return. This is called from call_function.
265// OBSOLETE Native cc passes the address in eax, gcc (up to version 2.5.8)
266// OBSOLETE passes it on the stack. gcc should be fixed in future versions to
267// OBSOLETE adopt native cc conventions. */
268// OBSOLETE
269// OBSOLETE #undef DEPRECATED_PUSH_ARGUMENTS
270// OBSOLETE #undef STORE_STRUCT_RETURN
271// OBSOLETE #define STORE_STRUCT_RETURN(ADDR, SP) write_register(0, (ADDR))
272// OBSOLETE
273// OBSOLETE /* Extract from an array REGBUF containing the (raw) register state
274// OBSOLETE a function return value of type TYPE, and copy that, in virtual format,
275// OBSOLETE into VALBUF. */
276// OBSOLETE
277// OBSOLETE #undef DEPRECATED_EXTRACT_RETURN_VALUE
278// OBSOLETE #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
279// OBSOLETE symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
280// OBSOLETE
281// OBSOLETE /* The following redefines make backtracing through sigtramp work.
282// OBSOLETE They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
283// OBSOLETE from the sigcontext structure which is pushed by the kernel on the
284// OBSOLETE user stack, along with a pointer to it. */
285// OBSOLETE
286// OBSOLETE #define IN_SIGTRAMP(pc, name) ((name) && STREQ ("_sigcode", name))
287// OBSOLETE
288// OBSOLETE /* Offset to saved PC in sigcontext, from <signal.h>. */
289// OBSOLETE #define SIGCONTEXT_PC_OFFSET 16
290// OBSOLETE
291// OBSOLETE #endif /* ifndef TM_SYMMETRY_H */
This page took 0.033636 seconds and 4 git commands to generate.