* config/i386/tm-sun386.h, config/i386/tm-symmetry.h
[deliverable/binutils-gdb.git] / gdb / config / i386 / tm-symmetry.h
CommitLineData
5076de82
FF
1/* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
2 with Weitek 1167 and i387 support.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
56eec3c7 4 Symmetry version by Jay Vosburgh (fubar@sequent.com).
5076de82
FF
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* I don't know if this will work for cross-debugging, even if you do get
23 a copy of the right include file. */
56eec3c7
JK
24#ifdef _SEQUENT_
25/* ptx */
26#include <sys/reg.h>
27#else
28/* dynix */
5076de82 29#include <machine/reg.h>
56eec3c7 30#endif
5076de82 31
56eec3c7
JK
32#ifdef _SEQUENT_
33/* ptx, not dynix */
34#define SDB_REG_TO_REGNUM(value) ptx_coff_regno_to_gdb(value)
35extern int ptx_coff_regno_to_gdb();
36#endif /* _SEQUENT_ */
5076de82 37
56eec3c7 38#define START_INFERIOR_TRAPS_EXPECTED 2
5076de82
FF
39
40/* Amount PC must be decremented by after a breakpoint.
41 This is often the number of bytes in BREAKPOINT
42 but not always. */
43
44#define DECR_PC_AFTER_BREAK 0
45
56eec3c7
JK
46#include "i386/tm-i386v.h"
47
5076de82
FF
48/* Nonzero if instruction at PC is a return instruction. */
49/* For Symmetry, this is really the 'leave' instruction, which */
50/* is right before the ret */
51
56eec3c7 52#undef
5076de82
FF
53#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0xc9)
54
5076de82
FF
55#if 0
56 --- this code can't be used unless we know we are running native,
57 since it uses host specific ptrace calls.
58/* code for 80387 fpu. Functions are from i386-dep.c, copied into
59 * symm-dep.c.
60 */
61#define FLOAT_INFO { i386_float_info(); }
62#endif
63
5076de82 64/* Number of machine registers */
56eec3c7 65#undef NUM_REGS
5076de82
FF
66#define NUM_REGS 49
67
68/* Initializer for an array of names of registers.
69 There should be NUM_REGS strings in this initializer. */
70
71/* Symmetry registers are in this weird order to match the register
72 numbers in the symbol table entries. If you change the order,
73 things will probably break mysteriously for no apparent reason.
74 Also note that the st(0)...st(7) 387 registers are represented as
75 st0...st7. */
76
56eec3c7 77#undef REGISTER_NAMES
5076de82
FF
78#define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
79 "ebx", "esi", "edi", "st2", "st3", \
80 "st4", "st5", "st6", "st7", "esp", \
81 "ebp", "eip", "eflags", "fp1", "fp2", \
82 "fp3", "fp4", "fp5", "fp6", "fp7", \
83 "fp8", "fp9", "fp10", "fp11", "fp12", \
84 "fp13", "fp14", "fp15", "fp16", "fp17", \
85 "fp18", "fp19", "fp20", "fp21", "fp22", \
86 "fp23", "fp24", "fp25", "fp26", "fp27", \
87 "fp28", "fp29", "fp30", "fp31" }
88
89/* Register numbers of various important registers.
90 Note that some of these values are "real" register numbers,
91 and correspond to the general registers of the machine,
92 and some are "phony" register numbers which are too large
93 to be actual register numbers as far as the user is concerned
94 but do serve to get the desired values when passed to read_register. */
95
56eec3c7
JK
96#define EAX_REGNUM 0
97#define EDX_REGNUM 1
98#define ECX_REGNUM 2
99#define ST0_REGNUM 3
100#define ST1_REGNUM 4
101#define EBX_REGNUM 5
102#define ESI_REGNUM 6
103#define EDI_REGNUM 7
104#define ST2_REGNUM 8
105#define ST3_REGNUM 9
106
107#define ST4_REGNUM 10
108#define ST5_REGNUM 11
109#define ST6_REGNUM 12
110#define ST7_REGNUM 13
111
5076de82 112#define FP1_REGNUM 18 /* first 1167 register */
56eec3c7
JK
113/* Get %fp2 - %fp31 by addition, since they are contiguous */
114
115#undef SP_REGNUM
5076de82 116#define SP_REGNUM 14 /* Contains address of top of stack */
56eec3c7 117#undef FP_REGNUM
5076de82 118#define FP_REGNUM 15 /* Contains address of executing stack frame */
56eec3c7 119#undef PC_REGNUM
5076de82 120#define PC_REGNUM 16 /* Contains program counter */
56eec3c7 121#undef PS_REGNUM
5076de82
FF
122#define PS_REGNUM 17 /* Contains processor status */
123
56eec3c7
JK
124#ifndef _SEQUENT_
125/* dynix, not ptx. For ptx, see register_addr in symm-tdep.c */
126
127/* The magic numbers below are offsets into u_ar0 in the user struct.
128 * They live in <machine/reg.h>. Gdb calls this macro with blockend
129 * holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
130 * saved in the u area (along with a few others that aren't useful
131 * here. See <machine/reg.h>).
132 */
133
134#define REGISTER_U_ADDR(addr, blockend, regno) \
135{ struct user foo; /* needed for finding fpu regs */ \
136switch (regno) { \
137 case 0: \
138 addr = blockend + EAX * sizeof(int); break; \
139 case 1: \
140 addr = blockend + EDX * sizeof(int); break; \
141 case 2: \
142 addr = blockend + ECX * sizeof(int); break; \
143 case 3: /* st(0) */ \
144 addr = blockend - \
145 ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
146 break; \
147 case 4: /* st(1) */ \
148 addr = blockend - \
149 ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
150 break; \
151 case 5: \
152 addr = blockend + EBX * sizeof(int); break; \
153 case 6: \
154 addr = blockend + ESI * sizeof(int); break; \
155 case 7: \
156 addr = blockend + EDI * sizeof(int); break; \
157 case 8: /* st(2) */ \
158 addr = blockend - \
159 ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
160 break; \
161 case 9: /* st(3) */ \
162 addr = blockend - \
163 ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
164 break; \
165 case 10: /* st(4) */ \
166 addr = blockend - \
167 ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
168 break; \
169 case 11: /* st(5) */ \
170 addr = blockend - \
171 ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
172 break; \
173 case 12: /* st(6) */ \
174 addr = blockend - \
175 ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
176 break; \
177 case 13: /* st(7) */ \
178 addr = blockend - \
179 ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
180 break; \
181 case 14: \
182 addr = blockend + ESP * sizeof(int); break; \
183 case 15: \
184 addr = blockend + EBP * sizeof(int); break; \
185 case 16: \
186 addr = blockend + EIP * sizeof(int); break; \
187 case 17: \
188 addr = blockend + FLAGS * sizeof(int); break; \
189 case 18: /* fp1 */ \
190 case 19: /* fp2 */ \
191 case 20: /* fp3 */ \
192 case 21: /* fp4 */ \
193 case 22: /* fp5 */ \
194 case 23: /* fp6 */ \
195 case 24: /* fp7 */ \
196 case 25: /* fp8 */ \
197 case 26: /* fp9 */ \
198 case 27: /* fp10 */ \
199 case 28: /* fp11 */ \
200 case 29: /* fp12 */ \
201 case 30: /* fp13 */ \
202 case 31: /* fp14 */ \
203 case 32: /* fp15 */ \
204 case 33: /* fp16 */ \
205 case 34: /* fp17 */ \
206 case 35: /* fp18 */ \
207 case 36: /* fp19 */ \
208 case 37: /* fp20 */ \
209 case 38: /* fp21 */ \
210 case 39: /* fp22 */ \
211 case 40: /* fp23 */ \
212 case 41: /* fp24 */ \
213 case 42: /* fp25 */ \
214 case 43: /* fp26 */ \
215 case 44: /* fp27 */ \
216 case 45: /* fp28 */ \
217 case 46: /* fp29 */ \
218 case 47: /* fp30 */ \
219 case 48: /* fp31 */ \
220 addr = blockend - \
221 ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
222 } \
223}
224#endif /* _SEQUENT_ */
225\f
5076de82
FF
226/* Total amount of space needed to store our copies of the machine's
227 register state, the array `registers'. */
228/* 10 i386 registers, 8 i387 registers, and 31 Weitek 1167 registers */
56eec3c7 229#undef REGISTER_BYTES
5076de82
FF
230#define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
231
232/* Index within `registers' of the first byte of the space for
233 register N. */
234
56eec3c7 235#undef REGISTER_BYTE
5076de82
FF
236#define REGISTER_BYTE(N) \
237((N < 3) ? (N * 4) : \
238(N < 5) ? (((N - 2) * 10) + 2) : \
239(N < 8) ? (((N - 5) * 4) + 32) : \
240(N < 14) ? (((N - 8) * 10) + 44) : \
241 (((N - 14) * 4) + 104))
242
243/* Number of bytes of storage in the actual machine representation
244 * for register N. All registers are 4 bytes, except 387 st(0) - st(7),
245 * which are 80 bits each.
246 */
247
56eec3c7 248#undef REGISTER_RAW_SIZE
5076de82
FF
249#define REGISTER_RAW_SIZE(N) \
250((N < 3) ? 4 : \
251(N < 5) ? 10 : \
252(N < 8) ? 4 : \
253(N < 14) ? 10 : \
254 4)
255
5076de82
FF
256/* Largest value REGISTER_RAW_SIZE can have. */
257
56eec3c7 258#undef MAX_REGISTER_RAW_SIZE
5076de82
FF
259#define MAX_REGISTER_RAW_SIZE 10
260
5076de82
FF
261/* Nonzero if register N requires conversion
262 from raw format to virtual format. */
263
56eec3c7 264#undef REGISTER_CONVERTIBLE
5076de82
FF
265#define REGISTER_CONVERTIBLE(N) \
266((N < 3) ? 0 : \
267(N < 5) ? 1 : \
268(N < 8) ? 0 : \
269(N < 14) ? 1 : \
270 0)
271
ad09cb2b
PS
272/* Convert data from raw format for register REGNUM in buffer FROM
273 to virtual format with type TYPE in buffer TO. */
5076de82 274
56eec3c7 275#undef REGISTER_CONVERT_TO_VIRTUAL
ad09cb2b
PS
276#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
277{ \
278 double val; \
279 i387_to_double ((FROM), (char *)&val); \
280 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
281}
5076de82
FF
282extern void
283i387_to_double PARAMS ((char *, char *));
284
ad09cb2b
PS
285/* Convert data from virtual format with type TYPE in buffer FROM
286 to raw format for register REGNUM in buffer TO. */
5076de82 287
56eec3c7 288#undef REGISTER_CONVERT_TO_RAW
ad09cb2b
PS
289#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
290{ \
291 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
57a9fee3 292 double_to_i387((char *)&val, (TO))) \
ad09cb2b 293}
5076de82
FF
294extern void
295double_to_i387 PARAMS ((char *, char *));
296
297/* Return the GDB type object for the "standard" data type
298 of data in register N. */
299
56eec3c7 300#undef REGISTER_VIRTUAL_TYPE
5076de82
FF
301#define REGISTER_VIRTUAL_TYPE(N) \
302((N < 3) ? builtin_type_int : \
303(N < 5) ? builtin_type_double : \
304(N < 8) ? builtin_type_int : \
305(N < 14) ? builtin_type_double : \
306 builtin_type_int)
307
56eec3c7 308/* from m-i386.h (now known as tm-i386v.h). */
5076de82 309/* Store the address of the place in which to copy the structure the
56eec3c7
JK
310 subroutine will return. This is called from call_function. FIXME:
311 Why is it writing register 0? Is the symmetry different from tm-i386v.h,
312 or is it some sort of artifact? FIXME. */
5076de82 313
56eec3c7 314#undef STORE_STRUCT_RETURN
5076de82
FF
315#define STORE_STRUCT_RETURN(ADDR, SP) \
316 { (SP) -= sizeof (ADDR); \
317 write_memory ((SP), &(ADDR), sizeof (ADDR)); \
318 write_register(0, (ADDR)); }
319
320/* Extract from an array REGBUF containing the (raw) register state
321 a function return value of type TYPE, and copy that, in virtual format,
322 into VALBUF. */
323
56eec3c7 324#undef EXTRACT_RETURN_VALUE
5076de82
FF
325#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
326 symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
327
5076de82 328\f
56eec3c7
JK
329/* Things needed for making the inferior call functions. FIXME: Merge
330 this with the main 386 stuff. */
5076de82
FF
331
332#define PUSH_DUMMY_FRAME \
333{ CORE_ADDR sp = read_register (SP_REGNUM); \
334 int regnum; \
335 sp = push_word (sp, read_register (PC_REGNUM)); \
336 sp = push_word (sp, read_register (FP_REGNUM)); \
337 write_register (FP_REGNUM, sp); \
338 for (regnum = 0; regnum < NUM_REGS; regnum++) \
339 sp = push_word (sp, read_register (regnum)); \
340 write_register (SP_REGNUM, sp); \
341}
342
343#define POP_FRAME \
344{ \
345 FRAME frame = get_current_frame (); \
346 CORE_ADDR fp; \
347 int regnum; \
348 struct frame_saved_regs fsr; \
349 struct frame_info *fi; \
350 fi = get_frame_info (frame); \
351 fp = fi->frame; \
352 get_frame_saved_regs (fi, &fsr); \
353 for (regnum = 0; regnum < NUM_REGS; regnum++) { \
354 CORE_ADDR adr; \
355 adr = fsr.regs[regnum]; \
356 if (adr) \
357 write_register (regnum, read_memory_integer (adr, 4)); \
358 } \
359 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
360 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
361 write_register (SP_REGNUM, fp + 8); \
362 flush_cached_frames (); \
363 set_current_frame ( create_new_frame (read_register (FP_REGNUM), \
364 read_pc ())); \
365}
366
367/* from i386-dep.c, worked better than my original... */
368/* This sequence of words is the instructions
369 * call (32-bit offset)
370 * int 3
371 * This is 6 bytes.
372 */
373
374#define CALL_DUMMY { 0x223344e8, 0xcc11 }
375
376#define CALL_DUMMY_LENGTH 8
377
378#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
379
380/* Insert the specified number of args and function address
381 into a call sequence of the above form stored at DUMMYNAME. */
382
383#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
384{ \
385 int from, to, delta, loc; \
386 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH); \
387 from = loc + 5; \
388 to = (int)(fun); \
389 delta = to - from; \
390 *(int *)((char *)(dummyname) + 1) = delta; \
391}
392
393extern void
394print_387_control_word PARAMS ((unsigned int));
395
396extern void
397print_387_status_word PARAMS ((unsigned int));
This page took 0.088356 seconds and 4 git commands to generate.