* config/vax/tm-vax.h (INVALID_FLOAT): Move macro from here...
[deliverable/binutils-gdb.git] / gdb / config / ns32k / tm-umax.h
CommitLineData
c906108c 1/* Definitions to make GDB run on an encore under umax 4.2
b6ba6518
KB
2 Copyright 1987, 1989, 1991, 1993, 1994, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
f88e2c52
AC
22#include "regcache.h"
23
c906108c
SS
24/* This is also included by tm-ns32km3.h, as well as being used by umax. */
25
778eb05e 26#define TARGET_BYTE_ORDER BFD_ENDIAN_LITTLE
c906108c
SS
27
28/* Need to get function ends by adding this to epilogue address from .bf
29 record, not using x_fsize field. */
30#define FUNCTION_EPILOGUE_SIZE 4
31
32/* Offset from address of function to start of its code.
33 Zero on most machines. */
34
35#define FUNCTION_START_OFFSET 0
36
37/* Advance PC across any function entry prologue instructions
38 to reach some "real" code. */
39
a14ed312 40extern CORE_ADDR umax_skip_prologue (CORE_ADDR);
b83266a0 41#define SKIP_PROLOGUE(pc) (umax_skip_prologue (pc))
c906108c
SS
42
43/* Immediately after a function call, return the saved pc.
44 Can't always go through the frames for this because on some machines
45 the new frame is not set up until the new function executes
46 some instructions. */
47
48#define SAVED_PC_AFTER_CALL(frame) \
49 read_memory_integer (read_register (SP_REGNUM), 4)
50
51/* Address of end of stack space. */
52
53#ifndef STACK_END_ADDR
54#define STACK_END_ADDR (0xfffff000)
55#endif
56
57/* Stack grows downward. */
58
59#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
60
61/* Sequence of bytes for breakpoint instruction. */
62
63#define BREAKPOINT {0xf2}
64
65/* Amount PC must be decremented by after a breakpoint.
66 This is often the number of bytes in BREAKPOINT
67 but not always. */
68
69#define DECR_PC_AFTER_BREAK 0
70
c906108c
SS
71/* Say how long (ordinary) registers are. This is a piece of bogosity
72 used in push_word and a few other places; REGISTER_RAW_SIZE is the
73 real way to know how big a register is. */
74
75#define REGISTER_SIZE 4
76
77/* Number of machine registers */
78
79#define NUM_REGS 25
80
81#define NUM_GENERAL_REGS 8
82
83/* Initializer for an array of names of registers.
84 There should be NUM_REGS strings in this initializer. */
85
86#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
87 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
88 "sp", "fp", "pc", "ps", \
89 "fsr", \
90 "l0", "l1", "l2", "l3", "xx", \
91 }
92
93/* Register numbers of various important registers.
94 Note that some of these values are "real" register numbers,
95 and correspond to the general registers of the machine,
96 and some are "phony" register numbers which are too large
97 to be actual register numbers as far as the user is concerned
98 but do serve to get the desired values when passed to read_register. */
99
100#define R0_REGNUM 0 /* General register 0 */
101#define FP0_REGNUM 8 /* Floating point register 0 */
102#define SP_REGNUM 16 /* Contains address of top of stack */
103#define AP_REGNUM FP_REGNUM
104#define FP_REGNUM 17 /* Contains address of executing stack frame */
105#define PC_REGNUM 18 /* Contains program counter */
106#define PS_REGNUM 19 /* Contains processor status */
107#define FPS_REGNUM 20 /* Floating point status register */
108#define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
109
110/* Total amount of space needed to store our copies of the machine's
111 register state, the array `registers'. */
112#define REGISTER_BYTES \
113 ((NUM_REGS - 4) * REGISTER_RAW_SIZE(R0_REGNUM) \
114 + 4 * REGISTER_RAW_SIZE(LP0_REGNUM))
115
116/* Index within `registers' of the first byte of the space for
117 register N. */
118
119#define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
120 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
121
122/* Number of bytes of storage in the actual machine representation
123 for register N. On the 32000, all regs are 4 bytes
124 except for the doubled floating registers. */
125
126#define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
127
128/* Number of bytes of storage in the program's representation
129 for register N. On the 32000, all regs are 4 bytes
130 except for the doubled floating registers. */
131
132#define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
133
134/* Largest value REGISTER_RAW_SIZE can have. */
135
136#define MAX_REGISTER_RAW_SIZE 8
137
138/* Largest value REGISTER_VIRTUAL_SIZE can have. */
139
140#define MAX_REGISTER_VIRTUAL_SIZE 8
141
142/* Return the GDB type object for the "standard" data type
143 of data in register N. */
144
145#define REGISTER_VIRTUAL_TYPE(N) \
146 (((N) < FP0_REGNUM) ? \
147 builtin_type_int : \
148 ((N) < FP0_REGNUM + 8) ? \
149 builtin_type_float : \
150 ((N) < LP0_REGNUM) ? \
151 builtin_type_int : \
152 builtin_type_double)
153
154/* Store the address of the place in which to copy the structure the
155 subroutine will return. This is called from call_function.
156
157 On this machine this is a no-op, because gcc isn't used on it
158 yet. So this calling convention is not used. */
159
160#define STORE_STRUCT_RETURN(ADDR, SP)
161
162/* Extract from an array REGBUF containing the (raw) register state
163 a function return value of type TYPE, and copy that, in virtual format,
164 into VALBUF. */
165
166#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
167 memcpy (VALBUF, REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), TYPE_LENGTH (TYPE))
168
169/* Write into appropriate registers a function return value
170 of type TYPE, given in virtual format. */
171
172#define STORE_RETURN_VALUE(TYPE,VALBUF) \
173 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
174
175/* Extract from an array REGBUF containing the (raw) register state
176 the address in which a function should return its structure value,
177 as a CORE_ADDR (or an expression that can be used as one). */
178
179#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
180\f
181/* Describe the pointer in each stack frame to the previous stack frame
182 (its caller). */
183
184/* FRAME_CHAIN takes a frame's nominal address
185 and produces the frame's chain-pointer. */
186
187/* In the case of the ns32000 series, the frame's nominal address is the FP
188 value, and at that address is saved previous FP value as a 4-byte word. */
189
190#define FRAME_CHAIN(thisframe) \
191 (!inside_entry_file ((thisframe)->pc) ? \
192 read_memory_integer ((thisframe)->frame, 4) :\
193 0)
194
195/* Define other aspects of the stack frame. */
196
197#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
198
199/* Compute base of arguments. */
200
201#define FRAME_ARGS_ADDRESS(fi) \
202 ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \
203 ((fi)->frame) : (read_register (SP_REGNUM) - 4))
204
205#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
206
207/* Get the address of the enter opcode for this function, if it is active.
208 Returns positive address > 1 if pc is between enter/exit,
209 1 if pc before enter or after exit, 0 otherwise. */
210
211extern CORE_ADDR ns32k_get_enter_addr ();
212
f6427ade
C
213/* Return number of args passed to a frame.
214 Can return -1, meaning no way to tell. */
215
216extern int umax_frame_num_args (struct frame_info *fi);
217#define FRAME_NUM_ARGS(fi) (umax_frame_num_args ((fi)))
218
c906108c
SS
219/* Return number of bytes at start of arglist that are not really args. */
220
221#define FRAME_ARGS_SKIP 8
222
223/* Put here the code to store, into a struct frame_saved_regs,
224 the addresses of the saved registers of frame described by FRAME_INFO.
225 This includes special registers such as pc and fp saved in special
226 ways in the stack frame. sp is even more special:
227 the address we return for it IS the sp for the next frame. */
228
381bab78
AC
229extern int ns32k_localcount (CORE_ADDR enter_pc);
230
f6427ade
C
231#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
232{ \
233 register int regmask, regnum; \
234 int localcount; \
235 register CORE_ADDR enter_addr; \
236 register CORE_ADDR next_addr; \
237 \
238 memset (&(frame_saved_regs), '\0', sizeof (frame_saved_regs)); \
239 enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \
240 if (enter_addr > 1) \
241 { \
242 regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \
243 localcount = ns32k_localcount (enter_addr); \
244 next_addr = (frame_info)->frame + localcount; \
245 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
246 (frame_saved_regs).regs[regnum] = (regmask & 1) ? \
247 (next_addr -= 4) : 0; \
248 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\
249 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\
250 (frame_saved_regs).regs[FP_REGNUM] = \
251 (read_memory_integer ((frame_info)->frame, 4));\
252 } \
253 else if (enter_addr == 1) \
254 { \
255 CORE_ADDR sp = read_register (SP_REGNUM); \
256 (frame_saved_regs).regs[PC_REGNUM] = sp; \
257 (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \
258 } \
259}
c906108c
SS
260\f
261/* Things needed for making the inferior call functions. */
262
263/* Push an empty stack frame, to record the current PC, etc. */
264
265#define PUSH_DUMMY_FRAME \
266{ register CORE_ADDR sp = read_register (SP_REGNUM);\
267 register int regnum; \
268 sp = push_word (sp, read_register (PC_REGNUM)); \
269 sp = push_word (sp, read_register (FP_REGNUM)); \
270 write_register (FP_REGNUM, sp); \
271 for (regnum = 0; regnum < 8; regnum++) \
272 sp = push_word (sp, read_register (regnum)); \
273 write_register (SP_REGNUM, sp); \
274}
275
276/* Discard from the stack the innermost frame, restoring all registers. */
277
278#define POP_FRAME \
279{ register struct frame_info *frame = get_current_frame (); \
280 register CORE_ADDR fp; \
281 register int regnum; \
282 struct frame_saved_regs fsr; \
283 struct frame_info *fi; \
284 fp = frame->frame; \
285 get_frame_saved_regs (frame, &fsr); \
286 for (regnum = 0; regnum < 8; regnum++) \
287 if (fsr.regs[regnum]) \
288 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
289 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
290 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
291 write_register (SP_REGNUM, fp + 8); \
292 flush_cached_frames (); \
293}
294
295/* This sequence of words is the instructions
c5aa993b
JM
296 enter 0xff,0 82 ff 00
297 jsr @0x00010203 7f ae c0 01 02 03
298 adjspd 0x69696969 7f a5 01 02 03 04
299 bpt f2
c906108c
SS
300 Note this is 16 bytes. */
301
302#define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
303
304#define CALL_DUMMY_START_OFFSET 3
305#define CALL_DUMMY_LENGTH 16
306#define CALL_DUMMY_ADDR 5
307#define CALL_DUMMY_NARGS 11
308
309/* Insert the specified number of args and function address
310 into a call sequence of the above form stored at DUMMYNAME. */
311
381bab78
AC
312void flip_bytes (void *ptr, int count);
313
c906108c
SS
314#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
315{ \
316 int flipped; \
317 flipped = fun | 0xc0000000; \
318 flip_bytes (&flipped, 4); \
319 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
320 flipped = - nargs * 4; \
321 flip_bytes (&flipped, 4); \
322 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
323}
This page took 0.166288 seconds and 4 git commands to generate.