* emultempl/ppc64elf.em (emit_stub_syms, toc_section): New vars.
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for Mitsubishi D10V, for GDB.
349c5d5f 2
51603483 3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
349c5d5f 4 Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Contributed by Martin Hunt, hunt@cygnus.com */
24
25#include "defs.h"
26#include "frame.h"
7f6104a9 27#include "frame-unwind.h"
270cb5d6 28#include "frame-base.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "gdb_string.h"
34#include "value.h"
35#include "inferior.h"
c5aa993b 36#include "dis-asm.h"
c906108c
SS
37#include "symfile.h"
38#include "objfiles.h"
104c1213 39#include "language.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
e8933a55 42#include "remote.h"
f0d4cc9e 43#include "floatformat.h"
b91b96f4 44#include "gdb/sim-d10v.h"
8238d0bf 45#include "sim-regno.h"
92bf2b80 46#include "disasm.h"
4ce44c66 47
fa1fd571
AC
48#include "gdb_assert.h"
49
4ce44c66
JM
50struct gdbarch_tdep
51 {
52 int a0_regnum;
53 int nr_dmap_regs;
f6684c31
AC
54 unsigned long (*dmap_register) (void *regcache, int nr);
55 unsigned long (*imap_register) (void *regcache, int nr);
4ce44c66
JM
56 };
57
58/* These are the addresses the D10V-EVA board maps data and
59 instruction memory to. */
cce74817 60
78eac43e
MS
61enum memspace {
62 DMEM_START = 0x2000000,
63 IMEM_START = 0x1000000,
64 STACK_START = 0x200bffe
65};
cce74817 66
4ce44c66
JM
67/* d10v register names. */
68
69enum
70 {
71 R0_REGNUM = 0,
78eac43e 72 R3_REGNUM = 3,
6c2b5168 73 D10V_FP_REGNUM = 11,
4ce44c66 74 LR_REGNUM = 13,
f75493ed 75 D10V_SP_REGNUM = 15,
4ce44c66 76 PSW_REGNUM = 16,
27d94c49 77 D10V_PC_REGNUM = 18,
4ce44c66 78 NR_IMAP_REGS = 2,
78eac43e
MS
79 NR_A_REGS = 2,
80 TS2_NUM_REGS = 37,
81 TS3_NUM_REGS = 42,
82 /* d10v calling convention. */
83 ARG1_REGNUM = R0_REGNUM,
84 ARGN_REGNUM = R3_REGNUM,
85 RET1_REGNUM = R0_REGNUM,
4ce44c66 86 };
78eac43e 87
f75493ed
AC
88int
89nr_dmap_regs (struct gdbarch *gdbarch)
90{
91 return gdbarch_tdep (gdbarch)->nr_dmap_regs;
92}
93
94int
95a0_regnum (struct gdbarch *gdbarch)
96{
97 return gdbarch_tdep (gdbarch)->a0_regnum;
98}
4ce44c66 99
392a587b
JM
100/* Local functions */
101
a14ed312 102extern void _initialize_d10v_tdep (void);
392a587b 103
095a4c96
EZ
104static CORE_ADDR d10v_read_sp (void);
105
a14ed312 106static void d10v_eva_prepare_to_trace (void);
392a587b 107
a14ed312 108static void d10v_eva_get_trace_data (void);
c906108c 109
23964bcd 110static CORE_ADDR
6ae2f580 111d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
489137c0 112{
6ae2f580
AC
113 /* Align to the size of an instruction (so that they can safely be
114 pushed onto the stack. */
115 return sp & ~3;
489137c0 116}
c906108c
SS
117
118/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
119 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
120 and TYPE is the type (which is known to be struct, union or array).
121
122 The d10v returns anything less than 8 bytes in size in
123 registers. */
124
f5e1cf12 125static int
fba45db2 126d10v_use_struct_convention (int gcc_p, struct type *type)
c906108c 127{
02da6206
JSC
128 long alignment;
129 int i;
130 /* The d10v only passes a struct in a register when that structure
131 has an alignment that matches the size of a register. */
132 /* If the structure doesn't fit in 4 registers, put it on the
133 stack. */
134 if (TYPE_LENGTH (type) > 8)
135 return 1;
136 /* If the struct contains only one field, don't put it on the stack
137 - gcc can fit it in one or more registers. */
138 if (TYPE_NFIELDS (type) == 1)
139 return 0;
140 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
141 for (i = 1; i < TYPE_NFIELDS (type); i++)
142 {
143 /* If the alignment changes, just assume it goes on the
144 stack. */
145 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
146 return 1;
147 }
148 /* If the alignment is suitable for the d10v's 16 bit registers,
149 don't put it on the stack. */
150 if (alignment == 2 || alignment == 4)
151 return 0;
152 return 1;
c906108c
SS
153}
154
155
f4f9705a 156static const unsigned char *
fba45db2 157d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
392a587b 158{
c5aa993b
JM
159 static unsigned char breakpoint[] =
160 {0x2f, 0x90, 0x5e, 0x00};
392a587b
JM
161 *lenptr = sizeof (breakpoint);
162 return breakpoint;
163}
164
4ce44c66
JM
165/* Map the REG_NR onto an ascii name. Return NULL or an empty string
166 when the reg_nr isn't valid. */
167
168enum ts2_regnums
169 {
170 TS2_IMAP0_REGNUM = 32,
171 TS2_DMAP_REGNUM = 34,
172 TS2_NR_DMAP_REGS = 1,
173 TS2_A0_REGNUM = 35
174 };
175
fa88f677 176static const char *
4ce44c66 177d10v_ts2_register_name (int reg_nr)
392a587b 178{
c5aa993b
JM
179 static char *register_names[] =
180 {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
184 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
185 "imap0", "imap1", "dmap", "a0", "a1"
392a587b
JM
186 };
187 if (reg_nr < 0)
188 return NULL;
189 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
190 return NULL;
c5aa993b 191 return register_names[reg_nr];
392a587b
JM
192}
193
4ce44c66
JM
194enum ts3_regnums
195 {
196 TS3_IMAP0_REGNUM = 36,
197 TS3_DMAP0_REGNUM = 38,
198 TS3_NR_DMAP_REGS = 4,
199 TS3_A0_REGNUM = 32
200 };
201
fa88f677 202static const char *
4ce44c66
JM
203d10v_ts3_register_name (int reg_nr)
204{
205 static char *register_names[] =
206 {
207 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
208 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
209 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
210 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
211 "a0", "a1",
212 "spi", "spu",
213 "imap0", "imap1",
214 "dmap0", "dmap1", "dmap2", "dmap3"
215 };
216 if (reg_nr < 0)
217 return NULL;
218 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
219 return NULL;
220 return register_names[reg_nr];
221}
222
bf93dfed
JB
223/* Access the DMAP/IMAP registers in a target independent way.
224
225 Divide the D10V's 64k data space into four 16k segments:
226 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
227 0xc000 -- 0xffff.
228
229 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
230 0x7fff) always map to the on-chip data RAM, and the fourth always
231 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
232 unified memory or instruction memory, under the control of the
233 single DMAP register.
234
235 On the TS3, there are four DMAP registers, each of which controls
236 one of the segments. */
4ce44c66
JM
237
238static unsigned long
f6684c31 239d10v_ts2_dmap_register (void *regcache, int reg_nr)
4ce44c66
JM
240{
241 switch (reg_nr)
242 {
243 case 0:
244 case 1:
245 return 0x2000;
246 case 2:
f6684c31
AC
247 {
248 ULONGEST reg;
249 regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, &reg);
250 return reg;
251 }
4ce44c66
JM
252 default:
253 return 0;
254 }
255}
256
257static unsigned long
f6684c31 258d10v_ts3_dmap_register (void *regcache, int reg_nr)
4ce44c66 259{
f6684c31
AC
260 ULONGEST reg;
261 regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, &reg);
262 return reg;
4ce44c66
JM
263}
264
265static unsigned long
f6684c31 266d10v_ts2_imap_register (void *regcache, int reg_nr)
4ce44c66 267{
f6684c31
AC
268 ULONGEST reg;
269 regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, &reg);
270 return reg;
4ce44c66
JM
271}
272
273static unsigned long
f6684c31 274d10v_ts3_imap_register (void *regcache, int reg_nr)
4ce44c66 275{
f6684c31
AC
276 ULONGEST reg;
277 regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, &reg);
278 return reg;
4ce44c66
JM
279}
280
281/* MAP GDB's internal register numbering (determined by the layout fo
282 the REGISTER_BYTE array) onto the simulator's register
283 numbering. */
284
285static int
286d10v_ts2_register_sim_regno (int nr)
287{
e8933a55
AC
288 /* Only makes sense to supply raw registers. */
289 gdb_assert (nr >= 0 && nr < NUM_REGS);
4ce44c66
JM
290 if (nr >= TS2_IMAP0_REGNUM
291 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
292 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
293 if (nr == TS2_DMAP_REGNUM)
294 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
295 if (nr >= TS2_A0_REGNUM
296 && nr < TS2_A0_REGNUM + NR_A_REGS)
297 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
298 return nr;
299}
300
301static int
302d10v_ts3_register_sim_regno (int nr)
303{
e8933a55
AC
304 /* Only makes sense to supply raw registers. */
305 gdb_assert (nr >= 0 && nr < NUM_REGS);
4ce44c66
JM
306 if (nr >= TS3_IMAP0_REGNUM
307 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
308 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
309 if (nr >= TS3_DMAP0_REGNUM
310 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
311 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
312 if (nr >= TS3_A0_REGNUM
313 && nr < TS3_A0_REGNUM + NR_A_REGS)
314 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
315 return nr;
316}
317
392a587b
JM
318/* Return the GDB type object for the "standard" data type
319 of data in register N. */
320
f5e1cf12 321static struct type *
35cac7cf 322d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
392a587b 323{
27d94c49 324 if (reg_nr == D10V_PC_REGNUM)
75af7f68 325 return builtin_type_void_func_ptr;
f75493ed 326 if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
095a4c96 327 return builtin_type_void_data_ptr;
f75493ed
AC
328 else if (reg_nr >= a0_regnum (gdbarch)
329 && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
4ce44c66 330 return builtin_type_int64;
392a587b 331 else
4ce44c66 332 return builtin_type_int16;
392a587b
JM
333}
334
f5e1cf12 335static int
fba45db2 336d10v_daddr_p (CORE_ADDR x)
392a587b
JM
337{
338 return (((x) & 0x3000000) == DMEM_START);
339}
340
f5e1cf12 341static int
fba45db2 342d10v_iaddr_p (CORE_ADDR x)
392a587b
JM
343{
344 return (((x) & 0x3000000) == IMEM_START);
345}
346
169a7369
MS
347static CORE_ADDR
348d10v_make_daddr (CORE_ADDR x)
349{
350 return ((x) | DMEM_START);
351}
352
353static CORE_ADDR
354d10v_make_iaddr (CORE_ADDR x)
355{
356 if (d10v_iaddr_p (x))
357 return x; /* Idempotency -- x is already in the IMEM space. */
358 else
359 return (((x) << 2) | IMEM_START);
360}
392a587b 361
f5e1cf12 362static CORE_ADDR
fba45db2 363d10v_convert_iaddr_to_raw (CORE_ADDR x)
392a587b
JM
364{
365 return (((x) >> 2) & 0xffff);
366}
367
f5e1cf12 368static CORE_ADDR
fba45db2 369d10v_convert_daddr_to_raw (CORE_ADDR x)
392a587b
JM
370{
371 return ((x) & 0xffff);
372}
373
75af7f68
JB
374static void
375d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
376{
377 /* Is it a code address? */
378 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
379 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
380 {
75af7f68
JB
381 store_unsigned_integer (buf, TYPE_LENGTH (type),
382 d10v_convert_iaddr_to_raw (addr));
383 }
384 else
385 {
386 /* Strip off any upper segment bits. */
387 store_unsigned_integer (buf, TYPE_LENGTH (type),
388 d10v_convert_daddr_to_raw (addr));
389 }
390}
391
392static CORE_ADDR
66140c26 393d10v_pointer_to_address (struct type *type, const void *buf)
75af7f68 394{
f75493ed 395 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
75af7f68
JB
396 /* Is it a code address? */
397 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
74a9bb82
FF
398 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
399 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
75af7f68
JB
400 return d10v_make_iaddr (addr);
401 else
402 return d10v_make_daddr (addr);
403}
404
095a4c96
EZ
405/* Don't do anything if we have an integer, this way users can type 'x
406 <addr>' w/o having gdb outsmart them. The internal gdb conversions
407 to the correct space are taken care of in the pointer_to_address
408 function. If we don't do this, 'x $fp' wouldn't work. */
fc0c74b1
AC
409static CORE_ADDR
410d10v_integer_to_address (struct type *type, void *buf)
411{
412 LONGEST val;
413 val = unpack_long (type, buf);
095a4c96 414 return val;
fc0c74b1 415}
75af7f68 416
392a587b
JM
417/* Write into appropriate registers a function return value
418 of type TYPE, given in virtual format.
419
420 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
421
f5e1cf12 422static void
fa1fd571
AC
423d10v_store_return_value (struct type *type, struct regcache *regcache,
424 const void *valbuf)
392a587b 425{
fa1fd571
AC
426 /* Only char return values need to be shifted right within the first
427 regnum. */
3d79a47c
MS
428 if (TYPE_LENGTH (type) == 1
429 && TYPE_CODE (type) == TYPE_CODE_INT)
430 {
fa1fd571
AC
431 bfd_byte tmp[2];
432 tmp[1] = *(bfd_byte *)valbuf;
433 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
3d79a47c
MS
434 }
435 else
fa1fd571
AC
436 {
437 int reg;
438 /* A structure is never more than 8 bytes long. See
439 use_struct_convention(). */
440 gdb_assert (TYPE_LENGTH (type) <= 8);
441 /* Write out most registers, stop loop before trying to write
442 out any dangling byte at the end of the buffer. */
443 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
444 {
445 regcache_cooked_write (regcache, RET1_REGNUM + reg,
446 (bfd_byte *) valbuf + reg * 2);
447 }
448 /* Write out any dangling byte at the end of the buffer. */
449 if ((reg * 2) + 1 == TYPE_LENGTH (type))
450 regcache_cooked_write_part (regcache, reg, 0, 1,
451 (bfd_byte *) valbuf + reg * 2);
452 }
392a587b
JM
453}
454
455/* Extract from an array REGBUF containing the (raw) register state
456 the address in which a function should return its structure value,
457 as a CORE_ADDR (or an expression that can be used as one). */
458
f5e1cf12 459static CORE_ADDR
fa1fd571 460d10v_extract_struct_value_address (struct regcache *regcache)
392a587b 461{
fa1fd571
AC
462 ULONGEST addr;
463 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
464 return (addr | DMEM_START);
392a587b
JM
465}
466
c5aa993b 467static int
fba45db2 468check_prologue (unsigned short op)
c906108c
SS
469{
470 /* st rn, @-sp */
471 if ((op & 0x7E1F) == 0x6C1F)
472 return 1;
473
474 /* st2w rn, @-sp */
475 if ((op & 0x7E3F) == 0x6E1F)
476 return 1;
477
478 /* subi sp, n */
479 if ((op & 0x7FE1) == 0x01E1)
480 return 1;
481
482 /* mv r11, sp */
483 if (op == 0x417E)
484 return 1;
485
486 /* nop */
487 if (op == 0x5E00)
488 return 1;
489
490 /* st rn, @sp */
491 if ((op & 0x7E1F) == 0x681E)
492 return 1;
493
494 /* st2w rn, @sp */
c5aa993b
JM
495 if ((op & 0x7E3F) == 0x3A1E)
496 return 1;
c906108c
SS
497
498 return 0;
499}
500
f5e1cf12 501static CORE_ADDR
fba45db2 502d10v_skip_prologue (CORE_ADDR pc)
c906108c
SS
503{
504 unsigned long op;
505 unsigned short op1, op2;
506 CORE_ADDR func_addr, func_end;
507 struct symtab_and_line sal;
508
509 /* If we have line debugging information, then the end of the */
510 /* prologue should the first assembly instruction of the first source line */
511 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
512 {
513 sal = find_pc_line (func_addr, 0);
c5aa993b 514 if (sal.end && sal.end < func_end)
c906108c
SS
515 return sal.end;
516 }
c5aa993b
JM
517
518 if (target_read_memory (pc, (char *) &op, 4))
c906108c
SS
519 return pc; /* Can't access it -- assume no prologue. */
520
521 while (1)
522 {
c5aa993b 523 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
524 if ((op & 0xC0000000) == 0xC0000000)
525 {
526 /* long instruction */
c5aa993b
JM
527 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
528 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
529 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
c906108c
SS
530 break;
531 }
532 else
533 {
534 /* short instructions */
535 if ((op & 0xC0000000) == 0x80000000)
536 {
537 op2 = (op & 0x3FFF8000) >> 15;
538 op1 = op & 0x7FFF;
c5aa993b
JM
539 }
540 else
c906108c
SS
541 {
542 op1 = (op & 0x3FFF8000) >> 15;
543 op2 = op & 0x7FFF;
544 }
c5aa993b 545 if (check_prologue (op1))
c906108c 546 {
c5aa993b 547 if (!check_prologue (op2))
c906108c
SS
548 {
549 /* if the previous opcode was really part of the prologue */
550 /* and not just a NOP, then we want to break after both instructions */
551 if (op1 != 0x5E00)
552 pc += 4;
553 break;
554 }
555 }
556 else
557 break;
558 }
559 pc += 4;
560 }
561 return pc;
562}
563
7f6104a9 564struct d10v_unwind_cache
c906108c 565{
270cb5d6
AC
566 /* The previous frame's inner most stack address. Used as this
567 frame ID's stack_addr. */
568 CORE_ADDR prev_sp;
569 /* The frame's base, optionally used by the high-level debug info. */
ceea5145 570 CORE_ADDR base;
7f6104a9
AC
571 int size;
572 CORE_ADDR *saved_regs;
0d843116
AC
573 /* How far the SP and r11 (FP) have been offset from the start of
574 the stack frame (as defined by the previous frame's stack
575 pointer). */
576 LONGEST sp_offset;
577 LONGEST r11_offset;
7f6104a9
AC
578 int uses_frame;
579 void **regs;
580};
c906108c 581
c5aa993b 582static int
7f6104a9
AC
583prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
584 CORE_ADDR addr)
c906108c
SS
585{
586 int n;
587
588 /* st rn, @-sp */
589 if ((op & 0x7E1F) == 0x6C1F)
590 {
591 n = (op & 0x1E0) >> 5;
0d843116
AC
592 info->sp_offset -= 2;
593 info->saved_regs[n] = info->sp_offset;
c906108c
SS
594 return 1;
595 }
596
597 /* st2w rn, @-sp */
598 else if ((op & 0x7E3F) == 0x6E1F)
599 {
600 n = (op & 0x1E0) >> 5;
0d843116
AC
601 info->sp_offset -= 4;
602 info->saved_regs[n] = info->sp_offset;
603 info->saved_regs[n + 1] = info->sp_offset + 2;
c906108c
SS
604 return 1;
605 }
606
607 /* subi sp, n */
608 if ((op & 0x7FE1) == 0x01E1)
609 {
610 n = (op & 0x1E) >> 1;
611 if (n == 0)
612 n = 16;
0d843116 613 info->sp_offset -= n;
c906108c
SS
614 return 1;
615 }
616
617 /* mv r11, sp */
618 if (op == 0x417E)
619 {
7f6104a9 620 info->uses_frame = 1;
0d843116
AC
621 info->r11_offset = info->sp_offset;
622 return 1;
623 }
624
625 /* st rn, @r11 */
626 if ((op & 0x7E1F) == 0x6816)
627 {
628 n = (op & 0x1E0) >> 5;
629 info->saved_regs[n] = info->r11_offset;
c906108c
SS
630 return 1;
631 }
632
633 /* nop */
634 if (op == 0x5E00)
635 return 1;
636
637 /* st rn, @sp */
638 if ((op & 0x7E1F) == 0x681E)
639 {
640 n = (op & 0x1E0) >> 5;
0d843116 641 info->saved_regs[n] = info->sp_offset;
c906108c
SS
642 return 1;
643 }
644
645 /* st2w rn, @sp */
646 if ((op & 0x7E3F) == 0x3A1E)
647 {
648 n = (op & 0x1E0) >> 5;
0d843116
AC
649 info->saved_regs[n] = info->sp_offset;
650 info->saved_regs[n + 1] = info->sp_offset + 2;
c906108c
SS
651 return 1;
652 }
653
654 return 0;
655}
656
cce74817
JM
657/* Put here the code to store, into fi->saved_regs, the addresses of
658 the saved registers of frame described by FRAME_INFO. This
659 includes special registers such as pc and fp saved in special ways
660 in the stack frame. sp is even more special: the address we return
661 for it IS the sp for the next frame. */
662
7f6104a9 663struct d10v_unwind_cache *
6dc42492
AC
664d10v_frame_unwind_cache (struct frame_info *next_frame,
665 void **this_prologue_cache)
c906108c 666{
ae1e7417 667 struct gdbarch *gdbarch = get_frame_arch (next_frame);
ceea5145
AC
668 CORE_ADDR pc;
669 ULONGEST prev_sp;
670 ULONGEST this_base;
c906108c
SS
671 unsigned long op;
672 unsigned short op1, op2;
673 int i;
7f6104a9
AC
674 struct d10v_unwind_cache *info;
675
6dc42492
AC
676 if ((*this_prologue_cache))
677 return (*this_prologue_cache);
7f6104a9
AC
678
679 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
6dc42492 680 (*this_prologue_cache) = info;
f75493ed 681 info->saved_regs = FRAME_OBSTACK_CALLOC (NUM_REGS, CORE_ADDR);
7f6104a9 682
7f6104a9 683 info->size = 0;
0d843116 684 info->sp_offset = 0;
c906108c 685
7f6104a9 686 info->uses_frame = 0;
be41e9f4 687 for (pc = frame_func_unwind (next_frame);
81f8a206 688 pc > 0 && pc < frame_pc_unwind (next_frame);
270cb5d6 689 pc += 4)
c906108c 690 {
ae1e7417 691 op = get_frame_memory_unsigned (next_frame, pc, 4);
c906108c
SS
692 if ((op & 0xC0000000) == 0xC0000000)
693 {
694 /* long instruction */
695 if ((op & 0x3FFF0000) == 0x01FF0000)
696 {
697 /* add3 sp,sp,n */
698 short n = op & 0xFFFF;
0d843116 699 info->sp_offset += n;
c906108c
SS
700 }
701 else if ((op & 0x3F0F0000) == 0x340F0000)
702 {
703 /* st rn, @(offset,sp) */
704 short offset = op & 0xFFFF;
705 short n = (op >> 20) & 0xF;
0d843116 706 info->saved_regs[n] = info->sp_offset + offset;
c906108c
SS
707 }
708 else if ((op & 0x3F1F0000) == 0x350F0000)
709 {
710 /* st2w rn, @(offset,sp) */
711 short offset = op & 0xFFFF;
712 short n = (op >> 20) & 0xF;
0d843116
AC
713 info->saved_regs[n] = info->sp_offset + offset;
714 info->saved_regs[n + 1] = info->sp_offset + offset + 2;
c906108c
SS
715 }
716 else
717 break;
718 }
719 else
720 {
721 /* short instructions */
722 if ((op & 0xC0000000) == 0x80000000)
723 {
724 op2 = (op & 0x3FFF8000) >> 15;
725 op1 = op & 0x7FFF;
c5aa993b
JM
726 }
727 else
c906108c
SS
728 {
729 op1 = (op & 0x3FFF8000) >> 15;
730 op2 = op & 0x7FFF;
731 }
7f6104a9
AC
732 if (!prologue_find_regs (info, op1, pc)
733 || !prologue_find_regs (info, op2, pc))
c906108c
SS
734 break;
735 }
c906108c 736 }
c5aa993b 737
0d843116 738 info->size = -info->sp_offset;
c906108c 739
ceea5145
AC
740 /* Compute the frame's base, and the previous frame's SP. */
741 if (info->uses_frame)
742 {
743 /* The SP was moved to the FP. This indicates that a new frame
744 was created. Get THIS frame's FP value by unwinding it from
745 the next frame. */
6c2b5168 746 frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
ceea5145
AC
747 /* The FP points at the last saved register. Adjust the FP back
748 to before the first saved register giving the SP. */
749 prev_sp = this_base + info->size;
750 }
f75493ed 751 else if (info->saved_regs[D10V_SP_REGNUM])
ceea5145
AC
752 {
753 /* The SP was saved (which is very unusual), the frame base is
754 just the PREV's frame's TOP-OF-STACK. */
ae1e7417
AC
755 this_base
756 = get_frame_memory_unsigned (next_frame,
757 info->saved_regs[D10V_SP_REGNUM],
758 register_size (gdbarch, D10V_SP_REGNUM));
ceea5145
AC
759 prev_sp = this_base;
760 }
761 else
762 {
763 /* Assume that the FP is this frame's SP but with that pushed
764 stack space added back. */
f75493ed 765 frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
ceea5145
AC
766 prev_sp = this_base + info->size;
767 }
768
769 info->base = d10v_make_daddr (this_base);
270cb5d6 770 info->prev_sp = d10v_make_daddr (prev_sp);
c906108c 771
ceea5145
AC
772 /* Adjust all the saved registers so that they contain addresses and
773 not offsets. */
c5aa993b 774 for (i = 0; i < NUM_REGS - 1; i++)
7f6104a9 775 if (info->saved_regs[i])
c906108c 776 {
270cb5d6 777 info->saved_regs[i] = (info->prev_sp + info->saved_regs[i]);
c906108c
SS
778 }
779
f75493ed 780 /* The D10V_SP_REGNUM is special. Instead of the address of the SP, the
ceea5145 781 previous frame's SP value is saved. */
f75493ed 782 info->saved_regs[D10V_SP_REGNUM] = info->prev_sp;
c906108c 783
7f6104a9 784 return info;
c906108c
SS
785}
786
787static void
5f601589
AC
788d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
789 struct frame_info *frame, int regnum, int all)
c906108c 790{
f6684c31 791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5f601589 792 if (regnum >= 0)
4ce44c66 793 {
5f601589
AC
794 default_print_registers_info (gdbarch, file, frame, regnum, all);
795 return;
4ce44c66 796 }
5f601589
AC
797
798 {
799 ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
27d94c49 800 frame_read_unsigned_register (frame, D10V_PC_REGNUM, &pc);
5f601589
AC
801 frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
802 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
803 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
804 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
805 fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
806 (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
807 (long) rpt_s, (long) rpt_e, (long) rpt_c);
808 }
809
810 {
811 int group;
812 for (group = 0; group < 16; group += 8)
813 {
814 int r;
815 fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
816 for (r = group; r < group + 8; r++)
817 {
818 ULONGEST tmp;
819 frame_read_unsigned_register (frame, r, &tmp);
820 fprintf_filtered (file, " %04lx", (long) tmp);
821 }
822 fprintf_filtered (file, "\n");
823 }
824 }
825
826 /* Note: The IMAP/DMAP registers don't participate in function
827 calls. Don't bother trying to unwind them. */
828
6789195b 829 {
5f601589
AC
830 int a;
831 for (a = 0; a < NR_IMAP_REGS; a++)
832 {
833 if (a > 0)
834 fprintf_filtered (file, " ");
f6684c31
AC
835 fprintf_filtered (file, "IMAP%d %04lx", a,
836 tdep->imap_register (current_regcache, a));
5f601589 837 }
f75493ed 838 if (nr_dmap_regs (gdbarch) == 1)
5f601589 839 /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
f6684c31
AC
840 fprintf_filtered (file, " DMAP %04lx\n",
841 tdep->dmap_register (current_regcache, 2));
5f601589
AC
842 else
843 {
f75493ed 844 for (a = 0; a < nr_dmap_regs (gdbarch); a++)
5f601589 845 {
f6684c31
AC
846 fprintf_filtered (file, " DMAP%d %04lx", a,
847 tdep->dmap_register (current_regcache, a));
5f601589
AC
848 }
849 fprintf_filtered (file, "\n");
850 }
851 }
852
853 {
0c92afe8 854 char num[MAX_REGISTER_SIZE];
5f601589
AC
855 int a;
856 fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
f75493ed 857 for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
6789195b
AC
858 {
859 int i;
5f601589 860 fprintf_filtered (file, " ");
f75493ed 861 frame_read_register (frame, a, num);
ae1e7417 862 for (i = 0; i < register_size (gdbarch, a); i++)
6789195b 863 {
5f601589 864 fprintf_filtered (file, "%02x", (num[i] & 0xff));
6789195b
AC
865 }
866 }
867 }
5f601589
AC
868 fprintf_filtered (file, "\n");
869}
870
871static void
872show_regs (char *args, int from_tty)
873{
874 d10v_print_registers_info (current_gdbarch, gdb_stdout,
875 get_current_frame (), -1, 1);
c906108c
SS
876}
877
f5e1cf12 878static CORE_ADDR
39f77062 879d10v_read_pc (ptid_t ptid)
c906108c 880{
39f77062 881 ptid_t save_ptid;
c906108c
SS
882 CORE_ADDR pc;
883 CORE_ADDR retval;
884
39f77062
KB
885 save_ptid = inferior_ptid;
886 inferior_ptid = ptid;
27d94c49 887 pc = (int) read_register (D10V_PC_REGNUM);
39f77062 888 inferior_ptid = save_ptid;
7b570125 889 retval = d10v_make_iaddr (pc);
c906108c
SS
890 return retval;
891}
892
f5e1cf12 893static void
39f77062 894d10v_write_pc (CORE_ADDR val, ptid_t ptid)
c906108c 895{
39f77062 896 ptid_t save_ptid;
c906108c 897
39f77062
KB
898 save_ptid = inferior_ptid;
899 inferior_ptid = ptid;
27d94c49 900 write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val));
39f77062 901 inferior_ptid = save_ptid;
c906108c
SS
902}
903
f5e1cf12 904static CORE_ADDR
fba45db2 905d10v_read_sp (void)
c906108c 906{
f75493ed 907 return (d10v_make_daddr (read_register (D10V_SP_REGNUM)));
c906108c
SS
908}
909
7a292a7a
SS
910/* When arguments must be pushed onto the stack, they go on in reverse
911 order. The below implements a FILO (stack) to do this. */
912
913struct stack_item
914{
915 int len;
916 struct stack_item *prev;
917 void *data;
918};
919
a14ed312
KB
920static struct stack_item *push_stack_item (struct stack_item *prev,
921 void *contents, int len);
7a292a7a 922static struct stack_item *
fba45db2 923push_stack_item (struct stack_item *prev, void *contents, int len)
7a292a7a
SS
924{
925 struct stack_item *si;
926 si = xmalloc (sizeof (struct stack_item));
927 si->data = xmalloc (len);
928 si->len = len;
929 si->prev = prev;
930 memcpy (si->data, contents, len);
931 return si;
932}
933
a14ed312 934static struct stack_item *pop_stack_item (struct stack_item *si);
7a292a7a 935static struct stack_item *
fba45db2 936pop_stack_item (struct stack_item *si)
7a292a7a
SS
937{
938 struct stack_item *dead = si;
939 si = si->prev;
b8c9b27d
KB
940 xfree (dead->data);
941 xfree (dead);
7a292a7a
SS
942 return si;
943}
944
945
7043d8dc
AC
946static CORE_ADDR
947d10v_push_dummy_code (struct gdbarch *gdbarch,
948 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
949 struct value **args, int nargs,
950 struct type *value_type,
951 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
952{
953 /* Allocate space sufficient for a breakpoint. */
954 sp = (sp - 4) & ~3;
955 /* Store the address of that breakpoint taking care to first convert
956 it into a code (IADDR) address from a stack (DADDR) address.
957 This of course assumes that the two virtual addresses map onto
958 the same real address. */
959 (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp));
960 /* d10v always starts the call at the callee's entry point. */
961 (*real_pc) = funaddr;
962 return sp;
963}
964
f5e1cf12 965static CORE_ADDR
6a65450a
AC
966d10v_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
967 struct regcache *regcache, CORE_ADDR bp_addr,
968 int nargs, struct value **args, CORE_ADDR sp, int struct_return,
969 CORE_ADDR struct_addr)
c906108c
SS
970{
971 int i;
972 int regnum = ARG1_REGNUM;
7a292a7a 973 struct stack_item *si = NULL;
7bd91a28
MS
974 long val;
975
5873a88d 976 /* Set the return address. For the d10v, the return breakpoint is
6a65450a 977 always at BP_ADDR. */
5873a88d 978 regcache_cooked_write_unsigned (regcache, LR_REGNUM,
6a65450a 979 d10v_convert_iaddr_to_raw (bp_addr));
5873a88d 980
4183d812
AC
981 /* If STRUCT_RETURN is true, then the struct return address (in
982 STRUCT_ADDR) will consume the first argument-passing register.
983 Both adjust the register count and store that value. */
7bd91a28 984 if (struct_return)
4183d812 985 {
5873a88d 986 regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
4183d812
AC
987 regnum++;
988 }
c5aa993b 989
c906108c
SS
990 /* Fill in registers and arg lists */
991 for (i = 0; i < nargs; i++)
992 {
ea7c478f 993 struct value *arg = args[i];
c906108c
SS
994 struct type *type = check_typedef (VALUE_TYPE (arg));
995 char *contents = VALUE_CONTENTS (arg);
996 int len = TYPE_LENGTH (type);
7bd91a28
MS
997 int aligned_regnum = (regnum + 1) & ~1;
998
8b279e7a 999 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
7bd91a28
MS
1000 if (len <= 2 && regnum <= ARGN_REGNUM)
1001 /* fits in a single register, do not align */
1002 {
1003 val = extract_unsigned_integer (contents, len);
5873a88d 1004 regcache_cooked_write_unsigned (regcache, regnum++, val);
7bd91a28
MS
1005 }
1006 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1007 /* value fits in remaining registers, store keeping left
1008 aligned */
c906108c 1009 {
7bd91a28
MS
1010 int b;
1011 regnum = aligned_regnum;
1012 for (b = 0; b < (len & ~1); b += 2)
c906108c 1013 {
7bd91a28 1014 val = extract_unsigned_integer (&contents[b], 2);
5873a88d 1015 regcache_cooked_write_unsigned (regcache, regnum++, val);
c906108c 1016 }
7bd91a28 1017 if (b < len)
c906108c 1018 {
7bd91a28 1019 val = extract_unsigned_integer (&contents[b], 1);
5873a88d 1020 regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
c906108c
SS
1021 }
1022 }
7bd91a28
MS
1023 else
1024 {
1025 /* arg will go onto stack */
1026 regnum = ARGN_REGNUM + 1;
1027 si = push_stack_item (si, contents, len);
1028 }
c906108c 1029 }
7a292a7a
SS
1030
1031 while (si)
1032 {
1033 sp = (sp - si->len) & ~1;
1034 write_memory (sp, si->data, si->len);
1035 si = pop_stack_item (si);
1036 }
c5aa993b 1037
5873a88d 1038 /* Finally, update the SP register. */
f75493ed 1039 regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
5873a88d
AC
1040 d10v_convert_daddr_to_raw (sp));
1041
c906108c
SS
1042 return sp;
1043}
1044
1045
1046/* Given a return value in `regbuf' with a type `valtype',
1047 extract and copy its value into `valbuf'. */
1048
f5e1cf12 1049static void
fa1fd571
AC
1050d10v_extract_return_value (struct type *type, struct regcache *regcache,
1051 void *valbuf)
c906108c
SS
1052{
1053 int len;
fa1fd571 1054 if (TYPE_LENGTH (type) == 1)
c906108c 1055 {
fa1fd571
AC
1056 ULONGEST c;
1057 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
3d79a47c
MS
1058 store_unsigned_integer (valbuf, 1, c);
1059 }
3d79a47c
MS
1060 else
1061 {
1062 /* For return values of odd size, the first byte is in the
1063 least significant part of the first register. The
fa1fd571
AC
1064 remaining bytes in remaining registers. Interestingly, when
1065 such values are passed in, the last byte is in the most
1066 significant byte of that same register - wierd. */
1067 int reg = RET1_REGNUM;
1068 int off = 0;
1069 if (TYPE_LENGTH (type) & 1)
1070 {
1071 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1072 (bfd_byte *)valbuf + off);
1073 off++;
1074 reg++;
1075 }
1076 /* Transfer the remaining registers. */
1077 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1078 {
1079 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1080 (bfd_byte *) valbuf + off);
1081 }
c906108c
SS
1082 }
1083}
1084
c2c6d25f
JM
1085/* Translate a GDB virtual ADDR/LEN into a format the remote target
1086 understands. Returns number of bytes that can be transfered
4ce44c66
JM
1087 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1088 (segmentation fault). Since the simulator knows all about how the
1089 VM system works, we just call that to do the translation. */
c2c6d25f 1090
4ce44c66 1091static void
f6684c31
AC
1092remote_d10v_translate_xfer_address (struct gdbarch *gdbarch,
1093 struct regcache *regcache,
1094 CORE_ADDR memaddr, int nr_bytes,
c2c6d25f
JM
1095 CORE_ADDR *targ_addr, int *targ_len)
1096{
f6684c31 1097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4ce44c66
JM
1098 long out_addr;
1099 long out_len;
f6684c31
AC
1100 out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache,
1101 tdep->dmap_register, tdep->imap_register);
4ce44c66
JM
1102 *targ_addr = out_addr;
1103 *targ_len = out_len;
c2c6d25f
JM
1104}
1105
4ce44c66 1106
c906108c
SS
1107/* The following code implements access to, and display of, the D10V's
1108 instruction trace buffer. The buffer consists of 64K or more
1109 4-byte words of data, of which each words includes an 8-bit count,
1110 an 8-bit segment number, and a 16-bit instruction address.
1111
1112 In theory, the trace buffer is continuously capturing instruction
1113 data that the CPU presents on its "debug bus", but in practice, the
1114 ROMified GDB stub only enables tracing when it continues or steps
1115 the program, and stops tracing when the program stops; so it
1116 actually works for GDB to read the buffer counter out of memory and
1117 then read each trace word. The counter records where the tracing
1118 stops, but there is no record of where it started, so we remember
1119 the PC when we resumed and then search backwards in the trace
1120 buffer for a word that includes that address. This is not perfect,
1121 because you will miss trace data if the resumption PC is the target
1122 of a branch. (The value of the buffer counter is semi-random, any
1123 trace data from a previous program stop is gone.) */
1124
1125/* The address of the last word recorded in the trace buffer. */
1126
1127#define DBBC_ADDR (0xd80000)
1128
1129/* The base of the trace buffer, at least for the "Board_0". */
1130
1131#define TRACE_BUFFER_BASE (0xf40000)
1132
a14ed312 1133static void trace_command (char *, int);
c906108c 1134
a14ed312 1135static void untrace_command (char *, int);
c906108c 1136
a14ed312 1137static void trace_info (char *, int);
c906108c 1138
a14ed312 1139static void tdisassemble_command (char *, int);
c906108c 1140
a14ed312 1141static void display_trace (int, int);
c906108c
SS
1142
1143/* True when instruction traces are being collected. */
1144
1145static int tracing;
1146
1147/* Remembered PC. */
1148
1149static CORE_ADDR last_pc;
1150
1151/* True when trace output should be displayed whenever program stops. */
1152
1153static int trace_display;
1154
1155/* True when trace listing should include source lines. */
1156
1157static int default_trace_show_source = 1;
1158
c5aa993b
JM
1159struct trace_buffer
1160 {
1161 int size;
1162 short *counts;
1163 CORE_ADDR *addrs;
1164 }
1165trace_data;
c906108c
SS
1166
1167static void
fba45db2 1168trace_command (char *args, int from_tty)
c906108c
SS
1169{
1170 /* Clear the host-side trace buffer, allocating space if needed. */
1171 trace_data.size = 0;
1172 if (trace_data.counts == NULL)
f75493ed 1173 trace_data.counts = XCALLOC (65536, short);
c906108c 1174 if (trace_data.addrs == NULL)
f75493ed 1175 trace_data.addrs = XCALLOC (65536, CORE_ADDR);
c906108c
SS
1176
1177 tracing = 1;
1178
1179 printf_filtered ("Tracing is now on.\n");
1180}
1181
1182static void
fba45db2 1183untrace_command (char *args, int from_tty)
c906108c
SS
1184{
1185 tracing = 0;
1186
1187 printf_filtered ("Tracing is now off.\n");
1188}
1189
1190static void
fba45db2 1191trace_info (char *args, int from_tty)
c906108c
SS
1192{
1193 int i;
1194
1195 if (trace_data.size)
1196 {
1197 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1198
1199 for (i = 0; i < trace_data.size; ++i)
1200 {
d4f3574e
SS
1201 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1202 i,
1203 trace_data.counts[i],
c906108c 1204 (trace_data.counts[i] == 1 ? "" : "s"),
d4f3574e 1205 paddr_nz (trace_data.addrs[i]));
c906108c
SS
1206 }
1207 }
1208 else
1209 printf_filtered ("No entries in trace buffer.\n");
1210
1211 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1212}
1213
392a587b 1214static void
fba45db2 1215d10v_eva_prepare_to_trace (void)
c906108c
SS
1216{
1217 if (!tracing)
1218 return;
1219
27d94c49 1220 last_pc = read_register (D10V_PC_REGNUM);
c906108c
SS
1221}
1222
1223/* Collect trace data from the target board and format it into a form
1224 more useful for display. */
1225
392a587b 1226static void
fba45db2 1227d10v_eva_get_trace_data (void)
c906108c
SS
1228{
1229 int count, i, j, oldsize;
1230 int trace_addr, trace_seg, trace_cnt, next_cnt;
1231 unsigned int last_trace, trace_word, next_word;
1232 unsigned int *tmpspace;
1233
1234 if (!tracing)
1235 return;
1236
c5aa993b 1237 tmpspace = xmalloc (65536 * sizeof (unsigned int));
c906108c
SS
1238
1239 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1240
1241 /* Collect buffer contents from the target, stopping when we reach
1242 the word recorded when execution resumed. */
1243
1244 count = 0;
1245 while (last_trace > 0)
1246 {
1247 QUIT;
1248 trace_word =
1249 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1250 trace_addr = trace_word & 0xffff;
1251 last_trace -= 4;
1252 /* Ignore an apparently nonsensical entry. */
1253 if (trace_addr == 0xffd5)
1254 continue;
1255 tmpspace[count++] = trace_word;
1256 if (trace_addr == last_pc)
1257 break;
1258 if (count > 65535)
1259 break;
1260 }
1261
1262 /* Move the data to the host-side trace buffer, adjusting counts to
1263 include the last instruction executed and transforming the address
1264 into something that GDB likes. */
1265
1266 for (i = 0; i < count; ++i)
1267 {
1268 trace_word = tmpspace[i];
1269 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1270 trace_addr = trace_word & 0xffff;
1271 next_cnt = (next_word >> 24) & 0xff;
1272 j = trace_data.size + count - i - 1;
1273 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1274 trace_data.counts[j] = next_cnt + 1;
1275 }
1276
1277 oldsize = trace_data.size;
1278 trace_data.size += count;
1279
b8c9b27d 1280 xfree (tmpspace);
c906108c
SS
1281
1282 if (trace_display)
1283 display_trace (oldsize, trace_data.size);
1284}
1285
1286static void
fba45db2 1287tdisassemble_command (char *arg, int from_tty)
c906108c
SS
1288{
1289 int i, count;
1290 CORE_ADDR low, high;
c906108c
SS
1291
1292 if (!arg)
1293 {
1294 low = 0;
1295 high = trace_data.size;
1296 }
c906108c 1297 else
e8933a55
AC
1298 {
1299 char *space_index = strchr (arg, ' ');
1300 if (space_index == NULL)
1301 {
1302 low = parse_and_eval_address (arg);
1303 high = low + 5;
1304 }
1305 else
1306 {
1307 /* Two arguments. */
1308 *space_index = '\0';
1309 low = parse_and_eval_address (arg);
1310 high = parse_and_eval_address (space_index + 1);
1311 if (high < low)
1312 high = low;
1313 }
c906108c
SS
1314 }
1315
d4f3574e 1316 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
c906108c
SS
1317
1318 display_trace (low, high);
1319
1320 printf_filtered ("End of trace dump.\n");
1321 gdb_flush (gdb_stdout);
1322}
1323
1324static void
fba45db2 1325display_trace (int low, int high)
c906108c
SS
1326{
1327 int i, count, trace_show_source, first, suppress;
1328 CORE_ADDR next_address;
1329
1330 trace_show_source = default_trace_show_source;
c5aa993b 1331 if (!have_full_symbols () && !have_partial_symbols ())
c906108c
SS
1332 {
1333 trace_show_source = 0;
1334 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1335 printf_filtered ("Trace will not display any source.\n");
1336 }
1337
1338 first = 1;
1339 suppress = 0;
1340 for (i = low; i < high; ++i)
1341 {
1342 next_address = trace_data.addrs[i];
c5aa993b 1343 count = trace_data.counts[i];
c906108c
SS
1344 while (count-- > 0)
1345 {
1346 QUIT;
1347 if (trace_show_source)
1348 {
1349 struct symtab_and_line sal, sal_prev;
1350
1351 sal_prev = find_pc_line (next_address - 4, 0);
1352 sal = find_pc_line (next_address, 0);
1353
1354 if (sal.symtab)
1355 {
1356 if (first || sal.line != sal_prev.line)
1357 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1358 suppress = 0;
1359 }
1360 else
1361 {
1362 if (!suppress)
1363 /* FIXME-32x64--assumes sal.pc fits in long. */
1364 printf_filtered ("No source file for address %s.\n",
c5aa993b 1365 local_hex_string ((unsigned long) sal.pc));
c906108c
SS
1366 suppress = 1;
1367 }
1368 }
1369 first = 0;
1370 print_address (next_address, gdb_stdout);
1371 printf_filtered (":");
1372 printf_filtered ("\t");
1373 wrap_here (" ");
92bf2b80 1374 next_address += gdb_print_insn (next_address, gdb_stdout);
c906108c
SS
1375 printf_filtered ("\n");
1376 gdb_flush (gdb_stdout);
1377 }
1378 }
1379}
1380
7f6104a9 1381static CORE_ADDR
12cc2063 1382d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
7f6104a9 1383{
12cc2063 1384 ULONGEST pc;
27d94c49 1385 frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc);
12cc2063 1386 return d10v_make_iaddr (pc);
7f6104a9
AC
1387}
1388
1389/* Given a GDB frame, determine the address of the calling function's
1390 frame. This will be used to create a new GDB frame struct. */
1391
1392static void
6dc42492
AC
1393d10v_frame_this_id (struct frame_info *next_frame,
1394 void **this_prologue_cache,
1395 struct frame_id *this_id)
7f6104a9 1396{
6dc42492
AC
1397 struct d10v_unwind_cache *info
1398 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1399 CORE_ADDR base;
81f8a206
AC
1400 CORE_ADDR func;
1401 struct frame_id id;
7f6104a9 1402
81f8a206
AC
1403 /* The FUNC is easy. */
1404 func = frame_func_unwind (next_frame);
7f6104a9 1405
6dc42492
AC
1406 /* This is meant to halt the backtrace at "_start". Make sure we
1407 don't halt it at a generic dummy frame. */
81f8a206 1408 if (func <= IMEM_START || inside_entry_file (func))
6dc42492 1409 return;
7f6104a9 1410
6dc42492
AC
1411 /* Hopefully the prologue analysis either correctly determined the
1412 frame's base (which is the SP from the previous frame), or set
1413 that base to "NULL". */
270cb5d6 1414 base = info->prev_sp;
6dc42492
AC
1415 if (base == STACK_START || base == 0)
1416 return;
7f6104a9 1417
81f8a206
AC
1418 id = frame_id_build (base, func);
1419
6dc42492
AC
1420 /* Check that we're not going round in circles with the same frame
1421 ID (but avoid applying the test to sentinel frames which do go
1422 round in circles). Can't use frame_id_eq() as that doesn't yet
1423 compare the frame's PC value. */
1424 if (frame_relative_level (next_frame) >= 0
1425 && get_frame_type (next_frame) != DUMMY_FRAME
81f8a206 1426 && frame_id_eq (get_frame_id (next_frame), id))
7f6104a9
AC
1427 return;
1428
81f8a206 1429 (*this_id) = id;
7f6104a9
AC
1430}
1431
1432static void
6dc42492
AC
1433saved_regs_unwinder (struct frame_info *next_frame,
1434 CORE_ADDR *this_saved_regs,
7f6104a9
AC
1435 int regnum, int *optimizedp,
1436 enum lval_type *lvalp, CORE_ADDR *addrp,
1437 int *realnump, void *bufferp)
1438{
ae1e7417 1439 struct gdbarch *gdbarch = get_frame_arch (next_frame);
6dc42492 1440 if (this_saved_regs[regnum] != 0)
7f6104a9 1441 {
f75493ed 1442 if (regnum == D10V_SP_REGNUM)
7f6104a9
AC
1443 {
1444 /* SP register treated specially. */
1445 *optimizedp = 0;
1446 *lvalp = not_lval;
1447 *addrp = 0;
1448 *realnump = -1;
1449 if (bufferp != NULL)
f75493ed 1450 store_unsigned_integer (bufferp,
ae1e7417 1451 register_size (gdbarch, regnum),
f75493ed 1452 this_saved_regs[regnum]);
7f6104a9
AC
1453 }
1454 else
1455 {
1456 /* Any other register is saved in memory, fetch it but cache
1457 a local copy of its value. */
1458 *optimizedp = 0;
1459 *lvalp = lval_memory;
6dc42492 1460 *addrp = this_saved_regs[regnum];
7f6104a9
AC
1461 *realnump = -1;
1462 if (bufferp != NULL)
1463 {
1464 /* Read the value in from memory. */
ae1e7417
AC
1465 get_frame_memory (next_frame, this_saved_regs[regnum], bufferp,
1466 register_size (gdbarch, regnum));
7f6104a9
AC
1467 }
1468 }
1469 return;
1470 }
1471
1472 /* No luck, assume this and the next frame have the same register
1473 value. If a value is needed, pass the request on down the chain;
1474 otherwise just return an indication that the value is in the same
1475 register as the next frame. */
6dc42492
AC
1476 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
1477 realnump, bufferp);
7f6104a9
AC
1478}
1479
1480
1481static void
6dc42492
AC
1482d10v_frame_prev_register (struct frame_info *next_frame,
1483 void **this_prologue_cache,
1484 int regnum, int *optimizedp,
1485 enum lval_type *lvalp, CORE_ADDR *addrp,
1486 int *realnump, void *bufferp)
7f6104a9 1487{
6dc42492
AC
1488 struct d10v_unwind_cache *info
1489 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
27d94c49 1490 if (regnum == D10V_PC_REGNUM)
ef840a37
AC
1491 {
1492 /* The call instruction saves the caller's PC in LR. The
1493 function prologue of the callee may then save the LR on the
1494 stack. Find that possibly saved LR value and return it. */
6dc42492 1495 saved_regs_unwinder (next_frame, info->saved_regs, LR_REGNUM, optimizedp,
ef840a37
AC
1496 lvalp, addrp, realnump, bufferp);
1497 }
1498 else
1499 {
6dc42492 1500 saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
ef840a37
AC
1501 lvalp, addrp, realnump, bufferp);
1502 }
7f6104a9
AC
1503}
1504
270cb5d6 1505static const struct frame_unwind d10v_frame_unwind = {
7df05f2b 1506 NORMAL_FRAME,
6dc42492
AC
1507 d10v_frame_this_id,
1508 d10v_frame_prev_register
7f6104a9
AC
1509};
1510
1511const struct frame_unwind *
1512d10v_frame_p (CORE_ADDR pc)
1513{
1514 return &d10v_frame_unwind;
1515}
1516
270cb5d6
AC
1517static CORE_ADDR
1518d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
1519{
1520 struct d10v_unwind_cache *info
1521 = d10v_frame_unwind_cache (next_frame, this_cache);
1522 return info->base;
1523}
1524
1525static const struct frame_base d10v_frame_base = {
1526 &d10v_frame_unwind,
1527 d10v_frame_base_address,
1528 d10v_frame_base_address,
1529 d10v_frame_base_address
1530};
1531
6314f104
AC
1532/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1533 dummy frame. The frame ID's base needs to match the TOS value
1534 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1535 breakpoint. */
1536
1537static struct frame_id
1538d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1539{
1540 ULONGEST base;
f75493ed 1541 frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &base);
11889732 1542 return frame_id_build (d10v_make_daddr (base), frame_pc_unwind (next_frame));
6314f104
AC
1543}
1544
0f71a2f6 1545static gdbarch_init_ftype d10v_gdbarch_init;
4ce44c66 1546
0f71a2f6 1547static struct gdbarch *
fba45db2 1548d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
0f71a2f6 1549{
0f71a2f6 1550 struct gdbarch *gdbarch;
4ce44c66
JM
1551 int d10v_num_regs;
1552 struct gdbarch_tdep *tdep;
1553 gdbarch_register_name_ftype *d10v_register_name;
7c7651b2 1554 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
0f71a2f6 1555
4ce44c66
JM
1556 /* Find a candidate among the list of pre-declared architectures. */
1557 arches = gdbarch_list_lookup_by_info (arches, &info);
0f71a2f6
JM
1558 if (arches != NULL)
1559 return arches->gdbarch;
4ce44c66
JM
1560
1561 /* None found, create a new architecture from the information
1562 provided. */
1563 tdep = XMALLOC (struct gdbarch_tdep);
1564 gdbarch = gdbarch_alloc (&info, tdep);
1565
1566 switch (info.bfd_arch_info->mach)
1567 {
1568 case bfd_mach_d10v_ts2:
1569 d10v_num_regs = 37;
1570 d10v_register_name = d10v_ts2_register_name;
7c7651b2 1571 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
4ce44c66
JM
1572 tdep->a0_regnum = TS2_A0_REGNUM;
1573 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
4ce44c66
JM
1574 tdep->dmap_register = d10v_ts2_dmap_register;
1575 tdep->imap_register = d10v_ts2_imap_register;
1576 break;
1577 default:
1578 case bfd_mach_d10v_ts3:
1579 d10v_num_regs = 42;
1580 d10v_register_name = d10v_ts3_register_name;
7c7651b2 1581 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
4ce44c66
JM
1582 tdep->a0_regnum = TS3_A0_REGNUM;
1583 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
4ce44c66
JM
1584 tdep->dmap_register = d10v_ts3_dmap_register;
1585 tdep->imap_register = d10v_ts3_imap_register;
1586 break;
1587 }
0f71a2f6
JM
1588
1589 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1590 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
0f71a2f6 1591 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
0f71a2f6
JM
1592
1593 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
f75493ed 1594 set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
0f71a2f6 1595 set_gdbarch_register_name (gdbarch, d10v_register_name);
35cac7cf 1596 set_gdbarch_register_type (gdbarch, d10v_register_type);
0f71a2f6 1597
75af7f68
JB
1598 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1599 set_gdbarch_addr_bit (gdbarch, 32);
1600 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1601 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
fc0c74b1 1602 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
0f71a2f6
JM
1603 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1604 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1605 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
02da6206 1606 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1607 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1608 double'' is 64 bits. */
0f71a2f6
JM
1609 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1610 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1611 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1612 switch (info.byte_order)
1613 {
d7449b42 1614 case BFD_ENDIAN_BIG:
f0d4cc9e
AC
1615 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1616 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1617 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1618 break;
778eb05e 1619 case BFD_ENDIAN_LITTLE:
f0d4cc9e
AC
1620 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1621 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1622 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1623 break;
1624 default:
8e65ff28
AC
1625 internal_error (__FILE__, __LINE__,
1626 "d10v_gdbarch_init: bad byte order for float format");
f0d4cc9e 1627 }
0f71a2f6 1628
fa1fd571 1629 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
7043d8dc 1630 set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code);
5873a88d 1631 set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
fa1fd571
AC
1632 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1633 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
0f71a2f6
JM
1634 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1635
0f71a2f6
JM
1636 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1637 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1638 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1639 set_gdbarch_function_start_offset (gdbarch, 0);
1640 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1641
1642 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1643
1644 set_gdbarch_frame_args_skip (gdbarch, 0);
1645 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
f4ded5b1 1646
0f71a2f6 1647 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6ae2f580 1648 set_gdbarch_frame_align (gdbarch, d10v_frame_align);
0f71a2f6 1649
7c7651b2
AC
1650 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1651
5f601589
AC
1652 set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
1653
7f6104a9 1654 frame_unwind_append_predicate (gdbarch, d10v_frame_p);
270cb5d6 1655 frame_base_set_default (gdbarch, &d10v_frame_base);
7f6104a9 1656
6314f104
AC
1657 /* Methods for saving / extracting a dummy frame's ID. */
1658 set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
1659 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1660
12cc2063
AC
1661 /* Return the unwound PC value. */
1662 set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
1663
0ef21242
AC
1664 set_gdbarch_print_insn (gdbarch, print_insn_d10v);
1665
0f71a2f6
JM
1666 return gdbarch;
1667}
1668
c906108c 1669void
fba45db2 1670_initialize_d10v_tdep (void)
c906108c 1671{
0f71a2f6
JM
1672 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1673
c906108c
SS
1674 target_resume_hook = d10v_eva_prepare_to_trace;
1675 target_wait_loop_hook = d10v_eva_get_trace_data;
1676
5f601589
AC
1677 deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
1678 "info registers");
c906108c 1679
cff3e48b 1680 add_com ("itrace", class_support, trace_command,
c906108c
SS
1681 "Enable tracing of instruction execution.");
1682
cff3e48b 1683 add_com ("iuntrace", class_support, untrace_command,
c906108c
SS
1684 "Disable tracing of instruction execution.");
1685
cff3e48b 1686 add_com ("itdisassemble", class_vars, tdisassemble_command,
c906108c
SS
1687 "Disassemble the trace buffer.\n\
1688Two optional arguments specify a range of trace buffer entries\n\
1689as reported by info trace (NOT addresses!).");
1690
cff3e48b 1691 add_info ("itrace", trace_info,
c906108c
SS
1692 "Display info about the trace data buffer.");
1693
f75493ed
AC
1694 add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display,
1695 "Set automatic display of trace.\n",
1696 "Show automatic display of trace.\n",
1697 NULL, NULL, &setlist, &showlist);
1698 add_setshow_boolean_cmd ("itracesource", no_class,
1699 &default_trace_show_source,
1700 "Set display of source code with trace.\n",
1701 "Show display of source code with trace.\n",
1702 NULL, NULL, &setlist, &showlist);
c5aa993b 1703}
This page took 0.373522 seconds and 4 git commands to generate.