Vax Ultrix changes from David Taylor <taylor@think.com>.
[deliverable/binutils-gdb.git] / gdb / dbxread.c
CommitLineData
bd5635a1
RP
1/* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
c3a21801 6This program is free software; you can redistribute it and/or modify
bd5635a1 7it under the terms of the GNU General Public License as published by
c3a21801
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
bd5635a1 10
c3a21801 11This program is distributed in the hope that it will be useful,
bd5635a1
RP
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
c3a21801
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
9404978d
MT
19
20/* This module provides three functions: dbx_symfile_init,
21 which initializes to read a symbol file; dbx_new_init, which
22 discards existing cached information when all symbols are being
23 discarded; and dbx_symfile_read, which reads a symbol table
24 from a file.
25
26 dbx_symfile_read only does the minimum work necessary for letting the
27 user "name" things symbolically; it does not read the entire symtab.
28 Instead, it reads the external and static symbols and puts them in partial
29 symbol tables. When more extensive information is requested of a
30 file, the corresponding partial symbol table is mutated into a full
31 fledged symbol table by going back and reading the symbols
32 for real. dbx_psymtab_to_symtab() is the function that does this */
bd5635a1 33
bd5635a1
RP
34#include <stdio.h>
35#include <string.h>
36#include "defs.h"
37#include "param.h"
38
39#ifdef USG
40#include <sys/types.h>
41#include <fcntl.h>
42#define L_SET 0
43#define L_INCR 1
44#endif
45
46#include "a.out.gnu.h"
47#include "stab.gnu.h" /* We always use GNU stabs, not native, now */
48#include <ctype.h>
49
50#ifndef NO_GNU_STABS
51/*
52 * Define specifically gnu symbols here.
53 */
54
55/* The following type indicates the definition of a symbol as being
56 an indirect reference to another symbol. The other symbol
57 appears as an undefined reference, immediately following this symbol.
58
59 Indirection is asymmetrical. The other symbol's value will be used
60 to satisfy requests for the indirect symbol, but not vice versa.
61 If the other symbol does not have a definition, libraries will
62 be searched to find a definition. */
63#ifndef N_INDR
64#define N_INDR 0xa
65#endif
66
67/* The following symbols refer to set elements.
68 All the N_SET[ATDB] symbols with the same name form one set.
69 Space is allocated for the set in the text section, and each set
70 element's value is stored into one word of the space.
71 The first word of the space is the length of the set (number of elements).
72
73 The address of the set is made into an N_SETV symbol
74 whose name is the same as the name of the set.
75 This symbol acts like a N_DATA global symbol
76 in that it can satisfy undefined external references. */
77
78#ifndef N_SETA
79#define N_SETA 0x14 /* Absolute set element symbol */
80#endif /* This is input to LD, in a .o file. */
81
82#ifndef N_SETT
83#define N_SETT 0x16 /* Text set element symbol */
84#endif /* This is input to LD, in a .o file. */
85
86#ifndef N_SETD
87#define N_SETD 0x18 /* Data set element symbol */
88#endif /* This is input to LD, in a .o file. */
89
90#ifndef N_SETB
91#define N_SETB 0x1A /* Bss set element symbol */
92#endif /* This is input to LD, in a .o file. */
93
94/* Macros dealing with the set element symbols defined in a.out.h */
95#define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
96#define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
97
98#ifndef N_SETV
99#define N_SETV 0x1C /* Pointer to set vector in data area. */
100#endif /* This is output from LD. */
101
102#ifndef N_WARNING
103#define N_WARNING 0x1E /* Warning message to print if file included */
104#endif /* This is input to ld */
105
106#endif /* NO_GNU_STABS */
107
108#include <obstack.h>
109#include <sys/param.h>
110#include <sys/file.h>
111#include <sys/stat.h>
112#include "symtab.h"
113#include "breakpoint.h"
114#include "command.h"
115#include "target.h"
116#include "gdbcore.h" /* for bfd stuff */
d11c44f1 117#include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */
bd5635a1
RP
118#include "symfile.h"
119
120struct dbx_symfile_info {
121 asection *text_sect; /* Text section accessor */
122 int symcount; /* How many symbols are there in the file */
123 char *stringtab; /* The actual string table */
124 int stringtab_size; /* Its size */
125 off_t symtab_offset; /* Offset in file to symbol table */
126 int desc; /* File descriptor of symbol file */
127};
128
129extern void qsort ();
130extern double atof ();
131extern struct cmd_list_element *cmdlist;
132
133extern void symbol_file_command ();
134
135/* Forward declarations */
136
137static void add_symbol_to_list ();
138static void read_dbx_symtab ();
139static void init_psymbol_list ();
140static void process_one_symbol ();
141static struct type *read_type ();
142static struct type *read_range_type ();
143static struct type *read_enum_type ();
144static struct type *read_struct_type ();
145static struct type *read_array_type ();
146static long read_number ();
147static void finish_block ();
148static struct blockvector *make_blockvector ();
149static struct symbol *define_symbol ();
150static void start_subfile ();
151static int hashname ();
152static struct pending *copy_pending ();
153static void fix_common_block ();
154static void add_undefined_type ();
155static void cleanup_undefined_types ();
156static void scan_file_globals ();
9404978d 157static struct symtab *read_ofile_symtab ();
bd5635a1
RP
158static void dbx_psymtab_to_symtab ();
159
160/* C++ */
161static struct type **read_args ();
162
9404978d
MT
163static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
164static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
bd5635a1
RP
165
166/* Macro to determine which symbols to ignore when reading the first symbol
167 of a file. Some machines override this definition. */
168#ifndef IGNORE_SYMBOL
169/* This code is used on Ultrix systems. Ignore it */
170#define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
171#endif
172
173/* Macro for name of symbol to indicate a file compiled with gcc. */
174#ifndef GCC_COMPILED_FLAG_SYMBOL
175#define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
176#endif
177
178/* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
179
180#ifndef STAB_REG_TO_REGNUM
181#define STAB_REG_TO_REGNUM(VALUE) (VALUE)
182#endif
183
184/* Define this as 1 if a pcc declaration of a char or short argument
185 gives the correct address. Otherwise assume pcc gives the
186 address of the corresponding int, which is not the same on a
187 big-endian machine. */
188
189#ifndef BELIEVE_PCC_PROMOTION
190#define BELIEVE_PCC_PROMOTION 0
191#endif
192\f
193/* Nonzero means give verbose info on gdb action. From main.c. */
194extern int info_verbose;
195
196/* Name of source file whose symbol data we are now processing.
197 This comes from a symbol of type N_SO. */
198
199static char *last_source_file;
200
201/* Core address of start of text of current source file.
202 This too comes from the N_SO symbol. */
203
204static CORE_ADDR last_source_start_addr;
205
206/* The entry point of a file we are reading. */
207CORE_ADDR entry_point;
208
209/* The list of sub-source-files within the current individual compilation.
210 Each file gets its own symtab with its own linetable and associated info,
211 but they all share one blockvector. */
212
213struct subfile
214{
215 struct subfile *next;
216 char *name;
217 char *dirname;
218 struct linetable *line_vector;
219 int line_vector_length;
220 int line_vector_index;
221 int prev_line_number;
222};
223
224static struct subfile *subfiles;
225
226static struct subfile *current_subfile;
227
228/* Count symbols as they are processed, for error messages. */
229
230static unsigned int symnum;
231
232/* Vector of types defined so far, indexed by their dbx type numbers.
233 (In newer sun systems, dbx uses a pair of numbers in parens,
234 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
235 translated through the type_translations hash table to get
236 the index into the type vector.) */
237
238static struct typevector *type_vector;
239
240/* Number of elements allocated for type_vector currently. */
241
242static int type_vector_length;
243
244/* Vector of line number information. */
245
246static struct linetable *line_vector;
247
248/* Index of next entry to go in line_vector_index. */
249
250static int line_vector_index;
251
252/* Last line number recorded in the line vector. */
253
254static int prev_line_number;
255
256/* Number of elements allocated for line_vector currently. */
257
258static int line_vector_length;
259
260/* Hash table of global symbols whose values are not known yet.
261 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
262 have the correct data for that slot yet. */
263/* The use of the LOC_BLOCK code in this chain is nonstandard--
264 it refers to a FORTRAN common block rather than the usual meaning. */
265
266#define HASHSIZE 127
267static struct symbol *global_sym_chain[HASHSIZE];
268
269/* Record the symbols defined for each context in a list.
270 We don't create a struct block for the context until we
271 know how long to make it. */
272
273#define PENDINGSIZE 100
274
275struct pending
276{
277 struct pending *next;
278 int nsyms;
279 struct symbol *symbol[PENDINGSIZE];
280};
281
282/* List of free `struct pending' structures for reuse. */
283struct pending *free_pendings;
284
285/* Here are the three lists that symbols are put on. */
286
287struct pending *file_symbols; /* static at top level, and types */
288
289struct pending *global_symbols; /* global functions and variables */
290
291struct pending *local_symbols; /* everything local to lexical context */
292
293/* List of symbols declared since the last BCOMM. This list is a tail
294 of local_symbols. When ECOMM is seen, the symbols on the list
295 are noted so their proper addresses can be filled in later,
296 using the common block base address gotten from the assembler
297 stabs. */
298
299struct pending *common_block;
300int common_block_i;
301
302/* Stack representing unclosed lexical contexts
303 (that will become blocks, eventually). */
304
305struct context_stack
306{
307 struct pending *locals;
308 struct pending_block *old_blocks;
309 struct symbol *name;
310 CORE_ADDR start_addr;
311 CORE_ADDR end_addr; /* Temp slot for exception handling. */
312 int depth;
313};
314
315struct context_stack *context_stack;
316
317/* Index of first unused entry in context stack. */
318int context_stack_depth;
319
320/* Currently allocated size of context stack. */
321
322int context_stack_size;
323
324/* Nonzero if within a function (so symbols should be local,
325 if nothing says specifically). */
326
327int within_function;
328
0c4d2cc2
JG
329#if 0
330/* The type of the function we are currently reading in. This is
331 used by define_symbol to record the type of arguments to a function. */
332
333static struct type *in_function_type;
334#endif
335
bd5635a1
RP
336/* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339struct pending_block
340{
341 struct pending_block *next;
342 struct block *block;
343};
344
345struct pending_block *pending_blocks;
346
347extern CORE_ADDR startup_file_start; /* From blockframe.c */
348extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350/* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353static unsigned char processing_gcc_compilation;
354
355/* Make a list of forward references which haven't been defined. */
356static struct type **undef_types;
357static int undef_types_allocated, undef_types_length;
358
359/* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363static char *symfile_string_table;
364static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368#ifdef NAMES_HAVE_UNDERSCORE
369#define HASH_OFFSET 1
370#else
371#define HASH_OFFSET 0
372#endif
373
374/* Complaints about the symbols we have encountered. */
375
376struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385#if 0
386struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388You seem to have compiled your program with \
389\"g++ -g0\" instead of \"g++ -g\".\n\
390Therefore GDB will not know about your class variables", 0, 0};
391#endif
392
393struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396struct complaint unknown_symtype_complaint =
0c4d2cc2 397 {"unknown symbol type %s", 0, 0};
bd5635a1
RP
398
399struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410\f
411/* Support for Sun changes to dbx symbol format */
412
413/* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431struct header_file
432{
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440};
441
442static struct header_file *header_files = 0;
443
444static int n_header_files;
445
446static int n_allocated_header_files;
447
448/* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453struct header_file_location
454{
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459};
460
461/* The actual list and controling variables */
462static struct header_file_location *bincl_list, *next_bincl;
463static int bincls_allocated;
464
465/* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475static int *this_object_header_files = 0;
476
477static int n_this_object_header_files;
478
479static int n_allocated_this_object_header_files;
480
481/* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486static int header_file_prev_index;
487
488/* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491void
492free_and_init_header_files ()
493{
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508}
509
510/* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513static void
514new_object_header_files ()
515{
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519}
520
521/* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524static void
525add_this_object_header_file (i)
526 int i;
527{
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537}
538
539/* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544static void
545add_old_header_file (name, instance)
546 char *name;
547 int instance;
548{
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560}
561
562/* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573static void
574add_new_header_file (name, instance)
575 char *name;
576 int instance;
577{
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603}
604
605/* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612static struct type **
613dbx_lookup_type (typenums)
614 int typenums[2];
615{
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661}
662
663/* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666static struct type *
667dbx_create_type ()
668{
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
62c4f98b 674 TYPE_VPTR_BASETYPE (type) = 0;
bd5635a1
RP
675 return type;
676}
677
678/* Make sure there is a type allocated for type numbers TYPENUMS
679 and return the type object.
680 This can create an empty (zeroed) type object.
681 TYPENUMS may be (-1, -1) to return a new type object that is not
682 put into the type vector, and so may not be referred to by number. */
683
684static struct type *
685dbx_alloc_type (typenums)
686 int typenums[2];
687{
688 register struct type **type_addr;
689 register struct type *type;
690
691 if (typenums[1] != -1)
692 {
693 type_addr = dbx_lookup_type (typenums);
694 type = *type_addr;
695 }
696 else
697 {
698 type_addr = 0;
699 type = 0;
700 }
701
702 /* If we are referring to a type not known at all yet,
703 allocate an empty type for it.
704 We will fill it in later if we find out how. */
705 if (type == 0)
706 {
707 type = dbx_create_type ();
708 if (type_addr)
709 *type_addr = type;
710 }
711
712 return type;
713}
714
715#if 0
716static struct type **
717explicit_lookup_type (real_filenum, index)
718 int real_filenum, index;
719{
720 register struct header_file *f = &header_files[real_filenum];
721
722 if (index >= f->length)
723 {
724 f->length *= 2;
725 f->vector = (struct type **)
726 xrealloc (f->vector, f->length * sizeof (struct type *));
727 bzero (&f->vector[f->length / 2],
728 f->length * sizeof (struct type *) / 2);
729 }
730 return &f->vector[index];
731}
732#endif
733\f
734/* maintain the lists of symbols and blocks */
735
736/* Add a symbol to one of the lists of symbols. */
737static void
738add_symbol_to_list (symbol, listhead)
739 struct symbol *symbol;
740 struct pending **listhead;
741{
742 /* We keep PENDINGSIZE symbols in each link of the list.
743 If we don't have a link with room in it, add a new link. */
744 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
745 {
746 register struct pending *link;
747 if (free_pendings)
748 {
749 link = free_pendings;
750 free_pendings = link->next;
751 }
752 else
753 link = (struct pending *) xmalloc (sizeof (struct pending));
754
755 link->next = *listhead;
756 *listhead = link;
757 link->nsyms = 0;
758 }
759
760 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
761}
762
763/* At end of reading syms, or in case of quit,
764 really free as many `struct pending's as we can easily find. */
765
766/* ARGSUSED */
767static void
768really_free_pendings (foo)
769 int foo;
770{
771 struct pending *next, *next1;
e1ce8aa5 772#if 0
bd5635a1 773 struct pending_block *bnext, *bnext1;
e1ce8aa5 774#endif
bd5635a1
RP
775
776 for (next = free_pendings; next; next = next1)
777 {
778 next1 = next->next;
779 free (next);
780 }
781 free_pendings = 0;
782
783#if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
784 for (bnext = pending_blocks; bnext; bnext = bnext1)
785 {
786 bnext1 = bnext->next;
787 free (bnext);
788 }
789#endif
790 pending_blocks = 0;
791
792 for (next = file_symbols; next; next = next1)
793 {
794 next1 = next->next;
795 free (next);
796 }
3f2e006b
JG
797 file_symbols = 0;
798
bd5635a1
RP
799 for (next = global_symbols; next; next = next1)
800 {
801 next1 = next->next;
802 free (next);
803 }
3f2e006b 804 global_symbols = 0;
bd5635a1
RP
805}
806
807/* Take one of the lists of symbols and make a block from it.
808 Keep the order the symbols have in the list (reversed from the input file).
809 Put the block on the list of pending blocks. */
810
811static void
812finish_block (symbol, listhead, old_blocks, start, end)
813 struct symbol *symbol;
814 struct pending **listhead;
815 struct pending_block *old_blocks;
816 CORE_ADDR start, end;
817{
818 register struct pending *next, *next1;
819 register struct block *block;
820 register struct pending_block *pblock;
821 struct pending_block *opblock;
822 register int i;
823
824 /* Count the length of the list of symbols. */
825
826 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
827 /*EMPTY*/;
828
829 block = (struct block *) obstack_alloc (symbol_obstack,
830 (sizeof (struct block)
831 + ((i - 1)
832 * sizeof (struct symbol *))));
833
834 /* Copy the symbols into the block. */
835
836 BLOCK_NSYMS (block) = i;
837 for (next = *listhead; next; next = next->next)
838 {
839 register int j;
840 for (j = next->nsyms - 1; j >= 0; j--)
841 BLOCK_SYM (block, --i) = next->symbol[j];
842 }
843
844 BLOCK_START (block) = start;
845 BLOCK_END (block) = end;
846 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
847 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
848
849 /* Put the block in as the value of the symbol that names it. */
850
851 if (symbol)
852 {
853 SYMBOL_BLOCK_VALUE (symbol) = block;
854 BLOCK_FUNCTION (block) = symbol;
855 }
856 else
857 BLOCK_FUNCTION (block) = 0;
858
859 /* Now "free" the links of the list, and empty the list. */
860
861 for (next = *listhead; next; next = next1)
862 {
863 next1 = next->next;
864 next->next = free_pendings;
865 free_pendings = next;
866 }
867 *listhead = 0;
868
869 /* Install this block as the superblock
870 of all blocks made since the start of this scope
871 that don't have superblocks yet. */
872
873 opblock = 0;
874 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
875 {
876 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
877#if 1
878 /* Check to be sure the blocks are nested as we receive them.
879 If the compiler/assembler/linker work, this just burns a small
880 amount of time. */
881 if (BLOCK_START (pblock->block) < BLOCK_START (block)
882 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
883 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
884 "(don't know)");
885 BLOCK_START (pblock->block) = BLOCK_START (block);
886 BLOCK_END (pblock->block) = BLOCK_END (block);
887 }
888#endif
889 BLOCK_SUPERBLOCK (pblock->block) = block;
890 }
891 opblock = pblock;
892 }
893
894 /* Record this block on the list of all blocks in the file.
895 Put it after opblock, or at the beginning if opblock is 0.
896 This puts the block in the list after all its subblocks. */
897
898 /* Allocate in the symbol_obstack to save time.
899 It wastes a little space. */
900 pblock = (struct pending_block *)
901 obstack_alloc (symbol_obstack,
902 sizeof (struct pending_block));
903 pblock->block = block;
904 if (opblock)
905 {
906 pblock->next = opblock->next;
907 opblock->next = pblock;
908 }
909 else
910 {
911 pblock->next = pending_blocks;
912 pending_blocks = pblock;
913 }
914}
915
916static struct blockvector *
917make_blockvector ()
918{
919 register struct pending_block *next;
920 register struct blockvector *blockvector;
921 register int i;
922
923 /* Count the length of the list of blocks. */
924
925 for (next = pending_blocks, i = 0; next; next = next->next, i++);
926
927 blockvector = (struct blockvector *)
928 obstack_alloc (symbol_obstack,
929 (sizeof (struct blockvector)
930 + (i - 1) * sizeof (struct block *)));
931
932 /* Copy the blocks into the blockvector.
933 This is done in reverse order, which happens to put
934 the blocks into the proper order (ascending starting address).
935 finish_block has hair to insert each block into the list
936 after its subblocks in order to make sure this is true. */
937
938 BLOCKVECTOR_NBLOCKS (blockvector) = i;
939 for (next = pending_blocks; next; next = next->next) {
940 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
941 }
942
943#if 0 /* Now we make the links in the obstack, so don't free them. */
944 /* Now free the links of the list, and empty the list. */
945
946 for (next = pending_blocks; next; next = next1)
947 {
948 next1 = next->next;
949 free (next);
950 }
951#endif
952 pending_blocks = 0;
953
954#if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
955 /* Some compilers output blocks in the wrong order, but we depend
956 on their being in the right order so we can binary search.
957 Check the order and moan about it. FIXME. */
958 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
959 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
960 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
961 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
962 complain (&blockvector_complaint,
963 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
964 }
965 }
966#endif
967
968 return blockvector;
969}
970\f
971/* Manage the vector of line numbers. */
972
973static void
974record_line (line, pc)
975 int line;
976 CORE_ADDR pc;
977{
978 struct linetable_entry *e;
979 /* Ignore the dummy line number in libg.o */
980
981 if (line == 0xffff)
982 return;
983
984 /* Make sure line vector is big enough. */
985
986 if (line_vector_index + 1 >= line_vector_length)
987 {
988 line_vector_length *= 2;
989 line_vector = (struct linetable *)
990 xrealloc (line_vector,
991 (sizeof (struct linetable)
992 + line_vector_length * sizeof (struct linetable_entry)));
993 current_subfile->line_vector = line_vector;
994 }
995
996 e = line_vector->item + line_vector_index++;
997 e->line = line; e->pc = pc;
998}
999\f
1000/* Start a new symtab for a new source file.
1001 This is called when a dbx symbol of type N_SO is seen;
1002 it indicates the start of data for one original source file. */
1003
1004static void
1005start_symtab (name, dirname, start_addr)
1006 char *name;
1007 char *dirname;
1008 CORE_ADDR start_addr;
1009{
1010
1011 last_source_file = name;
1012 last_source_start_addr = start_addr;
1013 file_symbols = 0;
1014 global_symbols = 0;
1015 within_function = 0;
1016
1017 /* Context stack is initially empty, with room for 10 levels. */
1018 context_stack
1019 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1020 context_stack_size = 10;
1021 context_stack_depth = 0;
1022
1023 new_object_header_files ();
1024
1025 type_vector_length = 160;
1026 type_vector = (struct typevector *)
1027 xmalloc (sizeof (struct typevector)
1028 + type_vector_length * sizeof (struct type *));
1029 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1030
1031 /* Initialize the list of sub source files with one entry
1032 for this file (the top-level source file). */
1033
1034 subfiles = 0;
1035 current_subfile = 0;
1036 start_subfile (name, dirname);
1037}
1038
1039/* Handle an N_SOL symbol, which indicates the start of
1040 code that came from an included (or otherwise merged-in)
1041 source file with a different name. */
1042
1043static void
1044start_subfile (name, dirname)
1045 char *name;
1046 char *dirname;
1047{
1048 register struct subfile *subfile;
1049
1050 /* Save the current subfile's line vector data. */
1051
1052 if (current_subfile)
1053 {
1054 current_subfile->line_vector_index = line_vector_index;
1055 current_subfile->line_vector_length = line_vector_length;
1056 current_subfile->prev_line_number = prev_line_number;
1057 }
1058
1059 /* See if this subfile is already known as a subfile of the
1060 current main source file. */
1061
1062 for (subfile = subfiles; subfile; subfile = subfile->next)
1063 {
1064 if (!strcmp (subfile->name, name))
1065 {
1066 line_vector = subfile->line_vector;
1067 line_vector_index = subfile->line_vector_index;
1068 line_vector_length = subfile->line_vector_length;
1069 prev_line_number = subfile->prev_line_number;
1070 current_subfile = subfile;
1071 return;
1072 }
1073 }
1074
1075 /* This subfile is not known. Add an entry for it. */
1076
1077 line_vector_index = 0;
1078 line_vector_length = 1000;
1079 prev_line_number = -2; /* Force first line number to be explicit */
1080 line_vector = (struct linetable *)
1081 xmalloc (sizeof (struct linetable)
1082 + line_vector_length * sizeof (struct linetable_entry));
1083
1084 /* Make an entry for this subfile in the list of all subfiles
1085 of the current main source file. */
1086
1087 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1088 subfile->next = subfiles;
1089 subfile->name = obsavestring (name, strlen (name));
1090 if (dirname == NULL)
1091 subfile->dirname = NULL;
1092 else
1093 subfile->dirname = obsavestring (dirname, strlen (dirname));
1094
1095 subfile->line_vector = line_vector;
1096 subfiles = subfile;
1097 current_subfile = subfile;
1098}
1099
1100/* Finish the symbol definitions for one main source file,
1101 close off all the lexical contexts for that file
1102 (creating struct block's for them), then make the struct symtab
1103 for that file and put it in the list of all such.
1104
1105 END_ADDR is the address of the end of the file's text. */
1106
9404978d 1107static struct symtab *
bd5635a1
RP
1108end_symtab (end_addr)
1109 CORE_ADDR end_addr;
1110{
1111 register struct symtab *symtab;
1112 register struct blockvector *blockvector;
1113 register struct subfile *subfile;
1114 register struct linetable *lv;
1115 struct subfile *nextsub;
1116
1117 /* Finish the lexical context of the last function in the file;
1118 pop the context stack. */
1119
1120 if (context_stack_depth > 0)
1121 {
1122 register struct context_stack *cstk;
1123 context_stack_depth--;
1124 cstk = &context_stack[context_stack_depth];
1125 /* Make a block for the local symbols within. */
1126 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1127 cstk->start_addr, end_addr);
1128 }
1129
1130 /* Cleanup any undefined types that have been left hanging around
1131 (this needs to be done before the finish_blocks so that
1132 file_symbols is still good). */
1133 cleanup_undefined_types ();
1134
3f83182d 1135 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
bd5635a1
RP
1136 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1137 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1138 blockvector = make_blockvector ();
1139
1140 current_subfile->line_vector_index = line_vector_index;
1141
1142 /* Now create the symtab objects proper, one for each subfile. */
9404978d 1143 /* (The main file is the last one on the chain.) */
bd5635a1
RP
1144
1145 for (subfile = subfiles; subfile; subfile = nextsub)
1146 {
0c4d2cc2 1147 symtab = allocate_symtab (subfile->name);
bd5635a1
RP
1148
1149 /* Fill in its components. */
1150 symtab->blockvector = blockvector;
1151 lv = subfile->line_vector;
1152 lv->nitems = subfile->line_vector_index;
1153 symtab->linetable = (struct linetable *)
1154 xrealloc (lv, (sizeof (struct linetable)
1155 + lv->nitems * sizeof (struct linetable_entry)));
1156 type_vector->length = type_vector_length;
1157 symtab->typevector = type_vector;
1158
bd5635a1
RP
1159 symtab->dirname = subfile->dirname;
1160
1161 symtab->free_code = free_linetable;
1162 symtab->free_ptr = 0;
1163 if (subfile->next == 0)
1164 symtab->free_ptr = (char *) type_vector;
1165
f9623881
JG
1166 /* There should never already be a symtab for this name, since
1167 any prev dups have been removed when the psymtab was read in.
1168 FIXME, there ought to be a way to check this here. */
1169 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
bd5635a1
RP
1170
1171 /* Link the new symtab into the list of such. */
1172 symtab->next = symtab_list;
1173 symtab_list = symtab;
1174
1175 nextsub = subfile->next;
1176 free (subfile);
1177 }
1178
1179 type_vector = 0;
1180 type_vector_length = -1;
1181 line_vector = 0;
1182 line_vector_length = -1;
1183 last_source_file = 0;
9404978d
MT
1184
1185 return symtab;
bd5635a1
RP
1186}
1187\f
1188/* Handle the N_BINCL and N_EINCL symbol types
1189 that act like N_SOL for switching source files
1190 (different subfiles, as we call them) within one object file,
1191 but using a stack rather than in an arbitrary order. */
1192
1193struct subfile_stack
1194{
1195 struct subfile_stack *next;
1196 char *name;
1197 int prev_index;
1198};
1199
1200struct subfile_stack *subfile_stack;
1201
1202static void
1203push_subfile ()
1204{
1205 register struct subfile_stack *tem
1206 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1207
1208 tem->next = subfile_stack;
1209 subfile_stack = tem;
1210 if (current_subfile == 0 || current_subfile->name == 0)
1211 abort ();
1212 tem->name = current_subfile->name;
1213 tem->prev_index = header_file_prev_index;
1214}
1215
1216static char *
1217pop_subfile ()
1218{
1219 register char *name;
1220 register struct subfile_stack *link = subfile_stack;
1221
1222 if (link == 0)
1223 abort ();
1224
1225 name = link->name;
1226 subfile_stack = link->next;
1227 header_file_prev_index = link->prev_index;
1228 free (link);
1229
1230 return name;
1231}
1232\f
1233void
1234record_misc_function (name, address, type)
1235 char *name;
1236 CORE_ADDR address;
1237 int type;
1238{
0c4d2cc2
JG
1239 enum misc_function_type misc_type;
1240
1241 switch (type &~ N_EXT) {
1242 case N_TEXT: misc_type = mf_text; break;
1243 case N_DATA: misc_type = mf_data; break;
1244 case N_BSS: misc_type = mf_bss; break;
1245 case N_ABS: misc_type = mf_abs; break;
1246#ifdef N_SETV
1247 case N_SETV: misc_type = mf_data; break;
1248#endif
1249 default: misc_type = mf_unknown; break;
1250 }
bd5635a1
RP
1251
1252 prim_record_misc_function (obsavestring (name, strlen (name)),
1253 address, misc_type);
1254}
1255\f
e1ce8aa5
JK
1256/* The BFD for this file -- only good while we're actively reading
1257 symbols into a psymtab or a symtab. */
1258
1259static bfd *symfile_bfd;
1260
bd5635a1
RP
1261/* Scan and build partial symbols for a symbol file.
1262 We have been initialized by a call to dbx_symfile_init, which
1263 put all the relevant info into a "struct dbx_symfile_info"
1264 hung off the struct sym_fns SF.
1265
1266 ADDR is the address relative to which the symbols in it are (e.g.
1267 the base address of the text segment).
1268 MAINLINE is true if we are reading the main symbol
1269 table (as opposed to a shared lib or dynamically loaded file). */
1270
1271void
1272dbx_symfile_read (sf, addr, mainline)
1273 struct sym_fns *sf;
1274 CORE_ADDR addr;
1275 int mainline; /* FIXME comments above */
1276{
1277 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1278 bfd *sym_bfd = sf->sym_bfd;
1279 int val;
1280 char *filename = bfd_get_filename (sym_bfd);
1281
1282 val = lseek (info->desc, info->symtab_offset, L_SET);
1283 if (val < 0)
1284 perror_with_name (filename);
1285
1286 /* If mainline, set global string table pointers, and reinitialize global
1287 partial symbol list. */
1288 if (mainline) {
1289 symfile_string_table = info->stringtab;
1290 symfile_string_table_size = info->stringtab_size;
bd5635a1
RP
1291 }
1292
66eeea27
JG
1293 /* If we are reinitializing, or if we have never loaded syms yet, init */
1294 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1295 init_psymbol_list (info->symcount);
1296
bd5635a1
RP
1297 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1298
1299 pending_blocks = 0;
1300 make_cleanup (really_free_pendings, 0);
1301
1302 init_misc_bunches ();
1303 make_cleanup (discard_misc_bunches, 0);
1304
1305 /* Now that the symbol table data of the executable file are all in core,
1306 process them and define symbols accordingly. */
1307
1308 read_dbx_symtab (filename,
1309 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1310 info->desc, info->stringtab, info->stringtab_size,
1311 info->symcount,
1312 bfd_section_vma (sym_bfd, info->text_sect),
1313 bfd_section_size (sym_bfd, info->text_sect));
1314
1315 /* Go over the misc symbol bunches and install them in vector. */
1316
1317 condense_misc_bunches (!mainline);
1318
1319 /* Free up any memory we allocated for ourselves. */
1320
1321 if (!mainline) {
1322 free (info->stringtab); /* Stringtab is only saved for mainline */
1323 }
1324 free (info);
1325 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1326
9404978d
MT
1327 if (!partial_symtab_list) {
1328 wrap_here ("");
1329 printf_filtered ("(no debugging symbols found)...");
1330 wrap_here ("");
1331 }
bd5635a1
RP
1332}
1333
9404978d
MT
1334/* Initialize anything that needs initializing when a completely new
1335 symbol file is specified (not just adding some symbols from another
1336 file, e.g. a shared library). */
bd5635a1
RP
1337
1338void
9404978d 1339dbx_new_init ()
bd5635a1 1340{
bd5635a1
RP
1341 /* Empty the hash table of global syms looking for values. */
1342 bzero (global_sym_chain, sizeof global_sym_chain);
1343
1344 free_pendings = 0;
1345 file_symbols = 0;
1346 global_symbols = 0;
bd5635a1 1347
bd5635a1 1348 /* Don't put these on the cleanup chain; they need to stick around
9404978d 1349 until the next call to dbx_new_init. *Then* we'll free them. */
bd5635a1
RP
1350 if (symfile_string_table)
1351 {
1352 free (symfile_string_table);
1353 symfile_string_table = 0;
1354 symfile_string_table_size = 0;
1355 }
1356 free_and_init_header_files ();
1357}
1358
1359
1360/* dbx_symfile_init ()
1361 is the dbx-specific initialization routine for reading symbols.
1362 It is passed a struct sym_fns which contains, among other things,
1363 the BFD for the file whose symbols are being read, and a slot for a pointer
1364 to "private data" which we fill with goodies.
1365
1366 We read the string table into malloc'd space and stash a pointer to it.
1367
1368 Since BFD doesn't know how to read debug symbols in a format-independent
1369 way (and may never do so...), we have to do it ourselves. We will never
1370 be called unless this is an a.out (or very similar) file.
1371 FIXME, there should be a cleaner peephole into the BFD environment here. */
1372
1373void
1374dbx_symfile_init (sf)
1375 struct sym_fns *sf;
1376{
1377 int val;
1378 int desc;
1379 struct stat statbuf;
1380 bfd *sym_bfd = sf->sym_bfd;
1381 char *name = bfd_get_filename (sym_bfd);
1382 struct dbx_symfile_info *info;
1383 unsigned char size_temp[4];
1384
1385 /* Allocate struct to keep track of the symfile */
1386 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1387 info = (struct dbx_symfile_info *)sf->sym_private;
1388
1389 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1390 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1391#define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1392#define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1393 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1394
1395 info->desc = desc;
1396 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1397 if (!info->text_sect)
1398 abort();
63989338 1399 info->symcount = bfd_get_symcount (sym_bfd);
bd5635a1
RP
1400
1401 /* Read the string table size and check it for bogosity. */
1402 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1403 if (val < 0)
1404 perror_with_name (name);
1405 if (fstat (desc, &statbuf) == -1)
1406 perror_with_name (name);
1407
1408 val = myread (desc, size_temp, sizeof (long));
1409 if (val < 0)
1410 perror_with_name (name);
dcc35536 1411 info->stringtab_size = bfd_h_get_32 (sym_bfd, size_temp);
bd5635a1
RP
1412
1413 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1414 {
1415 info->stringtab = (char *) xmalloc (info->stringtab_size);
1416 /* Caller is responsible for freeing the string table. No cleanup. */
1417 }
1418 else
1419 info->stringtab = NULL;
1420 if (info->stringtab == NULL && info->stringtab_size != 0)
1421 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1422
1423 /* Now read in the string table in one big gulp. */
1424
1425 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1426 if (val < 0)
1427 perror_with_name (name);
1428 val = myread (desc, info->stringtab, info->stringtab_size);
1429 if (val < 0)
1430 perror_with_name (name);
1431
1432 /* Record the position of the symbol table for later use. */
1433
1434 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1435}
1436\f
1437/* Buffer for reading the symbol table entries. */
1438static struct nlist symbuf[4096];
1439static int symbuf_idx;
1440static int symbuf_end;
1441
1442/* I/O descriptor for reading the symbol table. */
1443static int symtab_input_desc;
1444
1445/* The address in memory of the string table of the object file we are
1446 reading (which might not be the "main" object file, but might be a
1447 shared library or some other dynamically loaded thing). This is set
1448 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1449 when building symtabs, and is used only by next_symbol_text. */
1450static char *stringtab_global;
1451
1452/* Refill the symbol table input buffer
1453 and set the variables that control fetching entries from it.
1454 Reports an error if no data available.
1455 This function can read past the end of the symbol table
1456 (into the string table) but this does no harm. */
1457
1458static int
1459fill_symbuf ()
1460{
1461 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1462 if (nbytes < 0)
1463 perror_with_name ("<symbol file>");
1464 else if (nbytes == 0)
1465 error ("Premature end of file reading symbol table");
1466 symbuf_end = nbytes / sizeof (struct nlist);
1467 symbuf_idx = 0;
1468 return 1;
1469}
1470
1471#define SWAP_SYMBOL(symp) \
1472 { \
dcc35536 1473 (symp)->n_un.n_strx = bfd_h_get_32(symfile_bfd, \
bd5635a1 1474 (unsigned char *)&(symp)->n_un.n_strx); \
dcc35536 1475 (symp)->n_desc = bfd_h_get_16 (symfile_bfd, \
bd5635a1 1476 (unsigned char *)&(symp)->n_desc); \
dcc35536 1477 (symp)->n_value = bfd_h_get_32 (symfile_bfd, \
bd5635a1
RP
1478 (unsigned char *)&(symp)->n_value); \
1479 }
1480
1481/* Invariant: The symbol pointed to by symbuf_idx is the first one
1482 that hasn't been swapped. Swap the symbol at the same time
1483 that symbuf_idx is incremented. */
1484
1485/* dbx allows the text of a symbol name to be continued into the
1486 next symbol name! When such a continuation is encountered
1487 (a \ at the end of the text of a name)
1488 call this function to get the continuation. */
1489
1490static char *
1491next_symbol_text ()
1492{
1493 if (symbuf_idx == symbuf_end)
1494 fill_symbuf ();
1495 symnum++;
1496 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1497 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1498}
1499\f
1500/* Initializes storage for all of the partial symbols that will be
1501 created by read_dbx_symtab and subsidiaries. */
1502
1503static void
1504init_psymbol_list (total_symbols)
1505 int total_symbols;
1506{
1507 /* Free any previously allocated psymbol lists. */
1508 if (global_psymbols.list)
1509 free (global_psymbols.list);
1510 if (static_psymbols.list)
1511 free (static_psymbols.list);
1512
1513 /* Current best guess is that there are approximately a twentieth
1514 of the total symbols (in a debugging file) are global or static
1515 oriented symbols */
1516 global_psymbols.size = total_symbols / 10;
1517 static_psymbols.size = total_symbols / 10;
1518 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1519 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1520 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1521 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1522}
1523
1524/* Initialize the list of bincls to contain none and have some
1525 allocated. */
1526
1527static void
1528init_bincl_list (number)
1529 int number;
1530{
1531 bincls_allocated = number;
1532 next_bincl = bincl_list = (struct header_file_location *)
1533 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1534}
1535
1536/* Add a bincl to the list. */
1537
1538static void
1539add_bincl_to_list (pst, name, instance)
1540 struct partial_symtab *pst;
1541 char *name;
1542 int instance;
1543{
1544 if (next_bincl >= bincl_list + bincls_allocated)
1545 {
1546 int offset = next_bincl - bincl_list;
1547 bincls_allocated *= 2;
1548 bincl_list = (struct header_file_location *)
1549 xrealloc ((char *)bincl_list,
1550 bincls_allocated * sizeof (struct header_file_location));
1551 next_bincl = bincl_list + offset;
1552 }
1553 next_bincl->pst = pst;
1554 next_bincl->instance = instance;
1555 next_bincl++->name = name;
1556}
1557
1558/* Given a name, value pair, find the corresponding
1559 bincl in the list. Return the partial symtab associated
1560 with that header_file_location. */
1561
1562struct partial_symtab *
1563find_corresponding_bincl_psymtab (name, instance)
1564 char *name;
1565 int instance;
1566{
1567 struct header_file_location *bincl;
1568
1569 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1570 if (bincl->instance == instance
1571 && !strcmp (name, bincl->name))
1572 return bincl->pst;
1573
1574 return (struct partial_symtab *) 0;
1575}
1576
1577/* Free the storage allocated for the bincl list. */
1578
1579static void
1580free_bincl_list ()
1581{
1582 free (bincl_list);
1583 bincls_allocated = 0;
1584}
1585
1586static struct partial_symtab *start_psymtab ();
1587static void end_psymtab();
1588
1589#ifdef DEBUG
1590/* This is normally a macro defined in read_dbx_symtab, but this
1591 is a lot easier to debug. */
1592
1593ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1594 char *NAME;
1595 int NAMELENGTH;
1596 enum namespace NAMESPACE;
1597 enum address_class CLASS;
1598 struct psymbol_allocation_list *PLIST;
1599 unsigned long VALUE;
1600{
1601 register struct partial_symbol *psym;
1602
1603#define LIST *PLIST
1604 do {
1605 if ((LIST).next >=
1606 (LIST).list + (LIST).size)
1607 {
1608 (LIST).list = (struct partial_symbol *)
1609 xrealloc ((LIST).list,
1610 ((LIST).size * 2
1611 * sizeof (struct partial_symbol)));
1612 /* Next assumes we only went one over. Should be good if
1613 program works correctly */
1614 (LIST).next =
1615 (LIST).list + (LIST).size;
1616 (LIST).size *= 2;
1617 }
1618 psym = (LIST).next++;
1619#undef LIST
1620
1621 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1622 (NAMELENGTH) + 1);
1623 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1624 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1625 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1626 SYMBOL_CLASS (psym) = (CLASS);
1627 SYMBOL_VALUE (psym) = (VALUE);
1628 } while (0);
1629}
1630
1631/* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1632#define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1633 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1634
1635#endif /* DEBUG */
1636
1637/* Given pointers to an a.out symbol table in core containing dbx
1638 style data, setup partial_symtab's describing each source file for
1639 which debugging information is available. NLISTLEN is the number
1640 of symbols in the symbol table. All symbol names are given as
1641 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1642 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1643 and ADDR is its relocated address (if incremental) or 0 (if not). */
1644
1645static void
1646read_dbx_symtab (symfile_name, addr,
1647 desc, stringtab, stringtab_size, nlistlen,
1648 text_addr, text_size)
1649 char *symfile_name;
1650 CORE_ADDR addr;
1651 int desc;
1652 register char *stringtab;
1653 register long stringtab_size;
1654 register int nlistlen;
1655 CORE_ADDR text_addr;
1656 int text_size;
1657{
1658 register struct nlist *bufp;
1659 register char *namestring;
1660 register struct partial_symbol *psym;
1661 int nsl;
1662 int past_first_source_file = 0;
1663 CORE_ADDR last_o_file_start = 0;
1664 struct cleanup *old_chain;
1665 char *p;
1666
1667 /* End of the text segment of the executable file. */
1668 CORE_ADDR end_of_text_addr;
1669
1670 /* Current partial symtab */
1671 struct partial_symtab *pst;
1672
1673 /* List of current psymtab's include files */
1674 char **psymtab_include_list;
1675 int includes_allocated;
1676 int includes_used;
1677
1678 /* Index within current psymtab dependency list */
1679 struct partial_symtab **dependency_list;
1680 int dependencies_used, dependencies_allocated;
1681
1682 stringtab_global = stringtab;
1683
1684 pst = (struct partial_symtab *) 0;
1685
1686 includes_allocated = 30;
1687 includes_used = 0;
1688 psymtab_include_list = (char **) alloca (includes_allocated *
1689 sizeof (char *));
1690
1691 dependencies_allocated = 30;
1692 dependencies_used = 0;
1693 dependency_list =
1694 (struct partial_symtab **) alloca (dependencies_allocated *
1695 sizeof (struct partial_symtab *));
1696
1697 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1698 It should only blow away the psymtabs created herein. We could
1699 be reading a shared library or a dynloaded file! */
1700 old_chain = make_cleanup (free_all_psymtabs, 0);
1701
1702 /* Init bincl list */
1703 init_bincl_list (20);
1704 make_cleanup (free_bincl_list, 0);
1705
1706 last_source_file = 0;
1707
1708#ifdef END_OF_TEXT_DEFAULT
1709 end_of_text_addr = END_OF_TEXT_DEFAULT;
1710#else
3f2e006b 1711 end_of_text_addr = text_addr + text_size;
bd5635a1
RP
1712#endif
1713
1714 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1715 symbuf_end = symbuf_idx = 0;
1716
1717 for (symnum = 0; symnum < nlistlen; symnum++)
1718 {
1719 /* Get the symbol for this run and pull out some info */
1720 QUIT; /* allow this to be interruptable */
1721 if (symbuf_idx == symbuf_end)
1722 fill_symbuf ();
1723 bufp = &symbuf[symbuf_idx++];
1724
1725 /*
1726 * Special case to speed up readin.
1727 */
1728 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1729
1730 SWAP_SYMBOL (bufp);
1731
1732 /* Ok. There is a lot of code duplicated in the rest of this
1733 switch statement (for efficiency reasons). Since I don't
1734 like duplicating code, I will do my penance here, and
1735 describe the code which is duplicated:
1736
1737 *) The assignment to namestring.
1738 *) The call to strchr.
1739 *) The addition of a partial symbol the the two partial
1740 symbol lists. This last is a large section of code, so
1741 I've imbedded it in the following macro.
1742 */
1743
1744/* Set namestring based on bufp. If the string table index is invalid,
1745 give a fake name, and print a single error message per symbol file read,
1746 rather than abort the symbol reading or flood the user with messages. */
1747#define SET_NAMESTRING()\
1748 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1749 complain (&string_table_offset_complaint, symnum); \
1750 namestring = "foo"; \
1751 } else \
1752 namestring = bufp->n_un.n_strx + stringtab
1753
1754/* Add a symbol with an integer value to a psymtab. */
1755/* This is a macro unless we're debugging. See above this function. */
1756#ifndef DEBUG
1757# define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1758 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1759 SYMBOL_VALUE)
1760#endif /* DEBUG */
1761
1762/* Add a symbol with a CORE_ADDR value to a psymtab. */
1763#define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1764 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1765 SYMBOL_VALUE_ADDRESS)
1766
1767/* Add any kind of symbol to a psymtab. */
1768#define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1769 do { \
1770 if ((LIST).next >= \
1771 (LIST).list + (LIST).size) \
1772 { \
1773 (LIST).list = (struct partial_symbol *) \
1774 xrealloc ((LIST).list, \
1775 ((LIST).size * 2 \
1776 * sizeof (struct partial_symbol))); \
1777 /* Next assumes we only went one over. Should be good if \
1778 program works correctly */ \
1779 (LIST).next = \
1780 (LIST).list + (LIST).size; \
1781 (LIST).size *= 2; \
1782 } \
1783 psym = (LIST).next++; \
1784 \
1785 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1786 (NAMELENGTH) + 1); \
1787 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1788 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1789 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1790 SYMBOL_CLASS (psym) = (CLASS); \
1791 VT (psym) = (VALUE); \
1792 } while (0);
1793
1794/* End of macro definitions, now let's handle them symbols! */
1795
1796 switch (bufp->n_type)
1797 {
1798 /*
1799 * Standard, external, non-debugger, symbols
1800 */
1801
1802 case N_TEXT | N_EXT:
1803 case N_NBTEXT | N_EXT:
1804 case N_NBDATA | N_EXT:
1805 case N_NBBSS | N_EXT:
1806 case N_SETV | N_EXT:
1807 case N_ABS | N_EXT:
1808 case N_DATA | N_EXT:
1809 case N_BSS | N_EXT:
1810
1811 bufp->n_value += addr; /* Relocate */
1812
1813 SET_NAMESTRING();
1814
1815 bss_ext_symbol:
1816 record_misc_function (namestring, bufp->n_value,
1817 bufp->n_type); /* Always */
1818
1819 continue;
1820
1821 /* Standard, local, non-debugger, symbols */
1822
1823 case N_NBTEXT:
1824
1825 /* We need to be able to deal with both N_FN or N_TEXT,
1826 because we have no way of knowing whether the sys-supplied ld
1827 or GNU ld was used to make the executable. */
1828#if ! (N_FN & N_EXT)
1829 case N_FN:
1830#endif
1831 case N_FN | N_EXT:
1832 case N_TEXT:
1833 bufp->n_value += addr; /* Relocate */
1834 SET_NAMESTRING();
1835 if ((namestring[0] == '-' && namestring[1] == 'l')
1836 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1837 && namestring [nsl - 2] == '.'))
1838 {
1839 if (entry_point < bufp->n_value
1840 && entry_point >= last_o_file_start
1841 && addr == 0) /* FIXME nogood nomore */
1842 {
1843 startup_file_start = last_o_file_start;
1844 startup_file_end = bufp->n_value;
1845 }
1846 if (past_first_source_file && pst
1847 /* The gould NP1 uses low values for .o and -l symbols
1848 which are not the address. */
1849 && bufp->n_value > pst->textlow)
1850 {
1851 end_psymtab (pst, psymtab_include_list, includes_used,
1852 symnum * sizeof (struct nlist), bufp->n_value,
1853 dependency_list, dependencies_used,
1854 global_psymbols.next, static_psymbols.next);
1855 pst = (struct partial_symtab *) 0;
1856 includes_used = 0;
1857 dependencies_used = 0;
1858 }
1859 else
1860 past_first_source_file = 1;
1861 last_o_file_start = bufp->n_value;
1862 }
1863 continue;
1864
1865 case N_DATA:
1866 bufp->n_value += addr; /* Relocate */
1867 SET_NAMESTRING ();
1868 /* Check for __DYNAMIC, which is used by Sun shared libraries.
62c4f98b
JK
1869 Record it even if it's local, not global, so we can find it.
1870 Same with virtual function tables, both global and static. */
1871 if ((namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1872 || VTBL_PREFIX_P ((namestring+HASH_OFFSET)))
bd5635a1
RP
1873 {
1874 /* Not really a function here, but... */
1875 record_misc_function (namestring, bufp->n_value,
1876 bufp->n_type); /* Always */
1877 }
1878 continue;
1879
1880 case N_UNDF | N_EXT:
1881 if (bufp->n_value != 0) {
1882 /* This is a "Fortran COMMON" symbol. See if the target
1883 environment knows where it has been relocated to. */
1884
1885 CORE_ADDR reladdr;
1886
1887 SET_NAMESTRING();
1888 if (target_lookup_symbol (namestring, &reladdr)) {
1889 continue; /* Error in lookup; ignore symbol for now. */
1890 }
1891 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1892 bufp->n_value = reladdr;
1893 goto bss_ext_symbol;
1894 }
1895 continue; /* Just undefined, not COMMON */
1896
1897 /* Lots of symbol types we can just ignore. */
1898
1899 case N_UNDF:
1900 case N_ABS:
1901 case N_BSS:
1902 case N_NBDATA:
1903 case N_NBBSS:
1904 continue;
1905
1906 /* Keep going . . .*/
1907
1908 /*
1909 * Special symbol types for GNU
1910 */
1911 case N_INDR:
1912 case N_INDR | N_EXT:
1913 case N_SETA:
1914 case N_SETA | N_EXT:
1915 case N_SETT:
1916 case N_SETT | N_EXT:
1917 case N_SETD:
1918 case N_SETD | N_EXT:
1919 case N_SETB:
1920 case N_SETB | N_EXT:
1921 case N_SETV:
1922 continue;
1923
1924 /*
1925 * Debugger symbols
1926 */
1927
1928 case N_SO: {
1929 unsigned long valu = bufp->n_value;
1930 /* Symbol number of the first symbol of this file (i.e. the N_SO
1931 if there is just one, or the first if we have a pair). */
1932 int first_symnum = symnum;
1933
1934 /* End the current partial symtab and start a new one */
1935
1936 SET_NAMESTRING();
1937
1938 /* Peek at the next symbol. If it is also an N_SO, the
1939 first one just indicates the directory. */
1940 if (symbuf_idx == symbuf_end)
1941 fill_symbuf ();
1942 bufp = &symbuf[symbuf_idx];
1943 /* n_type is only a char, so swapping swapping is irrelevant. */
1944 if (bufp->n_type == (unsigned char)N_SO)
1945 {
1946 SWAP_SYMBOL (bufp);
1947 SET_NAMESTRING ();
1948 valu = bufp->n_value;
1949 symbuf_idx++;
1950 symnum++;
1951 }
1952 valu += addr; /* Relocate */
1953
1954 if (pst && past_first_source_file)
1955 {
1956 end_psymtab (pst, psymtab_include_list, includes_used,
1957 first_symnum * sizeof (struct nlist), valu,
1958 dependency_list, dependencies_used,
1959 global_psymbols.next, static_psymbols.next);
1960 pst = (struct partial_symtab *) 0;
1961 includes_used = 0;
1962 dependencies_used = 0;
1963 }
1964 else
1965 past_first_source_file = 1;
1966
1967 pst = start_psymtab (symfile_name, addr,
1968 namestring, valu,
1969 first_symnum * sizeof (struct nlist),
1970 global_psymbols.next, static_psymbols.next);
bd5635a1
RP
1971 continue;
1972 }
1973
1974 case N_BINCL:
1975 /* Add this bincl to the bincl_list for future EXCLs. No
1976 need to save the string; it'll be around until
1977 read_dbx_symtab function returns */
1978
1979 SET_NAMESTRING();
1980
1981 add_bincl_to_list (pst, namestring, bufp->n_value);
1982
1983 /* Mark down an include file in the current psymtab */
1984
1985 psymtab_include_list[includes_used++] = namestring;
1986 if (includes_used >= includes_allocated)
1987 {
1988 char **orig = psymtab_include_list;
1989
1990 psymtab_include_list = (char **)
1991 alloca ((includes_allocated *= 2) *
1992 sizeof (char *));
1993 bcopy (orig, psymtab_include_list,
1994 includes_used * sizeof (char *));
1995 }
1996
1997 continue;
1998
1999 case N_SOL:
2000 /* Mark down an include file in the current psymtab */
2001
2002 SET_NAMESTRING();
2003
2004 /* In C++, one may expect the same filename to come round many
2005 times, when code is coming alternately from the main file
2006 and from inline functions in other files. So I check to see
f9623881
JG
2007 if this is a file we've seen before -- either the main
2008 source file, or a previously included file.
bd5635a1
RP
2009
2010 This seems to be a lot of time to be spending on N_SOL, but
2011 things like "break expread.y:435" need to work (I
2012 suppose the psymtab_include_list could be hashed or put
2013 in a binary tree, if profiling shows this is a major hog). */
f9623881
JG
2014 if (!strcmp (namestring, pst->filename))
2015 continue;
bd5635a1
RP
2016 {
2017 register int i;
2018 for (i = 0; i < includes_used; i++)
2019 if (!strcmp (namestring, psymtab_include_list[i]))
2020 {
2021 i = -1;
2022 break;
2023 }
2024 if (i == -1)
2025 continue;
2026 }
2027
2028 psymtab_include_list[includes_used++] = namestring;
2029 if (includes_used >= includes_allocated)
2030 {
2031 char **orig = psymtab_include_list;
2032
2033 psymtab_include_list = (char **)
2034 alloca ((includes_allocated *= 2) *
2035 sizeof (char *));
2036 bcopy (orig, psymtab_include_list,
2037 includes_used * sizeof (char *));
2038 }
2039 continue;
2040
2041 case N_LSYM: /* Typedef or automatic variable. */
2042 SET_NAMESTRING();
2043
2044 p = (char *) strchr (namestring, ':');
2045
2046 /* Skip if there is no :. */
2047 if (!p) continue;
2048
2049 switch (p[1])
2050 {
2051 case 'T':
2052 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2053 STRUCT_NAMESPACE, LOC_TYPEDEF,
2054 static_psymbols, bufp->n_value);
2055 if (p[2] == 't')
2056 {
2057 /* Also a typedef with the same name. */
2058 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2059 VAR_NAMESPACE, LOC_TYPEDEF,
2060 static_psymbols, bufp->n_value);
2061 p += 1;
2062 }
2063 goto check_enum;
2064 case 't':
2065 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2066 VAR_NAMESPACE, LOC_TYPEDEF,
2067 static_psymbols, bufp->n_value);
2068 check_enum:
2069 /* If this is an enumerated type, we need to
2070 add all the enum constants to the partial symbol
2071 table. This does not cover enums without names, e.g.
2072 "enum {a, b} c;" in C, but fortunately those are
2073 rare. There is no way for GDB to find those from the
2074 enum type without spending too much time on it. Thus
2075 to solve this problem, the compiler needs to put out separate
2076 constant symbols ('c' N_LSYMS) for enum constants in
2077 enums without names, or put out a dummy type. */
2078
2079 /* We are looking for something of the form
2080 <name> ":" ("t" | "T") [<number> "="] "e"
2081 {<constant> ":" <value> ","} ";". */
2082
2083 /* Skip over the colon and the 't' or 'T'. */
2084 p += 2;
2085 /* This type may be given a number. Skip over it. */
2086 while ((*p >= '0' && *p <= '9')
2087 || *p == '=')
2088 p++;
2089
2090 if (*p++ == 'e')
2091 {
2092 /* We have found an enumerated type. */
2093 /* According to comments in read_enum_type
2094 a comma could end it instead of a semicolon.
2095 I don't know where that happens.
2096 Accept either. */
2097 while (*p && *p != ';' && *p != ',')
2098 {
2099 char *q;
2100
2101 /* Check for and handle cretinous dbx symbol name
2102 continuation! */
2103 if (*p == '\\')
2104 p = next_symbol_text ();
2105
2106 /* Point to the character after the name
2107 of the enum constant. */
2108 for (q = p; *q && *q != ':'; q++)
2109 ;
2110 /* Note that the value doesn't matter for
2111 enum constants in psymtabs, just in symtabs. */
2112 ADD_PSYMBOL_TO_LIST (p, q - p,
2113 VAR_NAMESPACE, LOC_CONST,
2114 static_psymbols, 0);
2115 /* Point past the name. */
2116 p = q;
2117 /* Skip over the value. */
2118 while (*p && *p != ',')
2119 p++;
2120 /* Advance past the comma. */
2121 if (*p)
2122 p++;
2123 }
2124 }
2125
2126 continue;
2127 case 'c':
2128 /* Constant, e.g. from "const" in Pascal. */
2129 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2130 VAR_NAMESPACE, LOC_CONST,
2131 static_psymbols, bufp->n_value);
2132 continue;
2133 default:
2134 /* Skip if the thing following the : is
2135 not a letter (which indicates declaration of a local
2136 variable, which we aren't interested in). */
2137 continue;
2138 }
2139
2140 case N_FUN:
2141 case N_GSYM: /* Global (extern) variable; can be
2142 data or bss (sigh). */
2143 case N_STSYM: /* Data seg var -- static */
2144 case N_LCSYM: /* BSS " */
2145
2146 case N_NBSTS: /* Gould nobase. */
2147 case N_NBLCS: /* symbols. */
2148
2149 /* Following may probably be ignored; I'll leave them here
2150 for now (until I do Pascal and Modula 2 extensions). */
2151
2152 case N_PC: /* I may or may not need this; I
2153 suspect not. */
2154 case N_M2C: /* I suspect that I can ignore this here. */
2155 case N_SCOPE: /* Same. */
2156
2157 SET_NAMESTRING();
2158
2159 p = (char *) strchr (namestring, ':');
2160 if (!p)
2161 continue; /* Not a debugging symbol. */
2162
2163
2164
2165 /* Main processing section for debugging symbols which
2166 the initial read through the symbol tables needs to worry
2167 about. If we reach this point, the symbol which we are
2168 considering is definitely one we are interested in.
2169 p must also contain the (valid) index into the namestring
2170 which indicates the debugging type symbol. */
2171
2172 switch (p[1])
2173 {
2174 case 'c':
2175 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2176 VAR_NAMESPACE, LOC_CONST,
2177 static_psymbols, bufp->n_value);
2178 continue;
2179 case 'S':
2180 bufp->n_value += addr; /* Relocate */
2181 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2182 VAR_NAMESPACE, LOC_STATIC,
2183 static_psymbols, bufp->n_value);
2184 continue;
2185 case 'G':
2186 bufp->n_value += addr; /* Relocate */
c3a21801
JG
2187 /* The addresses in these entries are reported to be
2188 wrong. See the code that reads 'G's for symtabs. */
bd5635a1 2189 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
c3a21801 2190 VAR_NAMESPACE, LOC_STATIC,
bd5635a1
RP
2191 global_psymbols, bufp->n_value);
2192 continue;
2193
2194 case 't':
2195 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2196 VAR_NAMESPACE, LOC_TYPEDEF,
2197 global_psymbols, bufp->n_value);
2198 continue;
2199
2200 case 'f':
2201 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2202 VAR_NAMESPACE, LOC_BLOCK,
2203 static_psymbols, bufp->n_value);
2204 continue;
2205
f9623881
JG
2206 /* Global functions were ignored here, but now they
2207 are put into the global psymtab like one would expect.
2208 They're also in the misc fn vector...
2209 FIXME, why did it used to ignore these? That broke
2210 "i fun" on these functions. */
2211 case 'F':
2212 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2213 VAR_NAMESPACE, LOC_BLOCK,
2214 global_psymbols, bufp->n_value);
2215 continue;
2216
bd5635a1
RP
2217 /* Two things show up here (hopefully); static symbols of
2218 local scope (static used inside braces) or extensions
2219 of structure symbols. We can ignore both. */
2220 case 'V':
2221 case '(':
2222 case '0':
2223 case '1':
2224 case '2':
2225 case '3':
2226 case '4':
2227 case '5':
2228 case '6':
2229 case '7':
2230 case '8':
2231 case '9':
bd5635a1
RP
2232 continue;
2233
2234 default:
2235 /* Unexpected symbol. Ignore it; perhaps it is an extension
2236 that we don't know about.
2237
2238 Someone says sun cc puts out symbols like
2239 /foo/baz/maclib::/usr/local/bin/maclib,
2240 which would get here with a symbol type of ':'. */
2241 continue;
2242 }
2243
2244 case N_EXCL:
2245
2246 SET_NAMESTRING();
2247
2248 /* Find the corresponding bincl and mark that psymtab on the
2249 psymtab dependency list */
2250 {
2251 struct partial_symtab *needed_pst =
2252 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2253
2254 /* If this include file was defined earlier in this file,
2255 leave it alone. */
2256 if (needed_pst == pst) continue;
2257
2258 if (needed_pst)
2259 {
2260 int i;
2261 int found = 0;
2262
2263 for (i = 0; i < dependencies_used; i++)
2264 if (dependency_list[i] == needed_pst)
2265 {
2266 found = 1;
2267 break;
2268 }
2269
2270 /* If it's already in the list, skip the rest. */
2271 if (found) continue;
2272
2273 dependency_list[dependencies_used++] = needed_pst;
2274 if (dependencies_used >= dependencies_allocated)
2275 {
2276 struct partial_symtab **orig = dependency_list;
2277 dependency_list =
2278 (struct partial_symtab **)
2279 alloca ((dependencies_allocated *= 2)
2280 * sizeof (struct partial_symtab *));
2281 bcopy (orig, dependency_list,
2282 (dependencies_used
2283 * sizeof (struct partial_symtab *)));
2284#ifdef DEBUG_INFO
2285 fprintf (stderr, "Had to reallocate dependency list.\n");
2286 fprintf (stderr, "New dependencies allocated: %d\n",
2287 dependencies_allocated);
2288#endif
2289 }
2290 }
2291 else
2292 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2293 symnum);
2294 }
2295 continue;
2296
2297 case N_EINCL:
2298 case N_DSLINE:
2299 case N_BSLINE:
2300 case N_SSYM: /* Claim: Structure or union element.
2301 Hopefully, I can ignore this. */
2302 case N_ENTRY: /* Alternate entry point; can ignore. */
2303 case N_MAIN: /* Can definitely ignore this. */
2304 case N_CATCH: /* These are GNU C++ extensions */
2305 case N_EHDECL: /* that can safely be ignored here. */
2306 case N_LENG:
2307 case N_BCOMM:
2308 case N_ECOMM:
2309 case N_ECOML:
2310 case N_FNAME:
2311 case N_SLINE:
2312 case N_RSYM:
2313 case N_PSYM:
2314 case N_LBRAC:
2315 case N_RBRAC:
2316 case N_NSYMS: /* Ultrix 4.0: symbol count */
0c4d2cc2 2317 case N_DEFD: /* GNU Modula-2 */
bd5635a1
RP
2318 /* These symbols aren't interesting; don't worry about them */
2319
2320 continue;
2321
2322 default:
2323 /* If we haven't found it yet, ignore it. It's probably some
2324 new type we don't know about yet. */
0c4d2cc2 2325 complain (&unknown_symtype_complaint, local_hex_string(bufp->n_type));
bd5635a1
RP
2326 continue;
2327 }
2328 }
2329
2330 /* If there's stuff to be cleaned up, clean it up. */
63989338
JG
2331 if (nlistlen > 0 /* We have some syms */
2332 && entry_point < bufp->n_value
bd5635a1
RP
2333 && entry_point >= last_o_file_start)
2334 {
2335 startup_file_start = last_o_file_start;
2336 startup_file_end = bufp->n_value;
2337 }
2338
2339 if (pst)
2340 {
2341 end_psymtab (pst, psymtab_include_list, includes_used,
2342 symnum * sizeof (struct nlist), end_of_text_addr,
2343 dependency_list, dependencies_used,
2344 global_psymbols.next, static_psymbols.next);
2345 includes_used = 0;
2346 dependencies_used = 0;
2347 pst = (struct partial_symtab *) 0;
2348 }
2349
2350 free_bincl_list ();
2351 discard_cleanups (old_chain);
2352}
2353
2354/*
2355 * Allocate and partially fill a partial symtab. It will be
2356 * completely filled at the end of the symbol list.
2357
2358 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2359 is the address relative to which its symbols are (incremental) or 0
2360 (normal). */
2361static struct partial_symtab *
2362start_psymtab (symfile_name, addr,
2363 filename, textlow, ldsymoff, global_syms, static_syms)
2364 char *symfile_name;
2365 CORE_ADDR addr;
2366 char *filename;
2367 CORE_ADDR textlow;
2368 int ldsymoff;
2369 struct partial_symbol *global_syms;
2370 struct partial_symbol *static_syms;
2371{
2372 struct partial_symtab *result =
2373 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2374 sizeof (struct partial_symtab));
2375
2376 result->addr = addr;
2377
2378 result->symfile_name =
2379 (char *) obstack_alloc (psymbol_obstack,
2380 strlen (symfile_name) + 1);
2381 strcpy (result->symfile_name, symfile_name);
2382
2383 result->filename =
2384 (char *) obstack_alloc (psymbol_obstack,
2385 strlen (filename) + 1);
2386 strcpy (result->filename, filename);
2387
2388 result->textlow = textlow;
2389 result->ldsymoff = ldsymoff;
2390
2391 result->readin = 0;
2392 result->symtab = 0;
2393 result->read_symtab = dbx_psymtab_to_symtab;
2394
2395 result->globals_offset = global_syms - global_psymbols.list;
2396 result->statics_offset = static_syms - static_psymbols.list;
2397
2398 result->n_global_syms = 0;
2399 result->n_static_syms = 0;
2400
2401
2402 return result;
2403}
2404
2405static int
2406compare_psymbols (s1, s2)
2407 register struct partial_symbol *s1, *s2;
2408{
2409 register char
2410 *st1 = SYMBOL_NAME (s1),
2411 *st2 = SYMBOL_NAME (s2);
2412
0c4d2cc2
JG
2413 if (st1[0] - st2[0])
2414 return st1[0] - st2[0];
2415 if (st1[1] - st2[1])
2416 return st1[1] - st2[1];
2417 return strcmp (st1 + 1, st2 + 1);
bd5635a1
RP
2418}
2419
2420
2421/* Close off the current usage of a partial_symbol table entry. This
2422 involves setting the correct number of includes (with a realloc),
2423 setting the high text mark, setting the symbol length in the
2424 executable, and setting the length of the global and static lists
2425 of psymbols.
2426
2427 The global symbols and static symbols are then seperately sorted.
2428
2429 Then the partial symtab is put on the global list.
2430 *** List variables and peculiarities of same. ***
2431 */
2432static void
2433end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2434 capping_text, dependency_list, number_dependencies,
2435 capping_global, capping_static)
2436 struct partial_symtab *pst;
2437 char **include_list;
2438 int num_includes;
2439 int capping_symbol_offset;
2440 CORE_ADDR capping_text;
2441 struct partial_symtab **dependency_list;
2442 int number_dependencies;
2443 struct partial_symbol *capping_global, *capping_static;
2444{
2445 int i;
2446
2447 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2448 pst->texthigh = capping_text;
2449
2450 pst->n_global_syms =
2451 capping_global - (global_psymbols.list + pst->globals_offset);
2452 pst->n_static_syms =
2453 capping_static - (static_psymbols.list + pst->statics_offset);
2454
2455 pst->number_of_dependencies = number_dependencies;
2456 if (number_dependencies)
2457 {
2458 pst->dependencies = (struct partial_symtab **)
2459 obstack_alloc (psymbol_obstack,
2460 number_dependencies * sizeof (struct partial_symtab *));
2461 bcopy (dependency_list, pst->dependencies,
2462 number_dependencies * sizeof (struct partial_symtab *));
2463 }
2464 else
2465 pst->dependencies = 0;
2466
2467 for (i = 0; i < num_includes; i++)
2468 {
2469 /* Eventually, put this on obstack */
2470 struct partial_symtab *subpst =
2471 (struct partial_symtab *)
2472 obstack_alloc (psymbol_obstack,
2473 sizeof (struct partial_symtab));
2474
2475 subpst->filename =
2476 (char *) obstack_alloc (psymbol_obstack,
2477 strlen (include_list[i]) + 1);
2478 strcpy (subpst->filename, include_list[i]);
2479
2480 subpst->symfile_name = pst->symfile_name;
2481 subpst->addr = pst->addr;
2482 subpst->ldsymoff =
2483 subpst->ldsymlen =
2484 subpst->textlow =
2485 subpst->texthigh = 0;
2486
3f83182d
JG
2487 /* We could save slight bits of space by only making one of these,
2488 shared by the entire set of include files. FIXME-someday. */
bd5635a1
RP
2489 subpst->dependencies = (struct partial_symtab **)
2490 obstack_alloc (psymbol_obstack,
2491 sizeof (struct partial_symtab *));
2492 subpst->dependencies[0] = pst;
2493 subpst->number_of_dependencies = 1;
2494
2495 subpst->globals_offset =
2496 subpst->n_global_syms =
2497 subpst->statics_offset =
2498 subpst->n_static_syms = 0;
2499
2500 subpst->readin = 0;
9a822037 2501 subpst->symtab = 0;
bd5635a1
RP
2502 subpst->read_symtab = dbx_psymtab_to_symtab;
2503
2504 subpst->next = partial_symtab_list;
2505 partial_symtab_list = subpst;
2506 }
2507
2508 /* Sort the global list; don't sort the static list */
2509 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2510 sizeof (struct partial_symbol), compare_psymbols);
2511
f9623881
JG
2512 /* If there is already a psymtab or symtab for a file of this name, remove it.
2513 (If there is a symtab, more drastic things also happen.)
2514 This happens in VxWorks. */
2515 free_named_symtabs (pst->filename);
2516
bd5635a1
RP
2517 /* Put the psymtab on the psymtab list */
2518 pst->next = partial_symtab_list;
2519 partial_symtab_list = pst;
2520}
2521\f
2522static void
2523psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2524 struct partial_symtab *pst;
2525 int desc;
2526 char *stringtab;
2527 int stringtab_size;
2528 int sym_offset;
2529{
2530 struct cleanup *old_chain;
2531 int i;
2532
2533 if (!pst)
2534 return;
2535
2536 if (pst->readin)
2537 {
2538 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2539 pst->filename);
2540 return;
2541 }
2542
2543 /* Read in all partial symbtabs on which this one is dependent */
2544 for (i = 0; i < pst->number_of_dependencies; i++)
2545 if (!pst->dependencies[i]->readin)
2546 {
2547 /* Inform about additional files that need to be read in. */
2548 if (info_verbose)
2549 {
2550 fputs_filtered (" ", stdout);
2551 wrap_here ("");
2552 fputs_filtered ("and ", stdout);
2553 wrap_here ("");
2554 printf_filtered ("%s...", pst->dependencies[i]->filename);
2555 wrap_here (""); /* Flush output */
2556 fflush (stdout);
2557 }
2558 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2559 stringtab, stringtab_size, sym_offset);
2560 }
2561
2562 if (pst->ldsymlen) /* Otherwise it's a dummy */
2563 {
2564 /* Init stuff necessary for reading in symbols */
2565 free_pendings = 0;
2566 pending_blocks = 0;
2567 file_symbols = 0;
2568 global_symbols = 0;
2569 old_chain = make_cleanup (really_free_pendings, 0);
2570
2571 /* Read in this files symbols */
2572 lseek (desc, sym_offset, L_SET);
9404978d
MT
2573 pst->symtab =
2574 read_ofile_symtab (desc, stringtab, stringtab_size,
2575 pst->ldsymoff,
2576 pst->ldsymlen, pst->textlow,
2577 pst->texthigh - pst->textlow, pst->addr);
2578 sort_symtab_syms (pst->symtab);
bd5635a1
RP
2579
2580 do_cleanups (old_chain);
2581 }
2582
2583 pst->readin = 1;
2584}
2585
2586/*
2587 * Read in all of the symbols for a given psymtab for real.
2588 * Be verbose about it if the user wants that.
2589 */
2590static void
2591dbx_psymtab_to_symtab (pst)
2592 struct partial_symtab *pst;
2593{
2594 int desc;
2595 char *stringtab;
2596 int stsize, val;
2597 struct stat statbuf;
2598 struct cleanup *old_chain;
2599 bfd *sym_bfd;
2600 long st_temp;
2601
2602 if (!pst)
2603 return;
2604
2605 if (pst->readin)
2606 {
2607 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2608 pst->filename);
2609 return;
2610 }
2611
2612 if (pst->ldsymlen || pst->number_of_dependencies)
2613 {
2614 /* Print the message now, before reading the string table,
2615 to avoid disconcerting pauses. */
2616 if (info_verbose)
2617 {
2618 printf_filtered ("Reading in symbols for %s...", pst->filename);
2619 fflush (stdout);
2620 }
2621
2622 /* Open symbol file and read in string table. Symbol_file_command
2623 guarantees that the symbol file name will be absolute, so there is
2624 no need for openp. */
2625 desc = open(pst->symfile_name, O_RDONLY, 0);
2626
2627 if (desc < 0)
2628 perror_with_name (pst->symfile_name);
2629
2630 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2631 if (!sym_bfd)
2632 {
2633 (void)close (desc);
2634 error ("Could not open `%s' to read symbols: %s",
2635 pst->symfile_name, bfd_errmsg (bfd_error));
2636 }
2637 old_chain = make_cleanup (bfd_close, sym_bfd);
2638 if (!bfd_check_format (sym_bfd, bfd_object))
2639 error ("\"%s\": can't read symbols: %s.",
2640 pst->symfile_name, bfd_errmsg (bfd_error));
2641
2642 /* We keep the string table for symfile resident in memory, but
2643 not the string table for any other symbol files. */
66eeea27 2644 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
bd5635a1
RP
2645 {
2646 /* Read in the string table */
2647
2648 /* FIXME, this uses internal BFD variables. See above in
2649 dbx_symbol_file_open where the macro is defined! */
2650 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2651
2652 val = myread (desc, &st_temp, sizeof st_temp);
2653 if (val < 0)
2654 perror_with_name (pst->symfile_name);
dcc35536 2655 stsize = bfd_h_get_32 (sym_bfd, (unsigned char *)&st_temp);
bd5635a1
RP
2656 if (fstat (desc, &statbuf) < 0)
2657 perror_with_name (pst->symfile_name);
2658
2659 if (stsize >= 0 && stsize < statbuf.st_size)
2660 {
2661#ifdef BROKEN_LARGE_ALLOCA
2662 stringtab = (char *) xmalloc (stsize);
2663 make_cleanup (free, stringtab);
2664#else
2665 stringtab = (char *) alloca (stsize);
2666#endif
2667 }
2668 else
2669 stringtab = NULL;
2670 if (stringtab == NULL && stsize != 0)
2671 error ("ridiculous string table size: %d bytes", stsize);
2672
2673 /* FIXME, this uses internal BFD variables. See above in
2674 dbx_symbol_file_open where the macro is defined! */
2675 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2676 if (val < 0)
2677 perror_with_name (pst->symfile_name);
2678 val = myread (desc, stringtab, stsize);
2679 if (val < 0)
2680 perror_with_name (pst->symfile_name);
2681 }
2682 else
2683 {
2684 stringtab = symfile_string_table;
2685 stsize = symfile_string_table_size;
2686 }
2687
2688 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2689
2690 /* FIXME, this uses internal BFD variables. See above in
2691 dbx_symbol_file_open where the macro is defined! */
2692 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2693 SYMBOL_TABLE_OFFSET);
2694
2695 /* Match with global symbols. This only needs to be done once,
2696 after all of the symtabs and dependencies have been read in. */
2697 scan_file_globals ();
2698
2699 do_cleanups (old_chain);
2700
2701 /* Finish up the debug error message. */
2702 if (info_verbose)
2703 printf_filtered ("done.\n");
2704 }
2705}
2706
2707/*
2708 * Scan through all of the global symbols defined in the object file,
2709 * assigning values to the debugging symbols that need to be assigned
2710 * to. Get these symbols from the misc function list.
2711 */
2712static void
2713scan_file_globals ()
2714{
2715 int hash;
2716 int mf;
2717
2718 for (mf = 0; mf < misc_function_count; mf++)
2719 {
2720 char *namestring = misc_function_vector[mf].name;
2721 struct symbol *sym, *prev;
2722
2723 QUIT;
2724
2725 prev = (struct symbol *) 0;
2726
2727 /* Get the hash index and check all the symbols
2728 under that hash index. */
2729
2730 hash = hashname (namestring);
2731
2732 for (sym = global_sym_chain[hash]; sym;)
2733 {
2734 if (*namestring == SYMBOL_NAME (sym)[0]
2735 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2736 {
2737 /* Splice this symbol out of the hash chain and
2738 assign the value we have to it. */
2739 if (prev)
2740 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2741 else
2742 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2743
2744 /* Check to see whether we need to fix up a common block. */
2745 /* Note: this code might be executed several times for
2746 the same symbol if there are multiple references. */
2747 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2748 fix_common_block (sym, misc_function_vector[mf].address);
2749 else
2750 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2751
2752 if (prev)
2753 sym = SYMBOL_VALUE_CHAIN (prev);
2754 else
2755 sym = global_sym_chain[hash];
2756 }
2757 else
2758 {
2759 prev = sym;
2760 sym = SYMBOL_VALUE_CHAIN (sym);
2761 }
2762 }
2763 }
2764}
2765
2766/* Process a pair of symbols. Currently they must both be N_SO's. */
0c4d2cc2 2767/* ARGSUSED */
bd5635a1
RP
2768static void
2769process_symbol_pair (type1, desc1, value1, name1,
2770 type2, desc2, value2, name2)
2771 int type1;
2772 int desc1;
2773 CORE_ADDR value1;
2774 char *name1;
2775 int type2;
2776 int desc2;
2777 CORE_ADDR value2;
2778 char *name2;
2779{
2780 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2781 broken PCC's don't put out N_SO pairs. */
2782 if (last_source_file)
9404978d 2783 (void)end_symtab (value2);
bd5635a1
RP
2784 start_symtab (name2, name1, value2);
2785}
2786
2787/*
2788 * Read in a defined section of a specific object file's symbols.
2789 *
2790 * DESC is the file descriptor for the file, positioned at the
2791 * beginning of the symtab
2792 * STRINGTAB is a pointer to the files string
2793 * table, already read in
2794 * SYM_OFFSET is the offset within the file of
2795 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2796 * number of symbols to read
2797 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2798 * TEXT_SIZE is the size of the text segment read in.
2799 * OFFSET is a relocation offset which gets added to each symbol
2800 */
2801
9404978d 2802static struct symtab *
bd5635a1
RP
2803read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2804 sym_size, text_offset, text_size, offset)
2805 int desc;
2806 register char *stringtab;
2807 unsigned int stringtab_size;
2808 int sym_offset;
2809 int sym_size;
2810 CORE_ADDR text_offset;
2811 int text_size;
2812 int offset;
2813{
2814 register char *namestring;
2815 struct nlist *bufp;
2816 unsigned char type;
2817 subfile_stack = 0;
2818
2819 stringtab_global = stringtab;
2820 last_source_file = 0;
2821
2822 symtab_input_desc = desc;
2823 symbuf_end = symbuf_idx = 0;
2824
2825 /* It is necessary to actually read one symbol *before* the start
2826 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2827 occurs before the N_SO symbol.
2828
2829 Detecting this in read_dbx_symtab
2830 would slow down initial readin, so we look for it here instead. */
2831 if (sym_offset >= (int)sizeof (struct nlist))
2832 {
2833 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2834 fill_symbuf ();
2835 bufp = &symbuf[symbuf_idx++];
2836 SWAP_SYMBOL (bufp);
2837
2838 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2839 error ("Invalid symbol data: bad string table offset: %d",
2840 bufp->n_un.n_strx);
2841 namestring = bufp->n_un.n_strx + stringtab;
2842
2843 processing_gcc_compilation =
2844 (bufp->n_type == N_TEXT
2845 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2846 }
2847 else
2848 {
2849 /* The N_SO starting this symtab is the first symbol, so we
2850 better not check the symbol before it. I'm not this can
2851 happen, but it doesn't hurt to check for it. */
2852 lseek(desc, sym_offset, L_INCR);
2853 processing_gcc_compilation = 0;
2854 }
2855
2856 if (symbuf_idx == symbuf_end)
2857 fill_symbuf();
2858 bufp = &symbuf[symbuf_idx];
2859 if (bufp->n_type != (unsigned char)N_SO)
2860 error("First symbol in segment of executable not a source symbol");
2861
2862 for (symnum = 0;
2863 symnum < sym_size / sizeof(struct nlist);
2864 symnum++)
2865 {
2866 QUIT; /* Allow this to be interruptable */
2867 if (symbuf_idx == symbuf_end)
2868 fill_symbuf();
2869 bufp = &symbuf[symbuf_idx++];
2870 SWAP_SYMBOL (bufp);
2871
2872 type = bufp->n_type & N_TYPE;
2873 if (type == (unsigned char)N_CATCH)
2874 {
2875 /* N_CATCH is not fixed up by the linker, and unfortunately,
2876 there's no other place to put it in the .stab map. */
62c4f98b 2877 bufp->n_value += text_offset + offset;
bd5635a1
RP
2878 }
2879 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2880 bufp->n_value += offset;
2881
2882 type = bufp->n_type;
2883 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2884 error ("Invalid symbol data: bad string table offset: %d",
2885 bufp->n_un.n_strx);
2886 namestring = bufp->n_un.n_strx + stringtab;
2887
2888 if (type & N_STAB)
2889 {
e1ce8aa5 2890 short bufp_n_desc = bufp->n_desc;
bd5635a1
RP
2891 unsigned long valu = bufp->n_value;
2892
2893 /* Check for a pair of N_SO symbols. */
2894 if (type == (unsigned char)N_SO)
2895 {
2896 if (symbuf_idx == symbuf_end)
2897 fill_symbuf ();
2898 bufp = &symbuf[symbuf_idx];
2899 if (bufp->n_type == (unsigned char)N_SO)
2900 {
2901 char *namestring2;
2902
2903 SWAP_SYMBOL (bufp);
2904 bufp->n_value += offset; /* Relocate */
2905 symbuf_idx++;
2906 symnum++;
2907
2908 if (bufp->n_un.n_strx < 0
2909 || bufp->n_un.n_strx >= stringtab_size)
2910 error ("Invalid symbol data: bad string table offset: %d",
2911 bufp->n_un.n_strx);
2912 namestring2 = bufp->n_un.n_strx + stringtab;
2913
e1ce8aa5 2914 process_symbol_pair (N_SO, bufp_n_desc, valu, namestring,
bd5635a1
RP
2915 N_SO, bufp->n_desc, bufp->n_value,
2916 namestring2);
2917 }
2918 else
e1ce8aa5 2919 process_one_symbol(type, bufp_n_desc, valu, namestring);
bd5635a1
RP
2920 }
2921 else
e1ce8aa5 2922 process_one_symbol (type, bufp_n_desc, valu, namestring);
bd5635a1
RP
2923 }
2924 /* We skip checking for a new .o or -l file; that should never
2925 happen in this routine. */
2926 else if (type == N_TEXT
2927 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2928 /* I don't think this code will ever be executed, because
2929 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2930 the N_SO symbol which starts this source file.
2931 However, there is no reason not to accept
2932 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2933 processing_gcc_compilation = 1;
2934 else if (type & N_EXT || type == (unsigned char)N_TEXT
2935 || type == (unsigned char)N_NBTEXT
0c4d2cc2 2936 ) {
bd5635a1
RP
2937 /* Global symbol: see if we came across a dbx defintion for
2938 a corresponding symbol. If so, store the value. Remove
2939 syms from the chain when their values are stored, but
2940 search the whole chain, as there may be several syms from
2941 different files with the same name. */
2942 /* This is probably not true. Since the files will be read
2943 in one at a time, each reference to a global symbol will
2944 be satisfied in each file as it appears. So we skip this
2945 section. */
2946 ;
0c4d2cc2 2947 }
bd5635a1 2948 }
9404978d
MT
2949
2950 return end_symtab (text_offset + text_size);
bd5635a1
RP
2951}
2952\f
2953static int
2954hashname (name)
2955 char *name;
2956{
2957 register char *p = name;
2958 register int total = p[0];
2959 register int c;
2960
2961 c = p[1];
2962 total += c << 2;
2963 if (c)
2964 {
2965 c = p[2];
2966 total += c << 4;
2967 if (c)
2968 total += p[3] << 6;
2969 }
2970
2971 /* Ensure result is positive. */
2972 if (total < 0) total += (1000 << 6);
2973 return total % HASHSIZE;
2974}
2975
2976\f
2977static void
2978process_one_symbol (type, desc, valu, name)
2979 int type, desc;
2980 CORE_ADDR valu;
2981 char *name;
2982{
2983#ifndef SUN_FIXED_LBRAC_BUG
2984 /* This records the last pc address we've seen. We depend on their being
2985 an SLINE or FUN or SO before the first LBRAC, since the variable does
2986 not get reset in between reads of different symbol files. */
2987 static CORE_ADDR last_pc_address;
2988#endif
2989 register struct context_stack *new;
2990 char *colon_pos;
2991
2992 /* Something is wrong if we see real data before
2993 seeing a source file name. */
2994
2995 if (last_source_file == 0 && type != (unsigned char)N_SO)
2996 {
2997 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2998 where that code is defined. */
2999 if (IGNORE_SYMBOL (type))
3000 return;
3001
3002 /* FIXME, this should not be an error, since it precludes extending
3003 the symbol table information in this way... */
3004 error ("Invalid symbol data: does not start by identifying a source file.");
3005 }
3006
3007 switch (type)
3008 {
3009 case N_FUN:
3010 case N_FNAME:
3011 /* Either of these types of symbols indicates the start of
3012 a new function. We must process its "name" normally for dbx,
3013 but also record the start of a new lexical context, and possibly
3014 also the end of the lexical context for the previous function. */
3015 /* This is not always true. This type of symbol may indicate a
3016 text segment variable. */
3017
3018#ifndef SUN_FIXED_LBRAC_BUG
3019 last_pc_address = valu; /* Save for SunOS bug circumcision */
3020#endif
3021
3022 colon_pos = strchr (name, ':');
3023 if (!colon_pos++
3024 || (*colon_pos != 'f' && *colon_pos != 'F'))
3025 {
3026 define_symbol (valu, name, desc, type);
3027 break;
3028 }
3029
3030 within_function = 1;
3031 if (context_stack_depth > 0)
3032 {
3033 new = &context_stack[--context_stack_depth];
3034 /* Make a block for the local symbols within. */
3035 finish_block (new->name, &local_symbols, new->old_blocks,
3036 new->start_addr, valu);
3037 }
3038 /* Stack must be empty now. */
3039 if (context_stack_depth != 0)
3040 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3041 symnum);
3042
3043 new = &context_stack[context_stack_depth++];
3044 new->old_blocks = pending_blocks;
3045 new->start_addr = valu;
3046 new->name = define_symbol (valu, name, desc, type);
3047 local_symbols = 0;
3048 break;
3049
3050 case N_CATCH:
3051 /* Record the address at which this catch takes place. */
3052 define_symbol (valu, name, desc, type);
3053 break;
3054
3055 case N_EHDECL:
3056 /* Don't know what to do with these yet. */
3057 error ("action uncertain for eh extensions");
3058 break;
3059
3060 case N_LBRAC:
3061 /* This "symbol" just indicates the start of an inner lexical
3062 context within a function. */
3063
3064#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3065 /* On most machines, the block addresses are relative to the
3066 N_SO, the linker did not relocate them (sigh). */
3067 valu += last_source_start_addr;
3068#endif
3069
3070#ifndef SUN_FIXED_LBRAC_BUG
3071 if (valu < last_pc_address) {
3072 /* Patch current LBRAC pc value to match last handy pc value */
3073 complain (&lbrac_complaint, 0);
3074 valu = last_pc_address;
3075 }
3076#endif
3077 if (context_stack_depth == context_stack_size)
3078 {
3079 context_stack_size *= 2;
3080 context_stack = (struct context_stack *)
3081 xrealloc (context_stack,
3082 (context_stack_size
3083 * sizeof (struct context_stack)));
3084 }
3085
3086 new = &context_stack[context_stack_depth++];
3087 new->depth = desc;
3088 new->locals = local_symbols;
3089 new->old_blocks = pending_blocks;
3090 new->start_addr = valu;
3091 new->name = 0;
3092 local_symbols = 0;
3093 break;
3094
3095 case N_RBRAC:
3096 /* This "symbol" just indicates the end of an inner lexical
3097 context that was started with N_LBRAC. */
3098
3099#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3100 /* On most machines, the block addresses are relative to the
3101 N_SO, the linker did not relocate them (sigh). */
3102 valu += last_source_start_addr;
3103#endif
3104
3105 new = &context_stack[--context_stack_depth];
3106 if (desc != new->depth)
3107 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3108
3109 /* Some compilers put the variable decls inside of an
3110 LBRAC/RBRAC block. This macro should be nonzero if this
3111 is true. DESC is N_DESC from the N_RBRAC symbol.
3112 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3113#if !defined (VARIABLES_INSIDE_BLOCK)
3114#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3115#endif
3116
3117 /* Can only use new->locals as local symbols here if we're in
3118 gcc or on a machine that puts them before the lbrack. */
3119 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3120 local_symbols = new->locals;
3121
3122 /* If this is not the outermost LBRAC...RBRAC pair in the
3123 function, its local symbols preceded it, and are the ones
3124 just recovered from the context stack. Defined the block for them.
3125
3126 If this is the outermost LBRAC...RBRAC pair, there is no
3127 need to do anything; leave the symbols that preceded it
3128 to be attached to the function's own block. However, if
3129 it is so, we need to indicate that we just moved outside
3130 of the function. */
3131 if (local_symbols
3132 && (context_stack_depth
3133 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3134 {
3135 /* FIXME Muzzle a compiler bug that makes end < start. */
3136 if (new->start_addr > valu)
3137 {
3138 complain(&lbrac_rbrac_complaint, 0);
3139 new->start_addr = valu;
3140 }
3141 /* Make a block for the local symbols within. */
3142 finish_block (0, &local_symbols, new->old_blocks,
3143 new->start_addr, valu);
3144 }
3145 else
3146 {
3147 within_function = 0;
3148 }
3149 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3150 /* Now pop locals of block just finished. */
3151 local_symbols = new->locals;
3152 break;
3153
3154 case N_FN | N_EXT:
3155 /* This kind of symbol supposedly indicates the start
3156 of an object file. In fact this type does not appear. */
3157 break;
3158
3159 case N_SO:
3160 /* This type of symbol indicates the start of data
3161 for one source file.
3162 Finish the symbol table of the previous source file
3163 (if any) and start accumulating a new symbol table. */
3164#ifndef SUN_FIXED_LBRAC_BUG
3165 last_pc_address = valu; /* Save for SunOS bug circumcision */
3166#endif
3167
3168#ifdef PCC_SOL_BROKEN
3169 /* pcc bug, occasionally puts out SO for SOL. */
3170 if (context_stack_depth > 0)
3171 {
3172 start_subfile (name, NULL);
3173 break;
3174 }
3175#endif
3176 if (last_source_file)
9404978d 3177 (void)end_symtab (valu);
bd5635a1
RP
3178 start_symtab (name, NULL, valu);
3179 break;
3180
3181 case N_SOL:
3182 /* This type of symbol indicates the start of data for
3183 a sub-source-file, one whose contents were copied or
3184 included in the compilation of the main source file
3185 (whose name was given in the N_SO symbol.) */
3186 start_subfile (name, NULL);
3187 break;
3188
3189 case N_BINCL:
3190 push_subfile ();
3191 add_new_header_file (name, valu);
3192 start_subfile (name, NULL);
3193 break;
3194
3195 case N_EINCL:
3196 start_subfile (pop_subfile (), NULL);
3197 break;
3198
3199 case N_EXCL:
3200 add_old_header_file (name, valu);
3201 break;
3202
3203 case N_SLINE:
3204 /* This type of "symbol" really just records
3205 one line-number -- core-address correspondence.
3206 Enter it in the line list for this symbol table. */
3207#ifndef SUN_FIXED_LBRAC_BUG
3208 last_pc_address = valu; /* Save for SunOS bug circumcision */
3209#endif
3210 record_line (desc, valu);
3211 break;
3212
3213 case N_BCOMM:
3214 if (common_block)
3215 error ("Invalid symbol data: common within common at symtab pos %d",
3216 symnum);
3217 common_block = local_symbols;
3218 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3219 break;
3220
3221 case N_ECOMM:
3222 /* Symbols declared since the BCOMM are to have the common block
3223 start address added in when we know it. common_block points to
3224 the first symbol after the BCOMM in the local_symbols list;
3225 copy the list and hang it off the symbol for the common block name
3226 for later fixup. */
3227 {
3228 int i;
3229 struct symbol *sym =
3230 (struct symbol *) xmalloc (sizeof (struct symbol));
3231 bzero (sym, sizeof *sym);
3232 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3233 SYMBOL_CLASS (sym) = LOC_BLOCK;
3234 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3235 copy_pending (local_symbols, common_block_i, common_block));
3236 i = hashname (SYMBOL_NAME (sym));
3237 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3238 global_sym_chain[i] = sym;
3239 common_block = 0;
3240 break;
3241 }
3242
3243 case N_ECOML:
3244 case N_LENG:
0c4d2cc2 3245 case N_DEFD: /* GNU Modula-2 symbol */
bd5635a1
RP
3246 break;
3247
3248 default:
3249 if (name)
3250 define_symbol (valu, name, desc, type);
3251 }
3252}
3253\f
3254/* Read a number by which a type is referred to in dbx data,
3255 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3256 Just a single number N is equivalent to (0,N).
3257 Return the two numbers by storing them in the vector TYPENUMS.
3258 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3259
3260static void
3261read_type_number (pp, typenums)
3262 register char **pp;
3263 register int *typenums;
3264{
3265 if (**pp == '(')
3266 {
3267 (*pp)++;
3268 typenums[0] = read_number (pp, ',');
3269 typenums[1] = read_number (pp, ')');
3270 }
3271 else
3272 {
3273 typenums[0] = 0;
3274 typenums[1] = read_number (pp, 0);
3275 }
3276}
3277\f
3278/* To handle GNU C++ typename abbreviation, we need to be able to
3279 fill in a type's name as soon as space for that type is allocated.
3280 `type_synonym_name' is the name of the type being allocated.
3281 It is cleared as soon as it is used (lest all allocated types
3282 get this name). */
3283static char *type_synonym_name;
3284
0c4d2cc2 3285/* ARGSUSED */
bd5635a1
RP
3286static struct symbol *
3287define_symbol (valu, string, desc, type)
3288 unsigned int valu;
3289 char *string;
3290 int desc;
3291 int type;
3292{
3293 register struct symbol *sym;
3294 char *p = (char *) strchr (string, ':');
3295 int deftype;
3296 int synonym = 0;
3297 register int i;
3298
3299 /* Ignore syms with empty names. */
3300 if (string[0] == 0)
3301 return 0;
3302
3303 /* Ignore old-style symbols from cc -go */
3304 if (p == 0)
3305 return 0;
3306
3307 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3308
3309 if (processing_gcc_compilation) {
3310 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3311 number of bytes occupied by a type or object, which we ignore. */
3312 SYMBOL_LINE(sym) = desc;
3313 } else {
3314 SYMBOL_LINE(sym) = 0; /* unknown */
3315 }
aec4cb91 3316
bd5635a1
RP
3317 if (string[0] == CPLUS_MARKER)
3318 {
3319 /* Special GNU C++ names. */
3320 switch (string[1])
3321 {
3322 case 't':
3323 SYMBOL_NAME (sym) = "this";
3324 break;
3325 case 'v': /* $vtbl_ptr_type */
3326 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3327 goto normal;
3328 case 'e':
3329 SYMBOL_NAME (sym) = "eh_throw";
3330 break;
3331
3332 case '_':
3333 /* This was an anonymous type that was never fixed up. */
3334 goto normal;
3335
3336 default:
3337 abort ();
3338 }
3339 }
3340 else
3341 {
3342 normal:
3343 SYMBOL_NAME (sym)
3344 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3345 /* Open-coded bcopy--saves function call time. */
3346 {
3347 register char *p1 = string;
3348 register char *p2 = SYMBOL_NAME (sym);
3349 while (p1 != p)
3350 *p2++ = *p1++;
3351 *p2++ = '\0';
3352 }
3353 }
3354 p++;
3355 /* Determine the type of name being defined. */
3356 /* The Acorn RISC machine's compiler can put out locals that don't
3357 start with "234=" or "(3,4)=", so assume anything other than the
3358 deftypes we know how to handle is a local. */
3359 /* (Peter Watkins @ Computervision)
3360 Handle Sun-style local fortran array types 'ar...' .
3361 (gnu@cygnus.com) -- this strchr() handles them properly?
3362 (tiemann@cygnus.com) -- 'C' is for catch. */
3363 if (!strchr ("cfFGpPrStTvVXC", *p))
3364 deftype = 'l';
3365 else
3366 deftype = *p++;
3367
3368 /* c is a special case, not followed by a type-number.
3369 SYMBOL:c=iVALUE for an integer constant symbol.
3370 SYMBOL:c=rVALUE for a floating constant symbol.
3371 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3372 e.g. "b:c=e6,0" for "const b = blob1"
3373 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3374 if (deftype == 'c')
3375 {
3376 if (*p++ != '=')
3377 error ("Invalid symbol data at symtab pos %d.", symnum);
3378 switch (*p++)
3379 {
3380 case 'r':
3381 {
3382 double d = atof (p);
e1ce8aa5 3383 char *dbl_valu;
bd5635a1
RP
3384
3385 SYMBOL_TYPE (sym) = builtin_type_double;
e1ce8aa5
JK
3386 dbl_valu =
3387 (char *) obstack_alloc (symbol_obstack, sizeof (double));
3388 bcopy (&d, dbl_valu, sizeof (double));
3389 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
3390 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
bd5635a1
RP
3391 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3392 }
3393 break;
3394 case 'i':
3395 {
3396 SYMBOL_TYPE (sym) = builtin_type_int;
3397 SYMBOL_VALUE (sym) = atoi (p);
3398 SYMBOL_CLASS (sym) = LOC_CONST;
3399 }
3400 break;
3401 case 'e':
3402 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3403 e.g. "b:c=e6,0" for "const b = blob1"
3404 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3405 {
3406 int typenums[2];
3407
3408 read_type_number (&p, typenums);
3409 if (*p++ != ',')
3410 error ("Invalid symbol data: no comma in enum const symbol");
3411
3412 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3413 SYMBOL_VALUE (sym) = atoi (p);
3414 SYMBOL_CLASS (sym) = LOC_CONST;
3415 }
3416 break;
3417 default:
3418 error ("Invalid symbol data at symtab pos %d.", symnum);
3419 }
3420 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3421 add_symbol_to_list (sym, &file_symbols);
3422 return sym;
3423 }
3424
3425 /* Now usually comes a number that says which data type,
3426 and possibly more stuff to define the type
3427 (all of which is handled by read_type) */
3428
3429 if (deftype == 'p' && *p == 'F')
3430 /* pF is a two-letter code that means a function parameter in Fortran.
3431 The type-number specifies the type of the return value.
3432 Translate it into a pointer-to-function type. */
3433 {
3434 p++;
3435 SYMBOL_TYPE (sym)
3436 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3437 }
3438 else
3439 {
e1ce8aa5 3440 struct type *type_read;
bd5635a1
RP
3441 synonym = *p == 't';
3442
3443 if (synonym)
3444 {
3445 p += 1;
3446 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3447 strlen (SYMBOL_NAME (sym)));
3448 }
3449
e1ce8aa5 3450 type_read = read_type (&p);
bd5635a1
RP
3451
3452 if ((deftype == 'F' || deftype == 'f')
e1ce8aa5 3453 && TYPE_CODE (type_read) != TYPE_CODE_FUNC)
0c4d2cc2
JG
3454 {
3455#if 0
3456/* This code doesn't work -- it needs to realloc and can't. */
3457 struct type *new = (struct type *)
3458 obstack_alloc (symbol_obstack, sizeof (struct type));
3459
3460 /* Generate a template for the type of this function. The
3461 types of the arguments will be added as we read the symbol
3462 table. */
3463 *new = *lookup_function_type (type_read);
3464 SYMBOL_TYPE(sym) = new;
3465 in_function_type = new;
3466#else
e1ce8aa5 3467 SYMBOL_TYPE (sym) = lookup_function_type (type_read);
0c4d2cc2
JG
3468#endif
3469 }
bd5635a1 3470 else
e1ce8aa5 3471 SYMBOL_TYPE (sym) = type_read;
bd5635a1
RP
3472 }
3473
3474 switch (deftype)
3475 {
3476 case 'C':
3477 /* The name of a caught exception. */
3478 SYMBOL_CLASS (sym) = LOC_LABEL;
3479 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3480 SYMBOL_VALUE_ADDRESS (sym) = valu;
3481 add_symbol_to_list (sym, &local_symbols);
3482 break;
3483
3484 case 'f':
3485 SYMBOL_CLASS (sym) = LOC_BLOCK;
3486 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3487 add_symbol_to_list (sym, &file_symbols);
3488 break;
3489
3490 case 'F':
3491 SYMBOL_CLASS (sym) = LOC_BLOCK;
3492 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3493 add_symbol_to_list (sym, &global_symbols);
3494 break;
3495
3496 case 'G':
3497 /* For a class G (global) symbol, it appears that the
3498 value is not correct. It is necessary to search for the
3499 corresponding linker definition to find the value.
3500 These definitions appear at the end of the namelist. */
3501 i = hashname (SYMBOL_NAME (sym));
3502 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3503 global_sym_chain[i] = sym;
3504 SYMBOL_CLASS (sym) = LOC_STATIC;
3505 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3506 add_symbol_to_list (sym, &global_symbols);
3507 break;
3508
3509 /* This case is faked by a conditional above,
3510 when there is no code letter in the dbx data.
3511 Dbx data never actually contains 'l'. */
3512 case 'l':
3513 SYMBOL_CLASS (sym) = LOC_LOCAL;
3514 SYMBOL_VALUE (sym) = valu;
3515 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3516 add_symbol_to_list (sym, &local_symbols);
3517 break;
3518
3519 case 'p':
3520 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3521 can also be a LOC_LOCAL_ARG depending on symbol type. */
3522#ifndef DBX_PARM_SYMBOL_CLASS
3523#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3524#endif
3525 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3526 SYMBOL_VALUE (sym) = valu;
3527 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
0c4d2cc2
JG
3528#if 0
3529 /* This doesn't work yet. */
3530 add_param_to_type (&in_function_type, sym);
3531#endif
bd5635a1
RP
3532 add_symbol_to_list (sym, &local_symbols);
3533
3534 /* If it's gcc-compiled, if it says `short', believe it. */
3535 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3536 break;
3537
3538#if defined(BELIEVE_PCC_PROMOTION_TYPE)
3539 /* This macro is defined on machines (e.g. sparc) where
3540 we should believe the type of a PCC 'short' argument,
3541 but shouldn't believe the address (the address is
3542 the address of the corresponding int). Note that
3543 this is only different from the BELIEVE_PCC_PROMOTION
3544 case on big-endian machines.
3545
3546 My guess is that this correction, as opposed to changing
3547 the parameter to an 'int' (as done below, for PCC
3548 on most machines), is the right thing to do
3549 on all machines, but I don't want to risk breaking
3550 something that already works. On most PCC machines,
3551 the sparc problem doesn't come up because the calling
3552 function has to zero the top bytes (not knowing whether
3553 the called function wants an int or a short), so there
3554 is no practical difference between an int and a short
3555 (except perhaps what happens when the GDB user types
3556 "print short_arg = 0x10000;").
3557
3558 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3559 actually produces the correct address (we don't need to fix it
3560 up). I made this code adapt so that it will offset the symbol
3561 if it was pointing at an int-aligned location and not
3562 otherwise. This way you can use the same gdb for 4.0.x and
3563 4.1 systems. */
3564
3565 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3566 {
3567 if (SYMBOL_TYPE (sym) == builtin_type_char
3568 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3569 SYMBOL_VALUE (sym) += 3;
3570 else if (SYMBOL_TYPE (sym) == builtin_type_short
3571 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3572 SYMBOL_VALUE (sym) += 2;
3573 }
3574 break;
3575
3576#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3577
3578 /* If PCC says a parameter is a short or a char,
3579 it is really an int. */
3580 if (SYMBOL_TYPE (sym) == builtin_type_char
3581 || SYMBOL_TYPE (sym) == builtin_type_short)
3582 SYMBOL_TYPE (sym) = builtin_type_int;
3583 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3584 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3585 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3586 break;
3587
3588#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3589
3590 case 'P':
3591 SYMBOL_CLASS (sym) = LOC_REGPARM;
3592 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3593 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3594 add_symbol_to_list (sym, &local_symbols);
3595 break;
3596
3597 case 'r':
3598 SYMBOL_CLASS (sym) = LOC_REGISTER;
3599 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3600 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3601 add_symbol_to_list (sym, &local_symbols);
3602 break;
3603
3604 case 'S':
3605 /* Static symbol at top level of file */
3606 SYMBOL_CLASS (sym) = LOC_STATIC;
3607 SYMBOL_VALUE_ADDRESS (sym) = valu;
3608 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3609 add_symbol_to_list (sym, &file_symbols);
3610 break;
3611
3612 case 't':
3613 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3614 SYMBOL_VALUE (sym) = valu;
3615 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3616 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3617 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3618 TYPE_NAME (SYMBOL_TYPE (sym)) =
3619 obsavestring (SYMBOL_NAME (sym),
3620 strlen (SYMBOL_NAME (sym)));
3621 /* C++ vagaries: we may have a type which is derived from
3622 a base type which did not have its name defined when the
3623 derived class was output. We fill in the derived class's
3624 base part member's name here in that case. */
3625 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3626 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3627 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3628 {
0c4d2cc2
JG
3629 int j;
3630 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
3631 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
3632 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
3633 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
bd5635a1
RP
3634 }
3635
3636 add_symbol_to_list (sym, &file_symbols);
3637 break;
3638
3639 case 'T':
3640 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3641 SYMBOL_VALUE (sym) = valu;
3642 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3643 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3644 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3645 TYPE_NAME (SYMBOL_TYPE (sym))
3646 = obconcat ("",
3647 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3648 ? "enum "
3649 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3650 ? "struct " : "union ")),
3651 SYMBOL_NAME (sym));
3652 add_symbol_to_list (sym, &file_symbols);
3653
3654 if (synonym)
3655 {
3656 register struct symbol *typedef_sym
3657 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3658 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3659 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3660
3661 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3662 SYMBOL_VALUE (typedef_sym) = valu;
3663 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3664 add_symbol_to_list (typedef_sym, &file_symbols);
3665 }
3666 break;
3667
3668 case 'V':
3669 /* Static symbol of local scope */
3670 SYMBOL_CLASS (sym) = LOC_STATIC;
3671 SYMBOL_VALUE_ADDRESS (sym) = valu;
3672 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3673 add_symbol_to_list (sym, &local_symbols);
3674 break;
3675
3676 case 'v':
3677 /* Reference parameter */
3678 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3679 SYMBOL_VALUE (sym) = valu;
3680 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3681 add_symbol_to_list (sym, &local_symbols);
3682 break;
3683
3684 case 'X':
3685 /* This is used by Sun FORTRAN for "function result value".
3686 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3687 that Pascal uses it too, but when I tried it Pascal used
3688 "x:3" (local symbol) instead. */
3689 SYMBOL_CLASS (sym) = LOC_LOCAL;
3690 SYMBOL_VALUE (sym) = valu;
3691 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3692 add_symbol_to_list (sym, &local_symbols);
3693 break;
3694
3695 default:
3696 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3697 }
3698 return sym;
3699}
3700\f
3701/* What about types defined as forward references inside of a small lexical
3702 scope? */
3703/* Add a type to the list of undefined types to be checked through
3704 once this file has been read in. */
3705static void
3706add_undefined_type (type)
3707 struct type *type;
3708{
3709 if (undef_types_length == undef_types_allocated)
3710 {
3711 undef_types_allocated *= 2;
3712 undef_types = (struct type **)
3713 xrealloc (undef_types,
3714 undef_types_allocated * sizeof (struct type *));
3715 }
3716 undef_types[undef_types_length++] = type;
3717}
3718
3719/* Add here something to go through each undefined type, see if it's
3720 still undefined, and do a full lookup if so. */
3721static void
3722cleanup_undefined_types ()
3723{
3724 struct type **type;
3725
3726 for (type = undef_types; type < undef_types + undef_types_length; type++)
3727 {
3728 /* Reasonable test to see if it's been defined since. */
3729 if (TYPE_NFIELDS (*type) == 0)
3730 {
3731 struct pending *ppt;
3732 int i;
3733 /* Name of the type, without "struct" or "union" */
3734 char *typename = TYPE_NAME (*type);
3735
3736 if (!strncmp (typename, "struct ", 7))
3737 typename += 7;
3738 if (!strncmp (typename, "union ", 6))
3739 typename += 6;
3740
3741 for (ppt = file_symbols; ppt; ppt = ppt->next)
3742 for (i = 0; i < ppt->nsyms; i++)
3743 {
3744 struct symbol *sym = ppt->symbol[i];
3745
3746 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3747 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3748 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3749 TYPE_CODE (*type))
3750 && !strcmp (SYMBOL_NAME (sym), typename))
3751 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3752 }
3753 }
3754 else
3755 /* It has been defined; don't mark it as a stub. */
3756 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3757 }
3758 undef_types_length = 0;
3759}
3760
3761/* Skip rest of this symbol and return an error type.
3762
3763 General notes on error recovery: error_type always skips to the
3764 end of the symbol (modulo cretinous dbx symbol name continuation).
3765 Thus code like this:
3766
3767 if (*(*pp)++ != ';')
3768 return error_type (pp);
3769
3770 is wrong because if *pp starts out pointing at '\0' (typically as the
3771 result of an earlier error), it will be incremented to point to the
3772 start of the next symbol, which might produce strange results, at least
3773 if you run off the end of the string table. Instead use
3774
3775 if (**pp != ';')
3776 return error_type (pp);
3777 ++*pp;
3778
3779 or
3780
3781 if (**pp != ';')
3782 foo = error_type (pp);
3783 else
3784 ++*pp;
3785
3786 And in case it isn't obvious, the point of all this hair is so the compiler
3787 can define new types and new syntaxes, and old versions of the
3788 debugger will be able to read the new symbol tables. */
3789
3790static struct type *
3791error_type (pp)
3792 char **pp;
3793{
3794 complain (&error_type_complaint, 0);
3795 while (1)
3796 {
3797 /* Skip to end of symbol. */
3798 while (**pp != '\0')
3799 (*pp)++;
3800
3801 /* Check for and handle cretinous dbx symbol name continuation! */
3802 if ((*pp)[-1] == '\\')
3803 *pp = next_symbol_text ();
3804 else
3805 break;
3806 }
3807 return builtin_type_error;
3808}
3809\f
3810/* Read a dbx type reference or definition;
3811 return the type that is meant.
3812 This can be just a number, in which case it references
3813 a type already defined and placed in type_vector.
3814 Or the number can be followed by an =, in which case
3815 it means to define a new type according to the text that
3816 follows the =. */
3817
3818static
3819struct type *
3820read_type (pp)
3821 register char **pp;
3822{
3823 register struct type *type = 0;
3824 struct type *type1;
3825 int typenums[2];
3826 int xtypenums[2];
3827
3828 /* Read type number if present. The type number may be omitted.
3829 for instance in a two-dimensional array declared with type
3830 "ar1;1;10;ar1;1;10;4". */
3831 if ((**pp >= '0' && **pp <= '9')
3832 || **pp == '(')
3833 {
3834 read_type_number (pp, typenums);
3835
3836 /* Detect random reference to type not yet defined.
3837 Allocate a type object but leave it zeroed. */
3838 if (**pp != '=')
3839 return dbx_alloc_type (typenums);
3840
3841 *pp += 2;
3842 }
3843 else
3844 {
3845 /* 'typenums=' not present, type is anonymous. Read and return
3846 the definition, but don't put it in the type vector. */
3847 typenums[0] = typenums[1] = -1;
3848 *pp += 1;
3849 }
3850
3851 switch ((*pp)[-1])
3852 {
3853 case 'x':
3854 {
3855 enum type_code code;
3856
3857 /* Used to index through file_symbols. */
3858 struct pending *ppt;
3859 int i;
3860
3861 /* Name including "struct", etc. */
3862 char *type_name;
3863
3864 /* Name without "struct", etc. */
3865 char *type_name_only;
3866
3867 {
3868 char *prefix;
3869 char *from, *to;
3870
3871 /* Set the type code according to the following letter. */
3872 switch ((*pp)[0])
3873 {
3874 case 's':
3875 code = TYPE_CODE_STRUCT;
3876 prefix = "struct ";
3877 break;
3878 case 'u':
3879 code = TYPE_CODE_UNION;
3880 prefix = "union ";
3881 break;
3882 case 'e':
3883 code = TYPE_CODE_ENUM;
3884 prefix = "enum ";
3885 break;
3886 default:
3887 return error_type (pp);
3888 }
3889
3890 to = type_name = (char *)
3891 obstack_alloc (symbol_obstack,
3892 (strlen (prefix) +
3893 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3894
3895 /* Copy the prefix. */
3896 from = prefix;
3897 while (*to++ = *from++)
3898 ;
3899 to--;
3900
3901 type_name_only = to;
3902
3903 /* Copy the name. */
3904 from = *pp + 1;
3905 while ((*to++ = *from++) != ':')
3906 ;
3907 *--to = '\0';
3908
3909 /* Set the pointer ahead of the name which we just read. */
3910 *pp = from;
3911
3912#if 0
3913 /* The following hack is clearly wrong, because it doesn't
3914 check whether we are in a baseclass. I tried to reproduce
3915 the case that it is trying to fix, but I couldn't get
3916 g++ to put out a cross reference to a basetype. Perhaps
3917 it doesn't do it anymore. */
3918 /* Note: for C++, the cross reference may be to a base type which
3919 has not yet been seen. In this case, we skip to the comma,
3920 which will mark the end of the base class name. (The ':'
3921 at the end of the base class name will be skipped as well.)
3922 But sometimes (ie. when the cross ref is the last thing on
3923 the line) there will be no ','. */
3924 from = (char *) strchr (*pp, ',');
3925 if (from)
3926 *pp = from;
3927#endif /* 0 */
3928 }
3929
3930 /* Now check to see whether the type has already been declared. */
3931 /* This is necessary at least in the case where the
3932 program says something like
3933 struct foo bar[5];
3934 The compiler puts out a cross-reference; we better find
3935 set the length of the structure correctly so we can
3936 set the length of the array. */
3937 for (ppt = file_symbols; ppt; ppt = ppt->next)
3938 for (i = 0; i < ppt->nsyms; i++)
3939 {
3940 struct symbol *sym = ppt->symbol[i];
3941
3942 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3943 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3944 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3945 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3946 {
3947 obstack_free (symbol_obstack, type_name);
3948 type = SYMBOL_TYPE (sym);
3949 return type;
3950 }
3951 }
3952
3953 /* Didn't find the type to which this refers, so we must
3954 be dealing with a forward reference. Allocate a type
3955 structure for it, and keep track of it so we can
3956 fill in the rest of the fields when we get the full
3957 type. */
3958 type = dbx_alloc_type (typenums);
3959 TYPE_CODE (type) = code;
3960 TYPE_NAME (type) = type_name;
3961
3962 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3963
3964 add_undefined_type (type);
3965 return type;
3966 }
3967
3968 case '0':
3969 case '1':
3970 case '2':
3971 case '3':
3972 case '4':
3973 case '5':
3974 case '6':
3975 case '7':
3976 case '8':
3977 case '9':
3978 case '(':
3979 (*pp)--;
3980 read_type_number (pp, xtypenums);
3981 type = *dbx_lookup_type (xtypenums);
3982 if (type == 0)
3983 type = builtin_type_void;
3984 if (typenums[0] != -1)
3985 *dbx_lookup_type (typenums) = type;
3986 break;
3987
3988 case '*':
3989 type1 = read_type (pp);
3990 type = lookup_pointer_type (type1);
3991 if (typenums[0] != -1)
3992 *dbx_lookup_type (typenums) = type;
3993 break;
3994
3995 case '@':
3996 {
3997 struct type *domain = read_type (pp);
3998 struct type *memtype;
3999
4000 if (**pp != ',')
4001 /* Invalid member type data format. */
4002 return error_type (pp);
4003 ++*pp;
4004
4005 memtype = read_type (pp);
4006 type = dbx_alloc_type (typenums);
4007 smash_to_member_type (type, domain, memtype);
4008 }
4009 break;
4010
4011 case '#':
4012 if ((*pp)[0] == '#')
4013 {
4014 /* We'll get the parameter types from the name. */
4015 struct type *return_type;
4016
4017 *pp += 1;
4018 return_type = read_type (pp);
4019 if (*(*pp)++ != ';')
4020 complain (&invalid_member_complaint, symnum);
62c4f98b 4021 type = allocate_stub_method (return_type);
bd5635a1
RP
4022 if (typenums[0] != -1)
4023 *dbx_lookup_type (typenums) = type;
bd5635a1
RP
4024 }
4025 else
4026 {
4027 struct type *domain = read_type (pp);
4028 struct type *return_type;
4029 struct type **args;
4030
4031 if (*(*pp)++ != ',')
4032 error ("invalid member type data format, at symtab pos %d.",
4033 symnum);
4034
4035 return_type = read_type (pp);
4036 args = read_args (pp, ';');
4037 type = dbx_alloc_type (typenums);
4038 smash_to_method_type (type, domain, return_type, args);
4039 }
4040 break;
4041
4042 case '&':
4043 type1 = read_type (pp);
4044 type = lookup_reference_type (type1);
4045 if (typenums[0] != -1)
4046 *dbx_lookup_type (typenums) = type;
4047 break;
4048
4049 case 'f':
4050 type1 = read_type (pp);
4051 type = lookup_function_type (type1);
4052 if (typenums[0] != -1)
4053 *dbx_lookup_type (typenums) = type;
4054 break;
4055
4056 case 'r':
4057 type = read_range_type (pp, typenums);
4058 if (typenums[0] != -1)
4059 *dbx_lookup_type (typenums) = type;
4060 break;
4061
4062 case 'e':
4063 type = dbx_alloc_type (typenums);
4064 type = read_enum_type (pp, type);
4065 *dbx_lookup_type (typenums) = type;
4066 break;
4067
4068 case 's':
4069 type = dbx_alloc_type (typenums);
4070 TYPE_NAME (type) = type_synonym_name;
4071 type_synonym_name = 0;
4072 type = read_struct_type (pp, type);
4073 break;
4074
4075 case 'u':
4076 type = dbx_alloc_type (typenums);
4077 TYPE_NAME (type) = type_synonym_name;
4078 type_synonym_name = 0;
4079 type = read_struct_type (pp, type);
4080 TYPE_CODE (type) = TYPE_CODE_UNION;
4081 break;
4082
4083 case 'a':
4084 if (**pp != 'r')
4085 return error_type (pp);
4086 ++*pp;
4087
4088 type = dbx_alloc_type (typenums);
4089 type = read_array_type (pp, type);
4090 break;
4091
4092 default:
4093 return error_type (pp);
4094 }
4095
4096 if (type == 0)
4097 abort ();
4098
4099#if 0
4100 /* If this is an overriding temporary alteration for a header file's
4101 contents, and this type number is unknown in the global definition,
4102 put this type into the global definition at this type number. */
4103 if (header_file_prev_index >= 0)
4104 {
4105 register struct type **tp
4106 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4107 if (*tp == 0)
4108 *tp = type;
4109 }
4110#endif
4111 return type;
4112}
4113\f
4114#if 0
4115/* This would be a good idea, but it doesn't really work. The problem
4116 is that in order to get the virtual context for a particular type,
4117 you need to know the virtual info from all of its basetypes,
4118 and you need to have processed its methods. Since GDB reads
4119 symbols on a file-by-file basis, this means processing the symbols
4120 of all the files that are needed for each baseclass, which
4121 means potentially reading in all the debugging info just to fill
4122 in information we may never need. */
4123
4124/* This page contains subroutines of read_type. */
4125
4126/* FOR_TYPE is a struct type defining a virtual function NAME with type
4127 FN_TYPE. The `virtual context' for this virtual function is the
4128 first base class of FOR_TYPE in which NAME is defined with signature
4129 matching FN_TYPE. OFFSET serves as a hash on matches here.
4130
4131 TYPE is the current type in which we are searching. */
4132
4133static struct type *
4134virtual_context (for_type, type, name, fn_type, offset)
4135 struct type *for_type, *type;
4136 char *name;
4137 struct type *fn_type;
4138 int offset;
4139{
4140 struct type *basetype = 0;
4141 int i;
4142
4143 if (for_type != type)
4144 {
4145 /* Check the methods of TYPE. */
4146 /* Need to do a check_stub_type here, but that breaks
4147 things because we can get infinite regress. */
4148 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4149 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4150 break;
4151 if (i >= 0)
4152 {
4153 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4154 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4155
4156 while (--j >= 0)
4157 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4158 return TYPE_FN_FIELD_FCONTEXT (f, j);
4159 }
4160 }
62c4f98b 4161 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
bd5635a1
RP
4162 {
4163 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4164 fn_type, offset);
4165 if (basetype != for_type)
4166 return basetype;
4167 }
4168 return for_type;
4169}
4170#endif
4171
4172/* Read the description of a structure (or union type)
4173 and return an object describing the type. */
4174
4175static struct type *
4176read_struct_type (pp, type)
4177 char **pp;
4178 register struct type *type;
4179{
4180 /* Total number of methods defined in this class.
4181 If the class defines two `f' methods, and one `g' method,
4182 then this will have the value 3. */
4183 int total_length = 0;
4184
4185 struct nextfield
4186 {
4187 struct nextfield *next;
4188 int visibility; /* 0=public, 1=protected, 2=public */
4189 struct field field;
4190 };
4191
4192 struct next_fnfield
4193 {
4194 struct next_fnfield *next;
4195 int visibility; /* 0=public, 1=protected, 2=public */
4196 struct fn_field fn_field;
4197 };
4198
4199 struct next_fnfieldlist
4200 {
4201 struct next_fnfieldlist *next;
4202 struct fn_fieldlist fn_fieldlist;
4203 };
4204
4205 register struct nextfield *list = 0;
4206 struct nextfield *new;
4207 register char *p;
4208 int nfields = 0;
4209 register int n;
4210
4211 register struct next_fnfieldlist *mainlist = 0;
4212 int nfn_fields = 0;
4213
4214 if (TYPE_MAIN_VARIANT (type) == 0)
4215 {
4216 TYPE_MAIN_VARIANT (type) = type;
4217 }
4218
4219 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4220
4221 /* First comes the total size in bytes. */
4222
4223 TYPE_LENGTH (type) = read_number (pp, 0);
4224
4225 /* C++: Now, if the class is a derived class, then the next character
4226 will be a '!', followed by the number of base classes derived from.
4227 Each element in the list contains visibility information,
4228 the offset of this base class in the derived structure,
4229 and then the base type. */
4230 if (**pp == '!')
4231 {
4232 int i, n_baseclasses, offset;
4233 struct type *baseclass;
4234 int via_public;
4235
4236 /* Nonzero if it is a virtual baseclass, i.e.,
4237
4238 struct A{};
4239 struct B{};
4240 struct C : public B, public virtual A {};
4241
4242 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4243 2.0 language feature. */
4244 int via_virtual;
4245
4246 *pp += 1;
4247
4248 n_baseclasses = read_number (pp, ',');
4249 TYPE_FIELD_VIRTUAL_BITS (type) =
4250 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4251 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4252
4253 for (i = 0; i < n_baseclasses; i++)
4254 {
4255 if (**pp == '\\')
4256 *pp = next_symbol_text ();
4257
4258 switch (**pp)
4259 {
4260 case '0':
4261 via_virtual = 0;
4262 break;
4263 case '1':
4264 via_virtual = 1;
4265 break;
4266 default:
4267 /* Bad visibility format. */
4268 return error_type (pp);
4269 }
4270 ++*pp;
4271
4272 switch (**pp)
4273 {
4274 case '0':
4275 via_public = 0;
4276 break;
4277 case '2':
4278 via_public = 2;
4279 break;
4280 default:
4281 /* Bad visibility format. */
4282 return error_type (pp);
4283 }
4284 if (via_virtual)
4285 SET_TYPE_FIELD_VIRTUAL (type, i);
4286 ++*pp;
4287
4288 /* Offset of the portion of the object corresponding to
4289 this baseclass. Always zero in the absence of
4290 multiple inheritance. */
4291 offset = read_number (pp, ',');
4292 baseclass = read_type (pp);
4293 *pp += 1; /* skip trailing ';' */
4294
4295#if 0
4296/* One's understanding improves, grasshopper... */
4297 if (offset != 0)
4298 {
4299 static int error_printed = 0;
4300
4301 if (!error_printed)
4302 {
4303 fprintf (stderr,
4304"\nWarning: GDB has limited understanding of multiple inheritance...");
4305 if (!info_verbose)
4306 fprintf(stderr, "\n");
4307 error_printed = 1;
4308 }
4309 }
4310#endif
4311
4312 /* Make this baseclass visible for structure-printing purposes. */
4313 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4314 new->next = list;
4315 list = new;
4316 list->visibility = via_public;
4317 list->field.type = baseclass;
4318 list->field.name = type_name_no_tag (baseclass);
4319 list->field.bitpos = offset;
4320 list->field.bitsize = 0; /* this should be an unpacked field! */
4321 nfields++;
4322 }
4323 TYPE_N_BASECLASSES (type) = n_baseclasses;
4324 }
4325
4326 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4327 At the end, we see a semicolon instead of a field.
4328
4329 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4330 a static field.
4331
4332 The `?' is a placeholder for one of '/2' (public visibility),
4333 '/1' (protected visibility), '/0' (private visibility), or nothing
4334 (C style symbol table, public visibility). */
4335
4336 /* We better set p right now, in case there are no fields at all... */
4337 p = *pp;
4338
4339 while (**pp != ';')
4340 {
4341 /* Check for and handle cretinous dbx symbol name continuation! */
4342 if (**pp == '\\') *pp = next_symbol_text ();
4343
4344 /* Get space to record the next field's data. */
4345 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4346 new->next = list;
4347 list = new;
4348
4349 /* Get the field name. */
4350 p = *pp;
4351 if (*p == CPLUS_MARKER)
4352 {
4353 /* Special GNU C++ name. */
4354 if (*++p == 'v')
4355 {
e1ce8aa5
JK
4356 const char *prefix;
4357 char *name = 0;
bd5635a1
RP
4358 struct type *context;
4359
4360 switch (*++p)
4361 {
4362 case 'f':
4363 prefix = vptr_name;
4364 break;
4365 case 'b':
4366 prefix = vb_name;
4367 break;
4368 default:
4369 error ("invalid abbreviation at symtab pos %d.", symnum);
4370 }
4371 *pp = p + 1;
4372 context = read_type (pp);
4373 if (type_name_no_tag (context) == 0)
4374 {
4375 if (name == 0)
4376 error ("type name unknown at symtab pos %d.", symnum);
62c4f98b 4377 /* FIXME-tiemann: when is `name' ever non-0? */
bd5635a1
RP
4378 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4379 }
4380 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4381 p = ++(*pp);
4382 if (p[-1] != ':')
4383 error ("invalid abbreviation at symtab pos %d.", symnum);
4384 list->field.type = read_type (pp);
4385 (*pp)++; /* Skip the comma. */
4386 list->field.bitpos = read_number (pp, ';');
4387 /* This field is unpacked. */
4388 list->field.bitsize = 0;
4389 }
9404978d
MT
4390 /* GNU C++ anonymous type. */
4391 else if (*p == '_')
4392 break;
bd5635a1
RP
4393 else
4394 error ("invalid abbreviation at symtab pos %d.", symnum);
4395
4396 nfields++;
4397 continue;
4398 }
4399
4400 while (*p != ':') p++;
4401 list->field.name = obsavestring (*pp, p - *pp);
4402
4403 /* C++: Check to see if we have hit the methods yet. */
4404 if (p[1] == ':')
4405 break;
4406
4407 *pp = p + 1;
4408
4409 /* This means we have a visibility for a field coming. */
4410 if (**pp == '/')
4411 {
4412 switch (*++*pp)
4413 {
4414 case '0':
4415 list->visibility = 0; /* private */
4416 *pp += 1;
4417 break;
4418
4419 case '1':
4420 list->visibility = 1; /* protected */
4421 *pp += 1;
4422 break;
4423
4424 case '2':
4425 list->visibility = 2; /* public */
4426 *pp += 1;
4427 break;
4428 }
4429 }
4430 else /* normal dbx-style format. */
4431 list->visibility = 2; /* public */
4432
4433 list->field.type = read_type (pp);
4434 if (**pp == ':')
4435 {
4436 /* Static class member. */
4437 list->field.bitpos = (long)-1;
4438 p = ++(*pp);
4439 while (*p != ';') p++;
4440 list->field.bitsize = (long) savestring (*pp, p - *pp);
4441 *pp = p + 1;
4442 nfields++;
4443 continue;
4444 }
4445 else if (**pp != ',')
4446 /* Bad structure-type format. */
4447 return error_type (pp);
4448
4449 (*pp)++; /* Skip the comma. */
4450 list->field.bitpos = read_number (pp, ',');
4451 list->field.bitsize = read_number (pp, ';');
4452
4453#if 0
62c4f98b
JK
4454 /* FIXME-tiemann: Can't the compiler put out something which
4455 lets us distinguish these? (or maybe just not put out anything
4456 for the field). What is the story here? What does the compiler
bd5635a1
RP
4457 really do? Also, patch gdb.texinfo for this case; I document
4458 it as a possible problem there. Search for "DBX-style". */
4459
4460 /* This is wrong because this is identical to the symbols
4461 produced for GCC 0-size arrays. For example:
4462 typedef union {
4463 int num;
4464 char str[0];
4465 } foo;
4466 The code which dumped core in such circumstances should be
4467 fixed not to dump core. */
4468
4469 /* g++ -g0 can put out bitpos & bitsize zero for a static
4470 field. This does not give us any way of getting its
4471 class, so we can't know its name. But we can just
4472 ignore the field so we don't dump core and other nasty
4473 stuff. */
4474 if (list->field.bitpos == 0
4475 && list->field.bitsize == 0)
4476 {
4477 complain (&dbx_class_complaint, 0);
4478 /* Ignore this field. */
4479 list = list->next;
4480 }
4481 else
4482#endif /* 0 */
4483 {
4484 /* Detect an unpacked field and mark it as such.
4485 dbx gives a bit size for all fields.
4486 Note that forward refs cannot be packed,
4487 and treat enums as if they had the width of ints. */
4488 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4489 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4490 list->field.bitsize = 0;
4491 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4492 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4493 && (list->field.bitsize
4494 == 8 * TYPE_LENGTH (builtin_type_int))
4495 )
4496 )
4497 &&
4498 list->field.bitpos % 8 == 0)
4499 list->field.bitsize = 0;
4500 nfields++;
4501 }
4502 }
4503
4504 if (p[1] == ':')
4505 /* chill the list of fields: the last entry (at the head)
4506 is a partially constructed entry which we now scrub. */
4507 list = list->next;
4508
4509 /* Now create the vector of fields, and record how big it is.
4510 We need this info to record proper virtual function table information
4511 for this class's virtual functions. */
4512
4513 TYPE_NFIELDS (type) = nfields;
4514 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4515 sizeof (struct field) * nfields);
4516
4517 TYPE_FIELD_PRIVATE_BITS (type) =
4518 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4519 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4520
4521 TYPE_FIELD_PROTECTED_BITS (type) =
4522 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4523 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4524
4525 /* Copy the saved-up fields into the field vector. */
4526
4527 for (n = nfields; list; list = list->next)
4528 {
4529 n -= 1;
4530 TYPE_FIELD (type, n) = list->field;
4531 if (list->visibility == 0)
4532 SET_TYPE_FIELD_PRIVATE (type, n);
4533 else if (list->visibility == 1)
4534 SET_TYPE_FIELD_PROTECTED (type, n);
4535 }
4536
4537 /* Now come the method fields, as NAME::methods
4538 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4539 At the end, we see a semicolon instead of a field.
4540
4541 For the case of overloaded operators, the format is
4542 OPERATOR::*.methods, where OPERATOR is the string "operator",
4543 `*' holds the place for an operator name (such as `+=')
4544 and `.' marks the end of the operator name. */
4545 if (p[1] == ':')
4546 {
4547 /* Now, read in the methods. To simplify matters, we
4548 "unread" the name that has been read, so that we can
4549 start from the top. */
4550
4551 /* For each list of method lists... */
4552 do
4553 {
4554 int i;
4555 struct next_fnfield *sublist = 0;
dcc35536 4556 struct type *look_ahead_type = NULL;
bd5635a1
RP
4557 int length = 0;
4558 struct next_fnfieldlist *new_mainlist =
4559 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4560 char *main_fn_name;
4561
4562 p = *pp;
4563
4564 /* read in the name. */
4565 while (*p != ':') p++;
4566 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4567 {
4568 /* This lets the user type "break operator+".
4569 We could just put in "+" as the name, but that wouldn't
4570 work for "*". */
62c4f98b
JK
4571 static char opname[32] = {'o', 'p', CPLUS_MARKER};
4572 char *o = opname + 3;
bd5635a1
RP
4573
4574 /* Skip past '::'. */
4575 p += 2;
4576 while (*p != '.')
4577 *o++ = *p++;
4578 main_fn_name = savestring (opname, o - opname);
4579 /* Skip past '.' */
4580 *pp = p + 1;
4581 }
4582 else
4583 {
4584 i = 0;
4585 main_fn_name = savestring (*pp, p - *pp);
4586 /* Skip past '::'. */
4587 *pp = p + 2;
4588 }
4589 new_mainlist->fn_fieldlist.name = main_fn_name;
4590
4591 do
4592 {
4593 struct next_fnfield *new_sublist =
4594 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4595
4596 /* Check for and handle cretinous dbx symbol name continuation! */
dcc35536
JG
4597 if (look_ahead_type == NULL) /* Normal case. */
4598 {
4599 if (**pp == '\\') *pp = next_symbol_text ();
bd5635a1 4600
dcc35536
JG
4601 new_sublist->fn_field.type = read_type (pp);
4602 if (**pp != ':')
4603 /* Invalid symtab info for method. */
4604 return error_type (pp);
4605 }
4606 else
4607 { /* g++ version 1 kludge */
4608 new_sublist->fn_field.type = look_ahead_type;
4609 look_ahead_type = NULL;
4610 }
bd5635a1
RP
4611
4612 *pp += 1;
4613 p = *pp;
4614 while (*p != ';') p++;
4615 /* If this is just a stub, then we don't have the
4616 real name here. */
4617 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4618 *pp = p + 1;
4619 new_sublist->visibility = *(*pp)++ - '0';
4620 if (**pp == '\\') *pp = next_symbol_text ();
62c4f98b 4621 /* FIXME-tiemann: need to add const/volatile info
bd5635a1
RP
4622 to the methods. For now, just skip the char.
4623 In future, here's what we need to implement:
4624
4625 A for normal functions.
4626 B for `const' member functions.
4627 C for `volatile' member functions.
4628 D for `const volatile' member functions. */
4629 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4630 (*pp)++;
9107291d
JK
4631#if 0
4632 /* This probably just means we're processing a file compiled
4633 with g++ version 1. */
bd5635a1
RP
4634 else
4635 complain(&const_vol_complaint, **pp);
9107291d 4636#endif /* 0 */
bd5635a1
RP
4637
4638 switch (*(*pp)++)
4639 {
4640 case '*':
4641 /* virtual member function, followed by index. */
4642 /* The sign bit is set to distinguish pointers-to-methods
4643 from virtual function indicies. Since the array is
4644 in words, the quantity must be shifted left by 1
4645 on 16 bit machine, and by 2 on 32 bit machine, forcing
4646 the sign bit out, and usable as a valid index into
4647 the array. Remove the sign bit here. */
4648 new_sublist->fn_field.voffset =
4649 (0x7fffffff & read_number (pp, ';')) + 1;
4650
dcc35536
JG
4651 if (**pp == '\\') *pp = next_symbol_text ();
4652
9107291d
JK
4653 if (**pp == ';' || **pp == '\0')
4654 /* Must be g++ version 1. */
4655 new_sublist->fn_field.fcontext = 0;
bd5635a1 4656 else
9107291d
JK
4657 {
4658 /* Figure out from whence this virtual function came.
4659 It may belong to virtual function table of
4660 one of its baseclasses. */
dcc35536
JG
4661 look_ahead_type = read_type (pp);
4662 if (**pp == ':')
4663 { /* g++ version 1 overloaded methods. */ }
9107291d 4664 else
dcc35536
JG
4665 {
4666 new_sublist->fn_field.fcontext = look_ahead_type;
4667 if (**pp != ';')
4668 return error_type (pp);
4669 else
4670 ++*pp;
4671 look_ahead_type = NULL;
4672 }
9107291d 4673 }
bd5635a1
RP
4674 break;
4675
4676 case '?':
4677 /* static member function. */
4678 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4679 break;
4680 default:
4681 /* **pp == '.'. */
4682 /* normal member function. */
4683 new_sublist->fn_field.voffset = 0;
62c4f98b 4684 new_sublist->fn_field.fcontext = 0;
bd5635a1
RP
4685 break;
4686 }
4687
4688 new_sublist->next = sublist;
4689 sublist = new_sublist;
4690 length++;
4691 }
9107291d 4692 while (**pp != ';' && **pp != '\0');
bd5635a1
RP
4693
4694 *pp += 1;
4695
4696 new_mainlist->fn_fieldlist.fn_fields =
4697 (struct fn_field *) obstack_alloc (symbol_obstack,
4698 sizeof (struct fn_field) * length);
4699 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4700 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4701 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4702
4703 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4704 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4705 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4706
4707 for (i = length; (i--, sublist); sublist = sublist->next)
4708 {
4709 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4710 if (sublist->visibility == 0)
4711 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4712 else if (sublist->visibility == 1)
4713 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4714 }
4715
4716 new_mainlist->fn_fieldlist.length = length;
4717 new_mainlist->next = mainlist;
4718 mainlist = new_mainlist;
4719 nfn_fields++;
4720 total_length += length;
4721 }
4722 while (**pp != ';');
4723 }
4724
4725 *pp += 1;
4726
4727 TYPE_FN_FIELDLISTS (type) =
4728 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4729 sizeof (struct fn_fieldlist) * nfn_fields);
4730
4731 TYPE_NFN_FIELDS (type) = nfn_fields;
4732 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4733
4734 {
4735 int i;
4736 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4737 TYPE_NFN_FIELDS_TOTAL (type) +=
4738 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4739 }
4740
4741 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4742 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4743
4744 if (**pp == '~')
4745 {
4746 *pp += 1;
4747
4748 if (**pp == '=')
4749 {
4750 TYPE_FLAGS (type)
4751 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4752 *pp += 1;
4753 }
4754 else if (**pp == '+')
4755 {
4756 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4757 *pp += 1;
4758 }
4759 else if (**pp == '-')
4760 {
4761 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4762 *pp += 1;
4763 }
4764
4765 /* Read either a '%' or the final ';'. */
4766 if (*(*pp)++ == '%')
4767 {
4768 /* Now we must record the virtual function table pointer's
4769 field information. */
4770
4771 struct type *t;
4772 int i;
4773
4774 t = read_type (pp);
4775 p = (*pp)++;
4776 while (*p != '\0' && *p != ';')
4777 p++;
4778 if (*p == '\0')
4779 /* Premature end of symbol. */
4780 return error_type (pp);
4781
4782 TYPE_VPTR_BASETYPE (type) = t;
4783 if (type == t)
4784 {
4785 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
62c4f98b
JK
4786 {
4787 /* FIXME-tiemann: what's this? */
4788#if 0
4789 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4790#else
4791 error_type (pp);
4792#endif
4793 }
bd5635a1
RP
4794 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4795 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4796 sizeof (vptr_name) -1))
4797 {
4798 TYPE_VPTR_FIELDNO (type) = i;
4799 break;
4800 }
4801 if (i < 0)
4802 /* Virtual function table field not found. */
4803 return error_type (pp);
4804 }
4805 else
4806 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4807 *pp = p + 1;
4808 }
bd5635a1
RP
4809 }
4810
4811 return type;
4812}
4813
4814/* Read a definition of an array type,
4815 and create and return a suitable type object.
4816 Also creates a range type which represents the bounds of that
4817 array. */
4818static struct type *
4819read_array_type (pp, type)
4820 register char **pp;
4821 register struct type *type;
4822{
4823 struct type *index_type, *element_type, *range_type;
4824 int lower, upper;
4825 int adjustable = 0;
4826
4827 /* Format of an array type:
4828 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4829 to handle this.
4830
4831 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4832 for these, produce a type like float[][]. */
4833
4834 index_type = read_type (pp);
4835 if (**pp != ';')
4836 /* Improper format of array type decl. */
4837 return error_type (pp);
4838 ++*pp;
4839
4840 if (!(**pp >= '0' && **pp <= '9'))
4841 {
4842 *pp += 1;
4843 adjustable = 1;
4844 }
4845 lower = read_number (pp, ';');
4846
4847 if (!(**pp >= '0' && **pp <= '9'))
4848 {
4849 *pp += 1;
4850 adjustable = 1;
4851 }
4852 upper = read_number (pp, ';');
4853
4854 element_type = read_type (pp);
4855
4856 if (adjustable)
4857 {
4858 lower = 0;
4859 upper = -1;
4860 }
4861
4862 {
4863 /* Create range type. */
4864 range_type = (struct type *) obstack_alloc (symbol_obstack,
4865 sizeof (struct type));
4866 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4867 TYPE_TARGET_TYPE (range_type) = index_type;
4868
4869 /* This should never be needed. */
4870 TYPE_LENGTH (range_type) = sizeof (int);
4871
4872 TYPE_NFIELDS (range_type) = 2;
4873 TYPE_FIELDS (range_type) =
4874 (struct field *) obstack_alloc (symbol_obstack,
4875 2 * sizeof (struct field));
4876 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4877 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4878 }
4879
4880 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4881 TYPE_TARGET_TYPE (type) = element_type;
4882 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4883 TYPE_NFIELDS (type) = 1;
4884 TYPE_FIELDS (type) =
4885 (struct field *) obstack_alloc (symbol_obstack,
4886 sizeof (struct field));
4887 TYPE_FIELD_TYPE (type, 0) = range_type;
4888
4889 return type;
4890}
4891
4892
4893/* Read a definition of an enumeration type,
4894 and create and return a suitable type object.
4895 Also defines the symbols that represent the values of the type. */
4896
4897static struct type *
4898read_enum_type (pp, type)
4899 register char **pp;
4900 register struct type *type;
4901{
4902 register char *p;
4903 char *name;
4904 register long n;
4905 register struct symbol *sym;
4906 int nsyms = 0;
4907 struct pending **symlist;
4908 struct pending *osyms, *syms;
4909 int o_nsyms;
4910
4911 if (within_function)
4912 symlist = &local_symbols;
4913 else
4914 symlist = &file_symbols;
4915 osyms = *symlist;
4916 o_nsyms = osyms ? osyms->nsyms : 0;
4917
4918 /* Read the value-names and their values.
4919 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4920 A semicolon or comman instead of a NAME means the end. */
4921 while (**pp && **pp != ';' && **pp != ',')
4922 {
4923 /* Check for and handle cretinous dbx symbol name continuation! */
4924 if (**pp == '\\') *pp = next_symbol_text ();
4925
4926 p = *pp;
4927 while (*p != ':') p++;
4928 name = obsavestring (*pp, p - *pp);
4929 *pp = p + 1;
4930 n = read_number (pp, ',');
4931
4932 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4933 bzero (sym, sizeof (struct symbol));
4934 SYMBOL_NAME (sym) = name;
4935 SYMBOL_CLASS (sym) = LOC_CONST;
4936 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4937 SYMBOL_VALUE (sym) = n;
4938 add_symbol_to_list (sym, symlist);
4939 nsyms++;
4940 }
4941
4942 if (**pp == ';')
4943 (*pp)++; /* Skip the semicolon. */
4944
4945 /* Now fill in the fields of the type-structure. */
4946
4947 TYPE_LENGTH (type) = sizeof (int);
4948 TYPE_CODE (type) = TYPE_CODE_ENUM;
4949 TYPE_NFIELDS (type) = nsyms;
4950 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4951
4952 /* Find the symbols for the values and put them into the type.
4953 The symbols can be found in the symlist that we put them on
4954 to cause them to be defined. osyms contains the old value
4955 of that symlist; everything up to there was defined by us. */
4956 /* Note that we preserve the order of the enum constants, so
4957 that in something like "enum {FOO, LAST_THING=FOO}" we print
4958 FOO, not LAST_THING. */
4959
4960 for (syms = *symlist, n = 0; syms; syms = syms->next)
4961 {
4962 int j = 0;
4963 if (syms == osyms)
4964 j = o_nsyms;
4965 for (; j < syms->nsyms; j++,n++)
4966 {
0c4d2cc2
JG
4967 struct symbol *xsym = syms->symbol[j];
4968 SYMBOL_TYPE (xsym) = type;
4969 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
bd5635a1 4970 TYPE_FIELD_VALUE (type, n) = 0;
0c4d2cc2 4971 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
bd5635a1
RP
4972 TYPE_FIELD_BITSIZE (type, n) = 0;
4973 }
4974 if (syms == osyms)
4975 break;
4976 }
4977
0c4d2cc2
JG
4978 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
4979 if(TYPE_NFIELDS(type) == 2 &&
4980 ((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") &&
4981 !strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) ||
4982 (!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") &&
4983 !strcmp(TYPE_FIELD_NAME(type,0),"FALSE"))))
4984 TYPE_CODE(type) = TYPE_CODE_BOOL;
4985
bd5635a1
RP
4986 return type;
4987}
4988
4989/* Read a number from the string pointed to by *PP.
4990 The value of *PP is advanced over the number.
4991 If END is nonzero, the character that ends the
4992 number must match END, or an error happens;
4993 and that character is skipped if it does match.
4994 If END is zero, *PP is left pointing to that character.
4995
4996 If the number fits in a long, set *VALUE and set *BITS to 0.
4997 If not, set *BITS to be the number of bits in the number.
4998
4999 If encounter garbage, set *BITS to -1. */
5000
5001static void
5002read_huge_number (pp, end, valu, bits)
5003 char **pp;
5004 int end;
5005 long *valu;
5006 int *bits;
5007{
5008 char *p = *pp;
5009 int sign = 1;
5010 long n = 0;
5011 int radix = 10;
5012 char overflow = 0;
5013 int nbits = 0;
5014 int c;
d11c44f1 5015 long upper_limit;
bd5635a1
RP
5016
5017 if (*p == '-')
5018 {
5019 sign = -1;
5020 p++;
5021 }
5022
5023 /* Leading zero means octal. GCC uses this to output values larger
5024 than an int (because that would be hard in decimal). */
5025 if (*p == '0')
5026 {
5027 radix = 8;
5028 p++;
5029 }
5030
d11c44f1 5031 upper_limit = LONG_MAX / radix;
bd5635a1
RP
5032 while ((c = *p++) >= '0' && c <= ('0' + radix))
5033 {
d11c44f1 5034 if (n <= upper_limit)
bd5635a1
RP
5035 {
5036 n *= radix;
5037 n += c - '0'; /* FIXME this overflows anyway */
5038 }
5039 else
5040 overflow = 1;
5041
5042 /* This depends on large values being output in octal, which is
5043 what GCC does. */
5044 if (radix == 8)
5045 {
5046 if (nbits == 0)
5047 {
5048 if (c == '0')
5049 /* Ignore leading zeroes. */
5050 ;
5051 else if (c == '1')
5052 nbits = 1;
5053 else if (c == '2' || c == '3')
5054 nbits = 2;
5055 else
5056 nbits = 3;
5057 }
5058 else
5059 nbits += 3;
5060 }
5061 }
5062 if (end)
5063 {
5064 if (c && c != end)
5065 {
5066 if (bits != NULL)
5067 *bits = -1;
5068 return;
5069 }
5070 }
5071 else
5072 --p;
5073
5074 *pp = p;
5075 if (overflow)
5076 {
5077 if (nbits == 0)
5078 {
5079 /* Large decimal constants are an error (because it is hard to
5080 count how many bits are in them). */
5081 if (bits != NULL)
5082 *bits = -1;
5083 return;
5084 }
5085
5086 /* -0x7f is the same as 0x80. So deal with it by adding one to
5087 the number of bits. */
5088 if (sign == -1)
5089 ++nbits;
5090 if (bits)
5091 *bits = nbits;
5092 }
5093 else
5094 {
5095 if (valu)
5096 *valu = n * sign;
5097 if (bits)
5098 *bits = 0;
5099 }
5100}
5101
0c4d2cc2
JG
5102#define MAX_OF_C_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5103#define MIN_OF_C_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
bd5635a1
RP
5104
5105static struct type *
5106read_range_type (pp, typenums)
5107 char **pp;
5108 int typenums[2];
5109{
5110 int rangenums[2];
5111 long n2, n3;
5112 int n2bits, n3bits;
5113 int self_subrange;
5114 struct type *result_type;
5115
5116 /* First comes a type we are a subrange of.
5117 In C it is usually 0, 1 or the type being defined. */
5118 read_type_number (pp, rangenums);
5119 self_subrange = (rangenums[0] == typenums[0] &&
5120 rangenums[1] == typenums[1]);
5121
5122 /* A semicolon should now follow; skip it. */
5123 if (**pp == ';')
5124 (*pp)++;
5125
5126 /* The remaining two operands are usually lower and upper bounds
5127 of the range. But in some special cases they mean something else. */
5128 read_huge_number (pp, ';', &n2, &n2bits);
5129 read_huge_number (pp, ';', &n3, &n3bits);
5130
5131 if (n2bits == -1 || n3bits == -1)
5132 return error_type (pp);
5133
5134 /* If limits are huge, must be large integral type. */
5135 if (n2bits != 0 || n3bits != 0)
5136 {
5137 char got_signed = 0;
5138 char got_unsigned = 0;
5139 /* Number of bits in the type. */
5140 int nbits;
5141
5142 /* Range from 0 to <large number> is an unsigned large integral type. */
5143 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5144 {
5145 got_unsigned = 1;
5146 nbits = n3bits;
5147 }
5148 /* Range from <large number> to <large number>-1 is a large signed
5149 integral type. */
5150 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5151 {
5152 got_signed = 1;
5153 nbits = n2bits;
5154 }
5155
62c4f98b
JK
5156 /* Check for "long long". */
5157 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
5158 return builtin_type_long_long;
5159 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
5160 return builtin_type_unsigned_long_long;
5161
bd5635a1
RP
5162 if (got_signed || got_unsigned)
5163 {
5164 result_type = (struct type *) obstack_alloc (symbol_obstack,
5165 sizeof (struct type));
5166 bzero (result_type, sizeof (struct type));
5167 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5168 TYPE_MAIN_VARIANT (result_type) = result_type;
5169 TYPE_CODE (result_type) = TYPE_CODE_INT;
5170 if (got_unsigned)
5171 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5172 return result_type;
5173 }
5174 else
5175 return error_type (pp);
5176 }
5177
5178 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5179 if (self_subrange && n2 == 0 && n3 == 0)
5180 return builtin_type_void;
5181
5182 /* If n3 is zero and n2 is not, we want a floating type,
5183 and n2 is the width in bytes.
5184
5185 Fortran programs appear to use this for complex types also,
5186 and they give no way to distinguish between double and single-complex!
5187 We don't have complex types, so we would lose on all fortran files!
5188 So return type `double' for all of those. It won't work right
5189 for the complex values, but at least it makes the file loadable. */
5190
5191 if (n3 == 0 && n2 > 0)
5192 {
5193 if (n2 == sizeof (float))
5194 return builtin_type_float;
5195 return builtin_type_double;
5196 }
5197
5198 /* If the upper bound is -1, it must really be an unsigned int. */
5199
5200 else if (n2 == 0 && n3 == -1)
5201 {
5202 if (sizeof (int) == sizeof (long))
5203 return builtin_type_unsigned_int;
5204 else
5205 return builtin_type_unsigned_long;
5206 }
5207
5208 /* Special case: char is defined (Who knows why) as a subrange of
5209 itself with range 0-127. */
5210 else if (self_subrange && n2 == 0 && n3 == 127)
5211 return builtin_type_char;
5212
5213 /* Assumptions made here: Subrange of self is equivalent to subrange
5214 of int. */
5215 else if (n2 == 0
5216 && (self_subrange ||
5217 *dbx_lookup_type (rangenums) == builtin_type_int))
5218 {
5219 /* an unsigned type */
5220#ifdef LONG_LONG
5221 if (n3 == - sizeof (long long))
5222 return builtin_type_unsigned_long_long;
5223#endif
5224 if (n3 == (unsigned int)~0L)
5225 return builtin_type_unsigned_int;
5226 if (n3 == (unsigned long)~0L)
5227 return builtin_type_unsigned_long;
5228 if (n3 == (unsigned short)~0L)
5229 return builtin_type_unsigned_short;
5230 if (n3 == (unsigned char)~0L)
5231 return builtin_type_unsigned_char;
5232 }
5233#ifdef LONG_LONG
5234 else if (n3 == 0 && n2 == -sizeof (long long))
5235 return builtin_type_long_long;
5236#endif
5237 else if (n2 == -n3 -1)
5238 {
5239 /* a signed type */
5240 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5241 return builtin_type_int;
5242 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5243 return builtin_type_long;
5244 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5245 return builtin_type_short;
5246 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5247 return builtin_type_char;
5248 }
5249
5250 /* We have a real range type on our hands. Allocate space and
5251 return a real pointer. */
5252
5253 /* At this point I don't have the faintest idea how to deal with
5254 a self_subrange type; I'm going to assume that this is used
5255 as an idiom, and that all of them are special cases. So . . . */
5256 if (self_subrange)
5257 return error_type (pp);
5258
5259 result_type = (struct type *) obstack_alloc (symbol_obstack,
5260 sizeof (struct type));
5261 bzero (result_type, sizeof (struct type));
5262
0c4d2cc2
JG
5263 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5264
5265 TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums);
5266
5267 TYPE_NFIELDS (result_type) = 2;
5268 TYPE_FIELDS (result_type) =
5269 (struct field *) obstack_alloc (symbol_obstack,
5270 2 * sizeof (struct field));
5271 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5272 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5273 TYPE_FIELD_BITPOS (result_type, 1) = n3;
bd5635a1 5274
0c4d2cc2
JG
5275#if 0
5276/* Note that TYPE_LENGTH (result_type) is just overridden a few
5277 statements down. What do we really need here? */
bd5635a1
RP
5278 /* We have to figure out how many bytes it takes to hold this
5279 range type. I'm going to assume that anything that is pushing
5280 the bounds of a long was taken care of above. */
0c4d2cc2 5281 if (n2 >= MIN_OF_C_TYPE(char) && n3 <= MAX_OF_C_TYPE(char))
bd5635a1 5282 TYPE_LENGTH (result_type) = 1;
0c4d2cc2 5283 else if (n2 >= MIN_OF_C_TYPE(short) && n3 <= MAX_OF_C_TYPE(short))
bd5635a1 5284 TYPE_LENGTH (result_type) = sizeof (short);
0c4d2cc2 5285 else if (n2 >= MIN_OF_C_TYPE(int) && n3 <= MAX_OF_C_TYPE(int))
bd5635a1 5286 TYPE_LENGTH (result_type) = sizeof (int);
0c4d2cc2 5287 else if (n2 >= MIN_OF_C_TYPE(long) && n3 <= MAX_OF_C_TYPE(long))
bd5635a1
RP
5288 TYPE_LENGTH (result_type) = sizeof (long);
5289 else
5290 /* Ranged type doesn't fit within known sizes. */
0c4d2cc2 5291 /* FIXME -- use "long long" here. */
bd5635a1 5292 return error_type (pp);
0c4d2cc2 5293#endif
bd5635a1
RP
5294
5295 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
bd5635a1
RP
5296
5297 return result_type;
5298}
5299
5300/* Read a number from the string pointed to by *PP.
5301 The value of *PP is advanced over the number.
5302 If END is nonzero, the character that ends the
5303 number must match END, or an error happens;
5304 and that character is skipped if it does match.
5305 If END is zero, *PP is left pointing to that character. */
5306
5307static long
5308read_number (pp, end)
5309 char **pp;
5310 int end;
5311{
5312 register char *p = *pp;
5313 register long n = 0;
5314 register int c;
5315 int sign = 1;
5316
5317 /* Handle an optional leading minus sign. */
5318
5319 if (*p == '-')
5320 {
5321 sign = -1;
5322 p++;
5323 }
5324
5325 /* Read the digits, as far as they go. */
5326
5327 while ((c = *p++) >= '0' && c <= '9')
5328 {
5329 n *= 10;
5330 n += c - '0';
5331 }
5332 if (end)
5333 {
5334 if (c && c != end)
5335 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5336 }
5337 else
5338 --p;
5339
5340 *pp = p;
5341 return n * sign;
5342}
5343
5344/* Read in an argument list. This is a list of types, separated by commas
5345 and terminated with END. Return the list of types read in, or (struct type
5346 **)-1 if there is an error. */
5347static struct type **
5348read_args (pp, end)
5349 char **pp;
5350 int end;
5351{
5352 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5353 int n = 0;
5354
5355 while (**pp != end)
5356 {
5357 if (**pp != ',')
5358 /* Invalid argument list: no ','. */
5359 return (struct type **)-1;
5360 *pp += 1;
5361
5362 /* Check for and handle cretinous dbx symbol name continuation! */
5363 if (**pp == '\\')
5364 *pp = next_symbol_text ();
5365
5366 types[n++] = read_type (pp);
5367 }
5368 *pp += 1; /* get past `end' (the ':' character) */
5369
5370 if (n == 1)
5371 {
5372 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5373 }
5374 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5375 {
5376 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5377 bzero (rval + n, sizeof (struct type *));
5378 }
5379 else
5380 {
5381 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5382 }
5383 bcopy (types, rval, n * sizeof (struct type *));
5384 return rval;
5385}
5386\f
5387/* Copy a pending list, used to record the contents of a common
5388 block for later fixup. */
5389static struct pending *
5390copy_pending (beg, begi, end)
5391 struct pending *beg, *end;
5392 int begi;
5393{
5394 struct pending *new = 0;
5395 struct pending *next;
5396
5397 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5398 next = next->next, begi = 0)
5399 {
5400 register int j;
5401 for (j = begi; j < next->nsyms; j++)
5402 add_symbol_to_list (next->symbol[j], &new);
5403 }
5404 return new;
5405}
5406
5407/* Add a common block's start address to the offset of each symbol
5408 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5409 the common block name). */
5410
5411static void
5412fix_common_block (sym, valu)
5413 struct symbol *sym;
5414 int valu;
5415{
5416 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5417 for ( ; next; next = next->next)
5418 {
5419 register int j;
5420 for (j = next->nsyms - 1; j >= 0; j--)
5421 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5422 }
5423}
5424\f
5425/* Register our willingness to decode symbols for SunOS and a.out and
5426 b.out files handled by BFD... */
5427static struct sym_fns sunos_sym_fns = {"sunOs", 6,
9404978d 5428 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
bd5635a1
RP
5429
5430static struct sym_fns aout_sym_fns = {"a.out", 5,
9404978d 5431 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
bd5635a1
RP
5432
5433static struct sym_fns bout_sym_fns = {"b.out", 5,
9404978d 5434 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
bd5635a1
RP
5435
5436void
5437_initialize_dbxread ()
5438{
5439 add_symtab_fns(&sunos_sym_fns);
5440 add_symtab_fns(&aout_sym_fns);
5441 add_symtab_fns(&bout_sym_fns);
5442
5443 undef_types_allocated = 20;
5444 undef_types_length = 0;
5445 undef_types = (struct type **) xmalloc (undef_types_allocated *
5446 sizeof (struct type *));
5447}
This page took 0.240168 seconds and 4 git commands to generate.