Restore Schauer's version of ADD_SOLIB in core_open().
[deliverable/binutils-gdb.git] / gdb / dbxread.c
CommitLineData
bd5635a1
RP
1/* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6GDB is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GDB is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GDB; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19\f
20/* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31/* There used to be some PROFILE_TYPES code in this file which counted
32 the number of occurances of various symbols. I'd suggest instead:
33 nm -ap foo | awk 'print $5' | sort | uniq -c
34 to print how many of each n_type, or something like
35 nm -ap foo | awk '$5 == "LSYM" {print $6 $7 $8 $9 $10 $11}' | \
36 awk 'BEGIN {FS=":"}
37 {print substr($2,1,1)}' | sort | uniq -c
38 to print the number of each kind of symbol descriptor (i.e. the letter
39 after ':'). */
40
41#include <stdio.h>
42#include <string.h>
43#include "defs.h"
44#include "param.h"
45
46#ifdef USG
47#include <sys/types.h>
48#include <fcntl.h>
49#define L_SET 0
50#define L_INCR 1
51#endif
52
53#include "a.out.gnu.h"
54#include "stab.gnu.h" /* We always use GNU stabs, not native, now */
55#include <ctype.h>
56
57#ifndef NO_GNU_STABS
58/*
59 * Define specifically gnu symbols here.
60 */
61
62/* The following type indicates the definition of a symbol as being
63 an indirect reference to another symbol. The other symbol
64 appears as an undefined reference, immediately following this symbol.
65
66 Indirection is asymmetrical. The other symbol's value will be used
67 to satisfy requests for the indirect symbol, but not vice versa.
68 If the other symbol does not have a definition, libraries will
69 be searched to find a definition. */
70#ifndef N_INDR
71#define N_INDR 0xa
72#endif
73
74/* The following symbols refer to set elements.
75 All the N_SET[ATDB] symbols with the same name form one set.
76 Space is allocated for the set in the text section, and each set
77 element's value is stored into one word of the space.
78 The first word of the space is the length of the set (number of elements).
79
80 The address of the set is made into an N_SETV symbol
81 whose name is the same as the name of the set.
82 This symbol acts like a N_DATA global symbol
83 in that it can satisfy undefined external references. */
84
85#ifndef N_SETA
86#define N_SETA 0x14 /* Absolute set element symbol */
87#endif /* This is input to LD, in a .o file. */
88
89#ifndef N_SETT
90#define N_SETT 0x16 /* Text set element symbol */
91#endif /* This is input to LD, in a .o file. */
92
93#ifndef N_SETD
94#define N_SETD 0x18 /* Data set element symbol */
95#endif /* This is input to LD, in a .o file. */
96
97#ifndef N_SETB
98#define N_SETB 0x1A /* Bss set element symbol */
99#endif /* This is input to LD, in a .o file. */
100
101/* Macros dealing with the set element symbols defined in a.out.h */
102#define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
103#define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
104
105#ifndef N_SETV
106#define N_SETV 0x1C /* Pointer to set vector in data area. */
107#endif /* This is output from LD. */
108
109#ifndef N_WARNING
110#define N_WARNING 0x1E /* Warning message to print if file included */
111#endif /* This is input to ld */
112
113#endif /* NO_GNU_STABS */
114
115#include <obstack.h>
116#include <sys/param.h>
117#include <sys/file.h>
118#include <sys/stat.h>
119#include "symtab.h"
120#include "breakpoint.h"
121#include "command.h"
122#include "target.h"
123#include "gdbcore.h" /* for bfd stuff */
124#include "liba.out.h" /* FIXME Secret internal BFD stuff for a.out */
125#include "symfile.h"
126
127struct dbx_symfile_info {
128 asection *text_sect; /* Text section accessor */
129 int symcount; /* How many symbols are there in the file */
130 char *stringtab; /* The actual string table */
131 int stringtab_size; /* Its size */
132 off_t symtab_offset; /* Offset in file to symbol table */
133 int desc; /* File descriptor of symbol file */
134};
135
136extern void qsort ();
137extern double atof ();
138extern struct cmd_list_element *cmdlist;
139
140extern void symbol_file_command ();
141
142/* Forward declarations */
143
144static void add_symbol_to_list ();
145static void read_dbx_symtab ();
146static void init_psymbol_list ();
147static void process_one_symbol ();
148static struct type *read_type ();
149static struct type *read_range_type ();
150static struct type *read_enum_type ();
151static struct type *read_struct_type ();
152static struct type *read_array_type ();
153static long read_number ();
154static void finish_block ();
155static struct blockvector *make_blockvector ();
156static struct symbol *define_symbol ();
157static void start_subfile ();
158static int hashname ();
159static struct pending *copy_pending ();
160static void fix_common_block ();
161static void add_undefined_type ();
162static void cleanup_undefined_types ();
163static void scan_file_globals ();
164static void read_ofile_symtab ();
165static void dbx_psymtab_to_symtab ();
166
167/* C++ */
168static struct type **read_args ();
169
170static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
171static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
172
173/* Macro to determine which symbols to ignore when reading the first symbol
174 of a file. Some machines override this definition. */
175#ifndef IGNORE_SYMBOL
176/* This code is used on Ultrix systems. Ignore it */
177#define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
178#endif
179
180/* Macro for name of symbol to indicate a file compiled with gcc. */
181#ifndef GCC_COMPILED_FLAG_SYMBOL
182#define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
183#endif
184
185/* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
186
187#ifndef STAB_REG_TO_REGNUM
188#define STAB_REG_TO_REGNUM(VALUE) (VALUE)
189#endif
190
191/* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196#ifndef BELIEVE_PCC_PROMOTION
197#define BELIEVE_PCC_PROMOTION 0
198#endif
199\f
200/* Nonzero means give verbose info on gdb action. From main.c. */
201extern int info_verbose;
202
203/* Name of source file whose symbol data we are now processing.
204 This comes from a symbol of type N_SO. */
205
206static char *last_source_file;
207
208/* Core address of start of text of current source file.
209 This too comes from the N_SO symbol. */
210
211static CORE_ADDR last_source_start_addr;
212
213/* The entry point of a file we are reading. */
214CORE_ADDR entry_point;
215
216/* The list of sub-source-files within the current individual compilation.
217 Each file gets its own symtab with its own linetable and associated info,
218 but they all share one blockvector. */
219
220struct subfile
221{
222 struct subfile *next;
223 char *name;
224 char *dirname;
225 struct linetable *line_vector;
226 int line_vector_length;
227 int line_vector_index;
228 int prev_line_number;
229};
230
231static struct subfile *subfiles;
232
233static struct subfile *current_subfile;
234
235/* Count symbols as they are processed, for error messages. */
236
237static unsigned int symnum;
238
239/* Vector of types defined so far, indexed by their dbx type numbers.
240 (In newer sun systems, dbx uses a pair of numbers in parens,
241 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
242 translated through the type_translations hash table to get
243 the index into the type vector.) */
244
245static struct typevector *type_vector;
246
247/* Number of elements allocated for type_vector currently. */
248
249static int type_vector_length;
250
251/* Vector of line number information. */
252
253static struct linetable *line_vector;
254
255/* Index of next entry to go in line_vector_index. */
256
257static int line_vector_index;
258
259/* Last line number recorded in the line vector. */
260
261static int prev_line_number;
262
263/* Number of elements allocated for line_vector currently. */
264
265static int line_vector_length;
266
267/* Hash table of global symbols whose values are not known yet.
268 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
269 have the correct data for that slot yet. */
270/* The use of the LOC_BLOCK code in this chain is nonstandard--
271 it refers to a FORTRAN common block rather than the usual meaning. */
272
273#define HASHSIZE 127
274static struct symbol *global_sym_chain[HASHSIZE];
275
276/* Record the symbols defined for each context in a list.
277 We don't create a struct block for the context until we
278 know how long to make it. */
279
280#define PENDINGSIZE 100
281
282struct pending
283{
284 struct pending *next;
285 int nsyms;
286 struct symbol *symbol[PENDINGSIZE];
287};
288
289/* List of free `struct pending' structures for reuse. */
290struct pending *free_pendings;
291
292/* Here are the three lists that symbols are put on. */
293
294struct pending *file_symbols; /* static at top level, and types */
295
296struct pending *global_symbols; /* global functions and variables */
297
298struct pending *local_symbols; /* everything local to lexical context */
299
300/* List of symbols declared since the last BCOMM. This list is a tail
301 of local_symbols. When ECOMM is seen, the symbols on the list
302 are noted so their proper addresses can be filled in later,
303 using the common block base address gotten from the assembler
304 stabs. */
305
306struct pending *common_block;
307int common_block_i;
308
309/* Stack representing unclosed lexical contexts
310 (that will become blocks, eventually). */
311
312struct context_stack
313{
314 struct pending *locals;
315 struct pending_block *old_blocks;
316 struct symbol *name;
317 CORE_ADDR start_addr;
318 CORE_ADDR end_addr; /* Temp slot for exception handling. */
319 int depth;
320};
321
322struct context_stack *context_stack;
323
324/* Index of first unused entry in context stack. */
325int context_stack_depth;
326
327/* Currently allocated size of context stack. */
328
329int context_stack_size;
330
331/* Nonzero if within a function (so symbols should be local,
332 if nothing says specifically). */
333
334int within_function;
335
336/* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339struct pending_block
340{
341 struct pending_block *next;
342 struct block *block;
343};
344
345struct pending_block *pending_blocks;
346
347extern CORE_ADDR startup_file_start; /* From blockframe.c */
348extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350/* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353static unsigned char processing_gcc_compilation;
354
355/* Make a list of forward references which haven't been defined. */
356static struct type **undef_types;
357static int undef_types_allocated, undef_types_length;
358
359/* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363static char *symfile_string_table;
364static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368#ifdef NAMES_HAVE_UNDERSCORE
369#define HASH_OFFSET 1
370#else
371#define HASH_OFFSET 0
372#endif
373
374/* Complaints about the symbols we have encountered. */
375
376struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385#if 0
386struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388You seem to have compiled your program with \
389\"g++ -g0\" instead of \"g++ -g\".\n\
390Therefore GDB will not know about your class variables", 0, 0};
391#endif
392
393struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396struct complaint unknown_symtype_complaint =
397 {"unknown symbol type 0x%x", 0, 0};
398
399struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410\f
411/* Support for Sun changes to dbx symbol format */
412
413/* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431struct header_file
432{
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440};
441
442static struct header_file *header_files = 0;
443
444static int n_header_files;
445
446static int n_allocated_header_files;
447
448/* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453struct header_file_location
454{
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459};
460
461/* The actual list and controling variables */
462static struct header_file_location *bincl_list, *next_bincl;
463static int bincls_allocated;
464
465/* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475static int *this_object_header_files = 0;
476
477static int n_this_object_header_files;
478
479static int n_allocated_this_object_header_files;
480
481/* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486static int header_file_prev_index;
487
488/* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491void
492free_and_init_header_files ()
493{
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508}
509
510/* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513static void
514new_object_header_files ()
515{
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519}
520
521/* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524static void
525add_this_object_header_file (i)
526 int i;
527{
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537}
538
539/* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544static void
545add_old_header_file (name, instance)
546 char *name;
547 int instance;
548{
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560}
561
562/* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573static void
574add_new_header_file (name, instance)
575 char *name;
576 int instance;
577{
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603}
604
605/* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612static struct type **
613dbx_lookup_type (typenums)
614 int typenums[2];
615{
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661}
662
663/* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666static struct type *
667dbx_create_type ()
668{
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 return type;
675}
676
677/* Make sure there is a type allocated for type numbers TYPENUMS
678 and return the type object.
679 This can create an empty (zeroed) type object.
680 TYPENUMS may be (-1, -1) to return a new type object that is not
681 put into the type vector, and so may not be referred to by number. */
682
683static struct type *
684dbx_alloc_type (typenums)
685 int typenums[2];
686{
687 register struct type **type_addr;
688 register struct type *type;
689
690 if (typenums[1] != -1)
691 {
692 type_addr = dbx_lookup_type (typenums);
693 type = *type_addr;
694 }
695 else
696 {
697 type_addr = 0;
698 type = 0;
699 }
700
701 /* If we are referring to a type not known at all yet,
702 allocate an empty type for it.
703 We will fill it in later if we find out how. */
704 if (type == 0)
705 {
706 type = dbx_create_type ();
707 if (type_addr)
708 *type_addr = type;
709 }
710
711 return type;
712}
713
714#if 0
715static struct type **
716explicit_lookup_type (real_filenum, index)
717 int real_filenum, index;
718{
719 register struct header_file *f = &header_files[real_filenum];
720
721 if (index >= f->length)
722 {
723 f->length *= 2;
724 f->vector = (struct type **)
725 xrealloc (f->vector, f->length * sizeof (struct type *));
726 bzero (&f->vector[f->length / 2],
727 f->length * sizeof (struct type *) / 2);
728 }
729 return &f->vector[index];
730}
731#endif
732\f
733/* maintain the lists of symbols and blocks */
734
735/* Add a symbol to one of the lists of symbols. */
736static void
737add_symbol_to_list (symbol, listhead)
738 struct symbol *symbol;
739 struct pending **listhead;
740{
741 /* We keep PENDINGSIZE symbols in each link of the list.
742 If we don't have a link with room in it, add a new link. */
743 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
744 {
745 register struct pending *link;
746 if (free_pendings)
747 {
748 link = free_pendings;
749 free_pendings = link->next;
750 }
751 else
752 link = (struct pending *) xmalloc (sizeof (struct pending));
753
754 link->next = *listhead;
755 *listhead = link;
756 link->nsyms = 0;
757 }
758
759 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
760}
761
762/* At end of reading syms, or in case of quit,
763 really free as many `struct pending's as we can easily find. */
764
765/* ARGSUSED */
766static void
767really_free_pendings (foo)
768 int foo;
769{
770 struct pending *next, *next1;
771 struct pending_block *bnext, *bnext1;
772
773 for (next = free_pendings; next; next = next1)
774 {
775 next1 = next->next;
776 free (next);
777 }
778 free_pendings = 0;
779
780#if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
781 for (bnext = pending_blocks; bnext; bnext = bnext1)
782 {
783 bnext1 = bnext->next;
784 free (bnext);
785 }
786#endif
787 pending_blocks = 0;
788
789 for (next = file_symbols; next; next = next1)
790 {
791 next1 = next->next;
792 free (next);
793 }
3f2e006b
JG
794 file_symbols = 0;
795
bd5635a1
RP
796 for (next = global_symbols; next; next = next1)
797 {
798 next1 = next->next;
799 free (next);
800 }
3f2e006b 801 global_symbols = 0;
bd5635a1
RP
802}
803
804/* Take one of the lists of symbols and make a block from it.
805 Keep the order the symbols have in the list (reversed from the input file).
806 Put the block on the list of pending blocks. */
807
808static void
809finish_block (symbol, listhead, old_blocks, start, end)
810 struct symbol *symbol;
811 struct pending **listhead;
812 struct pending_block *old_blocks;
813 CORE_ADDR start, end;
814{
815 register struct pending *next, *next1;
816 register struct block *block;
817 register struct pending_block *pblock;
818 struct pending_block *opblock;
819 register int i;
820
821 /* Count the length of the list of symbols. */
822
823 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
824 /*EMPTY*/;
825
826 block = (struct block *) obstack_alloc (symbol_obstack,
827 (sizeof (struct block)
828 + ((i - 1)
829 * sizeof (struct symbol *))));
830
831 /* Copy the symbols into the block. */
832
833 BLOCK_NSYMS (block) = i;
834 for (next = *listhead; next; next = next->next)
835 {
836 register int j;
837 for (j = next->nsyms - 1; j >= 0; j--)
838 BLOCK_SYM (block, --i) = next->symbol[j];
839 }
840
841 BLOCK_START (block) = start;
842 BLOCK_END (block) = end;
843 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
844 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
845
846 /* Put the block in as the value of the symbol that names it. */
847
848 if (symbol)
849 {
850 SYMBOL_BLOCK_VALUE (symbol) = block;
851 BLOCK_FUNCTION (block) = symbol;
852 }
853 else
854 BLOCK_FUNCTION (block) = 0;
855
856 /* Now "free" the links of the list, and empty the list. */
857
858 for (next = *listhead; next; next = next1)
859 {
860 next1 = next->next;
861 next->next = free_pendings;
862 free_pendings = next;
863 }
864 *listhead = 0;
865
866 /* Install this block as the superblock
867 of all blocks made since the start of this scope
868 that don't have superblocks yet. */
869
870 opblock = 0;
871 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
872 {
873 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
874#if 1
875 /* Check to be sure the blocks are nested as we receive them.
876 If the compiler/assembler/linker work, this just burns a small
877 amount of time. */
878 if (BLOCK_START (pblock->block) < BLOCK_START (block)
879 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
880 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
881 "(don't know)");
882 BLOCK_START (pblock->block) = BLOCK_START (block);
883 BLOCK_END (pblock->block) = BLOCK_END (block);
884 }
885#endif
886 BLOCK_SUPERBLOCK (pblock->block) = block;
887 }
888 opblock = pblock;
889 }
890
891 /* Record this block on the list of all blocks in the file.
892 Put it after opblock, or at the beginning if opblock is 0.
893 This puts the block in the list after all its subblocks. */
894
895 /* Allocate in the symbol_obstack to save time.
896 It wastes a little space. */
897 pblock = (struct pending_block *)
898 obstack_alloc (symbol_obstack,
899 sizeof (struct pending_block));
900 pblock->block = block;
901 if (opblock)
902 {
903 pblock->next = opblock->next;
904 opblock->next = pblock;
905 }
906 else
907 {
908 pblock->next = pending_blocks;
909 pending_blocks = pblock;
910 }
911}
912
913static struct blockvector *
914make_blockvector ()
915{
916 register struct pending_block *next;
917 register struct blockvector *blockvector;
918 register int i;
919
920 /* Count the length of the list of blocks. */
921
922 for (next = pending_blocks, i = 0; next; next = next->next, i++);
923
924 blockvector = (struct blockvector *)
925 obstack_alloc (symbol_obstack,
926 (sizeof (struct blockvector)
927 + (i - 1) * sizeof (struct block *)));
928
929 /* Copy the blocks into the blockvector.
930 This is done in reverse order, which happens to put
931 the blocks into the proper order (ascending starting address).
932 finish_block has hair to insert each block into the list
933 after its subblocks in order to make sure this is true. */
934
935 BLOCKVECTOR_NBLOCKS (blockvector) = i;
936 for (next = pending_blocks; next; next = next->next) {
937 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
938 }
939
940#if 0 /* Now we make the links in the obstack, so don't free them. */
941 /* Now free the links of the list, and empty the list. */
942
943 for (next = pending_blocks; next; next = next1)
944 {
945 next1 = next->next;
946 free (next);
947 }
948#endif
949 pending_blocks = 0;
950
951#if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
952 /* Some compilers output blocks in the wrong order, but we depend
953 on their being in the right order so we can binary search.
954 Check the order and moan about it. FIXME. */
955 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
956 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
957 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
958 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
959 complain (&blockvector_complaint,
960 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
961 }
962 }
963#endif
964
965 return blockvector;
966}
967\f
968/* Manage the vector of line numbers. */
969
970static void
971record_line (line, pc)
972 int line;
973 CORE_ADDR pc;
974{
975 struct linetable_entry *e;
976 /* Ignore the dummy line number in libg.o */
977
978 if (line == 0xffff)
979 return;
980
981 /* Make sure line vector is big enough. */
982
983 if (line_vector_index + 1 >= line_vector_length)
984 {
985 line_vector_length *= 2;
986 line_vector = (struct linetable *)
987 xrealloc (line_vector,
988 (sizeof (struct linetable)
989 + line_vector_length * sizeof (struct linetable_entry)));
990 current_subfile->line_vector = line_vector;
991 }
992
993 e = line_vector->item + line_vector_index++;
994 e->line = line; e->pc = pc;
995}
996\f
997/* Start a new symtab for a new source file.
998 This is called when a dbx symbol of type N_SO is seen;
999 it indicates the start of data for one original source file. */
1000
1001static void
1002start_symtab (name, dirname, start_addr)
1003 char *name;
1004 char *dirname;
1005 CORE_ADDR start_addr;
1006{
1007
1008 last_source_file = name;
1009 last_source_start_addr = start_addr;
1010 file_symbols = 0;
1011 global_symbols = 0;
1012 within_function = 0;
1013
1014 /* Context stack is initially empty, with room for 10 levels. */
1015 context_stack
1016 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1017 context_stack_size = 10;
1018 context_stack_depth = 0;
1019
1020 new_object_header_files ();
1021
1022 type_vector_length = 160;
1023 type_vector = (struct typevector *)
1024 xmalloc (sizeof (struct typevector)
1025 + type_vector_length * sizeof (struct type *));
1026 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1027
1028 /* Initialize the list of sub source files with one entry
1029 for this file (the top-level source file). */
1030
1031 subfiles = 0;
1032 current_subfile = 0;
1033 start_subfile (name, dirname);
1034}
1035
1036/* Handle an N_SOL symbol, which indicates the start of
1037 code that came from an included (or otherwise merged-in)
1038 source file with a different name. */
1039
1040static void
1041start_subfile (name, dirname)
1042 char *name;
1043 char *dirname;
1044{
1045 register struct subfile *subfile;
1046
1047 /* Save the current subfile's line vector data. */
1048
1049 if (current_subfile)
1050 {
1051 current_subfile->line_vector_index = line_vector_index;
1052 current_subfile->line_vector_length = line_vector_length;
1053 current_subfile->prev_line_number = prev_line_number;
1054 }
1055
1056 /* See if this subfile is already known as a subfile of the
1057 current main source file. */
1058
1059 for (subfile = subfiles; subfile; subfile = subfile->next)
1060 {
1061 if (!strcmp (subfile->name, name))
1062 {
1063 line_vector = subfile->line_vector;
1064 line_vector_index = subfile->line_vector_index;
1065 line_vector_length = subfile->line_vector_length;
1066 prev_line_number = subfile->prev_line_number;
1067 current_subfile = subfile;
1068 return;
1069 }
1070 }
1071
1072 /* This subfile is not known. Add an entry for it. */
1073
1074 line_vector_index = 0;
1075 line_vector_length = 1000;
1076 prev_line_number = -2; /* Force first line number to be explicit */
1077 line_vector = (struct linetable *)
1078 xmalloc (sizeof (struct linetable)
1079 + line_vector_length * sizeof (struct linetable_entry));
1080
1081 /* Make an entry for this subfile in the list of all subfiles
1082 of the current main source file. */
1083
1084 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1085 subfile->next = subfiles;
1086 subfile->name = obsavestring (name, strlen (name));
1087 if (dirname == NULL)
1088 subfile->dirname = NULL;
1089 else
1090 subfile->dirname = obsavestring (dirname, strlen (dirname));
1091
1092 subfile->line_vector = line_vector;
1093 subfiles = subfile;
1094 current_subfile = subfile;
1095}
1096
1097/* Finish the symbol definitions for one main source file,
1098 close off all the lexical contexts for that file
1099 (creating struct block's for them), then make the struct symtab
1100 for that file and put it in the list of all such.
1101
1102 END_ADDR is the address of the end of the file's text. */
1103
1104static void
1105end_symtab (end_addr)
1106 CORE_ADDR end_addr;
1107{
1108 register struct symtab *symtab;
1109 register struct blockvector *blockvector;
1110 register struct subfile *subfile;
1111 register struct linetable *lv;
1112 struct subfile *nextsub;
1113
1114 /* Finish the lexical context of the last function in the file;
1115 pop the context stack. */
1116
1117 if (context_stack_depth > 0)
1118 {
1119 register struct context_stack *cstk;
1120 context_stack_depth--;
1121 cstk = &context_stack[context_stack_depth];
1122 /* Make a block for the local symbols within. */
1123 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1124 cstk->start_addr, end_addr);
1125 }
1126
1127 /* Cleanup any undefined types that have been left hanging around
1128 (this needs to be done before the finish_blocks so that
1129 file_symbols is still good). */
1130 cleanup_undefined_types ();
1131
3f83182d 1132 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
bd5635a1
RP
1133 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1134 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1135 blockvector = make_blockvector ();
1136
1137 current_subfile->line_vector_index = line_vector_index;
1138
1139 /* Now create the symtab objects proper, one for each subfile. */
1140 /* (The main file is one of them.) */
1141
1142 for (subfile = subfiles; subfile; subfile = nextsub)
1143 {
1144 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1145
1146 /* Fill in its components. */
1147 symtab->blockvector = blockvector;
1148 lv = subfile->line_vector;
1149 lv->nitems = subfile->line_vector_index;
1150 symtab->linetable = (struct linetable *)
1151 xrealloc (lv, (sizeof (struct linetable)
1152 + lv->nitems * sizeof (struct linetable_entry)));
1153 type_vector->length = type_vector_length;
1154 symtab->typevector = type_vector;
1155
1156 symtab->filename = subfile->name;
1157 symtab->dirname = subfile->dirname;
1158
1159 symtab->free_code = free_linetable;
1160 symtab->free_ptr = 0;
1161 if (subfile->next == 0)
1162 symtab->free_ptr = (char *) type_vector;
1163
1164 symtab->nlines = 0;
1165 symtab->line_charpos = 0;
1166
1167 symtab->language = language_unknown;
1168 symtab->fullname = NULL;
1169
f9623881
JG
1170 /* There should never already be a symtab for this name, since
1171 any prev dups have been removed when the psymtab was read in.
1172 FIXME, there ought to be a way to check this here. */
1173 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
bd5635a1
RP
1174
1175 /* Link the new symtab into the list of such. */
1176 symtab->next = symtab_list;
1177 symtab_list = symtab;
1178
1179 nextsub = subfile->next;
1180 free (subfile);
1181 }
1182
1183 type_vector = 0;
1184 type_vector_length = -1;
1185 line_vector = 0;
1186 line_vector_length = -1;
1187 last_source_file = 0;
1188}
1189\f
1190/* Handle the N_BINCL and N_EINCL symbol types
1191 that act like N_SOL for switching source files
1192 (different subfiles, as we call them) within one object file,
1193 but using a stack rather than in an arbitrary order. */
1194
1195struct subfile_stack
1196{
1197 struct subfile_stack *next;
1198 char *name;
1199 int prev_index;
1200};
1201
1202struct subfile_stack *subfile_stack;
1203
1204static void
1205push_subfile ()
1206{
1207 register struct subfile_stack *tem
1208 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1209
1210 tem->next = subfile_stack;
1211 subfile_stack = tem;
1212 if (current_subfile == 0 || current_subfile->name == 0)
1213 abort ();
1214 tem->name = current_subfile->name;
1215 tem->prev_index = header_file_prev_index;
1216}
1217
1218static char *
1219pop_subfile ()
1220{
1221 register char *name;
1222 register struct subfile_stack *link = subfile_stack;
1223
1224 if (link == 0)
1225 abort ();
1226
1227 name = link->name;
1228 subfile_stack = link->next;
1229 header_file_prev_index = link->prev_index;
1230 free (link);
1231
1232 return name;
1233}
1234\f
1235void
1236record_misc_function (name, address, type)
1237 char *name;
1238 CORE_ADDR address;
1239 int type;
1240{
1241 enum misc_function_type misc_type =
1242 (type == (N_TEXT | N_EXT) ? mf_text :
1243 (type == (N_DATA | N_EXT)
1244 || type == (N_DATA)
1245 || type == (N_SETV | N_EXT)
1246 ) ? mf_data :
1247 type == (N_BSS | N_EXT) ? mf_bss :
1248 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1249
1250 prim_record_misc_function (obsavestring (name, strlen (name)),
1251 address, misc_type);
1252}
1253\f
1254/* Scan and build partial symbols for a symbol file.
1255 We have been initialized by a call to dbx_symfile_init, which
1256 put all the relevant info into a "struct dbx_symfile_info"
1257 hung off the struct sym_fns SF.
1258
1259 ADDR is the address relative to which the symbols in it are (e.g.
1260 the base address of the text segment).
1261 MAINLINE is true if we are reading the main symbol
1262 table (as opposed to a shared lib or dynamically loaded file). */
1263
1264void
1265dbx_symfile_read (sf, addr, mainline)
1266 struct sym_fns *sf;
1267 CORE_ADDR addr;
1268 int mainline; /* FIXME comments above */
1269{
1270 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1271 bfd *sym_bfd = sf->sym_bfd;
1272 int val;
1273 char *filename = bfd_get_filename (sym_bfd);
1274
1275 val = lseek (info->desc, info->symtab_offset, L_SET);
1276 if (val < 0)
1277 perror_with_name (filename);
1278
1279 /* If mainline, set global string table pointers, and reinitialize global
1280 partial symbol list. */
1281 if (mainline) {
1282 symfile_string_table = info->stringtab;
1283 symfile_string_table_size = info->stringtab_size;
bd5635a1
RP
1284 }
1285
66eeea27
JG
1286 /* If we are reinitializing, or if we have never loaded syms yet, init */
1287 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1288 init_psymbol_list (info->symcount);
1289
bd5635a1
RP
1290 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1291
1292 pending_blocks = 0;
1293 make_cleanup (really_free_pendings, 0);
1294
1295 init_misc_bunches ();
1296 make_cleanup (discard_misc_bunches, 0);
1297
1298 /* Now that the symbol table data of the executable file are all in core,
1299 process them and define symbols accordingly. */
1300
1301 read_dbx_symtab (filename,
1302 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1303 info->desc, info->stringtab, info->stringtab_size,
1304 info->symcount,
1305 bfd_section_vma (sym_bfd, info->text_sect),
1306 bfd_section_size (sym_bfd, info->text_sect));
1307
1308 /* Go over the misc symbol bunches and install them in vector. */
1309
1310 condense_misc_bunches (!mainline);
1311
1312 /* Free up any memory we allocated for ourselves. */
1313
1314 if (!mainline) {
1315 free (info->stringtab); /* Stringtab is only saved for mainline */
1316 }
1317 free (info);
1318 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1319
1320 /* Call to select_source_symtab used to be here; it was using too
1321 much time. I'll make sure that list_sources can handle the lack
1322 of current_source_symtab */
1323
1324 if (!partial_symtab_list)
1325 printf_filtered ("\n(no debugging symbols found)...");
1326}
1327
1328/* Discard any information we have cached during the reading of a
1329 single symbol file. This should not toss global information
1330 from previous symbol files that have been read. E.g. we might
1331 be discarding info from reading a shared library, and should not
1332 throw away the info from the main file. */
1333
1334void
1335dbx_symfile_discard ()
1336{
1337
1338 /* Empty the hash table of global syms looking for values. */
1339 bzero (global_sym_chain, sizeof global_sym_chain);
1340
1341 free_pendings = 0;
1342 file_symbols = 0;
1343 global_symbols = 0;
1344}
1345
1346/* Initialize anything that needs initializing when a completely new
1347 symbol file is specified (not just adding some symbols from another
1348 file, e.g. a shared library). */
1349
1350void
1351dbx_new_init ()
1352{
1353 dbx_symfile_discard ();
1354 /* Don't put these on the cleanup chain; they need to stick around
1355 until the next call to symbol_file_command. *Then* we'll free
1356 them. */
1357 if (symfile_string_table)
1358 {
1359 free (symfile_string_table);
1360 symfile_string_table = 0;
1361 symfile_string_table_size = 0;
1362 }
1363 free_and_init_header_files ();
1364}
1365
1366
1367/* dbx_symfile_init ()
1368 is the dbx-specific initialization routine for reading symbols.
1369 It is passed a struct sym_fns which contains, among other things,
1370 the BFD for the file whose symbols are being read, and a slot for a pointer
1371 to "private data" which we fill with goodies.
1372
1373 We read the string table into malloc'd space and stash a pointer to it.
1374
1375 Since BFD doesn't know how to read debug symbols in a format-independent
1376 way (and may never do so...), we have to do it ourselves. We will never
1377 be called unless this is an a.out (or very similar) file.
1378 FIXME, there should be a cleaner peephole into the BFD environment here. */
1379
1380void
1381dbx_symfile_init (sf)
1382 struct sym_fns *sf;
1383{
1384 int val;
1385 int desc;
1386 struct stat statbuf;
1387 bfd *sym_bfd = sf->sym_bfd;
1388 char *name = bfd_get_filename (sym_bfd);
1389 struct dbx_symfile_info *info;
1390 unsigned char size_temp[4];
1391
1392 /* Allocate struct to keep track of the symfile */
1393 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1394 info = (struct dbx_symfile_info *)sf->sym_private;
1395
1396 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1397 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1398#define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1399#define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1400 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1401
1402 info->desc = desc;
1403 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1404 if (!info->text_sect)
1405 abort();
1406 info->symcount = bfd_get_symcount_upper_bound(sym_bfd); /* It's exact for a.out */
1407
1408 /* Read the string table size and check it for bogosity. */
1409 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1410 if (val < 0)
1411 perror_with_name (name);
1412 if (fstat (desc, &statbuf) == -1)
1413 perror_with_name (name);
1414
1415 val = myread (desc, size_temp, sizeof (long));
1416 if (val < 0)
1417 perror_with_name (name);
1418 info->stringtab_size = bfd_h_getlong (sym_bfd, size_temp);
1419
1420 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1421 {
1422 info->stringtab = (char *) xmalloc (info->stringtab_size);
1423 /* Caller is responsible for freeing the string table. No cleanup. */
1424 }
1425 else
1426 info->stringtab = NULL;
1427 if (info->stringtab == NULL && info->stringtab_size != 0)
1428 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1429
1430 /* Now read in the string table in one big gulp. */
1431
1432 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1433 if (val < 0)
1434 perror_with_name (name);
1435 val = myread (desc, info->stringtab, info->stringtab_size);
1436 if (val < 0)
1437 perror_with_name (name);
1438
1439 /* Record the position of the symbol table for later use. */
1440
1441 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1442}
1443\f
1444/* Buffer for reading the symbol table entries. */
1445static struct nlist symbuf[4096];
1446static int symbuf_idx;
1447static int symbuf_end;
1448
1449/* I/O descriptor for reading the symbol table. */
1450static int symtab_input_desc;
1451
1452/* The address in memory of the string table of the object file we are
1453 reading (which might not be the "main" object file, but might be a
1454 shared library or some other dynamically loaded thing). This is set
1455 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1456 when building symtabs, and is used only by next_symbol_text. */
1457static char *stringtab_global;
1458
1459/* Refill the symbol table input buffer
1460 and set the variables that control fetching entries from it.
1461 Reports an error if no data available.
1462 This function can read past the end of the symbol table
1463 (into the string table) but this does no harm. */
1464
1465static int
1466fill_symbuf ()
1467{
1468 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1469 if (nbytes < 0)
1470 perror_with_name ("<symbol file>");
1471 else if (nbytes == 0)
1472 error ("Premature end of file reading symbol table");
1473 symbuf_end = nbytes / sizeof (struct nlist);
1474 symbuf_idx = 0;
1475 return 1;
1476}
1477
1478#define SWAP_SYMBOL(symp) \
1479 { \
1480 (symp)->n_un.n_strx = bfd_h_getlong(symfile_bfd, \
1481 (unsigned char *)&(symp)->n_un.n_strx); \
1482 (symp)->n_desc = bfd_h_getshort (symfile_bfd, \
1483 (unsigned char *)&(symp)->n_desc); \
1484 (symp)->n_value = bfd_h_getlong (symfile_bfd, \
1485 (unsigned char *)&(symp)->n_value); \
1486 }
1487
1488/* Invariant: The symbol pointed to by symbuf_idx is the first one
1489 that hasn't been swapped. Swap the symbol at the same time
1490 that symbuf_idx is incremented. */
1491
1492/* dbx allows the text of a symbol name to be continued into the
1493 next symbol name! When such a continuation is encountered
1494 (a \ at the end of the text of a name)
1495 call this function to get the continuation. */
1496
1497static char *
1498next_symbol_text ()
1499{
1500 if (symbuf_idx == symbuf_end)
1501 fill_symbuf ();
1502 symnum++;
1503 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1504 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1505}
1506\f
1507/* Initializes storage for all of the partial symbols that will be
1508 created by read_dbx_symtab and subsidiaries. */
1509
1510static void
1511init_psymbol_list (total_symbols)
1512 int total_symbols;
1513{
1514 /* Free any previously allocated psymbol lists. */
1515 if (global_psymbols.list)
1516 free (global_psymbols.list);
1517 if (static_psymbols.list)
1518 free (static_psymbols.list);
1519
1520 /* Current best guess is that there are approximately a twentieth
1521 of the total symbols (in a debugging file) are global or static
1522 oriented symbols */
1523 global_psymbols.size = total_symbols / 10;
1524 static_psymbols.size = total_symbols / 10;
1525 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1526 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1527 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1528 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1529}
1530
1531/* Initialize the list of bincls to contain none and have some
1532 allocated. */
1533
1534static void
1535init_bincl_list (number)
1536 int number;
1537{
1538 bincls_allocated = number;
1539 next_bincl = bincl_list = (struct header_file_location *)
1540 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1541}
1542
1543/* Add a bincl to the list. */
1544
1545static void
1546add_bincl_to_list (pst, name, instance)
1547 struct partial_symtab *pst;
1548 char *name;
1549 int instance;
1550{
1551 if (next_bincl >= bincl_list + bincls_allocated)
1552 {
1553 int offset = next_bincl - bincl_list;
1554 bincls_allocated *= 2;
1555 bincl_list = (struct header_file_location *)
1556 xrealloc ((char *)bincl_list,
1557 bincls_allocated * sizeof (struct header_file_location));
1558 next_bincl = bincl_list + offset;
1559 }
1560 next_bincl->pst = pst;
1561 next_bincl->instance = instance;
1562 next_bincl++->name = name;
1563}
1564
1565/* Given a name, value pair, find the corresponding
1566 bincl in the list. Return the partial symtab associated
1567 with that header_file_location. */
1568
1569struct partial_symtab *
1570find_corresponding_bincl_psymtab (name, instance)
1571 char *name;
1572 int instance;
1573{
1574 struct header_file_location *bincl;
1575
1576 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1577 if (bincl->instance == instance
1578 && !strcmp (name, bincl->name))
1579 return bincl->pst;
1580
1581 return (struct partial_symtab *) 0;
1582}
1583
1584/* Free the storage allocated for the bincl list. */
1585
1586static void
1587free_bincl_list ()
1588{
1589 free (bincl_list);
1590 bincls_allocated = 0;
1591}
1592
1593static struct partial_symtab *start_psymtab ();
1594static void end_psymtab();
1595
1596#ifdef DEBUG
1597/* This is normally a macro defined in read_dbx_symtab, but this
1598 is a lot easier to debug. */
1599
1600ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1601 char *NAME;
1602 int NAMELENGTH;
1603 enum namespace NAMESPACE;
1604 enum address_class CLASS;
1605 struct psymbol_allocation_list *PLIST;
1606 unsigned long VALUE;
1607{
1608 register struct partial_symbol *psym;
1609
1610#define LIST *PLIST
1611 do {
1612 if ((LIST).next >=
1613 (LIST).list + (LIST).size)
1614 {
1615 (LIST).list = (struct partial_symbol *)
1616 xrealloc ((LIST).list,
1617 ((LIST).size * 2
1618 * sizeof (struct partial_symbol)));
1619 /* Next assumes we only went one over. Should be good if
1620 program works correctly */
1621 (LIST).next =
1622 (LIST).list + (LIST).size;
1623 (LIST).size *= 2;
1624 }
1625 psym = (LIST).next++;
1626#undef LIST
1627
1628 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1629 (NAMELENGTH) + 1);
1630 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1631 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1632 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1633 SYMBOL_CLASS (psym) = (CLASS);
1634 SYMBOL_VALUE (psym) = (VALUE);
1635 } while (0);
1636}
1637
1638/* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1639#define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1640 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1641
1642#endif /* DEBUG */
1643
1644/* Given pointers to an a.out symbol table in core containing dbx
1645 style data, setup partial_symtab's describing each source file for
1646 which debugging information is available. NLISTLEN is the number
1647 of symbols in the symbol table. All symbol names are given as
1648 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1649 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1650 and ADDR is its relocated address (if incremental) or 0 (if not). */
1651
1652static void
1653read_dbx_symtab (symfile_name, addr,
1654 desc, stringtab, stringtab_size, nlistlen,
1655 text_addr, text_size)
1656 char *symfile_name;
1657 CORE_ADDR addr;
1658 int desc;
1659 register char *stringtab;
1660 register long stringtab_size;
1661 register int nlistlen;
1662 CORE_ADDR text_addr;
1663 int text_size;
1664{
1665 register struct nlist *bufp;
1666 register char *namestring;
1667 register struct partial_symbol *psym;
1668 int nsl;
1669 int past_first_source_file = 0;
1670 CORE_ADDR last_o_file_start = 0;
1671 struct cleanup *old_chain;
1672 char *p;
1673
1674 /* End of the text segment of the executable file. */
1675 CORE_ADDR end_of_text_addr;
1676
1677 /* Current partial symtab */
1678 struct partial_symtab *pst;
1679
1680 /* List of current psymtab's include files */
1681 char **psymtab_include_list;
1682 int includes_allocated;
1683 int includes_used;
1684
1685 /* Index within current psymtab dependency list */
1686 struct partial_symtab **dependency_list;
1687 int dependencies_used, dependencies_allocated;
1688
1689 stringtab_global = stringtab;
1690
1691 pst = (struct partial_symtab *) 0;
1692
1693 includes_allocated = 30;
1694 includes_used = 0;
1695 psymtab_include_list = (char **) alloca (includes_allocated *
1696 sizeof (char *));
1697
1698 dependencies_allocated = 30;
1699 dependencies_used = 0;
1700 dependency_list =
1701 (struct partial_symtab **) alloca (dependencies_allocated *
1702 sizeof (struct partial_symtab *));
1703
1704 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1705 It should only blow away the psymtabs created herein. We could
1706 be reading a shared library or a dynloaded file! */
1707 old_chain = make_cleanup (free_all_psymtabs, 0);
1708
1709 /* Init bincl list */
1710 init_bincl_list (20);
1711 make_cleanup (free_bincl_list, 0);
1712
1713 last_source_file = 0;
1714
1715#ifdef END_OF_TEXT_DEFAULT
1716 end_of_text_addr = END_OF_TEXT_DEFAULT;
1717#else
3f2e006b 1718 end_of_text_addr = text_addr + text_size;
bd5635a1
RP
1719#endif
1720
1721 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1722 symbuf_end = symbuf_idx = 0;
1723
1724 for (symnum = 0; symnum < nlistlen; symnum++)
1725 {
1726 /* Get the symbol for this run and pull out some info */
1727 QUIT; /* allow this to be interruptable */
1728 if (symbuf_idx == symbuf_end)
1729 fill_symbuf ();
1730 bufp = &symbuf[symbuf_idx++];
1731
1732 /*
1733 * Special case to speed up readin.
1734 */
1735 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1736
1737 SWAP_SYMBOL (bufp);
1738
1739 /* Ok. There is a lot of code duplicated in the rest of this
1740 switch statement (for efficiency reasons). Since I don't
1741 like duplicating code, I will do my penance here, and
1742 describe the code which is duplicated:
1743
1744 *) The assignment to namestring.
1745 *) The call to strchr.
1746 *) The addition of a partial symbol the the two partial
1747 symbol lists. This last is a large section of code, so
1748 I've imbedded it in the following macro.
1749 */
1750
1751/* Set namestring based on bufp. If the string table index is invalid,
1752 give a fake name, and print a single error message per symbol file read,
1753 rather than abort the symbol reading or flood the user with messages. */
1754#define SET_NAMESTRING()\
1755 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1756 complain (&string_table_offset_complaint, symnum); \
1757 namestring = "foo"; \
1758 } else \
1759 namestring = bufp->n_un.n_strx + stringtab
1760
1761/* Add a symbol with an integer value to a psymtab. */
1762/* This is a macro unless we're debugging. See above this function. */
1763#ifndef DEBUG
1764# define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1765 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1766 SYMBOL_VALUE)
1767#endif /* DEBUG */
1768
1769/* Add a symbol with a CORE_ADDR value to a psymtab. */
1770#define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1771 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1772 SYMBOL_VALUE_ADDRESS)
1773
1774/* Add any kind of symbol to a psymtab. */
1775#define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1776 do { \
1777 if ((LIST).next >= \
1778 (LIST).list + (LIST).size) \
1779 { \
1780 (LIST).list = (struct partial_symbol *) \
1781 xrealloc ((LIST).list, \
1782 ((LIST).size * 2 \
1783 * sizeof (struct partial_symbol))); \
1784 /* Next assumes we only went one over. Should be good if \
1785 program works correctly */ \
1786 (LIST).next = \
1787 (LIST).list + (LIST).size; \
1788 (LIST).size *= 2; \
1789 } \
1790 psym = (LIST).next++; \
1791 \
1792 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1793 (NAMELENGTH) + 1); \
1794 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1795 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1796 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1797 SYMBOL_CLASS (psym) = (CLASS); \
1798 VT (psym) = (VALUE); \
1799 } while (0);
1800
1801/* End of macro definitions, now let's handle them symbols! */
1802
1803 switch (bufp->n_type)
1804 {
1805 /*
1806 * Standard, external, non-debugger, symbols
1807 */
1808
1809 case N_TEXT | N_EXT:
1810 case N_NBTEXT | N_EXT:
1811 case N_NBDATA | N_EXT:
1812 case N_NBBSS | N_EXT:
1813 case N_SETV | N_EXT:
1814 case N_ABS | N_EXT:
1815 case N_DATA | N_EXT:
1816 case N_BSS | N_EXT:
1817
1818 bufp->n_value += addr; /* Relocate */
1819
1820 SET_NAMESTRING();
1821
1822 bss_ext_symbol:
1823 record_misc_function (namestring, bufp->n_value,
1824 bufp->n_type); /* Always */
1825
1826 continue;
1827
1828 /* Standard, local, non-debugger, symbols */
1829
1830 case N_NBTEXT:
1831
1832 /* We need to be able to deal with both N_FN or N_TEXT,
1833 because we have no way of knowing whether the sys-supplied ld
1834 or GNU ld was used to make the executable. */
1835#if ! (N_FN & N_EXT)
1836 case N_FN:
1837#endif
1838 case N_FN | N_EXT:
1839 case N_TEXT:
1840 bufp->n_value += addr; /* Relocate */
1841 SET_NAMESTRING();
1842 if ((namestring[0] == '-' && namestring[1] == 'l')
1843 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1844 && namestring [nsl - 2] == '.'))
1845 {
1846 if (entry_point < bufp->n_value
1847 && entry_point >= last_o_file_start
1848 && addr == 0) /* FIXME nogood nomore */
1849 {
1850 startup_file_start = last_o_file_start;
1851 startup_file_end = bufp->n_value;
1852 }
1853 if (past_first_source_file && pst
1854 /* The gould NP1 uses low values for .o and -l symbols
1855 which are not the address. */
1856 && bufp->n_value > pst->textlow)
1857 {
1858 end_psymtab (pst, psymtab_include_list, includes_used,
1859 symnum * sizeof (struct nlist), bufp->n_value,
1860 dependency_list, dependencies_used,
1861 global_psymbols.next, static_psymbols.next);
1862 pst = (struct partial_symtab *) 0;
1863 includes_used = 0;
1864 dependencies_used = 0;
1865 }
1866 else
1867 past_first_source_file = 1;
1868 last_o_file_start = bufp->n_value;
1869 }
1870 continue;
1871
1872 case N_DATA:
1873 bufp->n_value += addr; /* Relocate */
1874 SET_NAMESTRING ();
1875 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1876 Record it even if it's local, not global, so we can find it. */
1877 if (namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1878 {
1879 /* Not really a function here, but... */
1880 record_misc_function (namestring, bufp->n_value,
1881 bufp->n_type); /* Always */
1882 }
1883 continue;
1884
1885 case N_UNDF | N_EXT:
1886 if (bufp->n_value != 0) {
1887 /* This is a "Fortran COMMON" symbol. See if the target
1888 environment knows where it has been relocated to. */
1889
1890 CORE_ADDR reladdr;
1891
1892 SET_NAMESTRING();
1893 if (target_lookup_symbol (namestring, &reladdr)) {
1894 continue; /* Error in lookup; ignore symbol for now. */
1895 }
1896 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1897 bufp->n_value = reladdr;
1898 goto bss_ext_symbol;
1899 }
1900 continue; /* Just undefined, not COMMON */
1901
1902 /* Lots of symbol types we can just ignore. */
1903
1904 case N_UNDF:
1905 case N_ABS:
1906 case N_BSS:
1907 case N_NBDATA:
1908 case N_NBBSS:
1909 continue;
1910
1911 /* Keep going . . .*/
1912
1913 /*
1914 * Special symbol types for GNU
1915 */
1916 case N_INDR:
1917 case N_INDR | N_EXT:
1918 case N_SETA:
1919 case N_SETA | N_EXT:
1920 case N_SETT:
1921 case N_SETT | N_EXT:
1922 case N_SETD:
1923 case N_SETD | N_EXT:
1924 case N_SETB:
1925 case N_SETB | N_EXT:
1926 case N_SETV:
1927 continue;
1928
1929 /*
1930 * Debugger symbols
1931 */
1932
1933 case N_SO: {
1934 unsigned long valu = bufp->n_value;
1935 /* Symbol number of the first symbol of this file (i.e. the N_SO
1936 if there is just one, or the first if we have a pair). */
1937 int first_symnum = symnum;
1938
1939 /* End the current partial symtab and start a new one */
1940
1941 SET_NAMESTRING();
1942
1943 /* Peek at the next symbol. If it is also an N_SO, the
1944 first one just indicates the directory. */
1945 if (symbuf_idx == symbuf_end)
1946 fill_symbuf ();
1947 bufp = &symbuf[symbuf_idx];
1948 /* n_type is only a char, so swapping swapping is irrelevant. */
1949 if (bufp->n_type == (unsigned char)N_SO)
1950 {
1951 SWAP_SYMBOL (bufp);
1952 SET_NAMESTRING ();
1953 valu = bufp->n_value;
1954 symbuf_idx++;
1955 symnum++;
1956 }
1957 valu += addr; /* Relocate */
1958
1959 if (pst && past_first_source_file)
1960 {
1961 end_psymtab (pst, psymtab_include_list, includes_used,
1962 first_symnum * sizeof (struct nlist), valu,
1963 dependency_list, dependencies_used,
1964 global_psymbols.next, static_psymbols.next);
1965 pst = (struct partial_symtab *) 0;
1966 includes_used = 0;
1967 dependencies_used = 0;
1968 }
1969 else
1970 past_first_source_file = 1;
1971
1972 pst = start_psymtab (symfile_name, addr,
1973 namestring, valu,
1974 first_symnum * sizeof (struct nlist),
1975 global_psymbols.next, static_psymbols.next);
1976
1977 continue;
1978 }
1979
1980 case N_BINCL:
1981 /* Add this bincl to the bincl_list for future EXCLs. No
1982 need to save the string; it'll be around until
1983 read_dbx_symtab function returns */
1984
1985 SET_NAMESTRING();
1986
1987 add_bincl_to_list (pst, namestring, bufp->n_value);
1988
1989 /* Mark down an include file in the current psymtab */
1990
1991 psymtab_include_list[includes_used++] = namestring;
1992 if (includes_used >= includes_allocated)
1993 {
1994 char **orig = psymtab_include_list;
1995
1996 psymtab_include_list = (char **)
1997 alloca ((includes_allocated *= 2) *
1998 sizeof (char *));
1999 bcopy (orig, psymtab_include_list,
2000 includes_used * sizeof (char *));
2001 }
2002
2003 continue;
2004
2005 case N_SOL:
2006 /* Mark down an include file in the current psymtab */
2007
2008 SET_NAMESTRING();
2009
2010 /* In C++, one may expect the same filename to come round many
2011 times, when code is coming alternately from the main file
2012 and from inline functions in other files. So I check to see
f9623881
JG
2013 if this is a file we've seen before -- either the main
2014 source file, or a previously included file.
bd5635a1
RP
2015
2016 This seems to be a lot of time to be spending on N_SOL, but
2017 things like "break expread.y:435" need to work (I
2018 suppose the psymtab_include_list could be hashed or put
2019 in a binary tree, if profiling shows this is a major hog). */
f9623881
JG
2020 if (!strcmp (namestring, pst->filename))
2021 continue;
bd5635a1
RP
2022 {
2023 register int i;
2024 for (i = 0; i < includes_used; i++)
2025 if (!strcmp (namestring, psymtab_include_list[i]))
2026 {
2027 i = -1;
2028 break;
2029 }
2030 if (i == -1)
2031 continue;
2032 }
2033
2034 psymtab_include_list[includes_used++] = namestring;
2035 if (includes_used >= includes_allocated)
2036 {
2037 char **orig = psymtab_include_list;
2038
2039 psymtab_include_list = (char **)
2040 alloca ((includes_allocated *= 2) *
2041 sizeof (char *));
2042 bcopy (orig, psymtab_include_list,
2043 includes_used * sizeof (char *));
2044 }
2045 continue;
2046
2047 case N_LSYM: /* Typedef or automatic variable. */
2048 SET_NAMESTRING();
2049
2050 p = (char *) strchr (namestring, ':');
2051
2052 /* Skip if there is no :. */
2053 if (!p) continue;
2054
2055 switch (p[1])
2056 {
2057 case 'T':
2058 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2059 STRUCT_NAMESPACE, LOC_TYPEDEF,
2060 static_psymbols, bufp->n_value);
2061 if (p[2] == 't')
2062 {
2063 /* Also a typedef with the same name. */
2064 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2065 VAR_NAMESPACE, LOC_TYPEDEF,
2066 static_psymbols, bufp->n_value);
2067 p += 1;
2068 }
2069 goto check_enum;
2070 case 't':
2071 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2072 VAR_NAMESPACE, LOC_TYPEDEF,
2073 static_psymbols, bufp->n_value);
2074 check_enum:
2075 /* If this is an enumerated type, we need to
2076 add all the enum constants to the partial symbol
2077 table. This does not cover enums without names, e.g.
2078 "enum {a, b} c;" in C, but fortunately those are
2079 rare. There is no way for GDB to find those from the
2080 enum type without spending too much time on it. Thus
2081 to solve this problem, the compiler needs to put out separate
2082 constant symbols ('c' N_LSYMS) for enum constants in
2083 enums without names, or put out a dummy type. */
2084
2085 /* We are looking for something of the form
2086 <name> ":" ("t" | "T") [<number> "="] "e"
2087 {<constant> ":" <value> ","} ";". */
2088
2089 /* Skip over the colon and the 't' or 'T'. */
2090 p += 2;
2091 /* This type may be given a number. Skip over it. */
2092 while ((*p >= '0' && *p <= '9')
2093 || *p == '=')
2094 p++;
2095
2096 if (*p++ == 'e')
2097 {
2098 /* We have found an enumerated type. */
2099 /* According to comments in read_enum_type
2100 a comma could end it instead of a semicolon.
2101 I don't know where that happens.
2102 Accept either. */
2103 while (*p && *p != ';' && *p != ',')
2104 {
2105 char *q;
2106
2107 /* Check for and handle cretinous dbx symbol name
2108 continuation! */
2109 if (*p == '\\')
2110 p = next_symbol_text ();
2111
2112 /* Point to the character after the name
2113 of the enum constant. */
2114 for (q = p; *q && *q != ':'; q++)
2115 ;
2116 /* Note that the value doesn't matter for
2117 enum constants in psymtabs, just in symtabs. */
2118 ADD_PSYMBOL_TO_LIST (p, q - p,
2119 VAR_NAMESPACE, LOC_CONST,
2120 static_psymbols, 0);
2121 /* Point past the name. */
2122 p = q;
2123 /* Skip over the value. */
2124 while (*p && *p != ',')
2125 p++;
2126 /* Advance past the comma. */
2127 if (*p)
2128 p++;
2129 }
2130 }
2131
2132 continue;
2133 case 'c':
2134 /* Constant, e.g. from "const" in Pascal. */
2135 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2136 VAR_NAMESPACE, LOC_CONST,
2137 static_psymbols, bufp->n_value);
2138 continue;
2139 default:
2140 /* Skip if the thing following the : is
2141 not a letter (which indicates declaration of a local
2142 variable, which we aren't interested in). */
2143 continue;
2144 }
2145
2146 case N_FUN:
2147 case N_GSYM: /* Global (extern) variable; can be
2148 data or bss (sigh). */
2149 case N_STSYM: /* Data seg var -- static */
2150 case N_LCSYM: /* BSS " */
2151
2152 case N_NBSTS: /* Gould nobase. */
2153 case N_NBLCS: /* symbols. */
2154
2155 /* Following may probably be ignored; I'll leave them here
2156 for now (until I do Pascal and Modula 2 extensions). */
2157
2158 case N_PC: /* I may or may not need this; I
2159 suspect not. */
2160 case N_M2C: /* I suspect that I can ignore this here. */
2161 case N_SCOPE: /* Same. */
2162
2163 SET_NAMESTRING();
2164
2165 p = (char *) strchr (namestring, ':');
2166 if (!p)
2167 continue; /* Not a debugging symbol. */
2168
2169
2170
2171 /* Main processing section for debugging symbols which
2172 the initial read through the symbol tables needs to worry
2173 about. If we reach this point, the symbol which we are
2174 considering is definitely one we are interested in.
2175 p must also contain the (valid) index into the namestring
2176 which indicates the debugging type symbol. */
2177
2178 switch (p[1])
2179 {
2180 case 'c':
2181 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2182 VAR_NAMESPACE, LOC_CONST,
2183 static_psymbols, bufp->n_value);
2184 continue;
2185 case 'S':
2186 bufp->n_value += addr; /* Relocate */
2187 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2188 VAR_NAMESPACE, LOC_STATIC,
2189 static_psymbols, bufp->n_value);
2190 continue;
2191 case 'G':
2192 bufp->n_value += addr; /* Relocate */
2193 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2194 VAR_NAMESPACE, LOC_EXTERNAL,
2195 global_psymbols, bufp->n_value);
2196 continue;
2197
2198 case 't':
2199 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2200 VAR_NAMESPACE, LOC_TYPEDEF,
2201 global_psymbols, bufp->n_value);
2202 continue;
2203
2204 case 'f':
2205 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2206 VAR_NAMESPACE, LOC_BLOCK,
2207 static_psymbols, bufp->n_value);
2208 continue;
2209
f9623881
JG
2210 /* Global functions were ignored here, but now they
2211 are put into the global psymtab like one would expect.
2212 They're also in the misc fn vector...
2213 FIXME, why did it used to ignore these? That broke
2214 "i fun" on these functions. */
2215 case 'F':
2216 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2217 VAR_NAMESPACE, LOC_BLOCK,
2218 global_psymbols, bufp->n_value);
2219 continue;
2220
bd5635a1
RP
2221 /* Two things show up here (hopefully); static symbols of
2222 local scope (static used inside braces) or extensions
2223 of structure symbols. We can ignore both. */
2224 case 'V':
2225 case '(':
2226 case '0':
2227 case '1':
2228 case '2':
2229 case '3':
2230 case '4':
2231 case '5':
2232 case '6':
2233 case '7':
2234 case '8':
2235 case '9':
bd5635a1
RP
2236 continue;
2237
2238 default:
2239 /* Unexpected symbol. Ignore it; perhaps it is an extension
2240 that we don't know about.
2241
2242 Someone says sun cc puts out symbols like
2243 /foo/baz/maclib::/usr/local/bin/maclib,
2244 which would get here with a symbol type of ':'. */
2245 continue;
2246 }
2247
2248 case N_EXCL:
2249
2250 SET_NAMESTRING();
2251
2252 /* Find the corresponding bincl and mark that psymtab on the
2253 psymtab dependency list */
2254 {
2255 struct partial_symtab *needed_pst =
2256 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2257
2258 /* If this include file was defined earlier in this file,
2259 leave it alone. */
2260 if (needed_pst == pst) continue;
2261
2262 if (needed_pst)
2263 {
2264 int i;
2265 int found = 0;
2266
2267 for (i = 0; i < dependencies_used; i++)
2268 if (dependency_list[i] == needed_pst)
2269 {
2270 found = 1;
2271 break;
2272 }
2273
2274 /* If it's already in the list, skip the rest. */
2275 if (found) continue;
2276
2277 dependency_list[dependencies_used++] = needed_pst;
2278 if (dependencies_used >= dependencies_allocated)
2279 {
2280 struct partial_symtab **orig = dependency_list;
2281 dependency_list =
2282 (struct partial_symtab **)
2283 alloca ((dependencies_allocated *= 2)
2284 * sizeof (struct partial_symtab *));
2285 bcopy (orig, dependency_list,
2286 (dependencies_used
2287 * sizeof (struct partial_symtab *)));
2288#ifdef DEBUG_INFO
2289 fprintf (stderr, "Had to reallocate dependency list.\n");
2290 fprintf (stderr, "New dependencies allocated: %d\n",
2291 dependencies_allocated);
2292#endif
2293 }
2294 }
2295 else
2296 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2297 symnum);
2298 }
2299 continue;
2300
2301 case N_EINCL:
2302 case N_DSLINE:
2303 case N_BSLINE:
2304 case N_SSYM: /* Claim: Structure or union element.
2305 Hopefully, I can ignore this. */
2306 case N_ENTRY: /* Alternate entry point; can ignore. */
2307 case N_MAIN: /* Can definitely ignore this. */
2308 case N_CATCH: /* These are GNU C++ extensions */
2309 case N_EHDECL: /* that can safely be ignored here. */
2310 case N_LENG:
2311 case N_BCOMM:
2312 case N_ECOMM:
2313 case N_ECOML:
2314 case N_FNAME:
2315 case N_SLINE:
2316 case N_RSYM:
2317 case N_PSYM:
2318 case N_LBRAC:
2319 case N_RBRAC:
2320 case N_NSYMS: /* Ultrix 4.0: symbol count */
2321 /* These symbols aren't interesting; don't worry about them */
2322
2323 continue;
2324
2325 default:
2326 /* If we haven't found it yet, ignore it. It's probably some
2327 new type we don't know about yet. */
2328 complain (&unknown_symtype_complaint, bufp->n_type);
2329 continue;
2330 }
2331 }
2332
2333 /* If there's stuff to be cleaned up, clean it up. */
2334 if (entry_point < bufp->n_value
2335 && entry_point >= last_o_file_start)
2336 {
2337 startup_file_start = last_o_file_start;
2338 startup_file_end = bufp->n_value;
2339 }
2340
2341 if (pst)
2342 {
2343 end_psymtab (pst, psymtab_include_list, includes_used,
2344 symnum * sizeof (struct nlist), end_of_text_addr,
2345 dependency_list, dependencies_used,
2346 global_psymbols.next, static_psymbols.next);
2347 includes_used = 0;
2348 dependencies_used = 0;
2349 pst = (struct partial_symtab *) 0;
2350 }
2351
2352 free_bincl_list ();
2353 discard_cleanups (old_chain);
2354}
2355
2356/*
2357 * Allocate and partially fill a partial symtab. It will be
2358 * completely filled at the end of the symbol list.
2359
2360 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2361 is the address relative to which its symbols are (incremental) or 0
2362 (normal). */
2363static struct partial_symtab *
2364start_psymtab (symfile_name, addr,
2365 filename, textlow, ldsymoff, global_syms, static_syms)
2366 char *symfile_name;
2367 CORE_ADDR addr;
2368 char *filename;
2369 CORE_ADDR textlow;
2370 int ldsymoff;
2371 struct partial_symbol *global_syms;
2372 struct partial_symbol *static_syms;
2373{
2374 struct partial_symtab *result =
2375 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2376 sizeof (struct partial_symtab));
2377
2378 result->addr = addr;
2379
2380 result->symfile_name =
2381 (char *) obstack_alloc (psymbol_obstack,
2382 strlen (symfile_name) + 1);
2383 strcpy (result->symfile_name, symfile_name);
2384
2385 result->filename =
2386 (char *) obstack_alloc (psymbol_obstack,
2387 strlen (filename) + 1);
2388 strcpy (result->filename, filename);
2389
2390 result->textlow = textlow;
2391 result->ldsymoff = ldsymoff;
2392
2393 result->readin = 0;
2394 result->symtab = 0;
2395 result->read_symtab = dbx_psymtab_to_symtab;
2396
2397 result->globals_offset = global_syms - global_psymbols.list;
2398 result->statics_offset = static_syms - static_psymbols.list;
2399
2400 result->n_global_syms = 0;
2401 result->n_static_syms = 0;
2402
2403
2404 return result;
2405}
2406
2407static int
2408compare_psymbols (s1, s2)
2409 register struct partial_symbol *s1, *s2;
2410{
2411 register char
2412 *st1 = SYMBOL_NAME (s1),
2413 *st2 = SYMBOL_NAME (s2);
2414
2415 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2416 strcmp (st1 + 1, st2 + 1));
2417}
2418
2419
2420/* Close off the current usage of a partial_symbol table entry. This
2421 involves setting the correct number of includes (with a realloc),
2422 setting the high text mark, setting the symbol length in the
2423 executable, and setting the length of the global and static lists
2424 of psymbols.
2425
2426 The global symbols and static symbols are then seperately sorted.
2427
2428 Then the partial symtab is put on the global list.
2429 *** List variables and peculiarities of same. ***
2430 */
2431static void
2432end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2433 capping_text, dependency_list, number_dependencies,
2434 capping_global, capping_static)
2435 struct partial_symtab *pst;
2436 char **include_list;
2437 int num_includes;
2438 int capping_symbol_offset;
2439 CORE_ADDR capping_text;
2440 struct partial_symtab **dependency_list;
2441 int number_dependencies;
2442 struct partial_symbol *capping_global, *capping_static;
2443{
2444 int i;
2445
2446 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2447 pst->texthigh = capping_text;
2448
2449 pst->n_global_syms =
2450 capping_global - (global_psymbols.list + pst->globals_offset);
2451 pst->n_static_syms =
2452 capping_static - (static_psymbols.list + pst->statics_offset);
2453
2454 pst->number_of_dependencies = number_dependencies;
2455 if (number_dependencies)
2456 {
2457 pst->dependencies = (struct partial_symtab **)
2458 obstack_alloc (psymbol_obstack,
2459 number_dependencies * sizeof (struct partial_symtab *));
2460 bcopy (dependency_list, pst->dependencies,
2461 number_dependencies * sizeof (struct partial_symtab *));
2462 }
2463 else
2464 pst->dependencies = 0;
2465
2466 for (i = 0; i < num_includes; i++)
2467 {
2468 /* Eventually, put this on obstack */
2469 struct partial_symtab *subpst =
2470 (struct partial_symtab *)
2471 obstack_alloc (psymbol_obstack,
2472 sizeof (struct partial_symtab));
2473
2474 subpst->filename =
2475 (char *) obstack_alloc (psymbol_obstack,
2476 strlen (include_list[i]) + 1);
2477 strcpy (subpst->filename, include_list[i]);
2478
2479 subpst->symfile_name = pst->symfile_name;
2480 subpst->addr = pst->addr;
2481 subpst->ldsymoff =
2482 subpst->ldsymlen =
2483 subpst->textlow =
2484 subpst->texthigh = 0;
2485
3f83182d
JG
2486 /* We could save slight bits of space by only making one of these,
2487 shared by the entire set of include files. FIXME-someday. */
bd5635a1
RP
2488 subpst->dependencies = (struct partial_symtab **)
2489 obstack_alloc (psymbol_obstack,
2490 sizeof (struct partial_symtab *));
2491 subpst->dependencies[0] = pst;
2492 subpst->number_of_dependencies = 1;
2493
2494 subpst->globals_offset =
2495 subpst->n_global_syms =
2496 subpst->statics_offset =
2497 subpst->n_static_syms = 0;
2498
2499 subpst->readin = 0;
2500 subpst->read_symtab = dbx_psymtab_to_symtab;
2501
2502 subpst->next = partial_symtab_list;
2503 partial_symtab_list = subpst;
2504 }
2505
2506 /* Sort the global list; don't sort the static list */
2507 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2508 sizeof (struct partial_symbol), compare_psymbols);
2509
f9623881
JG
2510 /* If there is already a psymtab or symtab for a file of this name, remove it.
2511 (If there is a symtab, more drastic things also happen.)
2512 This happens in VxWorks. */
2513 free_named_symtabs (pst->filename);
2514
bd5635a1
RP
2515 /* Put the psymtab on the psymtab list */
2516 pst->next = partial_symtab_list;
2517 partial_symtab_list = pst;
2518}
2519\f
2520static void
2521psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2522 struct partial_symtab *pst;
2523 int desc;
2524 char *stringtab;
2525 int stringtab_size;
2526 int sym_offset;
2527{
2528 struct cleanup *old_chain;
2529 int i;
2530
2531 if (!pst)
2532 return;
2533
2534 if (pst->readin)
2535 {
2536 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2537 pst->filename);
2538 return;
2539 }
2540
2541 /* Read in all partial symbtabs on which this one is dependent */
2542 for (i = 0; i < pst->number_of_dependencies; i++)
2543 if (!pst->dependencies[i]->readin)
2544 {
2545 /* Inform about additional files that need to be read in. */
2546 if (info_verbose)
2547 {
2548 fputs_filtered (" ", stdout);
2549 wrap_here ("");
2550 fputs_filtered ("and ", stdout);
2551 wrap_here ("");
2552 printf_filtered ("%s...", pst->dependencies[i]->filename);
2553 wrap_here (""); /* Flush output */
2554 fflush (stdout);
2555 }
2556 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2557 stringtab, stringtab_size, sym_offset);
2558 }
2559
2560 if (pst->ldsymlen) /* Otherwise it's a dummy */
2561 {
2562 /* Init stuff necessary for reading in symbols */
2563 free_pendings = 0;
2564 pending_blocks = 0;
2565 file_symbols = 0;
2566 global_symbols = 0;
2567 old_chain = make_cleanup (really_free_pendings, 0);
2568
2569 /* Read in this files symbols */
2570 lseek (desc, sym_offset, L_SET);
2571 read_ofile_symtab (desc, stringtab, stringtab_size,
2572 pst->ldsymoff,
2573 pst->ldsymlen, pst->textlow,
2574 pst->texthigh - pst->textlow, pst->addr);
2575 sort_symtab_syms (symtab_list); /* At beginning since just added */
2576
2577 do_cleanups (old_chain);
2578 }
2579
2580 pst->readin = 1;
2581}
2582
2583/*
2584 * Read in all of the symbols for a given psymtab for real.
2585 * Be verbose about it if the user wants that.
2586 */
2587static void
2588dbx_psymtab_to_symtab (pst)
2589 struct partial_symtab *pst;
2590{
2591 int desc;
2592 char *stringtab;
2593 int stsize, val;
2594 struct stat statbuf;
2595 struct cleanup *old_chain;
2596 bfd *sym_bfd;
2597 long st_temp;
2598
2599 if (!pst)
2600 return;
2601
2602 if (pst->readin)
2603 {
2604 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2605 pst->filename);
2606 return;
2607 }
2608
2609 if (pst->ldsymlen || pst->number_of_dependencies)
2610 {
2611 /* Print the message now, before reading the string table,
2612 to avoid disconcerting pauses. */
2613 if (info_verbose)
2614 {
2615 printf_filtered ("Reading in symbols for %s...", pst->filename);
2616 fflush (stdout);
2617 }
2618
2619 /* Open symbol file and read in string table. Symbol_file_command
2620 guarantees that the symbol file name will be absolute, so there is
2621 no need for openp. */
2622 desc = open(pst->symfile_name, O_RDONLY, 0);
2623
2624 if (desc < 0)
2625 perror_with_name (pst->symfile_name);
2626
2627 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2628 if (!sym_bfd)
2629 {
2630 (void)close (desc);
2631 error ("Could not open `%s' to read symbols: %s",
2632 pst->symfile_name, bfd_errmsg (bfd_error));
2633 }
2634 old_chain = make_cleanup (bfd_close, sym_bfd);
2635 if (!bfd_check_format (sym_bfd, bfd_object))
2636 error ("\"%s\": can't read symbols: %s.",
2637 pst->symfile_name, bfd_errmsg (bfd_error));
2638
2639 /* We keep the string table for symfile resident in memory, but
2640 not the string table for any other symbol files. */
66eeea27 2641 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
bd5635a1
RP
2642 {
2643 /* Read in the string table */
2644
2645 /* FIXME, this uses internal BFD variables. See above in
2646 dbx_symbol_file_open where the macro is defined! */
2647 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2648
2649 val = myread (desc, &st_temp, sizeof st_temp);
2650 if (val < 0)
2651 perror_with_name (pst->symfile_name);
2652 stsize = bfd_h_getlong (sym_bfd, (unsigned char *)&st_temp);
2653 if (fstat (desc, &statbuf) < 0)
2654 perror_with_name (pst->symfile_name);
2655
2656 if (stsize >= 0 && stsize < statbuf.st_size)
2657 {
2658#ifdef BROKEN_LARGE_ALLOCA
2659 stringtab = (char *) xmalloc (stsize);
2660 make_cleanup (free, stringtab);
2661#else
2662 stringtab = (char *) alloca (stsize);
2663#endif
2664 }
2665 else
2666 stringtab = NULL;
2667 if (stringtab == NULL && stsize != 0)
2668 error ("ridiculous string table size: %d bytes", stsize);
2669
2670 /* FIXME, this uses internal BFD variables. See above in
2671 dbx_symbol_file_open where the macro is defined! */
2672 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2673 if (val < 0)
2674 perror_with_name (pst->symfile_name);
2675 val = myread (desc, stringtab, stsize);
2676 if (val < 0)
2677 perror_with_name (pst->symfile_name);
2678 }
2679 else
2680 {
2681 stringtab = symfile_string_table;
2682 stsize = symfile_string_table_size;
2683 }
2684
2685 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2686
2687 /* FIXME, this uses internal BFD variables. See above in
2688 dbx_symbol_file_open where the macro is defined! */
2689 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2690 SYMBOL_TABLE_OFFSET);
2691
2692 /* Match with global symbols. This only needs to be done once,
2693 after all of the symtabs and dependencies have been read in. */
2694 scan_file_globals ();
2695
2696 do_cleanups (old_chain);
2697
2698 /* Finish up the debug error message. */
2699 if (info_verbose)
2700 printf_filtered ("done.\n");
2701 }
2702}
2703
2704/*
2705 * Scan through all of the global symbols defined in the object file,
2706 * assigning values to the debugging symbols that need to be assigned
2707 * to. Get these symbols from the misc function list.
2708 */
2709static void
2710scan_file_globals ()
2711{
2712 int hash;
2713 int mf;
2714
2715 for (mf = 0; mf < misc_function_count; mf++)
2716 {
2717 char *namestring = misc_function_vector[mf].name;
2718 struct symbol *sym, *prev;
2719
2720 QUIT;
2721
2722 prev = (struct symbol *) 0;
2723
2724 /* Get the hash index and check all the symbols
2725 under that hash index. */
2726
2727 hash = hashname (namestring);
2728
2729 for (sym = global_sym_chain[hash]; sym;)
2730 {
2731 if (*namestring == SYMBOL_NAME (sym)[0]
2732 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2733 {
2734 /* Splice this symbol out of the hash chain and
2735 assign the value we have to it. */
2736 if (prev)
2737 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2738 else
2739 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2740
2741 /* Check to see whether we need to fix up a common block. */
2742 /* Note: this code might be executed several times for
2743 the same symbol if there are multiple references. */
2744 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2745 fix_common_block (sym, misc_function_vector[mf].address);
2746 else
2747 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2748
2749 if (prev)
2750 sym = SYMBOL_VALUE_CHAIN (prev);
2751 else
2752 sym = global_sym_chain[hash];
2753 }
2754 else
2755 {
2756 prev = sym;
2757 sym = SYMBOL_VALUE_CHAIN (sym);
2758 }
2759 }
2760 }
2761}
2762
2763/* Process a pair of symbols. Currently they must both be N_SO's. */
2764static void
2765process_symbol_pair (type1, desc1, value1, name1,
2766 type2, desc2, value2, name2)
2767 int type1;
2768 int desc1;
2769 CORE_ADDR value1;
2770 char *name1;
2771 int type2;
2772 int desc2;
2773 CORE_ADDR value2;
2774 char *name2;
2775{
2776 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2777 broken PCC's don't put out N_SO pairs. */
2778 if (last_source_file)
2779 end_symtab (value2);
2780 start_symtab (name2, name1, value2);
2781}
2782
2783/*
2784 * Read in a defined section of a specific object file's symbols.
2785 *
2786 * DESC is the file descriptor for the file, positioned at the
2787 * beginning of the symtab
2788 * STRINGTAB is a pointer to the files string
2789 * table, already read in
2790 * SYM_OFFSET is the offset within the file of
2791 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2792 * number of symbols to read
2793 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2794 * TEXT_SIZE is the size of the text segment read in.
2795 * OFFSET is a relocation offset which gets added to each symbol
2796 */
2797
2798static void
2799read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2800 sym_size, text_offset, text_size, offset)
2801 int desc;
2802 register char *stringtab;
2803 unsigned int stringtab_size;
2804 int sym_offset;
2805 int sym_size;
2806 CORE_ADDR text_offset;
2807 int text_size;
2808 int offset;
2809{
2810 register char *namestring;
2811 struct nlist *bufp;
2812 unsigned char type;
2813 subfile_stack = 0;
2814
2815 stringtab_global = stringtab;
2816 last_source_file = 0;
2817
2818 symtab_input_desc = desc;
2819 symbuf_end = symbuf_idx = 0;
2820
2821 /* It is necessary to actually read one symbol *before* the start
2822 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2823 occurs before the N_SO symbol.
2824
2825 Detecting this in read_dbx_symtab
2826 would slow down initial readin, so we look for it here instead. */
2827 if (sym_offset >= (int)sizeof (struct nlist))
2828 {
2829 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2830 fill_symbuf ();
2831 bufp = &symbuf[symbuf_idx++];
2832 SWAP_SYMBOL (bufp);
2833
2834 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2835 error ("Invalid symbol data: bad string table offset: %d",
2836 bufp->n_un.n_strx);
2837 namestring = bufp->n_un.n_strx + stringtab;
2838
2839 processing_gcc_compilation =
2840 (bufp->n_type == N_TEXT
2841 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2842 }
2843 else
2844 {
2845 /* The N_SO starting this symtab is the first symbol, so we
2846 better not check the symbol before it. I'm not this can
2847 happen, but it doesn't hurt to check for it. */
2848 lseek(desc, sym_offset, L_INCR);
2849 processing_gcc_compilation = 0;
2850 }
2851
2852 if (symbuf_idx == symbuf_end)
2853 fill_symbuf();
2854 bufp = &symbuf[symbuf_idx];
2855 if (bufp->n_type != (unsigned char)N_SO)
2856 error("First symbol in segment of executable not a source symbol");
2857
2858 for (symnum = 0;
2859 symnum < sym_size / sizeof(struct nlist);
2860 symnum++)
2861 {
2862 QUIT; /* Allow this to be interruptable */
2863 if (symbuf_idx == symbuf_end)
2864 fill_symbuf();
2865 bufp = &symbuf[symbuf_idx++];
2866 SWAP_SYMBOL (bufp);
2867
2868 type = bufp->n_type & N_TYPE;
2869 if (type == (unsigned char)N_CATCH)
2870 {
2871 /* N_CATCH is not fixed up by the linker, and unfortunately,
2872 there's no other place to put it in the .stab map. */
2873 /* FIXME, do we also have to add OFFSET or something? -- gnu@cygnus */
2874 bufp->n_value += text_offset;
2875 }
2876 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2877 bufp->n_value += offset;
2878
2879 type = bufp->n_type;
2880 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2881 error ("Invalid symbol data: bad string table offset: %d",
2882 bufp->n_un.n_strx);
2883 namestring = bufp->n_un.n_strx + stringtab;
2884
2885 if (type & N_STAB)
2886 {
2887 short desc = bufp->n_desc;
2888 unsigned long valu = bufp->n_value;
2889
2890 /* Check for a pair of N_SO symbols. */
2891 if (type == (unsigned char)N_SO)
2892 {
2893 if (symbuf_idx == symbuf_end)
2894 fill_symbuf ();
2895 bufp = &symbuf[symbuf_idx];
2896 if (bufp->n_type == (unsigned char)N_SO)
2897 {
2898 char *namestring2;
2899
2900 SWAP_SYMBOL (bufp);
2901 bufp->n_value += offset; /* Relocate */
2902 symbuf_idx++;
2903 symnum++;
2904
2905 if (bufp->n_un.n_strx < 0
2906 || bufp->n_un.n_strx >= stringtab_size)
2907 error ("Invalid symbol data: bad string table offset: %d",
2908 bufp->n_un.n_strx);
2909 namestring2 = bufp->n_un.n_strx + stringtab;
2910
2911 process_symbol_pair (N_SO, desc, valu, namestring,
2912 N_SO, bufp->n_desc, bufp->n_value,
2913 namestring2);
2914 }
2915 else
2916 process_one_symbol(type, desc, valu, namestring);
2917 }
2918 else
2919 process_one_symbol (type, desc, valu, namestring);
2920 }
2921 /* We skip checking for a new .o or -l file; that should never
2922 happen in this routine. */
2923 else if (type == N_TEXT
2924 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2925 /* I don't think this code will ever be executed, because
2926 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2927 the N_SO symbol which starts this source file.
2928 However, there is no reason not to accept
2929 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2930 processing_gcc_compilation = 1;
2931 else if (type & N_EXT || type == (unsigned char)N_TEXT
2932 || type == (unsigned char)N_NBTEXT
2933 )
2934 /* Global symbol: see if we came across a dbx defintion for
2935 a corresponding symbol. If so, store the value. Remove
2936 syms from the chain when their values are stored, but
2937 search the whole chain, as there may be several syms from
2938 different files with the same name. */
2939 /* This is probably not true. Since the files will be read
2940 in one at a time, each reference to a global symbol will
2941 be satisfied in each file as it appears. So we skip this
2942 section. */
2943 ;
2944 }
2945 end_symtab (text_offset + text_size);
2946}
2947\f
2948static int
2949hashname (name)
2950 char *name;
2951{
2952 register char *p = name;
2953 register int total = p[0];
2954 register int c;
2955
2956 c = p[1];
2957 total += c << 2;
2958 if (c)
2959 {
2960 c = p[2];
2961 total += c << 4;
2962 if (c)
2963 total += p[3] << 6;
2964 }
2965
2966 /* Ensure result is positive. */
2967 if (total < 0) total += (1000 << 6);
2968 return total % HASHSIZE;
2969}
2970
2971\f
2972static void
2973process_one_symbol (type, desc, valu, name)
2974 int type, desc;
2975 CORE_ADDR valu;
2976 char *name;
2977{
2978#ifndef SUN_FIXED_LBRAC_BUG
2979 /* This records the last pc address we've seen. We depend on their being
2980 an SLINE or FUN or SO before the first LBRAC, since the variable does
2981 not get reset in between reads of different symbol files. */
2982 static CORE_ADDR last_pc_address;
2983#endif
2984 register struct context_stack *new;
2985 char *colon_pos;
2986
2987 /* Something is wrong if we see real data before
2988 seeing a source file name. */
2989
2990 if (last_source_file == 0 && type != (unsigned char)N_SO)
2991 {
2992 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2993 where that code is defined. */
2994 if (IGNORE_SYMBOL (type))
2995 return;
2996
2997 /* FIXME, this should not be an error, since it precludes extending
2998 the symbol table information in this way... */
2999 error ("Invalid symbol data: does not start by identifying a source file.");
3000 }
3001
3002 switch (type)
3003 {
3004 case N_FUN:
3005 case N_FNAME:
3006 /* Either of these types of symbols indicates the start of
3007 a new function. We must process its "name" normally for dbx,
3008 but also record the start of a new lexical context, and possibly
3009 also the end of the lexical context for the previous function. */
3010 /* This is not always true. This type of symbol may indicate a
3011 text segment variable. */
3012
3013#ifndef SUN_FIXED_LBRAC_BUG
3014 last_pc_address = valu; /* Save for SunOS bug circumcision */
3015#endif
3016
3017 colon_pos = strchr (name, ':');
3018 if (!colon_pos++
3019 || (*colon_pos != 'f' && *colon_pos != 'F'))
3020 {
3021 define_symbol (valu, name, desc, type);
3022 break;
3023 }
3024
3025 within_function = 1;
3026 if (context_stack_depth > 0)
3027 {
3028 new = &context_stack[--context_stack_depth];
3029 /* Make a block for the local symbols within. */
3030 finish_block (new->name, &local_symbols, new->old_blocks,
3031 new->start_addr, valu);
3032 }
3033 /* Stack must be empty now. */
3034 if (context_stack_depth != 0)
3035 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3036 symnum);
3037
3038 new = &context_stack[context_stack_depth++];
3039 new->old_blocks = pending_blocks;
3040 new->start_addr = valu;
3041 new->name = define_symbol (valu, name, desc, type);
3042 local_symbols = 0;
3043 break;
3044
3045 case N_CATCH:
3046 /* Record the address at which this catch takes place. */
3047 define_symbol (valu, name, desc, type);
3048 break;
3049
3050 case N_EHDECL:
3051 /* Don't know what to do with these yet. */
3052 error ("action uncertain for eh extensions");
3053 break;
3054
3055 case N_LBRAC:
3056 /* This "symbol" just indicates the start of an inner lexical
3057 context within a function. */
3058
3059#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3060 /* On most machines, the block addresses are relative to the
3061 N_SO, the linker did not relocate them (sigh). */
3062 valu += last_source_start_addr;
3063#endif
3064
3065#ifndef SUN_FIXED_LBRAC_BUG
3066 if (valu < last_pc_address) {
3067 /* Patch current LBRAC pc value to match last handy pc value */
3068 complain (&lbrac_complaint, 0);
3069 valu = last_pc_address;
3070 }
3071#endif
3072 if (context_stack_depth == context_stack_size)
3073 {
3074 context_stack_size *= 2;
3075 context_stack = (struct context_stack *)
3076 xrealloc (context_stack,
3077 (context_stack_size
3078 * sizeof (struct context_stack)));
3079 }
3080
3081 new = &context_stack[context_stack_depth++];
3082 new->depth = desc;
3083 new->locals = local_symbols;
3084 new->old_blocks = pending_blocks;
3085 new->start_addr = valu;
3086 new->name = 0;
3087 local_symbols = 0;
3088 break;
3089
3090 case N_RBRAC:
3091 /* This "symbol" just indicates the end of an inner lexical
3092 context that was started with N_LBRAC. */
3093
3094#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3095 /* On most machines, the block addresses are relative to the
3096 N_SO, the linker did not relocate them (sigh). */
3097 valu += last_source_start_addr;
3098#endif
3099
3100 new = &context_stack[--context_stack_depth];
3101 if (desc != new->depth)
3102 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3103
3104 /* Some compilers put the variable decls inside of an
3105 LBRAC/RBRAC block. This macro should be nonzero if this
3106 is true. DESC is N_DESC from the N_RBRAC symbol.
3107 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3108#if !defined (VARIABLES_INSIDE_BLOCK)
3109#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3110#endif
3111
3112 /* Can only use new->locals as local symbols here if we're in
3113 gcc or on a machine that puts them before the lbrack. */
3114 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3115 local_symbols = new->locals;
3116
3117 /* If this is not the outermost LBRAC...RBRAC pair in the
3118 function, its local symbols preceded it, and are the ones
3119 just recovered from the context stack. Defined the block for them.
3120
3121 If this is the outermost LBRAC...RBRAC pair, there is no
3122 need to do anything; leave the symbols that preceded it
3123 to be attached to the function's own block. However, if
3124 it is so, we need to indicate that we just moved outside
3125 of the function. */
3126 if (local_symbols
3127 && (context_stack_depth
3128 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3129 {
3130 /* FIXME Muzzle a compiler bug that makes end < start. */
3131 if (new->start_addr > valu)
3132 {
3133 complain(&lbrac_rbrac_complaint, 0);
3134 new->start_addr = valu;
3135 }
3136 /* Make a block for the local symbols within. */
3137 finish_block (0, &local_symbols, new->old_blocks,
3138 new->start_addr, valu);
3139 }
3140 else
3141 {
3142 within_function = 0;
3143 }
3144 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3145 /* Now pop locals of block just finished. */
3146 local_symbols = new->locals;
3147 break;
3148
3149 case N_FN | N_EXT:
3150 /* This kind of symbol supposedly indicates the start
3151 of an object file. In fact this type does not appear. */
3152 break;
3153
3154 case N_SO:
3155 /* This type of symbol indicates the start of data
3156 for one source file.
3157 Finish the symbol table of the previous source file
3158 (if any) and start accumulating a new symbol table. */
3159#ifndef SUN_FIXED_LBRAC_BUG
3160 last_pc_address = valu; /* Save for SunOS bug circumcision */
3161#endif
3162
3163#ifdef PCC_SOL_BROKEN
3164 /* pcc bug, occasionally puts out SO for SOL. */
3165 if (context_stack_depth > 0)
3166 {
3167 start_subfile (name, NULL);
3168 break;
3169 }
3170#endif
3171 if (last_source_file)
3172 end_symtab (valu);
3173 start_symtab (name, NULL, valu);
3174 break;
3175
3176 case N_SOL:
3177 /* This type of symbol indicates the start of data for
3178 a sub-source-file, one whose contents were copied or
3179 included in the compilation of the main source file
3180 (whose name was given in the N_SO symbol.) */
3181 start_subfile (name, NULL);
3182 break;
3183
3184 case N_BINCL:
3185 push_subfile ();
3186 add_new_header_file (name, valu);
3187 start_subfile (name, NULL);
3188 break;
3189
3190 case N_EINCL:
3191 start_subfile (pop_subfile (), NULL);
3192 break;
3193
3194 case N_EXCL:
3195 add_old_header_file (name, valu);
3196 break;
3197
3198 case N_SLINE:
3199 /* This type of "symbol" really just records
3200 one line-number -- core-address correspondence.
3201 Enter it in the line list for this symbol table. */
3202#ifndef SUN_FIXED_LBRAC_BUG
3203 last_pc_address = valu; /* Save for SunOS bug circumcision */
3204#endif
3205 record_line (desc, valu);
3206 break;
3207
3208 case N_BCOMM:
3209 if (common_block)
3210 error ("Invalid symbol data: common within common at symtab pos %d",
3211 symnum);
3212 common_block = local_symbols;
3213 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3214 break;
3215
3216 case N_ECOMM:
3217 /* Symbols declared since the BCOMM are to have the common block
3218 start address added in when we know it. common_block points to
3219 the first symbol after the BCOMM in the local_symbols list;
3220 copy the list and hang it off the symbol for the common block name
3221 for later fixup. */
3222 {
3223 int i;
3224 struct symbol *sym =
3225 (struct symbol *) xmalloc (sizeof (struct symbol));
3226 bzero (sym, sizeof *sym);
3227 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3228 SYMBOL_CLASS (sym) = LOC_BLOCK;
3229 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3230 copy_pending (local_symbols, common_block_i, common_block));
3231 i = hashname (SYMBOL_NAME (sym));
3232 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3233 global_sym_chain[i] = sym;
3234 common_block = 0;
3235 break;
3236 }
3237
3238 case N_ECOML:
3239 case N_LENG:
3240 break;
3241
3242 default:
3243 if (name)
3244 define_symbol (valu, name, desc, type);
3245 }
3246}
3247\f
3248/* Read a number by which a type is referred to in dbx data,
3249 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3250 Just a single number N is equivalent to (0,N).
3251 Return the two numbers by storing them in the vector TYPENUMS.
3252 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3253
3254static void
3255read_type_number (pp, typenums)
3256 register char **pp;
3257 register int *typenums;
3258{
3259 if (**pp == '(')
3260 {
3261 (*pp)++;
3262 typenums[0] = read_number (pp, ',');
3263 typenums[1] = read_number (pp, ')');
3264 }
3265 else
3266 {
3267 typenums[0] = 0;
3268 typenums[1] = read_number (pp, 0);
3269 }
3270}
3271\f
3272/* To handle GNU C++ typename abbreviation, we need to be able to
3273 fill in a type's name as soon as space for that type is allocated.
3274 `type_synonym_name' is the name of the type being allocated.
3275 It is cleared as soon as it is used (lest all allocated types
3276 get this name). */
3277static char *type_synonym_name;
3278
3279static struct symbol *
3280define_symbol (valu, string, desc, type)
3281 unsigned int valu;
3282 char *string;
3283 int desc;
3284 int type;
3285{
3286 register struct symbol *sym;
3287 char *p = (char *) strchr (string, ':');
3288 int deftype;
3289 int synonym = 0;
3290 register int i;
3291
3292 /* Ignore syms with empty names. */
3293 if (string[0] == 0)
3294 return 0;
3295
3296 /* Ignore old-style symbols from cc -go */
3297 if (p == 0)
3298 return 0;
3299
3300 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3301
3302 if (processing_gcc_compilation) {
3303 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3304 number of bytes occupied by a type or object, which we ignore. */
3305 SYMBOL_LINE(sym) = desc;
3306 } else {
3307 SYMBOL_LINE(sym) = 0; /* unknown */
3308 }
3309
3310 if (string[0] == CPLUS_MARKER)
3311 {
3312 /* Special GNU C++ names. */
3313 switch (string[1])
3314 {
3315 case 't':
3316 SYMBOL_NAME (sym) = "this";
3317 break;
3318 case 'v': /* $vtbl_ptr_type */
3319 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3320 goto normal;
3321 case 'e':
3322 SYMBOL_NAME (sym) = "eh_throw";
3323 break;
3324
3325 case '_':
3326 /* This was an anonymous type that was never fixed up. */
3327 goto normal;
3328
3329 default:
3330 abort ();
3331 }
3332 }
3333 else
3334 {
3335 normal:
3336 SYMBOL_NAME (sym)
3337 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3338 /* Open-coded bcopy--saves function call time. */
3339 {
3340 register char *p1 = string;
3341 register char *p2 = SYMBOL_NAME (sym);
3342 while (p1 != p)
3343 *p2++ = *p1++;
3344 *p2++ = '\0';
3345 }
3346 }
3347 p++;
3348 /* Determine the type of name being defined. */
3349 /* The Acorn RISC machine's compiler can put out locals that don't
3350 start with "234=" or "(3,4)=", so assume anything other than the
3351 deftypes we know how to handle is a local. */
3352 /* (Peter Watkins @ Computervision)
3353 Handle Sun-style local fortran array types 'ar...' .
3354 (gnu@cygnus.com) -- this strchr() handles them properly?
3355 (tiemann@cygnus.com) -- 'C' is for catch. */
3356 if (!strchr ("cfFGpPrStTvVXC", *p))
3357 deftype = 'l';
3358 else
3359 deftype = *p++;
3360
3361 /* c is a special case, not followed by a type-number.
3362 SYMBOL:c=iVALUE for an integer constant symbol.
3363 SYMBOL:c=rVALUE for a floating constant symbol.
3364 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3365 e.g. "b:c=e6,0" for "const b = blob1"
3366 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3367 if (deftype == 'c')
3368 {
3369 if (*p++ != '=')
3370 error ("Invalid symbol data at symtab pos %d.", symnum);
3371 switch (*p++)
3372 {
3373 case 'r':
3374 {
3375 double d = atof (p);
3376 char *valu;
3377
3378 SYMBOL_TYPE (sym) = builtin_type_double;
3379 valu = (char *) obstack_alloc (symbol_obstack, sizeof (double));
3380 bcopy (&d, valu, sizeof (double));
3381 SWAP_TARGET_AND_HOST (valu, sizeof (double));
3382 SYMBOL_VALUE_BYTES (sym) = valu;
3383 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3384 }
3385 break;
3386 case 'i':
3387 {
3388 SYMBOL_TYPE (sym) = builtin_type_int;
3389 SYMBOL_VALUE (sym) = atoi (p);
3390 SYMBOL_CLASS (sym) = LOC_CONST;
3391 }
3392 break;
3393 case 'e':
3394 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3395 e.g. "b:c=e6,0" for "const b = blob1"
3396 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3397 {
3398 int typenums[2];
3399
3400 read_type_number (&p, typenums);
3401 if (*p++ != ',')
3402 error ("Invalid symbol data: no comma in enum const symbol");
3403
3404 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3405 SYMBOL_VALUE (sym) = atoi (p);
3406 SYMBOL_CLASS (sym) = LOC_CONST;
3407 }
3408 break;
3409 default:
3410 error ("Invalid symbol data at symtab pos %d.", symnum);
3411 }
3412 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3413 add_symbol_to_list (sym, &file_symbols);
3414 return sym;
3415 }
3416
3417 /* Now usually comes a number that says which data type,
3418 and possibly more stuff to define the type
3419 (all of which is handled by read_type) */
3420
3421 if (deftype == 'p' && *p == 'F')
3422 /* pF is a two-letter code that means a function parameter in Fortran.
3423 The type-number specifies the type of the return value.
3424 Translate it into a pointer-to-function type. */
3425 {
3426 p++;
3427 SYMBOL_TYPE (sym)
3428 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3429 }
3430 else
3431 {
3432 struct type *type;
3433 synonym = *p == 't';
3434
3435 if (synonym)
3436 {
3437 p += 1;
3438 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3439 strlen (SYMBOL_NAME (sym)));
3440 }
3441
3442 type = read_type (&p);
3443
3444 if ((deftype == 'F' || deftype == 'f')
3445 && TYPE_CODE (type) != TYPE_CODE_FUNC)
3446 SYMBOL_TYPE (sym) = lookup_function_type (type);
3447 else
3448 SYMBOL_TYPE (sym) = type;
3449 }
3450
3451 switch (deftype)
3452 {
3453 case 'C':
3454 /* The name of a caught exception. */
3455 SYMBOL_CLASS (sym) = LOC_LABEL;
3456 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3457 SYMBOL_VALUE_ADDRESS (sym) = valu;
3458 add_symbol_to_list (sym, &local_symbols);
3459 break;
3460
3461 case 'f':
3462 SYMBOL_CLASS (sym) = LOC_BLOCK;
3463 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3464 add_symbol_to_list (sym, &file_symbols);
3465 break;
3466
3467 case 'F':
3468 SYMBOL_CLASS (sym) = LOC_BLOCK;
3469 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3470 add_symbol_to_list (sym, &global_symbols);
3471 break;
3472
3473 case 'G':
3474 /* For a class G (global) symbol, it appears that the
3475 value is not correct. It is necessary to search for the
3476 corresponding linker definition to find the value.
3477 These definitions appear at the end of the namelist. */
3478 i = hashname (SYMBOL_NAME (sym));
3479 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3480 global_sym_chain[i] = sym;
3481 SYMBOL_CLASS (sym) = LOC_STATIC;
3482 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3483 add_symbol_to_list (sym, &global_symbols);
3484 break;
3485
3486 /* This case is faked by a conditional above,
3487 when there is no code letter in the dbx data.
3488 Dbx data never actually contains 'l'. */
3489 case 'l':
3490 SYMBOL_CLASS (sym) = LOC_LOCAL;
3491 SYMBOL_VALUE (sym) = valu;
3492 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3493 add_symbol_to_list (sym, &local_symbols);
3494 break;
3495
3496 case 'p':
3497 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3498 can also be a LOC_LOCAL_ARG depending on symbol type. */
3499#ifndef DBX_PARM_SYMBOL_CLASS
3500#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3501#endif
3502 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3503 SYMBOL_VALUE (sym) = valu;
3504 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3505 add_symbol_to_list (sym, &local_symbols);
3506
3507 /* If it's gcc-compiled, if it says `short', believe it. */
3508 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3509 break;
3510
3511#if defined(BELIEVE_PCC_PROMOTION_TYPE)
3512 /* This macro is defined on machines (e.g. sparc) where
3513 we should believe the type of a PCC 'short' argument,
3514 but shouldn't believe the address (the address is
3515 the address of the corresponding int). Note that
3516 this is only different from the BELIEVE_PCC_PROMOTION
3517 case on big-endian machines.
3518
3519 My guess is that this correction, as opposed to changing
3520 the parameter to an 'int' (as done below, for PCC
3521 on most machines), is the right thing to do
3522 on all machines, but I don't want to risk breaking
3523 something that already works. On most PCC machines,
3524 the sparc problem doesn't come up because the calling
3525 function has to zero the top bytes (not knowing whether
3526 the called function wants an int or a short), so there
3527 is no practical difference between an int and a short
3528 (except perhaps what happens when the GDB user types
3529 "print short_arg = 0x10000;").
3530
3531 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3532 actually produces the correct address (we don't need to fix it
3533 up). I made this code adapt so that it will offset the symbol
3534 if it was pointing at an int-aligned location and not
3535 otherwise. This way you can use the same gdb for 4.0.x and
3536 4.1 systems. */
3537
3538 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3539 {
3540 if (SYMBOL_TYPE (sym) == builtin_type_char
3541 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3542 SYMBOL_VALUE (sym) += 3;
3543 else if (SYMBOL_TYPE (sym) == builtin_type_short
3544 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3545 SYMBOL_VALUE (sym) += 2;
3546 }
3547 break;
3548
3549#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3550
3551 /* If PCC says a parameter is a short or a char,
3552 it is really an int. */
3553 if (SYMBOL_TYPE (sym) == builtin_type_char
3554 || SYMBOL_TYPE (sym) == builtin_type_short)
3555 SYMBOL_TYPE (sym) = builtin_type_int;
3556 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3557 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3558 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3559 break;
3560
3561#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3562
3563 case 'P':
3564 SYMBOL_CLASS (sym) = LOC_REGPARM;
3565 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3566 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3567 add_symbol_to_list (sym, &local_symbols);
3568 break;
3569
3570 case 'r':
3571 SYMBOL_CLASS (sym) = LOC_REGISTER;
3572 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3573 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3574 add_symbol_to_list (sym, &local_symbols);
3575 break;
3576
3577 case 'S':
3578 /* Static symbol at top level of file */
3579 SYMBOL_CLASS (sym) = LOC_STATIC;
3580 SYMBOL_VALUE_ADDRESS (sym) = valu;
3581 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3582 add_symbol_to_list (sym, &file_symbols);
3583 break;
3584
3585 case 't':
3586 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3587 SYMBOL_VALUE (sym) = valu;
3588 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3589 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3590 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3591 TYPE_NAME (SYMBOL_TYPE (sym)) =
3592 obsavestring (SYMBOL_NAME (sym),
3593 strlen (SYMBOL_NAME (sym)));
3594 /* C++ vagaries: we may have a type which is derived from
3595 a base type which did not have its name defined when the
3596 derived class was output. We fill in the derived class's
3597 base part member's name here in that case. */
3598 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3599 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3600 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3601 {
3602 int i;
3603 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3604 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3605 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3606 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3607 }
3608
3609 add_symbol_to_list (sym, &file_symbols);
3610 break;
3611
3612 case 'T':
3613 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3614 SYMBOL_VALUE (sym) = valu;
3615 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3616 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3617 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3618 TYPE_NAME (SYMBOL_TYPE (sym))
3619 = obconcat ("",
3620 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3621 ? "enum "
3622 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3623 ? "struct " : "union ")),
3624 SYMBOL_NAME (sym));
3625 add_symbol_to_list (sym, &file_symbols);
3626
3627 if (synonym)
3628 {
3629 register struct symbol *typedef_sym
3630 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3631 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3632 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3633
3634 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3635 SYMBOL_VALUE (typedef_sym) = valu;
3636 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3637 add_symbol_to_list (typedef_sym, &file_symbols);
3638 }
3639 break;
3640
3641 case 'V':
3642 /* Static symbol of local scope */
3643 SYMBOL_CLASS (sym) = LOC_STATIC;
3644 SYMBOL_VALUE_ADDRESS (sym) = valu;
3645 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3646 add_symbol_to_list (sym, &local_symbols);
3647 break;
3648
3649 case 'v':
3650 /* Reference parameter */
3651 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3652 SYMBOL_VALUE (sym) = valu;
3653 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3654 add_symbol_to_list (sym, &local_symbols);
3655 break;
3656
3657 case 'X':
3658 /* This is used by Sun FORTRAN for "function result value".
3659 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3660 that Pascal uses it too, but when I tried it Pascal used
3661 "x:3" (local symbol) instead. */
3662 SYMBOL_CLASS (sym) = LOC_LOCAL;
3663 SYMBOL_VALUE (sym) = valu;
3664 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3665 add_symbol_to_list (sym, &local_symbols);
3666 break;
3667
3668 default:
3669 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3670 }
3671 return sym;
3672}
3673\f
3674/* What about types defined as forward references inside of a small lexical
3675 scope? */
3676/* Add a type to the list of undefined types to be checked through
3677 once this file has been read in. */
3678static void
3679add_undefined_type (type)
3680 struct type *type;
3681{
3682 if (undef_types_length == undef_types_allocated)
3683 {
3684 undef_types_allocated *= 2;
3685 undef_types = (struct type **)
3686 xrealloc (undef_types,
3687 undef_types_allocated * sizeof (struct type *));
3688 }
3689 undef_types[undef_types_length++] = type;
3690}
3691
3692/* Add here something to go through each undefined type, see if it's
3693 still undefined, and do a full lookup if so. */
3694static void
3695cleanup_undefined_types ()
3696{
3697 struct type **type;
3698
3699 for (type = undef_types; type < undef_types + undef_types_length; type++)
3700 {
3701 /* Reasonable test to see if it's been defined since. */
3702 if (TYPE_NFIELDS (*type) == 0)
3703 {
3704 struct pending *ppt;
3705 int i;
3706 /* Name of the type, without "struct" or "union" */
3707 char *typename = TYPE_NAME (*type);
3708
3709 if (!strncmp (typename, "struct ", 7))
3710 typename += 7;
3711 if (!strncmp (typename, "union ", 6))
3712 typename += 6;
3713
3714 for (ppt = file_symbols; ppt; ppt = ppt->next)
3715 for (i = 0; i < ppt->nsyms; i++)
3716 {
3717 struct symbol *sym = ppt->symbol[i];
3718
3719 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3720 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3721 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3722 TYPE_CODE (*type))
3723 && !strcmp (SYMBOL_NAME (sym), typename))
3724 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3725 }
3726 }
3727 else
3728 /* It has been defined; don't mark it as a stub. */
3729 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3730 }
3731 undef_types_length = 0;
3732}
3733
3734/* Skip rest of this symbol and return an error type.
3735
3736 General notes on error recovery: error_type always skips to the
3737 end of the symbol (modulo cretinous dbx symbol name continuation).
3738 Thus code like this:
3739
3740 if (*(*pp)++ != ';')
3741 return error_type (pp);
3742
3743 is wrong because if *pp starts out pointing at '\0' (typically as the
3744 result of an earlier error), it will be incremented to point to the
3745 start of the next symbol, which might produce strange results, at least
3746 if you run off the end of the string table. Instead use
3747
3748 if (**pp != ';')
3749 return error_type (pp);
3750 ++*pp;
3751
3752 or
3753
3754 if (**pp != ';')
3755 foo = error_type (pp);
3756 else
3757 ++*pp;
3758
3759 And in case it isn't obvious, the point of all this hair is so the compiler
3760 can define new types and new syntaxes, and old versions of the
3761 debugger will be able to read the new symbol tables. */
3762
3763static struct type *
3764error_type (pp)
3765 char **pp;
3766{
3767 complain (&error_type_complaint, 0);
3768 while (1)
3769 {
3770 /* Skip to end of symbol. */
3771 while (**pp != '\0')
3772 (*pp)++;
3773
3774 /* Check for and handle cretinous dbx symbol name continuation! */
3775 if ((*pp)[-1] == '\\')
3776 *pp = next_symbol_text ();
3777 else
3778 break;
3779 }
3780 return builtin_type_error;
3781}
3782\f
3783/* Read a dbx type reference or definition;
3784 return the type that is meant.
3785 This can be just a number, in which case it references
3786 a type already defined and placed in type_vector.
3787 Or the number can be followed by an =, in which case
3788 it means to define a new type according to the text that
3789 follows the =. */
3790
3791static
3792struct type *
3793read_type (pp)
3794 register char **pp;
3795{
3796 register struct type *type = 0;
3797 struct type *type1;
3798 int typenums[2];
3799 int xtypenums[2];
3800
3801 /* Read type number if present. The type number may be omitted.
3802 for instance in a two-dimensional array declared with type
3803 "ar1;1;10;ar1;1;10;4". */
3804 if ((**pp >= '0' && **pp <= '9')
3805 || **pp == '(')
3806 {
3807 read_type_number (pp, typenums);
3808
3809 /* Detect random reference to type not yet defined.
3810 Allocate a type object but leave it zeroed. */
3811 if (**pp != '=')
3812 return dbx_alloc_type (typenums);
3813
3814 *pp += 2;
3815 }
3816 else
3817 {
3818 /* 'typenums=' not present, type is anonymous. Read and return
3819 the definition, but don't put it in the type vector. */
3820 typenums[0] = typenums[1] = -1;
3821 *pp += 1;
3822 }
3823
3824 switch ((*pp)[-1])
3825 {
3826 case 'x':
3827 {
3828 enum type_code code;
3829
3830 /* Used to index through file_symbols. */
3831 struct pending *ppt;
3832 int i;
3833
3834 /* Name including "struct", etc. */
3835 char *type_name;
3836
3837 /* Name without "struct", etc. */
3838 char *type_name_only;
3839
3840 {
3841 char *prefix;
3842 char *from, *to;
3843
3844 /* Set the type code according to the following letter. */
3845 switch ((*pp)[0])
3846 {
3847 case 's':
3848 code = TYPE_CODE_STRUCT;
3849 prefix = "struct ";
3850 break;
3851 case 'u':
3852 code = TYPE_CODE_UNION;
3853 prefix = "union ";
3854 break;
3855 case 'e':
3856 code = TYPE_CODE_ENUM;
3857 prefix = "enum ";
3858 break;
3859 default:
3860 return error_type (pp);
3861 }
3862
3863 to = type_name = (char *)
3864 obstack_alloc (symbol_obstack,
3865 (strlen (prefix) +
3866 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3867
3868 /* Copy the prefix. */
3869 from = prefix;
3870 while (*to++ = *from++)
3871 ;
3872 to--;
3873
3874 type_name_only = to;
3875
3876 /* Copy the name. */
3877 from = *pp + 1;
3878 while ((*to++ = *from++) != ':')
3879 ;
3880 *--to = '\0';
3881
3882 /* Set the pointer ahead of the name which we just read. */
3883 *pp = from;
3884
3885#if 0
3886 /* The following hack is clearly wrong, because it doesn't
3887 check whether we are in a baseclass. I tried to reproduce
3888 the case that it is trying to fix, but I couldn't get
3889 g++ to put out a cross reference to a basetype. Perhaps
3890 it doesn't do it anymore. */
3891 /* Note: for C++, the cross reference may be to a base type which
3892 has not yet been seen. In this case, we skip to the comma,
3893 which will mark the end of the base class name. (The ':'
3894 at the end of the base class name will be skipped as well.)
3895 But sometimes (ie. when the cross ref is the last thing on
3896 the line) there will be no ','. */
3897 from = (char *) strchr (*pp, ',');
3898 if (from)
3899 *pp = from;
3900#endif /* 0 */
3901 }
3902
3903 /* Now check to see whether the type has already been declared. */
3904 /* This is necessary at least in the case where the
3905 program says something like
3906 struct foo bar[5];
3907 The compiler puts out a cross-reference; we better find
3908 set the length of the structure correctly so we can
3909 set the length of the array. */
3910 for (ppt = file_symbols; ppt; ppt = ppt->next)
3911 for (i = 0; i < ppt->nsyms; i++)
3912 {
3913 struct symbol *sym = ppt->symbol[i];
3914
3915 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3916 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3917 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3918 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3919 {
3920 obstack_free (symbol_obstack, type_name);
3921 type = SYMBOL_TYPE (sym);
3922 return type;
3923 }
3924 }
3925
3926 /* Didn't find the type to which this refers, so we must
3927 be dealing with a forward reference. Allocate a type
3928 structure for it, and keep track of it so we can
3929 fill in the rest of the fields when we get the full
3930 type. */
3931 type = dbx_alloc_type (typenums);
3932 TYPE_CODE (type) = code;
3933 TYPE_NAME (type) = type_name;
3934
3935 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3936
3937 add_undefined_type (type);
3938 return type;
3939 }
3940
3941 case '0':
3942 case '1':
3943 case '2':
3944 case '3':
3945 case '4':
3946 case '5':
3947 case '6':
3948 case '7':
3949 case '8':
3950 case '9':
3951 case '(':
3952 (*pp)--;
3953 read_type_number (pp, xtypenums);
3954 type = *dbx_lookup_type (xtypenums);
3955 if (type == 0)
3956 type = builtin_type_void;
3957 if (typenums[0] != -1)
3958 *dbx_lookup_type (typenums) = type;
3959 break;
3960
3961 case '*':
3962 type1 = read_type (pp);
3963 type = lookup_pointer_type (type1);
3964 if (typenums[0] != -1)
3965 *dbx_lookup_type (typenums) = type;
3966 break;
3967
3968 case '@':
3969 {
3970 struct type *domain = read_type (pp);
3971 struct type *memtype;
3972
3973 if (**pp != ',')
3974 /* Invalid member type data format. */
3975 return error_type (pp);
3976 ++*pp;
3977
3978 memtype = read_type (pp);
3979 type = dbx_alloc_type (typenums);
3980 smash_to_member_type (type, domain, memtype);
3981 }
3982 break;
3983
3984 case '#':
3985 if ((*pp)[0] == '#')
3986 {
3987 /* We'll get the parameter types from the name. */
3988 struct type *return_type;
3989
3990 *pp += 1;
3991 return_type = read_type (pp);
3992 if (*(*pp)++ != ';')
3993 complain (&invalid_member_complaint, symnum);
3994 type = lookup_function_type (return_type);
3995 if (typenums[0] != -1)
3996 *dbx_lookup_type (typenums) = type;
3997 TYPE_CODE (type) = TYPE_CODE_METHOD;
3998 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3999 }
4000 else
4001 {
4002 struct type *domain = read_type (pp);
4003 struct type *return_type;
4004 struct type **args;
4005
4006 if (*(*pp)++ != ',')
4007 error ("invalid member type data format, at symtab pos %d.",
4008 symnum);
4009
4010 return_type = read_type (pp);
4011 args = read_args (pp, ';');
4012 type = dbx_alloc_type (typenums);
4013 smash_to_method_type (type, domain, return_type, args);
4014 }
4015 break;
4016
4017 case '&':
4018 type1 = read_type (pp);
4019 type = lookup_reference_type (type1);
4020 if (typenums[0] != -1)
4021 *dbx_lookup_type (typenums) = type;
4022 break;
4023
4024 case 'f':
4025 type1 = read_type (pp);
4026 type = lookup_function_type (type1);
4027 if (typenums[0] != -1)
4028 *dbx_lookup_type (typenums) = type;
4029 break;
4030
4031 case 'r':
4032 type = read_range_type (pp, typenums);
4033 if (typenums[0] != -1)
4034 *dbx_lookup_type (typenums) = type;
4035 break;
4036
4037 case 'e':
4038 type = dbx_alloc_type (typenums);
4039 type = read_enum_type (pp, type);
4040 *dbx_lookup_type (typenums) = type;
4041 break;
4042
4043 case 's':
4044 type = dbx_alloc_type (typenums);
4045 TYPE_NAME (type) = type_synonym_name;
4046 type_synonym_name = 0;
4047 type = read_struct_type (pp, type);
4048 break;
4049
4050 case 'u':
4051 type = dbx_alloc_type (typenums);
4052 TYPE_NAME (type) = type_synonym_name;
4053 type_synonym_name = 0;
4054 type = read_struct_type (pp, type);
4055 TYPE_CODE (type) = TYPE_CODE_UNION;
4056 break;
4057
4058 case 'a':
4059 if (**pp != 'r')
4060 return error_type (pp);
4061 ++*pp;
4062
4063 type = dbx_alloc_type (typenums);
4064 type = read_array_type (pp, type);
4065 break;
4066
4067 default:
4068 return error_type (pp);
4069 }
4070
4071 if (type == 0)
4072 abort ();
4073
4074#if 0
4075 /* If this is an overriding temporary alteration for a header file's
4076 contents, and this type number is unknown in the global definition,
4077 put this type into the global definition at this type number. */
4078 if (header_file_prev_index >= 0)
4079 {
4080 register struct type **tp
4081 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4082 if (*tp == 0)
4083 *tp = type;
4084 }
4085#endif
4086 return type;
4087}
4088\f
4089#if 0
4090/* This would be a good idea, but it doesn't really work. The problem
4091 is that in order to get the virtual context for a particular type,
4092 you need to know the virtual info from all of its basetypes,
4093 and you need to have processed its methods. Since GDB reads
4094 symbols on a file-by-file basis, this means processing the symbols
4095 of all the files that are needed for each baseclass, which
4096 means potentially reading in all the debugging info just to fill
4097 in information we may never need. */
4098
4099/* This page contains subroutines of read_type. */
4100
4101/* FOR_TYPE is a struct type defining a virtual function NAME with type
4102 FN_TYPE. The `virtual context' for this virtual function is the
4103 first base class of FOR_TYPE in which NAME is defined with signature
4104 matching FN_TYPE. OFFSET serves as a hash on matches here.
4105
4106 TYPE is the current type in which we are searching. */
4107
4108static struct type *
4109virtual_context (for_type, type, name, fn_type, offset)
4110 struct type *for_type, *type;
4111 char *name;
4112 struct type *fn_type;
4113 int offset;
4114{
4115 struct type *basetype = 0;
4116 int i;
4117
4118 if (for_type != type)
4119 {
4120 /* Check the methods of TYPE. */
4121 /* Need to do a check_stub_type here, but that breaks
4122 things because we can get infinite regress. */
4123 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4124 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4125 break;
4126 if (i >= 0)
4127 {
4128 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4129 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4130
4131 while (--j >= 0)
4132 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4133 return TYPE_FN_FIELD_FCONTEXT (f, j);
4134 }
4135 }
4136 for (i = TYPE_N_BASECLASSES (type); i > 0; i--)
4137 {
4138 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4139 fn_type, offset);
4140 if (basetype != for_type)
4141 return basetype;
4142 }
4143 return for_type;
4144}
4145#endif
4146
4147/* Read the description of a structure (or union type)
4148 and return an object describing the type. */
4149
4150static struct type *
4151read_struct_type (pp, type)
4152 char **pp;
4153 register struct type *type;
4154{
4155 /* Total number of methods defined in this class.
4156 If the class defines two `f' methods, and one `g' method,
4157 then this will have the value 3. */
4158 int total_length = 0;
4159
4160 struct nextfield
4161 {
4162 struct nextfield *next;
4163 int visibility; /* 0=public, 1=protected, 2=public */
4164 struct field field;
4165 };
4166
4167 struct next_fnfield
4168 {
4169 struct next_fnfield *next;
4170 int visibility; /* 0=public, 1=protected, 2=public */
4171 struct fn_field fn_field;
4172 };
4173
4174 struct next_fnfieldlist
4175 {
4176 struct next_fnfieldlist *next;
4177 struct fn_fieldlist fn_fieldlist;
4178 };
4179
4180 register struct nextfield *list = 0;
4181 struct nextfield *new;
4182 register char *p;
4183 int nfields = 0;
4184 register int n;
4185
4186 register struct next_fnfieldlist *mainlist = 0;
4187 int nfn_fields = 0;
4188
4189 if (TYPE_MAIN_VARIANT (type) == 0)
4190 {
4191 TYPE_MAIN_VARIANT (type) = type;
4192 }
4193
4194 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4195
4196 /* First comes the total size in bytes. */
4197
4198 TYPE_LENGTH (type) = read_number (pp, 0);
4199
4200 /* C++: Now, if the class is a derived class, then the next character
4201 will be a '!', followed by the number of base classes derived from.
4202 Each element in the list contains visibility information,
4203 the offset of this base class in the derived structure,
4204 and then the base type. */
4205 if (**pp == '!')
4206 {
4207 int i, n_baseclasses, offset;
4208 struct type *baseclass;
4209 int via_public;
4210
4211 /* Nonzero if it is a virtual baseclass, i.e.,
4212
4213 struct A{};
4214 struct B{};
4215 struct C : public B, public virtual A {};
4216
4217 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4218 2.0 language feature. */
4219 int via_virtual;
4220
4221 *pp += 1;
4222
4223 n_baseclasses = read_number (pp, ',');
4224 TYPE_FIELD_VIRTUAL_BITS (type) =
4225 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4226 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4227
4228 for (i = 0; i < n_baseclasses; i++)
4229 {
4230 if (**pp == '\\')
4231 *pp = next_symbol_text ();
4232
4233 switch (**pp)
4234 {
4235 case '0':
4236 via_virtual = 0;
4237 break;
4238 case '1':
4239 via_virtual = 1;
4240 break;
4241 default:
4242 /* Bad visibility format. */
4243 return error_type (pp);
4244 }
4245 ++*pp;
4246
4247 switch (**pp)
4248 {
4249 case '0':
4250 via_public = 0;
4251 break;
4252 case '2':
4253 via_public = 2;
4254 break;
4255 default:
4256 /* Bad visibility format. */
4257 return error_type (pp);
4258 }
4259 if (via_virtual)
4260 SET_TYPE_FIELD_VIRTUAL (type, i);
4261 ++*pp;
4262
4263 /* Offset of the portion of the object corresponding to
4264 this baseclass. Always zero in the absence of
4265 multiple inheritance. */
4266 offset = read_number (pp, ',');
4267 baseclass = read_type (pp);
4268 *pp += 1; /* skip trailing ';' */
4269
4270#if 0
4271/* One's understanding improves, grasshopper... */
4272 if (offset != 0)
4273 {
4274 static int error_printed = 0;
4275
4276 if (!error_printed)
4277 {
4278 fprintf (stderr,
4279"\nWarning: GDB has limited understanding of multiple inheritance...");
4280 if (!info_verbose)
4281 fprintf(stderr, "\n");
4282 error_printed = 1;
4283 }
4284 }
4285#endif
4286
4287 /* Make this baseclass visible for structure-printing purposes. */
4288 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4289 new->next = list;
4290 list = new;
4291 list->visibility = via_public;
4292 list->field.type = baseclass;
4293 list->field.name = type_name_no_tag (baseclass);
4294 list->field.bitpos = offset;
4295 list->field.bitsize = 0; /* this should be an unpacked field! */
4296 nfields++;
4297 }
4298 TYPE_N_BASECLASSES (type) = n_baseclasses;
4299 }
4300
4301 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4302 At the end, we see a semicolon instead of a field.
4303
4304 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4305 a static field.
4306
4307 The `?' is a placeholder for one of '/2' (public visibility),
4308 '/1' (protected visibility), '/0' (private visibility), or nothing
4309 (C style symbol table, public visibility). */
4310
4311 /* We better set p right now, in case there are no fields at all... */
4312 p = *pp;
4313
4314 while (**pp != ';')
4315 {
4316 /* Check for and handle cretinous dbx symbol name continuation! */
4317 if (**pp == '\\') *pp = next_symbol_text ();
4318
4319 /* Get space to record the next field's data. */
4320 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4321 new->next = list;
4322 list = new;
4323
4324 /* Get the field name. */
4325 p = *pp;
4326 if (*p == CPLUS_MARKER)
4327 {
4328 /* Special GNU C++ name. */
4329 if (*++p == 'v')
4330 {
4331 char *prefix, *name; /* FIXME: NAME never set! */
4332 struct type *context;
4333
4334 switch (*++p)
4335 {
4336 case 'f':
4337 prefix = vptr_name;
4338 break;
4339 case 'b':
4340 prefix = vb_name;
4341 break;
4342 default:
4343 error ("invalid abbreviation at symtab pos %d.", symnum);
4344 }
4345 *pp = p + 1;
4346 context = read_type (pp);
4347 if (type_name_no_tag (context) == 0)
4348 {
4349 if (name == 0)
4350 error ("type name unknown at symtab pos %d.", symnum);
4351 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4352 }
4353 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4354 p = ++(*pp);
4355 if (p[-1] != ':')
4356 error ("invalid abbreviation at symtab pos %d.", symnum);
4357 list->field.type = read_type (pp);
4358 (*pp)++; /* Skip the comma. */
4359 list->field.bitpos = read_number (pp, ';');
4360 /* This field is unpacked. */
4361 list->field.bitsize = 0;
4362 }
4363 else
4364 error ("invalid abbreviation at symtab pos %d.", symnum);
4365
4366 nfields++;
4367 continue;
4368 }
4369
4370 while (*p != ':') p++;
4371 list->field.name = obsavestring (*pp, p - *pp);
4372
4373 /* C++: Check to see if we have hit the methods yet. */
4374 if (p[1] == ':')
4375 break;
4376
4377 *pp = p + 1;
4378
4379 /* This means we have a visibility for a field coming. */
4380 if (**pp == '/')
4381 {
4382 switch (*++*pp)
4383 {
4384 case '0':
4385 list->visibility = 0; /* private */
4386 *pp += 1;
4387 break;
4388
4389 case '1':
4390 list->visibility = 1; /* protected */
4391 *pp += 1;
4392 break;
4393
4394 case '2':
4395 list->visibility = 2; /* public */
4396 *pp += 1;
4397 break;
4398 }
4399 }
4400 else /* normal dbx-style format. */
4401 list->visibility = 2; /* public */
4402
4403 list->field.type = read_type (pp);
4404 if (**pp == ':')
4405 {
4406 /* Static class member. */
4407 list->field.bitpos = (long)-1;
4408 p = ++(*pp);
4409 while (*p != ';') p++;
4410 list->field.bitsize = (long) savestring (*pp, p - *pp);
4411 *pp = p + 1;
4412 nfields++;
4413 continue;
4414 }
4415 else if (**pp != ',')
4416 /* Bad structure-type format. */
4417 return error_type (pp);
4418
4419 (*pp)++; /* Skip the comma. */
4420 list->field.bitpos = read_number (pp, ',');
4421 list->field.bitsize = read_number (pp, ';');
4422
4423#if 0
4424 /* FIXME tiemann: what is the story here? What does the compiler
4425 really do? Also, patch gdb.texinfo for this case; I document
4426 it as a possible problem there. Search for "DBX-style". */
4427
4428 /* This is wrong because this is identical to the symbols
4429 produced for GCC 0-size arrays. For example:
4430 typedef union {
4431 int num;
4432 char str[0];
4433 } foo;
4434 The code which dumped core in such circumstances should be
4435 fixed not to dump core. */
4436
4437 /* g++ -g0 can put out bitpos & bitsize zero for a static
4438 field. This does not give us any way of getting its
4439 class, so we can't know its name. But we can just
4440 ignore the field so we don't dump core and other nasty
4441 stuff. */
4442 if (list->field.bitpos == 0
4443 && list->field.bitsize == 0)
4444 {
4445 complain (&dbx_class_complaint, 0);
4446 /* Ignore this field. */
4447 list = list->next;
4448 }
4449 else
4450#endif /* 0 */
4451 {
4452 /* Detect an unpacked field and mark it as such.
4453 dbx gives a bit size for all fields.
4454 Note that forward refs cannot be packed,
4455 and treat enums as if they had the width of ints. */
4456 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4457 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4458 list->field.bitsize = 0;
4459 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4460 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4461 && (list->field.bitsize
4462 == 8 * TYPE_LENGTH (builtin_type_int))
4463 )
4464 )
4465 &&
4466 list->field.bitpos % 8 == 0)
4467 list->field.bitsize = 0;
4468 nfields++;
4469 }
4470 }
4471
4472 if (p[1] == ':')
4473 /* chill the list of fields: the last entry (at the head)
4474 is a partially constructed entry which we now scrub. */
4475 list = list->next;
4476
4477 /* Now create the vector of fields, and record how big it is.
4478 We need this info to record proper virtual function table information
4479 for this class's virtual functions. */
4480
4481 TYPE_NFIELDS (type) = nfields;
4482 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4483 sizeof (struct field) * nfields);
4484
4485 TYPE_FIELD_PRIVATE_BITS (type) =
4486 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4487 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4488
4489 TYPE_FIELD_PROTECTED_BITS (type) =
4490 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4491 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4492
4493 /* Copy the saved-up fields into the field vector. */
4494
4495 for (n = nfields; list; list = list->next)
4496 {
4497 n -= 1;
4498 TYPE_FIELD (type, n) = list->field;
4499 if (list->visibility == 0)
4500 SET_TYPE_FIELD_PRIVATE (type, n);
4501 else if (list->visibility == 1)
4502 SET_TYPE_FIELD_PROTECTED (type, n);
4503 }
4504
4505 /* Now come the method fields, as NAME::methods
4506 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4507 At the end, we see a semicolon instead of a field.
4508
4509 For the case of overloaded operators, the format is
4510 OPERATOR::*.methods, where OPERATOR is the string "operator",
4511 `*' holds the place for an operator name (such as `+=')
4512 and `.' marks the end of the operator name. */
4513 if (p[1] == ':')
4514 {
4515 /* Now, read in the methods. To simplify matters, we
4516 "unread" the name that has been read, so that we can
4517 start from the top. */
4518
4519 /* For each list of method lists... */
4520 do
4521 {
4522 int i;
4523 struct next_fnfield *sublist = 0;
4524 int length = 0;
4525 struct next_fnfieldlist *new_mainlist =
4526 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4527 char *main_fn_name;
4528
4529 p = *pp;
4530
4531 /* read in the name. */
4532 while (*p != ':') p++;
4533 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4534 {
4535 /* This lets the user type "break operator+".
4536 We could just put in "+" as the name, but that wouldn't
4537 work for "*". */
4538 static char opname[32] = "operator";
4539 char *o = opname + 8;
4540
4541 /* Skip past '::'. */
4542 p += 2;
4543 while (*p != '.')
4544 *o++ = *p++;
4545 main_fn_name = savestring (opname, o - opname);
4546 /* Skip past '.' */
4547 *pp = p + 1;
4548 }
4549 else
4550 {
4551 i = 0;
4552 main_fn_name = savestring (*pp, p - *pp);
4553 /* Skip past '::'. */
4554 *pp = p + 2;
4555 }
4556 new_mainlist->fn_fieldlist.name = main_fn_name;
4557
4558 do
4559 {
4560 struct next_fnfield *new_sublist =
4561 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4562
4563 /* Check for and handle cretinous dbx symbol name continuation! */
4564 if (**pp == '\\') *pp = next_symbol_text ();
4565
4566 new_sublist->fn_field.type = read_type (pp);
4567 if (**pp != ':')
4568 /* Invalid symtab info for method. */
4569 return error_type (pp);
4570
4571 *pp += 1;
4572 p = *pp;
4573 while (*p != ';') p++;
4574 /* If this is just a stub, then we don't have the
4575 real name here. */
4576 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4577 *pp = p + 1;
4578 new_sublist->visibility = *(*pp)++ - '0';
4579 if (**pp == '\\') *pp = next_symbol_text ();
4580 /* FIXME: tiemann needs to add const/volatile info
4581 to the methods. For now, just skip the char.
4582 In future, here's what we need to implement:
4583
4584 A for normal functions.
4585 B for `const' member functions.
4586 C for `volatile' member functions.
4587 D for `const volatile' member functions. */
4588 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4589 (*pp)++;
4590 else
4591 complain(&const_vol_complaint, **pp);
4592
4593 switch (*(*pp)++)
4594 {
4595 case '*':
4596 /* virtual member function, followed by index. */
4597 /* The sign bit is set to distinguish pointers-to-methods
4598 from virtual function indicies. Since the array is
4599 in words, the quantity must be shifted left by 1
4600 on 16 bit machine, and by 2 on 32 bit machine, forcing
4601 the sign bit out, and usable as a valid index into
4602 the array. Remove the sign bit here. */
4603 new_sublist->fn_field.voffset =
4604 (0x7fffffff & read_number (pp, ';')) + 1;
4605
4606 /* Figure out from whence this virtual function came.
4607 It may belong to virtual function table of
4608 one of its baseclasses. */
4609 new_sublist->fn_field.fcontext = read_type (pp);
4610 if (**pp != ';')
4611 error_type (pp);
4612 else
4613 ++*pp;
4614 break;
4615
4616 case '?':
4617 /* static member function. */
4618 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4619 break;
4620 default:
4621 /* **pp == '.'. */
4622 /* normal member function. */
4623 new_sublist->fn_field.voffset = 0;
4624 break;
4625 }
4626
4627 new_sublist->next = sublist;
4628 sublist = new_sublist;
4629 length++;
4630 }
4631 while (**pp != ';' && *pp != '\0');
4632
4633 *pp += 1;
4634
4635 new_mainlist->fn_fieldlist.fn_fields =
4636 (struct fn_field *) obstack_alloc (symbol_obstack,
4637 sizeof (struct fn_field) * length);
4638 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4639 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4640 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4641
4642 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4643 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4644 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4645
4646 for (i = length; (i--, sublist); sublist = sublist->next)
4647 {
4648 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4649 if (sublist->visibility == 0)
4650 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4651 else if (sublist->visibility == 1)
4652 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4653 }
4654
4655 new_mainlist->fn_fieldlist.length = length;
4656 new_mainlist->next = mainlist;
4657 mainlist = new_mainlist;
4658 nfn_fields++;
4659 total_length += length;
4660 }
4661 while (**pp != ';');
4662 }
4663
4664 *pp += 1;
4665
4666 TYPE_FN_FIELDLISTS (type) =
4667 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4668 sizeof (struct fn_fieldlist) * nfn_fields);
4669
4670 TYPE_NFN_FIELDS (type) = nfn_fields;
4671 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4672
4673 {
4674 int i;
4675 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4676 TYPE_NFN_FIELDS_TOTAL (type) +=
4677 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4678 }
4679
4680 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4681 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4682
4683 if (**pp == '~')
4684 {
4685 *pp += 1;
4686
4687 if (**pp == '=')
4688 {
4689 TYPE_FLAGS (type)
4690 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4691 *pp += 1;
4692 }
4693 else if (**pp == '+')
4694 {
4695 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4696 *pp += 1;
4697 }
4698 else if (**pp == '-')
4699 {
4700 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4701 *pp += 1;
4702 }
4703
4704 /* Read either a '%' or the final ';'. */
4705 if (*(*pp)++ == '%')
4706 {
4707 /* Now we must record the virtual function table pointer's
4708 field information. */
4709
4710 struct type *t;
4711 int i;
4712
4713 t = read_type (pp);
4714 p = (*pp)++;
4715 while (*p != '\0' && *p != ';')
4716 p++;
4717 if (*p == '\0')
4718 /* Premature end of symbol. */
4719 return error_type (pp);
4720
4721 TYPE_VPTR_BASETYPE (type) = t;
4722 if (type == t)
4723 {
4724 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4725 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4726 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4727 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4728 sizeof (vptr_name) -1))
4729 {
4730 TYPE_VPTR_FIELDNO (type) = i;
4731 break;
4732 }
4733 if (i < 0)
4734 /* Virtual function table field not found. */
4735 return error_type (pp);
4736 }
4737 else
4738 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4739 *pp = p + 1;
4740 }
4741 else
4742 {
4743 TYPE_VPTR_BASETYPE (type) = 0;
4744 TYPE_VPTR_FIELDNO (type) = -1;
4745 }
4746 }
4747 else
4748 {
4749 TYPE_VPTR_BASETYPE (type) = 0;
4750 TYPE_VPTR_FIELDNO (type) = -1;
4751 }
4752
4753 return type;
4754}
4755
4756/* Read a definition of an array type,
4757 and create and return a suitable type object.
4758 Also creates a range type which represents the bounds of that
4759 array. */
4760static struct type *
4761read_array_type (pp, type)
4762 register char **pp;
4763 register struct type *type;
4764{
4765 struct type *index_type, *element_type, *range_type;
4766 int lower, upper;
4767 int adjustable = 0;
4768
4769 /* Format of an array type:
4770 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4771 to handle this.
4772
4773 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4774 for these, produce a type like float[][]. */
4775
4776 index_type = read_type (pp);
4777 if (**pp != ';')
4778 /* Improper format of array type decl. */
4779 return error_type (pp);
4780 ++*pp;
4781
4782 if (!(**pp >= '0' && **pp <= '9'))
4783 {
4784 *pp += 1;
4785 adjustable = 1;
4786 }
4787 lower = read_number (pp, ';');
4788
4789 if (!(**pp >= '0' && **pp <= '9'))
4790 {
4791 *pp += 1;
4792 adjustable = 1;
4793 }
4794 upper = read_number (pp, ';');
4795
4796 element_type = read_type (pp);
4797
4798 if (adjustable)
4799 {
4800 lower = 0;
4801 upper = -1;
4802 }
4803
4804 {
4805 /* Create range type. */
4806 range_type = (struct type *) obstack_alloc (symbol_obstack,
4807 sizeof (struct type));
4808 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4809 TYPE_TARGET_TYPE (range_type) = index_type;
4810
4811 /* This should never be needed. */
4812 TYPE_LENGTH (range_type) = sizeof (int);
4813
4814 TYPE_NFIELDS (range_type) = 2;
4815 TYPE_FIELDS (range_type) =
4816 (struct field *) obstack_alloc (symbol_obstack,
4817 2 * sizeof (struct field));
4818 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4819 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4820 }
4821
4822 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4823 TYPE_TARGET_TYPE (type) = element_type;
4824 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4825 TYPE_NFIELDS (type) = 1;
4826 TYPE_FIELDS (type) =
4827 (struct field *) obstack_alloc (symbol_obstack,
4828 sizeof (struct field));
4829 TYPE_FIELD_TYPE (type, 0) = range_type;
4830
4831 return type;
4832}
4833
4834
4835/* Read a definition of an enumeration type,
4836 and create and return a suitable type object.
4837 Also defines the symbols that represent the values of the type. */
4838
4839static struct type *
4840read_enum_type (pp, type)
4841 register char **pp;
4842 register struct type *type;
4843{
4844 register char *p;
4845 char *name;
4846 register long n;
4847 register struct symbol *sym;
4848 int nsyms = 0;
4849 struct pending **symlist;
4850 struct pending *osyms, *syms;
4851 int o_nsyms;
4852
4853 if (within_function)
4854 symlist = &local_symbols;
4855 else
4856 symlist = &file_symbols;
4857 osyms = *symlist;
4858 o_nsyms = osyms ? osyms->nsyms : 0;
4859
4860 /* Read the value-names and their values.
4861 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4862 A semicolon or comman instead of a NAME means the end. */
4863 while (**pp && **pp != ';' && **pp != ',')
4864 {
4865 /* Check for and handle cretinous dbx symbol name continuation! */
4866 if (**pp == '\\') *pp = next_symbol_text ();
4867
4868 p = *pp;
4869 while (*p != ':') p++;
4870 name = obsavestring (*pp, p - *pp);
4871 *pp = p + 1;
4872 n = read_number (pp, ',');
4873
4874 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4875 bzero (sym, sizeof (struct symbol));
4876 SYMBOL_NAME (sym) = name;
4877 SYMBOL_CLASS (sym) = LOC_CONST;
4878 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4879 SYMBOL_VALUE (sym) = n;
4880 add_symbol_to_list (sym, symlist);
4881 nsyms++;
4882 }
4883
4884 if (**pp == ';')
4885 (*pp)++; /* Skip the semicolon. */
4886
4887 /* Now fill in the fields of the type-structure. */
4888
4889 TYPE_LENGTH (type) = sizeof (int);
4890 TYPE_CODE (type) = TYPE_CODE_ENUM;
4891 TYPE_NFIELDS (type) = nsyms;
4892 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4893
4894 /* Find the symbols for the values and put them into the type.
4895 The symbols can be found in the symlist that we put them on
4896 to cause them to be defined. osyms contains the old value
4897 of that symlist; everything up to there was defined by us. */
4898 /* Note that we preserve the order of the enum constants, so
4899 that in something like "enum {FOO, LAST_THING=FOO}" we print
4900 FOO, not LAST_THING. */
4901
4902 for (syms = *symlist, n = 0; syms; syms = syms->next)
4903 {
4904 int j = 0;
4905 if (syms == osyms)
4906 j = o_nsyms;
4907 for (; j < syms->nsyms; j++,n++)
4908 {
4909 struct symbol *sym = syms->symbol[j];
4910 SYMBOL_TYPE (sym) = type;
4911 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4912 TYPE_FIELD_VALUE (type, n) = 0;
4913 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4914 TYPE_FIELD_BITSIZE (type, n) = 0;
4915 }
4916 if (syms == osyms)
4917 break;
4918 }
4919
4920 return type;
4921}
4922
4923/* Read a number from the string pointed to by *PP.
4924 The value of *PP is advanced over the number.
4925 If END is nonzero, the character that ends the
4926 number must match END, or an error happens;
4927 and that character is skipped if it does match.
4928 If END is zero, *PP is left pointing to that character.
4929
4930 If the number fits in a long, set *VALUE and set *BITS to 0.
4931 If not, set *BITS to be the number of bits in the number.
4932
4933 If encounter garbage, set *BITS to -1. */
4934
4935static void
4936read_huge_number (pp, end, valu, bits)
4937 char **pp;
4938 int end;
4939 long *valu;
4940 int *bits;
4941{
4942 char *p = *pp;
4943 int sign = 1;
4944 long n = 0;
4945 int radix = 10;
4946 char overflow = 0;
4947 int nbits = 0;
4948 int c;
4949
4950 if (*p == '-')
4951 {
4952 sign = -1;
4953 p++;
4954 }
4955
4956 /* Leading zero means octal. GCC uses this to output values larger
4957 than an int (because that would be hard in decimal). */
4958 if (*p == '0')
4959 {
4960 radix = 8;
4961 p++;
4962 }
4963
4964 while ((c = *p++) >= '0' && c <= ('0' + radix))
4965 {
4966 if (n <= LONG_MAX / radix)
4967 {
4968 n *= radix;
4969 n += c - '0'; /* FIXME this overflows anyway */
4970 }
4971 else
4972 overflow = 1;
4973
4974 /* This depends on large values being output in octal, which is
4975 what GCC does. */
4976 if (radix == 8)
4977 {
4978 if (nbits == 0)
4979 {
4980 if (c == '0')
4981 /* Ignore leading zeroes. */
4982 ;
4983 else if (c == '1')
4984 nbits = 1;
4985 else if (c == '2' || c == '3')
4986 nbits = 2;
4987 else
4988 nbits = 3;
4989 }
4990 else
4991 nbits += 3;
4992 }
4993 }
4994 if (end)
4995 {
4996 if (c && c != end)
4997 {
4998 if (bits != NULL)
4999 *bits = -1;
5000 return;
5001 }
5002 }
5003 else
5004 --p;
5005
5006 *pp = p;
5007 if (overflow)
5008 {
5009 if (nbits == 0)
5010 {
5011 /* Large decimal constants are an error (because it is hard to
5012 count how many bits are in them). */
5013 if (bits != NULL)
5014 *bits = -1;
5015 return;
5016 }
5017
5018 /* -0x7f is the same as 0x80. So deal with it by adding one to
5019 the number of bits. */
5020 if (sign == -1)
5021 ++nbits;
5022 if (bits)
5023 *bits = nbits;
5024 }
5025 else
5026 {
5027 if (valu)
5028 *valu = n * sign;
5029 if (bits)
5030 *bits = 0;
5031 }
5032}
5033
5034#define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5035#define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5036
5037static struct type *
5038read_range_type (pp, typenums)
5039 char **pp;
5040 int typenums[2];
5041{
5042 int rangenums[2];
5043 long n2, n3;
5044 int n2bits, n3bits;
5045 int self_subrange;
5046 struct type *result_type;
5047
5048 /* First comes a type we are a subrange of.
5049 In C it is usually 0, 1 or the type being defined. */
5050 read_type_number (pp, rangenums);
5051 self_subrange = (rangenums[0] == typenums[0] &&
5052 rangenums[1] == typenums[1]);
5053
5054 /* A semicolon should now follow; skip it. */
5055 if (**pp == ';')
5056 (*pp)++;
5057
5058 /* The remaining two operands are usually lower and upper bounds
5059 of the range. But in some special cases they mean something else. */
5060 read_huge_number (pp, ';', &n2, &n2bits);
5061 read_huge_number (pp, ';', &n3, &n3bits);
5062
5063 if (n2bits == -1 || n3bits == -1)
5064 return error_type (pp);
5065
5066 /* If limits are huge, must be large integral type. */
5067 if (n2bits != 0 || n3bits != 0)
5068 {
5069 char got_signed = 0;
5070 char got_unsigned = 0;
5071 /* Number of bits in the type. */
5072 int nbits;
5073
5074 /* Range from 0 to <large number> is an unsigned large integral type. */
5075 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5076 {
5077 got_unsigned = 1;
5078 nbits = n3bits;
5079 }
5080 /* Range from <large number> to <large number>-1 is a large signed
5081 integral type. */
5082 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5083 {
5084 got_signed = 1;
5085 nbits = n2bits;
5086 }
5087
5088 if (got_signed || got_unsigned)
5089 {
5090 result_type = (struct type *) obstack_alloc (symbol_obstack,
5091 sizeof (struct type));
5092 bzero (result_type, sizeof (struct type));
5093 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5094 TYPE_MAIN_VARIANT (result_type) = result_type;
5095 TYPE_CODE (result_type) = TYPE_CODE_INT;
5096 if (got_unsigned)
5097 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5098 return result_type;
5099 }
5100 else
5101 return error_type (pp);
5102 }
5103
5104 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5105 if (self_subrange && n2 == 0 && n3 == 0)
5106 return builtin_type_void;
5107
5108 /* If n3 is zero and n2 is not, we want a floating type,
5109 and n2 is the width in bytes.
5110
5111 Fortran programs appear to use this for complex types also,
5112 and they give no way to distinguish between double and single-complex!
5113 We don't have complex types, so we would lose on all fortran files!
5114 So return type `double' for all of those. It won't work right
5115 for the complex values, but at least it makes the file loadable. */
5116
5117 if (n3 == 0 && n2 > 0)
5118 {
5119 if (n2 == sizeof (float))
5120 return builtin_type_float;
5121 return builtin_type_double;
5122 }
5123
5124 /* If the upper bound is -1, it must really be an unsigned int. */
5125
5126 else if (n2 == 0 && n3 == -1)
5127 {
5128 if (sizeof (int) == sizeof (long))
5129 return builtin_type_unsigned_int;
5130 else
5131 return builtin_type_unsigned_long;
5132 }
5133
5134 /* Special case: char is defined (Who knows why) as a subrange of
5135 itself with range 0-127. */
5136 else if (self_subrange && n2 == 0 && n3 == 127)
5137 return builtin_type_char;
5138
5139 /* Assumptions made here: Subrange of self is equivalent to subrange
5140 of int. */
5141 else if (n2 == 0
5142 && (self_subrange ||
5143 *dbx_lookup_type (rangenums) == builtin_type_int))
5144 {
5145 /* an unsigned type */
5146#ifdef LONG_LONG
5147 if (n3 == - sizeof (long long))
5148 return builtin_type_unsigned_long_long;
5149#endif
5150 if (n3 == (unsigned int)~0L)
5151 return builtin_type_unsigned_int;
5152 if (n3 == (unsigned long)~0L)
5153 return builtin_type_unsigned_long;
5154 if (n3 == (unsigned short)~0L)
5155 return builtin_type_unsigned_short;
5156 if (n3 == (unsigned char)~0L)
5157 return builtin_type_unsigned_char;
5158 }
5159#ifdef LONG_LONG
5160 else if (n3 == 0 && n2 == -sizeof (long long))
5161 return builtin_type_long_long;
5162#endif
5163 else if (n2 == -n3 -1)
5164 {
5165 /* a signed type */
5166 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5167 return builtin_type_int;
5168 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5169 return builtin_type_long;
5170 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5171 return builtin_type_short;
5172 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5173 return builtin_type_char;
5174 }
5175
5176 /* We have a real range type on our hands. Allocate space and
5177 return a real pointer. */
5178
5179 /* At this point I don't have the faintest idea how to deal with
5180 a self_subrange type; I'm going to assume that this is used
5181 as an idiom, and that all of them are special cases. So . . . */
5182 if (self_subrange)
5183 return error_type (pp);
5184
5185 result_type = (struct type *) obstack_alloc (symbol_obstack,
5186 sizeof (struct type));
5187 bzero (result_type, sizeof (struct type));
5188
5189 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5190 builtin_type_int :
5191 *dbx_lookup_type(rangenums));
5192
5193 /* We have to figure out how many bytes it takes to hold this
5194 range type. I'm going to assume that anything that is pushing
5195 the bounds of a long was taken care of above. */
5196 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5197 TYPE_LENGTH (result_type) = 1;
5198 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5199 TYPE_LENGTH (result_type) = sizeof (short);
5200 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5201 TYPE_LENGTH (result_type) = sizeof (int);
5202 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5203 TYPE_LENGTH (result_type) = sizeof (long);
5204 else
5205 /* Ranged type doesn't fit within known sizes. */
5206 return error_type (pp);
5207
5208 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5209 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5210 TYPE_NFIELDS (result_type) = 2;
5211 TYPE_FIELDS (result_type) =
5212 (struct field *) obstack_alloc (symbol_obstack,
5213 2 * sizeof (struct field));
5214 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5215 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5216 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5217
5218 return result_type;
5219}
5220
5221/* Read a number from the string pointed to by *PP.
5222 The value of *PP is advanced over the number.
5223 If END is nonzero, the character that ends the
5224 number must match END, or an error happens;
5225 and that character is skipped if it does match.
5226 If END is zero, *PP is left pointing to that character. */
5227
5228static long
5229read_number (pp, end)
5230 char **pp;
5231 int end;
5232{
5233 register char *p = *pp;
5234 register long n = 0;
5235 register int c;
5236 int sign = 1;
5237
5238 /* Handle an optional leading minus sign. */
5239
5240 if (*p == '-')
5241 {
5242 sign = -1;
5243 p++;
5244 }
5245
5246 /* Read the digits, as far as they go. */
5247
5248 while ((c = *p++) >= '0' && c <= '9')
5249 {
5250 n *= 10;
5251 n += c - '0';
5252 }
5253 if (end)
5254 {
5255 if (c && c != end)
5256 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5257 }
5258 else
5259 --p;
5260
5261 *pp = p;
5262 return n * sign;
5263}
5264
5265/* Read in an argument list. This is a list of types, separated by commas
5266 and terminated with END. Return the list of types read in, or (struct type
5267 **)-1 if there is an error. */
5268static struct type **
5269read_args (pp, end)
5270 char **pp;
5271 int end;
5272{
5273 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5274 int n = 0;
5275
5276 while (**pp != end)
5277 {
5278 if (**pp != ',')
5279 /* Invalid argument list: no ','. */
5280 return (struct type **)-1;
5281 *pp += 1;
5282
5283 /* Check for and handle cretinous dbx symbol name continuation! */
5284 if (**pp == '\\')
5285 *pp = next_symbol_text ();
5286
5287 types[n++] = read_type (pp);
5288 }
5289 *pp += 1; /* get past `end' (the ':' character) */
5290
5291 if (n == 1)
5292 {
5293 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5294 }
5295 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5296 {
5297 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5298 bzero (rval + n, sizeof (struct type *));
5299 }
5300 else
5301 {
5302 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5303 }
5304 bcopy (types, rval, n * sizeof (struct type *));
5305 return rval;
5306}
5307\f
5308/* Copy a pending list, used to record the contents of a common
5309 block for later fixup. */
5310static struct pending *
5311copy_pending (beg, begi, end)
5312 struct pending *beg, *end;
5313 int begi;
5314{
5315 struct pending *new = 0;
5316 struct pending *next;
5317
5318 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5319 next = next->next, begi = 0)
5320 {
5321 register int j;
5322 for (j = begi; j < next->nsyms; j++)
5323 add_symbol_to_list (next->symbol[j], &new);
5324 }
5325 return new;
5326}
5327
5328/* Add a common block's start address to the offset of each symbol
5329 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5330 the common block name). */
5331
5332static void
5333fix_common_block (sym, valu)
5334 struct symbol *sym;
5335 int valu;
5336{
5337 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5338 for ( ; next; next = next->next)
5339 {
5340 register int j;
5341 for (j = next->nsyms - 1; j >= 0; j--)
5342 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5343 }
5344}
5345\f
5346/* Register our willingness to decode symbols for SunOS and a.out and
5347 b.out files handled by BFD... */
5348static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5349 dbx_new_init, dbx_symfile_init,
5350 dbx_symfile_read, dbx_symfile_discard};
5351
5352static struct sym_fns aout_sym_fns = {"a.out", 5,
5353 dbx_new_init, dbx_symfile_init,
5354 dbx_symfile_read, dbx_symfile_discard};
5355
5356static struct sym_fns bout_sym_fns = {"b.out", 5,
5357 dbx_new_init, dbx_symfile_init,
5358 dbx_symfile_read, dbx_symfile_discard};
5359
5360void
5361_initialize_dbxread ()
5362{
5363 add_symtab_fns(&sunos_sym_fns);
5364 add_symtab_fns(&aout_sym_fns);
5365 add_symtab_fns(&bout_sym_fns);
5366
5367 undef_types_allocated = 20;
5368 undef_types_length = 0;
5369 undef_types = (struct type **) xmalloc (undef_types_allocated *
5370 sizeof (struct type *));
3f83182d
JG
5371
5372 dbx_new_init ();
bd5635a1 5373}
This page took 0.257142 seconds and 4 git commands to generate.