*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / dbxread.c
CommitLineData
bd5635a1
RP
1/* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6GDB is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GDB is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GDB; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19\f
20/* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31/* There used to be some PROFILE_TYPES code in this file which counted
32 the number of occurances of various symbols. I'd suggest instead:
33 nm -ap foo | awk 'print $5' | sort | uniq -c
34 to print how many of each n_type, or something like
35 nm -ap foo | awk '$5 == "LSYM" {print $6 $7 $8 $9 $10 $11}' | \
36 awk 'BEGIN {FS=":"}
37 {print substr($2,1,1)}' | sort | uniq -c
38 to print the number of each kind of symbol descriptor (i.e. the letter
39 after ':'). */
40
41#include <stdio.h>
42#include <string.h>
43#include "defs.h"
44#include "param.h"
45
46#ifdef USG
47#include <sys/types.h>
48#include <fcntl.h>
49#define L_SET 0
50#define L_INCR 1
51#endif
52
53#include "a.out.gnu.h"
54#include "stab.gnu.h" /* We always use GNU stabs, not native, now */
55#include <ctype.h>
56
57#ifndef NO_GNU_STABS
58/*
59 * Define specifically gnu symbols here.
60 */
61
62/* The following type indicates the definition of a symbol as being
63 an indirect reference to another symbol. The other symbol
64 appears as an undefined reference, immediately following this symbol.
65
66 Indirection is asymmetrical. The other symbol's value will be used
67 to satisfy requests for the indirect symbol, but not vice versa.
68 If the other symbol does not have a definition, libraries will
69 be searched to find a definition. */
70#ifndef N_INDR
71#define N_INDR 0xa
72#endif
73
74/* The following symbols refer to set elements.
75 All the N_SET[ATDB] symbols with the same name form one set.
76 Space is allocated for the set in the text section, and each set
77 element's value is stored into one word of the space.
78 The first word of the space is the length of the set (number of elements).
79
80 The address of the set is made into an N_SETV symbol
81 whose name is the same as the name of the set.
82 This symbol acts like a N_DATA global symbol
83 in that it can satisfy undefined external references. */
84
85#ifndef N_SETA
86#define N_SETA 0x14 /* Absolute set element symbol */
87#endif /* This is input to LD, in a .o file. */
88
89#ifndef N_SETT
90#define N_SETT 0x16 /* Text set element symbol */
91#endif /* This is input to LD, in a .o file. */
92
93#ifndef N_SETD
94#define N_SETD 0x18 /* Data set element symbol */
95#endif /* This is input to LD, in a .o file. */
96
97#ifndef N_SETB
98#define N_SETB 0x1A /* Bss set element symbol */
99#endif /* This is input to LD, in a .o file. */
100
101/* Macros dealing with the set element symbols defined in a.out.h */
102#define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
103#define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
104
105#ifndef N_SETV
106#define N_SETV 0x1C /* Pointer to set vector in data area. */
107#endif /* This is output from LD. */
108
109#ifndef N_WARNING
110#define N_WARNING 0x1E /* Warning message to print if file included */
111#endif /* This is input to ld */
112
113#endif /* NO_GNU_STABS */
114
115#include <obstack.h>
116#include <sys/param.h>
117#include <sys/file.h>
118#include <sys/stat.h>
119#include "symtab.h"
120#include "breakpoint.h"
121#include "command.h"
122#include "target.h"
123#include "gdbcore.h" /* for bfd stuff */
124#include "liba.out.h" /* FIXME Secret internal BFD stuff for a.out */
125#include "symfile.h"
126
127struct dbx_symfile_info {
128 asection *text_sect; /* Text section accessor */
129 int symcount; /* How many symbols are there in the file */
130 char *stringtab; /* The actual string table */
131 int stringtab_size; /* Its size */
132 off_t symtab_offset; /* Offset in file to symbol table */
133 int desc; /* File descriptor of symbol file */
134};
135
136extern void qsort ();
137extern double atof ();
138extern struct cmd_list_element *cmdlist;
139
140extern void symbol_file_command ();
141
142/* Forward declarations */
143
144static void add_symbol_to_list ();
145static void read_dbx_symtab ();
146static void init_psymbol_list ();
147static void process_one_symbol ();
148static struct type *read_type ();
149static struct type *read_range_type ();
150static struct type *read_enum_type ();
151static struct type *read_struct_type ();
152static struct type *read_array_type ();
153static long read_number ();
154static void finish_block ();
155static struct blockvector *make_blockvector ();
156static struct symbol *define_symbol ();
157static void start_subfile ();
158static int hashname ();
159static struct pending *copy_pending ();
160static void fix_common_block ();
161static void add_undefined_type ();
162static void cleanup_undefined_types ();
163static void scan_file_globals ();
164static void read_ofile_symtab ();
165static void dbx_psymtab_to_symtab ();
166
167/* C++ */
168static struct type **read_args ();
169
170static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
171static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
172
173/* Macro to determine which symbols to ignore when reading the first symbol
174 of a file. Some machines override this definition. */
175#ifndef IGNORE_SYMBOL
176/* This code is used on Ultrix systems. Ignore it */
177#define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
178#endif
179
180/* Macro for name of symbol to indicate a file compiled with gcc. */
181#ifndef GCC_COMPILED_FLAG_SYMBOL
182#define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
183#endif
184
185/* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
186
187#ifndef STAB_REG_TO_REGNUM
188#define STAB_REG_TO_REGNUM(VALUE) (VALUE)
189#endif
190
191/* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196#ifndef BELIEVE_PCC_PROMOTION
197#define BELIEVE_PCC_PROMOTION 0
198#endif
199\f
200/* Nonzero means give verbose info on gdb action. From main.c. */
201extern int info_verbose;
202
203/* Name of source file whose symbol data we are now processing.
204 This comes from a symbol of type N_SO. */
205
206static char *last_source_file;
207
208/* Core address of start of text of current source file.
209 This too comes from the N_SO symbol. */
210
211static CORE_ADDR last_source_start_addr;
212
213/* The entry point of a file we are reading. */
214CORE_ADDR entry_point;
215
216/* The list of sub-source-files within the current individual compilation.
217 Each file gets its own symtab with its own linetable and associated info,
218 but they all share one blockvector. */
219
220struct subfile
221{
222 struct subfile *next;
223 char *name;
224 char *dirname;
225 struct linetable *line_vector;
226 int line_vector_length;
227 int line_vector_index;
228 int prev_line_number;
229};
230
231static struct subfile *subfiles;
232
233static struct subfile *current_subfile;
234
235/* Count symbols as they are processed, for error messages. */
236
237static unsigned int symnum;
238
239/* Vector of types defined so far, indexed by their dbx type numbers.
240 (In newer sun systems, dbx uses a pair of numbers in parens,
241 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
242 translated through the type_translations hash table to get
243 the index into the type vector.) */
244
245static struct typevector *type_vector;
246
247/* Number of elements allocated for type_vector currently. */
248
249static int type_vector_length;
250
251/* Vector of line number information. */
252
253static struct linetable *line_vector;
254
255/* Index of next entry to go in line_vector_index. */
256
257static int line_vector_index;
258
259/* Last line number recorded in the line vector. */
260
261static int prev_line_number;
262
263/* Number of elements allocated for line_vector currently. */
264
265static int line_vector_length;
266
267/* Hash table of global symbols whose values are not known yet.
268 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
269 have the correct data for that slot yet. */
270/* The use of the LOC_BLOCK code in this chain is nonstandard--
271 it refers to a FORTRAN common block rather than the usual meaning. */
272
273#define HASHSIZE 127
274static struct symbol *global_sym_chain[HASHSIZE];
275
276/* Record the symbols defined for each context in a list.
277 We don't create a struct block for the context until we
278 know how long to make it. */
279
280#define PENDINGSIZE 100
281
282struct pending
283{
284 struct pending *next;
285 int nsyms;
286 struct symbol *symbol[PENDINGSIZE];
287};
288
289/* List of free `struct pending' structures for reuse. */
290struct pending *free_pendings;
291
292/* Here are the three lists that symbols are put on. */
293
294struct pending *file_symbols; /* static at top level, and types */
295
296struct pending *global_symbols; /* global functions and variables */
297
298struct pending *local_symbols; /* everything local to lexical context */
299
300/* List of symbols declared since the last BCOMM. This list is a tail
301 of local_symbols. When ECOMM is seen, the symbols on the list
302 are noted so their proper addresses can be filled in later,
303 using the common block base address gotten from the assembler
304 stabs. */
305
306struct pending *common_block;
307int common_block_i;
308
309/* Stack representing unclosed lexical contexts
310 (that will become blocks, eventually). */
311
312struct context_stack
313{
314 struct pending *locals;
315 struct pending_block *old_blocks;
316 struct symbol *name;
317 CORE_ADDR start_addr;
318 CORE_ADDR end_addr; /* Temp slot for exception handling. */
319 int depth;
320};
321
322struct context_stack *context_stack;
323
324/* Index of first unused entry in context stack. */
325int context_stack_depth;
326
327/* Currently allocated size of context stack. */
328
329int context_stack_size;
330
331/* Nonzero if within a function (so symbols should be local,
332 if nothing says specifically). */
333
334int within_function;
335
336/* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339struct pending_block
340{
341 struct pending_block *next;
342 struct block *block;
343};
344
345struct pending_block *pending_blocks;
346
347extern CORE_ADDR startup_file_start; /* From blockframe.c */
348extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350/* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353static unsigned char processing_gcc_compilation;
354
355/* Make a list of forward references which haven't been defined. */
356static struct type **undef_types;
357static int undef_types_allocated, undef_types_length;
358
359/* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363static char *symfile_string_table;
364static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368#ifdef NAMES_HAVE_UNDERSCORE
369#define HASH_OFFSET 1
370#else
371#define HASH_OFFSET 0
372#endif
373
374/* Complaints about the symbols we have encountered. */
375
376struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385#if 0
386struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388You seem to have compiled your program with \
389\"g++ -g0\" instead of \"g++ -g\".\n\
390Therefore GDB will not know about your class variables", 0, 0};
391#endif
392
393struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396struct complaint unknown_symtype_complaint =
397 {"unknown symbol type 0x%x", 0, 0};
398
399struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410\f
411/* Support for Sun changes to dbx symbol format */
412
413/* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431struct header_file
432{
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440};
441
442static struct header_file *header_files = 0;
443
444static int n_header_files;
445
446static int n_allocated_header_files;
447
448/* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453struct header_file_location
454{
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459};
460
461/* The actual list and controling variables */
462static struct header_file_location *bincl_list, *next_bincl;
463static int bincls_allocated;
464
465/* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475static int *this_object_header_files = 0;
476
477static int n_this_object_header_files;
478
479static int n_allocated_this_object_header_files;
480
481/* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486static int header_file_prev_index;
487
488/* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491void
492free_and_init_header_files ()
493{
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508}
509
510/* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513static void
514new_object_header_files ()
515{
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519}
520
521/* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524static void
525add_this_object_header_file (i)
526 int i;
527{
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537}
538
539/* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544static void
545add_old_header_file (name, instance)
546 char *name;
547 int instance;
548{
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560}
561
562/* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573static void
574add_new_header_file (name, instance)
575 char *name;
576 int instance;
577{
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603}
604
605/* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612static struct type **
613dbx_lookup_type (typenums)
614 int typenums[2];
615{
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661}
662
663/* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666static struct type *
667dbx_create_type ()
668{
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 return type;
675}
676
677/* Make sure there is a type allocated for type numbers TYPENUMS
678 and return the type object.
679 This can create an empty (zeroed) type object.
680 TYPENUMS may be (-1, -1) to return a new type object that is not
681 put into the type vector, and so may not be referred to by number. */
682
683static struct type *
684dbx_alloc_type (typenums)
685 int typenums[2];
686{
687 register struct type **type_addr;
688 register struct type *type;
689
690 if (typenums[1] != -1)
691 {
692 type_addr = dbx_lookup_type (typenums);
693 type = *type_addr;
694 }
695 else
696 {
697 type_addr = 0;
698 type = 0;
699 }
700
701 /* If we are referring to a type not known at all yet,
702 allocate an empty type for it.
703 We will fill it in later if we find out how. */
704 if (type == 0)
705 {
706 type = dbx_create_type ();
707 if (type_addr)
708 *type_addr = type;
709 }
710
711 return type;
712}
713
714#if 0
715static struct type **
716explicit_lookup_type (real_filenum, index)
717 int real_filenum, index;
718{
719 register struct header_file *f = &header_files[real_filenum];
720
721 if (index >= f->length)
722 {
723 f->length *= 2;
724 f->vector = (struct type **)
725 xrealloc (f->vector, f->length * sizeof (struct type *));
726 bzero (&f->vector[f->length / 2],
727 f->length * sizeof (struct type *) / 2);
728 }
729 return &f->vector[index];
730}
731#endif
732\f
733/* maintain the lists of symbols and blocks */
734
735/* Add a symbol to one of the lists of symbols. */
736static void
737add_symbol_to_list (symbol, listhead)
738 struct symbol *symbol;
739 struct pending **listhead;
740{
741 /* We keep PENDINGSIZE symbols in each link of the list.
742 If we don't have a link with room in it, add a new link. */
743 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
744 {
745 register struct pending *link;
746 if (free_pendings)
747 {
748 link = free_pendings;
749 free_pendings = link->next;
750 }
751 else
752 link = (struct pending *) xmalloc (sizeof (struct pending));
753
754 link->next = *listhead;
755 *listhead = link;
756 link->nsyms = 0;
757 }
758
759 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
760}
761
762/* At end of reading syms, or in case of quit,
763 really free as many `struct pending's as we can easily find. */
764
765/* ARGSUSED */
766static void
767really_free_pendings (foo)
768 int foo;
769{
770 struct pending *next, *next1;
771 struct pending_block *bnext, *bnext1;
772
773 for (next = free_pendings; next; next = next1)
774 {
775 next1 = next->next;
776 free (next);
777 }
778 free_pendings = 0;
779
780#if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
781 for (bnext = pending_blocks; bnext; bnext = bnext1)
782 {
783 bnext1 = bnext->next;
784 free (bnext);
785 }
786#endif
787 pending_blocks = 0;
788
789 for (next = file_symbols; next; next = next1)
790 {
791 next1 = next->next;
792 free (next);
793 }
3f2e006b
JG
794 file_symbols = 0;
795
bd5635a1
RP
796 for (next = global_symbols; next; next = next1)
797 {
798 next1 = next->next;
799 free (next);
800 }
3f2e006b 801 global_symbols = 0;
bd5635a1
RP
802}
803
804/* Take one of the lists of symbols and make a block from it.
805 Keep the order the symbols have in the list (reversed from the input file).
806 Put the block on the list of pending blocks. */
807
808static void
809finish_block (symbol, listhead, old_blocks, start, end)
810 struct symbol *symbol;
811 struct pending **listhead;
812 struct pending_block *old_blocks;
813 CORE_ADDR start, end;
814{
815 register struct pending *next, *next1;
816 register struct block *block;
817 register struct pending_block *pblock;
818 struct pending_block *opblock;
819 register int i;
820
821 /* Count the length of the list of symbols. */
822
823 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
824 /*EMPTY*/;
825
826 block = (struct block *) obstack_alloc (symbol_obstack,
827 (sizeof (struct block)
828 + ((i - 1)
829 * sizeof (struct symbol *))));
830
831 /* Copy the symbols into the block. */
832
833 BLOCK_NSYMS (block) = i;
834 for (next = *listhead; next; next = next->next)
835 {
836 register int j;
837 for (j = next->nsyms - 1; j >= 0; j--)
838 BLOCK_SYM (block, --i) = next->symbol[j];
839 }
840
841 BLOCK_START (block) = start;
842 BLOCK_END (block) = end;
843 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
844 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
845
846 /* Put the block in as the value of the symbol that names it. */
847
848 if (symbol)
849 {
850 SYMBOL_BLOCK_VALUE (symbol) = block;
851 BLOCK_FUNCTION (block) = symbol;
852 }
853 else
854 BLOCK_FUNCTION (block) = 0;
855
856 /* Now "free" the links of the list, and empty the list. */
857
858 for (next = *listhead; next; next = next1)
859 {
860 next1 = next->next;
861 next->next = free_pendings;
862 free_pendings = next;
863 }
864 *listhead = 0;
865
866 /* Install this block as the superblock
867 of all blocks made since the start of this scope
868 that don't have superblocks yet. */
869
870 opblock = 0;
871 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
872 {
873 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
874#if 1
875 /* Check to be sure the blocks are nested as we receive them.
876 If the compiler/assembler/linker work, this just burns a small
877 amount of time. */
878 if (BLOCK_START (pblock->block) < BLOCK_START (block)
879 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
880 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
881 "(don't know)");
882 BLOCK_START (pblock->block) = BLOCK_START (block);
883 BLOCK_END (pblock->block) = BLOCK_END (block);
884 }
885#endif
886 BLOCK_SUPERBLOCK (pblock->block) = block;
887 }
888 opblock = pblock;
889 }
890
891 /* Record this block on the list of all blocks in the file.
892 Put it after opblock, or at the beginning if opblock is 0.
893 This puts the block in the list after all its subblocks. */
894
895 /* Allocate in the symbol_obstack to save time.
896 It wastes a little space. */
897 pblock = (struct pending_block *)
898 obstack_alloc (symbol_obstack,
899 sizeof (struct pending_block));
900 pblock->block = block;
901 if (opblock)
902 {
903 pblock->next = opblock->next;
904 opblock->next = pblock;
905 }
906 else
907 {
908 pblock->next = pending_blocks;
909 pending_blocks = pblock;
910 }
911}
912
913static struct blockvector *
914make_blockvector ()
915{
916 register struct pending_block *next;
917 register struct blockvector *blockvector;
918 register int i;
919
920 /* Count the length of the list of blocks. */
921
922 for (next = pending_blocks, i = 0; next; next = next->next, i++);
923
924 blockvector = (struct blockvector *)
925 obstack_alloc (symbol_obstack,
926 (sizeof (struct blockvector)
927 + (i - 1) * sizeof (struct block *)));
928
929 /* Copy the blocks into the blockvector.
930 This is done in reverse order, which happens to put
931 the blocks into the proper order (ascending starting address).
932 finish_block has hair to insert each block into the list
933 after its subblocks in order to make sure this is true. */
934
935 BLOCKVECTOR_NBLOCKS (blockvector) = i;
936 for (next = pending_blocks; next; next = next->next) {
937 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
938 }
939
940#if 0 /* Now we make the links in the obstack, so don't free them. */
941 /* Now free the links of the list, and empty the list. */
942
943 for (next = pending_blocks; next; next = next1)
944 {
945 next1 = next->next;
946 free (next);
947 }
948#endif
949 pending_blocks = 0;
950
951#if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
952 /* Some compilers output blocks in the wrong order, but we depend
953 on their being in the right order so we can binary search.
954 Check the order and moan about it. FIXME. */
955 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
956 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
957 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
958 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
959 complain (&blockvector_complaint,
960 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
961 }
962 }
963#endif
964
965 return blockvector;
966}
967\f
968/* Manage the vector of line numbers. */
969
970static void
971record_line (line, pc)
972 int line;
973 CORE_ADDR pc;
974{
975 struct linetable_entry *e;
976 /* Ignore the dummy line number in libg.o */
977
978 if (line == 0xffff)
979 return;
980
981 /* Make sure line vector is big enough. */
982
983 if (line_vector_index + 1 >= line_vector_length)
984 {
985 line_vector_length *= 2;
986 line_vector = (struct linetable *)
987 xrealloc (line_vector,
988 (sizeof (struct linetable)
989 + line_vector_length * sizeof (struct linetable_entry)));
990 current_subfile->line_vector = line_vector;
991 }
992
993 e = line_vector->item + line_vector_index++;
994 e->line = line; e->pc = pc;
995}
996\f
997/* Start a new symtab for a new source file.
998 This is called when a dbx symbol of type N_SO is seen;
999 it indicates the start of data for one original source file. */
1000
1001static void
1002start_symtab (name, dirname, start_addr)
1003 char *name;
1004 char *dirname;
1005 CORE_ADDR start_addr;
1006{
1007
1008 last_source_file = name;
1009 last_source_start_addr = start_addr;
1010 file_symbols = 0;
1011 global_symbols = 0;
1012 within_function = 0;
1013
1014 /* Context stack is initially empty, with room for 10 levels. */
1015 context_stack
1016 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1017 context_stack_size = 10;
1018 context_stack_depth = 0;
1019
1020 new_object_header_files ();
1021
1022 type_vector_length = 160;
1023 type_vector = (struct typevector *)
1024 xmalloc (sizeof (struct typevector)
1025 + type_vector_length * sizeof (struct type *));
1026 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1027
1028 /* Initialize the list of sub source files with one entry
1029 for this file (the top-level source file). */
1030
1031 subfiles = 0;
1032 current_subfile = 0;
1033 start_subfile (name, dirname);
1034}
1035
1036/* Handle an N_SOL symbol, which indicates the start of
1037 code that came from an included (or otherwise merged-in)
1038 source file with a different name. */
1039
1040static void
1041start_subfile (name, dirname)
1042 char *name;
1043 char *dirname;
1044{
1045 register struct subfile *subfile;
1046
1047 /* Save the current subfile's line vector data. */
1048
1049 if (current_subfile)
1050 {
1051 current_subfile->line_vector_index = line_vector_index;
1052 current_subfile->line_vector_length = line_vector_length;
1053 current_subfile->prev_line_number = prev_line_number;
1054 }
1055
1056 /* See if this subfile is already known as a subfile of the
1057 current main source file. */
1058
1059 for (subfile = subfiles; subfile; subfile = subfile->next)
1060 {
1061 if (!strcmp (subfile->name, name))
1062 {
1063 line_vector = subfile->line_vector;
1064 line_vector_index = subfile->line_vector_index;
1065 line_vector_length = subfile->line_vector_length;
1066 prev_line_number = subfile->prev_line_number;
1067 current_subfile = subfile;
1068 return;
1069 }
1070 }
1071
1072 /* This subfile is not known. Add an entry for it. */
1073
1074 line_vector_index = 0;
1075 line_vector_length = 1000;
1076 prev_line_number = -2; /* Force first line number to be explicit */
1077 line_vector = (struct linetable *)
1078 xmalloc (sizeof (struct linetable)
1079 + line_vector_length * sizeof (struct linetable_entry));
1080
1081 /* Make an entry for this subfile in the list of all subfiles
1082 of the current main source file. */
1083
1084 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1085 subfile->next = subfiles;
1086 subfile->name = obsavestring (name, strlen (name));
1087 if (dirname == NULL)
1088 subfile->dirname = NULL;
1089 else
1090 subfile->dirname = obsavestring (dirname, strlen (dirname));
1091
1092 subfile->line_vector = line_vector;
1093 subfiles = subfile;
1094 current_subfile = subfile;
1095}
1096
1097/* Finish the symbol definitions for one main source file,
1098 close off all the lexical contexts for that file
1099 (creating struct block's for them), then make the struct symtab
1100 for that file and put it in the list of all such.
1101
1102 END_ADDR is the address of the end of the file's text. */
1103
1104static void
1105end_symtab (end_addr)
1106 CORE_ADDR end_addr;
1107{
1108 register struct symtab *symtab;
1109 register struct blockvector *blockvector;
1110 register struct subfile *subfile;
1111 register struct linetable *lv;
1112 struct subfile *nextsub;
1113
1114 /* Finish the lexical context of the last function in the file;
1115 pop the context stack. */
1116
1117 if (context_stack_depth > 0)
1118 {
1119 register struct context_stack *cstk;
1120 context_stack_depth--;
1121 cstk = &context_stack[context_stack_depth];
1122 /* Make a block for the local symbols within. */
1123 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1124 cstk->start_addr, end_addr);
1125 }
1126
1127 /* Cleanup any undefined types that have been left hanging around
1128 (this needs to be done before the finish_blocks so that
1129 file_symbols is still good). */
1130 cleanup_undefined_types ();
1131
1132 /* Finish defining all the blocks of this symtab. */
1133 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1134 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1135 blockvector = make_blockvector ();
1136
1137 current_subfile->line_vector_index = line_vector_index;
1138
1139 /* Now create the symtab objects proper, one for each subfile. */
1140 /* (The main file is one of them.) */
1141
1142 for (subfile = subfiles; subfile; subfile = nextsub)
1143 {
1144 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1145
1146 /* Fill in its components. */
1147 symtab->blockvector = blockvector;
1148 lv = subfile->line_vector;
1149 lv->nitems = subfile->line_vector_index;
1150 symtab->linetable = (struct linetable *)
1151 xrealloc (lv, (sizeof (struct linetable)
1152 + lv->nitems * sizeof (struct linetable_entry)));
1153 type_vector->length = type_vector_length;
1154 symtab->typevector = type_vector;
1155
1156 symtab->filename = subfile->name;
1157 symtab->dirname = subfile->dirname;
1158
1159 symtab->free_code = free_linetable;
1160 symtab->free_ptr = 0;
1161 if (subfile->next == 0)
1162 symtab->free_ptr = (char *) type_vector;
1163
1164 symtab->nlines = 0;
1165 symtab->line_charpos = 0;
1166
1167 symtab->language = language_unknown;
1168 symtab->fullname = NULL;
1169
1170 /* If there is already a symtab for a file of this name, remove it,
1171 and clear out other dependent data structures such as
1172 breakpoints. This happens in VxWorks maybe? -gnu@cygnus */
1173 free_named_symtab (symtab->filename);
1174
1175 /* Link the new symtab into the list of such. */
1176 symtab->next = symtab_list;
1177 symtab_list = symtab;
1178
1179 nextsub = subfile->next;
1180 free (subfile);
1181 }
1182
1183 type_vector = 0;
1184 type_vector_length = -1;
1185 line_vector = 0;
1186 line_vector_length = -1;
1187 last_source_file = 0;
1188}
1189\f
1190/* Handle the N_BINCL and N_EINCL symbol types
1191 that act like N_SOL for switching source files
1192 (different subfiles, as we call them) within one object file,
1193 but using a stack rather than in an arbitrary order. */
1194
1195struct subfile_stack
1196{
1197 struct subfile_stack *next;
1198 char *name;
1199 int prev_index;
1200};
1201
1202struct subfile_stack *subfile_stack;
1203
1204static void
1205push_subfile ()
1206{
1207 register struct subfile_stack *tem
1208 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1209
1210 tem->next = subfile_stack;
1211 subfile_stack = tem;
1212 if (current_subfile == 0 || current_subfile->name == 0)
1213 abort ();
1214 tem->name = current_subfile->name;
1215 tem->prev_index = header_file_prev_index;
1216}
1217
1218static char *
1219pop_subfile ()
1220{
1221 register char *name;
1222 register struct subfile_stack *link = subfile_stack;
1223
1224 if (link == 0)
1225 abort ();
1226
1227 name = link->name;
1228 subfile_stack = link->next;
1229 header_file_prev_index = link->prev_index;
1230 free (link);
1231
1232 return name;
1233}
1234\f
1235void
1236record_misc_function (name, address, type)
1237 char *name;
1238 CORE_ADDR address;
1239 int type;
1240{
1241 enum misc_function_type misc_type =
1242 (type == (N_TEXT | N_EXT) ? mf_text :
1243 (type == (N_DATA | N_EXT)
1244 || type == (N_DATA)
1245 || type == (N_SETV | N_EXT)
1246 ) ? mf_data :
1247 type == (N_BSS | N_EXT) ? mf_bss :
1248 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1249
1250 prim_record_misc_function (obsavestring (name, strlen (name)),
1251 address, misc_type);
1252}
1253\f
1254/* Scan and build partial symbols for a symbol file.
1255 We have been initialized by a call to dbx_symfile_init, which
1256 put all the relevant info into a "struct dbx_symfile_info"
1257 hung off the struct sym_fns SF.
1258
1259 ADDR is the address relative to which the symbols in it are (e.g.
1260 the base address of the text segment).
1261 MAINLINE is true if we are reading the main symbol
1262 table (as opposed to a shared lib or dynamically loaded file). */
1263
1264void
1265dbx_symfile_read (sf, addr, mainline)
1266 struct sym_fns *sf;
1267 CORE_ADDR addr;
1268 int mainline; /* FIXME comments above */
1269{
1270 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1271 bfd *sym_bfd = sf->sym_bfd;
1272 int val;
1273 char *filename = bfd_get_filename (sym_bfd);
1274
1275 val = lseek (info->desc, info->symtab_offset, L_SET);
1276 if (val < 0)
1277 perror_with_name (filename);
1278
1279 /* If mainline, set global string table pointers, and reinitialize global
1280 partial symbol list. */
1281 if (mainline) {
1282 symfile_string_table = info->stringtab;
1283 symfile_string_table_size = info->stringtab_size;
1284 init_psymbol_list (info->symcount);
1285 }
1286
1287 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1288
1289 pending_blocks = 0;
1290 make_cleanup (really_free_pendings, 0);
1291
1292 init_misc_bunches ();
1293 make_cleanup (discard_misc_bunches, 0);
1294
1295 /* Now that the symbol table data of the executable file are all in core,
1296 process them and define symbols accordingly. */
1297
1298 read_dbx_symtab (filename,
1299 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1300 info->desc, info->stringtab, info->stringtab_size,
1301 info->symcount,
1302 bfd_section_vma (sym_bfd, info->text_sect),
1303 bfd_section_size (sym_bfd, info->text_sect));
1304
1305 /* Go over the misc symbol bunches and install them in vector. */
1306
1307 condense_misc_bunches (!mainline);
1308
1309 /* Free up any memory we allocated for ourselves. */
1310
1311 if (!mainline) {
1312 free (info->stringtab); /* Stringtab is only saved for mainline */
1313 }
1314 free (info);
1315 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1316
1317 /* Call to select_source_symtab used to be here; it was using too
1318 much time. I'll make sure that list_sources can handle the lack
1319 of current_source_symtab */
1320
1321 if (!partial_symtab_list)
1322 printf_filtered ("\n(no debugging symbols found)...");
1323}
1324
1325/* Discard any information we have cached during the reading of a
1326 single symbol file. This should not toss global information
1327 from previous symbol files that have been read. E.g. we might
1328 be discarding info from reading a shared library, and should not
1329 throw away the info from the main file. */
1330
1331void
1332dbx_symfile_discard ()
1333{
1334
1335 /* Empty the hash table of global syms looking for values. */
1336 bzero (global_sym_chain, sizeof global_sym_chain);
1337
1338 free_pendings = 0;
1339 file_symbols = 0;
1340 global_symbols = 0;
1341}
1342
1343/* Initialize anything that needs initializing when a completely new
1344 symbol file is specified (not just adding some symbols from another
1345 file, e.g. a shared library). */
1346
1347void
1348dbx_new_init ()
1349{
1350 dbx_symfile_discard ();
1351 /* Don't put these on the cleanup chain; they need to stick around
1352 until the next call to symbol_file_command. *Then* we'll free
1353 them. */
1354 if (symfile_string_table)
1355 {
1356 free (symfile_string_table);
1357 symfile_string_table = 0;
1358 symfile_string_table_size = 0;
1359 }
1360 free_and_init_header_files ();
1361}
1362
1363
1364/* dbx_symfile_init ()
1365 is the dbx-specific initialization routine for reading symbols.
1366 It is passed a struct sym_fns which contains, among other things,
1367 the BFD for the file whose symbols are being read, and a slot for a pointer
1368 to "private data" which we fill with goodies.
1369
1370 We read the string table into malloc'd space and stash a pointer to it.
1371
1372 Since BFD doesn't know how to read debug symbols in a format-independent
1373 way (and may never do so...), we have to do it ourselves. We will never
1374 be called unless this is an a.out (or very similar) file.
1375 FIXME, there should be a cleaner peephole into the BFD environment here. */
1376
1377void
1378dbx_symfile_init (sf)
1379 struct sym_fns *sf;
1380{
1381 int val;
1382 int desc;
1383 struct stat statbuf;
1384 bfd *sym_bfd = sf->sym_bfd;
1385 char *name = bfd_get_filename (sym_bfd);
1386 struct dbx_symfile_info *info;
1387 unsigned char size_temp[4];
1388
1389 /* Allocate struct to keep track of the symfile */
1390 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1391 info = (struct dbx_symfile_info *)sf->sym_private;
1392
1393 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1394 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1395#define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1396#define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1397 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1398
1399 info->desc = desc;
1400 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1401 if (!info->text_sect)
1402 abort();
1403 info->symcount = bfd_get_symcount_upper_bound(sym_bfd); /* It's exact for a.out */
1404
1405 /* Read the string table size and check it for bogosity. */
1406 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1407 if (val < 0)
1408 perror_with_name (name);
1409 if (fstat (desc, &statbuf) == -1)
1410 perror_with_name (name);
1411
1412 val = myread (desc, size_temp, sizeof (long));
1413 if (val < 0)
1414 perror_with_name (name);
1415 info->stringtab_size = bfd_h_getlong (sym_bfd, size_temp);
1416
1417 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1418 {
1419 info->stringtab = (char *) xmalloc (info->stringtab_size);
1420 /* Caller is responsible for freeing the string table. No cleanup. */
1421 }
1422 else
1423 info->stringtab = NULL;
1424 if (info->stringtab == NULL && info->stringtab_size != 0)
1425 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1426
1427 /* Now read in the string table in one big gulp. */
1428
1429 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1430 if (val < 0)
1431 perror_with_name (name);
1432 val = myread (desc, info->stringtab, info->stringtab_size);
1433 if (val < 0)
1434 perror_with_name (name);
1435
1436 /* Record the position of the symbol table for later use. */
1437
1438 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1439}
1440\f
1441/* Buffer for reading the symbol table entries. */
1442static struct nlist symbuf[4096];
1443static int symbuf_idx;
1444static int symbuf_end;
1445
1446/* I/O descriptor for reading the symbol table. */
1447static int symtab_input_desc;
1448
1449/* The address in memory of the string table of the object file we are
1450 reading (which might not be the "main" object file, but might be a
1451 shared library or some other dynamically loaded thing). This is set
1452 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1453 when building symtabs, and is used only by next_symbol_text. */
1454static char *stringtab_global;
1455
1456/* Refill the symbol table input buffer
1457 and set the variables that control fetching entries from it.
1458 Reports an error if no data available.
1459 This function can read past the end of the symbol table
1460 (into the string table) but this does no harm. */
1461
1462static int
1463fill_symbuf ()
1464{
1465 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1466 if (nbytes < 0)
1467 perror_with_name ("<symbol file>");
1468 else if (nbytes == 0)
1469 error ("Premature end of file reading symbol table");
1470 symbuf_end = nbytes / sizeof (struct nlist);
1471 symbuf_idx = 0;
1472 return 1;
1473}
1474
1475#define SWAP_SYMBOL(symp) \
1476 { \
1477 (symp)->n_un.n_strx = bfd_h_getlong(symfile_bfd, \
1478 (unsigned char *)&(symp)->n_un.n_strx); \
1479 (symp)->n_desc = bfd_h_getshort (symfile_bfd, \
1480 (unsigned char *)&(symp)->n_desc); \
1481 (symp)->n_value = bfd_h_getlong (symfile_bfd, \
1482 (unsigned char *)&(symp)->n_value); \
1483 }
1484
1485/* Invariant: The symbol pointed to by symbuf_idx is the first one
1486 that hasn't been swapped. Swap the symbol at the same time
1487 that symbuf_idx is incremented. */
1488
1489/* dbx allows the text of a symbol name to be continued into the
1490 next symbol name! When such a continuation is encountered
1491 (a \ at the end of the text of a name)
1492 call this function to get the continuation. */
1493
1494static char *
1495next_symbol_text ()
1496{
1497 if (symbuf_idx == symbuf_end)
1498 fill_symbuf ();
1499 symnum++;
1500 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1501 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1502}
1503\f
1504/* Initializes storage for all of the partial symbols that will be
1505 created by read_dbx_symtab and subsidiaries. */
1506
1507static void
1508init_psymbol_list (total_symbols)
1509 int total_symbols;
1510{
1511 /* Free any previously allocated psymbol lists. */
1512 if (global_psymbols.list)
1513 free (global_psymbols.list);
1514 if (static_psymbols.list)
1515 free (static_psymbols.list);
1516
1517 /* Current best guess is that there are approximately a twentieth
1518 of the total symbols (in a debugging file) are global or static
1519 oriented symbols */
1520 global_psymbols.size = total_symbols / 10;
1521 static_psymbols.size = total_symbols / 10;
1522 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1523 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1524 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1525 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1526}
1527
1528/* Initialize the list of bincls to contain none and have some
1529 allocated. */
1530
1531static void
1532init_bincl_list (number)
1533 int number;
1534{
1535 bincls_allocated = number;
1536 next_bincl = bincl_list = (struct header_file_location *)
1537 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1538}
1539
1540/* Add a bincl to the list. */
1541
1542static void
1543add_bincl_to_list (pst, name, instance)
1544 struct partial_symtab *pst;
1545 char *name;
1546 int instance;
1547{
1548 if (next_bincl >= bincl_list + bincls_allocated)
1549 {
1550 int offset = next_bincl - bincl_list;
1551 bincls_allocated *= 2;
1552 bincl_list = (struct header_file_location *)
1553 xrealloc ((char *)bincl_list,
1554 bincls_allocated * sizeof (struct header_file_location));
1555 next_bincl = bincl_list + offset;
1556 }
1557 next_bincl->pst = pst;
1558 next_bincl->instance = instance;
1559 next_bincl++->name = name;
1560}
1561
1562/* Given a name, value pair, find the corresponding
1563 bincl in the list. Return the partial symtab associated
1564 with that header_file_location. */
1565
1566struct partial_symtab *
1567find_corresponding_bincl_psymtab (name, instance)
1568 char *name;
1569 int instance;
1570{
1571 struct header_file_location *bincl;
1572
1573 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1574 if (bincl->instance == instance
1575 && !strcmp (name, bincl->name))
1576 return bincl->pst;
1577
1578 return (struct partial_symtab *) 0;
1579}
1580
1581/* Free the storage allocated for the bincl list. */
1582
1583static void
1584free_bincl_list ()
1585{
1586 free (bincl_list);
1587 bincls_allocated = 0;
1588}
1589
1590static struct partial_symtab *start_psymtab ();
1591static void end_psymtab();
1592
1593#ifdef DEBUG
1594/* This is normally a macro defined in read_dbx_symtab, but this
1595 is a lot easier to debug. */
1596
1597ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1598 char *NAME;
1599 int NAMELENGTH;
1600 enum namespace NAMESPACE;
1601 enum address_class CLASS;
1602 struct psymbol_allocation_list *PLIST;
1603 unsigned long VALUE;
1604{
1605 register struct partial_symbol *psym;
1606
1607#define LIST *PLIST
1608 do {
1609 if ((LIST).next >=
1610 (LIST).list + (LIST).size)
1611 {
1612 (LIST).list = (struct partial_symbol *)
1613 xrealloc ((LIST).list,
1614 ((LIST).size * 2
1615 * sizeof (struct partial_symbol)));
1616 /* Next assumes we only went one over. Should be good if
1617 program works correctly */
1618 (LIST).next =
1619 (LIST).list + (LIST).size;
1620 (LIST).size *= 2;
1621 }
1622 psym = (LIST).next++;
1623#undef LIST
1624
1625 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1626 (NAMELENGTH) + 1);
1627 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1628 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1629 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1630 SYMBOL_CLASS (psym) = (CLASS);
1631 SYMBOL_VALUE (psym) = (VALUE);
1632 } while (0);
1633}
1634
1635/* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1636#define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1637 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1638
1639#endif /* DEBUG */
1640
1641/* Given pointers to an a.out symbol table in core containing dbx
1642 style data, setup partial_symtab's describing each source file for
1643 which debugging information is available. NLISTLEN is the number
1644 of symbols in the symbol table. All symbol names are given as
1645 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1646 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1647 and ADDR is its relocated address (if incremental) or 0 (if not). */
1648
1649static void
1650read_dbx_symtab (symfile_name, addr,
1651 desc, stringtab, stringtab_size, nlistlen,
1652 text_addr, text_size)
1653 char *symfile_name;
1654 CORE_ADDR addr;
1655 int desc;
1656 register char *stringtab;
1657 register long stringtab_size;
1658 register int nlistlen;
1659 CORE_ADDR text_addr;
1660 int text_size;
1661{
1662 register struct nlist *bufp;
1663 register char *namestring;
1664 register struct partial_symbol *psym;
1665 int nsl;
1666 int past_first_source_file = 0;
1667 CORE_ADDR last_o_file_start = 0;
1668 struct cleanup *old_chain;
1669 char *p;
1670
1671 /* End of the text segment of the executable file. */
1672 CORE_ADDR end_of_text_addr;
1673
1674 /* Current partial symtab */
1675 struct partial_symtab *pst;
1676
1677 /* List of current psymtab's include files */
1678 char **psymtab_include_list;
1679 int includes_allocated;
1680 int includes_used;
1681
1682 /* Index within current psymtab dependency list */
1683 struct partial_symtab **dependency_list;
1684 int dependencies_used, dependencies_allocated;
1685
1686 stringtab_global = stringtab;
1687
1688 pst = (struct partial_symtab *) 0;
1689
1690 includes_allocated = 30;
1691 includes_used = 0;
1692 psymtab_include_list = (char **) alloca (includes_allocated *
1693 sizeof (char *));
1694
1695 dependencies_allocated = 30;
1696 dependencies_used = 0;
1697 dependency_list =
1698 (struct partial_symtab **) alloca (dependencies_allocated *
1699 sizeof (struct partial_symtab *));
1700
1701 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1702 It should only blow away the psymtabs created herein. We could
1703 be reading a shared library or a dynloaded file! */
1704 old_chain = make_cleanup (free_all_psymtabs, 0);
1705
1706 /* Init bincl list */
1707 init_bincl_list (20);
1708 make_cleanup (free_bincl_list, 0);
1709
1710 last_source_file = 0;
1711
1712#ifdef END_OF_TEXT_DEFAULT
1713 end_of_text_addr = END_OF_TEXT_DEFAULT;
1714#else
3f2e006b 1715 end_of_text_addr = text_addr + text_size;
bd5635a1
RP
1716#endif
1717
1718 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1719 symbuf_end = symbuf_idx = 0;
1720
1721 for (symnum = 0; symnum < nlistlen; symnum++)
1722 {
1723 /* Get the symbol for this run and pull out some info */
1724 QUIT; /* allow this to be interruptable */
1725 if (symbuf_idx == symbuf_end)
1726 fill_symbuf ();
1727 bufp = &symbuf[symbuf_idx++];
1728
1729 /*
1730 * Special case to speed up readin.
1731 */
1732 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1733
1734 SWAP_SYMBOL (bufp);
1735
1736 /* Ok. There is a lot of code duplicated in the rest of this
1737 switch statement (for efficiency reasons). Since I don't
1738 like duplicating code, I will do my penance here, and
1739 describe the code which is duplicated:
1740
1741 *) The assignment to namestring.
1742 *) The call to strchr.
1743 *) The addition of a partial symbol the the two partial
1744 symbol lists. This last is a large section of code, so
1745 I've imbedded it in the following macro.
1746 */
1747
1748/* Set namestring based on bufp. If the string table index is invalid,
1749 give a fake name, and print a single error message per symbol file read,
1750 rather than abort the symbol reading or flood the user with messages. */
1751#define SET_NAMESTRING()\
1752 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1753 complain (&string_table_offset_complaint, symnum); \
1754 namestring = "foo"; \
1755 } else \
1756 namestring = bufp->n_un.n_strx + stringtab
1757
1758/* Add a symbol with an integer value to a psymtab. */
1759/* This is a macro unless we're debugging. See above this function. */
1760#ifndef DEBUG
1761# define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1762 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1763 SYMBOL_VALUE)
1764#endif /* DEBUG */
1765
1766/* Add a symbol with a CORE_ADDR value to a psymtab. */
1767#define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1768 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1769 SYMBOL_VALUE_ADDRESS)
1770
1771/* Add any kind of symbol to a psymtab. */
1772#define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1773 do { \
1774 if ((LIST).next >= \
1775 (LIST).list + (LIST).size) \
1776 { \
1777 (LIST).list = (struct partial_symbol *) \
1778 xrealloc ((LIST).list, \
1779 ((LIST).size * 2 \
1780 * sizeof (struct partial_symbol))); \
1781 /* Next assumes we only went one over. Should be good if \
1782 program works correctly */ \
1783 (LIST).next = \
1784 (LIST).list + (LIST).size; \
1785 (LIST).size *= 2; \
1786 } \
1787 psym = (LIST).next++; \
1788 \
1789 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1790 (NAMELENGTH) + 1); \
1791 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1792 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1793 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1794 SYMBOL_CLASS (psym) = (CLASS); \
1795 VT (psym) = (VALUE); \
1796 } while (0);
1797
1798/* End of macro definitions, now let's handle them symbols! */
1799
1800 switch (bufp->n_type)
1801 {
1802 /*
1803 * Standard, external, non-debugger, symbols
1804 */
1805
1806 case N_TEXT | N_EXT:
1807 case N_NBTEXT | N_EXT:
1808 case N_NBDATA | N_EXT:
1809 case N_NBBSS | N_EXT:
1810 case N_SETV | N_EXT:
1811 case N_ABS | N_EXT:
1812 case N_DATA | N_EXT:
1813 case N_BSS | N_EXT:
1814
1815 bufp->n_value += addr; /* Relocate */
1816
1817 SET_NAMESTRING();
1818
1819 bss_ext_symbol:
1820 record_misc_function (namestring, bufp->n_value,
1821 bufp->n_type); /* Always */
1822
1823 continue;
1824
1825 /* Standard, local, non-debugger, symbols */
1826
1827 case N_NBTEXT:
1828
1829 /* We need to be able to deal with both N_FN or N_TEXT,
1830 because we have no way of knowing whether the sys-supplied ld
1831 or GNU ld was used to make the executable. */
1832#if ! (N_FN & N_EXT)
1833 case N_FN:
1834#endif
1835 case N_FN | N_EXT:
1836 case N_TEXT:
1837 bufp->n_value += addr; /* Relocate */
1838 SET_NAMESTRING();
1839 if ((namestring[0] == '-' && namestring[1] == 'l')
1840 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1841 && namestring [nsl - 2] == '.'))
1842 {
1843 if (entry_point < bufp->n_value
1844 && entry_point >= last_o_file_start
1845 && addr == 0) /* FIXME nogood nomore */
1846 {
1847 startup_file_start = last_o_file_start;
1848 startup_file_end = bufp->n_value;
1849 }
1850 if (past_first_source_file && pst
1851 /* The gould NP1 uses low values for .o and -l symbols
1852 which are not the address. */
1853 && bufp->n_value > pst->textlow)
1854 {
1855 end_psymtab (pst, psymtab_include_list, includes_used,
1856 symnum * sizeof (struct nlist), bufp->n_value,
1857 dependency_list, dependencies_used,
1858 global_psymbols.next, static_psymbols.next);
1859 pst = (struct partial_symtab *) 0;
1860 includes_used = 0;
1861 dependencies_used = 0;
1862 }
1863 else
1864 past_first_source_file = 1;
1865 last_o_file_start = bufp->n_value;
1866 }
1867 continue;
1868
1869 case N_DATA:
1870 bufp->n_value += addr; /* Relocate */
1871 SET_NAMESTRING ();
1872 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1873 Record it even if it's local, not global, so we can find it. */
1874 if (namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1875 {
1876 /* Not really a function here, but... */
1877 record_misc_function (namestring, bufp->n_value,
1878 bufp->n_type); /* Always */
1879 }
1880 continue;
1881
1882 case N_UNDF | N_EXT:
1883 if (bufp->n_value != 0) {
1884 /* This is a "Fortran COMMON" symbol. See if the target
1885 environment knows where it has been relocated to. */
1886
1887 CORE_ADDR reladdr;
1888
1889 SET_NAMESTRING();
1890 if (target_lookup_symbol (namestring, &reladdr)) {
1891 continue; /* Error in lookup; ignore symbol for now. */
1892 }
1893 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1894 bufp->n_value = reladdr;
1895 goto bss_ext_symbol;
1896 }
1897 continue; /* Just undefined, not COMMON */
1898
1899 /* Lots of symbol types we can just ignore. */
1900
1901 case N_UNDF:
1902 case N_ABS:
1903 case N_BSS:
1904 case N_NBDATA:
1905 case N_NBBSS:
1906 continue;
1907
1908 /* Keep going . . .*/
1909
1910 /*
1911 * Special symbol types for GNU
1912 */
1913 case N_INDR:
1914 case N_INDR | N_EXT:
1915 case N_SETA:
1916 case N_SETA | N_EXT:
1917 case N_SETT:
1918 case N_SETT | N_EXT:
1919 case N_SETD:
1920 case N_SETD | N_EXT:
1921 case N_SETB:
1922 case N_SETB | N_EXT:
1923 case N_SETV:
1924 continue;
1925
1926 /*
1927 * Debugger symbols
1928 */
1929
1930 case N_SO: {
1931 unsigned long valu = bufp->n_value;
1932 /* Symbol number of the first symbol of this file (i.e. the N_SO
1933 if there is just one, or the first if we have a pair). */
1934 int first_symnum = symnum;
1935
1936 /* End the current partial symtab and start a new one */
1937
1938 SET_NAMESTRING();
1939
1940 /* Peek at the next symbol. If it is also an N_SO, the
1941 first one just indicates the directory. */
1942 if (symbuf_idx == symbuf_end)
1943 fill_symbuf ();
1944 bufp = &symbuf[symbuf_idx];
1945 /* n_type is only a char, so swapping swapping is irrelevant. */
1946 if (bufp->n_type == (unsigned char)N_SO)
1947 {
1948 SWAP_SYMBOL (bufp);
1949 SET_NAMESTRING ();
1950 valu = bufp->n_value;
1951 symbuf_idx++;
1952 symnum++;
1953 }
1954 valu += addr; /* Relocate */
1955
1956 if (pst && past_first_source_file)
1957 {
1958 end_psymtab (pst, psymtab_include_list, includes_used,
1959 first_symnum * sizeof (struct nlist), valu,
1960 dependency_list, dependencies_used,
1961 global_psymbols.next, static_psymbols.next);
1962 pst = (struct partial_symtab *) 0;
1963 includes_used = 0;
1964 dependencies_used = 0;
1965 }
1966 else
1967 past_first_source_file = 1;
1968
1969 pst = start_psymtab (symfile_name, addr,
1970 namestring, valu,
1971 first_symnum * sizeof (struct nlist),
1972 global_psymbols.next, static_psymbols.next);
1973
1974 continue;
1975 }
1976
1977 case N_BINCL:
1978 /* Add this bincl to the bincl_list for future EXCLs. No
1979 need to save the string; it'll be around until
1980 read_dbx_symtab function returns */
1981
1982 SET_NAMESTRING();
1983
1984 add_bincl_to_list (pst, namestring, bufp->n_value);
1985
1986 /* Mark down an include file in the current psymtab */
1987
1988 psymtab_include_list[includes_used++] = namestring;
1989 if (includes_used >= includes_allocated)
1990 {
1991 char **orig = psymtab_include_list;
1992
1993 psymtab_include_list = (char **)
1994 alloca ((includes_allocated *= 2) *
1995 sizeof (char *));
1996 bcopy (orig, psymtab_include_list,
1997 includes_used * sizeof (char *));
1998 }
1999
2000 continue;
2001
2002 case N_SOL:
2003 /* Mark down an include file in the current psymtab */
2004
2005 SET_NAMESTRING();
2006
2007 /* In C++, one may expect the same filename to come round many
2008 times, when code is coming alternately from the main file
2009 and from inline functions in other files. So I check to see
2010 if this is a file we've seen before.
2011
2012 This seems to be a lot of time to be spending on N_SOL, but
2013 things like "break expread.y:435" need to work (I
2014 suppose the psymtab_include_list could be hashed or put
2015 in a binary tree, if profiling shows this is a major hog). */
2016 {
2017 register int i;
2018 for (i = 0; i < includes_used; i++)
2019 if (!strcmp (namestring, psymtab_include_list[i]))
2020 {
2021 i = -1;
2022 break;
2023 }
2024 if (i == -1)
2025 continue;
2026 }
2027
2028 psymtab_include_list[includes_used++] = namestring;
2029 if (includes_used >= includes_allocated)
2030 {
2031 char **orig = psymtab_include_list;
2032
2033 psymtab_include_list = (char **)
2034 alloca ((includes_allocated *= 2) *
2035 sizeof (char *));
2036 bcopy (orig, psymtab_include_list,
2037 includes_used * sizeof (char *));
2038 }
2039 continue;
2040
2041 case N_LSYM: /* Typedef or automatic variable. */
2042 SET_NAMESTRING();
2043
2044 p = (char *) strchr (namestring, ':');
2045
2046 /* Skip if there is no :. */
2047 if (!p) continue;
2048
2049 switch (p[1])
2050 {
2051 case 'T':
2052 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2053 STRUCT_NAMESPACE, LOC_TYPEDEF,
2054 static_psymbols, bufp->n_value);
2055 if (p[2] == 't')
2056 {
2057 /* Also a typedef with the same name. */
2058 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2059 VAR_NAMESPACE, LOC_TYPEDEF,
2060 static_psymbols, bufp->n_value);
2061 p += 1;
2062 }
2063 goto check_enum;
2064 case 't':
2065 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2066 VAR_NAMESPACE, LOC_TYPEDEF,
2067 static_psymbols, bufp->n_value);
2068 check_enum:
2069 /* If this is an enumerated type, we need to
2070 add all the enum constants to the partial symbol
2071 table. This does not cover enums without names, e.g.
2072 "enum {a, b} c;" in C, but fortunately those are
2073 rare. There is no way for GDB to find those from the
2074 enum type without spending too much time on it. Thus
2075 to solve this problem, the compiler needs to put out separate
2076 constant symbols ('c' N_LSYMS) for enum constants in
2077 enums without names, or put out a dummy type. */
2078
2079 /* We are looking for something of the form
2080 <name> ":" ("t" | "T") [<number> "="] "e"
2081 {<constant> ":" <value> ","} ";". */
2082
2083 /* Skip over the colon and the 't' or 'T'. */
2084 p += 2;
2085 /* This type may be given a number. Skip over it. */
2086 while ((*p >= '0' && *p <= '9')
2087 || *p == '=')
2088 p++;
2089
2090 if (*p++ == 'e')
2091 {
2092 /* We have found an enumerated type. */
2093 /* According to comments in read_enum_type
2094 a comma could end it instead of a semicolon.
2095 I don't know where that happens.
2096 Accept either. */
2097 while (*p && *p != ';' && *p != ',')
2098 {
2099 char *q;
2100
2101 /* Check for and handle cretinous dbx symbol name
2102 continuation! */
2103 if (*p == '\\')
2104 p = next_symbol_text ();
2105
2106 /* Point to the character after the name
2107 of the enum constant. */
2108 for (q = p; *q && *q != ':'; q++)
2109 ;
2110 /* Note that the value doesn't matter for
2111 enum constants in psymtabs, just in symtabs. */
2112 ADD_PSYMBOL_TO_LIST (p, q - p,
2113 VAR_NAMESPACE, LOC_CONST,
2114 static_psymbols, 0);
2115 /* Point past the name. */
2116 p = q;
2117 /* Skip over the value. */
2118 while (*p && *p != ',')
2119 p++;
2120 /* Advance past the comma. */
2121 if (*p)
2122 p++;
2123 }
2124 }
2125
2126 continue;
2127 case 'c':
2128 /* Constant, e.g. from "const" in Pascal. */
2129 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2130 VAR_NAMESPACE, LOC_CONST,
2131 static_psymbols, bufp->n_value);
2132 continue;
2133 default:
2134 /* Skip if the thing following the : is
2135 not a letter (which indicates declaration of a local
2136 variable, which we aren't interested in). */
2137 continue;
2138 }
2139
2140 case N_FUN:
2141 case N_GSYM: /* Global (extern) variable; can be
2142 data or bss (sigh). */
2143 case N_STSYM: /* Data seg var -- static */
2144 case N_LCSYM: /* BSS " */
2145
2146 case N_NBSTS: /* Gould nobase. */
2147 case N_NBLCS: /* symbols. */
2148
2149 /* Following may probably be ignored; I'll leave them here
2150 for now (until I do Pascal and Modula 2 extensions). */
2151
2152 case N_PC: /* I may or may not need this; I
2153 suspect not. */
2154 case N_M2C: /* I suspect that I can ignore this here. */
2155 case N_SCOPE: /* Same. */
2156
2157 SET_NAMESTRING();
2158
2159 p = (char *) strchr (namestring, ':');
2160 if (!p)
2161 continue; /* Not a debugging symbol. */
2162
2163
2164
2165 /* Main processing section for debugging symbols which
2166 the initial read through the symbol tables needs to worry
2167 about. If we reach this point, the symbol which we are
2168 considering is definitely one we are interested in.
2169 p must also contain the (valid) index into the namestring
2170 which indicates the debugging type symbol. */
2171
2172 switch (p[1])
2173 {
2174 case 'c':
2175 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2176 VAR_NAMESPACE, LOC_CONST,
2177 static_psymbols, bufp->n_value);
2178 continue;
2179 case 'S':
2180 bufp->n_value += addr; /* Relocate */
2181 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2182 VAR_NAMESPACE, LOC_STATIC,
2183 static_psymbols, bufp->n_value);
2184 continue;
2185 case 'G':
2186 bufp->n_value += addr; /* Relocate */
2187 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2188 VAR_NAMESPACE, LOC_EXTERNAL,
2189 global_psymbols, bufp->n_value);
2190 continue;
2191
2192 case 't':
2193 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2194 VAR_NAMESPACE, LOC_TYPEDEF,
2195 global_psymbols, bufp->n_value);
2196 continue;
2197
2198 case 'f':
2199 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2200 VAR_NAMESPACE, LOC_BLOCK,
2201 static_psymbols, bufp->n_value);
2202 continue;
2203
2204 /* Two things show up here (hopefully); static symbols of
2205 local scope (static used inside braces) or extensions
2206 of structure symbols. We can ignore both. */
2207 case 'V':
2208 case '(':
2209 case '0':
2210 case '1':
2211 case '2':
2212 case '3':
2213 case '4':
2214 case '5':
2215 case '6':
2216 case '7':
2217 case '8':
2218 case '9':
2219 /* Global functions are ignored here. I'm not
2220 sure what psymtab they go into (or just the misc
2221 function vector). */
2222 case 'F':
2223 continue;
2224
2225 default:
2226 /* Unexpected symbol. Ignore it; perhaps it is an extension
2227 that we don't know about.
2228
2229 Someone says sun cc puts out symbols like
2230 /foo/baz/maclib::/usr/local/bin/maclib,
2231 which would get here with a symbol type of ':'. */
2232 continue;
2233 }
2234
2235 case N_EXCL:
2236
2237 SET_NAMESTRING();
2238
2239 /* Find the corresponding bincl and mark that psymtab on the
2240 psymtab dependency list */
2241 {
2242 struct partial_symtab *needed_pst =
2243 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2244
2245 /* If this include file was defined earlier in this file,
2246 leave it alone. */
2247 if (needed_pst == pst) continue;
2248
2249 if (needed_pst)
2250 {
2251 int i;
2252 int found = 0;
2253
2254 for (i = 0; i < dependencies_used; i++)
2255 if (dependency_list[i] == needed_pst)
2256 {
2257 found = 1;
2258 break;
2259 }
2260
2261 /* If it's already in the list, skip the rest. */
2262 if (found) continue;
2263
2264 dependency_list[dependencies_used++] = needed_pst;
2265 if (dependencies_used >= dependencies_allocated)
2266 {
2267 struct partial_symtab **orig = dependency_list;
2268 dependency_list =
2269 (struct partial_symtab **)
2270 alloca ((dependencies_allocated *= 2)
2271 * sizeof (struct partial_symtab *));
2272 bcopy (orig, dependency_list,
2273 (dependencies_used
2274 * sizeof (struct partial_symtab *)));
2275#ifdef DEBUG_INFO
2276 fprintf (stderr, "Had to reallocate dependency list.\n");
2277 fprintf (stderr, "New dependencies allocated: %d\n",
2278 dependencies_allocated);
2279#endif
2280 }
2281 }
2282 else
2283 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2284 symnum);
2285 }
2286 continue;
2287
2288 case N_EINCL:
2289 case N_DSLINE:
2290 case N_BSLINE:
2291 case N_SSYM: /* Claim: Structure or union element.
2292 Hopefully, I can ignore this. */
2293 case N_ENTRY: /* Alternate entry point; can ignore. */
2294 case N_MAIN: /* Can definitely ignore this. */
2295 case N_CATCH: /* These are GNU C++ extensions */
2296 case N_EHDECL: /* that can safely be ignored here. */
2297 case N_LENG:
2298 case N_BCOMM:
2299 case N_ECOMM:
2300 case N_ECOML:
2301 case N_FNAME:
2302 case N_SLINE:
2303 case N_RSYM:
2304 case N_PSYM:
2305 case N_LBRAC:
2306 case N_RBRAC:
2307 case N_NSYMS: /* Ultrix 4.0: symbol count */
2308 /* These symbols aren't interesting; don't worry about them */
2309
2310 continue;
2311
2312 default:
2313 /* If we haven't found it yet, ignore it. It's probably some
2314 new type we don't know about yet. */
2315 complain (&unknown_symtype_complaint, bufp->n_type);
2316 continue;
2317 }
2318 }
2319
2320 /* If there's stuff to be cleaned up, clean it up. */
2321 if (entry_point < bufp->n_value
2322 && entry_point >= last_o_file_start)
2323 {
2324 startup_file_start = last_o_file_start;
2325 startup_file_end = bufp->n_value;
2326 }
2327
2328 if (pst)
2329 {
2330 end_psymtab (pst, psymtab_include_list, includes_used,
2331 symnum * sizeof (struct nlist), end_of_text_addr,
2332 dependency_list, dependencies_used,
2333 global_psymbols.next, static_psymbols.next);
2334 includes_used = 0;
2335 dependencies_used = 0;
2336 pst = (struct partial_symtab *) 0;
2337 }
2338
2339 free_bincl_list ();
2340 discard_cleanups (old_chain);
2341}
2342
2343/*
2344 * Allocate and partially fill a partial symtab. It will be
2345 * completely filled at the end of the symbol list.
2346
2347 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2348 is the address relative to which its symbols are (incremental) or 0
2349 (normal). */
2350static struct partial_symtab *
2351start_psymtab (symfile_name, addr,
2352 filename, textlow, ldsymoff, global_syms, static_syms)
2353 char *symfile_name;
2354 CORE_ADDR addr;
2355 char *filename;
2356 CORE_ADDR textlow;
2357 int ldsymoff;
2358 struct partial_symbol *global_syms;
2359 struct partial_symbol *static_syms;
2360{
2361 struct partial_symtab *result =
2362 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2363 sizeof (struct partial_symtab));
2364
2365 result->addr = addr;
2366
2367 result->symfile_name =
2368 (char *) obstack_alloc (psymbol_obstack,
2369 strlen (symfile_name) + 1);
2370 strcpy (result->symfile_name, symfile_name);
2371
2372 result->filename =
2373 (char *) obstack_alloc (psymbol_obstack,
2374 strlen (filename) + 1);
2375 strcpy (result->filename, filename);
2376
2377 result->textlow = textlow;
2378 result->ldsymoff = ldsymoff;
2379
2380 result->readin = 0;
2381 result->symtab = 0;
2382 result->read_symtab = dbx_psymtab_to_symtab;
2383
2384 result->globals_offset = global_syms - global_psymbols.list;
2385 result->statics_offset = static_syms - static_psymbols.list;
2386
2387 result->n_global_syms = 0;
2388 result->n_static_syms = 0;
2389
2390
2391 return result;
2392}
2393
2394static int
2395compare_psymbols (s1, s2)
2396 register struct partial_symbol *s1, *s2;
2397{
2398 register char
2399 *st1 = SYMBOL_NAME (s1),
2400 *st2 = SYMBOL_NAME (s2);
2401
2402 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2403 strcmp (st1 + 1, st2 + 1));
2404}
2405
2406
2407/* Close off the current usage of a partial_symbol table entry. This
2408 involves setting the correct number of includes (with a realloc),
2409 setting the high text mark, setting the symbol length in the
2410 executable, and setting the length of the global and static lists
2411 of psymbols.
2412
2413 The global symbols and static symbols are then seperately sorted.
2414
2415 Then the partial symtab is put on the global list.
2416 *** List variables and peculiarities of same. ***
2417 */
2418static void
2419end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2420 capping_text, dependency_list, number_dependencies,
2421 capping_global, capping_static)
2422 struct partial_symtab *pst;
2423 char **include_list;
2424 int num_includes;
2425 int capping_symbol_offset;
2426 CORE_ADDR capping_text;
2427 struct partial_symtab **dependency_list;
2428 int number_dependencies;
2429 struct partial_symbol *capping_global, *capping_static;
2430{
2431 int i;
2432
2433 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2434 pst->texthigh = capping_text;
2435
2436 pst->n_global_syms =
2437 capping_global - (global_psymbols.list + pst->globals_offset);
2438 pst->n_static_syms =
2439 capping_static - (static_psymbols.list + pst->statics_offset);
2440
2441 pst->number_of_dependencies = number_dependencies;
2442 if (number_dependencies)
2443 {
2444 pst->dependencies = (struct partial_symtab **)
2445 obstack_alloc (psymbol_obstack,
2446 number_dependencies * sizeof (struct partial_symtab *));
2447 bcopy (dependency_list, pst->dependencies,
2448 number_dependencies * sizeof (struct partial_symtab *));
2449 }
2450 else
2451 pst->dependencies = 0;
2452
2453 for (i = 0; i < num_includes; i++)
2454 {
2455 /* Eventually, put this on obstack */
2456 struct partial_symtab *subpst =
2457 (struct partial_symtab *)
2458 obstack_alloc (psymbol_obstack,
2459 sizeof (struct partial_symtab));
2460
2461 subpst->filename =
2462 (char *) obstack_alloc (psymbol_obstack,
2463 strlen (include_list[i]) + 1);
2464 strcpy (subpst->filename, include_list[i]);
2465
2466 subpst->symfile_name = pst->symfile_name;
2467 subpst->addr = pst->addr;
2468 subpst->ldsymoff =
2469 subpst->ldsymlen =
2470 subpst->textlow =
2471 subpst->texthigh = 0;
2472
2473 subpst->dependencies = (struct partial_symtab **)
2474 obstack_alloc (psymbol_obstack,
2475 sizeof (struct partial_symtab *));
2476 subpst->dependencies[0] = pst;
2477 subpst->number_of_dependencies = 1;
2478
2479 subpst->globals_offset =
2480 subpst->n_global_syms =
2481 subpst->statics_offset =
2482 subpst->n_static_syms = 0;
2483
2484 subpst->readin = 0;
2485 subpst->read_symtab = dbx_psymtab_to_symtab;
2486
2487 subpst->next = partial_symtab_list;
2488 partial_symtab_list = subpst;
2489 }
2490
2491 /* Sort the global list; don't sort the static list */
2492 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2493 sizeof (struct partial_symbol), compare_psymbols);
2494
2495 /* Put the psymtab on the psymtab list */
2496 pst->next = partial_symtab_list;
2497 partial_symtab_list = pst;
2498}
2499\f
2500static void
2501psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2502 struct partial_symtab *pst;
2503 int desc;
2504 char *stringtab;
2505 int stringtab_size;
2506 int sym_offset;
2507{
2508 struct cleanup *old_chain;
2509 int i;
2510
2511 if (!pst)
2512 return;
2513
2514 if (pst->readin)
2515 {
2516 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2517 pst->filename);
2518 return;
2519 }
2520
2521 /* Read in all partial symbtabs on which this one is dependent */
2522 for (i = 0; i < pst->number_of_dependencies; i++)
2523 if (!pst->dependencies[i]->readin)
2524 {
2525 /* Inform about additional files that need to be read in. */
2526 if (info_verbose)
2527 {
2528 fputs_filtered (" ", stdout);
2529 wrap_here ("");
2530 fputs_filtered ("and ", stdout);
2531 wrap_here ("");
2532 printf_filtered ("%s...", pst->dependencies[i]->filename);
2533 wrap_here (""); /* Flush output */
2534 fflush (stdout);
2535 }
2536 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2537 stringtab, stringtab_size, sym_offset);
2538 }
2539
2540 if (pst->ldsymlen) /* Otherwise it's a dummy */
2541 {
2542 /* Init stuff necessary for reading in symbols */
2543 free_pendings = 0;
2544 pending_blocks = 0;
2545 file_symbols = 0;
2546 global_symbols = 0;
2547 old_chain = make_cleanup (really_free_pendings, 0);
2548
2549 /* Read in this files symbols */
2550 lseek (desc, sym_offset, L_SET);
2551 read_ofile_symtab (desc, stringtab, stringtab_size,
2552 pst->ldsymoff,
2553 pst->ldsymlen, pst->textlow,
2554 pst->texthigh - pst->textlow, pst->addr);
2555 sort_symtab_syms (symtab_list); /* At beginning since just added */
2556
2557 do_cleanups (old_chain);
2558 }
2559
2560 pst->readin = 1;
2561}
2562
2563/*
2564 * Read in all of the symbols for a given psymtab for real.
2565 * Be verbose about it if the user wants that.
2566 */
2567static void
2568dbx_psymtab_to_symtab (pst)
2569 struct partial_symtab *pst;
2570{
2571 int desc;
2572 char *stringtab;
2573 int stsize, val;
2574 struct stat statbuf;
2575 struct cleanup *old_chain;
2576 bfd *sym_bfd;
2577 long st_temp;
2578
2579 if (!pst)
2580 return;
2581
2582 if (pst->readin)
2583 {
2584 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2585 pst->filename);
2586 return;
2587 }
2588
2589 if (pst->ldsymlen || pst->number_of_dependencies)
2590 {
2591 /* Print the message now, before reading the string table,
2592 to avoid disconcerting pauses. */
2593 if (info_verbose)
2594 {
2595 printf_filtered ("Reading in symbols for %s...", pst->filename);
2596 fflush (stdout);
2597 }
2598
2599 /* Open symbol file and read in string table. Symbol_file_command
2600 guarantees that the symbol file name will be absolute, so there is
2601 no need for openp. */
2602 desc = open(pst->symfile_name, O_RDONLY, 0);
2603
2604 if (desc < 0)
2605 perror_with_name (pst->symfile_name);
2606
2607 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2608 if (!sym_bfd)
2609 {
2610 (void)close (desc);
2611 error ("Could not open `%s' to read symbols: %s",
2612 pst->symfile_name, bfd_errmsg (bfd_error));
2613 }
2614 old_chain = make_cleanup (bfd_close, sym_bfd);
2615 if (!bfd_check_format (sym_bfd, bfd_object))
2616 error ("\"%s\": can't read symbols: %s.",
2617 pst->symfile_name, bfd_errmsg (bfd_error));
2618
2619 /* We keep the string table for symfile resident in memory, but
2620 not the string table for any other symbol files. */
2621 if (0 != strcmp(pst->symfile_name, symfile))
2622 {
2623 /* Read in the string table */
2624
2625 /* FIXME, this uses internal BFD variables. See above in
2626 dbx_symbol_file_open where the macro is defined! */
2627 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2628
2629 val = myread (desc, &st_temp, sizeof st_temp);
2630 if (val < 0)
2631 perror_with_name (pst->symfile_name);
2632 stsize = bfd_h_getlong (sym_bfd, (unsigned char *)&st_temp);
2633 if (fstat (desc, &statbuf) < 0)
2634 perror_with_name (pst->symfile_name);
2635
2636 if (stsize >= 0 && stsize < statbuf.st_size)
2637 {
2638#ifdef BROKEN_LARGE_ALLOCA
2639 stringtab = (char *) xmalloc (stsize);
2640 make_cleanup (free, stringtab);
2641#else
2642 stringtab = (char *) alloca (stsize);
2643#endif
2644 }
2645 else
2646 stringtab = NULL;
2647 if (stringtab == NULL && stsize != 0)
2648 error ("ridiculous string table size: %d bytes", stsize);
2649
2650 /* FIXME, this uses internal BFD variables. See above in
2651 dbx_symbol_file_open where the macro is defined! */
2652 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2653 if (val < 0)
2654 perror_with_name (pst->symfile_name);
2655 val = myread (desc, stringtab, stsize);
2656 if (val < 0)
2657 perror_with_name (pst->symfile_name);
2658 }
2659 else
2660 {
2661 stringtab = symfile_string_table;
2662 stsize = symfile_string_table_size;
2663 }
2664
2665 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2666
2667 /* FIXME, this uses internal BFD variables. See above in
2668 dbx_symbol_file_open where the macro is defined! */
2669 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2670 SYMBOL_TABLE_OFFSET);
2671
2672 /* Match with global symbols. This only needs to be done once,
2673 after all of the symtabs and dependencies have been read in. */
2674 scan_file_globals ();
2675
2676 do_cleanups (old_chain);
2677
2678 /* Finish up the debug error message. */
2679 if (info_verbose)
2680 printf_filtered ("done.\n");
2681 }
2682}
2683
2684/*
2685 * Scan through all of the global symbols defined in the object file,
2686 * assigning values to the debugging symbols that need to be assigned
2687 * to. Get these symbols from the misc function list.
2688 */
2689static void
2690scan_file_globals ()
2691{
2692 int hash;
2693 int mf;
2694
2695 for (mf = 0; mf < misc_function_count; mf++)
2696 {
2697 char *namestring = misc_function_vector[mf].name;
2698 struct symbol *sym, *prev;
2699
2700 QUIT;
2701
2702 prev = (struct symbol *) 0;
2703
2704 /* Get the hash index and check all the symbols
2705 under that hash index. */
2706
2707 hash = hashname (namestring);
2708
2709 for (sym = global_sym_chain[hash]; sym;)
2710 {
2711 if (*namestring == SYMBOL_NAME (sym)[0]
2712 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2713 {
2714 /* Splice this symbol out of the hash chain and
2715 assign the value we have to it. */
2716 if (prev)
2717 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2718 else
2719 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2720
2721 /* Check to see whether we need to fix up a common block. */
2722 /* Note: this code might be executed several times for
2723 the same symbol if there are multiple references. */
2724 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2725 fix_common_block (sym, misc_function_vector[mf].address);
2726 else
2727 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2728
2729 if (prev)
2730 sym = SYMBOL_VALUE_CHAIN (prev);
2731 else
2732 sym = global_sym_chain[hash];
2733 }
2734 else
2735 {
2736 prev = sym;
2737 sym = SYMBOL_VALUE_CHAIN (sym);
2738 }
2739 }
2740 }
2741}
2742
2743/* Process a pair of symbols. Currently they must both be N_SO's. */
2744static void
2745process_symbol_pair (type1, desc1, value1, name1,
2746 type2, desc2, value2, name2)
2747 int type1;
2748 int desc1;
2749 CORE_ADDR value1;
2750 char *name1;
2751 int type2;
2752 int desc2;
2753 CORE_ADDR value2;
2754 char *name2;
2755{
2756 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2757 broken PCC's don't put out N_SO pairs. */
2758 if (last_source_file)
2759 end_symtab (value2);
2760 start_symtab (name2, name1, value2);
2761}
2762
2763/*
2764 * Read in a defined section of a specific object file's symbols.
2765 *
2766 * DESC is the file descriptor for the file, positioned at the
2767 * beginning of the symtab
2768 * STRINGTAB is a pointer to the files string
2769 * table, already read in
2770 * SYM_OFFSET is the offset within the file of
2771 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2772 * number of symbols to read
2773 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2774 * TEXT_SIZE is the size of the text segment read in.
2775 * OFFSET is a relocation offset which gets added to each symbol
2776 */
2777
2778static void
2779read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2780 sym_size, text_offset, text_size, offset)
2781 int desc;
2782 register char *stringtab;
2783 unsigned int stringtab_size;
2784 int sym_offset;
2785 int sym_size;
2786 CORE_ADDR text_offset;
2787 int text_size;
2788 int offset;
2789{
2790 register char *namestring;
2791 struct nlist *bufp;
2792 unsigned char type;
2793 subfile_stack = 0;
2794
2795 stringtab_global = stringtab;
2796 last_source_file = 0;
2797
2798 symtab_input_desc = desc;
2799 symbuf_end = symbuf_idx = 0;
2800
2801 /* It is necessary to actually read one symbol *before* the start
2802 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2803 occurs before the N_SO symbol.
2804
2805 Detecting this in read_dbx_symtab
2806 would slow down initial readin, so we look for it here instead. */
2807 if (sym_offset >= (int)sizeof (struct nlist))
2808 {
2809 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2810 fill_symbuf ();
2811 bufp = &symbuf[symbuf_idx++];
2812 SWAP_SYMBOL (bufp);
2813
2814 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2815 error ("Invalid symbol data: bad string table offset: %d",
2816 bufp->n_un.n_strx);
2817 namestring = bufp->n_un.n_strx + stringtab;
2818
2819 processing_gcc_compilation =
2820 (bufp->n_type == N_TEXT
2821 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2822 }
2823 else
2824 {
2825 /* The N_SO starting this symtab is the first symbol, so we
2826 better not check the symbol before it. I'm not this can
2827 happen, but it doesn't hurt to check for it. */
2828 lseek(desc, sym_offset, L_INCR);
2829 processing_gcc_compilation = 0;
2830 }
2831
2832 if (symbuf_idx == symbuf_end)
2833 fill_symbuf();
2834 bufp = &symbuf[symbuf_idx];
2835 if (bufp->n_type != (unsigned char)N_SO)
2836 error("First symbol in segment of executable not a source symbol");
2837
2838 for (symnum = 0;
2839 symnum < sym_size / sizeof(struct nlist);
2840 symnum++)
2841 {
2842 QUIT; /* Allow this to be interruptable */
2843 if (symbuf_idx == symbuf_end)
2844 fill_symbuf();
2845 bufp = &symbuf[symbuf_idx++];
2846 SWAP_SYMBOL (bufp);
2847
2848 type = bufp->n_type & N_TYPE;
2849 if (type == (unsigned char)N_CATCH)
2850 {
2851 /* N_CATCH is not fixed up by the linker, and unfortunately,
2852 there's no other place to put it in the .stab map. */
2853 /* FIXME, do we also have to add OFFSET or something? -- gnu@cygnus */
2854 bufp->n_value += text_offset;
2855 }
2856 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2857 bufp->n_value += offset;
2858
2859 type = bufp->n_type;
2860 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2861 error ("Invalid symbol data: bad string table offset: %d",
2862 bufp->n_un.n_strx);
2863 namestring = bufp->n_un.n_strx + stringtab;
2864
2865 if (type & N_STAB)
2866 {
2867 short desc = bufp->n_desc;
2868 unsigned long valu = bufp->n_value;
2869
2870 /* Check for a pair of N_SO symbols. */
2871 if (type == (unsigned char)N_SO)
2872 {
2873 if (symbuf_idx == symbuf_end)
2874 fill_symbuf ();
2875 bufp = &symbuf[symbuf_idx];
2876 if (bufp->n_type == (unsigned char)N_SO)
2877 {
2878 char *namestring2;
2879
2880 SWAP_SYMBOL (bufp);
2881 bufp->n_value += offset; /* Relocate */
2882 symbuf_idx++;
2883 symnum++;
2884
2885 if (bufp->n_un.n_strx < 0
2886 || bufp->n_un.n_strx >= stringtab_size)
2887 error ("Invalid symbol data: bad string table offset: %d",
2888 bufp->n_un.n_strx);
2889 namestring2 = bufp->n_un.n_strx + stringtab;
2890
2891 process_symbol_pair (N_SO, desc, valu, namestring,
2892 N_SO, bufp->n_desc, bufp->n_value,
2893 namestring2);
2894 }
2895 else
2896 process_one_symbol(type, desc, valu, namestring);
2897 }
2898 else
2899 process_one_symbol (type, desc, valu, namestring);
2900 }
2901 /* We skip checking for a new .o or -l file; that should never
2902 happen in this routine. */
2903 else if (type == N_TEXT
2904 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2905 /* I don't think this code will ever be executed, because
2906 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2907 the N_SO symbol which starts this source file.
2908 However, there is no reason not to accept
2909 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2910 processing_gcc_compilation = 1;
2911 else if (type & N_EXT || type == (unsigned char)N_TEXT
2912 || type == (unsigned char)N_NBTEXT
2913 )
2914 /* Global symbol: see if we came across a dbx defintion for
2915 a corresponding symbol. If so, store the value. Remove
2916 syms from the chain when their values are stored, but
2917 search the whole chain, as there may be several syms from
2918 different files with the same name. */
2919 /* This is probably not true. Since the files will be read
2920 in one at a time, each reference to a global symbol will
2921 be satisfied in each file as it appears. So we skip this
2922 section. */
2923 ;
2924 }
2925 end_symtab (text_offset + text_size);
2926}
2927\f
2928static int
2929hashname (name)
2930 char *name;
2931{
2932 register char *p = name;
2933 register int total = p[0];
2934 register int c;
2935
2936 c = p[1];
2937 total += c << 2;
2938 if (c)
2939 {
2940 c = p[2];
2941 total += c << 4;
2942 if (c)
2943 total += p[3] << 6;
2944 }
2945
2946 /* Ensure result is positive. */
2947 if (total < 0) total += (1000 << 6);
2948 return total % HASHSIZE;
2949}
2950
2951\f
2952static void
2953process_one_symbol (type, desc, valu, name)
2954 int type, desc;
2955 CORE_ADDR valu;
2956 char *name;
2957{
2958#ifndef SUN_FIXED_LBRAC_BUG
2959 /* This records the last pc address we've seen. We depend on their being
2960 an SLINE or FUN or SO before the first LBRAC, since the variable does
2961 not get reset in between reads of different symbol files. */
2962 static CORE_ADDR last_pc_address;
2963#endif
2964 register struct context_stack *new;
2965 char *colon_pos;
2966
2967 /* Something is wrong if we see real data before
2968 seeing a source file name. */
2969
2970 if (last_source_file == 0 && type != (unsigned char)N_SO)
2971 {
2972 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2973 where that code is defined. */
2974 if (IGNORE_SYMBOL (type))
2975 return;
2976
2977 /* FIXME, this should not be an error, since it precludes extending
2978 the symbol table information in this way... */
2979 error ("Invalid symbol data: does not start by identifying a source file.");
2980 }
2981
2982 switch (type)
2983 {
2984 case N_FUN:
2985 case N_FNAME:
2986 /* Either of these types of symbols indicates the start of
2987 a new function. We must process its "name" normally for dbx,
2988 but also record the start of a new lexical context, and possibly
2989 also the end of the lexical context for the previous function. */
2990 /* This is not always true. This type of symbol may indicate a
2991 text segment variable. */
2992
2993#ifndef SUN_FIXED_LBRAC_BUG
2994 last_pc_address = valu; /* Save for SunOS bug circumcision */
2995#endif
2996
2997 colon_pos = strchr (name, ':');
2998 if (!colon_pos++
2999 || (*colon_pos != 'f' && *colon_pos != 'F'))
3000 {
3001 define_symbol (valu, name, desc, type);
3002 break;
3003 }
3004
3005 within_function = 1;
3006 if (context_stack_depth > 0)
3007 {
3008 new = &context_stack[--context_stack_depth];
3009 /* Make a block for the local symbols within. */
3010 finish_block (new->name, &local_symbols, new->old_blocks,
3011 new->start_addr, valu);
3012 }
3013 /* Stack must be empty now. */
3014 if (context_stack_depth != 0)
3015 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3016 symnum);
3017
3018 new = &context_stack[context_stack_depth++];
3019 new->old_blocks = pending_blocks;
3020 new->start_addr = valu;
3021 new->name = define_symbol (valu, name, desc, type);
3022 local_symbols = 0;
3023 break;
3024
3025 case N_CATCH:
3026 /* Record the address at which this catch takes place. */
3027 define_symbol (valu, name, desc, type);
3028 break;
3029
3030 case N_EHDECL:
3031 /* Don't know what to do with these yet. */
3032 error ("action uncertain for eh extensions");
3033 break;
3034
3035 case N_LBRAC:
3036 /* This "symbol" just indicates the start of an inner lexical
3037 context within a function. */
3038
3039#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3040 /* On most machines, the block addresses are relative to the
3041 N_SO, the linker did not relocate them (sigh). */
3042 valu += last_source_start_addr;
3043#endif
3044
3045#ifndef SUN_FIXED_LBRAC_BUG
3046 if (valu < last_pc_address) {
3047 /* Patch current LBRAC pc value to match last handy pc value */
3048 complain (&lbrac_complaint, 0);
3049 valu = last_pc_address;
3050 }
3051#endif
3052 if (context_stack_depth == context_stack_size)
3053 {
3054 context_stack_size *= 2;
3055 context_stack = (struct context_stack *)
3056 xrealloc (context_stack,
3057 (context_stack_size
3058 * sizeof (struct context_stack)));
3059 }
3060
3061 new = &context_stack[context_stack_depth++];
3062 new->depth = desc;
3063 new->locals = local_symbols;
3064 new->old_blocks = pending_blocks;
3065 new->start_addr = valu;
3066 new->name = 0;
3067 local_symbols = 0;
3068 break;
3069
3070 case N_RBRAC:
3071 /* This "symbol" just indicates the end of an inner lexical
3072 context that was started with N_LBRAC. */
3073
3074#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3075 /* On most machines, the block addresses are relative to the
3076 N_SO, the linker did not relocate them (sigh). */
3077 valu += last_source_start_addr;
3078#endif
3079
3080 new = &context_stack[--context_stack_depth];
3081 if (desc != new->depth)
3082 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3083
3084 /* Some compilers put the variable decls inside of an
3085 LBRAC/RBRAC block. This macro should be nonzero if this
3086 is true. DESC is N_DESC from the N_RBRAC symbol.
3087 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3088#if !defined (VARIABLES_INSIDE_BLOCK)
3089#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3090#endif
3091
3092 /* Can only use new->locals as local symbols here if we're in
3093 gcc or on a machine that puts them before the lbrack. */
3094 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3095 local_symbols = new->locals;
3096
3097 /* If this is not the outermost LBRAC...RBRAC pair in the
3098 function, its local symbols preceded it, and are the ones
3099 just recovered from the context stack. Defined the block for them.
3100
3101 If this is the outermost LBRAC...RBRAC pair, there is no
3102 need to do anything; leave the symbols that preceded it
3103 to be attached to the function's own block. However, if
3104 it is so, we need to indicate that we just moved outside
3105 of the function. */
3106 if (local_symbols
3107 && (context_stack_depth
3108 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3109 {
3110 /* FIXME Muzzle a compiler bug that makes end < start. */
3111 if (new->start_addr > valu)
3112 {
3113 complain(&lbrac_rbrac_complaint, 0);
3114 new->start_addr = valu;
3115 }
3116 /* Make a block for the local symbols within. */
3117 finish_block (0, &local_symbols, new->old_blocks,
3118 new->start_addr, valu);
3119 }
3120 else
3121 {
3122 within_function = 0;
3123 }
3124 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3125 /* Now pop locals of block just finished. */
3126 local_symbols = new->locals;
3127 break;
3128
3129 case N_FN | N_EXT:
3130 /* This kind of symbol supposedly indicates the start
3131 of an object file. In fact this type does not appear. */
3132 break;
3133
3134 case N_SO:
3135 /* This type of symbol indicates the start of data
3136 for one source file.
3137 Finish the symbol table of the previous source file
3138 (if any) and start accumulating a new symbol table. */
3139#ifndef SUN_FIXED_LBRAC_BUG
3140 last_pc_address = valu; /* Save for SunOS bug circumcision */
3141#endif
3142
3143#ifdef PCC_SOL_BROKEN
3144 /* pcc bug, occasionally puts out SO for SOL. */
3145 if (context_stack_depth > 0)
3146 {
3147 start_subfile (name, NULL);
3148 break;
3149 }
3150#endif
3151 if (last_source_file)
3152 end_symtab (valu);
3153 start_symtab (name, NULL, valu);
3154 break;
3155
3156 case N_SOL:
3157 /* This type of symbol indicates the start of data for
3158 a sub-source-file, one whose contents were copied or
3159 included in the compilation of the main source file
3160 (whose name was given in the N_SO symbol.) */
3161 start_subfile (name, NULL);
3162 break;
3163
3164 case N_BINCL:
3165 push_subfile ();
3166 add_new_header_file (name, valu);
3167 start_subfile (name, NULL);
3168 break;
3169
3170 case N_EINCL:
3171 start_subfile (pop_subfile (), NULL);
3172 break;
3173
3174 case N_EXCL:
3175 add_old_header_file (name, valu);
3176 break;
3177
3178 case N_SLINE:
3179 /* This type of "symbol" really just records
3180 one line-number -- core-address correspondence.
3181 Enter it in the line list for this symbol table. */
3182#ifndef SUN_FIXED_LBRAC_BUG
3183 last_pc_address = valu; /* Save for SunOS bug circumcision */
3184#endif
3185 record_line (desc, valu);
3186 break;
3187
3188 case N_BCOMM:
3189 if (common_block)
3190 error ("Invalid symbol data: common within common at symtab pos %d",
3191 symnum);
3192 common_block = local_symbols;
3193 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3194 break;
3195
3196 case N_ECOMM:
3197 /* Symbols declared since the BCOMM are to have the common block
3198 start address added in when we know it. common_block points to
3199 the first symbol after the BCOMM in the local_symbols list;
3200 copy the list and hang it off the symbol for the common block name
3201 for later fixup. */
3202 {
3203 int i;
3204 struct symbol *sym =
3205 (struct symbol *) xmalloc (sizeof (struct symbol));
3206 bzero (sym, sizeof *sym);
3207 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3208 SYMBOL_CLASS (sym) = LOC_BLOCK;
3209 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3210 copy_pending (local_symbols, common_block_i, common_block));
3211 i = hashname (SYMBOL_NAME (sym));
3212 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3213 global_sym_chain[i] = sym;
3214 common_block = 0;
3215 break;
3216 }
3217
3218 case N_ECOML:
3219 case N_LENG:
3220 break;
3221
3222 default:
3223 if (name)
3224 define_symbol (valu, name, desc, type);
3225 }
3226}
3227\f
3228/* Read a number by which a type is referred to in dbx data,
3229 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3230 Just a single number N is equivalent to (0,N).
3231 Return the two numbers by storing them in the vector TYPENUMS.
3232 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3233
3234static void
3235read_type_number (pp, typenums)
3236 register char **pp;
3237 register int *typenums;
3238{
3239 if (**pp == '(')
3240 {
3241 (*pp)++;
3242 typenums[0] = read_number (pp, ',');
3243 typenums[1] = read_number (pp, ')');
3244 }
3245 else
3246 {
3247 typenums[0] = 0;
3248 typenums[1] = read_number (pp, 0);
3249 }
3250}
3251\f
3252/* To handle GNU C++ typename abbreviation, we need to be able to
3253 fill in a type's name as soon as space for that type is allocated.
3254 `type_synonym_name' is the name of the type being allocated.
3255 It is cleared as soon as it is used (lest all allocated types
3256 get this name). */
3257static char *type_synonym_name;
3258
3259static struct symbol *
3260define_symbol (valu, string, desc, type)
3261 unsigned int valu;
3262 char *string;
3263 int desc;
3264 int type;
3265{
3266 register struct symbol *sym;
3267 char *p = (char *) strchr (string, ':');
3268 int deftype;
3269 int synonym = 0;
3270 register int i;
3271
3272 /* Ignore syms with empty names. */
3273 if (string[0] == 0)
3274 return 0;
3275
3276 /* Ignore old-style symbols from cc -go */
3277 if (p == 0)
3278 return 0;
3279
3280 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3281
3282 if (processing_gcc_compilation) {
3283 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3284 number of bytes occupied by a type or object, which we ignore. */
3285 SYMBOL_LINE(sym) = desc;
3286 } else {
3287 SYMBOL_LINE(sym) = 0; /* unknown */
3288 }
3289
3290 if (string[0] == CPLUS_MARKER)
3291 {
3292 /* Special GNU C++ names. */
3293 switch (string[1])
3294 {
3295 case 't':
3296 SYMBOL_NAME (sym) = "this";
3297 break;
3298 case 'v': /* $vtbl_ptr_type */
3299 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3300 goto normal;
3301 case 'e':
3302 SYMBOL_NAME (sym) = "eh_throw";
3303 break;
3304
3305 case '_':
3306 /* This was an anonymous type that was never fixed up. */
3307 goto normal;
3308
3309 default:
3310 abort ();
3311 }
3312 }
3313 else
3314 {
3315 normal:
3316 SYMBOL_NAME (sym)
3317 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3318 /* Open-coded bcopy--saves function call time. */
3319 {
3320 register char *p1 = string;
3321 register char *p2 = SYMBOL_NAME (sym);
3322 while (p1 != p)
3323 *p2++ = *p1++;
3324 *p2++ = '\0';
3325 }
3326 }
3327 p++;
3328 /* Determine the type of name being defined. */
3329 /* The Acorn RISC machine's compiler can put out locals that don't
3330 start with "234=" or "(3,4)=", so assume anything other than the
3331 deftypes we know how to handle is a local. */
3332 /* (Peter Watkins @ Computervision)
3333 Handle Sun-style local fortran array types 'ar...' .
3334 (gnu@cygnus.com) -- this strchr() handles them properly?
3335 (tiemann@cygnus.com) -- 'C' is for catch. */
3336 if (!strchr ("cfFGpPrStTvVXC", *p))
3337 deftype = 'l';
3338 else
3339 deftype = *p++;
3340
3341 /* c is a special case, not followed by a type-number.
3342 SYMBOL:c=iVALUE for an integer constant symbol.
3343 SYMBOL:c=rVALUE for a floating constant symbol.
3344 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3345 e.g. "b:c=e6,0" for "const b = blob1"
3346 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3347 if (deftype == 'c')
3348 {
3349 if (*p++ != '=')
3350 error ("Invalid symbol data at symtab pos %d.", symnum);
3351 switch (*p++)
3352 {
3353 case 'r':
3354 {
3355 double d = atof (p);
3356 char *valu;
3357
3358 SYMBOL_TYPE (sym) = builtin_type_double;
3359 valu = (char *) obstack_alloc (symbol_obstack, sizeof (double));
3360 bcopy (&d, valu, sizeof (double));
3361 SWAP_TARGET_AND_HOST (valu, sizeof (double));
3362 SYMBOL_VALUE_BYTES (sym) = valu;
3363 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3364 }
3365 break;
3366 case 'i':
3367 {
3368 SYMBOL_TYPE (sym) = builtin_type_int;
3369 SYMBOL_VALUE (sym) = atoi (p);
3370 SYMBOL_CLASS (sym) = LOC_CONST;
3371 }
3372 break;
3373 case 'e':
3374 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3375 e.g. "b:c=e6,0" for "const b = blob1"
3376 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3377 {
3378 int typenums[2];
3379
3380 read_type_number (&p, typenums);
3381 if (*p++ != ',')
3382 error ("Invalid symbol data: no comma in enum const symbol");
3383
3384 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3385 SYMBOL_VALUE (sym) = atoi (p);
3386 SYMBOL_CLASS (sym) = LOC_CONST;
3387 }
3388 break;
3389 default:
3390 error ("Invalid symbol data at symtab pos %d.", symnum);
3391 }
3392 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3393 add_symbol_to_list (sym, &file_symbols);
3394 return sym;
3395 }
3396
3397 /* Now usually comes a number that says which data type,
3398 and possibly more stuff to define the type
3399 (all of which is handled by read_type) */
3400
3401 if (deftype == 'p' && *p == 'F')
3402 /* pF is a two-letter code that means a function parameter in Fortran.
3403 The type-number specifies the type of the return value.
3404 Translate it into a pointer-to-function type. */
3405 {
3406 p++;
3407 SYMBOL_TYPE (sym)
3408 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3409 }
3410 else
3411 {
3412 struct type *type;
3413 synonym = *p == 't';
3414
3415 if (synonym)
3416 {
3417 p += 1;
3418 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3419 strlen (SYMBOL_NAME (sym)));
3420 }
3421
3422 type = read_type (&p);
3423
3424 if ((deftype == 'F' || deftype == 'f')
3425 && TYPE_CODE (type) != TYPE_CODE_FUNC)
3426 SYMBOL_TYPE (sym) = lookup_function_type (type);
3427 else
3428 SYMBOL_TYPE (sym) = type;
3429 }
3430
3431 switch (deftype)
3432 {
3433 case 'C':
3434 /* The name of a caught exception. */
3435 SYMBOL_CLASS (sym) = LOC_LABEL;
3436 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3437 SYMBOL_VALUE_ADDRESS (sym) = valu;
3438 add_symbol_to_list (sym, &local_symbols);
3439 break;
3440
3441 case 'f':
3442 SYMBOL_CLASS (sym) = LOC_BLOCK;
3443 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3444 add_symbol_to_list (sym, &file_symbols);
3445 break;
3446
3447 case 'F':
3448 SYMBOL_CLASS (sym) = LOC_BLOCK;
3449 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3450 add_symbol_to_list (sym, &global_symbols);
3451 break;
3452
3453 case 'G':
3454 /* For a class G (global) symbol, it appears that the
3455 value is not correct. It is necessary to search for the
3456 corresponding linker definition to find the value.
3457 These definitions appear at the end of the namelist. */
3458 i = hashname (SYMBOL_NAME (sym));
3459 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3460 global_sym_chain[i] = sym;
3461 SYMBOL_CLASS (sym) = LOC_STATIC;
3462 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3463 add_symbol_to_list (sym, &global_symbols);
3464 break;
3465
3466 /* This case is faked by a conditional above,
3467 when there is no code letter in the dbx data.
3468 Dbx data never actually contains 'l'. */
3469 case 'l':
3470 SYMBOL_CLASS (sym) = LOC_LOCAL;
3471 SYMBOL_VALUE (sym) = valu;
3472 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3473 add_symbol_to_list (sym, &local_symbols);
3474 break;
3475
3476 case 'p':
3477 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3478 can also be a LOC_LOCAL_ARG depending on symbol type. */
3479#ifndef DBX_PARM_SYMBOL_CLASS
3480#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3481#endif
3482 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3483 SYMBOL_VALUE (sym) = valu;
3484 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3485 add_symbol_to_list (sym, &local_symbols);
3486
3487 /* If it's gcc-compiled, if it says `short', believe it. */
3488 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3489 break;
3490
3491#if defined(BELIEVE_PCC_PROMOTION_TYPE)
3492 /* This macro is defined on machines (e.g. sparc) where
3493 we should believe the type of a PCC 'short' argument,
3494 but shouldn't believe the address (the address is
3495 the address of the corresponding int). Note that
3496 this is only different from the BELIEVE_PCC_PROMOTION
3497 case on big-endian machines.
3498
3499 My guess is that this correction, as opposed to changing
3500 the parameter to an 'int' (as done below, for PCC
3501 on most machines), is the right thing to do
3502 on all machines, but I don't want to risk breaking
3503 something that already works. On most PCC machines,
3504 the sparc problem doesn't come up because the calling
3505 function has to zero the top bytes (not knowing whether
3506 the called function wants an int or a short), so there
3507 is no practical difference between an int and a short
3508 (except perhaps what happens when the GDB user types
3509 "print short_arg = 0x10000;").
3510
3511 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3512 actually produces the correct address (we don't need to fix it
3513 up). I made this code adapt so that it will offset the symbol
3514 if it was pointing at an int-aligned location and not
3515 otherwise. This way you can use the same gdb for 4.0.x and
3516 4.1 systems. */
3517
3518 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3519 {
3520 if (SYMBOL_TYPE (sym) == builtin_type_char
3521 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3522 SYMBOL_VALUE (sym) += 3;
3523 else if (SYMBOL_TYPE (sym) == builtin_type_short
3524 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3525 SYMBOL_VALUE (sym) += 2;
3526 }
3527 break;
3528
3529#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3530
3531 /* If PCC says a parameter is a short or a char,
3532 it is really an int. */
3533 if (SYMBOL_TYPE (sym) == builtin_type_char
3534 || SYMBOL_TYPE (sym) == builtin_type_short)
3535 SYMBOL_TYPE (sym) = builtin_type_int;
3536 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3537 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3538 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3539 break;
3540
3541#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3542
3543 case 'P':
3544 SYMBOL_CLASS (sym) = LOC_REGPARM;
3545 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3546 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3547 add_symbol_to_list (sym, &local_symbols);
3548 break;
3549
3550 case 'r':
3551 SYMBOL_CLASS (sym) = LOC_REGISTER;
3552 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3553 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3554 add_symbol_to_list (sym, &local_symbols);
3555 break;
3556
3557 case 'S':
3558 /* Static symbol at top level of file */
3559 SYMBOL_CLASS (sym) = LOC_STATIC;
3560 SYMBOL_VALUE_ADDRESS (sym) = valu;
3561 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3562 add_symbol_to_list (sym, &file_symbols);
3563 break;
3564
3565 case 't':
3566 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3567 SYMBOL_VALUE (sym) = valu;
3568 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3569 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3570 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3571 TYPE_NAME (SYMBOL_TYPE (sym)) =
3572 obsavestring (SYMBOL_NAME (sym),
3573 strlen (SYMBOL_NAME (sym)));
3574 /* C++ vagaries: we may have a type which is derived from
3575 a base type which did not have its name defined when the
3576 derived class was output. We fill in the derived class's
3577 base part member's name here in that case. */
3578 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3579 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3580 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3581 {
3582 int i;
3583 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3584 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3585 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3586 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3587 }
3588
3589 add_symbol_to_list (sym, &file_symbols);
3590 break;
3591
3592 case 'T':
3593 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3594 SYMBOL_VALUE (sym) = valu;
3595 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3596 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3597 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3598 TYPE_NAME (SYMBOL_TYPE (sym))
3599 = obconcat ("",
3600 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3601 ? "enum "
3602 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3603 ? "struct " : "union ")),
3604 SYMBOL_NAME (sym));
3605 add_symbol_to_list (sym, &file_symbols);
3606
3607 if (synonym)
3608 {
3609 register struct symbol *typedef_sym
3610 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3611 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3612 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3613
3614 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3615 SYMBOL_VALUE (typedef_sym) = valu;
3616 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3617 add_symbol_to_list (typedef_sym, &file_symbols);
3618 }
3619 break;
3620
3621 case 'V':
3622 /* Static symbol of local scope */
3623 SYMBOL_CLASS (sym) = LOC_STATIC;
3624 SYMBOL_VALUE_ADDRESS (sym) = valu;
3625 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3626 add_symbol_to_list (sym, &local_symbols);
3627 break;
3628
3629 case 'v':
3630 /* Reference parameter */
3631 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3632 SYMBOL_VALUE (sym) = valu;
3633 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3634 add_symbol_to_list (sym, &local_symbols);
3635 break;
3636
3637 case 'X':
3638 /* This is used by Sun FORTRAN for "function result value".
3639 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3640 that Pascal uses it too, but when I tried it Pascal used
3641 "x:3" (local symbol) instead. */
3642 SYMBOL_CLASS (sym) = LOC_LOCAL;
3643 SYMBOL_VALUE (sym) = valu;
3644 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3645 add_symbol_to_list (sym, &local_symbols);
3646 break;
3647
3648 default:
3649 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3650 }
3651 return sym;
3652}
3653\f
3654/* What about types defined as forward references inside of a small lexical
3655 scope? */
3656/* Add a type to the list of undefined types to be checked through
3657 once this file has been read in. */
3658static void
3659add_undefined_type (type)
3660 struct type *type;
3661{
3662 if (undef_types_length == undef_types_allocated)
3663 {
3664 undef_types_allocated *= 2;
3665 undef_types = (struct type **)
3666 xrealloc (undef_types,
3667 undef_types_allocated * sizeof (struct type *));
3668 }
3669 undef_types[undef_types_length++] = type;
3670}
3671
3672/* Add here something to go through each undefined type, see if it's
3673 still undefined, and do a full lookup if so. */
3674static void
3675cleanup_undefined_types ()
3676{
3677 struct type **type;
3678
3679 for (type = undef_types; type < undef_types + undef_types_length; type++)
3680 {
3681 /* Reasonable test to see if it's been defined since. */
3682 if (TYPE_NFIELDS (*type) == 0)
3683 {
3684 struct pending *ppt;
3685 int i;
3686 /* Name of the type, without "struct" or "union" */
3687 char *typename = TYPE_NAME (*type);
3688
3689 if (!strncmp (typename, "struct ", 7))
3690 typename += 7;
3691 if (!strncmp (typename, "union ", 6))
3692 typename += 6;
3693
3694 for (ppt = file_symbols; ppt; ppt = ppt->next)
3695 for (i = 0; i < ppt->nsyms; i++)
3696 {
3697 struct symbol *sym = ppt->symbol[i];
3698
3699 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3700 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3701 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3702 TYPE_CODE (*type))
3703 && !strcmp (SYMBOL_NAME (sym), typename))
3704 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3705 }
3706 }
3707 else
3708 /* It has been defined; don't mark it as a stub. */
3709 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3710 }
3711 undef_types_length = 0;
3712}
3713
3714/* Skip rest of this symbol and return an error type.
3715
3716 General notes on error recovery: error_type always skips to the
3717 end of the symbol (modulo cretinous dbx symbol name continuation).
3718 Thus code like this:
3719
3720 if (*(*pp)++ != ';')
3721 return error_type (pp);
3722
3723 is wrong because if *pp starts out pointing at '\0' (typically as the
3724 result of an earlier error), it will be incremented to point to the
3725 start of the next symbol, which might produce strange results, at least
3726 if you run off the end of the string table. Instead use
3727
3728 if (**pp != ';')
3729 return error_type (pp);
3730 ++*pp;
3731
3732 or
3733
3734 if (**pp != ';')
3735 foo = error_type (pp);
3736 else
3737 ++*pp;
3738
3739 And in case it isn't obvious, the point of all this hair is so the compiler
3740 can define new types and new syntaxes, and old versions of the
3741 debugger will be able to read the new symbol tables. */
3742
3743static struct type *
3744error_type (pp)
3745 char **pp;
3746{
3747 complain (&error_type_complaint, 0);
3748 while (1)
3749 {
3750 /* Skip to end of symbol. */
3751 while (**pp != '\0')
3752 (*pp)++;
3753
3754 /* Check for and handle cretinous dbx symbol name continuation! */
3755 if ((*pp)[-1] == '\\')
3756 *pp = next_symbol_text ();
3757 else
3758 break;
3759 }
3760 return builtin_type_error;
3761}
3762\f
3763/* Read a dbx type reference or definition;
3764 return the type that is meant.
3765 This can be just a number, in which case it references
3766 a type already defined and placed in type_vector.
3767 Or the number can be followed by an =, in which case
3768 it means to define a new type according to the text that
3769 follows the =. */
3770
3771static
3772struct type *
3773read_type (pp)
3774 register char **pp;
3775{
3776 register struct type *type = 0;
3777 struct type *type1;
3778 int typenums[2];
3779 int xtypenums[2];
3780
3781 /* Read type number if present. The type number may be omitted.
3782 for instance in a two-dimensional array declared with type
3783 "ar1;1;10;ar1;1;10;4". */
3784 if ((**pp >= '0' && **pp <= '9')
3785 || **pp == '(')
3786 {
3787 read_type_number (pp, typenums);
3788
3789 /* Detect random reference to type not yet defined.
3790 Allocate a type object but leave it zeroed. */
3791 if (**pp != '=')
3792 return dbx_alloc_type (typenums);
3793
3794 *pp += 2;
3795 }
3796 else
3797 {
3798 /* 'typenums=' not present, type is anonymous. Read and return
3799 the definition, but don't put it in the type vector. */
3800 typenums[0] = typenums[1] = -1;
3801 *pp += 1;
3802 }
3803
3804 switch ((*pp)[-1])
3805 {
3806 case 'x':
3807 {
3808 enum type_code code;
3809
3810 /* Used to index through file_symbols. */
3811 struct pending *ppt;
3812 int i;
3813
3814 /* Name including "struct", etc. */
3815 char *type_name;
3816
3817 /* Name without "struct", etc. */
3818 char *type_name_only;
3819
3820 {
3821 char *prefix;
3822 char *from, *to;
3823
3824 /* Set the type code according to the following letter. */
3825 switch ((*pp)[0])
3826 {
3827 case 's':
3828 code = TYPE_CODE_STRUCT;
3829 prefix = "struct ";
3830 break;
3831 case 'u':
3832 code = TYPE_CODE_UNION;
3833 prefix = "union ";
3834 break;
3835 case 'e':
3836 code = TYPE_CODE_ENUM;
3837 prefix = "enum ";
3838 break;
3839 default:
3840 return error_type (pp);
3841 }
3842
3843 to = type_name = (char *)
3844 obstack_alloc (symbol_obstack,
3845 (strlen (prefix) +
3846 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3847
3848 /* Copy the prefix. */
3849 from = prefix;
3850 while (*to++ = *from++)
3851 ;
3852 to--;
3853
3854 type_name_only = to;
3855
3856 /* Copy the name. */
3857 from = *pp + 1;
3858 while ((*to++ = *from++) != ':')
3859 ;
3860 *--to = '\0';
3861
3862 /* Set the pointer ahead of the name which we just read. */
3863 *pp = from;
3864
3865#if 0
3866 /* The following hack is clearly wrong, because it doesn't
3867 check whether we are in a baseclass. I tried to reproduce
3868 the case that it is trying to fix, but I couldn't get
3869 g++ to put out a cross reference to a basetype. Perhaps
3870 it doesn't do it anymore. */
3871 /* Note: for C++, the cross reference may be to a base type which
3872 has not yet been seen. In this case, we skip to the comma,
3873 which will mark the end of the base class name. (The ':'
3874 at the end of the base class name will be skipped as well.)
3875 But sometimes (ie. when the cross ref is the last thing on
3876 the line) there will be no ','. */
3877 from = (char *) strchr (*pp, ',');
3878 if (from)
3879 *pp = from;
3880#endif /* 0 */
3881 }
3882
3883 /* Now check to see whether the type has already been declared. */
3884 /* This is necessary at least in the case where the
3885 program says something like
3886 struct foo bar[5];
3887 The compiler puts out a cross-reference; we better find
3888 set the length of the structure correctly so we can
3889 set the length of the array. */
3890 for (ppt = file_symbols; ppt; ppt = ppt->next)
3891 for (i = 0; i < ppt->nsyms; i++)
3892 {
3893 struct symbol *sym = ppt->symbol[i];
3894
3895 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3896 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3897 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3898 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3899 {
3900 obstack_free (symbol_obstack, type_name);
3901 type = SYMBOL_TYPE (sym);
3902 return type;
3903 }
3904 }
3905
3906 /* Didn't find the type to which this refers, so we must
3907 be dealing with a forward reference. Allocate a type
3908 structure for it, and keep track of it so we can
3909 fill in the rest of the fields when we get the full
3910 type. */
3911 type = dbx_alloc_type (typenums);
3912 TYPE_CODE (type) = code;
3913 TYPE_NAME (type) = type_name;
3914
3915 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3916
3917 add_undefined_type (type);
3918 return type;
3919 }
3920
3921 case '0':
3922 case '1':
3923 case '2':
3924 case '3':
3925 case '4':
3926 case '5':
3927 case '6':
3928 case '7':
3929 case '8':
3930 case '9':
3931 case '(':
3932 (*pp)--;
3933 read_type_number (pp, xtypenums);
3934 type = *dbx_lookup_type (xtypenums);
3935 if (type == 0)
3936 type = builtin_type_void;
3937 if (typenums[0] != -1)
3938 *dbx_lookup_type (typenums) = type;
3939 break;
3940
3941 case '*':
3942 type1 = read_type (pp);
3943 type = lookup_pointer_type (type1);
3944 if (typenums[0] != -1)
3945 *dbx_lookup_type (typenums) = type;
3946 break;
3947
3948 case '@':
3949 {
3950 struct type *domain = read_type (pp);
3951 struct type *memtype;
3952
3953 if (**pp != ',')
3954 /* Invalid member type data format. */
3955 return error_type (pp);
3956 ++*pp;
3957
3958 memtype = read_type (pp);
3959 type = dbx_alloc_type (typenums);
3960 smash_to_member_type (type, domain, memtype);
3961 }
3962 break;
3963
3964 case '#':
3965 if ((*pp)[0] == '#')
3966 {
3967 /* We'll get the parameter types from the name. */
3968 struct type *return_type;
3969
3970 *pp += 1;
3971 return_type = read_type (pp);
3972 if (*(*pp)++ != ';')
3973 complain (&invalid_member_complaint, symnum);
3974 type = lookup_function_type (return_type);
3975 if (typenums[0] != -1)
3976 *dbx_lookup_type (typenums) = type;
3977 TYPE_CODE (type) = TYPE_CODE_METHOD;
3978 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3979 }
3980 else
3981 {
3982 struct type *domain = read_type (pp);
3983 struct type *return_type;
3984 struct type **args;
3985
3986 if (*(*pp)++ != ',')
3987 error ("invalid member type data format, at symtab pos %d.",
3988 symnum);
3989
3990 return_type = read_type (pp);
3991 args = read_args (pp, ';');
3992 type = dbx_alloc_type (typenums);
3993 smash_to_method_type (type, domain, return_type, args);
3994 }
3995 break;
3996
3997 case '&':
3998 type1 = read_type (pp);
3999 type = lookup_reference_type (type1);
4000 if (typenums[0] != -1)
4001 *dbx_lookup_type (typenums) = type;
4002 break;
4003
4004 case 'f':
4005 type1 = read_type (pp);
4006 type = lookup_function_type (type1);
4007 if (typenums[0] != -1)
4008 *dbx_lookup_type (typenums) = type;
4009 break;
4010
4011 case 'r':
4012 type = read_range_type (pp, typenums);
4013 if (typenums[0] != -1)
4014 *dbx_lookup_type (typenums) = type;
4015 break;
4016
4017 case 'e':
4018 type = dbx_alloc_type (typenums);
4019 type = read_enum_type (pp, type);
4020 *dbx_lookup_type (typenums) = type;
4021 break;
4022
4023 case 's':
4024 type = dbx_alloc_type (typenums);
4025 TYPE_NAME (type) = type_synonym_name;
4026 type_synonym_name = 0;
4027 type = read_struct_type (pp, type);
4028 break;
4029
4030 case 'u':
4031 type = dbx_alloc_type (typenums);
4032 TYPE_NAME (type) = type_synonym_name;
4033 type_synonym_name = 0;
4034 type = read_struct_type (pp, type);
4035 TYPE_CODE (type) = TYPE_CODE_UNION;
4036 break;
4037
4038 case 'a':
4039 if (**pp != 'r')
4040 return error_type (pp);
4041 ++*pp;
4042
4043 type = dbx_alloc_type (typenums);
4044 type = read_array_type (pp, type);
4045 break;
4046
4047 default:
4048 return error_type (pp);
4049 }
4050
4051 if (type == 0)
4052 abort ();
4053
4054#if 0
4055 /* If this is an overriding temporary alteration for a header file's
4056 contents, and this type number is unknown in the global definition,
4057 put this type into the global definition at this type number. */
4058 if (header_file_prev_index >= 0)
4059 {
4060 register struct type **tp
4061 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4062 if (*tp == 0)
4063 *tp = type;
4064 }
4065#endif
4066 return type;
4067}
4068\f
4069#if 0
4070/* This would be a good idea, but it doesn't really work. The problem
4071 is that in order to get the virtual context for a particular type,
4072 you need to know the virtual info from all of its basetypes,
4073 and you need to have processed its methods. Since GDB reads
4074 symbols on a file-by-file basis, this means processing the symbols
4075 of all the files that are needed for each baseclass, which
4076 means potentially reading in all the debugging info just to fill
4077 in information we may never need. */
4078
4079/* This page contains subroutines of read_type. */
4080
4081/* FOR_TYPE is a struct type defining a virtual function NAME with type
4082 FN_TYPE. The `virtual context' for this virtual function is the
4083 first base class of FOR_TYPE in which NAME is defined with signature
4084 matching FN_TYPE. OFFSET serves as a hash on matches here.
4085
4086 TYPE is the current type in which we are searching. */
4087
4088static struct type *
4089virtual_context (for_type, type, name, fn_type, offset)
4090 struct type *for_type, *type;
4091 char *name;
4092 struct type *fn_type;
4093 int offset;
4094{
4095 struct type *basetype = 0;
4096 int i;
4097
4098 if (for_type != type)
4099 {
4100 /* Check the methods of TYPE. */
4101 /* Need to do a check_stub_type here, but that breaks
4102 things because we can get infinite regress. */
4103 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4104 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4105 break;
4106 if (i >= 0)
4107 {
4108 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4109 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4110
4111 while (--j >= 0)
4112 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4113 return TYPE_FN_FIELD_FCONTEXT (f, j);
4114 }
4115 }
4116 for (i = TYPE_N_BASECLASSES (type); i > 0; i--)
4117 {
4118 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4119 fn_type, offset);
4120 if (basetype != for_type)
4121 return basetype;
4122 }
4123 return for_type;
4124}
4125#endif
4126
4127/* Read the description of a structure (or union type)
4128 and return an object describing the type. */
4129
4130static struct type *
4131read_struct_type (pp, type)
4132 char **pp;
4133 register struct type *type;
4134{
4135 /* Total number of methods defined in this class.
4136 If the class defines two `f' methods, and one `g' method,
4137 then this will have the value 3. */
4138 int total_length = 0;
4139
4140 struct nextfield
4141 {
4142 struct nextfield *next;
4143 int visibility; /* 0=public, 1=protected, 2=public */
4144 struct field field;
4145 };
4146
4147 struct next_fnfield
4148 {
4149 struct next_fnfield *next;
4150 int visibility; /* 0=public, 1=protected, 2=public */
4151 struct fn_field fn_field;
4152 };
4153
4154 struct next_fnfieldlist
4155 {
4156 struct next_fnfieldlist *next;
4157 struct fn_fieldlist fn_fieldlist;
4158 };
4159
4160 register struct nextfield *list = 0;
4161 struct nextfield *new;
4162 register char *p;
4163 int nfields = 0;
4164 register int n;
4165
4166 register struct next_fnfieldlist *mainlist = 0;
4167 int nfn_fields = 0;
4168
4169 if (TYPE_MAIN_VARIANT (type) == 0)
4170 {
4171 TYPE_MAIN_VARIANT (type) = type;
4172 }
4173
4174 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4175
4176 /* First comes the total size in bytes. */
4177
4178 TYPE_LENGTH (type) = read_number (pp, 0);
4179
4180 /* C++: Now, if the class is a derived class, then the next character
4181 will be a '!', followed by the number of base classes derived from.
4182 Each element in the list contains visibility information,
4183 the offset of this base class in the derived structure,
4184 and then the base type. */
4185 if (**pp == '!')
4186 {
4187 int i, n_baseclasses, offset;
4188 struct type *baseclass;
4189 int via_public;
4190
4191 /* Nonzero if it is a virtual baseclass, i.e.,
4192
4193 struct A{};
4194 struct B{};
4195 struct C : public B, public virtual A {};
4196
4197 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4198 2.0 language feature. */
4199 int via_virtual;
4200
4201 *pp += 1;
4202
4203 n_baseclasses = read_number (pp, ',');
4204 TYPE_FIELD_VIRTUAL_BITS (type) =
4205 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4206 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4207
4208 for (i = 0; i < n_baseclasses; i++)
4209 {
4210 if (**pp == '\\')
4211 *pp = next_symbol_text ();
4212
4213 switch (**pp)
4214 {
4215 case '0':
4216 via_virtual = 0;
4217 break;
4218 case '1':
4219 via_virtual = 1;
4220 break;
4221 default:
4222 /* Bad visibility format. */
4223 return error_type (pp);
4224 }
4225 ++*pp;
4226
4227 switch (**pp)
4228 {
4229 case '0':
4230 via_public = 0;
4231 break;
4232 case '2':
4233 via_public = 2;
4234 break;
4235 default:
4236 /* Bad visibility format. */
4237 return error_type (pp);
4238 }
4239 if (via_virtual)
4240 SET_TYPE_FIELD_VIRTUAL (type, i);
4241 ++*pp;
4242
4243 /* Offset of the portion of the object corresponding to
4244 this baseclass. Always zero in the absence of
4245 multiple inheritance. */
4246 offset = read_number (pp, ',');
4247 baseclass = read_type (pp);
4248 *pp += 1; /* skip trailing ';' */
4249
4250#if 0
4251/* One's understanding improves, grasshopper... */
4252 if (offset != 0)
4253 {
4254 static int error_printed = 0;
4255
4256 if (!error_printed)
4257 {
4258 fprintf (stderr,
4259"\nWarning: GDB has limited understanding of multiple inheritance...");
4260 if (!info_verbose)
4261 fprintf(stderr, "\n");
4262 error_printed = 1;
4263 }
4264 }
4265#endif
4266
4267 /* Make this baseclass visible for structure-printing purposes. */
4268 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4269 new->next = list;
4270 list = new;
4271 list->visibility = via_public;
4272 list->field.type = baseclass;
4273 list->field.name = type_name_no_tag (baseclass);
4274 list->field.bitpos = offset;
4275 list->field.bitsize = 0; /* this should be an unpacked field! */
4276 nfields++;
4277 }
4278 TYPE_N_BASECLASSES (type) = n_baseclasses;
4279 }
4280
4281 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4282 At the end, we see a semicolon instead of a field.
4283
4284 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4285 a static field.
4286
4287 The `?' is a placeholder for one of '/2' (public visibility),
4288 '/1' (protected visibility), '/0' (private visibility), or nothing
4289 (C style symbol table, public visibility). */
4290
4291 /* We better set p right now, in case there are no fields at all... */
4292 p = *pp;
4293
4294 while (**pp != ';')
4295 {
4296 /* Check for and handle cretinous dbx symbol name continuation! */
4297 if (**pp == '\\') *pp = next_symbol_text ();
4298
4299 /* Get space to record the next field's data. */
4300 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4301 new->next = list;
4302 list = new;
4303
4304 /* Get the field name. */
4305 p = *pp;
4306 if (*p == CPLUS_MARKER)
4307 {
4308 /* Special GNU C++ name. */
4309 if (*++p == 'v')
4310 {
4311 char *prefix, *name; /* FIXME: NAME never set! */
4312 struct type *context;
4313
4314 switch (*++p)
4315 {
4316 case 'f':
4317 prefix = vptr_name;
4318 break;
4319 case 'b':
4320 prefix = vb_name;
4321 break;
4322 default:
4323 error ("invalid abbreviation at symtab pos %d.", symnum);
4324 }
4325 *pp = p + 1;
4326 context = read_type (pp);
4327 if (type_name_no_tag (context) == 0)
4328 {
4329 if (name == 0)
4330 error ("type name unknown at symtab pos %d.", symnum);
4331 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4332 }
4333 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4334 p = ++(*pp);
4335 if (p[-1] != ':')
4336 error ("invalid abbreviation at symtab pos %d.", symnum);
4337 list->field.type = read_type (pp);
4338 (*pp)++; /* Skip the comma. */
4339 list->field.bitpos = read_number (pp, ';');
4340 /* This field is unpacked. */
4341 list->field.bitsize = 0;
4342 }
4343 else
4344 error ("invalid abbreviation at symtab pos %d.", symnum);
4345
4346 nfields++;
4347 continue;
4348 }
4349
4350 while (*p != ':') p++;
4351 list->field.name = obsavestring (*pp, p - *pp);
4352
4353 /* C++: Check to see if we have hit the methods yet. */
4354 if (p[1] == ':')
4355 break;
4356
4357 *pp = p + 1;
4358
4359 /* This means we have a visibility for a field coming. */
4360 if (**pp == '/')
4361 {
4362 switch (*++*pp)
4363 {
4364 case '0':
4365 list->visibility = 0; /* private */
4366 *pp += 1;
4367 break;
4368
4369 case '1':
4370 list->visibility = 1; /* protected */
4371 *pp += 1;
4372 break;
4373
4374 case '2':
4375 list->visibility = 2; /* public */
4376 *pp += 1;
4377 break;
4378 }
4379 }
4380 else /* normal dbx-style format. */
4381 list->visibility = 2; /* public */
4382
4383 list->field.type = read_type (pp);
4384 if (**pp == ':')
4385 {
4386 /* Static class member. */
4387 list->field.bitpos = (long)-1;
4388 p = ++(*pp);
4389 while (*p != ';') p++;
4390 list->field.bitsize = (long) savestring (*pp, p - *pp);
4391 *pp = p + 1;
4392 nfields++;
4393 continue;
4394 }
4395 else if (**pp != ',')
4396 /* Bad structure-type format. */
4397 return error_type (pp);
4398
4399 (*pp)++; /* Skip the comma. */
4400 list->field.bitpos = read_number (pp, ',');
4401 list->field.bitsize = read_number (pp, ';');
4402
4403#if 0
4404 /* FIXME tiemann: what is the story here? What does the compiler
4405 really do? Also, patch gdb.texinfo for this case; I document
4406 it as a possible problem there. Search for "DBX-style". */
4407
4408 /* This is wrong because this is identical to the symbols
4409 produced for GCC 0-size arrays. For example:
4410 typedef union {
4411 int num;
4412 char str[0];
4413 } foo;
4414 The code which dumped core in such circumstances should be
4415 fixed not to dump core. */
4416
4417 /* g++ -g0 can put out bitpos & bitsize zero for a static
4418 field. This does not give us any way of getting its
4419 class, so we can't know its name. But we can just
4420 ignore the field so we don't dump core and other nasty
4421 stuff. */
4422 if (list->field.bitpos == 0
4423 && list->field.bitsize == 0)
4424 {
4425 complain (&dbx_class_complaint, 0);
4426 /* Ignore this field. */
4427 list = list->next;
4428 }
4429 else
4430#endif /* 0 */
4431 {
4432 /* Detect an unpacked field and mark it as such.
4433 dbx gives a bit size for all fields.
4434 Note that forward refs cannot be packed,
4435 and treat enums as if they had the width of ints. */
4436 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4437 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4438 list->field.bitsize = 0;
4439 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4440 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4441 && (list->field.bitsize
4442 == 8 * TYPE_LENGTH (builtin_type_int))
4443 )
4444 )
4445 &&
4446 list->field.bitpos % 8 == 0)
4447 list->field.bitsize = 0;
4448 nfields++;
4449 }
4450 }
4451
4452 if (p[1] == ':')
4453 /* chill the list of fields: the last entry (at the head)
4454 is a partially constructed entry which we now scrub. */
4455 list = list->next;
4456
4457 /* Now create the vector of fields, and record how big it is.
4458 We need this info to record proper virtual function table information
4459 for this class's virtual functions. */
4460
4461 TYPE_NFIELDS (type) = nfields;
4462 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4463 sizeof (struct field) * nfields);
4464
4465 TYPE_FIELD_PRIVATE_BITS (type) =
4466 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4467 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4468
4469 TYPE_FIELD_PROTECTED_BITS (type) =
4470 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4471 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4472
4473 /* Copy the saved-up fields into the field vector. */
4474
4475 for (n = nfields; list; list = list->next)
4476 {
4477 n -= 1;
4478 TYPE_FIELD (type, n) = list->field;
4479 if (list->visibility == 0)
4480 SET_TYPE_FIELD_PRIVATE (type, n);
4481 else if (list->visibility == 1)
4482 SET_TYPE_FIELD_PROTECTED (type, n);
4483 }
4484
4485 /* Now come the method fields, as NAME::methods
4486 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4487 At the end, we see a semicolon instead of a field.
4488
4489 For the case of overloaded operators, the format is
4490 OPERATOR::*.methods, where OPERATOR is the string "operator",
4491 `*' holds the place for an operator name (such as `+=')
4492 and `.' marks the end of the operator name. */
4493 if (p[1] == ':')
4494 {
4495 /* Now, read in the methods. To simplify matters, we
4496 "unread" the name that has been read, so that we can
4497 start from the top. */
4498
4499 /* For each list of method lists... */
4500 do
4501 {
4502 int i;
4503 struct next_fnfield *sublist = 0;
4504 int length = 0;
4505 struct next_fnfieldlist *new_mainlist =
4506 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4507 char *main_fn_name;
4508
4509 p = *pp;
4510
4511 /* read in the name. */
4512 while (*p != ':') p++;
4513 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4514 {
4515 /* This lets the user type "break operator+".
4516 We could just put in "+" as the name, but that wouldn't
4517 work for "*". */
4518 static char opname[32] = "operator";
4519 char *o = opname + 8;
4520
4521 /* Skip past '::'. */
4522 p += 2;
4523 while (*p != '.')
4524 *o++ = *p++;
4525 main_fn_name = savestring (opname, o - opname);
4526 /* Skip past '.' */
4527 *pp = p + 1;
4528 }
4529 else
4530 {
4531 i = 0;
4532 main_fn_name = savestring (*pp, p - *pp);
4533 /* Skip past '::'. */
4534 *pp = p + 2;
4535 }
4536 new_mainlist->fn_fieldlist.name = main_fn_name;
4537
4538 do
4539 {
4540 struct next_fnfield *new_sublist =
4541 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4542
4543 /* Check for and handle cretinous dbx symbol name continuation! */
4544 if (**pp == '\\') *pp = next_symbol_text ();
4545
4546 new_sublist->fn_field.type = read_type (pp);
4547 if (**pp != ':')
4548 /* Invalid symtab info for method. */
4549 return error_type (pp);
4550
4551 *pp += 1;
4552 p = *pp;
4553 while (*p != ';') p++;
4554 /* If this is just a stub, then we don't have the
4555 real name here. */
4556 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4557 *pp = p + 1;
4558 new_sublist->visibility = *(*pp)++ - '0';
4559 if (**pp == '\\') *pp = next_symbol_text ();
4560 /* FIXME: tiemann needs to add const/volatile info
4561 to the methods. For now, just skip the char.
4562 In future, here's what we need to implement:
4563
4564 A for normal functions.
4565 B for `const' member functions.
4566 C for `volatile' member functions.
4567 D for `const volatile' member functions. */
4568 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4569 (*pp)++;
4570 else
4571 complain(&const_vol_complaint, **pp);
4572
4573 switch (*(*pp)++)
4574 {
4575 case '*':
4576 /* virtual member function, followed by index. */
4577 /* The sign bit is set to distinguish pointers-to-methods
4578 from virtual function indicies. Since the array is
4579 in words, the quantity must be shifted left by 1
4580 on 16 bit machine, and by 2 on 32 bit machine, forcing
4581 the sign bit out, and usable as a valid index into
4582 the array. Remove the sign bit here. */
4583 new_sublist->fn_field.voffset =
4584 (0x7fffffff & read_number (pp, ';')) + 1;
4585
4586 /* Figure out from whence this virtual function came.
4587 It may belong to virtual function table of
4588 one of its baseclasses. */
4589 new_sublist->fn_field.fcontext = read_type (pp);
4590 if (**pp != ';')
4591 error_type (pp);
4592 else
4593 ++*pp;
4594 break;
4595
4596 case '?':
4597 /* static member function. */
4598 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4599 break;
4600 default:
4601 /* **pp == '.'. */
4602 /* normal member function. */
4603 new_sublist->fn_field.voffset = 0;
4604 break;
4605 }
4606
4607 new_sublist->next = sublist;
4608 sublist = new_sublist;
4609 length++;
4610 }
4611 while (**pp != ';' && *pp != '\0');
4612
4613 *pp += 1;
4614
4615 new_mainlist->fn_fieldlist.fn_fields =
4616 (struct fn_field *) obstack_alloc (symbol_obstack,
4617 sizeof (struct fn_field) * length);
4618 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4619 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4620 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4621
4622 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4623 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4624 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4625
4626 for (i = length; (i--, sublist); sublist = sublist->next)
4627 {
4628 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4629 if (sublist->visibility == 0)
4630 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4631 else if (sublist->visibility == 1)
4632 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4633 }
4634
4635 new_mainlist->fn_fieldlist.length = length;
4636 new_mainlist->next = mainlist;
4637 mainlist = new_mainlist;
4638 nfn_fields++;
4639 total_length += length;
4640 }
4641 while (**pp != ';');
4642 }
4643
4644 *pp += 1;
4645
4646 TYPE_FN_FIELDLISTS (type) =
4647 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4648 sizeof (struct fn_fieldlist) * nfn_fields);
4649
4650 TYPE_NFN_FIELDS (type) = nfn_fields;
4651 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4652
4653 {
4654 int i;
4655 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4656 TYPE_NFN_FIELDS_TOTAL (type) +=
4657 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4658 }
4659
4660 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4661 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4662
4663 if (**pp == '~')
4664 {
4665 *pp += 1;
4666
4667 if (**pp == '=')
4668 {
4669 TYPE_FLAGS (type)
4670 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4671 *pp += 1;
4672 }
4673 else if (**pp == '+')
4674 {
4675 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4676 *pp += 1;
4677 }
4678 else if (**pp == '-')
4679 {
4680 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4681 *pp += 1;
4682 }
4683
4684 /* Read either a '%' or the final ';'. */
4685 if (*(*pp)++ == '%')
4686 {
4687 /* Now we must record the virtual function table pointer's
4688 field information. */
4689
4690 struct type *t;
4691 int i;
4692
4693 t = read_type (pp);
4694 p = (*pp)++;
4695 while (*p != '\0' && *p != ';')
4696 p++;
4697 if (*p == '\0')
4698 /* Premature end of symbol. */
4699 return error_type (pp);
4700
4701 TYPE_VPTR_BASETYPE (type) = t;
4702 if (type == t)
4703 {
4704 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4705 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4706 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4707 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4708 sizeof (vptr_name) -1))
4709 {
4710 TYPE_VPTR_FIELDNO (type) = i;
4711 break;
4712 }
4713 if (i < 0)
4714 /* Virtual function table field not found. */
4715 return error_type (pp);
4716 }
4717 else
4718 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4719 *pp = p + 1;
4720 }
4721 else
4722 {
4723 TYPE_VPTR_BASETYPE (type) = 0;
4724 TYPE_VPTR_FIELDNO (type) = -1;
4725 }
4726 }
4727 else
4728 {
4729 TYPE_VPTR_BASETYPE (type) = 0;
4730 TYPE_VPTR_FIELDNO (type) = -1;
4731 }
4732
4733 return type;
4734}
4735
4736/* Read a definition of an array type,
4737 and create and return a suitable type object.
4738 Also creates a range type which represents the bounds of that
4739 array. */
4740static struct type *
4741read_array_type (pp, type)
4742 register char **pp;
4743 register struct type *type;
4744{
4745 struct type *index_type, *element_type, *range_type;
4746 int lower, upper;
4747 int adjustable = 0;
4748
4749 /* Format of an array type:
4750 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4751 to handle this.
4752
4753 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4754 for these, produce a type like float[][]. */
4755
4756 index_type = read_type (pp);
4757 if (**pp != ';')
4758 /* Improper format of array type decl. */
4759 return error_type (pp);
4760 ++*pp;
4761
4762 if (!(**pp >= '0' && **pp <= '9'))
4763 {
4764 *pp += 1;
4765 adjustable = 1;
4766 }
4767 lower = read_number (pp, ';');
4768
4769 if (!(**pp >= '0' && **pp <= '9'))
4770 {
4771 *pp += 1;
4772 adjustable = 1;
4773 }
4774 upper = read_number (pp, ';');
4775
4776 element_type = read_type (pp);
4777
4778 if (adjustable)
4779 {
4780 lower = 0;
4781 upper = -1;
4782 }
4783
4784 {
4785 /* Create range type. */
4786 range_type = (struct type *) obstack_alloc (symbol_obstack,
4787 sizeof (struct type));
4788 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4789 TYPE_TARGET_TYPE (range_type) = index_type;
4790
4791 /* This should never be needed. */
4792 TYPE_LENGTH (range_type) = sizeof (int);
4793
4794 TYPE_NFIELDS (range_type) = 2;
4795 TYPE_FIELDS (range_type) =
4796 (struct field *) obstack_alloc (symbol_obstack,
4797 2 * sizeof (struct field));
4798 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4799 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4800 }
4801
4802 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4803 TYPE_TARGET_TYPE (type) = element_type;
4804 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4805 TYPE_NFIELDS (type) = 1;
4806 TYPE_FIELDS (type) =
4807 (struct field *) obstack_alloc (symbol_obstack,
4808 sizeof (struct field));
4809 TYPE_FIELD_TYPE (type, 0) = range_type;
4810
4811 return type;
4812}
4813
4814
4815/* Read a definition of an enumeration type,
4816 and create and return a suitable type object.
4817 Also defines the symbols that represent the values of the type. */
4818
4819static struct type *
4820read_enum_type (pp, type)
4821 register char **pp;
4822 register struct type *type;
4823{
4824 register char *p;
4825 char *name;
4826 register long n;
4827 register struct symbol *sym;
4828 int nsyms = 0;
4829 struct pending **symlist;
4830 struct pending *osyms, *syms;
4831 int o_nsyms;
4832
4833 if (within_function)
4834 symlist = &local_symbols;
4835 else
4836 symlist = &file_symbols;
4837 osyms = *symlist;
4838 o_nsyms = osyms ? osyms->nsyms : 0;
4839
4840 /* Read the value-names and their values.
4841 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4842 A semicolon or comman instead of a NAME means the end. */
4843 while (**pp && **pp != ';' && **pp != ',')
4844 {
4845 /* Check for and handle cretinous dbx symbol name continuation! */
4846 if (**pp == '\\') *pp = next_symbol_text ();
4847
4848 p = *pp;
4849 while (*p != ':') p++;
4850 name = obsavestring (*pp, p - *pp);
4851 *pp = p + 1;
4852 n = read_number (pp, ',');
4853
4854 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4855 bzero (sym, sizeof (struct symbol));
4856 SYMBOL_NAME (sym) = name;
4857 SYMBOL_CLASS (sym) = LOC_CONST;
4858 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4859 SYMBOL_VALUE (sym) = n;
4860 add_symbol_to_list (sym, symlist);
4861 nsyms++;
4862 }
4863
4864 if (**pp == ';')
4865 (*pp)++; /* Skip the semicolon. */
4866
4867 /* Now fill in the fields of the type-structure. */
4868
4869 TYPE_LENGTH (type) = sizeof (int);
4870 TYPE_CODE (type) = TYPE_CODE_ENUM;
4871 TYPE_NFIELDS (type) = nsyms;
4872 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4873
4874 /* Find the symbols for the values and put them into the type.
4875 The symbols can be found in the symlist that we put them on
4876 to cause them to be defined. osyms contains the old value
4877 of that symlist; everything up to there was defined by us. */
4878 /* Note that we preserve the order of the enum constants, so
4879 that in something like "enum {FOO, LAST_THING=FOO}" we print
4880 FOO, not LAST_THING. */
4881
4882 for (syms = *symlist, n = 0; syms; syms = syms->next)
4883 {
4884 int j = 0;
4885 if (syms == osyms)
4886 j = o_nsyms;
4887 for (; j < syms->nsyms; j++,n++)
4888 {
4889 struct symbol *sym = syms->symbol[j];
4890 SYMBOL_TYPE (sym) = type;
4891 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4892 TYPE_FIELD_VALUE (type, n) = 0;
4893 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4894 TYPE_FIELD_BITSIZE (type, n) = 0;
4895 }
4896 if (syms == osyms)
4897 break;
4898 }
4899
4900 return type;
4901}
4902
4903/* Read a number from the string pointed to by *PP.
4904 The value of *PP is advanced over the number.
4905 If END is nonzero, the character that ends the
4906 number must match END, or an error happens;
4907 and that character is skipped if it does match.
4908 If END is zero, *PP is left pointing to that character.
4909
4910 If the number fits in a long, set *VALUE and set *BITS to 0.
4911 If not, set *BITS to be the number of bits in the number.
4912
4913 If encounter garbage, set *BITS to -1. */
4914
4915static void
4916read_huge_number (pp, end, valu, bits)
4917 char **pp;
4918 int end;
4919 long *valu;
4920 int *bits;
4921{
4922 char *p = *pp;
4923 int sign = 1;
4924 long n = 0;
4925 int radix = 10;
4926 char overflow = 0;
4927 int nbits = 0;
4928 int c;
4929
4930 if (*p == '-')
4931 {
4932 sign = -1;
4933 p++;
4934 }
4935
4936 /* Leading zero means octal. GCC uses this to output values larger
4937 than an int (because that would be hard in decimal). */
4938 if (*p == '0')
4939 {
4940 radix = 8;
4941 p++;
4942 }
4943
4944 while ((c = *p++) >= '0' && c <= ('0' + radix))
4945 {
4946 if (n <= LONG_MAX / radix)
4947 {
4948 n *= radix;
4949 n += c - '0'; /* FIXME this overflows anyway */
4950 }
4951 else
4952 overflow = 1;
4953
4954 /* This depends on large values being output in octal, which is
4955 what GCC does. */
4956 if (radix == 8)
4957 {
4958 if (nbits == 0)
4959 {
4960 if (c == '0')
4961 /* Ignore leading zeroes. */
4962 ;
4963 else if (c == '1')
4964 nbits = 1;
4965 else if (c == '2' || c == '3')
4966 nbits = 2;
4967 else
4968 nbits = 3;
4969 }
4970 else
4971 nbits += 3;
4972 }
4973 }
4974 if (end)
4975 {
4976 if (c && c != end)
4977 {
4978 if (bits != NULL)
4979 *bits = -1;
4980 return;
4981 }
4982 }
4983 else
4984 --p;
4985
4986 *pp = p;
4987 if (overflow)
4988 {
4989 if (nbits == 0)
4990 {
4991 /* Large decimal constants are an error (because it is hard to
4992 count how many bits are in them). */
4993 if (bits != NULL)
4994 *bits = -1;
4995 return;
4996 }
4997
4998 /* -0x7f is the same as 0x80. So deal with it by adding one to
4999 the number of bits. */
5000 if (sign == -1)
5001 ++nbits;
5002 if (bits)
5003 *bits = nbits;
5004 }
5005 else
5006 {
5007 if (valu)
5008 *valu = n * sign;
5009 if (bits)
5010 *bits = 0;
5011 }
5012}
5013
5014#define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5015#define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5016
5017static struct type *
5018read_range_type (pp, typenums)
5019 char **pp;
5020 int typenums[2];
5021{
5022 int rangenums[2];
5023 long n2, n3;
5024 int n2bits, n3bits;
5025 int self_subrange;
5026 struct type *result_type;
5027
5028 /* First comes a type we are a subrange of.
5029 In C it is usually 0, 1 or the type being defined. */
5030 read_type_number (pp, rangenums);
5031 self_subrange = (rangenums[0] == typenums[0] &&
5032 rangenums[1] == typenums[1]);
5033
5034 /* A semicolon should now follow; skip it. */
5035 if (**pp == ';')
5036 (*pp)++;
5037
5038 /* The remaining two operands are usually lower and upper bounds
5039 of the range. But in some special cases they mean something else. */
5040 read_huge_number (pp, ';', &n2, &n2bits);
5041 read_huge_number (pp, ';', &n3, &n3bits);
5042
5043 if (n2bits == -1 || n3bits == -1)
5044 return error_type (pp);
5045
5046 /* If limits are huge, must be large integral type. */
5047 if (n2bits != 0 || n3bits != 0)
5048 {
5049 char got_signed = 0;
5050 char got_unsigned = 0;
5051 /* Number of bits in the type. */
5052 int nbits;
5053
5054 /* Range from 0 to <large number> is an unsigned large integral type. */
5055 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5056 {
5057 got_unsigned = 1;
5058 nbits = n3bits;
5059 }
5060 /* Range from <large number> to <large number>-1 is a large signed
5061 integral type. */
5062 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5063 {
5064 got_signed = 1;
5065 nbits = n2bits;
5066 }
5067
5068 if (got_signed || got_unsigned)
5069 {
5070 result_type = (struct type *) obstack_alloc (symbol_obstack,
5071 sizeof (struct type));
5072 bzero (result_type, sizeof (struct type));
5073 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5074 TYPE_MAIN_VARIANT (result_type) = result_type;
5075 TYPE_CODE (result_type) = TYPE_CODE_INT;
5076 if (got_unsigned)
5077 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5078 return result_type;
5079 }
5080 else
5081 return error_type (pp);
5082 }
5083
5084 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5085 if (self_subrange && n2 == 0 && n3 == 0)
5086 return builtin_type_void;
5087
5088 /* If n3 is zero and n2 is not, we want a floating type,
5089 and n2 is the width in bytes.
5090
5091 Fortran programs appear to use this for complex types also,
5092 and they give no way to distinguish between double and single-complex!
5093 We don't have complex types, so we would lose on all fortran files!
5094 So return type `double' for all of those. It won't work right
5095 for the complex values, but at least it makes the file loadable. */
5096
5097 if (n3 == 0 && n2 > 0)
5098 {
5099 if (n2 == sizeof (float))
5100 return builtin_type_float;
5101 return builtin_type_double;
5102 }
5103
5104 /* If the upper bound is -1, it must really be an unsigned int. */
5105
5106 else if (n2 == 0 && n3 == -1)
5107 {
5108 if (sizeof (int) == sizeof (long))
5109 return builtin_type_unsigned_int;
5110 else
5111 return builtin_type_unsigned_long;
5112 }
5113
5114 /* Special case: char is defined (Who knows why) as a subrange of
5115 itself with range 0-127. */
5116 else if (self_subrange && n2 == 0 && n3 == 127)
5117 return builtin_type_char;
5118
5119 /* Assumptions made here: Subrange of self is equivalent to subrange
5120 of int. */
5121 else if (n2 == 0
5122 && (self_subrange ||
5123 *dbx_lookup_type (rangenums) == builtin_type_int))
5124 {
5125 /* an unsigned type */
5126#ifdef LONG_LONG
5127 if (n3 == - sizeof (long long))
5128 return builtin_type_unsigned_long_long;
5129#endif
5130 if (n3 == (unsigned int)~0L)
5131 return builtin_type_unsigned_int;
5132 if (n3 == (unsigned long)~0L)
5133 return builtin_type_unsigned_long;
5134 if (n3 == (unsigned short)~0L)
5135 return builtin_type_unsigned_short;
5136 if (n3 == (unsigned char)~0L)
5137 return builtin_type_unsigned_char;
5138 }
5139#ifdef LONG_LONG
5140 else if (n3 == 0 && n2 == -sizeof (long long))
5141 return builtin_type_long_long;
5142#endif
5143 else if (n2 == -n3 -1)
5144 {
5145 /* a signed type */
5146 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5147 return builtin_type_int;
5148 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5149 return builtin_type_long;
5150 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5151 return builtin_type_short;
5152 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5153 return builtin_type_char;
5154 }
5155
5156 /* We have a real range type on our hands. Allocate space and
5157 return a real pointer. */
5158
5159 /* At this point I don't have the faintest idea how to deal with
5160 a self_subrange type; I'm going to assume that this is used
5161 as an idiom, and that all of them are special cases. So . . . */
5162 if (self_subrange)
5163 return error_type (pp);
5164
5165 result_type = (struct type *) obstack_alloc (symbol_obstack,
5166 sizeof (struct type));
5167 bzero (result_type, sizeof (struct type));
5168
5169 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5170 builtin_type_int :
5171 *dbx_lookup_type(rangenums));
5172
5173 /* We have to figure out how many bytes it takes to hold this
5174 range type. I'm going to assume that anything that is pushing
5175 the bounds of a long was taken care of above. */
5176 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5177 TYPE_LENGTH (result_type) = 1;
5178 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5179 TYPE_LENGTH (result_type) = sizeof (short);
5180 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5181 TYPE_LENGTH (result_type) = sizeof (int);
5182 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5183 TYPE_LENGTH (result_type) = sizeof (long);
5184 else
5185 /* Ranged type doesn't fit within known sizes. */
5186 return error_type (pp);
5187
5188 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5189 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5190 TYPE_NFIELDS (result_type) = 2;
5191 TYPE_FIELDS (result_type) =
5192 (struct field *) obstack_alloc (symbol_obstack,
5193 2 * sizeof (struct field));
5194 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5195 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5196 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5197
5198 return result_type;
5199}
5200
5201/* Read a number from the string pointed to by *PP.
5202 The value of *PP is advanced over the number.
5203 If END is nonzero, the character that ends the
5204 number must match END, or an error happens;
5205 and that character is skipped if it does match.
5206 If END is zero, *PP is left pointing to that character. */
5207
5208static long
5209read_number (pp, end)
5210 char **pp;
5211 int end;
5212{
5213 register char *p = *pp;
5214 register long n = 0;
5215 register int c;
5216 int sign = 1;
5217
5218 /* Handle an optional leading minus sign. */
5219
5220 if (*p == '-')
5221 {
5222 sign = -1;
5223 p++;
5224 }
5225
5226 /* Read the digits, as far as they go. */
5227
5228 while ((c = *p++) >= '0' && c <= '9')
5229 {
5230 n *= 10;
5231 n += c - '0';
5232 }
5233 if (end)
5234 {
5235 if (c && c != end)
5236 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5237 }
5238 else
5239 --p;
5240
5241 *pp = p;
5242 return n * sign;
5243}
5244
5245/* Read in an argument list. This is a list of types, separated by commas
5246 and terminated with END. Return the list of types read in, or (struct type
5247 **)-1 if there is an error. */
5248static struct type **
5249read_args (pp, end)
5250 char **pp;
5251 int end;
5252{
5253 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5254 int n = 0;
5255
5256 while (**pp != end)
5257 {
5258 if (**pp != ',')
5259 /* Invalid argument list: no ','. */
5260 return (struct type **)-1;
5261 *pp += 1;
5262
5263 /* Check for and handle cretinous dbx symbol name continuation! */
5264 if (**pp == '\\')
5265 *pp = next_symbol_text ();
5266
5267 types[n++] = read_type (pp);
5268 }
5269 *pp += 1; /* get past `end' (the ':' character) */
5270
5271 if (n == 1)
5272 {
5273 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5274 }
5275 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5276 {
5277 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5278 bzero (rval + n, sizeof (struct type *));
5279 }
5280 else
5281 {
5282 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5283 }
5284 bcopy (types, rval, n * sizeof (struct type *));
5285 return rval;
5286}
5287\f
5288/* Copy a pending list, used to record the contents of a common
5289 block for later fixup. */
5290static struct pending *
5291copy_pending (beg, begi, end)
5292 struct pending *beg, *end;
5293 int begi;
5294{
5295 struct pending *new = 0;
5296 struct pending *next;
5297
5298 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5299 next = next->next, begi = 0)
5300 {
5301 register int j;
5302 for (j = begi; j < next->nsyms; j++)
5303 add_symbol_to_list (next->symbol[j], &new);
5304 }
5305 return new;
5306}
5307
5308/* Add a common block's start address to the offset of each symbol
5309 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5310 the common block name). */
5311
5312static void
5313fix_common_block (sym, valu)
5314 struct symbol *sym;
5315 int valu;
5316{
5317 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5318 for ( ; next; next = next->next)
5319 {
5320 register int j;
5321 for (j = next->nsyms - 1; j >= 0; j--)
5322 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5323 }
5324}
5325\f
5326/* Register our willingness to decode symbols for SunOS and a.out and
5327 b.out files handled by BFD... */
5328static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5329 dbx_new_init, dbx_symfile_init,
5330 dbx_symfile_read, dbx_symfile_discard};
5331
5332static struct sym_fns aout_sym_fns = {"a.out", 5,
5333 dbx_new_init, dbx_symfile_init,
5334 dbx_symfile_read, dbx_symfile_discard};
5335
5336static struct sym_fns bout_sym_fns = {"b.out", 5,
5337 dbx_new_init, dbx_symfile_init,
5338 dbx_symfile_read, dbx_symfile_discard};
5339
5340void
5341_initialize_dbxread ()
5342{
5343 add_symtab_fns(&sunos_sym_fns);
5344 add_symtab_fns(&aout_sym_fns);
5345 add_symtab_fns(&bout_sym_fns);
5346
5347 undef_types_allocated = 20;
5348 undef_types_length = 0;
5349 undef_types = (struct type **) xmalloc (undef_types_allocated *
5350 sizeof (struct type *));
5351}
This page took 0.367887 seconds and 4 git commands to generate.