* infrun.c (handle_inferior_event): If
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
1654program. For example, you can list the arguments given to your program
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
1821that process run your program. (In environments without processes,
1822@code{run} jumps to the start of your program.)
1823
1824The execution of a program is affected by certain information it
1825receives from its superior. @value{GDBN} provides ways to specify this
1826information, which you must do @emph{before} starting your program. (You
1827can change it after starting your program, but such changes only affect
1828your program the next time you start it.) This information may be
1829divided into four categories:
1830
1831@table @asis
1832@item The @emph{arguments.}
1833Specify the arguments to give your program as the arguments of the
1834@code{run} command. If a shell is available on your target, the shell
1835is used to pass the arguments, so that you may use normal conventions
1836(such as wildcard expansion or variable substitution) in describing
1837the arguments.
1838In Unix systems, you can control which shell is used with the
1839@code{SHELL} environment variable.
79a6e687 1840@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1841
1842@item The @emph{environment.}
1843Your program normally inherits its environment from @value{GDBN}, but you can
1844use the @value{GDBN} commands @code{set environment} and @code{unset
1845environment} to change parts of the environment that affect
79a6e687 1846your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1847
1848@item The @emph{working directory.}
1849Your program inherits its working directory from @value{GDBN}. You can set
1850the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1851@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1852
1853@item The @emph{standard input and output.}
1854Your program normally uses the same device for standard input and
1855standard output as @value{GDBN} is using. You can redirect input and output
1856in the @code{run} command line, or you can use the @code{tty} command to
1857set a different device for your program.
79a6e687 1858@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1859
1860@cindex pipes
1861@emph{Warning:} While input and output redirection work, you cannot use
1862pipes to pass the output of the program you are debugging to another
1863program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1864wrong program.
1865@end table
c906108c
SS
1866
1867When you issue the @code{run} command, your program begins to execute
79a6e687 1868immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1869of how to arrange for your program to stop. Once your program has
1870stopped, you may call functions in your program, using the @code{print}
1871or @code{call} commands. @xref{Data, ,Examining Data}.
1872
1873If the modification time of your symbol file has changed since the last
1874time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1875table, and reads it again. When it does this, @value{GDBN} tries to retain
1876your current breakpoints.
1877
4e8b0763
JB
1878@table @code
1879@kindex start
1880@item start
1881@cindex run to main procedure
1882The name of the main procedure can vary from language to language.
1883With C or C@t{++}, the main procedure name is always @code{main}, but
1884other languages such as Ada do not require a specific name for their
1885main procedure. The debugger provides a convenient way to start the
1886execution of the program and to stop at the beginning of the main
1887procedure, depending on the language used.
1888
1889The @samp{start} command does the equivalent of setting a temporary
1890breakpoint at the beginning of the main procedure and then invoking
1891the @samp{run} command.
1892
f018e82f
EZ
1893@cindex elaboration phase
1894Some programs contain an @dfn{elaboration} phase where some startup code is
1895executed before the main procedure is called. This depends on the
1896languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1897constructors for static and global objects are executed before
1898@code{main} is called. It is therefore possible that the debugger stops
1899before reaching the main procedure. However, the temporary breakpoint
1900will remain to halt execution.
1901
1902Specify the arguments to give to your program as arguments to the
1903@samp{start} command. These arguments will be given verbatim to the
1904underlying @samp{run} command. Note that the same arguments will be
1905reused if no argument is provided during subsequent calls to
1906@samp{start} or @samp{run}.
1907
1908It is sometimes necessary to debug the program during elaboration. In
1909these cases, using the @code{start} command would stop the execution of
1910your program too late, as the program would have already completed the
1911elaboration phase. Under these circumstances, insert breakpoints in your
1912elaboration code before running your program.
1913@end table
1914
6d2ebf8b 1915@node Arguments
79a6e687 1916@section Your Program's Arguments
c906108c
SS
1917
1918@cindex arguments (to your program)
1919The arguments to your program can be specified by the arguments of the
5d161b24 1920@code{run} command.
c906108c
SS
1921They are passed to a shell, which expands wildcard characters and
1922performs redirection of I/O, and thence to your program. Your
1923@code{SHELL} environment variable (if it exists) specifies what shell
1924@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1925the default shell (@file{/bin/sh} on Unix).
1926
1927On non-Unix systems, the program is usually invoked directly by
1928@value{GDBN}, which emulates I/O redirection via the appropriate system
1929calls, and the wildcard characters are expanded by the startup code of
1930the program, not by the shell.
c906108c
SS
1931
1932@code{run} with no arguments uses the same arguments used by the previous
1933@code{run}, or those set by the @code{set args} command.
1934
c906108c 1935@table @code
41afff9a 1936@kindex set args
c906108c
SS
1937@item set args
1938Specify the arguments to be used the next time your program is run. If
1939@code{set args} has no arguments, @code{run} executes your program
1940with no arguments. Once you have run your program with arguments,
1941using @code{set args} before the next @code{run} is the only way to run
1942it again without arguments.
1943
1944@kindex show args
1945@item show args
1946Show the arguments to give your program when it is started.
1947@end table
1948
6d2ebf8b 1949@node Environment
79a6e687 1950@section Your Program's Environment
c906108c
SS
1951
1952@cindex environment (of your program)
1953The @dfn{environment} consists of a set of environment variables and
1954their values. Environment variables conventionally record such things as
1955your user name, your home directory, your terminal type, and your search
1956path for programs to run. Usually you set up environment variables with
1957the shell and they are inherited by all the other programs you run. When
1958debugging, it can be useful to try running your program with a modified
1959environment without having to start @value{GDBN} over again.
1960
1961@table @code
1962@kindex path
1963@item path @var{directory}
1964Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1965(the search path for executables) that will be passed to your program.
1966The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1967You may specify several directory names, separated by whitespace or by a
1968system-dependent separator character (@samp{:} on Unix, @samp{;} on
1969MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1970is moved to the front, so it is searched sooner.
c906108c
SS
1971
1972You can use the string @samp{$cwd} to refer to whatever is the current
1973working directory at the time @value{GDBN} searches the path. If you
1974use @samp{.} instead, it refers to the directory where you executed the
1975@code{path} command. @value{GDBN} replaces @samp{.} in the
1976@var{directory} argument (with the current path) before adding
1977@var{directory} to the search path.
1978@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1979@c document that, since repeating it would be a no-op.
1980
1981@kindex show paths
1982@item show paths
1983Display the list of search paths for executables (the @code{PATH}
1984environment variable).
1985
1986@kindex show environment
1987@item show environment @r{[}@var{varname}@r{]}
1988Print the value of environment variable @var{varname} to be given to
1989your program when it starts. If you do not supply @var{varname},
1990print the names and values of all environment variables to be given to
1991your program. You can abbreviate @code{environment} as @code{env}.
1992
1993@kindex set environment
53a5351d 1994@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1995Set environment variable @var{varname} to @var{value}. The value
1996changes for your program only, not for @value{GDBN} itself. @var{value} may
1997be any string; the values of environment variables are just strings, and
1998any interpretation is supplied by your program itself. The @var{value}
1999parameter is optional; if it is eliminated, the variable is set to a
2000null value.
2001@c "any string" here does not include leading, trailing
2002@c blanks. Gnu asks: does anyone care?
2003
2004For example, this command:
2005
474c8240 2006@smallexample
c906108c 2007set env USER = foo
474c8240 2008@end smallexample
c906108c
SS
2009
2010@noindent
d4f3574e 2011tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2012@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2013are not actually required.)
2014
2015@kindex unset environment
2016@item unset environment @var{varname}
2017Remove variable @var{varname} from the environment to be passed to your
2018program. This is different from @samp{set env @var{varname} =};
2019@code{unset environment} removes the variable from the environment,
2020rather than assigning it an empty value.
2021@end table
2022
d4f3574e
SS
2023@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2024the shell indicated
c906108c
SS
2025by your @code{SHELL} environment variable if it exists (or
2026@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2027that runs an initialization file---such as @file{.cshrc} for C-shell, or
2028@file{.bashrc} for BASH---any variables you set in that file affect
2029your program. You may wish to move setting of environment variables to
2030files that are only run when you sign on, such as @file{.login} or
2031@file{.profile}.
2032
6d2ebf8b 2033@node Working Directory
79a6e687 2034@section Your Program's Working Directory
c906108c
SS
2035
2036@cindex working directory (of your program)
2037Each time you start your program with @code{run}, it inherits its
2038working directory from the current working directory of @value{GDBN}.
2039The @value{GDBN} working directory is initially whatever it inherited
2040from its parent process (typically the shell), but you can specify a new
2041working directory in @value{GDBN} with the @code{cd} command.
2042
2043The @value{GDBN} working directory also serves as a default for the commands
2044that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2045Specify Files}.
c906108c
SS
2046
2047@table @code
2048@kindex cd
721c2651 2049@cindex change working directory
c906108c
SS
2050@item cd @var{directory}
2051Set the @value{GDBN} working directory to @var{directory}.
2052
2053@kindex pwd
2054@item pwd
2055Print the @value{GDBN} working directory.
2056@end table
2057
60bf7e09
EZ
2058It is generally impossible to find the current working directory of
2059the process being debugged (since a program can change its directory
2060during its run). If you work on a system where @value{GDBN} is
2061configured with the @file{/proc} support, you can use the @code{info
2062proc} command (@pxref{SVR4 Process Information}) to find out the
2063current working directory of the debuggee.
2064
6d2ebf8b 2065@node Input/Output
79a6e687 2066@section Your Program's Input and Output
c906108c
SS
2067
2068@cindex redirection
2069@cindex i/o
2070@cindex terminal
2071By default, the program you run under @value{GDBN} does input and output to
5d161b24 2072the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2073to its own terminal modes to interact with you, but it records the terminal
2074modes your program was using and switches back to them when you continue
2075running your program.
2076
2077@table @code
2078@kindex info terminal
2079@item info terminal
2080Displays information recorded by @value{GDBN} about the terminal modes your
2081program is using.
2082@end table
2083
2084You can redirect your program's input and/or output using shell
2085redirection with the @code{run} command. For example,
2086
474c8240 2087@smallexample
c906108c 2088run > outfile
474c8240 2089@end smallexample
c906108c
SS
2090
2091@noindent
2092starts your program, diverting its output to the file @file{outfile}.
2093
2094@kindex tty
2095@cindex controlling terminal
2096Another way to specify where your program should do input and output is
2097with the @code{tty} command. This command accepts a file name as
2098argument, and causes this file to be the default for future @code{run}
2099commands. It also resets the controlling terminal for the child
2100process, for future @code{run} commands. For example,
2101
474c8240 2102@smallexample
c906108c 2103tty /dev/ttyb
474c8240 2104@end smallexample
c906108c
SS
2105
2106@noindent
2107directs that processes started with subsequent @code{run} commands
2108default to do input and output on the terminal @file{/dev/ttyb} and have
2109that as their controlling terminal.
2110
2111An explicit redirection in @code{run} overrides the @code{tty} command's
2112effect on the input/output device, but not its effect on the controlling
2113terminal.
2114
2115When you use the @code{tty} command or redirect input in the @code{run}
2116command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2117for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2118for @code{set inferior-tty}.
2119
2120@cindex inferior tty
2121@cindex set inferior controlling terminal
2122You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2123display the name of the terminal that will be used for future runs of your
2124program.
2125
2126@table @code
2127@item set inferior-tty /dev/ttyb
2128@kindex set inferior-tty
2129Set the tty for the program being debugged to /dev/ttyb.
2130
2131@item show inferior-tty
2132@kindex show inferior-tty
2133Show the current tty for the program being debugged.
2134@end table
c906108c 2135
6d2ebf8b 2136@node Attach
79a6e687 2137@section Debugging an Already-running Process
c906108c
SS
2138@kindex attach
2139@cindex attach
2140
2141@table @code
2142@item attach @var{process-id}
2143This command attaches to a running process---one that was started
2144outside @value{GDBN}. (@code{info files} shows your active
2145targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2146find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2147or with the @samp{jobs -l} shell command.
2148
2149@code{attach} does not repeat if you press @key{RET} a second time after
2150executing the command.
2151@end table
2152
2153To use @code{attach}, your program must be running in an environment
2154which supports processes; for example, @code{attach} does not work for
2155programs on bare-board targets that lack an operating system. You must
2156also have permission to send the process a signal.
2157
2158When you use @code{attach}, the debugger finds the program running in
2159the process first by looking in the current working directory, then (if
2160the program is not found) by using the source file search path
79a6e687 2161(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2162the @code{file} command to load the program. @xref{Files, ,Commands to
2163Specify Files}.
2164
2165The first thing @value{GDBN} does after arranging to debug the specified
2166process is to stop it. You can examine and modify an attached process
53a5351d
JM
2167with all the @value{GDBN} commands that are ordinarily available when
2168you start processes with @code{run}. You can insert breakpoints; you
2169can step and continue; you can modify storage. If you would rather the
2170process continue running, you may use the @code{continue} command after
c906108c
SS
2171attaching @value{GDBN} to the process.
2172
2173@table @code
2174@kindex detach
2175@item detach
2176When you have finished debugging the attached process, you can use the
2177@code{detach} command to release it from @value{GDBN} control. Detaching
2178the process continues its execution. After the @code{detach} command,
2179that process and @value{GDBN} become completely independent once more, and you
2180are ready to @code{attach} another process or start one with @code{run}.
2181@code{detach} does not repeat if you press @key{RET} again after
2182executing the command.
2183@end table
2184
159fcc13
JK
2185If you exit @value{GDBN} while you have an attached process, you detach
2186that process. If you use the @code{run} command, you kill that process.
2187By default, @value{GDBN} asks for confirmation if you try to do either of these
2188things; you can control whether or not you need to confirm by using the
2189@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2190Messages}).
c906108c 2191
6d2ebf8b 2192@node Kill Process
79a6e687 2193@section Killing the Child Process
c906108c
SS
2194
2195@table @code
2196@kindex kill
2197@item kill
2198Kill the child process in which your program is running under @value{GDBN}.
2199@end table
2200
2201This command is useful if you wish to debug a core dump instead of a
2202running process. @value{GDBN} ignores any core dump file while your program
2203is running.
2204
2205On some operating systems, a program cannot be executed outside @value{GDBN}
2206while you have breakpoints set on it inside @value{GDBN}. You can use the
2207@code{kill} command in this situation to permit running your program
2208outside the debugger.
2209
2210The @code{kill} command is also useful if you wish to recompile and
2211relink your program, since on many systems it is impossible to modify an
2212executable file while it is running in a process. In this case, when you
2213next type @code{run}, @value{GDBN} notices that the file has changed, and
2214reads the symbol table again (while trying to preserve your current
2215breakpoint settings).
2216
6d2ebf8b 2217@node Threads
79a6e687 2218@section Debugging Programs with Multiple Threads
c906108c
SS
2219
2220@cindex threads of execution
2221@cindex multiple threads
2222@cindex switching threads
2223In some operating systems, such as HP-UX and Solaris, a single program
2224may have more than one @dfn{thread} of execution. The precise semantics
2225of threads differ from one operating system to another, but in general
2226the threads of a single program are akin to multiple processes---except
2227that they share one address space (that is, they can all examine and
2228modify the same variables). On the other hand, each thread has its own
2229registers and execution stack, and perhaps private memory.
2230
2231@value{GDBN} provides these facilities for debugging multi-thread
2232programs:
2233
2234@itemize @bullet
2235@item automatic notification of new threads
2236@item @samp{thread @var{threadno}}, a command to switch among threads
2237@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2238@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2239a command to apply a command to a list of threads
2240@item thread-specific breakpoints
2241@end itemize
2242
c906108c
SS
2243@quotation
2244@emph{Warning:} These facilities are not yet available on every
2245@value{GDBN} configuration where the operating system supports threads.
2246If your @value{GDBN} does not support threads, these commands have no
2247effect. For example, a system without thread support shows no output
2248from @samp{info threads}, and always rejects the @code{thread} command,
2249like this:
2250
2251@smallexample
2252(@value{GDBP}) info threads
2253(@value{GDBP}) thread 1
2254Thread ID 1 not known. Use the "info threads" command to
2255see the IDs of currently known threads.
2256@end smallexample
2257@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2258@c doesn't support threads"?
2259@end quotation
c906108c
SS
2260
2261@cindex focus of debugging
2262@cindex current thread
2263The @value{GDBN} thread debugging facility allows you to observe all
2264threads while your program runs---but whenever @value{GDBN} takes
2265control, one thread in particular is always the focus of debugging.
2266This thread is called the @dfn{current thread}. Debugging commands show
2267program information from the perspective of the current thread.
2268
41afff9a 2269@cindex @code{New} @var{systag} message
c906108c
SS
2270@cindex thread identifier (system)
2271@c FIXME-implementors!! It would be more helpful if the [New...] message
2272@c included GDB's numeric thread handle, so you could just go to that
2273@c thread without first checking `info threads'.
2274Whenever @value{GDBN} detects a new thread in your program, it displays
2275the target system's identification for the thread with a message in the
2276form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2277whose form varies depending on the particular system. For example, on
8807d78b 2278@sc{gnu}/Linux, you might see
c906108c 2279
474c8240 2280@smallexample
8807d78b 2281[New Thread 46912507313328 (LWP 25582)]
474c8240 2282@end smallexample
c906108c
SS
2283
2284@noindent
2285when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2286the @var{systag} is simply something like @samp{process 368}, with no
2287further qualifier.
2288
2289@c FIXME!! (1) Does the [New...] message appear even for the very first
2290@c thread of a program, or does it only appear for the
6ca652b0 2291@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2292@c program?
2293@c (2) *Is* there necessarily a first thread always? Or do some
2294@c multithread systems permit starting a program with multiple
5d161b24 2295@c threads ab initio?
c906108c
SS
2296
2297@cindex thread number
2298@cindex thread identifier (GDB)
2299For debugging purposes, @value{GDBN} associates its own thread
2300number---always a single integer---with each thread in your program.
2301
2302@table @code
2303@kindex info threads
2304@item info threads
2305Display a summary of all threads currently in your
2306program. @value{GDBN} displays for each thread (in this order):
2307
2308@enumerate
09d4efe1
EZ
2309@item
2310the thread number assigned by @value{GDBN}
c906108c 2311
09d4efe1
EZ
2312@item
2313the target system's thread identifier (@var{systag})
c906108c 2314
09d4efe1
EZ
2315@item
2316the current stack frame summary for that thread
c906108c
SS
2317@end enumerate
2318
2319@noindent
2320An asterisk @samp{*} to the left of the @value{GDBN} thread number
2321indicates the current thread.
2322
5d161b24 2323For example,
c906108c
SS
2324@end table
2325@c end table here to get a little more width for example
2326
2327@smallexample
2328(@value{GDBP}) info threads
2329 3 process 35 thread 27 0x34e5 in sigpause ()
2330 2 process 35 thread 23 0x34e5 in sigpause ()
2331* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2332 at threadtest.c:68
2333@end smallexample
53a5351d
JM
2334
2335On HP-UX systems:
c906108c 2336
4644b6e3
EZ
2337@cindex debugging multithreaded programs (on HP-UX)
2338@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2339For debugging purposes, @value{GDBN} associates its own thread
2340number---a small integer assigned in thread-creation order---with each
2341thread in your program.
2342
41afff9a
EZ
2343@cindex @code{New} @var{systag} message, on HP-UX
2344@cindex thread identifier (system), on HP-UX
c906108c
SS
2345@c FIXME-implementors!! It would be more helpful if the [New...] message
2346@c included GDB's numeric thread handle, so you could just go to that
2347@c thread without first checking `info threads'.
2348Whenever @value{GDBN} detects a new thread in your program, it displays
2349both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2350form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2351whose form varies depending on the particular system. For example, on
2352HP-UX, you see
2353
474c8240 2354@smallexample
c906108c 2355[New thread 2 (system thread 26594)]
474c8240 2356@end smallexample
c906108c
SS
2357
2358@noindent
5d161b24 2359when @value{GDBN} notices a new thread.
c906108c
SS
2360
2361@table @code
4644b6e3 2362@kindex info threads (HP-UX)
c906108c
SS
2363@item info threads
2364Display a summary of all threads currently in your
2365program. @value{GDBN} displays for each thread (in this order):
2366
2367@enumerate
2368@item the thread number assigned by @value{GDBN}
2369
2370@item the target system's thread identifier (@var{systag})
2371
2372@item the current stack frame summary for that thread
2373@end enumerate
2374
2375@noindent
2376An asterisk @samp{*} to the left of the @value{GDBN} thread number
2377indicates the current thread.
2378
5d161b24 2379For example,
c906108c
SS
2380@end table
2381@c end table here to get a little more width for example
2382
474c8240 2383@smallexample
c906108c 2384(@value{GDBP}) info threads
6d2ebf8b
SS
2385 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2386 at quicksort.c:137
2387 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2388 from /usr/lib/libc.2
2389 1 system thread 27905 0x7b003498 in _brk () \@*
2390 from /usr/lib/libc.2
474c8240 2391@end smallexample
c906108c 2392
c45da7e6
EZ
2393On Solaris, you can display more information about user threads with a
2394Solaris-specific command:
2395
2396@table @code
2397@item maint info sol-threads
2398@kindex maint info sol-threads
2399@cindex thread info (Solaris)
2400Display info on Solaris user threads.
2401@end table
2402
c906108c
SS
2403@table @code
2404@kindex thread @var{threadno}
2405@item thread @var{threadno}
2406Make thread number @var{threadno} the current thread. The command
2407argument @var{threadno} is the internal @value{GDBN} thread number, as
2408shown in the first field of the @samp{info threads} display.
2409@value{GDBN} responds by displaying the system identifier of the thread
2410you selected, and its current stack frame summary:
2411
2412@smallexample
2413@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2414(@value{GDBP}) thread 2
c906108c 2415[Switching to process 35 thread 23]
c906108c
SS
24160x34e5 in sigpause ()
2417@end smallexample
2418
2419@noindent
2420As with the @samp{[New @dots{}]} message, the form of the text after
2421@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2422threads.
c906108c 2423
9c16f35a 2424@kindex thread apply
638ac427 2425@cindex apply command to several threads
839c27b7
EZ
2426@item thread apply [@var{threadno}] [@var{all}] @var{command}
2427The @code{thread apply} command allows you to apply the named
2428@var{command} to one or more threads. Specify the numbers of the
2429threads that you want affected with the command argument
2430@var{threadno}. It can be a single thread number, one of the numbers
2431shown in the first field of the @samp{info threads} display; or it
2432could be a range of thread numbers, as in @code{2-4}. To apply a
2433command to all threads, type @kbd{thread apply all @var{command}}.
c906108c
SS
2434@end table
2435
2436@cindex automatic thread selection
2437@cindex switching threads automatically
2438@cindex threads, automatic switching
2439Whenever @value{GDBN} stops your program, due to a breakpoint or a
2440signal, it automatically selects the thread where that breakpoint or
2441signal happened. @value{GDBN} alerts you to the context switch with a
2442message of the form @samp{[Switching to @var{systag}]} to identify the
2443thread.
2444
79a6e687 2445@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2446more information about how @value{GDBN} behaves when you stop and start
2447programs with multiple threads.
2448
79a6e687 2449@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2450watchpoints in programs with multiple threads.
c906108c 2451
6d2ebf8b 2452@node Processes
79a6e687 2453@section Debugging Programs with Multiple Processes
c906108c
SS
2454
2455@cindex fork, debugging programs which call
2456@cindex multiple processes
2457@cindex processes, multiple
53a5351d
JM
2458On most systems, @value{GDBN} has no special support for debugging
2459programs which create additional processes using the @code{fork}
2460function. When a program forks, @value{GDBN} will continue to debug the
2461parent process and the child process will run unimpeded. If you have
2462set a breakpoint in any code which the child then executes, the child
2463will get a @code{SIGTRAP} signal which (unless it catches the signal)
2464will cause it to terminate.
c906108c
SS
2465
2466However, if you want to debug the child process there is a workaround
2467which isn't too painful. Put a call to @code{sleep} in the code which
2468the child process executes after the fork. It may be useful to sleep
2469only if a certain environment variable is set, or a certain file exists,
2470so that the delay need not occur when you don't want to run @value{GDBN}
2471on the child. While the child is sleeping, use the @code{ps} program to
2472get its process ID. Then tell @value{GDBN} (a new invocation of
2473@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2474the child process (@pxref{Attach}). From that point on you can debug
c906108c 2475the child process just like any other process which you attached to.
c906108c 2476
b51970ac
DJ
2477On some systems, @value{GDBN} provides support for debugging programs that
2478create additional processes using the @code{fork} or @code{vfork} functions.
2479Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2480only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2481
2482By default, when a program forks, @value{GDBN} will continue to debug
2483the parent process and the child process will run unimpeded.
2484
2485If you want to follow the child process instead of the parent process,
2486use the command @w{@code{set follow-fork-mode}}.
2487
2488@table @code
2489@kindex set follow-fork-mode
2490@item set follow-fork-mode @var{mode}
2491Set the debugger response to a program call of @code{fork} or
2492@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2493process. The @var{mode} argument can be:
c906108c
SS
2494
2495@table @code
2496@item parent
2497The original process is debugged after a fork. The child process runs
2df3850c 2498unimpeded. This is the default.
c906108c
SS
2499
2500@item child
2501The new process is debugged after a fork. The parent process runs
2502unimpeded.
2503
c906108c
SS
2504@end table
2505
9c16f35a 2506@kindex show follow-fork-mode
c906108c 2507@item show follow-fork-mode
2df3850c 2508Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2509@end table
2510
5c95884b
MS
2511@cindex debugging multiple processes
2512On Linux, if you want to debug both the parent and child processes, use the
2513command @w{@code{set detach-on-fork}}.
2514
2515@table @code
2516@kindex set detach-on-fork
2517@item set detach-on-fork @var{mode}
2518Tells gdb whether to detach one of the processes after a fork, or
2519retain debugger control over them both.
2520
2521@table @code
2522@item on
2523The child process (or parent process, depending on the value of
2524@code{follow-fork-mode}) will be detached and allowed to run
2525independently. This is the default.
2526
2527@item off
2528Both processes will be held under the control of @value{GDBN}.
2529One process (child or parent, depending on the value of
2530@code{follow-fork-mode}) is debugged as usual, while the other
2531is held suspended.
2532
2533@end table
2534
2535@kindex show detach-on-follow
2536@item show detach-on-follow
2537Show whether detach-on-follow mode is on/off.
2538@end table
2539
2540If you choose to set @var{detach-on-follow} mode off, then
2541@value{GDBN} will retain control of all forked processes (including
2542nested forks). You can list the forked processes under the control of
2543@value{GDBN} by using the @w{@code{info forks}} command, and switch
2544from one fork to another by using the @w{@code{fork}} command.
2545
2546@table @code
2547@kindex info forks
2548@item info forks
2549Print a list of all forked processes under the control of @value{GDBN}.
2550The listing will include a fork id, a process id, and the current
2551position (program counter) of the process.
2552
2553
2554@kindex fork @var{fork-id}
2555@item fork @var{fork-id}
2556Make fork number @var{fork-id} the current process. The argument
2557@var{fork-id} is the internal fork number assigned by @value{GDBN},
2558as shown in the first field of the @samp{info forks} display.
2559
2560@end table
2561
2562To quit debugging one of the forked processes, you can either detach
f73adfeb 2563from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2564run independently), or delete (and kill) it using the
b8db102d 2565@w{@code{delete fork}} command.
5c95884b
MS
2566
2567@table @code
f73adfeb
AS
2568@kindex detach fork @var{fork-id}
2569@item detach fork @var{fork-id}
5c95884b
MS
2570Detach from the process identified by @value{GDBN} fork number
2571@var{fork-id}, and remove it from the fork list. The process will be
2572allowed to run independently.
2573
b8db102d
MS
2574@kindex delete fork @var{fork-id}
2575@item delete fork @var{fork-id}
5c95884b
MS
2576Kill the process identified by @value{GDBN} fork number @var{fork-id},
2577and remove it from the fork list.
2578
2579@end table
2580
c906108c
SS
2581If you ask to debug a child process and a @code{vfork} is followed by an
2582@code{exec}, @value{GDBN} executes the new target up to the first
2583breakpoint in the new target. If you have a breakpoint set on
2584@code{main} in your original program, the breakpoint will also be set on
2585the child process's @code{main}.
2586
2587When a child process is spawned by @code{vfork}, you cannot debug the
2588child or parent until an @code{exec} call completes.
2589
2590If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2591call executes, the new target restarts. To restart the parent process,
2592use the @code{file} command with the parent executable name as its
2593argument.
2594
2595You can use the @code{catch} command to make @value{GDBN} stop whenever
2596a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2597Catchpoints, ,Setting Catchpoints}.
c906108c 2598
5c95884b 2599@node Checkpoint/Restart
79a6e687 2600@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2601
2602@cindex checkpoint
2603@cindex restart
2604@cindex bookmark
2605@cindex snapshot of a process
2606@cindex rewind program state
2607
2608On certain operating systems@footnote{Currently, only
2609@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2610program's state, called a @dfn{checkpoint}, and come back to it
2611later.
2612
2613Returning to a checkpoint effectively undoes everything that has
2614happened in the program since the @code{checkpoint} was saved. This
2615includes changes in memory, registers, and even (within some limits)
2616system state. Effectively, it is like going back in time to the
2617moment when the checkpoint was saved.
2618
2619Thus, if you're stepping thru a program and you think you're
2620getting close to the point where things go wrong, you can save
2621a checkpoint. Then, if you accidentally go too far and miss
2622the critical statement, instead of having to restart your program
2623from the beginning, you can just go back to the checkpoint and
2624start again from there.
2625
2626This can be especially useful if it takes a lot of time or
2627steps to reach the point where you think the bug occurs.
2628
2629To use the @code{checkpoint}/@code{restart} method of debugging:
2630
2631@table @code
2632@kindex checkpoint
2633@item checkpoint
2634Save a snapshot of the debugged program's current execution state.
2635The @code{checkpoint} command takes no arguments, but each checkpoint
2636is assigned a small integer id, similar to a breakpoint id.
2637
2638@kindex info checkpoints
2639@item info checkpoints
2640List the checkpoints that have been saved in the current debugging
2641session. For each checkpoint, the following information will be
2642listed:
2643
2644@table @code
2645@item Checkpoint ID
2646@item Process ID
2647@item Code Address
2648@item Source line, or label
2649@end table
2650
2651@kindex restart @var{checkpoint-id}
2652@item restart @var{checkpoint-id}
2653Restore the program state that was saved as checkpoint number
2654@var{checkpoint-id}. All program variables, registers, stack frames
2655etc.@: will be returned to the values that they had when the checkpoint
2656was saved. In essence, gdb will ``wind back the clock'' to the point
2657in time when the checkpoint was saved.
2658
2659Note that breakpoints, @value{GDBN} variables, command history etc.
2660are not affected by restoring a checkpoint. In general, a checkpoint
2661only restores things that reside in the program being debugged, not in
2662the debugger.
2663
b8db102d
MS
2664@kindex delete checkpoint @var{checkpoint-id}
2665@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2666Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2667
2668@end table
2669
2670Returning to a previously saved checkpoint will restore the user state
2671of the program being debugged, plus a significant subset of the system
2672(OS) state, including file pointers. It won't ``un-write'' data from
2673a file, but it will rewind the file pointer to the previous location,
2674so that the previously written data can be overwritten. For files
2675opened in read mode, the pointer will also be restored so that the
2676previously read data can be read again.
2677
2678Of course, characters that have been sent to a printer (or other
2679external device) cannot be ``snatched back'', and characters received
2680from eg.@: a serial device can be removed from internal program buffers,
2681but they cannot be ``pushed back'' into the serial pipeline, ready to
2682be received again. Similarly, the actual contents of files that have
2683been changed cannot be restored (at this time).
2684
2685However, within those constraints, you actually can ``rewind'' your
2686program to a previously saved point in time, and begin debugging it
2687again --- and you can change the course of events so as to debug a
2688different execution path this time.
2689
2690@cindex checkpoints and process id
2691Finally, there is one bit of internal program state that will be
2692different when you return to a checkpoint --- the program's process
2693id. Each checkpoint will have a unique process id (or @var{pid}),
2694and each will be different from the program's original @var{pid}.
2695If your program has saved a local copy of its process id, this could
2696potentially pose a problem.
2697
79a6e687 2698@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2699
2700On some systems such as @sc{gnu}/Linux, address space randomization
2701is performed on new processes for security reasons. This makes it
2702difficult or impossible to set a breakpoint, or watchpoint, on an
2703absolute address if you have to restart the program, since the
2704absolute location of a symbol will change from one execution to the
2705next.
2706
2707A checkpoint, however, is an @emph{identical} copy of a process.
2708Therefore if you create a checkpoint at (eg.@:) the start of main,
2709and simply return to that checkpoint instead of restarting the
2710process, you can avoid the effects of address randomization and
2711your symbols will all stay in the same place.
2712
6d2ebf8b 2713@node Stopping
c906108c
SS
2714@chapter Stopping and Continuing
2715
2716The principal purposes of using a debugger are so that you can stop your
2717program before it terminates; or so that, if your program runs into
2718trouble, you can investigate and find out why.
2719
7a292a7a
SS
2720Inside @value{GDBN}, your program may stop for any of several reasons,
2721such as a signal, a breakpoint, or reaching a new line after a
2722@value{GDBN} command such as @code{step}. You may then examine and
2723change variables, set new breakpoints or remove old ones, and then
2724continue execution. Usually, the messages shown by @value{GDBN} provide
2725ample explanation of the status of your program---but you can also
2726explicitly request this information at any time.
c906108c
SS
2727
2728@table @code
2729@kindex info program
2730@item info program
2731Display information about the status of your program: whether it is
7a292a7a 2732running or not, what process it is, and why it stopped.
c906108c
SS
2733@end table
2734
2735@menu
2736* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2737* Continuing and Stepping:: Resuming execution
c906108c 2738* Signals:: Signals
c906108c 2739* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2740@end menu
2741
6d2ebf8b 2742@node Breakpoints
79a6e687 2743@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2744
2745@cindex breakpoints
2746A @dfn{breakpoint} makes your program stop whenever a certain point in
2747the program is reached. For each breakpoint, you can add conditions to
2748control in finer detail whether your program stops. You can set
2749breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2750Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2751should stop by line number, function name or exact address in the
2752program.
2753
09d4efe1
EZ
2754On some systems, you can set breakpoints in shared libraries before
2755the executable is run. There is a minor limitation on HP-UX systems:
2756you must wait until the executable is run in order to set breakpoints
2757in shared library routines that are not called directly by the program
2758(for example, routines that are arguments in a @code{pthread_create}
2759call).
c906108c
SS
2760
2761@cindex watchpoints
fd60e0df 2762@cindex data breakpoints
c906108c
SS
2763@cindex memory tracing
2764@cindex breakpoint on memory address
2765@cindex breakpoint on variable modification
2766A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2767when the value of an expression changes. The expression may be a value
0ced0c34 2768of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2769combined by operators, such as @samp{a + b}. This is sometimes called
2770@dfn{data breakpoints}. You must use a different command to set
79a6e687 2771watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2772from that, you can manage a watchpoint like any other breakpoint: you
2773enable, disable, and delete both breakpoints and watchpoints using the
2774same commands.
c906108c
SS
2775
2776You can arrange to have values from your program displayed automatically
2777whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2778Automatic Display}.
c906108c
SS
2779
2780@cindex catchpoints
2781@cindex breakpoint on events
2782A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2783when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2784exception or the loading of a library. As with watchpoints, you use a
2785different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2786Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2787other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2788@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2789
2790@cindex breakpoint numbers
2791@cindex numbers for breakpoints
2792@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2793catchpoint when you create it; these numbers are successive integers
2794starting with one. In many of the commands for controlling various
2795features of breakpoints you use the breakpoint number to say which
2796breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2797@dfn{disabled}; if disabled, it has no effect on your program until you
2798enable it again.
2799
c5394b80
JM
2800@cindex breakpoint ranges
2801@cindex ranges of breakpoints
2802Some @value{GDBN} commands accept a range of breakpoints on which to
2803operate. A breakpoint range is either a single breakpoint number, like
2804@samp{5}, or two such numbers, in increasing order, separated by a
2805hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2806all breakpoints in that range are operated on.
c5394b80 2807
c906108c
SS
2808@menu
2809* Set Breaks:: Setting breakpoints
2810* Set Watchpoints:: Setting watchpoints
2811* Set Catchpoints:: Setting catchpoints
2812* Delete Breaks:: Deleting breakpoints
2813* Disabling:: Disabling breakpoints
2814* Conditions:: Break conditions
2815* Break Commands:: Breakpoint command lists
c906108c 2816* Breakpoint Menus:: Breakpoint menus
d4f3574e 2817* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2818* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2819@end menu
2820
6d2ebf8b 2821@node Set Breaks
79a6e687 2822@subsection Setting Breakpoints
c906108c 2823
5d161b24 2824@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2825@c consider in particular declaration with/without initialization.
2826@c
2827@c FIXME 2 is there stuff on this already? break at fun start, already init?
2828
2829@kindex break
41afff9a
EZ
2830@kindex b @r{(@code{break})}
2831@vindex $bpnum@r{, convenience variable}
c906108c
SS
2832@cindex latest breakpoint
2833Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2834@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2835number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2836Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2837convenience variables.
2838
c906108c 2839@table @code
2a25a5ba
EZ
2840@item break @var{location}
2841Set a breakpoint at the given @var{location}, which can specify a
2842function name, a line number, or an address of an instruction.
2843(@xref{Specify Location}, for a list of all the possible ways to
2844specify a @var{location}.) The breakpoint will stop your program just
2845before it executes any of the code in the specified @var{location}.
2846
c906108c 2847When using source languages that permit overloading of symbols, such as
2a25a5ba 2848C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2849@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2850
c906108c
SS
2851@item break
2852When called without any arguments, @code{break} sets a breakpoint at
2853the next instruction to be executed in the selected stack frame
2854(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2855innermost, this makes your program stop as soon as control
2856returns to that frame. This is similar to the effect of a
2857@code{finish} command in the frame inside the selected frame---except
2858that @code{finish} does not leave an active breakpoint. If you use
2859@code{break} without an argument in the innermost frame, @value{GDBN} stops
2860the next time it reaches the current location; this may be useful
2861inside loops.
2862
2863@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2864least one instruction has been executed. If it did not do this, you
2865would be unable to proceed past a breakpoint without first disabling the
2866breakpoint. This rule applies whether or not the breakpoint already
2867existed when your program stopped.
2868
2869@item break @dots{} if @var{cond}
2870Set a breakpoint with condition @var{cond}; evaluate the expression
2871@var{cond} each time the breakpoint is reached, and stop only if the
2872value is nonzero---that is, if @var{cond} evaluates as true.
2873@samp{@dots{}} stands for one of the possible arguments described
2874above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2875,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2876
2877@kindex tbreak
2878@item tbreak @var{args}
2879Set a breakpoint enabled only for one stop. @var{args} are the
2880same as for the @code{break} command, and the breakpoint is set in the same
2881way, but the breakpoint is automatically deleted after the first time your
79a6e687 2882program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2883
c906108c 2884@kindex hbreak
ba04e063 2885@cindex hardware breakpoints
c906108c 2886@item hbreak @var{args}
d4f3574e
SS
2887Set a hardware-assisted breakpoint. @var{args} are the same as for the
2888@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2889breakpoint requires hardware support and some target hardware may not
2890have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2891debugging, so you can set a breakpoint at an instruction without
2892changing the instruction. This can be used with the new trap-generation
09d4efe1 2893provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2894will generate traps when a program accesses some data or instruction
2895address that is assigned to the debug registers. However the hardware
2896breakpoint registers can take a limited number of breakpoints. For
2897example, on the DSU, only two data breakpoints can be set at a time, and
2898@value{GDBN} will reject this command if more than two are used. Delete
2899or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2900(@pxref{Disabling, ,Disabling Breakpoints}).
2901@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2902For remote targets, you can restrict the number of hardware
2903breakpoints @value{GDBN} will use, see @ref{set remote
2904hardware-breakpoint-limit}.
501eef12 2905
c906108c
SS
2906@kindex thbreak
2907@item thbreak @var{args}
2908Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2909are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2910the same way. However, like the @code{tbreak} command,
c906108c
SS
2911the breakpoint is automatically deleted after the
2912first time your program stops there. Also, like the @code{hbreak}
5d161b24 2913command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2914may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2915See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2916
2917@kindex rbreak
2918@cindex regular expression
c45da7e6
EZ
2919@cindex breakpoints in functions matching a regexp
2920@cindex set breakpoints in many functions
c906108c 2921@item rbreak @var{regex}
c906108c 2922Set breakpoints on all functions matching the regular expression
11cf8741
JM
2923@var{regex}. This command sets an unconditional breakpoint on all
2924matches, printing a list of all breakpoints it set. Once these
2925breakpoints are set, they are treated just like the breakpoints set with
2926the @code{break} command. You can delete them, disable them, or make
2927them conditional the same way as any other breakpoint.
2928
2929The syntax of the regular expression is the standard one used with tools
2930like @file{grep}. Note that this is different from the syntax used by
2931shells, so for instance @code{foo*} matches all functions that include
2932an @code{fo} followed by zero or more @code{o}s. There is an implicit
2933@code{.*} leading and trailing the regular expression you supply, so to
2934match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2935
f7dc1244 2936@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2937When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2938breakpoints on overloaded functions that are not members of any special
2939classes.
c906108c 2940
f7dc1244
EZ
2941@cindex set breakpoints on all functions
2942The @code{rbreak} command can be used to set breakpoints in
2943@strong{all} the functions in a program, like this:
2944
2945@smallexample
2946(@value{GDBP}) rbreak .
2947@end smallexample
2948
c906108c
SS
2949@kindex info breakpoints
2950@cindex @code{$_} and @code{info breakpoints}
2951@item info breakpoints @r{[}@var{n}@r{]}
2952@itemx info break @r{[}@var{n}@r{]}
2953@itemx info watchpoints @r{[}@var{n}@r{]}
2954Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2955not deleted. Optional argument @var{n} means print information only
2956about the specified breakpoint (or watchpoint or catchpoint). For
2957each breakpoint, following columns are printed:
c906108c
SS
2958
2959@table @emph
2960@item Breakpoint Numbers
2961@item Type
2962Breakpoint, watchpoint, or catchpoint.
2963@item Disposition
2964Whether the breakpoint is marked to be disabled or deleted when hit.
2965@item Enabled or Disabled
2966Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
fe6fbf8b 2967that are not enabled. An optional @samp{(p)} suffix marks pending
3b784c4f 2968breakpoints---breakpoints for which address is either not yet
fe6fbf8b
VP
2969resolved, pending load of a shared library, or for which address was
2970in a shared library that was since unloaded. Such breakpoint won't
2971fire until a shared library that has the symbol or line referred by
2972breakpoint is loaded. See below for details.
c906108c 2973@item Address
fe6fbf8b
VP
2974Where the breakpoint is in your program, as a memory address. For a
2975pending breakpoint whose address is not yet known, this field will
2976contain @samp{<PENDING>}. A breakpoint with several locations will
3b784c4f 2977have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
2978@item What
2979Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
2980line number. For a pending breakpoint, the original string passed to
2981the breakpoint command will be listed as it cannot be resolved until
2982the appropriate shared library is loaded in the future.
c906108c
SS
2983@end table
2984
2985@noindent
2986If a breakpoint is conditional, @code{info break} shows the condition on
2987the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
2988are listed after that. A pending breakpoint is allowed to have a condition
2989specified for it. The condition is not parsed for validity until a shared
2990library is loaded that allows the pending breakpoint to resolve to a
2991valid location.
c906108c
SS
2992
2993@noindent
2994@code{info break} with a breakpoint
2995number @var{n} as argument lists only that breakpoint. The
2996convenience variable @code{$_} and the default examining-address for
2997the @code{x} command are set to the address of the last breakpoint
79a6e687 2998listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
2999
3000@noindent
3001@code{info break} displays a count of the number of times the breakpoint
3002has been hit. This is especially useful in conjunction with the
3003@code{ignore} command. You can ignore a large number of breakpoint
3004hits, look at the breakpoint info to see how many times the breakpoint
3005was hit, and then run again, ignoring one less than that number. This
3006will get you quickly to the last hit of that breakpoint.
3007@end table
3008
3009@value{GDBN} allows you to set any number of breakpoints at the same place in
3010your program. There is nothing silly or meaningless about this. When
3011the breakpoints are conditional, this is even useful
79a6e687 3012(@pxref{Conditions, ,Break Conditions}).
c906108c 3013
fcda367b 3014It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3015in your program. Examples of this situation are:
3016
3017@itemize @bullet
3018
3019@item
3020For a C@t{++} constructor, the @value{NGCC} compiler generates several
3021instances of the function body, used in different cases.
3022
3023@item
3024For a C@t{++} template function, a given line in the function can
3025correspond to any number of instantiations.
3026
3027@item
3028For an inlined function, a given source line can correspond to
3029several places where that function is inlined.
3030
3031@end itemize
3032
3033In all those cases, @value{GDBN} will insert a breakpoint at all
3034the relevant locations.
3035
3b784c4f
EZ
3036A breakpoint with multiple locations is displayed in the breakpoint
3037table using several rows---one header row, followed by one row for
3038each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3039address column. The rows for individual locations contain the actual
3040addresses for locations, and show the functions to which those
3041locations belong. The number column for a location is of the form
fe6fbf8b
VP
3042@var{breakpoint-number}.@var{location-number}.
3043
3044For example:
3b784c4f 3045
fe6fbf8b
VP
3046@smallexample
3047Num Type Disp Enb Address What
30481 breakpoint keep y <MULTIPLE>
3049 stop only if i==1
3050 breakpoint already hit 1 time
30511.1 y 0x080486a2 in void foo<int>() at t.cc:8
30521.2 y 0x080486ca in void foo<double>() at t.cc:8
3053@end smallexample
3054
3055Each location can be individually enabled or disabled by passing
3056@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3057@code{enable} and @code{disable} commands. Note that you cannot
3058delete the individual locations from the list, you can only delete the
16bfc218 3059entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3060the @kbd{delete @var{num}} command, where @var{num} is the number of
3061the parent breakpoint, 1 in the above example). Disabling or enabling
3062the parent breakpoint (@pxref{Disabling}) affects all of the locations
3063that belong to that breakpoint.
fe6fbf8b 3064
2650777c 3065@cindex pending breakpoints
fe6fbf8b 3066It's quite common to have a breakpoint inside a shared library.
3b784c4f 3067Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3068and possibly repeatedly, as the program is executed. To support
3069this use case, @value{GDBN} updates breakpoint locations whenever
3070any shared library is loaded or unloaded. Typically, you would
fcda367b 3071set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3072debugging session, when the library is not loaded, and when the
3073symbols from the library are not available. When you try to set
3074breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3075a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3076is not yet resolved.
3077
3078After the program is run, whenever a new shared library is loaded,
3079@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3080shared library contains the symbol or line referred to by some
3081pending breakpoint, that breakpoint is resolved and becomes an
3082ordinary breakpoint. When a library is unloaded, all breakpoints
3083that refer to its symbols or source lines become pending again.
3084
3085This logic works for breakpoints with multiple locations, too. For
3086example, if you have a breakpoint in a C@t{++} template function, and
3087a newly loaded shared library has an instantiation of that template,
3088a new location is added to the list of locations for the breakpoint.
3089
3090Except for having unresolved address, pending breakpoints do not
3091differ from regular breakpoints. You can set conditions or commands,
3092enable and disable them and perform other breakpoint operations.
3093
3094@value{GDBN} provides some additional commands for controlling what
3095happens when the @samp{break} command cannot resolve breakpoint
3096address specification to an address:
dd79a6cf
JJ
3097
3098@kindex set breakpoint pending
3099@kindex show breakpoint pending
3100@table @code
3101@item set breakpoint pending auto
3102This is the default behavior. When @value{GDBN} cannot find the breakpoint
3103location, it queries you whether a pending breakpoint should be created.
3104
3105@item set breakpoint pending on
3106This indicates that an unrecognized breakpoint location should automatically
3107result in a pending breakpoint being created.
3108
3109@item set breakpoint pending off
3110This indicates that pending breakpoints are not to be created. Any
3111unrecognized breakpoint location results in an error. This setting does
3112not affect any pending breakpoints previously created.
3113
3114@item show breakpoint pending
3115Show the current behavior setting for creating pending breakpoints.
3116@end table
2650777c 3117
fe6fbf8b
VP
3118The settings above only affect the @code{break} command and its
3119variants. Once breakpoint is set, it will be automatically updated
3120as shared libraries are loaded and unloaded.
2650777c 3121
765dc015
VP
3122@cindex automatic hardware breakpoints
3123For some targets, @value{GDBN} can automatically decide if hardware or
3124software breakpoints should be used, depending on whether the
3125breakpoint address is read-only or read-write. This applies to
3126breakpoints set with the @code{break} command as well as to internal
3127breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3128breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3129breakpoints.
3130
3131You can control this automatic behaviour with the following commands::
3132
3133@kindex set breakpoint auto-hw
3134@kindex show breakpoint auto-hw
3135@table @code
3136@item set breakpoint auto-hw on
3137This is the default behavior. When @value{GDBN} sets a breakpoint, it
3138will try to use the target memory map to decide if software or hardware
3139breakpoint must be used.
3140
3141@item set breakpoint auto-hw off
3142This indicates @value{GDBN} should not automatically select breakpoint
3143type. If the target provides a memory map, @value{GDBN} will warn when
3144trying to set software breakpoint at a read-only address.
3145@end table
3146
3147
c906108c
SS
3148@cindex negative breakpoint numbers
3149@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3150@value{GDBN} itself sometimes sets breakpoints in your program for
3151special purposes, such as proper handling of @code{longjmp} (in C
3152programs). These internal breakpoints are assigned negative numbers,
3153starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3154You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3155@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3156
3157
6d2ebf8b 3158@node Set Watchpoints
79a6e687 3159@subsection Setting Watchpoints
c906108c
SS
3160
3161@cindex setting watchpoints
c906108c
SS
3162You can use a watchpoint to stop execution whenever the value of an
3163expression changes, without having to predict a particular place where
fd60e0df
EZ
3164this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3165The expression may be as simple as the value of a single variable, or
3166as complex as many variables combined by operators. Examples include:
3167
3168@itemize @bullet
3169@item
3170A reference to the value of a single variable.
3171
3172@item
3173An address cast to an appropriate data type. For example,
3174@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3175address (assuming an @code{int} occupies 4 bytes).
3176
3177@item
3178An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3179expression can use any operators valid in the program's native
3180language (@pxref{Languages}).
3181@end itemize
c906108c 3182
82f2d802
EZ
3183@cindex software watchpoints
3184@cindex hardware watchpoints
c906108c 3185Depending on your system, watchpoints may be implemented in software or
2df3850c 3186hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3187program and testing the variable's value each time, which is hundreds of
3188times slower than normal execution. (But this may still be worth it, to
3189catch errors where you have no clue what part of your program is the
3190culprit.)
3191
37e4754d 3192On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3193x86-based targets, @value{GDBN} includes support for hardware
3194watchpoints, which do not slow down the running of your program.
c906108c
SS
3195
3196@table @code
3197@kindex watch
d8b2a693 3198@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3199Set a watchpoint for an expression. @value{GDBN} will break when the
3200expression @var{expr} is written into by the program and its value
3201changes. The simplest (and the most popular) use of this command is
3202to watch the value of a single variable:
3203
3204@smallexample
3205(@value{GDBP}) watch foo
3206@end smallexample
c906108c 3207
d8b2a693
JB
3208If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3209clause, @value{GDBN} breaks only when the thread identified by
3210@var{threadnum} changes the value of @var{expr}. If any other threads
3211change the value of @var{expr}, @value{GDBN} will not break. Note
3212that watchpoints restricted to a single thread in this way only work
3213with Hardware Watchpoints.
3214
c906108c 3215@kindex rwatch
d8b2a693 3216@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3217Set a watchpoint that will break when the value of @var{expr} is read
3218by the program.
c906108c
SS
3219
3220@kindex awatch
d8b2a693 3221@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3222Set a watchpoint that will break when @var{expr} is either read from
3223or written into by the program.
c906108c 3224
45ac1734 3225@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3226@item info watchpoints
3227This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3228it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3229@end table
3230
3231@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3232watchpoints execute very quickly, and the debugger reports a change in
3233value at the exact instruction where the change occurs. If @value{GDBN}
3234cannot set a hardware watchpoint, it sets a software watchpoint, which
3235executes more slowly and reports the change in value at the next
82f2d802
EZ
3236@emph{statement}, not the instruction, after the change occurs.
3237
82f2d802
EZ
3238@cindex use only software watchpoints
3239You can force @value{GDBN} to use only software watchpoints with the
3240@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3241zero, @value{GDBN} will never try to use hardware watchpoints, even if
3242the underlying system supports them. (Note that hardware-assisted
3243watchpoints that were set @emph{before} setting
3244@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3245mechanism of watching expression values.)
c906108c 3246
9c16f35a
EZ
3247@table @code
3248@item set can-use-hw-watchpoints
3249@kindex set can-use-hw-watchpoints
3250Set whether or not to use hardware watchpoints.
3251
3252@item show can-use-hw-watchpoints
3253@kindex show can-use-hw-watchpoints
3254Show the current mode of using hardware watchpoints.
3255@end table
3256
3257For remote targets, you can restrict the number of hardware
3258watchpoints @value{GDBN} will use, see @ref{set remote
3259hardware-breakpoint-limit}.
3260
c906108c
SS
3261When you issue the @code{watch} command, @value{GDBN} reports
3262
474c8240 3263@smallexample
c906108c 3264Hardware watchpoint @var{num}: @var{expr}
474c8240 3265@end smallexample
c906108c
SS
3266
3267@noindent
3268if it was able to set a hardware watchpoint.
3269
7be570e7
JM
3270Currently, the @code{awatch} and @code{rwatch} commands can only set
3271hardware watchpoints, because accesses to data that don't change the
3272value of the watched expression cannot be detected without examining
3273every instruction as it is being executed, and @value{GDBN} does not do
3274that currently. If @value{GDBN} finds that it is unable to set a
3275hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3276will print a message like this:
3277
3278@smallexample
3279Expression cannot be implemented with read/access watchpoint.
3280@end smallexample
3281
3282Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3283data type of the watched expression is wider than what a hardware
3284watchpoint on the target machine can handle. For example, some systems
3285can only watch regions that are up to 4 bytes wide; on such systems you
3286cannot set hardware watchpoints for an expression that yields a
3287double-precision floating-point number (which is typically 8 bytes
3288wide). As a work-around, it might be possible to break the large region
3289into a series of smaller ones and watch them with separate watchpoints.
3290
3291If you set too many hardware watchpoints, @value{GDBN} might be unable
3292to insert all of them when you resume the execution of your program.
3293Since the precise number of active watchpoints is unknown until such
3294time as the program is about to be resumed, @value{GDBN} might not be
3295able to warn you about this when you set the watchpoints, and the
3296warning will be printed only when the program is resumed:
3297
3298@smallexample
3299Hardware watchpoint @var{num}: Could not insert watchpoint
3300@end smallexample
3301
3302@noindent
3303If this happens, delete or disable some of the watchpoints.
3304
fd60e0df
EZ
3305Watching complex expressions that reference many variables can also
3306exhaust the resources available for hardware-assisted watchpoints.
3307That's because @value{GDBN} needs to watch every variable in the
3308expression with separately allocated resources.
3309
7be570e7
JM
3310The SPARClite DSU will generate traps when a program accesses some data
3311or instruction address that is assigned to the debug registers. For the
3312data addresses, DSU facilitates the @code{watch} command. However the
3313hardware breakpoint registers can only take two data watchpoints, and
3314both watchpoints must be the same kind. For example, you can set two
3315watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3316@strong{or} two with @code{awatch} commands, but you cannot set one
3317watchpoint with one command and the other with a different command.
c906108c
SS
3318@value{GDBN} will reject the command if you try to mix watchpoints.
3319Delete or disable unused watchpoint commands before setting new ones.
3320
3321If you call a function interactively using @code{print} or @code{call},
2df3850c 3322any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3323kind of breakpoint or the call completes.
3324
7be570e7
JM
3325@value{GDBN} automatically deletes watchpoints that watch local
3326(automatic) variables, or expressions that involve such variables, when
3327they go out of scope, that is, when the execution leaves the block in
3328which these variables were defined. In particular, when the program
3329being debugged terminates, @emph{all} local variables go out of scope,
3330and so only watchpoints that watch global variables remain set. If you
3331rerun the program, you will need to set all such watchpoints again. One
3332way of doing that would be to set a code breakpoint at the entry to the
3333@code{main} function and when it breaks, set all the watchpoints.
3334
c906108c
SS
3335@cindex watchpoints and threads
3336@cindex threads and watchpoints
d983da9c
DJ
3337In multi-threaded programs, watchpoints will detect changes to the
3338watched expression from every thread.
3339
3340@quotation
3341@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3342have only limited usefulness. If @value{GDBN} creates a software
3343watchpoint, it can only watch the value of an expression @emph{in a
3344single thread}. If you are confident that the expression can only
3345change due to the current thread's activity (and if you are also
3346confident that no other thread can become current), then you can use
3347software watchpoints as usual. However, @value{GDBN} may not notice
3348when a non-current thread's activity changes the expression. (Hardware
3349watchpoints, in contrast, watch an expression in all threads.)
c906108c 3350@end quotation
c906108c 3351
501eef12
AC
3352@xref{set remote hardware-watchpoint-limit}.
3353
6d2ebf8b 3354@node Set Catchpoints
79a6e687 3355@subsection Setting Catchpoints
d4f3574e 3356@cindex catchpoints, setting
c906108c
SS
3357@cindex exception handlers
3358@cindex event handling
3359
3360You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3361kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3362shared library. Use the @code{catch} command to set a catchpoint.
3363
3364@table @code
3365@kindex catch
3366@item catch @var{event}
3367Stop when @var{event} occurs. @var{event} can be any of the following:
3368@table @code
3369@item throw
4644b6e3 3370@cindex stop on C@t{++} exceptions
b37052ae 3371The throwing of a C@t{++} exception.
c906108c
SS
3372
3373@item catch
b37052ae 3374The catching of a C@t{++} exception.
c906108c 3375
8936fcda
JB
3376@item exception
3377@cindex Ada exception catching
3378@cindex catch Ada exceptions
3379An Ada exception being raised. If an exception name is specified
3380at the end of the command (eg @code{catch exception Program_Error}),
3381the debugger will stop only when this specific exception is raised.
3382Otherwise, the debugger stops execution when any Ada exception is raised.
3383
3384@item exception unhandled
3385An exception that was raised but is not handled by the program.
3386
3387@item assert
3388A failed Ada assertion.
3389
c906108c 3390@item exec
4644b6e3 3391@cindex break on fork/exec
c906108c
SS
3392A call to @code{exec}. This is currently only available for HP-UX.
3393
3394@item fork
c906108c
SS
3395A call to @code{fork}. This is currently only available for HP-UX.
3396
3397@item vfork
c906108c
SS
3398A call to @code{vfork}. This is currently only available for HP-UX.
3399
3400@item load
3401@itemx load @var{libname}
4644b6e3 3402@cindex break on load/unload of shared library
c906108c
SS
3403The dynamic loading of any shared library, or the loading of the library
3404@var{libname}. This is currently only available for HP-UX.
3405
3406@item unload
3407@itemx unload @var{libname}
c906108c
SS
3408The unloading of any dynamically loaded shared library, or the unloading
3409of the library @var{libname}. This is currently only available for HP-UX.
3410@end table
3411
3412@item tcatch @var{event}
3413Set a catchpoint that is enabled only for one stop. The catchpoint is
3414automatically deleted after the first time the event is caught.
3415
3416@end table
3417
3418Use the @code{info break} command to list the current catchpoints.
3419
b37052ae 3420There are currently some limitations to C@t{++} exception handling
c906108c
SS
3421(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3422
3423@itemize @bullet
3424@item
3425If you call a function interactively, @value{GDBN} normally returns
3426control to you when the function has finished executing. If the call
3427raises an exception, however, the call may bypass the mechanism that
3428returns control to you and cause your program either to abort or to
3429simply continue running until it hits a breakpoint, catches a signal
3430that @value{GDBN} is listening for, or exits. This is the case even if
3431you set a catchpoint for the exception; catchpoints on exceptions are
3432disabled within interactive calls.
3433
3434@item
3435You cannot raise an exception interactively.
3436
3437@item
3438You cannot install an exception handler interactively.
3439@end itemize
3440
3441@cindex raise exceptions
3442Sometimes @code{catch} is not the best way to debug exception handling:
3443if you need to know exactly where an exception is raised, it is better to
3444stop @emph{before} the exception handler is called, since that way you
3445can see the stack before any unwinding takes place. If you set a
3446breakpoint in an exception handler instead, it may not be easy to find
3447out where the exception was raised.
3448
3449To stop just before an exception handler is called, you need some
b37052ae 3450knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3451raised by calling a library function named @code{__raise_exception}
3452which has the following ANSI C interface:
3453
474c8240 3454@smallexample
c906108c 3455 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3456 @var{id} is the exception identifier. */
3457 void __raise_exception (void **addr, void *id);
474c8240 3458@end smallexample
c906108c
SS
3459
3460@noindent
3461To make the debugger catch all exceptions before any stack
3462unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3463(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3464
79a6e687 3465With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3466that depends on the value of @var{id}, you can stop your program when
3467a specific exception is raised. You can use multiple conditional
3468breakpoints to stop your program when any of a number of exceptions are
3469raised.
3470
3471
6d2ebf8b 3472@node Delete Breaks
79a6e687 3473@subsection Deleting Breakpoints
c906108c
SS
3474
3475@cindex clearing breakpoints, watchpoints, catchpoints
3476@cindex deleting breakpoints, watchpoints, catchpoints
3477It is often necessary to eliminate a breakpoint, watchpoint, or
3478catchpoint once it has done its job and you no longer want your program
3479to stop there. This is called @dfn{deleting} the breakpoint. A
3480breakpoint that has been deleted no longer exists; it is forgotten.
3481
3482With the @code{clear} command you can delete breakpoints according to
3483where they are in your program. With the @code{delete} command you can
3484delete individual breakpoints, watchpoints, or catchpoints by specifying
3485their breakpoint numbers.
3486
3487It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3488automatically ignores breakpoints on the first instruction to be executed
3489when you continue execution without changing the execution address.
3490
3491@table @code
3492@kindex clear
3493@item clear
3494Delete any breakpoints at the next instruction to be executed in the
79a6e687 3495selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3496the innermost frame is selected, this is a good way to delete a
3497breakpoint where your program just stopped.
3498
2a25a5ba
EZ
3499@item clear @var{location}
3500Delete any breakpoints set at the specified @var{location}.
3501@xref{Specify Location}, for the various forms of @var{location}; the
3502most useful ones are listed below:
3503
3504@table @code
c906108c
SS
3505@item clear @var{function}
3506@itemx clear @var{filename}:@var{function}
09d4efe1 3507Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3508
3509@item clear @var{linenum}
3510@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3511Delete any breakpoints set at or within the code of the specified
3512@var{linenum} of the specified @var{filename}.
2a25a5ba 3513@end table
c906108c
SS
3514
3515@cindex delete breakpoints
3516@kindex delete
41afff9a 3517@kindex d @r{(@code{delete})}
c5394b80
JM
3518@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3519Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3520ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3521breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3522confirm off}). You can abbreviate this command as @code{d}.
3523@end table
3524
6d2ebf8b 3525@node Disabling
79a6e687 3526@subsection Disabling Breakpoints
c906108c 3527
4644b6e3 3528@cindex enable/disable a breakpoint
c906108c
SS
3529Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3530prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3531it had been deleted, but remembers the information on the breakpoint so
3532that you can @dfn{enable} it again later.
3533
3534You disable and enable breakpoints, watchpoints, and catchpoints with
3535the @code{enable} and @code{disable} commands, optionally specifying one
3536or more breakpoint numbers as arguments. Use @code{info break} or
3537@code{info watch} to print a list of breakpoints, watchpoints, and
3538catchpoints if you do not know which numbers to use.
3539
3b784c4f
EZ
3540Disabling and enabling a breakpoint that has multiple locations
3541affects all of its locations.
3542
c906108c
SS
3543A breakpoint, watchpoint, or catchpoint can have any of four different
3544states of enablement:
3545
3546@itemize @bullet
3547@item
3548Enabled. The breakpoint stops your program. A breakpoint set
3549with the @code{break} command starts out in this state.
3550@item
3551Disabled. The breakpoint has no effect on your program.
3552@item
3553Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3554disabled.
c906108c
SS
3555@item
3556Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3557immediately after it does so it is deleted permanently. A breakpoint
3558set with the @code{tbreak} command starts out in this state.
c906108c
SS
3559@end itemize
3560
3561You can use the following commands to enable or disable breakpoints,
3562watchpoints, and catchpoints:
3563
3564@table @code
c906108c 3565@kindex disable
41afff9a 3566@kindex dis @r{(@code{disable})}
c5394b80 3567@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3568Disable the specified breakpoints---or all breakpoints, if none are
3569listed. A disabled breakpoint has no effect but is not forgotten. All
3570options such as ignore-counts, conditions and commands are remembered in
3571case the breakpoint is enabled again later. You may abbreviate
3572@code{disable} as @code{dis}.
3573
c906108c 3574@kindex enable
c5394b80 3575@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3576Enable the specified breakpoints (or all defined breakpoints). They
3577become effective once again in stopping your program.
3578
c5394b80 3579@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3580Enable the specified breakpoints temporarily. @value{GDBN} disables any
3581of these breakpoints immediately after stopping your program.
3582
c5394b80 3583@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3584Enable the specified breakpoints to work once, then die. @value{GDBN}
3585deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3586Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3587@end table
3588
d4f3574e
SS
3589@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3590@c confusing: tbreak is also initially enabled.
c906108c 3591Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3592,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3593subsequently, they become disabled or enabled only when you use one of
3594the commands above. (The command @code{until} can set and delete a
3595breakpoint of its own, but it does not change the state of your other
3596breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3597Stepping}.)
c906108c 3598
6d2ebf8b 3599@node Conditions
79a6e687 3600@subsection Break Conditions
c906108c
SS
3601@cindex conditional breakpoints
3602@cindex breakpoint conditions
3603
3604@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3605@c in particular for a watchpoint?
c906108c
SS
3606The simplest sort of breakpoint breaks every time your program reaches a
3607specified place. You can also specify a @dfn{condition} for a
3608breakpoint. A condition is just a Boolean expression in your
3609programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3610a condition evaluates the expression each time your program reaches it,
3611and your program stops only if the condition is @emph{true}.
3612
3613This is the converse of using assertions for program validation; in that
3614situation, you want to stop when the assertion is violated---that is,
3615when the condition is false. In C, if you want to test an assertion expressed
3616by the condition @var{assert}, you should set the condition
3617@samp{! @var{assert}} on the appropriate breakpoint.
3618
3619Conditions are also accepted for watchpoints; you may not need them,
3620since a watchpoint is inspecting the value of an expression anyhow---but
3621it might be simpler, say, to just set a watchpoint on a variable name,
3622and specify a condition that tests whether the new value is an interesting
3623one.
3624
3625Break conditions can have side effects, and may even call functions in
3626your program. This can be useful, for example, to activate functions
3627that log program progress, or to use your own print functions to
3628format special data structures. The effects are completely predictable
3629unless there is another enabled breakpoint at the same address. (In
3630that case, @value{GDBN} might see the other breakpoint first and stop your
3631program without checking the condition of this one.) Note that
d4f3574e
SS
3632breakpoint commands are usually more convenient and flexible than break
3633conditions for the
c906108c 3634purpose of performing side effects when a breakpoint is reached
79a6e687 3635(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3636
3637Break conditions can be specified when a breakpoint is set, by using
3638@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3639Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3640with the @code{condition} command.
53a5351d 3641
c906108c
SS
3642You can also use the @code{if} keyword with the @code{watch} command.
3643The @code{catch} command does not recognize the @code{if} keyword;
3644@code{condition} is the only way to impose a further condition on a
3645catchpoint.
c906108c
SS
3646
3647@table @code
3648@kindex condition
3649@item condition @var{bnum} @var{expression}
3650Specify @var{expression} as the break condition for breakpoint,
3651watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3652breakpoint @var{bnum} stops your program only if the value of
3653@var{expression} is true (nonzero, in C). When you use
3654@code{condition}, @value{GDBN} checks @var{expression} immediately for
3655syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3656referents in the context of your breakpoint. If @var{expression} uses
3657symbols not referenced in the context of the breakpoint, @value{GDBN}
3658prints an error message:
3659
474c8240 3660@smallexample
d4f3574e 3661No symbol "foo" in current context.
474c8240 3662@end smallexample
d4f3574e
SS
3663
3664@noindent
c906108c
SS
3665@value{GDBN} does
3666not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3667command (or a command that sets a breakpoint with a condition, like
3668@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3669
3670@item condition @var{bnum}
3671Remove the condition from breakpoint number @var{bnum}. It becomes
3672an ordinary unconditional breakpoint.
3673@end table
3674
3675@cindex ignore count (of breakpoint)
3676A special case of a breakpoint condition is to stop only when the
3677breakpoint has been reached a certain number of times. This is so
3678useful that there is a special way to do it, using the @dfn{ignore
3679count} of the breakpoint. Every breakpoint has an ignore count, which
3680is an integer. Most of the time, the ignore count is zero, and
3681therefore has no effect. But if your program reaches a breakpoint whose
3682ignore count is positive, then instead of stopping, it just decrements
3683the ignore count by one and continues. As a result, if the ignore count
3684value is @var{n}, the breakpoint does not stop the next @var{n} times
3685your program reaches it.
3686
3687@table @code
3688@kindex ignore
3689@item ignore @var{bnum} @var{count}
3690Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3691The next @var{count} times the breakpoint is reached, your program's
3692execution does not stop; other than to decrement the ignore count, @value{GDBN}
3693takes no action.
3694
3695To make the breakpoint stop the next time it is reached, specify
3696a count of zero.
3697
3698When you use @code{continue} to resume execution of your program from a
3699breakpoint, you can specify an ignore count directly as an argument to
3700@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3701Stepping,,Continuing and Stepping}.
c906108c
SS
3702
3703If a breakpoint has a positive ignore count and a condition, the
3704condition is not checked. Once the ignore count reaches zero,
3705@value{GDBN} resumes checking the condition.
3706
3707You could achieve the effect of the ignore count with a condition such
3708as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3709is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3710Variables}.
c906108c
SS
3711@end table
3712
3713Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3714
3715
6d2ebf8b 3716@node Break Commands
79a6e687 3717@subsection Breakpoint Command Lists
c906108c
SS
3718
3719@cindex breakpoint commands
3720You can give any breakpoint (or watchpoint or catchpoint) a series of
3721commands to execute when your program stops due to that breakpoint. For
3722example, you might want to print the values of certain expressions, or
3723enable other breakpoints.
3724
3725@table @code
3726@kindex commands
ca91424e 3727@kindex end@r{ (breakpoint commands)}
c906108c
SS
3728@item commands @r{[}@var{bnum}@r{]}
3729@itemx @dots{} @var{command-list} @dots{}
3730@itemx end
3731Specify a list of commands for breakpoint number @var{bnum}. The commands
3732themselves appear on the following lines. Type a line containing just
3733@code{end} to terminate the commands.
3734
3735To remove all commands from a breakpoint, type @code{commands} and
3736follow it immediately with @code{end}; that is, give no commands.
3737
3738With no @var{bnum} argument, @code{commands} refers to the last
3739breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3740recently encountered).
3741@end table
3742
3743Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3744disabled within a @var{command-list}.
3745
3746You can use breakpoint commands to start your program up again. Simply
3747use the @code{continue} command, or @code{step}, or any other command
3748that resumes execution.
3749
3750Any other commands in the command list, after a command that resumes
3751execution, are ignored. This is because any time you resume execution
3752(even with a simple @code{next} or @code{step}), you may encounter
3753another breakpoint---which could have its own command list, leading to
3754ambiguities about which list to execute.
3755
3756@kindex silent
3757If the first command you specify in a command list is @code{silent}, the
3758usual message about stopping at a breakpoint is not printed. This may
3759be desirable for breakpoints that are to print a specific message and
3760then continue. If none of the remaining commands print anything, you
3761see no sign that the breakpoint was reached. @code{silent} is
3762meaningful only at the beginning of a breakpoint command list.
3763
3764The commands @code{echo}, @code{output}, and @code{printf} allow you to
3765print precisely controlled output, and are often useful in silent
79a6e687 3766breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3767
3768For example, here is how you could use breakpoint commands to print the
3769value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3770
474c8240 3771@smallexample
c906108c
SS
3772break foo if x>0
3773commands
3774silent
3775printf "x is %d\n",x
3776cont
3777end
474c8240 3778@end smallexample
c906108c
SS
3779
3780One application for breakpoint commands is to compensate for one bug so
3781you can test for another. Put a breakpoint just after the erroneous line
3782of code, give it a condition to detect the case in which something
3783erroneous has been done, and give it commands to assign correct values
3784to any variables that need them. End with the @code{continue} command
3785so that your program does not stop, and start with the @code{silent}
3786command so that no output is produced. Here is an example:
3787
474c8240 3788@smallexample
c906108c
SS
3789break 403
3790commands
3791silent
3792set x = y + 4
3793cont
3794end
474c8240 3795@end smallexample
c906108c 3796
6d2ebf8b 3797@node Breakpoint Menus
79a6e687 3798@subsection Breakpoint Menus
c906108c
SS
3799@cindex overloading
3800@cindex symbol overloading
3801
b383017d 3802Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3803single function name
c906108c
SS
3804to be defined several times, for application in different contexts.
3805This is called @dfn{overloading}. When a function name is overloaded,
3806@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3807a breakpoint. You can use explicit signature of the function, as in
3808@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3809particular version of the function you want. Otherwise, @value{GDBN} offers
3810you a menu of numbered choices for different possible breakpoints, and
3811waits for your selection with the prompt @samp{>}. The first two
3812options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3813sets a breakpoint at each definition of @var{function}, and typing
3814@kbd{0} aborts the @code{break} command without setting any new
3815breakpoints.
3816
3817For example, the following session excerpt shows an attempt to set a
3818breakpoint at the overloaded symbol @code{String::after}.
3819We choose three particular definitions of that function name:
3820
3821@c FIXME! This is likely to change to show arg type lists, at least
3822@smallexample
3823@group
3824(@value{GDBP}) b String::after
3825[0] cancel
3826[1] all
3827[2] file:String.cc; line number:867
3828[3] file:String.cc; line number:860
3829[4] file:String.cc; line number:875
3830[5] file:String.cc; line number:853
3831[6] file:String.cc; line number:846
3832[7] file:String.cc; line number:735
3833> 2 4 6
3834Breakpoint 1 at 0xb26c: file String.cc, line 867.
3835Breakpoint 2 at 0xb344: file String.cc, line 875.
3836Breakpoint 3 at 0xafcc: file String.cc, line 846.
3837Multiple breakpoints were set.
3838Use the "delete" command to delete unwanted
3839 breakpoints.
3840(@value{GDBP})
3841@end group
3842@end smallexample
c906108c
SS
3843
3844@c @ifclear BARETARGET
6d2ebf8b 3845@node Error in Breakpoints
d4f3574e 3846@subsection ``Cannot insert breakpoints''
c906108c
SS
3847@c
3848@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3849@c
d4f3574e
SS
3850Under some operating systems, breakpoints cannot be used in a program if
3851any other process is running that program. In this situation,
5d161b24 3852attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3853@value{GDBN} to print an error message:
3854
474c8240 3855@smallexample
d4f3574e
SS
3856Cannot insert breakpoints.
3857The same program may be running in another process.
474c8240 3858@end smallexample
d4f3574e
SS
3859
3860When this happens, you have three ways to proceed:
3861
3862@enumerate
3863@item
3864Remove or disable the breakpoints, then continue.
3865
3866@item
5d161b24 3867Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3868name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3869that @value{GDBN} should run your program under that name.
d4f3574e
SS
3870Then start your program again.
3871
3872@item
3873Relink your program so that the text segment is nonsharable, using the
3874linker option @samp{-N}. The operating system limitation may not apply
3875to nonsharable executables.
3876@end enumerate
c906108c
SS
3877@c @end ifclear
3878
d4f3574e
SS
3879A similar message can be printed if you request too many active
3880hardware-assisted breakpoints and watchpoints:
3881
3882@c FIXME: the precise wording of this message may change; the relevant
3883@c source change is not committed yet (Sep 3, 1999).
3884@smallexample
3885Stopped; cannot insert breakpoints.
3886You may have requested too many hardware breakpoints and watchpoints.
3887@end smallexample
3888
3889@noindent
3890This message is printed when you attempt to resume the program, since
3891only then @value{GDBN} knows exactly how many hardware breakpoints and
3892watchpoints it needs to insert.
3893
3894When this message is printed, you need to disable or remove some of the
3895hardware-assisted breakpoints and watchpoints, and then continue.
3896
79a6e687 3897@node Breakpoint-related Warnings
1485d690
KB
3898@subsection ``Breakpoint address adjusted...''
3899@cindex breakpoint address adjusted
3900
3901Some processor architectures place constraints on the addresses at
3902which breakpoints may be placed. For architectures thus constrained,
3903@value{GDBN} will attempt to adjust the breakpoint's address to comply
3904with the constraints dictated by the architecture.
3905
3906One example of such an architecture is the Fujitsu FR-V. The FR-V is
3907a VLIW architecture in which a number of RISC-like instructions may be
3908bundled together for parallel execution. The FR-V architecture
3909constrains the location of a breakpoint instruction within such a
3910bundle to the instruction with the lowest address. @value{GDBN}
3911honors this constraint by adjusting a breakpoint's address to the
3912first in the bundle.
3913
3914It is not uncommon for optimized code to have bundles which contain
3915instructions from different source statements, thus it may happen that
3916a breakpoint's address will be adjusted from one source statement to
3917another. Since this adjustment may significantly alter @value{GDBN}'s
3918breakpoint related behavior from what the user expects, a warning is
3919printed when the breakpoint is first set and also when the breakpoint
3920is hit.
3921
3922A warning like the one below is printed when setting a breakpoint
3923that's been subject to address adjustment:
3924
3925@smallexample
3926warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3927@end smallexample
3928
3929Such warnings are printed both for user settable and @value{GDBN}'s
3930internal breakpoints. If you see one of these warnings, you should
3931verify that a breakpoint set at the adjusted address will have the
3932desired affect. If not, the breakpoint in question may be removed and
b383017d 3933other breakpoints may be set which will have the desired behavior.
1485d690
KB
3934E.g., it may be sufficient to place the breakpoint at a later
3935instruction. A conditional breakpoint may also be useful in some
3936cases to prevent the breakpoint from triggering too often.
3937
3938@value{GDBN} will also issue a warning when stopping at one of these
3939adjusted breakpoints:
3940
3941@smallexample
3942warning: Breakpoint 1 address previously adjusted from 0x00010414
3943to 0x00010410.
3944@end smallexample
3945
3946When this warning is encountered, it may be too late to take remedial
3947action except in cases where the breakpoint is hit earlier or more
3948frequently than expected.
d4f3574e 3949
6d2ebf8b 3950@node Continuing and Stepping
79a6e687 3951@section Continuing and Stepping
c906108c
SS
3952
3953@cindex stepping
3954@cindex continuing
3955@cindex resuming execution
3956@dfn{Continuing} means resuming program execution until your program
3957completes normally. In contrast, @dfn{stepping} means executing just
3958one more ``step'' of your program, where ``step'' may mean either one
3959line of source code, or one machine instruction (depending on what
7a292a7a
SS
3960particular command you use). Either when continuing or when stepping,
3961your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3962it stops due to a signal, you may want to use @code{handle}, or use
3963@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3964
3965@table @code
3966@kindex continue
41afff9a
EZ
3967@kindex c @r{(@code{continue})}
3968@kindex fg @r{(resume foreground execution)}
c906108c
SS
3969@item continue @r{[}@var{ignore-count}@r{]}
3970@itemx c @r{[}@var{ignore-count}@r{]}
3971@itemx fg @r{[}@var{ignore-count}@r{]}
3972Resume program execution, at the address where your program last stopped;
3973any breakpoints set at that address are bypassed. The optional argument
3974@var{ignore-count} allows you to specify a further number of times to
3975ignore a breakpoint at this location; its effect is like that of
79a6e687 3976@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3977
3978The argument @var{ignore-count} is meaningful only when your program
3979stopped due to a breakpoint. At other times, the argument to
3980@code{continue} is ignored.
3981
d4f3574e
SS
3982The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3983debugged program is deemed to be the foreground program) are provided
3984purely for convenience, and have exactly the same behavior as
3985@code{continue}.
c906108c
SS
3986@end table
3987
3988To resume execution at a different place, you can use @code{return}
79a6e687 3989(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 3990calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 3991Different Address}) to go to an arbitrary location in your program.
c906108c
SS
3992
3993A typical technique for using stepping is to set a breakpoint
79a6e687 3994(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
3995beginning of the function or the section of your program where a problem
3996is believed to lie, run your program until it stops at that breakpoint,
3997and then step through the suspect area, examining the variables that are
3998interesting, until you see the problem happen.
3999
4000@table @code
4001@kindex step
41afff9a 4002@kindex s @r{(@code{step})}
c906108c
SS
4003@item step
4004Continue running your program until control reaches a different source
4005line, then stop it and return control to @value{GDBN}. This command is
4006abbreviated @code{s}.
4007
4008@quotation
4009@c "without debugging information" is imprecise; actually "without line
4010@c numbers in the debugging information". (gcc -g1 has debugging info but
4011@c not line numbers). But it seems complex to try to make that
4012@c distinction here.
4013@emph{Warning:} If you use the @code{step} command while control is
4014within a function that was compiled without debugging information,
4015execution proceeds until control reaches a function that does have
4016debugging information. Likewise, it will not step into a function which
4017is compiled without debugging information. To step through functions
4018without debugging information, use the @code{stepi} command, described
4019below.
4020@end quotation
4021
4a92d011
EZ
4022The @code{step} command only stops at the first instruction of a source
4023line. This prevents the multiple stops that could otherwise occur in
4024@code{switch} statements, @code{for} loops, etc. @code{step} continues
4025to stop if a function that has debugging information is called within
4026the line. In other words, @code{step} @emph{steps inside} any functions
4027called within the line.
c906108c 4028
d4f3574e
SS
4029Also, the @code{step} command only enters a function if there is line
4030number information for the function. Otherwise it acts like the
5d161b24 4031@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4032on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4033was any debugging information about the routine.
c906108c
SS
4034
4035@item step @var{count}
4036Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4037breakpoint is reached, or a signal not related to stepping occurs before
4038@var{count} steps, stepping stops right away.
c906108c
SS
4039
4040@kindex next
41afff9a 4041@kindex n @r{(@code{next})}
c906108c
SS
4042@item next @r{[}@var{count}@r{]}
4043Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4044This is similar to @code{step}, but function calls that appear within
4045the line of code are executed without stopping. Execution stops when
4046control reaches a different line of code at the original stack level
4047that was executing when you gave the @code{next} command. This command
4048is abbreviated @code{n}.
c906108c
SS
4049
4050An argument @var{count} is a repeat count, as for @code{step}.
4051
4052
4053@c FIX ME!! Do we delete this, or is there a way it fits in with
4054@c the following paragraph? --- Vctoria
4055@c
4056@c @code{next} within a function that lacks debugging information acts like
4057@c @code{step}, but any function calls appearing within the code of the
4058@c function are executed without stopping.
4059
d4f3574e
SS
4060The @code{next} command only stops at the first instruction of a
4061source line. This prevents multiple stops that could otherwise occur in
4a92d011 4062@code{switch} statements, @code{for} loops, etc.
c906108c 4063
b90a5f51
CF
4064@kindex set step-mode
4065@item set step-mode
4066@cindex functions without line info, and stepping
4067@cindex stepping into functions with no line info
4068@itemx set step-mode on
4a92d011 4069The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4070stop at the first instruction of a function which contains no debug line
4071information rather than stepping over it.
4072
4a92d011
EZ
4073This is useful in cases where you may be interested in inspecting the
4074machine instructions of a function which has no symbolic info and do not
4075want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4076
4077@item set step-mode off
4a92d011 4078Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4079debug information. This is the default.
4080
9c16f35a
EZ
4081@item show step-mode
4082Show whether @value{GDBN} will stop in or step over functions without
4083source line debug information.
4084
c906108c
SS
4085@kindex finish
4086@item finish
4087Continue running until just after function in the selected stack frame
4088returns. Print the returned value (if any).
4089
4090Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4091,Returning from a Function}).
c906108c
SS
4092
4093@kindex until
41afff9a 4094@kindex u @r{(@code{until})}
09d4efe1 4095@cindex run until specified location
c906108c
SS
4096@item until
4097@itemx u
4098Continue running until a source line past the current line, in the
4099current stack frame, is reached. This command is used to avoid single
4100stepping through a loop more than once. It is like the @code{next}
4101command, except that when @code{until} encounters a jump, it
4102automatically continues execution until the program counter is greater
4103than the address of the jump.
4104
4105This means that when you reach the end of a loop after single stepping
4106though it, @code{until} makes your program continue execution until it
4107exits the loop. In contrast, a @code{next} command at the end of a loop
4108simply steps back to the beginning of the loop, which forces you to step
4109through the next iteration.
4110
4111@code{until} always stops your program if it attempts to exit the current
4112stack frame.
4113
4114@code{until} may produce somewhat counterintuitive results if the order
4115of machine code does not match the order of the source lines. For
4116example, in the following excerpt from a debugging session, the @code{f}
4117(@code{frame}) command shows that execution is stopped at line
4118@code{206}; yet when we use @code{until}, we get to line @code{195}:
4119
474c8240 4120@smallexample
c906108c
SS
4121(@value{GDBP}) f
4122#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4123206 expand_input();
4124(@value{GDBP}) until
4125195 for ( ; argc > 0; NEXTARG) @{
474c8240 4126@end smallexample
c906108c
SS
4127
4128This happened because, for execution efficiency, the compiler had
4129generated code for the loop closure test at the end, rather than the
4130start, of the loop---even though the test in a C @code{for}-loop is
4131written before the body of the loop. The @code{until} command appeared
4132to step back to the beginning of the loop when it advanced to this
4133expression; however, it has not really gone to an earlier
4134statement---not in terms of the actual machine code.
4135
4136@code{until} with no argument works by means of single
4137instruction stepping, and hence is slower than @code{until} with an
4138argument.
4139
4140@item until @var{location}
4141@itemx u @var{location}
4142Continue running your program until either the specified location is
4143reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4144the forms described in @ref{Specify Location}.
4145This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4146hence is quicker than @code{until} without an argument. The specified
4147location is actually reached only if it is in the current frame. This
4148implies that @code{until} can be used to skip over recursive function
4149invocations. For instance in the code below, if the current location is
4150line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4151line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4152invocations have returned.
4153
4154@smallexample
415594 int factorial (int value)
415695 @{
415796 if (value > 1) @{
415897 value *= factorial (value - 1);
415998 @}
416099 return (value);
4161100 @}
4162@end smallexample
4163
4164
4165@kindex advance @var{location}
4166@itemx advance @var{location}
09d4efe1 4167Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4168required, which should be of one of the forms described in
4169@ref{Specify Location}.
4170Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4171frame. This command is similar to @code{until}, but @code{advance} will
4172not skip over recursive function calls, and the target location doesn't
4173have to be in the same frame as the current one.
4174
c906108c
SS
4175
4176@kindex stepi
41afff9a 4177@kindex si @r{(@code{stepi})}
c906108c 4178@item stepi
96a2c332 4179@itemx stepi @var{arg}
c906108c
SS
4180@itemx si
4181Execute one machine instruction, then stop and return to the debugger.
4182
4183It is often useful to do @samp{display/i $pc} when stepping by machine
4184instructions. This makes @value{GDBN} automatically display the next
4185instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4186Display,, Automatic Display}.
c906108c
SS
4187
4188An argument is a repeat count, as in @code{step}.
4189
4190@need 750
4191@kindex nexti
41afff9a 4192@kindex ni @r{(@code{nexti})}
c906108c 4193@item nexti
96a2c332 4194@itemx nexti @var{arg}
c906108c
SS
4195@itemx ni
4196Execute one machine instruction, but if it is a function call,
4197proceed until the function returns.
4198
4199An argument is a repeat count, as in @code{next}.
4200@end table
4201
6d2ebf8b 4202@node Signals
c906108c
SS
4203@section Signals
4204@cindex signals
4205
4206A signal is an asynchronous event that can happen in a program. The
4207operating system defines the possible kinds of signals, and gives each
4208kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4209signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4210@code{SIGSEGV} is the signal a program gets from referencing a place in
4211memory far away from all the areas in use; @code{SIGALRM} occurs when
4212the alarm clock timer goes off (which happens only if your program has
4213requested an alarm).
4214
4215@cindex fatal signals
4216Some signals, including @code{SIGALRM}, are a normal part of the
4217functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4218errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4219program has not specified in advance some other way to handle the signal.
4220@code{SIGINT} does not indicate an error in your program, but it is normally
4221fatal so it can carry out the purpose of the interrupt: to kill the program.
4222
4223@value{GDBN} has the ability to detect any occurrence of a signal in your
4224program. You can tell @value{GDBN} in advance what to do for each kind of
4225signal.
4226
4227@cindex handling signals
24f93129
EZ
4228Normally, @value{GDBN} is set up to let the non-erroneous signals like
4229@code{SIGALRM} be silently passed to your program
4230(so as not to interfere with their role in the program's functioning)
c906108c
SS
4231but to stop your program immediately whenever an error signal happens.
4232You can change these settings with the @code{handle} command.
4233
4234@table @code
4235@kindex info signals
09d4efe1 4236@kindex info handle
c906108c 4237@item info signals
96a2c332 4238@itemx info handle
c906108c
SS
4239Print a table of all the kinds of signals and how @value{GDBN} has been told to
4240handle each one. You can use this to see the signal numbers of all
4241the defined types of signals.
4242
45ac1734
EZ
4243@item info signals @var{sig}
4244Similar, but print information only about the specified signal number.
4245
d4f3574e 4246@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4247
4248@kindex handle
45ac1734 4249@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4250Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4251can be the number of a signal or its name (with or without the
24f93129 4252@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4253@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4254known signals. Optional arguments @var{keywords}, described below,
4255say what change to make.
c906108c
SS
4256@end table
4257
4258@c @group
4259The keywords allowed by the @code{handle} command can be abbreviated.
4260Their full names are:
4261
4262@table @code
4263@item nostop
4264@value{GDBN} should not stop your program when this signal happens. It may
4265still print a message telling you that the signal has come in.
4266
4267@item stop
4268@value{GDBN} should stop your program when this signal happens. This implies
4269the @code{print} keyword as well.
4270
4271@item print
4272@value{GDBN} should print a message when this signal happens.
4273
4274@item noprint
4275@value{GDBN} should not mention the occurrence of the signal at all. This
4276implies the @code{nostop} keyword as well.
4277
4278@item pass
5ece1a18 4279@itemx noignore
c906108c
SS
4280@value{GDBN} should allow your program to see this signal; your program
4281can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4282and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4283
4284@item nopass
5ece1a18 4285@itemx ignore
c906108c 4286@value{GDBN} should not allow your program to see this signal.
5ece1a18 4287@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4288@end table
4289@c @end group
4290
d4f3574e
SS
4291When a signal stops your program, the signal is not visible to the
4292program until you
c906108c
SS
4293continue. Your program sees the signal then, if @code{pass} is in
4294effect for the signal in question @emph{at that time}. In other words,
4295after @value{GDBN} reports a signal, you can use the @code{handle}
4296command with @code{pass} or @code{nopass} to control whether your
4297program sees that signal when you continue.
4298
24f93129
EZ
4299The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4300non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4301@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4302erroneous signals.
4303
c906108c
SS
4304You can also use the @code{signal} command to prevent your program from
4305seeing a signal, or cause it to see a signal it normally would not see,
4306or to give it any signal at any time. For example, if your program stopped
4307due to some sort of memory reference error, you might store correct
4308values into the erroneous variables and continue, hoping to see more
4309execution; but your program would probably terminate immediately as
4310a result of the fatal signal once it saw the signal. To prevent this,
4311you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4312Program a Signal}.
c906108c 4313
6d2ebf8b 4314@node Thread Stops
79a6e687 4315@section Stopping and Starting Multi-thread Programs
c906108c
SS
4316
4317When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4318Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4319breakpoints on all threads, or on a particular thread.
4320
4321@table @code
4322@cindex breakpoints and threads
4323@cindex thread breakpoints
4324@kindex break @dots{} thread @var{threadno}
4325@item break @var{linespec} thread @var{threadno}
4326@itemx break @var{linespec} thread @var{threadno} if @dots{}
4327@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4328writing them (@pxref{Specify Location}), but the effect is always to
4329specify some source line.
c906108c
SS
4330
4331Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4332to specify that you only want @value{GDBN} to stop the program when a
4333particular thread reaches this breakpoint. @var{threadno} is one of the
4334numeric thread identifiers assigned by @value{GDBN}, shown in the first
4335column of the @samp{info threads} display.
4336
4337If you do not specify @samp{thread @var{threadno}} when you set a
4338breakpoint, the breakpoint applies to @emph{all} threads of your
4339program.
4340
4341You can use the @code{thread} qualifier on conditional breakpoints as
4342well; in this case, place @samp{thread @var{threadno}} before the
4343breakpoint condition, like this:
4344
4345@smallexample
2df3850c 4346(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4347@end smallexample
4348
4349@end table
4350
4351@cindex stopped threads
4352@cindex threads, stopped
4353Whenever your program stops under @value{GDBN} for any reason,
4354@emph{all} threads of execution stop, not just the current thread. This
4355allows you to examine the overall state of the program, including
4356switching between threads, without worrying that things may change
4357underfoot.
4358
36d86913
MC
4359@cindex thread breakpoints and system calls
4360@cindex system calls and thread breakpoints
4361@cindex premature return from system calls
4362There is an unfortunate side effect. If one thread stops for a
4363breakpoint, or for some other reason, and another thread is blocked in a
4364system call, then the system call may return prematurely. This is a
4365consequence of the interaction between multiple threads and the signals
4366that @value{GDBN} uses to implement breakpoints and other events that
4367stop execution.
4368
4369To handle this problem, your program should check the return value of
4370each system call and react appropriately. This is good programming
4371style anyways.
4372
4373For example, do not write code like this:
4374
4375@smallexample
4376 sleep (10);
4377@end smallexample
4378
4379The call to @code{sleep} will return early if a different thread stops
4380at a breakpoint or for some other reason.
4381
4382Instead, write this:
4383
4384@smallexample
4385 int unslept = 10;
4386 while (unslept > 0)
4387 unslept = sleep (unslept);
4388@end smallexample
4389
4390A system call is allowed to return early, so the system is still
4391conforming to its specification. But @value{GDBN} does cause your
4392multi-threaded program to behave differently than it would without
4393@value{GDBN}.
4394
4395Also, @value{GDBN} uses internal breakpoints in the thread library to
4396monitor certain events such as thread creation and thread destruction.
4397When such an event happens, a system call in another thread may return
4398prematurely, even though your program does not appear to stop.
4399
c906108c
SS
4400@cindex continuing threads
4401@cindex threads, continuing
4402Conversely, whenever you restart the program, @emph{all} threads start
4403executing. @emph{This is true even when single-stepping} with commands
5d161b24 4404like @code{step} or @code{next}.
c906108c
SS
4405
4406In particular, @value{GDBN} cannot single-step all threads in lockstep.
4407Since thread scheduling is up to your debugging target's operating
4408system (not controlled by @value{GDBN}), other threads may
4409execute more than one statement while the current thread completes a
4410single step. Moreover, in general other threads stop in the middle of a
4411statement, rather than at a clean statement boundary, when the program
4412stops.
4413
4414You might even find your program stopped in another thread after
4415continuing or even single-stepping. This happens whenever some other
4416thread runs into a breakpoint, a signal, or an exception before the
4417first thread completes whatever you requested.
4418
4419On some OSes, you can lock the OS scheduler and thus allow only a single
4420thread to run.
4421
4422@table @code
4423@item set scheduler-locking @var{mode}
9c16f35a
EZ
4424@cindex scheduler locking mode
4425@cindex lock scheduler
c906108c
SS
4426Set the scheduler locking mode. If it is @code{off}, then there is no
4427locking and any thread may run at any time. If @code{on}, then only the
4428current thread may run when the inferior is resumed. The @code{step}
4429mode optimizes for single-stepping. It stops other threads from
4430``seizing the prompt'' by preempting the current thread while you are
4431stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4432when you step. They are more likely to run when you @samp{next} over a
c906108c 4433function call, and they are completely free to run when you use commands
d4f3574e 4434like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4435thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4436@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4437
4438@item show scheduler-locking
4439Display the current scheduler locking mode.
4440@end table
4441
c906108c 4442
6d2ebf8b 4443@node Stack
c906108c
SS
4444@chapter Examining the Stack
4445
4446When your program has stopped, the first thing you need to know is where it
4447stopped and how it got there.
4448
4449@cindex call stack
5d161b24
DB
4450Each time your program performs a function call, information about the call
4451is generated.
4452That information includes the location of the call in your program,
4453the arguments of the call,
c906108c 4454and the local variables of the function being called.
5d161b24 4455The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4456The stack frames are allocated in a region of memory called the @dfn{call
4457stack}.
4458
4459When your program stops, the @value{GDBN} commands for examining the
4460stack allow you to see all of this information.
4461
4462@cindex selected frame
4463One of the stack frames is @dfn{selected} by @value{GDBN} and many
4464@value{GDBN} commands refer implicitly to the selected frame. In
4465particular, whenever you ask @value{GDBN} for the value of a variable in
4466your program, the value is found in the selected frame. There are
4467special @value{GDBN} commands to select whichever frame you are
79a6e687 4468interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4469
4470When your program stops, @value{GDBN} automatically selects the
5d161b24 4471currently executing frame and describes it briefly, similar to the
79a6e687 4472@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4473
4474@menu
4475* Frames:: Stack frames
4476* Backtrace:: Backtraces
4477* Selection:: Selecting a frame
4478* Frame Info:: Information on a frame
c906108c
SS
4479
4480@end menu
4481
6d2ebf8b 4482@node Frames
79a6e687 4483@section Stack Frames
c906108c 4484
d4f3574e 4485@cindex frame, definition
c906108c
SS
4486@cindex stack frame
4487The call stack is divided up into contiguous pieces called @dfn{stack
4488frames}, or @dfn{frames} for short; each frame is the data associated
4489with one call to one function. The frame contains the arguments given
4490to the function, the function's local variables, and the address at
4491which the function is executing.
4492
4493@cindex initial frame
4494@cindex outermost frame
4495@cindex innermost frame
4496When your program is started, the stack has only one frame, that of the
4497function @code{main}. This is called the @dfn{initial} frame or the
4498@dfn{outermost} frame. Each time a function is called, a new frame is
4499made. Each time a function returns, the frame for that function invocation
4500is eliminated. If a function is recursive, there can be many frames for
4501the same function. The frame for the function in which execution is
4502actually occurring is called the @dfn{innermost} frame. This is the most
4503recently created of all the stack frames that still exist.
4504
4505@cindex frame pointer
4506Inside your program, stack frames are identified by their addresses. A
4507stack frame consists of many bytes, each of which has its own address; each
4508kind of computer has a convention for choosing one byte whose
4509address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4510in a register called the @dfn{frame pointer register}
4511(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4512
4513@cindex frame number
4514@value{GDBN} assigns numbers to all existing stack frames, starting with
4515zero for the innermost frame, one for the frame that called it,
4516and so on upward. These numbers do not really exist in your program;
4517they are assigned by @value{GDBN} to give you a way of designating stack
4518frames in @value{GDBN} commands.
4519
6d2ebf8b
SS
4520@c The -fomit-frame-pointer below perennially causes hbox overflow
4521@c underflow problems.
c906108c
SS
4522@cindex frameless execution
4523Some compilers provide a way to compile functions so that they operate
e22ea452 4524without stack frames. (For example, the @value{NGCC} option
474c8240 4525@smallexample
6d2ebf8b 4526@samp{-fomit-frame-pointer}
474c8240 4527@end smallexample
6d2ebf8b 4528generates functions without a frame.)
c906108c
SS
4529This is occasionally done with heavily used library functions to save
4530the frame setup time. @value{GDBN} has limited facilities for dealing
4531with these function invocations. If the innermost function invocation
4532has no stack frame, @value{GDBN} nevertheless regards it as though
4533it had a separate frame, which is numbered zero as usual, allowing
4534correct tracing of the function call chain. However, @value{GDBN} has
4535no provision for frameless functions elsewhere in the stack.
4536
4537@table @code
d4f3574e 4538@kindex frame@r{, command}
41afff9a 4539@cindex current stack frame
c906108c 4540@item frame @var{args}
5d161b24 4541The @code{frame} command allows you to move from one stack frame to another,
c906108c 4542and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4543address of the frame or the stack frame number. Without an argument,
4544@code{frame} prints the current stack frame.
c906108c
SS
4545
4546@kindex select-frame
41afff9a 4547@cindex selecting frame silently
c906108c
SS
4548@item select-frame
4549The @code{select-frame} command allows you to move from one stack frame
4550to another without printing the frame. This is the silent version of
4551@code{frame}.
4552@end table
4553
6d2ebf8b 4554@node Backtrace
c906108c
SS
4555@section Backtraces
4556
09d4efe1
EZ
4557@cindex traceback
4558@cindex call stack traces
c906108c
SS
4559A backtrace is a summary of how your program got where it is. It shows one
4560line per frame, for many frames, starting with the currently executing
4561frame (frame zero), followed by its caller (frame one), and on up the
4562stack.
4563
4564@table @code
4565@kindex backtrace
41afff9a 4566@kindex bt @r{(@code{backtrace})}
c906108c
SS
4567@item backtrace
4568@itemx bt
4569Print a backtrace of the entire stack: one line per frame for all
4570frames in the stack.
4571
4572You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4573character, normally @kbd{Ctrl-c}.
c906108c
SS
4574
4575@item backtrace @var{n}
4576@itemx bt @var{n}
4577Similar, but print only the innermost @var{n} frames.
4578
4579@item backtrace -@var{n}
4580@itemx bt -@var{n}
4581Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4582
4583@item backtrace full
0f061b69 4584@itemx bt full
dd74f6ae
NR
4585@itemx bt full @var{n}
4586@itemx bt full -@var{n}
e7109c7e 4587Print the values of the local variables also. @var{n} specifies the
286ba84d 4588number of frames to print, as described above.
c906108c
SS
4589@end table
4590
4591@kindex where
4592@kindex info stack
c906108c
SS
4593The names @code{where} and @code{info stack} (abbreviated @code{info s})
4594are additional aliases for @code{backtrace}.
4595
839c27b7
EZ
4596@cindex multiple threads, backtrace
4597In a multi-threaded program, @value{GDBN} by default shows the
4598backtrace only for the current thread. To display the backtrace for
4599several or all of the threads, use the command @code{thread apply}
4600(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4601apply all backtrace}, @value{GDBN} will display the backtrace for all
4602the threads; this is handy when you debug a core dump of a
4603multi-threaded program.
4604
c906108c
SS
4605Each line in the backtrace shows the frame number and the function name.
4606The program counter value is also shown---unless you use @code{set
4607print address off}. The backtrace also shows the source file name and
4608line number, as well as the arguments to the function. The program
4609counter value is omitted if it is at the beginning of the code for that
4610line number.
4611
4612Here is an example of a backtrace. It was made with the command
4613@samp{bt 3}, so it shows the innermost three frames.
4614
4615@smallexample
4616@group
5d161b24 4617#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4618 at builtin.c:993
4619#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4620#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4621 at macro.c:71
4622(More stack frames follow...)
4623@end group
4624@end smallexample
4625
4626@noindent
4627The display for frame zero does not begin with a program counter
4628value, indicating that your program has stopped at the beginning of the
4629code for line @code{993} of @code{builtin.c}.
4630
18999be5
EZ
4631@cindex value optimized out, in backtrace
4632@cindex function call arguments, optimized out
4633If your program was compiled with optimizations, some compilers will
4634optimize away arguments passed to functions if those arguments are
4635never used after the call. Such optimizations generate code that
4636passes arguments through registers, but doesn't store those arguments
4637in the stack frame. @value{GDBN} has no way of displaying such
4638arguments in stack frames other than the innermost one. Here's what
4639such a backtrace might look like:
4640
4641@smallexample
4642@group
4643#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4644 at builtin.c:993
4645#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4646#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4647 at macro.c:71
4648(More stack frames follow...)
4649@end group
4650@end smallexample
4651
4652@noindent
4653The values of arguments that were not saved in their stack frames are
4654shown as @samp{<value optimized out>}.
4655
4656If you need to display the values of such optimized-out arguments,
4657either deduce that from other variables whose values depend on the one
4658you are interested in, or recompile without optimizations.
4659
a8f24a35
EZ
4660@cindex backtrace beyond @code{main} function
4661@cindex program entry point
4662@cindex startup code, and backtrace
25d29d70
AC
4663Most programs have a standard user entry point---a place where system
4664libraries and startup code transition into user code. For C this is
d416eeec
EZ
4665@code{main}@footnote{
4666Note that embedded programs (the so-called ``free-standing''
4667environment) are not required to have a @code{main} function as the
4668entry point. They could even have multiple entry points.}.
4669When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4670it will terminate the backtrace, to avoid tracing into highly
4671system-specific (and generally uninteresting) code.
4672
4673If you need to examine the startup code, or limit the number of levels
4674in a backtrace, you can change this behavior:
95f90d25
DJ
4675
4676@table @code
25d29d70
AC
4677@item set backtrace past-main
4678@itemx set backtrace past-main on
4644b6e3 4679@kindex set backtrace
25d29d70
AC
4680Backtraces will continue past the user entry point.
4681
4682@item set backtrace past-main off
95f90d25
DJ
4683Backtraces will stop when they encounter the user entry point. This is the
4684default.
4685
25d29d70 4686@item show backtrace past-main
4644b6e3 4687@kindex show backtrace
25d29d70
AC
4688Display the current user entry point backtrace policy.
4689
2315ffec
RC
4690@item set backtrace past-entry
4691@itemx set backtrace past-entry on
a8f24a35 4692Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4693This entry point is encoded by the linker when the application is built,
4694and is likely before the user entry point @code{main} (or equivalent) is called.
4695
4696@item set backtrace past-entry off
d3e8051b 4697Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4698application. This is the default.
4699
4700@item show backtrace past-entry
4701Display the current internal entry point backtrace policy.
4702
25d29d70
AC
4703@item set backtrace limit @var{n}
4704@itemx set backtrace limit 0
4705@cindex backtrace limit
4706Limit the backtrace to @var{n} levels. A value of zero means
4707unlimited.
95f90d25 4708
25d29d70
AC
4709@item show backtrace limit
4710Display the current limit on backtrace levels.
95f90d25
DJ
4711@end table
4712
6d2ebf8b 4713@node Selection
79a6e687 4714@section Selecting a Frame
c906108c
SS
4715
4716Most commands for examining the stack and other data in your program work on
4717whichever stack frame is selected at the moment. Here are the commands for
4718selecting a stack frame; all of them finish by printing a brief description
4719of the stack frame just selected.
4720
4721@table @code
d4f3574e 4722@kindex frame@r{, selecting}
41afff9a 4723@kindex f @r{(@code{frame})}
c906108c
SS
4724@item frame @var{n}
4725@itemx f @var{n}
4726Select frame number @var{n}. Recall that frame zero is the innermost
4727(currently executing) frame, frame one is the frame that called the
4728innermost one, and so on. The highest-numbered frame is the one for
4729@code{main}.
4730
4731@item frame @var{addr}
4732@itemx f @var{addr}
4733Select the frame at address @var{addr}. This is useful mainly if the
4734chaining of stack frames has been damaged by a bug, making it
4735impossible for @value{GDBN} to assign numbers properly to all frames. In
4736addition, this can be useful when your program has multiple stacks and
4737switches between them.
4738
c906108c
SS
4739On the SPARC architecture, @code{frame} needs two addresses to
4740select an arbitrary frame: a frame pointer and a stack pointer.
4741
4742On the MIPS and Alpha architecture, it needs two addresses: a stack
4743pointer and a program counter.
4744
4745On the 29k architecture, it needs three addresses: a register stack
4746pointer, a program counter, and a memory stack pointer.
c906108c
SS
4747
4748@kindex up
4749@item up @var{n}
4750Move @var{n} frames up the stack. For positive numbers @var{n}, this
4751advances toward the outermost frame, to higher frame numbers, to frames
4752that have existed longer. @var{n} defaults to one.
4753
4754@kindex down
41afff9a 4755@kindex do @r{(@code{down})}
c906108c
SS
4756@item down @var{n}
4757Move @var{n} frames down the stack. For positive numbers @var{n}, this
4758advances toward the innermost frame, to lower frame numbers, to frames
4759that were created more recently. @var{n} defaults to one. You may
4760abbreviate @code{down} as @code{do}.
4761@end table
4762
4763All of these commands end by printing two lines of output describing the
4764frame. The first line shows the frame number, the function name, the
4765arguments, and the source file and line number of execution in that
5d161b24 4766frame. The second line shows the text of that source line.
c906108c
SS
4767
4768@need 1000
4769For example:
4770
4771@smallexample
4772@group
4773(@value{GDBP}) up
4774#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4775 at env.c:10
477610 read_input_file (argv[i]);
4777@end group
4778@end smallexample
4779
4780After such a printout, the @code{list} command with no arguments
4781prints ten lines centered on the point of execution in the frame.
87885426
FN
4782You can also edit the program at the point of execution with your favorite
4783editing program by typing @code{edit}.
79a6e687 4784@xref{List, ,Printing Source Lines},
87885426 4785for details.
c906108c
SS
4786
4787@table @code
4788@kindex down-silently
4789@kindex up-silently
4790@item up-silently @var{n}
4791@itemx down-silently @var{n}
4792These two commands are variants of @code{up} and @code{down},
4793respectively; they differ in that they do their work silently, without
4794causing display of the new frame. They are intended primarily for use
4795in @value{GDBN} command scripts, where the output might be unnecessary and
4796distracting.
4797@end table
4798
6d2ebf8b 4799@node Frame Info
79a6e687 4800@section Information About a Frame
c906108c
SS
4801
4802There are several other commands to print information about the selected
4803stack frame.
4804
4805@table @code
4806@item frame
4807@itemx f
4808When used without any argument, this command does not change which
4809frame is selected, but prints a brief description of the currently
4810selected stack frame. It can be abbreviated @code{f}. With an
4811argument, this command is used to select a stack frame.
79a6e687 4812@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4813
4814@kindex info frame
41afff9a 4815@kindex info f @r{(@code{info frame})}
c906108c
SS
4816@item info frame
4817@itemx info f
4818This command prints a verbose description of the selected stack frame,
4819including:
4820
4821@itemize @bullet
5d161b24
DB
4822@item
4823the address of the frame
c906108c
SS
4824@item
4825the address of the next frame down (called by this frame)
4826@item
4827the address of the next frame up (caller of this frame)
4828@item
4829the language in which the source code corresponding to this frame is written
4830@item
4831the address of the frame's arguments
4832@item
d4f3574e
SS
4833the address of the frame's local variables
4834@item
c906108c
SS
4835the program counter saved in it (the address of execution in the caller frame)
4836@item
4837which registers were saved in the frame
4838@end itemize
4839
4840@noindent The verbose description is useful when
4841something has gone wrong that has made the stack format fail to fit
4842the usual conventions.
4843
4844@item info frame @var{addr}
4845@itemx info f @var{addr}
4846Print a verbose description of the frame at address @var{addr}, without
4847selecting that frame. The selected frame remains unchanged by this
4848command. This requires the same kind of address (more than one for some
4849architectures) that you specify in the @code{frame} command.
79a6e687 4850@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4851
4852@kindex info args
4853@item info args
4854Print the arguments of the selected frame, each on a separate line.
4855
4856@item info locals
4857@kindex info locals
4858Print the local variables of the selected frame, each on a separate
4859line. These are all variables (declared either static or automatic)
4860accessible at the point of execution of the selected frame.
4861
c906108c 4862@kindex info catch
d4f3574e
SS
4863@cindex catch exceptions, list active handlers
4864@cindex exception handlers, how to list
c906108c
SS
4865@item info catch
4866Print a list of all the exception handlers that are active in the
4867current stack frame at the current point of execution. To see other
4868exception handlers, visit the associated frame (using the @code{up},
4869@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4870@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4871
c906108c
SS
4872@end table
4873
c906108c 4874
6d2ebf8b 4875@node Source
c906108c
SS
4876@chapter Examining Source Files
4877
4878@value{GDBN} can print parts of your program's source, since the debugging
4879information recorded in the program tells @value{GDBN} what source files were
4880used to build it. When your program stops, @value{GDBN} spontaneously prints
4881the line where it stopped. Likewise, when you select a stack frame
79a6e687 4882(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4883execution in that frame has stopped. You can print other portions of
4884source files by explicit command.
4885
7a292a7a 4886If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4887prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4888@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4889
4890@menu
4891* List:: Printing source lines
2a25a5ba 4892* Specify Location:: How to specify code locations
87885426 4893* Edit:: Editing source files
c906108c 4894* Search:: Searching source files
c906108c
SS
4895* Source Path:: Specifying source directories
4896* Machine Code:: Source and machine code
4897@end menu
4898
6d2ebf8b 4899@node List
79a6e687 4900@section Printing Source Lines
c906108c
SS
4901
4902@kindex list
41afff9a 4903@kindex l @r{(@code{list})}
c906108c 4904To print lines from a source file, use the @code{list} command
5d161b24 4905(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4906There are several ways to specify what part of the file you want to
4907print; see @ref{Specify Location}, for the full list.
c906108c
SS
4908
4909Here are the forms of the @code{list} command most commonly used:
4910
4911@table @code
4912@item list @var{linenum}
4913Print lines centered around line number @var{linenum} in the
4914current source file.
4915
4916@item list @var{function}
4917Print lines centered around the beginning of function
4918@var{function}.
4919
4920@item list
4921Print more lines. If the last lines printed were printed with a
4922@code{list} command, this prints lines following the last lines
4923printed; however, if the last line printed was a solitary line printed
4924as part of displaying a stack frame (@pxref{Stack, ,Examining the
4925Stack}), this prints lines centered around that line.
4926
4927@item list -
4928Print lines just before the lines last printed.
4929@end table
4930
9c16f35a 4931@cindex @code{list}, how many lines to display
c906108c
SS
4932By default, @value{GDBN} prints ten source lines with any of these forms of
4933the @code{list} command. You can change this using @code{set listsize}:
4934
4935@table @code
4936@kindex set listsize
4937@item set listsize @var{count}
4938Make the @code{list} command display @var{count} source lines (unless
4939the @code{list} argument explicitly specifies some other number).
4940
4941@kindex show listsize
4942@item show listsize
4943Display the number of lines that @code{list} prints.
4944@end table
4945
4946Repeating a @code{list} command with @key{RET} discards the argument,
4947so it is equivalent to typing just @code{list}. This is more useful
4948than listing the same lines again. An exception is made for an
4949argument of @samp{-}; that argument is preserved in repetition so that
4950each repetition moves up in the source file.
4951
c906108c
SS
4952In general, the @code{list} command expects you to supply zero, one or two
4953@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4954of writing them (@pxref{Specify Location}), but the effect is always
4955to specify some source line.
4956
c906108c
SS
4957Here is a complete description of the possible arguments for @code{list}:
4958
4959@table @code
4960@item list @var{linespec}
4961Print lines centered around the line specified by @var{linespec}.
4962
4963@item list @var{first},@var{last}
4964Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4965linespecs. When a @code{list} command has two linespecs, and the
4966source file of the second linespec is omitted, this refers to
4967the same source file as the first linespec.
c906108c
SS
4968
4969@item list ,@var{last}
4970Print lines ending with @var{last}.
4971
4972@item list @var{first},
4973Print lines starting with @var{first}.
4974
4975@item list +
4976Print lines just after the lines last printed.
4977
4978@item list -
4979Print lines just before the lines last printed.
4980
4981@item list
4982As described in the preceding table.
4983@end table
4984
2a25a5ba
EZ
4985@node Specify Location
4986@section Specifying a Location
4987@cindex specifying location
4988@cindex linespec
c906108c 4989
2a25a5ba
EZ
4990Several @value{GDBN} commands accept arguments that specify a location
4991of your program's code. Since @value{GDBN} is a source-level
4992debugger, a location usually specifies some line in the source code;
4993for that reason, locations are also known as @dfn{linespecs}.
c906108c 4994
2a25a5ba
EZ
4995Here are all the different ways of specifying a code location that
4996@value{GDBN} understands:
c906108c 4997
2a25a5ba
EZ
4998@table @code
4999@item @var{linenum}
5000Specifies the line number @var{linenum} of the current source file.
c906108c 5001
2a25a5ba
EZ
5002@item -@var{offset}
5003@itemx +@var{offset}
5004Specifies the line @var{offset} lines before or after the @dfn{current
5005line}. For the @code{list} command, the current line is the last one
5006printed; for the breakpoint commands, this is the line at which
5007execution stopped in the currently selected @dfn{stack frame}
5008(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5009used as the second of the two linespecs in a @code{list} command,
5010this specifies the line @var{offset} lines up or down from the first
5011linespec.
5012
5013@item @var{filename}:@var{linenum}
5014Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5015
5016@item @var{function}
5017Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5018For example, in C, this is the line with the open brace.
c906108c
SS
5019
5020@item @var{filename}:@var{function}
2a25a5ba
EZ
5021Specifies the line that begins the body of the function @var{function}
5022in the file @var{filename}. You only need the file name with a
5023function name to avoid ambiguity when there are identically named
5024functions in different source files.
c906108c
SS
5025
5026@item *@var{address}
2a25a5ba
EZ
5027Specifies the program address @var{address}. For line-oriented
5028commands, such as @code{list} and @code{edit}, this specifies a source
5029line that contains @var{address}. For @code{break} and other
5030breakpoint oriented commands, this can be used to set breakpoints in
5031parts of your program which do not have debugging information or
5032source files.
5033
5034Here @var{address} may be any expression valid in the current working
5035language (@pxref{Languages, working language}) that specifies a code
5036address. As a convenience, @value{GDBN} extends the semantics of
5037expressions used in locations to cover the situations that frequently
5038happen during debugging. Here are the various forms of @var{address}:
5039
5040@table @code
5041@item @var{expression}
5042Any expression valid in the current working language.
5043
5044@item @var{funcaddr}
5045An address of a function or procedure derived from its name. In C,
5046C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5047simply the function's name @var{function} (and actually a special case
5048of a valid expression). In Pascal and Modula-2, this is
5049@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5050(although the Pascal form also works).
5051
5052This form specifies the address of the function's first instruction,
5053before the stack frame and arguments have been set up.
5054
5055@item '@var{filename}'::@var{funcaddr}
5056Like @var{funcaddr} above, but also specifies the name of the source
5057file explicitly. This is useful if the name of the function does not
5058specify the function unambiguously, e.g., if there are several
5059functions with identical names in different source files.
c906108c
SS
5060@end table
5061
2a25a5ba
EZ
5062@end table
5063
5064
87885426 5065@node Edit
79a6e687 5066@section Editing Source Files
87885426
FN
5067@cindex editing source files
5068
5069@kindex edit
5070@kindex e @r{(@code{edit})}
5071To edit the lines in a source file, use the @code{edit} command.
5072The editing program of your choice
5073is invoked with the current line set to
5074the active line in the program.
5075Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5076want to print if you want to see other parts of the program:
87885426
FN
5077
5078@table @code
2a25a5ba
EZ
5079@item edit @var{location}
5080Edit the source file specified by @code{location}. Editing starts at
5081that @var{location}, e.g., at the specified source line of the
5082specified file. @xref{Specify Location}, for all the possible forms
5083of the @var{location} argument; here are the forms of the @code{edit}
5084command most commonly used:
87885426 5085
2a25a5ba 5086@table @code
87885426
FN
5087@item edit @var{number}
5088Edit the current source file with @var{number} as the active line number.
5089
5090@item edit @var{function}
5091Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5092@end table
87885426 5093
87885426
FN
5094@end table
5095
79a6e687 5096@subsection Choosing your Editor
87885426
FN
5097You can customize @value{GDBN} to use any editor you want
5098@footnote{
5099The only restriction is that your editor (say @code{ex}), recognizes the
5100following command-line syntax:
10998722 5101@smallexample
87885426 5102ex +@var{number} file
10998722 5103@end smallexample
15387254
EZ
5104The optional numeric value +@var{number} specifies the number of the line in
5105the file where to start editing.}.
5106By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5107by setting the environment variable @code{EDITOR} before using
5108@value{GDBN}. For example, to configure @value{GDBN} to use the
5109@code{vi} editor, you could use these commands with the @code{sh} shell:
5110@smallexample
87885426
FN
5111EDITOR=/usr/bin/vi
5112export EDITOR
15387254 5113gdb @dots{}
10998722 5114@end smallexample
87885426 5115or in the @code{csh} shell,
10998722 5116@smallexample
87885426 5117setenv EDITOR /usr/bin/vi
15387254 5118gdb @dots{}
10998722 5119@end smallexample
87885426 5120
6d2ebf8b 5121@node Search
79a6e687 5122@section Searching Source Files
15387254 5123@cindex searching source files
c906108c
SS
5124
5125There are two commands for searching through the current source file for a
5126regular expression.
5127
5128@table @code
5129@kindex search
5130@kindex forward-search
5131@item forward-search @var{regexp}
5132@itemx search @var{regexp}
5133The command @samp{forward-search @var{regexp}} checks each line,
5134starting with the one following the last line listed, for a match for
5d161b24 5135@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5136synonym @samp{search @var{regexp}} or abbreviate the command name as
5137@code{fo}.
5138
09d4efe1 5139@kindex reverse-search
c906108c
SS
5140@item reverse-search @var{regexp}
5141The command @samp{reverse-search @var{regexp}} checks each line, starting
5142with the one before the last line listed and going backward, for a match
5143for @var{regexp}. It lists the line that is found. You can abbreviate
5144this command as @code{rev}.
5145@end table
c906108c 5146
6d2ebf8b 5147@node Source Path
79a6e687 5148@section Specifying Source Directories
c906108c
SS
5149
5150@cindex source path
5151@cindex directories for source files
5152Executable programs sometimes do not record the directories of the source
5153files from which they were compiled, just the names. Even when they do,
5154the directories could be moved between the compilation and your debugging
5155session. @value{GDBN} has a list of directories to search for source files;
5156this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5157it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5158in the list, until it finds a file with the desired name.
5159
5160For example, suppose an executable references the file
5161@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5162@file{/mnt/cross}. The file is first looked up literally; if this
5163fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5164fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5165message is printed. @value{GDBN} does not look up the parts of the
5166source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5167Likewise, the subdirectories of the source path are not searched: if
5168the source path is @file{/mnt/cross}, and the binary refers to
5169@file{foo.c}, @value{GDBN} would not find it under
5170@file{/mnt/cross/usr/src/foo-1.0/lib}.
5171
5172Plain file names, relative file names with leading directories, file
5173names containing dots, etc.@: are all treated as described above; for
5174instance, if the source path is @file{/mnt/cross}, and the source file
5175is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5176@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5177that---@file{/mnt/cross/foo.c}.
5178
5179Note that the executable search path is @emph{not} used to locate the
cd852561 5180source files.
c906108c
SS
5181
5182Whenever you reset or rearrange the source path, @value{GDBN} clears out
5183any information it has cached about where source files are found and where
5184each line is in the file.
5185
5186@kindex directory
5187@kindex dir
d4f3574e
SS
5188When you start @value{GDBN}, its source path includes only @samp{cdir}
5189and @samp{cwd}, in that order.
c906108c
SS
5190To add other directories, use the @code{directory} command.
5191
4b505b12
AS
5192The search path is used to find both program source files and @value{GDBN}
5193script files (read using the @samp{-command} option and @samp{source} command).
5194
30daae6c
JB
5195In addition to the source path, @value{GDBN} provides a set of commands
5196that manage a list of source path substitution rules. A @dfn{substitution
5197rule} specifies how to rewrite source directories stored in the program's
5198debug information in case the sources were moved to a different
5199directory between compilation and debugging. A rule is made of
5200two strings, the first specifying what needs to be rewritten in
5201the path, and the second specifying how it should be rewritten.
5202In @ref{set substitute-path}, we name these two parts @var{from} and
5203@var{to} respectively. @value{GDBN} does a simple string replacement
5204of @var{from} with @var{to} at the start of the directory part of the
5205source file name, and uses that result instead of the original file
5206name to look up the sources.
5207
5208Using the previous example, suppose the @file{foo-1.0} tree has been
5209moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5210@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5211@file{/mnt/cross}. The first lookup will then be
5212@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5213of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5214substitution rule, use the @code{set substitute-path} command
5215(@pxref{set substitute-path}).
5216
5217To avoid unexpected substitution results, a rule is applied only if the
5218@var{from} part of the directory name ends at a directory separator.
5219For instance, a rule substituting @file{/usr/source} into
5220@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5221not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5222is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5223not be applied to @file{/root/usr/source/baz.c} either.
5224
5225In many cases, you can achieve the same result using the @code{directory}
5226command. However, @code{set substitute-path} can be more efficient in
5227the case where the sources are organized in a complex tree with multiple
5228subdirectories. With the @code{directory} command, you need to add each
5229subdirectory of your project. If you moved the entire tree while
5230preserving its internal organization, then @code{set substitute-path}
5231allows you to direct the debugger to all the sources with one single
5232command.
5233
5234@code{set substitute-path} is also more than just a shortcut command.
5235The source path is only used if the file at the original location no
5236longer exists. On the other hand, @code{set substitute-path} modifies
5237the debugger behavior to look at the rewritten location instead. So, if
5238for any reason a source file that is not relevant to your executable is
5239located at the original location, a substitution rule is the only
3f94c067 5240method available to point @value{GDBN} at the new location.
30daae6c 5241
c906108c
SS
5242@table @code
5243@item directory @var{dirname} @dots{}
5244@item dir @var{dirname} @dots{}
5245Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5246directory names may be given to this command, separated by @samp{:}
5247(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5248part of absolute file names) or
c906108c
SS
5249whitespace. You may specify a directory that is already in the source
5250path; this moves it forward, so @value{GDBN} searches it sooner.
5251
5252@kindex cdir
5253@kindex cwd
41afff9a 5254@vindex $cdir@r{, convenience variable}
d3e8051b 5255@vindex $cwd@r{, convenience variable}
c906108c
SS
5256@cindex compilation directory
5257@cindex current directory
5258@cindex working directory
5259@cindex directory, current
5260@cindex directory, compilation
5261You can use the string @samp{$cdir} to refer to the compilation
5262directory (if one is recorded), and @samp{$cwd} to refer to the current
5263working directory. @samp{$cwd} is not the same as @samp{.}---the former
5264tracks the current working directory as it changes during your @value{GDBN}
5265session, while the latter is immediately expanded to the current
5266directory at the time you add an entry to the source path.
5267
5268@item directory
cd852561 5269Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5270
5271@c RET-repeat for @code{directory} is explicitly disabled, but since
5272@c repeating it would be a no-op we do not say that. (thanks to RMS)
5273
5274@item show directories
5275@kindex show directories
5276Print the source path: show which directories it contains.
30daae6c
JB
5277
5278@anchor{set substitute-path}
5279@item set substitute-path @var{from} @var{to}
5280@kindex set substitute-path
5281Define a source path substitution rule, and add it at the end of the
5282current list of existing substitution rules. If a rule with the same
5283@var{from} was already defined, then the old rule is also deleted.
5284
5285For example, if the file @file{/foo/bar/baz.c} was moved to
5286@file{/mnt/cross/baz.c}, then the command
5287
5288@smallexample
5289(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5290@end smallexample
5291
5292@noindent
5293will tell @value{GDBN} to replace @samp{/usr/src} with
5294@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5295@file{baz.c} even though it was moved.
5296
5297In the case when more than one substitution rule have been defined,
5298the rules are evaluated one by one in the order where they have been
5299defined. The first one matching, if any, is selected to perform
5300the substitution.
5301
5302For instance, if we had entered the following commands:
5303
5304@smallexample
5305(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5306(@value{GDBP}) set substitute-path /usr/src /mnt/src
5307@end smallexample
5308
5309@noindent
5310@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5311@file{/mnt/include/defs.h} by using the first rule. However, it would
5312use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5313@file{/mnt/src/lib/foo.c}.
5314
5315
5316@item unset substitute-path [path]
5317@kindex unset substitute-path
5318If a path is specified, search the current list of substitution rules
5319for a rule that would rewrite that path. Delete that rule if found.
5320A warning is emitted by the debugger if no rule could be found.
5321
5322If no path is specified, then all substitution rules are deleted.
5323
5324@item show substitute-path [path]
5325@kindex show substitute-path
5326If a path is specified, then print the source path substitution rule
5327which would rewrite that path, if any.
5328
5329If no path is specified, then print all existing source path substitution
5330rules.
5331
c906108c
SS
5332@end table
5333
5334If your source path is cluttered with directories that are no longer of
5335interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5336versions of source. You can correct the situation as follows:
5337
5338@enumerate
5339@item
cd852561 5340Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5341
5342@item
5343Use @code{directory} with suitable arguments to reinstall the
5344directories you want in the source path. You can add all the
5345directories in one command.
5346@end enumerate
5347
6d2ebf8b 5348@node Machine Code
79a6e687 5349@section Source and Machine Code
15387254 5350@cindex source line and its code address
c906108c
SS
5351
5352You can use the command @code{info line} to map source lines to program
5353addresses (and vice versa), and the command @code{disassemble} to display
5354a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5355mode, the @code{info line} command causes the arrow to point to the
5d161b24 5356line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5357well as hex.
5358
5359@table @code
5360@kindex info line
5361@item info line @var{linespec}
5362Print the starting and ending addresses of the compiled code for
5363source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5364the ways documented in @ref{Specify Location}.
c906108c
SS
5365@end table
5366
5367For example, we can use @code{info line} to discover the location of
5368the object code for the first line of function
5369@code{m4_changequote}:
5370
d4f3574e
SS
5371@c FIXME: I think this example should also show the addresses in
5372@c symbolic form, as they usually would be displayed.
c906108c 5373@smallexample
96a2c332 5374(@value{GDBP}) info line m4_changequote
c906108c
SS
5375Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5376@end smallexample
5377
5378@noindent
15387254 5379@cindex code address and its source line
c906108c
SS
5380We can also inquire (using @code{*@var{addr}} as the form for
5381@var{linespec}) what source line covers a particular address:
5382@smallexample
5383(@value{GDBP}) info line *0x63ff
5384Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5385@end smallexample
5386
5387@cindex @code{$_} and @code{info line}
15387254 5388@cindex @code{x} command, default address
41afff9a 5389@kindex x@r{(examine), and} info line
c906108c
SS
5390After @code{info line}, the default address for the @code{x} command
5391is changed to the starting address of the line, so that @samp{x/i} is
5392sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5393,Examining Memory}). Also, this address is saved as the value of the
c906108c 5394convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5395Variables}).
c906108c
SS
5396
5397@table @code
5398@kindex disassemble
5399@cindex assembly instructions
5400@cindex instructions, assembly
5401@cindex machine instructions
5402@cindex listing machine instructions
5403@item disassemble
5404This specialized command dumps a range of memory as machine
5405instructions. The default memory range is the function surrounding the
5406program counter of the selected frame. A single argument to this
5407command is a program counter value; @value{GDBN} dumps the function
5408surrounding this value. Two arguments specify a range of addresses
5409(first inclusive, second exclusive) to dump.
5410@end table
5411
c906108c
SS
5412The following example shows the disassembly of a range of addresses of
5413HP PA-RISC 2.0 code:
5414
5415@smallexample
5416(@value{GDBP}) disas 0x32c4 0x32e4
5417Dump of assembler code from 0x32c4 to 0x32e4:
54180x32c4 <main+204>: addil 0,dp
54190x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54200x32cc <main+212>: ldil 0x3000,r31
54210x32d0 <main+216>: ble 0x3f8(sr4,r31)
54220x32d4 <main+220>: ldo 0(r31),rp
54230x32d8 <main+224>: addil -0x800,dp
54240x32dc <main+228>: ldo 0x588(r1),r26
54250x32e0 <main+232>: ldil 0x3000,r31
5426End of assembler dump.
5427@end smallexample
c906108c
SS
5428
5429Some architectures have more than one commonly-used set of instruction
5430mnemonics or other syntax.
5431
76d17f34
EZ
5432For programs that were dynamically linked and use shared libraries,
5433instructions that call functions or branch to locations in the shared
5434libraries might show a seemingly bogus location---it's actually a
5435location of the relocation table. On some architectures, @value{GDBN}
5436might be able to resolve these to actual function names.
5437
c906108c 5438@table @code
d4f3574e 5439@kindex set disassembly-flavor
d4f3574e
SS
5440@cindex Intel disassembly flavor
5441@cindex AT&T disassembly flavor
5442@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5443Select the instruction set to use when disassembling the
5444program via the @code{disassemble} or @code{x/i} commands.
5445
5446Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5447can set @var{instruction-set} to either @code{intel} or @code{att}.
5448The default is @code{att}, the AT&T flavor used by default by Unix
5449assemblers for x86-based targets.
9c16f35a
EZ
5450
5451@kindex show disassembly-flavor
5452@item show disassembly-flavor
5453Show the current setting of the disassembly flavor.
c906108c
SS
5454@end table
5455
5456
6d2ebf8b 5457@node Data
c906108c
SS
5458@chapter Examining Data
5459
5460@cindex printing data
5461@cindex examining data
5462@kindex print
5463@kindex inspect
5464@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5465@c document because it is nonstandard... Under Epoch it displays in a
5466@c different window or something like that.
5467The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5468command (abbreviated @code{p}), or its synonym @code{inspect}. It
5469evaluates and prints the value of an expression of the language your
5470program is written in (@pxref{Languages, ,Using @value{GDBN} with
5471Different Languages}).
c906108c
SS
5472
5473@table @code
d4f3574e
SS
5474@item print @var{expr}
5475@itemx print /@var{f} @var{expr}
5476@var{expr} is an expression (in the source language). By default the
5477value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5478you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5479@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5480Formats}.
c906108c
SS
5481
5482@item print
5483@itemx print /@var{f}
15387254 5484@cindex reprint the last value
d4f3574e 5485If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5486@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5487conveniently inspect the same value in an alternative format.
5488@end table
5489
5490A more low-level way of examining data is with the @code{x} command.
5491It examines data in memory at a specified address and prints it in a
79a6e687 5492specified format. @xref{Memory, ,Examining Memory}.
c906108c 5493
7a292a7a 5494If you are interested in information about types, or about how the
d4f3574e
SS
5495fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5496command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5497Table}.
c906108c
SS
5498
5499@menu
5500* Expressions:: Expressions
5501* Variables:: Program variables
5502* Arrays:: Artificial arrays
5503* Output Formats:: Output formats
5504* Memory:: Examining memory
5505* Auto Display:: Automatic display
5506* Print Settings:: Print settings
5507* Value History:: Value history
5508* Convenience Vars:: Convenience variables
5509* Registers:: Registers
c906108c 5510* Floating Point Hardware:: Floating point hardware
53c69bd7 5511* Vector Unit:: Vector Unit
721c2651 5512* OS Information:: Auxiliary data provided by operating system
29e57380 5513* Memory Region Attributes:: Memory region attributes
16d9dec6 5514* Dump/Restore Files:: Copy between memory and a file
384ee23f 5515* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5516* Character Sets:: Debugging programs that use a different
5517 character set than GDB does
09d4efe1 5518* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5519@end menu
5520
6d2ebf8b 5521@node Expressions
c906108c
SS
5522@section Expressions
5523
5524@cindex expressions
5525@code{print} and many other @value{GDBN} commands accept an expression and
5526compute its value. Any kind of constant, variable or operator defined
5527by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5528@value{GDBN}. This includes conditional expressions, function calls,
5529casts, and string constants. It also includes preprocessor macros, if
5530you compiled your program to include this information; see
5531@ref{Compilation}.
c906108c 5532
15387254 5533@cindex arrays in expressions
d4f3574e
SS
5534@value{GDBN} supports array constants in expressions input by
5535the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5536you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5537memory that is @code{malloc}ed in the target program.
c906108c 5538
c906108c
SS
5539Because C is so widespread, most of the expressions shown in examples in
5540this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5541Languages}, for information on how to use expressions in other
5542languages.
5543
5544In this section, we discuss operators that you can use in @value{GDBN}
5545expressions regardless of your programming language.
5546
15387254 5547@cindex casts, in expressions
c906108c
SS
5548Casts are supported in all languages, not just in C, because it is so
5549useful to cast a number into a pointer in order to examine a structure
5550at that address in memory.
5551@c FIXME: casts supported---Mod2 true?
c906108c
SS
5552
5553@value{GDBN} supports these operators, in addition to those common
5554to programming languages:
5555
5556@table @code
5557@item @@
5558@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5559@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5560
5561@item ::
5562@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5563function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5564
5565@cindex @{@var{type}@}
5566@cindex type casting memory
5567@cindex memory, viewing as typed object
5568@cindex casts, to view memory
5569@item @{@var{type}@} @var{addr}
5570Refers to an object of type @var{type} stored at address @var{addr} in
5571memory. @var{addr} may be any expression whose value is an integer or
5572pointer (but parentheses are required around binary operators, just as in
5573a cast). This construct is allowed regardless of what kind of data is
5574normally supposed to reside at @var{addr}.
5575@end table
5576
6d2ebf8b 5577@node Variables
79a6e687 5578@section Program Variables
c906108c
SS
5579
5580The most common kind of expression to use is the name of a variable
5581in your program.
5582
5583Variables in expressions are understood in the selected stack frame
79a6e687 5584(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5585
5586@itemize @bullet
5587@item
5588global (or file-static)
5589@end itemize
5590
5d161b24 5591@noindent or
c906108c
SS
5592
5593@itemize @bullet
5594@item
5595visible according to the scope rules of the
5596programming language from the point of execution in that frame
5d161b24 5597@end itemize
c906108c
SS
5598
5599@noindent This means that in the function
5600
474c8240 5601@smallexample
c906108c
SS
5602foo (a)
5603 int a;
5604@{
5605 bar (a);
5606 @{
5607 int b = test ();
5608 bar (b);
5609 @}
5610@}
474c8240 5611@end smallexample
c906108c
SS
5612
5613@noindent
5614you can examine and use the variable @code{a} whenever your program is
5615executing within the function @code{foo}, but you can only use or
5616examine the variable @code{b} while your program is executing inside
5617the block where @code{b} is declared.
5618
5619@cindex variable name conflict
5620There is an exception: you can refer to a variable or function whose
5621scope is a single source file even if the current execution point is not
5622in this file. But it is possible to have more than one such variable or
5623function with the same name (in different source files). If that
5624happens, referring to that name has unpredictable effects. If you wish,
5625you can specify a static variable in a particular function or file,
15387254 5626using the colon-colon (@code{::}) notation:
c906108c 5627
d4f3574e 5628@cindex colon-colon, context for variables/functions
12c27660 5629@ifnotinfo
c906108c 5630@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5631@cindex @code{::}, context for variables/functions
12c27660 5632@end ifnotinfo
474c8240 5633@smallexample
c906108c
SS
5634@var{file}::@var{variable}
5635@var{function}::@var{variable}
474c8240 5636@end smallexample
c906108c
SS
5637
5638@noindent
5639Here @var{file} or @var{function} is the name of the context for the
5640static @var{variable}. In the case of file names, you can use quotes to
5641make sure @value{GDBN} parses the file name as a single word---for example,
5642to print a global value of @code{x} defined in @file{f2.c}:
5643
474c8240 5644@smallexample
c906108c 5645(@value{GDBP}) p 'f2.c'::x
474c8240 5646@end smallexample
c906108c 5647
b37052ae 5648@cindex C@t{++} scope resolution
c906108c 5649This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5650use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5651scope resolution operator in @value{GDBN} expressions.
5652@c FIXME: Um, so what happens in one of those rare cases where it's in
5653@c conflict?? --mew
c906108c
SS
5654
5655@cindex wrong values
5656@cindex variable values, wrong
15387254
EZ
5657@cindex function entry/exit, wrong values of variables
5658@cindex optimized code, wrong values of variables
c906108c
SS
5659@quotation
5660@emph{Warning:} Occasionally, a local variable may appear to have the
5661wrong value at certain points in a function---just after entry to a new
5662scope, and just before exit.
5663@end quotation
5664You may see this problem when you are stepping by machine instructions.
5665This is because, on most machines, it takes more than one instruction to
5666set up a stack frame (including local variable definitions); if you are
5667stepping by machine instructions, variables may appear to have the wrong
5668values until the stack frame is completely built. On exit, it usually
5669also takes more than one machine instruction to destroy a stack frame;
5670after you begin stepping through that group of instructions, local
5671variable definitions may be gone.
5672
5673This may also happen when the compiler does significant optimizations.
5674To be sure of always seeing accurate values, turn off all optimization
5675when compiling.
5676
d4f3574e
SS
5677@cindex ``No symbol "foo" in current context''
5678Another possible effect of compiler optimizations is to optimize
5679unused variables out of existence, or assign variables to registers (as
5680opposed to memory addresses). Depending on the support for such cases
5681offered by the debug info format used by the compiler, @value{GDBN}
5682might not be able to display values for such local variables. If that
5683happens, @value{GDBN} will print a message like this:
5684
474c8240 5685@smallexample
d4f3574e 5686No symbol "foo" in current context.
474c8240 5687@end smallexample
d4f3574e
SS
5688
5689To solve such problems, either recompile without optimizations, or use a
5690different debug info format, if the compiler supports several such
15387254 5691formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5692usually supports the @option{-gstabs+} option. @option{-gstabs+}
5693produces debug info in a format that is superior to formats such as
5694COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5695an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5696for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5697Compiler Collection (GCC)}.
79a6e687 5698@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5699that are best suited to C@t{++} programs.
d4f3574e 5700
ab1adacd
EZ
5701If you ask to print an object whose contents are unknown to
5702@value{GDBN}, e.g., because its data type is not completely specified
5703by the debug information, @value{GDBN} will say @samp{<incomplete
5704type>}. @xref{Symbols, incomplete type}, for more about this.
5705
3a60f64e
JK
5706Strings are identified as arrays of @code{char} values without specified
5707signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5708printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5709@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5710defines literal string type @code{"char"} as @code{char} without a sign.
5711For program code
5712
5713@smallexample
5714char var0[] = "A";
5715signed char var1[] = "A";
5716@end smallexample
5717
5718You get during debugging
5719@smallexample
5720(gdb) print var0
5721$1 = "A"
5722(gdb) print var1
5723$2 = @{65 'A', 0 '\0'@}
5724@end smallexample
5725
6d2ebf8b 5726@node Arrays
79a6e687 5727@section Artificial Arrays
c906108c
SS
5728
5729@cindex artificial array
15387254 5730@cindex arrays
41afff9a 5731@kindex @@@r{, referencing memory as an array}
c906108c
SS
5732It is often useful to print out several successive objects of the
5733same type in memory; a section of an array, or an array of
5734dynamically determined size for which only a pointer exists in the
5735program.
5736
5737You can do this by referring to a contiguous span of memory as an
5738@dfn{artificial array}, using the binary operator @samp{@@}. The left
5739operand of @samp{@@} should be the first element of the desired array
5740and be an individual object. The right operand should be the desired length
5741of the array. The result is an array value whose elements are all of
5742the type of the left argument. The first element is actually the left
5743argument; the second element comes from bytes of memory immediately
5744following those that hold the first element, and so on. Here is an
5745example. If a program says
5746
474c8240 5747@smallexample
c906108c 5748int *array = (int *) malloc (len * sizeof (int));
474c8240 5749@end smallexample
c906108c
SS
5750
5751@noindent
5752you can print the contents of @code{array} with
5753
474c8240 5754@smallexample
c906108c 5755p *array@@len
474c8240 5756@end smallexample
c906108c
SS
5757
5758The left operand of @samp{@@} must reside in memory. Array values made
5759with @samp{@@} in this way behave just like other arrays in terms of
5760subscripting, and are coerced to pointers when used in expressions.
5761Artificial arrays most often appear in expressions via the value history
79a6e687 5762(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5763
5764Another way to create an artificial array is to use a cast.
5765This re-interprets a value as if it were an array.
5766The value need not be in memory:
474c8240 5767@smallexample
c906108c
SS
5768(@value{GDBP}) p/x (short[2])0x12345678
5769$1 = @{0x1234, 0x5678@}
474c8240 5770@end smallexample
c906108c
SS
5771
5772As a convenience, if you leave the array length out (as in
c3f6f71d 5773@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5774the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5775@smallexample
c906108c
SS
5776(@value{GDBP}) p/x (short[])0x12345678
5777$2 = @{0x1234, 0x5678@}
474c8240 5778@end smallexample
c906108c
SS
5779
5780Sometimes the artificial array mechanism is not quite enough; in
5781moderately complex data structures, the elements of interest may not
5782actually be adjacent---for example, if you are interested in the values
5783of pointers in an array. One useful work-around in this situation is
5784to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5785Variables}) as a counter in an expression that prints the first
c906108c
SS
5786interesting value, and then repeat that expression via @key{RET}. For
5787instance, suppose you have an array @code{dtab} of pointers to
5788structures, and you are interested in the values of a field @code{fv}
5789in each structure. Here is an example of what you might type:
5790
474c8240 5791@smallexample
c906108c
SS
5792set $i = 0
5793p dtab[$i++]->fv
5794@key{RET}
5795@key{RET}
5796@dots{}
474c8240 5797@end smallexample
c906108c 5798
6d2ebf8b 5799@node Output Formats
79a6e687 5800@section Output Formats
c906108c
SS
5801
5802@cindex formatted output
5803@cindex output formats
5804By default, @value{GDBN} prints a value according to its data type. Sometimes
5805this is not what you want. For example, you might want to print a number
5806in hex, or a pointer in decimal. Or you might want to view data in memory
5807at a certain address as a character string or as an instruction. To do
5808these things, specify an @dfn{output format} when you print a value.
5809
5810The simplest use of output formats is to say how to print a value
5811already computed. This is done by starting the arguments of the
5812@code{print} command with a slash and a format letter. The format
5813letters supported are:
5814
5815@table @code
5816@item x
5817Regard the bits of the value as an integer, and print the integer in
5818hexadecimal.
5819
5820@item d
5821Print as integer in signed decimal.
5822
5823@item u
5824Print as integer in unsigned decimal.
5825
5826@item o
5827Print as integer in octal.
5828
5829@item t
5830Print as integer in binary. The letter @samp{t} stands for ``two''.
5831@footnote{@samp{b} cannot be used because these format letters are also
5832used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5833see @ref{Memory,,Examining Memory}.}
c906108c
SS
5834
5835@item a
5836@cindex unknown address, locating
3d67e040 5837@cindex locate address
c906108c
SS
5838Print as an address, both absolute in hexadecimal and as an offset from
5839the nearest preceding symbol. You can use this format used to discover
5840where (in what function) an unknown address is located:
5841
474c8240 5842@smallexample
c906108c
SS
5843(@value{GDBP}) p/a 0x54320
5844$3 = 0x54320 <_initialize_vx+396>
474c8240 5845@end smallexample
c906108c 5846
3d67e040
EZ
5847@noindent
5848The command @code{info symbol 0x54320} yields similar results.
5849@xref{Symbols, info symbol}.
5850
c906108c 5851@item c
51274035
EZ
5852Regard as an integer and print it as a character constant. This
5853prints both the numerical value and its character representation. The
5854character representation is replaced with the octal escape @samp{\nnn}
5855for characters outside the 7-bit @sc{ascii} range.
c906108c 5856
ea37ba09
DJ
5857Without this format, @value{GDBN} displays @code{char},
5858@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5859constants. Single-byte members of vectors are displayed as integer
5860data.
5861
c906108c
SS
5862@item f
5863Regard the bits of the value as a floating point number and print
5864using typical floating point syntax.
ea37ba09
DJ
5865
5866@item s
5867@cindex printing strings
5868@cindex printing byte arrays
5869Regard as a string, if possible. With this format, pointers to single-byte
5870data are displayed as null-terminated strings and arrays of single-byte data
5871are displayed as fixed-length strings. Other values are displayed in their
5872natural types.
5873
5874Without this format, @value{GDBN} displays pointers to and arrays of
5875@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5876strings. Single-byte members of a vector are displayed as an integer
5877array.
c906108c
SS
5878@end table
5879
5880For example, to print the program counter in hex (@pxref{Registers}), type
5881
474c8240 5882@smallexample
c906108c 5883p/x $pc
474c8240 5884@end smallexample
c906108c
SS
5885
5886@noindent
5887Note that no space is required before the slash; this is because command
5888names in @value{GDBN} cannot contain a slash.
5889
5890To reprint the last value in the value history with a different format,
5891you can use the @code{print} command with just a format and no
5892expression. For example, @samp{p/x} reprints the last value in hex.
5893
6d2ebf8b 5894@node Memory
79a6e687 5895@section Examining Memory
c906108c
SS
5896
5897You can use the command @code{x} (for ``examine'') to examine memory in
5898any of several formats, independently of your program's data types.
5899
5900@cindex examining memory
5901@table @code
41afff9a 5902@kindex x @r{(examine memory)}
c906108c
SS
5903@item x/@var{nfu} @var{addr}
5904@itemx x @var{addr}
5905@itemx x
5906Use the @code{x} command to examine memory.
5907@end table
5908
5909@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5910much memory to display and how to format it; @var{addr} is an
5911expression giving the address where you want to start displaying memory.
5912If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5913Several commands set convenient defaults for @var{addr}.
5914
5915@table @r
5916@item @var{n}, the repeat count
5917The repeat count is a decimal integer; the default is 1. It specifies
5918how much memory (counting by units @var{u}) to display.
5919@c This really is **decimal**; unaffected by 'set radix' as of GDB
5920@c 4.1.2.
5921
5922@item @var{f}, the display format
51274035
EZ
5923The display format is one of the formats used by @code{print}
5924(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5925@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5926The default is @samp{x} (hexadecimal) initially. The default changes
5927each time you use either @code{x} or @code{print}.
c906108c
SS
5928
5929@item @var{u}, the unit size
5930The unit size is any of
5931
5932@table @code
5933@item b
5934Bytes.
5935@item h
5936Halfwords (two bytes).
5937@item w
5938Words (four bytes). This is the initial default.
5939@item g
5940Giant words (eight bytes).
5941@end table
5942
5943Each time you specify a unit size with @code{x}, that size becomes the
5944default unit the next time you use @code{x}. (For the @samp{s} and
5945@samp{i} formats, the unit size is ignored and is normally not written.)
5946
5947@item @var{addr}, starting display address
5948@var{addr} is the address where you want @value{GDBN} to begin displaying
5949memory. The expression need not have a pointer value (though it may);
5950it is always interpreted as an integer address of a byte of memory.
5951@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5952@var{addr} is usually just after the last address examined---but several
5953other commands also set the default address: @code{info breakpoints} (to
5954the address of the last breakpoint listed), @code{info line} (to the
5955starting address of a line), and @code{print} (if you use it to display
5956a value from memory).
5957@end table
5958
5959For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5960(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5961starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5962words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5963@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5964
5965Since the letters indicating unit sizes are all distinct from the
5966letters specifying output formats, you do not have to remember whether
5967unit size or format comes first; either order works. The output
5968specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5969(However, the count @var{n} must come first; @samp{wx4} does not work.)
5970
5971Even though the unit size @var{u} is ignored for the formats @samp{s}
5972and @samp{i}, you might still want to use a count @var{n}; for example,
5973@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
5974including any operands. For convenience, especially when used with
5975the @code{display} command, the @samp{i} format also prints branch delay
5976slot instructions, if any, beyond the count specified, which immediately
5977follow the last instruction that is within the count. The command
5978@code{disassemble} gives an alternative way of inspecting machine
5979instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
5980
5981All the defaults for the arguments to @code{x} are designed to make it
5982easy to continue scanning memory with minimal specifications each time
5983you use @code{x}. For example, after you have inspected three machine
5984instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
5985with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
5986the repeat count @var{n} is used again; the other arguments default as
5987for successive uses of @code{x}.
5988
5989@cindex @code{$_}, @code{$__}, and value history
5990The addresses and contents printed by the @code{x} command are not saved
5991in the value history because there is often too much of them and they
5992would get in the way. Instead, @value{GDBN} makes these values available for
5993subsequent use in expressions as values of the convenience variables
5994@code{$_} and @code{$__}. After an @code{x} command, the last address
5995examined is available for use in expressions in the convenience variable
5996@code{$_}. The contents of that address, as examined, are available in
5997the convenience variable @code{$__}.
5998
5999If the @code{x} command has a repeat count, the address and contents saved
6000are from the last memory unit printed; this is not the same as the last
6001address printed if several units were printed on the last line of output.
6002
09d4efe1
EZ
6003@cindex remote memory comparison
6004@cindex verify remote memory image
6005When you are debugging a program running on a remote target machine
ea35711c 6006(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6007remote machine's memory against the executable file you downloaded to
6008the target. The @code{compare-sections} command is provided for such
6009situations.
6010
6011@table @code
6012@kindex compare-sections
6013@item compare-sections @r{[}@var{section-name}@r{]}
6014Compare the data of a loadable section @var{section-name} in the
6015executable file of the program being debugged with the same section in
6016the remote machine's memory, and report any mismatches. With no
6017arguments, compares all loadable sections. This command's
6018availability depends on the target's support for the @code{"qCRC"}
6019remote request.
6020@end table
6021
6d2ebf8b 6022@node Auto Display
79a6e687 6023@section Automatic Display
c906108c
SS
6024@cindex automatic display
6025@cindex display of expressions
6026
6027If you find that you want to print the value of an expression frequently
6028(to see how it changes), you might want to add it to the @dfn{automatic
6029display list} so that @value{GDBN} prints its value each time your program stops.
6030Each expression added to the list is given a number to identify it;
6031to remove an expression from the list, you specify that number.
6032The automatic display looks like this:
6033
474c8240 6034@smallexample
c906108c
SS
60352: foo = 38
60363: bar[5] = (struct hack *) 0x3804
474c8240 6037@end smallexample
c906108c
SS
6038
6039@noindent
6040This display shows item numbers, expressions and their current values. As with
6041displays you request manually using @code{x} or @code{print}, you can
6042specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6043whether to use @code{print} or @code{x} depending your format
6044specification---it uses @code{x} if you specify either the @samp{i}
6045or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6046
6047@table @code
6048@kindex display
d4f3574e
SS
6049@item display @var{expr}
6050Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6051each time your program stops. @xref{Expressions, ,Expressions}.
6052
6053@code{display} does not repeat if you press @key{RET} again after using it.
6054
d4f3574e 6055@item display/@var{fmt} @var{expr}
c906108c 6056For @var{fmt} specifying only a display format and not a size or
d4f3574e 6057count, add the expression @var{expr} to the auto-display list but
c906108c 6058arrange to display it each time in the specified format @var{fmt}.
79a6e687 6059@xref{Output Formats,,Output Formats}.
c906108c
SS
6060
6061@item display/@var{fmt} @var{addr}
6062For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6063number of units, add the expression @var{addr} as a memory address to
6064be examined each time your program stops. Examining means in effect
79a6e687 6065doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6066@end table
6067
6068For example, @samp{display/i $pc} can be helpful, to see the machine
6069instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6070is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6071
6072@table @code
6073@kindex delete display
6074@kindex undisplay
6075@item undisplay @var{dnums}@dots{}
6076@itemx delete display @var{dnums}@dots{}
6077Remove item numbers @var{dnums} from the list of expressions to display.
6078
6079@code{undisplay} does not repeat if you press @key{RET} after using it.
6080(Otherwise you would just get the error @samp{No display number @dots{}}.)
6081
6082@kindex disable display
6083@item disable display @var{dnums}@dots{}
6084Disable the display of item numbers @var{dnums}. A disabled display
6085item is not printed automatically, but is not forgotten. It may be
6086enabled again later.
6087
6088@kindex enable display
6089@item enable display @var{dnums}@dots{}
6090Enable display of item numbers @var{dnums}. It becomes effective once
6091again in auto display of its expression, until you specify otherwise.
6092
6093@item display
6094Display the current values of the expressions on the list, just as is
6095done when your program stops.
6096
6097@kindex info display
6098@item info display
6099Print the list of expressions previously set up to display
6100automatically, each one with its item number, but without showing the
6101values. This includes disabled expressions, which are marked as such.
6102It also includes expressions which would not be displayed right now
6103because they refer to automatic variables not currently available.
6104@end table
6105
15387254 6106@cindex display disabled out of scope
c906108c
SS
6107If a display expression refers to local variables, then it does not make
6108sense outside the lexical context for which it was set up. Such an
6109expression is disabled when execution enters a context where one of its
6110variables is not defined. For example, if you give the command
6111@code{display last_char} while inside a function with an argument
6112@code{last_char}, @value{GDBN} displays this argument while your program
6113continues to stop inside that function. When it stops elsewhere---where
6114there is no variable @code{last_char}---the display is disabled
6115automatically. The next time your program stops where @code{last_char}
6116is meaningful, you can enable the display expression once again.
6117
6d2ebf8b 6118@node Print Settings
79a6e687 6119@section Print Settings
c906108c
SS
6120
6121@cindex format options
6122@cindex print settings
6123@value{GDBN} provides the following ways to control how arrays, structures,
6124and symbols are printed.
6125
6126@noindent
6127These settings are useful for debugging programs in any language:
6128
6129@table @code
4644b6e3 6130@kindex set print
c906108c
SS
6131@item set print address
6132@itemx set print address on
4644b6e3 6133@cindex print/don't print memory addresses
c906108c
SS
6134@value{GDBN} prints memory addresses showing the location of stack
6135traces, structure values, pointer values, breakpoints, and so forth,
6136even when it also displays the contents of those addresses. The default
6137is @code{on}. For example, this is what a stack frame display looks like with
6138@code{set print address on}:
6139
6140@smallexample
6141@group
6142(@value{GDBP}) f
6143#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6144 at input.c:530
6145530 if (lquote != def_lquote)
6146@end group
6147@end smallexample
6148
6149@item set print address off
6150Do not print addresses when displaying their contents. For example,
6151this is the same stack frame displayed with @code{set print address off}:
6152
6153@smallexample
6154@group
6155(@value{GDBP}) set print addr off
6156(@value{GDBP}) f
6157#0 set_quotes (lq="<<", rq=">>") at input.c:530
6158530 if (lquote != def_lquote)
6159@end group
6160@end smallexample
6161
6162You can use @samp{set print address off} to eliminate all machine
6163dependent displays from the @value{GDBN} interface. For example, with
6164@code{print address off}, you should get the same text for backtraces on
6165all machines---whether or not they involve pointer arguments.
6166
4644b6e3 6167@kindex show print
c906108c
SS
6168@item show print address
6169Show whether or not addresses are to be printed.
6170@end table
6171
6172When @value{GDBN} prints a symbolic address, it normally prints the
6173closest earlier symbol plus an offset. If that symbol does not uniquely
6174identify the address (for example, it is a name whose scope is a single
6175source file), you may need to clarify. One way to do this is with
6176@code{info line}, for example @samp{info line *0x4537}. Alternately,
6177you can set @value{GDBN} to print the source file and line number when
6178it prints a symbolic address:
6179
6180@table @code
c906108c 6181@item set print symbol-filename on
9c16f35a
EZ
6182@cindex source file and line of a symbol
6183@cindex symbol, source file and line
c906108c
SS
6184Tell @value{GDBN} to print the source file name and line number of a
6185symbol in the symbolic form of an address.
6186
6187@item set print symbol-filename off
6188Do not print source file name and line number of a symbol. This is the
6189default.
6190
c906108c
SS
6191@item show print symbol-filename
6192Show whether or not @value{GDBN} will print the source file name and
6193line number of a symbol in the symbolic form of an address.
6194@end table
6195
6196Another situation where it is helpful to show symbol filenames and line
6197numbers is when disassembling code; @value{GDBN} shows you the line
6198number and source file that corresponds to each instruction.
6199
6200Also, you may wish to see the symbolic form only if the address being
6201printed is reasonably close to the closest earlier symbol:
6202
6203@table @code
c906108c 6204@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6205@cindex maximum value for offset of closest symbol
c906108c
SS
6206Tell @value{GDBN} to only display the symbolic form of an address if the
6207offset between the closest earlier symbol and the address is less than
5d161b24 6208@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6209to always print the symbolic form of an address if any symbol precedes it.
6210
c906108c
SS
6211@item show print max-symbolic-offset
6212Ask how large the maximum offset is that @value{GDBN} prints in a
6213symbolic address.
6214@end table
6215
6216@cindex wild pointer, interpreting
6217@cindex pointer, finding referent
6218If you have a pointer and you are not sure where it points, try
6219@samp{set print symbol-filename on}. Then you can determine the name
6220and source file location of the variable where it points, using
6221@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6222For example, here @value{GDBN} shows that a variable @code{ptt} points
6223at another variable @code{t}, defined in @file{hi2.c}:
6224
474c8240 6225@smallexample
c906108c
SS
6226(@value{GDBP}) set print symbol-filename on
6227(@value{GDBP}) p/a ptt
6228$4 = 0xe008 <t in hi2.c>
474c8240 6229@end smallexample
c906108c
SS
6230
6231@quotation
6232@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6233does not show the symbol name and filename of the referent, even with
6234the appropriate @code{set print} options turned on.
6235@end quotation
6236
6237Other settings control how different kinds of objects are printed:
6238
6239@table @code
c906108c
SS
6240@item set print array
6241@itemx set print array on
4644b6e3 6242@cindex pretty print arrays
c906108c
SS
6243Pretty print arrays. This format is more convenient to read,
6244but uses more space. The default is off.
6245
6246@item set print array off
6247Return to compressed format for arrays.
6248
c906108c
SS
6249@item show print array
6250Show whether compressed or pretty format is selected for displaying
6251arrays.
6252
3c9c013a
JB
6253@cindex print array indexes
6254@item set print array-indexes
6255@itemx set print array-indexes on
6256Print the index of each element when displaying arrays. May be more
6257convenient to locate a given element in the array or quickly find the
6258index of a given element in that printed array. The default is off.
6259
6260@item set print array-indexes off
6261Stop printing element indexes when displaying arrays.
6262
6263@item show print array-indexes
6264Show whether the index of each element is printed when displaying
6265arrays.
6266
c906108c 6267@item set print elements @var{number-of-elements}
4644b6e3 6268@cindex number of array elements to print
9c16f35a 6269@cindex limit on number of printed array elements
c906108c
SS
6270Set a limit on how many elements of an array @value{GDBN} will print.
6271If @value{GDBN} is printing a large array, it stops printing after it has
6272printed the number of elements set by the @code{set print elements} command.
6273This limit also applies to the display of strings.
d4f3574e 6274When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6275Setting @var{number-of-elements} to zero means that the printing is unlimited.
6276
c906108c
SS
6277@item show print elements
6278Display the number of elements of a large array that @value{GDBN} will print.
6279If the number is 0, then the printing is unlimited.
6280
b4740add
JB
6281@item set print frame-arguments @var{value}
6282@cindex printing frame argument values
6283@cindex print all frame argument values
6284@cindex print frame argument values for scalars only
6285@cindex do not print frame argument values
6286This command allows to control how the values of arguments are printed
6287when the debugger prints a frame (@pxref{Frames}). The possible
6288values are:
6289
6290@table @code
6291@item all
6292The values of all arguments are printed. This is the default.
6293
6294@item scalars
6295Print the value of an argument only if it is a scalar. The value of more
6296complex arguments such as arrays, structures, unions, etc, is replaced
6297by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6298
6299@smallexample
6300#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6301 at frame-args.c:23
6302@end smallexample
6303
6304@item none
6305None of the argument values are printed. Instead, the value of each argument
6306is replaced by @code{@dots{}}. In this case, the example above now becomes:
6307
6308@smallexample
6309#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6310 at frame-args.c:23
6311@end smallexample
6312@end table
6313
6314By default, all argument values are always printed. But this command
6315can be useful in several cases. For instance, it can be used to reduce
6316the amount of information printed in each frame, making the backtrace
6317more readable. Also, this command can be used to improve performance
6318when displaying Ada frames, because the computation of large arguments
6319can sometimes be CPU-intensive, especiallly in large applications.
6320Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6321avoids this computation, thus speeding up the display of each Ada frame.
6322
6323@item show print frame-arguments
6324Show how the value of arguments should be displayed when printing a frame.
6325
9c16f35a
EZ
6326@item set print repeats
6327@cindex repeated array elements
6328Set the threshold for suppressing display of repeated array
d3e8051b 6329elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6330array exceeds the threshold, @value{GDBN} prints the string
6331@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6332identical repetitions, instead of displaying the identical elements
6333themselves. Setting the threshold to zero will cause all elements to
6334be individually printed. The default threshold is 10.
6335
6336@item show print repeats
6337Display the current threshold for printing repeated identical
6338elements.
6339
c906108c 6340@item set print null-stop
4644b6e3 6341@cindex @sc{null} elements in arrays
c906108c 6342Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6343@sc{null} is encountered. This is useful when large arrays actually
c906108c 6344contain only short strings.
d4f3574e 6345The default is off.
c906108c 6346
9c16f35a
EZ
6347@item show print null-stop
6348Show whether @value{GDBN} stops printing an array on the first
6349@sc{null} character.
6350
c906108c 6351@item set print pretty on
9c16f35a
EZ
6352@cindex print structures in indented form
6353@cindex indentation in structure display
5d161b24 6354Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6355per line, like this:
6356
6357@smallexample
6358@group
6359$1 = @{
6360 next = 0x0,
6361 flags = @{
6362 sweet = 1,
6363 sour = 1
6364 @},
6365 meat = 0x54 "Pork"
6366@}
6367@end group
6368@end smallexample
6369
6370@item set print pretty off
6371Cause @value{GDBN} to print structures in a compact format, like this:
6372
6373@smallexample
6374@group
6375$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6376meat = 0x54 "Pork"@}
6377@end group
6378@end smallexample
6379
6380@noindent
6381This is the default format.
6382
c906108c
SS
6383@item show print pretty
6384Show which format @value{GDBN} is using to print structures.
6385
c906108c 6386@item set print sevenbit-strings on
4644b6e3
EZ
6387@cindex eight-bit characters in strings
6388@cindex octal escapes in strings
c906108c
SS
6389Print using only seven-bit characters; if this option is set,
6390@value{GDBN} displays any eight-bit characters (in strings or
6391character values) using the notation @code{\}@var{nnn}. This setting is
6392best if you are working in English (@sc{ascii}) and you use the
6393high-order bit of characters as a marker or ``meta'' bit.
6394
6395@item set print sevenbit-strings off
6396Print full eight-bit characters. This allows the use of more
6397international character sets, and is the default.
6398
c906108c
SS
6399@item show print sevenbit-strings
6400Show whether or not @value{GDBN} is printing only seven-bit characters.
6401
c906108c 6402@item set print union on
4644b6e3 6403@cindex unions in structures, printing
9c16f35a
EZ
6404Tell @value{GDBN} to print unions which are contained in structures
6405and other unions. This is the default setting.
c906108c
SS
6406
6407@item set print union off
9c16f35a
EZ
6408Tell @value{GDBN} not to print unions which are contained in
6409structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6410instead.
c906108c 6411
c906108c
SS
6412@item show print union
6413Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6414structures and other unions.
c906108c
SS
6415
6416For example, given the declarations
6417
6418@smallexample
6419typedef enum @{Tree, Bug@} Species;
6420typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6421typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6422 Bug_forms;
6423
6424struct thing @{
6425 Species it;
6426 union @{
6427 Tree_forms tree;
6428 Bug_forms bug;
6429 @} form;
6430@};
6431
6432struct thing foo = @{Tree, @{Acorn@}@};
6433@end smallexample
6434
6435@noindent
6436with @code{set print union on} in effect @samp{p foo} would print
6437
6438@smallexample
6439$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6440@end smallexample
6441
6442@noindent
6443and with @code{set print union off} in effect it would print
6444
6445@smallexample
6446$1 = @{it = Tree, form = @{...@}@}
6447@end smallexample
9c16f35a
EZ
6448
6449@noindent
6450@code{set print union} affects programs written in C-like languages
6451and in Pascal.
c906108c
SS
6452@end table
6453
c906108c
SS
6454@need 1000
6455@noindent
b37052ae 6456These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6457
6458@table @code
4644b6e3 6459@cindex demangling C@t{++} names
c906108c
SS
6460@item set print demangle
6461@itemx set print demangle on
b37052ae 6462Print C@t{++} names in their source form rather than in the encoded
c906108c 6463(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6464linkage. The default is on.
c906108c 6465
c906108c 6466@item show print demangle
b37052ae 6467Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6468
c906108c
SS
6469@item set print asm-demangle
6470@itemx set print asm-demangle on
b37052ae 6471Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6472in assembler code printouts such as instruction disassemblies.
6473The default is off.
6474
c906108c 6475@item show print asm-demangle
b37052ae 6476Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6477or demangled form.
6478
b37052ae
EZ
6479@cindex C@t{++} symbol decoding style
6480@cindex symbol decoding style, C@t{++}
a8f24a35 6481@kindex set demangle-style
c906108c
SS
6482@item set demangle-style @var{style}
6483Choose among several encoding schemes used by different compilers to
b37052ae 6484represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6485
6486@table @code
6487@item auto
6488Allow @value{GDBN} to choose a decoding style by inspecting your program.
6489
6490@item gnu
b37052ae 6491Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6492This is the default.
c906108c
SS
6493
6494@item hp
b37052ae 6495Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6496
6497@item lucid
b37052ae 6498Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6499
6500@item arm
b37052ae 6501Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6502@strong{Warning:} this setting alone is not sufficient to allow
6503debugging @code{cfront}-generated executables. @value{GDBN} would
6504require further enhancement to permit that.
6505
6506@end table
6507If you omit @var{style}, you will see a list of possible formats.
6508
c906108c 6509@item show demangle-style
b37052ae 6510Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6511
c906108c
SS
6512@item set print object
6513@itemx set print object on
4644b6e3 6514@cindex derived type of an object, printing
9c16f35a 6515@cindex display derived types
c906108c
SS
6516When displaying a pointer to an object, identify the @emph{actual}
6517(derived) type of the object rather than the @emph{declared} type, using
6518the virtual function table.
6519
6520@item set print object off
6521Display only the declared type of objects, without reference to the
6522virtual function table. This is the default setting.
6523
c906108c
SS
6524@item show print object
6525Show whether actual, or declared, object types are displayed.
6526
c906108c
SS
6527@item set print static-members
6528@itemx set print static-members on
4644b6e3 6529@cindex static members of C@t{++} objects
b37052ae 6530Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6531
6532@item set print static-members off
b37052ae 6533Do not print static members when displaying a C@t{++} object.
c906108c 6534
c906108c 6535@item show print static-members
9c16f35a
EZ
6536Show whether C@t{++} static members are printed or not.
6537
6538@item set print pascal_static-members
6539@itemx set print pascal_static-members on
d3e8051b
EZ
6540@cindex static members of Pascal objects
6541@cindex Pascal objects, static members display
9c16f35a
EZ
6542Print static members when displaying a Pascal object. The default is on.
6543
6544@item set print pascal_static-members off
6545Do not print static members when displaying a Pascal object.
6546
6547@item show print pascal_static-members
6548Show whether Pascal static members are printed or not.
c906108c
SS
6549
6550@c These don't work with HP ANSI C++ yet.
c906108c
SS
6551@item set print vtbl
6552@itemx set print vtbl on
4644b6e3 6553@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6554@cindex virtual functions (C@t{++}) display
6555@cindex VTBL display
b37052ae 6556Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6557(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6558ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6559
6560@item set print vtbl off
b37052ae 6561Do not pretty print C@t{++} virtual function tables.
c906108c 6562
c906108c 6563@item show print vtbl
b37052ae 6564Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6565@end table
c906108c 6566
6d2ebf8b 6567@node Value History
79a6e687 6568@section Value History
c906108c
SS
6569
6570@cindex value history
9c16f35a 6571@cindex history of values printed by @value{GDBN}
5d161b24
DB
6572Values printed by the @code{print} command are saved in the @value{GDBN}
6573@dfn{value history}. This allows you to refer to them in other expressions.
6574Values are kept until the symbol table is re-read or discarded
6575(for example with the @code{file} or @code{symbol-file} commands).
6576When the symbol table changes, the value history is discarded,
6577since the values may contain pointers back to the types defined in the
c906108c
SS
6578symbol table.
6579
6580@cindex @code{$}
6581@cindex @code{$$}
6582@cindex history number
6583The values printed are given @dfn{history numbers} by which you can
6584refer to them. These are successive integers starting with one.
6585@code{print} shows you the history number assigned to a value by
6586printing @samp{$@var{num} = } before the value; here @var{num} is the
6587history number.
6588
6589To refer to any previous value, use @samp{$} followed by the value's
6590history number. The way @code{print} labels its output is designed to
6591remind you of this. Just @code{$} refers to the most recent value in
6592the history, and @code{$$} refers to the value before that.
6593@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6594is the value just prior to @code{$$}, @code{$$1} is equivalent to
6595@code{$$}, and @code{$$0} is equivalent to @code{$}.
6596
6597For example, suppose you have just printed a pointer to a structure and
6598want to see the contents of the structure. It suffices to type
6599
474c8240 6600@smallexample
c906108c 6601p *$
474c8240 6602@end smallexample
c906108c
SS
6603
6604If you have a chain of structures where the component @code{next} points
6605to the next one, you can print the contents of the next one with this:
6606
474c8240 6607@smallexample
c906108c 6608p *$.next
474c8240 6609@end smallexample
c906108c
SS
6610
6611@noindent
6612You can print successive links in the chain by repeating this
6613command---which you can do by just typing @key{RET}.
6614
6615Note that the history records values, not expressions. If the value of
6616@code{x} is 4 and you type these commands:
6617
474c8240 6618@smallexample
c906108c
SS
6619print x
6620set x=5
474c8240 6621@end smallexample
c906108c
SS
6622
6623@noindent
6624then the value recorded in the value history by the @code{print} command
6625remains 4 even though the value of @code{x} has changed.
6626
6627@table @code
6628@kindex show values
6629@item show values
6630Print the last ten values in the value history, with their item numbers.
6631This is like @samp{p@ $$9} repeated ten times, except that @code{show
6632values} does not change the history.
6633
6634@item show values @var{n}
6635Print ten history values centered on history item number @var{n}.
6636
6637@item show values +
6638Print ten history values just after the values last printed. If no more
6639values are available, @code{show values +} produces no display.
6640@end table
6641
6642Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6643same effect as @samp{show values +}.
6644
6d2ebf8b 6645@node Convenience Vars
79a6e687 6646@section Convenience Variables
c906108c
SS
6647
6648@cindex convenience variables
9c16f35a 6649@cindex user-defined variables
c906108c
SS
6650@value{GDBN} provides @dfn{convenience variables} that you can use within
6651@value{GDBN} to hold on to a value and refer to it later. These variables
6652exist entirely within @value{GDBN}; they are not part of your program, and
6653setting a convenience variable has no direct effect on further execution
6654of your program. That is why you can use them freely.
6655
6656Convenience variables are prefixed with @samp{$}. Any name preceded by
6657@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6658the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6659(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6660by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6661
6662You can save a value in a convenience variable with an assignment
6663expression, just as you would set a variable in your program.
6664For example:
6665
474c8240 6666@smallexample
c906108c 6667set $foo = *object_ptr
474c8240 6668@end smallexample
c906108c
SS
6669
6670@noindent
6671would save in @code{$foo} the value contained in the object pointed to by
6672@code{object_ptr}.
6673
6674Using a convenience variable for the first time creates it, but its
6675value is @code{void} until you assign a new value. You can alter the
6676value with another assignment at any time.
6677
6678Convenience variables have no fixed types. You can assign a convenience
6679variable any type of value, including structures and arrays, even if
6680that variable already has a value of a different type. The convenience
6681variable, when used as an expression, has the type of its current value.
6682
6683@table @code
6684@kindex show convenience
9c16f35a 6685@cindex show all user variables
c906108c
SS
6686@item show convenience
6687Print a list of convenience variables used so far, and their values.
d4f3574e 6688Abbreviated @code{show conv}.
53e5f3cf
AS
6689
6690@kindex init-if-undefined
6691@cindex convenience variables, initializing
6692@item init-if-undefined $@var{variable} = @var{expression}
6693Set a convenience variable if it has not already been set. This is useful
6694for user-defined commands that keep some state. It is similar, in concept,
6695to using local static variables with initializers in C (except that
6696convenience variables are global). It can also be used to allow users to
6697override default values used in a command script.
6698
6699If the variable is already defined then the expression is not evaluated so
6700any side-effects do not occur.
c906108c
SS
6701@end table
6702
6703One of the ways to use a convenience variable is as a counter to be
6704incremented or a pointer to be advanced. For example, to print
6705a field from successive elements of an array of structures:
6706
474c8240 6707@smallexample
c906108c
SS
6708set $i = 0
6709print bar[$i++]->contents
474c8240 6710@end smallexample
c906108c 6711
d4f3574e
SS
6712@noindent
6713Repeat that command by typing @key{RET}.
c906108c
SS
6714
6715Some convenience variables are created automatically by @value{GDBN} and given
6716values likely to be useful.
6717
6718@table @code
41afff9a 6719@vindex $_@r{, convenience variable}
c906108c
SS
6720@item $_
6721The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6722the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6723commands which provide a default address for @code{x} to examine also
6724set @code{$_} to that address; these commands include @code{info line}
6725and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6726except when set by the @code{x} command, in which case it is a pointer
6727to the type of @code{$__}.
6728
41afff9a 6729@vindex $__@r{, convenience variable}
c906108c
SS
6730@item $__
6731The variable @code{$__} is automatically set by the @code{x} command
6732to the value found in the last address examined. Its type is chosen
6733to match the format in which the data was printed.
6734
6735@item $_exitcode
41afff9a 6736@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6737The variable @code{$_exitcode} is automatically set to the exit code when
6738the program being debugged terminates.
6739@end table
6740
53a5351d
JM
6741On HP-UX systems, if you refer to a function or variable name that
6742begins with a dollar sign, @value{GDBN} searches for a user or system
6743name first, before it searches for a convenience variable.
c906108c 6744
6d2ebf8b 6745@node Registers
c906108c
SS
6746@section Registers
6747
6748@cindex registers
6749You can refer to machine register contents, in expressions, as variables
6750with names starting with @samp{$}. The names of registers are different
6751for each machine; use @code{info registers} to see the names used on
6752your machine.
6753
6754@table @code
6755@kindex info registers
6756@item info registers
6757Print the names and values of all registers except floating-point
c85508ee 6758and vector registers (in the selected stack frame).
c906108c
SS
6759
6760@kindex info all-registers
6761@cindex floating point registers
6762@item info all-registers
6763Print the names and values of all registers, including floating-point
c85508ee 6764and vector registers (in the selected stack frame).
c906108c
SS
6765
6766@item info registers @var{regname} @dots{}
6767Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6768As discussed in detail below, register values are normally relative to
6769the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6770the machine you are using, with or without the initial @samp{$}.
6771@end table
6772
e09f16f9
EZ
6773@cindex stack pointer register
6774@cindex program counter register
6775@cindex process status register
6776@cindex frame pointer register
6777@cindex standard registers
c906108c
SS
6778@value{GDBN} has four ``standard'' register names that are available (in
6779expressions) on most machines---whenever they do not conflict with an
6780architecture's canonical mnemonics for registers. The register names
6781@code{$pc} and @code{$sp} are used for the program counter register and
6782the stack pointer. @code{$fp} is used for a register that contains a
6783pointer to the current stack frame, and @code{$ps} is used for a
6784register that contains the processor status. For example,
6785you could print the program counter in hex with
6786
474c8240 6787@smallexample
c906108c 6788p/x $pc
474c8240 6789@end smallexample
c906108c
SS
6790
6791@noindent
6792or print the instruction to be executed next with
6793
474c8240 6794@smallexample
c906108c 6795x/i $pc
474c8240 6796@end smallexample
c906108c
SS
6797
6798@noindent
6799or add four to the stack pointer@footnote{This is a way of removing
6800one word from the stack, on machines where stacks grow downward in
6801memory (most machines, nowadays). This assumes that the innermost
6802stack frame is selected; setting @code{$sp} is not allowed when other
6803stack frames are selected. To pop entire frames off the stack,
6804regardless of machine architecture, use @code{return};
79a6e687 6805see @ref{Returning, ,Returning from a Function}.} with
c906108c 6806
474c8240 6807@smallexample
c906108c 6808set $sp += 4
474c8240 6809@end smallexample
c906108c
SS
6810
6811Whenever possible, these four standard register names are available on
6812your machine even though the machine has different canonical mnemonics,
6813so long as there is no conflict. The @code{info registers} command
6814shows the canonical names. For example, on the SPARC, @code{info
6815registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6816can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6817is an alias for the @sc{eflags} register.
c906108c
SS
6818
6819@value{GDBN} always considers the contents of an ordinary register as an
6820integer when the register is examined in this way. Some machines have
6821special registers which can hold nothing but floating point; these
6822registers are considered to have floating point values. There is no way
6823to refer to the contents of an ordinary register as floating point value
6824(although you can @emph{print} it as a floating point value with
6825@samp{print/f $@var{regname}}).
6826
6827Some registers have distinct ``raw'' and ``virtual'' data formats. This
6828means that the data format in which the register contents are saved by
6829the operating system is not the same one that your program normally
6830sees. For example, the registers of the 68881 floating point
6831coprocessor are always saved in ``extended'' (raw) format, but all C
6832programs expect to work with ``double'' (virtual) format. In such
5d161b24 6833cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6834that makes sense for your program), but the @code{info registers} command
6835prints the data in both formats.
6836
36b80e65
EZ
6837@cindex SSE registers (x86)
6838@cindex MMX registers (x86)
6839Some machines have special registers whose contents can be interpreted
6840in several different ways. For example, modern x86-based machines
6841have SSE and MMX registers that can hold several values packed
6842together in several different formats. @value{GDBN} refers to such
6843registers in @code{struct} notation:
6844
6845@smallexample
6846(@value{GDBP}) print $xmm1
6847$1 = @{
6848 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6849 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6850 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6851 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6852 v4_int32 = @{0, 20657912, 11, 13@},
6853 v2_int64 = @{88725056443645952, 55834574859@},
6854 uint128 = 0x0000000d0000000b013b36f800000000
6855@}
6856@end smallexample
6857
6858@noindent
6859To set values of such registers, you need to tell @value{GDBN} which
6860view of the register you wish to change, as if you were assigning
6861value to a @code{struct} member:
6862
6863@smallexample
6864 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6865@end smallexample
6866
c906108c 6867Normally, register values are relative to the selected stack frame
79a6e687 6868(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6869value that the register would contain if all stack frames farther in
6870were exited and their saved registers restored. In order to see the
6871true contents of hardware registers, you must select the innermost
6872frame (with @samp{frame 0}).
6873
6874However, @value{GDBN} must deduce where registers are saved, from the machine
6875code generated by your compiler. If some registers are not saved, or if
6876@value{GDBN} is unable to locate the saved registers, the selected stack
6877frame makes no difference.
6878
6d2ebf8b 6879@node Floating Point Hardware
79a6e687 6880@section Floating Point Hardware
c906108c
SS
6881@cindex floating point
6882
6883Depending on the configuration, @value{GDBN} may be able to give
6884you more information about the status of the floating point hardware.
6885
6886@table @code
6887@kindex info float
6888@item info float
6889Display hardware-dependent information about the floating
6890point unit. The exact contents and layout vary depending on the
6891floating point chip. Currently, @samp{info float} is supported on
6892the ARM and x86 machines.
6893@end table
c906108c 6894
e76f1f2e
AC
6895@node Vector Unit
6896@section Vector Unit
6897@cindex vector unit
6898
6899Depending on the configuration, @value{GDBN} may be able to give you
6900more information about the status of the vector unit.
6901
6902@table @code
6903@kindex info vector
6904@item info vector
6905Display information about the vector unit. The exact contents and
6906layout vary depending on the hardware.
6907@end table
6908
721c2651 6909@node OS Information
79a6e687 6910@section Operating System Auxiliary Information
721c2651
EZ
6911@cindex OS information
6912
6913@value{GDBN} provides interfaces to useful OS facilities that can help
6914you debug your program.
6915
6916@cindex @code{ptrace} system call
6917@cindex @code{struct user} contents
6918When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6919machines), it interfaces with the inferior via the @code{ptrace}
6920system call. The operating system creates a special sata structure,
6921called @code{struct user}, for this interface. You can use the
6922command @code{info udot} to display the contents of this data
6923structure.
6924
6925@table @code
6926@item info udot
6927@kindex info udot
6928Display the contents of the @code{struct user} maintained by the OS
6929kernel for the program being debugged. @value{GDBN} displays the
6930contents of @code{struct user} as a list of hex numbers, similar to
6931the @code{examine} command.
6932@end table
6933
b383017d
RM
6934@cindex auxiliary vector
6935@cindex vector, auxiliary
b383017d
RM
6936Some operating systems supply an @dfn{auxiliary vector} to programs at
6937startup. This is akin to the arguments and environment that you
6938specify for a program, but contains a system-dependent variety of
6939binary values that tell system libraries important details about the
6940hardware, operating system, and process. Each value's purpose is
6941identified by an integer tag; the meanings are well-known but system-specific.
6942Depending on the configuration and operating system facilities,
9c16f35a
EZ
6943@value{GDBN} may be able to show you this information. For remote
6944targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6945support of the @samp{qXfer:auxv:read} packet, see
6946@ref{qXfer auxiliary vector read}.
b383017d
RM
6947
6948@table @code
6949@kindex info auxv
6950@item info auxv
6951Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6952live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6953numerically, and also shows names and text descriptions for recognized
6954tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6955pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6956most appropriate form for a recognized tag, and in hexadecimal for
6957an unrecognized tag.
6958@end table
6959
721c2651 6960
29e57380 6961@node Memory Region Attributes
79a6e687 6962@section Memory Region Attributes
29e57380
C
6963@cindex memory region attributes
6964
b383017d 6965@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6966required by regions of your target's memory. @value{GDBN} uses
6967attributes to determine whether to allow certain types of memory
6968accesses; whether to use specific width accesses; and whether to cache
6969target memory. By default the description of memory regions is
6970fetched from the target (if the current target supports this), but the
6971user can override the fetched regions.
29e57380
C
6972
6973Defined memory regions can be individually enabled and disabled. When a
6974memory region is disabled, @value{GDBN} uses the default attributes when
6975accessing memory in that region. Similarly, if no memory regions have
6976been defined, @value{GDBN} uses the default attributes when accessing
6977all memory.
6978
b383017d 6979When a memory region is defined, it is given a number to identify it;
29e57380
C
6980to enable, disable, or remove a memory region, you specify that number.
6981
6982@table @code
6983@kindex mem
bfac230e 6984@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
6985Define a memory region bounded by @var{lower} and @var{upper} with
6986attributes @var{attributes}@dots{}, and add it to the list of regions
6987monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 6988case: it is treated as the target's maximum memory address.
bfac230e 6989(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 6990
fd79ecee
DJ
6991@item mem auto
6992Discard any user changes to the memory regions and use target-supplied
6993regions, if available, or no regions if the target does not support.
6994
29e57380
C
6995@kindex delete mem
6996@item delete mem @var{nums}@dots{}
09d4efe1
EZ
6997Remove memory regions @var{nums}@dots{} from the list of regions
6998monitored by @value{GDBN}.
29e57380
C
6999
7000@kindex disable mem
7001@item disable mem @var{nums}@dots{}
09d4efe1 7002Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7003A disabled memory region is not forgotten.
29e57380
C
7004It may be enabled again later.
7005
7006@kindex enable mem
7007@item enable mem @var{nums}@dots{}
09d4efe1 7008Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7009
7010@kindex info mem
7011@item info mem
7012Print a table of all defined memory regions, with the following columns
09d4efe1 7013for each region:
29e57380
C
7014
7015@table @emph
7016@item Memory Region Number
7017@item Enabled or Disabled.
b383017d 7018Enabled memory regions are marked with @samp{y}.
29e57380
C
7019Disabled memory regions are marked with @samp{n}.
7020
7021@item Lo Address
7022The address defining the inclusive lower bound of the memory region.
7023
7024@item Hi Address
7025The address defining the exclusive upper bound of the memory region.
7026
7027@item Attributes
7028The list of attributes set for this memory region.
7029@end table
7030@end table
7031
7032
7033@subsection Attributes
7034
b383017d 7035@subsubsection Memory Access Mode
29e57380
C
7036The access mode attributes set whether @value{GDBN} may make read or
7037write accesses to a memory region.
7038
7039While these attributes prevent @value{GDBN} from performing invalid
7040memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7041etc.@: from accessing memory.
29e57380
C
7042
7043@table @code
7044@item ro
7045Memory is read only.
7046@item wo
7047Memory is write only.
7048@item rw
6ca652b0 7049Memory is read/write. This is the default.
29e57380
C
7050@end table
7051
7052@subsubsection Memory Access Size
d3e8051b 7053The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7054accesses in the memory region. Often memory mapped device registers
7055require specific sized accesses. If no access size attribute is
7056specified, @value{GDBN} may use accesses of any size.
7057
7058@table @code
7059@item 8
7060Use 8 bit memory accesses.
7061@item 16
7062Use 16 bit memory accesses.
7063@item 32
7064Use 32 bit memory accesses.
7065@item 64
7066Use 64 bit memory accesses.
7067@end table
7068
7069@c @subsubsection Hardware/Software Breakpoints
7070@c The hardware/software breakpoint attributes set whether @value{GDBN}
7071@c will use hardware or software breakpoints for the internal breakpoints
7072@c used by the step, next, finish, until, etc. commands.
7073@c
7074@c @table @code
7075@c @item hwbreak
b383017d 7076@c Always use hardware breakpoints
29e57380
C
7077@c @item swbreak (default)
7078@c @end table
7079
7080@subsubsection Data Cache
7081The data cache attributes set whether @value{GDBN} will cache target
7082memory. While this generally improves performance by reducing debug
7083protocol overhead, it can lead to incorrect results because @value{GDBN}
7084does not know about volatile variables or memory mapped device
7085registers.
7086
7087@table @code
7088@item cache
b383017d 7089Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7090@item nocache
7091Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7092@end table
7093
4b5752d0
VP
7094@subsection Memory Access Checking
7095@value{GDBN} can be instructed to refuse accesses to memory that is
7096not explicitly described. This can be useful if accessing such
7097regions has undesired effects for a specific target, or to provide
7098better error checking. The following commands control this behaviour.
7099
7100@table @code
7101@kindex set mem inaccessible-by-default
7102@item set mem inaccessible-by-default [on|off]
7103If @code{on} is specified, make @value{GDBN} treat memory not
7104explicitly described by the memory ranges as non-existent and refuse accesses
7105to such memory. The checks are only performed if there's at least one
7106memory range defined. If @code{off} is specified, make @value{GDBN}
7107treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7108The default value is @code{on}.
4b5752d0
VP
7109@kindex show mem inaccessible-by-default
7110@item show mem inaccessible-by-default
7111Show the current handling of accesses to unknown memory.
7112@end table
7113
7114
29e57380 7115@c @subsubsection Memory Write Verification
b383017d 7116@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7117@c will re-reads data after each write to verify the write was successful.
7118@c
7119@c @table @code
7120@c @item verify
7121@c @item noverify (default)
7122@c @end table
7123
16d9dec6 7124@node Dump/Restore Files
79a6e687 7125@section Copy Between Memory and a File
16d9dec6
MS
7126@cindex dump/restore files
7127@cindex append data to a file
7128@cindex dump data to a file
7129@cindex restore data from a file
16d9dec6 7130
df5215a6
JB
7131You can use the commands @code{dump}, @code{append}, and
7132@code{restore} to copy data between target memory and a file. The
7133@code{dump} and @code{append} commands write data to a file, and the
7134@code{restore} command reads data from a file back into the inferior's
7135memory. Files may be in binary, Motorola S-record, Intel hex, or
7136Tektronix Hex format; however, @value{GDBN} can only append to binary
7137files.
7138
7139@table @code
7140
7141@kindex dump
7142@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7143@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7144Dump the contents of memory from @var{start_addr} to @var{end_addr},
7145or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7146
df5215a6 7147The @var{format} parameter may be any one of:
16d9dec6 7148@table @code
df5215a6
JB
7149@item binary
7150Raw binary form.
7151@item ihex
7152Intel hex format.
7153@item srec
7154Motorola S-record format.
7155@item tekhex
7156Tektronix Hex format.
7157@end table
7158
7159@value{GDBN} uses the same definitions of these formats as the
7160@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7161@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7162form.
7163
7164@kindex append
7165@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7166@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7167Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7168or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7169(@value{GDBN} can only append data to files in raw binary form.)
7170
7171@kindex restore
7172@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7173Restore the contents of file @var{filename} into memory. The
7174@code{restore} command can automatically recognize any known @sc{bfd}
7175file format, except for raw binary. To restore a raw binary file you
7176must specify the optional keyword @code{binary} after the filename.
16d9dec6 7177
b383017d 7178If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7179contained in the file. Binary files always start at address zero, so
7180they will be restored at address @var{bias}. Other bfd files have
7181a built-in location; they will be restored at offset @var{bias}
7182from that location.
7183
7184If @var{start} and/or @var{end} are non-zero, then only data between
7185file offset @var{start} and file offset @var{end} will be restored.
b383017d 7186These offsets are relative to the addresses in the file, before
16d9dec6
MS
7187the @var{bias} argument is applied.
7188
7189@end table
7190
384ee23f
EZ
7191@node Core File Generation
7192@section How to Produce a Core File from Your Program
7193@cindex dump core from inferior
7194
7195A @dfn{core file} or @dfn{core dump} is a file that records the memory
7196image of a running process and its process status (register values
7197etc.). Its primary use is post-mortem debugging of a program that
7198crashed while it ran outside a debugger. A program that crashes
7199automatically produces a core file, unless this feature is disabled by
7200the user. @xref{Files}, for information on invoking @value{GDBN} in
7201the post-mortem debugging mode.
7202
7203Occasionally, you may wish to produce a core file of the program you
7204are debugging in order to preserve a snapshot of its state.
7205@value{GDBN} has a special command for that.
7206
7207@table @code
7208@kindex gcore
7209@kindex generate-core-file
7210@item generate-core-file [@var{file}]
7211@itemx gcore [@var{file}]
7212Produce a core dump of the inferior process. The optional argument
7213@var{file} specifies the file name where to put the core dump. If not
7214specified, the file name defaults to @file{core.@var{pid}}, where
7215@var{pid} is the inferior process ID.
7216
7217Note that this command is implemented only for some systems (as of
7218this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7219@end table
7220
a0eb71c5
KB
7221@node Character Sets
7222@section Character Sets
7223@cindex character sets
7224@cindex charset
7225@cindex translating between character sets
7226@cindex host character set
7227@cindex target character set
7228
7229If the program you are debugging uses a different character set to
7230represent characters and strings than the one @value{GDBN} uses itself,
7231@value{GDBN} can automatically translate between the character sets for
7232you. The character set @value{GDBN} uses we call the @dfn{host
7233character set}; the one the inferior program uses we call the
7234@dfn{target character set}.
7235
7236For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7237uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7238remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7239running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7240then the host character set is Latin-1, and the target character set is
7241@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7242target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7243@sc{ebcdic} and Latin 1 as you print character or string values, or use
7244character and string literals in expressions.
7245
7246@value{GDBN} has no way to automatically recognize which character set
7247the inferior program uses; you must tell it, using the @code{set
7248target-charset} command, described below.
7249
7250Here are the commands for controlling @value{GDBN}'s character set
7251support:
7252
7253@table @code
7254@item set target-charset @var{charset}
7255@kindex set target-charset
7256Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7257character set names @value{GDBN} recognizes below, but if you type
7258@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7259list the target character sets it supports.
a0eb71c5
KB
7260@end table
7261
7262@table @code
7263@item set host-charset @var{charset}
7264@kindex set host-charset
7265Set the current host character set to @var{charset}.
7266
7267By default, @value{GDBN} uses a host character set appropriate to the
7268system it is running on; you can override that default using the
7269@code{set host-charset} command.
7270
7271@value{GDBN} can only use certain character sets as its host character
7272set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7273indicate which can be host character sets, but if you type
7274@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7275list the host character sets it supports.
a0eb71c5
KB
7276
7277@item set charset @var{charset}
7278@kindex set charset
e33d66ec
EZ
7279Set the current host and target character sets to @var{charset}. As
7280above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7281@value{GDBN} will list the name of the character sets that can be used
7282for both host and target.
7283
a0eb71c5
KB
7284
7285@item show charset
a0eb71c5 7286@kindex show charset
b383017d 7287Show the names of the current host and target charsets.
e33d66ec
EZ
7288
7289@itemx show host-charset
a0eb71c5 7290@kindex show host-charset
b383017d 7291Show the name of the current host charset.
e33d66ec
EZ
7292
7293@itemx show target-charset
a0eb71c5 7294@kindex show target-charset
b383017d 7295Show the name of the current target charset.
a0eb71c5
KB
7296
7297@end table
7298
7299@value{GDBN} currently includes support for the following character
7300sets:
7301
7302@table @code
7303
7304@item ASCII
7305@cindex ASCII character set
7306Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7307character set.
7308
7309@item ISO-8859-1
7310@cindex ISO 8859-1 character set
7311@cindex ISO Latin 1 character set
e33d66ec 7312The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7313characters needed for French, German, and Spanish. @value{GDBN} can use
7314this as its host character set.
7315
7316@item EBCDIC-US
7317@itemx IBM1047
7318@cindex EBCDIC character set
7319@cindex IBM1047 character set
7320Variants of the @sc{ebcdic} character set, used on some of IBM's
7321mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7322@value{GDBN} cannot use these as its host character set.
7323
7324@end table
7325
7326Note that these are all single-byte character sets. More work inside
3f94c067 7327@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7328encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7329
7330Here is an example of @value{GDBN}'s character set support in action.
7331Assume that the following source code has been placed in the file
7332@file{charset-test.c}:
7333
7334@smallexample
7335#include <stdio.h>
7336
7337char ascii_hello[]
7338 = @{72, 101, 108, 108, 111, 44, 32, 119,
7339 111, 114, 108, 100, 33, 10, 0@};
7340char ibm1047_hello[]
7341 = @{200, 133, 147, 147, 150, 107, 64, 166,
7342 150, 153, 147, 132, 90, 37, 0@};
7343
7344main ()
7345@{
7346 printf ("Hello, world!\n");
7347@}
10998722 7348@end smallexample
a0eb71c5
KB
7349
7350In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7351containing the string @samp{Hello, world!} followed by a newline,
7352encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7353
7354We compile the program, and invoke the debugger on it:
7355
7356@smallexample
7357$ gcc -g charset-test.c -o charset-test
7358$ gdb -nw charset-test
7359GNU gdb 2001-12-19-cvs
7360Copyright 2001 Free Software Foundation, Inc.
7361@dots{}
f7dc1244 7362(@value{GDBP})
10998722 7363@end smallexample
a0eb71c5
KB
7364
7365We can use the @code{show charset} command to see what character sets
7366@value{GDBN} is currently using to interpret and display characters and
7367strings:
7368
7369@smallexample
f7dc1244 7370(@value{GDBP}) show charset
e33d66ec 7371The current host and target character set is `ISO-8859-1'.
f7dc1244 7372(@value{GDBP})
10998722 7373@end smallexample
a0eb71c5
KB
7374
7375For the sake of printing this manual, let's use @sc{ascii} as our
7376initial character set:
7377@smallexample
f7dc1244
EZ
7378(@value{GDBP}) set charset ASCII
7379(@value{GDBP}) show charset
e33d66ec 7380The current host and target character set is `ASCII'.
f7dc1244 7381(@value{GDBP})
10998722 7382@end smallexample
a0eb71c5
KB
7383
7384Let's assume that @sc{ascii} is indeed the correct character set for our
7385host system --- in other words, let's assume that if @value{GDBN} prints
7386characters using the @sc{ascii} character set, our terminal will display
7387them properly. Since our current target character set is also
7388@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7389
7390@smallexample
f7dc1244 7391(@value{GDBP}) print ascii_hello
a0eb71c5 7392$1 = 0x401698 "Hello, world!\n"
f7dc1244 7393(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7394$2 = 72 'H'
f7dc1244 7395(@value{GDBP})
10998722 7396@end smallexample
a0eb71c5
KB
7397
7398@value{GDBN} uses the target character set for character and string
7399literals you use in expressions:
7400
7401@smallexample
f7dc1244 7402(@value{GDBP}) print '+'
a0eb71c5 7403$3 = 43 '+'
f7dc1244 7404(@value{GDBP})
10998722 7405@end smallexample
a0eb71c5
KB
7406
7407The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7408character.
7409
7410@value{GDBN} relies on the user to tell it which character set the
7411target program uses. If we print @code{ibm1047_hello} while our target
7412character set is still @sc{ascii}, we get jibberish:
7413
7414@smallexample
f7dc1244 7415(@value{GDBP}) print ibm1047_hello
a0eb71c5 7416$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7417(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7418$5 = 200 '\310'
f7dc1244 7419(@value{GDBP})
10998722 7420@end smallexample
a0eb71c5 7421
e33d66ec 7422If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7423@value{GDBN} tells us the character sets it supports:
7424
7425@smallexample
f7dc1244 7426(@value{GDBP}) set target-charset
b383017d 7427ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7428(@value{GDBP}) set target-charset
10998722 7429@end smallexample
a0eb71c5
KB
7430
7431We can select @sc{ibm1047} as our target character set, and examine the
7432program's strings again. Now the @sc{ascii} string is wrong, but
7433@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7434target character set, @sc{ibm1047}, to the host character set,
7435@sc{ascii}, and they display correctly:
7436
7437@smallexample
f7dc1244
EZ
7438(@value{GDBP}) set target-charset IBM1047
7439(@value{GDBP}) show charset
e33d66ec
EZ
7440The current host character set is `ASCII'.
7441The current target character set is `IBM1047'.
f7dc1244 7442(@value{GDBP}) print ascii_hello
a0eb71c5 7443$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7444(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7445$7 = 72 '\110'
f7dc1244 7446(@value{GDBP}) print ibm1047_hello
a0eb71c5 7447$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7448(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7449$9 = 200 'H'
f7dc1244 7450(@value{GDBP})
10998722 7451@end smallexample
a0eb71c5
KB
7452
7453As above, @value{GDBN} uses the target character set for character and
7454string literals you use in expressions:
7455
7456@smallexample
f7dc1244 7457(@value{GDBP}) print '+'
a0eb71c5 7458$10 = 78 '+'
f7dc1244 7459(@value{GDBP})
10998722 7460@end smallexample
a0eb71c5 7461
e33d66ec 7462The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7463character.
7464
09d4efe1
EZ
7465@node Caching Remote Data
7466@section Caching Data of Remote Targets
7467@cindex caching data of remote targets
7468
7469@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7470remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7471performance, because it reduces the overhead of the remote protocol by
7472bundling memory reads and writes into large chunks. Unfortunately,
7473@value{GDBN} does not currently know anything about volatile
7474registers, and thus data caching will produce incorrect results when
7475volatile registers are in use.
7476
7477@table @code
7478@kindex set remotecache
7479@item set remotecache on
7480@itemx set remotecache off
7481Set caching state for remote targets. When @code{ON}, use data
7482caching. By default, this option is @code{OFF}.
7483
7484@kindex show remotecache
7485@item show remotecache
7486Show the current state of data caching for remote targets.
7487
7488@kindex info dcache
7489@item info dcache
7490Print the information about the data cache performance. The
7491information displayed includes: the dcache width and depth; and for
7492each cache line, how many times it was referenced, and its data and
7493state (dirty, bad, ok, etc.). This command is useful for debugging
7494the data cache operation.
7495@end table
7496
a0eb71c5 7497
e2e0bcd1
JB
7498@node Macros
7499@chapter C Preprocessor Macros
7500
49efadf5 7501Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7502``preprocessor macros'' which expand into strings of tokens.
7503@value{GDBN} can evaluate expressions containing macro invocations, show
7504the result of macro expansion, and show a macro's definition, including
7505where it was defined.
7506
7507You may need to compile your program specially to provide @value{GDBN}
7508with information about preprocessor macros. Most compilers do not
7509include macros in their debugging information, even when you compile
7510with the @option{-g} flag. @xref{Compilation}.
7511
7512A program may define a macro at one point, remove that definition later,
7513and then provide a different definition after that. Thus, at different
7514points in the program, a macro may have different definitions, or have
7515no definition at all. If there is a current stack frame, @value{GDBN}
7516uses the macros in scope at that frame's source code line. Otherwise,
7517@value{GDBN} uses the macros in scope at the current listing location;
7518see @ref{List}.
7519
7520At the moment, @value{GDBN} does not support the @code{##}
7521token-splicing operator, the @code{#} stringification operator, or
7522variable-arity macros.
7523
7524Whenever @value{GDBN} evaluates an expression, it always expands any
7525macro invocations present in the expression. @value{GDBN} also provides
7526the following commands for working with macros explicitly.
7527
7528@table @code
7529
7530@kindex macro expand
7531@cindex macro expansion, showing the results of preprocessor
7532@cindex preprocessor macro expansion, showing the results of
7533@cindex expanding preprocessor macros
7534@item macro expand @var{expression}
7535@itemx macro exp @var{expression}
7536Show the results of expanding all preprocessor macro invocations in
7537@var{expression}. Since @value{GDBN} simply expands macros, but does
7538not parse the result, @var{expression} need not be a valid expression;
7539it can be any string of tokens.
7540
09d4efe1 7541@kindex macro exp1
e2e0bcd1
JB
7542@item macro expand-once @var{expression}
7543@itemx macro exp1 @var{expression}
4644b6e3 7544@cindex expand macro once
e2e0bcd1
JB
7545@i{(This command is not yet implemented.)} Show the results of
7546expanding those preprocessor macro invocations that appear explicitly in
7547@var{expression}. Macro invocations appearing in that expansion are
7548left unchanged. This command allows you to see the effect of a
7549particular macro more clearly, without being confused by further
7550expansions. Since @value{GDBN} simply expands macros, but does not
7551parse the result, @var{expression} need not be a valid expression; it
7552can be any string of tokens.
7553
475b0867 7554@kindex info macro
e2e0bcd1
JB
7555@cindex macro definition, showing
7556@cindex definition, showing a macro's
475b0867 7557@item info macro @var{macro}
e2e0bcd1
JB
7558Show the definition of the macro named @var{macro}, and describe the
7559source location where that definition was established.
7560
7561@kindex macro define
7562@cindex user-defined macros
7563@cindex defining macros interactively
7564@cindex macros, user-defined
7565@item macro define @var{macro} @var{replacement-list}
7566@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7567@i{(This command is not yet implemented.)} Introduce a definition for a
7568preprocessor macro named @var{macro}, invocations of which are replaced
7569by the tokens given in @var{replacement-list}. The first form of this
7570command defines an ``object-like'' macro, which takes no arguments; the
7571second form defines a ``function-like'' macro, which takes the arguments
7572given in @var{arglist}.
7573
7574A definition introduced by this command is in scope in every expression
7575evaluated in @value{GDBN}, until it is removed with the @command{macro
7576undef} command, described below. The definition overrides all
7577definitions for @var{macro} present in the program being debugged, as
7578well as any previous user-supplied definition.
7579
7580@kindex macro undef
7581@item macro undef @var{macro}
7582@i{(This command is not yet implemented.)} Remove any user-supplied
7583definition for the macro named @var{macro}. This command only affects
7584definitions provided with the @command{macro define} command, described
7585above; it cannot remove definitions present in the program being
7586debugged.
7587
09d4efe1
EZ
7588@kindex macro list
7589@item macro list
7590@i{(This command is not yet implemented.)} List all the macros
7591defined using the @code{macro define} command.
e2e0bcd1
JB
7592@end table
7593
7594@cindex macros, example of debugging with
7595Here is a transcript showing the above commands in action. First, we
7596show our source files:
7597
7598@smallexample
7599$ cat sample.c
7600#include <stdio.h>
7601#include "sample.h"
7602
7603#define M 42
7604#define ADD(x) (M + x)
7605
7606main ()
7607@{
7608#define N 28
7609 printf ("Hello, world!\n");
7610#undef N
7611 printf ("We're so creative.\n");
7612#define N 1729
7613 printf ("Goodbye, world!\n");
7614@}
7615$ cat sample.h
7616#define Q <
7617$
7618@end smallexample
7619
7620Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7621We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7622compiler includes information about preprocessor macros in the debugging
7623information.
7624
7625@smallexample
7626$ gcc -gdwarf-2 -g3 sample.c -o sample
7627$
7628@end smallexample
7629
7630Now, we start @value{GDBN} on our sample program:
7631
7632@smallexample
7633$ gdb -nw sample
7634GNU gdb 2002-05-06-cvs
7635Copyright 2002 Free Software Foundation, Inc.
7636GDB is free software, @dots{}
f7dc1244 7637(@value{GDBP})
e2e0bcd1
JB
7638@end smallexample
7639
7640We can expand macros and examine their definitions, even when the
7641program is not running. @value{GDBN} uses the current listing position
7642to decide which macro definitions are in scope:
7643
7644@smallexample
f7dc1244 7645(@value{GDBP}) list main
e2e0bcd1
JB
76463
76474 #define M 42
76485 #define ADD(x) (M + x)
76496
76507 main ()
76518 @{
76529 #define N 28
765310 printf ("Hello, world!\n");
765411 #undef N
765512 printf ("We're so creative.\n");
f7dc1244 7656(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7657Defined at /home/jimb/gdb/macros/play/sample.c:5
7658#define ADD(x) (M + x)
f7dc1244 7659(@value{GDBP}) info macro Q
e2e0bcd1
JB
7660Defined at /home/jimb/gdb/macros/play/sample.h:1
7661 included at /home/jimb/gdb/macros/play/sample.c:2
7662#define Q <
f7dc1244 7663(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7664expands to: (42 + 1)
f7dc1244 7665(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7666expands to: once (M + 1)
f7dc1244 7667(@value{GDBP})
e2e0bcd1
JB
7668@end smallexample
7669
7670In the example above, note that @command{macro expand-once} expands only
7671the macro invocation explicit in the original text --- the invocation of
7672@code{ADD} --- but does not expand the invocation of the macro @code{M},
7673which was introduced by @code{ADD}.
7674
3f94c067
BW
7675Once the program is running, @value{GDBN} uses the macro definitions in
7676force at the source line of the current stack frame:
e2e0bcd1
JB
7677
7678@smallexample
f7dc1244 7679(@value{GDBP}) break main
e2e0bcd1 7680Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7681(@value{GDBP}) run
b383017d 7682Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7683
7684Breakpoint 1, main () at sample.c:10
768510 printf ("Hello, world!\n");
f7dc1244 7686(@value{GDBP})
e2e0bcd1
JB
7687@end smallexample
7688
7689At line 10, the definition of the macro @code{N} at line 9 is in force:
7690
7691@smallexample
f7dc1244 7692(@value{GDBP}) info macro N
e2e0bcd1
JB
7693Defined at /home/jimb/gdb/macros/play/sample.c:9
7694#define N 28
f7dc1244 7695(@value{GDBP}) macro expand N Q M
e2e0bcd1 7696expands to: 28 < 42
f7dc1244 7697(@value{GDBP}) print N Q M
e2e0bcd1 7698$1 = 1
f7dc1244 7699(@value{GDBP})
e2e0bcd1
JB
7700@end smallexample
7701
7702As we step over directives that remove @code{N}'s definition, and then
7703give it a new definition, @value{GDBN} finds the definition (or lack
7704thereof) in force at each point:
7705
7706@smallexample
f7dc1244 7707(@value{GDBP}) next
e2e0bcd1
JB
7708Hello, world!
770912 printf ("We're so creative.\n");
f7dc1244 7710(@value{GDBP}) info macro N
e2e0bcd1
JB
7711The symbol `N' has no definition as a C/C++ preprocessor macro
7712at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7713(@value{GDBP}) next
e2e0bcd1
JB
7714We're so creative.
771514 printf ("Goodbye, world!\n");
f7dc1244 7716(@value{GDBP}) info macro N
e2e0bcd1
JB
7717Defined at /home/jimb/gdb/macros/play/sample.c:13
7718#define N 1729
f7dc1244 7719(@value{GDBP}) macro expand N Q M
e2e0bcd1 7720expands to: 1729 < 42
f7dc1244 7721(@value{GDBP}) print N Q M
e2e0bcd1 7722$2 = 0
f7dc1244 7723(@value{GDBP})
e2e0bcd1
JB
7724@end smallexample
7725
7726
b37052ae
EZ
7727@node Tracepoints
7728@chapter Tracepoints
7729@c This chapter is based on the documentation written by Michael
7730@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7731
7732@cindex tracepoints
7733In some applications, it is not feasible for the debugger to interrupt
7734the program's execution long enough for the developer to learn
7735anything helpful about its behavior. If the program's correctness
7736depends on its real-time behavior, delays introduced by a debugger
7737might cause the program to change its behavior drastically, or perhaps
7738fail, even when the code itself is correct. It is useful to be able
7739to observe the program's behavior without interrupting it.
7740
7741Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7742specify locations in the program, called @dfn{tracepoints}, and
7743arbitrary expressions to evaluate when those tracepoints are reached.
7744Later, using the @code{tfind} command, you can examine the values
7745those expressions had when the program hit the tracepoints. The
7746expressions may also denote objects in memory---structures or arrays,
7747for example---whose values @value{GDBN} should record; while visiting
7748a particular tracepoint, you may inspect those objects as if they were
7749in memory at that moment. However, because @value{GDBN} records these
7750values without interacting with you, it can do so quickly and
7751unobtrusively, hopefully not disturbing the program's behavior.
7752
7753The tracepoint facility is currently available only for remote
9d29849a
JB
7754targets. @xref{Targets}. In addition, your remote target must know
7755how to collect trace data. This functionality is implemented in the
7756remote stub; however, none of the stubs distributed with @value{GDBN}
7757support tracepoints as of this writing. The format of the remote
7758packets used to implement tracepoints are described in @ref{Tracepoint
7759Packets}.
b37052ae
EZ
7760
7761This chapter describes the tracepoint commands and features.
7762
7763@menu
b383017d
RM
7764* Set Tracepoints::
7765* Analyze Collected Data::
7766* Tracepoint Variables::
b37052ae
EZ
7767@end menu
7768
7769@node Set Tracepoints
7770@section Commands to Set Tracepoints
7771
7772Before running such a @dfn{trace experiment}, an arbitrary number of
7773tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7774tracepoint has a number assigned to it by @value{GDBN}. Like with
7775breakpoints, tracepoint numbers are successive integers starting from
7776one. Many of the commands associated with tracepoints take the
7777tracepoint number as their argument, to identify which tracepoint to
7778work on.
7779
7780For each tracepoint, you can specify, in advance, some arbitrary set
7781of data that you want the target to collect in the trace buffer when
7782it hits that tracepoint. The collected data can include registers,
7783local variables, or global data. Later, you can use @value{GDBN}
7784commands to examine the values these data had at the time the
7785tracepoint was hit.
7786
7787This section describes commands to set tracepoints and associated
7788conditions and actions.
7789
7790@menu
b383017d
RM
7791* Create and Delete Tracepoints::
7792* Enable and Disable Tracepoints::
7793* Tracepoint Passcounts::
7794* Tracepoint Actions::
7795* Listing Tracepoints::
79a6e687 7796* Starting and Stopping Trace Experiments::
b37052ae
EZ
7797@end menu
7798
7799@node Create and Delete Tracepoints
7800@subsection Create and Delete Tracepoints
7801
7802@table @code
7803@cindex set tracepoint
7804@kindex trace
7805@item trace
7806The @code{trace} command is very similar to the @code{break} command.
7807Its argument can be a source line, a function name, or an address in
7808the target program. @xref{Set Breaks}. The @code{trace} command
7809defines a tracepoint, which is a point in the target program where the
7810debugger will briefly stop, collect some data, and then allow the
7811program to continue. Setting a tracepoint or changing its commands
7812doesn't take effect until the next @code{tstart} command; thus, you
7813cannot change the tracepoint attributes once a trace experiment is
7814running.
7815
7816Here are some examples of using the @code{trace} command:
7817
7818@smallexample
7819(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7820
7821(@value{GDBP}) @b{trace +2} // 2 lines forward
7822
7823(@value{GDBP}) @b{trace my_function} // first source line of function
7824
7825(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7826
7827(@value{GDBP}) @b{trace *0x2117c4} // an address
7828@end smallexample
7829
7830@noindent
7831You can abbreviate @code{trace} as @code{tr}.
7832
7833@vindex $tpnum
7834@cindex last tracepoint number
7835@cindex recent tracepoint number
7836@cindex tracepoint number
7837The convenience variable @code{$tpnum} records the tracepoint number
7838of the most recently set tracepoint.
7839
7840@kindex delete tracepoint
7841@cindex tracepoint deletion
7842@item delete tracepoint @r{[}@var{num}@r{]}
7843Permanently delete one or more tracepoints. With no argument, the
7844default is to delete all tracepoints.
7845
7846Examples:
7847
7848@smallexample
7849(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7850
7851(@value{GDBP}) @b{delete trace} // remove all tracepoints
7852@end smallexample
7853
7854@noindent
7855You can abbreviate this command as @code{del tr}.
7856@end table
7857
7858@node Enable and Disable Tracepoints
7859@subsection Enable and Disable Tracepoints
7860
7861@table @code
7862@kindex disable tracepoint
7863@item disable tracepoint @r{[}@var{num}@r{]}
7864Disable tracepoint @var{num}, or all tracepoints if no argument
7865@var{num} is given. A disabled tracepoint will have no effect during
7866the next trace experiment, but it is not forgotten. You can re-enable
7867a disabled tracepoint using the @code{enable tracepoint} command.
7868
7869@kindex enable tracepoint
7870@item enable tracepoint @r{[}@var{num}@r{]}
7871Enable tracepoint @var{num}, or all tracepoints. The enabled
7872tracepoints will become effective the next time a trace experiment is
7873run.
7874@end table
7875
7876@node Tracepoint Passcounts
7877@subsection Tracepoint Passcounts
7878
7879@table @code
7880@kindex passcount
7881@cindex tracepoint pass count
7882@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7883Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7884automatically stop a trace experiment. If a tracepoint's passcount is
7885@var{n}, then the trace experiment will be automatically stopped on
7886the @var{n}'th time that tracepoint is hit. If the tracepoint number
7887@var{num} is not specified, the @code{passcount} command sets the
7888passcount of the most recently defined tracepoint. If no passcount is
7889given, the trace experiment will run until stopped explicitly by the
7890user.
7891
7892Examples:
7893
7894@smallexample
b383017d 7895(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7896@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7897
7898(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7899@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7900(@value{GDBP}) @b{trace foo}
7901(@value{GDBP}) @b{pass 3}
7902(@value{GDBP}) @b{trace bar}
7903(@value{GDBP}) @b{pass 2}
7904(@value{GDBP}) @b{trace baz}
7905(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7906@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7907@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7908@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7909@end smallexample
7910@end table
7911
7912@node Tracepoint Actions
7913@subsection Tracepoint Action Lists
7914
7915@table @code
7916@kindex actions
7917@cindex tracepoint actions
7918@item actions @r{[}@var{num}@r{]}
7919This command will prompt for a list of actions to be taken when the
7920tracepoint is hit. If the tracepoint number @var{num} is not
7921specified, this command sets the actions for the one that was most
7922recently defined (so that you can define a tracepoint and then say
7923@code{actions} without bothering about its number). You specify the
7924actions themselves on the following lines, one action at a time, and
7925terminate the actions list with a line containing just @code{end}. So
7926far, the only defined actions are @code{collect} and
7927@code{while-stepping}.
7928
7929@cindex remove actions from a tracepoint
7930To remove all actions from a tracepoint, type @samp{actions @var{num}}
7931and follow it immediately with @samp{end}.
7932
7933@smallexample
7934(@value{GDBP}) @b{collect @var{data}} // collect some data
7935
6826cf00 7936(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7937
6826cf00 7938(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7939@end smallexample
7940
7941In the following example, the action list begins with @code{collect}
7942commands indicating the things to be collected when the tracepoint is
7943hit. Then, in order to single-step and collect additional data
7944following the tracepoint, a @code{while-stepping} command is used,
7945followed by the list of things to be collected while stepping. The
7946@code{while-stepping} command is terminated by its own separate
7947@code{end} command. Lastly, the action list is terminated by an
7948@code{end} command.
7949
7950@smallexample
7951(@value{GDBP}) @b{trace foo}
7952(@value{GDBP}) @b{actions}
7953Enter actions for tracepoint 1, one per line:
7954> collect bar,baz
7955> collect $regs
7956> while-stepping 12
7957 > collect $fp, $sp
7958 > end
7959end
7960@end smallexample
7961
7962@kindex collect @r{(tracepoints)}
7963@item collect @var{expr1}, @var{expr2}, @dots{}
7964Collect values of the given expressions when the tracepoint is hit.
7965This command accepts a comma-separated list of any valid expressions.
7966In addition to global, static, or local variables, the following
7967special arguments are supported:
7968
7969@table @code
7970@item $regs
7971collect all registers
7972
7973@item $args
7974collect all function arguments
7975
7976@item $locals
7977collect all local variables.
7978@end table
7979
7980You can give several consecutive @code{collect} commands, each one
7981with a single argument, or one @code{collect} command with several
7982arguments separated by commas: the effect is the same.
7983
f5c37c66
EZ
7984The command @code{info scope} (@pxref{Symbols, info scope}) is
7985particularly useful for figuring out what data to collect.
7986
b37052ae
EZ
7987@kindex while-stepping @r{(tracepoints)}
7988@item while-stepping @var{n}
7989Perform @var{n} single-step traces after the tracepoint, collecting
7990new data at each step. The @code{while-stepping} command is
7991followed by the list of what to collect while stepping (followed by
7992its own @code{end} command):
7993
7994@smallexample
7995> while-stepping 12
7996 > collect $regs, myglobal
7997 > end
7998>
7999@end smallexample
8000
8001@noindent
8002You may abbreviate @code{while-stepping} as @code{ws} or
8003@code{stepping}.
8004@end table
8005
8006@node Listing Tracepoints
8007@subsection Listing Tracepoints
8008
8009@table @code
8010@kindex info tracepoints
09d4efe1 8011@kindex info tp
b37052ae
EZ
8012@cindex information about tracepoints
8013@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8014Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8015a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8016defined so far. For each tracepoint, the following information is
8017shown:
8018
8019@itemize @bullet
8020@item
8021its number
8022@item
8023whether it is enabled or disabled
8024@item
8025its address
8026@item
8027its passcount as given by the @code{passcount @var{n}} command
8028@item
8029its step count as given by the @code{while-stepping @var{n}} command
8030@item
8031where in the source files is the tracepoint set
8032@item
8033its action list as given by the @code{actions} command
8034@end itemize
8035
8036@smallexample
8037(@value{GDBP}) @b{info trace}
8038Num Enb Address PassC StepC What
80391 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80402 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80413 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8042(@value{GDBP})
8043@end smallexample
8044
8045@noindent
8046This command can be abbreviated @code{info tp}.
8047@end table
8048
79a6e687
BW
8049@node Starting and Stopping Trace Experiments
8050@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8051
8052@table @code
8053@kindex tstart
8054@cindex start a new trace experiment
8055@cindex collected data discarded
8056@item tstart
8057This command takes no arguments. It starts the trace experiment, and
8058begins collecting data. This has the side effect of discarding all
8059the data collected in the trace buffer during the previous trace
8060experiment.
8061
8062@kindex tstop
8063@cindex stop a running trace experiment
8064@item tstop
8065This command takes no arguments. It ends the trace experiment, and
8066stops collecting data.
8067
68c71a2e 8068@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8069automatically if any tracepoint's passcount is reached
8070(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8071
8072@kindex tstatus
8073@cindex status of trace data collection
8074@cindex trace experiment, status of
8075@item tstatus
8076This command displays the status of the current trace data
8077collection.
8078@end table
8079
8080Here is an example of the commands we described so far:
8081
8082@smallexample
8083(@value{GDBP}) @b{trace gdb_c_test}
8084(@value{GDBP}) @b{actions}
8085Enter actions for tracepoint #1, one per line.
8086> collect $regs,$locals,$args
8087> while-stepping 11
8088 > collect $regs
8089 > end
8090> end
8091(@value{GDBP}) @b{tstart}
8092 [time passes @dots{}]
8093(@value{GDBP}) @b{tstop}
8094@end smallexample
8095
8096
8097@node Analyze Collected Data
79a6e687 8098@section Using the Collected Data
b37052ae
EZ
8099
8100After the tracepoint experiment ends, you use @value{GDBN} commands
8101for examining the trace data. The basic idea is that each tracepoint
8102collects a trace @dfn{snapshot} every time it is hit and another
8103snapshot every time it single-steps. All these snapshots are
8104consecutively numbered from zero and go into a buffer, and you can
8105examine them later. The way you examine them is to @dfn{focus} on a
8106specific trace snapshot. When the remote stub is focused on a trace
8107snapshot, it will respond to all @value{GDBN} requests for memory and
8108registers by reading from the buffer which belongs to that snapshot,
8109rather than from @emph{real} memory or registers of the program being
8110debugged. This means that @strong{all} @value{GDBN} commands
8111(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8112behave as if we were currently debugging the program state as it was
8113when the tracepoint occurred. Any requests for data that are not in
8114the buffer will fail.
8115
8116@menu
8117* tfind:: How to select a trace snapshot
8118* tdump:: How to display all data for a snapshot
8119* save-tracepoints:: How to save tracepoints for a future run
8120@end menu
8121
8122@node tfind
8123@subsection @code{tfind @var{n}}
8124
8125@kindex tfind
8126@cindex select trace snapshot
8127@cindex find trace snapshot
8128The basic command for selecting a trace snapshot from the buffer is
8129@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8130counting from zero. If no argument @var{n} is given, the next
8131snapshot is selected.
8132
8133Here are the various forms of using the @code{tfind} command.
8134
8135@table @code
8136@item tfind start
8137Find the first snapshot in the buffer. This is a synonym for
8138@code{tfind 0} (since 0 is the number of the first snapshot).
8139
8140@item tfind none
8141Stop debugging trace snapshots, resume @emph{live} debugging.
8142
8143@item tfind end
8144Same as @samp{tfind none}.
8145
8146@item tfind
8147No argument means find the next trace snapshot.
8148
8149@item tfind -
8150Find the previous trace snapshot before the current one. This permits
8151retracing earlier steps.
8152
8153@item tfind tracepoint @var{num}
8154Find the next snapshot associated with tracepoint @var{num}. Search
8155proceeds forward from the last examined trace snapshot. If no
8156argument @var{num} is given, it means find the next snapshot collected
8157for the same tracepoint as the current snapshot.
8158
8159@item tfind pc @var{addr}
8160Find the next snapshot associated with the value @var{addr} of the
8161program counter. Search proceeds forward from the last examined trace
8162snapshot. If no argument @var{addr} is given, it means find the next
8163snapshot with the same value of PC as the current snapshot.
8164
8165@item tfind outside @var{addr1}, @var{addr2}
8166Find the next snapshot whose PC is outside the given range of
8167addresses.
8168
8169@item tfind range @var{addr1}, @var{addr2}
8170Find the next snapshot whose PC is between @var{addr1} and
8171@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8172
8173@item tfind line @r{[}@var{file}:@r{]}@var{n}
8174Find the next snapshot associated with the source line @var{n}. If
8175the optional argument @var{file} is given, refer to line @var{n} in
8176that source file. Search proceeds forward from the last examined
8177trace snapshot. If no argument @var{n} is given, it means find the
8178next line other than the one currently being examined; thus saying
8179@code{tfind line} repeatedly can appear to have the same effect as
8180stepping from line to line in a @emph{live} debugging session.
8181@end table
8182
8183The default arguments for the @code{tfind} commands are specifically
8184designed to make it easy to scan through the trace buffer. For
8185instance, @code{tfind} with no argument selects the next trace
8186snapshot, and @code{tfind -} with no argument selects the previous
8187trace snapshot. So, by giving one @code{tfind} command, and then
8188simply hitting @key{RET} repeatedly you can examine all the trace
8189snapshots in order. Or, by saying @code{tfind -} and then hitting
8190@key{RET} repeatedly you can examine the snapshots in reverse order.
8191The @code{tfind line} command with no argument selects the snapshot
8192for the next source line executed. The @code{tfind pc} command with
8193no argument selects the next snapshot with the same program counter
8194(PC) as the current frame. The @code{tfind tracepoint} command with
8195no argument selects the next trace snapshot collected by the same
8196tracepoint as the current one.
8197
8198In addition to letting you scan through the trace buffer manually,
8199these commands make it easy to construct @value{GDBN} scripts that
8200scan through the trace buffer and print out whatever collected data
8201you are interested in. Thus, if we want to examine the PC, FP, and SP
8202registers from each trace frame in the buffer, we can say this:
8203
8204@smallexample
8205(@value{GDBP}) @b{tfind start}
8206(@value{GDBP}) @b{while ($trace_frame != -1)}
8207> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8208 $trace_frame, $pc, $sp, $fp
8209> tfind
8210> end
8211
8212Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8213Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8214Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8215Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8216Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8217Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8218Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8219Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8220Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8221Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8222Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8223@end smallexample
8224
8225Or, if we want to examine the variable @code{X} at each source line in
8226the buffer:
8227
8228@smallexample
8229(@value{GDBP}) @b{tfind start}
8230(@value{GDBP}) @b{while ($trace_frame != -1)}
8231> printf "Frame %d, X == %d\n", $trace_frame, X
8232> tfind line
8233> end
8234
8235Frame 0, X = 1
8236Frame 7, X = 2
8237Frame 13, X = 255
8238@end smallexample
8239
8240@node tdump
8241@subsection @code{tdump}
8242@kindex tdump
8243@cindex dump all data collected at tracepoint
8244@cindex tracepoint data, display
8245
8246This command takes no arguments. It prints all the data collected at
8247the current trace snapshot.
8248
8249@smallexample
8250(@value{GDBP}) @b{trace 444}
8251(@value{GDBP}) @b{actions}
8252Enter actions for tracepoint #2, one per line:
8253> collect $regs, $locals, $args, gdb_long_test
8254> end
8255
8256(@value{GDBP}) @b{tstart}
8257
8258(@value{GDBP}) @b{tfind line 444}
8259#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8260at gdb_test.c:444
8261444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8262
8263(@value{GDBP}) @b{tdump}
8264Data collected at tracepoint 2, trace frame 1:
8265d0 0xc4aa0085 -995491707
8266d1 0x18 24
8267d2 0x80 128
8268d3 0x33 51
8269d4 0x71aea3d 119204413
8270d5 0x22 34
8271d6 0xe0 224
8272d7 0x380035 3670069
8273a0 0x19e24a 1696330
8274a1 0x3000668 50333288
8275a2 0x100 256
8276a3 0x322000 3284992
8277a4 0x3000698 50333336
8278a5 0x1ad3cc 1758156
8279fp 0x30bf3c 0x30bf3c
8280sp 0x30bf34 0x30bf34
8281ps 0x0 0
8282pc 0x20b2c8 0x20b2c8
8283fpcontrol 0x0 0
8284fpstatus 0x0 0
8285fpiaddr 0x0 0
8286p = 0x20e5b4 "gdb-test"
8287p1 = (void *) 0x11
8288p2 = (void *) 0x22
8289p3 = (void *) 0x33
8290p4 = (void *) 0x44
8291p5 = (void *) 0x55
8292p6 = (void *) 0x66
8293gdb_long_test = 17 '\021'
8294
8295(@value{GDBP})
8296@end smallexample
8297
8298@node save-tracepoints
8299@subsection @code{save-tracepoints @var{filename}}
8300@kindex save-tracepoints
8301@cindex save tracepoints for future sessions
8302
8303This command saves all current tracepoint definitions together with
8304their actions and passcounts, into a file @file{@var{filename}}
8305suitable for use in a later debugging session. To read the saved
8306tracepoint definitions, use the @code{source} command (@pxref{Command
8307Files}).
8308
8309@node Tracepoint Variables
8310@section Convenience Variables for Tracepoints
8311@cindex tracepoint variables
8312@cindex convenience variables for tracepoints
8313
8314@table @code
8315@vindex $trace_frame
8316@item (int) $trace_frame
8317The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8318snapshot is selected.
8319
8320@vindex $tracepoint
8321@item (int) $tracepoint
8322The tracepoint for the current trace snapshot.
8323
8324@vindex $trace_line
8325@item (int) $trace_line
8326The line number for the current trace snapshot.
8327
8328@vindex $trace_file
8329@item (char []) $trace_file
8330The source file for the current trace snapshot.
8331
8332@vindex $trace_func
8333@item (char []) $trace_func
8334The name of the function containing @code{$tracepoint}.
8335@end table
8336
8337Note: @code{$trace_file} is not suitable for use in @code{printf},
8338use @code{output} instead.
8339
8340Here's a simple example of using these convenience variables for
8341stepping through all the trace snapshots and printing some of their
8342data.
8343
8344@smallexample
8345(@value{GDBP}) @b{tfind start}
8346
8347(@value{GDBP}) @b{while $trace_frame != -1}
8348> output $trace_file
8349> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8350> tfind
8351> end
8352@end smallexample
8353
df0cd8c5
JB
8354@node Overlays
8355@chapter Debugging Programs That Use Overlays
8356@cindex overlays
8357
8358If your program is too large to fit completely in your target system's
8359memory, you can sometimes use @dfn{overlays} to work around this
8360problem. @value{GDBN} provides some support for debugging programs that
8361use overlays.
8362
8363@menu
8364* How Overlays Work:: A general explanation of overlays.
8365* Overlay Commands:: Managing overlays in @value{GDBN}.
8366* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8367 mapped by asking the inferior.
8368* Overlay Sample Program:: A sample program using overlays.
8369@end menu
8370
8371@node How Overlays Work
8372@section How Overlays Work
8373@cindex mapped overlays
8374@cindex unmapped overlays
8375@cindex load address, overlay's
8376@cindex mapped address
8377@cindex overlay area
8378
8379Suppose you have a computer whose instruction address space is only 64
8380kilobytes long, but which has much more memory which can be accessed by
8381other means: special instructions, segment registers, or memory
8382management hardware, for example. Suppose further that you want to
8383adapt a program which is larger than 64 kilobytes to run on this system.
8384
8385One solution is to identify modules of your program which are relatively
8386independent, and need not call each other directly; call these modules
8387@dfn{overlays}. Separate the overlays from the main program, and place
8388their machine code in the larger memory. Place your main program in
8389instruction memory, but leave at least enough space there to hold the
8390largest overlay as well.
8391
8392Now, to call a function located in an overlay, you must first copy that
8393overlay's machine code from the large memory into the space set aside
8394for it in the instruction memory, and then jump to its entry point
8395there.
8396
c928edc0
AC
8397@c NB: In the below the mapped area's size is greater or equal to the
8398@c size of all overlays. This is intentional to remind the developer
8399@c that overlays don't necessarily need to be the same size.
8400
474c8240 8401@smallexample
df0cd8c5 8402@group
c928edc0
AC
8403 Data Instruction Larger
8404Address Space Address Space Address Space
8405+-----------+ +-----------+ +-----------+
8406| | | | | |
8407+-----------+ +-----------+ +-----------+<-- overlay 1
8408| program | | main | .----| overlay 1 | load address
8409| variables | | program | | +-----------+
8410| and heap | | | | | |
8411+-----------+ | | | +-----------+<-- overlay 2
8412| | +-----------+ | | | load address
8413+-----------+ | | | .-| overlay 2 |
8414 | | | | | |
8415 mapped --->+-----------+ | | +-----------+
8416 address | | | | | |
8417 | overlay | <-' | | |
8418 | area | <---' +-----------+<-- overlay 3
8419 | | <---. | | load address
8420 +-----------+ `--| overlay 3 |
8421 | | | |
8422 +-----------+ | |
8423 +-----------+
8424 | |
8425 +-----------+
8426
8427 @anchor{A code overlay}A code overlay
df0cd8c5 8428@end group
474c8240 8429@end smallexample
df0cd8c5 8430
c928edc0
AC
8431The diagram (@pxref{A code overlay}) shows a system with separate data
8432and instruction address spaces. To map an overlay, the program copies
8433its code from the larger address space to the instruction address space.
8434Since the overlays shown here all use the same mapped address, only one
8435may be mapped at a time. For a system with a single address space for
8436data and instructions, the diagram would be similar, except that the
8437program variables and heap would share an address space with the main
8438program and the overlay area.
df0cd8c5
JB
8439
8440An overlay loaded into instruction memory and ready for use is called a
8441@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8442instruction memory. An overlay not present (or only partially present)
8443in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8444is its address in the larger memory. The mapped address is also called
8445the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8446called the @dfn{load memory address}, or @dfn{LMA}.
8447
8448Unfortunately, overlays are not a completely transparent way to adapt a
8449program to limited instruction memory. They introduce a new set of
8450global constraints you must keep in mind as you design your program:
8451
8452@itemize @bullet
8453
8454@item
8455Before calling or returning to a function in an overlay, your program
8456must make sure that overlay is actually mapped. Otherwise, the call or
8457return will transfer control to the right address, but in the wrong
8458overlay, and your program will probably crash.
8459
8460@item
8461If the process of mapping an overlay is expensive on your system, you
8462will need to choose your overlays carefully to minimize their effect on
8463your program's performance.
8464
8465@item
8466The executable file you load onto your system must contain each
8467overlay's instructions, appearing at the overlay's load address, not its
8468mapped address. However, each overlay's instructions must be relocated
8469and its symbols defined as if the overlay were at its mapped address.
8470You can use GNU linker scripts to specify different load and relocation
8471addresses for pieces of your program; see @ref{Overlay Description,,,
8472ld.info, Using ld: the GNU linker}.
8473
8474@item
8475The procedure for loading executable files onto your system must be able
8476to load their contents into the larger address space as well as the
8477instruction and data spaces.
8478
8479@end itemize
8480
8481The overlay system described above is rather simple, and could be
8482improved in many ways:
8483
8484@itemize @bullet
8485
8486@item
8487If your system has suitable bank switch registers or memory management
8488hardware, you could use those facilities to make an overlay's load area
8489contents simply appear at their mapped address in instruction space.
8490This would probably be faster than copying the overlay to its mapped
8491area in the usual way.
8492
8493@item
8494If your overlays are small enough, you could set aside more than one
8495overlay area, and have more than one overlay mapped at a time.
8496
8497@item
8498You can use overlays to manage data, as well as instructions. In
8499general, data overlays are even less transparent to your design than
8500code overlays: whereas code overlays only require care when you call or
8501return to functions, data overlays require care every time you access
8502the data. Also, if you change the contents of a data overlay, you
8503must copy its contents back out to its load address before you can copy a
8504different data overlay into the same mapped area.
8505
8506@end itemize
8507
8508
8509@node Overlay Commands
8510@section Overlay Commands
8511
8512To use @value{GDBN}'s overlay support, each overlay in your program must
8513correspond to a separate section of the executable file. The section's
8514virtual memory address and load memory address must be the overlay's
8515mapped and load addresses. Identifying overlays with sections allows
8516@value{GDBN} to determine the appropriate address of a function or
8517variable, depending on whether the overlay is mapped or not.
8518
8519@value{GDBN}'s overlay commands all start with the word @code{overlay};
8520you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8521
8522@table @code
8523@item overlay off
4644b6e3 8524@kindex overlay
df0cd8c5
JB
8525Disable @value{GDBN}'s overlay support. When overlay support is
8526disabled, @value{GDBN} assumes that all functions and variables are
8527always present at their mapped addresses. By default, @value{GDBN}'s
8528overlay support is disabled.
8529
8530@item overlay manual
df0cd8c5
JB
8531@cindex manual overlay debugging
8532Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8533relies on you to tell it which overlays are mapped, and which are not,
8534using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8535commands described below.
8536
8537@item overlay map-overlay @var{overlay}
8538@itemx overlay map @var{overlay}
df0cd8c5
JB
8539@cindex map an overlay
8540Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8541be the name of the object file section containing the overlay. When an
8542overlay is mapped, @value{GDBN} assumes it can find the overlay's
8543functions and variables at their mapped addresses. @value{GDBN} assumes
8544that any other overlays whose mapped ranges overlap that of
8545@var{overlay} are now unmapped.
8546
8547@item overlay unmap-overlay @var{overlay}
8548@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8549@cindex unmap an overlay
8550Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8551must be the name of the object file section containing the overlay.
8552When an overlay is unmapped, @value{GDBN} assumes it can find the
8553overlay's functions and variables at their load addresses.
8554
8555@item overlay auto
df0cd8c5
JB
8556Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8557consults a data structure the overlay manager maintains in the inferior
8558to see which overlays are mapped. For details, see @ref{Automatic
8559Overlay Debugging}.
8560
8561@item overlay load-target
8562@itemx overlay load
df0cd8c5
JB
8563@cindex reloading the overlay table
8564Re-read the overlay table from the inferior. Normally, @value{GDBN}
8565re-reads the table @value{GDBN} automatically each time the inferior
8566stops, so this command should only be necessary if you have changed the
8567overlay mapping yourself using @value{GDBN}. This command is only
8568useful when using automatic overlay debugging.
8569
8570@item overlay list-overlays
8571@itemx overlay list
8572@cindex listing mapped overlays
8573Display a list of the overlays currently mapped, along with their mapped
8574addresses, load addresses, and sizes.
8575
8576@end table
8577
8578Normally, when @value{GDBN} prints a code address, it includes the name
8579of the function the address falls in:
8580
474c8240 8581@smallexample
f7dc1244 8582(@value{GDBP}) print main
df0cd8c5 8583$3 = @{int ()@} 0x11a0 <main>
474c8240 8584@end smallexample
df0cd8c5
JB
8585@noindent
8586When overlay debugging is enabled, @value{GDBN} recognizes code in
8587unmapped overlays, and prints the names of unmapped functions with
8588asterisks around them. For example, if @code{foo} is a function in an
8589unmapped overlay, @value{GDBN} prints it this way:
8590
474c8240 8591@smallexample
f7dc1244 8592(@value{GDBP}) overlay list
df0cd8c5 8593No sections are mapped.
f7dc1244 8594(@value{GDBP}) print foo
df0cd8c5 8595$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8596@end smallexample
df0cd8c5
JB
8597@noindent
8598When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8599name normally:
8600
474c8240 8601@smallexample
f7dc1244 8602(@value{GDBP}) overlay list
b383017d 8603Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8604 mapped at 0x1016 - 0x104a
f7dc1244 8605(@value{GDBP}) print foo
df0cd8c5 8606$6 = @{int (int)@} 0x1016 <foo>
474c8240 8607@end smallexample
df0cd8c5
JB
8608
8609When overlay debugging is enabled, @value{GDBN} can find the correct
8610address for functions and variables in an overlay, whether or not the
8611overlay is mapped. This allows most @value{GDBN} commands, like
8612@code{break} and @code{disassemble}, to work normally, even on unmapped
8613code. However, @value{GDBN}'s breakpoint support has some limitations:
8614
8615@itemize @bullet
8616@item
8617@cindex breakpoints in overlays
8618@cindex overlays, setting breakpoints in
8619You can set breakpoints in functions in unmapped overlays, as long as
8620@value{GDBN} can write to the overlay at its load address.
8621@item
8622@value{GDBN} can not set hardware or simulator-based breakpoints in
8623unmapped overlays. However, if you set a breakpoint at the end of your
8624overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8625you are using manual overlay management), @value{GDBN} will re-set its
8626breakpoints properly.
8627@end itemize
8628
8629
8630@node Automatic Overlay Debugging
8631@section Automatic Overlay Debugging
8632@cindex automatic overlay debugging
8633
8634@value{GDBN} can automatically track which overlays are mapped and which
8635are not, given some simple co-operation from the overlay manager in the
8636inferior. If you enable automatic overlay debugging with the
8637@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8638looks in the inferior's memory for certain variables describing the
8639current state of the overlays.
8640
8641Here are the variables your overlay manager must define to support
8642@value{GDBN}'s automatic overlay debugging:
8643
8644@table @asis
8645
8646@item @code{_ovly_table}:
8647This variable must be an array of the following structures:
8648
474c8240 8649@smallexample
df0cd8c5
JB
8650struct
8651@{
8652 /* The overlay's mapped address. */
8653 unsigned long vma;
8654
8655 /* The size of the overlay, in bytes. */
8656 unsigned long size;
8657
8658 /* The overlay's load address. */
8659 unsigned long lma;
8660
8661 /* Non-zero if the overlay is currently mapped;
8662 zero otherwise. */
8663 unsigned long mapped;
8664@}
474c8240 8665@end smallexample
df0cd8c5
JB
8666
8667@item @code{_novlys}:
8668This variable must be a four-byte signed integer, holding the total
8669number of elements in @code{_ovly_table}.
8670
8671@end table
8672
8673To decide whether a particular overlay is mapped or not, @value{GDBN}
8674looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8675@code{lma} members equal the VMA and LMA of the overlay's section in the
8676executable file. When @value{GDBN} finds a matching entry, it consults
8677the entry's @code{mapped} member to determine whether the overlay is
8678currently mapped.
8679
81d46470 8680In addition, your overlay manager may define a function called
def71bfa 8681@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8682will silently set a breakpoint there. If the overlay manager then
8683calls this function whenever it has changed the overlay table, this
8684will enable @value{GDBN} to accurately keep track of which overlays
8685are in program memory, and update any breakpoints that may be set
b383017d 8686in overlays. This will allow breakpoints to work even if the
81d46470
MS
8687overlays are kept in ROM or other non-writable memory while they
8688are not being executed.
df0cd8c5
JB
8689
8690@node Overlay Sample Program
8691@section Overlay Sample Program
8692@cindex overlay example program
8693
8694When linking a program which uses overlays, you must place the overlays
8695at their load addresses, while relocating them to run at their mapped
8696addresses. To do this, you must write a linker script (@pxref{Overlay
8697Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8698since linker scripts are specific to a particular host system, target
8699architecture, and target memory layout, this manual cannot provide
8700portable sample code demonstrating @value{GDBN}'s overlay support.
8701
8702However, the @value{GDBN} source distribution does contain an overlaid
8703program, with linker scripts for a few systems, as part of its test
8704suite. The program consists of the following files from
8705@file{gdb/testsuite/gdb.base}:
8706
8707@table @file
8708@item overlays.c
8709The main program file.
8710@item ovlymgr.c
8711A simple overlay manager, used by @file{overlays.c}.
8712@item foo.c
8713@itemx bar.c
8714@itemx baz.c
8715@itemx grbx.c
8716Overlay modules, loaded and used by @file{overlays.c}.
8717@item d10v.ld
8718@itemx m32r.ld
8719Linker scripts for linking the test program on the @code{d10v-elf}
8720and @code{m32r-elf} targets.
8721@end table
8722
8723You can build the test program using the @code{d10v-elf} GCC
8724cross-compiler like this:
8725
474c8240 8726@smallexample
df0cd8c5
JB
8727$ d10v-elf-gcc -g -c overlays.c
8728$ d10v-elf-gcc -g -c ovlymgr.c
8729$ d10v-elf-gcc -g -c foo.c
8730$ d10v-elf-gcc -g -c bar.c
8731$ d10v-elf-gcc -g -c baz.c
8732$ d10v-elf-gcc -g -c grbx.c
8733$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8734 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8735@end smallexample
df0cd8c5
JB
8736
8737The build process is identical for any other architecture, except that
8738you must substitute the appropriate compiler and linker script for the
8739target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8740
8741
6d2ebf8b 8742@node Languages
c906108c
SS
8743@chapter Using @value{GDBN} with Different Languages
8744@cindex languages
8745
c906108c
SS
8746Although programming languages generally have common aspects, they are
8747rarely expressed in the same manner. For instance, in ANSI C,
8748dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8749Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8750represented (and displayed) differently. Hex numbers in C appear as
c906108c 8751@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8752
8753@cindex working language
8754Language-specific information is built into @value{GDBN} for some languages,
8755allowing you to express operations like the above in your program's
8756native language, and allowing @value{GDBN} to output values in a manner
8757consistent with the syntax of your program's native language. The
8758language you use to build expressions is called the @dfn{working
8759language}.
8760
8761@menu
8762* Setting:: Switching between source languages
8763* Show:: Displaying the language
c906108c 8764* Checks:: Type and range checks
79a6e687
BW
8765* Supported Languages:: Supported languages
8766* Unsupported Languages:: Unsupported languages
c906108c
SS
8767@end menu
8768
6d2ebf8b 8769@node Setting
79a6e687 8770@section Switching Between Source Languages
c906108c
SS
8771
8772There are two ways to control the working language---either have @value{GDBN}
8773set it automatically, or select it manually yourself. You can use the
8774@code{set language} command for either purpose. On startup, @value{GDBN}
8775defaults to setting the language automatically. The working language is
8776used to determine how expressions you type are interpreted, how values
8777are printed, etc.
8778
8779In addition to the working language, every source file that
8780@value{GDBN} knows about has its own working language. For some object
8781file formats, the compiler might indicate which language a particular
8782source file is in. However, most of the time @value{GDBN} infers the
8783language from the name of the file. The language of a source file
b37052ae 8784controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8785show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8786set the language of a source file from within @value{GDBN}, but you can
8787set the language associated with a filename extension. @xref{Show, ,
79a6e687 8788Displaying the Language}.
c906108c
SS
8789
8790This is most commonly a problem when you use a program, such
5d161b24 8791as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8792another language. In that case, make the
8793program use @code{#line} directives in its C output; that way
8794@value{GDBN} will know the correct language of the source code of the original
8795program, and will display that source code, not the generated C code.
8796
8797@menu
8798* Filenames:: Filename extensions and languages.
8799* Manually:: Setting the working language manually
8800* Automatically:: Having @value{GDBN} infer the source language
8801@end menu
8802
6d2ebf8b 8803@node Filenames
79a6e687 8804@subsection List of Filename Extensions and Languages
c906108c
SS
8805
8806If a source file name ends in one of the following extensions, then
8807@value{GDBN} infers that its language is the one indicated.
8808
8809@table @file
e07c999f
PH
8810@item .ada
8811@itemx .ads
8812@itemx .adb
8813@itemx .a
8814Ada source file.
c906108c
SS
8815
8816@item .c
8817C source file
8818
8819@item .C
8820@itemx .cc
8821@itemx .cp
8822@itemx .cpp
8823@itemx .cxx
8824@itemx .c++
b37052ae 8825C@t{++} source file
c906108c 8826
b37303ee
AF
8827@item .m
8828Objective-C source file
8829
c906108c
SS
8830@item .f
8831@itemx .F
8832Fortran source file
8833
c906108c
SS
8834@item .mod
8835Modula-2 source file
c906108c
SS
8836
8837@item .s
8838@itemx .S
8839Assembler source file. This actually behaves almost like C, but
8840@value{GDBN} does not skip over function prologues when stepping.
8841@end table
8842
8843In addition, you may set the language associated with a filename
79a6e687 8844extension. @xref{Show, , Displaying the Language}.
c906108c 8845
6d2ebf8b 8846@node Manually
79a6e687 8847@subsection Setting the Working Language
c906108c
SS
8848
8849If you allow @value{GDBN} to set the language automatically,
8850expressions are interpreted the same way in your debugging session and
8851your program.
8852
8853@kindex set language
8854If you wish, you may set the language manually. To do this, issue the
8855command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8856a language, such as
c906108c 8857@code{c} or @code{modula-2}.
c906108c
SS
8858For a list of the supported languages, type @samp{set language}.
8859
c906108c
SS
8860Setting the language manually prevents @value{GDBN} from updating the working
8861language automatically. This can lead to confusion if you try
8862to debug a program when the working language is not the same as the
8863source language, when an expression is acceptable to both
8864languages---but means different things. For instance, if the current
8865source file were written in C, and @value{GDBN} was parsing Modula-2, a
8866command such as:
8867
474c8240 8868@smallexample
c906108c 8869print a = b + c
474c8240 8870@end smallexample
c906108c
SS
8871
8872@noindent
8873might not have the effect you intended. In C, this means to add
8874@code{b} and @code{c} and place the result in @code{a}. The result
8875printed would be the value of @code{a}. In Modula-2, this means to compare
8876@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8877
6d2ebf8b 8878@node Automatically
79a6e687 8879@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8880
8881To have @value{GDBN} set the working language automatically, use
8882@samp{set language local} or @samp{set language auto}. @value{GDBN}
8883then infers the working language. That is, when your program stops in a
8884frame (usually by encountering a breakpoint), @value{GDBN} sets the
8885working language to the language recorded for the function in that
8886frame. If the language for a frame is unknown (that is, if the function
8887or block corresponding to the frame was defined in a source file that
8888does not have a recognized extension), the current working language is
8889not changed, and @value{GDBN} issues a warning.
8890
8891This may not seem necessary for most programs, which are written
8892entirely in one source language. However, program modules and libraries
8893written in one source language can be used by a main program written in
8894a different source language. Using @samp{set language auto} in this
8895case frees you from having to set the working language manually.
8896
6d2ebf8b 8897@node Show
79a6e687 8898@section Displaying the Language
c906108c
SS
8899
8900The following commands help you find out which language is the
8901working language, and also what language source files were written in.
8902
c906108c
SS
8903@table @code
8904@item show language
9c16f35a 8905@kindex show language
c906108c
SS
8906Display the current working language. This is the
8907language you can use with commands such as @code{print} to
8908build and compute expressions that may involve variables in your program.
8909
8910@item info frame
4644b6e3 8911@kindex info frame@r{, show the source language}
5d161b24 8912Display the source language for this frame. This language becomes the
c906108c 8913working language if you use an identifier from this frame.
79a6e687 8914@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8915information listed here.
8916
8917@item info source
4644b6e3 8918@kindex info source@r{, show the source language}
c906108c 8919Display the source language of this source file.
5d161b24 8920@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8921information listed here.
8922@end table
8923
8924In unusual circumstances, you may have source files with extensions
8925not in the standard list. You can then set the extension associated
8926with a language explicitly:
8927
c906108c 8928@table @code
09d4efe1 8929@item set extension-language @var{ext} @var{language}
9c16f35a 8930@kindex set extension-language
09d4efe1
EZ
8931Tell @value{GDBN} that source files with extension @var{ext} are to be
8932assumed as written in the source language @var{language}.
c906108c
SS
8933
8934@item info extensions
9c16f35a 8935@kindex info extensions
c906108c
SS
8936List all the filename extensions and the associated languages.
8937@end table
8938
6d2ebf8b 8939@node Checks
79a6e687 8940@section Type and Range Checking
c906108c
SS
8941
8942@quotation
8943@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8944checking are included, but they do not yet have any effect. This
8945section documents the intended facilities.
8946@end quotation
8947@c FIXME remove warning when type/range code added
8948
8949Some languages are designed to guard you against making seemingly common
8950errors through a series of compile- and run-time checks. These include
8951checking the type of arguments to functions and operators, and making
8952sure mathematical overflows are caught at run time. Checks such as
8953these help to ensure a program's correctness once it has been compiled
8954by eliminating type mismatches, and providing active checks for range
8955errors when your program is running.
8956
8957@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8958Although @value{GDBN} does not check the statements in your program,
8959it can check expressions entered directly into @value{GDBN} for
8960evaluation via the @code{print} command, for example. As with the
8961working language, @value{GDBN} can also decide whether or not to check
8962automatically based on your program's source language.
79a6e687 8963@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8964settings of supported languages.
c906108c
SS
8965
8966@menu
8967* Type Checking:: An overview of type checking
8968* Range Checking:: An overview of range checking
8969@end menu
8970
8971@cindex type checking
8972@cindex checks, type
6d2ebf8b 8973@node Type Checking
79a6e687 8974@subsection An Overview of Type Checking
c906108c
SS
8975
8976Some languages, such as Modula-2, are strongly typed, meaning that the
8977arguments to operators and functions have to be of the correct type,
8978otherwise an error occurs. These checks prevent type mismatch
8979errors from ever causing any run-time problems. For example,
8980
8981@smallexample
89821 + 2 @result{} 3
8983@exdent but
8984@error{} 1 + 2.3
8985@end smallexample
8986
8987The second example fails because the @code{CARDINAL} 1 is not
8988type-compatible with the @code{REAL} 2.3.
8989
5d161b24
DB
8990For the expressions you use in @value{GDBN} commands, you can tell the
8991@value{GDBN} type checker to skip checking;
8992to treat any mismatches as errors and abandon the expression;
8993or to only issue warnings when type mismatches occur,
c906108c
SS
8994but evaluate the expression anyway. When you choose the last of
8995these, @value{GDBN} evaluates expressions like the second example above, but
8996also issues a warning.
8997
5d161b24
DB
8998Even if you turn type checking off, there may be other reasons
8999related to type that prevent @value{GDBN} from evaluating an expression.
9000For instance, @value{GDBN} does not know how to add an @code{int} and
9001a @code{struct foo}. These particular type errors have nothing to do
9002with the language in use, and usually arise from expressions, such as
c906108c
SS
9003the one described above, which make little sense to evaluate anyway.
9004
9005Each language defines to what degree it is strict about type. For
9006instance, both Modula-2 and C require the arguments to arithmetical
9007operators to be numbers. In C, enumerated types and pointers can be
9008represented as numbers, so that they are valid arguments to mathematical
79a6e687 9009operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9010details on specific languages.
9011
9012@value{GDBN} provides some additional commands for controlling the type checker:
9013
c906108c
SS
9014@kindex set check type
9015@kindex show check type
9016@table @code
9017@item set check type auto
9018Set type checking on or off based on the current working language.
79a6e687 9019@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9020each language.
9021
9022@item set check type on
9023@itemx set check type off
9024Set type checking on or off, overriding the default setting for the
9025current working language. Issue a warning if the setting does not
9026match the language default. If any type mismatches occur in
d4f3574e 9027evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9028message and aborts evaluation of the expression.
9029
9030@item set check type warn
9031Cause the type checker to issue warnings, but to always attempt to
9032evaluate the expression. Evaluating the expression may still
9033be impossible for other reasons. For example, @value{GDBN} cannot add
9034numbers and structures.
9035
9036@item show type
5d161b24 9037Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9038is setting it automatically.
9039@end table
9040
9041@cindex range checking
9042@cindex checks, range
6d2ebf8b 9043@node Range Checking
79a6e687 9044@subsection An Overview of Range Checking
c906108c
SS
9045
9046In some languages (such as Modula-2), it is an error to exceed the
9047bounds of a type; this is enforced with run-time checks. Such range
9048checking is meant to ensure program correctness by making sure
9049computations do not overflow, or indices on an array element access do
9050not exceed the bounds of the array.
9051
9052For expressions you use in @value{GDBN} commands, you can tell
9053@value{GDBN} to treat range errors in one of three ways: ignore them,
9054always treat them as errors and abandon the expression, or issue
9055warnings but evaluate the expression anyway.
9056
9057A range error can result from numerical overflow, from exceeding an
9058array index bound, or when you type a constant that is not a member
9059of any type. Some languages, however, do not treat overflows as an
9060error. In many implementations of C, mathematical overflow causes the
9061result to ``wrap around'' to lower values---for example, if @var{m} is
9062the largest integer value, and @var{s} is the smallest, then
9063
474c8240 9064@smallexample
c906108c 9065@var{m} + 1 @result{} @var{s}
474c8240 9066@end smallexample
c906108c
SS
9067
9068This, too, is specific to individual languages, and in some cases
79a6e687
BW
9069specific to individual compilers or machines. @xref{Supported Languages, ,
9070Supported Languages}, for further details on specific languages.
c906108c
SS
9071
9072@value{GDBN} provides some additional commands for controlling the range checker:
9073
c906108c
SS
9074@kindex set check range
9075@kindex show check range
9076@table @code
9077@item set check range auto
9078Set range checking on or off based on the current working language.
79a6e687 9079@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9080each language.
9081
9082@item set check range on
9083@itemx set check range off
9084Set range checking on or off, overriding the default setting for the
9085current working language. A warning is issued if the setting does not
c3f6f71d
JM
9086match the language default. If a range error occurs and range checking is on,
9087then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9088
9089@item set check range warn
9090Output messages when the @value{GDBN} range checker detects a range error,
9091but attempt to evaluate the expression anyway. Evaluating the
9092expression may still be impossible for other reasons, such as accessing
9093memory that the process does not own (a typical example from many Unix
9094systems).
9095
9096@item show range
9097Show the current setting of the range checker, and whether or not it is
9098being set automatically by @value{GDBN}.
9099@end table
c906108c 9100
79a6e687
BW
9101@node Supported Languages
9102@section Supported Languages
c906108c 9103
9c16f35a
EZ
9104@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9105assembly, Modula-2, and Ada.
cce74817 9106@c This is false ...
c906108c
SS
9107Some @value{GDBN} features may be used in expressions regardless of the
9108language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9109and the @samp{@{type@}addr} construct (@pxref{Expressions,
9110,Expressions}) can be used with the constructs of any supported
9111language.
9112
9113The following sections detail to what degree each source language is
9114supported by @value{GDBN}. These sections are not meant to be language
9115tutorials or references, but serve only as a reference guide to what the
9116@value{GDBN} expression parser accepts, and what input and output
9117formats should look like for different languages. There are many good
9118books written on each of these languages; please look to these for a
9119language reference or tutorial.
9120
c906108c 9121@menu
b37303ee 9122* C:: C and C@t{++}
b383017d 9123* Objective-C:: Objective-C
09d4efe1 9124* Fortran:: Fortran
9c16f35a 9125* Pascal:: Pascal
b37303ee 9126* Modula-2:: Modula-2
e07c999f 9127* Ada:: Ada
c906108c
SS
9128@end menu
9129
6d2ebf8b 9130@node C
b37052ae 9131@subsection C and C@t{++}
7a292a7a 9132
b37052ae
EZ
9133@cindex C and C@t{++}
9134@cindex expressions in C or C@t{++}
c906108c 9135
b37052ae 9136Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9137to both languages. Whenever this is the case, we discuss those languages
9138together.
9139
41afff9a
EZ
9140@cindex C@t{++}
9141@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9142@cindex @sc{gnu} C@t{++}
9143The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9144compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9145effectively, you must compile your C@t{++} programs with a supported
9146C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9147compiler (@code{aCC}).
9148
0179ffac
DC
9149For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9150format; if it doesn't work on your system, try the stabs+ debugging
9151format. You can select those formats explicitly with the @code{g++}
9152command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9153@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9154gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9155
c906108c 9156@menu
b37052ae
EZ
9157* C Operators:: C and C@t{++} operators
9158* C Constants:: C and C@t{++} constants
79a6e687 9159* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9160* C Defaults:: Default settings for C and C@t{++}
9161* C Checks:: C and C@t{++} type and range checks
c906108c 9162* Debugging C:: @value{GDBN} and C
79a6e687 9163* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9164* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9165@end menu
c906108c 9166
6d2ebf8b 9167@node C Operators
79a6e687 9168@subsubsection C and C@t{++} Operators
7a292a7a 9169
b37052ae 9170@cindex C and C@t{++} operators
c906108c
SS
9171
9172Operators must be defined on values of specific types. For instance,
9173@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9174often defined on groups of types.
c906108c 9175
b37052ae 9176For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9177
9178@itemize @bullet
53a5351d 9179
c906108c 9180@item
c906108c 9181@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9182specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9183
9184@item
d4f3574e
SS
9185@emph{Floating-point types} include @code{float}, @code{double}, and
9186@code{long double} (if supported by the target platform).
c906108c
SS
9187
9188@item
53a5351d 9189@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9190
9191@item
9192@emph{Scalar types} include all of the above.
53a5351d 9193
c906108c
SS
9194@end itemize
9195
9196@noindent
9197The following operators are supported. They are listed here
9198in order of increasing precedence:
9199
9200@table @code
9201@item ,
9202The comma or sequencing operator. Expressions in a comma-separated list
9203are evaluated from left to right, with the result of the entire
9204expression being the last expression evaluated.
9205
9206@item =
9207Assignment. The value of an assignment expression is the value
9208assigned. Defined on scalar types.
9209
9210@item @var{op}=
9211Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9212and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9213@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9214@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9215@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9216
9217@item ?:
9218The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9219of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9220integral type.
9221
9222@item ||
9223Logical @sc{or}. Defined on integral types.
9224
9225@item &&
9226Logical @sc{and}. Defined on integral types.
9227
9228@item |
9229Bitwise @sc{or}. Defined on integral types.
9230
9231@item ^
9232Bitwise exclusive-@sc{or}. Defined on integral types.
9233
9234@item &
9235Bitwise @sc{and}. Defined on integral types.
9236
9237@item ==@r{, }!=
9238Equality and inequality. Defined on scalar types. The value of these
9239expressions is 0 for false and non-zero for true.
9240
9241@item <@r{, }>@r{, }<=@r{, }>=
9242Less than, greater than, less than or equal, greater than or equal.
9243Defined on scalar types. The value of these expressions is 0 for false
9244and non-zero for true.
9245
9246@item <<@r{, }>>
9247left shift, and right shift. Defined on integral types.
9248
9249@item @@
9250The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9251
9252@item +@r{, }-
9253Addition and subtraction. Defined on integral types, floating-point types and
9254pointer types.
9255
9256@item *@r{, }/@r{, }%
9257Multiplication, division, and modulus. Multiplication and division are
9258defined on integral and floating-point types. Modulus is defined on
9259integral types.
9260
9261@item ++@r{, }--
9262Increment and decrement. When appearing before a variable, the
9263operation is performed before the variable is used in an expression;
9264when appearing after it, the variable's value is used before the
9265operation takes place.
9266
9267@item *
9268Pointer dereferencing. Defined on pointer types. Same precedence as
9269@code{++}.
9270
9271@item &
9272Address operator. Defined on variables. Same precedence as @code{++}.
9273
b37052ae
EZ
9274For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9275allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9276to examine the address
b37052ae 9277where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9278stored.
c906108c
SS
9279
9280@item -
9281Negative. Defined on integral and floating-point types. Same
9282precedence as @code{++}.
9283
9284@item !
9285Logical negation. Defined on integral types. Same precedence as
9286@code{++}.
9287
9288@item ~
9289Bitwise complement operator. Defined on integral types. Same precedence as
9290@code{++}.
9291
9292
9293@item .@r{, }->
9294Structure member, and pointer-to-structure member. For convenience,
9295@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9296pointer based on the stored type information.
9297Defined on @code{struct} and @code{union} data.
9298
c906108c
SS
9299@item .*@r{, }->*
9300Dereferences of pointers to members.
c906108c
SS
9301
9302@item []
9303Array indexing. @code{@var{a}[@var{i}]} is defined as
9304@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9305
9306@item ()
9307Function parameter list. Same precedence as @code{->}.
9308
c906108c 9309@item ::
b37052ae 9310C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9311and @code{class} types.
c906108c
SS
9312
9313@item ::
7a292a7a
SS
9314Doubled colons also represent the @value{GDBN} scope operator
9315(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9316above.
c906108c
SS
9317@end table
9318
c906108c
SS
9319If an operator is redefined in the user code, @value{GDBN} usually
9320attempts to invoke the redefined version instead of using the operator's
9321predefined meaning.
c906108c 9322
6d2ebf8b 9323@node C Constants
79a6e687 9324@subsubsection C and C@t{++} Constants
c906108c 9325
b37052ae 9326@cindex C and C@t{++} constants
c906108c 9327
b37052ae 9328@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9329following ways:
c906108c
SS
9330
9331@itemize @bullet
9332@item
9333Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9334specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9335by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9336@samp{l}, specifying that the constant should be treated as a
9337@code{long} value.
9338
9339@item
9340Floating point constants are a sequence of digits, followed by a decimal
9341point, followed by a sequence of digits, and optionally followed by an
9342exponent. An exponent is of the form:
9343@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9344sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9345A floating-point constant may also end with a letter @samp{f} or
9346@samp{F}, specifying that the constant should be treated as being of
9347the @code{float} (as opposed to the default @code{double}) type; or with
9348a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9349constant.
c906108c
SS
9350
9351@item
9352Enumerated constants consist of enumerated identifiers, or their
9353integral equivalents.
9354
9355@item
9356Character constants are a single character surrounded by single quotes
9357(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9358(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9359be represented by a letter or by @dfn{escape sequences}, which are of
9360the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9361of the character's ordinal value; or of the form @samp{\@var{x}}, where
9362@samp{@var{x}} is a predefined special character---for example,
9363@samp{\n} for newline.
9364
9365@item
96a2c332
SS
9366String constants are a sequence of character constants surrounded by
9367double quotes (@code{"}). Any valid character constant (as described
9368above) may appear. Double quotes within the string must be preceded by
9369a backslash, so for instance @samp{"a\"b'c"} is a string of five
9370characters.
c906108c
SS
9371
9372@item
9373Pointer constants are an integral value. You can also write pointers
9374to constants using the C operator @samp{&}.
9375
9376@item
9377Array constants are comma-separated lists surrounded by braces @samp{@{}
9378and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9379integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9380and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9381@end itemize
9382
79a6e687
BW
9383@node C Plus Plus Expressions
9384@subsubsection C@t{++} Expressions
b37052ae
EZ
9385
9386@cindex expressions in C@t{++}
9387@value{GDBN} expression handling can interpret most C@t{++} expressions.
9388
0179ffac
DC
9389@cindex debugging C@t{++} programs
9390@cindex C@t{++} compilers
9391@cindex debug formats and C@t{++}
9392@cindex @value{NGCC} and C@t{++}
c906108c 9393@quotation
b37052ae 9394@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9395proper compiler and the proper debug format. Currently, @value{GDBN}
9396works best when debugging C@t{++} code that is compiled with
9397@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9398@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9399stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9400stabs+ as their default debug format, so you usually don't need to
9401specify a debug format explicitly. Other compilers and/or debug formats
9402are likely to work badly or not at all when using @value{GDBN} to debug
9403C@t{++} code.
c906108c 9404@end quotation
c906108c
SS
9405
9406@enumerate
9407
9408@cindex member functions
9409@item
9410Member function calls are allowed; you can use expressions like
9411
474c8240 9412@smallexample
c906108c 9413count = aml->GetOriginal(x, y)
474c8240 9414@end smallexample
c906108c 9415
41afff9a 9416@vindex this@r{, inside C@t{++} member functions}
b37052ae 9417@cindex namespace in C@t{++}
c906108c
SS
9418@item
9419While a member function is active (in the selected stack frame), your
9420expressions have the same namespace available as the member function;
9421that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9422pointer @code{this} following the same rules as C@t{++}.
c906108c 9423
c906108c 9424@cindex call overloaded functions
d4f3574e 9425@cindex overloaded functions, calling
b37052ae 9426@cindex type conversions in C@t{++}
c906108c
SS
9427@item
9428You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9429call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9430perform overload resolution involving user-defined type conversions,
9431calls to constructors, or instantiations of templates that do not exist
9432in the program. It also cannot handle ellipsis argument lists or
9433default arguments.
9434
9435It does perform integral conversions and promotions, floating-point
9436promotions, arithmetic conversions, pointer conversions, conversions of
9437class objects to base classes, and standard conversions such as those of
9438functions or arrays to pointers; it requires an exact match on the
9439number of function arguments.
9440
9441Overload resolution is always performed, unless you have specified
79a6e687
BW
9442@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9443,@value{GDBN} Features for C@t{++}}.
c906108c 9444
d4f3574e 9445You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9446explicit function signature to call an overloaded function, as in
9447@smallexample
9448p 'foo(char,int)'('x', 13)
9449@end smallexample
d4f3574e 9450
c906108c 9451The @value{GDBN} command-completion facility can simplify this;
79a6e687 9452see @ref{Completion, ,Command Completion}.
c906108c 9453
c906108c
SS
9454@cindex reference declarations
9455@item
b37052ae
EZ
9456@value{GDBN} understands variables declared as C@t{++} references; you can use
9457them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9458dereferenced.
9459
9460In the parameter list shown when @value{GDBN} displays a frame, the values of
9461reference variables are not displayed (unlike other variables); this
9462avoids clutter, since references are often used for large structures.
9463The @emph{address} of a reference variable is always shown, unless
9464you have specified @samp{set print address off}.
9465
9466@item
b37052ae 9467@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9468expressions can use it just as expressions in your program do. Since
9469one scope may be defined in another, you can use @code{::} repeatedly if
9470necessary, for example in an expression like
9471@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9472resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9473debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9474@end enumerate
9475
b37052ae 9476In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9477calling virtual functions correctly, printing out virtual bases of
9478objects, calling functions in a base subobject, casting objects, and
9479invoking user-defined operators.
c906108c 9480
6d2ebf8b 9481@node C Defaults
79a6e687 9482@subsubsection C and C@t{++} Defaults
7a292a7a 9483
b37052ae 9484@cindex C and C@t{++} defaults
c906108c 9485
c906108c
SS
9486If you allow @value{GDBN} to set type and range checking automatically, they
9487both default to @code{off} whenever the working language changes to
b37052ae 9488C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9489selects the working language.
c906108c
SS
9490
9491If you allow @value{GDBN} to set the language automatically, it
9492recognizes source files whose names end with @file{.c}, @file{.C}, or
9493@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9494these files, it sets the working language to C or C@t{++}.
79a6e687 9495@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9496for further details.
9497
c906108c
SS
9498@c Type checking is (a) primarily motivated by Modula-2, and (b)
9499@c unimplemented. If (b) changes, it might make sense to let this node
9500@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9501
6d2ebf8b 9502@node C Checks
79a6e687 9503@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9504
b37052ae 9505@cindex C and C@t{++} checks
c906108c 9506
b37052ae 9507By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9508is not used. However, if you turn type checking on, @value{GDBN}
9509considers two variables type equivalent if:
9510
9511@itemize @bullet
9512@item
9513The two variables are structured and have the same structure, union, or
9514enumerated tag.
9515
9516@item
9517The two variables have the same type name, or types that have been
9518declared equivalent through @code{typedef}.
9519
9520@ignore
9521@c leaving this out because neither J Gilmore nor R Pesch understand it.
9522@c FIXME--beers?
9523@item
9524The two @code{struct}, @code{union}, or @code{enum} variables are
9525declared in the same declaration. (Note: this may not be true for all C
9526compilers.)
9527@end ignore
9528@end itemize
9529
9530Range checking, if turned on, is done on mathematical operations. Array
9531indices are not checked, since they are often used to index a pointer
9532that is not itself an array.
c906108c 9533
6d2ebf8b 9534@node Debugging C
c906108c 9535@subsubsection @value{GDBN} and C
c906108c
SS
9536
9537The @code{set print union} and @code{show print union} commands apply to
9538the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9539inside a @code{struct} or @code{class} is also printed. Otherwise, it
9540appears as @samp{@{...@}}.
c906108c
SS
9541
9542The @code{@@} operator aids in the debugging of dynamic arrays, formed
9543with pointers and a memory allocation function. @xref{Expressions,
9544,Expressions}.
9545
79a6e687
BW
9546@node Debugging C Plus Plus
9547@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9548
b37052ae 9549@cindex commands for C@t{++}
7a292a7a 9550
b37052ae
EZ
9551Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9552designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9553
9554@table @code
9555@cindex break in overloaded functions
9556@item @r{breakpoint menus}
9557When you want a breakpoint in a function whose name is overloaded,
9558@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9559you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9560
b37052ae 9561@cindex overloading in C@t{++}
c906108c
SS
9562@item rbreak @var{regex}
9563Setting breakpoints using regular expressions is helpful for setting
9564breakpoints on overloaded functions that are not members of any special
9565classes.
79a6e687 9566@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9567
b37052ae 9568@cindex C@t{++} exception handling
c906108c
SS
9569@item catch throw
9570@itemx catch catch
b37052ae 9571Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9572Catchpoints, , Setting Catchpoints}.
c906108c
SS
9573
9574@cindex inheritance
9575@item ptype @var{typename}
9576Print inheritance relationships as well as other information for type
9577@var{typename}.
9578@xref{Symbols, ,Examining the Symbol Table}.
9579
b37052ae 9580@cindex C@t{++} symbol display
c906108c
SS
9581@item set print demangle
9582@itemx show print demangle
9583@itemx set print asm-demangle
9584@itemx show print asm-demangle
b37052ae
EZ
9585Control whether C@t{++} symbols display in their source form, both when
9586displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9587@xref{Print Settings, ,Print Settings}.
c906108c
SS
9588
9589@item set print object
9590@itemx show print object
9591Choose whether to print derived (actual) or declared types of objects.
79a6e687 9592@xref{Print Settings, ,Print Settings}.
c906108c
SS
9593
9594@item set print vtbl
9595@itemx show print vtbl
9596Control the format for printing virtual function tables.
79a6e687 9597@xref{Print Settings, ,Print Settings}.
c906108c 9598(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9599ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9600
9601@kindex set overload-resolution
d4f3574e 9602@cindex overloaded functions, overload resolution
c906108c 9603@item set overload-resolution on
b37052ae 9604Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9605is on. For overloaded functions, @value{GDBN} evaluates the arguments
9606and searches for a function whose signature matches the argument types,
79a6e687
BW
9607using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9608Expressions, ,C@t{++} Expressions}, for details).
9609If it cannot find a match, it emits a message.
c906108c
SS
9610
9611@item set overload-resolution off
b37052ae 9612Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9613overloaded functions that are not class member functions, @value{GDBN}
9614chooses the first function of the specified name that it finds in the
9615symbol table, whether or not its arguments are of the correct type. For
9616overloaded functions that are class member functions, @value{GDBN}
9617searches for a function whose signature @emph{exactly} matches the
9618argument types.
c906108c 9619
9c16f35a
EZ
9620@kindex show overload-resolution
9621@item show overload-resolution
9622Show the current setting of overload resolution.
9623
c906108c
SS
9624@item @r{Overloaded symbol names}
9625You can specify a particular definition of an overloaded symbol, using
b37052ae 9626the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9627@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9628also use the @value{GDBN} command-line word completion facilities to list the
9629available choices, or to finish the type list for you.
79a6e687 9630@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9631@end table
c906108c 9632
febe4383
TJB
9633@node Decimal Floating Point
9634@subsubsection Decimal Floating Point format
9635@cindex decimal floating point format
9636
9637@value{GDBN} can examine, set and perform computations with numbers in
9638decimal floating point format, which in the C language correspond to the
9639@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9640specified by the extension to support decimal floating-point arithmetic.
9641
9642There are two encodings in use, depending on the architecture: BID (Binary
9643Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9644PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9645target.
9646
9647Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9648to manipulate decimal floating point numbers, it is not possible to convert
9649(using a cast, for example) integers wider than 32-bit to decimal float.
9650
9651In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9652point computations, error checking in decimal float operations ignores
9653underflow, overflow and divide by zero exceptions.
9654
b37303ee
AF
9655@node Objective-C
9656@subsection Objective-C
9657
9658@cindex Objective-C
9659This section provides information about some commands and command
721c2651
EZ
9660options that are useful for debugging Objective-C code. See also
9661@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9662few more commands specific to Objective-C support.
b37303ee
AF
9663
9664@menu
b383017d
RM
9665* Method Names in Commands::
9666* The Print Command with Objective-C::
b37303ee
AF
9667@end menu
9668
c8f4133a 9669@node Method Names in Commands
b37303ee
AF
9670@subsubsection Method Names in Commands
9671
9672The following commands have been extended to accept Objective-C method
9673names as line specifications:
9674
9675@kindex clear@r{, and Objective-C}
9676@kindex break@r{, and Objective-C}
9677@kindex info line@r{, and Objective-C}
9678@kindex jump@r{, and Objective-C}
9679@kindex list@r{, and Objective-C}
9680@itemize
9681@item @code{clear}
9682@item @code{break}
9683@item @code{info line}
9684@item @code{jump}
9685@item @code{list}
9686@end itemize
9687
9688A fully qualified Objective-C method name is specified as
9689
9690@smallexample
9691-[@var{Class} @var{methodName}]
9692@end smallexample
9693
c552b3bb
JM
9694where the minus sign is used to indicate an instance method and a
9695plus sign (not shown) is used to indicate a class method. The class
9696name @var{Class} and method name @var{methodName} are enclosed in
9697brackets, similar to the way messages are specified in Objective-C
9698source code. For example, to set a breakpoint at the @code{create}
9699instance method of class @code{Fruit} in the program currently being
9700debugged, enter:
b37303ee
AF
9701
9702@smallexample
9703break -[Fruit create]
9704@end smallexample
9705
9706To list ten program lines around the @code{initialize} class method,
9707enter:
9708
9709@smallexample
9710list +[NSText initialize]
9711@end smallexample
9712
c552b3bb
JM
9713In the current version of @value{GDBN}, the plus or minus sign is
9714required. In future versions of @value{GDBN}, the plus or minus
9715sign will be optional, but you can use it to narrow the search. It
9716is also possible to specify just a method name:
b37303ee
AF
9717
9718@smallexample
9719break create
9720@end smallexample
9721
9722You must specify the complete method name, including any colons. If
9723your program's source files contain more than one @code{create} method,
9724you'll be presented with a numbered list of classes that implement that
9725method. Indicate your choice by number, or type @samp{0} to exit if
9726none apply.
9727
9728As another example, to clear a breakpoint established at the
9729@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9730
9731@smallexample
9732clear -[NSWindow makeKeyAndOrderFront:]
9733@end smallexample
9734
9735@node The Print Command with Objective-C
9736@subsubsection The Print Command With Objective-C
721c2651 9737@cindex Objective-C, print objects
c552b3bb
JM
9738@kindex print-object
9739@kindex po @r{(@code{print-object})}
b37303ee 9740
c552b3bb 9741The print command has also been extended to accept methods. For example:
b37303ee
AF
9742
9743@smallexample
c552b3bb 9744print -[@var{object} hash]
b37303ee
AF
9745@end smallexample
9746
9747@cindex print an Objective-C object description
c552b3bb
JM
9748@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9749@noindent
9750will tell @value{GDBN} to send the @code{hash} message to @var{object}
9751and print the result. Also, an additional command has been added,
9752@code{print-object} or @code{po} for short, which is meant to print
9753the description of an object. However, this command may only work
9754with certain Objective-C libraries that have a particular hook
9755function, @code{_NSPrintForDebugger}, defined.
b37303ee 9756
09d4efe1
EZ
9757@node Fortran
9758@subsection Fortran
9759@cindex Fortran-specific support in @value{GDBN}
9760
814e32d7
WZ
9761@value{GDBN} can be used to debug programs written in Fortran, but it
9762currently supports only the features of Fortran 77 language.
9763
9764@cindex trailing underscore, in Fortran symbols
9765Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9766among them) append an underscore to the names of variables and
9767functions. When you debug programs compiled by those compilers, you
9768will need to refer to variables and functions with a trailing
9769underscore.
9770
9771@menu
9772* Fortran Operators:: Fortran operators and expressions
9773* Fortran Defaults:: Default settings for Fortran
79a6e687 9774* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9775@end menu
9776
9777@node Fortran Operators
79a6e687 9778@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9779
9780@cindex Fortran operators and expressions
9781
9782Operators must be defined on values of specific types. For instance,
9783@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9784arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9785
9786@table @code
9787@item **
9788The exponentiation operator. It raises the first operand to the power
9789of the second one.
9790
9791@item :
9792The range operator. Normally used in the form of array(low:high) to
9793represent a section of array.
9794@end table
9795
9796@node Fortran Defaults
9797@subsubsection Fortran Defaults
9798
9799@cindex Fortran Defaults
9800
9801Fortran symbols are usually case-insensitive, so @value{GDBN} by
9802default uses case-insensitive matches for Fortran symbols. You can
9803change that with the @samp{set case-insensitive} command, see
9804@ref{Symbols}, for the details.
9805
79a6e687
BW
9806@node Special Fortran Commands
9807@subsubsection Special Fortran Commands
814e32d7
WZ
9808
9809@cindex Special Fortran commands
9810
db2e3e2e
BW
9811@value{GDBN} has some commands to support Fortran-specific features,
9812such as displaying common blocks.
814e32d7 9813
09d4efe1
EZ
9814@table @code
9815@cindex @code{COMMON} blocks, Fortran
9816@kindex info common
9817@item info common @r{[}@var{common-name}@r{]}
9818This command prints the values contained in the Fortran @code{COMMON}
9819block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9820all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9821printed.
9822@end table
9823
9c16f35a
EZ
9824@node Pascal
9825@subsection Pascal
9826
9827@cindex Pascal support in @value{GDBN}, limitations
9828Debugging Pascal programs which use sets, subranges, file variables, or
9829nested functions does not currently work. @value{GDBN} does not support
9830entering expressions, printing values, or similar features using Pascal
9831syntax.
9832
9833The Pascal-specific command @code{set print pascal_static-members}
9834controls whether static members of Pascal objects are displayed.
9835@xref{Print Settings, pascal_static-members}.
9836
09d4efe1 9837@node Modula-2
c906108c 9838@subsection Modula-2
7a292a7a 9839
d4f3574e 9840@cindex Modula-2, @value{GDBN} support
c906108c
SS
9841
9842The extensions made to @value{GDBN} to support Modula-2 only support
9843output from the @sc{gnu} Modula-2 compiler (which is currently being
9844developed). Other Modula-2 compilers are not currently supported, and
9845attempting to debug executables produced by them is most likely
9846to give an error as @value{GDBN} reads in the executable's symbol
9847table.
9848
9849@cindex expressions in Modula-2
9850@menu
9851* M2 Operators:: Built-in operators
9852* Built-In Func/Proc:: Built-in functions and procedures
9853* M2 Constants:: Modula-2 constants
72019c9c 9854* M2 Types:: Modula-2 types
c906108c
SS
9855* M2 Defaults:: Default settings for Modula-2
9856* Deviations:: Deviations from standard Modula-2
9857* M2 Checks:: Modula-2 type and range checks
9858* M2 Scope:: The scope operators @code{::} and @code{.}
9859* GDB/M2:: @value{GDBN} and Modula-2
9860@end menu
9861
6d2ebf8b 9862@node M2 Operators
c906108c
SS
9863@subsubsection Operators
9864@cindex Modula-2 operators
9865
9866Operators must be defined on values of specific types. For instance,
9867@code{+} is defined on numbers, but not on structures. Operators are
9868often defined on groups of types. For the purposes of Modula-2, the
9869following definitions hold:
9870
9871@itemize @bullet
9872
9873@item
9874@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9875their subranges.
9876
9877@item
9878@emph{Character types} consist of @code{CHAR} and its subranges.
9879
9880@item
9881@emph{Floating-point types} consist of @code{REAL}.
9882
9883@item
9884@emph{Pointer types} consist of anything declared as @code{POINTER TO
9885@var{type}}.
9886
9887@item
9888@emph{Scalar types} consist of all of the above.
9889
9890@item
9891@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9892
9893@item
9894@emph{Boolean types} consist of @code{BOOLEAN}.
9895@end itemize
9896
9897@noindent
9898The following operators are supported, and appear in order of
9899increasing precedence:
9900
9901@table @code
9902@item ,
9903Function argument or array index separator.
9904
9905@item :=
9906Assignment. The value of @var{var} @code{:=} @var{value} is
9907@var{value}.
9908
9909@item <@r{, }>
9910Less than, greater than on integral, floating-point, or enumerated
9911types.
9912
9913@item <=@r{, }>=
96a2c332 9914Less than or equal to, greater than or equal to
c906108c
SS
9915on integral, floating-point and enumerated types, or set inclusion on
9916set types. Same precedence as @code{<}.
9917
9918@item =@r{, }<>@r{, }#
9919Equality and two ways of expressing inequality, valid on scalar types.
9920Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9921available for inequality, since @code{#} conflicts with the script
9922comment character.
9923
9924@item IN
9925Set membership. Defined on set types and the types of their members.
9926Same precedence as @code{<}.
9927
9928@item OR
9929Boolean disjunction. Defined on boolean types.
9930
9931@item AND@r{, }&
d4f3574e 9932Boolean conjunction. Defined on boolean types.
c906108c
SS
9933
9934@item @@
9935The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9936
9937@item +@r{, }-
9938Addition and subtraction on integral and floating-point types, or union
9939and difference on set types.
9940
9941@item *
9942Multiplication on integral and floating-point types, or set intersection
9943on set types.
9944
9945@item /
9946Division on floating-point types, or symmetric set difference on set
9947types. Same precedence as @code{*}.
9948
9949@item DIV@r{, }MOD
9950Integer division and remainder. Defined on integral types. Same
9951precedence as @code{*}.
9952
9953@item -
9954Negative. Defined on @code{INTEGER} and @code{REAL} data.
9955
9956@item ^
9957Pointer dereferencing. Defined on pointer types.
9958
9959@item NOT
9960Boolean negation. Defined on boolean types. Same precedence as
9961@code{^}.
9962
9963@item .
9964@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9965precedence as @code{^}.
9966
9967@item []
9968Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
9969
9970@item ()
9971Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
9972as @code{^}.
9973
9974@item ::@r{, }.
9975@value{GDBN} and Modula-2 scope operators.
9976@end table
9977
9978@quotation
72019c9c 9979@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
9980treats the use of the operator @code{IN}, or the use of operators
9981@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
9982@code{<=}, and @code{>=} on sets as an error.
9983@end quotation
9984
cb51c4e0 9985
6d2ebf8b 9986@node Built-In Func/Proc
79a6e687 9987@subsubsection Built-in Functions and Procedures
cb51c4e0 9988@cindex Modula-2 built-ins
c906108c
SS
9989
9990Modula-2 also makes available several built-in procedures and functions.
9991In describing these, the following metavariables are used:
9992
9993@table @var
9994
9995@item a
9996represents an @code{ARRAY} variable.
9997
9998@item c
9999represents a @code{CHAR} constant or variable.
10000
10001@item i
10002represents a variable or constant of integral type.
10003
10004@item m
10005represents an identifier that belongs to a set. Generally used in the
10006same function with the metavariable @var{s}. The type of @var{s} should
10007be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10008
10009@item n
10010represents a variable or constant of integral or floating-point type.
10011
10012@item r
10013represents a variable or constant of floating-point type.
10014
10015@item t
10016represents a type.
10017
10018@item v
10019represents a variable.
10020
10021@item x
10022represents a variable or constant of one of many types. See the
10023explanation of the function for details.
10024@end table
10025
10026All Modula-2 built-in procedures also return a result, described below.
10027
10028@table @code
10029@item ABS(@var{n})
10030Returns the absolute value of @var{n}.
10031
10032@item CAP(@var{c})
10033If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10034equivalent, otherwise it returns its argument.
c906108c
SS
10035
10036@item CHR(@var{i})
10037Returns the character whose ordinal value is @var{i}.
10038
10039@item DEC(@var{v})
c3f6f71d 10040Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10041
10042@item DEC(@var{v},@var{i})
10043Decrements the value in the variable @var{v} by @var{i}. Returns the
10044new value.
10045
10046@item EXCL(@var{m},@var{s})
10047Removes the element @var{m} from the set @var{s}. Returns the new
10048set.
10049
10050@item FLOAT(@var{i})
10051Returns the floating point equivalent of the integer @var{i}.
10052
10053@item HIGH(@var{a})
10054Returns the index of the last member of @var{a}.
10055
10056@item INC(@var{v})
c3f6f71d 10057Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10058
10059@item INC(@var{v},@var{i})
10060Increments the value in the variable @var{v} by @var{i}. Returns the
10061new value.
10062
10063@item INCL(@var{m},@var{s})
10064Adds the element @var{m} to the set @var{s} if it is not already
10065there. Returns the new set.
10066
10067@item MAX(@var{t})
10068Returns the maximum value of the type @var{t}.
10069
10070@item MIN(@var{t})
10071Returns the minimum value of the type @var{t}.
10072
10073@item ODD(@var{i})
10074Returns boolean TRUE if @var{i} is an odd number.
10075
10076@item ORD(@var{x})
10077Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10078value of a character is its @sc{ascii} value (on machines supporting the
10079@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10080integral, character and enumerated types.
10081
10082@item SIZE(@var{x})
10083Returns the size of its argument. @var{x} can be a variable or a type.
10084
10085@item TRUNC(@var{r})
10086Returns the integral part of @var{r}.
10087
844781a1
GM
10088@item TSIZE(@var{x})
10089Returns the size of its argument. @var{x} can be a variable or a type.
10090
c906108c
SS
10091@item VAL(@var{t},@var{i})
10092Returns the member of the type @var{t} whose ordinal value is @var{i}.
10093@end table
10094
10095@quotation
10096@emph{Warning:} Sets and their operations are not yet supported, so
10097@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10098an error.
10099@end quotation
10100
10101@cindex Modula-2 constants
6d2ebf8b 10102@node M2 Constants
c906108c
SS
10103@subsubsection Constants
10104
10105@value{GDBN} allows you to express the constants of Modula-2 in the following
10106ways:
10107
10108@itemize @bullet
10109
10110@item
10111Integer constants are simply a sequence of digits. When used in an
10112expression, a constant is interpreted to be type-compatible with the
10113rest of the expression. Hexadecimal integers are specified by a
10114trailing @samp{H}, and octal integers by a trailing @samp{B}.
10115
10116@item
10117Floating point constants appear as a sequence of digits, followed by a
10118decimal point and another sequence of digits. An optional exponent can
10119then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10120@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10121digits of the floating point constant must be valid decimal (base 10)
10122digits.
10123
10124@item
10125Character constants consist of a single character enclosed by a pair of
10126like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10127also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10128followed by a @samp{C}.
10129
10130@item
10131String constants consist of a sequence of characters enclosed by a
10132pair of like quotes, either single (@code{'}) or double (@code{"}).
10133Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10134Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10135sequences.
10136
10137@item
10138Enumerated constants consist of an enumerated identifier.
10139
10140@item
10141Boolean constants consist of the identifiers @code{TRUE} and
10142@code{FALSE}.
10143
10144@item
10145Pointer constants consist of integral values only.
10146
10147@item
10148Set constants are not yet supported.
10149@end itemize
10150
72019c9c
GM
10151@node M2 Types
10152@subsubsection Modula-2 Types
10153@cindex Modula-2 types
10154
10155Currently @value{GDBN} can print the following data types in Modula-2
10156syntax: array types, record types, set types, pointer types, procedure
10157types, enumerated types, subrange types and base types. You can also
10158print the contents of variables declared using these type.
10159This section gives a number of simple source code examples together with
10160sample @value{GDBN} sessions.
10161
10162The first example contains the following section of code:
10163
10164@smallexample
10165VAR
10166 s: SET OF CHAR ;
10167 r: [20..40] ;
10168@end smallexample
10169
10170@noindent
10171and you can request @value{GDBN} to interrogate the type and value of
10172@code{r} and @code{s}.
10173
10174@smallexample
10175(@value{GDBP}) print s
10176@{'A'..'C', 'Z'@}
10177(@value{GDBP}) ptype s
10178SET OF CHAR
10179(@value{GDBP}) print r
1018021
10181(@value{GDBP}) ptype r
10182[20..40]
10183@end smallexample
10184
10185@noindent
10186Likewise if your source code declares @code{s} as:
10187
10188@smallexample
10189VAR
10190 s: SET ['A'..'Z'] ;
10191@end smallexample
10192
10193@noindent
10194then you may query the type of @code{s} by:
10195
10196@smallexample
10197(@value{GDBP}) ptype s
10198type = SET ['A'..'Z']
10199@end smallexample
10200
10201@noindent
10202Note that at present you cannot interactively manipulate set
10203expressions using the debugger.
10204
10205The following example shows how you might declare an array in Modula-2
10206and how you can interact with @value{GDBN} to print its type and contents:
10207
10208@smallexample
10209VAR
10210 s: ARRAY [-10..10] OF CHAR ;
10211@end smallexample
10212
10213@smallexample
10214(@value{GDBP}) ptype s
10215ARRAY [-10..10] OF CHAR
10216@end smallexample
10217
10218Note that the array handling is not yet complete and although the type
10219is printed correctly, expression handling still assumes that all
10220arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10221above.
72019c9c
GM
10222
10223Here are some more type related Modula-2 examples:
10224
10225@smallexample
10226TYPE
10227 colour = (blue, red, yellow, green) ;
10228 t = [blue..yellow] ;
10229VAR
10230 s: t ;
10231BEGIN
10232 s := blue ;
10233@end smallexample
10234
10235@noindent
10236The @value{GDBN} interaction shows how you can query the data type
10237and value of a variable.
10238
10239@smallexample
10240(@value{GDBP}) print s
10241$1 = blue
10242(@value{GDBP}) ptype t
10243type = [blue..yellow]
10244@end smallexample
10245
10246@noindent
10247In this example a Modula-2 array is declared and its contents
10248displayed. Observe that the contents are written in the same way as
10249their @code{C} counterparts.
10250
10251@smallexample
10252VAR
10253 s: ARRAY [1..5] OF CARDINAL ;
10254BEGIN
10255 s[1] := 1 ;
10256@end smallexample
10257
10258@smallexample
10259(@value{GDBP}) print s
10260$1 = @{1, 0, 0, 0, 0@}
10261(@value{GDBP}) ptype s
10262type = ARRAY [1..5] OF CARDINAL
10263@end smallexample
10264
10265The Modula-2 language interface to @value{GDBN} also understands
10266pointer types as shown in this example:
10267
10268@smallexample
10269VAR
10270 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10271BEGIN
10272 NEW(s) ;
10273 s^[1] := 1 ;
10274@end smallexample
10275
10276@noindent
10277and you can request that @value{GDBN} describes the type of @code{s}.
10278
10279@smallexample
10280(@value{GDBP}) ptype s
10281type = POINTER TO ARRAY [1..5] OF CARDINAL
10282@end smallexample
10283
10284@value{GDBN} handles compound types as we can see in this example.
10285Here we combine array types, record types, pointer types and subrange
10286types:
10287
10288@smallexample
10289TYPE
10290 foo = RECORD
10291 f1: CARDINAL ;
10292 f2: CHAR ;
10293 f3: myarray ;
10294 END ;
10295
10296 myarray = ARRAY myrange OF CARDINAL ;
10297 myrange = [-2..2] ;
10298VAR
10299 s: POINTER TO ARRAY myrange OF foo ;
10300@end smallexample
10301
10302@noindent
10303and you can ask @value{GDBN} to describe the type of @code{s} as shown
10304below.
10305
10306@smallexample
10307(@value{GDBP}) ptype s
10308type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10309 f1 : CARDINAL;
10310 f2 : CHAR;
10311 f3 : ARRAY [-2..2] OF CARDINAL;
10312END
10313@end smallexample
10314
6d2ebf8b 10315@node M2 Defaults
79a6e687 10316@subsubsection Modula-2 Defaults
c906108c
SS
10317@cindex Modula-2 defaults
10318
10319If type and range checking are set automatically by @value{GDBN}, they
10320both default to @code{on} whenever the working language changes to
d4f3574e 10321Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10322selected the working language.
10323
10324If you allow @value{GDBN} to set the language automatically, then entering
10325code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10326working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10327Infer the Source Language}, for further details.
c906108c 10328
6d2ebf8b 10329@node Deviations
79a6e687 10330@subsubsection Deviations from Standard Modula-2
c906108c
SS
10331@cindex Modula-2, deviations from
10332
10333A few changes have been made to make Modula-2 programs easier to debug.
10334This is done primarily via loosening its type strictness:
10335
10336@itemize @bullet
10337@item
10338Unlike in standard Modula-2, pointer constants can be formed by
10339integers. This allows you to modify pointer variables during
10340debugging. (In standard Modula-2, the actual address contained in a
10341pointer variable is hidden from you; it can only be modified
10342through direct assignment to another pointer variable or expression that
10343returned a pointer.)
10344
10345@item
10346C escape sequences can be used in strings and characters to represent
10347non-printable characters. @value{GDBN} prints out strings with these
10348escape sequences embedded. Single non-printable characters are
10349printed using the @samp{CHR(@var{nnn})} format.
10350
10351@item
10352The assignment operator (@code{:=}) returns the value of its right-hand
10353argument.
10354
10355@item
10356All built-in procedures both modify @emph{and} return their argument.
10357@end itemize
10358
6d2ebf8b 10359@node M2 Checks
79a6e687 10360@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10361@cindex Modula-2 checks
10362
10363@quotation
10364@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10365range checking.
10366@end quotation
10367@c FIXME remove warning when type/range checks added
10368
10369@value{GDBN} considers two Modula-2 variables type equivalent if:
10370
10371@itemize @bullet
10372@item
10373They are of types that have been declared equivalent via a @code{TYPE
10374@var{t1} = @var{t2}} statement
10375
10376@item
10377They have been declared on the same line. (Note: This is true of the
10378@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10379@end itemize
10380
10381As long as type checking is enabled, any attempt to combine variables
10382whose types are not equivalent is an error.
10383
10384Range checking is done on all mathematical operations, assignment, array
10385index bounds, and all built-in functions and procedures.
10386
6d2ebf8b 10387@node M2 Scope
79a6e687 10388@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10389@cindex scope
41afff9a 10390@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10391@cindex colon, doubled as scope operator
10392@ifinfo
41afff9a 10393@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10394@c Info cannot handle :: but TeX can.
10395@end ifinfo
10396@iftex
41afff9a 10397@vindex ::@r{, in Modula-2}
c906108c
SS
10398@end iftex
10399
10400There are a few subtle differences between the Modula-2 scope operator
10401(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10402similar syntax:
10403
474c8240 10404@smallexample
c906108c
SS
10405
10406@var{module} . @var{id}
10407@var{scope} :: @var{id}
474c8240 10408@end smallexample
c906108c
SS
10409
10410@noindent
10411where @var{scope} is the name of a module or a procedure,
10412@var{module} the name of a module, and @var{id} is any declared
10413identifier within your program, except another module.
10414
10415Using the @code{::} operator makes @value{GDBN} search the scope
10416specified by @var{scope} for the identifier @var{id}. If it is not
10417found in the specified scope, then @value{GDBN} searches all scopes
10418enclosing the one specified by @var{scope}.
10419
10420Using the @code{.} operator makes @value{GDBN} search the current scope for
10421the identifier specified by @var{id} that was imported from the
10422definition module specified by @var{module}. With this operator, it is
10423an error if the identifier @var{id} was not imported from definition
10424module @var{module}, or if @var{id} is not an identifier in
10425@var{module}.
10426
6d2ebf8b 10427@node GDB/M2
c906108c
SS
10428@subsubsection @value{GDBN} and Modula-2
10429
10430Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10431Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10432specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10433@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10434apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10435analogue in Modula-2.
10436
10437The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10438with any language, is not useful with Modula-2. Its
c906108c 10439intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10440created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10441address can be specified by an integral constant, the construct
d4f3574e 10442@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10443
10444@cindex @code{#} in Modula-2
10445In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10446interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10447
e07c999f
PH
10448@node Ada
10449@subsection Ada
10450@cindex Ada
10451
10452The extensions made to @value{GDBN} for Ada only support
10453output from the @sc{gnu} Ada (GNAT) compiler.
10454Other Ada compilers are not currently supported, and
10455attempting to debug executables produced by them is most likely
10456to be difficult.
10457
10458
10459@cindex expressions in Ada
10460@menu
10461* Ada Mode Intro:: General remarks on the Ada syntax
10462 and semantics supported by Ada mode
10463 in @value{GDBN}.
10464* Omissions from Ada:: Restrictions on the Ada expression syntax.
10465* Additions to Ada:: Extensions of the Ada expression syntax.
10466* Stopping Before Main Program:: Debugging the program during elaboration.
10467* Ada Glitches:: Known peculiarities of Ada mode.
10468@end menu
10469
10470@node Ada Mode Intro
10471@subsubsection Introduction
10472@cindex Ada mode, general
10473
10474The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10475syntax, with some extensions.
10476The philosophy behind the design of this subset is
10477
10478@itemize @bullet
10479@item
10480That @value{GDBN} should provide basic literals and access to operations for
10481arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10482leaving more sophisticated computations to subprograms written into the
10483program (which therefore may be called from @value{GDBN}).
10484
10485@item
10486That type safety and strict adherence to Ada language restrictions
10487are not particularly important to the @value{GDBN} user.
10488
10489@item
10490That brevity is important to the @value{GDBN} user.
10491@end itemize
10492
10493Thus, for brevity, the debugger acts as if there were
10494implicit @code{with} and @code{use} clauses in effect for all user-written
10495packages, making it unnecessary to fully qualify most names with
10496their packages, regardless of context. Where this causes ambiguity,
10497@value{GDBN} asks the user's intent.
10498
10499The debugger will start in Ada mode if it detects an Ada main program.
10500As for other languages, it will enter Ada mode when stopped in a program that
10501was translated from an Ada source file.
10502
10503While in Ada mode, you may use `@t{--}' for comments. This is useful
10504mostly for documenting command files. The standard @value{GDBN} comment
10505(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10506middle (to allow based literals).
10507
10508The debugger supports limited overloading. Given a subprogram call in which
10509the function symbol has multiple definitions, it will use the number of
10510actual parameters and some information about their types to attempt to narrow
10511the set of definitions. It also makes very limited use of context, preferring
10512procedures to functions in the context of the @code{call} command, and
10513functions to procedures elsewhere.
10514
10515@node Omissions from Ada
10516@subsubsection Omissions from Ada
10517@cindex Ada, omissions from
10518
10519Here are the notable omissions from the subset:
10520
10521@itemize @bullet
10522@item
10523Only a subset of the attributes are supported:
10524
10525@itemize @minus
10526@item
10527@t{'First}, @t{'Last}, and @t{'Length}
10528 on array objects (not on types and subtypes).
10529
10530@item
10531@t{'Min} and @t{'Max}.
10532
10533@item
10534@t{'Pos} and @t{'Val}.
10535
10536@item
10537@t{'Tag}.
10538
10539@item
10540@t{'Range} on array objects (not subtypes), but only as the right
10541operand of the membership (@code{in}) operator.
10542
10543@item
10544@t{'Access}, @t{'Unchecked_Access}, and
10545@t{'Unrestricted_Access} (a GNAT extension).
10546
10547@item
10548@t{'Address}.
10549@end itemize
10550
10551@item
10552The names in
10553@code{Characters.Latin_1} are not available and
10554concatenation is not implemented. Thus, escape characters in strings are
10555not currently available.
10556
10557@item
10558Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10559equality of representations. They will generally work correctly
10560for strings and arrays whose elements have integer or enumeration types.
10561They may not work correctly for arrays whose element
10562types have user-defined equality, for arrays of real values
10563(in particular, IEEE-conformant floating point, because of negative
10564zeroes and NaNs), and for arrays whose elements contain unused bits with
10565indeterminate values.
10566
10567@item
10568The other component-by-component array operations (@code{and}, @code{or},
10569@code{xor}, @code{not}, and relational tests other than equality)
10570are not implemented.
10571
10572@item
860701dc
PH
10573@cindex array aggregates (Ada)
10574@cindex record aggregates (Ada)
10575@cindex aggregates (Ada)
10576There is limited support for array and record aggregates. They are
10577permitted only on the right sides of assignments, as in these examples:
10578
10579@smallexample
10580set An_Array := (1, 2, 3, 4, 5, 6)
10581set An_Array := (1, others => 0)
10582set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10583set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10584set A_Record := (1, "Peter", True);
10585set A_Record := (Name => "Peter", Id => 1, Alive => True)
10586@end smallexample
10587
10588Changing a
10589discriminant's value by assigning an aggregate has an
10590undefined effect if that discriminant is used within the record.
10591However, you can first modify discriminants by directly assigning to
10592them (which normally would not be allowed in Ada), and then performing an
10593aggregate assignment. For example, given a variable @code{A_Rec}
10594declared to have a type such as:
10595
10596@smallexample
10597type Rec (Len : Small_Integer := 0) is record
10598 Id : Integer;
10599 Vals : IntArray (1 .. Len);
10600end record;
10601@end smallexample
10602
10603you can assign a value with a different size of @code{Vals} with two
10604assignments:
10605
10606@smallexample
10607set A_Rec.Len := 4
10608set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10609@end smallexample
10610
10611As this example also illustrates, @value{GDBN} is very loose about the usual
10612rules concerning aggregates. You may leave out some of the
10613components of an array or record aggregate (such as the @code{Len}
10614component in the assignment to @code{A_Rec} above); they will retain their
10615original values upon assignment. You may freely use dynamic values as
10616indices in component associations. You may even use overlapping or
10617redundant component associations, although which component values are
10618assigned in such cases is not defined.
e07c999f
PH
10619
10620@item
10621Calls to dispatching subprograms are not implemented.
10622
10623@item
10624The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10625than that of real Ada. It makes only limited use of the context in
10626which a subexpression appears to resolve its meaning, and it is much
10627looser in its rules for allowing type matches. As a result, some
10628function calls will be ambiguous, and the user will be asked to choose
10629the proper resolution.
e07c999f
PH
10630
10631@item
10632The @code{new} operator is not implemented.
10633
10634@item
10635Entry calls are not implemented.
10636
10637@item
10638Aside from printing, arithmetic operations on the native VAX floating-point
10639formats are not supported.
10640
10641@item
10642It is not possible to slice a packed array.
10643@end itemize
10644
10645@node Additions to Ada
10646@subsubsection Additions to Ada
10647@cindex Ada, deviations from
10648
10649As it does for other languages, @value{GDBN} makes certain generic
10650extensions to Ada (@pxref{Expressions}):
10651
10652@itemize @bullet
10653@item
ae21e955
BW
10654If the expression @var{E} is a variable residing in memory (typically
10655a local variable or array element) and @var{N} is a positive integer,
10656then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10657@var{N}-1 adjacent variables following it in memory as an array. In
10658Ada, this operator is generally not necessary, since its prime use is
10659in displaying parts of an array, and slicing will usually do this in
10660Ada. However, there are occasional uses when debugging programs in
10661which certain debugging information has been optimized away.
e07c999f
PH
10662
10663@item
ae21e955
BW
10664@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10665appears in function or file @var{B}.'' When @var{B} is a file name,
10666you must typically surround it in single quotes.
e07c999f
PH
10667
10668@item
10669The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10670@var{type} that appears at address @var{addr}.''
10671
10672@item
10673A name starting with @samp{$} is a convenience variable
10674(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10675@end itemize
10676
ae21e955
BW
10677In addition, @value{GDBN} provides a few other shortcuts and outright
10678additions specific to Ada:
e07c999f
PH
10679
10680@itemize @bullet
10681@item
10682The assignment statement is allowed as an expression, returning
10683its right-hand operand as its value. Thus, you may enter
10684
10685@smallexample
10686set x := y + 3
10687print A(tmp := y + 1)
10688@end smallexample
10689
10690@item
10691The semicolon is allowed as an ``operator,'' returning as its value
10692the value of its right-hand operand.
10693This allows, for example,
10694complex conditional breaks:
10695
10696@smallexample
10697break f
10698condition 1 (report(i); k += 1; A(k) > 100)
10699@end smallexample
10700
10701@item
10702Rather than use catenation and symbolic character names to introduce special
10703characters into strings, one may instead use a special bracket notation,
10704which is also used to print strings. A sequence of characters of the form
10705@samp{["@var{XX}"]} within a string or character literal denotes the
10706(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10707sequence of characters @samp{["""]} also denotes a single quotation mark
10708in strings. For example,
10709@smallexample
10710 "One line.["0a"]Next line.["0a"]"
10711@end smallexample
10712@noindent
ae21e955
BW
10713contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10714after each period.
e07c999f
PH
10715
10716@item
10717The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10718@t{'Max} is optional (and is ignored in any case). For example, it is valid
10719to write
10720
10721@smallexample
10722print 'max(x, y)
10723@end smallexample
10724
10725@item
10726When printing arrays, @value{GDBN} uses positional notation when the
10727array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10728For example, a one-dimensional array of three integers with a lower bound
10729of 3 might print as
e07c999f
PH
10730
10731@smallexample
10732(3 => 10, 17, 1)
10733@end smallexample
10734
10735@noindent
10736That is, in contrast to valid Ada, only the first component has a @code{=>}
10737clause.
10738
10739@item
10740You may abbreviate attributes in expressions with any unique,
10741multi-character subsequence of
10742their names (an exact match gets preference).
10743For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10744in place of @t{a'length}.
10745
10746@item
10747@cindex quoting Ada internal identifiers
10748Since Ada is case-insensitive, the debugger normally maps identifiers you type
10749to lower case. The GNAT compiler uses upper-case characters for
10750some of its internal identifiers, which are normally of no interest to users.
10751For the rare occasions when you actually have to look at them,
10752enclose them in angle brackets to avoid the lower-case mapping.
10753For example,
10754@smallexample
10755@value{GDBP} print <JMPBUF_SAVE>[0]
10756@end smallexample
10757
10758@item
10759Printing an object of class-wide type or dereferencing an
10760access-to-class-wide value will display all the components of the object's
10761specific type (as indicated by its run-time tag). Likewise, component
10762selection on such a value will operate on the specific type of the
10763object.
10764
10765@end itemize
10766
10767@node Stopping Before Main Program
10768@subsubsection Stopping at the Very Beginning
10769
10770@cindex breakpointing Ada elaboration code
10771It is sometimes necessary to debug the program during elaboration, and
10772before reaching the main procedure.
10773As defined in the Ada Reference
10774Manual, the elaboration code is invoked from a procedure called
10775@code{adainit}. To run your program up to the beginning of
10776elaboration, simply use the following two commands:
10777@code{tbreak adainit} and @code{run}.
10778
10779@node Ada Glitches
10780@subsubsection Known Peculiarities of Ada Mode
10781@cindex Ada, problems
10782
10783Besides the omissions listed previously (@pxref{Omissions from Ada}),
10784we know of several problems with and limitations of Ada mode in
10785@value{GDBN},
10786some of which will be fixed with planned future releases of the debugger
10787and the GNU Ada compiler.
10788
10789@itemize @bullet
10790@item
10791Currently, the debugger
10792has insufficient information to determine whether certain pointers represent
10793pointers to objects or the objects themselves.
10794Thus, the user may have to tack an extra @code{.all} after an expression
10795to get it printed properly.
10796
10797@item
10798Static constants that the compiler chooses not to materialize as objects in
10799storage are invisible to the debugger.
10800
10801@item
10802Named parameter associations in function argument lists are ignored (the
10803argument lists are treated as positional).
10804
10805@item
10806Many useful library packages are currently invisible to the debugger.
10807
10808@item
10809Fixed-point arithmetic, conversions, input, and output is carried out using
10810floating-point arithmetic, and may give results that only approximate those on
10811the host machine.
10812
10813@item
10814The type of the @t{'Address} attribute may not be @code{System.Address}.
10815
10816@item
10817The GNAT compiler never generates the prefix @code{Standard} for any of
10818the standard symbols defined by the Ada language. @value{GDBN} knows about
10819this: it will strip the prefix from names when you use it, and will never
10820look for a name you have so qualified among local symbols, nor match against
10821symbols in other packages or subprograms. If you have
10822defined entities anywhere in your program other than parameters and
10823local variables whose simple names match names in @code{Standard},
10824GNAT's lack of qualification here can cause confusion. When this happens,
10825you can usually resolve the confusion
10826by qualifying the problematic names with package
10827@code{Standard} explicitly.
10828@end itemize
10829
79a6e687
BW
10830@node Unsupported Languages
10831@section Unsupported Languages
4e562065
JB
10832
10833@cindex unsupported languages
10834@cindex minimal language
10835In addition to the other fully-supported programming languages,
10836@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10837It does not represent a real programming language, but provides a set
10838of capabilities close to what the C or assembly languages provide.
10839This should allow most simple operations to be performed while debugging
10840an application that uses a language currently not supported by @value{GDBN}.
10841
10842If the language is set to @code{auto}, @value{GDBN} will automatically
10843select this language if the current frame corresponds to an unsupported
10844language.
10845
6d2ebf8b 10846@node Symbols
c906108c
SS
10847@chapter Examining the Symbol Table
10848
d4f3574e 10849The commands described in this chapter allow you to inquire about the
c906108c
SS
10850symbols (names of variables, functions and types) defined in your
10851program. This information is inherent in the text of your program and
10852does not change as your program executes. @value{GDBN} finds it in your
10853program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10854(@pxref{File Options, ,Choosing Files}), or by one of the
10855file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10856
10857@cindex symbol names
10858@cindex names of symbols
10859@cindex quoting names
10860Occasionally, you may need to refer to symbols that contain unusual
10861characters, which @value{GDBN} ordinarily treats as word delimiters. The
10862most frequent case is in referring to static variables in other
79a6e687 10863source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10864are recorded in object files as debugging symbols, but @value{GDBN} would
10865ordinarily parse a typical file name, like @file{foo.c}, as the three words
10866@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10867@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10868
474c8240 10869@smallexample
c906108c 10870p 'foo.c'::x
474c8240 10871@end smallexample
c906108c
SS
10872
10873@noindent
10874looks up the value of @code{x} in the scope of the file @file{foo.c}.
10875
10876@table @code
a8f24a35
EZ
10877@cindex case-insensitive symbol names
10878@cindex case sensitivity in symbol names
10879@kindex set case-sensitive
10880@item set case-sensitive on
10881@itemx set case-sensitive off
10882@itemx set case-sensitive auto
10883Normally, when @value{GDBN} looks up symbols, it matches their names
10884with case sensitivity determined by the current source language.
10885Occasionally, you may wish to control that. The command @code{set
10886case-sensitive} lets you do that by specifying @code{on} for
10887case-sensitive matches or @code{off} for case-insensitive ones. If
10888you specify @code{auto}, case sensitivity is reset to the default
10889suitable for the source language. The default is case-sensitive
10890matches for all languages except for Fortran, for which the default is
10891case-insensitive matches.
10892
9c16f35a
EZ
10893@kindex show case-sensitive
10894@item show case-sensitive
a8f24a35
EZ
10895This command shows the current setting of case sensitivity for symbols
10896lookups.
10897
c906108c 10898@kindex info address
b37052ae 10899@cindex address of a symbol
c906108c
SS
10900@item info address @var{symbol}
10901Describe where the data for @var{symbol} is stored. For a register
10902variable, this says which register it is kept in. For a non-register
10903local variable, this prints the stack-frame offset at which the variable
10904is always stored.
10905
10906Note the contrast with @samp{print &@var{symbol}}, which does not work
10907at all for a register variable, and for a stack local variable prints
10908the exact address of the current instantiation of the variable.
10909
3d67e040 10910@kindex info symbol
b37052ae 10911@cindex symbol from address
9c16f35a 10912@cindex closest symbol and offset for an address
3d67e040
EZ
10913@item info symbol @var{addr}
10914Print the name of a symbol which is stored at the address @var{addr}.
10915If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10916nearest symbol and an offset from it:
10917
474c8240 10918@smallexample
3d67e040
EZ
10919(@value{GDBP}) info symbol 0x54320
10920_initialize_vx + 396 in section .text
474c8240 10921@end smallexample
3d67e040
EZ
10922
10923@noindent
10924This is the opposite of the @code{info address} command. You can use
10925it to find out the name of a variable or a function given its address.
10926
c906108c 10927@kindex whatis
62f3a2ba
FF
10928@item whatis [@var{arg}]
10929Print the data type of @var{arg}, which can be either an expression or
10930a data type. With no argument, print the data type of @code{$}, the
10931last value in the value history. If @var{arg} is an expression, it is
10932not actually evaluated, and any side-effecting operations (such as
10933assignments or function calls) inside it do not take place. If
10934@var{arg} is a type name, it may be the name of a type or typedef, or
10935for C code it may have the form @samp{class @var{class-name}},
10936@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10937@samp{enum @var{enum-tag}}.
c906108c
SS
10938@xref{Expressions, ,Expressions}.
10939
c906108c 10940@kindex ptype
62f3a2ba
FF
10941@item ptype [@var{arg}]
10942@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10943detailed description of the type, instead of just the name of the type.
10944@xref{Expressions, ,Expressions}.
c906108c
SS
10945
10946For example, for this variable declaration:
10947
474c8240 10948@smallexample
c906108c 10949struct complex @{double real; double imag;@} v;
474c8240 10950@end smallexample
c906108c
SS
10951
10952@noindent
10953the two commands give this output:
10954
474c8240 10955@smallexample
c906108c
SS
10956@group
10957(@value{GDBP}) whatis v
10958type = struct complex
10959(@value{GDBP}) ptype v
10960type = struct complex @{
10961 double real;
10962 double imag;
10963@}
10964@end group
474c8240 10965@end smallexample
c906108c
SS
10966
10967@noindent
10968As with @code{whatis}, using @code{ptype} without an argument refers to
10969the type of @code{$}, the last value in the value history.
10970
ab1adacd
EZ
10971@cindex incomplete type
10972Sometimes, programs use opaque data types or incomplete specifications
10973of complex data structure. If the debug information included in the
10974program does not allow @value{GDBN} to display a full declaration of
10975the data type, it will say @samp{<incomplete type>}. For example,
10976given these declarations:
10977
10978@smallexample
10979 struct foo;
10980 struct foo *fooptr;
10981@end smallexample
10982
10983@noindent
10984but no definition for @code{struct foo} itself, @value{GDBN} will say:
10985
10986@smallexample
ddb50cd7 10987 (@value{GDBP}) ptype foo
ab1adacd
EZ
10988 $1 = <incomplete type>
10989@end smallexample
10990
10991@noindent
10992``Incomplete type'' is C terminology for data types that are not
10993completely specified.
10994
c906108c
SS
10995@kindex info types
10996@item info types @var{regexp}
10997@itemx info types
09d4efe1
EZ
10998Print a brief description of all types whose names match the regular
10999expression @var{regexp} (or all types in your program, if you supply
11000no argument). Each complete typename is matched as though it were a
11001complete line; thus, @samp{i type value} gives information on all
11002types in your program whose names include the string @code{value}, but
11003@samp{i type ^value$} gives information only on types whose complete
11004name is @code{value}.
c906108c
SS
11005
11006This command differs from @code{ptype} in two ways: first, like
11007@code{whatis}, it does not print a detailed description; second, it
11008lists all source files where a type is defined.
11009
b37052ae
EZ
11010@kindex info scope
11011@cindex local variables
09d4efe1 11012@item info scope @var{location}
b37052ae 11013List all the variables local to a particular scope. This command
09d4efe1
EZ
11014accepts a @var{location} argument---a function name, a source line, or
11015an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11016to the scope defined by that location. (@xref{Specify Location}, for
11017details about supported forms of @var{location}.) For example:
b37052ae
EZ
11018
11019@smallexample
11020(@value{GDBP}) @b{info scope command_line_handler}
11021Scope for command_line_handler:
11022Symbol rl is an argument at stack/frame offset 8, length 4.
11023Symbol linebuffer is in static storage at address 0x150a18, length 4.
11024Symbol linelength is in static storage at address 0x150a1c, length 4.
11025Symbol p is a local variable in register $esi, length 4.
11026Symbol p1 is a local variable in register $ebx, length 4.
11027Symbol nline is a local variable in register $edx, length 4.
11028Symbol repeat is a local variable at frame offset -8, length 4.
11029@end smallexample
11030
f5c37c66
EZ
11031@noindent
11032This command is especially useful for determining what data to collect
11033during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11034collect}.
11035
c906108c
SS
11036@kindex info source
11037@item info source
919d772c
JB
11038Show information about the current source file---that is, the source file for
11039the function containing the current point of execution:
11040@itemize @bullet
11041@item
11042the name of the source file, and the directory containing it,
11043@item
11044the directory it was compiled in,
11045@item
11046its length, in lines,
11047@item
11048which programming language it is written in,
11049@item
11050whether the executable includes debugging information for that file, and
11051if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11052@item
11053whether the debugging information includes information about
11054preprocessor macros.
11055@end itemize
11056
c906108c
SS
11057
11058@kindex info sources
11059@item info sources
11060Print the names of all source files in your program for which there is
11061debugging information, organized into two lists: files whose symbols
11062have already been read, and files whose symbols will be read when needed.
11063
11064@kindex info functions
11065@item info functions
11066Print the names and data types of all defined functions.
11067
11068@item info functions @var{regexp}
11069Print the names and data types of all defined functions
11070whose names contain a match for regular expression @var{regexp}.
11071Thus, @samp{info fun step} finds all functions whose names
11072include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11073start with @code{step}. If a function name contains characters
c1468174 11074that conflict with the regular expression language (e.g.@:
1c5dfdad 11075@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11076
11077@kindex info variables
11078@item info variables
11079Print the names and data types of all variables that are declared
6ca652b0 11080outside of functions (i.e.@: excluding local variables).
c906108c
SS
11081
11082@item info variables @var{regexp}
11083Print the names and data types of all variables (except for local
11084variables) whose names contain a match for regular expression
11085@var{regexp}.
11086
b37303ee 11087@kindex info classes
721c2651 11088@cindex Objective-C, classes and selectors
b37303ee
AF
11089@item info classes
11090@itemx info classes @var{regexp}
11091Display all Objective-C classes in your program, or
11092(with the @var{regexp} argument) all those matching a particular regular
11093expression.
11094
11095@kindex info selectors
11096@item info selectors
11097@itemx info selectors @var{regexp}
11098Display all Objective-C selectors in your program, or
11099(with the @var{regexp} argument) all those matching a particular regular
11100expression.
11101
c906108c
SS
11102@ignore
11103This was never implemented.
11104@kindex info methods
11105@item info methods
11106@itemx info methods @var{regexp}
11107The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11108methods within C@t{++} program, or (with the @var{regexp} argument) a
11109specific set of methods found in the various C@t{++} classes. Many
11110C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11111from the @code{ptype} command can be overwhelming and hard to use. The
11112@code{info-methods} command filters the methods, printing only those
11113which match the regular-expression @var{regexp}.
11114@end ignore
11115
c906108c
SS
11116@cindex reloading symbols
11117Some systems allow individual object files that make up your program to
7a292a7a
SS
11118be replaced without stopping and restarting your program. For example,
11119in VxWorks you can simply recompile a defective object file and keep on
11120running. If you are running on one of these systems, you can allow
11121@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11122
11123@table @code
11124@kindex set symbol-reloading
11125@item set symbol-reloading on
11126Replace symbol definitions for the corresponding source file when an
11127object file with a particular name is seen again.
11128
11129@item set symbol-reloading off
6d2ebf8b
SS
11130Do not replace symbol definitions when encountering object files of the
11131same name more than once. This is the default state; if you are not
11132running on a system that permits automatic relinking of modules, you
11133should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11134may discard symbols when linking large programs, that may contain
11135several modules (from different directories or libraries) with the same
11136name.
c906108c
SS
11137
11138@kindex show symbol-reloading
11139@item show symbol-reloading
11140Show the current @code{on} or @code{off} setting.
11141@end table
c906108c 11142
9c16f35a 11143@cindex opaque data types
c906108c
SS
11144@kindex set opaque-type-resolution
11145@item set opaque-type-resolution on
11146Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11147declared as a pointer to a @code{struct}, @code{class}, or
11148@code{union}---for example, @code{struct MyType *}---that is used in one
11149source file although the full declaration of @code{struct MyType} is in
11150another source file. The default is on.
11151
11152A change in the setting of this subcommand will not take effect until
11153the next time symbols for a file are loaded.
11154
11155@item set opaque-type-resolution off
11156Tell @value{GDBN} not to resolve opaque types. In this case, the type
11157is printed as follows:
11158@smallexample
11159@{<no data fields>@}
11160@end smallexample
11161
11162@kindex show opaque-type-resolution
11163@item show opaque-type-resolution
11164Show whether opaque types are resolved or not.
c906108c
SS
11165
11166@kindex maint print symbols
11167@cindex symbol dump
11168@kindex maint print psymbols
11169@cindex partial symbol dump
11170@item maint print symbols @var{filename}
11171@itemx maint print psymbols @var{filename}
11172@itemx maint print msymbols @var{filename}
11173Write a dump of debugging symbol data into the file @var{filename}.
11174These commands are used to debug the @value{GDBN} symbol-reading code. Only
11175symbols with debugging data are included. If you use @samp{maint print
11176symbols}, @value{GDBN} includes all the symbols for which it has already
11177collected full details: that is, @var{filename} reflects symbols for
11178only those files whose symbols @value{GDBN} has read. You can use the
11179command @code{info sources} to find out which files these are. If you
11180use @samp{maint print psymbols} instead, the dump shows information about
11181symbols that @value{GDBN} only knows partially---that is, symbols defined in
11182files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11183@samp{maint print msymbols} dumps just the minimal symbol information
11184required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11185@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11186@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11187
5e7b2f39
JB
11188@kindex maint info symtabs
11189@kindex maint info psymtabs
44ea7b70
JB
11190@cindex listing @value{GDBN}'s internal symbol tables
11191@cindex symbol tables, listing @value{GDBN}'s internal
11192@cindex full symbol tables, listing @value{GDBN}'s internal
11193@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11194@item maint info symtabs @r{[} @var{regexp} @r{]}
11195@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11196
11197List the @code{struct symtab} or @code{struct partial_symtab}
11198structures whose names match @var{regexp}. If @var{regexp} is not
11199given, list them all. The output includes expressions which you can
11200copy into a @value{GDBN} debugging this one to examine a particular
11201structure in more detail. For example:
11202
11203@smallexample
5e7b2f39 11204(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11205@{ objfile /home/gnu/build/gdb/gdb
11206 ((struct objfile *) 0x82e69d0)
b383017d 11207 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11208 ((struct partial_symtab *) 0x8474b10)
11209 readin no
11210 fullname (null)
11211 text addresses 0x814d3c8 -- 0x8158074
11212 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11213 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11214 dependencies (none)
11215 @}
11216@}
5e7b2f39 11217(@value{GDBP}) maint info symtabs
44ea7b70
JB
11218(@value{GDBP})
11219@end smallexample
11220@noindent
11221We see that there is one partial symbol table whose filename contains
11222the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11223and we see that @value{GDBN} has not read in any symtabs yet at all.
11224If we set a breakpoint on a function, that will cause @value{GDBN} to
11225read the symtab for the compilation unit containing that function:
11226
11227@smallexample
11228(@value{GDBP}) break dwarf2_psymtab_to_symtab
11229Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11230line 1574.
5e7b2f39 11231(@value{GDBP}) maint info symtabs
b383017d 11232@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11233 ((struct objfile *) 0x82e69d0)
b383017d 11234 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11235 ((struct symtab *) 0x86c1f38)
11236 dirname (null)
11237 fullname (null)
11238 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11239 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11240 debugformat DWARF 2
11241 @}
11242@}
b383017d 11243(@value{GDBP})
44ea7b70 11244@end smallexample
c906108c
SS
11245@end table
11246
44ea7b70 11247
6d2ebf8b 11248@node Altering
c906108c
SS
11249@chapter Altering Execution
11250
11251Once you think you have found an error in your program, you might want to
11252find out for certain whether correcting the apparent error would lead to
11253correct results in the rest of the run. You can find the answer by
11254experiment, using the @value{GDBN} features for altering execution of the
11255program.
11256
11257For example, you can store new values into variables or memory
7a292a7a
SS
11258locations, give your program a signal, restart it at a different
11259address, or even return prematurely from a function.
c906108c
SS
11260
11261@menu
11262* Assignment:: Assignment to variables
11263* Jumping:: Continuing at a different address
c906108c 11264* Signaling:: Giving your program a signal
c906108c
SS
11265* Returning:: Returning from a function
11266* Calling:: Calling your program's functions
11267* Patching:: Patching your program
11268@end menu
11269
6d2ebf8b 11270@node Assignment
79a6e687 11271@section Assignment to Variables
c906108c
SS
11272
11273@cindex assignment
11274@cindex setting variables
11275To alter the value of a variable, evaluate an assignment expression.
11276@xref{Expressions, ,Expressions}. For example,
11277
474c8240 11278@smallexample
c906108c 11279print x=4
474c8240 11280@end smallexample
c906108c
SS
11281
11282@noindent
11283stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11284value of the assignment expression (which is 4).
c906108c
SS
11285@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11286information on operators in supported languages.
c906108c
SS
11287
11288@kindex set variable
11289@cindex variables, setting
11290If you are not interested in seeing the value of the assignment, use the
11291@code{set} command instead of the @code{print} command. @code{set} is
11292really the same as @code{print} except that the expression's value is
11293not printed and is not put in the value history (@pxref{Value History,
79a6e687 11294,Value History}). The expression is evaluated only for its effects.
c906108c 11295
c906108c
SS
11296If the beginning of the argument string of the @code{set} command
11297appears identical to a @code{set} subcommand, use the @code{set
11298variable} command instead of just @code{set}. This command is identical
11299to @code{set} except for its lack of subcommands. For example, if your
11300program has a variable @code{width}, you get an error if you try to set
11301a new value with just @samp{set width=13}, because @value{GDBN} has the
11302command @code{set width}:
11303
474c8240 11304@smallexample
c906108c
SS
11305(@value{GDBP}) whatis width
11306type = double
11307(@value{GDBP}) p width
11308$4 = 13
11309(@value{GDBP}) set width=47
11310Invalid syntax in expression.
474c8240 11311@end smallexample
c906108c
SS
11312
11313@noindent
11314The invalid expression, of course, is @samp{=47}. In
11315order to actually set the program's variable @code{width}, use
11316
474c8240 11317@smallexample
c906108c 11318(@value{GDBP}) set var width=47
474c8240 11319@end smallexample
53a5351d 11320
c906108c
SS
11321Because the @code{set} command has many subcommands that can conflict
11322with the names of program variables, it is a good idea to use the
11323@code{set variable} command instead of just @code{set}. For example, if
11324your program has a variable @code{g}, you run into problems if you try
11325to set a new value with just @samp{set g=4}, because @value{GDBN} has
11326the command @code{set gnutarget}, abbreviated @code{set g}:
11327
474c8240 11328@smallexample
c906108c
SS
11329@group
11330(@value{GDBP}) whatis g
11331type = double
11332(@value{GDBP}) p g
11333$1 = 1
11334(@value{GDBP}) set g=4
2df3850c 11335(@value{GDBP}) p g
c906108c
SS
11336$2 = 1
11337(@value{GDBP}) r
11338The program being debugged has been started already.
11339Start it from the beginning? (y or n) y
11340Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11341"/home/smith/cc_progs/a.out": can't open to read symbols:
11342 Invalid bfd target.
c906108c
SS
11343(@value{GDBP}) show g
11344The current BFD target is "=4".
11345@end group
474c8240 11346@end smallexample
c906108c
SS
11347
11348@noindent
11349The program variable @code{g} did not change, and you silently set the
11350@code{gnutarget} to an invalid value. In order to set the variable
11351@code{g}, use
11352
474c8240 11353@smallexample
c906108c 11354(@value{GDBP}) set var g=4
474c8240 11355@end smallexample
c906108c
SS
11356
11357@value{GDBN} allows more implicit conversions in assignments than C; you can
11358freely store an integer value into a pointer variable or vice versa,
11359and you can convert any structure to any other structure that is the
11360same length or shorter.
11361@comment FIXME: how do structs align/pad in these conversions?
11362@comment /doc@cygnus.com 18dec1990
11363
11364To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11365construct to generate a value of specified type at a specified address
11366(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11367to memory location @code{0x83040} as an integer (which implies a certain size
11368and representation in memory), and
11369
474c8240 11370@smallexample
c906108c 11371set @{int@}0x83040 = 4
474c8240 11372@end smallexample
c906108c
SS
11373
11374@noindent
11375stores the value 4 into that memory location.
11376
6d2ebf8b 11377@node Jumping
79a6e687 11378@section Continuing at a Different Address
c906108c
SS
11379
11380Ordinarily, when you continue your program, you do so at the place where
11381it stopped, with the @code{continue} command. You can instead continue at
11382an address of your own choosing, with the following commands:
11383
11384@table @code
11385@kindex jump
11386@item jump @var{linespec}
2a25a5ba
EZ
11387@itemx jump @var{location}
11388Resume execution at line @var{linespec} or at address given by
11389@var{location}. Execution stops again immediately if there is a
11390breakpoint there. @xref{Specify Location}, for a description of the
11391different forms of @var{linespec} and @var{location}. It is common
11392practice to use the @code{tbreak} command in conjunction with
11393@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11394
11395The @code{jump} command does not change the current stack frame, or
11396the stack pointer, or the contents of any memory location or any
11397register other than the program counter. If line @var{linespec} is in
11398a different function from the one currently executing, the results may
11399be bizarre if the two functions expect different patterns of arguments or
11400of local variables. For this reason, the @code{jump} command requests
11401confirmation if the specified line is not in the function currently
11402executing. However, even bizarre results are predictable if you are
11403well acquainted with the machine-language code of your program.
c906108c
SS
11404@end table
11405
c906108c 11406@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11407On many systems, you can get much the same effect as the @code{jump}
11408command by storing a new value into the register @code{$pc}. The
11409difference is that this does not start your program running; it only
11410changes the address of where it @emph{will} run when you continue. For
11411example,
c906108c 11412
474c8240 11413@smallexample
c906108c 11414set $pc = 0x485
474c8240 11415@end smallexample
c906108c
SS
11416
11417@noindent
11418makes the next @code{continue} command or stepping command execute at
11419address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11420@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11421
11422The most common occasion to use the @code{jump} command is to back
11423up---perhaps with more breakpoints set---over a portion of a program
11424that has already executed, in order to examine its execution in more
11425detail.
11426
c906108c 11427@c @group
6d2ebf8b 11428@node Signaling
79a6e687 11429@section Giving your Program a Signal
9c16f35a 11430@cindex deliver a signal to a program
c906108c
SS
11431
11432@table @code
11433@kindex signal
11434@item signal @var{signal}
11435Resume execution where your program stopped, but immediately give it the
11436signal @var{signal}. @var{signal} can be the name or the number of a
11437signal. For example, on many systems @code{signal 2} and @code{signal
11438SIGINT} are both ways of sending an interrupt signal.
11439
11440Alternatively, if @var{signal} is zero, continue execution without
11441giving a signal. This is useful when your program stopped on account of
11442a signal and would ordinary see the signal when resumed with the
11443@code{continue} command; @samp{signal 0} causes it to resume without a
11444signal.
11445
11446@code{signal} does not repeat when you press @key{RET} a second time
11447after executing the command.
11448@end table
11449@c @end group
11450
11451Invoking the @code{signal} command is not the same as invoking the
11452@code{kill} utility from the shell. Sending a signal with @code{kill}
11453causes @value{GDBN} to decide what to do with the signal depending on
11454the signal handling tables (@pxref{Signals}). The @code{signal} command
11455passes the signal directly to your program.
11456
c906108c 11457
6d2ebf8b 11458@node Returning
79a6e687 11459@section Returning from a Function
c906108c
SS
11460
11461@table @code
11462@cindex returning from a function
11463@kindex return
11464@item return
11465@itemx return @var{expression}
11466You can cancel execution of a function call with the @code{return}
11467command. If you give an
11468@var{expression} argument, its value is used as the function's return
11469value.
11470@end table
11471
11472When you use @code{return}, @value{GDBN} discards the selected stack frame
11473(and all frames within it). You can think of this as making the
11474discarded frame return prematurely. If you wish to specify a value to
11475be returned, give that value as the argument to @code{return}.
11476
11477This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11478Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11479innermost remaining frame. That frame becomes selected. The
11480specified value is stored in the registers used for returning values
11481of functions.
11482
11483The @code{return} command does not resume execution; it leaves the
11484program stopped in the state that would exist if the function had just
11485returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11486and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11487selected stack frame returns naturally.
11488
6d2ebf8b 11489@node Calling
79a6e687 11490@section Calling Program Functions
c906108c 11491
f8568604 11492@table @code
c906108c 11493@cindex calling functions
f8568604
EZ
11494@cindex inferior functions, calling
11495@item print @var{expr}
d3e8051b 11496Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11497@var{expr} may include calls to functions in the program being
11498debugged.
11499
c906108c 11500@kindex call
c906108c
SS
11501@item call @var{expr}
11502Evaluate the expression @var{expr} without displaying @code{void}
11503returned values.
c906108c
SS
11504
11505You can use this variant of the @code{print} command if you want to
f8568604
EZ
11506execute a function from your program that does not return anything
11507(a.k.a.@: @dfn{a void function}), but without cluttering the output
11508with @code{void} returned values that @value{GDBN} will otherwise
11509print. If the result is not void, it is printed and saved in the
11510value history.
11511@end table
11512
9c16f35a
EZ
11513It is possible for the function you call via the @code{print} or
11514@code{call} command to generate a signal (e.g., if there's a bug in
11515the function, or if you passed it incorrect arguments). What happens
11516in that case is controlled by the @code{set unwindonsignal} command.
11517
11518@table @code
11519@item set unwindonsignal
11520@kindex set unwindonsignal
11521@cindex unwind stack in called functions
11522@cindex call dummy stack unwinding
11523Set unwinding of the stack if a signal is received while in a function
11524that @value{GDBN} called in the program being debugged. If set to on,
11525@value{GDBN} unwinds the stack it created for the call and restores
11526the context to what it was before the call. If set to off (the
11527default), @value{GDBN} stops in the frame where the signal was
11528received.
11529
11530@item show unwindonsignal
11531@kindex show unwindonsignal
11532Show the current setting of stack unwinding in the functions called by
11533@value{GDBN}.
11534@end table
11535
f8568604
EZ
11536@cindex weak alias functions
11537Sometimes, a function you wish to call is actually a @dfn{weak alias}
11538for another function. In such case, @value{GDBN} might not pick up
11539the type information, including the types of the function arguments,
11540which causes @value{GDBN} to call the inferior function incorrectly.
11541As a result, the called function will function erroneously and may
11542even crash. A solution to that is to use the name of the aliased
11543function instead.
c906108c 11544
6d2ebf8b 11545@node Patching
79a6e687 11546@section Patching Programs
7a292a7a 11547
c906108c
SS
11548@cindex patching binaries
11549@cindex writing into executables
c906108c 11550@cindex writing into corefiles
c906108c 11551
7a292a7a
SS
11552By default, @value{GDBN} opens the file containing your program's
11553executable code (or the corefile) read-only. This prevents accidental
11554alterations to machine code; but it also prevents you from intentionally
11555patching your program's binary.
c906108c
SS
11556
11557If you'd like to be able to patch the binary, you can specify that
11558explicitly with the @code{set write} command. For example, you might
11559want to turn on internal debugging flags, or even to make emergency
11560repairs.
11561
11562@table @code
11563@kindex set write
11564@item set write on
11565@itemx set write off
7a292a7a
SS
11566If you specify @samp{set write on}, @value{GDBN} opens executable and
11567core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11568off} (the default), @value{GDBN} opens them read-only.
11569
11570If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11571@code{exec-file} or @code{core-file} command) after changing @code{set
11572write}, for your new setting to take effect.
c906108c
SS
11573
11574@item show write
11575@kindex show write
7a292a7a
SS
11576Display whether executable files and core files are opened for writing
11577as well as reading.
c906108c
SS
11578@end table
11579
6d2ebf8b 11580@node GDB Files
c906108c
SS
11581@chapter @value{GDBN} Files
11582
7a292a7a
SS
11583@value{GDBN} needs to know the file name of the program to be debugged,
11584both in order to read its symbol table and in order to start your
11585program. To debug a core dump of a previous run, you must also tell
11586@value{GDBN} the name of the core dump file.
c906108c
SS
11587
11588@menu
11589* Files:: Commands to specify files
5b5d99cf 11590* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11591* Symbol Errors:: Errors reading symbol files
11592@end menu
11593
6d2ebf8b 11594@node Files
79a6e687 11595@section Commands to Specify Files
c906108c 11596
7a292a7a 11597@cindex symbol table
c906108c 11598@cindex core dump file
7a292a7a
SS
11599
11600You may want to specify executable and core dump file names. The usual
11601way to do this is at start-up time, using the arguments to
11602@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11603Out of @value{GDBN}}).
c906108c
SS
11604
11605Occasionally it is necessary to change to a different file during a
397ca115
EZ
11606@value{GDBN} session. Or you may run @value{GDBN} and forget to
11607specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11608via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11609Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11610new files are useful.
c906108c
SS
11611
11612@table @code
11613@cindex executable file
11614@kindex file
11615@item file @var{filename}
11616Use @var{filename} as the program to be debugged. It is read for its
11617symbols and for the contents of pure memory. It is also the program
11618executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11619directory and the file is not found in the @value{GDBN} working directory,
11620@value{GDBN} uses the environment variable @code{PATH} as a list of
11621directories to search, just as the shell does when looking for a program
11622to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11623and your program, using the @code{path} command.
11624
fc8be69e
EZ
11625@cindex unlinked object files
11626@cindex patching object files
11627You can load unlinked object @file{.o} files into @value{GDBN} using
11628the @code{file} command. You will not be able to ``run'' an object
11629file, but you can disassemble functions and inspect variables. Also,
11630if the underlying BFD functionality supports it, you could use
11631@kbd{gdb -write} to patch object files using this technique. Note
11632that @value{GDBN} can neither interpret nor modify relocations in this
11633case, so branches and some initialized variables will appear to go to
11634the wrong place. But this feature is still handy from time to time.
11635
c906108c
SS
11636@item file
11637@code{file} with no argument makes @value{GDBN} discard any information it
11638has on both executable file and the symbol table.
11639
11640@kindex exec-file
11641@item exec-file @r{[} @var{filename} @r{]}
11642Specify that the program to be run (but not the symbol table) is found
11643in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11644if necessary to locate your program. Omitting @var{filename} means to
11645discard information on the executable file.
11646
11647@kindex symbol-file
11648@item symbol-file @r{[} @var{filename} @r{]}
11649Read symbol table information from file @var{filename}. @code{PATH} is
11650searched when necessary. Use the @code{file} command to get both symbol
11651table and program to run from the same file.
11652
11653@code{symbol-file} with no argument clears out @value{GDBN} information on your
11654program's symbol table.
11655
ae5a43e0
DJ
11656The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11657some breakpoints and auto-display expressions. This is because they may
11658contain pointers to the internal data recording symbols and data types,
11659which are part of the old symbol table data being discarded inside
11660@value{GDBN}.
c906108c
SS
11661
11662@code{symbol-file} does not repeat if you press @key{RET} again after
11663executing it once.
11664
11665When @value{GDBN} is configured for a particular environment, it
11666understands debugging information in whatever format is the standard
11667generated for that environment; you may use either a @sc{gnu} compiler, or
11668other compilers that adhere to the local conventions.
c906108c 11669Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11670using @code{@value{NGCC}} you can generate debugging information for
c906108c 11671optimized code.
c906108c
SS
11672
11673For most kinds of object files, with the exception of old SVR3 systems
11674using COFF, the @code{symbol-file} command does not normally read the
11675symbol table in full right away. Instead, it scans the symbol table
11676quickly to find which source files and which symbols are present. The
11677details are read later, one source file at a time, as they are needed.
11678
11679The purpose of this two-stage reading strategy is to make @value{GDBN}
11680start up faster. For the most part, it is invisible except for
11681occasional pauses while the symbol table details for a particular source
11682file are being read. (The @code{set verbose} command can turn these
11683pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11684Warnings and Messages}.)
c906108c 11685
c906108c
SS
11686We have not implemented the two-stage strategy for COFF yet. When the
11687symbol table is stored in COFF format, @code{symbol-file} reads the
11688symbol table data in full right away. Note that ``stabs-in-COFF''
11689still does the two-stage strategy, since the debug info is actually
11690in stabs format.
11691
11692@kindex readnow
11693@cindex reading symbols immediately
11694@cindex symbols, reading immediately
a94ab193
EZ
11695@item symbol-file @var{filename} @r{[} -readnow @r{]}
11696@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11697You can override the @value{GDBN} two-stage strategy for reading symbol
11698tables by using the @samp{-readnow} option with any of the commands that
11699load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11700entire symbol table available.
c906108c 11701
c906108c
SS
11702@c FIXME: for now no mention of directories, since this seems to be in
11703@c flux. 13mar1992 status is that in theory GDB would look either in
11704@c current dir or in same dir as myprog; but issues like competing
11705@c GDB's, or clutter in system dirs, mean that in practice right now
11706@c only current dir is used. FFish says maybe a special GDB hierarchy
11707@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11708@c files.
11709
c906108c 11710@kindex core-file
09d4efe1 11711@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11712@itemx core
c906108c
SS
11713Specify the whereabouts of a core dump file to be used as the ``contents
11714of memory''. Traditionally, core files contain only some parts of the
11715address space of the process that generated them; @value{GDBN} can access the
11716executable file itself for other parts.
11717
11718@code{core-file} with no argument specifies that no core file is
11719to be used.
11720
11721Note that the core file is ignored when your program is actually running
7a292a7a
SS
11722under @value{GDBN}. So, if you have been running your program and you
11723wish to debug a core file instead, you must kill the subprocess in which
11724the program is running. To do this, use the @code{kill} command
79a6e687 11725(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11726
c906108c
SS
11727@kindex add-symbol-file
11728@cindex dynamic linking
11729@item add-symbol-file @var{filename} @var{address}
a94ab193 11730@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11731@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11732The @code{add-symbol-file} command reads additional symbol table
11733information from the file @var{filename}. You would use this command
11734when @var{filename} has been dynamically loaded (by some other means)
11735into the program that is running. @var{address} should be the memory
11736address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11737this out for itself. You can additionally specify an arbitrary number
11738of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11739section name and base address for that section. You can specify any
11740@var{address} as an expression.
c906108c
SS
11741
11742The symbol table of the file @var{filename} is added to the symbol table
11743originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11744@code{add-symbol-file} command any number of times; the new symbol data
11745thus read keeps adding to the old. To discard all old symbol data
11746instead, use the @code{symbol-file} command without any arguments.
c906108c 11747
17d9d558
JB
11748@cindex relocatable object files, reading symbols from
11749@cindex object files, relocatable, reading symbols from
11750@cindex reading symbols from relocatable object files
11751@cindex symbols, reading from relocatable object files
11752@cindex @file{.o} files, reading symbols from
11753Although @var{filename} is typically a shared library file, an
11754executable file, or some other object file which has been fully
11755relocated for loading into a process, you can also load symbolic
11756information from relocatable @file{.o} files, as long as:
11757
11758@itemize @bullet
11759@item
11760the file's symbolic information refers only to linker symbols defined in
11761that file, not to symbols defined by other object files,
11762@item
11763every section the file's symbolic information refers to has actually
11764been loaded into the inferior, as it appears in the file, and
11765@item
11766you can determine the address at which every section was loaded, and
11767provide these to the @code{add-symbol-file} command.
11768@end itemize
11769
11770@noindent
11771Some embedded operating systems, like Sun Chorus and VxWorks, can load
11772relocatable files into an already running program; such systems
11773typically make the requirements above easy to meet. However, it's
11774important to recognize that many native systems use complex link
49efadf5 11775procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11776assembly, for example) that make the requirements difficult to meet. In
11777general, one cannot assume that using @code{add-symbol-file} to read a
11778relocatable object file's symbolic information will have the same effect
11779as linking the relocatable object file into the program in the normal
11780way.
11781
c906108c
SS
11782@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11783
c45da7e6
EZ
11784@kindex add-symbol-file-from-memory
11785@cindex @code{syscall DSO}
11786@cindex load symbols from memory
11787@item add-symbol-file-from-memory @var{address}
11788Load symbols from the given @var{address} in a dynamically loaded
11789object file whose image is mapped directly into the inferior's memory.
11790For example, the Linux kernel maps a @code{syscall DSO} into each
11791process's address space; this DSO provides kernel-specific code for
11792some system calls. The argument can be any expression whose
11793evaluation yields the address of the file's shared object file header.
11794For this command to work, you must have used @code{symbol-file} or
11795@code{exec-file} commands in advance.
11796
09d4efe1
EZ
11797@kindex add-shared-symbol-files
11798@kindex assf
11799@item add-shared-symbol-files @var{library-file}
11800@itemx assf @var{library-file}
11801The @code{add-shared-symbol-files} command can currently be used only
11802in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11803alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11804@value{GDBN} automatically looks for shared libraries, however if
11805@value{GDBN} does not find yours, you can invoke
11806@code{add-shared-symbol-files}. It takes one argument: the shared
11807library's file name. @code{assf} is a shorthand alias for
11808@code{add-shared-symbol-files}.
c906108c 11809
c906108c 11810@kindex section
09d4efe1
EZ
11811@item section @var{section} @var{addr}
11812The @code{section} command changes the base address of the named
11813@var{section} of the exec file to @var{addr}. This can be used if the
11814exec file does not contain section addresses, (such as in the
11815@code{a.out} format), or when the addresses specified in the file
11816itself are wrong. Each section must be changed separately. The
11817@code{info files} command, described below, lists all the sections and
11818their addresses.
c906108c
SS
11819
11820@kindex info files
11821@kindex info target
11822@item info files
11823@itemx info target
7a292a7a
SS
11824@code{info files} and @code{info target} are synonymous; both print the
11825current target (@pxref{Targets, ,Specifying a Debugging Target}),
11826including the names of the executable and core dump files currently in
11827use by @value{GDBN}, and the files from which symbols were loaded. The
11828command @code{help target} lists all possible targets rather than
11829current ones.
11830
fe95c787
MS
11831@kindex maint info sections
11832@item maint info sections
11833Another command that can give you extra information about program sections
11834is @code{maint info sections}. In addition to the section information
11835displayed by @code{info files}, this command displays the flags and file
11836offset of each section in the executable and core dump files. In addition,
11837@code{maint info sections} provides the following command options (which
11838may be arbitrarily combined):
11839
11840@table @code
11841@item ALLOBJ
11842Display sections for all loaded object files, including shared libraries.
11843@item @var{sections}
6600abed 11844Display info only for named @var{sections}.
fe95c787
MS
11845@item @var{section-flags}
11846Display info only for sections for which @var{section-flags} are true.
11847The section flags that @value{GDBN} currently knows about are:
11848@table @code
11849@item ALLOC
11850Section will have space allocated in the process when loaded.
11851Set for all sections except those containing debug information.
11852@item LOAD
11853Section will be loaded from the file into the child process memory.
11854Set for pre-initialized code and data, clear for @code{.bss} sections.
11855@item RELOC
11856Section needs to be relocated before loading.
11857@item READONLY
11858Section cannot be modified by the child process.
11859@item CODE
11860Section contains executable code only.
6600abed 11861@item DATA
fe95c787
MS
11862Section contains data only (no executable code).
11863@item ROM
11864Section will reside in ROM.
11865@item CONSTRUCTOR
11866Section contains data for constructor/destructor lists.
11867@item HAS_CONTENTS
11868Section is not empty.
11869@item NEVER_LOAD
11870An instruction to the linker to not output the section.
11871@item COFF_SHARED_LIBRARY
11872A notification to the linker that the section contains
11873COFF shared library information.
11874@item IS_COMMON
11875Section contains common symbols.
11876@end table
11877@end table
6763aef9 11878@kindex set trust-readonly-sections
9c16f35a 11879@cindex read-only sections
6763aef9
MS
11880@item set trust-readonly-sections on
11881Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11882really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11883In that case, @value{GDBN} can fetch values from these sections
11884out of the object file, rather than from the target program.
11885For some targets (notably embedded ones), this can be a significant
11886enhancement to debugging performance.
11887
11888The default is off.
11889
11890@item set trust-readonly-sections off
15110bc3 11891Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11892the contents of the section might change while the program is running,
11893and must therefore be fetched from the target when needed.
9c16f35a
EZ
11894
11895@item show trust-readonly-sections
11896Show the current setting of trusting readonly sections.
c906108c
SS
11897@end table
11898
11899All file-specifying commands allow both absolute and relative file names
11900as arguments. @value{GDBN} always converts the file name to an absolute file
11901name and remembers it that way.
11902
c906108c 11903@cindex shared libraries
9cceb671
DJ
11904@anchor{Shared Libraries}
11905@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11906and IBM RS/6000 AIX shared libraries.
53a5351d 11907
9cceb671
DJ
11908On MS-Windows @value{GDBN} must be linked with the Expat library to support
11909shared libraries. @xref{Expat}.
11910
c906108c
SS
11911@value{GDBN} automatically loads symbol definitions from shared libraries
11912when you use the @code{run} command, or when you examine a core file.
11913(Before you issue the @code{run} command, @value{GDBN} does not understand
11914references to a function in a shared library, however---unless you are
11915debugging a core file).
53a5351d
JM
11916
11917On HP-UX, if the program loads a library explicitly, @value{GDBN}
11918automatically loads the symbols at the time of the @code{shl_load} call.
11919
c906108c
SS
11920@c FIXME: some @value{GDBN} release may permit some refs to undef
11921@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11922@c FIXME...lib; check this from time to time when updating manual
11923
b7209cb4
FF
11924There are times, however, when you may wish to not automatically load
11925symbol definitions from shared libraries, such as when they are
11926particularly large or there are many of them.
11927
11928To control the automatic loading of shared library symbols, use the
11929commands:
11930
11931@table @code
11932@kindex set auto-solib-add
11933@item set auto-solib-add @var{mode}
11934If @var{mode} is @code{on}, symbols from all shared object libraries
11935will be loaded automatically when the inferior begins execution, you
11936attach to an independently started inferior, or when the dynamic linker
11937informs @value{GDBN} that a new library has been loaded. If @var{mode}
11938is @code{off}, symbols must be loaded manually, using the
11939@code{sharedlibrary} command. The default value is @code{on}.
11940
dcaf7c2c
EZ
11941@cindex memory used for symbol tables
11942If your program uses lots of shared libraries with debug info that
11943takes large amounts of memory, you can decrease the @value{GDBN}
11944memory footprint by preventing it from automatically loading the
11945symbols from shared libraries. To that end, type @kbd{set
11946auto-solib-add off} before running the inferior, then load each
11947library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11948@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11949the libraries whose symbols you want to be loaded.
11950
b7209cb4
FF
11951@kindex show auto-solib-add
11952@item show auto-solib-add
11953Display the current autoloading mode.
11954@end table
11955
c45da7e6 11956@cindex load shared library
b7209cb4
FF
11957To explicitly load shared library symbols, use the @code{sharedlibrary}
11958command:
11959
c906108c
SS
11960@table @code
11961@kindex info sharedlibrary
11962@kindex info share
11963@item info share
11964@itemx info sharedlibrary
11965Print the names of the shared libraries which are currently loaded.
11966
11967@kindex sharedlibrary
11968@kindex share
11969@item sharedlibrary @var{regex}
11970@itemx share @var{regex}
c906108c
SS
11971Load shared object library symbols for files matching a
11972Unix regular expression.
11973As with files loaded automatically, it only loads shared libraries
11974required by your program for a core file or after typing @code{run}. If
11975@var{regex} is omitted all shared libraries required by your program are
11976loaded.
c45da7e6
EZ
11977
11978@item nosharedlibrary
11979@kindex nosharedlibrary
11980@cindex unload symbols from shared libraries
11981Unload all shared object library symbols. This discards all symbols
11982that have been loaded from all shared libraries. Symbols from shared
11983libraries that were loaded by explicit user requests are not
11984discarded.
c906108c
SS
11985@end table
11986
721c2651
EZ
11987Sometimes you may wish that @value{GDBN} stops and gives you control
11988when any of shared library events happen. Use the @code{set
11989stop-on-solib-events} command for this:
11990
11991@table @code
11992@item set stop-on-solib-events
11993@kindex set stop-on-solib-events
11994This command controls whether @value{GDBN} should give you control
11995when the dynamic linker notifies it about some shared library event.
11996The most common event of interest is loading or unloading of a new
11997shared library.
11998
11999@item show stop-on-solib-events
12000@kindex show stop-on-solib-events
12001Show whether @value{GDBN} stops and gives you control when shared
12002library events happen.
12003@end table
12004
f5ebfba0
DJ
12005Shared libraries are also supported in many cross or remote debugging
12006configurations. A copy of the target's libraries need to be present on the
12007host system; they need to be the same as the target libraries, although the
12008copies on the target can be stripped as long as the copies on the host are
12009not.
12010
59b7b46f
EZ
12011@cindex where to look for shared libraries
12012For remote debugging, you need to tell @value{GDBN} where the target
12013libraries are, so that it can load the correct copies---otherwise, it
12014may try to load the host's libraries. @value{GDBN} has two variables
12015to specify the search directories for target libraries.
f5ebfba0
DJ
12016
12017@table @code
59b7b46f 12018@cindex prefix for shared library file names
f822c95b 12019@cindex system root, alternate
f5ebfba0 12020@kindex set solib-absolute-prefix
f822c95b
DJ
12021@kindex set sysroot
12022@item set sysroot @var{path}
12023Use @var{path} as the system root for the program being debugged. Any
12024absolute shared library paths will be prefixed with @var{path}; many
12025runtime loaders store the absolute paths to the shared library in the
12026target program's memory. If you use @code{set sysroot} to find shared
12027libraries, they need to be laid out in the same way that they are on
12028the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12029under @var{path}.
12030
12031The @code{set solib-absolute-prefix} command is an alias for @code{set
12032sysroot}.
12033
12034@cindex default system root
59b7b46f 12035@cindex @samp{--with-sysroot}
f822c95b
DJ
12036You can set the default system root by using the configure-time
12037@samp{--with-sysroot} option. If the system root is inside
12038@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12039@samp{--exec-prefix}), then the default system root will be updated
12040automatically if the installed @value{GDBN} is moved to a new
12041location.
12042
12043@kindex show sysroot
12044@item show sysroot
f5ebfba0
DJ
12045Display the current shared library prefix.
12046
12047@kindex set solib-search-path
12048@item set solib-search-path @var{path}
f822c95b
DJ
12049If this variable is set, @var{path} is a colon-separated list of
12050directories to search for shared libraries. @samp{solib-search-path}
12051is used after @samp{sysroot} fails to locate the library, or if the
12052path to the library is relative instead of absolute. If you want to
12053use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12054@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12055finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12056it to a nonexistent directory may interfere with automatic loading
f822c95b 12057of shared library symbols.
f5ebfba0
DJ
12058
12059@kindex show solib-search-path
12060@item show solib-search-path
12061Display the current shared library search path.
12062@end table
12063
5b5d99cf
JB
12064
12065@node Separate Debug Files
12066@section Debugging Information in Separate Files
12067@cindex separate debugging information files
12068@cindex debugging information in separate files
12069@cindex @file{.debug} subdirectories
12070@cindex debugging information directory, global
12071@cindex global debugging information directory
c7e83d54
EZ
12072@cindex build ID, and separate debugging files
12073@cindex @file{.build-id} directory
5b5d99cf
JB
12074
12075@value{GDBN} allows you to put a program's debugging information in a
12076file separate from the executable itself, in a way that allows
12077@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12078Since debugging information can be very large---sometimes larger
12079than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12080information for their executables in separate files, which users can
12081install only when they need to debug a problem.
12082
c7e83d54
EZ
12083@value{GDBN} supports two ways of specifying the separate debug info
12084file:
5b5d99cf
JB
12085
12086@itemize @bullet
12087@item
c7e83d54
EZ
12088The executable contains a @dfn{debug link} that specifies the name of
12089the separate debug info file. The separate debug file's name is
12090usually @file{@var{executable}.debug}, where @var{executable} is the
12091name of the corresponding executable file without leading directories
12092(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12093debug link specifies a CRC32 checksum for the debug file, which
12094@value{GDBN} uses to validate that the executable and the debug file
12095came from the same build.
12096
12097@item
7e27a47a 12098The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12099also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12100only on some operating systems, notably those which use the ELF format
12101for binary files and the @sc{gnu} Binutils.) For more details about
12102this feature, see the description of the @option{--build-id}
12103command-line option in @ref{Options, , Command Line Options, ld.info,
12104The GNU Linker}. The debug info file's name is not specified
12105explicitly by the build ID, but can be computed from the build ID, see
12106below.
d3750b24
JK
12107@end itemize
12108
c7e83d54
EZ
12109Depending on the way the debug info file is specified, @value{GDBN}
12110uses two different methods of looking for the debug file:
d3750b24
JK
12111
12112@itemize @bullet
12113@item
c7e83d54
EZ
12114For the ``debug link'' method, @value{GDBN} looks up the named file in
12115the directory of the executable file, then in a subdirectory of that
12116directory named @file{.debug}, and finally under the global debug
12117directory, in a subdirectory whose name is identical to the leading
12118directories of the executable's absolute file name.
12119
12120@item
83f83d7f 12121For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12122@file{.build-id} subdirectory of the global debug directory for a file
12123named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12124first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12125are the rest of the bit string. (Real build ID strings are 32 or more
12126hex characters, not 10.)
c7e83d54
EZ
12127@end itemize
12128
12129So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12130@file{/usr/bin/ls}, which has a debug link that specifies the
12131file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12132@code{abcdef1234}. If the global debug directory is
12133@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12134debug information files, in the indicated order:
12135
12136@itemize @minus
12137@item
12138@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12139@item
c7e83d54 12140@file{/usr/bin/ls.debug}
5b5d99cf 12141@item
c7e83d54 12142@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12143@item
c7e83d54 12144@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12145@end itemize
5b5d99cf
JB
12146
12147You can set the global debugging info directory's name, and view the
12148name @value{GDBN} is currently using.
12149
12150@table @code
12151
12152@kindex set debug-file-directory
12153@item set debug-file-directory @var{directory}
12154Set the directory which @value{GDBN} searches for separate debugging
12155information files to @var{directory}.
12156
12157@kindex show debug-file-directory
12158@item show debug-file-directory
12159Show the directory @value{GDBN} searches for separate debugging
12160information files.
12161
12162@end table
12163
12164@cindex @code{.gnu_debuglink} sections
c7e83d54 12165@cindex debug link sections
5b5d99cf
JB
12166A debug link is a special section of the executable file named
12167@code{.gnu_debuglink}. The section must contain:
12168
12169@itemize
12170@item
12171A filename, with any leading directory components removed, followed by
12172a zero byte,
12173@item
12174zero to three bytes of padding, as needed to reach the next four-byte
12175boundary within the section, and
12176@item
12177a four-byte CRC checksum, stored in the same endianness used for the
12178executable file itself. The checksum is computed on the debugging
12179information file's full contents by the function given below, passing
12180zero as the @var{crc} argument.
12181@end itemize
12182
12183Any executable file format can carry a debug link, as long as it can
12184contain a section named @code{.gnu_debuglink} with the contents
12185described above.
12186
d3750b24 12187@cindex @code{.note.gnu.build-id} sections
c7e83d54 12188@cindex build ID sections
7e27a47a
EZ
12189The build ID is a special section in the executable file (and in other
12190ELF binary files that @value{GDBN} may consider). This section is
12191often named @code{.note.gnu.build-id}, but that name is not mandatory.
12192It contains unique identification for the built files---the ID remains
12193the same across multiple builds of the same build tree. The default
12194algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12195content for the build ID string. The same section with an identical
12196value is present in the original built binary with symbols, in its
12197stripped variant, and in the separate debugging information file.
d3750b24 12198
5b5d99cf
JB
12199The debugging information file itself should be an ordinary
12200executable, containing a full set of linker symbols, sections, and
12201debugging information. The sections of the debugging information file
c7e83d54
EZ
12202should have the same names, addresses, and sizes as the original file,
12203but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12204in an ordinary executable.
12205
7e27a47a 12206The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12207@samp{objcopy} utility that can produce
12208the separated executable / debugging information file pairs using the
12209following commands:
12210
12211@smallexample
12212@kbd{objcopy --only-keep-debug foo foo.debug}
12213@kbd{strip -g foo}
c7e83d54
EZ
12214@end smallexample
12215
12216@noindent
12217These commands remove the debugging
83f83d7f
JK
12218information from the executable file @file{foo} and place it in the file
12219@file{foo.debug}. You can use the first, second or both methods to link the
12220two files:
12221
12222@itemize @bullet
12223@item
12224The debug link method needs the following additional command to also leave
12225behind a debug link in @file{foo}:
12226
12227@smallexample
12228@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12229@end smallexample
12230
12231Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12232a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12233foo.debug} has the same functionality as the two @code{objcopy} commands and
12234the @code{ln -s} command above, together.
12235
12236@item
12237Build ID gets embedded into the main executable using @code{ld --build-id} or
12238the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12239compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12240utilities (Binutils) package since version 2.18.
83f83d7f
JK
12241@end itemize
12242
12243@noindent
d3750b24 12244
c7e83d54
EZ
12245Since there are many different ways to compute CRC's for the debug
12246link (different polynomials, reversals, byte ordering, etc.), the
12247simplest way to describe the CRC used in @code{.gnu_debuglink}
12248sections is to give the complete code for a function that computes it:
5b5d99cf 12249
4644b6e3 12250@kindex gnu_debuglink_crc32
5b5d99cf
JB
12251@smallexample
12252unsigned long
12253gnu_debuglink_crc32 (unsigned long crc,
12254 unsigned char *buf, size_t len)
12255@{
12256 static const unsigned long crc32_table[256] =
12257 @{
12258 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12259 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12260 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12261 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12262 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12263 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12264 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12265 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12266 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12267 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12268 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12269 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12270 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12271 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12272 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12273 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12274 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12275 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12276 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12277 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12278 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12279 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12280 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12281 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12282 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12283 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12284 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12285 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12286 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12287 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12288 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12289 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12290 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12291 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12292 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12293 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12294 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12295 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12296 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12297 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12298 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12299 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12300 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12301 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12302 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12303 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12304 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12305 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12306 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12307 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12308 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12309 0x2d02ef8d
12310 @};
12311 unsigned char *end;
12312
12313 crc = ~crc & 0xffffffff;
12314 for (end = buf + len; buf < end; ++buf)
12315 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12316 return ~crc & 0xffffffff;
5b5d99cf
JB
12317@}
12318@end smallexample
12319
c7e83d54
EZ
12320@noindent
12321This computation does not apply to the ``build ID'' method.
12322
5b5d99cf 12323
6d2ebf8b 12324@node Symbol Errors
79a6e687 12325@section Errors Reading Symbol Files
c906108c
SS
12326
12327While reading a symbol file, @value{GDBN} occasionally encounters problems,
12328such as symbol types it does not recognize, or known bugs in compiler
12329output. By default, @value{GDBN} does not notify you of such problems, since
12330they are relatively common and primarily of interest to people
12331debugging compilers. If you are interested in seeing information
12332about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12333only one message about each such type of problem, no matter how many
12334times the problem occurs; or you can ask @value{GDBN} to print more messages,
12335to see how many times the problems occur, with the @code{set
79a6e687
BW
12336complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12337Messages}).
c906108c
SS
12338
12339The messages currently printed, and their meanings, include:
12340
12341@table @code
12342@item inner block not inside outer block in @var{symbol}
12343
12344The symbol information shows where symbol scopes begin and end
12345(such as at the start of a function or a block of statements). This
12346error indicates that an inner scope block is not fully contained
12347in its outer scope blocks.
12348
12349@value{GDBN} circumvents the problem by treating the inner block as if it had
12350the same scope as the outer block. In the error message, @var{symbol}
12351may be shown as ``@code{(don't know)}'' if the outer block is not a
12352function.
12353
12354@item block at @var{address} out of order
12355
12356The symbol information for symbol scope blocks should occur in
12357order of increasing addresses. This error indicates that it does not
12358do so.
12359
12360@value{GDBN} does not circumvent this problem, and has trouble
12361locating symbols in the source file whose symbols it is reading. (You
12362can often determine what source file is affected by specifying
79a6e687
BW
12363@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12364Messages}.)
c906108c
SS
12365
12366@item bad block start address patched
12367
12368The symbol information for a symbol scope block has a start address
12369smaller than the address of the preceding source line. This is known
12370to occur in the SunOS 4.1.1 (and earlier) C compiler.
12371
12372@value{GDBN} circumvents the problem by treating the symbol scope block as
12373starting on the previous source line.
12374
12375@item bad string table offset in symbol @var{n}
12376
12377@cindex foo
12378Symbol number @var{n} contains a pointer into the string table which is
12379larger than the size of the string table.
12380
12381@value{GDBN} circumvents the problem by considering the symbol to have the
12382name @code{foo}, which may cause other problems if many symbols end up
12383with this name.
12384
12385@item unknown symbol type @code{0x@var{nn}}
12386
7a292a7a
SS
12387The symbol information contains new data types that @value{GDBN} does
12388not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12389uncomprehended information, in hexadecimal.
c906108c 12390
7a292a7a
SS
12391@value{GDBN} circumvents the error by ignoring this symbol information.
12392This usually allows you to debug your program, though certain symbols
c906108c 12393are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12394debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12395on @code{complain}, then go up to the function @code{read_dbx_symtab}
12396and examine @code{*bufp} to see the symbol.
c906108c
SS
12397
12398@item stub type has NULL name
c906108c 12399
7a292a7a 12400@value{GDBN} could not find the full definition for a struct or class.
c906108c 12401
7a292a7a 12402@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12403The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12404information that recent versions of the compiler should have output for
12405it.
c906108c
SS
12406
12407@item info mismatch between compiler and debugger
12408
12409@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12410
c906108c
SS
12411@end table
12412
6d2ebf8b 12413@node Targets
c906108c 12414@chapter Specifying a Debugging Target
7a292a7a 12415
c906108c 12416@cindex debugging target
c906108c 12417A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12418
12419Often, @value{GDBN} runs in the same host environment as your program;
12420in that case, the debugging target is specified as a side effect when
12421you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12422flexibility---for example, running @value{GDBN} on a physically separate
12423host, or controlling a standalone system over a serial port or a
53a5351d
JM
12424realtime system over a TCP/IP connection---you can use the @code{target}
12425command to specify one of the target types configured for @value{GDBN}
79a6e687 12426(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12427
a8f24a35
EZ
12428@cindex target architecture
12429It is possible to build @value{GDBN} for several different @dfn{target
12430architectures}. When @value{GDBN} is built like that, you can choose
12431one of the available architectures with the @kbd{set architecture}
12432command.
12433
12434@table @code
12435@kindex set architecture
12436@kindex show architecture
12437@item set architecture @var{arch}
12438This command sets the current target architecture to @var{arch}. The
12439value of @var{arch} can be @code{"auto"}, in addition to one of the
12440supported architectures.
12441
12442@item show architecture
12443Show the current target architecture.
9c16f35a
EZ
12444
12445@item set processor
12446@itemx processor
12447@kindex set processor
12448@kindex show processor
12449These are alias commands for, respectively, @code{set architecture}
12450and @code{show architecture}.
a8f24a35
EZ
12451@end table
12452
c906108c
SS
12453@menu
12454* Active Targets:: Active targets
12455* Target Commands:: Commands for managing targets
c906108c 12456* Byte Order:: Choosing target byte order
c906108c
SS
12457@end menu
12458
6d2ebf8b 12459@node Active Targets
79a6e687 12460@section Active Targets
7a292a7a 12461
c906108c
SS
12462@cindex stacking targets
12463@cindex active targets
12464@cindex multiple targets
12465
c906108c 12466There are three classes of targets: processes, core files, and
7a292a7a
SS
12467executable files. @value{GDBN} can work concurrently on up to three
12468active targets, one in each class. This allows you to (for example)
12469start a process and inspect its activity without abandoning your work on
12470a core file.
c906108c
SS
12471
12472For example, if you execute @samp{gdb a.out}, then the executable file
12473@code{a.out} is the only active target. If you designate a core file as
12474well---presumably from a prior run that crashed and coredumped---then
12475@value{GDBN} has two active targets and uses them in tandem, looking
12476first in the corefile target, then in the executable file, to satisfy
12477requests for memory addresses. (Typically, these two classes of target
12478are complementary, since core files contain only a program's
12479read-write memory---variables and so on---plus machine status, while
12480executable files contain only the program text and initialized data.)
c906108c
SS
12481
12482When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12483target as well. When a process target is active, all @value{GDBN}
12484commands requesting memory addresses refer to that target; addresses in
12485an active core file or executable file target are obscured while the
12486process target is active.
c906108c 12487
7a292a7a 12488Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12489core file or executable target (@pxref{Files, ,Commands to Specify
12490Files}). To specify as a target a process that is already running, use
12491the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12492Process}).
c906108c 12493
6d2ebf8b 12494@node Target Commands
79a6e687 12495@section Commands for Managing Targets
c906108c
SS
12496
12497@table @code
12498@item target @var{type} @var{parameters}
7a292a7a
SS
12499Connects the @value{GDBN} host environment to a target machine or
12500process. A target is typically a protocol for talking to debugging
12501facilities. You use the argument @var{type} to specify the type or
12502protocol of the target machine.
c906108c
SS
12503
12504Further @var{parameters} are interpreted by the target protocol, but
12505typically include things like device names or host names to connect
12506with, process numbers, and baud rates.
c906108c
SS
12507
12508The @code{target} command does not repeat if you press @key{RET} again
12509after executing the command.
12510
12511@kindex help target
12512@item help target
12513Displays the names of all targets available. To display targets
12514currently selected, use either @code{info target} or @code{info files}
79a6e687 12515(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12516
12517@item help target @var{name}
12518Describe a particular target, including any parameters necessary to
12519select it.
12520
12521@kindex set gnutarget
12522@item set gnutarget @var{args}
5d161b24 12523@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12524knows whether it is reading an @dfn{executable},
5d161b24
DB
12525a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12526with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12527with @code{gnutarget} the @code{target} refers to a program, not a machine.
12528
d4f3574e 12529@quotation
c906108c
SS
12530@emph{Warning:} To specify a file format with @code{set gnutarget},
12531you must know the actual BFD name.
d4f3574e 12532@end quotation
c906108c 12533
d4f3574e 12534@noindent
79a6e687 12535@xref{Files, , Commands to Specify Files}.
c906108c 12536
5d161b24 12537@kindex show gnutarget
c906108c
SS
12538@item show gnutarget
12539Use the @code{show gnutarget} command to display what file format
12540@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12541@value{GDBN} will determine the file format for each file automatically,
12542and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12543@end table
12544
4644b6e3 12545@cindex common targets
c906108c
SS
12546Here are some common targets (available, or not, depending on the GDB
12547configuration):
c906108c
SS
12548
12549@table @code
4644b6e3 12550@kindex target
c906108c 12551@item target exec @var{program}
4644b6e3 12552@cindex executable file target
c906108c
SS
12553An executable file. @samp{target exec @var{program}} is the same as
12554@samp{exec-file @var{program}}.
12555
c906108c 12556@item target core @var{filename}
4644b6e3 12557@cindex core dump file target
c906108c
SS
12558A core dump file. @samp{target core @var{filename}} is the same as
12559@samp{core-file @var{filename}}.
c906108c 12560
1a10341b 12561@item target remote @var{medium}
4644b6e3 12562@cindex remote target
1a10341b
JB
12563A remote system connected to @value{GDBN} via a serial line or network
12564connection. This command tells @value{GDBN} to use its own remote
12565protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12566
12567For example, if you have a board connected to @file{/dev/ttya} on the
12568machine running @value{GDBN}, you could say:
12569
12570@smallexample
12571target remote /dev/ttya
12572@end smallexample
12573
12574@code{target remote} supports the @code{load} command. This is only
12575useful if you have some other way of getting the stub to the target
12576system, and you can put it somewhere in memory where it won't get
12577clobbered by the download.
c906108c 12578
c906108c 12579@item target sim
4644b6e3 12580@cindex built-in simulator target
2df3850c 12581Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12582In general,
474c8240 12583@smallexample
104c1213
JM
12584 target sim
12585 load
12586 run
474c8240 12587@end smallexample
d4f3574e 12588@noindent
104c1213 12589works; however, you cannot assume that a specific memory map, device
d4f3574e 12590drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12591provide these. For info about any processor-specific simulator details,
12592see the appropriate section in @ref{Embedded Processors, ,Embedded
12593Processors}.
12594
c906108c
SS
12595@end table
12596
104c1213 12597Some configurations may include these targets as well:
c906108c
SS
12598
12599@table @code
12600
c906108c 12601@item target nrom @var{dev}
4644b6e3 12602@cindex NetROM ROM emulator target
c906108c
SS
12603NetROM ROM emulator. This target only supports downloading.
12604
c906108c
SS
12605@end table
12606
5d161b24 12607Different targets are available on different configurations of @value{GDBN};
c906108c 12608your configuration may have more or fewer targets.
c906108c 12609
721c2651
EZ
12610Many remote targets require you to download the executable's code once
12611you've successfully established a connection. You may wish to control
3d00d119
DJ
12612various aspects of this process.
12613
12614@table @code
721c2651
EZ
12615
12616@item set hash
12617@kindex set hash@r{, for remote monitors}
12618@cindex hash mark while downloading
12619This command controls whether a hash mark @samp{#} is displayed while
12620downloading a file to the remote monitor. If on, a hash mark is
12621displayed after each S-record is successfully downloaded to the
12622monitor.
12623
12624@item show hash
12625@kindex show hash@r{, for remote monitors}
12626Show the current status of displaying the hash mark.
12627
12628@item set debug monitor
12629@kindex set debug monitor
12630@cindex display remote monitor communications
12631Enable or disable display of communications messages between
12632@value{GDBN} and the remote monitor.
12633
12634@item show debug monitor
12635@kindex show debug monitor
12636Show the current status of displaying communications between
12637@value{GDBN} and the remote monitor.
a8f24a35 12638@end table
c906108c
SS
12639
12640@table @code
12641
12642@kindex load @var{filename}
12643@item load @var{filename}
c906108c
SS
12644Depending on what remote debugging facilities are configured into
12645@value{GDBN}, the @code{load} command may be available. Where it exists, it
12646is meant to make @var{filename} (an executable) available for debugging
12647on the remote system---by downloading, or dynamic linking, for example.
12648@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12649the @code{add-symbol-file} command.
12650
12651If your @value{GDBN} does not have a @code{load} command, attempting to
12652execute it gets the error message ``@code{You can't do that when your
12653target is @dots{}}''
c906108c
SS
12654
12655The file is loaded at whatever address is specified in the executable.
12656For some object file formats, you can specify the load address when you
12657link the program; for other formats, like a.out, the object file format
12658specifies a fixed address.
12659@c FIXME! This would be a good place for an xref to the GNU linker doc.
12660
68437a39
DJ
12661Depending on the remote side capabilities, @value{GDBN} may be able to
12662load programs into flash memory.
12663
c906108c
SS
12664@code{load} does not repeat if you press @key{RET} again after using it.
12665@end table
12666
6d2ebf8b 12667@node Byte Order
79a6e687 12668@section Choosing Target Byte Order
7a292a7a 12669
c906108c
SS
12670@cindex choosing target byte order
12671@cindex target byte order
c906108c 12672
172c2a43 12673Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12674offer the ability to run either big-endian or little-endian byte
12675orders. Usually the executable or symbol will include a bit to
12676designate the endian-ness, and you will not need to worry about
12677which to use. However, you may still find it useful to adjust
d4f3574e 12678@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12679
12680@table @code
4644b6e3 12681@kindex set endian
c906108c
SS
12682@item set endian big
12683Instruct @value{GDBN} to assume the target is big-endian.
12684
c906108c
SS
12685@item set endian little
12686Instruct @value{GDBN} to assume the target is little-endian.
12687
c906108c
SS
12688@item set endian auto
12689Instruct @value{GDBN} to use the byte order associated with the
12690executable.
12691
12692@item show endian
12693Display @value{GDBN}'s current idea of the target byte order.
12694
12695@end table
12696
12697Note that these commands merely adjust interpretation of symbolic
12698data on the host, and that they have absolutely no effect on the
12699target system.
12700
ea35711c
DJ
12701
12702@node Remote Debugging
12703@chapter Debugging Remote Programs
c906108c
SS
12704@cindex remote debugging
12705
12706If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12707@value{GDBN} in the usual way, it is often useful to use remote debugging.
12708For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12709or on a small system which does not have a general purpose operating system
12710powerful enough to run a full-featured debugger.
12711
12712Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12713to make this work with particular debugging targets. In addition,
5d161b24 12714@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12715but not specific to any particular target system) which you can use if you
12716write the remote stubs---the code that runs on the remote system to
12717communicate with @value{GDBN}.
12718
12719Other remote targets may be available in your
12720configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12721
6b2f586d 12722@menu
07f31aa6 12723* Connecting:: Connecting to a remote target
a6b151f1 12724* File Transfer:: Sending files to a remote system
6b2f586d 12725* Server:: Using the gdbserver program
79a6e687
BW
12726* Remote Configuration:: Remote configuration
12727* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12728@end menu
12729
07f31aa6 12730@node Connecting
79a6e687 12731@section Connecting to a Remote Target
07f31aa6
DJ
12732
12733On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12734your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12735Start up @value{GDBN} as usual, using the name of the local copy of your
12736program as the first argument.
12737
86941c27
JB
12738@cindex @code{target remote}
12739@value{GDBN} can communicate with the target over a serial line, or
12740over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12741each case, @value{GDBN} uses the same protocol for debugging your
12742program; only the medium carrying the debugging packets varies. The
12743@code{target remote} command establishes a connection to the target.
12744Its arguments indicate which medium to use:
12745
12746@table @code
12747
12748@item target remote @var{serial-device}
07f31aa6 12749@cindex serial line, @code{target remote}
86941c27
JB
12750Use @var{serial-device} to communicate with the target. For example,
12751to use a serial line connected to the device named @file{/dev/ttyb}:
12752
12753@smallexample
12754target remote /dev/ttyb
12755@end smallexample
12756
07f31aa6
DJ
12757If you're using a serial line, you may want to give @value{GDBN} the
12758@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12759(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12760@code{target} command.
07f31aa6 12761
86941c27
JB
12762@item target remote @code{@var{host}:@var{port}}
12763@itemx target remote @code{tcp:@var{host}:@var{port}}
12764@cindex @acronym{TCP} port, @code{target remote}
12765Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12766The @var{host} may be either a host name or a numeric @acronym{IP}
12767address; @var{port} must be a decimal number. The @var{host} could be
12768the target machine itself, if it is directly connected to the net, or
12769it might be a terminal server which in turn has a serial line to the
12770target.
07f31aa6 12771
86941c27
JB
12772For example, to connect to port 2828 on a terminal server named
12773@code{manyfarms}:
07f31aa6
DJ
12774
12775@smallexample
12776target remote manyfarms:2828
12777@end smallexample
12778
86941c27
JB
12779If your remote target is actually running on the same machine as your
12780debugger session (e.g.@: a simulator for your target running on the
12781same host), you can omit the hostname. For example, to connect to
12782port 1234 on your local machine:
07f31aa6
DJ
12783
12784@smallexample
12785target remote :1234
12786@end smallexample
12787@noindent
12788
12789Note that the colon is still required here.
12790
86941c27
JB
12791@item target remote @code{udp:@var{host}:@var{port}}
12792@cindex @acronym{UDP} port, @code{target remote}
12793Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12794connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12795
12796@smallexample
12797target remote udp:manyfarms:2828
12798@end smallexample
12799
86941c27
JB
12800When using a @acronym{UDP} connection for remote debugging, you should
12801keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12802can silently drop packets on busy or unreliable networks, which will
12803cause havoc with your debugging session.
12804
66b8c7f6
JB
12805@item target remote | @var{command}
12806@cindex pipe, @code{target remote} to
12807Run @var{command} in the background and communicate with it using a
12808pipe. The @var{command} is a shell command, to be parsed and expanded
12809by the system's command shell, @code{/bin/sh}; it should expect remote
12810protocol packets on its standard input, and send replies on its
12811standard output. You could use this to run a stand-alone simulator
12812that speaks the remote debugging protocol, to make net connections
12813using programs like @code{ssh}, or for other similar tricks.
12814
12815If @var{command} closes its standard output (perhaps by exiting),
12816@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12817program has already exited, this will have no effect.)
12818
86941c27 12819@end table
07f31aa6 12820
86941c27
JB
12821Once the connection has been established, you can use all the usual
12822commands to examine and change data and to step and continue the
12823remote program.
07f31aa6
DJ
12824
12825@cindex interrupting remote programs
12826@cindex remote programs, interrupting
12827Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12828interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12829program. This may or may not succeed, depending in part on the hardware
12830and the serial drivers the remote system uses. If you type the
12831interrupt character once again, @value{GDBN} displays this prompt:
12832
12833@smallexample
12834Interrupted while waiting for the program.
12835Give up (and stop debugging it)? (y or n)
12836@end smallexample
12837
12838If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12839(If you decide you want to try again later, you can use @samp{target
12840remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12841goes back to waiting.
12842
12843@table @code
12844@kindex detach (remote)
12845@item detach
12846When you have finished debugging the remote program, you can use the
12847@code{detach} command to release it from @value{GDBN} control.
12848Detaching from the target normally resumes its execution, but the results
12849will depend on your particular remote stub. After the @code{detach}
12850command, @value{GDBN} is free to connect to another target.
12851
12852@kindex disconnect
12853@item disconnect
12854The @code{disconnect} command behaves like @code{detach}, except that
12855the target is generally not resumed. It will wait for @value{GDBN}
12856(this instance or another one) to connect and continue debugging. After
12857the @code{disconnect} command, @value{GDBN} is again free to connect to
12858another target.
09d4efe1
EZ
12859
12860@cindex send command to remote monitor
fad38dfa
EZ
12861@cindex extend @value{GDBN} for remote targets
12862@cindex add new commands for external monitor
09d4efe1
EZ
12863@kindex monitor
12864@item monitor @var{cmd}
fad38dfa
EZ
12865This command allows you to send arbitrary commands directly to the
12866remote monitor. Since @value{GDBN} doesn't care about the commands it
12867sends like this, this command is the way to extend @value{GDBN}---you
12868can add new commands that only the external monitor will understand
12869and implement.
07f31aa6
DJ
12870@end table
12871
a6b151f1
DJ
12872@node File Transfer
12873@section Sending files to a remote system
12874@cindex remote target, file transfer
12875@cindex file transfer
12876@cindex sending files to remote systems
12877
12878Some remote targets offer the ability to transfer files over the same
12879connection used to communicate with @value{GDBN}. This is convenient
12880for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12881running @code{gdbserver} over a network interface. For other targets,
12882e.g.@: embedded devices with only a single serial port, this may be
12883the only way to upload or download files.
12884
12885Not all remote targets support these commands.
12886
12887@table @code
12888@kindex remote put
12889@item remote put @var{hostfile} @var{targetfile}
12890Copy file @var{hostfile} from the host system (the machine running
12891@value{GDBN}) to @var{targetfile} on the target system.
12892
12893@kindex remote get
12894@item remote get @var{targetfile} @var{hostfile}
12895Copy file @var{targetfile} from the target system to @var{hostfile}
12896on the host system.
12897
12898@kindex remote delete
12899@item remote delete @var{targetfile}
12900Delete @var{targetfile} from the target system.
12901
12902@end table
12903
6f05cf9f 12904@node Server
79a6e687 12905@section Using the @code{gdbserver} Program
6f05cf9f
AC
12906
12907@kindex gdbserver
12908@cindex remote connection without stubs
12909@code{gdbserver} is a control program for Unix-like systems, which
12910allows you to connect your program with a remote @value{GDBN} via
12911@code{target remote}---but without linking in the usual debugging stub.
12912
12913@code{gdbserver} is not a complete replacement for the debugging stubs,
12914because it requires essentially the same operating-system facilities
12915that @value{GDBN} itself does. In fact, a system that can run
12916@code{gdbserver} to connect to a remote @value{GDBN} could also run
12917@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12918because it is a much smaller program than @value{GDBN} itself. It is
12919also easier to port than all of @value{GDBN}, so you may be able to get
12920started more quickly on a new system by using @code{gdbserver}.
12921Finally, if you develop code for real-time systems, you may find that
12922the tradeoffs involved in real-time operation make it more convenient to
12923do as much development work as possible on another system, for example
12924by cross-compiling. You can use @code{gdbserver} to make a similar
12925choice for debugging.
12926
12927@value{GDBN} and @code{gdbserver} communicate via either a serial line
12928or a TCP connection, using the standard @value{GDBN} remote serial
12929protocol.
12930
12931@table @emph
12932@item On the target machine,
12933you need to have a copy of the program you want to debug.
12934@code{gdbserver} does not need your program's symbol table, so you can
12935strip the program if necessary to save space. @value{GDBN} on the host
12936system does all the symbol handling.
12937
12938To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12939the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12940syntax is:
12941
12942@smallexample
12943target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12944@end smallexample
12945
12946@var{comm} is either a device name (to use a serial line) or a TCP
12947hostname and portnumber. For example, to debug Emacs with the argument
12948@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12949@file{/dev/com1}:
12950
12951@smallexample
12952target> gdbserver /dev/com1 emacs foo.txt
12953@end smallexample
12954
12955@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12956with it.
12957
12958To use a TCP connection instead of a serial line:
12959
12960@smallexample
12961target> gdbserver host:2345 emacs foo.txt
12962@end smallexample
12963
12964The only difference from the previous example is the first argument,
12965specifying that you are communicating with the host @value{GDBN} via
12966TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
12967expect a TCP connection from machine @samp{host} to local TCP port 2345.
12968(Currently, the @samp{host} part is ignored.) You can choose any number
12969you want for the port number as long as it does not conflict with any
12970TCP ports already in use on the target system (for example, @code{23} is
12971reserved for @code{telnet}).@footnote{If you choose a port number that
12972conflicts with another service, @code{gdbserver} prints an error message
12973and exits.} You must use the same port number with the host @value{GDBN}
12974@code{target remote} command.
12975
56460a61
DJ
12976On some targets, @code{gdbserver} can also attach to running programs.
12977This is accomplished via the @code{--attach} argument. The syntax is:
12978
12979@smallexample
12980target> gdbserver @var{comm} --attach @var{pid}
12981@end smallexample
12982
12983@var{pid} is the process ID of a currently running process. It isn't necessary
12984to point @code{gdbserver} at a binary for the running process.
12985
b1fe9455
DJ
12986@pindex pidof
12987@cindex attach to a program by name
12988You can debug processes by name instead of process ID if your target has the
12989@code{pidof} utility:
12990
12991@smallexample
f822c95b 12992target> gdbserver @var{comm} --attach `pidof @var{program}`
b1fe9455
DJ
12993@end smallexample
12994
f822c95b 12995In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
12996has multiple threads, most versions of @code{pidof} support the
12997@code{-s} option to only return the first process ID.
12998
07f31aa6 12999@item On the host machine,
f822c95b
DJ
13000first make sure you have the necessary symbol files. Load symbols for
13001your application using the @code{file} command before you connect. Use
13002@code{set sysroot} to locate target libraries (unless your @value{GDBN}
13003was compiled with the correct sysroot using @code{--with-system-root}).
13004
13005The symbol file and target libraries must exactly match the executable
13006and libraries on the target, with one exception: the files on the host
13007system should not be stripped, even if the files on the target system
13008are. Mismatched or missing files will lead to confusing results
13009during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13010files may also prevent @code{gdbserver} from debugging multi-threaded
13011programs.
13012
79a6e687 13013Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13014For TCP connections, you must start up @code{gdbserver} prior to using
13015the @code{target remote} command. Otherwise you may get an error whose
13016text depends on the host system, but which usually looks something like
07f31aa6 13017@samp{Connection refused}. You don't need to use the @code{load}
397ca115 13018command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13019already on the target.
07f31aa6 13020
6f05cf9f
AC
13021@end table
13022
79a6e687 13023@subsection Monitor Commands for @code{gdbserver}
c74d0ad8
DJ
13024@cindex monitor commands, for @code{gdbserver}
13025
13026During a @value{GDBN} session using @code{gdbserver}, you can use the
13027@code{monitor} command to send special requests to @code{gdbserver}.
13028Here are the available commands; they are only of interest when
13029debugging @value{GDBN} or @code{gdbserver}.
13030
13031@table @code
13032@item monitor help
13033List the available monitor commands.
13034
13035@item monitor set debug 0
13036@itemx monitor set debug 1
13037Disable or enable general debugging messages.
13038
13039@item monitor set remote-debug 0
13040@itemx monitor set remote-debug 1
13041Disable or enable specific debugging messages associated with the remote
13042protocol (@pxref{Remote Protocol}).
13043
13044@end table
13045
79a6e687
BW
13046@node Remote Configuration
13047@section Remote Configuration
501eef12 13048
9c16f35a
EZ
13049@kindex set remote
13050@kindex show remote
13051This section documents the configuration options available when
13052debugging remote programs. For the options related to the File I/O
fc320d37 13053extensions of the remote protocol, see @ref{system,
9c16f35a 13054system-call-allowed}.
501eef12
AC
13055
13056@table @code
9c16f35a 13057@item set remoteaddresssize @var{bits}
d3e8051b 13058@cindex address size for remote targets
9c16f35a
EZ
13059@cindex bits in remote address
13060Set the maximum size of address in a memory packet to the specified
13061number of bits. @value{GDBN} will mask off the address bits above
13062that number, when it passes addresses to the remote target. The
13063default value is the number of bits in the target's address.
13064
13065@item show remoteaddresssize
13066Show the current value of remote address size in bits.
13067
13068@item set remotebaud @var{n}
13069@cindex baud rate for remote targets
13070Set the baud rate for the remote serial I/O to @var{n} baud. The
13071value is used to set the speed of the serial port used for debugging
13072remote targets.
13073
13074@item show remotebaud
13075Show the current speed of the remote connection.
13076
13077@item set remotebreak
13078@cindex interrupt remote programs
13079@cindex BREAK signal instead of Ctrl-C
9a6253be 13080@anchor{set remotebreak}
9c16f35a 13081If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13082when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13083on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13084character instead. The default is off, since most remote systems
13085expect to see @samp{Ctrl-C} as the interrupt signal.
13086
13087@item show remotebreak
13088Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13089interrupt the remote program.
13090
23776285
MR
13091@item set remoteflow on
13092@itemx set remoteflow off
13093@kindex set remoteflow
13094Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13095on the serial port used to communicate to the remote target.
13096
13097@item show remoteflow
13098@kindex show remoteflow
13099Show the current setting of hardware flow control.
13100
9c16f35a
EZ
13101@item set remotelogbase @var{base}
13102Set the base (a.k.a.@: radix) of logging serial protocol
13103communications to @var{base}. Supported values of @var{base} are:
13104@code{ascii}, @code{octal}, and @code{hex}. The default is
13105@code{ascii}.
13106
13107@item show remotelogbase
13108Show the current setting of the radix for logging remote serial
13109protocol.
13110
13111@item set remotelogfile @var{file}
13112@cindex record serial communications on file
13113Record remote serial communications on the named @var{file}. The
13114default is not to record at all.
13115
13116@item show remotelogfile.
13117Show the current setting of the file name on which to record the
13118serial communications.
13119
13120@item set remotetimeout @var{num}
13121@cindex timeout for serial communications
13122@cindex remote timeout
13123Set the timeout limit to wait for the remote target to respond to
13124@var{num} seconds. The default is 2 seconds.
13125
13126@item show remotetimeout
13127Show the current number of seconds to wait for the remote target
13128responses.
13129
13130@cindex limit hardware breakpoints and watchpoints
13131@cindex remote target, limit break- and watchpoints
501eef12
AC
13132@anchor{set remote hardware-watchpoint-limit}
13133@anchor{set remote hardware-breakpoint-limit}
13134@item set remote hardware-watchpoint-limit @var{limit}
13135@itemx set remote hardware-breakpoint-limit @var{limit}
13136Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13137watchpoints. A limit of -1, the default, is treated as unlimited.
13138@end table
13139
427c3a89
DJ
13140@cindex remote packets, enabling and disabling
13141The @value{GDBN} remote protocol autodetects the packets supported by
13142your debugging stub. If you need to override the autodetection, you
13143can use these commands to enable or disable individual packets. Each
13144packet can be set to @samp{on} (the remote target supports this
13145packet), @samp{off} (the remote target does not support this packet),
13146or @samp{auto} (detect remote target support for this packet). They
13147all default to @samp{auto}. For more information about each packet,
13148see @ref{Remote Protocol}.
13149
13150During normal use, you should not have to use any of these commands.
13151If you do, that may be a bug in your remote debugging stub, or a bug
13152in @value{GDBN}. You may want to report the problem to the
13153@value{GDBN} developers.
13154
cfa9d6d9
DJ
13155For each packet @var{name}, the command to enable or disable the
13156packet is @code{set remote @var{name}-packet}. The available settings
13157are:
427c3a89 13158
cfa9d6d9 13159@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13160@item Command Name
13161@tab Remote Packet
13162@tab Related Features
13163
cfa9d6d9 13164@item @code{fetch-register}
427c3a89
DJ
13165@tab @code{p}
13166@tab @code{info registers}
13167
cfa9d6d9 13168@item @code{set-register}
427c3a89
DJ
13169@tab @code{P}
13170@tab @code{set}
13171
cfa9d6d9 13172@item @code{binary-download}
427c3a89
DJ
13173@tab @code{X}
13174@tab @code{load}, @code{set}
13175
cfa9d6d9 13176@item @code{read-aux-vector}
427c3a89
DJ
13177@tab @code{qXfer:auxv:read}
13178@tab @code{info auxv}
13179
cfa9d6d9 13180@item @code{symbol-lookup}
427c3a89
DJ
13181@tab @code{qSymbol}
13182@tab Detecting multiple threads
13183
cfa9d6d9 13184@item @code{verbose-resume}
427c3a89
DJ
13185@tab @code{vCont}
13186@tab Stepping or resuming multiple threads
13187
cfa9d6d9 13188@item @code{software-breakpoint}
427c3a89
DJ
13189@tab @code{Z0}
13190@tab @code{break}
13191
cfa9d6d9 13192@item @code{hardware-breakpoint}
427c3a89
DJ
13193@tab @code{Z1}
13194@tab @code{hbreak}
13195
cfa9d6d9 13196@item @code{write-watchpoint}
427c3a89
DJ
13197@tab @code{Z2}
13198@tab @code{watch}
13199
cfa9d6d9 13200@item @code{read-watchpoint}
427c3a89
DJ
13201@tab @code{Z3}
13202@tab @code{rwatch}
13203
cfa9d6d9 13204@item @code{access-watchpoint}
427c3a89
DJ
13205@tab @code{Z4}
13206@tab @code{awatch}
13207
cfa9d6d9
DJ
13208@item @code{target-features}
13209@tab @code{qXfer:features:read}
13210@tab @code{set architecture}
13211
13212@item @code{library-info}
13213@tab @code{qXfer:libraries:read}
13214@tab @code{info sharedlibrary}
13215
13216@item @code{memory-map}
13217@tab @code{qXfer:memory-map:read}
13218@tab @code{info mem}
13219
13220@item @code{read-spu-object}
13221@tab @code{qXfer:spu:read}
13222@tab @code{info spu}
13223
13224@item @code{write-spu-object}
13225@tab @code{qXfer:spu:write}
13226@tab @code{info spu}
13227
13228@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13229@tab @code{qGetTLSAddr}
13230@tab Displaying @code{__thread} variables
13231
13232@item @code{supported-packets}
13233@tab @code{qSupported}
13234@tab Remote communications parameters
13235
cfa9d6d9 13236@item @code{pass-signals}
89be2091
DJ
13237@tab @code{QPassSignals}
13238@tab @code{handle @var{signal}}
13239
a6b151f1
DJ
13240@item @code{hostio-close-packet}
13241@tab @code{vFile:close}
13242@tab @code{remote get}, @code{remote put}
13243
13244@item @code{hostio-open-packet}
13245@tab @code{vFile:open}
13246@tab @code{remote get}, @code{remote put}
13247
13248@item @code{hostio-pread-packet}
13249@tab @code{vFile:pread}
13250@tab @code{remote get}, @code{remote put}
13251
13252@item @code{hostio-pwrite-packet}
13253@tab @code{vFile:pwrite}
13254@tab @code{remote get}, @code{remote put}
13255
13256@item @code{hostio-unlink-packet}
13257@tab @code{vFile:unlink}
13258@tab @code{remote delete}
427c3a89
DJ
13259@end multitable
13260
79a6e687
BW
13261@node Remote Stub
13262@section Implementing a Remote Stub
7a292a7a 13263
8e04817f
AC
13264@cindex debugging stub, example
13265@cindex remote stub, example
13266@cindex stub example, remote debugging
13267The stub files provided with @value{GDBN} implement the target side of the
13268communication protocol, and the @value{GDBN} side is implemented in the
13269@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13270these subroutines to communicate, and ignore the details. (If you're
13271implementing your own stub file, you can still ignore the details: start
13272with one of the existing stub files. @file{sparc-stub.c} is the best
13273organized, and therefore the easiest to read.)
13274
104c1213
JM
13275@cindex remote serial debugging, overview
13276To debug a program running on another machine (the debugging
13277@dfn{target} machine), you must first arrange for all the usual
13278prerequisites for the program to run by itself. For example, for a C
13279program, you need:
c906108c 13280
104c1213
JM
13281@enumerate
13282@item
13283A startup routine to set up the C runtime environment; these usually
13284have a name like @file{crt0}. The startup routine may be supplied by
13285your hardware supplier, or you may have to write your own.
96baa820 13286
5d161b24 13287@item
d4f3574e 13288A C subroutine library to support your program's
104c1213 13289subroutine calls, notably managing input and output.
96baa820 13290
104c1213
JM
13291@item
13292A way of getting your program to the other machine---for example, a
13293download program. These are often supplied by the hardware
13294manufacturer, but you may have to write your own from hardware
13295documentation.
13296@end enumerate
96baa820 13297
104c1213
JM
13298The next step is to arrange for your program to use a serial port to
13299communicate with the machine where @value{GDBN} is running (the @dfn{host}
13300machine). In general terms, the scheme looks like this:
96baa820 13301
104c1213
JM
13302@table @emph
13303@item On the host,
13304@value{GDBN} already understands how to use this protocol; when everything
13305else is set up, you can simply use the @samp{target remote} command
13306(@pxref{Targets,,Specifying a Debugging Target}).
13307
13308@item On the target,
13309you must link with your program a few special-purpose subroutines that
13310implement the @value{GDBN} remote serial protocol. The file containing these
13311subroutines is called a @dfn{debugging stub}.
13312
13313On certain remote targets, you can use an auxiliary program
13314@code{gdbserver} instead of linking a stub into your program.
79a6e687 13315@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13316@end table
96baa820 13317
104c1213
JM
13318The debugging stub is specific to the architecture of the remote
13319machine; for example, use @file{sparc-stub.c} to debug programs on
13320@sc{sparc} boards.
96baa820 13321
104c1213
JM
13322@cindex remote serial stub list
13323These working remote stubs are distributed with @value{GDBN}:
96baa820 13324
104c1213
JM
13325@table @code
13326
13327@item i386-stub.c
41afff9a 13328@cindex @file{i386-stub.c}
104c1213
JM
13329@cindex Intel
13330@cindex i386
13331For Intel 386 and compatible architectures.
13332
13333@item m68k-stub.c
41afff9a 13334@cindex @file{m68k-stub.c}
104c1213
JM
13335@cindex Motorola 680x0
13336@cindex m680x0
13337For Motorola 680x0 architectures.
13338
13339@item sh-stub.c
41afff9a 13340@cindex @file{sh-stub.c}
172c2a43 13341@cindex Renesas
104c1213 13342@cindex SH
172c2a43 13343For Renesas SH architectures.
104c1213
JM
13344
13345@item sparc-stub.c
41afff9a 13346@cindex @file{sparc-stub.c}
104c1213
JM
13347@cindex Sparc
13348For @sc{sparc} architectures.
13349
13350@item sparcl-stub.c
41afff9a 13351@cindex @file{sparcl-stub.c}
104c1213
JM
13352@cindex Fujitsu
13353@cindex SparcLite
13354For Fujitsu @sc{sparclite} architectures.
13355
13356@end table
13357
13358The @file{README} file in the @value{GDBN} distribution may list other
13359recently added stubs.
13360
13361@menu
13362* Stub Contents:: What the stub can do for you
13363* Bootstrapping:: What you must do for the stub
13364* Debug Session:: Putting it all together
104c1213
JM
13365@end menu
13366
6d2ebf8b 13367@node Stub Contents
79a6e687 13368@subsection What the Stub Can Do for You
104c1213
JM
13369
13370@cindex remote serial stub
13371The debugging stub for your architecture supplies these three
13372subroutines:
13373
13374@table @code
13375@item set_debug_traps
4644b6e3 13376@findex set_debug_traps
104c1213
JM
13377@cindex remote serial stub, initialization
13378This routine arranges for @code{handle_exception} to run when your
13379program stops. You must call this subroutine explicitly near the
13380beginning of your program.
13381
13382@item handle_exception
4644b6e3 13383@findex handle_exception
104c1213
JM
13384@cindex remote serial stub, main routine
13385This is the central workhorse, but your program never calls it
13386explicitly---the setup code arranges for @code{handle_exception} to
13387run when a trap is triggered.
13388
13389@code{handle_exception} takes control when your program stops during
13390execution (for example, on a breakpoint), and mediates communications
13391with @value{GDBN} on the host machine. This is where the communications
13392protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13393representative on the target machine. It begins by sending summary
104c1213
JM
13394information on the state of your program, then continues to execute,
13395retrieving and transmitting any information @value{GDBN} needs, until you
13396execute a @value{GDBN} command that makes your program resume; at that point,
13397@code{handle_exception} returns control to your own code on the target
5d161b24 13398machine.
104c1213
JM
13399
13400@item breakpoint
13401@cindex @code{breakpoint} subroutine, remote
13402Use this auxiliary subroutine to make your program contain a
13403breakpoint. Depending on the particular situation, this may be the only
13404way for @value{GDBN} to get control. For instance, if your target
13405machine has some sort of interrupt button, you won't need to call this;
13406pressing the interrupt button transfers control to
13407@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13408simply receiving characters on the serial port may also trigger a trap;
13409again, in that situation, you don't need to call @code{breakpoint} from
13410your own program---simply running @samp{target remote} from the host
5d161b24 13411@value{GDBN} session gets control.
104c1213
JM
13412
13413Call @code{breakpoint} if none of these is true, or if you simply want
13414to make certain your program stops at a predetermined point for the
13415start of your debugging session.
13416@end table
13417
6d2ebf8b 13418@node Bootstrapping
79a6e687 13419@subsection What You Must Do for the Stub
104c1213
JM
13420
13421@cindex remote stub, support routines
13422The debugging stubs that come with @value{GDBN} are set up for a particular
13423chip architecture, but they have no information about the rest of your
13424debugging target machine.
13425
13426First of all you need to tell the stub how to communicate with the
13427serial port.
13428
13429@table @code
13430@item int getDebugChar()
4644b6e3 13431@findex getDebugChar
104c1213
JM
13432Write this subroutine to read a single character from the serial port.
13433It may be identical to @code{getchar} for your target system; a
13434different name is used to allow you to distinguish the two if you wish.
13435
13436@item void putDebugChar(int)
4644b6e3 13437@findex putDebugChar
104c1213 13438Write this subroutine to write a single character to the serial port.
5d161b24 13439It may be identical to @code{putchar} for your target system; a
104c1213
JM
13440different name is used to allow you to distinguish the two if you wish.
13441@end table
13442
13443@cindex control C, and remote debugging
13444@cindex interrupting remote targets
13445If you want @value{GDBN} to be able to stop your program while it is
13446running, you need to use an interrupt-driven serial driver, and arrange
13447for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13448character). That is the character which @value{GDBN} uses to tell the
13449remote system to stop.
13450
13451Getting the debugging target to return the proper status to @value{GDBN}
13452probably requires changes to the standard stub; one quick and dirty way
13453is to just execute a breakpoint instruction (the ``dirty'' part is that
13454@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13455
13456Other routines you need to supply are:
13457
13458@table @code
13459@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13460@findex exceptionHandler
104c1213
JM
13461Write this function to install @var{exception_address} in the exception
13462handling tables. You need to do this because the stub does not have any
13463way of knowing what the exception handling tables on your target system
13464are like (for example, the processor's table might be in @sc{rom},
13465containing entries which point to a table in @sc{ram}).
13466@var{exception_number} is the exception number which should be changed;
13467its meaning is architecture-dependent (for example, different numbers
13468might represent divide by zero, misaligned access, etc). When this
13469exception occurs, control should be transferred directly to
13470@var{exception_address}, and the processor state (stack, registers,
13471and so on) should be just as it is when a processor exception occurs. So if
13472you want to use a jump instruction to reach @var{exception_address}, it
13473should be a simple jump, not a jump to subroutine.
13474
13475For the 386, @var{exception_address} should be installed as an interrupt
13476gate so that interrupts are masked while the handler runs. The gate
13477should be at privilege level 0 (the most privileged level). The
13478@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13479help from @code{exceptionHandler}.
13480
13481@item void flush_i_cache()
4644b6e3 13482@findex flush_i_cache
d4f3574e 13483On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13484instruction cache, if any, on your target machine. If there is no
13485instruction cache, this subroutine may be a no-op.
13486
13487On target machines that have instruction caches, @value{GDBN} requires this
13488function to make certain that the state of your program is stable.
13489@end table
13490
13491@noindent
13492You must also make sure this library routine is available:
13493
13494@table @code
13495@item void *memset(void *, int, int)
4644b6e3 13496@findex memset
104c1213
JM
13497This is the standard library function @code{memset} that sets an area of
13498memory to a known value. If you have one of the free versions of
13499@code{libc.a}, @code{memset} can be found there; otherwise, you must
13500either obtain it from your hardware manufacturer, or write your own.
13501@end table
13502
13503If you do not use the GNU C compiler, you may need other standard
13504library subroutines as well; this varies from one stub to another,
13505but in general the stubs are likely to use any of the common library
e22ea452 13506subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13507
13508
6d2ebf8b 13509@node Debug Session
79a6e687 13510@subsection Putting it All Together
104c1213
JM
13511
13512@cindex remote serial debugging summary
13513In summary, when your program is ready to debug, you must follow these
13514steps.
13515
13516@enumerate
13517@item
6d2ebf8b 13518Make sure you have defined the supporting low-level routines
79a6e687 13519(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13520@display
13521@code{getDebugChar}, @code{putDebugChar},
13522@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13523@end display
13524
13525@item
13526Insert these lines near the top of your program:
13527
474c8240 13528@smallexample
104c1213
JM
13529set_debug_traps();
13530breakpoint();
474c8240 13531@end smallexample
104c1213
JM
13532
13533@item
13534For the 680x0 stub only, you need to provide a variable called
13535@code{exceptionHook}. Normally you just use:
13536
474c8240 13537@smallexample
104c1213 13538void (*exceptionHook)() = 0;
474c8240 13539@end smallexample
104c1213 13540
d4f3574e 13541@noindent
104c1213 13542but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13543function in your program, that function is called when
104c1213
JM
13544@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13545error). The function indicated by @code{exceptionHook} is called with
13546one parameter: an @code{int} which is the exception number.
13547
13548@item
13549Compile and link together: your program, the @value{GDBN} debugging stub for
13550your target architecture, and the supporting subroutines.
13551
13552@item
13553Make sure you have a serial connection between your target machine and
13554the @value{GDBN} host, and identify the serial port on the host.
13555
13556@item
13557@c The "remote" target now provides a `load' command, so we should
13558@c document that. FIXME.
13559Download your program to your target machine (or get it there by
13560whatever means the manufacturer provides), and start it.
13561
13562@item
07f31aa6 13563Start @value{GDBN} on the host, and connect to the target
79a6e687 13564(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13565
104c1213
JM
13566@end enumerate
13567
8e04817f
AC
13568@node Configurations
13569@chapter Configuration-Specific Information
104c1213 13570
8e04817f
AC
13571While nearly all @value{GDBN} commands are available for all native and
13572cross versions of the debugger, there are some exceptions. This chapter
13573describes things that are only available in certain configurations.
104c1213 13574
8e04817f
AC
13575There are three major categories of configurations: native
13576configurations, where the host and target are the same, embedded
13577operating system configurations, which are usually the same for several
13578different processor architectures, and bare embedded processors, which
13579are quite different from each other.
104c1213 13580
8e04817f
AC
13581@menu
13582* Native::
13583* Embedded OS::
13584* Embedded Processors::
13585* Architectures::
13586@end menu
104c1213 13587
8e04817f
AC
13588@node Native
13589@section Native
104c1213 13590
8e04817f
AC
13591This section describes details specific to particular native
13592configurations.
6cf7e474 13593
8e04817f
AC
13594@menu
13595* HP-UX:: HP-UX
7561d450 13596* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13597* SVR4 Process Information:: SVR4 process information
13598* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13599* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13600* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13601* Neutrino:: Features specific to QNX Neutrino
8e04817f 13602@end menu
6cf7e474 13603
8e04817f
AC
13604@node HP-UX
13605@subsection HP-UX
104c1213 13606
8e04817f
AC
13607On HP-UX systems, if you refer to a function or variable name that
13608begins with a dollar sign, @value{GDBN} searches for a user or system
13609name first, before it searches for a convenience variable.
104c1213 13610
9c16f35a 13611
7561d450
MK
13612@node BSD libkvm Interface
13613@subsection BSD libkvm Interface
13614
13615@cindex libkvm
13616@cindex kernel memory image
13617@cindex kernel crash dump
13618
13619BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13620interface that provides a uniform interface for accessing kernel virtual
13621memory images, including live systems and crash dumps. @value{GDBN}
13622uses this interface to allow you to debug live kernels and kernel crash
13623dumps on many native BSD configurations. This is implemented as a
13624special @code{kvm} debugging target. For debugging a live system, load
13625the currently running kernel into @value{GDBN} and connect to the
13626@code{kvm} target:
13627
13628@smallexample
13629(@value{GDBP}) @b{target kvm}
13630@end smallexample
13631
13632For debugging crash dumps, provide the file name of the crash dump as an
13633argument:
13634
13635@smallexample
13636(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13637@end smallexample
13638
13639Once connected to the @code{kvm} target, the following commands are
13640available:
13641
13642@table @code
13643@kindex kvm
13644@item kvm pcb
721c2651 13645Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13646
13647@item kvm proc
13648Set current context from proc address. This command isn't available on
13649modern FreeBSD systems.
13650@end table
13651
8e04817f 13652@node SVR4 Process Information
79a6e687 13653@subsection SVR4 Process Information
60bf7e09
EZ
13654@cindex /proc
13655@cindex examine process image
13656@cindex process info via @file{/proc}
104c1213 13657
60bf7e09
EZ
13658Many versions of SVR4 and compatible systems provide a facility called
13659@samp{/proc} that can be used to examine the image of a running
13660process using file-system subroutines. If @value{GDBN} is configured
13661for an operating system with this facility, the command @code{info
13662proc} is available to report information about the process running
13663your program, or about any process running on your system. @code{info
13664proc} works only on SVR4 systems that include the @code{procfs} code.
13665This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13666Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13667
8e04817f
AC
13668@table @code
13669@kindex info proc
60bf7e09 13670@cindex process ID
8e04817f 13671@item info proc
60bf7e09
EZ
13672@itemx info proc @var{process-id}
13673Summarize available information about any running process. If a
13674process ID is specified by @var{process-id}, display information about
13675that process; otherwise display information about the program being
13676debugged. The summary includes the debugged process ID, the command
13677line used to invoke it, its current working directory, and its
13678executable file's absolute file name.
13679
13680On some systems, @var{process-id} can be of the form
13681@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13682within a process. If the optional @var{pid} part is missing, it means
13683a thread from the process being debugged (the leading @samp{/} still
13684needs to be present, or else @value{GDBN} will interpret the number as
13685a process ID rather than a thread ID).
6cf7e474 13686
8e04817f 13687@item info proc mappings
60bf7e09
EZ
13688@cindex memory address space mappings
13689Report the memory address space ranges accessible in the program, with
13690information on whether the process has read, write, or execute access
13691rights to each range. On @sc{gnu}/Linux systems, each memory range
13692includes the object file which is mapped to that range, instead of the
13693memory access rights to that range.
13694
13695@item info proc stat
13696@itemx info proc status
13697@cindex process detailed status information
13698These subcommands are specific to @sc{gnu}/Linux systems. They show
13699the process-related information, including the user ID and group ID;
13700how many threads are there in the process; its virtual memory usage;
13701the signals that are pending, blocked, and ignored; its TTY; its
13702consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13703value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13704(type @kbd{man 5 proc} from your shell prompt).
13705
13706@item info proc all
13707Show all the information about the process described under all of the
13708above @code{info proc} subcommands.
13709
8e04817f
AC
13710@ignore
13711@comment These sub-options of 'info proc' were not included when
13712@comment procfs.c was re-written. Keep their descriptions around
13713@comment against the day when someone finds the time to put them back in.
13714@kindex info proc times
13715@item info proc times
13716Starting time, user CPU time, and system CPU time for your program and
13717its children.
6cf7e474 13718
8e04817f
AC
13719@kindex info proc id
13720@item info proc id
13721Report on the process IDs related to your program: its own process ID,
13722the ID of its parent, the process group ID, and the session ID.
8e04817f 13723@end ignore
721c2651
EZ
13724
13725@item set procfs-trace
13726@kindex set procfs-trace
13727@cindex @code{procfs} API calls
13728This command enables and disables tracing of @code{procfs} API calls.
13729
13730@item show procfs-trace
13731@kindex show procfs-trace
13732Show the current state of @code{procfs} API call tracing.
13733
13734@item set procfs-file @var{file}
13735@kindex set procfs-file
13736Tell @value{GDBN} to write @code{procfs} API trace to the named
13737@var{file}. @value{GDBN} appends the trace info to the previous
13738contents of the file. The default is to display the trace on the
13739standard output.
13740
13741@item show procfs-file
13742@kindex show procfs-file
13743Show the file to which @code{procfs} API trace is written.
13744
13745@item proc-trace-entry
13746@itemx proc-trace-exit
13747@itemx proc-untrace-entry
13748@itemx proc-untrace-exit
13749@kindex proc-trace-entry
13750@kindex proc-trace-exit
13751@kindex proc-untrace-entry
13752@kindex proc-untrace-exit
13753These commands enable and disable tracing of entries into and exits
13754from the @code{syscall} interface.
13755
13756@item info pidlist
13757@kindex info pidlist
13758@cindex process list, QNX Neutrino
13759For QNX Neutrino only, this command displays the list of all the
13760processes and all the threads within each process.
13761
13762@item info meminfo
13763@kindex info meminfo
13764@cindex mapinfo list, QNX Neutrino
13765For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13766@end table
104c1213 13767
8e04817f
AC
13768@node DJGPP Native
13769@subsection Features for Debugging @sc{djgpp} Programs
13770@cindex @sc{djgpp} debugging
13771@cindex native @sc{djgpp} debugging
13772@cindex MS-DOS-specific commands
104c1213 13773
514c4d71
EZ
13774@cindex DPMI
13775@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13776MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13777that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13778top of real-mode DOS systems and their emulations.
104c1213 13779
8e04817f
AC
13780@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13781defines a few commands specific to the @sc{djgpp} port. This
13782subsection describes those commands.
104c1213 13783
8e04817f
AC
13784@table @code
13785@kindex info dos
13786@item info dos
13787This is a prefix of @sc{djgpp}-specific commands which print
13788information about the target system and important OS structures.
f1251bdd 13789
8e04817f
AC
13790@kindex sysinfo
13791@cindex MS-DOS system info
13792@cindex free memory information (MS-DOS)
13793@item info dos sysinfo
13794This command displays assorted information about the underlying
13795platform: the CPU type and features, the OS version and flavor, the
13796DPMI version, and the available conventional and DPMI memory.
104c1213 13797
8e04817f
AC
13798@cindex GDT
13799@cindex LDT
13800@cindex IDT
13801@cindex segment descriptor tables
13802@cindex descriptor tables display
13803@item info dos gdt
13804@itemx info dos ldt
13805@itemx info dos idt
13806These 3 commands display entries from, respectively, Global, Local,
13807and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13808tables are data structures which store a descriptor for each segment
13809that is currently in use. The segment's selector is an index into a
13810descriptor table; the table entry for that index holds the
13811descriptor's base address and limit, and its attributes and access
13812rights.
104c1213 13813
8e04817f
AC
13814A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13815segment (used for both data and the stack), and a DOS segment (which
13816allows access to DOS/BIOS data structures and absolute addresses in
13817conventional memory). However, the DPMI host will usually define
13818additional segments in order to support the DPMI environment.
d4f3574e 13819
8e04817f
AC
13820@cindex garbled pointers
13821These commands allow to display entries from the descriptor tables.
13822Without an argument, all entries from the specified table are
13823displayed. An argument, which should be an integer expression, means
13824display a single entry whose index is given by the argument. For
13825example, here's a convenient way to display information about the
13826debugged program's data segment:
104c1213 13827
8e04817f
AC
13828@smallexample
13829@exdent @code{(@value{GDBP}) info dos ldt $ds}
13830@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13831@end smallexample
104c1213 13832
8e04817f
AC
13833@noindent
13834This comes in handy when you want to see whether a pointer is outside
13835the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13836
8e04817f
AC
13837@cindex page tables display (MS-DOS)
13838@item info dos pde
13839@itemx info dos pte
13840These two commands display entries from, respectively, the Page
13841Directory and the Page Tables. Page Directories and Page Tables are
13842data structures which control how virtual memory addresses are mapped
13843into physical addresses. A Page Table includes an entry for every
13844page of memory that is mapped into the program's address space; there
13845may be several Page Tables, each one holding up to 4096 entries. A
13846Page Directory has up to 4096 entries, one each for every Page Table
13847that is currently in use.
104c1213 13848
8e04817f
AC
13849Without an argument, @kbd{info dos pde} displays the entire Page
13850Directory, and @kbd{info dos pte} displays all the entries in all of
13851the Page Tables. An argument, an integer expression, given to the
13852@kbd{info dos pde} command means display only that entry from the Page
13853Directory table. An argument given to the @kbd{info dos pte} command
13854means display entries from a single Page Table, the one pointed to by
13855the specified entry in the Page Directory.
104c1213 13856
8e04817f
AC
13857@cindex direct memory access (DMA) on MS-DOS
13858These commands are useful when your program uses @dfn{DMA} (Direct
13859Memory Access), which needs physical addresses to program the DMA
13860controller.
104c1213 13861
8e04817f 13862These commands are supported only with some DPMI servers.
104c1213 13863
8e04817f
AC
13864@cindex physical address from linear address
13865@item info dos address-pte @var{addr}
13866This command displays the Page Table entry for a specified linear
514c4d71
EZ
13867address. The argument @var{addr} is a linear address which should
13868already have the appropriate segment's base address added to it,
13869because this command accepts addresses which may belong to @emph{any}
13870segment. For example, here's how to display the Page Table entry for
13871the page where a variable @code{i} is stored:
104c1213 13872
b383017d 13873@smallexample
8e04817f
AC
13874@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13875@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13876@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13877@end smallexample
104c1213 13878
8e04817f
AC
13879@noindent
13880This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13881whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13882attributes of that page.
104c1213 13883
8e04817f
AC
13884Note that you must cast the addresses of variables to a @code{char *},
13885since otherwise the value of @code{__djgpp_base_address}, the base
13886address of all variables and functions in a @sc{djgpp} program, will
13887be added using the rules of C pointer arithmetics: if @code{i} is
13888declared an @code{int}, @value{GDBN} will add 4 times the value of
13889@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13890
8e04817f
AC
13891Here's another example, it displays the Page Table entry for the
13892transfer buffer:
104c1213 13893
8e04817f
AC
13894@smallexample
13895@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13896@exdent @code{Page Table entry for address 0x29110:}
13897@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13898@end smallexample
104c1213 13899
8e04817f
AC
13900@noindent
13901(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
139023rd member of the @code{_go32_info_block} structure.) The output
13903clearly shows that this DPMI server maps the addresses in conventional
13904memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
13905linear (@code{0x29110}) addresses are identical.
104c1213 13906
8e04817f
AC
13907This command is supported only with some DPMI servers.
13908@end table
104c1213 13909
c45da7e6 13910@cindex DOS serial data link, remote debugging
a8f24a35
EZ
13911In addition to native debugging, the DJGPP port supports remote
13912debugging via a serial data link. The following commands are specific
13913to remote serial debugging in the DJGPP port of @value{GDBN}.
13914
13915@table @code
13916@kindex set com1base
13917@kindex set com1irq
13918@kindex set com2base
13919@kindex set com2irq
13920@kindex set com3base
13921@kindex set com3irq
13922@kindex set com4base
13923@kindex set com4irq
13924@item set com1base @var{addr}
13925This command sets the base I/O port address of the @file{COM1} serial
13926port.
13927
13928@item set com1irq @var{irq}
13929This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
13930for the @file{COM1} serial port.
13931
13932There are similar commands @samp{set com2base}, @samp{set com3irq},
13933etc.@: for setting the port address and the @code{IRQ} lines for the
13934other 3 COM ports.
13935
13936@kindex show com1base
13937@kindex show com1irq
13938@kindex show com2base
13939@kindex show com2irq
13940@kindex show com3base
13941@kindex show com3irq
13942@kindex show com4base
13943@kindex show com4irq
13944The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
13945display the current settings of the base address and the @code{IRQ}
13946lines used by the COM ports.
c45da7e6
EZ
13947
13948@item info serial
13949@kindex info serial
13950@cindex DOS serial port status
13951This command prints the status of the 4 DOS serial ports. For each
13952port, it prints whether it's active or not, its I/O base address and
13953IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
13954counts of various errors encountered so far.
a8f24a35
EZ
13955@end table
13956
13957
78c47bea 13958@node Cygwin Native
79a6e687 13959@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
13960@cindex MS Windows debugging
13961@cindex native Cygwin debugging
13962@cindex Cygwin-specific commands
13963
be448670 13964@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
13965DLLs with and without symbolic debugging information. There are various
13966additional Cygwin-specific commands, described in this section.
13967Working with DLLs that have no debugging symbols is described in
13968@ref{Non-debug DLL Symbols}.
78c47bea
PM
13969
13970@table @code
13971@kindex info w32
13972@item info w32
db2e3e2e 13973This is a prefix of MS Windows-specific commands which print
78c47bea
PM
13974information about the target system and important OS structures.
13975
13976@item info w32 selector
13977This command displays information returned by
13978the Win32 API @code{GetThreadSelectorEntry} function.
13979It takes an optional argument that is evaluated to
13980a long value to give the information about this given selector.
13981Without argument, this command displays information
d3e8051b 13982about the six segment registers.
78c47bea
PM
13983
13984@kindex info dll
13985@item info dll
db2e3e2e 13986This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
13987
13988@kindex dll-symbols
13989@item dll-symbols
13990This command loads symbols from a dll similarly to
13991add-sym command but without the need to specify a base address.
13992
be90c084 13993@kindex set cygwin-exceptions
e16b02ee
EZ
13994@cindex debugging the Cygwin DLL
13995@cindex Cygwin DLL, debugging
be90c084 13996@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
13997If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
13998happen inside the Cygwin DLL. If @var{mode} is @code{off},
13999@value{GDBN} will delay recognition of exceptions, and may ignore some
14000exceptions which seem to be caused by internal Cygwin DLL
14001``bookkeeping''. This option is meant primarily for debugging the
14002Cygwin DLL itself; the default value is @code{off} to avoid annoying
14003@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14004
14005@kindex show cygwin-exceptions
14006@item show cygwin-exceptions
e16b02ee
EZ
14007Displays whether @value{GDBN} will break on exceptions that happen
14008inside the Cygwin DLL itself.
be90c084 14009
b383017d 14010@kindex set new-console
78c47bea 14011@item set new-console @var{mode}
b383017d 14012If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14013be started in a new console on next start.
14014If @var{mode} is @code{off}i, the debuggee will
14015be started in the same console as the debugger.
14016
14017@kindex show new-console
14018@item show new-console
14019Displays whether a new console is used
14020when the debuggee is started.
14021
14022@kindex set new-group
14023@item set new-group @var{mode}
14024This boolean value controls whether the debuggee should
14025start a new group or stay in the same group as the debugger.
14026This affects the way the Windows OS handles
c8aa23ab 14027@samp{Ctrl-C}.
78c47bea
PM
14028
14029@kindex show new-group
14030@item show new-group
14031Displays current value of new-group boolean.
14032
14033@kindex set debugevents
14034@item set debugevents
219eec71
EZ
14035This boolean value adds debug output concerning kernel events related
14036to the debuggee seen by the debugger. This includes events that
14037signal thread and process creation and exit, DLL loading and
14038unloading, console interrupts, and debugging messages produced by the
14039Windows @code{OutputDebugString} API call.
78c47bea
PM
14040
14041@kindex set debugexec
14042@item set debugexec
b383017d 14043This boolean value adds debug output concerning execute events
219eec71 14044(such as resume thread) seen by the debugger.
78c47bea
PM
14045
14046@kindex set debugexceptions
14047@item set debugexceptions
219eec71
EZ
14048This boolean value adds debug output concerning exceptions in the
14049debuggee seen by the debugger.
78c47bea
PM
14050
14051@kindex set debugmemory
14052@item set debugmemory
219eec71
EZ
14053This boolean value adds debug output concerning debuggee memory reads
14054and writes by the debugger.
78c47bea
PM
14055
14056@kindex set shell
14057@item set shell
14058This boolean values specifies whether the debuggee is called
14059via a shell or directly (default value is on).
14060
14061@kindex show shell
14062@item show shell
14063Displays if the debuggee will be started with a shell.
14064
14065@end table
14066
be448670 14067@menu
79a6e687 14068* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14069@end menu
14070
79a6e687
BW
14071@node Non-debug DLL Symbols
14072@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14073@cindex DLLs with no debugging symbols
14074@cindex Minimal symbols and DLLs
14075
14076Very often on windows, some of the DLLs that your program relies on do
14077not include symbolic debugging information (for example,
db2e3e2e 14078@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14079symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14080information contained in the DLL's export table. This section
be448670
CF
14081describes working with such symbols, known internally to @value{GDBN} as
14082``minimal symbols''.
14083
14084Note that before the debugged program has started execution, no DLLs
db2e3e2e 14085will have been loaded. The easiest way around this problem is simply to
be448670 14086start the program --- either by setting a breakpoint or letting the
db2e3e2e 14087program run once to completion. It is also possible to force
be448670 14088@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14089see the shared library information in @ref{Files}, or the
db2e3e2e 14090@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14091explicitly loading symbols from a DLL with no debugging information will
14092cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14093which may adversely affect symbol lookup performance.
14094
79a6e687 14095@subsubsection DLL Name Prefixes
be448670
CF
14096
14097In keeping with the naming conventions used by the Microsoft debugging
14098tools, DLL export symbols are made available with a prefix based on the
14099DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14100also entered into the symbol table, so @code{CreateFileA} is often
14101sufficient. In some cases there will be name clashes within a program
14102(particularly if the executable itself includes full debugging symbols)
14103necessitating the use of the fully qualified name when referring to the
14104contents of the DLL. Use single-quotes around the name to avoid the
14105exclamation mark (``!'') being interpreted as a language operator.
14106
14107Note that the internal name of the DLL may be all upper-case, even
14108though the file name of the DLL is lower-case, or vice-versa. Since
14109symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14110some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14111@code{info variables} commands or even @code{maint print msymbols}
14112(@pxref{Symbols}). Here's an example:
be448670
CF
14113
14114@smallexample
f7dc1244 14115(@value{GDBP}) info function CreateFileA
be448670
CF
14116All functions matching regular expression "CreateFileA":
14117
14118Non-debugging symbols:
141190x77e885f4 CreateFileA
141200x77e885f4 KERNEL32!CreateFileA
14121@end smallexample
14122
14123@smallexample
f7dc1244 14124(@value{GDBP}) info function !
be448670
CF
14125All functions matching regular expression "!":
14126
14127Non-debugging symbols:
141280x6100114c cygwin1!__assert
141290x61004034 cygwin1!_dll_crt0@@0
141300x61004240 cygwin1!dll_crt0(per_process *)
14131[etc...]
14132@end smallexample
14133
79a6e687 14134@subsubsection Working with Minimal Symbols
be448670
CF
14135
14136Symbols extracted from a DLL's export table do not contain very much
14137type information. All that @value{GDBN} can do is guess whether a symbol
14138refers to a function or variable depending on the linker section that
14139contains the symbol. Also note that the actual contents of the memory
14140contained in a DLL are not available unless the program is running. This
14141means that you cannot examine the contents of a variable or disassemble
14142a function within a DLL without a running program.
14143
14144Variables are generally treated as pointers and dereferenced
14145automatically. For this reason, it is often necessary to prefix a
14146variable name with the address-of operator (``&'') and provide explicit
14147type information in the command. Here's an example of the type of
14148problem:
14149
14150@smallexample
f7dc1244 14151(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14152$1 = 268572168
14153@end smallexample
14154
14155@smallexample
f7dc1244 14156(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
141570x10021610: "\230y\""
14158@end smallexample
14159
14160And two possible solutions:
14161
14162@smallexample
f7dc1244 14163(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14164$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14165@end smallexample
14166
14167@smallexample
f7dc1244 14168(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 141690x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14170(@value{GDBP}) x/x 0x10021608
be448670 141710x10021608: 0x0022fd98
f7dc1244 14172(@value{GDBP}) x/s 0x0022fd98
be448670
CF
141730x22fd98: "/cygdrive/c/mydirectory/myprogram"
14174@end smallexample
14175
14176Setting a break point within a DLL is possible even before the program
14177starts execution. However, under these circumstances, @value{GDBN} can't
14178examine the initial instructions of the function in order to skip the
14179function's frame set-up code. You can work around this by using ``*&''
14180to set the breakpoint at a raw memory address:
14181
14182@smallexample
f7dc1244 14183(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14184Breakpoint 1 at 0x1e04eff0
14185@end smallexample
14186
14187The author of these extensions is not entirely convinced that setting a
14188break point within a shared DLL like @file{kernel32.dll} is completely
14189safe.
14190
14d6dd68 14191@node Hurd Native
79a6e687 14192@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14193@cindex @sc{gnu} Hurd debugging
14194
14195This subsection describes @value{GDBN} commands specific to the
14196@sc{gnu} Hurd native debugging.
14197
14198@table @code
14199@item set signals
14200@itemx set sigs
14201@kindex set signals@r{, Hurd command}
14202@kindex set sigs@r{, Hurd command}
14203This command toggles the state of inferior signal interception by
14204@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14205affected by this command. @code{sigs} is a shorthand alias for
14206@code{signals}.
14207
14208@item show signals
14209@itemx show sigs
14210@kindex show signals@r{, Hurd command}
14211@kindex show sigs@r{, Hurd command}
14212Show the current state of intercepting inferior's signals.
14213
14214@item set signal-thread
14215@itemx set sigthread
14216@kindex set signal-thread
14217@kindex set sigthread
14218This command tells @value{GDBN} which thread is the @code{libc} signal
14219thread. That thread is run when a signal is delivered to a running
14220process. @code{set sigthread} is the shorthand alias of @code{set
14221signal-thread}.
14222
14223@item show signal-thread
14224@itemx show sigthread
14225@kindex show signal-thread
14226@kindex show sigthread
14227These two commands show which thread will run when the inferior is
14228delivered a signal.
14229
14230@item set stopped
14231@kindex set stopped@r{, Hurd command}
14232This commands tells @value{GDBN} that the inferior process is stopped,
14233as with the @code{SIGSTOP} signal. The stopped process can be
14234continued by delivering a signal to it.
14235
14236@item show stopped
14237@kindex show stopped@r{, Hurd command}
14238This command shows whether @value{GDBN} thinks the debuggee is
14239stopped.
14240
14241@item set exceptions
14242@kindex set exceptions@r{, Hurd command}
14243Use this command to turn off trapping of exceptions in the inferior.
14244When exception trapping is off, neither breakpoints nor
14245single-stepping will work. To restore the default, set exception
14246trapping on.
14247
14248@item show exceptions
14249@kindex show exceptions@r{, Hurd command}
14250Show the current state of trapping exceptions in the inferior.
14251
14252@item set task pause
14253@kindex set task@r{, Hurd commands}
14254@cindex task attributes (@sc{gnu} Hurd)
14255@cindex pause current task (@sc{gnu} Hurd)
14256This command toggles task suspension when @value{GDBN} has control.
14257Setting it to on takes effect immediately, and the task is suspended
14258whenever @value{GDBN} gets control. Setting it to off will take
14259effect the next time the inferior is continued. If this option is set
14260to off, you can use @code{set thread default pause on} or @code{set
14261thread pause on} (see below) to pause individual threads.
14262
14263@item show task pause
14264@kindex show task@r{, Hurd commands}
14265Show the current state of task suspension.
14266
14267@item set task detach-suspend-count
14268@cindex task suspend count
14269@cindex detach from task, @sc{gnu} Hurd
14270This command sets the suspend count the task will be left with when
14271@value{GDBN} detaches from it.
14272
14273@item show task detach-suspend-count
14274Show the suspend count the task will be left with when detaching.
14275
14276@item set task exception-port
14277@itemx set task excp
14278@cindex task exception port, @sc{gnu} Hurd
14279This command sets the task exception port to which @value{GDBN} will
14280forward exceptions. The argument should be the value of the @dfn{send
14281rights} of the task. @code{set task excp} is a shorthand alias.
14282
14283@item set noninvasive
14284@cindex noninvasive task options
14285This command switches @value{GDBN} to a mode that is the least
14286invasive as far as interfering with the inferior is concerned. This
14287is the same as using @code{set task pause}, @code{set exceptions}, and
14288@code{set signals} to values opposite to the defaults.
14289
14290@item info send-rights
14291@itemx info receive-rights
14292@itemx info port-rights
14293@itemx info port-sets
14294@itemx info dead-names
14295@itemx info ports
14296@itemx info psets
14297@cindex send rights, @sc{gnu} Hurd
14298@cindex receive rights, @sc{gnu} Hurd
14299@cindex port rights, @sc{gnu} Hurd
14300@cindex port sets, @sc{gnu} Hurd
14301@cindex dead names, @sc{gnu} Hurd
14302These commands display information about, respectively, send rights,
14303receive rights, port rights, port sets, and dead names of a task.
14304There are also shorthand aliases: @code{info ports} for @code{info
14305port-rights} and @code{info psets} for @code{info port-sets}.
14306
14307@item set thread pause
14308@kindex set thread@r{, Hurd command}
14309@cindex thread properties, @sc{gnu} Hurd
14310@cindex pause current thread (@sc{gnu} Hurd)
14311This command toggles current thread suspension when @value{GDBN} has
14312control. Setting it to on takes effect immediately, and the current
14313thread is suspended whenever @value{GDBN} gets control. Setting it to
14314off will take effect the next time the inferior is continued.
14315Normally, this command has no effect, since when @value{GDBN} has
14316control, the whole task is suspended. However, if you used @code{set
14317task pause off} (see above), this command comes in handy to suspend
14318only the current thread.
14319
14320@item show thread pause
14321@kindex show thread@r{, Hurd command}
14322This command shows the state of current thread suspension.
14323
14324@item set thread run
d3e8051b 14325This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14326
14327@item show thread run
14328Show whether the current thread is allowed to run.
14329
14330@item set thread detach-suspend-count
14331@cindex thread suspend count, @sc{gnu} Hurd
14332@cindex detach from thread, @sc{gnu} Hurd
14333This command sets the suspend count @value{GDBN} will leave on a
14334thread when detaching. This number is relative to the suspend count
14335found by @value{GDBN} when it notices the thread; use @code{set thread
14336takeover-suspend-count} to force it to an absolute value.
14337
14338@item show thread detach-suspend-count
14339Show the suspend count @value{GDBN} will leave on the thread when
14340detaching.
14341
14342@item set thread exception-port
14343@itemx set thread excp
14344Set the thread exception port to which to forward exceptions. This
14345overrides the port set by @code{set task exception-port} (see above).
14346@code{set thread excp} is the shorthand alias.
14347
14348@item set thread takeover-suspend-count
14349Normally, @value{GDBN}'s thread suspend counts are relative to the
14350value @value{GDBN} finds when it notices each thread. This command
14351changes the suspend counts to be absolute instead.
14352
14353@item set thread default
14354@itemx show thread default
14355@cindex thread default settings, @sc{gnu} Hurd
14356Each of the above @code{set thread} commands has a @code{set thread
14357default} counterpart (e.g., @code{set thread default pause}, @code{set
14358thread default exception-port}, etc.). The @code{thread default}
14359variety of commands sets the default thread properties for all
14360threads; you can then change the properties of individual threads with
14361the non-default commands.
14362@end table
14363
14364
a64548ea
EZ
14365@node Neutrino
14366@subsection QNX Neutrino
14367@cindex QNX Neutrino
14368
14369@value{GDBN} provides the following commands specific to the QNX
14370Neutrino target:
14371
14372@table @code
14373@item set debug nto-debug
14374@kindex set debug nto-debug
14375When set to on, enables debugging messages specific to the QNX
14376Neutrino support.
14377
14378@item show debug nto-debug
14379@kindex show debug nto-debug
14380Show the current state of QNX Neutrino messages.
14381@end table
14382
14383
8e04817f
AC
14384@node Embedded OS
14385@section Embedded Operating Systems
104c1213 14386
8e04817f
AC
14387This section describes configurations involving the debugging of
14388embedded operating systems that are available for several different
14389architectures.
d4f3574e 14390
8e04817f
AC
14391@menu
14392* VxWorks:: Using @value{GDBN} with VxWorks
14393@end menu
104c1213 14394
8e04817f
AC
14395@value{GDBN} includes the ability to debug programs running on
14396various real-time operating systems.
104c1213 14397
8e04817f
AC
14398@node VxWorks
14399@subsection Using @value{GDBN} with VxWorks
104c1213 14400
8e04817f 14401@cindex VxWorks
104c1213 14402
8e04817f 14403@table @code
104c1213 14404
8e04817f
AC
14405@kindex target vxworks
14406@item target vxworks @var{machinename}
14407A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14408is the target system's machine name or IP address.
104c1213 14409
8e04817f 14410@end table
104c1213 14411
8e04817f
AC
14412On VxWorks, @code{load} links @var{filename} dynamically on the
14413current target system as well as adding its symbols in @value{GDBN}.
104c1213 14414
8e04817f
AC
14415@value{GDBN} enables developers to spawn and debug tasks running on networked
14416VxWorks targets from a Unix host. Already-running tasks spawned from
14417the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14418both the Unix host and on the VxWorks target. The program
14419@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14420installed with the name @code{vxgdb}, to distinguish it from a
14421@value{GDBN} for debugging programs on the host itself.)
104c1213 14422
8e04817f
AC
14423@table @code
14424@item VxWorks-timeout @var{args}
14425@kindex vxworks-timeout
14426All VxWorks-based targets now support the option @code{vxworks-timeout}.
14427This option is set by the user, and @var{args} represents the number of
14428seconds @value{GDBN} waits for responses to rpc's. You might use this if
14429your VxWorks target is a slow software simulator or is on the far side
14430of a thin network line.
14431@end table
104c1213 14432
8e04817f
AC
14433The following information on connecting to VxWorks was current when
14434this manual was produced; newer releases of VxWorks may use revised
14435procedures.
104c1213 14436
4644b6e3 14437@findex INCLUDE_RDB
8e04817f
AC
14438To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14439to include the remote debugging interface routines in the VxWorks
14440library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14441VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14442kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14443source debugging task @code{tRdbTask} when VxWorks is booted. For more
14444information on configuring and remaking VxWorks, see the manufacturer's
14445manual.
14446@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14447
8e04817f
AC
14448Once you have included @file{rdb.a} in your VxWorks system image and set
14449your Unix execution search path to find @value{GDBN}, you are ready to
14450run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14451@code{vxgdb}, depending on your installation).
104c1213 14452
8e04817f 14453@value{GDBN} comes up showing the prompt:
104c1213 14454
474c8240 14455@smallexample
8e04817f 14456(vxgdb)
474c8240 14457@end smallexample
104c1213 14458
8e04817f
AC
14459@menu
14460* VxWorks Connection:: Connecting to VxWorks
14461* VxWorks Download:: VxWorks download
14462* VxWorks Attach:: Running tasks
14463@end menu
104c1213 14464
8e04817f
AC
14465@node VxWorks Connection
14466@subsubsection Connecting to VxWorks
104c1213 14467
8e04817f
AC
14468The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14469network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14470
474c8240 14471@smallexample
8e04817f 14472(vxgdb) target vxworks tt
474c8240 14473@end smallexample
104c1213 14474
8e04817f
AC
14475@need 750
14476@value{GDBN} displays messages like these:
104c1213 14477
8e04817f
AC
14478@smallexample
14479Attaching remote machine across net...
14480Connected to tt.
14481@end smallexample
104c1213 14482
8e04817f
AC
14483@need 1000
14484@value{GDBN} then attempts to read the symbol tables of any object modules
14485loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14486these files by searching the directories listed in the command search
79a6e687 14487path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14488to find an object file, it displays a message such as:
5d161b24 14489
474c8240 14490@smallexample
8e04817f 14491prog.o: No such file or directory.
474c8240 14492@end smallexample
104c1213 14493
8e04817f
AC
14494When this happens, add the appropriate directory to the search path with
14495the @value{GDBN} command @code{path}, and execute the @code{target}
14496command again.
104c1213 14497
8e04817f 14498@node VxWorks Download
79a6e687 14499@subsubsection VxWorks Download
104c1213 14500
8e04817f
AC
14501@cindex download to VxWorks
14502If you have connected to the VxWorks target and you want to debug an
14503object that has not yet been loaded, you can use the @value{GDBN}
14504@code{load} command to download a file from Unix to VxWorks
14505incrementally. The object file given as an argument to the @code{load}
14506command is actually opened twice: first by the VxWorks target in order
14507to download the code, then by @value{GDBN} in order to read the symbol
14508table. This can lead to problems if the current working directories on
14509the two systems differ. If both systems have NFS mounted the same
14510filesystems, you can avoid these problems by using absolute paths.
14511Otherwise, it is simplest to set the working directory on both systems
14512to the directory in which the object file resides, and then to reference
14513the file by its name, without any path. For instance, a program
14514@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14515and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14516program, type this on VxWorks:
104c1213 14517
474c8240 14518@smallexample
8e04817f 14519-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14520@end smallexample
104c1213 14521
8e04817f
AC
14522@noindent
14523Then, in @value{GDBN}, type:
104c1213 14524
474c8240 14525@smallexample
8e04817f
AC
14526(vxgdb) cd @var{hostpath}/vw/demo/rdb
14527(vxgdb) load prog.o
474c8240 14528@end smallexample
104c1213 14529
8e04817f 14530@value{GDBN} displays a response similar to this:
104c1213 14531
8e04817f
AC
14532@smallexample
14533Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14534@end smallexample
104c1213 14535
8e04817f
AC
14536You can also use the @code{load} command to reload an object module
14537after editing and recompiling the corresponding source file. Note that
14538this makes @value{GDBN} delete all currently-defined breakpoints,
14539auto-displays, and convenience variables, and to clear the value
14540history. (This is necessary in order to preserve the integrity of
14541debugger's data structures that reference the target system's symbol
14542table.)
104c1213 14543
8e04817f 14544@node VxWorks Attach
79a6e687 14545@subsubsection Running Tasks
104c1213
JM
14546
14547@cindex running VxWorks tasks
14548You can also attach to an existing task using the @code{attach} command as
14549follows:
14550
474c8240 14551@smallexample
104c1213 14552(vxgdb) attach @var{task}
474c8240 14553@end smallexample
104c1213
JM
14554
14555@noindent
14556where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14557or suspended when you attach to it. Running tasks are suspended at
14558the time of attachment.
14559
6d2ebf8b 14560@node Embedded Processors
104c1213
JM
14561@section Embedded Processors
14562
14563This section goes into details specific to particular embedded
14564configurations.
14565
c45da7e6
EZ
14566@cindex send command to simulator
14567Whenever a specific embedded processor has a simulator, @value{GDBN}
14568allows to send an arbitrary command to the simulator.
14569
14570@table @code
14571@item sim @var{command}
14572@kindex sim@r{, a command}
14573Send an arbitrary @var{command} string to the simulator. Consult the
14574documentation for the specific simulator in use for information about
14575acceptable commands.
14576@end table
14577
7d86b5d5 14578
104c1213 14579@menu
c45da7e6 14580* ARM:: ARM RDI
172c2a43 14581* M32R/D:: Renesas M32R/D
104c1213 14582* M68K:: Motorola M68K
104c1213 14583* MIPS Embedded:: MIPS Embedded
a37295f9 14584* OpenRISC 1000:: OpenRisc 1000
104c1213 14585* PA:: HP PA Embedded
0869d01b 14586* PowerPC:: PowerPC
104c1213
JM
14587* Sparclet:: Tsqware Sparclet
14588* Sparclite:: Fujitsu Sparclite
104c1213 14589* Z8000:: Zilog Z8000
a64548ea
EZ
14590* AVR:: Atmel AVR
14591* CRIS:: CRIS
14592* Super-H:: Renesas Super-H
104c1213
JM
14593@end menu
14594
6d2ebf8b 14595@node ARM
104c1213 14596@subsection ARM
c45da7e6 14597@cindex ARM RDI
104c1213
JM
14598
14599@table @code
8e04817f
AC
14600@kindex target rdi
14601@item target rdi @var{dev}
14602ARM Angel monitor, via RDI library interface to ADP protocol. You may
14603use this target to communicate with both boards running the Angel
14604monitor, or with the EmbeddedICE JTAG debug device.
14605
14606@kindex target rdp
14607@item target rdp @var{dev}
14608ARM Demon monitor.
14609
14610@end table
14611
e2f4edfd
EZ
14612@value{GDBN} provides the following ARM-specific commands:
14613
14614@table @code
14615@item set arm disassembler
14616@kindex set arm
14617This commands selects from a list of disassembly styles. The
14618@code{"std"} style is the standard style.
14619
14620@item show arm disassembler
14621@kindex show arm
14622Show the current disassembly style.
14623
14624@item set arm apcs32
14625@cindex ARM 32-bit mode
14626This command toggles ARM operation mode between 32-bit and 26-bit.
14627
14628@item show arm apcs32
14629Display the current usage of the ARM 32-bit mode.
14630
14631@item set arm fpu @var{fputype}
14632This command sets the ARM floating-point unit (FPU) type. The
14633argument @var{fputype} can be one of these:
14634
14635@table @code
14636@item auto
14637Determine the FPU type by querying the OS ABI.
14638@item softfpa
14639Software FPU, with mixed-endian doubles on little-endian ARM
14640processors.
14641@item fpa
14642GCC-compiled FPA co-processor.
14643@item softvfp
14644Software FPU with pure-endian doubles.
14645@item vfp
14646VFP co-processor.
14647@end table
14648
14649@item show arm fpu
14650Show the current type of the FPU.
14651
14652@item set arm abi
14653This command forces @value{GDBN} to use the specified ABI.
14654
14655@item show arm abi
14656Show the currently used ABI.
14657
14658@item set debug arm
14659Toggle whether to display ARM-specific debugging messages from the ARM
14660target support subsystem.
14661
14662@item show debug arm
14663Show whether ARM-specific debugging messages are enabled.
14664@end table
14665
c45da7e6
EZ
14666The following commands are available when an ARM target is debugged
14667using the RDI interface:
14668
14669@table @code
14670@item rdilogfile @r{[}@var{file}@r{]}
14671@kindex rdilogfile
14672@cindex ADP (Angel Debugger Protocol) logging
14673Set the filename for the ADP (Angel Debugger Protocol) packet log.
14674With an argument, sets the log file to the specified @var{file}. With
14675no argument, show the current log file name. The default log file is
14676@file{rdi.log}.
14677
14678@item rdilogenable @r{[}@var{arg}@r{]}
14679@kindex rdilogenable
14680Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14681enables logging, with an argument 0 or @code{"no"} disables it. With
14682no arguments displays the current setting. When logging is enabled,
14683ADP packets exchanged between @value{GDBN} and the RDI target device
14684are logged to a file.
14685
14686@item set rdiromatzero
14687@kindex set rdiromatzero
14688@cindex ROM at zero address, RDI
14689Tell @value{GDBN} whether the target has ROM at address 0. If on,
14690vector catching is disabled, so that zero address can be used. If off
14691(the default), vector catching is enabled. For this command to take
14692effect, it needs to be invoked prior to the @code{target rdi} command.
14693
14694@item show rdiromatzero
14695@kindex show rdiromatzero
14696Show the current setting of ROM at zero address.
14697
14698@item set rdiheartbeat
14699@kindex set rdiheartbeat
14700@cindex RDI heartbeat
14701Enable or disable RDI heartbeat packets. It is not recommended to
14702turn on this option, since it confuses ARM and EPI JTAG interface, as
14703well as the Angel monitor.
14704
14705@item show rdiheartbeat
14706@kindex show rdiheartbeat
14707Show the setting of RDI heartbeat packets.
14708@end table
14709
e2f4edfd 14710
8e04817f 14711@node M32R/D
ba04e063 14712@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14713
14714@table @code
8e04817f
AC
14715@kindex target m32r
14716@item target m32r @var{dev}
172c2a43 14717Renesas M32R/D ROM monitor.
8e04817f 14718
fb3e19c0
KI
14719@kindex target m32rsdi
14720@item target m32rsdi @var{dev}
14721Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14722@end table
14723
14724The following @value{GDBN} commands are specific to the M32R monitor:
14725
14726@table @code
14727@item set download-path @var{path}
14728@kindex set download-path
14729@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14730Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14731
14732@item show download-path
14733@kindex show download-path
14734Show the default path for downloadable @sc{srec} files.
fb3e19c0 14735
721c2651
EZ
14736@item set board-address @var{addr}
14737@kindex set board-address
14738@cindex M32-EVA target board address
14739Set the IP address for the M32R-EVA target board.
14740
14741@item show board-address
14742@kindex show board-address
14743Show the current IP address of the target board.
14744
14745@item set server-address @var{addr}
14746@kindex set server-address
14747@cindex download server address (M32R)
14748Set the IP address for the download server, which is the @value{GDBN}'s
14749host machine.
14750
14751@item show server-address
14752@kindex show server-address
14753Display the IP address of the download server.
14754
14755@item upload @r{[}@var{file}@r{]}
14756@kindex upload@r{, M32R}
14757Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14758upload capability. If no @var{file} argument is given, the current
14759executable file is uploaded.
14760
14761@item tload @r{[}@var{file}@r{]}
14762@kindex tload@r{, M32R}
14763Test the @code{upload} command.
8e04817f
AC
14764@end table
14765
ba04e063
EZ
14766The following commands are available for M32R/SDI:
14767
14768@table @code
14769@item sdireset
14770@kindex sdireset
14771@cindex reset SDI connection, M32R
14772This command resets the SDI connection.
14773
14774@item sdistatus
14775@kindex sdistatus
14776This command shows the SDI connection status.
14777
14778@item debug_chaos
14779@kindex debug_chaos
14780@cindex M32R/Chaos debugging
14781Instructs the remote that M32R/Chaos debugging is to be used.
14782
14783@item use_debug_dma
14784@kindex use_debug_dma
14785Instructs the remote to use the DEBUG_DMA method of accessing memory.
14786
14787@item use_mon_code
14788@kindex use_mon_code
14789Instructs the remote to use the MON_CODE method of accessing memory.
14790
14791@item use_ib_break
14792@kindex use_ib_break
14793Instructs the remote to set breakpoints by IB break.
14794
14795@item use_dbt_break
14796@kindex use_dbt_break
14797Instructs the remote to set breakpoints by DBT.
14798@end table
14799
8e04817f
AC
14800@node M68K
14801@subsection M68k
14802
7ce59000
DJ
14803The Motorola m68k configuration includes ColdFire support, and a
14804target command for the following ROM monitor.
8e04817f
AC
14805
14806@table @code
14807
8e04817f
AC
14808@kindex target dbug
14809@item target dbug @var{dev}
14810dBUG ROM monitor for Motorola ColdFire.
14811
8e04817f
AC
14812@end table
14813
8e04817f
AC
14814@node MIPS Embedded
14815@subsection MIPS Embedded
14816
14817@cindex MIPS boards
14818@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14819MIPS board attached to a serial line. This is available when
14820you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14821
8e04817f
AC
14822@need 1000
14823Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14824
8e04817f
AC
14825@table @code
14826@item target mips @var{port}
14827@kindex target mips @var{port}
14828To run a program on the board, start up @code{@value{GDBP}} with the
14829name of your program as the argument. To connect to the board, use the
14830command @samp{target mips @var{port}}, where @var{port} is the name of
14831the serial port connected to the board. If the program has not already
14832been downloaded to the board, you may use the @code{load} command to
14833download it. You can then use all the usual @value{GDBN} commands.
104c1213 14834
8e04817f
AC
14835For example, this sequence connects to the target board through a serial
14836port, and loads and runs a program called @var{prog} through the
14837debugger:
104c1213 14838
474c8240 14839@smallexample
8e04817f
AC
14840host$ @value{GDBP} @var{prog}
14841@value{GDBN} is free software and @dots{}
14842(@value{GDBP}) target mips /dev/ttyb
14843(@value{GDBP}) load @var{prog}
14844(@value{GDBP}) run
474c8240 14845@end smallexample
104c1213 14846
8e04817f
AC
14847@item target mips @var{hostname}:@var{portnumber}
14848On some @value{GDBN} host configurations, you can specify a TCP
14849connection (for instance, to a serial line managed by a terminal
14850concentrator) instead of a serial port, using the syntax
14851@samp{@var{hostname}:@var{portnumber}}.
104c1213 14852
8e04817f
AC
14853@item target pmon @var{port}
14854@kindex target pmon @var{port}
14855PMON ROM monitor.
104c1213 14856
8e04817f
AC
14857@item target ddb @var{port}
14858@kindex target ddb @var{port}
14859NEC's DDB variant of PMON for Vr4300.
104c1213 14860
8e04817f
AC
14861@item target lsi @var{port}
14862@kindex target lsi @var{port}
14863LSI variant of PMON.
104c1213 14864
8e04817f
AC
14865@kindex target r3900
14866@item target r3900 @var{dev}
14867Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14868
8e04817f
AC
14869@kindex target array
14870@item target array @var{dev}
14871Array Tech LSI33K RAID controller board.
104c1213 14872
8e04817f 14873@end table
104c1213 14874
104c1213 14875
8e04817f
AC
14876@noindent
14877@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14878
8e04817f 14879@table @code
8e04817f
AC
14880@item set mipsfpu double
14881@itemx set mipsfpu single
14882@itemx set mipsfpu none
a64548ea 14883@itemx set mipsfpu auto
8e04817f
AC
14884@itemx show mipsfpu
14885@kindex set mipsfpu
14886@kindex show mipsfpu
14887@cindex MIPS remote floating point
14888@cindex floating point, MIPS remote
14889If your target board does not support the MIPS floating point
14890coprocessor, you should use the command @samp{set mipsfpu none} (if you
14891need this, you may wish to put the command in your @value{GDBN} init
14892file). This tells @value{GDBN} how to find the return value of
14893functions which return floating point values. It also allows
14894@value{GDBN} to avoid saving the floating point registers when calling
14895functions on the board. If you are using a floating point coprocessor
14896with only single precision floating point support, as on the @sc{r4650}
14897processor, use the command @samp{set mipsfpu single}. The default
14898double precision floating point coprocessor may be selected using
14899@samp{set mipsfpu double}.
104c1213 14900
8e04817f
AC
14901In previous versions the only choices were double precision or no
14902floating point, so @samp{set mipsfpu on} will select double precision
14903and @samp{set mipsfpu off} will select no floating point.
104c1213 14904
8e04817f
AC
14905As usual, you can inquire about the @code{mipsfpu} variable with
14906@samp{show mipsfpu}.
104c1213 14907
8e04817f
AC
14908@item set timeout @var{seconds}
14909@itemx set retransmit-timeout @var{seconds}
14910@itemx show timeout
14911@itemx show retransmit-timeout
14912@cindex @code{timeout}, MIPS protocol
14913@cindex @code{retransmit-timeout}, MIPS protocol
14914@kindex set timeout
14915@kindex show timeout
14916@kindex set retransmit-timeout
14917@kindex show retransmit-timeout
14918You can control the timeout used while waiting for a packet, in the MIPS
14919remote protocol, with the @code{set timeout @var{seconds}} command. The
14920default is 5 seconds. Similarly, you can control the timeout used while
14921waiting for an acknowledgement of a packet with the @code{set
14922retransmit-timeout @var{seconds}} command. The default is 3 seconds.
14923You can inspect both values with @code{show timeout} and @code{show
14924retransmit-timeout}. (These commands are @emph{only} available when
14925@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 14926
8e04817f
AC
14927The timeout set by @code{set timeout} does not apply when @value{GDBN}
14928is waiting for your program to stop. In that case, @value{GDBN} waits
14929forever because it has no way of knowing how long the program is going
14930to run before stopping.
ba04e063
EZ
14931
14932@item set syn-garbage-limit @var{num}
14933@kindex set syn-garbage-limit@r{, MIPS remote}
14934@cindex synchronize with remote MIPS target
14935Limit the maximum number of characters @value{GDBN} should ignore when
14936it tries to synchronize with the remote target. The default is 10
14937characters. Setting the limit to -1 means there's no limit.
14938
14939@item show syn-garbage-limit
14940@kindex show syn-garbage-limit@r{, MIPS remote}
14941Show the current limit on the number of characters to ignore when
14942trying to synchronize with the remote system.
14943
14944@item set monitor-prompt @var{prompt}
14945@kindex set monitor-prompt@r{, MIPS remote}
14946@cindex remote monitor prompt
14947Tell @value{GDBN} to expect the specified @var{prompt} string from the
14948remote monitor. The default depends on the target:
14949@table @asis
14950@item pmon target
14951@samp{PMON}
14952@item ddb target
14953@samp{NEC010}
14954@item lsi target
14955@samp{PMON>}
14956@end table
14957
14958@item show monitor-prompt
14959@kindex show monitor-prompt@r{, MIPS remote}
14960Show the current strings @value{GDBN} expects as the prompt from the
14961remote monitor.
14962
14963@item set monitor-warnings
14964@kindex set monitor-warnings@r{, MIPS remote}
14965Enable or disable monitor warnings about hardware breakpoints. This
14966has effect only for the @code{lsi} target. When on, @value{GDBN} will
14967display warning messages whose codes are returned by the @code{lsi}
14968PMON monitor for breakpoint commands.
14969
14970@item show monitor-warnings
14971@kindex show monitor-warnings@r{, MIPS remote}
14972Show the current setting of printing monitor warnings.
14973
14974@item pmon @var{command}
14975@kindex pmon@r{, MIPS remote}
14976@cindex send PMON command
14977This command allows sending an arbitrary @var{command} string to the
14978monitor. The monitor must be in debug mode for this to work.
8e04817f 14979@end table
104c1213 14980
a37295f9
MM
14981@node OpenRISC 1000
14982@subsection OpenRISC 1000
14983@cindex OpenRISC 1000
14984
14985@cindex or1k boards
14986See OR1k Architecture document (@uref{www.opencores.org}) for more information
14987about platform and commands.
14988
14989@table @code
14990
14991@kindex target jtag
14992@item target jtag jtag://@var{host}:@var{port}
14993
14994Connects to remote JTAG server.
14995JTAG remote server can be either an or1ksim or JTAG server,
14996connected via parallel port to the board.
14997
14998Example: @code{target jtag jtag://localhost:9999}
14999
15000@kindex or1ksim
15001@item or1ksim @var{command}
15002If connected to @code{or1ksim} OpenRISC 1000 Architectural
15003Simulator, proprietary commands can be executed.
15004
15005@kindex info or1k spr
15006@item info or1k spr
15007Displays spr groups.
15008
15009@item info or1k spr @var{group}
15010@itemx info or1k spr @var{groupno}
15011Displays register names in selected group.
15012
15013@item info or1k spr @var{group} @var{register}
15014@itemx info or1k spr @var{register}
15015@itemx info or1k spr @var{groupno} @var{registerno}
15016@itemx info or1k spr @var{registerno}
15017Shows information about specified spr register.
15018
15019@kindex spr
15020@item spr @var{group} @var{register} @var{value}
15021@itemx spr @var{register @var{value}}
15022@itemx spr @var{groupno} @var{registerno @var{value}}
15023@itemx spr @var{registerno @var{value}}
15024Writes @var{value} to specified spr register.
15025@end table
15026
15027Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15028It is very similar to @value{GDBN} trace, except it does not interfere with normal
15029program execution and is thus much faster. Hardware breakpoints/watchpoint
15030triggers can be set using:
15031@table @code
15032@item $LEA/$LDATA
15033Load effective address/data
15034@item $SEA/$SDATA
15035Store effective address/data
15036@item $AEA/$ADATA
15037Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15038@item $FETCH
15039Fetch data
15040@end table
15041
15042When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15043@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15044
15045@code{htrace} commands:
15046@cindex OpenRISC 1000 htrace
15047@table @code
15048@kindex hwatch
15049@item hwatch @var{conditional}
d3e8051b 15050Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15051or Data. For example:
15052
15053@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15054
15055@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15056
4644b6e3 15057@kindex htrace
a37295f9
MM
15058@item htrace info
15059Display information about current HW trace configuration.
15060
a37295f9
MM
15061@item htrace trigger @var{conditional}
15062Set starting criteria for HW trace.
15063
a37295f9
MM
15064@item htrace qualifier @var{conditional}
15065Set acquisition qualifier for HW trace.
15066
a37295f9
MM
15067@item htrace stop @var{conditional}
15068Set HW trace stopping criteria.
15069
f153cc92 15070@item htrace record [@var{data}]*
a37295f9
MM
15071Selects the data to be recorded, when qualifier is met and HW trace was
15072triggered.
15073
a37295f9 15074@item htrace enable
a37295f9
MM
15075@itemx htrace disable
15076Enables/disables the HW trace.
15077
f153cc92 15078@item htrace rewind [@var{filename}]
a37295f9
MM
15079Clears currently recorded trace data.
15080
15081If filename is specified, new trace file is made and any newly collected data
15082will be written there.
15083
f153cc92 15084@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15085Prints trace buffer, using current record configuration.
15086
a37295f9
MM
15087@item htrace mode continuous
15088Set continuous trace mode.
15089
a37295f9
MM
15090@item htrace mode suspend
15091Set suspend trace mode.
15092
15093@end table
15094
8e04817f
AC
15095@node PowerPC
15096@subsection PowerPC
104c1213 15097
55eddb0f
DJ
15098@value{GDBN} provides the following PowerPC-specific commands:
15099
104c1213 15100@table @code
55eddb0f
DJ
15101@kindex set powerpc
15102@item set powerpc soft-float
15103@itemx show powerpc soft-float
15104Force @value{GDBN} to use (or not use) a software floating point calling
15105convention. By default, @value{GDBN} selects the calling convention based
15106on the selected architecture and the provided executable file.
15107
15108@item set powerpc vector-abi
15109@itemx show powerpc vector-abi
15110Force @value{GDBN} to use the specified calling convention for vector
15111arguments and return values. The valid options are @samp{auto};
15112@samp{generic}, to avoid vector registers even if they are present;
15113@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15114registers. By default, @value{GDBN} selects the calling convention
15115based on the selected architecture and the provided executable file.
15116
8e04817f
AC
15117@kindex target dink32
15118@item target dink32 @var{dev}
15119DINK32 ROM monitor.
104c1213 15120
8e04817f
AC
15121@kindex target ppcbug
15122@item target ppcbug @var{dev}
15123@kindex target ppcbug1
15124@item target ppcbug1 @var{dev}
15125PPCBUG ROM monitor for PowerPC.
104c1213 15126
8e04817f
AC
15127@kindex target sds
15128@item target sds @var{dev}
15129SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15130@end table
8e04817f 15131
c45da7e6 15132@cindex SDS protocol
d52fb0e9 15133The following commands specific to the SDS protocol are supported
55eddb0f 15134by @value{GDBN}:
c45da7e6
EZ
15135
15136@table @code
15137@item set sdstimeout @var{nsec}
15138@kindex set sdstimeout
15139Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15140default is 2 seconds.
15141
15142@item show sdstimeout
15143@kindex show sdstimeout
15144Show the current value of the SDS timeout.
15145
15146@item sds @var{command}
15147@kindex sds@r{, a command}
15148Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15149@end table
15150
c45da7e6 15151
8e04817f
AC
15152@node PA
15153@subsection HP PA Embedded
104c1213
JM
15154
15155@table @code
15156
8e04817f
AC
15157@kindex target op50n
15158@item target op50n @var{dev}
15159OP50N monitor, running on an OKI HPPA board.
15160
15161@kindex target w89k
15162@item target w89k @var{dev}
15163W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15164
15165@end table
15166
8e04817f
AC
15167@node Sparclet
15168@subsection Tsqware Sparclet
104c1213 15169
8e04817f
AC
15170@cindex Sparclet
15171
15172@value{GDBN} enables developers to debug tasks running on
15173Sparclet targets from a Unix host.
15174@value{GDBN} uses code that runs on
15175both the Unix host and on the Sparclet target. The program
15176@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15177
8e04817f
AC
15178@table @code
15179@item remotetimeout @var{args}
15180@kindex remotetimeout
15181@value{GDBN} supports the option @code{remotetimeout}.
15182This option is set by the user, and @var{args} represents the number of
15183seconds @value{GDBN} waits for responses.
104c1213
JM
15184@end table
15185
8e04817f
AC
15186@cindex compiling, on Sparclet
15187When compiling for debugging, include the options @samp{-g} to get debug
15188information and @samp{-Ttext} to relocate the program to where you wish to
15189load it on the target. You may also want to add the options @samp{-n} or
15190@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15191
474c8240 15192@smallexample
8e04817f 15193sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15194@end smallexample
104c1213 15195
8e04817f 15196You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15197
474c8240 15198@smallexample
8e04817f 15199sparclet-aout-objdump --headers --syms prog
474c8240 15200@end smallexample
104c1213 15201
8e04817f
AC
15202@cindex running, on Sparclet
15203Once you have set
15204your Unix execution search path to find @value{GDBN}, you are ready to
15205run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15206(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15207
8e04817f
AC
15208@value{GDBN} comes up showing the prompt:
15209
474c8240 15210@smallexample
8e04817f 15211(gdbslet)
474c8240 15212@end smallexample
104c1213
JM
15213
15214@menu
8e04817f
AC
15215* Sparclet File:: Setting the file to debug
15216* Sparclet Connection:: Connecting to Sparclet
15217* Sparclet Download:: Sparclet download
15218* Sparclet Execution:: Running and debugging
104c1213
JM
15219@end menu
15220
8e04817f 15221@node Sparclet File
79a6e687 15222@subsubsection Setting File to Debug
104c1213 15223
8e04817f 15224The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15225
474c8240 15226@smallexample
8e04817f 15227(gdbslet) file prog
474c8240 15228@end smallexample
104c1213 15229
8e04817f
AC
15230@need 1000
15231@value{GDBN} then attempts to read the symbol table of @file{prog}.
15232@value{GDBN} locates
15233the file by searching the directories listed in the command search
15234path.
12c27660 15235If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15236files will be searched as well.
15237@value{GDBN} locates
15238the source files by searching the directories listed in the directory search
79a6e687 15239path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15240If it fails
15241to find a file, it displays a message such as:
104c1213 15242
474c8240 15243@smallexample
8e04817f 15244prog: No such file or directory.
474c8240 15245@end smallexample
104c1213 15246
8e04817f
AC
15247When this happens, add the appropriate directories to the search paths with
15248the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15249@code{target} command again.
104c1213 15250
8e04817f
AC
15251@node Sparclet Connection
15252@subsubsection Connecting to Sparclet
104c1213 15253
8e04817f
AC
15254The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15255To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15256
474c8240 15257@smallexample
8e04817f
AC
15258(gdbslet) target sparclet /dev/ttya
15259Remote target sparclet connected to /dev/ttya
15260main () at ../prog.c:3
474c8240 15261@end smallexample
104c1213 15262
8e04817f
AC
15263@need 750
15264@value{GDBN} displays messages like these:
104c1213 15265
474c8240 15266@smallexample
8e04817f 15267Connected to ttya.
474c8240 15268@end smallexample
104c1213 15269
8e04817f 15270@node Sparclet Download
79a6e687 15271@subsubsection Sparclet Download
104c1213 15272
8e04817f
AC
15273@cindex download to Sparclet
15274Once connected to the Sparclet target,
15275you can use the @value{GDBN}
15276@code{load} command to download the file from the host to the target.
15277The file name and load offset should be given as arguments to the @code{load}
15278command.
15279Since the file format is aout, the program must be loaded to the starting
15280address. You can use @code{objdump} to find out what this value is. The load
15281offset is an offset which is added to the VMA (virtual memory address)
15282of each of the file's sections.
15283For instance, if the program
15284@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15285and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15286
474c8240 15287@smallexample
8e04817f
AC
15288(gdbslet) load prog 0x12010000
15289Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15290@end smallexample
104c1213 15291
8e04817f
AC
15292If the code is loaded at a different address then what the program was linked
15293to, you may need to use the @code{section} and @code{add-symbol-file} commands
15294to tell @value{GDBN} where to map the symbol table.
15295
15296@node Sparclet Execution
79a6e687 15297@subsubsection Running and Debugging
8e04817f
AC
15298
15299@cindex running and debugging Sparclet programs
15300You can now begin debugging the task using @value{GDBN}'s execution control
15301commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15302manual for the list of commands.
15303
474c8240 15304@smallexample
8e04817f
AC
15305(gdbslet) b main
15306Breakpoint 1 at 0x12010000: file prog.c, line 3.
15307(gdbslet) run
15308Starting program: prog
15309Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
153103 char *symarg = 0;
15311(gdbslet) step
153124 char *execarg = "hello!";
15313(gdbslet)
474c8240 15314@end smallexample
8e04817f
AC
15315
15316@node Sparclite
15317@subsection Fujitsu Sparclite
104c1213
JM
15318
15319@table @code
15320
8e04817f
AC
15321@kindex target sparclite
15322@item target sparclite @var{dev}
15323Fujitsu sparclite boards, used only for the purpose of loading.
15324You must use an additional command to debug the program.
15325For example: target remote @var{dev} using @value{GDBN} standard
15326remote protocol.
104c1213
JM
15327
15328@end table
15329
8e04817f
AC
15330@node Z8000
15331@subsection Zilog Z8000
104c1213 15332
8e04817f
AC
15333@cindex Z8000
15334@cindex simulator, Z8000
15335@cindex Zilog Z8000 simulator
104c1213 15336
8e04817f
AC
15337When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15338a Z8000 simulator.
15339
15340For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15341unsegmented variant of the Z8000 architecture) or the Z8001 (the
15342segmented variant). The simulator recognizes which architecture is
15343appropriate by inspecting the object code.
104c1213 15344
8e04817f
AC
15345@table @code
15346@item target sim @var{args}
15347@kindex sim
15348@kindex target sim@r{, with Z8000}
15349Debug programs on a simulated CPU. If the simulator supports setup
15350options, specify them via @var{args}.
104c1213
JM
15351@end table
15352
8e04817f
AC
15353@noindent
15354After specifying this target, you can debug programs for the simulated
15355CPU in the same style as programs for your host computer; use the
15356@code{file} command to load a new program image, the @code{run} command
15357to run your program, and so on.
15358
15359As well as making available all the usual machine registers
15360(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15361additional items of information as specially named registers:
104c1213
JM
15362
15363@table @code
15364
8e04817f
AC
15365@item cycles
15366Counts clock-ticks in the simulator.
104c1213 15367
8e04817f
AC
15368@item insts
15369Counts instructions run in the simulator.
104c1213 15370
8e04817f
AC
15371@item time
15372Execution time in 60ths of a second.
104c1213 15373
8e04817f 15374@end table
104c1213 15375
8e04817f
AC
15376You can refer to these values in @value{GDBN} expressions with the usual
15377conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15378conditional breakpoint that suspends only after at least 5000
15379simulated clock ticks.
104c1213 15380
a64548ea
EZ
15381@node AVR
15382@subsection Atmel AVR
15383@cindex AVR
15384
15385When configured for debugging the Atmel AVR, @value{GDBN} supports the
15386following AVR-specific commands:
15387
15388@table @code
15389@item info io_registers
15390@kindex info io_registers@r{, AVR}
15391@cindex I/O registers (Atmel AVR)
15392This command displays information about the AVR I/O registers. For
15393each register, @value{GDBN} prints its number and value.
15394@end table
15395
15396@node CRIS
15397@subsection CRIS
15398@cindex CRIS
15399
15400When configured for debugging CRIS, @value{GDBN} provides the
15401following CRIS-specific commands:
15402
15403@table @code
15404@item set cris-version @var{ver}
15405@cindex CRIS version
e22e55c9
OF
15406Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15407The CRIS version affects register names and sizes. This command is useful in
15408case autodetection of the CRIS version fails.
a64548ea
EZ
15409
15410@item show cris-version
15411Show the current CRIS version.
15412
15413@item set cris-dwarf2-cfi
15414@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15415Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15416Change to @samp{off} when using @code{gcc-cris} whose version is below
15417@code{R59}.
a64548ea
EZ
15418
15419@item show cris-dwarf2-cfi
15420Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15421
15422@item set cris-mode @var{mode}
15423@cindex CRIS mode
15424Set the current CRIS mode to @var{mode}. It should only be changed when
15425debugging in guru mode, in which case it should be set to
15426@samp{guru} (the default is @samp{normal}).
15427
15428@item show cris-mode
15429Show the current CRIS mode.
a64548ea
EZ
15430@end table
15431
15432@node Super-H
15433@subsection Renesas Super-H
15434@cindex Super-H
15435
15436For the Renesas Super-H processor, @value{GDBN} provides these
15437commands:
15438
15439@table @code
15440@item regs
15441@kindex regs@r{, Super-H}
15442Show the values of all Super-H registers.
15443@end table
15444
15445
8e04817f
AC
15446@node Architectures
15447@section Architectures
104c1213 15448
8e04817f
AC
15449This section describes characteristics of architectures that affect
15450all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15451
8e04817f 15452@menu
9c16f35a 15453* i386::
8e04817f
AC
15454* A29K::
15455* Alpha::
15456* MIPS::
a64548ea 15457* HPPA:: HP PA architecture
23d964e7 15458* SPU:: Cell Broadband Engine SPU architecture
8e04817f 15459@end menu
104c1213 15460
9c16f35a 15461@node i386
db2e3e2e 15462@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15463
15464@table @code
15465@item set struct-convention @var{mode}
15466@kindex set struct-convention
15467@cindex struct return convention
15468@cindex struct/union returned in registers
15469Set the convention used by the inferior to return @code{struct}s and
15470@code{union}s from functions to @var{mode}. Possible values of
15471@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15472default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15473are returned on the stack, while @code{"reg"} means that a
15474@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15475be returned in a register.
15476
15477@item show struct-convention
15478@kindex show struct-convention
15479Show the current setting of the convention to return @code{struct}s
15480from functions.
15481@end table
15482
8e04817f
AC
15483@node A29K
15484@subsection A29K
104c1213
JM
15485
15486@table @code
104c1213 15487
8e04817f
AC
15488@kindex set rstack_high_address
15489@cindex AMD 29K register stack
15490@cindex register stack, AMD29K
15491@item set rstack_high_address @var{address}
15492On AMD 29000 family processors, registers are saved in a separate
15493@dfn{register stack}. There is no way for @value{GDBN} to determine the
15494extent of this stack. Normally, @value{GDBN} just assumes that the
15495stack is ``large enough''. This may result in @value{GDBN} referencing
15496memory locations that do not exist. If necessary, you can get around
15497this problem by specifying the ending address of the register stack with
15498the @code{set rstack_high_address} command. The argument should be an
15499address, which you probably want to precede with @samp{0x} to specify in
15500hexadecimal.
104c1213 15501
8e04817f
AC
15502@kindex show rstack_high_address
15503@item show rstack_high_address
15504Display the current limit of the register stack, on AMD 29000 family
15505processors.
104c1213 15506
8e04817f 15507@end table
104c1213 15508
8e04817f
AC
15509@node Alpha
15510@subsection Alpha
104c1213 15511
8e04817f 15512See the following section.
104c1213 15513
8e04817f
AC
15514@node MIPS
15515@subsection MIPS
104c1213 15516
8e04817f
AC
15517@cindex stack on Alpha
15518@cindex stack on MIPS
15519@cindex Alpha stack
15520@cindex MIPS stack
15521Alpha- and MIPS-based computers use an unusual stack frame, which
15522sometimes requires @value{GDBN} to search backward in the object code to
15523find the beginning of a function.
104c1213 15524
8e04817f
AC
15525@cindex response time, MIPS debugging
15526To improve response time (especially for embedded applications, where
15527@value{GDBN} may be restricted to a slow serial line for this search)
15528you may want to limit the size of this search, using one of these
15529commands:
104c1213 15530
8e04817f
AC
15531@table @code
15532@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15533@item set heuristic-fence-post @var{limit}
15534Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15535search for the beginning of a function. A value of @var{0} (the
15536default) means there is no limit. However, except for @var{0}, the
15537larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15538and therefore the longer it takes to run. You should only need to use
15539this command when debugging a stripped executable.
104c1213 15540
8e04817f
AC
15541@item show heuristic-fence-post
15542Display the current limit.
15543@end table
104c1213
JM
15544
15545@noindent
8e04817f
AC
15546These commands are available @emph{only} when @value{GDBN} is configured
15547for debugging programs on Alpha or MIPS processors.
104c1213 15548
a64548ea
EZ
15549Several MIPS-specific commands are available when debugging MIPS
15550programs:
15551
15552@table @code
a64548ea
EZ
15553@item set mips abi @var{arg}
15554@kindex set mips abi
15555@cindex set ABI for MIPS
15556Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15557values of @var{arg} are:
15558
15559@table @samp
15560@item auto
15561The default ABI associated with the current binary (this is the
15562default).
15563@item o32
15564@item o64
15565@item n32
15566@item n64
15567@item eabi32
15568@item eabi64
15569@item auto
15570@end table
15571
15572@item show mips abi
15573@kindex show mips abi
15574Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15575
15576@item set mipsfpu
15577@itemx show mipsfpu
15578@xref{MIPS Embedded, set mipsfpu}.
15579
15580@item set mips mask-address @var{arg}
15581@kindex set mips mask-address
15582@cindex MIPS addresses, masking
15583This command determines whether the most-significant 32 bits of 64-bit
15584MIPS addresses are masked off. The argument @var{arg} can be
15585@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15586setting, which lets @value{GDBN} determine the correct value.
15587
15588@item show mips mask-address
15589@kindex show mips mask-address
15590Show whether the upper 32 bits of MIPS addresses are masked off or
15591not.
15592
15593@item set remote-mips64-transfers-32bit-regs
15594@kindex set remote-mips64-transfers-32bit-regs
15595This command controls compatibility with 64-bit MIPS targets that
15596transfer data in 32-bit quantities. If you have an old MIPS 64 target
15597that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15598and 64 bits for other registers, set this option to @samp{on}.
15599
15600@item show remote-mips64-transfers-32bit-regs
15601@kindex show remote-mips64-transfers-32bit-regs
15602Show the current setting of compatibility with older MIPS 64 targets.
15603
15604@item set debug mips
15605@kindex set debug mips
15606This command turns on and off debugging messages for the MIPS-specific
15607target code in @value{GDBN}.
15608
15609@item show debug mips
15610@kindex show debug mips
15611Show the current setting of MIPS debugging messages.
15612@end table
15613
15614
15615@node HPPA
15616@subsection HPPA
15617@cindex HPPA support
15618
d3e8051b 15619When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15620following special commands:
15621
15622@table @code
15623@item set debug hppa
15624@kindex set debug hppa
db2e3e2e 15625This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15626messages are to be displayed.
15627
15628@item show debug hppa
15629Show whether HPPA debugging messages are displayed.
15630
15631@item maint print unwind @var{address}
15632@kindex maint print unwind@r{, HPPA}
15633This command displays the contents of the unwind table entry at the
15634given @var{address}.
15635
15636@end table
15637
104c1213 15638
23d964e7
UW
15639@node SPU
15640@subsection Cell Broadband Engine SPU architecture
15641@cindex Cell Broadband Engine
15642@cindex SPU
15643
15644When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15645it provides the following special commands:
15646
15647@table @code
15648@item info spu event
15649@kindex info spu
15650Display SPU event facility status. Shows current event mask
15651and pending event status.
15652
15653@item info spu signal
15654Display SPU signal notification facility status. Shows pending
15655signal-control word and signal notification mode of both signal
15656notification channels.
15657
15658@item info spu mailbox
15659Display SPU mailbox facility status. Shows all pending entries,
15660in order of processing, in each of the SPU Write Outbound,
15661SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15662
15663@item info spu dma
15664Display MFC DMA status. Shows all pending commands in the MFC
15665DMA queue. For each entry, opcode, tag, class IDs, effective
15666and local store addresses and transfer size are shown.
15667
15668@item info spu proxydma
15669Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15670Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15671and local store addresses and transfer size are shown.
15672
15673@end table
15674
15675
8e04817f
AC
15676@node Controlling GDB
15677@chapter Controlling @value{GDBN}
15678
15679You can alter the way @value{GDBN} interacts with you by using the
15680@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15681data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15682described here.
15683
15684@menu
15685* Prompt:: Prompt
15686* Editing:: Command editing
d620b259 15687* Command History:: Command history
8e04817f
AC
15688* Screen Size:: Screen size
15689* Numbers:: Numbers
1e698235 15690* ABI:: Configuring the current ABI
8e04817f
AC
15691* Messages/Warnings:: Optional warnings and messages
15692* Debugging Output:: Optional messages about internal happenings
15693@end menu
15694
15695@node Prompt
15696@section Prompt
104c1213 15697
8e04817f 15698@cindex prompt
104c1213 15699
8e04817f
AC
15700@value{GDBN} indicates its readiness to read a command by printing a string
15701called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15702can change the prompt string with the @code{set prompt} command. For
15703instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15704the prompt in one of the @value{GDBN} sessions so that you can always tell
15705which one you are talking to.
104c1213 15706
8e04817f
AC
15707@emph{Note:} @code{set prompt} does not add a space for you after the
15708prompt you set. This allows you to set a prompt which ends in a space
15709or a prompt that does not.
104c1213 15710
8e04817f
AC
15711@table @code
15712@kindex set prompt
15713@item set prompt @var{newprompt}
15714Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15715
8e04817f
AC
15716@kindex show prompt
15717@item show prompt
15718Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15719@end table
15720
8e04817f 15721@node Editing
79a6e687 15722@section Command Editing
8e04817f
AC
15723@cindex readline
15724@cindex command line editing
104c1213 15725
703663ab 15726@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15727@sc{gnu} library provides consistent behavior for programs which provide a
15728command line interface to the user. Advantages are @sc{gnu} Emacs-style
15729or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15730substitution, and a storage and recall of command history across
15731debugging sessions.
104c1213 15732
8e04817f
AC
15733You may control the behavior of command line editing in @value{GDBN} with the
15734command @code{set}.
104c1213 15735
8e04817f
AC
15736@table @code
15737@kindex set editing
15738@cindex editing
15739@item set editing
15740@itemx set editing on
15741Enable command line editing (enabled by default).
104c1213 15742
8e04817f
AC
15743@item set editing off
15744Disable command line editing.
104c1213 15745
8e04817f
AC
15746@kindex show editing
15747@item show editing
15748Show whether command line editing is enabled.
104c1213
JM
15749@end table
15750
703663ab
EZ
15751@xref{Command Line Editing}, for more details about the Readline
15752interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15753encouraged to read that chapter.
15754
d620b259 15755@node Command History
79a6e687 15756@section Command History
703663ab 15757@cindex command history
8e04817f
AC
15758
15759@value{GDBN} can keep track of the commands you type during your
15760debugging sessions, so that you can be certain of precisely what
15761happened. Use these commands to manage the @value{GDBN} command
15762history facility.
104c1213 15763
703663ab
EZ
15764@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15765package, to provide the history facility. @xref{Using History
15766Interactively}, for the detailed description of the History library.
15767
d620b259 15768To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15769the state which is seen by users, prefix it with @samp{server }
15770(@pxref{Server Prefix}). This
d620b259
NR
15771means that this command will not affect the command history, nor will it
15772affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15773pressed on a line by itself.
15774
15775@cindex @code{server}, command prefix
15776The server prefix does not affect the recording of values into the value
15777history; to print a value without recording it into the value history,
15778use the @code{output} command instead of the @code{print} command.
15779
703663ab
EZ
15780Here is the description of @value{GDBN} commands related to command
15781history.
15782
104c1213 15783@table @code
8e04817f
AC
15784@cindex history substitution
15785@cindex history file
15786@kindex set history filename
4644b6e3 15787@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15788@item set history filename @var{fname}
15789Set the name of the @value{GDBN} command history file to @var{fname}.
15790This is the file where @value{GDBN} reads an initial command history
15791list, and where it writes the command history from this session when it
15792exits. You can access this list through history expansion or through
15793the history command editing characters listed below. This file defaults
15794to the value of the environment variable @code{GDBHISTFILE}, or to
15795@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15796is not set.
104c1213 15797
9c16f35a
EZ
15798@cindex save command history
15799@kindex set history save
8e04817f
AC
15800@item set history save
15801@itemx set history save on
15802Record command history in a file, whose name may be specified with the
15803@code{set history filename} command. By default, this option is disabled.
104c1213 15804
8e04817f
AC
15805@item set history save off
15806Stop recording command history in a file.
104c1213 15807
8e04817f 15808@cindex history size
9c16f35a 15809@kindex set history size
6fc08d32 15810@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15811@item set history size @var{size}
15812Set the number of commands which @value{GDBN} keeps in its history list.
15813This defaults to the value of the environment variable
15814@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15815@end table
15816
8e04817f 15817History expansion assigns special meaning to the character @kbd{!}.
703663ab 15818@xref{Event Designators}, for more details.
8e04817f 15819
703663ab 15820@cindex history expansion, turn on/off
8e04817f
AC
15821Since @kbd{!} is also the logical not operator in C, history expansion
15822is off by default. If you decide to enable history expansion with the
15823@code{set history expansion on} command, you may sometimes need to
15824follow @kbd{!} (when it is used as logical not, in an expression) with
15825a space or a tab to prevent it from being expanded. The readline
15826history facilities do not attempt substitution on the strings
15827@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15828
15829The commands to control history expansion are:
104c1213
JM
15830
15831@table @code
8e04817f
AC
15832@item set history expansion on
15833@itemx set history expansion
703663ab 15834@kindex set history expansion
8e04817f 15835Enable history expansion. History expansion is off by default.
104c1213 15836
8e04817f
AC
15837@item set history expansion off
15838Disable history expansion.
104c1213 15839
8e04817f
AC
15840@c @group
15841@kindex show history
15842@item show history
15843@itemx show history filename
15844@itemx show history save
15845@itemx show history size
15846@itemx show history expansion
15847These commands display the state of the @value{GDBN} history parameters.
15848@code{show history} by itself displays all four states.
15849@c @end group
15850@end table
15851
15852@table @code
9c16f35a
EZ
15853@kindex show commands
15854@cindex show last commands
15855@cindex display command history
8e04817f
AC
15856@item show commands
15857Display the last ten commands in the command history.
104c1213 15858
8e04817f
AC
15859@item show commands @var{n}
15860Print ten commands centered on command number @var{n}.
15861
15862@item show commands +
15863Print ten commands just after the commands last printed.
104c1213
JM
15864@end table
15865
8e04817f 15866@node Screen Size
79a6e687 15867@section Screen Size
8e04817f
AC
15868@cindex size of screen
15869@cindex pauses in output
104c1213 15870
8e04817f
AC
15871Certain commands to @value{GDBN} may produce large amounts of
15872information output to the screen. To help you read all of it,
15873@value{GDBN} pauses and asks you for input at the end of each page of
15874output. Type @key{RET} when you want to continue the output, or @kbd{q}
15875to discard the remaining output. Also, the screen width setting
15876determines when to wrap lines of output. Depending on what is being
15877printed, @value{GDBN} tries to break the line at a readable place,
15878rather than simply letting it overflow onto the following line.
15879
15880Normally @value{GDBN} knows the size of the screen from the terminal
15881driver software. For example, on Unix @value{GDBN} uses the termcap data base
15882together with the value of the @code{TERM} environment variable and the
15883@code{stty rows} and @code{stty cols} settings. If this is not correct,
15884you can override it with the @code{set height} and @code{set
15885width} commands:
15886
15887@table @code
15888@kindex set height
15889@kindex set width
15890@kindex show width
15891@kindex show height
15892@item set height @var{lpp}
15893@itemx show height
15894@itemx set width @var{cpl}
15895@itemx show width
15896These @code{set} commands specify a screen height of @var{lpp} lines and
15897a screen width of @var{cpl} characters. The associated @code{show}
15898commands display the current settings.
104c1213 15899
8e04817f
AC
15900If you specify a height of zero lines, @value{GDBN} does not pause during
15901output no matter how long the output is. This is useful if output is to a
15902file or to an editor buffer.
104c1213 15903
8e04817f
AC
15904Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
15905from wrapping its output.
9c16f35a
EZ
15906
15907@item set pagination on
15908@itemx set pagination off
15909@kindex set pagination
15910Turn the output pagination on or off; the default is on. Turning
15911pagination off is the alternative to @code{set height 0}.
15912
15913@item show pagination
15914@kindex show pagination
15915Show the current pagination mode.
104c1213
JM
15916@end table
15917
8e04817f
AC
15918@node Numbers
15919@section Numbers
15920@cindex number representation
15921@cindex entering numbers
104c1213 15922
8e04817f
AC
15923You can always enter numbers in octal, decimal, or hexadecimal in
15924@value{GDBN} by the usual conventions: octal numbers begin with
15925@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
15926begin with @samp{0x}. Numbers that neither begin with @samp{0} or
15927@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1592810; likewise, the default display for numbers---when no particular
15929format is specified---is base 10. You can change the default base for
15930both input and output with the commands described below.
104c1213 15931
8e04817f
AC
15932@table @code
15933@kindex set input-radix
15934@item set input-radix @var{base}
15935Set the default base for numeric input. Supported choices
15936for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15937specified either unambiguously or using the current input radix; for
8e04817f 15938example, any of
104c1213 15939
8e04817f 15940@smallexample
9c16f35a
EZ
15941set input-radix 012
15942set input-radix 10.
15943set input-radix 0xa
8e04817f 15944@end smallexample
104c1213 15945
8e04817f 15946@noindent
9c16f35a 15947sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
15948leaves the input radix unchanged, no matter what it was, since
15949@samp{10}, being without any leading or trailing signs of its base, is
15950interpreted in the current radix. Thus, if the current radix is 16,
15951@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
15952change the radix.
104c1213 15953
8e04817f
AC
15954@kindex set output-radix
15955@item set output-radix @var{base}
15956Set the default base for numeric display. Supported choices
15957for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15958specified either unambiguously or using the current input radix.
104c1213 15959
8e04817f
AC
15960@kindex show input-radix
15961@item show input-radix
15962Display the current default base for numeric input.
104c1213 15963
8e04817f
AC
15964@kindex show output-radix
15965@item show output-radix
15966Display the current default base for numeric display.
9c16f35a
EZ
15967
15968@item set radix @r{[}@var{base}@r{]}
15969@itemx show radix
15970@kindex set radix
15971@kindex show radix
15972These commands set and show the default base for both input and output
15973of numbers. @code{set radix} sets the radix of input and output to
15974the same base; without an argument, it resets the radix back to its
15975default value of 10.
15976
8e04817f 15977@end table
104c1213 15978
1e698235 15979@node ABI
79a6e687 15980@section Configuring the Current ABI
1e698235
DJ
15981
15982@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
15983application automatically. However, sometimes you need to override its
15984conclusions. Use these commands to manage @value{GDBN}'s view of the
15985current ABI.
15986
98b45e30
DJ
15987@cindex OS ABI
15988@kindex set osabi
b4e9345d 15989@kindex show osabi
98b45e30
DJ
15990
15991One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 15992system targets, either via remote debugging or native emulation.
98b45e30
DJ
15993@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
15994but you can override its conclusion using the @code{set osabi} command.
15995One example where this is useful is in debugging of binaries which use
15996an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
15997not have the same identifying marks that the standard C library for your
15998platform provides.
15999
16000@table @code
16001@item show osabi
16002Show the OS ABI currently in use.
16003
16004@item set osabi
16005With no argument, show the list of registered available OS ABI's.
16006
16007@item set osabi @var{abi}
16008Set the current OS ABI to @var{abi}.
16009@end table
16010
1e698235 16011@cindex float promotion
1e698235
DJ
16012
16013Generally, the way that an argument of type @code{float} is passed to a
16014function depends on whether the function is prototyped. For a prototyped
16015(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16016according to the architecture's convention for @code{float}. For unprototyped
16017(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16018@code{double} and then passed.
16019
16020Unfortunately, some forms of debug information do not reliably indicate whether
16021a function is prototyped. If @value{GDBN} calls a function that is not marked
16022as prototyped, it consults @kbd{set coerce-float-to-double}.
16023
16024@table @code
a8f24a35 16025@kindex set coerce-float-to-double
1e698235
DJ
16026@item set coerce-float-to-double
16027@itemx set coerce-float-to-double on
16028Arguments of type @code{float} will be promoted to @code{double} when passed
16029to an unprototyped function. This is the default setting.
16030
16031@item set coerce-float-to-double off
16032Arguments of type @code{float} will be passed directly to unprototyped
16033functions.
9c16f35a
EZ
16034
16035@kindex show coerce-float-to-double
16036@item show coerce-float-to-double
16037Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16038@end table
16039
f1212245
DJ
16040@kindex set cp-abi
16041@kindex show cp-abi
16042@value{GDBN} needs to know the ABI used for your program's C@t{++}
16043objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16044used to build your application. @value{GDBN} only fully supports
16045programs with a single C@t{++} ABI; if your program contains code using
16046multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16047program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16048Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16049before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16050``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16051use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16052``auto''.
16053
16054@table @code
16055@item show cp-abi
16056Show the C@t{++} ABI currently in use.
16057
16058@item set cp-abi
16059With no argument, show the list of supported C@t{++} ABI's.
16060
16061@item set cp-abi @var{abi}
16062@itemx set cp-abi auto
16063Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16064@end table
16065
8e04817f 16066@node Messages/Warnings
79a6e687 16067@section Optional Warnings and Messages
104c1213 16068
9c16f35a
EZ
16069@cindex verbose operation
16070@cindex optional warnings
8e04817f
AC
16071By default, @value{GDBN} is silent about its inner workings. If you are
16072running on a slow machine, you may want to use the @code{set verbose}
16073command. This makes @value{GDBN} tell you when it does a lengthy
16074internal operation, so you will not think it has crashed.
104c1213 16075
8e04817f
AC
16076Currently, the messages controlled by @code{set verbose} are those
16077which announce that the symbol table for a source file is being read;
79a6e687 16078see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16079
8e04817f
AC
16080@table @code
16081@kindex set verbose
16082@item set verbose on
16083Enables @value{GDBN} output of certain informational messages.
104c1213 16084
8e04817f
AC
16085@item set verbose off
16086Disables @value{GDBN} output of certain informational messages.
104c1213 16087
8e04817f
AC
16088@kindex show verbose
16089@item show verbose
16090Displays whether @code{set verbose} is on or off.
16091@end table
104c1213 16092
8e04817f
AC
16093By default, if @value{GDBN} encounters bugs in the symbol table of an
16094object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16095find this information useful (@pxref{Symbol Errors, ,Errors Reading
16096Symbol Files}).
104c1213 16097
8e04817f 16098@table @code
104c1213 16099
8e04817f
AC
16100@kindex set complaints
16101@item set complaints @var{limit}
16102Permits @value{GDBN} to output @var{limit} complaints about each type of
16103unusual symbols before becoming silent about the problem. Set
16104@var{limit} to zero to suppress all complaints; set it to a large number
16105to prevent complaints from being suppressed.
104c1213 16106
8e04817f
AC
16107@kindex show complaints
16108@item show complaints
16109Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16110
8e04817f 16111@end table
104c1213 16112
8e04817f
AC
16113By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16114lot of stupid questions to confirm certain commands. For example, if
16115you try to run a program which is already running:
104c1213 16116
474c8240 16117@smallexample
8e04817f
AC
16118(@value{GDBP}) run
16119The program being debugged has been started already.
16120Start it from the beginning? (y or n)
474c8240 16121@end smallexample
104c1213 16122
8e04817f
AC
16123If you are willing to unflinchingly face the consequences of your own
16124commands, you can disable this ``feature'':
104c1213 16125
8e04817f 16126@table @code
104c1213 16127
8e04817f
AC
16128@kindex set confirm
16129@cindex flinching
16130@cindex confirmation
16131@cindex stupid questions
16132@item set confirm off
16133Disables confirmation requests.
104c1213 16134
8e04817f
AC
16135@item set confirm on
16136Enables confirmation requests (the default).
104c1213 16137
8e04817f
AC
16138@kindex show confirm
16139@item show confirm
16140Displays state of confirmation requests.
16141
16142@end table
104c1213 16143
16026cd7
AS
16144@cindex command tracing
16145If you need to debug user-defined commands or sourced files you may find it
16146useful to enable @dfn{command tracing}. In this mode each command will be
16147printed as it is executed, prefixed with one or more @samp{+} symbols, the
16148quantity denoting the call depth of each command.
16149
16150@table @code
16151@kindex set trace-commands
16152@cindex command scripts, debugging
16153@item set trace-commands on
16154Enable command tracing.
16155@item set trace-commands off
16156Disable command tracing.
16157@item show trace-commands
16158Display the current state of command tracing.
16159@end table
16160
8e04817f 16161@node Debugging Output
79a6e687 16162@section Optional Messages about Internal Happenings
4644b6e3
EZ
16163@cindex optional debugging messages
16164
da316a69
EZ
16165@value{GDBN} has commands that enable optional debugging messages from
16166various @value{GDBN} subsystems; normally these commands are of
16167interest to @value{GDBN} maintainers, or when reporting a bug. This
16168section documents those commands.
16169
104c1213 16170@table @code
a8f24a35
EZ
16171@kindex set exec-done-display
16172@item set exec-done-display
16173Turns on or off the notification of asynchronous commands'
16174completion. When on, @value{GDBN} will print a message when an
16175asynchronous command finishes its execution. The default is off.
16176@kindex show exec-done-display
16177@item show exec-done-display
16178Displays the current setting of asynchronous command completion
16179notification.
4644b6e3
EZ
16180@kindex set debug
16181@cindex gdbarch debugging info
a8f24a35 16182@cindex architecture debugging info
8e04817f 16183@item set debug arch
a8f24a35 16184Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16185@kindex show debug
8e04817f
AC
16186@item show debug arch
16187Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16188@item set debug aix-thread
16189@cindex AIX threads
16190Display debugging messages about inner workings of the AIX thread
16191module.
16192@item show debug aix-thread
16193Show the current state of AIX thread debugging info display.
8e04817f 16194@item set debug event
4644b6e3 16195@cindex event debugging info
a8f24a35 16196Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16197default is off.
8e04817f
AC
16198@item show debug event
16199Displays the current state of displaying @value{GDBN} event debugging
16200info.
8e04817f 16201@item set debug expression
4644b6e3 16202@cindex expression debugging info
721c2651
EZ
16203Turns on or off display of debugging info about @value{GDBN}
16204expression parsing. The default is off.
8e04817f 16205@item show debug expression
721c2651
EZ
16206Displays the current state of displaying debugging info about
16207@value{GDBN} expression parsing.
7453dc06 16208@item set debug frame
4644b6e3 16209@cindex frame debugging info
7453dc06
AC
16210Turns on or off display of @value{GDBN} frame debugging info. The
16211default is off.
7453dc06
AC
16212@item show debug frame
16213Displays the current state of displaying @value{GDBN} frame debugging
16214info.
30e91e0b
RC
16215@item set debug infrun
16216@cindex inferior debugging info
16217Turns on or off display of @value{GDBN} debugging info for running the inferior.
16218The default is off. @file{infrun.c} contains GDB's runtime state machine used
16219for implementing operations such as single-stepping the inferior.
16220@item show debug infrun
16221Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16222@item set debug lin-lwp
16223@cindex @sc{gnu}/Linux LWP debug messages
16224@cindex Linux lightweight processes
721c2651 16225Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16226@item show debug lin-lwp
16227Show the current state of Linux LWP debugging messages.
2b4855ab 16228@item set debug observer
4644b6e3 16229@cindex observer debugging info
2b4855ab
AC
16230Turns on or off display of @value{GDBN} observer debugging. This
16231includes info such as the notification of observable events.
2b4855ab
AC
16232@item show debug observer
16233Displays the current state of observer debugging.
8e04817f 16234@item set debug overload
4644b6e3 16235@cindex C@t{++} overload debugging info
8e04817f 16236Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16237info. This includes info such as ranking of functions, etc. The default
8e04817f 16238is off.
8e04817f
AC
16239@item show debug overload
16240Displays the current state of displaying @value{GDBN} C@t{++} overload
16241debugging info.
8e04817f
AC
16242@cindex packets, reporting on stdout
16243@cindex serial connections, debugging
605a56cb
DJ
16244@cindex debug remote protocol
16245@cindex remote protocol debugging
16246@cindex display remote packets
8e04817f
AC
16247@item set debug remote
16248Turns on or off display of reports on all packets sent back and forth across
16249the serial line to the remote machine. The info is printed on the
16250@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16251@item show debug remote
16252Displays the state of display of remote packets.
8e04817f
AC
16253@item set debug serial
16254Turns on or off display of @value{GDBN} serial debugging info. The
16255default is off.
8e04817f
AC
16256@item show debug serial
16257Displays the current state of displaying @value{GDBN} serial debugging
16258info.
c45da7e6
EZ
16259@item set debug solib-frv
16260@cindex FR-V shared-library debugging
16261Turns on or off debugging messages for FR-V shared-library code.
16262@item show debug solib-frv
16263Display the current state of FR-V shared-library code debugging
16264messages.
8e04817f 16265@item set debug target
4644b6e3 16266@cindex target debugging info
8e04817f
AC
16267Turns on or off display of @value{GDBN} target debugging info. This info
16268includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16269default is 0. Set it to 1 to track events, and to 2 to also track the
16270value of large memory transfers. Changes to this flag do not take effect
16271until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16272@item show debug target
16273Displays the current state of displaying @value{GDBN} target debugging
16274info.
c45da7e6 16275@item set debugvarobj
4644b6e3 16276@cindex variable object debugging info
8e04817f
AC
16277Turns on or off display of @value{GDBN} variable object debugging
16278info. The default is off.
c45da7e6 16279@item show debugvarobj
8e04817f
AC
16280Displays the current state of displaying @value{GDBN} variable object
16281debugging info.
e776119f
DJ
16282@item set debug xml
16283@cindex XML parser debugging
16284Turns on or off debugging messages for built-in XML parsers.
16285@item show debug xml
16286Displays the current state of XML debugging messages.
8e04817f 16287@end table
104c1213 16288
8e04817f
AC
16289@node Sequences
16290@chapter Canned Sequences of Commands
104c1213 16291
8e04817f 16292Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16293Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16294commands for execution as a unit: user-defined commands and command
16295files.
104c1213 16296
8e04817f 16297@menu
fcc73fe3
EZ
16298* Define:: How to define your own commands
16299* Hooks:: Hooks for user-defined commands
16300* Command Files:: How to write scripts of commands to be stored in a file
16301* Output:: Commands for controlled output
8e04817f 16302@end menu
104c1213 16303
8e04817f 16304@node Define
79a6e687 16305@section User-defined Commands
104c1213 16306
8e04817f 16307@cindex user-defined command
fcc73fe3 16308@cindex arguments, to user-defined commands
8e04817f
AC
16309A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16310which you assign a new name as a command. This is done with the
16311@code{define} command. User commands may accept up to 10 arguments
16312separated by whitespace. Arguments are accessed within the user command
c03c782f 16313via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16314
8e04817f
AC
16315@smallexample
16316define adder
16317 print $arg0 + $arg1 + $arg2
c03c782f 16318end
8e04817f 16319@end smallexample
104c1213
JM
16320
16321@noindent
8e04817f 16322To execute the command use:
104c1213 16323
8e04817f
AC
16324@smallexample
16325adder 1 2 3
16326@end smallexample
104c1213 16327
8e04817f
AC
16328@noindent
16329This defines the command @code{adder}, which prints the sum of
16330its three arguments. Note the arguments are text substitutions, so they may
16331reference variables, use complex expressions, or even perform inferior
16332functions calls.
104c1213 16333
fcc73fe3
EZ
16334@cindex argument count in user-defined commands
16335@cindex how many arguments (user-defined commands)
c03c782f
AS
16336In addition, @code{$argc} may be used to find out how many arguments have
16337been passed. This expands to a number in the range 0@dots{}10.
16338
16339@smallexample
16340define adder
16341 if $argc == 2
16342 print $arg0 + $arg1
16343 end
16344 if $argc == 3
16345 print $arg0 + $arg1 + $arg2
16346 end
16347end
16348@end smallexample
16349
104c1213 16350@table @code
104c1213 16351
8e04817f
AC
16352@kindex define
16353@item define @var{commandname}
16354Define a command named @var{commandname}. If there is already a command
16355by that name, you are asked to confirm that you want to redefine it.
104c1213 16356
8e04817f
AC
16357The definition of the command is made up of other @value{GDBN} command lines,
16358which are given following the @code{define} command. The end of these
16359commands is marked by a line containing @code{end}.
104c1213 16360
8e04817f 16361@kindex document
ca91424e 16362@kindex end@r{ (user-defined commands)}
8e04817f
AC
16363@item document @var{commandname}
16364Document the user-defined command @var{commandname}, so that it can be
16365accessed by @code{help}. The command @var{commandname} must already be
16366defined. This command reads lines of documentation just as @code{define}
16367reads the lines of the command definition, ending with @code{end}.
16368After the @code{document} command is finished, @code{help} on command
16369@var{commandname} displays the documentation you have written.
104c1213 16370
8e04817f
AC
16371You may use the @code{document} command again to change the
16372documentation of a command. Redefining the command with @code{define}
16373does not change the documentation.
104c1213 16374
c45da7e6
EZ
16375@kindex dont-repeat
16376@cindex don't repeat command
16377@item dont-repeat
16378Used inside a user-defined command, this tells @value{GDBN} that this
16379command should not be repeated when the user hits @key{RET}
16380(@pxref{Command Syntax, repeat last command}).
16381
8e04817f
AC
16382@kindex help user-defined
16383@item help user-defined
16384List all user-defined commands, with the first line of the documentation
16385(if any) for each.
104c1213 16386
8e04817f
AC
16387@kindex show user
16388@item show user
16389@itemx show user @var{commandname}
16390Display the @value{GDBN} commands used to define @var{commandname} (but
16391not its documentation). If no @var{commandname} is given, display the
16392definitions for all user-defined commands.
104c1213 16393
fcc73fe3 16394@cindex infinite recursion in user-defined commands
20f01a46
DH
16395@kindex show max-user-call-depth
16396@kindex set max-user-call-depth
16397@item show max-user-call-depth
5ca0cb28
DH
16398@itemx set max-user-call-depth
16399The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16400levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16401infinite recursion and aborts the command.
104c1213
JM
16402@end table
16403
fcc73fe3
EZ
16404In addition to the above commands, user-defined commands frequently
16405use control flow commands, described in @ref{Command Files}.
16406
8e04817f
AC
16407When user-defined commands are executed, the
16408commands of the definition are not printed. An error in any command
16409stops execution of the user-defined command.
104c1213 16410
8e04817f
AC
16411If used interactively, commands that would ask for confirmation proceed
16412without asking when used inside a user-defined command. Many @value{GDBN}
16413commands that normally print messages to say what they are doing omit the
16414messages when used in a user-defined command.
104c1213 16415
8e04817f 16416@node Hooks
79a6e687 16417@section User-defined Command Hooks
8e04817f
AC
16418@cindex command hooks
16419@cindex hooks, for commands
16420@cindex hooks, pre-command
104c1213 16421
8e04817f 16422@kindex hook
8e04817f
AC
16423You may define @dfn{hooks}, which are a special kind of user-defined
16424command. Whenever you run the command @samp{foo}, if the user-defined
16425command @samp{hook-foo} exists, it is executed (with no arguments)
16426before that command.
104c1213 16427
8e04817f
AC
16428@cindex hooks, post-command
16429@kindex hookpost
8e04817f
AC
16430A hook may also be defined which is run after the command you executed.
16431Whenever you run the command @samp{foo}, if the user-defined command
16432@samp{hookpost-foo} exists, it is executed (with no arguments) after
16433that command. Post-execution hooks may exist simultaneously with
16434pre-execution hooks, for the same command.
104c1213 16435
8e04817f 16436It is valid for a hook to call the command which it hooks. If this
9f1c6395 16437occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16438
8e04817f
AC
16439@c It would be nice if hookpost could be passed a parameter indicating
16440@c if the command it hooks executed properly or not. FIXME!
104c1213 16441
8e04817f
AC
16442@kindex stop@r{, a pseudo-command}
16443In addition, a pseudo-command, @samp{stop} exists. Defining
16444(@samp{hook-stop}) makes the associated commands execute every time
16445execution stops in your program: before breakpoint commands are run,
16446displays are printed, or the stack frame is printed.
104c1213 16447
8e04817f
AC
16448For example, to ignore @code{SIGALRM} signals while
16449single-stepping, but treat them normally during normal execution,
16450you could define:
104c1213 16451
474c8240 16452@smallexample
8e04817f
AC
16453define hook-stop
16454handle SIGALRM nopass
16455end
104c1213 16456
8e04817f
AC
16457define hook-run
16458handle SIGALRM pass
16459end
104c1213 16460
8e04817f 16461define hook-continue
d3e8051b 16462handle SIGALRM pass
8e04817f 16463end
474c8240 16464@end smallexample
104c1213 16465
d3e8051b 16466As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16467command, and to add extra text to the beginning and end of the message,
8e04817f 16468you could define:
104c1213 16469
474c8240 16470@smallexample
8e04817f
AC
16471define hook-echo
16472echo <<<---
16473end
104c1213 16474
8e04817f
AC
16475define hookpost-echo
16476echo --->>>\n
16477end
104c1213 16478
8e04817f
AC
16479(@value{GDBP}) echo Hello World
16480<<<---Hello World--->>>
16481(@value{GDBP})
104c1213 16482
474c8240 16483@end smallexample
104c1213 16484
8e04817f
AC
16485You can define a hook for any single-word command in @value{GDBN}, but
16486not for command aliases; you should define a hook for the basic command
c1468174 16487name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16488@c FIXME! So how does Joe User discover whether a command is an alias
16489@c or not?
16490If an error occurs during the execution of your hook, execution of
16491@value{GDBN} commands stops and @value{GDBN} issues a prompt
16492(before the command that you actually typed had a chance to run).
104c1213 16493
8e04817f
AC
16494If you try to define a hook which does not match any known command, you
16495get a warning from the @code{define} command.
c906108c 16496
8e04817f 16497@node Command Files
79a6e687 16498@section Command Files
c906108c 16499
8e04817f 16500@cindex command files
fcc73fe3 16501@cindex scripting commands
6fc08d32
EZ
16502A command file for @value{GDBN} is a text file made of lines that are
16503@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16504also be included. An empty line in a command file does nothing; it
16505does not mean to repeat the last command, as it would from the
16506terminal.
c906108c 16507
6fc08d32
EZ
16508You can request the execution of a command file with the @code{source}
16509command:
c906108c 16510
8e04817f
AC
16511@table @code
16512@kindex source
ca91424e 16513@cindex execute commands from a file
16026cd7 16514@item source [@code{-v}] @var{filename}
8e04817f 16515Execute the command file @var{filename}.
c906108c
SS
16516@end table
16517
fcc73fe3
EZ
16518The lines in a command file are generally executed sequentially,
16519unless the order of execution is changed by one of the
16520@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16521printed as they are executed. An error in any command terminates
16522execution of the command file and control is returned to the console.
c906108c 16523
4b505b12
AS
16524@value{GDBN} searches for @var{filename} in the current directory and then
16525on the search path (specified with the @samp{directory} command).
16526
16026cd7
AS
16527If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16528each command as it is executed. The option must be given before
16529@var{filename}, and is interpreted as part of the filename anywhere else.
16530
8e04817f
AC
16531Commands that would ask for confirmation if used interactively proceed
16532without asking when used in a command file. Many @value{GDBN} commands that
16533normally print messages to say what they are doing omit the messages
16534when called from command files.
c906108c 16535
8e04817f
AC
16536@value{GDBN} also accepts command input from standard input. In this
16537mode, normal output goes to standard output and error output goes to
16538standard error. Errors in a command file supplied on standard input do
6fc08d32 16539not terminate execution of the command file---execution continues with
8e04817f 16540the next command.
c906108c 16541
474c8240 16542@smallexample
8e04817f 16543gdb < cmds > log 2>&1
474c8240 16544@end smallexample
c906108c 16545
8e04817f
AC
16546(The syntax above will vary depending on the shell used.) This example
16547will execute commands from the file @file{cmds}. All output and errors
16548would be directed to @file{log}.
c906108c 16549
fcc73fe3
EZ
16550Since commands stored on command files tend to be more general than
16551commands typed interactively, they frequently need to deal with
16552complicated situations, such as different or unexpected values of
16553variables and symbols, changes in how the program being debugged is
16554built, etc. @value{GDBN} provides a set of flow-control commands to
16555deal with these complexities. Using these commands, you can write
16556complex scripts that loop over data structures, execute commands
16557conditionally, etc.
16558
16559@table @code
16560@kindex if
16561@kindex else
16562@item if
16563@itemx else
16564This command allows to include in your script conditionally executed
16565commands. The @code{if} command takes a single argument, which is an
16566expression to evaluate. It is followed by a series of commands that
16567are executed only if the expression is true (its value is nonzero).
16568There can then optionally be an @code{else} line, followed by a series
16569of commands that are only executed if the expression was false. The
16570end of the list is marked by a line containing @code{end}.
16571
16572@kindex while
16573@item while
16574This command allows to write loops. Its syntax is similar to
16575@code{if}: the command takes a single argument, which is an expression
16576to evaluate, and must be followed by the commands to execute, one per
16577line, terminated by an @code{end}. These commands are called the
16578@dfn{body} of the loop. The commands in the body of @code{while} are
16579executed repeatedly as long as the expression evaluates to true.
16580
16581@kindex loop_break
16582@item loop_break
16583This command exits the @code{while} loop in whose body it is included.
16584Execution of the script continues after that @code{while}s @code{end}
16585line.
16586
16587@kindex loop_continue
16588@item loop_continue
16589This command skips the execution of the rest of the body of commands
16590in the @code{while} loop in whose body it is included. Execution
16591branches to the beginning of the @code{while} loop, where it evaluates
16592the controlling expression.
ca91424e
EZ
16593
16594@kindex end@r{ (if/else/while commands)}
16595@item end
16596Terminate the block of commands that are the body of @code{if},
16597@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16598@end table
16599
16600
8e04817f 16601@node Output
79a6e687 16602@section Commands for Controlled Output
c906108c 16603
8e04817f
AC
16604During the execution of a command file or a user-defined command, normal
16605@value{GDBN} output is suppressed; the only output that appears is what is
16606explicitly printed by the commands in the definition. This section
16607describes three commands useful for generating exactly the output you
16608want.
c906108c
SS
16609
16610@table @code
8e04817f
AC
16611@kindex echo
16612@item echo @var{text}
16613@c I do not consider backslash-space a standard C escape sequence
16614@c because it is not in ANSI.
16615Print @var{text}. Nonprinting characters can be included in
16616@var{text} using C escape sequences, such as @samp{\n} to print a
16617newline. @strong{No newline is printed unless you specify one.}
16618In addition to the standard C escape sequences, a backslash followed
16619by a space stands for a space. This is useful for displaying a
16620string with spaces at the beginning or the end, since leading and
16621trailing spaces are otherwise trimmed from all arguments.
16622To print @samp{@w{ }and foo =@w{ }}, use the command
16623@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16624
8e04817f
AC
16625A backslash at the end of @var{text} can be used, as in C, to continue
16626the command onto subsequent lines. For example,
c906108c 16627
474c8240 16628@smallexample
8e04817f
AC
16629echo This is some text\n\
16630which is continued\n\
16631onto several lines.\n
474c8240 16632@end smallexample
c906108c 16633
8e04817f 16634produces the same output as
c906108c 16635
474c8240 16636@smallexample
8e04817f
AC
16637echo This is some text\n
16638echo which is continued\n
16639echo onto several lines.\n
474c8240 16640@end smallexample
c906108c 16641
8e04817f
AC
16642@kindex output
16643@item output @var{expression}
16644Print the value of @var{expression} and nothing but that value: no
16645newlines, no @samp{$@var{nn} = }. The value is not entered in the
16646value history either. @xref{Expressions, ,Expressions}, for more information
16647on expressions.
c906108c 16648
8e04817f
AC
16649@item output/@var{fmt} @var{expression}
16650Print the value of @var{expression} in format @var{fmt}. You can use
16651the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16652Formats}, for more information.
c906108c 16653
8e04817f 16654@kindex printf
82160952
EZ
16655@item printf @var{template}, @var{expressions}@dots{}
16656Print the values of one or more @var{expressions} under the control of
16657the string @var{template}. To print several values, make
16658@var{expressions} be a comma-separated list of individual expressions,
16659which may be either numbers or pointers. Their values are printed as
16660specified by @var{template}, exactly as a C program would do by
16661executing the code below:
c906108c 16662
474c8240 16663@smallexample
82160952 16664printf (@var{template}, @var{expressions}@dots{});
474c8240 16665@end smallexample
c906108c 16666
82160952
EZ
16667As in @code{C} @code{printf}, ordinary characters in @var{template}
16668are printed verbatim, while @dfn{conversion specification} introduced
16669by the @samp{%} character cause subsequent @var{expressions} to be
16670evaluated, their values converted and formatted according to type and
16671style information encoded in the conversion specifications, and then
16672printed.
16673
8e04817f 16674For example, you can print two values in hex like this:
c906108c 16675
8e04817f
AC
16676@smallexample
16677printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16678@end smallexample
c906108c 16679
82160952
EZ
16680@code{printf} supports all the standard @code{C} conversion
16681specifications, including the flags and modifiers between the @samp{%}
16682character and the conversion letter, with the following exceptions:
16683
16684@itemize @bullet
16685@item
16686The argument-ordering modifiers, such as @samp{2$}, are not supported.
16687
16688@item
16689The modifier @samp{*} is not supported for specifying precision or
16690width.
16691
16692@item
16693The @samp{'} flag (for separation of digits into groups according to
16694@code{LC_NUMERIC'}) is not supported.
16695
16696@item
16697The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16698supported.
16699
16700@item
16701The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16702
16703@item
16704The conversion letters @samp{a} and @samp{A} are not supported.
16705@end itemize
16706
16707@noindent
16708Note that the @samp{ll} type modifier is supported only if the
16709underlying @code{C} implementation used to build @value{GDBN} supports
16710the @code{long long int} type, and the @samp{L} type modifier is
16711supported only if @code{long double} type is available.
16712
16713As in @code{C}, @code{printf} supports simple backslash-escape
16714sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16715@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16716single character. Octal and hexadecimal escape sequences are not
16717supported.
1a619819
LM
16718
16719Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16720(@dfn{Decimal Floating Point}) types using the following length modifiers
16721together with a floating point specifier.
1a619819
LM
16722letters:
16723
16724@itemize @bullet
16725@item
16726@samp{H} for printing @code{Decimal32} types.
16727
16728@item
16729@samp{D} for printing @code{Decimal64} types.
16730
16731@item
16732@samp{DD} for printing @code{Decimal128} types.
16733@end itemize
16734
16735If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16736support for the three length modifiers for DFP types, other modifiers
3b784c4f 16737such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16738
16739In case there is no such @code{C} support, no additional modifiers will be
16740available and the value will be printed in the standard way.
16741
16742Here's an example of printing DFP types using the above conversion letters:
16743@smallexample
0aea4bf3 16744printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16745@end smallexample
16746
c906108c
SS
16747@end table
16748
21c294e6
AC
16749@node Interpreters
16750@chapter Command Interpreters
16751@cindex command interpreters
16752
16753@value{GDBN} supports multiple command interpreters, and some command
16754infrastructure to allow users or user interface writers to switch
16755between interpreters or run commands in other interpreters.
16756
16757@value{GDBN} currently supports two command interpreters, the console
16758interpreter (sometimes called the command-line interpreter or @sc{cli})
16759and the machine interface interpreter (or @sc{gdb/mi}). This manual
16760describes both of these interfaces in great detail.
16761
16762By default, @value{GDBN} will start with the console interpreter.
16763However, the user may choose to start @value{GDBN} with another
16764interpreter by specifying the @option{-i} or @option{--interpreter}
16765startup options. Defined interpreters include:
16766
16767@table @code
16768@item console
16769@cindex console interpreter
16770The traditional console or command-line interpreter. This is the most often
16771used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16772@value{GDBN} will use this interpreter.
16773
16774@item mi
16775@cindex mi interpreter
16776The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16777by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16778or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16779Interface}.
16780
16781@item mi2
16782@cindex mi2 interpreter
16783The current @sc{gdb/mi} interface.
16784
16785@item mi1
16786@cindex mi1 interpreter
16787The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16788
16789@end table
16790
16791@cindex invoke another interpreter
16792The interpreter being used by @value{GDBN} may not be dynamically
16793switched at runtime. Although possible, this could lead to a very
16794precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16795enters the command "interpreter-set console" in a console view,
16796@value{GDBN} would switch to using the console interpreter, rendering
16797the IDE inoperable!
16798
16799@kindex interpreter-exec
16800Although you may only choose a single interpreter at startup, you may execute
16801commands in any interpreter from the current interpreter using the appropriate
16802command. If you are running the console interpreter, simply use the
16803@code{interpreter-exec} command:
16804
16805@smallexample
16806interpreter-exec mi "-data-list-register-names"
16807@end smallexample
16808
16809@sc{gdb/mi} has a similar command, although it is only available in versions of
16810@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16811
8e04817f
AC
16812@node TUI
16813@chapter @value{GDBN} Text User Interface
16814@cindex TUI
d0d5df6f 16815@cindex Text User Interface
c906108c 16816
8e04817f
AC
16817@menu
16818* TUI Overview:: TUI overview
16819* TUI Keys:: TUI key bindings
7cf36c78 16820* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16821* TUI Commands:: TUI-specific commands
8e04817f
AC
16822* TUI Configuration:: TUI configuration variables
16823@end menu
c906108c 16824
46ba6afa 16825The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16826interface which uses the @code{curses} library to show the source
16827file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16828commands in separate text windows. The TUI mode is supported only
16829on platforms where a suitable version of the @code{curses} library
16830is available.
d0d5df6f 16831
46ba6afa
BW
16832@pindex @value{GDBTUI}
16833The TUI mode is enabled by default when you invoke @value{GDBN} as
16834either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16835You can also switch in and out of TUI mode while @value{GDBN} runs by
16836using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16837@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16838
8e04817f 16839@node TUI Overview
79a6e687 16840@section TUI Overview
c906108c 16841
46ba6afa 16842In TUI mode, @value{GDBN} can display several text windows:
c906108c 16843
8e04817f
AC
16844@table @emph
16845@item command
16846This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16847prompt and the @value{GDBN} output. The @value{GDBN} input is still
16848managed using readline.
c906108c 16849
8e04817f
AC
16850@item source
16851The source window shows the source file of the program. The current
46ba6afa 16852line and active breakpoints are displayed in this window.
c906108c 16853
8e04817f
AC
16854@item assembly
16855The assembly window shows the disassembly output of the program.
c906108c 16856
8e04817f 16857@item register
46ba6afa
BW
16858This window shows the processor registers. Registers are highlighted
16859when their values change.
c906108c
SS
16860@end table
16861
269c21fe 16862The source and assembly windows show the current program position
46ba6afa
BW
16863by highlighting the current line and marking it with a @samp{>} marker.
16864Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16865indicates the breakpoint type:
16866
16867@table @code
16868@item B
16869Breakpoint which was hit at least once.
16870
16871@item b
16872Breakpoint which was never hit.
16873
16874@item H
16875Hardware breakpoint which was hit at least once.
16876
16877@item h
16878Hardware breakpoint which was never hit.
269c21fe
SC
16879@end table
16880
16881The second marker indicates whether the breakpoint is enabled or not:
16882
16883@table @code
16884@item +
16885Breakpoint is enabled.
16886
16887@item -
16888Breakpoint is disabled.
269c21fe
SC
16889@end table
16890
46ba6afa
BW
16891The source, assembly and register windows are updated when the current
16892thread changes, when the frame changes, or when the program counter
16893changes.
16894
16895These windows are not all visible at the same time. The command
16896window is always visible. The others can be arranged in several
16897layouts:
c906108c 16898
8e04817f
AC
16899@itemize @bullet
16900@item
46ba6afa 16901source only,
2df3850c 16902
8e04817f 16903@item
46ba6afa 16904assembly only,
8e04817f
AC
16905
16906@item
46ba6afa 16907source and assembly,
8e04817f
AC
16908
16909@item
46ba6afa 16910source and registers, or
c906108c 16911
8e04817f 16912@item
46ba6afa 16913assembly and registers.
8e04817f 16914@end itemize
c906108c 16915
46ba6afa 16916A status line above the command window shows the following information:
b7bb15bc
SC
16917
16918@table @emph
16919@item target
46ba6afa 16920Indicates the current @value{GDBN} target.
b7bb15bc
SC
16921(@pxref{Targets, ,Specifying a Debugging Target}).
16922
16923@item process
46ba6afa 16924Gives the current process or thread number.
b7bb15bc
SC
16925When no process is being debugged, this field is set to @code{No process}.
16926
16927@item function
16928Gives the current function name for the selected frame.
16929The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 16930When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
16931the string @code{??} is displayed.
16932
16933@item line
16934Indicates the current line number for the selected frame.
46ba6afa 16935When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
16936
16937@item pc
16938Indicates the current program counter address.
b7bb15bc
SC
16939@end table
16940
8e04817f
AC
16941@node TUI Keys
16942@section TUI Key Bindings
16943@cindex TUI key bindings
c906108c 16944
8e04817f 16945The TUI installs several key bindings in the readline keymaps
46ba6afa 16946(@pxref{Command Line Editing}). The following key bindings
8e04817f 16947are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 16948
8e04817f
AC
16949@table @kbd
16950@kindex C-x C-a
16951@item C-x C-a
16952@kindex C-x a
16953@itemx C-x a
16954@kindex C-x A
16955@itemx C-x A
46ba6afa
BW
16956Enter or leave the TUI mode. When leaving the TUI mode,
16957the curses window management stops and @value{GDBN} operates using
16958its standard mode, writing on the terminal directly. When reentering
16959the TUI mode, control is given back to the curses windows.
8e04817f 16960The screen is then refreshed.
c906108c 16961
8e04817f
AC
16962@kindex C-x 1
16963@item C-x 1
16964Use a TUI layout with only one window. The layout will
16965either be @samp{source} or @samp{assembly}. When the TUI mode
16966is not active, it will switch to the TUI mode.
2df3850c 16967
8e04817f 16968Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 16969
8e04817f
AC
16970@kindex C-x 2
16971@item C-x 2
16972Use a TUI layout with at least two windows. When the current
46ba6afa 16973layout already has two windows, the next layout with two windows is used.
8e04817f
AC
16974When a new layout is chosen, one window will always be common to the
16975previous layout and the new one.
c906108c 16976
8e04817f 16977Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 16978
72ffddc9
SC
16979@kindex C-x o
16980@item C-x o
16981Change the active window. The TUI associates several key bindings
46ba6afa 16982(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
16983gives the focus to the next TUI window.
16984
16985Think of it as the Emacs @kbd{C-x o} binding.
16986
7cf36c78
SC
16987@kindex C-x s
16988@item C-x s
46ba6afa
BW
16989Switch in and out of the TUI SingleKey mode that binds single
16990keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
16991@end table
16992
46ba6afa 16993The following key bindings only work in the TUI mode:
5d161b24 16994
46ba6afa 16995@table @asis
8e04817f 16996@kindex PgUp
46ba6afa 16997@item @key{PgUp}
8e04817f 16998Scroll the active window one page up.
c906108c 16999
8e04817f 17000@kindex PgDn
46ba6afa 17001@item @key{PgDn}
8e04817f 17002Scroll the active window one page down.
c906108c 17003
8e04817f 17004@kindex Up
46ba6afa 17005@item @key{Up}
8e04817f 17006Scroll the active window one line up.
c906108c 17007
8e04817f 17008@kindex Down
46ba6afa 17009@item @key{Down}
8e04817f 17010Scroll the active window one line down.
c906108c 17011
8e04817f 17012@kindex Left
46ba6afa 17013@item @key{Left}
8e04817f 17014Scroll the active window one column left.
c906108c 17015
8e04817f 17016@kindex Right
46ba6afa 17017@item @key{Right}
8e04817f 17018Scroll the active window one column right.
c906108c 17019
8e04817f 17020@kindex C-L
46ba6afa 17021@item @kbd{C-L}
8e04817f 17022Refresh the screen.
8e04817f 17023@end table
c906108c 17024
46ba6afa
BW
17025Because the arrow keys scroll the active window in the TUI mode, they
17026are not available for their normal use by readline unless the command
17027window has the focus. When another window is active, you must use
17028other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17029and @kbd{C-f} to control the command window.
8e04817f 17030
7cf36c78
SC
17031@node TUI Single Key Mode
17032@section TUI Single Key Mode
17033@cindex TUI single key mode
17034
46ba6afa
BW
17035The TUI also provides a @dfn{SingleKey} mode, which binds several
17036frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17037switch into this mode, where the following key bindings are used:
7cf36c78
SC
17038
17039@table @kbd
17040@kindex c @r{(SingleKey TUI key)}
17041@item c
17042continue
17043
17044@kindex d @r{(SingleKey TUI key)}
17045@item d
17046down
17047
17048@kindex f @r{(SingleKey TUI key)}
17049@item f
17050finish
17051
17052@kindex n @r{(SingleKey TUI key)}
17053@item n
17054next
17055
17056@kindex q @r{(SingleKey TUI key)}
17057@item q
46ba6afa 17058exit the SingleKey mode.
7cf36c78
SC
17059
17060@kindex r @r{(SingleKey TUI key)}
17061@item r
17062run
17063
17064@kindex s @r{(SingleKey TUI key)}
17065@item s
17066step
17067
17068@kindex u @r{(SingleKey TUI key)}
17069@item u
17070up
17071
17072@kindex v @r{(SingleKey TUI key)}
17073@item v
17074info locals
17075
17076@kindex w @r{(SingleKey TUI key)}
17077@item w
17078where
7cf36c78
SC
17079@end table
17080
17081Other keys temporarily switch to the @value{GDBN} command prompt.
17082The key that was pressed is inserted in the editing buffer so that
17083it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17084with the TUI SingleKey mode. Once the command is entered the TUI
17085SingleKey mode is restored. The only way to permanently leave
7f9087cb 17086this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17087
17088
8e04817f 17089@node TUI Commands
db2e3e2e 17090@section TUI-specific Commands
8e04817f
AC
17091@cindex TUI commands
17092
17093The TUI has specific commands to control the text windows.
46ba6afa
BW
17094These commands are always available, even when @value{GDBN} is not in
17095the TUI mode. When @value{GDBN} is in the standard mode, most
17096of these commands will automatically switch to the TUI mode.
c906108c
SS
17097
17098@table @code
3d757584
SC
17099@item info win
17100@kindex info win
17101List and give the size of all displayed windows.
17102
8e04817f 17103@item layout next
4644b6e3 17104@kindex layout
8e04817f 17105Display the next layout.
2df3850c 17106
8e04817f 17107@item layout prev
8e04817f 17108Display the previous layout.
c906108c 17109
8e04817f 17110@item layout src
8e04817f 17111Display the source window only.
c906108c 17112
8e04817f 17113@item layout asm
8e04817f 17114Display the assembly window only.
c906108c 17115
8e04817f 17116@item layout split
8e04817f 17117Display the source and assembly window.
c906108c 17118
8e04817f 17119@item layout regs
8e04817f
AC
17120Display the register window together with the source or assembly window.
17121
46ba6afa 17122@item focus next
8e04817f 17123@kindex focus
46ba6afa
BW
17124Make the next window active for scrolling.
17125
17126@item focus prev
17127Make the previous window active for scrolling.
17128
17129@item focus src
17130Make the source window active for scrolling.
17131
17132@item focus asm
17133Make the assembly window active for scrolling.
17134
17135@item focus regs
17136Make the register window active for scrolling.
17137
17138@item focus cmd
17139Make the command window active for scrolling.
c906108c 17140
8e04817f
AC
17141@item refresh
17142@kindex refresh
7f9087cb 17143Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17144
6a1b180d
SC
17145@item tui reg float
17146@kindex tui reg
17147Show the floating point registers in the register window.
17148
17149@item tui reg general
17150Show the general registers in the register window.
17151
17152@item tui reg next
17153Show the next register group. The list of register groups as well as
17154their order is target specific. The predefined register groups are the
17155following: @code{general}, @code{float}, @code{system}, @code{vector},
17156@code{all}, @code{save}, @code{restore}.
17157
17158@item tui reg system
17159Show the system registers in the register window.
17160
8e04817f
AC
17161@item update
17162@kindex update
17163Update the source window and the current execution point.
c906108c 17164
8e04817f
AC
17165@item winheight @var{name} +@var{count}
17166@itemx winheight @var{name} -@var{count}
17167@kindex winheight
17168Change the height of the window @var{name} by @var{count}
17169lines. Positive counts increase the height, while negative counts
17170decrease it.
2df3850c 17171
46ba6afa
BW
17172@item tabset @var{nchars}
17173@kindex tabset
c45da7e6 17174Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17175@end table
17176
8e04817f 17177@node TUI Configuration
79a6e687 17178@section TUI Configuration Variables
8e04817f 17179@cindex TUI configuration variables
c906108c 17180
46ba6afa 17181Several configuration variables control the appearance of TUI windows.
c906108c 17182
8e04817f
AC
17183@table @code
17184@item set tui border-kind @var{kind}
17185@kindex set tui border-kind
17186Select the border appearance for the source, assembly and register windows.
17187The possible values are the following:
17188@table @code
17189@item space
17190Use a space character to draw the border.
c906108c 17191
8e04817f 17192@item ascii
46ba6afa 17193Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17194
8e04817f
AC
17195@item acs
17196Use the Alternate Character Set to draw the border. The border is
17197drawn using character line graphics if the terminal supports them.
8e04817f 17198@end table
c78b4128 17199
8e04817f
AC
17200@item set tui border-mode @var{mode}
17201@kindex set tui border-mode
46ba6afa
BW
17202@itemx set tui active-border-mode @var{mode}
17203@kindex set tui active-border-mode
17204Select the display attributes for the borders of the inactive windows
17205or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17206@table @code
17207@item normal
17208Use normal attributes to display the border.
c906108c 17209
8e04817f
AC
17210@item standout
17211Use standout mode.
c906108c 17212
8e04817f
AC
17213@item reverse
17214Use reverse video mode.
c906108c 17215
8e04817f
AC
17216@item half
17217Use half bright mode.
c906108c 17218
8e04817f
AC
17219@item half-standout
17220Use half bright and standout mode.
c906108c 17221
8e04817f
AC
17222@item bold
17223Use extra bright or bold mode.
c78b4128 17224
8e04817f
AC
17225@item bold-standout
17226Use extra bright or bold and standout mode.
8e04817f 17227@end table
8e04817f 17228@end table
c78b4128 17229
8e04817f
AC
17230@node Emacs
17231@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17232
8e04817f
AC
17233@cindex Emacs
17234@cindex @sc{gnu} Emacs
17235A special interface allows you to use @sc{gnu} Emacs to view (and
17236edit) the source files for the program you are debugging with
17237@value{GDBN}.
c906108c 17238
8e04817f
AC
17239To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17240executable file you want to debug as an argument. This command starts
17241@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17242created Emacs buffer.
17243@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17244
5e252a2e 17245Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17246things:
c906108c 17247
8e04817f
AC
17248@itemize @bullet
17249@item
5e252a2e
NR
17250All ``terminal'' input and output goes through an Emacs buffer, called
17251the GUD buffer.
c906108c 17252
8e04817f
AC
17253This applies both to @value{GDBN} commands and their output, and to the input
17254and output done by the program you are debugging.
bf0184be 17255
8e04817f
AC
17256This is useful because it means that you can copy the text of previous
17257commands and input them again; you can even use parts of the output
17258in this way.
bf0184be 17259
8e04817f
AC
17260All the facilities of Emacs' Shell mode are available for interacting
17261with your program. In particular, you can send signals the usual
17262way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17263stop.
bf0184be
ND
17264
17265@item
8e04817f 17266@value{GDBN} displays source code through Emacs.
bf0184be 17267
8e04817f
AC
17268Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17269source file for that frame and puts an arrow (@samp{=>}) at the
17270left margin of the current line. Emacs uses a separate buffer for
17271source display, and splits the screen to show both your @value{GDBN} session
17272and the source.
bf0184be 17273
8e04817f
AC
17274Explicit @value{GDBN} @code{list} or search commands still produce output as
17275usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17276@end itemize
17277
17278We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17279a graphical mode, enabled by default, which provides further buffers
17280that can control the execution and describe the state of your program.
17281@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17282
64fabec2
AC
17283If you specify an absolute file name when prompted for the @kbd{M-x
17284gdb} argument, then Emacs sets your current working directory to where
17285your program resides. If you only specify the file name, then Emacs
17286sets your current working directory to to the directory associated
17287with the previous buffer. In this case, @value{GDBN} may find your
17288program by searching your environment's @code{PATH} variable, but on
17289some operating systems it might not find the source. So, although the
17290@value{GDBN} input and output session proceeds normally, the auxiliary
17291buffer does not display the current source and line of execution.
17292
17293The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17294line of the GUD buffer and this serves as a default for the commands
17295that specify files for @value{GDBN} to operate on. @xref{Files,
17296,Commands to Specify Files}.
64fabec2
AC
17297
17298By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17299need to call @value{GDBN} by a different name (for example, if you
17300keep several configurations around, with different names) you can
17301customize the Emacs variable @code{gud-gdb-command-name} to run the
17302one you want.
8e04817f 17303
5e252a2e 17304In the GUD buffer, you can use these special Emacs commands in
8e04817f 17305addition to the standard Shell mode commands:
c906108c 17306
8e04817f
AC
17307@table @kbd
17308@item C-h m
5e252a2e 17309Describe the features of Emacs' GUD Mode.
c906108c 17310
64fabec2 17311@item C-c C-s
8e04817f
AC
17312Execute to another source line, like the @value{GDBN} @code{step} command; also
17313update the display window to show the current file and location.
c906108c 17314
64fabec2 17315@item C-c C-n
8e04817f
AC
17316Execute to next source line in this function, skipping all function
17317calls, like the @value{GDBN} @code{next} command. Then update the display window
17318to show the current file and location.
c906108c 17319
64fabec2 17320@item C-c C-i
8e04817f
AC
17321Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17322display window accordingly.
c906108c 17323
8e04817f
AC
17324@item C-c C-f
17325Execute until exit from the selected stack frame, like the @value{GDBN}
17326@code{finish} command.
c906108c 17327
64fabec2 17328@item C-c C-r
8e04817f
AC
17329Continue execution of your program, like the @value{GDBN} @code{continue}
17330command.
b433d00b 17331
64fabec2 17332@item C-c <
8e04817f
AC
17333Go up the number of frames indicated by the numeric argument
17334(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17335like the @value{GDBN} @code{up} command.
b433d00b 17336
64fabec2 17337@item C-c >
8e04817f
AC
17338Go down the number of frames indicated by the numeric argument, like the
17339@value{GDBN} @code{down} command.
8e04817f 17340@end table
c906108c 17341
7f9087cb 17342In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17343tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17344
5e252a2e
NR
17345In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17346separate frame which shows a backtrace when the GUD buffer is current.
17347Move point to any frame in the stack and type @key{RET} to make it
17348become the current frame and display the associated source in the
17349source buffer. Alternatively, click @kbd{Mouse-2} to make the
17350selected frame become the current one. In graphical mode, the
17351speedbar displays watch expressions.
64fabec2 17352
8e04817f
AC
17353If you accidentally delete the source-display buffer, an easy way to get
17354it back is to type the command @code{f} in the @value{GDBN} buffer, to
17355request a frame display; when you run under Emacs, this recreates
17356the source buffer if necessary to show you the context of the current
17357frame.
c906108c 17358
8e04817f
AC
17359The source files displayed in Emacs are in ordinary Emacs buffers
17360which are visiting the source files in the usual way. You can edit
17361the files with these buffers if you wish; but keep in mind that @value{GDBN}
17362communicates with Emacs in terms of line numbers. If you add or
17363delete lines from the text, the line numbers that @value{GDBN} knows cease
17364to correspond properly with the code.
b383017d 17365
5e252a2e
NR
17366A more detailed description of Emacs' interaction with @value{GDBN} is
17367given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17368Emacs Manual}).
c906108c 17369
8e04817f
AC
17370@c The following dropped because Epoch is nonstandard. Reactivate
17371@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17372@ignore
17373@kindex Emacs Epoch environment
17374@kindex Epoch
17375@kindex inspect
c906108c 17376
8e04817f
AC
17377Version 18 of @sc{gnu} Emacs has a built-in window system
17378called the @code{epoch}
17379environment. Users of this environment can use a new command,
17380@code{inspect} which performs identically to @code{print} except that
17381each value is printed in its own window.
17382@end ignore
c906108c 17383
922fbb7b
AC
17384
17385@node GDB/MI
17386@chapter The @sc{gdb/mi} Interface
17387
17388@unnumberedsec Function and Purpose
17389
17390@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17391@sc{gdb/mi} is a line based machine oriented text interface to
17392@value{GDBN} and is activated by specifying using the
17393@option{--interpreter} command line option (@pxref{Mode Options}). It
17394is specifically intended to support the development of systems which
17395use the debugger as just one small component of a larger system.
922fbb7b
AC
17396
17397This chapter is a specification of the @sc{gdb/mi} interface. It is written
17398in the form of a reference manual.
17399
17400Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17401features described below are incomplete and subject to change
17402(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17403
17404@unnumberedsec Notation and Terminology
17405
17406@cindex notational conventions, for @sc{gdb/mi}
17407This chapter uses the following notation:
17408
17409@itemize @bullet
17410@item
17411@code{|} separates two alternatives.
17412
17413@item
17414@code{[ @var{something} ]} indicates that @var{something} is optional:
17415it may or may not be given.
17416
17417@item
17418@code{( @var{group} )*} means that @var{group} inside the parentheses
17419may repeat zero or more times.
17420
17421@item
17422@code{( @var{group} )+} means that @var{group} inside the parentheses
17423may repeat one or more times.
17424
17425@item
17426@code{"@var{string}"} means a literal @var{string}.
17427@end itemize
17428
17429@ignore
17430@heading Dependencies
17431@end ignore
17432
922fbb7b
AC
17433@menu
17434* GDB/MI Command Syntax::
17435* GDB/MI Compatibility with CLI::
af6eff6f 17436* GDB/MI Development and Front Ends::
922fbb7b 17437* GDB/MI Output Records::
ef21caaf 17438* GDB/MI Simple Examples::
922fbb7b 17439* GDB/MI Command Description Format::
ef21caaf 17440* GDB/MI Breakpoint Commands::
a2c02241
NR
17441* GDB/MI Program Context::
17442* GDB/MI Thread Commands::
17443* GDB/MI Program Execution::
17444* GDB/MI Stack Manipulation::
17445* GDB/MI Variable Objects::
922fbb7b 17446* GDB/MI Data Manipulation::
a2c02241
NR
17447* GDB/MI Tracepoint Commands::
17448* GDB/MI Symbol Query::
351ff01a 17449* GDB/MI File Commands::
922fbb7b
AC
17450@ignore
17451* GDB/MI Kod Commands::
17452* GDB/MI Memory Overlay Commands::
17453* GDB/MI Signal Handling Commands::
17454@end ignore
922fbb7b 17455* GDB/MI Target Manipulation::
a6b151f1 17456* GDB/MI File Transfer Commands::
ef21caaf 17457* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17458@end menu
17459
17460@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17461@node GDB/MI Command Syntax
17462@section @sc{gdb/mi} Command Syntax
17463
17464@menu
17465* GDB/MI Input Syntax::
17466* GDB/MI Output Syntax::
922fbb7b
AC
17467@end menu
17468
17469@node GDB/MI Input Syntax
17470@subsection @sc{gdb/mi} Input Syntax
17471
17472@cindex input syntax for @sc{gdb/mi}
17473@cindex @sc{gdb/mi}, input syntax
17474@table @code
17475@item @var{command} @expansion{}
17476@code{@var{cli-command} | @var{mi-command}}
17477
17478@item @var{cli-command} @expansion{}
17479@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17480@var{cli-command} is any existing @value{GDBN} CLI command.
17481
17482@item @var{mi-command} @expansion{}
17483@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17484@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17485
17486@item @var{token} @expansion{}
17487"any sequence of digits"
17488
17489@item @var{option} @expansion{}
17490@code{"-" @var{parameter} [ " " @var{parameter} ]}
17491
17492@item @var{parameter} @expansion{}
17493@code{@var{non-blank-sequence} | @var{c-string}}
17494
17495@item @var{operation} @expansion{}
17496@emph{any of the operations described in this chapter}
17497
17498@item @var{non-blank-sequence} @expansion{}
17499@emph{anything, provided it doesn't contain special characters such as
17500"-", @var{nl}, """ and of course " "}
17501
17502@item @var{c-string} @expansion{}
17503@code{""" @var{seven-bit-iso-c-string-content} """}
17504
17505@item @var{nl} @expansion{}
17506@code{CR | CR-LF}
17507@end table
17508
17509@noindent
17510Notes:
17511
17512@itemize @bullet
17513@item
17514The CLI commands are still handled by the @sc{mi} interpreter; their
17515output is described below.
17516
17517@item
17518The @code{@var{token}}, when present, is passed back when the command
17519finishes.
17520
17521@item
17522Some @sc{mi} commands accept optional arguments as part of the parameter
17523list. Each option is identified by a leading @samp{-} (dash) and may be
17524followed by an optional argument parameter. Options occur first in the
17525parameter list and can be delimited from normal parameters using
17526@samp{--} (this is useful when some parameters begin with a dash).
17527@end itemize
17528
17529Pragmatics:
17530
17531@itemize @bullet
17532@item
17533We want easy access to the existing CLI syntax (for debugging).
17534
17535@item
17536We want it to be easy to spot a @sc{mi} operation.
17537@end itemize
17538
17539@node GDB/MI Output Syntax
17540@subsection @sc{gdb/mi} Output Syntax
17541
17542@cindex output syntax of @sc{gdb/mi}
17543@cindex @sc{gdb/mi}, output syntax
17544The output from @sc{gdb/mi} consists of zero or more out-of-band records
17545followed, optionally, by a single result record. This result record
17546is for the most recent command. The sequence of output records is
594fe323 17547terminated by @samp{(gdb)}.
922fbb7b
AC
17548
17549If an input command was prefixed with a @code{@var{token}} then the
17550corresponding output for that command will also be prefixed by that same
17551@var{token}.
17552
17553@table @code
17554@item @var{output} @expansion{}
594fe323 17555@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17556
17557@item @var{result-record} @expansion{}
17558@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17559
17560@item @var{out-of-band-record} @expansion{}
17561@code{@var{async-record} | @var{stream-record}}
17562
17563@item @var{async-record} @expansion{}
17564@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17565
17566@item @var{exec-async-output} @expansion{}
17567@code{[ @var{token} ] "*" @var{async-output}}
17568
17569@item @var{status-async-output} @expansion{}
17570@code{[ @var{token} ] "+" @var{async-output}}
17571
17572@item @var{notify-async-output} @expansion{}
17573@code{[ @var{token} ] "=" @var{async-output}}
17574
17575@item @var{async-output} @expansion{}
17576@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17577
17578@item @var{result-class} @expansion{}
17579@code{"done" | "running" | "connected" | "error" | "exit"}
17580
17581@item @var{async-class} @expansion{}
17582@code{"stopped" | @var{others}} (where @var{others} will be added
17583depending on the needs---this is still in development).
17584
17585@item @var{result} @expansion{}
17586@code{ @var{variable} "=" @var{value}}
17587
17588@item @var{variable} @expansion{}
17589@code{ @var{string} }
17590
17591@item @var{value} @expansion{}
17592@code{ @var{const} | @var{tuple} | @var{list} }
17593
17594@item @var{const} @expansion{}
17595@code{@var{c-string}}
17596
17597@item @var{tuple} @expansion{}
17598@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17599
17600@item @var{list} @expansion{}
17601@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17602@var{result} ( "," @var{result} )* "]" }
17603
17604@item @var{stream-record} @expansion{}
17605@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17606
17607@item @var{console-stream-output} @expansion{}
17608@code{"~" @var{c-string}}
17609
17610@item @var{target-stream-output} @expansion{}
17611@code{"@@" @var{c-string}}
17612
17613@item @var{log-stream-output} @expansion{}
17614@code{"&" @var{c-string}}
17615
17616@item @var{nl} @expansion{}
17617@code{CR | CR-LF}
17618
17619@item @var{token} @expansion{}
17620@emph{any sequence of digits}.
17621@end table
17622
17623@noindent
17624Notes:
17625
17626@itemize @bullet
17627@item
17628All output sequences end in a single line containing a period.
17629
17630@item
17631The @code{@var{token}} is from the corresponding request. If an execution
17632command is interrupted by the @samp{-exec-interrupt} command, the
17633@var{token} associated with the @samp{*stopped} message is the one of the
17634original execution command, not the one of the interrupt command.
17635
17636@item
17637@cindex status output in @sc{gdb/mi}
17638@var{status-async-output} contains on-going status information about the
17639progress of a slow operation. It can be discarded. All status output is
17640prefixed by @samp{+}.
17641
17642@item
17643@cindex async output in @sc{gdb/mi}
17644@var{exec-async-output} contains asynchronous state change on the target
17645(stopped, started, disappeared). All async output is prefixed by
17646@samp{*}.
17647
17648@item
17649@cindex notify output in @sc{gdb/mi}
17650@var{notify-async-output} contains supplementary information that the
17651client should handle (e.g., a new breakpoint information). All notify
17652output is prefixed by @samp{=}.
17653
17654@item
17655@cindex console output in @sc{gdb/mi}
17656@var{console-stream-output} is output that should be displayed as is in the
17657console. It is the textual response to a CLI command. All the console
17658output is prefixed by @samp{~}.
17659
17660@item
17661@cindex target output in @sc{gdb/mi}
17662@var{target-stream-output} is the output produced by the target program.
17663All the target output is prefixed by @samp{@@}.
17664
17665@item
17666@cindex log output in @sc{gdb/mi}
17667@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17668instance messages that should be displayed as part of an error log. All
17669the log output is prefixed by @samp{&}.
17670
17671@item
17672@cindex list output in @sc{gdb/mi}
17673New @sc{gdb/mi} commands should only output @var{lists} containing
17674@var{values}.
17675
17676
17677@end itemize
17678
17679@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17680details about the various output records.
17681
922fbb7b
AC
17682@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17683@node GDB/MI Compatibility with CLI
17684@section @sc{gdb/mi} Compatibility with CLI
17685
17686@cindex compatibility, @sc{gdb/mi} and CLI
17687@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17688
a2c02241
NR
17689For the developers convenience CLI commands can be entered directly,
17690but there may be some unexpected behaviour. For example, commands
17691that query the user will behave as if the user replied yes, breakpoint
17692command lists are not executed and some CLI commands, such as
17693@code{if}, @code{when} and @code{define}, prompt for further input with
17694@samp{>}, which is not valid MI output.
ef21caaf
NR
17695
17696This feature may be removed at some stage in the future and it is
a2c02241
NR
17697recommended that front ends use the @code{-interpreter-exec} command
17698(@pxref{-interpreter-exec}).
922fbb7b 17699
af6eff6f
NR
17700@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17701@node GDB/MI Development and Front Ends
17702@section @sc{gdb/mi} Development and Front Ends
17703@cindex @sc{gdb/mi} development
17704
17705The application which takes the MI output and presents the state of the
17706program being debugged to the user is called a @dfn{front end}.
17707
17708Although @sc{gdb/mi} is still incomplete, it is currently being used
17709by a variety of front ends to @value{GDBN}. This makes it difficult
17710to introduce new functionality without breaking existing usage. This
17711section tries to minimize the problems by describing how the protocol
17712might change.
17713
17714Some changes in MI need not break a carefully designed front end, and
17715for these the MI version will remain unchanged. The following is a
17716list of changes that may occur within one level, so front ends should
17717parse MI output in a way that can handle them:
17718
17719@itemize @bullet
17720@item
17721New MI commands may be added.
17722
17723@item
17724New fields may be added to the output of any MI command.
17725
36ece8b3
NR
17726@item
17727The range of values for fields with specified values, e.g.,
9f708cb2 17728@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17729
af6eff6f
NR
17730@c The format of field's content e.g type prefix, may change so parse it
17731@c at your own risk. Yes, in general?
17732
17733@c The order of fields may change? Shouldn't really matter but it might
17734@c resolve inconsistencies.
17735@end itemize
17736
17737If the changes are likely to break front ends, the MI version level
17738will be increased by one. This will allow the front end to parse the
17739output according to the MI version. Apart from mi0, new versions of
17740@value{GDBN} will not support old versions of MI and it will be the
17741responsibility of the front end to work with the new one.
17742
17743@c Starting with mi3, add a new command -mi-version that prints the MI
17744@c version?
17745
17746The best way to avoid unexpected changes in MI that might break your front
17747end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17748follow development on @email{gdb@@sourceware.org} and
17749@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17750@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17751Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17752called Debugger Machine Interface (DMI) that will become a standard
17753for all debuggers, not just @value{GDBN}.
17754@cindex mailing lists
17755
922fbb7b
AC
17756@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17757@node GDB/MI Output Records
17758@section @sc{gdb/mi} Output Records
17759
17760@menu
17761* GDB/MI Result Records::
17762* GDB/MI Stream Records::
17763* GDB/MI Out-of-band Records::
17764@end menu
17765
17766@node GDB/MI Result Records
17767@subsection @sc{gdb/mi} Result Records
17768
17769@cindex result records in @sc{gdb/mi}
17770@cindex @sc{gdb/mi}, result records
17771In addition to a number of out-of-band notifications, the response to a
17772@sc{gdb/mi} command includes one of the following result indications:
17773
17774@table @code
17775@findex ^done
17776@item "^done" [ "," @var{results} ]
17777The synchronous operation was successful, @code{@var{results}} are the return
17778values.
17779
17780@item "^running"
17781@findex ^running
17782@c Is this one correct? Should it be an out-of-band notification?
17783The asynchronous operation was successfully started. The target is
17784running.
17785
ef21caaf
NR
17786@item "^connected"
17787@findex ^connected
3f94c067 17788@value{GDBN} has connected to a remote target.
ef21caaf 17789
922fbb7b
AC
17790@item "^error" "," @var{c-string}
17791@findex ^error
17792The operation failed. The @code{@var{c-string}} contains the corresponding
17793error message.
ef21caaf
NR
17794
17795@item "^exit"
17796@findex ^exit
3f94c067 17797@value{GDBN} has terminated.
ef21caaf 17798
922fbb7b
AC
17799@end table
17800
17801@node GDB/MI Stream Records
17802@subsection @sc{gdb/mi} Stream Records
17803
17804@cindex @sc{gdb/mi}, stream records
17805@cindex stream records in @sc{gdb/mi}
17806@value{GDBN} internally maintains a number of output streams: the console, the
17807target, and the log. The output intended for each of these streams is
17808funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17809
17810Each stream record begins with a unique @dfn{prefix character} which
17811identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17812Syntax}). In addition to the prefix, each stream record contains a
17813@code{@var{string-output}}. This is either raw text (with an implicit new
17814line) or a quoted C string (which does not contain an implicit newline).
17815
17816@table @code
17817@item "~" @var{string-output}
17818The console output stream contains text that should be displayed in the
17819CLI console window. It contains the textual responses to CLI commands.
17820
17821@item "@@" @var{string-output}
17822The target output stream contains any textual output from the running
ef21caaf
NR
17823target. This is only present when GDB's event loop is truly
17824asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17825
17826@item "&" @var{string-output}
17827The log stream contains debugging messages being produced by @value{GDBN}'s
17828internals.
17829@end table
17830
17831@node GDB/MI Out-of-band Records
17832@subsection @sc{gdb/mi} Out-of-band Records
17833
17834@cindex out-of-band records in @sc{gdb/mi}
17835@cindex @sc{gdb/mi}, out-of-band records
17836@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17837additional changes that have occurred. Those changes can either be a
17838consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17839target activity (e.g., target stopped).
17840
17841The following is a preliminary list of possible out-of-band records.
034dad6f 17842In particular, the @var{exec-async-output} records.
922fbb7b
AC
17843
17844@table @code
034dad6f
BR
17845@item *stopped,reason="@var{reason}"
17846@end table
17847
17848@var{reason} can be one of the following:
17849
17850@table @code
17851@item breakpoint-hit
17852A breakpoint was reached.
17853@item watchpoint-trigger
17854A watchpoint was triggered.
17855@item read-watchpoint-trigger
17856A read watchpoint was triggered.
17857@item access-watchpoint-trigger
17858An access watchpoint was triggered.
17859@item function-finished
17860An -exec-finish or similar CLI command was accomplished.
17861@item location-reached
17862An -exec-until or similar CLI command was accomplished.
17863@item watchpoint-scope
17864A watchpoint has gone out of scope.
17865@item end-stepping-range
17866An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17867similar CLI command was accomplished.
17868@item exited-signalled
17869The inferior exited because of a signal.
17870@item exited
17871The inferior exited.
17872@item exited-normally
17873The inferior exited normally.
17874@item signal-received
17875A signal was received by the inferior.
922fbb7b
AC
17876@end table
17877
17878
ef21caaf
NR
17879@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17880@node GDB/MI Simple Examples
17881@section Simple Examples of @sc{gdb/mi} Interaction
17882@cindex @sc{gdb/mi}, simple examples
17883
17884This subsection presents several simple examples of interaction using
17885the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
17886following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17887the output received from @sc{gdb/mi}.
17888
d3e8051b 17889Note the line breaks shown in the examples are here only for
ef21caaf
NR
17890readability, they don't appear in the real output.
17891
79a6e687 17892@subheading Setting a Breakpoint
ef21caaf
NR
17893
17894Setting a breakpoint generates synchronous output which contains detailed
17895information of the breakpoint.
17896
17897@smallexample
17898-> -break-insert main
17899<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17900 enabled="y",addr="0x08048564",func="main",file="myprog.c",
17901 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17902<- (gdb)
17903@end smallexample
17904
17905@subheading Program Execution
17906
17907Program execution generates asynchronous records and MI gives the
17908reason that execution stopped.
17909
17910@smallexample
17911-> -exec-run
17912<- ^running
17913<- (gdb)
17914<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
17915 frame=@{addr="0x08048564",func="main",
17916 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
17917 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
17918<- (gdb)
17919-> -exec-continue
17920<- ^running
17921<- (gdb)
17922<- *stopped,reason="exited-normally"
17923<- (gdb)
17924@end smallexample
17925
3f94c067 17926@subheading Quitting @value{GDBN}
ef21caaf 17927
3f94c067 17928Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
17929
17930@smallexample
17931-> (gdb)
17932<- -gdb-exit
17933<- ^exit
17934@end smallexample
17935
a2c02241 17936@subheading A Bad Command
ef21caaf
NR
17937
17938Here's what happens if you pass a non-existent command:
17939
17940@smallexample
17941-> -rubbish
17942<- ^error,msg="Undefined MI command: rubbish"
594fe323 17943<- (gdb)
ef21caaf
NR
17944@end smallexample
17945
17946
922fbb7b
AC
17947@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17948@node GDB/MI Command Description Format
17949@section @sc{gdb/mi} Command Description Format
17950
17951The remaining sections describe blocks of commands. Each block of
17952commands is laid out in a fashion similar to this section.
17953
922fbb7b
AC
17954@subheading Motivation
17955
17956The motivation for this collection of commands.
17957
17958@subheading Introduction
17959
17960A brief introduction to this collection of commands as a whole.
17961
17962@subheading Commands
17963
17964For each command in the block, the following is described:
17965
17966@subsubheading Synopsis
17967
17968@smallexample
17969 -command @var{args}@dots{}
17970@end smallexample
17971
922fbb7b
AC
17972@subsubheading Result
17973
265eeb58 17974@subsubheading @value{GDBN} Command
922fbb7b 17975
265eeb58 17976The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
17977
17978@subsubheading Example
17979
ef21caaf
NR
17980Example(s) formatted for readability. Some of the described commands have
17981not been implemented yet and these are labeled N.A.@: (not available).
17982
17983
922fbb7b 17984@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
17985@node GDB/MI Breakpoint Commands
17986@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
17987
17988@cindex breakpoint commands for @sc{gdb/mi}
17989@cindex @sc{gdb/mi}, breakpoint commands
17990This section documents @sc{gdb/mi} commands for manipulating
17991breakpoints.
17992
17993@subheading The @code{-break-after} Command
17994@findex -break-after
17995
17996@subsubheading Synopsis
17997
17998@smallexample
17999 -break-after @var{number} @var{count}
18000@end smallexample
18001
18002The breakpoint number @var{number} is not in effect until it has been
18003hit @var{count} times. To see how this is reflected in the output of
18004the @samp{-break-list} command, see the description of the
18005@samp{-break-list} command below.
18006
18007@subsubheading @value{GDBN} Command
18008
18009The corresponding @value{GDBN} command is @samp{ignore}.
18010
18011@subsubheading Example
18012
18013@smallexample
594fe323 18014(gdb)
922fbb7b 18015-break-insert main
948d5102
NR
18016^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18017fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18018(gdb)
922fbb7b
AC
18019-break-after 1 3
18020~
18021^done
594fe323 18022(gdb)
922fbb7b
AC
18023-break-list
18024^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18025hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18026@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18027@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18028@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18029@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18030@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18031body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18032addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18033line="5",times="0",ignore="3"@}]@}
594fe323 18034(gdb)
922fbb7b
AC
18035@end smallexample
18036
18037@ignore
18038@subheading The @code{-break-catch} Command
18039@findex -break-catch
18040
18041@subheading The @code{-break-commands} Command
18042@findex -break-commands
18043@end ignore
18044
18045
18046@subheading The @code{-break-condition} Command
18047@findex -break-condition
18048
18049@subsubheading Synopsis
18050
18051@smallexample
18052 -break-condition @var{number} @var{expr}
18053@end smallexample
18054
18055Breakpoint @var{number} will stop the program only if the condition in
18056@var{expr} is true. The condition becomes part of the
18057@samp{-break-list} output (see the description of the @samp{-break-list}
18058command below).
18059
18060@subsubheading @value{GDBN} Command
18061
18062The corresponding @value{GDBN} command is @samp{condition}.
18063
18064@subsubheading Example
18065
18066@smallexample
594fe323 18067(gdb)
922fbb7b
AC
18068-break-condition 1 1
18069^done
594fe323 18070(gdb)
922fbb7b
AC
18071-break-list
18072^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18073hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18074@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18075@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18076@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18077@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18078@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18079body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18080addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18081line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18082(gdb)
922fbb7b
AC
18083@end smallexample
18084
18085@subheading The @code{-break-delete} Command
18086@findex -break-delete
18087
18088@subsubheading Synopsis
18089
18090@smallexample
18091 -break-delete ( @var{breakpoint} )+
18092@end smallexample
18093
18094Delete the breakpoint(s) whose number(s) are specified in the argument
18095list. This is obviously reflected in the breakpoint list.
18096
79a6e687 18097@subsubheading @value{GDBN} Command
922fbb7b
AC
18098
18099The corresponding @value{GDBN} command is @samp{delete}.
18100
18101@subsubheading Example
18102
18103@smallexample
594fe323 18104(gdb)
922fbb7b
AC
18105-break-delete 1
18106^done
594fe323 18107(gdb)
922fbb7b
AC
18108-break-list
18109^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18110hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18111@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18112@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18113@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18114@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18115@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18116body=[]@}
594fe323 18117(gdb)
922fbb7b
AC
18118@end smallexample
18119
18120@subheading The @code{-break-disable} Command
18121@findex -break-disable
18122
18123@subsubheading Synopsis
18124
18125@smallexample
18126 -break-disable ( @var{breakpoint} )+
18127@end smallexample
18128
18129Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18130break list is now set to @samp{n} for the named @var{breakpoint}(s).
18131
18132@subsubheading @value{GDBN} Command
18133
18134The corresponding @value{GDBN} command is @samp{disable}.
18135
18136@subsubheading Example
18137
18138@smallexample
594fe323 18139(gdb)
922fbb7b
AC
18140-break-disable 2
18141^done
594fe323 18142(gdb)
922fbb7b
AC
18143-break-list
18144^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18145hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18146@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18147@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18148@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18149@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18150@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18151body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18152addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18153line="5",times="0"@}]@}
594fe323 18154(gdb)
922fbb7b
AC
18155@end smallexample
18156
18157@subheading The @code{-break-enable} Command
18158@findex -break-enable
18159
18160@subsubheading Synopsis
18161
18162@smallexample
18163 -break-enable ( @var{breakpoint} )+
18164@end smallexample
18165
18166Enable (previously disabled) @var{breakpoint}(s).
18167
18168@subsubheading @value{GDBN} Command
18169
18170The corresponding @value{GDBN} command is @samp{enable}.
18171
18172@subsubheading Example
18173
18174@smallexample
594fe323 18175(gdb)
922fbb7b
AC
18176-break-enable 2
18177^done
594fe323 18178(gdb)
922fbb7b
AC
18179-break-list
18180^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18181hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18182@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18183@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18184@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18185@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18186@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18187body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18188addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18189line="5",times="0"@}]@}
594fe323 18190(gdb)
922fbb7b
AC
18191@end smallexample
18192
18193@subheading The @code{-break-info} Command
18194@findex -break-info
18195
18196@subsubheading Synopsis
18197
18198@smallexample
18199 -break-info @var{breakpoint}
18200@end smallexample
18201
18202@c REDUNDANT???
18203Get information about a single breakpoint.
18204
79a6e687 18205@subsubheading @value{GDBN} Command
922fbb7b
AC
18206
18207The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18208
18209@subsubheading Example
18210N.A.
18211
18212@subheading The @code{-break-insert} Command
18213@findex -break-insert
18214
18215@subsubheading Synopsis
18216
18217@smallexample
afe8ab22 18218 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18219 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18220 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18221@end smallexample
18222
18223@noindent
afe8ab22 18224If specified, @var{location}, can be one of:
922fbb7b
AC
18225
18226@itemize @bullet
18227@item function
18228@c @item +offset
18229@c @item -offset
18230@c @item linenum
18231@item filename:linenum
18232@item filename:function
18233@item *address
18234@end itemize
18235
18236The possible optional parameters of this command are:
18237
18238@table @samp
18239@item -t
948d5102 18240Insert a temporary breakpoint.
922fbb7b
AC
18241@item -h
18242Insert a hardware breakpoint.
18243@item -c @var{condition}
18244Make the breakpoint conditional on @var{condition}.
18245@item -i @var{ignore-count}
18246Initialize the @var{ignore-count}.
afe8ab22
VP
18247@item -f
18248If @var{location} cannot be parsed (for example if it
18249refers to unknown files or functions), create a pending
18250breakpoint. Without this flag, @value{GDBN} will report
18251an error, and won't create a breakpoint, if @var{location}
18252cannot be parsed.
922fbb7b
AC
18253@end table
18254
18255@subsubheading Result
18256
18257The result is in the form:
18258
18259@smallexample
948d5102
NR
18260^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18261enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18262fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18263times="@var{times}"@}
922fbb7b
AC
18264@end smallexample
18265
18266@noindent
948d5102
NR
18267where @var{number} is the @value{GDBN} number for this breakpoint,
18268@var{funcname} is the name of the function where the breakpoint was
18269inserted, @var{filename} is the name of the source file which contains
18270this function, @var{lineno} is the source line number within that file
18271and @var{times} the number of times that the breakpoint has been hit
18272(always 0 for -break-insert but may be greater for -break-info or -break-list
18273which use the same output).
922fbb7b
AC
18274
18275Note: this format is open to change.
18276@c An out-of-band breakpoint instead of part of the result?
18277
18278@subsubheading @value{GDBN} Command
18279
18280The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18281@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18282
18283@subsubheading Example
18284
18285@smallexample
594fe323 18286(gdb)
922fbb7b 18287-break-insert main
948d5102
NR
18288^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18289fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18290(gdb)
922fbb7b 18291-break-insert -t foo
948d5102
NR
18292^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18293fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18294(gdb)
922fbb7b
AC
18295-break-list
18296^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18297hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18298@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18299@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18300@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18301@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18302@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18303body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18304addr="0x0001072c", func="main",file="recursive2.c",
18305fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18306bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18307addr="0x00010774",func="foo",file="recursive2.c",
18308fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18309(gdb)
922fbb7b
AC
18310-break-insert -r foo.*
18311~int foo(int, int);
948d5102
NR
18312^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18313"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18314(gdb)
922fbb7b
AC
18315@end smallexample
18316
18317@subheading The @code{-break-list} Command
18318@findex -break-list
18319
18320@subsubheading Synopsis
18321
18322@smallexample
18323 -break-list
18324@end smallexample
18325
18326Displays the list of inserted breakpoints, showing the following fields:
18327
18328@table @samp
18329@item Number
18330number of the breakpoint
18331@item Type
18332type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18333@item Disposition
18334should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18335or @samp{nokeep}
18336@item Enabled
18337is the breakpoint enabled or no: @samp{y} or @samp{n}
18338@item Address
18339memory location at which the breakpoint is set
18340@item What
18341logical location of the breakpoint, expressed by function name, file
18342name, line number
18343@item Times
18344number of times the breakpoint has been hit
18345@end table
18346
18347If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18348@code{body} field is an empty list.
18349
18350@subsubheading @value{GDBN} Command
18351
18352The corresponding @value{GDBN} command is @samp{info break}.
18353
18354@subsubheading Example
18355
18356@smallexample
594fe323 18357(gdb)
922fbb7b
AC
18358-break-list
18359^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18360hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18361@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18362@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18363@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18364@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18365@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18366body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18367addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18368bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18369addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18370line="13",times="0"@}]@}
594fe323 18371(gdb)
922fbb7b
AC
18372@end smallexample
18373
18374Here's an example of the result when there are no breakpoints:
18375
18376@smallexample
594fe323 18377(gdb)
922fbb7b
AC
18378-break-list
18379^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18380hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18381@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18382@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18383@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18384@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18385@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18386body=[]@}
594fe323 18387(gdb)
922fbb7b
AC
18388@end smallexample
18389
18390@subheading The @code{-break-watch} Command
18391@findex -break-watch
18392
18393@subsubheading Synopsis
18394
18395@smallexample
18396 -break-watch [ -a | -r ]
18397@end smallexample
18398
18399Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18400@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18401read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18402option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18403trigger only when the memory location is accessed for reading. Without
18404either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18405i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18406@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18407
18408Note that @samp{-break-list} will report a single list of watchpoints and
18409breakpoints inserted.
18410
18411@subsubheading @value{GDBN} Command
18412
18413The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18414@samp{rwatch}.
18415
18416@subsubheading Example
18417
18418Setting a watchpoint on a variable in the @code{main} function:
18419
18420@smallexample
594fe323 18421(gdb)
922fbb7b
AC
18422-break-watch x
18423^done,wpt=@{number="2",exp="x"@}
594fe323 18424(gdb)
922fbb7b
AC
18425-exec-continue
18426^running
0869d01b
NR
18427(gdb)
18428*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18429value=@{old="-268439212",new="55"@},
76ff342d 18430frame=@{func="main",args=[],file="recursive2.c",
948d5102 18431fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18432(gdb)
922fbb7b
AC
18433@end smallexample
18434
18435Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18436the program execution twice: first for the variable changing value, then
18437for the watchpoint going out of scope.
18438
18439@smallexample
594fe323 18440(gdb)
922fbb7b
AC
18441-break-watch C
18442^done,wpt=@{number="5",exp="C"@}
594fe323 18443(gdb)
922fbb7b
AC
18444-exec-continue
18445^running
0869d01b
NR
18446(gdb)
18447*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18448wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18449frame=@{func="callee4",args=[],
76ff342d
DJ
18450file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18451fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18452(gdb)
922fbb7b
AC
18453-exec-continue
18454^running
0869d01b
NR
18455(gdb)
18456*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18457frame=@{func="callee3",args=[@{name="strarg",
18458value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18459file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18460fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18461(gdb)
922fbb7b
AC
18462@end smallexample
18463
18464Listing breakpoints and watchpoints, at different points in the program
18465execution. Note that once the watchpoint goes out of scope, it is
18466deleted.
18467
18468@smallexample
594fe323 18469(gdb)
922fbb7b
AC
18470-break-watch C
18471^done,wpt=@{number="2",exp="C"@}
594fe323 18472(gdb)
922fbb7b
AC
18473-break-list
18474^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18475hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18476@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18477@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18478@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18479@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18480@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18481body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18482addr="0x00010734",func="callee4",
948d5102
NR
18483file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18484fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18485bkpt=@{number="2",type="watchpoint",disp="keep",
18486enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18487(gdb)
922fbb7b
AC
18488-exec-continue
18489^running
0869d01b
NR
18490(gdb)
18491*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18492value=@{old="-276895068",new="3"@},
18493frame=@{func="callee4",args=[],
76ff342d
DJ
18494file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18495fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18496(gdb)
922fbb7b
AC
18497-break-list
18498^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18499hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18500@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18501@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18502@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18503@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18504@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18505body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18506addr="0x00010734",func="callee4",
948d5102
NR
18507file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18508fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18509bkpt=@{number="2",type="watchpoint",disp="keep",
18510enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18511(gdb)
922fbb7b
AC
18512-exec-continue
18513^running
18514^done,reason="watchpoint-scope",wpnum="2",
18515frame=@{func="callee3",args=[@{name="strarg",
18516value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18517file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18518fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18519(gdb)
922fbb7b
AC
18520-break-list
18521^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18522hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18523@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18524@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18525@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18526@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18527@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18528body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18529addr="0x00010734",func="callee4",
948d5102
NR
18530file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18531fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18532times="1"@}]@}
594fe323 18533(gdb)
922fbb7b
AC
18534@end smallexample
18535
18536@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18537@node GDB/MI Program Context
18538@section @sc{gdb/mi} Program Context
922fbb7b 18539
a2c02241
NR
18540@subheading The @code{-exec-arguments} Command
18541@findex -exec-arguments
922fbb7b 18542
922fbb7b
AC
18543
18544@subsubheading Synopsis
18545
18546@smallexample
a2c02241 18547 -exec-arguments @var{args}
922fbb7b
AC
18548@end smallexample
18549
a2c02241
NR
18550Set the inferior program arguments, to be used in the next
18551@samp{-exec-run}.
922fbb7b 18552
a2c02241 18553@subsubheading @value{GDBN} Command
922fbb7b 18554
a2c02241 18555The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18556
a2c02241 18557@subsubheading Example
922fbb7b 18558
a2c02241
NR
18559@c FIXME!
18560Don't have one around.
922fbb7b 18561
a2c02241
NR
18562
18563@subheading The @code{-exec-show-arguments} Command
18564@findex -exec-show-arguments
18565
18566@subsubheading Synopsis
18567
18568@smallexample
18569 -exec-show-arguments
18570@end smallexample
18571
18572Print the arguments of the program.
922fbb7b
AC
18573
18574@subsubheading @value{GDBN} Command
18575
a2c02241 18576The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18577
18578@subsubheading Example
a2c02241 18579N.A.
922fbb7b 18580
922fbb7b 18581
a2c02241
NR
18582@subheading The @code{-environment-cd} Command
18583@findex -environment-cd
922fbb7b 18584
a2c02241 18585@subsubheading Synopsis
922fbb7b
AC
18586
18587@smallexample
a2c02241 18588 -environment-cd @var{pathdir}
922fbb7b
AC
18589@end smallexample
18590
a2c02241 18591Set @value{GDBN}'s working directory.
922fbb7b 18592
a2c02241 18593@subsubheading @value{GDBN} Command
922fbb7b 18594
a2c02241
NR
18595The corresponding @value{GDBN} command is @samp{cd}.
18596
18597@subsubheading Example
922fbb7b
AC
18598
18599@smallexample
594fe323 18600(gdb)
a2c02241
NR
18601-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18602^done
594fe323 18603(gdb)
922fbb7b
AC
18604@end smallexample
18605
18606
a2c02241
NR
18607@subheading The @code{-environment-directory} Command
18608@findex -environment-directory
922fbb7b
AC
18609
18610@subsubheading Synopsis
18611
18612@smallexample
a2c02241 18613 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18614@end smallexample
18615
a2c02241
NR
18616Add directories @var{pathdir} to beginning of search path for source files.
18617If the @samp{-r} option is used, the search path is reset to the default
18618search path. If directories @var{pathdir} are supplied in addition to the
18619@samp{-r} option, the search path is first reset and then addition
18620occurs as normal.
18621Multiple directories may be specified, separated by blanks. Specifying
18622multiple directories in a single command
18623results in the directories added to the beginning of the
18624search path in the same order they were presented in the command.
18625If blanks are needed as
18626part of a directory name, double-quotes should be used around
18627the name. In the command output, the path will show up separated
d3e8051b 18628by the system directory-separator character. The directory-separator
a2c02241
NR
18629character must not be used
18630in any directory name.
18631If no directories are specified, the current search path is displayed.
922fbb7b
AC
18632
18633@subsubheading @value{GDBN} Command
18634
a2c02241 18635The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18636
18637@subsubheading Example
18638
922fbb7b 18639@smallexample
594fe323 18640(gdb)
a2c02241
NR
18641-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18642^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18643(gdb)
a2c02241
NR
18644-environment-directory ""
18645^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18646(gdb)
a2c02241
NR
18647-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18648^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18649(gdb)
a2c02241
NR
18650-environment-directory -r
18651^done,source-path="$cdir:$cwd"
594fe323 18652(gdb)
922fbb7b
AC
18653@end smallexample
18654
18655
a2c02241
NR
18656@subheading The @code{-environment-path} Command
18657@findex -environment-path
922fbb7b
AC
18658
18659@subsubheading Synopsis
18660
18661@smallexample
a2c02241 18662 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18663@end smallexample
18664
a2c02241
NR
18665Add directories @var{pathdir} to beginning of search path for object files.
18666If the @samp{-r} option is used, the search path is reset to the original
18667search path that existed at gdb start-up. If directories @var{pathdir} are
18668supplied in addition to the
18669@samp{-r} option, the search path is first reset and then addition
18670occurs as normal.
18671Multiple directories may be specified, separated by blanks. Specifying
18672multiple directories in a single command
18673results in the directories added to the beginning of the
18674search path in the same order they were presented in the command.
18675If blanks are needed as
18676part of a directory name, double-quotes should be used around
18677the name. In the command output, the path will show up separated
d3e8051b 18678by the system directory-separator character. The directory-separator
a2c02241
NR
18679character must not be used
18680in any directory name.
18681If no directories are specified, the current path is displayed.
18682
922fbb7b
AC
18683
18684@subsubheading @value{GDBN} Command
18685
a2c02241 18686The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18687
18688@subsubheading Example
18689
922fbb7b 18690@smallexample
594fe323 18691(gdb)
a2c02241
NR
18692-environment-path
18693^done,path="/usr/bin"
594fe323 18694(gdb)
a2c02241
NR
18695-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18696^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18697(gdb)
a2c02241
NR
18698-environment-path -r /usr/local/bin
18699^done,path="/usr/local/bin:/usr/bin"
594fe323 18700(gdb)
922fbb7b
AC
18701@end smallexample
18702
18703
a2c02241
NR
18704@subheading The @code{-environment-pwd} Command
18705@findex -environment-pwd
922fbb7b
AC
18706
18707@subsubheading Synopsis
18708
18709@smallexample
a2c02241 18710 -environment-pwd
922fbb7b
AC
18711@end smallexample
18712
a2c02241 18713Show the current working directory.
922fbb7b 18714
79a6e687 18715@subsubheading @value{GDBN} Command
922fbb7b 18716
a2c02241 18717The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18718
18719@subsubheading Example
18720
922fbb7b 18721@smallexample
594fe323 18722(gdb)
a2c02241
NR
18723-environment-pwd
18724^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18725(gdb)
922fbb7b
AC
18726@end smallexample
18727
a2c02241
NR
18728@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18729@node GDB/MI Thread Commands
18730@section @sc{gdb/mi} Thread Commands
18731
18732
18733@subheading The @code{-thread-info} Command
18734@findex -thread-info
922fbb7b
AC
18735
18736@subsubheading Synopsis
18737
18738@smallexample
a2c02241 18739 -thread-info
922fbb7b
AC
18740@end smallexample
18741
79a6e687 18742@subsubheading @value{GDBN} Command
922fbb7b 18743
a2c02241 18744No equivalent.
922fbb7b
AC
18745
18746@subsubheading Example
a2c02241 18747N.A.
922fbb7b
AC
18748
18749
a2c02241
NR
18750@subheading The @code{-thread-list-all-threads} Command
18751@findex -thread-list-all-threads
922fbb7b
AC
18752
18753@subsubheading Synopsis
18754
18755@smallexample
a2c02241 18756 -thread-list-all-threads
922fbb7b
AC
18757@end smallexample
18758
a2c02241 18759@subsubheading @value{GDBN} Command
922fbb7b 18760
a2c02241 18761The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18762
a2c02241
NR
18763@subsubheading Example
18764N.A.
922fbb7b 18765
922fbb7b 18766
a2c02241
NR
18767@subheading The @code{-thread-list-ids} Command
18768@findex -thread-list-ids
922fbb7b 18769
a2c02241 18770@subsubheading Synopsis
922fbb7b 18771
a2c02241
NR
18772@smallexample
18773 -thread-list-ids
18774@end smallexample
922fbb7b 18775
a2c02241
NR
18776Produces a list of the currently known @value{GDBN} thread ids. At the
18777end of the list it also prints the total number of such threads.
922fbb7b
AC
18778
18779@subsubheading @value{GDBN} Command
18780
a2c02241 18781Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18782
18783@subsubheading Example
18784
a2c02241 18785No threads present, besides the main process:
922fbb7b
AC
18786
18787@smallexample
594fe323 18788(gdb)
a2c02241
NR
18789-thread-list-ids
18790^done,thread-ids=@{@},number-of-threads="0"
594fe323 18791(gdb)
922fbb7b
AC
18792@end smallexample
18793
922fbb7b 18794
a2c02241 18795Several threads:
922fbb7b
AC
18796
18797@smallexample
594fe323 18798(gdb)
a2c02241
NR
18799-thread-list-ids
18800^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18801number-of-threads="3"
594fe323 18802(gdb)
922fbb7b
AC
18803@end smallexample
18804
a2c02241
NR
18805
18806@subheading The @code{-thread-select} Command
18807@findex -thread-select
922fbb7b
AC
18808
18809@subsubheading Synopsis
18810
18811@smallexample
a2c02241 18812 -thread-select @var{threadnum}
922fbb7b
AC
18813@end smallexample
18814
a2c02241
NR
18815Make @var{threadnum} the current thread. It prints the number of the new
18816current thread, and the topmost frame for that thread.
922fbb7b
AC
18817
18818@subsubheading @value{GDBN} Command
18819
a2c02241 18820The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18821
18822@subsubheading Example
922fbb7b
AC
18823
18824@smallexample
594fe323 18825(gdb)
a2c02241
NR
18826-exec-next
18827^running
594fe323 18828(gdb)
a2c02241
NR
18829*stopped,reason="end-stepping-range",thread-id="2",line="187",
18830file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18831(gdb)
a2c02241
NR
18832-thread-list-ids
18833^done,
18834thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18835number-of-threads="3"
594fe323 18836(gdb)
a2c02241
NR
18837-thread-select 3
18838^done,new-thread-id="3",
18839frame=@{level="0",func="vprintf",
18840args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18841@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18842(gdb)
922fbb7b
AC
18843@end smallexample
18844
a2c02241
NR
18845@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18846@node GDB/MI Program Execution
18847@section @sc{gdb/mi} Program Execution
922fbb7b 18848
ef21caaf 18849These are the asynchronous commands which generate the out-of-band
3f94c067 18850record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18851asynchronously with remote targets and this interaction is mimicked in
18852other cases.
922fbb7b 18853
922fbb7b
AC
18854@subheading The @code{-exec-continue} Command
18855@findex -exec-continue
18856
18857@subsubheading Synopsis
18858
18859@smallexample
18860 -exec-continue
18861@end smallexample
18862
ef21caaf
NR
18863Resumes the execution of the inferior program until a breakpoint is
18864encountered, or until the inferior exits.
922fbb7b
AC
18865
18866@subsubheading @value{GDBN} Command
18867
18868The corresponding @value{GDBN} corresponding is @samp{continue}.
18869
18870@subsubheading Example
18871
18872@smallexample
18873-exec-continue
18874^running
594fe323 18875(gdb)
922fbb7b
AC
18876@@Hello world
18877*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18878file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18879(gdb)
922fbb7b
AC
18880@end smallexample
18881
18882
18883@subheading The @code{-exec-finish} Command
18884@findex -exec-finish
18885
18886@subsubheading Synopsis
18887
18888@smallexample
18889 -exec-finish
18890@end smallexample
18891
ef21caaf
NR
18892Resumes the execution of the inferior program until the current
18893function is exited. Displays the results returned by the function.
922fbb7b
AC
18894
18895@subsubheading @value{GDBN} Command
18896
18897The corresponding @value{GDBN} command is @samp{finish}.
18898
18899@subsubheading Example
18900
18901Function returning @code{void}.
18902
18903@smallexample
18904-exec-finish
18905^running
594fe323 18906(gdb)
922fbb7b
AC
18907@@hello from foo
18908*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 18909file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 18910(gdb)
922fbb7b
AC
18911@end smallexample
18912
18913Function returning other than @code{void}. The name of the internal
18914@value{GDBN} variable storing the result is printed, together with the
18915value itself.
18916
18917@smallexample
18918-exec-finish
18919^running
594fe323 18920(gdb)
922fbb7b
AC
18921*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
18922args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 18923file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 18924gdb-result-var="$1",return-value="0"
594fe323 18925(gdb)
922fbb7b
AC
18926@end smallexample
18927
18928
18929@subheading The @code{-exec-interrupt} Command
18930@findex -exec-interrupt
18931
18932@subsubheading Synopsis
18933
18934@smallexample
18935 -exec-interrupt
18936@end smallexample
18937
ef21caaf
NR
18938Interrupts the background execution of the target. Note how the token
18939associated with the stop message is the one for the execution command
18940that has been interrupted. The token for the interrupt itself only
18941appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
18942interrupt a non-running program, an error message will be printed.
18943
18944@subsubheading @value{GDBN} Command
18945
18946The corresponding @value{GDBN} command is @samp{interrupt}.
18947
18948@subsubheading Example
18949
18950@smallexample
594fe323 18951(gdb)
922fbb7b
AC
18952111-exec-continue
18953111^running
18954
594fe323 18955(gdb)
922fbb7b
AC
18956222-exec-interrupt
18957222^done
594fe323 18958(gdb)
922fbb7b 18959111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 18960frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 18961fullname="/home/foo/bar/try.c",line="13"@}
594fe323 18962(gdb)
922fbb7b 18963
594fe323 18964(gdb)
922fbb7b
AC
18965-exec-interrupt
18966^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 18967(gdb)
922fbb7b
AC
18968@end smallexample
18969
18970
18971@subheading The @code{-exec-next} Command
18972@findex -exec-next
18973
18974@subsubheading Synopsis
18975
18976@smallexample
18977 -exec-next
18978@end smallexample
18979
ef21caaf
NR
18980Resumes execution of the inferior program, stopping when the beginning
18981of the next source line is reached.
922fbb7b
AC
18982
18983@subsubheading @value{GDBN} Command
18984
18985The corresponding @value{GDBN} command is @samp{next}.
18986
18987@subsubheading Example
18988
18989@smallexample
18990-exec-next
18991^running
594fe323 18992(gdb)
922fbb7b 18993*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 18994(gdb)
922fbb7b
AC
18995@end smallexample
18996
18997
18998@subheading The @code{-exec-next-instruction} Command
18999@findex -exec-next-instruction
19000
19001@subsubheading Synopsis
19002
19003@smallexample
19004 -exec-next-instruction
19005@end smallexample
19006
ef21caaf
NR
19007Executes one machine instruction. If the instruction is a function
19008call, continues until the function returns. If the program stops at an
19009instruction in the middle of a source line, the address will be
19010printed as well.
922fbb7b
AC
19011
19012@subsubheading @value{GDBN} Command
19013
19014The corresponding @value{GDBN} command is @samp{nexti}.
19015
19016@subsubheading Example
19017
19018@smallexample
594fe323 19019(gdb)
922fbb7b
AC
19020-exec-next-instruction
19021^running
19022
594fe323 19023(gdb)
922fbb7b
AC
19024*stopped,reason="end-stepping-range",
19025addr="0x000100d4",line="5",file="hello.c"
594fe323 19026(gdb)
922fbb7b
AC
19027@end smallexample
19028
19029
19030@subheading The @code{-exec-return} Command
19031@findex -exec-return
19032
19033@subsubheading Synopsis
19034
19035@smallexample
19036 -exec-return
19037@end smallexample
19038
19039Makes current function return immediately. Doesn't execute the inferior.
19040Displays the new current frame.
19041
19042@subsubheading @value{GDBN} Command
19043
19044The corresponding @value{GDBN} command is @samp{return}.
19045
19046@subsubheading Example
19047
19048@smallexample
594fe323 19049(gdb)
922fbb7b
AC
19050200-break-insert callee4
19051200^done,bkpt=@{number="1",addr="0x00010734",
19052file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19053(gdb)
922fbb7b
AC
19054000-exec-run
19055000^running
594fe323 19056(gdb)
922fbb7b
AC
19057000*stopped,reason="breakpoint-hit",bkptno="1",
19058frame=@{func="callee4",args=[],
76ff342d
DJ
19059file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19060fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19061(gdb)
922fbb7b
AC
19062205-break-delete
19063205^done
594fe323 19064(gdb)
922fbb7b
AC
19065111-exec-return
19066111^done,frame=@{level="0",func="callee3",
19067args=[@{name="strarg",
19068value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19069file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19070fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19071(gdb)
922fbb7b
AC
19072@end smallexample
19073
19074
19075@subheading The @code{-exec-run} Command
19076@findex -exec-run
19077
19078@subsubheading Synopsis
19079
19080@smallexample
19081 -exec-run
19082@end smallexample
19083
ef21caaf
NR
19084Starts execution of the inferior from the beginning. The inferior
19085executes until either a breakpoint is encountered or the program
19086exits. In the latter case the output will include an exit code, if
19087the program has exited exceptionally.
922fbb7b
AC
19088
19089@subsubheading @value{GDBN} Command
19090
19091The corresponding @value{GDBN} command is @samp{run}.
19092
ef21caaf 19093@subsubheading Examples
922fbb7b
AC
19094
19095@smallexample
594fe323 19096(gdb)
922fbb7b
AC
19097-break-insert main
19098^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19099(gdb)
922fbb7b
AC
19100-exec-run
19101^running
594fe323 19102(gdb)
922fbb7b 19103*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19104frame=@{func="main",args=[],file="recursive2.c",
948d5102 19105fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19106(gdb)
922fbb7b
AC
19107@end smallexample
19108
ef21caaf
NR
19109@noindent
19110Program exited normally:
19111
19112@smallexample
594fe323 19113(gdb)
ef21caaf
NR
19114-exec-run
19115^running
594fe323 19116(gdb)
ef21caaf
NR
19117x = 55
19118*stopped,reason="exited-normally"
594fe323 19119(gdb)
ef21caaf
NR
19120@end smallexample
19121
19122@noindent
19123Program exited exceptionally:
19124
19125@smallexample
594fe323 19126(gdb)
ef21caaf
NR
19127-exec-run
19128^running
594fe323 19129(gdb)
ef21caaf
NR
19130x = 55
19131*stopped,reason="exited",exit-code="01"
594fe323 19132(gdb)
ef21caaf
NR
19133@end smallexample
19134
19135Another way the program can terminate is if it receives a signal such as
19136@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19137
19138@smallexample
594fe323 19139(gdb)
ef21caaf
NR
19140*stopped,reason="exited-signalled",signal-name="SIGINT",
19141signal-meaning="Interrupt"
19142@end smallexample
19143
922fbb7b 19144
a2c02241
NR
19145@c @subheading -exec-signal
19146
19147
19148@subheading The @code{-exec-step} Command
19149@findex -exec-step
922fbb7b
AC
19150
19151@subsubheading Synopsis
19152
19153@smallexample
a2c02241 19154 -exec-step
922fbb7b
AC
19155@end smallexample
19156
a2c02241
NR
19157Resumes execution of the inferior program, stopping when the beginning
19158of the next source line is reached, if the next source line is not a
19159function call. If it is, stop at the first instruction of the called
19160function.
922fbb7b
AC
19161
19162@subsubheading @value{GDBN} Command
19163
a2c02241 19164The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19165
19166@subsubheading Example
19167
19168Stepping into a function:
19169
19170@smallexample
19171-exec-step
19172^running
594fe323 19173(gdb)
922fbb7b
AC
19174*stopped,reason="end-stepping-range",
19175frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19176@{name="b",value="0"@}],file="recursive2.c",
948d5102 19177fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19178(gdb)
922fbb7b
AC
19179@end smallexample
19180
19181Regular stepping:
19182
19183@smallexample
19184-exec-step
19185^running
594fe323 19186(gdb)
922fbb7b 19187*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19188(gdb)
922fbb7b
AC
19189@end smallexample
19190
19191
19192@subheading The @code{-exec-step-instruction} Command
19193@findex -exec-step-instruction
19194
19195@subsubheading Synopsis
19196
19197@smallexample
19198 -exec-step-instruction
19199@end smallexample
19200
ef21caaf
NR
19201Resumes the inferior which executes one machine instruction. The
19202output, once @value{GDBN} has stopped, will vary depending on whether
19203we have stopped in the middle of a source line or not. In the former
19204case, the address at which the program stopped will be printed as
922fbb7b
AC
19205well.
19206
19207@subsubheading @value{GDBN} Command
19208
19209The corresponding @value{GDBN} command is @samp{stepi}.
19210
19211@subsubheading Example
19212
19213@smallexample
594fe323 19214(gdb)
922fbb7b
AC
19215-exec-step-instruction
19216^running
19217
594fe323 19218(gdb)
922fbb7b 19219*stopped,reason="end-stepping-range",
76ff342d 19220frame=@{func="foo",args=[],file="try.c",
948d5102 19221fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19222(gdb)
922fbb7b
AC
19223-exec-step-instruction
19224^running
19225
594fe323 19226(gdb)
922fbb7b 19227*stopped,reason="end-stepping-range",
76ff342d 19228frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19229fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19230(gdb)
922fbb7b
AC
19231@end smallexample
19232
19233
19234@subheading The @code{-exec-until} Command
19235@findex -exec-until
19236
19237@subsubheading Synopsis
19238
19239@smallexample
19240 -exec-until [ @var{location} ]
19241@end smallexample
19242
ef21caaf
NR
19243Executes the inferior until the @var{location} specified in the
19244argument is reached. If there is no argument, the inferior executes
19245until a source line greater than the current one is reached. The
19246reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19247
19248@subsubheading @value{GDBN} Command
19249
19250The corresponding @value{GDBN} command is @samp{until}.
19251
19252@subsubheading Example
19253
19254@smallexample
594fe323 19255(gdb)
922fbb7b
AC
19256-exec-until recursive2.c:6
19257^running
594fe323 19258(gdb)
922fbb7b
AC
19259x = 55
19260*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19261file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19262(gdb)
922fbb7b
AC
19263@end smallexample
19264
19265@ignore
19266@subheading -file-clear
19267Is this going away????
19268@end ignore
19269
351ff01a 19270@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19271@node GDB/MI Stack Manipulation
19272@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19273
922fbb7b 19274
a2c02241
NR
19275@subheading The @code{-stack-info-frame} Command
19276@findex -stack-info-frame
922fbb7b
AC
19277
19278@subsubheading Synopsis
19279
19280@smallexample
a2c02241 19281 -stack-info-frame
922fbb7b
AC
19282@end smallexample
19283
a2c02241 19284Get info on the selected frame.
922fbb7b
AC
19285
19286@subsubheading @value{GDBN} Command
19287
a2c02241
NR
19288The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19289(without arguments).
922fbb7b
AC
19290
19291@subsubheading Example
19292
19293@smallexample
594fe323 19294(gdb)
a2c02241
NR
19295-stack-info-frame
19296^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19297file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19298fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19299(gdb)
922fbb7b
AC
19300@end smallexample
19301
a2c02241
NR
19302@subheading The @code{-stack-info-depth} Command
19303@findex -stack-info-depth
922fbb7b
AC
19304
19305@subsubheading Synopsis
19306
19307@smallexample
a2c02241 19308 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19309@end smallexample
19310
a2c02241
NR
19311Return the depth of the stack. If the integer argument @var{max-depth}
19312is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19313
19314@subsubheading @value{GDBN} Command
19315
a2c02241 19316There's no equivalent @value{GDBN} command.
922fbb7b
AC
19317
19318@subsubheading Example
19319
a2c02241
NR
19320For a stack with frame levels 0 through 11:
19321
922fbb7b 19322@smallexample
594fe323 19323(gdb)
a2c02241
NR
19324-stack-info-depth
19325^done,depth="12"
594fe323 19326(gdb)
a2c02241
NR
19327-stack-info-depth 4
19328^done,depth="4"
594fe323 19329(gdb)
a2c02241
NR
19330-stack-info-depth 12
19331^done,depth="12"
594fe323 19332(gdb)
a2c02241
NR
19333-stack-info-depth 11
19334^done,depth="11"
594fe323 19335(gdb)
a2c02241
NR
19336-stack-info-depth 13
19337^done,depth="12"
594fe323 19338(gdb)
922fbb7b
AC
19339@end smallexample
19340
a2c02241
NR
19341@subheading The @code{-stack-list-arguments} Command
19342@findex -stack-list-arguments
922fbb7b
AC
19343
19344@subsubheading Synopsis
19345
19346@smallexample
a2c02241
NR
19347 -stack-list-arguments @var{show-values}
19348 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19349@end smallexample
19350
a2c02241
NR
19351Display a list of the arguments for the frames between @var{low-frame}
19352and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19353@var{high-frame} are not provided, list the arguments for the whole
19354call stack. If the two arguments are equal, show the single frame
19355at the corresponding level. It is an error if @var{low-frame} is
19356larger than the actual number of frames. On the other hand,
19357@var{high-frame} may be larger than the actual number of frames, in
19358which case only existing frames will be returned.
a2c02241
NR
19359
19360The @var{show-values} argument must have a value of 0 or 1. A value of
193610 means that only the names of the arguments are listed, a value of 1
19362means that both names and values of the arguments are printed.
922fbb7b
AC
19363
19364@subsubheading @value{GDBN} Command
19365
a2c02241
NR
19366@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19367@samp{gdb_get_args} command which partially overlaps with the
19368functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19369
19370@subsubheading Example
922fbb7b 19371
a2c02241 19372@smallexample
594fe323 19373(gdb)
a2c02241
NR
19374-stack-list-frames
19375^done,
19376stack=[
19377frame=@{level="0",addr="0x00010734",func="callee4",
19378file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19379fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19380frame=@{level="1",addr="0x0001076c",func="callee3",
19381file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19382fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19383frame=@{level="2",addr="0x0001078c",func="callee2",
19384file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19385fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19386frame=@{level="3",addr="0x000107b4",func="callee1",
19387file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19388fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19389frame=@{level="4",addr="0x000107e0",func="main",
19390file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19391fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19392(gdb)
a2c02241
NR
19393-stack-list-arguments 0
19394^done,
19395stack-args=[
19396frame=@{level="0",args=[]@},
19397frame=@{level="1",args=[name="strarg"]@},
19398frame=@{level="2",args=[name="intarg",name="strarg"]@},
19399frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19400frame=@{level="4",args=[]@}]
594fe323 19401(gdb)
a2c02241
NR
19402-stack-list-arguments 1
19403^done,
19404stack-args=[
19405frame=@{level="0",args=[]@},
19406frame=@{level="1",
19407 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19408frame=@{level="2",args=[
19409@{name="intarg",value="2"@},
19410@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19411@{frame=@{level="3",args=[
19412@{name="intarg",value="2"@},
19413@{name="strarg",value="0x11940 \"A string argument.\""@},
19414@{name="fltarg",value="3.5"@}]@},
19415frame=@{level="4",args=[]@}]
594fe323 19416(gdb)
a2c02241
NR
19417-stack-list-arguments 0 2 2
19418^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19419(gdb)
a2c02241
NR
19420-stack-list-arguments 1 2 2
19421^done,stack-args=[frame=@{level="2",
19422args=[@{name="intarg",value="2"@},
19423@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19424(gdb)
a2c02241
NR
19425@end smallexample
19426
19427@c @subheading -stack-list-exception-handlers
922fbb7b 19428
a2c02241
NR
19429
19430@subheading The @code{-stack-list-frames} Command
19431@findex -stack-list-frames
1abaf70c
BR
19432
19433@subsubheading Synopsis
19434
19435@smallexample
a2c02241 19436 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19437@end smallexample
19438
a2c02241
NR
19439List the frames currently on the stack. For each frame it displays the
19440following info:
19441
19442@table @samp
19443@item @var{level}
d3e8051b 19444The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19445@item @var{addr}
19446The @code{$pc} value for that frame.
19447@item @var{func}
19448Function name.
19449@item @var{file}
19450File name of the source file where the function lives.
19451@item @var{line}
19452Line number corresponding to the @code{$pc}.
19453@end table
19454
19455If invoked without arguments, this command prints a backtrace for the
19456whole stack. If given two integer arguments, it shows the frames whose
19457levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19458are equal, it shows the single frame at the corresponding level. It is
19459an error if @var{low-frame} is larger than the actual number of
a5451f4e 19460frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19461actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19462
19463@subsubheading @value{GDBN} Command
19464
a2c02241 19465The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19466
19467@subsubheading Example
19468
a2c02241
NR
19469Full stack backtrace:
19470
1abaf70c 19471@smallexample
594fe323 19472(gdb)
a2c02241
NR
19473-stack-list-frames
19474^done,stack=
19475[frame=@{level="0",addr="0x0001076c",func="foo",
19476 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19477frame=@{level="1",addr="0x000107a4",func="foo",
19478 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19479frame=@{level="2",addr="0x000107a4",func="foo",
19480 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19481frame=@{level="3",addr="0x000107a4",func="foo",
19482 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19483frame=@{level="4",addr="0x000107a4",func="foo",
19484 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19485frame=@{level="5",addr="0x000107a4",func="foo",
19486 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19487frame=@{level="6",addr="0x000107a4",func="foo",
19488 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19489frame=@{level="7",addr="0x000107a4",func="foo",
19490 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19491frame=@{level="8",addr="0x000107a4",func="foo",
19492 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19493frame=@{level="9",addr="0x000107a4",func="foo",
19494 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19495frame=@{level="10",addr="0x000107a4",func="foo",
19496 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19497frame=@{level="11",addr="0x00010738",func="main",
19498 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19499(gdb)
1abaf70c
BR
19500@end smallexample
19501
a2c02241 19502Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19503
a2c02241 19504@smallexample
594fe323 19505(gdb)
a2c02241
NR
19506-stack-list-frames 3 5
19507^done,stack=
19508[frame=@{level="3",addr="0x000107a4",func="foo",
19509 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19510frame=@{level="4",addr="0x000107a4",func="foo",
19511 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19512frame=@{level="5",addr="0x000107a4",func="foo",
19513 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19514(gdb)
a2c02241 19515@end smallexample
922fbb7b 19516
a2c02241 19517Show a single frame:
922fbb7b
AC
19518
19519@smallexample
594fe323 19520(gdb)
a2c02241
NR
19521-stack-list-frames 3 3
19522^done,stack=
19523[frame=@{level="3",addr="0x000107a4",func="foo",
19524 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19525(gdb)
922fbb7b
AC
19526@end smallexample
19527
922fbb7b 19528
a2c02241
NR
19529@subheading The @code{-stack-list-locals} Command
19530@findex -stack-list-locals
57c22c6c 19531
a2c02241 19532@subsubheading Synopsis
922fbb7b
AC
19533
19534@smallexample
a2c02241 19535 -stack-list-locals @var{print-values}
922fbb7b
AC
19536@end smallexample
19537
a2c02241
NR
19538Display the local variable names for the selected frame. If
19539@var{print-values} is 0 or @code{--no-values}, print only the names of
19540the variables; if it is 1 or @code{--all-values}, print also their
19541values; and if it is 2 or @code{--simple-values}, print the name,
19542type and value for simple data types and the name and type for arrays,
19543structures and unions. In this last case, a frontend can immediately
19544display the value of simple data types and create variable objects for
d3e8051b 19545other data types when the user wishes to explore their values in
a2c02241 19546more detail.
922fbb7b
AC
19547
19548@subsubheading @value{GDBN} Command
19549
a2c02241 19550@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19551
19552@subsubheading Example
922fbb7b
AC
19553
19554@smallexample
594fe323 19555(gdb)
a2c02241
NR
19556-stack-list-locals 0
19557^done,locals=[name="A",name="B",name="C"]
594fe323 19558(gdb)
a2c02241
NR
19559-stack-list-locals --all-values
19560^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19561 @{name="C",value="@{1, 2, 3@}"@}]
19562-stack-list-locals --simple-values
19563^done,locals=[@{name="A",type="int",value="1"@},
19564 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19565(gdb)
922fbb7b
AC
19566@end smallexample
19567
922fbb7b 19568
a2c02241
NR
19569@subheading The @code{-stack-select-frame} Command
19570@findex -stack-select-frame
922fbb7b
AC
19571
19572@subsubheading Synopsis
19573
19574@smallexample
a2c02241 19575 -stack-select-frame @var{framenum}
922fbb7b
AC
19576@end smallexample
19577
a2c02241
NR
19578Change the selected frame. Select a different frame @var{framenum} on
19579the stack.
922fbb7b
AC
19580
19581@subsubheading @value{GDBN} Command
19582
a2c02241
NR
19583The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19584@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19585
19586@subsubheading Example
19587
19588@smallexample
594fe323 19589(gdb)
a2c02241 19590-stack-select-frame 2
922fbb7b 19591^done
594fe323 19592(gdb)
922fbb7b
AC
19593@end smallexample
19594
19595@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19596@node GDB/MI Variable Objects
19597@section @sc{gdb/mi} Variable Objects
922fbb7b 19598
a1b5960f 19599@ignore
922fbb7b 19600
a2c02241 19601@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19602
a2c02241
NR
19603For the implementation of a variable debugger window (locals, watched
19604expressions, etc.), we are proposing the adaptation of the existing code
19605used by @code{Insight}.
922fbb7b 19606
a2c02241 19607The two main reasons for that are:
922fbb7b 19608
a2c02241
NR
19609@enumerate 1
19610@item
19611It has been proven in practice (it is already on its second generation).
922fbb7b 19612
a2c02241
NR
19613@item
19614It will shorten development time (needless to say how important it is
19615now).
19616@end enumerate
922fbb7b 19617
a2c02241
NR
19618The original interface was designed to be used by Tcl code, so it was
19619slightly changed so it could be used through @sc{gdb/mi}. This section
19620describes the @sc{gdb/mi} operations that will be available and gives some
19621hints about their use.
922fbb7b 19622
a2c02241
NR
19623@emph{Note}: In addition to the set of operations described here, we
19624expect the @sc{gui} implementation of a variable window to require, at
19625least, the following operations:
922fbb7b 19626
a2c02241
NR
19627@itemize @bullet
19628@item @code{-gdb-show} @code{output-radix}
19629@item @code{-stack-list-arguments}
19630@item @code{-stack-list-locals}
19631@item @code{-stack-select-frame}
19632@end itemize
922fbb7b 19633
a1b5960f
VP
19634@end ignore
19635
c8b2f53c 19636@subheading Introduction to Variable Objects
922fbb7b 19637
a2c02241 19638@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19639
19640Variable objects are "object-oriented" MI interface for examining and
19641changing values of expressions. Unlike some other MI interfaces that
19642work with expressions, variable objects are specifically designed for
19643simple and efficient presentation in the frontend. A variable object
19644is identified by string name. When a variable object is created, the
19645frontend specifies the expression for that variable object. The
19646expression can be a simple variable, or it can be an arbitrary complex
19647expression, and can even involve CPU registers. After creating a
19648variable object, the frontend can invoke other variable object
19649operations---for example to obtain or change the value of a variable
19650object, or to change display format.
19651
19652Variable objects have hierarchical tree structure. Any variable object
19653that corresponds to a composite type, such as structure in C, has
19654a number of child variable objects, for example corresponding to each
19655element of a structure. A child variable object can itself have
19656children, recursively. Recursion ends when we reach
25d5ea92
VP
19657leaf variable objects, which always have built-in types. Child variable
19658objects are created only by explicit request, so if a frontend
19659is not interested in the children of a particular variable object, no
19660child will be created.
c8b2f53c
VP
19661
19662For a leaf variable object it is possible to obtain its value as a
19663string, or set the value from a string. String value can be also
19664obtained for a non-leaf variable object, but it's generally a string
19665that only indicates the type of the object, and does not list its
19666contents. Assignment to a non-leaf variable object is not allowed.
19667
19668A frontend does not need to read the values of all variable objects each time
19669the program stops. Instead, MI provides an update command that lists all
19670variable objects whose values has changed since the last update
19671operation. This considerably reduces the amount of data that must
25d5ea92
VP
19672be transferred to the frontend. As noted above, children variable
19673objects are created on demand, and only leaf variable objects have a
19674real value. As result, gdb will read target memory only for leaf
19675variables that frontend has created.
19676
19677The automatic update is not always desirable. For example, a frontend
19678might want to keep a value of some expression for future reference,
19679and never update it. For another example, fetching memory is
19680relatively slow for embedded targets, so a frontend might want
19681to disable automatic update for the variables that are either not
19682visible on the screen, or ``closed''. This is possible using so
19683called ``frozen variable objects''. Such variable objects are never
19684implicitly updated.
922fbb7b 19685
a2c02241
NR
19686The following is the complete set of @sc{gdb/mi} operations defined to
19687access this functionality:
922fbb7b 19688
a2c02241
NR
19689@multitable @columnfractions .4 .6
19690@item @strong{Operation}
19691@tab @strong{Description}
922fbb7b 19692
a2c02241
NR
19693@item @code{-var-create}
19694@tab create a variable object
19695@item @code{-var-delete}
22d8a470 19696@tab delete the variable object and/or its children
a2c02241
NR
19697@item @code{-var-set-format}
19698@tab set the display format of this variable
19699@item @code{-var-show-format}
19700@tab show the display format of this variable
19701@item @code{-var-info-num-children}
19702@tab tells how many children this object has
19703@item @code{-var-list-children}
19704@tab return a list of the object's children
19705@item @code{-var-info-type}
19706@tab show the type of this variable object
19707@item @code{-var-info-expression}
02142340
VP
19708@tab print parent-relative expression that this variable object represents
19709@item @code{-var-info-path-expression}
19710@tab print full expression that this variable object represents
a2c02241
NR
19711@item @code{-var-show-attributes}
19712@tab is this variable editable? does it exist here?
19713@item @code{-var-evaluate-expression}
19714@tab get the value of this variable
19715@item @code{-var-assign}
19716@tab set the value of this variable
19717@item @code{-var-update}
19718@tab update the variable and its children
25d5ea92
VP
19719@item @code{-var-set-frozen}
19720@tab set frozeness attribute
a2c02241 19721@end multitable
922fbb7b 19722
a2c02241
NR
19723In the next subsection we describe each operation in detail and suggest
19724how it can be used.
922fbb7b 19725
a2c02241 19726@subheading Description And Use of Operations on Variable Objects
922fbb7b 19727
a2c02241
NR
19728@subheading The @code{-var-create} Command
19729@findex -var-create
ef21caaf 19730
a2c02241 19731@subsubheading Synopsis
ef21caaf 19732
a2c02241
NR
19733@smallexample
19734 -var-create @{@var{name} | "-"@}
19735 @{@var{frame-addr} | "*"@} @var{expression}
19736@end smallexample
19737
19738This operation creates a variable object, which allows the monitoring of
19739a variable, the result of an expression, a memory cell or a CPU
19740register.
ef21caaf 19741
a2c02241
NR
19742The @var{name} parameter is the string by which the object can be
19743referenced. It must be unique. If @samp{-} is specified, the varobj
19744system will generate a string ``varNNNNNN'' automatically. It will be
19745unique provided that one does not specify @var{name} on that format.
19746The command fails if a duplicate name is found.
ef21caaf 19747
a2c02241
NR
19748The frame under which the expression should be evaluated can be
19749specified by @var{frame-addr}. A @samp{*} indicates that the current
19750frame should be used.
922fbb7b 19751
a2c02241
NR
19752@var{expression} is any expression valid on the current language set (must not
19753begin with a @samp{*}), or one of the following:
922fbb7b 19754
a2c02241
NR
19755@itemize @bullet
19756@item
19757@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19758
a2c02241
NR
19759@item
19760@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19761
a2c02241
NR
19762@item
19763@samp{$@var{regname}} --- a CPU register name
19764@end itemize
922fbb7b 19765
a2c02241 19766@subsubheading Result
922fbb7b 19767
a2c02241
NR
19768This operation returns the name, number of children and the type of the
19769object created. Type is returned as a string as the ones generated by
19770the @value{GDBN} CLI:
922fbb7b
AC
19771
19772@smallexample
a2c02241 19773 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19774@end smallexample
19775
a2c02241
NR
19776
19777@subheading The @code{-var-delete} Command
19778@findex -var-delete
922fbb7b
AC
19779
19780@subsubheading Synopsis
19781
19782@smallexample
22d8a470 19783 -var-delete [ -c ] @var{name}
922fbb7b
AC
19784@end smallexample
19785
a2c02241 19786Deletes a previously created variable object and all of its children.
22d8a470 19787With the @samp{-c} option, just deletes the children.
922fbb7b 19788
a2c02241 19789Returns an error if the object @var{name} is not found.
922fbb7b 19790
922fbb7b 19791
a2c02241
NR
19792@subheading The @code{-var-set-format} Command
19793@findex -var-set-format
922fbb7b 19794
a2c02241 19795@subsubheading Synopsis
922fbb7b
AC
19796
19797@smallexample
a2c02241 19798 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19799@end smallexample
19800
a2c02241
NR
19801Sets the output format for the value of the object @var{name} to be
19802@var{format-spec}.
19803
19804The syntax for the @var{format-spec} is as follows:
19805
19806@smallexample
19807 @var{format-spec} @expansion{}
19808 @{binary | decimal | hexadecimal | octal | natural@}
19809@end smallexample
19810
c8b2f53c
VP
19811The natural format is the default format choosen automatically
19812based on the variable type (like decimal for an @code{int}, hex
19813for pointers, etc.).
19814
19815For a variable with children, the format is set only on the
19816variable itself, and the children are not affected.
a2c02241
NR
19817
19818@subheading The @code{-var-show-format} Command
19819@findex -var-show-format
922fbb7b
AC
19820
19821@subsubheading Synopsis
19822
19823@smallexample
a2c02241 19824 -var-show-format @var{name}
922fbb7b
AC
19825@end smallexample
19826
a2c02241 19827Returns the format used to display the value of the object @var{name}.
922fbb7b 19828
a2c02241
NR
19829@smallexample
19830 @var{format} @expansion{}
19831 @var{format-spec}
19832@end smallexample
922fbb7b 19833
922fbb7b 19834
a2c02241
NR
19835@subheading The @code{-var-info-num-children} Command
19836@findex -var-info-num-children
19837
19838@subsubheading Synopsis
19839
19840@smallexample
19841 -var-info-num-children @var{name}
19842@end smallexample
19843
19844Returns the number of children of a variable object @var{name}:
19845
19846@smallexample
19847 numchild=@var{n}
19848@end smallexample
19849
19850
19851@subheading The @code{-var-list-children} Command
19852@findex -var-list-children
19853
19854@subsubheading Synopsis
19855
19856@smallexample
19857 -var-list-children [@var{print-values}] @var{name}
19858@end smallexample
19859@anchor{-var-list-children}
19860
19861Return a list of the children of the specified variable object and
19862create variable objects for them, if they do not already exist. With
19863a single argument or if @var{print-values} has a value for of 0 or
19864@code{--no-values}, print only the names of the variables; if
19865@var{print-values} is 1 or @code{--all-values}, also print their
19866values; and if it is 2 or @code{--simple-values} print the name and
19867value for simple data types and just the name for arrays, structures
19868and unions.
922fbb7b
AC
19869
19870@subsubheading Example
19871
19872@smallexample
594fe323 19873(gdb)
a2c02241
NR
19874 -var-list-children n
19875 ^done,numchild=@var{n},children=[@{name=@var{name},
19876 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19877(gdb)
a2c02241
NR
19878 -var-list-children --all-values n
19879 ^done,numchild=@var{n},children=[@{name=@var{name},
19880 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19881@end smallexample
19882
922fbb7b 19883
a2c02241
NR
19884@subheading The @code{-var-info-type} Command
19885@findex -var-info-type
922fbb7b 19886
a2c02241
NR
19887@subsubheading Synopsis
19888
19889@smallexample
19890 -var-info-type @var{name}
19891@end smallexample
19892
19893Returns the type of the specified variable @var{name}. The type is
19894returned as a string in the same format as it is output by the
19895@value{GDBN} CLI:
19896
19897@smallexample
19898 type=@var{typename}
19899@end smallexample
19900
19901
19902@subheading The @code{-var-info-expression} Command
19903@findex -var-info-expression
922fbb7b
AC
19904
19905@subsubheading Synopsis
19906
19907@smallexample
a2c02241 19908 -var-info-expression @var{name}
922fbb7b
AC
19909@end smallexample
19910
02142340
VP
19911Returns a string that is suitable for presenting this
19912variable object in user interface. The string is generally
19913not valid expression in the current language, and cannot be evaluated.
19914
19915For example, if @code{a} is an array, and variable object
19916@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 19917
a2c02241 19918@smallexample
02142340
VP
19919(gdb) -var-info-expression A.1
19920^done,lang="C",exp="1"
a2c02241 19921@end smallexample
922fbb7b 19922
a2c02241 19923@noindent
02142340
VP
19924Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
19925
19926Note that the output of the @code{-var-list-children} command also
19927includes those expressions, so the @code{-var-info-expression} command
19928is of limited use.
19929
19930@subheading The @code{-var-info-path-expression} Command
19931@findex -var-info-path-expression
19932
19933@subsubheading Synopsis
19934
19935@smallexample
19936 -var-info-path-expression @var{name}
19937@end smallexample
19938
19939Returns an expression that can be evaluated in the current
19940context and will yield the same value that a variable object has.
19941Compare this with the @code{-var-info-expression} command, which
19942result can be used only for UI presentation. Typical use of
19943the @code{-var-info-path-expression} command is creating a
19944watchpoint from a variable object.
19945
19946For example, suppose @code{C} is a C@t{++} class, derived from class
19947@code{Base}, and that the @code{Base} class has a member called
19948@code{m_size}. Assume a variable @code{c} is has the type of
19949@code{C} and a variable object @code{C} was created for variable
19950@code{c}. Then, we'll get this output:
19951@smallexample
19952(gdb) -var-info-path-expression C.Base.public.m_size
19953^done,path_expr=((Base)c).m_size)
19954@end smallexample
922fbb7b 19955
a2c02241
NR
19956@subheading The @code{-var-show-attributes} Command
19957@findex -var-show-attributes
922fbb7b 19958
a2c02241 19959@subsubheading Synopsis
922fbb7b 19960
a2c02241
NR
19961@smallexample
19962 -var-show-attributes @var{name}
19963@end smallexample
922fbb7b 19964
a2c02241 19965List attributes of the specified variable object @var{name}:
922fbb7b
AC
19966
19967@smallexample
a2c02241 19968 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
19969@end smallexample
19970
a2c02241
NR
19971@noindent
19972where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
19973
19974@subheading The @code{-var-evaluate-expression} Command
19975@findex -var-evaluate-expression
19976
19977@subsubheading Synopsis
19978
19979@smallexample
19980 -var-evaluate-expression @var{name}
19981@end smallexample
19982
19983Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
19984object and returns its value as a string. The format of the
19985string can be changed using the @code{-var-set-format} command.
a2c02241
NR
19986
19987@smallexample
19988 value=@var{value}
19989@end smallexample
19990
19991Note that one must invoke @code{-var-list-children} for a variable
19992before the value of a child variable can be evaluated.
19993
19994@subheading The @code{-var-assign} Command
19995@findex -var-assign
19996
19997@subsubheading Synopsis
19998
19999@smallexample
20000 -var-assign @var{name} @var{expression}
20001@end smallexample
20002
20003Assigns the value of @var{expression} to the variable object specified
20004by @var{name}. The object must be @samp{editable}. If the variable's
20005value is altered by the assign, the variable will show up in any
20006subsequent @code{-var-update} list.
20007
20008@subsubheading Example
922fbb7b
AC
20009
20010@smallexample
594fe323 20011(gdb)
a2c02241
NR
20012-var-assign var1 3
20013^done,value="3"
594fe323 20014(gdb)
a2c02241
NR
20015-var-update *
20016^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20017(gdb)
922fbb7b
AC
20018@end smallexample
20019
a2c02241
NR
20020@subheading The @code{-var-update} Command
20021@findex -var-update
20022
20023@subsubheading Synopsis
20024
20025@smallexample
20026 -var-update [@var{print-values}] @{@var{name} | "*"@}
20027@end smallexample
20028
c8b2f53c
VP
20029Reevaluate the expressions corresponding to the variable object
20030@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20031list of variable objects whose values have changed; @var{name} must
20032be a root variable object. Here, ``changed'' means that the result of
20033@code{-var-evaluate-expression} before and after the
20034@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20035object names, all existing variable objects are updated, except
20036for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20037@var{print-values} determines whether both names and values, or just
20038names are printed. The possible values of this options are the same
20039as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20040recommended to use the @samp{--all-values} option, to reduce the
20041number of MI commands needed on each program stop.
c8b2f53c 20042
a2c02241
NR
20043
20044@subsubheading Example
922fbb7b
AC
20045
20046@smallexample
594fe323 20047(gdb)
a2c02241
NR
20048-var-assign var1 3
20049^done,value="3"
594fe323 20050(gdb)
a2c02241
NR
20051-var-update --all-values var1
20052^done,changelist=[@{name="var1",value="3",in_scope="true",
20053type_changed="false"@}]
594fe323 20054(gdb)
922fbb7b
AC
20055@end smallexample
20056
9f708cb2 20057@anchor{-var-update}
36ece8b3
NR
20058The field in_scope may take three values:
20059
20060@table @code
20061@item "true"
20062The variable object's current value is valid.
20063
20064@item "false"
20065The variable object does not currently hold a valid value but it may
20066hold one in the future if its associated expression comes back into
20067scope.
20068
20069@item "invalid"
20070The variable object no longer holds a valid value.
20071This can occur when the executable file being debugged has changed,
20072either through recompilation or by using the @value{GDBN} @code{file}
20073command. The front end should normally choose to delete these variable
20074objects.
20075@end table
20076
20077In the future new values may be added to this list so the front should
20078be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20079
25d5ea92
VP
20080@subheading The @code{-var-set-frozen} Command
20081@findex -var-set-frozen
9f708cb2 20082@anchor{-var-set-frozen}
25d5ea92
VP
20083
20084@subsubheading Synopsis
20085
20086@smallexample
9f708cb2 20087 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20088@end smallexample
20089
9f708cb2 20090Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20091@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20092frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20093frozen, then neither itself, nor any of its children, are
9f708cb2 20094implicitly updated by @code{-var-update} of
25d5ea92
VP
20095a parent variable or by @code{-var-update *}. Only
20096@code{-var-update} of the variable itself will update its value and
20097values of its children. After a variable object is unfrozen, it is
20098implicitly updated by all subsequent @code{-var-update} operations.
20099Unfreezing a variable does not update it, only subsequent
20100@code{-var-update} does.
20101
20102@subsubheading Example
20103
20104@smallexample
20105(gdb)
20106-var-set-frozen V 1
20107^done
20108(gdb)
20109@end smallexample
20110
20111
a2c02241
NR
20112@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20113@node GDB/MI Data Manipulation
20114@section @sc{gdb/mi} Data Manipulation
922fbb7b 20115
a2c02241
NR
20116@cindex data manipulation, in @sc{gdb/mi}
20117@cindex @sc{gdb/mi}, data manipulation
20118This section describes the @sc{gdb/mi} commands that manipulate data:
20119examine memory and registers, evaluate expressions, etc.
20120
20121@c REMOVED FROM THE INTERFACE.
20122@c @subheading -data-assign
20123@c Change the value of a program variable. Plenty of side effects.
79a6e687 20124@c @subsubheading GDB Command
a2c02241
NR
20125@c set variable
20126@c @subsubheading Example
20127@c N.A.
20128
20129@subheading The @code{-data-disassemble} Command
20130@findex -data-disassemble
922fbb7b
AC
20131
20132@subsubheading Synopsis
20133
20134@smallexample
a2c02241
NR
20135 -data-disassemble
20136 [ -s @var{start-addr} -e @var{end-addr} ]
20137 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20138 -- @var{mode}
922fbb7b
AC
20139@end smallexample
20140
a2c02241
NR
20141@noindent
20142Where:
20143
20144@table @samp
20145@item @var{start-addr}
20146is the beginning address (or @code{$pc})
20147@item @var{end-addr}
20148is the end address
20149@item @var{filename}
20150is the name of the file to disassemble
20151@item @var{linenum}
20152is the line number to disassemble around
20153@item @var{lines}
d3e8051b 20154is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20155the whole function will be disassembled, in case no @var{end-addr} is
20156specified. If @var{end-addr} is specified as a non-zero value, and
20157@var{lines} is lower than the number of disassembly lines between
20158@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20159displayed; if @var{lines} is higher than the number of lines between
20160@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20161are displayed.
20162@item @var{mode}
20163is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20164disassembly).
20165@end table
20166
20167@subsubheading Result
20168
20169The output for each instruction is composed of four fields:
20170
20171@itemize @bullet
20172@item Address
20173@item Func-name
20174@item Offset
20175@item Instruction
20176@end itemize
20177
20178Note that whatever included in the instruction field, is not manipulated
d3e8051b 20179directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20180
20181@subsubheading @value{GDBN} Command
20182
a2c02241 20183There's no direct mapping from this command to the CLI.
922fbb7b
AC
20184
20185@subsubheading Example
20186
a2c02241
NR
20187Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20188
922fbb7b 20189@smallexample
594fe323 20190(gdb)
a2c02241
NR
20191-data-disassemble -s $pc -e "$pc + 20" -- 0
20192^done,
20193asm_insns=[
20194@{address="0x000107c0",func-name="main",offset="4",
20195inst="mov 2, %o0"@},
20196@{address="0x000107c4",func-name="main",offset="8",
20197inst="sethi %hi(0x11800), %o2"@},
20198@{address="0x000107c8",func-name="main",offset="12",
20199inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20200@{address="0x000107cc",func-name="main",offset="16",
20201inst="sethi %hi(0x11800), %o2"@},
20202@{address="0x000107d0",func-name="main",offset="20",
20203inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20204(gdb)
a2c02241
NR
20205@end smallexample
20206
20207Disassemble the whole @code{main} function. Line 32 is part of
20208@code{main}.
20209
20210@smallexample
20211-data-disassemble -f basics.c -l 32 -- 0
20212^done,asm_insns=[
20213@{address="0x000107bc",func-name="main",offset="0",
20214inst="save %sp, -112, %sp"@},
20215@{address="0x000107c0",func-name="main",offset="4",
20216inst="mov 2, %o0"@},
20217@{address="0x000107c4",func-name="main",offset="8",
20218inst="sethi %hi(0x11800), %o2"@},
20219[@dots{}]
20220@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20221@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20222(gdb)
922fbb7b
AC
20223@end smallexample
20224
a2c02241 20225Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20226
a2c02241 20227@smallexample
594fe323 20228(gdb)
a2c02241
NR
20229-data-disassemble -f basics.c -l 32 -n 3 -- 0
20230^done,asm_insns=[
20231@{address="0x000107bc",func-name="main",offset="0",
20232inst="save %sp, -112, %sp"@},
20233@{address="0x000107c0",func-name="main",offset="4",
20234inst="mov 2, %o0"@},
20235@{address="0x000107c4",func-name="main",offset="8",
20236inst="sethi %hi(0x11800), %o2"@}]
594fe323 20237(gdb)
a2c02241
NR
20238@end smallexample
20239
20240Disassemble 3 instructions from the start of @code{main} in mixed mode:
20241
20242@smallexample
594fe323 20243(gdb)
a2c02241
NR
20244-data-disassemble -f basics.c -l 32 -n 3 -- 1
20245^done,asm_insns=[
20246src_and_asm_line=@{line="31",
20247file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20248 testsuite/gdb.mi/basics.c",line_asm_insn=[
20249@{address="0x000107bc",func-name="main",offset="0",
20250inst="save %sp, -112, %sp"@}]@},
20251src_and_asm_line=@{line="32",
20252file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20253 testsuite/gdb.mi/basics.c",line_asm_insn=[
20254@{address="0x000107c0",func-name="main",offset="4",
20255inst="mov 2, %o0"@},
20256@{address="0x000107c4",func-name="main",offset="8",
20257inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20258(gdb)
a2c02241
NR
20259@end smallexample
20260
20261
20262@subheading The @code{-data-evaluate-expression} Command
20263@findex -data-evaluate-expression
922fbb7b
AC
20264
20265@subsubheading Synopsis
20266
20267@smallexample
a2c02241 20268 -data-evaluate-expression @var{expr}
922fbb7b
AC
20269@end smallexample
20270
a2c02241
NR
20271Evaluate @var{expr} as an expression. The expression could contain an
20272inferior function call. The function call will execute synchronously.
20273If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20274
20275@subsubheading @value{GDBN} Command
20276
a2c02241
NR
20277The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20278@samp{call}. In @code{gdbtk} only, there's a corresponding
20279@samp{gdb_eval} command.
922fbb7b
AC
20280
20281@subsubheading Example
20282
a2c02241
NR
20283In the following example, the numbers that precede the commands are the
20284@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20285Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20286output.
20287
922fbb7b 20288@smallexample
a2c02241
NR
20289211-data-evaluate-expression A
20290211^done,value="1"
594fe323 20291(gdb)
a2c02241
NR
20292311-data-evaluate-expression &A
20293311^done,value="0xefffeb7c"
594fe323 20294(gdb)
a2c02241
NR
20295411-data-evaluate-expression A+3
20296411^done,value="4"
594fe323 20297(gdb)
a2c02241
NR
20298511-data-evaluate-expression "A + 3"
20299511^done,value="4"
594fe323 20300(gdb)
a2c02241 20301@end smallexample
922fbb7b
AC
20302
20303
a2c02241
NR
20304@subheading The @code{-data-list-changed-registers} Command
20305@findex -data-list-changed-registers
922fbb7b
AC
20306
20307@subsubheading Synopsis
20308
20309@smallexample
a2c02241 20310 -data-list-changed-registers
922fbb7b
AC
20311@end smallexample
20312
a2c02241 20313Display a list of the registers that have changed.
922fbb7b
AC
20314
20315@subsubheading @value{GDBN} Command
20316
a2c02241
NR
20317@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20318has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20319
20320@subsubheading Example
922fbb7b 20321
a2c02241 20322On a PPC MBX board:
922fbb7b
AC
20323
20324@smallexample
594fe323 20325(gdb)
a2c02241
NR
20326-exec-continue
20327^running
922fbb7b 20328
594fe323 20329(gdb)
a2c02241
NR
20330*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20331args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20332(gdb)
a2c02241
NR
20333-data-list-changed-registers
20334^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20335"10","11","13","14","15","16","17","18","19","20","21","22","23",
20336"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20337(gdb)
a2c02241 20338@end smallexample
922fbb7b
AC
20339
20340
a2c02241
NR
20341@subheading The @code{-data-list-register-names} Command
20342@findex -data-list-register-names
922fbb7b
AC
20343
20344@subsubheading Synopsis
20345
20346@smallexample
a2c02241 20347 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20348@end smallexample
20349
a2c02241
NR
20350Show a list of register names for the current target. If no arguments
20351are given, it shows a list of the names of all the registers. If
20352integer numbers are given as arguments, it will print a list of the
20353names of the registers corresponding to the arguments. To ensure
20354consistency between a register name and its number, the output list may
20355include empty register names.
922fbb7b
AC
20356
20357@subsubheading @value{GDBN} Command
20358
a2c02241
NR
20359@value{GDBN} does not have a command which corresponds to
20360@samp{-data-list-register-names}. In @code{gdbtk} there is a
20361corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20362
20363@subsubheading Example
922fbb7b 20364
a2c02241
NR
20365For the PPC MBX board:
20366@smallexample
594fe323 20367(gdb)
a2c02241
NR
20368-data-list-register-names
20369^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20370"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20371"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20372"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20373"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20374"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20375"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20376(gdb)
a2c02241
NR
20377-data-list-register-names 1 2 3
20378^done,register-names=["r1","r2","r3"]
594fe323 20379(gdb)
a2c02241 20380@end smallexample
922fbb7b 20381
a2c02241
NR
20382@subheading The @code{-data-list-register-values} Command
20383@findex -data-list-register-values
922fbb7b
AC
20384
20385@subsubheading Synopsis
20386
20387@smallexample
a2c02241 20388 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20389@end smallexample
20390
a2c02241
NR
20391Display the registers' contents. @var{fmt} is the format according to
20392which the registers' contents are to be returned, followed by an optional
20393list of numbers specifying the registers to display. A missing list of
20394numbers indicates that the contents of all the registers must be returned.
20395
20396Allowed formats for @var{fmt} are:
20397
20398@table @code
20399@item x
20400Hexadecimal
20401@item o
20402Octal
20403@item t
20404Binary
20405@item d
20406Decimal
20407@item r
20408Raw
20409@item N
20410Natural
20411@end table
922fbb7b
AC
20412
20413@subsubheading @value{GDBN} Command
20414
a2c02241
NR
20415The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20416all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20417
20418@subsubheading Example
922fbb7b 20419
a2c02241
NR
20420For a PPC MBX board (note: line breaks are for readability only, they
20421don't appear in the actual output):
20422
20423@smallexample
594fe323 20424(gdb)
a2c02241
NR
20425-data-list-register-values r 64 65
20426^done,register-values=[@{number="64",value="0xfe00a300"@},
20427@{number="65",value="0x00029002"@}]
594fe323 20428(gdb)
a2c02241
NR
20429-data-list-register-values x
20430^done,register-values=[@{number="0",value="0xfe0043c8"@},
20431@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20432@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20433@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20434@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20435@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20436@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20437@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20438@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20439@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20440@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20441@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20442@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20443@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20444@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20445@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20446@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20447@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20448@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20449@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20450@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20451@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20452@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20453@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20454@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20455@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20456@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20457@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20458@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20459@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20460@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20461@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20462@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20463@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20464@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20465@{number="69",value="0x20002b03"@}]
594fe323 20466(gdb)
a2c02241 20467@end smallexample
922fbb7b 20468
a2c02241
NR
20469
20470@subheading The @code{-data-read-memory} Command
20471@findex -data-read-memory
922fbb7b
AC
20472
20473@subsubheading Synopsis
20474
20475@smallexample
a2c02241
NR
20476 -data-read-memory [ -o @var{byte-offset} ]
20477 @var{address} @var{word-format} @var{word-size}
20478 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20479@end smallexample
20480
a2c02241
NR
20481@noindent
20482where:
922fbb7b 20483
a2c02241
NR
20484@table @samp
20485@item @var{address}
20486An expression specifying the address of the first memory word to be
20487read. Complex expressions containing embedded white space should be
20488quoted using the C convention.
922fbb7b 20489
a2c02241
NR
20490@item @var{word-format}
20491The format to be used to print the memory words. The notation is the
20492same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20493,Output Formats}).
922fbb7b 20494
a2c02241
NR
20495@item @var{word-size}
20496The size of each memory word in bytes.
922fbb7b 20497
a2c02241
NR
20498@item @var{nr-rows}
20499The number of rows in the output table.
922fbb7b 20500
a2c02241
NR
20501@item @var{nr-cols}
20502The number of columns in the output table.
922fbb7b 20503
a2c02241
NR
20504@item @var{aschar}
20505If present, indicates that each row should include an @sc{ascii} dump. The
20506value of @var{aschar} is used as a padding character when a byte is not a
20507member of the printable @sc{ascii} character set (printable @sc{ascii}
20508characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20509
a2c02241
NR
20510@item @var{byte-offset}
20511An offset to add to the @var{address} before fetching memory.
20512@end table
922fbb7b 20513
a2c02241
NR
20514This command displays memory contents as a table of @var{nr-rows} by
20515@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20516@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20517(returned as @samp{total-bytes}). Should less than the requested number
20518of bytes be returned by the target, the missing words are identified
20519using @samp{N/A}. The number of bytes read from the target is returned
20520in @samp{nr-bytes} and the starting address used to read memory in
20521@samp{addr}.
20522
20523The address of the next/previous row or page is available in
20524@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20525@samp{prev-page}.
922fbb7b
AC
20526
20527@subsubheading @value{GDBN} Command
20528
a2c02241
NR
20529The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20530@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20531
20532@subsubheading Example
32e7087d 20533
a2c02241
NR
20534Read six bytes of memory starting at @code{bytes+6} but then offset by
20535@code{-6} bytes. Format as three rows of two columns. One byte per
20536word. Display each word in hex.
32e7087d
JB
20537
20538@smallexample
594fe323 20539(gdb)
a2c02241
NR
205409-data-read-memory -o -6 -- bytes+6 x 1 3 2
205419^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20542next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20543prev-page="0x0000138a",memory=[
20544@{addr="0x00001390",data=["0x00","0x01"]@},
20545@{addr="0x00001392",data=["0x02","0x03"]@},
20546@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20547(gdb)
32e7087d
JB
20548@end smallexample
20549
a2c02241
NR
20550Read two bytes of memory starting at address @code{shorts + 64} and
20551display as a single word formatted in decimal.
32e7087d 20552
32e7087d 20553@smallexample
594fe323 20554(gdb)
a2c02241
NR
205555-data-read-memory shorts+64 d 2 1 1
205565^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20557next-row="0x00001512",prev-row="0x0000150e",
20558next-page="0x00001512",prev-page="0x0000150e",memory=[
20559@{addr="0x00001510",data=["128"]@}]
594fe323 20560(gdb)
32e7087d
JB
20561@end smallexample
20562
a2c02241
NR
20563Read thirty two bytes of memory starting at @code{bytes+16} and format
20564as eight rows of four columns. Include a string encoding with @samp{x}
20565used as the non-printable character.
922fbb7b
AC
20566
20567@smallexample
594fe323 20568(gdb)
a2c02241
NR
205694-data-read-memory bytes+16 x 1 8 4 x
205704^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20571next-row="0x000013c0",prev-row="0x0000139c",
20572next-page="0x000013c0",prev-page="0x00001380",memory=[
20573@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20574@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20575@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20576@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20577@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20578@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20579@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20580@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20581(gdb)
922fbb7b
AC
20582@end smallexample
20583
a2c02241
NR
20584@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20585@node GDB/MI Tracepoint Commands
20586@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20587
a2c02241 20588The tracepoint commands are not yet implemented.
922fbb7b 20589
a2c02241 20590@c @subheading -trace-actions
922fbb7b 20591
a2c02241 20592@c @subheading -trace-delete
922fbb7b 20593
a2c02241 20594@c @subheading -trace-disable
922fbb7b 20595
a2c02241 20596@c @subheading -trace-dump
922fbb7b 20597
a2c02241 20598@c @subheading -trace-enable
922fbb7b 20599
a2c02241 20600@c @subheading -trace-exists
922fbb7b 20601
a2c02241 20602@c @subheading -trace-find
922fbb7b 20603
a2c02241 20604@c @subheading -trace-frame-number
922fbb7b 20605
a2c02241 20606@c @subheading -trace-info
922fbb7b 20607
a2c02241 20608@c @subheading -trace-insert
922fbb7b 20609
a2c02241 20610@c @subheading -trace-list
922fbb7b 20611
a2c02241 20612@c @subheading -trace-pass-count
922fbb7b 20613
a2c02241 20614@c @subheading -trace-save
922fbb7b 20615
a2c02241 20616@c @subheading -trace-start
922fbb7b 20617
a2c02241 20618@c @subheading -trace-stop
922fbb7b 20619
922fbb7b 20620
a2c02241
NR
20621@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20622@node GDB/MI Symbol Query
20623@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20624
20625
a2c02241
NR
20626@subheading The @code{-symbol-info-address} Command
20627@findex -symbol-info-address
922fbb7b
AC
20628
20629@subsubheading Synopsis
20630
20631@smallexample
a2c02241 20632 -symbol-info-address @var{symbol}
922fbb7b
AC
20633@end smallexample
20634
a2c02241 20635Describe where @var{symbol} is stored.
922fbb7b
AC
20636
20637@subsubheading @value{GDBN} Command
20638
a2c02241 20639The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20640
20641@subsubheading Example
20642N.A.
20643
20644
a2c02241
NR
20645@subheading The @code{-symbol-info-file} Command
20646@findex -symbol-info-file
922fbb7b
AC
20647
20648@subsubheading Synopsis
20649
20650@smallexample
a2c02241 20651 -symbol-info-file
922fbb7b
AC
20652@end smallexample
20653
a2c02241 20654Show the file for the symbol.
922fbb7b 20655
a2c02241 20656@subsubheading @value{GDBN} Command
922fbb7b 20657
a2c02241
NR
20658There's no equivalent @value{GDBN} command. @code{gdbtk} has
20659@samp{gdb_find_file}.
922fbb7b
AC
20660
20661@subsubheading Example
20662N.A.
20663
20664
a2c02241
NR
20665@subheading The @code{-symbol-info-function} Command
20666@findex -symbol-info-function
922fbb7b
AC
20667
20668@subsubheading Synopsis
20669
20670@smallexample
a2c02241 20671 -symbol-info-function
922fbb7b
AC
20672@end smallexample
20673
a2c02241 20674Show which function the symbol lives in.
922fbb7b
AC
20675
20676@subsubheading @value{GDBN} Command
20677
a2c02241 20678@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20679
20680@subsubheading Example
20681N.A.
20682
20683
a2c02241
NR
20684@subheading The @code{-symbol-info-line} Command
20685@findex -symbol-info-line
922fbb7b
AC
20686
20687@subsubheading Synopsis
20688
20689@smallexample
a2c02241 20690 -symbol-info-line
922fbb7b
AC
20691@end smallexample
20692
a2c02241 20693Show the core addresses of the code for a source line.
922fbb7b 20694
a2c02241 20695@subsubheading @value{GDBN} Command
922fbb7b 20696
a2c02241
NR
20697The corresponding @value{GDBN} command is @samp{info line}.
20698@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20699
20700@subsubheading Example
a2c02241 20701N.A.
922fbb7b
AC
20702
20703
a2c02241
NR
20704@subheading The @code{-symbol-info-symbol} Command
20705@findex -symbol-info-symbol
07f31aa6
DJ
20706
20707@subsubheading Synopsis
20708
a2c02241
NR
20709@smallexample
20710 -symbol-info-symbol @var{addr}
20711@end smallexample
07f31aa6 20712
a2c02241 20713Describe what symbol is at location @var{addr}.
07f31aa6 20714
a2c02241 20715@subsubheading @value{GDBN} Command
07f31aa6 20716
a2c02241 20717The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20718
20719@subsubheading Example
a2c02241 20720N.A.
07f31aa6
DJ
20721
20722
a2c02241
NR
20723@subheading The @code{-symbol-list-functions} Command
20724@findex -symbol-list-functions
922fbb7b
AC
20725
20726@subsubheading Synopsis
20727
20728@smallexample
a2c02241 20729 -symbol-list-functions
922fbb7b
AC
20730@end smallexample
20731
a2c02241 20732List the functions in the executable.
922fbb7b
AC
20733
20734@subsubheading @value{GDBN} Command
20735
a2c02241
NR
20736@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20737@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20738
20739@subsubheading Example
a2c02241 20740N.A.
922fbb7b
AC
20741
20742
a2c02241
NR
20743@subheading The @code{-symbol-list-lines} Command
20744@findex -symbol-list-lines
922fbb7b
AC
20745
20746@subsubheading Synopsis
20747
20748@smallexample
a2c02241 20749 -symbol-list-lines @var{filename}
922fbb7b
AC
20750@end smallexample
20751
a2c02241
NR
20752Print the list of lines that contain code and their associated program
20753addresses for the given source filename. The entries are sorted in
20754ascending PC order.
922fbb7b
AC
20755
20756@subsubheading @value{GDBN} Command
20757
a2c02241 20758There is no corresponding @value{GDBN} command.
922fbb7b
AC
20759
20760@subsubheading Example
a2c02241 20761@smallexample
594fe323 20762(gdb)
a2c02241
NR
20763-symbol-list-lines basics.c
20764^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20765(gdb)
a2c02241 20766@end smallexample
922fbb7b
AC
20767
20768
a2c02241
NR
20769@subheading The @code{-symbol-list-types} Command
20770@findex -symbol-list-types
922fbb7b
AC
20771
20772@subsubheading Synopsis
20773
20774@smallexample
a2c02241 20775 -symbol-list-types
922fbb7b
AC
20776@end smallexample
20777
a2c02241 20778List all the type names.
922fbb7b
AC
20779
20780@subsubheading @value{GDBN} Command
20781
a2c02241
NR
20782The corresponding commands are @samp{info types} in @value{GDBN},
20783@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20784
20785@subsubheading Example
20786N.A.
20787
20788
a2c02241
NR
20789@subheading The @code{-symbol-list-variables} Command
20790@findex -symbol-list-variables
922fbb7b
AC
20791
20792@subsubheading Synopsis
20793
20794@smallexample
a2c02241 20795 -symbol-list-variables
922fbb7b
AC
20796@end smallexample
20797
a2c02241 20798List all the global and static variable names.
922fbb7b
AC
20799
20800@subsubheading @value{GDBN} Command
20801
a2c02241 20802@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20803
20804@subsubheading Example
20805N.A.
20806
20807
a2c02241
NR
20808@subheading The @code{-symbol-locate} Command
20809@findex -symbol-locate
922fbb7b
AC
20810
20811@subsubheading Synopsis
20812
20813@smallexample
a2c02241 20814 -symbol-locate
922fbb7b
AC
20815@end smallexample
20816
922fbb7b
AC
20817@subsubheading @value{GDBN} Command
20818
a2c02241 20819@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20820
20821@subsubheading Example
20822N.A.
20823
20824
a2c02241
NR
20825@subheading The @code{-symbol-type} Command
20826@findex -symbol-type
922fbb7b
AC
20827
20828@subsubheading Synopsis
20829
20830@smallexample
a2c02241 20831 -symbol-type @var{variable}
922fbb7b
AC
20832@end smallexample
20833
a2c02241 20834Show type of @var{variable}.
922fbb7b 20835
a2c02241 20836@subsubheading @value{GDBN} Command
922fbb7b 20837
a2c02241
NR
20838The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20839@samp{gdb_obj_variable}.
20840
20841@subsubheading Example
20842N.A.
20843
20844
20845@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20846@node GDB/MI File Commands
20847@section @sc{gdb/mi} File Commands
20848
20849This section describes the GDB/MI commands to specify executable file names
20850and to read in and obtain symbol table information.
20851
20852@subheading The @code{-file-exec-and-symbols} Command
20853@findex -file-exec-and-symbols
20854
20855@subsubheading Synopsis
922fbb7b
AC
20856
20857@smallexample
a2c02241 20858 -file-exec-and-symbols @var{file}
922fbb7b
AC
20859@end smallexample
20860
a2c02241
NR
20861Specify the executable file to be debugged. This file is the one from
20862which the symbol table is also read. If no file is specified, the
20863command clears the executable and symbol information. If breakpoints
20864are set when using this command with no arguments, @value{GDBN} will produce
20865error messages. Otherwise, no output is produced, except a completion
20866notification.
20867
922fbb7b
AC
20868@subsubheading @value{GDBN} Command
20869
a2c02241 20870The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20871
20872@subsubheading Example
20873
20874@smallexample
594fe323 20875(gdb)
a2c02241
NR
20876-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20877^done
594fe323 20878(gdb)
922fbb7b
AC
20879@end smallexample
20880
922fbb7b 20881
a2c02241
NR
20882@subheading The @code{-file-exec-file} Command
20883@findex -file-exec-file
922fbb7b
AC
20884
20885@subsubheading Synopsis
20886
20887@smallexample
a2c02241 20888 -file-exec-file @var{file}
922fbb7b
AC
20889@end smallexample
20890
a2c02241
NR
20891Specify the executable file to be debugged. Unlike
20892@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20893from this file. If used without argument, @value{GDBN} clears the information
20894about the executable file. No output is produced, except a completion
20895notification.
922fbb7b 20896
a2c02241
NR
20897@subsubheading @value{GDBN} Command
20898
20899The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
20900
20901@subsubheading Example
a2c02241
NR
20902
20903@smallexample
594fe323 20904(gdb)
a2c02241
NR
20905-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20906^done
594fe323 20907(gdb)
a2c02241 20908@end smallexample
922fbb7b
AC
20909
20910
a2c02241
NR
20911@subheading The @code{-file-list-exec-sections} Command
20912@findex -file-list-exec-sections
922fbb7b
AC
20913
20914@subsubheading Synopsis
20915
20916@smallexample
a2c02241 20917 -file-list-exec-sections
922fbb7b
AC
20918@end smallexample
20919
a2c02241
NR
20920List the sections of the current executable file.
20921
922fbb7b
AC
20922@subsubheading @value{GDBN} Command
20923
a2c02241
NR
20924The @value{GDBN} command @samp{info file} shows, among the rest, the same
20925information as this command. @code{gdbtk} has a corresponding command
20926@samp{gdb_load_info}.
922fbb7b
AC
20927
20928@subsubheading Example
20929N.A.
20930
20931
a2c02241
NR
20932@subheading The @code{-file-list-exec-source-file} Command
20933@findex -file-list-exec-source-file
922fbb7b
AC
20934
20935@subsubheading Synopsis
20936
20937@smallexample
a2c02241 20938 -file-list-exec-source-file
922fbb7b
AC
20939@end smallexample
20940
a2c02241
NR
20941List the line number, the current source file, and the absolute path
20942to the current source file for the current executable.
922fbb7b
AC
20943
20944@subsubheading @value{GDBN} Command
20945
a2c02241 20946The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
20947
20948@subsubheading Example
20949
922fbb7b 20950@smallexample
594fe323 20951(gdb)
a2c02241
NR
20952123-file-list-exec-source-file
20953123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
594fe323 20954(gdb)
922fbb7b
AC
20955@end smallexample
20956
20957
a2c02241
NR
20958@subheading The @code{-file-list-exec-source-files} Command
20959@findex -file-list-exec-source-files
922fbb7b
AC
20960
20961@subsubheading Synopsis
20962
20963@smallexample
a2c02241 20964 -file-list-exec-source-files
922fbb7b
AC
20965@end smallexample
20966
a2c02241
NR
20967List the source files for the current executable.
20968
3f94c067
BW
20969It will always output the filename, but only when @value{GDBN} can find
20970the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
20971
20972@subsubheading @value{GDBN} Command
20973
a2c02241
NR
20974The @value{GDBN} equivalent is @samp{info sources}.
20975@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
20976
20977@subsubheading Example
922fbb7b 20978@smallexample
594fe323 20979(gdb)
a2c02241
NR
20980-file-list-exec-source-files
20981^done,files=[
20982@{file=foo.c,fullname=/home/foo.c@},
20983@{file=/home/bar.c,fullname=/home/bar.c@},
20984@{file=gdb_could_not_find_fullpath.c@}]
594fe323 20985(gdb)
922fbb7b
AC
20986@end smallexample
20987
a2c02241
NR
20988@subheading The @code{-file-list-shared-libraries} Command
20989@findex -file-list-shared-libraries
922fbb7b 20990
a2c02241 20991@subsubheading Synopsis
922fbb7b 20992
a2c02241
NR
20993@smallexample
20994 -file-list-shared-libraries
20995@end smallexample
922fbb7b 20996
a2c02241 20997List the shared libraries in the program.
922fbb7b 20998
a2c02241 20999@subsubheading @value{GDBN} Command
922fbb7b 21000
a2c02241 21001The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21002
a2c02241
NR
21003@subsubheading Example
21004N.A.
922fbb7b
AC
21005
21006
a2c02241
NR
21007@subheading The @code{-file-list-symbol-files} Command
21008@findex -file-list-symbol-files
922fbb7b 21009
a2c02241 21010@subsubheading Synopsis
922fbb7b 21011
a2c02241
NR
21012@smallexample
21013 -file-list-symbol-files
21014@end smallexample
922fbb7b 21015
a2c02241 21016List symbol files.
922fbb7b 21017
a2c02241 21018@subsubheading @value{GDBN} Command
922fbb7b 21019
a2c02241 21020The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21021
a2c02241
NR
21022@subsubheading Example
21023N.A.
922fbb7b 21024
922fbb7b 21025
a2c02241
NR
21026@subheading The @code{-file-symbol-file} Command
21027@findex -file-symbol-file
922fbb7b 21028
a2c02241 21029@subsubheading Synopsis
922fbb7b 21030
a2c02241
NR
21031@smallexample
21032 -file-symbol-file @var{file}
21033@end smallexample
922fbb7b 21034
a2c02241
NR
21035Read symbol table info from the specified @var{file} argument. When
21036used without arguments, clears @value{GDBN}'s symbol table info. No output is
21037produced, except for a completion notification.
922fbb7b 21038
a2c02241 21039@subsubheading @value{GDBN} Command
922fbb7b 21040
a2c02241 21041The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21042
a2c02241 21043@subsubheading Example
922fbb7b 21044
a2c02241 21045@smallexample
594fe323 21046(gdb)
a2c02241
NR
21047-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21048^done
594fe323 21049(gdb)
a2c02241 21050@end smallexample
922fbb7b 21051
a2c02241 21052@ignore
a2c02241
NR
21053@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21054@node GDB/MI Memory Overlay Commands
21055@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21056
a2c02241 21057The memory overlay commands are not implemented.
922fbb7b 21058
a2c02241 21059@c @subheading -overlay-auto
922fbb7b 21060
a2c02241 21061@c @subheading -overlay-list-mapping-state
922fbb7b 21062
a2c02241 21063@c @subheading -overlay-list-overlays
922fbb7b 21064
a2c02241 21065@c @subheading -overlay-map
922fbb7b 21066
a2c02241 21067@c @subheading -overlay-off
922fbb7b 21068
a2c02241 21069@c @subheading -overlay-on
922fbb7b 21070
a2c02241 21071@c @subheading -overlay-unmap
922fbb7b 21072
a2c02241
NR
21073@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21074@node GDB/MI Signal Handling Commands
21075@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21076
a2c02241 21077Signal handling commands are not implemented.
922fbb7b 21078
a2c02241 21079@c @subheading -signal-handle
922fbb7b 21080
a2c02241 21081@c @subheading -signal-list-handle-actions
922fbb7b 21082
a2c02241
NR
21083@c @subheading -signal-list-signal-types
21084@end ignore
922fbb7b 21085
922fbb7b 21086
a2c02241
NR
21087@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21088@node GDB/MI Target Manipulation
21089@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21090
21091
a2c02241
NR
21092@subheading The @code{-target-attach} Command
21093@findex -target-attach
922fbb7b
AC
21094
21095@subsubheading Synopsis
21096
21097@smallexample
a2c02241 21098 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21099@end smallexample
21100
a2c02241 21101Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21102
79a6e687 21103@subsubheading @value{GDBN} Command
922fbb7b 21104
a2c02241 21105The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21106
a2c02241
NR
21107@subsubheading Example
21108N.A.
922fbb7b 21109
a2c02241
NR
21110
21111@subheading The @code{-target-compare-sections} Command
21112@findex -target-compare-sections
922fbb7b
AC
21113
21114@subsubheading Synopsis
21115
21116@smallexample
a2c02241 21117 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21118@end smallexample
21119
a2c02241
NR
21120Compare data of section @var{section} on target to the exec file.
21121Without the argument, all sections are compared.
922fbb7b 21122
a2c02241 21123@subsubheading @value{GDBN} Command
922fbb7b 21124
a2c02241 21125The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21126
a2c02241
NR
21127@subsubheading Example
21128N.A.
21129
21130
21131@subheading The @code{-target-detach} Command
21132@findex -target-detach
922fbb7b
AC
21133
21134@subsubheading Synopsis
21135
21136@smallexample
a2c02241 21137 -target-detach
922fbb7b
AC
21138@end smallexample
21139
a2c02241
NR
21140Detach from the remote target which normally resumes its execution.
21141There's no output.
21142
79a6e687 21143@subsubheading @value{GDBN} Command
a2c02241
NR
21144
21145The corresponding @value{GDBN} command is @samp{detach}.
21146
21147@subsubheading Example
922fbb7b
AC
21148
21149@smallexample
594fe323 21150(gdb)
a2c02241
NR
21151-target-detach
21152^done
594fe323 21153(gdb)
922fbb7b
AC
21154@end smallexample
21155
21156
a2c02241
NR
21157@subheading The @code{-target-disconnect} Command
21158@findex -target-disconnect
922fbb7b
AC
21159
21160@subsubheading Synopsis
21161
123dc839 21162@smallexample
a2c02241 21163 -target-disconnect
123dc839 21164@end smallexample
922fbb7b 21165
a2c02241
NR
21166Disconnect from the remote target. There's no output and the target is
21167generally not resumed.
21168
79a6e687 21169@subsubheading @value{GDBN} Command
a2c02241
NR
21170
21171The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21172
21173@subsubheading Example
922fbb7b
AC
21174
21175@smallexample
594fe323 21176(gdb)
a2c02241
NR
21177-target-disconnect
21178^done
594fe323 21179(gdb)
922fbb7b
AC
21180@end smallexample
21181
21182
a2c02241
NR
21183@subheading The @code{-target-download} Command
21184@findex -target-download
922fbb7b
AC
21185
21186@subsubheading Synopsis
21187
21188@smallexample
a2c02241 21189 -target-download
922fbb7b
AC
21190@end smallexample
21191
a2c02241
NR
21192Loads the executable onto the remote target.
21193It prints out an update message every half second, which includes the fields:
21194
21195@table @samp
21196@item section
21197The name of the section.
21198@item section-sent
21199The size of what has been sent so far for that section.
21200@item section-size
21201The size of the section.
21202@item total-sent
21203The total size of what was sent so far (the current and the previous sections).
21204@item total-size
21205The size of the overall executable to download.
21206@end table
21207
21208@noindent
21209Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21210@sc{gdb/mi} Output Syntax}).
21211
21212In addition, it prints the name and size of the sections, as they are
21213downloaded. These messages include the following fields:
21214
21215@table @samp
21216@item section
21217The name of the section.
21218@item section-size
21219The size of the section.
21220@item total-size
21221The size of the overall executable to download.
21222@end table
21223
21224@noindent
21225At the end, a summary is printed.
21226
21227@subsubheading @value{GDBN} Command
21228
21229The corresponding @value{GDBN} command is @samp{load}.
21230
21231@subsubheading Example
21232
21233Note: each status message appears on a single line. Here the messages
21234have been broken down so that they can fit onto a page.
922fbb7b
AC
21235
21236@smallexample
594fe323 21237(gdb)
a2c02241
NR
21238-target-download
21239+download,@{section=".text",section-size="6668",total-size="9880"@}
21240+download,@{section=".text",section-sent="512",section-size="6668",
21241total-sent="512",total-size="9880"@}
21242+download,@{section=".text",section-sent="1024",section-size="6668",
21243total-sent="1024",total-size="9880"@}
21244+download,@{section=".text",section-sent="1536",section-size="6668",
21245total-sent="1536",total-size="9880"@}
21246+download,@{section=".text",section-sent="2048",section-size="6668",
21247total-sent="2048",total-size="9880"@}
21248+download,@{section=".text",section-sent="2560",section-size="6668",
21249total-sent="2560",total-size="9880"@}
21250+download,@{section=".text",section-sent="3072",section-size="6668",
21251total-sent="3072",total-size="9880"@}
21252+download,@{section=".text",section-sent="3584",section-size="6668",
21253total-sent="3584",total-size="9880"@}
21254+download,@{section=".text",section-sent="4096",section-size="6668",
21255total-sent="4096",total-size="9880"@}
21256+download,@{section=".text",section-sent="4608",section-size="6668",
21257total-sent="4608",total-size="9880"@}
21258+download,@{section=".text",section-sent="5120",section-size="6668",
21259total-sent="5120",total-size="9880"@}
21260+download,@{section=".text",section-sent="5632",section-size="6668",
21261total-sent="5632",total-size="9880"@}
21262+download,@{section=".text",section-sent="6144",section-size="6668",
21263total-sent="6144",total-size="9880"@}
21264+download,@{section=".text",section-sent="6656",section-size="6668",
21265total-sent="6656",total-size="9880"@}
21266+download,@{section=".init",section-size="28",total-size="9880"@}
21267+download,@{section=".fini",section-size="28",total-size="9880"@}
21268+download,@{section=".data",section-size="3156",total-size="9880"@}
21269+download,@{section=".data",section-sent="512",section-size="3156",
21270total-sent="7236",total-size="9880"@}
21271+download,@{section=".data",section-sent="1024",section-size="3156",
21272total-sent="7748",total-size="9880"@}
21273+download,@{section=".data",section-sent="1536",section-size="3156",
21274total-sent="8260",total-size="9880"@}
21275+download,@{section=".data",section-sent="2048",section-size="3156",
21276total-sent="8772",total-size="9880"@}
21277+download,@{section=".data",section-sent="2560",section-size="3156",
21278total-sent="9284",total-size="9880"@}
21279+download,@{section=".data",section-sent="3072",section-size="3156",
21280total-sent="9796",total-size="9880"@}
21281^done,address="0x10004",load-size="9880",transfer-rate="6586",
21282write-rate="429"
594fe323 21283(gdb)
922fbb7b
AC
21284@end smallexample
21285
21286
a2c02241
NR
21287@subheading The @code{-target-exec-status} Command
21288@findex -target-exec-status
922fbb7b
AC
21289
21290@subsubheading Synopsis
21291
21292@smallexample
a2c02241 21293 -target-exec-status
922fbb7b
AC
21294@end smallexample
21295
a2c02241
NR
21296Provide information on the state of the target (whether it is running or
21297not, for instance).
922fbb7b 21298
a2c02241 21299@subsubheading @value{GDBN} Command
922fbb7b 21300
a2c02241
NR
21301There's no equivalent @value{GDBN} command.
21302
21303@subsubheading Example
21304N.A.
922fbb7b 21305
a2c02241
NR
21306
21307@subheading The @code{-target-list-available-targets} Command
21308@findex -target-list-available-targets
922fbb7b
AC
21309
21310@subsubheading Synopsis
21311
21312@smallexample
a2c02241 21313 -target-list-available-targets
922fbb7b
AC
21314@end smallexample
21315
a2c02241 21316List the possible targets to connect to.
922fbb7b 21317
a2c02241 21318@subsubheading @value{GDBN} Command
922fbb7b 21319
a2c02241 21320The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21321
a2c02241
NR
21322@subsubheading Example
21323N.A.
21324
21325
21326@subheading The @code{-target-list-current-targets} Command
21327@findex -target-list-current-targets
922fbb7b
AC
21328
21329@subsubheading Synopsis
21330
21331@smallexample
a2c02241 21332 -target-list-current-targets
922fbb7b
AC
21333@end smallexample
21334
a2c02241 21335Describe the current target.
922fbb7b 21336
a2c02241 21337@subsubheading @value{GDBN} Command
922fbb7b 21338
a2c02241
NR
21339The corresponding information is printed by @samp{info file} (among
21340other things).
922fbb7b 21341
a2c02241
NR
21342@subsubheading Example
21343N.A.
21344
21345
21346@subheading The @code{-target-list-parameters} Command
21347@findex -target-list-parameters
922fbb7b
AC
21348
21349@subsubheading Synopsis
21350
21351@smallexample
a2c02241 21352 -target-list-parameters
922fbb7b
AC
21353@end smallexample
21354
a2c02241
NR
21355@c ????
21356
21357@subsubheading @value{GDBN} Command
21358
21359No equivalent.
922fbb7b
AC
21360
21361@subsubheading Example
a2c02241
NR
21362N.A.
21363
21364
21365@subheading The @code{-target-select} Command
21366@findex -target-select
21367
21368@subsubheading Synopsis
922fbb7b
AC
21369
21370@smallexample
a2c02241 21371 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21372@end smallexample
21373
a2c02241 21374Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21375
a2c02241
NR
21376@table @samp
21377@item @var{type}
21378The type of target, for instance @samp{async}, @samp{remote}, etc.
21379@item @var{parameters}
21380Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21381Commands for Managing Targets}, for more details.
a2c02241
NR
21382@end table
21383
21384The output is a connection notification, followed by the address at
21385which the target program is, in the following form:
922fbb7b
AC
21386
21387@smallexample
a2c02241
NR
21388^connected,addr="@var{address}",func="@var{function name}",
21389 args=[@var{arg list}]
922fbb7b
AC
21390@end smallexample
21391
a2c02241
NR
21392@subsubheading @value{GDBN} Command
21393
21394The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21395
21396@subsubheading Example
922fbb7b 21397
265eeb58 21398@smallexample
594fe323 21399(gdb)
a2c02241
NR
21400-target-select async /dev/ttya
21401^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21402(gdb)
265eeb58 21403@end smallexample
ef21caaf 21404
a6b151f1
DJ
21405@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21406@node GDB/MI File Transfer Commands
21407@section @sc{gdb/mi} File Transfer Commands
21408
21409
21410@subheading The @code{-target-file-put} Command
21411@findex -target-file-put
21412
21413@subsubheading Synopsis
21414
21415@smallexample
21416 -target-file-put @var{hostfile} @var{targetfile}
21417@end smallexample
21418
21419Copy file @var{hostfile} from the host system (the machine running
21420@value{GDBN}) to @var{targetfile} on the target system.
21421
21422@subsubheading @value{GDBN} Command
21423
21424The corresponding @value{GDBN} command is @samp{remote put}.
21425
21426@subsubheading Example
21427
21428@smallexample
21429(gdb)
21430-target-file-put localfile remotefile
21431^done
21432(gdb)
21433@end smallexample
21434
21435
21436@subheading The @code{-target-file-put} Command
21437@findex -target-file-get
21438
21439@subsubheading Synopsis
21440
21441@smallexample
21442 -target-file-get @var{targetfile} @var{hostfile}
21443@end smallexample
21444
21445Copy file @var{targetfile} from the target system to @var{hostfile}
21446on the host system.
21447
21448@subsubheading @value{GDBN} Command
21449
21450The corresponding @value{GDBN} command is @samp{remote get}.
21451
21452@subsubheading Example
21453
21454@smallexample
21455(gdb)
21456-target-file-get remotefile localfile
21457^done
21458(gdb)
21459@end smallexample
21460
21461
21462@subheading The @code{-target-file-delete} Command
21463@findex -target-file-delete
21464
21465@subsubheading Synopsis
21466
21467@smallexample
21468 -target-file-delete @var{targetfile}
21469@end smallexample
21470
21471Delete @var{targetfile} from the target system.
21472
21473@subsubheading @value{GDBN} Command
21474
21475The corresponding @value{GDBN} command is @samp{remote delete}.
21476
21477@subsubheading Example
21478
21479@smallexample
21480(gdb)
21481-target-file-delete remotefile
21482^done
21483(gdb)
21484@end smallexample
21485
21486
ef21caaf
NR
21487@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21488@node GDB/MI Miscellaneous Commands
21489@section Miscellaneous @sc{gdb/mi} Commands
21490
21491@c @subheading -gdb-complete
21492
21493@subheading The @code{-gdb-exit} Command
21494@findex -gdb-exit
21495
21496@subsubheading Synopsis
21497
21498@smallexample
21499 -gdb-exit
21500@end smallexample
21501
21502Exit @value{GDBN} immediately.
21503
21504@subsubheading @value{GDBN} Command
21505
21506Approximately corresponds to @samp{quit}.
21507
21508@subsubheading Example
21509
21510@smallexample
594fe323 21511(gdb)
ef21caaf
NR
21512-gdb-exit
21513^exit
21514@end smallexample
21515
a2c02241
NR
21516
21517@subheading The @code{-exec-abort} Command
21518@findex -exec-abort
21519
21520@subsubheading Synopsis
21521
21522@smallexample
21523 -exec-abort
21524@end smallexample
21525
21526Kill the inferior running program.
21527
21528@subsubheading @value{GDBN} Command
21529
21530The corresponding @value{GDBN} command is @samp{kill}.
21531
21532@subsubheading Example
21533N.A.
21534
21535
ef21caaf
NR
21536@subheading The @code{-gdb-set} Command
21537@findex -gdb-set
21538
21539@subsubheading Synopsis
21540
21541@smallexample
21542 -gdb-set
21543@end smallexample
21544
21545Set an internal @value{GDBN} variable.
21546@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21547
21548@subsubheading @value{GDBN} Command
21549
21550The corresponding @value{GDBN} command is @samp{set}.
21551
21552@subsubheading Example
21553
21554@smallexample
594fe323 21555(gdb)
ef21caaf
NR
21556-gdb-set $foo=3
21557^done
594fe323 21558(gdb)
ef21caaf
NR
21559@end smallexample
21560
21561
21562@subheading The @code{-gdb-show} Command
21563@findex -gdb-show
21564
21565@subsubheading Synopsis
21566
21567@smallexample
21568 -gdb-show
21569@end smallexample
21570
21571Show the current value of a @value{GDBN} variable.
21572
79a6e687 21573@subsubheading @value{GDBN} Command
ef21caaf
NR
21574
21575The corresponding @value{GDBN} command is @samp{show}.
21576
21577@subsubheading Example
21578
21579@smallexample
594fe323 21580(gdb)
ef21caaf
NR
21581-gdb-show annotate
21582^done,value="0"
594fe323 21583(gdb)
ef21caaf
NR
21584@end smallexample
21585
21586@c @subheading -gdb-source
21587
21588
21589@subheading The @code{-gdb-version} Command
21590@findex -gdb-version
21591
21592@subsubheading Synopsis
21593
21594@smallexample
21595 -gdb-version
21596@end smallexample
21597
21598Show version information for @value{GDBN}. Used mostly in testing.
21599
21600@subsubheading @value{GDBN} Command
21601
21602The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21603default shows this information when you start an interactive session.
21604
21605@subsubheading Example
21606
21607@c This example modifies the actual output from GDB to avoid overfull
21608@c box in TeX.
21609@smallexample
594fe323 21610(gdb)
ef21caaf
NR
21611-gdb-version
21612~GNU gdb 5.2.1
21613~Copyright 2000 Free Software Foundation, Inc.
21614~GDB is free software, covered by the GNU General Public License, and
21615~you are welcome to change it and/or distribute copies of it under
21616~ certain conditions.
21617~Type "show copying" to see the conditions.
21618~There is absolutely no warranty for GDB. Type "show warranty" for
21619~ details.
21620~This GDB was configured as
21621 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21622^done
594fe323 21623(gdb)
ef21caaf
NR
21624@end smallexample
21625
084344da
VP
21626@subheading The @code{-list-features} Command
21627@findex -list-features
21628
21629Returns a list of particular features of the MI protocol that
21630this version of gdb implements. A feature can be a command,
21631or a new field in an output of some command, or even an
21632important bugfix. While a frontend can sometimes detect presence
21633of a feature at runtime, it is easier to perform detection at debugger
21634startup.
21635
21636The command returns a list of strings, with each string naming an
21637available feature. Each returned string is just a name, it does not
21638have any internal structure. The list of possible feature names
21639is given below.
21640
21641Example output:
21642
21643@smallexample
21644(gdb) -list-features
21645^done,result=["feature1","feature2"]
21646@end smallexample
21647
21648The current list of features is:
21649
21650@itemize @minus
21651@item
21652@samp{frozen-varobjs}---indicates presence of the
21653@code{-var-set-frozen} command, as well as possible presense of the
21654@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21655@item
21656@samp{pending-breakpoints}---indicates presence of the @code{-f}
21657option to the @code{-break-insert} command.
21658
084344da
VP
21659@end itemize
21660
ef21caaf
NR
21661@subheading The @code{-interpreter-exec} Command
21662@findex -interpreter-exec
21663
21664@subheading Synopsis
21665
21666@smallexample
21667-interpreter-exec @var{interpreter} @var{command}
21668@end smallexample
a2c02241 21669@anchor{-interpreter-exec}
ef21caaf
NR
21670
21671Execute the specified @var{command} in the given @var{interpreter}.
21672
21673@subheading @value{GDBN} Command
21674
21675The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21676
21677@subheading Example
21678
21679@smallexample
594fe323 21680(gdb)
ef21caaf
NR
21681-interpreter-exec console "break main"
21682&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21683&"During symbol reading, bad structure-type format.\n"
21684~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21685^done
594fe323 21686(gdb)
ef21caaf
NR
21687@end smallexample
21688
21689@subheading The @code{-inferior-tty-set} Command
21690@findex -inferior-tty-set
21691
21692@subheading Synopsis
21693
21694@smallexample
21695-inferior-tty-set /dev/pts/1
21696@end smallexample
21697
21698Set terminal for future runs of the program being debugged.
21699
21700@subheading @value{GDBN} Command
21701
21702The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21703
21704@subheading Example
21705
21706@smallexample
594fe323 21707(gdb)
ef21caaf
NR
21708-inferior-tty-set /dev/pts/1
21709^done
594fe323 21710(gdb)
ef21caaf
NR
21711@end smallexample
21712
21713@subheading The @code{-inferior-tty-show} Command
21714@findex -inferior-tty-show
21715
21716@subheading Synopsis
21717
21718@smallexample
21719-inferior-tty-show
21720@end smallexample
21721
21722Show terminal for future runs of program being debugged.
21723
21724@subheading @value{GDBN} Command
21725
21726The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21727
21728@subheading Example
21729
21730@smallexample
594fe323 21731(gdb)
ef21caaf
NR
21732-inferior-tty-set /dev/pts/1
21733^done
594fe323 21734(gdb)
ef21caaf
NR
21735-inferior-tty-show
21736^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21737(gdb)
ef21caaf 21738@end smallexample
922fbb7b 21739
a4eefcd8
NR
21740@subheading The @code{-enable-timings} Command
21741@findex -enable-timings
21742
21743@subheading Synopsis
21744
21745@smallexample
21746-enable-timings [yes | no]
21747@end smallexample
21748
21749Toggle the printing of the wallclock, user and system times for an MI
21750command as a field in its output. This command is to help frontend
21751developers optimize the performance of their code. No argument is
21752equivalent to @samp{yes}.
21753
21754@subheading @value{GDBN} Command
21755
21756No equivalent.
21757
21758@subheading Example
21759
21760@smallexample
21761(gdb)
21762-enable-timings
21763^done
21764(gdb)
21765-break-insert main
21766^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21767addr="0x080484ed",func="main",file="myprog.c",
21768fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21769time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21770(gdb)
21771-enable-timings no
21772^done
21773(gdb)
21774-exec-run
21775^running
21776(gdb)
21777*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21778frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21779@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21780fullname="/home/nickrob/myprog.c",line="73"@}
21781(gdb)
21782@end smallexample
21783
922fbb7b
AC
21784@node Annotations
21785@chapter @value{GDBN} Annotations
21786
086432e2
AC
21787This chapter describes annotations in @value{GDBN}. Annotations were
21788designed to interface @value{GDBN} to graphical user interfaces or other
21789similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21790relatively high level.
21791
d3e8051b 21792The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21793(@pxref{GDB/MI}).
21794
922fbb7b
AC
21795@ignore
21796This is Edition @value{EDITION}, @value{DATE}.
21797@end ignore
21798
21799@menu
21800* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21801* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21802* Prompting:: Annotations marking @value{GDBN}'s need for input.
21803* Errors:: Annotations for error messages.
922fbb7b
AC
21804* Invalidation:: Some annotations describe things now invalid.
21805* Annotations for Running::
21806 Whether the program is running, how it stopped, etc.
21807* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21808@end menu
21809
21810@node Annotations Overview
21811@section What is an Annotation?
21812@cindex annotations
21813
922fbb7b
AC
21814Annotations start with a newline character, two @samp{control-z}
21815characters, and the name of the annotation. If there is no additional
21816information associated with this annotation, the name of the annotation
21817is followed immediately by a newline. If there is additional
21818information, the name of the annotation is followed by a space, the
21819additional information, and a newline. The additional information
21820cannot contain newline characters.
21821
21822Any output not beginning with a newline and two @samp{control-z}
21823characters denotes literal output from @value{GDBN}. Currently there is
21824no need for @value{GDBN} to output a newline followed by two
21825@samp{control-z} characters, but if there was such a need, the
21826annotations could be extended with an @samp{escape} annotation which
21827means those three characters as output.
21828
086432e2
AC
21829The annotation @var{level}, which is specified using the
21830@option{--annotate} command line option (@pxref{Mode Options}), controls
21831how much information @value{GDBN} prints together with its prompt,
21832values of expressions, source lines, and other types of output. Level 0
d3e8051b 21833is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21834subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21835for programs that control @value{GDBN}, and level 2 annotations have
21836been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21837Interface, annotate, GDB's Obsolete Annotations}).
21838
21839@table @code
21840@kindex set annotate
21841@item set annotate @var{level}
e09f16f9 21842The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21843annotations to the specified @var{level}.
9c16f35a
EZ
21844
21845@item show annotate
21846@kindex show annotate
21847Show the current annotation level.
09d4efe1
EZ
21848@end table
21849
21850This chapter describes level 3 annotations.
086432e2 21851
922fbb7b
AC
21852A simple example of starting up @value{GDBN} with annotations is:
21853
21854@smallexample
086432e2
AC
21855$ @kbd{gdb --annotate=3}
21856GNU gdb 6.0
21857Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21858GDB is free software, covered by the GNU General Public License,
21859and you are welcome to change it and/or distribute copies of it
21860under certain conditions.
21861Type "show copying" to see the conditions.
21862There is absolutely no warranty for GDB. Type "show warranty"
21863for details.
086432e2 21864This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21865
21866^Z^Zpre-prompt
f7dc1244 21867(@value{GDBP})
922fbb7b 21868^Z^Zprompt
086432e2 21869@kbd{quit}
922fbb7b
AC
21870
21871^Z^Zpost-prompt
b383017d 21872$
922fbb7b
AC
21873@end smallexample
21874
21875Here @samp{quit} is input to @value{GDBN}; the rest is output from
21876@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21877denotes a @samp{control-z} character) are annotations; the rest is
21878output from @value{GDBN}.
21879
9e6c4bd5
NR
21880@node Server Prefix
21881@section The Server Prefix
21882@cindex server prefix
21883
21884If you prefix a command with @samp{server } then it will not affect
21885the command history, nor will it affect @value{GDBN}'s notion of which
21886command to repeat if @key{RET} is pressed on a line by itself. This
21887means that commands can be run behind a user's back by a front-end in
21888a transparent manner.
21889
21890The server prefix does not affect the recording of values into the value
21891history; to print a value without recording it into the value history,
21892use the @code{output} command instead of the @code{print} command.
21893
922fbb7b
AC
21894@node Prompting
21895@section Annotation for @value{GDBN} Input
21896
21897@cindex annotations for prompts
21898When @value{GDBN} prompts for input, it annotates this fact so it is possible
21899to know when to send output, when the output from a given command is
21900over, etc.
21901
21902Different kinds of input each have a different @dfn{input type}. Each
21903input type has three annotations: a @code{pre-} annotation, which
21904denotes the beginning of any prompt which is being output, a plain
21905annotation, which denotes the end of the prompt, and then a @code{post-}
21906annotation which denotes the end of any echo which may (or may not) be
21907associated with the input. For example, the @code{prompt} input type
21908features the following annotations:
21909
21910@smallexample
21911^Z^Zpre-prompt
21912^Z^Zprompt
21913^Z^Zpost-prompt
21914@end smallexample
21915
21916The input types are
21917
21918@table @code
e5ac9b53
EZ
21919@findex pre-prompt annotation
21920@findex prompt annotation
21921@findex post-prompt annotation
922fbb7b
AC
21922@item prompt
21923When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
21924
e5ac9b53
EZ
21925@findex pre-commands annotation
21926@findex commands annotation
21927@findex post-commands annotation
922fbb7b
AC
21928@item commands
21929When @value{GDBN} prompts for a set of commands, like in the @code{commands}
21930command. The annotations are repeated for each command which is input.
21931
e5ac9b53
EZ
21932@findex pre-overload-choice annotation
21933@findex overload-choice annotation
21934@findex post-overload-choice annotation
922fbb7b
AC
21935@item overload-choice
21936When @value{GDBN} wants the user to select between various overloaded functions.
21937
e5ac9b53
EZ
21938@findex pre-query annotation
21939@findex query annotation
21940@findex post-query annotation
922fbb7b
AC
21941@item query
21942When @value{GDBN} wants the user to confirm a potentially dangerous operation.
21943
e5ac9b53
EZ
21944@findex pre-prompt-for-continue annotation
21945@findex prompt-for-continue annotation
21946@findex post-prompt-for-continue annotation
922fbb7b
AC
21947@item prompt-for-continue
21948When @value{GDBN} is asking the user to press return to continue. Note: Don't
21949expect this to work well; instead use @code{set height 0} to disable
21950prompting. This is because the counting of lines is buggy in the
21951presence of annotations.
21952@end table
21953
21954@node Errors
21955@section Errors
21956@cindex annotations for errors, warnings and interrupts
21957
e5ac9b53 21958@findex quit annotation
922fbb7b
AC
21959@smallexample
21960^Z^Zquit
21961@end smallexample
21962
21963This annotation occurs right before @value{GDBN} responds to an interrupt.
21964
e5ac9b53 21965@findex error annotation
922fbb7b
AC
21966@smallexample
21967^Z^Zerror
21968@end smallexample
21969
21970This annotation occurs right before @value{GDBN} responds to an error.
21971
21972Quit and error annotations indicate that any annotations which @value{GDBN} was
21973in the middle of may end abruptly. For example, if a
21974@code{value-history-begin} annotation is followed by a @code{error}, one
21975cannot expect to receive the matching @code{value-history-end}. One
21976cannot expect not to receive it either, however; an error annotation
21977does not necessarily mean that @value{GDBN} is immediately returning all the way
21978to the top level.
21979
e5ac9b53 21980@findex error-begin annotation
922fbb7b
AC
21981A quit or error annotation may be preceded by
21982
21983@smallexample
21984^Z^Zerror-begin
21985@end smallexample
21986
21987Any output between that and the quit or error annotation is the error
21988message.
21989
21990Warning messages are not yet annotated.
21991@c If we want to change that, need to fix warning(), type_error(),
21992@c range_error(), and possibly other places.
21993
922fbb7b
AC
21994@node Invalidation
21995@section Invalidation Notices
21996
21997@cindex annotations for invalidation messages
21998The following annotations say that certain pieces of state may have
21999changed.
22000
22001@table @code
e5ac9b53 22002@findex frames-invalid annotation
922fbb7b
AC
22003@item ^Z^Zframes-invalid
22004
22005The frames (for example, output from the @code{backtrace} command) may
22006have changed.
22007
e5ac9b53 22008@findex breakpoints-invalid annotation
922fbb7b
AC
22009@item ^Z^Zbreakpoints-invalid
22010
22011The breakpoints may have changed. For example, the user just added or
22012deleted a breakpoint.
22013@end table
22014
22015@node Annotations for Running
22016@section Running the Program
22017@cindex annotations for running programs
22018
e5ac9b53
EZ
22019@findex starting annotation
22020@findex stopping annotation
922fbb7b 22021When the program starts executing due to a @value{GDBN} command such as
b383017d 22022@code{step} or @code{continue},
922fbb7b
AC
22023
22024@smallexample
22025^Z^Zstarting
22026@end smallexample
22027
b383017d 22028is output. When the program stops,
922fbb7b
AC
22029
22030@smallexample
22031^Z^Zstopped
22032@end smallexample
22033
22034is output. Before the @code{stopped} annotation, a variety of
22035annotations describe how the program stopped.
22036
22037@table @code
e5ac9b53 22038@findex exited annotation
922fbb7b
AC
22039@item ^Z^Zexited @var{exit-status}
22040The program exited, and @var{exit-status} is the exit status (zero for
22041successful exit, otherwise nonzero).
22042
e5ac9b53
EZ
22043@findex signalled annotation
22044@findex signal-name annotation
22045@findex signal-name-end annotation
22046@findex signal-string annotation
22047@findex signal-string-end annotation
922fbb7b
AC
22048@item ^Z^Zsignalled
22049The program exited with a signal. After the @code{^Z^Zsignalled}, the
22050annotation continues:
22051
22052@smallexample
22053@var{intro-text}
22054^Z^Zsignal-name
22055@var{name}
22056^Z^Zsignal-name-end
22057@var{middle-text}
22058^Z^Zsignal-string
22059@var{string}
22060^Z^Zsignal-string-end
22061@var{end-text}
22062@end smallexample
22063
22064@noindent
22065where @var{name} is the name of the signal, such as @code{SIGILL} or
22066@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22067as @code{Illegal Instruction} or @code{Segmentation fault}.
22068@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22069user's benefit and have no particular format.
22070
e5ac9b53 22071@findex signal annotation
922fbb7b
AC
22072@item ^Z^Zsignal
22073The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22074just saying that the program received the signal, not that it was
22075terminated with it.
22076
e5ac9b53 22077@findex breakpoint annotation
922fbb7b
AC
22078@item ^Z^Zbreakpoint @var{number}
22079The program hit breakpoint number @var{number}.
22080
e5ac9b53 22081@findex watchpoint annotation
922fbb7b
AC
22082@item ^Z^Zwatchpoint @var{number}
22083The program hit watchpoint number @var{number}.
22084@end table
22085
22086@node Source Annotations
22087@section Displaying Source
22088@cindex annotations for source display
22089
e5ac9b53 22090@findex source annotation
922fbb7b
AC
22091The following annotation is used instead of displaying source code:
22092
22093@smallexample
22094^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22095@end smallexample
22096
22097where @var{filename} is an absolute file name indicating which source
22098file, @var{line} is the line number within that file (where 1 is the
22099first line in the file), @var{character} is the character position
22100within the file (where 0 is the first character in the file) (for most
22101debug formats this will necessarily point to the beginning of a line),
22102@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22103line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22104@var{addr} is the address in the target program associated with the
22105source which is being displayed. @var{addr} is in the form @samp{0x}
22106followed by one or more lowercase hex digits (note that this does not
22107depend on the language).
22108
8e04817f
AC
22109@node GDB Bugs
22110@chapter Reporting Bugs in @value{GDBN}
22111@cindex bugs in @value{GDBN}
22112@cindex reporting bugs in @value{GDBN}
c906108c 22113
8e04817f 22114Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22115
8e04817f
AC
22116Reporting a bug may help you by bringing a solution to your problem, or it
22117may not. But in any case the principal function of a bug report is to help
22118the entire community by making the next version of @value{GDBN} work better. Bug
22119reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22120
8e04817f
AC
22121In order for a bug report to serve its purpose, you must include the
22122information that enables us to fix the bug.
c4555f82
SC
22123
22124@menu
8e04817f
AC
22125* Bug Criteria:: Have you found a bug?
22126* Bug Reporting:: How to report bugs
c4555f82
SC
22127@end menu
22128
8e04817f 22129@node Bug Criteria
79a6e687 22130@section Have You Found a Bug?
8e04817f 22131@cindex bug criteria
c4555f82 22132
8e04817f 22133If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22134
22135@itemize @bullet
8e04817f
AC
22136@cindex fatal signal
22137@cindex debugger crash
22138@cindex crash of debugger
c4555f82 22139@item
8e04817f
AC
22140If the debugger gets a fatal signal, for any input whatever, that is a
22141@value{GDBN} bug. Reliable debuggers never crash.
22142
22143@cindex error on valid input
22144@item
22145If @value{GDBN} produces an error message for valid input, that is a
22146bug. (Note that if you're cross debugging, the problem may also be
22147somewhere in the connection to the target.)
c4555f82 22148
8e04817f 22149@cindex invalid input
c4555f82 22150@item
8e04817f
AC
22151If @value{GDBN} does not produce an error message for invalid input,
22152that is a bug. However, you should note that your idea of
22153``invalid input'' might be our idea of ``an extension'' or ``support
22154for traditional practice''.
22155
22156@item
22157If you are an experienced user of debugging tools, your suggestions
22158for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22159@end itemize
22160
8e04817f 22161@node Bug Reporting
79a6e687 22162@section How to Report Bugs
8e04817f
AC
22163@cindex bug reports
22164@cindex @value{GDBN} bugs, reporting
22165
22166A number of companies and individuals offer support for @sc{gnu} products.
22167If you obtained @value{GDBN} from a support organization, we recommend you
22168contact that organization first.
22169
22170You can find contact information for many support companies and
22171individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22172distribution.
22173@c should add a web page ref...
22174
129188f6 22175In any event, we also recommend that you submit bug reports for
d3e8051b 22176@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22177@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22178page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22179be used.
8e04817f
AC
22180
22181@strong{Do not send bug reports to @samp{info-gdb}, or to
22182@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22183not want to receive bug reports. Those that do have arranged to receive
22184@samp{bug-gdb}.
22185
22186The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22187serves as a repeater. The mailing list and the newsgroup carry exactly
22188the same messages. Often people think of posting bug reports to the
22189newsgroup instead of mailing them. This appears to work, but it has one
22190problem which can be crucial: a newsgroup posting often lacks a mail
22191path back to the sender. Thus, if we need to ask for more information,
22192we may be unable to reach you. For this reason, it is better to send
22193bug reports to the mailing list.
c4555f82 22194
8e04817f
AC
22195The fundamental principle of reporting bugs usefully is this:
22196@strong{report all the facts}. If you are not sure whether to state a
22197fact or leave it out, state it!
c4555f82 22198
8e04817f
AC
22199Often people omit facts because they think they know what causes the
22200problem and assume that some details do not matter. Thus, you might
22201assume that the name of the variable you use in an example does not matter.
22202Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22203stray memory reference which happens to fetch from the location where that
22204name is stored in memory; perhaps, if the name were different, the contents
22205of that location would fool the debugger into doing the right thing despite
22206the bug. Play it safe and give a specific, complete example. That is the
22207easiest thing for you to do, and the most helpful.
c4555f82 22208
8e04817f
AC
22209Keep in mind that the purpose of a bug report is to enable us to fix the
22210bug. It may be that the bug has been reported previously, but neither
22211you nor we can know that unless your bug report is complete and
22212self-contained.
c4555f82 22213
8e04817f
AC
22214Sometimes people give a few sketchy facts and ask, ``Does this ring a
22215bell?'' Those bug reports are useless, and we urge everyone to
22216@emph{refuse to respond to them} except to chide the sender to report
22217bugs properly.
22218
22219To enable us to fix the bug, you should include all these things:
c4555f82
SC
22220
22221@itemize @bullet
22222@item
8e04817f
AC
22223The version of @value{GDBN}. @value{GDBN} announces it if you start
22224with no arguments; you can also print it at any time using @code{show
22225version}.
c4555f82 22226
8e04817f
AC
22227Without this, we will not know whether there is any point in looking for
22228the bug in the current version of @value{GDBN}.
c4555f82
SC
22229
22230@item
8e04817f
AC
22231The type of machine you are using, and the operating system name and
22232version number.
c4555f82
SC
22233
22234@item
c1468174 22235What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22236``@value{GCC}--2.8.1''.
c4555f82
SC
22237
22238@item
8e04817f 22239What compiler (and its version) was used to compile the program you are
c1468174 22240debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22241C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22242to get this information; for other compilers, see the documentation for
22243those compilers.
c4555f82 22244
8e04817f
AC
22245@item
22246The command arguments you gave the compiler to compile your example and
22247observe the bug. For example, did you use @samp{-O}? To guarantee
22248you will not omit something important, list them all. A copy of the
22249Makefile (or the output from make) is sufficient.
c4555f82 22250
8e04817f
AC
22251If we were to try to guess the arguments, we would probably guess wrong
22252and then we might not encounter the bug.
c4555f82 22253
8e04817f
AC
22254@item
22255A complete input script, and all necessary source files, that will
22256reproduce the bug.
c4555f82 22257
8e04817f
AC
22258@item
22259A description of what behavior you observe that you believe is
22260incorrect. For example, ``It gets a fatal signal.''
c4555f82 22261
8e04817f
AC
22262Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22263will certainly notice it. But if the bug is incorrect output, we might
22264not notice unless it is glaringly wrong. You might as well not give us
22265a chance to make a mistake.
c4555f82 22266
8e04817f
AC
22267Even if the problem you experience is a fatal signal, you should still
22268say so explicitly. Suppose something strange is going on, such as, your
22269copy of @value{GDBN} is out of synch, or you have encountered a bug in
22270the C library on your system. (This has happened!) Your copy might
22271crash and ours would not. If you told us to expect a crash, then when
22272ours fails to crash, we would know that the bug was not happening for
22273us. If you had not told us to expect a crash, then we would not be able
22274to draw any conclusion from our observations.
c4555f82 22275
e0c07bf0
MC
22276@pindex script
22277@cindex recording a session script
22278To collect all this information, you can use a session recording program
22279such as @command{script}, which is available on many Unix systems.
22280Just run your @value{GDBN} session inside @command{script} and then
22281include the @file{typescript} file with your bug report.
22282
22283Another way to record a @value{GDBN} session is to run @value{GDBN}
22284inside Emacs and then save the entire buffer to a file.
22285
8e04817f
AC
22286@item
22287If you wish to suggest changes to the @value{GDBN} source, send us context
22288diffs. If you even discuss something in the @value{GDBN} source, refer to
22289it by context, not by line number.
c4555f82 22290
8e04817f
AC
22291The line numbers in our development sources will not match those in your
22292sources. Your line numbers would convey no useful information to us.
c4555f82 22293
8e04817f 22294@end itemize
c4555f82 22295
8e04817f 22296Here are some things that are not necessary:
c4555f82 22297
8e04817f
AC
22298@itemize @bullet
22299@item
22300A description of the envelope of the bug.
c4555f82 22301
8e04817f
AC
22302Often people who encounter a bug spend a lot of time investigating
22303which changes to the input file will make the bug go away and which
22304changes will not affect it.
c4555f82 22305
8e04817f
AC
22306This is often time consuming and not very useful, because the way we
22307will find the bug is by running a single example under the debugger
22308with breakpoints, not by pure deduction from a series of examples.
22309We recommend that you save your time for something else.
c4555f82 22310
8e04817f
AC
22311Of course, if you can find a simpler example to report @emph{instead}
22312of the original one, that is a convenience for us. Errors in the
22313output will be easier to spot, running under the debugger will take
22314less time, and so on.
c4555f82 22315
8e04817f
AC
22316However, simplification is not vital; if you do not want to do this,
22317report the bug anyway and send us the entire test case you used.
c4555f82 22318
8e04817f
AC
22319@item
22320A patch for the bug.
c4555f82 22321
8e04817f
AC
22322A patch for the bug does help us if it is a good one. But do not omit
22323the necessary information, such as the test case, on the assumption that
22324a patch is all we need. We might see problems with your patch and decide
22325to fix the problem another way, or we might not understand it at all.
c4555f82 22326
8e04817f
AC
22327Sometimes with a program as complicated as @value{GDBN} it is very hard to
22328construct an example that will make the program follow a certain path
22329through the code. If you do not send us the example, we will not be able
22330to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22331
8e04817f
AC
22332And if we cannot understand what bug you are trying to fix, or why your
22333patch should be an improvement, we will not install it. A test case will
22334help us to understand.
c4555f82 22335
8e04817f
AC
22336@item
22337A guess about what the bug is or what it depends on.
c4555f82 22338
8e04817f
AC
22339Such guesses are usually wrong. Even we cannot guess right about such
22340things without first using the debugger to find the facts.
22341@end itemize
c4555f82 22342
8e04817f
AC
22343@c The readline documentation is distributed with the readline code
22344@c and consists of the two following files:
22345@c rluser.texinfo
22346@c inc-hist.texinfo
22347@c Use -I with makeinfo to point to the appropriate directory,
22348@c environment var TEXINPUTS with TeX.
5bdf8622 22349@include rluser.texi
8e04817f 22350@include inc-hist.texinfo
c4555f82 22351
c4555f82 22352
8e04817f
AC
22353@node Formatting Documentation
22354@appendix Formatting Documentation
c4555f82 22355
8e04817f
AC
22356@cindex @value{GDBN} reference card
22357@cindex reference card
22358The @value{GDBN} 4 release includes an already-formatted reference card, ready
22359for printing with PostScript or Ghostscript, in the @file{gdb}
22360subdirectory of the main source directory@footnote{In
22361@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22362release.}. If you can use PostScript or Ghostscript with your printer,
22363you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22364
8e04817f
AC
22365The release also includes the source for the reference card. You
22366can format it, using @TeX{}, by typing:
c4555f82 22367
474c8240 22368@smallexample
8e04817f 22369make refcard.dvi
474c8240 22370@end smallexample
c4555f82 22371
8e04817f
AC
22372The @value{GDBN} reference card is designed to print in @dfn{landscape}
22373mode on US ``letter'' size paper;
22374that is, on a sheet 11 inches wide by 8.5 inches
22375high. You will need to specify this form of printing as an option to
22376your @sc{dvi} output program.
c4555f82 22377
8e04817f 22378@cindex documentation
c4555f82 22379
8e04817f
AC
22380All the documentation for @value{GDBN} comes as part of the machine-readable
22381distribution. The documentation is written in Texinfo format, which is
22382a documentation system that uses a single source file to produce both
22383on-line information and a printed manual. You can use one of the Info
22384formatting commands to create the on-line version of the documentation
22385and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22386
8e04817f
AC
22387@value{GDBN} includes an already formatted copy of the on-line Info
22388version of this manual in the @file{gdb} subdirectory. The main Info
22389file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22390subordinate files matching @samp{gdb.info*} in the same directory. If
22391necessary, you can print out these files, or read them with any editor;
22392but they are easier to read using the @code{info} subsystem in @sc{gnu}
22393Emacs or the standalone @code{info} program, available as part of the
22394@sc{gnu} Texinfo distribution.
c4555f82 22395
8e04817f
AC
22396If you want to format these Info files yourself, you need one of the
22397Info formatting programs, such as @code{texinfo-format-buffer} or
22398@code{makeinfo}.
c4555f82 22399
8e04817f
AC
22400If you have @code{makeinfo} installed, and are in the top level
22401@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22402version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22403
474c8240 22404@smallexample
8e04817f
AC
22405cd gdb
22406make gdb.info
474c8240 22407@end smallexample
c4555f82 22408
8e04817f
AC
22409If you want to typeset and print copies of this manual, you need @TeX{},
22410a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22411Texinfo definitions file.
c4555f82 22412
8e04817f
AC
22413@TeX{} is a typesetting program; it does not print files directly, but
22414produces output files called @sc{dvi} files. To print a typeset
22415document, you need a program to print @sc{dvi} files. If your system
22416has @TeX{} installed, chances are it has such a program. The precise
22417command to use depends on your system; @kbd{lpr -d} is common; another
22418(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22419require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22420
8e04817f
AC
22421@TeX{} also requires a macro definitions file called
22422@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22423written in Texinfo format. On its own, @TeX{} cannot either read or
22424typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22425and is located in the @file{gdb-@var{version-number}/texinfo}
22426directory.
c4555f82 22427
8e04817f 22428If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22429typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22430subdirectory of the main source directory (for example, to
22431@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22432
474c8240 22433@smallexample
8e04817f 22434make gdb.dvi
474c8240 22435@end smallexample
c4555f82 22436
8e04817f 22437Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22438
8e04817f
AC
22439@node Installing GDB
22440@appendix Installing @value{GDBN}
8e04817f 22441@cindex installation
c4555f82 22442
7fa2210b
DJ
22443@menu
22444* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22445* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22446* Separate Objdir:: Compiling @value{GDBN} in another directory
22447* Config Names:: Specifying names for hosts and targets
22448* Configure Options:: Summary of options for configure
22449@end menu
22450
22451@node Requirements
79a6e687 22452@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22453@cindex building @value{GDBN}, requirements for
22454
22455Building @value{GDBN} requires various tools and packages to be available.
22456Other packages will be used only if they are found.
22457
79a6e687 22458@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22459@table @asis
22460@item ISO C90 compiler
22461@value{GDBN} is written in ISO C90. It should be buildable with any
22462working C90 compiler, e.g.@: GCC.
22463
22464@end table
22465
79a6e687 22466@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22467@table @asis
22468@item Expat
123dc839 22469@anchor{Expat}
7fa2210b
DJ
22470@value{GDBN} can use the Expat XML parsing library. This library may be
22471included with your operating system distribution; if it is not, you
22472can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22473The @file{configure} script will search for this library in several
7fa2210b
DJ
22474standard locations; if it is installed in an unusual path, you can
22475use the @option{--with-libexpat-prefix} option to specify its location.
22476
9cceb671
DJ
22477Expat is used for:
22478
22479@itemize @bullet
22480@item
22481Remote protocol memory maps (@pxref{Memory Map Format})
22482@item
22483Target descriptions (@pxref{Target Descriptions})
22484@item
22485Remote shared library lists (@pxref{Library List Format})
22486@item
22487MS-Windows shared libraries (@pxref{Shared Libraries})
22488@end itemize
7fa2210b
DJ
22489
22490@end table
22491
22492@node Running Configure
db2e3e2e 22493@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22494@cindex configuring @value{GDBN}
db2e3e2e 22495@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22496of preparing @value{GDBN} for installation; you can then use @code{make} to
22497build the @code{gdb} program.
22498@iftex
22499@c irrelevant in info file; it's as current as the code it lives with.
22500@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22501look at the @file{README} file in the sources; we may have improved the
22502installation procedures since publishing this manual.}
22503@end iftex
c4555f82 22504
8e04817f
AC
22505The @value{GDBN} distribution includes all the source code you need for
22506@value{GDBN} in a single directory, whose name is usually composed by
22507appending the version number to @samp{gdb}.
c4555f82 22508
8e04817f
AC
22509For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22510@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22511
8e04817f
AC
22512@table @code
22513@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22514script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22515
8e04817f
AC
22516@item gdb-@value{GDBVN}/gdb
22517the source specific to @value{GDBN} itself
c4555f82 22518
8e04817f
AC
22519@item gdb-@value{GDBVN}/bfd
22520source for the Binary File Descriptor library
c906108c 22521
8e04817f
AC
22522@item gdb-@value{GDBVN}/include
22523@sc{gnu} include files
c906108c 22524
8e04817f
AC
22525@item gdb-@value{GDBVN}/libiberty
22526source for the @samp{-liberty} free software library
c906108c 22527
8e04817f
AC
22528@item gdb-@value{GDBVN}/opcodes
22529source for the library of opcode tables and disassemblers
c906108c 22530
8e04817f
AC
22531@item gdb-@value{GDBVN}/readline
22532source for the @sc{gnu} command-line interface
c906108c 22533
8e04817f
AC
22534@item gdb-@value{GDBVN}/glob
22535source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22536
8e04817f
AC
22537@item gdb-@value{GDBVN}/mmalloc
22538source for the @sc{gnu} memory-mapped malloc package
22539@end table
c906108c 22540
db2e3e2e 22541The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22542from the @file{gdb-@var{version-number}} source directory, which in
22543this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22544
8e04817f 22545First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22546if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22547identifier for the platform on which @value{GDBN} will run as an
22548argument.
c906108c 22549
8e04817f 22550For example:
c906108c 22551
474c8240 22552@smallexample
8e04817f
AC
22553cd gdb-@value{GDBVN}
22554./configure @var{host}
22555make
474c8240 22556@end smallexample
c906108c 22557
8e04817f
AC
22558@noindent
22559where @var{host} is an identifier such as @samp{sun4} or
22560@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22561(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22562correct value by examining your system.)
c906108c 22563
8e04817f
AC
22564Running @samp{configure @var{host}} and then running @code{make} builds the
22565@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22566libraries, then @code{gdb} itself. The configured source files, and the
22567binaries, are left in the corresponding source directories.
c906108c 22568
8e04817f 22569@need 750
db2e3e2e 22570@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22571system does not recognize this automatically when you run a different
22572shell, you may need to run @code{sh} on it explicitly:
c906108c 22573
474c8240 22574@smallexample
8e04817f 22575sh configure @var{host}
474c8240 22576@end smallexample
c906108c 22577
db2e3e2e 22578If you run @file{configure} from a directory that contains source
8e04817f 22579directories for multiple libraries or programs, such as the
db2e3e2e
BW
22580@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22581@file{configure}
8e04817f
AC
22582creates configuration files for every directory level underneath (unless
22583you tell it not to, with the @samp{--norecursion} option).
22584
db2e3e2e 22585You should run the @file{configure} script from the top directory in the
94e91d6d 22586source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22587@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22588that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22589if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22590of the @file{gdb-@var{version-number}} directory, you will omit the
22591configuration of @file{bfd}, @file{readline}, and other sibling
22592directories of the @file{gdb} subdirectory. This leads to build errors
22593about missing include files such as @file{bfd/bfd.h}.
c906108c 22594
8e04817f
AC
22595You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22596However, you should make sure that the shell on your path (named by
22597the @samp{SHELL} environment variable) is publicly readable. Remember
22598that @value{GDBN} uses the shell to start your program---some systems refuse to
22599let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22600
8e04817f 22601@node Separate Objdir
79a6e687 22602@section Compiling @value{GDBN} in Another Directory
c906108c 22603
8e04817f
AC
22604If you want to run @value{GDBN} versions for several host or target machines,
22605you need a different @code{gdb} compiled for each combination of
db2e3e2e 22606host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22607allowing you to generate each configuration in a separate subdirectory,
22608rather than in the source directory. If your @code{make} program
22609handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22610@code{make} in each of these directories builds the @code{gdb}
22611program specified there.
c906108c 22612
db2e3e2e 22613To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22614with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22615(You also need to specify a path to find @file{configure}
22616itself from your working directory. If the path to @file{configure}
8e04817f
AC
22617would be the same as the argument to @samp{--srcdir}, you can leave out
22618the @samp{--srcdir} option; it is assumed.)
c906108c 22619
8e04817f
AC
22620For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22621separate directory for a Sun 4 like this:
c906108c 22622
474c8240 22623@smallexample
8e04817f
AC
22624@group
22625cd gdb-@value{GDBVN}
22626mkdir ../gdb-sun4
22627cd ../gdb-sun4
22628../gdb-@value{GDBVN}/configure sun4
22629make
22630@end group
474c8240 22631@end smallexample
c906108c 22632
db2e3e2e 22633When @file{configure} builds a configuration using a remote source
8e04817f
AC
22634directory, it creates a tree for the binaries with the same structure
22635(and using the same names) as the tree under the source directory. In
22636the example, you'd find the Sun 4 library @file{libiberty.a} in the
22637directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22638@file{gdb-sun4/gdb}.
c906108c 22639
94e91d6d
MC
22640Make sure that your path to the @file{configure} script has just one
22641instance of @file{gdb} in it. If your path to @file{configure} looks
22642like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22643one subdirectory of @value{GDBN}, not the whole package. This leads to
22644build errors about missing include files such as @file{bfd/bfd.h}.
22645
8e04817f
AC
22646One popular reason to build several @value{GDBN} configurations in separate
22647directories is to configure @value{GDBN} for cross-compiling (where
22648@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22649programs that run on another machine---the @dfn{target}).
22650You specify a cross-debugging target by
db2e3e2e 22651giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22652
8e04817f
AC
22653When you run @code{make} to build a program or library, you must run
22654it in a configured directory---whatever directory you were in when you
db2e3e2e 22655called @file{configure} (or one of its subdirectories).
c906108c 22656
db2e3e2e 22657The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22658directory also runs recursively. If you type @code{make} in a source
22659directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22660directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22661will build all the required libraries, and then build GDB.
c906108c 22662
8e04817f
AC
22663When you have multiple hosts or targets configured in separate
22664directories, you can run @code{make} on them in parallel (for example,
22665if they are NFS-mounted on each of the hosts); they will not interfere
22666with each other.
c906108c 22667
8e04817f 22668@node Config Names
79a6e687 22669@section Specifying Names for Hosts and Targets
c906108c 22670
db2e3e2e 22671The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22672script are based on a three-part naming scheme, but some short predefined
22673aliases are also supported. The full naming scheme encodes three pieces
22674of information in the following pattern:
c906108c 22675
474c8240 22676@smallexample
8e04817f 22677@var{architecture}-@var{vendor}-@var{os}
474c8240 22678@end smallexample
c906108c 22679
8e04817f
AC
22680For example, you can use the alias @code{sun4} as a @var{host} argument,
22681or as the value for @var{target} in a @code{--target=@var{target}}
22682option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22683
db2e3e2e 22684The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22685any query facility to list all supported host and target names or
db2e3e2e 22686aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22687@code{config.sub} to map abbreviations to full names; you can read the
22688script, if you wish, or you can use it to test your guesses on
22689abbreviations---for example:
c906108c 22690
8e04817f
AC
22691@smallexample
22692% sh config.sub i386-linux
22693i386-pc-linux-gnu
22694% sh config.sub alpha-linux
22695alpha-unknown-linux-gnu
22696% sh config.sub hp9k700
22697hppa1.1-hp-hpux
22698% sh config.sub sun4
22699sparc-sun-sunos4.1.1
22700% sh config.sub sun3
22701m68k-sun-sunos4.1.1
22702% sh config.sub i986v
22703Invalid configuration `i986v': machine `i986v' not recognized
22704@end smallexample
c906108c 22705
8e04817f
AC
22706@noindent
22707@code{config.sub} is also distributed in the @value{GDBN} source
22708directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22709
8e04817f 22710@node Configure Options
db2e3e2e 22711@section @file{configure} Options
c906108c 22712
db2e3e2e
BW
22713Here is a summary of the @file{configure} options and arguments that
22714are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22715several other options not listed here. @inforef{What Configure
db2e3e2e 22716Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22717
474c8240 22718@smallexample
8e04817f
AC
22719configure @r{[}--help@r{]}
22720 @r{[}--prefix=@var{dir}@r{]}
22721 @r{[}--exec-prefix=@var{dir}@r{]}
22722 @r{[}--srcdir=@var{dirname}@r{]}
22723 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22724 @r{[}--target=@var{target}@r{]}
22725 @var{host}
474c8240 22726@end smallexample
c906108c 22727
8e04817f
AC
22728@noindent
22729You may introduce options with a single @samp{-} rather than
22730@samp{--} if you prefer; but you may abbreviate option names if you use
22731@samp{--}.
c906108c 22732
8e04817f
AC
22733@table @code
22734@item --help
db2e3e2e 22735Display a quick summary of how to invoke @file{configure}.
c906108c 22736
8e04817f
AC
22737@item --prefix=@var{dir}
22738Configure the source to install programs and files under directory
22739@file{@var{dir}}.
c906108c 22740
8e04817f
AC
22741@item --exec-prefix=@var{dir}
22742Configure the source to install programs under directory
22743@file{@var{dir}}.
c906108c 22744
8e04817f
AC
22745@c avoid splitting the warning from the explanation:
22746@need 2000
22747@item --srcdir=@var{dirname}
22748@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22749@code{make} that implements the @code{VPATH} feature.}@*
22750Use this option to make configurations in directories separate from the
22751@value{GDBN} source directories. Among other things, you can use this to
22752build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22753directories. @file{configure} writes configuration-specific files in
8e04817f 22754the current directory, but arranges for them to use the source in the
db2e3e2e 22755directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22756the working directory in parallel to the source directories below
22757@var{dirname}.
c906108c 22758
8e04817f 22759@item --norecursion
db2e3e2e 22760Configure only the directory level where @file{configure} is executed; do not
8e04817f 22761propagate configuration to subdirectories.
c906108c 22762
8e04817f
AC
22763@item --target=@var{target}
22764Configure @value{GDBN} for cross-debugging programs running on the specified
22765@var{target}. Without this option, @value{GDBN} is configured to debug
22766programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22767
8e04817f 22768There is no convenient way to generate a list of all available targets.
c906108c 22769
8e04817f
AC
22770@item @var{host} @dots{}
22771Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22772
8e04817f
AC
22773There is no convenient way to generate a list of all available hosts.
22774@end table
c906108c 22775
8e04817f
AC
22776There are many other options available as well, but they are generally
22777needed for special purposes only.
c906108c 22778
8e04817f
AC
22779@node Maintenance Commands
22780@appendix Maintenance Commands
22781@cindex maintenance commands
22782@cindex internal commands
c906108c 22783
8e04817f 22784In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22785includes a number of commands intended for @value{GDBN} developers,
22786that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22787provided here for reference. (For commands that turn on debugging
22788messages, see @ref{Debugging Output}.)
c906108c 22789
8e04817f 22790@table @code
09d4efe1
EZ
22791@kindex maint agent
22792@item maint agent @var{expression}
22793Translate the given @var{expression} into remote agent bytecodes.
22794This command is useful for debugging the Agent Expression mechanism
22795(@pxref{Agent Expressions}).
22796
8e04817f
AC
22797@kindex maint info breakpoints
22798@item @anchor{maint info breakpoints}maint info breakpoints
22799Using the same format as @samp{info breakpoints}, display both the
22800breakpoints you've set explicitly, and those @value{GDBN} is using for
22801internal purposes. Internal breakpoints are shown with negative
22802breakpoint numbers. The type column identifies what kind of breakpoint
22803is shown:
c906108c 22804
8e04817f
AC
22805@table @code
22806@item breakpoint
22807Normal, explicitly set breakpoint.
c906108c 22808
8e04817f
AC
22809@item watchpoint
22810Normal, explicitly set watchpoint.
c906108c 22811
8e04817f
AC
22812@item longjmp
22813Internal breakpoint, used to handle correctly stepping through
22814@code{longjmp} calls.
c906108c 22815
8e04817f
AC
22816@item longjmp resume
22817Internal breakpoint at the target of a @code{longjmp}.
c906108c 22818
8e04817f
AC
22819@item until
22820Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22821
8e04817f
AC
22822@item finish
22823Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22824
8e04817f
AC
22825@item shlib events
22826Shared library events.
c906108c 22827
8e04817f 22828@end table
c906108c 22829
09d4efe1
EZ
22830@kindex maint check-symtabs
22831@item maint check-symtabs
22832Check the consistency of psymtabs and symtabs.
22833
22834@kindex maint cplus first_component
22835@item maint cplus first_component @var{name}
22836Print the first C@t{++} class/namespace component of @var{name}.
22837
22838@kindex maint cplus namespace
22839@item maint cplus namespace
22840Print the list of possible C@t{++} namespaces.
22841
22842@kindex maint demangle
22843@item maint demangle @var{name}
d3e8051b 22844Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22845
22846@kindex maint deprecate
22847@kindex maint undeprecate
22848@cindex deprecated commands
22849@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22850@itemx maint undeprecate @var{command}
22851Deprecate or undeprecate the named @var{command}. Deprecated commands
22852cause @value{GDBN} to issue a warning when you use them. The optional
22853argument @var{replacement} says which newer command should be used in
22854favor of the deprecated one; if it is given, @value{GDBN} will mention
22855the replacement as part of the warning.
22856
22857@kindex maint dump-me
22858@item maint dump-me
721c2651 22859@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22860Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22861This is supported only on systems which support aborting a program
22862with the @code{SIGQUIT} signal.
09d4efe1 22863
8d30a00d
AC
22864@kindex maint internal-error
22865@kindex maint internal-warning
09d4efe1
EZ
22866@item maint internal-error @r{[}@var{message-text}@r{]}
22867@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22868Cause @value{GDBN} to call the internal function @code{internal_error}
22869or @code{internal_warning} and hence behave as though an internal error
22870or internal warning has been detected. In addition to reporting the
22871internal problem, these functions give the user the opportunity to
22872either quit @value{GDBN} or create a core file of the current
22873@value{GDBN} session.
22874
09d4efe1
EZ
22875These commands take an optional parameter @var{message-text} that is
22876used as the text of the error or warning message.
22877
d3e8051b 22878Here's an example of using @code{internal-error}:
09d4efe1 22879
8d30a00d 22880@smallexample
f7dc1244 22881(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
22882@dots{}/maint.c:121: internal-error: testing, 1, 2
22883A problem internal to GDB has been detected. Further
22884debugging may prove unreliable.
22885Quit this debugging session? (y or n) @kbd{n}
22886Create a core file? (y or n) @kbd{n}
f7dc1244 22887(@value{GDBP})
8d30a00d
AC
22888@end smallexample
22889
09d4efe1
EZ
22890@kindex maint packet
22891@item maint packet @var{text}
22892If @value{GDBN} is talking to an inferior via the serial protocol,
22893then this command sends the string @var{text} to the inferior, and
22894displays the response packet. @value{GDBN} supplies the initial
22895@samp{$} character, the terminating @samp{#} character, and the
22896checksum.
22897
22898@kindex maint print architecture
22899@item maint print architecture @r{[}@var{file}@r{]}
22900Print the entire architecture configuration. The optional argument
22901@var{file} names the file where the output goes.
8d30a00d 22902
81adfced
DJ
22903@kindex maint print c-tdesc
22904@item maint print c-tdesc
22905Print the current target description (@pxref{Target Descriptions}) as
22906a C source file. The created source file can be used in @value{GDBN}
22907when an XML parser is not available to parse the description.
22908
00905d52
AC
22909@kindex maint print dummy-frames
22910@item maint print dummy-frames
00905d52
AC
22911Prints the contents of @value{GDBN}'s internal dummy-frame stack.
22912
22913@smallexample
f7dc1244 22914(@value{GDBP}) @kbd{b add}
00905d52 22915@dots{}
f7dc1244 22916(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
22917Breakpoint 2, add (a=2, b=3) at @dots{}
2291858 return (a + b);
22919The program being debugged stopped while in a function called from GDB.
22920@dots{}
f7dc1244 22921(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
229220x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
22923 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
22924 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 22925(@value{GDBP})
00905d52
AC
22926@end smallexample
22927
22928Takes an optional file parameter.
22929
0680b120
AC
22930@kindex maint print registers
22931@kindex maint print raw-registers
22932@kindex maint print cooked-registers
617073a9 22933@kindex maint print register-groups
09d4efe1
EZ
22934@item maint print registers @r{[}@var{file}@r{]}
22935@itemx maint print raw-registers @r{[}@var{file}@r{]}
22936@itemx maint print cooked-registers @r{[}@var{file}@r{]}
22937@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
22938Print @value{GDBN}'s internal register data structures.
22939
617073a9
AC
22940The command @code{maint print raw-registers} includes the contents of
22941the raw register cache; the command @code{maint print cooked-registers}
22942includes the (cooked) value of all registers; and the command
22943@code{maint print register-groups} includes the groups that each
22944register is a member of. @xref{Registers,, Registers, gdbint,
22945@value{GDBN} Internals}.
0680b120 22946
09d4efe1
EZ
22947These commands take an optional parameter, a file name to which to
22948write the information.
0680b120 22949
617073a9 22950@kindex maint print reggroups
09d4efe1
EZ
22951@item maint print reggroups @r{[}@var{file}@r{]}
22952Print @value{GDBN}'s internal register group data structures. The
22953optional argument @var{file} tells to what file to write the
22954information.
617073a9 22955
09d4efe1 22956The register groups info looks like this:
617073a9
AC
22957
22958@smallexample
f7dc1244 22959(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
22960 Group Type
22961 general user
22962 float user
22963 all user
22964 vector user
22965 system user
22966 save internal
22967 restore internal
617073a9
AC
22968@end smallexample
22969
09d4efe1
EZ
22970@kindex flushregs
22971@item flushregs
22972This command forces @value{GDBN} to flush its internal register cache.
22973
22974@kindex maint print objfiles
22975@cindex info for known object files
22976@item maint print objfiles
22977Print a dump of all known object files. For each object file, this
22978command prints its name, address in memory, and all of its psymtabs
22979and symtabs.
22980
22981@kindex maint print statistics
22982@cindex bcache statistics
22983@item maint print statistics
22984This command prints, for each object file in the program, various data
22985about that object file followed by the byte cache (@dfn{bcache})
22986statistics for the object file. The objfile data includes the number
d3e8051b 22987of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
22988defined by the objfile, the number of as yet unexpanded psym tables,
22989the number of line tables and string tables, and the amount of memory
22990used by the various tables. The bcache statistics include the counts,
22991sizes, and counts of duplicates of all and unique objects, max,
22992average, and median entry size, total memory used and its overhead and
22993savings, and various measures of the hash table size and chain
22994lengths.
22995
c7ba131e
JB
22996@kindex maint print target-stack
22997@cindex target stack description
22998@item maint print target-stack
22999A @dfn{target} is an interface between the debugger and a particular
23000kind of file or process. Targets can be stacked in @dfn{strata},
23001so that more than one target can potentially respond to a request.
23002In particular, memory accesses will walk down the stack of targets
23003until they find a target that is interested in handling that particular
23004address.
23005
23006This command prints a short description of each layer that was pushed on
23007the @dfn{target stack}, starting from the top layer down to the bottom one.
23008
09d4efe1
EZ
23009@kindex maint print type
23010@cindex type chain of a data type
23011@item maint print type @var{expr}
23012Print the type chain for a type specified by @var{expr}. The argument
23013can be either a type name or a symbol. If it is a symbol, the type of
23014that symbol is described. The type chain produced by this command is
23015a recursive definition of the data type as stored in @value{GDBN}'s
23016data structures, including its flags and contained types.
23017
23018@kindex maint set dwarf2 max-cache-age
23019@kindex maint show dwarf2 max-cache-age
23020@item maint set dwarf2 max-cache-age
23021@itemx maint show dwarf2 max-cache-age
23022Control the DWARF 2 compilation unit cache.
23023
23024@cindex DWARF 2 compilation units cache
23025In object files with inter-compilation-unit references, such as those
23026produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23027reader needs to frequently refer to previously read compilation units.
23028This setting controls how long a compilation unit will remain in the
23029cache if it is not referenced. A higher limit means that cached
23030compilation units will be stored in memory longer, and more total
23031memory will be used. Setting it to zero disables caching, which will
23032slow down @value{GDBN} startup, but reduce memory consumption.
23033
e7ba9c65
DJ
23034@kindex maint set profile
23035@kindex maint show profile
23036@cindex profiling GDB
23037@item maint set profile
23038@itemx maint show profile
23039Control profiling of @value{GDBN}.
23040
23041Profiling will be disabled until you use the @samp{maint set profile}
23042command to enable it. When you enable profiling, the system will begin
23043collecting timing and execution count data; when you disable profiling or
23044exit @value{GDBN}, the results will be written to a log file. Remember that
23045if you use profiling, @value{GDBN} will overwrite the profiling log file
23046(often called @file{gmon.out}). If you have a record of important profiling
23047data in a @file{gmon.out} file, be sure to move it to a safe location.
23048
23049Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23050compiled with the @samp{-pg} compiler option.
e7ba9c65 23051
09d4efe1
EZ
23052@kindex maint show-debug-regs
23053@cindex x86 hardware debug registers
23054@item maint show-debug-regs
23055Control whether to show variables that mirror the x86 hardware debug
23056registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23057enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23058removes a hardware breakpoint or watchpoint, and when the inferior
23059triggers a hardware-assisted breakpoint or watchpoint.
23060
23061@kindex maint space
23062@cindex memory used by commands
23063@item maint space
23064Control whether to display memory usage for each command. If set to a
23065nonzero value, @value{GDBN} will display how much memory each command
23066took, following the command's own output. This can also be requested
23067by invoking @value{GDBN} with the @option{--statistics} command-line
23068switch (@pxref{Mode Options}).
23069
23070@kindex maint time
23071@cindex time of command execution
23072@item maint time
23073Control whether to display the execution time for each command. If
23074set to a nonzero value, @value{GDBN} will display how much time it
23075took to execute each command, following the command's own output.
23076This can also be requested by invoking @value{GDBN} with the
23077@option{--statistics} command-line switch (@pxref{Mode Options}).
23078
23079@kindex maint translate-address
23080@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23081Find the symbol stored at the location specified by the address
23082@var{addr} and an optional section name @var{section}. If found,
23083@value{GDBN} prints the name of the closest symbol and an offset from
23084the symbol's location to the specified address. This is similar to
23085the @code{info address} command (@pxref{Symbols}), except that this
23086command also allows to find symbols in other sections.
ae038cb0 23087
8e04817f 23088@end table
c906108c 23089
9c16f35a
EZ
23090The following command is useful for non-interactive invocations of
23091@value{GDBN}, such as in the test suite.
23092
23093@table @code
23094@item set watchdog @var{nsec}
23095@kindex set watchdog
23096@cindex watchdog timer
23097@cindex timeout for commands
23098Set the maximum number of seconds @value{GDBN} will wait for the
23099target operation to finish. If this time expires, @value{GDBN}
23100reports and error and the command is aborted.
23101
23102@item show watchdog
23103Show the current setting of the target wait timeout.
23104@end table
c906108c 23105
e0ce93ac 23106@node Remote Protocol
8e04817f 23107@appendix @value{GDBN} Remote Serial Protocol
c906108c 23108
ee2d5c50
AC
23109@menu
23110* Overview::
23111* Packets::
23112* Stop Reply Packets::
23113* General Query Packets::
23114* Register Packet Format::
9d29849a 23115* Tracepoint Packets::
a6b151f1 23116* Host I/O Packets::
9a6253be 23117* Interrupts::
ee2d5c50 23118* Examples::
79a6e687 23119* File-I/O Remote Protocol Extension::
cfa9d6d9 23120* Library List Format::
79a6e687 23121* Memory Map Format::
ee2d5c50
AC
23122@end menu
23123
23124@node Overview
23125@section Overview
23126
8e04817f
AC
23127There may be occasions when you need to know something about the
23128protocol---for example, if there is only one serial port to your target
23129machine, you might want your program to do something special if it
23130recognizes a packet meant for @value{GDBN}.
c906108c 23131
d2c6833e 23132In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23133transmitted and received data, respectively.
c906108c 23134
8e04817f
AC
23135@cindex protocol, @value{GDBN} remote serial
23136@cindex serial protocol, @value{GDBN} remote
23137@cindex remote serial protocol
23138All @value{GDBN} commands and responses (other than acknowledgments) are
23139sent as a @var{packet}. A @var{packet} is introduced with the character
23140@samp{$}, the actual @var{packet-data}, and the terminating character
23141@samp{#} followed by a two-digit @var{checksum}:
c906108c 23142
474c8240 23143@smallexample
8e04817f 23144@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23145@end smallexample
8e04817f 23146@noindent
c906108c 23147
8e04817f
AC
23148@cindex checksum, for @value{GDBN} remote
23149@noindent
23150The two-digit @var{checksum} is computed as the modulo 256 sum of all
23151characters between the leading @samp{$} and the trailing @samp{#} (an
23152eight bit unsigned checksum).
c906108c 23153
8e04817f
AC
23154Implementors should note that prior to @value{GDBN} 5.0 the protocol
23155specification also included an optional two-digit @var{sequence-id}:
c906108c 23156
474c8240 23157@smallexample
8e04817f 23158@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23159@end smallexample
c906108c 23160
8e04817f
AC
23161@cindex sequence-id, for @value{GDBN} remote
23162@noindent
23163That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23164has never output @var{sequence-id}s. Stubs that handle packets added
23165since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23166
8e04817f
AC
23167@cindex acknowledgment, for @value{GDBN} remote
23168When either the host or the target machine receives a packet, the first
23169response expected is an acknowledgment: either @samp{+} (to indicate
23170the package was received correctly) or @samp{-} (to request
23171retransmission):
c906108c 23172
474c8240 23173@smallexample
d2c6833e
AC
23174-> @code{$}@var{packet-data}@code{#}@var{checksum}
23175<- @code{+}
474c8240 23176@end smallexample
8e04817f 23177@noindent
53a5351d 23178
8e04817f
AC
23179The host (@value{GDBN}) sends @var{command}s, and the target (the
23180debugging stub incorporated in your program) sends a @var{response}. In
23181the case of step and continue @var{command}s, the response is only sent
23182when the operation has completed (the target has again stopped).
c906108c 23183
8e04817f
AC
23184@var{packet-data} consists of a sequence of characters with the
23185exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23186exceptions).
c906108c 23187
ee2d5c50 23188@cindex remote protocol, field separator
0876f84a 23189Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23190@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23191@sc{hex} with leading zeros suppressed.
c906108c 23192
8e04817f
AC
23193Implementors should note that prior to @value{GDBN} 5.0, the character
23194@samp{:} could not appear as the third character in a packet (as it
23195would potentially conflict with the @var{sequence-id}).
c906108c 23196
0876f84a
DJ
23197@cindex remote protocol, binary data
23198@anchor{Binary Data}
23199Binary data in most packets is encoded either as two hexadecimal
23200digits per byte of binary data. This allowed the traditional remote
23201protocol to work over connections which were only seven-bit clean.
23202Some packets designed more recently assume an eight-bit clean
23203connection, and use a more efficient encoding to send and receive
23204binary data.
23205
23206The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23207as an escape character. Any escaped byte is transmitted as the escape
23208character followed by the original character XORed with @code{0x20}.
23209For example, the byte @code{0x7d} would be transmitted as the two
23210bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23211@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23212@samp{@}}) must always be escaped. Responses sent by the stub
23213must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23214is not interpreted as the start of a run-length encoded sequence
23215(described next).
23216
1d3811f6
DJ
23217Response @var{data} can be run-length encoded to save space.
23218Run-length encoding replaces runs of identical characters with one
23219instance of the repeated character, followed by a @samp{*} and a
23220repeat count. The repeat count is itself sent encoded, to avoid
23221binary characters in @var{data}: a value of @var{n} is sent as
23222@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23223produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23224code 32) for a repeat count of 3. (This is because run-length
23225encoding starts to win for counts 3 or more.) Thus, for example,
23226@samp{0* } is a run-length encoding of ``0000'': the space character
23227after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
232283}} more times.
23229
23230The printable characters @samp{#} and @samp{$} or with a numeric value
23231greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23232seven repeats (@samp{$}) can be expanded using a repeat count of only
23233five (@samp{"}). For example, @samp{00000000} can be encoded as
23234@samp{0*"00}.
c906108c 23235
8e04817f
AC
23236The error response returned for some packets includes a two character
23237error number. That number is not well defined.
c906108c 23238
f8da2bff 23239@cindex empty response, for unsupported packets
8e04817f
AC
23240For any @var{command} not supported by the stub, an empty response
23241(@samp{$#00}) should be returned. That way it is possible to extend the
23242protocol. A newer @value{GDBN} can tell if a packet is supported based
23243on that response.
c906108c 23244
b383017d
RM
23245A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23246@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23247optional.
c906108c 23248
ee2d5c50
AC
23249@node Packets
23250@section Packets
23251
23252The following table provides a complete list of all currently defined
23253@var{command}s and their corresponding response @var{data}.
79a6e687 23254@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23255I/O extension of the remote protocol.
ee2d5c50 23256
b8ff78ce
JB
23257Each packet's description has a template showing the packet's overall
23258syntax, followed by an explanation of the packet's meaning. We
23259include spaces in some of the templates for clarity; these are not
23260part of the packet's syntax. No @value{GDBN} packet uses spaces to
23261separate its components. For example, a template like @samp{foo
23262@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23263bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23264@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23265@samp{foo} and the @var{bar}, or between the @var{bar} and the
23266@var{baz}.
23267
8ffe2530
JB
23268Note that all packet forms beginning with an upper- or lower-case
23269letter, other than those described here, are reserved for future use.
23270
b8ff78ce 23271Here are the packet descriptions.
ee2d5c50 23272
b8ff78ce 23273@table @samp
ee2d5c50 23274
b8ff78ce
JB
23275@item !
23276@cindex @samp{!} packet
8e04817f
AC
23277Enable extended mode. In extended mode, the remote server is made
23278persistent. The @samp{R} packet is used to restart the program being
23279debugged.
ee2d5c50
AC
23280
23281Reply:
23282@table @samp
23283@item OK
8e04817f 23284The remote target both supports and has enabled extended mode.
ee2d5c50 23285@end table
c906108c 23286
b8ff78ce
JB
23287@item ?
23288@cindex @samp{?} packet
ee2d5c50
AC
23289Indicate the reason the target halted. The reply is the same as for
23290step and continue.
c906108c 23291
ee2d5c50
AC
23292Reply:
23293@xref{Stop Reply Packets}, for the reply specifications.
23294
b8ff78ce
JB
23295@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23296@cindex @samp{A} packet
23297Initialized @code{argv[]} array passed into program. @var{arglen}
23298specifies the number of bytes in the hex encoded byte stream
23299@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23300
23301Reply:
23302@table @samp
23303@item OK
b8ff78ce
JB
23304The arguments were set.
23305@item E @var{NN}
23306An error occurred.
ee2d5c50
AC
23307@end table
23308
b8ff78ce
JB
23309@item b @var{baud}
23310@cindex @samp{b} packet
23311(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23312Change the serial line speed to @var{baud}.
23313
23314JTC: @emph{When does the transport layer state change? When it's
23315received, or after the ACK is transmitted. In either case, there are
23316problems if the command or the acknowledgment packet is dropped.}
23317
23318Stan: @emph{If people really wanted to add something like this, and get
23319it working for the first time, they ought to modify ser-unix.c to send
23320some kind of out-of-band message to a specially-setup stub and have the
23321switch happen "in between" packets, so that from remote protocol's point
23322of view, nothing actually happened.}
23323
b8ff78ce
JB
23324@item B @var{addr},@var{mode}
23325@cindex @samp{B} packet
8e04817f 23326Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23327breakpoint at @var{addr}.
23328
b8ff78ce 23329Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23330(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23331
4f553f88 23332@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23333@cindex @samp{c} packet
23334Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23335resume at current address.
c906108c 23336
ee2d5c50
AC
23337Reply:
23338@xref{Stop Reply Packets}, for the reply specifications.
23339
4f553f88 23340@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23341@cindex @samp{C} packet
8e04817f 23342Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23343@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23344
ee2d5c50
AC
23345Reply:
23346@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23347
b8ff78ce
JB
23348@item d
23349@cindex @samp{d} packet
ee2d5c50
AC
23350Toggle debug flag.
23351
b8ff78ce
JB
23352Don't use this packet; instead, define a general set packet
23353(@pxref{General Query Packets}).
ee2d5c50 23354
b8ff78ce
JB
23355@item D
23356@cindex @samp{D} packet
ee2d5c50 23357Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23358before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23359
23360Reply:
23361@table @samp
10fac096
NW
23362@item OK
23363for success
b8ff78ce 23364@item E @var{NN}
10fac096 23365for an error
ee2d5c50 23366@end table
c906108c 23367
b8ff78ce
JB
23368@item F @var{RC},@var{EE},@var{CF};@var{XX}
23369@cindex @samp{F} packet
23370A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23371This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23372Remote Protocol Extension}, for the specification.
ee2d5c50 23373
b8ff78ce 23374@item g
ee2d5c50 23375@anchor{read registers packet}
b8ff78ce 23376@cindex @samp{g} packet
ee2d5c50
AC
23377Read general registers.
23378
23379Reply:
23380@table @samp
23381@item @var{XX@dots{}}
8e04817f
AC
23382Each byte of register data is described by two hex digits. The bytes
23383with the register are transmitted in target byte order. The size of
b8ff78ce 23384each register and their position within the @samp{g} packet are
4a9bb1df
UW
23385determined by the @value{GDBN} internal gdbarch functions
23386@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23387specification of several standard @samp{g} packets is specified below.
23388@item E @var{NN}
ee2d5c50
AC
23389for an error.
23390@end table
c906108c 23391
b8ff78ce
JB
23392@item G @var{XX@dots{}}
23393@cindex @samp{G} packet
23394Write general registers. @xref{read registers packet}, for a
23395description of the @var{XX@dots{}} data.
ee2d5c50
AC
23396
23397Reply:
23398@table @samp
23399@item OK
23400for success
b8ff78ce 23401@item E @var{NN}
ee2d5c50
AC
23402for an error
23403@end table
23404
b8ff78ce
JB
23405@item H @var{c} @var{t}
23406@cindex @samp{H} packet
8e04817f 23407Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23408@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23409should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23410operations. The thread designator @var{t} may be @samp{-1}, meaning all
23411the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23412
23413Reply:
23414@table @samp
23415@item OK
23416for success
b8ff78ce 23417@item E @var{NN}
ee2d5c50
AC
23418for an error
23419@end table
c906108c 23420
8e04817f
AC
23421@c FIXME: JTC:
23422@c 'H': How restrictive (or permissive) is the thread model. If a
23423@c thread is selected and stopped, are other threads allowed
23424@c to continue to execute? As I mentioned above, I think the
23425@c semantics of each command when a thread is selected must be
23426@c described. For example:
23427@c
23428@c 'g': If the stub supports threads and a specific thread is
23429@c selected, returns the register block from that thread;
23430@c otherwise returns current registers.
23431@c
23432@c 'G' If the stub supports threads and a specific thread is
23433@c selected, sets the registers of the register block of
23434@c that thread; otherwise sets current registers.
c906108c 23435
b8ff78ce 23436@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23437@anchor{cycle step packet}
b8ff78ce
JB
23438@cindex @samp{i} packet
23439Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23440present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23441step starting at that address.
c906108c 23442
b8ff78ce
JB
23443@item I
23444@cindex @samp{I} packet
23445Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23446step packet}.
ee2d5c50 23447
b8ff78ce
JB
23448@item k
23449@cindex @samp{k} packet
23450Kill request.
c906108c 23451
ac282366 23452FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23453thread context has been selected (i.e.@: does 'k' kill only that
23454thread?)}.
c906108c 23455
b8ff78ce
JB
23456@item m @var{addr},@var{length}
23457@cindex @samp{m} packet
8e04817f 23458Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23459Note that @var{addr} may not be aligned to any particular boundary.
23460
23461The stub need not use any particular size or alignment when gathering
23462data from memory for the response; even if @var{addr} is word-aligned
23463and @var{length} is a multiple of the word size, the stub is free to
23464use byte accesses, or not. For this reason, this packet may not be
23465suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23466@cindex alignment of remote memory accesses
23467@cindex size of remote memory accesses
23468@cindex memory, alignment and size of remote accesses
c906108c 23469
ee2d5c50
AC
23470Reply:
23471@table @samp
23472@item @var{XX@dots{}}
599b237a 23473Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23474number. The reply may contain fewer bytes than requested if the
23475server was able to read only part of the region of memory.
23476@item E @var{NN}
ee2d5c50
AC
23477@var{NN} is errno
23478@end table
23479
b8ff78ce
JB
23480@item M @var{addr},@var{length}:@var{XX@dots{}}
23481@cindex @samp{M} packet
8e04817f 23482Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23483@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23484hexadecimal number.
ee2d5c50
AC
23485
23486Reply:
23487@table @samp
23488@item OK
23489for success
b8ff78ce 23490@item E @var{NN}
8e04817f
AC
23491for an error (this includes the case where only part of the data was
23492written).
ee2d5c50 23493@end table
c906108c 23494
b8ff78ce
JB
23495@item p @var{n}
23496@cindex @samp{p} packet
23497Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23498@xref{read registers packet}, for a description of how the returned
23499register value is encoded.
ee2d5c50
AC
23500
23501Reply:
23502@table @samp
2e868123
AC
23503@item @var{XX@dots{}}
23504the register's value
b8ff78ce 23505@item E @var{NN}
2e868123
AC
23506for an error
23507@item
23508Indicating an unrecognized @var{query}.
ee2d5c50
AC
23509@end table
23510
b8ff78ce 23511@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23512@anchor{write register packet}
b8ff78ce
JB
23513@cindex @samp{P} packet
23514Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23515number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23516digits for each byte in the register (target byte order).
c906108c 23517
ee2d5c50
AC
23518Reply:
23519@table @samp
23520@item OK
23521for success
b8ff78ce 23522@item E @var{NN}
ee2d5c50
AC
23523for an error
23524@end table
23525
5f3bebba
JB
23526@item q @var{name} @var{params}@dots{}
23527@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23528@cindex @samp{q} packet
b8ff78ce 23529@cindex @samp{Q} packet
5f3bebba
JB
23530General query (@samp{q}) and set (@samp{Q}). These packets are
23531described fully in @ref{General Query Packets}.
c906108c 23532
b8ff78ce
JB
23533@item r
23534@cindex @samp{r} packet
8e04817f 23535Reset the entire system.
c906108c 23536
b8ff78ce 23537Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23538
b8ff78ce
JB
23539@item R @var{XX}
23540@cindex @samp{R} packet
8e04817f
AC
23541Restart the program being debugged. @var{XX}, while needed, is ignored.
23542This packet is only available in extended mode.
ee2d5c50 23543
8e04817f 23544The @samp{R} packet has no reply.
ee2d5c50 23545
4f553f88 23546@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23547@cindex @samp{s} packet
23548Single step. @var{addr} is the address at which to resume. If
23549@var{addr} is omitted, resume at same address.
c906108c 23550
ee2d5c50
AC
23551Reply:
23552@xref{Stop Reply Packets}, for the reply specifications.
23553
4f553f88 23554@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23555@anchor{step with signal packet}
b8ff78ce
JB
23556@cindex @samp{S} packet
23557Step with signal. This is analogous to the @samp{C} packet, but
23558requests a single-step, rather than a normal resumption of execution.
c906108c 23559
ee2d5c50
AC
23560Reply:
23561@xref{Stop Reply Packets}, for the reply specifications.
23562
b8ff78ce
JB
23563@item t @var{addr}:@var{PP},@var{MM}
23564@cindex @samp{t} packet
8e04817f 23565Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23566@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23567@var{addr} must be at least 3 digits.
c906108c 23568
b8ff78ce
JB
23569@item T @var{XX}
23570@cindex @samp{T} packet
ee2d5c50 23571Find out if the thread XX is alive.
c906108c 23572
ee2d5c50
AC
23573Reply:
23574@table @samp
23575@item OK
23576thread is still alive
b8ff78ce 23577@item E @var{NN}
ee2d5c50
AC
23578thread is dead
23579@end table
23580
b8ff78ce
JB
23581@item v
23582Packets starting with @samp{v} are identified by a multi-letter name,
23583up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23584
b8ff78ce
JB
23585@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23586@cindex @samp{vCont} packet
23587Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23588If an action is specified with no @var{tid}, then it is applied to any
23589threads that don't have a specific action specified; if no default action is
23590specified then other threads should remain stopped. Specifying multiple
23591default actions is an error; specifying no actions is also an error.
23592Thread IDs are specified in hexadecimal. Currently supported actions are:
23593
b8ff78ce 23594@table @samp
86d30acc
DJ
23595@item c
23596Continue.
b8ff78ce 23597@item C @var{sig}
86d30acc
DJ
23598Continue with signal @var{sig}. @var{sig} should be two hex digits.
23599@item s
23600Step.
b8ff78ce 23601@item S @var{sig}
86d30acc
DJ
23602Step with signal @var{sig}. @var{sig} should be two hex digits.
23603@end table
23604
23605The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23606not supported in @samp{vCont}.
86d30acc
DJ
23607
23608Reply:
23609@xref{Stop Reply Packets}, for the reply specifications.
23610
b8ff78ce
JB
23611@item vCont?
23612@cindex @samp{vCont?} packet
d3e8051b 23613Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23614
23615Reply:
23616@table @samp
b8ff78ce
JB
23617@item vCont@r{[};@var{action}@dots{}@r{]}
23618The @samp{vCont} packet is supported. Each @var{action} is a supported
23619command in the @samp{vCont} packet.
86d30acc 23620@item
b8ff78ce 23621The @samp{vCont} packet is not supported.
86d30acc 23622@end table
ee2d5c50 23623
a6b151f1
DJ
23624@item vFile:@var{operation}:@var{parameter}@dots{}
23625@cindex @samp{vFile} packet
23626Perform a file operation on the target system. For details,
23627see @ref{Host I/O Packets}.
23628
68437a39
DJ
23629@item vFlashErase:@var{addr},@var{length}
23630@cindex @samp{vFlashErase} packet
23631Direct the stub to erase @var{length} bytes of flash starting at
23632@var{addr}. The region may enclose any number of flash blocks, but
23633its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23634flash block size appearing in the memory map (@pxref{Memory Map
23635Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23636together, and sends a @samp{vFlashDone} request after each group; the
23637stub is allowed to delay erase operation until the @samp{vFlashDone}
23638packet is received.
23639
23640Reply:
23641@table @samp
23642@item OK
23643for success
23644@item E @var{NN}
23645for an error
23646@end table
23647
23648@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23649@cindex @samp{vFlashWrite} packet
23650Direct the stub to write data to flash address @var{addr}. The data
23651is passed in binary form using the same encoding as for the @samp{X}
23652packet (@pxref{Binary Data}). The memory ranges specified by
23653@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23654not overlap, and must appear in order of increasing addresses
23655(although @samp{vFlashErase} packets for higher addresses may already
23656have been received; the ordering is guaranteed only between
23657@samp{vFlashWrite} packets). If a packet writes to an address that was
23658neither erased by a preceding @samp{vFlashErase} packet nor by some other
23659target-specific method, the results are unpredictable.
23660
23661
23662Reply:
23663@table @samp
23664@item OK
23665for success
23666@item E.memtype
23667for vFlashWrite addressing non-flash memory
23668@item E @var{NN}
23669for an error
23670@end table
23671
23672@item vFlashDone
23673@cindex @samp{vFlashDone} packet
23674Indicate to the stub that flash programming operation is finished.
23675The stub is permitted to delay or batch the effects of a group of
23676@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23677@samp{vFlashDone} packet is received. The contents of the affected
23678regions of flash memory are unpredictable until the @samp{vFlashDone}
23679request is completed.
23680
b8ff78ce 23681@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23682@anchor{X packet}
b8ff78ce
JB
23683@cindex @samp{X} packet
23684Write data to memory, where the data is transmitted in binary.
23685@var{addr} is address, @var{length} is number of bytes,
0876f84a 23686@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23687
ee2d5c50
AC
23688Reply:
23689@table @samp
23690@item OK
23691for success
b8ff78ce 23692@item E @var{NN}
ee2d5c50
AC
23693for an error
23694@end table
23695
b8ff78ce
JB
23696@item z @var{type},@var{addr},@var{length}
23697@itemx Z @var{type},@var{addr},@var{length}
2f870471 23698@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23699@cindex @samp{z} packet
23700@cindex @samp{Z} packets
23701Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23702watchpoint starting at address @var{address} and covering the next
23703@var{length} bytes.
ee2d5c50 23704
2f870471
AC
23705Each breakpoint and watchpoint packet @var{type} is documented
23706separately.
23707
512217c7
AC
23708@emph{Implementation notes: A remote target shall return an empty string
23709for an unrecognized breakpoint or watchpoint packet @var{type}. A
23710remote target shall support either both or neither of a given
b8ff78ce 23711@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23712avoid potential problems with duplicate packets, the operations should
23713be implemented in an idempotent way.}
23714
b8ff78ce
JB
23715@item z0,@var{addr},@var{length}
23716@itemx Z0,@var{addr},@var{length}
23717@cindex @samp{z0} packet
23718@cindex @samp{Z0} packet
23719Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23720@var{addr} of size @var{length}.
2f870471
AC
23721
23722A memory breakpoint is implemented by replacing the instruction at
23723@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23724@var{length} is used by targets that indicates the size of the
2f870471
AC
23725breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23726@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23727
2f870471
AC
23728@emph{Implementation note: It is possible for a target to copy or move
23729code that contains memory breakpoints (e.g., when implementing
23730overlays). The behavior of this packet, in the presence of such a
23731target, is not defined.}
c906108c 23732
ee2d5c50
AC
23733Reply:
23734@table @samp
2f870471
AC
23735@item OK
23736success
23737@item
23738not supported
b8ff78ce 23739@item E @var{NN}
ee2d5c50 23740for an error
2f870471
AC
23741@end table
23742
b8ff78ce
JB
23743@item z1,@var{addr},@var{length}
23744@itemx Z1,@var{addr},@var{length}
23745@cindex @samp{z1} packet
23746@cindex @samp{Z1} packet
23747Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23748address @var{addr} of size @var{length}.
2f870471
AC
23749
23750A hardware breakpoint is implemented using a mechanism that is not
23751dependant on being able to modify the target's memory.
23752
23753@emph{Implementation note: A hardware breakpoint is not affected by code
23754movement.}
23755
23756Reply:
23757@table @samp
ee2d5c50 23758@item OK
2f870471
AC
23759success
23760@item
23761not supported
b8ff78ce 23762@item E @var{NN}
2f870471
AC
23763for an error
23764@end table
23765
b8ff78ce
JB
23766@item z2,@var{addr},@var{length}
23767@itemx Z2,@var{addr},@var{length}
23768@cindex @samp{z2} packet
23769@cindex @samp{Z2} packet
23770Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23771
23772Reply:
23773@table @samp
23774@item OK
23775success
23776@item
23777not supported
b8ff78ce 23778@item E @var{NN}
2f870471
AC
23779for an error
23780@end table
23781
b8ff78ce
JB
23782@item z3,@var{addr},@var{length}
23783@itemx Z3,@var{addr},@var{length}
23784@cindex @samp{z3} packet
23785@cindex @samp{Z3} packet
23786Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23787
23788Reply:
23789@table @samp
23790@item OK
23791success
23792@item
23793not supported
b8ff78ce 23794@item E @var{NN}
2f870471
AC
23795for an error
23796@end table
23797
b8ff78ce
JB
23798@item z4,@var{addr},@var{length}
23799@itemx Z4,@var{addr},@var{length}
23800@cindex @samp{z4} packet
23801@cindex @samp{Z4} packet
23802Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23803
23804Reply:
23805@table @samp
23806@item OK
23807success
23808@item
23809not supported
b8ff78ce 23810@item E @var{NN}
2f870471 23811for an error
ee2d5c50
AC
23812@end table
23813
23814@end table
c906108c 23815
ee2d5c50
AC
23816@node Stop Reply Packets
23817@section Stop Reply Packets
23818@cindex stop reply packets
c906108c 23819
8e04817f
AC
23820The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23821receive any of the below as a reply. In the case of the @samp{C},
23822@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23823when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23824number} is defined by the header @file{include/gdb/signals.h} in the
23825@value{GDBN} source code.
c906108c 23826
b8ff78ce
JB
23827As in the description of request packets, we include spaces in the
23828reply templates for clarity; these are not part of the reply packet's
23829syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23830components.
c906108c 23831
b8ff78ce 23832@table @samp
ee2d5c50 23833
b8ff78ce 23834@item S @var{AA}
599b237a 23835The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23836number). This is equivalent to a @samp{T} response with no
23837@var{n}:@var{r} pairs.
c906108c 23838
b8ff78ce
JB
23839@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23840@cindex @samp{T} packet reply
599b237a 23841The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23842number). This is equivalent to an @samp{S} response, except that the
23843@samp{@var{n}:@var{r}} pairs can carry values of important registers
23844and other information directly in the stop reply packet, reducing
23845round-trip latency. Single-step and breakpoint traps are reported
23846this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
23847
23848@itemize @bullet
b8ff78ce 23849@item
599b237a 23850If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
23851corresponding @var{r} gives that register's value. @var{r} is a
23852series of bytes in target byte order, with each byte given by a
23853two-digit hex number.
cfa9d6d9 23854
b8ff78ce
JB
23855@item
23856If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23857hex.
cfa9d6d9 23858
b8ff78ce 23859@item
cfa9d6d9
DJ
23860If @var{n} is a recognized @dfn{stop reason}, it describes a more
23861specific event that stopped the target. The currently defined stop
23862reasons are listed below. @var{aa} should be @samp{05}, the trap
23863signal. At most one stop reason should be present.
23864
b8ff78ce
JB
23865@item
23866Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23867and go on to the next; this allows us to extend the protocol in the
23868future.
cfa9d6d9
DJ
23869@end itemize
23870
23871The currently defined stop reasons are:
23872
23873@table @samp
23874@item watch
23875@itemx rwatch
23876@itemx awatch
23877The packet indicates a watchpoint hit, and @var{r} is the data address, in
23878hex.
23879
23880@cindex shared library events, remote reply
23881@item library
23882The packet indicates that the loaded libraries have changed.
23883@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
23884list of loaded libraries. @var{r} is ignored.
23885@end table
ee2d5c50 23886
b8ff78ce 23887@item W @var{AA}
8e04817f 23888The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
23889applicable to certain targets.
23890
b8ff78ce 23891@item X @var{AA}
8e04817f 23892The process terminated with signal @var{AA}.
c906108c 23893
b8ff78ce
JB
23894@item O @var{XX}@dots{}
23895@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
23896written as the program's console output. This can happen at any time
23897while the program is running and the debugger should continue to wait
23898for @samp{W}, @samp{T}, etc.
0ce1b118 23899
b8ff78ce 23900@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
23901@var{call-id} is the identifier which says which host system call should
23902be called. This is just the name of the function. Translation into the
23903correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 23904@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
23905system calls.
23906
b8ff78ce
JB
23907@samp{@var{parameter}@dots{}} is a list of parameters as defined for
23908this very system call.
0ce1b118 23909
b8ff78ce
JB
23910The target replies with this packet when it expects @value{GDBN} to
23911call a host system call on behalf of the target. @value{GDBN} replies
23912with an appropriate @samp{F} packet and keeps up waiting for the next
23913reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
23914or @samp{s} action is expected to be continued. @xref{File-I/O Remote
23915Protocol Extension}, for more details.
0ce1b118 23916
ee2d5c50
AC
23917@end table
23918
23919@node General Query Packets
23920@section General Query Packets
9c16f35a 23921@cindex remote query requests
c906108c 23922
5f3bebba
JB
23923Packets starting with @samp{q} are @dfn{general query packets};
23924packets starting with @samp{Q} are @dfn{general set packets}. General
23925query and set packets are a semi-unified form for retrieving and
23926sending information to and from the stub.
23927
23928The initial letter of a query or set packet is followed by a name
23929indicating what sort of thing the packet applies to. For example,
23930@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
23931definitions with the stub. These packet names follow some
23932conventions:
23933
23934@itemize @bullet
23935@item
23936The name must not contain commas, colons or semicolons.
23937@item
23938Most @value{GDBN} query and set packets have a leading upper case
23939letter.
23940@item
23941The names of custom vendor packets should use a company prefix, in
23942lower case, followed by a period. For example, packets designed at
23943the Acme Corporation might begin with @samp{qacme.foo} (for querying
23944foos) or @samp{Qacme.bar} (for setting bars).
23945@end itemize
23946
aa56d27a
JB
23947The name of a query or set packet should be separated from any
23948parameters by a @samp{:}; the parameters themselves should be
23949separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
23950full packet name, and check for a separator or the end of the packet,
23951in case two packet names share a common prefix. New packets should not begin
23952with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
23953packets predate these conventions, and have arguments without any terminator
23954for the packet name; we suspect they are in widespread use in places that
23955are difficult to upgrade. The @samp{qC} packet has no arguments, but some
23956existing stubs (e.g.@: RedBoot) are known to not check for the end of the
23957packet.}.
c906108c 23958
b8ff78ce
JB
23959Like the descriptions of the other packets, each description here
23960has a template showing the packet's overall syntax, followed by an
23961explanation of the packet's meaning. We include spaces in some of the
23962templates for clarity; these are not part of the packet's syntax. No
23963@value{GDBN} packet uses spaces to separate its components.
23964
5f3bebba
JB
23965Here are the currently defined query and set packets:
23966
b8ff78ce 23967@table @samp
c906108c 23968
b8ff78ce 23969@item qC
9c16f35a 23970@cindex current thread, remote request
b8ff78ce 23971@cindex @samp{qC} packet
ee2d5c50
AC
23972Return the current thread id.
23973
23974Reply:
23975@table @samp
b8ff78ce 23976@item QC @var{pid}
599b237a 23977Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 23978@item @r{(anything else)}
ee2d5c50
AC
23979Any other reply implies the old pid.
23980@end table
23981
b8ff78ce 23982@item qCRC:@var{addr},@var{length}
ff2587ec 23983@cindex CRC of memory block, remote request
b8ff78ce
JB
23984@cindex @samp{qCRC} packet
23985Compute the CRC checksum of a block of memory.
ff2587ec
WZ
23986Reply:
23987@table @samp
b8ff78ce 23988@item E @var{NN}
ff2587ec 23989An error (such as memory fault)
b8ff78ce
JB
23990@item C @var{crc32}
23991The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
23992@end table
23993
b8ff78ce
JB
23994@item qfThreadInfo
23995@itemx qsThreadInfo
9c16f35a 23996@cindex list active threads, remote request
b8ff78ce
JB
23997@cindex @samp{qfThreadInfo} packet
23998@cindex @samp{qsThreadInfo} packet
23999Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24000may be too many active threads to fit into one reply packet, this query
24001works iteratively: it may require more than one query/reply sequence to
24002obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24003be the @samp{qfThreadInfo} query; subsequent queries in the
24004sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24005
b8ff78ce 24006NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24007
24008Reply:
24009@table @samp
b8ff78ce 24010@item m @var{id}
ee2d5c50 24011A single thread id
b8ff78ce 24012@item m @var{id},@var{id}@dots{}
ee2d5c50 24013a comma-separated list of thread ids
b8ff78ce
JB
24014@item l
24015(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24016@end table
24017
24018In response to each query, the target will reply with a list of one or
e1aac25b
JB
24019more thread ids, in big-endian unsigned hex, separated by commas.
24020@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24021ids (using the @samp{qs} form of the query), until the target responds
24022with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24023
b8ff78ce 24024@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24025@cindex get thread-local storage address, remote request
b8ff78ce 24026@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24027Fetch the address associated with thread local storage specified
24028by @var{thread-id}, @var{offset}, and @var{lm}.
24029
24030@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24031thread for which to fetch the TLS address.
24032
24033@var{offset} is the (big endian, hex encoded) offset associated with the
24034thread local variable. (This offset is obtained from the debug
24035information associated with the variable.)
24036
db2e3e2e 24037@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24038the load module associated with the thread local storage. For example,
24039a @sc{gnu}/Linux system will pass the link map address of the shared
24040object associated with the thread local storage under consideration.
24041Other operating environments may choose to represent the load module
24042differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24043
24044Reply:
b8ff78ce
JB
24045@table @samp
24046@item @var{XX}@dots{}
ff2587ec
WZ
24047Hex encoded (big endian) bytes representing the address of the thread
24048local storage requested.
24049
b8ff78ce
JB
24050@item E @var{nn}
24051An error occurred. @var{nn} are hex digits.
ff2587ec 24052
b8ff78ce
JB
24053@item
24054An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24055@end table
24056
b8ff78ce 24057@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24058Obtain thread information from RTOS. Where: @var{startflag} (one hex
24059digit) is one to indicate the first query and zero to indicate a
24060subsequent query; @var{threadcount} (two hex digits) is the maximum
24061number of threads the response packet can contain; and @var{nextthread}
24062(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24063returned in the response as @var{argthread}.
ee2d5c50 24064
b8ff78ce 24065Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24066
24067Reply:
24068@table @samp
b8ff78ce 24069@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24070Where: @var{count} (two hex digits) is the number of threads being
24071returned; @var{done} (one hex digit) is zero to indicate more threads
24072and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24073digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24074is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24075digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24076@end table
c906108c 24077
b8ff78ce 24078@item qOffsets
9c16f35a 24079@cindex section offsets, remote request
b8ff78ce 24080@cindex @samp{qOffsets} packet
31d99776
DJ
24081Get section offsets that the target used when relocating the downloaded
24082image.
c906108c 24083
ee2d5c50
AC
24084Reply:
24085@table @samp
31d99776
DJ
24086@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24087Relocate the @code{Text} section by @var{xxx} from its original address.
24088Relocate the @code{Data} section by @var{yyy} from its original address.
24089If the object file format provides segment information (e.g.@: @sc{elf}
24090@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24091segments by the supplied offsets.
24092
24093@emph{Note: while a @code{Bss} offset may be included in the response,
24094@value{GDBN} ignores this and instead applies the @code{Data} offset
24095to the @code{Bss} section.}
24096
24097@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24098Relocate the first segment of the object file, which conventionally
24099contains program code, to a starting address of @var{xxx}. If
24100@samp{DataSeg} is specified, relocate the second segment, which
24101conventionally contains modifiable data, to a starting address of
24102@var{yyy}. @value{GDBN} will report an error if the object file
24103does not contain segment information, or does not contain at least
24104as many segments as mentioned in the reply. Extra segments are
24105kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24106@end table
24107
b8ff78ce 24108@item qP @var{mode} @var{threadid}
9c16f35a 24109@cindex thread information, remote request
b8ff78ce 24110@cindex @samp{qP} packet
8e04817f
AC
24111Returns information on @var{threadid}. Where: @var{mode} is a hex
24112encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24113
aa56d27a
JB
24114Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24115(see below).
24116
b8ff78ce 24117Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24118
89be2091
DJ
24119@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24120@cindex pass signals to inferior, remote request
24121@cindex @samp{QPassSignals} packet
23181151 24122@anchor{QPassSignals}
89be2091
DJ
24123Each listed @var{signal} should be passed directly to the inferior process.
24124Signals are numbered identically to continue packets and stop replies
24125(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24126strictly greater than the previous item. These signals do not need to stop
24127the inferior, or be reported to @value{GDBN}. All other signals should be
24128reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24129combine; any earlier @samp{QPassSignals} list is completely replaced by the
24130new list. This packet improves performance when using @samp{handle
24131@var{signal} nostop noprint pass}.
24132
24133Reply:
24134@table @samp
24135@item OK
24136The request succeeded.
24137
24138@item E @var{nn}
24139An error occurred. @var{nn} are hex digits.
24140
24141@item
24142An empty reply indicates that @samp{QPassSignals} is not supported by
24143the stub.
24144@end table
24145
24146Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24147command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24148This packet is not probed by default; the remote stub must request it,
24149by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24150
b8ff78ce 24151@item qRcmd,@var{command}
ff2587ec 24152@cindex execute remote command, remote request
b8ff78ce 24153@cindex @samp{qRcmd} packet
ff2587ec 24154@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24155execution. Invalid commands should be reported using the output
24156string. Before the final result packet, the target may also respond
24157with a number of intermediate @samp{O@var{output}} console output
24158packets. @emph{Implementors should note that providing access to a
24159stubs's interpreter may have security implications}.
fa93a9d8 24160
ff2587ec
WZ
24161Reply:
24162@table @samp
24163@item OK
24164A command response with no output.
24165@item @var{OUTPUT}
24166A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24167@item E @var{NN}
ff2587ec 24168Indicate a badly formed request.
b8ff78ce
JB
24169@item
24170An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24171@end table
fa93a9d8 24172
aa56d27a
JB
24173(Note that the @code{qRcmd} packet's name is separated from the
24174command by a @samp{,}, not a @samp{:}, contrary to the naming
24175conventions above. Please don't use this packet as a model for new
24176packets.)
24177
be2a5f71
DJ
24178@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24179@cindex supported packets, remote query
24180@cindex features of the remote protocol
24181@cindex @samp{qSupported} packet
0876f84a 24182@anchor{qSupported}
be2a5f71
DJ
24183Tell the remote stub about features supported by @value{GDBN}, and
24184query the stub for features it supports. This packet allows
24185@value{GDBN} and the remote stub to take advantage of each others'
24186features. @samp{qSupported} also consolidates multiple feature probes
24187at startup, to improve @value{GDBN} performance---a single larger
24188packet performs better than multiple smaller probe packets on
24189high-latency links. Some features may enable behavior which must not
24190be on by default, e.g.@: because it would confuse older clients or
24191stubs. Other features may describe packets which could be
24192automatically probed for, but are not. These features must be
24193reported before @value{GDBN} will use them. This ``default
24194unsupported'' behavior is not appropriate for all packets, but it
24195helps to keep the initial connection time under control with new
24196versions of @value{GDBN} which support increasing numbers of packets.
24197
24198Reply:
24199@table @samp
24200@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24201The stub supports or does not support each returned @var{stubfeature},
24202depending on the form of each @var{stubfeature} (see below for the
24203possible forms).
24204@item
24205An empty reply indicates that @samp{qSupported} is not recognized,
24206or that no features needed to be reported to @value{GDBN}.
24207@end table
24208
24209The allowed forms for each feature (either a @var{gdbfeature} in the
24210@samp{qSupported} packet, or a @var{stubfeature} in the response)
24211are:
24212
24213@table @samp
24214@item @var{name}=@var{value}
24215The remote protocol feature @var{name} is supported, and associated
24216with the specified @var{value}. The format of @var{value} depends
24217on the feature, but it must not include a semicolon.
24218@item @var{name}+
24219The remote protocol feature @var{name} is supported, and does not
24220need an associated value.
24221@item @var{name}-
24222The remote protocol feature @var{name} is not supported.
24223@item @var{name}?
24224The remote protocol feature @var{name} may be supported, and
24225@value{GDBN} should auto-detect support in some other way when it is
24226needed. This form will not be used for @var{gdbfeature} notifications,
24227but may be used for @var{stubfeature} responses.
24228@end table
24229
24230Whenever the stub receives a @samp{qSupported} request, the
24231supplied set of @value{GDBN} features should override any previous
24232request. This allows @value{GDBN} to put the stub in a known
24233state, even if the stub had previously been communicating with
24234a different version of @value{GDBN}.
24235
24236No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24237are defined yet. Stubs should ignore any unknown values for
24238@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24239packet supports receiving packets of unlimited length (earlier
24240versions of @value{GDBN} may reject overly long responses). Values
24241for @var{gdbfeature} may be defined in the future to let the stub take
24242advantage of new features in @value{GDBN}, e.g.@: incompatible
24243improvements in the remote protocol---support for unlimited length
24244responses would be a @var{gdbfeature} example, if it were not implied by
24245the @samp{qSupported} query. The stub's reply should be independent
24246of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24247describes all the features it supports, and then the stub replies with
24248all the features it supports.
24249
24250Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24251responses, as long as each response uses one of the standard forms.
24252
24253Some features are flags. A stub which supports a flag feature
24254should respond with a @samp{+} form response. Other features
24255require values, and the stub should respond with an @samp{=}
24256form response.
24257
24258Each feature has a default value, which @value{GDBN} will use if
24259@samp{qSupported} is not available or if the feature is not mentioned
24260in the @samp{qSupported} response. The default values are fixed; a
24261stub is free to omit any feature responses that match the defaults.
24262
24263Not all features can be probed, but for those which can, the probing
24264mechanism is useful: in some cases, a stub's internal
24265architecture may not allow the protocol layer to know some information
24266about the underlying target in advance. This is especially common in
24267stubs which may be configured for multiple targets.
24268
24269These are the currently defined stub features and their properties:
24270
cfa9d6d9 24271@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24272@c NOTE: The first row should be @headitem, but we do not yet require
24273@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24274@item Feature Name
be2a5f71
DJ
24275@tab Value Required
24276@tab Default
24277@tab Probe Allowed
24278
24279@item @samp{PacketSize}
24280@tab Yes
24281@tab @samp{-}
24282@tab No
24283
0876f84a
DJ
24284@item @samp{qXfer:auxv:read}
24285@tab No
24286@tab @samp{-}
24287@tab Yes
24288
23181151
DJ
24289@item @samp{qXfer:features:read}
24290@tab No
24291@tab @samp{-}
24292@tab Yes
24293
cfa9d6d9
DJ
24294@item @samp{qXfer:libraries:read}
24295@tab No
24296@tab @samp{-}
24297@tab Yes
24298
68437a39
DJ
24299@item @samp{qXfer:memory-map:read}
24300@tab No
24301@tab @samp{-}
24302@tab Yes
24303
0e7f50da
UW
24304@item @samp{qXfer:spu:read}
24305@tab No
24306@tab @samp{-}
24307@tab Yes
24308
24309@item @samp{qXfer:spu:write}
24310@tab No
24311@tab @samp{-}
24312@tab Yes
24313
89be2091
DJ
24314@item @samp{QPassSignals}
24315@tab No
24316@tab @samp{-}
24317@tab Yes
24318
be2a5f71
DJ
24319@end multitable
24320
24321These are the currently defined stub features, in more detail:
24322
24323@table @samp
24324@cindex packet size, remote protocol
24325@item PacketSize=@var{bytes}
24326The remote stub can accept packets up to at least @var{bytes} in
24327length. @value{GDBN} will send packets up to this size for bulk
24328transfers, and will never send larger packets. This is a limit on the
24329data characters in the packet, including the frame and checksum.
24330There is no trailing NUL byte in a remote protocol packet; if the stub
24331stores packets in a NUL-terminated format, it should allow an extra
24332byte in its buffer for the NUL. If this stub feature is not supported,
24333@value{GDBN} guesses based on the size of the @samp{g} packet response.
24334
0876f84a
DJ
24335@item qXfer:auxv:read
24336The remote stub understands the @samp{qXfer:auxv:read} packet
24337(@pxref{qXfer auxiliary vector read}).
24338
23181151
DJ
24339@item qXfer:features:read
24340The remote stub understands the @samp{qXfer:features:read} packet
24341(@pxref{qXfer target description read}).
24342
cfa9d6d9
DJ
24343@item qXfer:libraries:read
24344The remote stub understands the @samp{qXfer:libraries:read} packet
24345(@pxref{qXfer library list read}).
24346
23181151
DJ
24347@item qXfer:memory-map:read
24348The remote stub understands the @samp{qXfer:memory-map:read} packet
24349(@pxref{qXfer memory map read}).
24350
0e7f50da
UW
24351@item qXfer:spu:read
24352The remote stub understands the @samp{qXfer:spu:read} packet
24353(@pxref{qXfer spu read}).
24354
24355@item qXfer:spu:write
24356The remote stub understands the @samp{qXfer:spu:write} packet
24357(@pxref{qXfer spu write}).
24358
23181151
DJ
24359@item QPassSignals
24360The remote stub understands the @samp{QPassSignals} packet
24361(@pxref{QPassSignals}).
24362
be2a5f71
DJ
24363@end table
24364
b8ff78ce 24365@item qSymbol::
ff2587ec 24366@cindex symbol lookup, remote request
b8ff78ce 24367@cindex @samp{qSymbol} packet
ff2587ec
WZ
24368Notify the target that @value{GDBN} is prepared to serve symbol lookup
24369requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24370
24371Reply:
ff2587ec 24372@table @samp
b8ff78ce 24373@item OK
ff2587ec 24374The target does not need to look up any (more) symbols.
b8ff78ce 24375@item qSymbol:@var{sym_name}
ff2587ec
WZ
24376The target requests the value of symbol @var{sym_name} (hex encoded).
24377@value{GDBN} may provide the value by using the
b8ff78ce
JB
24378@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24379below.
ff2587ec 24380@end table
83761cbd 24381
b8ff78ce 24382@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24383Set the value of @var{sym_name} to @var{sym_value}.
24384
24385@var{sym_name} (hex encoded) is the name of a symbol whose value the
24386target has previously requested.
24387
24388@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24389@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24390will be empty.
24391
24392Reply:
24393@table @samp
b8ff78ce 24394@item OK
ff2587ec 24395The target does not need to look up any (more) symbols.
b8ff78ce 24396@item qSymbol:@var{sym_name}
ff2587ec
WZ
24397The target requests the value of a new symbol @var{sym_name} (hex
24398encoded). @value{GDBN} will continue to supply the values of symbols
24399(if available), until the target ceases to request them.
fa93a9d8 24400@end table
0abb7bc7 24401
9d29849a
JB
24402@item QTDP
24403@itemx QTFrame
24404@xref{Tracepoint Packets}.
24405
b8ff78ce 24406@item qThreadExtraInfo,@var{id}
ff2587ec 24407@cindex thread attributes info, remote request
b8ff78ce
JB
24408@cindex @samp{qThreadExtraInfo} packet
24409Obtain a printable string description of a thread's attributes from
24410the target OS. @var{id} is a thread-id in big-endian hex. This
24411string may contain anything that the target OS thinks is interesting
24412for @value{GDBN} to tell the user about the thread. The string is
24413displayed in @value{GDBN}'s @code{info threads} display. Some
24414examples of possible thread extra info strings are @samp{Runnable}, or
24415@samp{Blocked on Mutex}.
ff2587ec
WZ
24416
24417Reply:
24418@table @samp
b8ff78ce
JB
24419@item @var{XX}@dots{}
24420Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24421comprising the printable string containing the extra information about
24422the thread's attributes.
ff2587ec 24423@end table
814e32d7 24424
aa56d27a
JB
24425(Note that the @code{qThreadExtraInfo} packet's name is separated from
24426the command by a @samp{,}, not a @samp{:}, contrary to the naming
24427conventions above. Please don't use this packet as a model for new
24428packets.)
24429
9d29849a
JB
24430@item QTStart
24431@itemx QTStop
24432@itemx QTinit
24433@itemx QTro
24434@itemx qTStatus
24435@xref{Tracepoint Packets}.
24436
0876f84a
DJ
24437@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24438@cindex read special object, remote request
24439@cindex @samp{qXfer} packet
68437a39 24440@anchor{qXfer read}
0876f84a
DJ
24441Read uninterpreted bytes from the target's special data area
24442identified by the keyword @var{object}. Request @var{length} bytes
24443starting at @var{offset} bytes into the data. The content and
0e7f50da 24444encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24445additional details about what data to access.
24446
24447Here are the specific requests of this form defined so far. All
24448@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24449formats, listed below.
24450
24451@table @samp
24452@item qXfer:auxv:read::@var{offset},@var{length}
24453@anchor{qXfer auxiliary vector read}
24454Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24455auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24456
24457This packet is not probed by default; the remote stub must request it,
89be2091 24458by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24459
23181151
DJ
24460@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24461@anchor{qXfer target description read}
24462Access the @dfn{target description}. @xref{Target Descriptions}. The
24463annex specifies which XML document to access. The main description is
24464always loaded from the @samp{target.xml} annex.
24465
24466This packet is not probed by default; the remote stub must request it,
24467by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24468
cfa9d6d9
DJ
24469@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24470@anchor{qXfer library list read}
24471Access the target's list of loaded libraries. @xref{Library List Format}.
24472The annex part of the generic @samp{qXfer} packet must be empty
24473(@pxref{qXfer read}).
24474
24475Targets which maintain a list of libraries in the program's memory do
24476not need to implement this packet; it is designed for platforms where
24477the operating system manages the list of loaded libraries.
24478
24479This packet is not probed by default; the remote stub must request it,
24480by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24481
68437a39
DJ
24482@item qXfer:memory-map:read::@var{offset},@var{length}
24483@anchor{qXfer memory map read}
79a6e687 24484Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24485annex part of the generic @samp{qXfer} packet must be empty
24486(@pxref{qXfer read}).
24487
0e7f50da
UW
24488This packet is not probed by default; the remote stub must request it,
24489by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24490
24491@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24492@anchor{qXfer spu read}
24493Read contents of an @code{spufs} file on the target system. The
24494annex specifies which file to read; it must be of the form
24495@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24496in the target process, and @var{name} identifes the @code{spufs} file
24497in that context to be accessed.
24498
68437a39
DJ
24499This packet is not probed by default; the remote stub must request it,
24500by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24501@end table
24502
0876f84a
DJ
24503Reply:
24504@table @samp
24505@item m @var{data}
24506Data @var{data} (@pxref{Binary Data}) has been read from the
24507target. There may be more data at a higher address (although
24508it is permitted to return @samp{m} even for the last valid
24509block of data, as long as at least one byte of data was read).
24510@var{data} may have fewer bytes than the @var{length} in the
24511request.
24512
24513@item l @var{data}
24514Data @var{data} (@pxref{Binary Data}) has been read from the target.
24515There is no more data to be read. @var{data} may have fewer bytes
24516than the @var{length} in the request.
24517
24518@item l
24519The @var{offset} in the request is at the end of the data.
24520There is no more data to be read.
24521
24522@item E00
24523The request was malformed, or @var{annex} was invalid.
24524
24525@item E @var{nn}
24526The offset was invalid, or there was an error encountered reading the data.
24527@var{nn} is a hex-encoded @code{errno} value.
24528
24529@item
24530An empty reply indicates the @var{object} string was not recognized by
24531the stub, or that the object does not support reading.
24532@end table
24533
24534@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24535@cindex write data into object, remote request
24536Write uninterpreted bytes into the target's special data area
24537identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24538into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24539(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24540is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24541to access.
24542
0e7f50da
UW
24543Here are the specific requests of this form defined so far. All
24544@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24545formats, listed below.
24546
24547@table @samp
24548@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24549@anchor{qXfer spu write}
24550Write @var{data} to an @code{spufs} file on the target system. The
24551annex specifies which file to write; it must be of the form
24552@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24553in the target process, and @var{name} identifes the @code{spufs} file
24554in that context to be accessed.
24555
24556This packet is not probed by default; the remote stub must request it,
24557by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24558@end table
0876f84a
DJ
24559
24560Reply:
24561@table @samp
24562@item @var{nn}
24563@var{nn} (hex encoded) is the number of bytes written.
24564This may be fewer bytes than supplied in the request.
24565
24566@item E00
24567The request was malformed, or @var{annex} was invalid.
24568
24569@item E @var{nn}
24570The offset was invalid, or there was an error encountered writing the data.
24571@var{nn} is a hex-encoded @code{errno} value.
24572
24573@item
24574An empty reply indicates the @var{object} string was not
24575recognized by the stub, or that the object does not support writing.
24576@end table
24577
24578@item qXfer:@var{object}:@var{operation}:@dots{}
24579Requests of this form may be added in the future. When a stub does
24580not recognize the @var{object} keyword, or its support for
24581@var{object} does not recognize the @var{operation} keyword, the stub
24582must respond with an empty packet.
24583
ee2d5c50
AC
24584@end table
24585
24586@node Register Packet Format
24587@section Register Packet Format
eb12ee30 24588
b8ff78ce 24589The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24590In the below, some thirty-two bit registers are transferred as
24591sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24592to fill the space allocated. Register bytes are transferred in target
24593byte order. The two nibbles within a register byte are transferred
ee2d5c50 24594most-significant - least-significant.
eb12ee30 24595
ee2d5c50 24596@table @r
eb12ee30 24597
8e04817f 24598@item MIPS32
ee2d5c50 24599
599b237a 24600All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2460132 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24602registers; fsr; fir; fp.
eb12ee30 24603
8e04817f 24604@item MIPS64
ee2d5c50 24605
599b237a 24606All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24607thirty-two bit registers such as @code{sr}). The ordering is the same
24608as @code{MIPS32}.
eb12ee30 24609
ee2d5c50
AC
24610@end table
24611
9d29849a
JB
24612@node Tracepoint Packets
24613@section Tracepoint Packets
24614@cindex tracepoint packets
24615@cindex packets, tracepoint
24616
24617Here we describe the packets @value{GDBN} uses to implement
24618tracepoints (@pxref{Tracepoints}).
24619
24620@table @samp
24621
24622@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24623Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24624is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24625the tracepoint is disabled. @var{step} is the tracepoint's step
24626count, and @var{pass} is its pass count. If the trailing @samp{-} is
24627present, further @samp{QTDP} packets will follow to specify this
24628tracepoint's actions.
24629
24630Replies:
24631@table @samp
24632@item OK
24633The packet was understood and carried out.
24634@item
24635The packet was not recognized.
24636@end table
24637
24638@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24639Define actions to be taken when a tracepoint is hit. @var{n} and
24640@var{addr} must be the same as in the initial @samp{QTDP} packet for
24641this tracepoint. This packet may only be sent immediately after
24642another @samp{QTDP} packet that ended with a @samp{-}. If the
24643trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24644specifying more actions for this tracepoint.
24645
24646In the series of action packets for a given tracepoint, at most one
24647can have an @samp{S} before its first @var{action}. If such a packet
24648is sent, it and the following packets define ``while-stepping''
24649actions. Any prior packets define ordinary actions --- that is, those
24650taken when the tracepoint is first hit. If no action packet has an
24651@samp{S}, then all the packets in the series specify ordinary
24652tracepoint actions.
24653
24654The @samp{@var{action}@dots{}} portion of the packet is a series of
24655actions, concatenated without separators. Each action has one of the
24656following forms:
24657
24658@table @samp
24659
24660@item R @var{mask}
24661Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24662a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24663@var{i} should be collected. (The least significant bit is numbered
24664zero.) Note that @var{mask} may be any number of digits long; it may
24665not fit in a 32-bit word.
24666
24667@item M @var{basereg},@var{offset},@var{len}
24668Collect @var{len} bytes of memory starting at the address in register
24669number @var{basereg}, plus @var{offset}. If @var{basereg} is
24670@samp{-1}, then the range has a fixed address: @var{offset} is the
24671address of the lowest byte to collect. The @var{basereg},
599b237a 24672@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24673values (the @samp{-1} value for @var{basereg} is a special case).
24674
24675@item X @var{len},@var{expr}
24676Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24677it directs. @var{expr} is an agent expression, as described in
24678@ref{Agent Expressions}. Each byte of the expression is encoded as a
24679two-digit hex number in the packet; @var{len} is the number of bytes
24680in the expression (and thus one-half the number of hex digits in the
24681packet).
24682
24683@end table
24684
24685Any number of actions may be packed together in a single @samp{QTDP}
24686packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24687length (400 bytes, for many stubs). There may be only one @samp{R}
24688action per tracepoint, and it must precede any @samp{M} or @samp{X}
24689actions. Any registers referred to by @samp{M} and @samp{X} actions
24690must be collected by a preceding @samp{R} action. (The
24691``while-stepping'' actions are treated as if they were attached to a
24692separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24693
24694Replies:
24695@table @samp
24696@item OK
24697The packet was understood and carried out.
24698@item
24699The packet was not recognized.
24700@end table
24701
24702@item QTFrame:@var{n}
24703Select the @var{n}'th tracepoint frame from the buffer, and use the
24704register and memory contents recorded there to answer subsequent
24705request packets from @value{GDBN}.
24706
24707A successful reply from the stub indicates that the stub has found the
24708requested frame. The response is a series of parts, concatenated
24709without separators, describing the frame we selected. Each part has
24710one of the following forms:
24711
24712@table @samp
24713@item F @var{f}
24714The selected frame is number @var{n} in the trace frame buffer;
599b237a 24715@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24716was no frame matching the criteria in the request packet.
24717
24718@item T @var{t}
24719The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24720@var{t} is a hexadecimal number.
9d29849a
JB
24721
24722@end table
24723
24724@item QTFrame:pc:@var{addr}
24725Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24726currently selected frame whose PC is @var{addr};
599b237a 24727@var{addr} is a hexadecimal number.
9d29849a
JB
24728
24729@item QTFrame:tdp:@var{t}
24730Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24731currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24732is a hexadecimal number.
9d29849a
JB
24733
24734@item QTFrame:range:@var{start}:@var{end}
24735Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24736currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24737and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24738numbers.
24739
24740@item QTFrame:outside:@var{start}:@var{end}
24741Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24742frame @emph{outside} the given range of addresses.
24743
24744@item QTStart
24745Begin the tracepoint experiment. Begin collecting data from tracepoint
24746hits in the trace frame buffer.
24747
24748@item QTStop
24749End the tracepoint experiment. Stop collecting trace frames.
24750
24751@item QTinit
24752Clear the table of tracepoints, and empty the trace frame buffer.
24753
24754@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24755Establish the given ranges of memory as ``transparent''. The stub
24756will answer requests for these ranges from memory's current contents,
24757if they were not collected as part of the tracepoint hit.
24758
24759@value{GDBN} uses this to mark read-only regions of memory, like those
24760containing program code. Since these areas never change, they should
24761still have the same contents they did when the tracepoint was hit, so
24762there's no reason for the stub to refuse to provide their contents.
24763
24764@item qTStatus
24765Ask the stub if there is a trace experiment running right now.
24766
24767Replies:
24768@table @samp
24769@item T0
24770There is no trace experiment running.
24771@item T1
24772There is a trace experiment running.
24773@end table
24774
24775@end table
24776
24777
a6b151f1
DJ
24778@node Host I/O Packets
24779@section Host I/O Packets
24780@cindex Host I/O, remote protocol
24781@cindex file transfer, remote protocol
24782
24783The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24784operations on the far side of a remote link. For example, Host I/O is
24785used to upload and download files to a remote target with its own
24786filesystem. Host I/O uses the same constant values and data structure
24787layout as the target-initiated File-I/O protocol. However, the
24788Host I/O packets are structured differently. The target-initiated
24789protocol relies on target memory to store parameters and buffers.
24790Host I/O requests are initiated by @value{GDBN}, and the
24791target's memory is not involved. @xref{File-I/O Remote Protocol
24792Extension}, for more details on the target-initiated protocol.
24793
24794The Host I/O request packets all encode a single operation along with
24795its arguments. They have this format:
24796
24797@table @samp
24798
24799@item vFile:@var{operation}: @var{parameter}@dots{}
24800@var{operation} is the name of the particular request; the target
24801should compare the entire packet name up to the second colon when checking
24802for a supported operation. The format of @var{parameter} depends on
24803the operation. Numbers are always passed in hexadecimal. Negative
24804numbers have an explicit minus sign (i.e.@: two's complement is not
24805used). Strings (e.g.@: filenames) are encoded as a series of
24806hexadecimal bytes. The last argument to a system call may be a
24807buffer of escaped binary data (@pxref{Binary Data}).
24808
24809@end table
24810
24811The valid responses to Host I/O packets are:
24812
24813@table @samp
24814
24815@item F @var{result} [, @var{errno}] [; @var{attachment}]
24816@var{result} is the integer value returned by this operation, usually
24817non-negative for success and -1 for errors. If an error has occured,
24818@var{errno} will be included in the result. @var{errno} will have a
24819value defined by the File-I/O protocol (@pxref{Errno Values}). For
24820operations which return data, @var{attachment} supplies the data as a
24821binary buffer. Binary buffers in response packets are escaped in the
24822normal way (@pxref{Binary Data}). See the individual packet
24823documentation for the interpretation of @var{result} and
24824@var{attachment}.
24825
24826@item
24827An empty response indicates that this operation is not recognized.
24828
24829@end table
24830
24831These are the supported Host I/O operations:
24832
24833@table @samp
24834@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
24835Open a file at @var{pathname} and return a file descriptor for it, or
24836return -1 if an error occurs. @var{pathname} is a string,
24837@var{flags} is an integer indicating a mask of open flags
24838(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
24839of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 24840@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
24841
24842@item vFile:close: @var{fd}
24843Close the open file corresponding to @var{fd} and return 0, or
24844-1 if an error occurs.
24845
24846@item vFile:pread: @var{fd}, @var{count}, @var{offset}
24847Read data from the open file corresponding to @var{fd}. Up to
24848@var{count} bytes will be read from the file, starting at @var{offset}
24849relative to the start of the file. The target may read fewer bytes;
24850common reasons include packet size limits and an end-of-file
24851condition. The number of bytes read is returned. Zero should only be
24852returned for a successful read at the end of the file, or if
24853@var{count} was zero.
24854
24855The data read should be returned as a binary attachment on success.
24856If zero bytes were read, the response should include an empty binary
24857attachment (i.e.@: a trailing semicolon). The return value is the
24858number of target bytes read; the binary attachment may be longer if
24859some characters were escaped.
24860
24861@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
24862Write @var{data} (a binary buffer) to the open file corresponding
24863to @var{fd}. Start the write at @var{offset} from the start of the
24864file. Unlike many @code{write} system calls, there is no
24865separate @var{count} argument; the length of @var{data} in the
24866packet is used. @samp{vFile:write} returns the number of bytes written,
24867which may be shorter than the length of @var{data}, or -1 if an
24868error occurred.
24869
24870@item vFile:unlink: @var{pathname}
24871Delete the file at @var{pathname} on the target. Return 0,
24872or -1 if an error occurs. @var{pathname} is a string.
24873
24874@end table
24875
9a6253be
KB
24876@node Interrupts
24877@section Interrupts
24878@cindex interrupts (remote protocol)
24879
24880When a program on the remote target is running, @value{GDBN} may
24881attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
24882control of which is specified via @value{GDBN}'s @samp{remotebreak}
24883setting (@pxref{set remotebreak}).
24884
24885The precise meaning of @code{BREAK} is defined by the transport
24886mechanism and may, in fact, be undefined. @value{GDBN} does
24887not currently define a @code{BREAK} mechanism for any of the network
24888interfaces.
24889
24890@samp{Ctrl-C}, on the other hand, is defined and implemented for all
24891transport mechanisms. It is represented by sending the single byte
24892@code{0x03} without any of the usual packet overhead described in
24893the Overview section (@pxref{Overview}). When a @code{0x03} byte is
24894transmitted as part of a packet, it is considered to be packet data
24895and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 24896(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
24897@code{0x03} as part of its packet.
24898
24899Stubs are not required to recognize these interrupt mechanisms and the
24900precise meaning associated with receipt of the interrupt is
24901implementation defined. If the stub is successful at interrupting the
24902running program, it is expected that it will send one of the Stop
24903Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
24904of successfully stopping the program. Interrupts received while the
24905program is stopped will be discarded.
24906
ee2d5c50
AC
24907@node Examples
24908@section Examples
eb12ee30 24909
8e04817f
AC
24910Example sequence of a target being re-started. Notice how the restart
24911does not get any direct output:
eb12ee30 24912
474c8240 24913@smallexample
d2c6833e
AC
24914-> @code{R00}
24915<- @code{+}
8e04817f 24916@emph{target restarts}
d2c6833e 24917-> @code{?}
8e04817f 24918<- @code{+}
d2c6833e
AC
24919<- @code{T001:1234123412341234}
24920-> @code{+}
474c8240 24921@end smallexample
eb12ee30 24922
8e04817f 24923Example sequence of a target being stepped by a single instruction:
eb12ee30 24924
474c8240 24925@smallexample
d2c6833e 24926-> @code{G1445@dots{}}
8e04817f 24927<- @code{+}
d2c6833e
AC
24928-> @code{s}
24929<- @code{+}
24930@emph{time passes}
24931<- @code{T001:1234123412341234}
8e04817f 24932-> @code{+}
d2c6833e 24933-> @code{g}
8e04817f 24934<- @code{+}
d2c6833e
AC
24935<- @code{1455@dots{}}
24936-> @code{+}
474c8240 24937@end smallexample
eb12ee30 24938
79a6e687
BW
24939@node File-I/O Remote Protocol Extension
24940@section File-I/O Remote Protocol Extension
0ce1b118
CV
24941@cindex File-I/O remote protocol extension
24942
24943@menu
24944* File-I/O Overview::
79a6e687
BW
24945* Protocol Basics::
24946* The F Request Packet::
24947* The F Reply Packet::
24948* The Ctrl-C Message::
0ce1b118 24949* Console I/O::
79a6e687 24950* List of Supported Calls::
db2e3e2e 24951* Protocol-specific Representation of Datatypes::
0ce1b118
CV
24952* Constants::
24953* File-I/O Examples::
24954@end menu
24955
24956@node File-I/O Overview
24957@subsection File-I/O Overview
24958@cindex file-i/o overview
24959
9c16f35a 24960The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 24961target to use the host's file system and console I/O to perform various
0ce1b118 24962system calls. System calls on the target system are translated into a
fc320d37
SL
24963remote protocol packet to the host system, which then performs the needed
24964actions and returns a response packet to the target system.
0ce1b118
CV
24965This simulates file system operations even on targets that lack file systems.
24966
fc320d37
SL
24967The protocol is defined to be independent of both the host and target systems.
24968It uses its own internal representation of datatypes and values. Both
0ce1b118 24969@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
24970translating the system-dependent value representations into the internal
24971protocol representations when data is transmitted.
0ce1b118 24972
fc320d37
SL
24973The communication is synchronous. A system call is possible only when
24974@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
24975or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 24976the target is stopped to allow deterministic access to the target's
fc320d37
SL
24977memory. Therefore File-I/O is not interruptible by target signals. On
24978the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 24979(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
24980
24981The target's request to perform a host system call does not finish
24982the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
24983after finishing the system call, the target returns to continuing the
24984previous activity (continue, step). No additional continue or step
24985request from @value{GDBN} is required.
24986
24987@smallexample
f7dc1244 24988(@value{GDBP}) continue
0ce1b118
CV
24989 <- target requests 'system call X'
24990 target is stopped, @value{GDBN} executes system call
3f94c067
BW
24991 -> @value{GDBN} returns result
24992 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
24993 <- target hits breakpoint and sends a Txx packet
24994@end smallexample
24995
fc320d37
SL
24996The protocol only supports I/O on the console and to regular files on
24997the host file system. Character or block special devices, pipes,
24998named pipes, sockets or any other communication method on the host
0ce1b118
CV
24999system are not supported by this protocol.
25000
79a6e687
BW
25001@node Protocol Basics
25002@subsection Protocol Basics
0ce1b118
CV
25003@cindex protocol basics, file-i/o
25004
fc320d37
SL
25005The File-I/O protocol uses the @code{F} packet as the request as well
25006as reply packet. Since a File-I/O system call can only occur when
25007@value{GDBN} is waiting for a response from the continuing or stepping target,
25008the File-I/O request is a reply that @value{GDBN} has to expect as a result
25009of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25010This @code{F} packet contains all information needed to allow @value{GDBN}
25011to call the appropriate host system call:
25012
25013@itemize @bullet
b383017d 25014@item
0ce1b118
CV
25015A unique identifier for the requested system call.
25016
25017@item
25018All parameters to the system call. Pointers are given as addresses
25019in the target memory address space. Pointers to strings are given as
b383017d 25020pointer/length pair. Numerical values are given as they are.
db2e3e2e 25021Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25022
25023@end itemize
25024
fc320d37 25025At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25026
25027@itemize @bullet
b383017d 25028@item
fc320d37
SL
25029If the parameters include pointer values to data needed as input to a
25030system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25031standard @code{m} packet request. This additional communication has to be
25032expected by the target implementation and is handled as any other @code{m}
25033packet.
25034
25035@item
25036@value{GDBN} translates all value from protocol representation to host
25037representation as needed. Datatypes are coerced into the host types.
25038
25039@item
fc320d37 25040@value{GDBN} calls the system call.
0ce1b118
CV
25041
25042@item
25043It then coerces datatypes back to protocol representation.
25044
25045@item
fc320d37
SL
25046If the system call is expected to return data in buffer space specified
25047by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25048target using a @code{M} or @code{X} packet. This packet has to be expected
25049by the target implementation and is handled as any other @code{M} or @code{X}
25050packet.
25051
25052@end itemize
25053
25054Eventually @value{GDBN} replies with another @code{F} packet which contains all
25055necessary information for the target to continue. This at least contains
25056
25057@itemize @bullet
25058@item
25059Return value.
25060
25061@item
25062@code{errno}, if has been changed by the system call.
25063
25064@item
25065``Ctrl-C'' flag.
25066
25067@end itemize
25068
25069After having done the needed type and value coercion, the target continues
25070the latest continue or step action.
25071
79a6e687
BW
25072@node The F Request Packet
25073@subsection The @code{F} Request Packet
0ce1b118
CV
25074@cindex file-i/o request packet
25075@cindex @code{F} request packet
25076
25077The @code{F} request packet has the following format:
25078
25079@table @samp
fc320d37 25080@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25081
25082@var{call-id} is the identifier to indicate the host system call to be called.
25083This is just the name of the function.
25084
fc320d37
SL
25085@var{parameter@dots{}} are the parameters to the system call.
25086Parameters are hexadecimal integer values, either the actual values in case
25087of scalar datatypes, pointers to target buffer space in case of compound
25088datatypes and unspecified memory areas, or pointer/length pairs in case
25089of string parameters. These are appended to the @var{call-id} as a
25090comma-delimited list. All values are transmitted in ASCII
25091string representation, pointer/length pairs separated by a slash.
0ce1b118 25092
b383017d 25093@end table
0ce1b118 25094
fc320d37 25095
0ce1b118 25096
79a6e687
BW
25097@node The F Reply Packet
25098@subsection The @code{F} Reply Packet
0ce1b118
CV
25099@cindex file-i/o reply packet
25100@cindex @code{F} reply packet
25101
25102The @code{F} reply packet has the following format:
25103
25104@table @samp
25105
d3bdde98 25106@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25107
25108@var{retcode} is the return code of the system call as hexadecimal value.
25109
db2e3e2e
BW
25110@var{errno} is the @code{errno} set by the call, in protocol-specific
25111representation.
0ce1b118
CV
25112This parameter can be omitted if the call was successful.
25113
fc320d37
SL
25114@var{Ctrl-C flag} is only sent if the user requested a break. In this
25115case, @var{errno} must be sent as well, even if the call was successful.
25116The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25117
25118@smallexample
25119F0,0,C
25120@end smallexample
25121
25122@noindent
fc320d37 25123or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25124
25125@smallexample
25126F-1,4,C
25127@end smallexample
25128
25129@noindent
db2e3e2e 25130assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25131
25132@end table
25133
0ce1b118 25134
79a6e687
BW
25135@node The Ctrl-C Message
25136@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25137@cindex ctrl-c message, in file-i/o protocol
25138
c8aa23ab 25139If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25140reply packet (@pxref{The F Reply Packet}),
fc320d37 25141the target should behave as if it had
0ce1b118 25142gotten a break message. The meaning for the target is ``system call
fc320d37 25143interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25144(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25145packet.
fc320d37
SL
25146
25147It's important for the target to know in which
25148state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25149
25150@itemize @bullet
25151@item
25152The system call hasn't been performed on the host yet.
25153
25154@item
25155The system call on the host has been finished.
25156
25157@end itemize
25158
25159These two states can be distinguished by the target by the value of the
25160returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25161call hasn't been performed. This is equivalent to the @code{EINTR} handling
25162on POSIX systems. In any other case, the target may presume that the
fc320d37 25163system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25164as if the break message arrived right after the system call.
25165
fc320d37 25166@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25167yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25168@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25169before the user requests a break, the full action must be finished by
25170@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25171The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25172or the full action has been completed.
25173
25174@node Console I/O
25175@subsection Console I/O
25176@cindex console i/o as part of file-i/o
25177
d3e8051b 25178By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25179descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25180on the @value{GDBN} console is handled as any other file output operation
25181(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25182by @value{GDBN} so that after the target read request from file descriptor
251830 all following typing is buffered until either one of the following
25184conditions is met:
25185
25186@itemize @bullet
25187@item
c8aa23ab 25188The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25189@code{read}
25190system call is treated as finished.
25191
25192@item
7f9087cb 25193The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25194newline.
0ce1b118
CV
25195
25196@item
c8aa23ab
EZ
25197The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25198character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25199
25200@end itemize
25201
fc320d37
SL
25202If the user has typed more characters than fit in the buffer given to
25203the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25204either another @code{read(0, @dots{})} is requested by the target, or debugging
25205is stopped at the user's request.
0ce1b118 25206
0ce1b118 25207
79a6e687
BW
25208@node List of Supported Calls
25209@subsection List of Supported Calls
0ce1b118
CV
25210@cindex list of supported file-i/o calls
25211
25212@menu
25213* open::
25214* close::
25215* read::
25216* write::
25217* lseek::
25218* rename::
25219* unlink::
25220* stat/fstat::
25221* gettimeofday::
25222* isatty::
25223* system::
25224@end menu
25225
25226@node open
25227@unnumberedsubsubsec open
25228@cindex open, file-i/o system call
25229
fc320d37
SL
25230@table @asis
25231@item Synopsis:
0ce1b118 25232@smallexample
0ce1b118
CV
25233int open(const char *pathname, int flags);
25234int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25235@end smallexample
25236
fc320d37
SL
25237@item Request:
25238@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25239
0ce1b118 25240@noindent
fc320d37 25241@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25242
25243@table @code
b383017d 25244@item O_CREAT
0ce1b118
CV
25245If the file does not exist it will be created. The host
25246rules apply as far as file ownership and time stamps
25247are concerned.
25248
b383017d 25249@item O_EXCL
fc320d37 25250When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25251an error and open() fails.
25252
b383017d 25253@item O_TRUNC
0ce1b118 25254If the file already exists and the open mode allows
fc320d37
SL
25255writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25256truncated to zero length.
0ce1b118 25257
b383017d 25258@item O_APPEND
0ce1b118
CV
25259The file is opened in append mode.
25260
b383017d 25261@item O_RDONLY
0ce1b118
CV
25262The file is opened for reading only.
25263
b383017d 25264@item O_WRONLY
0ce1b118
CV
25265The file is opened for writing only.
25266
b383017d 25267@item O_RDWR
0ce1b118 25268The file is opened for reading and writing.
fc320d37 25269@end table
0ce1b118
CV
25270
25271@noindent
fc320d37 25272Other bits are silently ignored.
0ce1b118 25273
0ce1b118
CV
25274
25275@noindent
fc320d37 25276@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25277
25278@table @code
b383017d 25279@item S_IRUSR
0ce1b118
CV
25280User has read permission.
25281
b383017d 25282@item S_IWUSR
0ce1b118
CV
25283User has write permission.
25284
b383017d 25285@item S_IRGRP
0ce1b118
CV
25286Group has read permission.
25287
b383017d 25288@item S_IWGRP
0ce1b118
CV
25289Group has write permission.
25290
b383017d 25291@item S_IROTH
0ce1b118
CV
25292Others have read permission.
25293
b383017d 25294@item S_IWOTH
0ce1b118 25295Others have write permission.
fc320d37 25296@end table
0ce1b118
CV
25297
25298@noindent
fc320d37 25299Other bits are silently ignored.
0ce1b118 25300
0ce1b118 25301
fc320d37
SL
25302@item Return value:
25303@code{open} returns the new file descriptor or -1 if an error
25304occurred.
0ce1b118 25305
fc320d37 25306@item Errors:
0ce1b118
CV
25307
25308@table @code
b383017d 25309@item EEXIST
fc320d37 25310@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25311
b383017d 25312@item EISDIR
fc320d37 25313@var{pathname} refers to a directory.
0ce1b118 25314
b383017d 25315@item EACCES
0ce1b118
CV
25316The requested access is not allowed.
25317
25318@item ENAMETOOLONG
fc320d37 25319@var{pathname} was too long.
0ce1b118 25320
b383017d 25321@item ENOENT
fc320d37 25322A directory component in @var{pathname} does not exist.
0ce1b118 25323
b383017d 25324@item ENODEV
fc320d37 25325@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25326
b383017d 25327@item EROFS
fc320d37 25328@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25329write access was requested.
25330
b383017d 25331@item EFAULT
fc320d37 25332@var{pathname} is an invalid pointer value.
0ce1b118 25333
b383017d 25334@item ENOSPC
0ce1b118
CV
25335No space on device to create the file.
25336
b383017d 25337@item EMFILE
0ce1b118
CV
25338The process already has the maximum number of files open.
25339
b383017d 25340@item ENFILE
0ce1b118
CV
25341The limit on the total number of files open on the system
25342has been reached.
25343
b383017d 25344@item EINTR
0ce1b118
CV
25345The call was interrupted by the user.
25346@end table
25347
fc320d37
SL
25348@end table
25349
0ce1b118
CV
25350@node close
25351@unnumberedsubsubsec close
25352@cindex close, file-i/o system call
25353
fc320d37
SL
25354@table @asis
25355@item Synopsis:
0ce1b118 25356@smallexample
0ce1b118 25357int close(int fd);
fc320d37 25358@end smallexample
0ce1b118 25359
fc320d37
SL
25360@item Request:
25361@samp{Fclose,@var{fd}}
0ce1b118 25362
fc320d37
SL
25363@item Return value:
25364@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25365
fc320d37 25366@item Errors:
0ce1b118
CV
25367
25368@table @code
b383017d 25369@item EBADF
fc320d37 25370@var{fd} isn't a valid open file descriptor.
0ce1b118 25371
b383017d 25372@item EINTR
0ce1b118
CV
25373The call was interrupted by the user.
25374@end table
25375
fc320d37
SL
25376@end table
25377
0ce1b118
CV
25378@node read
25379@unnumberedsubsubsec read
25380@cindex read, file-i/o system call
25381
fc320d37
SL
25382@table @asis
25383@item Synopsis:
0ce1b118 25384@smallexample
0ce1b118 25385int read(int fd, void *buf, unsigned int count);
fc320d37 25386@end smallexample
0ce1b118 25387
fc320d37
SL
25388@item Request:
25389@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25390
fc320d37 25391@item Return value:
0ce1b118
CV
25392On success, the number of bytes read is returned.
25393Zero indicates end of file. If count is zero, read
b383017d 25394returns zero as well. On error, -1 is returned.
0ce1b118 25395
fc320d37 25396@item Errors:
0ce1b118
CV
25397
25398@table @code
b383017d 25399@item EBADF
fc320d37 25400@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25401reading.
25402
b383017d 25403@item EFAULT
fc320d37 25404@var{bufptr} is an invalid pointer value.
0ce1b118 25405
b383017d 25406@item EINTR
0ce1b118
CV
25407The call was interrupted by the user.
25408@end table
25409
fc320d37
SL
25410@end table
25411
0ce1b118
CV
25412@node write
25413@unnumberedsubsubsec write
25414@cindex write, file-i/o system call
25415
fc320d37
SL
25416@table @asis
25417@item Synopsis:
0ce1b118 25418@smallexample
0ce1b118 25419int write(int fd, const void *buf, unsigned int count);
fc320d37 25420@end smallexample
0ce1b118 25421
fc320d37
SL
25422@item Request:
25423@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25424
fc320d37 25425@item Return value:
0ce1b118
CV
25426On success, the number of bytes written are returned.
25427Zero indicates nothing was written. On error, -1
25428is returned.
25429
fc320d37 25430@item Errors:
0ce1b118
CV
25431
25432@table @code
b383017d 25433@item EBADF
fc320d37 25434@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25435writing.
25436
b383017d 25437@item EFAULT
fc320d37 25438@var{bufptr} is an invalid pointer value.
0ce1b118 25439
b383017d 25440@item EFBIG
0ce1b118 25441An attempt was made to write a file that exceeds the
db2e3e2e 25442host-specific maximum file size allowed.
0ce1b118 25443
b383017d 25444@item ENOSPC
0ce1b118
CV
25445No space on device to write the data.
25446
b383017d 25447@item EINTR
0ce1b118
CV
25448The call was interrupted by the user.
25449@end table
25450
fc320d37
SL
25451@end table
25452
0ce1b118
CV
25453@node lseek
25454@unnumberedsubsubsec lseek
25455@cindex lseek, file-i/o system call
25456
fc320d37
SL
25457@table @asis
25458@item Synopsis:
0ce1b118 25459@smallexample
0ce1b118 25460long lseek (int fd, long offset, int flag);
0ce1b118
CV
25461@end smallexample
25462
fc320d37
SL
25463@item Request:
25464@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25465
25466@var{flag} is one of:
0ce1b118
CV
25467
25468@table @code
b383017d 25469@item SEEK_SET
fc320d37 25470The offset is set to @var{offset} bytes.
0ce1b118 25471
b383017d 25472@item SEEK_CUR
fc320d37 25473The offset is set to its current location plus @var{offset}
0ce1b118
CV
25474bytes.
25475
b383017d 25476@item SEEK_END
fc320d37 25477The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25478bytes.
25479@end table
25480
fc320d37 25481@item Return value:
0ce1b118
CV
25482On success, the resulting unsigned offset in bytes from
25483the beginning of the file is returned. Otherwise, a
25484value of -1 is returned.
25485
fc320d37 25486@item Errors:
0ce1b118
CV
25487
25488@table @code
b383017d 25489@item EBADF
fc320d37 25490@var{fd} is not a valid open file descriptor.
0ce1b118 25491
b383017d 25492@item ESPIPE
fc320d37 25493@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25494
b383017d 25495@item EINVAL
fc320d37 25496@var{flag} is not a proper value.
0ce1b118 25497
b383017d 25498@item EINTR
0ce1b118
CV
25499The call was interrupted by the user.
25500@end table
25501
fc320d37
SL
25502@end table
25503
0ce1b118
CV
25504@node rename
25505@unnumberedsubsubsec rename
25506@cindex rename, file-i/o system call
25507
fc320d37
SL
25508@table @asis
25509@item Synopsis:
0ce1b118 25510@smallexample
0ce1b118 25511int rename(const char *oldpath, const char *newpath);
fc320d37 25512@end smallexample
0ce1b118 25513
fc320d37
SL
25514@item Request:
25515@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25516
fc320d37 25517@item Return value:
0ce1b118
CV
25518On success, zero is returned. On error, -1 is returned.
25519
fc320d37 25520@item Errors:
0ce1b118
CV
25521
25522@table @code
b383017d 25523@item EISDIR
fc320d37 25524@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25525directory.
25526
b383017d 25527@item EEXIST
fc320d37 25528@var{newpath} is a non-empty directory.
0ce1b118 25529
b383017d 25530@item EBUSY
fc320d37 25531@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25532process.
25533
b383017d 25534@item EINVAL
0ce1b118
CV
25535An attempt was made to make a directory a subdirectory
25536of itself.
25537
b383017d 25538@item ENOTDIR
fc320d37
SL
25539A component used as a directory in @var{oldpath} or new
25540path is not a directory. Or @var{oldpath} is a directory
25541and @var{newpath} exists but is not a directory.
0ce1b118 25542
b383017d 25543@item EFAULT
fc320d37 25544@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25545
b383017d 25546@item EACCES
0ce1b118
CV
25547No access to the file or the path of the file.
25548
25549@item ENAMETOOLONG
b383017d 25550
fc320d37 25551@var{oldpath} or @var{newpath} was too long.
0ce1b118 25552
b383017d 25553@item ENOENT
fc320d37 25554A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25555
b383017d 25556@item EROFS
0ce1b118
CV
25557The file is on a read-only filesystem.
25558
b383017d 25559@item ENOSPC
0ce1b118
CV
25560The device containing the file has no room for the new
25561directory entry.
25562
b383017d 25563@item EINTR
0ce1b118
CV
25564The call was interrupted by the user.
25565@end table
25566
fc320d37
SL
25567@end table
25568
0ce1b118
CV
25569@node unlink
25570@unnumberedsubsubsec unlink
25571@cindex unlink, file-i/o system call
25572
fc320d37
SL
25573@table @asis
25574@item Synopsis:
0ce1b118 25575@smallexample
0ce1b118 25576int unlink(const char *pathname);
fc320d37 25577@end smallexample
0ce1b118 25578
fc320d37
SL
25579@item Request:
25580@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25581
fc320d37 25582@item Return value:
0ce1b118
CV
25583On success, zero is returned. On error, -1 is returned.
25584
fc320d37 25585@item Errors:
0ce1b118
CV
25586
25587@table @code
b383017d 25588@item EACCES
0ce1b118
CV
25589No access to the file or the path of the file.
25590
b383017d 25591@item EPERM
0ce1b118
CV
25592The system does not allow unlinking of directories.
25593
b383017d 25594@item EBUSY
fc320d37 25595The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25596being used by another process.
25597
b383017d 25598@item EFAULT
fc320d37 25599@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25600
25601@item ENAMETOOLONG
fc320d37 25602@var{pathname} was too long.
0ce1b118 25603
b383017d 25604@item ENOENT
fc320d37 25605A directory component in @var{pathname} does not exist.
0ce1b118 25606
b383017d 25607@item ENOTDIR
0ce1b118
CV
25608A component of the path is not a directory.
25609
b383017d 25610@item EROFS
0ce1b118
CV
25611The file is on a read-only filesystem.
25612
b383017d 25613@item EINTR
0ce1b118
CV
25614The call was interrupted by the user.
25615@end table
25616
fc320d37
SL
25617@end table
25618
0ce1b118
CV
25619@node stat/fstat
25620@unnumberedsubsubsec stat/fstat
25621@cindex fstat, file-i/o system call
25622@cindex stat, file-i/o system call
25623
fc320d37
SL
25624@table @asis
25625@item Synopsis:
0ce1b118 25626@smallexample
0ce1b118
CV
25627int stat(const char *pathname, struct stat *buf);
25628int fstat(int fd, struct stat *buf);
fc320d37 25629@end smallexample
0ce1b118 25630
fc320d37
SL
25631@item Request:
25632@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25633@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25634
fc320d37 25635@item Return value:
0ce1b118
CV
25636On success, zero is returned. On error, -1 is returned.
25637
fc320d37 25638@item Errors:
0ce1b118
CV
25639
25640@table @code
b383017d 25641@item EBADF
fc320d37 25642@var{fd} is not a valid open file.
0ce1b118 25643
b383017d 25644@item ENOENT
fc320d37 25645A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25646path is an empty string.
25647
b383017d 25648@item ENOTDIR
0ce1b118
CV
25649A component of the path is not a directory.
25650
b383017d 25651@item EFAULT
fc320d37 25652@var{pathnameptr} is an invalid pointer value.
0ce1b118 25653
b383017d 25654@item EACCES
0ce1b118
CV
25655No access to the file or the path of the file.
25656
25657@item ENAMETOOLONG
fc320d37 25658@var{pathname} was too long.
0ce1b118 25659
b383017d 25660@item EINTR
0ce1b118
CV
25661The call was interrupted by the user.
25662@end table
25663
fc320d37
SL
25664@end table
25665
0ce1b118
CV
25666@node gettimeofday
25667@unnumberedsubsubsec gettimeofday
25668@cindex gettimeofday, file-i/o system call
25669
fc320d37
SL
25670@table @asis
25671@item Synopsis:
0ce1b118 25672@smallexample
0ce1b118 25673int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25674@end smallexample
0ce1b118 25675
fc320d37
SL
25676@item Request:
25677@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25678
fc320d37 25679@item Return value:
0ce1b118
CV
25680On success, 0 is returned, -1 otherwise.
25681
fc320d37 25682@item Errors:
0ce1b118
CV
25683
25684@table @code
b383017d 25685@item EINVAL
fc320d37 25686@var{tz} is a non-NULL pointer.
0ce1b118 25687
b383017d 25688@item EFAULT
fc320d37
SL
25689@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25690@end table
25691
0ce1b118
CV
25692@end table
25693
25694@node isatty
25695@unnumberedsubsubsec isatty
25696@cindex isatty, file-i/o system call
25697
fc320d37
SL
25698@table @asis
25699@item Synopsis:
0ce1b118 25700@smallexample
0ce1b118 25701int isatty(int fd);
fc320d37 25702@end smallexample
0ce1b118 25703
fc320d37
SL
25704@item Request:
25705@samp{Fisatty,@var{fd}}
0ce1b118 25706
fc320d37
SL
25707@item Return value:
25708Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25709
fc320d37 25710@item Errors:
0ce1b118
CV
25711
25712@table @code
b383017d 25713@item EINTR
0ce1b118
CV
25714The call was interrupted by the user.
25715@end table
25716
fc320d37
SL
25717@end table
25718
25719Note that the @code{isatty} call is treated as a special case: it returns
257201 to the target if the file descriptor is attached
25721to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25722would require implementing @code{ioctl} and would be more complex than
25723needed.
25724
25725
0ce1b118
CV
25726@node system
25727@unnumberedsubsubsec system
25728@cindex system, file-i/o system call
25729
fc320d37
SL
25730@table @asis
25731@item Synopsis:
0ce1b118 25732@smallexample
0ce1b118 25733int system(const char *command);
fc320d37 25734@end smallexample
0ce1b118 25735
fc320d37
SL
25736@item Request:
25737@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25738
fc320d37 25739@item Return value:
5600ea19
NS
25740If @var{len} is zero, the return value indicates whether a shell is
25741available. A zero return value indicates a shell is not available.
25742For non-zero @var{len}, the value returned is -1 on error and the
25743return status of the command otherwise. Only the exit status of the
25744command is returned, which is extracted from the host's @code{system}
25745return value by calling @code{WEXITSTATUS(retval)}. In case
25746@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25747
fc320d37 25748@item Errors:
0ce1b118
CV
25749
25750@table @code
b383017d 25751@item EINTR
0ce1b118
CV
25752The call was interrupted by the user.
25753@end table
25754
fc320d37
SL
25755@end table
25756
25757@value{GDBN} takes over the full task of calling the necessary host calls
25758to perform the @code{system} call. The return value of @code{system} on
25759the host is simplified before it's returned
25760to the target. Any termination signal information from the child process
25761is discarded, and the return value consists
25762entirely of the exit status of the called command.
25763
25764Due to security concerns, the @code{system} call is by default refused
25765by @value{GDBN}. The user has to allow this call explicitly with the
25766@code{set remote system-call-allowed 1} command.
25767
25768@table @code
25769@item set remote system-call-allowed
25770@kindex set remote system-call-allowed
25771Control whether to allow the @code{system} calls in the File I/O
25772protocol for the remote target. The default is zero (disabled).
25773
25774@item show remote system-call-allowed
25775@kindex show remote system-call-allowed
25776Show whether the @code{system} calls are allowed in the File I/O
25777protocol.
25778@end table
25779
db2e3e2e
BW
25780@node Protocol-specific Representation of Datatypes
25781@subsection Protocol-specific Representation of Datatypes
25782@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25783
25784@menu
79a6e687
BW
25785* Integral Datatypes::
25786* Pointer Values::
25787* Memory Transfer::
0ce1b118
CV
25788* struct stat::
25789* struct timeval::
25790@end menu
25791
79a6e687
BW
25792@node Integral Datatypes
25793@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25794@cindex integral datatypes, in file-i/o protocol
25795
fc320d37
SL
25796The integral datatypes used in the system calls are @code{int},
25797@code{unsigned int}, @code{long}, @code{unsigned long},
25798@code{mode_t}, and @code{time_t}.
0ce1b118 25799
fc320d37 25800@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25801implemented as 32 bit values in this protocol.
25802
fc320d37 25803@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25804
0ce1b118
CV
25805@xref{Limits}, for corresponding MIN and MAX values (similar to those
25806in @file{limits.h}) to allow range checking on host and target.
25807
25808@code{time_t} datatypes are defined as seconds since the Epoch.
25809
25810All integral datatypes transferred as part of a memory read or write of a
25811structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25812byte order.
25813
79a6e687
BW
25814@node Pointer Values
25815@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25816@cindex pointer values, in file-i/o protocol
25817
25818Pointers to target data are transmitted as they are. An exception
25819is made for pointers to buffers for which the length isn't
25820transmitted as part of the function call, namely strings. Strings
25821are transmitted as a pointer/length pair, both as hex values, e.g.@:
25822
25823@smallexample
25824@code{1aaf/12}
25825@end smallexample
25826
25827@noindent
25828which is a pointer to data of length 18 bytes at position 0x1aaf.
25829The length is defined as the full string length in bytes, including
fc320d37
SL
25830the trailing null byte. For example, the string @code{"hello world"}
25831at address 0x123456 is transmitted as
0ce1b118
CV
25832
25833@smallexample
fc320d37 25834@code{123456/d}
0ce1b118
CV
25835@end smallexample
25836
79a6e687
BW
25837@node Memory Transfer
25838@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25839@cindex memory transfer, in file-i/o protocol
25840
25841Structured data which is transferred using a memory read or write (for
db2e3e2e 25842example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25843with all scalar multibyte datatypes being big endian. Translation to
25844this representation needs to be done both by the target before the @code{F}
25845packet is sent, and by @value{GDBN} before
25846it transfers memory to the target. Transferred pointers to structured
25847data should point to the already-coerced data at any time.
0ce1b118 25848
0ce1b118
CV
25849
25850@node struct stat
25851@unnumberedsubsubsec struct stat
25852@cindex struct stat, in file-i/o protocol
25853
fc320d37
SL
25854The buffer of type @code{struct stat} used by the target and @value{GDBN}
25855is defined as follows:
0ce1b118
CV
25856
25857@smallexample
25858struct stat @{
25859 unsigned int st_dev; /* device */
25860 unsigned int st_ino; /* inode */
25861 mode_t st_mode; /* protection */
25862 unsigned int st_nlink; /* number of hard links */
25863 unsigned int st_uid; /* user ID of owner */
25864 unsigned int st_gid; /* group ID of owner */
25865 unsigned int st_rdev; /* device type (if inode device) */
25866 unsigned long st_size; /* total size, in bytes */
25867 unsigned long st_blksize; /* blocksize for filesystem I/O */
25868 unsigned long st_blocks; /* number of blocks allocated */
25869 time_t st_atime; /* time of last access */
25870 time_t st_mtime; /* time of last modification */
25871 time_t st_ctime; /* time of last change */
25872@};
25873@end smallexample
25874
fc320d37 25875The integral datatypes conform to the definitions given in the
79a6e687 25876appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25877structure is of size 64 bytes.
25878
25879The values of several fields have a restricted meaning and/or
25880range of values.
25881
fc320d37 25882@table @code
0ce1b118 25883
fc320d37
SL
25884@item st_dev
25885A value of 0 represents a file, 1 the console.
0ce1b118 25886
fc320d37
SL
25887@item st_ino
25888No valid meaning for the target. Transmitted unchanged.
0ce1b118 25889
fc320d37
SL
25890@item st_mode
25891Valid mode bits are described in @ref{Constants}. Any other
25892bits have currently no meaning for the target.
0ce1b118 25893
fc320d37
SL
25894@item st_uid
25895@itemx st_gid
25896@itemx st_rdev
25897No valid meaning for the target. Transmitted unchanged.
0ce1b118 25898
fc320d37
SL
25899@item st_atime
25900@itemx st_mtime
25901@itemx st_ctime
25902These values have a host and file system dependent
25903accuracy. Especially on Windows hosts, the file system may not
25904support exact timing values.
25905@end table
0ce1b118 25906
fc320d37
SL
25907The target gets a @code{struct stat} of the above representation and is
25908responsible for coercing it to the target representation before
0ce1b118
CV
25909continuing.
25910
fc320d37
SL
25911Note that due to size differences between the host, target, and protocol
25912representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
25913get truncated on the target.
25914
25915@node struct timeval
25916@unnumberedsubsubsec struct timeval
25917@cindex struct timeval, in file-i/o protocol
25918
fc320d37 25919The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
25920is defined as follows:
25921
25922@smallexample
b383017d 25923struct timeval @{
0ce1b118
CV
25924 time_t tv_sec; /* second */
25925 long tv_usec; /* microsecond */
25926@};
25927@end smallexample
25928
fc320d37 25929The integral datatypes conform to the definitions given in the
79a6e687 25930appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25931structure is of size 8 bytes.
25932
25933@node Constants
25934@subsection Constants
25935@cindex constants, in file-i/o protocol
25936
25937The following values are used for the constants inside of the
fc320d37 25938protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
25939values before and after the call as needed.
25940
25941@menu
79a6e687
BW
25942* Open Flags::
25943* mode_t Values::
25944* Errno Values::
25945* Lseek Flags::
0ce1b118
CV
25946* Limits::
25947@end menu
25948
79a6e687
BW
25949@node Open Flags
25950@unnumberedsubsubsec Open Flags
0ce1b118
CV
25951@cindex open flags, in file-i/o protocol
25952
25953All values are given in hexadecimal representation.
25954
25955@smallexample
25956 O_RDONLY 0x0
25957 O_WRONLY 0x1
25958 O_RDWR 0x2
25959 O_APPEND 0x8
25960 O_CREAT 0x200
25961 O_TRUNC 0x400
25962 O_EXCL 0x800
25963@end smallexample
25964
79a6e687
BW
25965@node mode_t Values
25966@unnumberedsubsubsec mode_t Values
0ce1b118
CV
25967@cindex mode_t values, in file-i/o protocol
25968
25969All values are given in octal representation.
25970
25971@smallexample
25972 S_IFREG 0100000
25973 S_IFDIR 040000
25974 S_IRUSR 0400
25975 S_IWUSR 0200
25976 S_IXUSR 0100
25977 S_IRGRP 040
25978 S_IWGRP 020
25979 S_IXGRP 010
25980 S_IROTH 04
25981 S_IWOTH 02
25982 S_IXOTH 01
25983@end smallexample
25984
79a6e687
BW
25985@node Errno Values
25986@unnumberedsubsubsec Errno Values
0ce1b118
CV
25987@cindex errno values, in file-i/o protocol
25988
25989All values are given in decimal representation.
25990
25991@smallexample
25992 EPERM 1
25993 ENOENT 2
25994 EINTR 4
25995 EBADF 9
25996 EACCES 13
25997 EFAULT 14
25998 EBUSY 16
25999 EEXIST 17
26000 ENODEV 19
26001 ENOTDIR 20
26002 EISDIR 21
26003 EINVAL 22
26004 ENFILE 23
26005 EMFILE 24
26006 EFBIG 27
26007 ENOSPC 28
26008 ESPIPE 29
26009 EROFS 30
26010 ENAMETOOLONG 91
26011 EUNKNOWN 9999
26012@end smallexample
26013
fc320d37 26014 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26015 any error value not in the list of supported error numbers.
26016
79a6e687
BW
26017@node Lseek Flags
26018@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26019@cindex lseek flags, in file-i/o protocol
26020
26021@smallexample
26022 SEEK_SET 0
26023 SEEK_CUR 1
26024 SEEK_END 2
26025@end smallexample
26026
26027@node Limits
26028@unnumberedsubsubsec Limits
26029@cindex limits, in file-i/o protocol
26030
26031All values are given in decimal representation.
26032
26033@smallexample
26034 INT_MIN -2147483648
26035 INT_MAX 2147483647
26036 UINT_MAX 4294967295
26037 LONG_MIN -9223372036854775808
26038 LONG_MAX 9223372036854775807
26039 ULONG_MAX 18446744073709551615
26040@end smallexample
26041
26042@node File-I/O Examples
26043@subsection File-I/O Examples
26044@cindex file-i/o examples
26045
26046Example sequence of a write call, file descriptor 3, buffer is at target
26047address 0x1234, 6 bytes should be written:
26048
26049@smallexample
26050<- @code{Fwrite,3,1234,6}
26051@emph{request memory read from target}
26052-> @code{m1234,6}
26053<- XXXXXX
26054@emph{return "6 bytes written"}
26055-> @code{F6}
26056@end smallexample
26057
26058Example sequence of a read call, file descriptor 3, buffer is at target
26059address 0x1234, 6 bytes should be read:
26060
26061@smallexample
26062<- @code{Fread,3,1234,6}
26063@emph{request memory write to target}
26064-> @code{X1234,6:XXXXXX}
26065@emph{return "6 bytes read"}
26066-> @code{F6}
26067@end smallexample
26068
26069Example sequence of a read call, call fails on the host due to invalid
fc320d37 26070file descriptor (@code{EBADF}):
0ce1b118
CV
26071
26072@smallexample
26073<- @code{Fread,3,1234,6}
26074-> @code{F-1,9}
26075@end smallexample
26076
c8aa23ab 26077Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26078host is called:
26079
26080@smallexample
26081<- @code{Fread,3,1234,6}
26082-> @code{F-1,4,C}
26083<- @code{T02}
26084@end smallexample
26085
c8aa23ab 26086Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26087host is called:
26088
26089@smallexample
26090<- @code{Fread,3,1234,6}
26091-> @code{X1234,6:XXXXXX}
26092<- @code{T02}
26093@end smallexample
26094
cfa9d6d9
DJ
26095@node Library List Format
26096@section Library List Format
26097@cindex library list format, remote protocol
26098
26099On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26100same process as your application to manage libraries. In this case,
26101@value{GDBN} can use the loader's symbol table and normal memory
26102operations to maintain a list of shared libraries. On other
26103platforms, the operating system manages loaded libraries.
26104@value{GDBN} can not retrieve the list of currently loaded libraries
26105through memory operations, so it uses the @samp{qXfer:libraries:read}
26106packet (@pxref{qXfer library list read}) instead. The remote stub
26107queries the target's operating system and reports which libraries
26108are loaded.
26109
26110The @samp{qXfer:libraries:read} packet returns an XML document which
26111lists loaded libraries and their offsets. Each library has an
26112associated name and one or more segment base addresses, which report
26113where the library was loaded in memory. The segment bases are start
26114addresses, not relocation offsets; they do not depend on the library's
26115link-time base addresses.
26116
9cceb671
DJ
26117@value{GDBN} must be linked with the Expat library to support XML
26118library lists. @xref{Expat}.
26119
cfa9d6d9
DJ
26120A simple memory map, with one loaded library relocated by a single
26121offset, looks like this:
26122
26123@smallexample
26124<library-list>
26125 <library name="/lib/libc.so.6">
26126 <segment address="0x10000000"/>
26127 </library>
26128</library-list>
26129@end smallexample
26130
26131The format of a library list is described by this DTD:
26132
26133@smallexample
26134<!-- library-list: Root element with versioning -->
26135<!ELEMENT library-list (library)*>
26136<!ATTLIST library-list version CDATA #FIXED "1.0">
26137<!ELEMENT library (segment)*>
26138<!ATTLIST library name CDATA #REQUIRED>
26139<!ELEMENT segment EMPTY>
26140<!ATTLIST segment address CDATA #REQUIRED>
26141@end smallexample
26142
79a6e687
BW
26143@node Memory Map Format
26144@section Memory Map Format
68437a39
DJ
26145@cindex memory map format
26146
26147To be able to write into flash memory, @value{GDBN} needs to obtain a
26148memory map from the target. This section describes the format of the
26149memory map.
26150
26151The memory map is obtained using the @samp{qXfer:memory-map:read}
26152(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26153lists memory regions.
26154
26155@value{GDBN} must be linked with the Expat library to support XML
26156memory maps. @xref{Expat}.
26157
26158The top-level structure of the document is shown below:
68437a39
DJ
26159
26160@smallexample
26161<?xml version="1.0"?>
26162<!DOCTYPE memory-map
26163 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26164 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26165<memory-map>
26166 region...
26167</memory-map>
26168@end smallexample
26169
26170Each region can be either:
26171
26172@itemize
26173
26174@item
26175A region of RAM starting at @var{addr} and extending for @var{length}
26176bytes from there:
26177
26178@smallexample
26179<memory type="ram" start="@var{addr}" length="@var{length}"/>
26180@end smallexample
26181
26182
26183@item
26184A region of read-only memory:
26185
26186@smallexample
26187<memory type="rom" start="@var{addr}" length="@var{length}"/>
26188@end smallexample
26189
26190
26191@item
26192A region of flash memory, with erasure blocks @var{blocksize}
26193bytes in length:
26194
26195@smallexample
26196<memory type="flash" start="@var{addr}" length="@var{length}">
26197 <property name="blocksize">@var{blocksize}</property>
26198</memory>
26199@end smallexample
26200
26201@end itemize
26202
26203Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26204by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26205packets to write to addresses in such ranges.
26206
26207The formal DTD for memory map format is given below:
26208
26209@smallexample
26210<!-- ................................................... -->
26211<!-- Memory Map XML DTD ................................ -->
26212<!-- File: memory-map.dtd .............................. -->
26213<!-- .................................... .............. -->
26214<!-- memory-map.dtd -->
26215<!-- memory-map: Root element with versioning -->
26216<!ELEMENT memory-map (memory | property)>
26217<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26218<!ELEMENT memory (property)>
26219<!-- memory: Specifies a memory region,
26220 and its type, or device. -->
26221<!ATTLIST memory type CDATA #REQUIRED
26222 start CDATA #REQUIRED
26223 length CDATA #REQUIRED
26224 device CDATA #IMPLIED>
26225<!-- property: Generic attribute tag -->
26226<!ELEMENT property (#PCDATA | property)*>
26227<!ATTLIST property name CDATA #REQUIRED>
26228@end smallexample
26229
f418dd93
DJ
26230@include agentexpr.texi
26231
23181151
DJ
26232@node Target Descriptions
26233@appendix Target Descriptions
26234@cindex target descriptions
26235
26236@strong{Warning:} target descriptions are still under active development,
26237and the contents and format may change between @value{GDBN} releases.
26238The format is expected to stabilize in the future.
26239
26240One of the challenges of using @value{GDBN} to debug embedded systems
26241is that there are so many minor variants of each processor
26242architecture in use. It is common practice for vendors to start with
26243a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26244and then make changes to adapt it to a particular market niche. Some
26245architectures have hundreds of variants, available from dozens of
26246vendors. This leads to a number of problems:
26247
26248@itemize @bullet
26249@item
26250With so many different customized processors, it is difficult for
26251the @value{GDBN} maintainers to keep up with the changes.
26252@item
26253Since individual variants may have short lifetimes or limited
26254audiences, it may not be worthwhile to carry information about every
26255variant in the @value{GDBN} source tree.
26256@item
26257When @value{GDBN} does support the architecture of the embedded system
26258at hand, the task of finding the correct architecture name to give the
26259@command{set architecture} command can be error-prone.
26260@end itemize
26261
26262To address these problems, the @value{GDBN} remote protocol allows a
26263target system to not only identify itself to @value{GDBN}, but to
26264actually describe its own features. This lets @value{GDBN} support
26265processor variants it has never seen before --- to the extent that the
26266descriptions are accurate, and that @value{GDBN} understands them.
26267
9cceb671
DJ
26268@value{GDBN} must be linked with the Expat library to support XML
26269target descriptions. @xref{Expat}.
123dc839 26270
23181151
DJ
26271@menu
26272* Retrieving Descriptions:: How descriptions are fetched from a target.
26273* Target Description Format:: The contents of a target description.
123dc839
DJ
26274* Predefined Target Types:: Standard types available for target
26275 descriptions.
26276* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26277@end menu
26278
26279@node Retrieving Descriptions
26280@section Retrieving Descriptions
26281
26282Target descriptions can be read from the target automatically, or
26283specified by the user manually. The default behavior is to read the
26284description from the target. @value{GDBN} retrieves it via the remote
26285protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26286qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26287@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26288XML document, of the form described in @ref{Target Description
26289Format}.
26290
26291Alternatively, you can specify a file to read for the target description.
26292If a file is set, the target will not be queried. The commands to
26293specify a file are:
26294
26295@table @code
26296@cindex set tdesc filename
26297@item set tdesc filename @var{path}
26298Read the target description from @var{path}.
26299
26300@cindex unset tdesc filename
26301@item unset tdesc filename
26302Do not read the XML target description from a file. @value{GDBN}
26303will use the description supplied by the current target.
26304
26305@cindex show tdesc filename
26306@item show tdesc filename
26307Show the filename to read for a target description, if any.
26308@end table
26309
26310
26311@node Target Description Format
26312@section Target Description Format
26313@cindex target descriptions, XML format
26314
26315A target description annex is an @uref{http://www.w3.org/XML/, XML}
26316document which complies with the Document Type Definition provided in
26317the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26318means you can use generally available tools like @command{xmllint} to
26319check that your feature descriptions are well-formed and valid.
26320However, to help people unfamiliar with XML write descriptions for
26321their targets, we also describe the grammar here.
26322
123dc839
DJ
26323Target descriptions can identify the architecture of the remote target
26324and (for some architectures) provide information about custom register
26325sets. @value{GDBN} can use this information to autoconfigure for your
26326target, or to warn you if you connect to an unsupported target.
23181151
DJ
26327
26328Here is a simple target description:
26329
123dc839 26330@smallexample
1780a0ed 26331<target version="1.0">
23181151
DJ
26332 <architecture>i386:x86-64</architecture>
26333</target>
123dc839 26334@end smallexample
23181151
DJ
26335
26336@noindent
26337This minimal description only says that the target uses
26338the x86-64 architecture.
26339
123dc839
DJ
26340A target description has the following overall form, with [ ] marking
26341optional elements and @dots{} marking repeatable elements. The elements
26342are explained further below.
23181151 26343
123dc839 26344@smallexample
23181151
DJ
26345<?xml version="1.0"?>
26346<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26347<target version="1.0">
123dc839
DJ
26348 @r{[}@var{architecture}@r{]}
26349 @r{[}@var{feature}@dots{}@r{]}
23181151 26350</target>
123dc839 26351@end smallexample
23181151
DJ
26352
26353@noindent
26354The description is generally insensitive to whitespace and line
26355breaks, under the usual common-sense rules. The XML version
26356declaration and document type declaration can generally be omitted
26357(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26358useful for XML validation tools. The @samp{version} attribute for
26359@samp{<target>} may also be omitted, but we recommend
26360including it; if future versions of @value{GDBN} use an incompatible
26361revision of @file{gdb-target.dtd}, they will detect and report
26362the version mismatch.
23181151 26363
108546a0
DJ
26364@subsection Inclusion
26365@cindex target descriptions, inclusion
26366@cindex XInclude
26367@ifnotinfo
26368@cindex <xi:include>
26369@end ifnotinfo
26370
26371It can sometimes be valuable to split a target description up into
26372several different annexes, either for organizational purposes, or to
26373share files between different possible target descriptions. You can
26374divide a description into multiple files by replacing any element of
26375the target description with an inclusion directive of the form:
26376
123dc839 26377@smallexample
108546a0 26378<xi:include href="@var{document}"/>
123dc839 26379@end smallexample
108546a0
DJ
26380
26381@noindent
26382When @value{GDBN} encounters an element of this form, it will retrieve
26383the named XML @var{document}, and replace the inclusion directive with
26384the contents of that document. If the current description was read
26385using @samp{qXfer}, then so will be the included document;
26386@var{document} will be interpreted as the name of an annex. If the
26387current description was read from a file, @value{GDBN} will look for
26388@var{document} as a file in the same directory where it found the
26389original description.
26390
123dc839
DJ
26391@subsection Architecture
26392@cindex <architecture>
26393
26394An @samp{<architecture>} element has this form:
26395
26396@smallexample
26397 <architecture>@var{arch}</architecture>
26398@end smallexample
26399
26400@var{arch} is an architecture name from the same selection
26401accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26402Debugging Target}).
26403
26404@subsection Features
26405@cindex <feature>
26406
26407Each @samp{<feature>} describes some logical portion of the target
26408system. Features are currently used to describe available CPU
26409registers and the types of their contents. A @samp{<feature>} element
26410has this form:
26411
26412@smallexample
26413<feature name="@var{name}">
26414 @r{[}@var{type}@dots{}@r{]}
26415 @var{reg}@dots{}
26416</feature>
26417@end smallexample
26418
26419@noindent
26420Each feature's name should be unique within the description. The name
26421of a feature does not matter unless @value{GDBN} has some special
26422knowledge of the contents of that feature; if it does, the feature
26423should have its standard name. @xref{Standard Target Features}.
26424
26425@subsection Types
26426
26427Any register's value is a collection of bits which @value{GDBN} must
26428interpret. The default interpretation is a two's complement integer,
26429but other types can be requested by name in the register description.
26430Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26431Target Types}), and the description can define additional composite types.
26432
26433Each type element must have an @samp{id} attribute, which gives
26434a unique (within the containing @samp{<feature>}) name to the type.
26435Types must be defined before they are used.
26436
26437@cindex <vector>
26438Some targets offer vector registers, which can be treated as arrays
26439of scalar elements. These types are written as @samp{<vector>} elements,
26440specifying the array element type, @var{type}, and the number of elements,
26441@var{count}:
26442
26443@smallexample
26444<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26445@end smallexample
26446
26447@cindex <union>
26448If a register's value is usefully viewed in multiple ways, define it
26449with a union type containing the useful representations. The
26450@samp{<union>} element contains one or more @samp{<field>} elements,
26451each of which has a @var{name} and a @var{type}:
26452
26453@smallexample
26454<union id="@var{id}">
26455 <field name="@var{name}" type="@var{type}"/>
26456 @dots{}
26457</union>
26458@end smallexample
26459
26460@subsection Registers
26461@cindex <reg>
26462
26463Each register is represented as an element with this form:
26464
26465@smallexample
26466<reg name="@var{name}"
26467 bitsize="@var{size}"
26468 @r{[}regnum="@var{num}"@r{]}
26469 @r{[}save-restore="@var{save-restore}"@r{]}
26470 @r{[}type="@var{type}"@r{]}
26471 @r{[}group="@var{group}"@r{]}/>
26472@end smallexample
26473
26474@noindent
26475The components are as follows:
26476
26477@table @var
26478
26479@item name
26480The register's name; it must be unique within the target description.
26481
26482@item bitsize
26483The register's size, in bits.
26484
26485@item regnum
26486The register's number. If omitted, a register's number is one greater
26487than that of the previous register (either in the current feature or in
26488a preceeding feature); the first register in the target description
26489defaults to zero. This register number is used to read or write
26490the register; e.g.@: it is used in the remote @code{p} and @code{P}
26491packets, and registers appear in the @code{g} and @code{G} packets
26492in order of increasing register number.
26493
26494@item save-restore
26495Whether the register should be preserved across inferior function
26496calls; this must be either @code{yes} or @code{no}. The default is
26497@code{yes}, which is appropriate for most registers except for
26498some system control registers; this is not related to the target's
26499ABI.
26500
26501@item type
26502The type of the register. @var{type} may be a predefined type, a type
26503defined in the current feature, or one of the special types @code{int}
26504and @code{float}. @code{int} is an integer type of the correct size
26505for @var{bitsize}, and @code{float} is a floating point type (in the
26506architecture's normal floating point format) of the correct size for
26507@var{bitsize}. The default is @code{int}.
26508
26509@item group
26510The register group to which this register belongs. @var{group} must
26511be either @code{general}, @code{float}, or @code{vector}. If no
26512@var{group} is specified, @value{GDBN} will not display the register
26513in @code{info registers}.
26514
26515@end table
26516
26517@node Predefined Target Types
26518@section Predefined Target Types
26519@cindex target descriptions, predefined types
26520
26521Type definitions in the self-description can build up composite types
26522from basic building blocks, but can not define fundamental types. Instead,
26523standard identifiers are provided by @value{GDBN} for the fundamental
26524types. The currently supported types are:
26525
26526@table @code
26527
26528@item int8
26529@itemx int16
26530@itemx int32
26531@itemx int64
7cc46491 26532@itemx int128
123dc839
DJ
26533Signed integer types holding the specified number of bits.
26534
26535@item uint8
26536@itemx uint16
26537@itemx uint32
26538@itemx uint64
7cc46491 26539@itemx uint128
123dc839
DJ
26540Unsigned integer types holding the specified number of bits.
26541
26542@item code_ptr
26543@itemx data_ptr
26544Pointers to unspecified code and data. The program counter and
26545any dedicated return address register may be marked as code
26546pointers; printing a code pointer converts it into a symbolic
26547address. The stack pointer and any dedicated address registers
26548may be marked as data pointers.
26549
6e3bbd1a
PB
26550@item ieee_single
26551Single precision IEEE floating point.
26552
26553@item ieee_double
26554Double precision IEEE floating point.
26555
123dc839
DJ
26556@item arm_fpa_ext
26557The 12-byte extended precision format used by ARM FPA registers.
26558
26559@end table
26560
26561@node Standard Target Features
26562@section Standard Target Features
26563@cindex target descriptions, standard features
26564
26565A target description must contain either no registers or all the
26566target's registers. If the description contains no registers, then
26567@value{GDBN} will assume a default register layout, selected based on
26568the architecture. If the description contains any registers, the
26569default layout will not be used; the standard registers must be
26570described in the target description, in such a way that @value{GDBN}
26571can recognize them.
26572
26573This is accomplished by giving specific names to feature elements
26574which contain standard registers. @value{GDBN} will look for features
26575with those names and verify that they contain the expected registers;
26576if any known feature is missing required registers, or if any required
26577feature is missing, @value{GDBN} will reject the target
26578description. You can add additional registers to any of the
26579standard features --- @value{GDBN} will display them just as if
26580they were added to an unrecognized feature.
26581
26582This section lists the known features and their expected contents.
26583Sample XML documents for these features are included in the
26584@value{GDBN} source tree, in the directory @file{gdb/features}.
26585
26586Names recognized by @value{GDBN} should include the name of the
26587company or organization which selected the name, and the overall
26588architecture to which the feature applies; so e.g.@: the feature
26589containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26590
ff6f572f
DJ
26591The names of registers are not case sensitive for the purpose
26592of recognizing standard features, but @value{GDBN} will only display
26593registers using the capitalization used in the description.
26594
e9c17194
VP
26595@menu
26596* ARM Features::
26597* M68K Features::
26598@end menu
26599
26600
26601@node ARM Features
123dc839
DJ
26602@subsection ARM Features
26603@cindex target descriptions, ARM features
26604
26605The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26606It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26607@samp{lr}, @samp{pc}, and @samp{cpsr}.
26608
26609The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26610should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26611
ff6f572f
DJ
26612The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26613it should contain at least registers @samp{wR0} through @samp{wR15} and
26614@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26615@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26616
f8b73d13
DJ
26617@subsection MIPS Features
26618@cindex target descriptions, MIPS features
26619
26620The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26621It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26622@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26623on the target.
26624
26625The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26626contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26627registers. They may be 32-bit or 64-bit depending on the target.
26628
26629The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26630it may be optional in a future version of @value{GDBN}. It should
26631contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26632@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26633
822b6570
DJ
26634The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26635contain a single register, @samp{restart}, which is used by the
26636Linux kernel to control restartable syscalls.
26637
e9c17194
VP
26638@node M68K Features
26639@subsection M68K Features
26640@cindex target descriptions, M68K features
26641
26642@table @code
26643@item @samp{org.gnu.gdb.m68k.core}
26644@itemx @samp{org.gnu.gdb.coldfire.core}
26645@itemx @samp{org.gnu.gdb.fido.core}
26646One of those features must be always present.
26647The feature that is present determines which flavor of m86k is
26648used. The feature that is present should contain registers
26649@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26650@samp{sp}, @samp{ps} and @samp{pc}.
26651
26652@item @samp{org.gnu.gdb.coldfire.fp}
26653This feature is optional. If present, it should contain registers
26654@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26655@samp{fpiaddr}.
26656@end table
26657
7cc46491
DJ
26658@subsection PowerPC Features
26659@cindex target descriptions, PowerPC features
26660
26661The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26662targets. It should contain registers @samp{r0} through @samp{r31},
26663@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26664@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26665
26666The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26667contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26668
26669The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26670contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26671and @samp{vrsave}.
26672
26673The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26674contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26675@samp{spefscr}. SPE targets should provide 32-bit registers in
26676@samp{org.gnu.gdb.power.core} and provide the upper halves in
26677@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26678these to present registers @samp{ev0} through @samp{ev31} to the
26679user.
26680
aab4e0ec 26681@include gpl.texi
eb12ee30 26682
2154891a 26683@raisesections
6826cf00 26684@include fdl.texi
2154891a 26685@lowersections
6826cf00 26686
6d2ebf8b 26687@node Index
c906108c
SS
26688@unnumbered Index
26689
26690@printindex cp
26691
26692@tex
26693% I think something like @colophon should be in texinfo. In the
26694% meantime:
26695\long\def\colophon{\hbox to0pt{}\vfill
26696\centerline{The body of this manual is set in}
26697\centerline{\fontname\tenrm,}
26698\centerline{with headings in {\bf\fontname\tenbf}}
26699\centerline{and examples in {\tt\fontname\tentt}.}
26700\centerline{{\it\fontname\tenit\/},}
26701\centerline{{\bf\fontname\tenbf}, and}
26702\centerline{{\sl\fontname\tensl\/}}
26703\centerline{are used for emphasis.}\vfill}
26704\page\colophon
26705% Blame: doc@cygnus.com, 1991.
26706@end tex
26707
c906108c 26708@bye
This page took 2.668708 seconds and 4 git commands to generate.