* breakpoint.c (fetch_watchpoint_value): New function.
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
1924@end table
1925
6d2ebf8b 1926@node Arguments
79a6e687 1927@section Your Program's Arguments
c906108c
SS
1928
1929@cindex arguments (to your program)
1930The arguments to your program can be specified by the arguments of the
5d161b24 1931@code{run} command.
c906108c
SS
1932They are passed to a shell, which expands wildcard characters and
1933performs redirection of I/O, and thence to your program. Your
1934@code{SHELL} environment variable (if it exists) specifies what shell
1935@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1936the default shell (@file{/bin/sh} on Unix).
1937
1938On non-Unix systems, the program is usually invoked directly by
1939@value{GDBN}, which emulates I/O redirection via the appropriate system
1940calls, and the wildcard characters are expanded by the startup code of
1941the program, not by the shell.
c906108c
SS
1942
1943@code{run} with no arguments uses the same arguments used by the previous
1944@code{run}, or those set by the @code{set args} command.
1945
c906108c 1946@table @code
41afff9a 1947@kindex set args
c906108c
SS
1948@item set args
1949Specify the arguments to be used the next time your program is run. If
1950@code{set args} has no arguments, @code{run} executes your program
1951with no arguments. Once you have run your program with arguments,
1952using @code{set args} before the next @code{run} is the only way to run
1953it again without arguments.
1954
1955@kindex show args
1956@item show args
1957Show the arguments to give your program when it is started.
1958@end table
1959
6d2ebf8b 1960@node Environment
79a6e687 1961@section Your Program's Environment
c906108c
SS
1962
1963@cindex environment (of your program)
1964The @dfn{environment} consists of a set of environment variables and
1965their values. Environment variables conventionally record such things as
1966your user name, your home directory, your terminal type, and your search
1967path for programs to run. Usually you set up environment variables with
1968the shell and they are inherited by all the other programs you run. When
1969debugging, it can be useful to try running your program with a modified
1970environment without having to start @value{GDBN} over again.
1971
1972@table @code
1973@kindex path
1974@item path @var{directory}
1975Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1976(the search path for executables) that will be passed to your program.
1977The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1978You may specify several directory names, separated by whitespace or by a
1979system-dependent separator character (@samp{:} on Unix, @samp{;} on
1980MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1981is moved to the front, so it is searched sooner.
c906108c
SS
1982
1983You can use the string @samp{$cwd} to refer to whatever is the current
1984working directory at the time @value{GDBN} searches the path. If you
1985use @samp{.} instead, it refers to the directory where you executed the
1986@code{path} command. @value{GDBN} replaces @samp{.} in the
1987@var{directory} argument (with the current path) before adding
1988@var{directory} to the search path.
1989@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1990@c document that, since repeating it would be a no-op.
1991
1992@kindex show paths
1993@item show paths
1994Display the list of search paths for executables (the @code{PATH}
1995environment variable).
1996
1997@kindex show environment
1998@item show environment @r{[}@var{varname}@r{]}
1999Print the value of environment variable @var{varname} to be given to
2000your program when it starts. If you do not supply @var{varname},
2001print the names and values of all environment variables to be given to
2002your program. You can abbreviate @code{environment} as @code{env}.
2003
2004@kindex set environment
53a5351d 2005@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2006Set environment variable @var{varname} to @var{value}. The value
2007changes for your program only, not for @value{GDBN} itself. @var{value} may
2008be any string; the values of environment variables are just strings, and
2009any interpretation is supplied by your program itself. The @var{value}
2010parameter is optional; if it is eliminated, the variable is set to a
2011null value.
2012@c "any string" here does not include leading, trailing
2013@c blanks. Gnu asks: does anyone care?
2014
2015For example, this command:
2016
474c8240 2017@smallexample
c906108c 2018set env USER = foo
474c8240 2019@end smallexample
c906108c
SS
2020
2021@noindent
d4f3574e 2022tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2023@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2024are not actually required.)
2025
2026@kindex unset environment
2027@item unset environment @var{varname}
2028Remove variable @var{varname} from the environment to be passed to your
2029program. This is different from @samp{set env @var{varname} =};
2030@code{unset environment} removes the variable from the environment,
2031rather than assigning it an empty value.
2032@end table
2033
d4f3574e
SS
2034@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2035the shell indicated
c906108c
SS
2036by your @code{SHELL} environment variable if it exists (or
2037@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2038that runs an initialization file---such as @file{.cshrc} for C-shell, or
2039@file{.bashrc} for BASH---any variables you set in that file affect
2040your program. You may wish to move setting of environment variables to
2041files that are only run when you sign on, such as @file{.login} or
2042@file{.profile}.
2043
6d2ebf8b 2044@node Working Directory
79a6e687 2045@section Your Program's Working Directory
c906108c
SS
2046
2047@cindex working directory (of your program)
2048Each time you start your program with @code{run}, it inherits its
2049working directory from the current working directory of @value{GDBN}.
2050The @value{GDBN} working directory is initially whatever it inherited
2051from its parent process (typically the shell), but you can specify a new
2052working directory in @value{GDBN} with the @code{cd} command.
2053
2054The @value{GDBN} working directory also serves as a default for the commands
2055that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2056Specify Files}.
c906108c
SS
2057
2058@table @code
2059@kindex cd
721c2651 2060@cindex change working directory
c906108c
SS
2061@item cd @var{directory}
2062Set the @value{GDBN} working directory to @var{directory}.
2063
2064@kindex pwd
2065@item pwd
2066Print the @value{GDBN} working directory.
2067@end table
2068
60bf7e09
EZ
2069It is generally impossible to find the current working directory of
2070the process being debugged (since a program can change its directory
2071during its run). If you work on a system where @value{GDBN} is
2072configured with the @file{/proc} support, you can use the @code{info
2073proc} command (@pxref{SVR4 Process Information}) to find out the
2074current working directory of the debuggee.
2075
6d2ebf8b 2076@node Input/Output
79a6e687 2077@section Your Program's Input and Output
c906108c
SS
2078
2079@cindex redirection
2080@cindex i/o
2081@cindex terminal
2082By default, the program you run under @value{GDBN} does input and output to
5d161b24 2083the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2084to its own terminal modes to interact with you, but it records the terminal
2085modes your program was using and switches back to them when you continue
2086running your program.
2087
2088@table @code
2089@kindex info terminal
2090@item info terminal
2091Displays information recorded by @value{GDBN} about the terminal modes your
2092program is using.
2093@end table
2094
2095You can redirect your program's input and/or output using shell
2096redirection with the @code{run} command. For example,
2097
474c8240 2098@smallexample
c906108c 2099run > outfile
474c8240 2100@end smallexample
c906108c
SS
2101
2102@noindent
2103starts your program, diverting its output to the file @file{outfile}.
2104
2105@kindex tty
2106@cindex controlling terminal
2107Another way to specify where your program should do input and output is
2108with the @code{tty} command. This command accepts a file name as
2109argument, and causes this file to be the default for future @code{run}
2110commands. It also resets the controlling terminal for the child
2111process, for future @code{run} commands. For example,
2112
474c8240 2113@smallexample
c906108c 2114tty /dev/ttyb
474c8240 2115@end smallexample
c906108c
SS
2116
2117@noindent
2118directs that processes started with subsequent @code{run} commands
2119default to do input and output on the terminal @file{/dev/ttyb} and have
2120that as their controlling terminal.
2121
2122An explicit redirection in @code{run} overrides the @code{tty} command's
2123effect on the input/output device, but not its effect on the controlling
2124terminal.
2125
2126When you use the @code{tty} command or redirect input in the @code{run}
2127command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2128for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2129for @code{set inferior-tty}.
2130
2131@cindex inferior tty
2132@cindex set inferior controlling terminal
2133You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2134display the name of the terminal that will be used for future runs of your
2135program.
2136
2137@table @code
2138@item set inferior-tty /dev/ttyb
2139@kindex set inferior-tty
2140Set the tty for the program being debugged to /dev/ttyb.
2141
2142@item show inferior-tty
2143@kindex show inferior-tty
2144Show the current tty for the program being debugged.
2145@end table
c906108c 2146
6d2ebf8b 2147@node Attach
79a6e687 2148@section Debugging an Already-running Process
c906108c
SS
2149@kindex attach
2150@cindex attach
2151
2152@table @code
2153@item attach @var{process-id}
2154This command attaches to a running process---one that was started
2155outside @value{GDBN}. (@code{info files} shows your active
2156targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2157find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2158or with the @samp{jobs -l} shell command.
2159
2160@code{attach} does not repeat if you press @key{RET} a second time after
2161executing the command.
2162@end table
2163
2164To use @code{attach}, your program must be running in an environment
2165which supports processes; for example, @code{attach} does not work for
2166programs on bare-board targets that lack an operating system. You must
2167also have permission to send the process a signal.
2168
2169When you use @code{attach}, the debugger finds the program running in
2170the process first by looking in the current working directory, then (if
2171the program is not found) by using the source file search path
79a6e687 2172(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2173the @code{file} command to load the program. @xref{Files, ,Commands to
2174Specify Files}.
2175
2176The first thing @value{GDBN} does after arranging to debug the specified
2177process is to stop it. You can examine and modify an attached process
53a5351d
JM
2178with all the @value{GDBN} commands that are ordinarily available when
2179you start processes with @code{run}. You can insert breakpoints; you
2180can step and continue; you can modify storage. If you would rather the
2181process continue running, you may use the @code{continue} command after
c906108c
SS
2182attaching @value{GDBN} to the process.
2183
2184@table @code
2185@kindex detach
2186@item detach
2187When you have finished debugging the attached process, you can use the
2188@code{detach} command to release it from @value{GDBN} control. Detaching
2189the process continues its execution. After the @code{detach} command,
2190that process and @value{GDBN} become completely independent once more, and you
2191are ready to @code{attach} another process or start one with @code{run}.
2192@code{detach} does not repeat if you press @key{RET} again after
2193executing the command.
2194@end table
2195
159fcc13
JK
2196If you exit @value{GDBN} while you have an attached process, you detach
2197that process. If you use the @code{run} command, you kill that process.
2198By default, @value{GDBN} asks for confirmation if you try to do either of these
2199things; you can control whether or not you need to confirm by using the
2200@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2201Messages}).
c906108c 2202
6d2ebf8b 2203@node Kill Process
79a6e687 2204@section Killing the Child Process
c906108c
SS
2205
2206@table @code
2207@kindex kill
2208@item kill
2209Kill the child process in which your program is running under @value{GDBN}.
2210@end table
2211
2212This command is useful if you wish to debug a core dump instead of a
2213running process. @value{GDBN} ignores any core dump file while your program
2214is running.
2215
2216On some operating systems, a program cannot be executed outside @value{GDBN}
2217while you have breakpoints set on it inside @value{GDBN}. You can use the
2218@code{kill} command in this situation to permit running your program
2219outside the debugger.
2220
2221The @code{kill} command is also useful if you wish to recompile and
2222relink your program, since on many systems it is impossible to modify an
2223executable file while it is running in a process. In this case, when you
2224next type @code{run}, @value{GDBN} notices that the file has changed, and
2225reads the symbol table again (while trying to preserve your current
2226breakpoint settings).
2227
6d2ebf8b 2228@node Threads
79a6e687 2229@section Debugging Programs with Multiple Threads
c906108c
SS
2230
2231@cindex threads of execution
2232@cindex multiple threads
2233@cindex switching threads
2234In some operating systems, such as HP-UX and Solaris, a single program
2235may have more than one @dfn{thread} of execution. The precise semantics
2236of threads differ from one operating system to another, but in general
2237the threads of a single program are akin to multiple processes---except
2238that they share one address space (that is, they can all examine and
2239modify the same variables). On the other hand, each thread has its own
2240registers and execution stack, and perhaps private memory.
2241
2242@value{GDBN} provides these facilities for debugging multi-thread
2243programs:
2244
2245@itemize @bullet
2246@item automatic notification of new threads
2247@item @samp{thread @var{threadno}}, a command to switch among threads
2248@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2249@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2250a command to apply a command to a list of threads
2251@item thread-specific breakpoints
93815fbf
VP
2252@item @samp{set print thread-events}, which controls printing of
2253messages on thread start and exit.
c906108c
SS
2254@end itemize
2255
c906108c
SS
2256@quotation
2257@emph{Warning:} These facilities are not yet available on every
2258@value{GDBN} configuration where the operating system supports threads.
2259If your @value{GDBN} does not support threads, these commands have no
2260effect. For example, a system without thread support shows no output
2261from @samp{info threads}, and always rejects the @code{thread} command,
2262like this:
2263
2264@smallexample
2265(@value{GDBP}) info threads
2266(@value{GDBP}) thread 1
2267Thread ID 1 not known. Use the "info threads" command to
2268see the IDs of currently known threads.
2269@end smallexample
2270@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2271@c doesn't support threads"?
2272@end quotation
c906108c
SS
2273
2274@cindex focus of debugging
2275@cindex current thread
2276The @value{GDBN} thread debugging facility allows you to observe all
2277threads while your program runs---but whenever @value{GDBN} takes
2278control, one thread in particular is always the focus of debugging.
2279This thread is called the @dfn{current thread}. Debugging commands show
2280program information from the perspective of the current thread.
2281
41afff9a 2282@cindex @code{New} @var{systag} message
c906108c
SS
2283@cindex thread identifier (system)
2284@c FIXME-implementors!! It would be more helpful if the [New...] message
2285@c included GDB's numeric thread handle, so you could just go to that
2286@c thread without first checking `info threads'.
2287Whenever @value{GDBN} detects a new thread in your program, it displays
2288the target system's identification for the thread with a message in the
2289form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2290whose form varies depending on the particular system. For example, on
8807d78b 2291@sc{gnu}/Linux, you might see
c906108c 2292
474c8240 2293@smallexample
8807d78b 2294[New Thread 46912507313328 (LWP 25582)]
474c8240 2295@end smallexample
c906108c
SS
2296
2297@noindent
2298when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2299the @var{systag} is simply something like @samp{process 368}, with no
2300further qualifier.
2301
2302@c FIXME!! (1) Does the [New...] message appear even for the very first
2303@c thread of a program, or does it only appear for the
6ca652b0 2304@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2305@c program?
2306@c (2) *Is* there necessarily a first thread always? Or do some
2307@c multithread systems permit starting a program with multiple
5d161b24 2308@c threads ab initio?
c906108c
SS
2309
2310@cindex thread number
2311@cindex thread identifier (GDB)
2312For debugging purposes, @value{GDBN} associates its own thread
2313number---always a single integer---with each thread in your program.
2314
2315@table @code
2316@kindex info threads
2317@item info threads
2318Display a summary of all threads currently in your
2319program. @value{GDBN} displays for each thread (in this order):
2320
2321@enumerate
09d4efe1
EZ
2322@item
2323the thread number assigned by @value{GDBN}
c906108c 2324
09d4efe1
EZ
2325@item
2326the target system's thread identifier (@var{systag})
c906108c 2327
09d4efe1
EZ
2328@item
2329the current stack frame summary for that thread
c906108c
SS
2330@end enumerate
2331
2332@noindent
2333An asterisk @samp{*} to the left of the @value{GDBN} thread number
2334indicates the current thread.
2335
5d161b24 2336For example,
c906108c
SS
2337@end table
2338@c end table here to get a little more width for example
2339
2340@smallexample
2341(@value{GDBP}) info threads
2342 3 process 35 thread 27 0x34e5 in sigpause ()
2343 2 process 35 thread 23 0x34e5 in sigpause ()
2344* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2345 at threadtest.c:68
2346@end smallexample
53a5351d
JM
2347
2348On HP-UX systems:
c906108c 2349
4644b6e3
EZ
2350@cindex debugging multithreaded programs (on HP-UX)
2351@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2352For debugging purposes, @value{GDBN} associates its own thread
2353number---a small integer assigned in thread-creation order---with each
2354thread in your program.
2355
41afff9a
EZ
2356@cindex @code{New} @var{systag} message, on HP-UX
2357@cindex thread identifier (system), on HP-UX
c906108c
SS
2358@c FIXME-implementors!! It would be more helpful if the [New...] message
2359@c included GDB's numeric thread handle, so you could just go to that
2360@c thread without first checking `info threads'.
2361Whenever @value{GDBN} detects a new thread in your program, it displays
2362both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2363form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2364whose form varies depending on the particular system. For example, on
2365HP-UX, you see
2366
474c8240 2367@smallexample
c906108c 2368[New thread 2 (system thread 26594)]
474c8240 2369@end smallexample
c906108c
SS
2370
2371@noindent
5d161b24 2372when @value{GDBN} notices a new thread.
c906108c
SS
2373
2374@table @code
4644b6e3 2375@kindex info threads (HP-UX)
c906108c
SS
2376@item info threads
2377Display a summary of all threads currently in your
2378program. @value{GDBN} displays for each thread (in this order):
2379
2380@enumerate
2381@item the thread number assigned by @value{GDBN}
2382
2383@item the target system's thread identifier (@var{systag})
2384
2385@item the current stack frame summary for that thread
2386@end enumerate
2387
2388@noindent
2389An asterisk @samp{*} to the left of the @value{GDBN} thread number
2390indicates the current thread.
2391
5d161b24 2392For example,
c906108c
SS
2393@end table
2394@c end table here to get a little more width for example
2395
474c8240 2396@smallexample
c906108c 2397(@value{GDBP}) info threads
6d2ebf8b
SS
2398 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2399 at quicksort.c:137
2400 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2401 from /usr/lib/libc.2
2402 1 system thread 27905 0x7b003498 in _brk () \@*
2403 from /usr/lib/libc.2
474c8240 2404@end smallexample
c906108c 2405
c45da7e6
EZ
2406On Solaris, you can display more information about user threads with a
2407Solaris-specific command:
2408
2409@table @code
2410@item maint info sol-threads
2411@kindex maint info sol-threads
2412@cindex thread info (Solaris)
2413Display info on Solaris user threads.
2414@end table
2415
c906108c
SS
2416@table @code
2417@kindex thread @var{threadno}
2418@item thread @var{threadno}
2419Make thread number @var{threadno} the current thread. The command
2420argument @var{threadno} is the internal @value{GDBN} thread number, as
2421shown in the first field of the @samp{info threads} display.
2422@value{GDBN} responds by displaying the system identifier of the thread
2423you selected, and its current stack frame summary:
2424
2425@smallexample
2426@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2427(@value{GDBP}) thread 2
c906108c 2428[Switching to process 35 thread 23]
c906108c
SS
24290x34e5 in sigpause ()
2430@end smallexample
2431
2432@noindent
2433As with the @samp{[New @dots{}]} message, the form of the text after
2434@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2435threads.
c906108c 2436
9c16f35a 2437@kindex thread apply
638ac427 2438@cindex apply command to several threads
839c27b7
EZ
2439@item thread apply [@var{threadno}] [@var{all}] @var{command}
2440The @code{thread apply} command allows you to apply the named
2441@var{command} to one or more threads. Specify the numbers of the
2442threads that you want affected with the command argument
2443@var{threadno}. It can be a single thread number, one of the numbers
2444shown in the first field of the @samp{info threads} display; or it
2445could be a range of thread numbers, as in @code{2-4}. To apply a
2446command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2447
2448@kindex set print thread-events
2449@cindex print messages on thread start and exit
2450@item set print thread-events
2451@itemx set print thread-events on
2452@itemx set print thread-events off
2453The @code{set print thread-events} command allows you to enable or
2454disable printing of messages when @value{GDBN} notices that new threads have
2455started or that threads have exited. By default, these messages will
2456be printed if detection of these events is supported by the target.
2457Note that these messages cannot be disabled on all targets.
2458
2459@kindex show print thread-events
2460@item show print thread-events
2461Show whether messages will be printed when @value{GDBN} detects that threads
2462have started and exited.
c906108c
SS
2463@end table
2464
2465@cindex automatic thread selection
2466@cindex switching threads automatically
2467@cindex threads, automatic switching
2468Whenever @value{GDBN} stops your program, due to a breakpoint or a
2469signal, it automatically selects the thread where that breakpoint or
2470signal happened. @value{GDBN} alerts you to the context switch with a
2471message of the form @samp{[Switching to @var{systag}]} to identify the
2472thread.
2473
79a6e687 2474@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2475more information about how @value{GDBN} behaves when you stop and start
2476programs with multiple threads.
2477
79a6e687 2478@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2479watchpoints in programs with multiple threads.
c906108c 2480
6d2ebf8b 2481@node Processes
79a6e687 2482@section Debugging Programs with Multiple Processes
c906108c
SS
2483
2484@cindex fork, debugging programs which call
2485@cindex multiple processes
2486@cindex processes, multiple
53a5351d
JM
2487On most systems, @value{GDBN} has no special support for debugging
2488programs which create additional processes using the @code{fork}
2489function. When a program forks, @value{GDBN} will continue to debug the
2490parent process and the child process will run unimpeded. If you have
2491set a breakpoint in any code which the child then executes, the child
2492will get a @code{SIGTRAP} signal which (unless it catches the signal)
2493will cause it to terminate.
c906108c
SS
2494
2495However, if you want to debug the child process there is a workaround
2496which isn't too painful. Put a call to @code{sleep} in the code which
2497the child process executes after the fork. It may be useful to sleep
2498only if a certain environment variable is set, or a certain file exists,
2499so that the delay need not occur when you don't want to run @value{GDBN}
2500on the child. While the child is sleeping, use the @code{ps} program to
2501get its process ID. Then tell @value{GDBN} (a new invocation of
2502@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2503the child process (@pxref{Attach}). From that point on you can debug
c906108c 2504the child process just like any other process which you attached to.
c906108c 2505
b51970ac
DJ
2506On some systems, @value{GDBN} provides support for debugging programs that
2507create additional processes using the @code{fork} or @code{vfork} functions.
2508Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2509only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2510
2511By default, when a program forks, @value{GDBN} will continue to debug
2512the parent process and the child process will run unimpeded.
2513
2514If you want to follow the child process instead of the parent process,
2515use the command @w{@code{set follow-fork-mode}}.
2516
2517@table @code
2518@kindex set follow-fork-mode
2519@item set follow-fork-mode @var{mode}
2520Set the debugger response to a program call of @code{fork} or
2521@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2522process. The @var{mode} argument can be:
c906108c
SS
2523
2524@table @code
2525@item parent
2526The original process is debugged after a fork. The child process runs
2df3850c 2527unimpeded. This is the default.
c906108c
SS
2528
2529@item child
2530The new process is debugged after a fork. The parent process runs
2531unimpeded.
2532
c906108c
SS
2533@end table
2534
9c16f35a 2535@kindex show follow-fork-mode
c906108c 2536@item show follow-fork-mode
2df3850c 2537Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2538@end table
2539
5c95884b
MS
2540@cindex debugging multiple processes
2541On Linux, if you want to debug both the parent and child processes, use the
2542command @w{@code{set detach-on-fork}}.
2543
2544@table @code
2545@kindex set detach-on-fork
2546@item set detach-on-fork @var{mode}
2547Tells gdb whether to detach one of the processes after a fork, or
2548retain debugger control over them both.
2549
2550@table @code
2551@item on
2552The child process (or parent process, depending on the value of
2553@code{follow-fork-mode}) will be detached and allowed to run
2554independently. This is the default.
2555
2556@item off
2557Both processes will be held under the control of @value{GDBN}.
2558One process (child or parent, depending on the value of
2559@code{follow-fork-mode}) is debugged as usual, while the other
2560is held suspended.
2561
2562@end table
2563
11310833
NR
2564@kindex show detach-on-fork
2565@item show detach-on-fork
2566Show whether detach-on-fork mode is on/off.
5c95884b
MS
2567@end table
2568
11310833 2569If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2570@value{GDBN} will retain control of all forked processes (including
2571nested forks). You can list the forked processes under the control of
2572@value{GDBN} by using the @w{@code{info forks}} command, and switch
2573from one fork to another by using the @w{@code{fork}} command.
2574
2575@table @code
2576@kindex info forks
2577@item info forks
2578Print a list of all forked processes under the control of @value{GDBN}.
2579The listing will include a fork id, a process id, and the current
2580position (program counter) of the process.
2581
5c95884b
MS
2582@kindex fork @var{fork-id}
2583@item fork @var{fork-id}
2584Make fork number @var{fork-id} the current process. The argument
2585@var{fork-id} is the internal fork number assigned by @value{GDBN},
2586as shown in the first field of the @samp{info forks} display.
2587
11310833
NR
2588@kindex process @var{process-id}
2589@item process @var{process-id}
2590Make process number @var{process-id} the current process. The
2591argument @var{process-id} must be one that is listed in the output of
2592@samp{info forks}.
2593
5c95884b
MS
2594@end table
2595
2596To quit debugging one of the forked processes, you can either detach
f73adfeb 2597from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2598run independently), or delete (and kill) it using the
b8db102d 2599@w{@code{delete fork}} command.
5c95884b
MS
2600
2601@table @code
f73adfeb
AS
2602@kindex detach fork @var{fork-id}
2603@item detach fork @var{fork-id}
5c95884b
MS
2604Detach from the process identified by @value{GDBN} fork number
2605@var{fork-id}, and remove it from the fork list. The process will be
2606allowed to run independently.
2607
b8db102d
MS
2608@kindex delete fork @var{fork-id}
2609@item delete fork @var{fork-id}
5c95884b
MS
2610Kill the process identified by @value{GDBN} fork number @var{fork-id},
2611and remove it from the fork list.
2612
2613@end table
2614
c906108c
SS
2615If you ask to debug a child process and a @code{vfork} is followed by an
2616@code{exec}, @value{GDBN} executes the new target up to the first
2617breakpoint in the new target. If you have a breakpoint set on
2618@code{main} in your original program, the breakpoint will also be set on
2619the child process's @code{main}.
2620
2621When a child process is spawned by @code{vfork}, you cannot debug the
2622child or parent until an @code{exec} call completes.
2623
2624If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2625call executes, the new target restarts. To restart the parent process,
2626use the @code{file} command with the parent executable name as its
2627argument.
2628
2629You can use the @code{catch} command to make @value{GDBN} stop whenever
2630a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2631Catchpoints, ,Setting Catchpoints}.
c906108c 2632
5c95884b 2633@node Checkpoint/Restart
79a6e687 2634@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2635
2636@cindex checkpoint
2637@cindex restart
2638@cindex bookmark
2639@cindex snapshot of a process
2640@cindex rewind program state
2641
2642On certain operating systems@footnote{Currently, only
2643@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2644program's state, called a @dfn{checkpoint}, and come back to it
2645later.
2646
2647Returning to a checkpoint effectively undoes everything that has
2648happened in the program since the @code{checkpoint} was saved. This
2649includes changes in memory, registers, and even (within some limits)
2650system state. Effectively, it is like going back in time to the
2651moment when the checkpoint was saved.
2652
2653Thus, if you're stepping thru a program and you think you're
2654getting close to the point where things go wrong, you can save
2655a checkpoint. Then, if you accidentally go too far and miss
2656the critical statement, instead of having to restart your program
2657from the beginning, you can just go back to the checkpoint and
2658start again from there.
2659
2660This can be especially useful if it takes a lot of time or
2661steps to reach the point where you think the bug occurs.
2662
2663To use the @code{checkpoint}/@code{restart} method of debugging:
2664
2665@table @code
2666@kindex checkpoint
2667@item checkpoint
2668Save a snapshot of the debugged program's current execution state.
2669The @code{checkpoint} command takes no arguments, but each checkpoint
2670is assigned a small integer id, similar to a breakpoint id.
2671
2672@kindex info checkpoints
2673@item info checkpoints
2674List the checkpoints that have been saved in the current debugging
2675session. For each checkpoint, the following information will be
2676listed:
2677
2678@table @code
2679@item Checkpoint ID
2680@item Process ID
2681@item Code Address
2682@item Source line, or label
2683@end table
2684
2685@kindex restart @var{checkpoint-id}
2686@item restart @var{checkpoint-id}
2687Restore the program state that was saved as checkpoint number
2688@var{checkpoint-id}. All program variables, registers, stack frames
2689etc.@: will be returned to the values that they had when the checkpoint
2690was saved. In essence, gdb will ``wind back the clock'' to the point
2691in time when the checkpoint was saved.
2692
2693Note that breakpoints, @value{GDBN} variables, command history etc.
2694are not affected by restoring a checkpoint. In general, a checkpoint
2695only restores things that reside in the program being debugged, not in
2696the debugger.
2697
b8db102d
MS
2698@kindex delete checkpoint @var{checkpoint-id}
2699@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2700Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2701
2702@end table
2703
2704Returning to a previously saved checkpoint will restore the user state
2705of the program being debugged, plus a significant subset of the system
2706(OS) state, including file pointers. It won't ``un-write'' data from
2707a file, but it will rewind the file pointer to the previous location,
2708so that the previously written data can be overwritten. For files
2709opened in read mode, the pointer will also be restored so that the
2710previously read data can be read again.
2711
2712Of course, characters that have been sent to a printer (or other
2713external device) cannot be ``snatched back'', and characters received
2714from eg.@: a serial device can be removed from internal program buffers,
2715but they cannot be ``pushed back'' into the serial pipeline, ready to
2716be received again. Similarly, the actual contents of files that have
2717been changed cannot be restored (at this time).
2718
2719However, within those constraints, you actually can ``rewind'' your
2720program to a previously saved point in time, and begin debugging it
2721again --- and you can change the course of events so as to debug a
2722different execution path this time.
2723
2724@cindex checkpoints and process id
2725Finally, there is one bit of internal program state that will be
2726different when you return to a checkpoint --- the program's process
2727id. Each checkpoint will have a unique process id (or @var{pid}),
2728and each will be different from the program's original @var{pid}.
2729If your program has saved a local copy of its process id, this could
2730potentially pose a problem.
2731
79a6e687 2732@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2733
2734On some systems such as @sc{gnu}/Linux, address space randomization
2735is performed on new processes for security reasons. This makes it
2736difficult or impossible to set a breakpoint, or watchpoint, on an
2737absolute address if you have to restart the program, since the
2738absolute location of a symbol will change from one execution to the
2739next.
2740
2741A checkpoint, however, is an @emph{identical} copy of a process.
2742Therefore if you create a checkpoint at (eg.@:) the start of main,
2743and simply return to that checkpoint instead of restarting the
2744process, you can avoid the effects of address randomization and
2745your symbols will all stay in the same place.
2746
6d2ebf8b 2747@node Stopping
c906108c
SS
2748@chapter Stopping and Continuing
2749
2750The principal purposes of using a debugger are so that you can stop your
2751program before it terminates; or so that, if your program runs into
2752trouble, you can investigate and find out why.
2753
7a292a7a
SS
2754Inside @value{GDBN}, your program may stop for any of several reasons,
2755such as a signal, a breakpoint, or reaching a new line after a
2756@value{GDBN} command such as @code{step}. You may then examine and
2757change variables, set new breakpoints or remove old ones, and then
2758continue execution. Usually, the messages shown by @value{GDBN} provide
2759ample explanation of the status of your program---but you can also
2760explicitly request this information at any time.
c906108c
SS
2761
2762@table @code
2763@kindex info program
2764@item info program
2765Display information about the status of your program: whether it is
7a292a7a 2766running or not, what process it is, and why it stopped.
c906108c
SS
2767@end table
2768
2769@menu
2770* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2771* Continuing and Stepping:: Resuming execution
c906108c 2772* Signals:: Signals
c906108c 2773* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2774@end menu
2775
6d2ebf8b 2776@node Breakpoints
79a6e687 2777@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2778
2779@cindex breakpoints
2780A @dfn{breakpoint} makes your program stop whenever a certain point in
2781the program is reached. For each breakpoint, you can add conditions to
2782control in finer detail whether your program stops. You can set
2783breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2784Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2785should stop by line number, function name or exact address in the
2786program.
2787
09d4efe1
EZ
2788On some systems, you can set breakpoints in shared libraries before
2789the executable is run. There is a minor limitation on HP-UX systems:
2790you must wait until the executable is run in order to set breakpoints
2791in shared library routines that are not called directly by the program
2792(for example, routines that are arguments in a @code{pthread_create}
2793call).
c906108c
SS
2794
2795@cindex watchpoints
fd60e0df 2796@cindex data breakpoints
c906108c
SS
2797@cindex memory tracing
2798@cindex breakpoint on memory address
2799@cindex breakpoint on variable modification
2800A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2801when the value of an expression changes. The expression may be a value
0ced0c34 2802of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2803combined by operators, such as @samp{a + b}. This is sometimes called
2804@dfn{data breakpoints}. You must use a different command to set
79a6e687 2805watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2806from that, you can manage a watchpoint like any other breakpoint: you
2807enable, disable, and delete both breakpoints and watchpoints using the
2808same commands.
c906108c
SS
2809
2810You can arrange to have values from your program displayed automatically
2811whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2812Automatic Display}.
c906108c
SS
2813
2814@cindex catchpoints
2815@cindex breakpoint on events
2816A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2817when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2818exception or the loading of a library. As with watchpoints, you use a
2819different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2820Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2821other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2822@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2823
2824@cindex breakpoint numbers
2825@cindex numbers for breakpoints
2826@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2827catchpoint when you create it; these numbers are successive integers
2828starting with one. In many of the commands for controlling various
2829features of breakpoints you use the breakpoint number to say which
2830breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2831@dfn{disabled}; if disabled, it has no effect on your program until you
2832enable it again.
2833
c5394b80
JM
2834@cindex breakpoint ranges
2835@cindex ranges of breakpoints
2836Some @value{GDBN} commands accept a range of breakpoints on which to
2837operate. A breakpoint range is either a single breakpoint number, like
2838@samp{5}, or two such numbers, in increasing order, separated by a
2839hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2840all breakpoints in that range are operated on.
c5394b80 2841
c906108c
SS
2842@menu
2843* Set Breaks:: Setting breakpoints
2844* Set Watchpoints:: Setting watchpoints
2845* Set Catchpoints:: Setting catchpoints
2846* Delete Breaks:: Deleting breakpoints
2847* Disabling:: Disabling breakpoints
2848* Conditions:: Break conditions
2849* Break Commands:: Breakpoint command lists
c906108c 2850* Breakpoint Menus:: Breakpoint menus
d4f3574e 2851* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2852* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2853@end menu
2854
6d2ebf8b 2855@node Set Breaks
79a6e687 2856@subsection Setting Breakpoints
c906108c 2857
5d161b24 2858@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2859@c consider in particular declaration with/without initialization.
2860@c
2861@c FIXME 2 is there stuff on this already? break at fun start, already init?
2862
2863@kindex break
41afff9a
EZ
2864@kindex b @r{(@code{break})}
2865@vindex $bpnum@r{, convenience variable}
c906108c
SS
2866@cindex latest breakpoint
2867Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2868@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2869number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2870Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2871convenience variables.
2872
c906108c 2873@table @code
2a25a5ba
EZ
2874@item break @var{location}
2875Set a breakpoint at the given @var{location}, which can specify a
2876function name, a line number, or an address of an instruction.
2877(@xref{Specify Location}, for a list of all the possible ways to
2878specify a @var{location}.) The breakpoint will stop your program just
2879before it executes any of the code in the specified @var{location}.
2880
c906108c 2881When using source languages that permit overloading of symbols, such as
2a25a5ba 2882C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2883@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2884
c906108c
SS
2885@item break
2886When called without any arguments, @code{break} sets a breakpoint at
2887the next instruction to be executed in the selected stack frame
2888(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2889innermost, this makes your program stop as soon as control
2890returns to that frame. This is similar to the effect of a
2891@code{finish} command in the frame inside the selected frame---except
2892that @code{finish} does not leave an active breakpoint. If you use
2893@code{break} without an argument in the innermost frame, @value{GDBN} stops
2894the next time it reaches the current location; this may be useful
2895inside loops.
2896
2897@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2898least one instruction has been executed. If it did not do this, you
2899would be unable to proceed past a breakpoint without first disabling the
2900breakpoint. This rule applies whether or not the breakpoint already
2901existed when your program stopped.
2902
2903@item break @dots{} if @var{cond}
2904Set a breakpoint with condition @var{cond}; evaluate the expression
2905@var{cond} each time the breakpoint is reached, and stop only if the
2906value is nonzero---that is, if @var{cond} evaluates as true.
2907@samp{@dots{}} stands for one of the possible arguments described
2908above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2909,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2910
2911@kindex tbreak
2912@item tbreak @var{args}
2913Set a breakpoint enabled only for one stop. @var{args} are the
2914same as for the @code{break} command, and the breakpoint is set in the same
2915way, but the breakpoint is automatically deleted after the first time your
79a6e687 2916program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2917
c906108c 2918@kindex hbreak
ba04e063 2919@cindex hardware breakpoints
c906108c 2920@item hbreak @var{args}
d4f3574e
SS
2921Set a hardware-assisted breakpoint. @var{args} are the same as for the
2922@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2923breakpoint requires hardware support and some target hardware may not
2924have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2925debugging, so you can set a breakpoint at an instruction without
2926changing the instruction. This can be used with the new trap-generation
09d4efe1 2927provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2928will generate traps when a program accesses some data or instruction
2929address that is assigned to the debug registers. However the hardware
2930breakpoint registers can take a limited number of breakpoints. For
2931example, on the DSU, only two data breakpoints can be set at a time, and
2932@value{GDBN} will reject this command if more than two are used. Delete
2933or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2934(@pxref{Disabling, ,Disabling Breakpoints}).
2935@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2936For remote targets, you can restrict the number of hardware
2937breakpoints @value{GDBN} will use, see @ref{set remote
2938hardware-breakpoint-limit}.
501eef12 2939
c906108c
SS
2940@kindex thbreak
2941@item thbreak @var{args}
2942Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2943are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2944the same way. However, like the @code{tbreak} command,
c906108c
SS
2945the breakpoint is automatically deleted after the
2946first time your program stops there. Also, like the @code{hbreak}
5d161b24 2947command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2948may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2949See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2950
2951@kindex rbreak
2952@cindex regular expression
c45da7e6
EZ
2953@cindex breakpoints in functions matching a regexp
2954@cindex set breakpoints in many functions
c906108c 2955@item rbreak @var{regex}
c906108c 2956Set breakpoints on all functions matching the regular expression
11cf8741
JM
2957@var{regex}. This command sets an unconditional breakpoint on all
2958matches, printing a list of all breakpoints it set. Once these
2959breakpoints are set, they are treated just like the breakpoints set with
2960the @code{break} command. You can delete them, disable them, or make
2961them conditional the same way as any other breakpoint.
2962
2963The syntax of the regular expression is the standard one used with tools
2964like @file{grep}. Note that this is different from the syntax used by
2965shells, so for instance @code{foo*} matches all functions that include
2966an @code{fo} followed by zero or more @code{o}s. There is an implicit
2967@code{.*} leading and trailing the regular expression you supply, so to
2968match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2969
f7dc1244 2970@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2971When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2972breakpoints on overloaded functions that are not members of any special
2973classes.
c906108c 2974
f7dc1244
EZ
2975@cindex set breakpoints on all functions
2976The @code{rbreak} command can be used to set breakpoints in
2977@strong{all} the functions in a program, like this:
2978
2979@smallexample
2980(@value{GDBP}) rbreak .
2981@end smallexample
2982
c906108c
SS
2983@kindex info breakpoints
2984@cindex @code{$_} and @code{info breakpoints}
2985@item info breakpoints @r{[}@var{n}@r{]}
2986@itemx info break @r{[}@var{n}@r{]}
2987@itemx info watchpoints @r{[}@var{n}@r{]}
2988Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2989not deleted. Optional argument @var{n} means print information only
2990about the specified breakpoint (or watchpoint or catchpoint). For
2991each breakpoint, following columns are printed:
c906108c
SS
2992
2993@table @emph
2994@item Breakpoint Numbers
2995@item Type
2996Breakpoint, watchpoint, or catchpoint.
2997@item Disposition
2998Whether the breakpoint is marked to be disabled or deleted when hit.
2999@item Enabled or Disabled
3000Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3001that are not enabled.
c906108c 3002@item Address
fe6fbf8b 3003Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3004pending breakpoint whose address is not yet known, this field will
3005contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3006library that has the symbol or line referred by breakpoint is loaded.
3007See below for details. A breakpoint with several locations will
3b784c4f 3008have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3009@item What
3010Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3011line number. For a pending breakpoint, the original string passed to
3012the breakpoint command will be listed as it cannot be resolved until
3013the appropriate shared library is loaded in the future.
c906108c
SS
3014@end table
3015
3016@noindent
3017If a breakpoint is conditional, @code{info break} shows the condition on
3018the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3019are listed after that. A pending breakpoint is allowed to have a condition
3020specified for it. The condition is not parsed for validity until a shared
3021library is loaded that allows the pending breakpoint to resolve to a
3022valid location.
c906108c
SS
3023
3024@noindent
3025@code{info break} with a breakpoint
3026number @var{n} as argument lists only that breakpoint. The
3027convenience variable @code{$_} and the default examining-address for
3028the @code{x} command are set to the address of the last breakpoint
79a6e687 3029listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3030
3031@noindent
3032@code{info break} displays a count of the number of times the breakpoint
3033has been hit. This is especially useful in conjunction with the
3034@code{ignore} command. You can ignore a large number of breakpoint
3035hits, look at the breakpoint info to see how many times the breakpoint
3036was hit, and then run again, ignoring one less than that number. This
3037will get you quickly to the last hit of that breakpoint.
3038@end table
3039
3040@value{GDBN} allows you to set any number of breakpoints at the same place in
3041your program. There is nothing silly or meaningless about this. When
3042the breakpoints are conditional, this is even useful
79a6e687 3043(@pxref{Conditions, ,Break Conditions}).
c906108c 3044
fcda367b 3045It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3046in your program. Examples of this situation are:
3047
3048@itemize @bullet
3049
3050@item
3051For a C@t{++} constructor, the @value{NGCC} compiler generates several
3052instances of the function body, used in different cases.
3053
3054@item
3055For a C@t{++} template function, a given line in the function can
3056correspond to any number of instantiations.
3057
3058@item
3059For an inlined function, a given source line can correspond to
3060several places where that function is inlined.
3061
3062@end itemize
3063
3064In all those cases, @value{GDBN} will insert a breakpoint at all
3065the relevant locations.
3066
3b784c4f
EZ
3067A breakpoint with multiple locations is displayed in the breakpoint
3068table using several rows---one header row, followed by one row for
3069each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3070address column. The rows for individual locations contain the actual
3071addresses for locations, and show the functions to which those
3072locations belong. The number column for a location is of the form
fe6fbf8b
VP
3073@var{breakpoint-number}.@var{location-number}.
3074
3075For example:
3b784c4f 3076
fe6fbf8b
VP
3077@smallexample
3078Num Type Disp Enb Address What
30791 breakpoint keep y <MULTIPLE>
3080 stop only if i==1
3081 breakpoint already hit 1 time
30821.1 y 0x080486a2 in void foo<int>() at t.cc:8
30831.2 y 0x080486ca in void foo<double>() at t.cc:8
3084@end smallexample
3085
3086Each location can be individually enabled or disabled by passing
3087@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3088@code{enable} and @code{disable} commands. Note that you cannot
3089delete the individual locations from the list, you can only delete the
16bfc218 3090entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3091the @kbd{delete @var{num}} command, where @var{num} is the number of
3092the parent breakpoint, 1 in the above example). Disabling or enabling
3093the parent breakpoint (@pxref{Disabling}) affects all of the locations
3094that belong to that breakpoint.
fe6fbf8b 3095
2650777c 3096@cindex pending breakpoints
fe6fbf8b 3097It's quite common to have a breakpoint inside a shared library.
3b784c4f 3098Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3099and possibly repeatedly, as the program is executed. To support
3100this use case, @value{GDBN} updates breakpoint locations whenever
3101any shared library is loaded or unloaded. Typically, you would
fcda367b 3102set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3103debugging session, when the library is not loaded, and when the
3104symbols from the library are not available. When you try to set
3105breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3106a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3107is not yet resolved.
3108
3109After the program is run, whenever a new shared library is loaded,
3110@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3111shared library contains the symbol or line referred to by some
3112pending breakpoint, that breakpoint is resolved and becomes an
3113ordinary breakpoint. When a library is unloaded, all breakpoints
3114that refer to its symbols or source lines become pending again.
3115
3116This logic works for breakpoints with multiple locations, too. For
3117example, if you have a breakpoint in a C@t{++} template function, and
3118a newly loaded shared library has an instantiation of that template,
3119a new location is added to the list of locations for the breakpoint.
3120
3121Except for having unresolved address, pending breakpoints do not
3122differ from regular breakpoints. You can set conditions or commands,
3123enable and disable them and perform other breakpoint operations.
3124
3125@value{GDBN} provides some additional commands for controlling what
3126happens when the @samp{break} command cannot resolve breakpoint
3127address specification to an address:
dd79a6cf
JJ
3128
3129@kindex set breakpoint pending
3130@kindex show breakpoint pending
3131@table @code
3132@item set breakpoint pending auto
3133This is the default behavior. When @value{GDBN} cannot find the breakpoint
3134location, it queries you whether a pending breakpoint should be created.
3135
3136@item set breakpoint pending on
3137This indicates that an unrecognized breakpoint location should automatically
3138result in a pending breakpoint being created.
3139
3140@item set breakpoint pending off
3141This indicates that pending breakpoints are not to be created. Any
3142unrecognized breakpoint location results in an error. This setting does
3143not affect any pending breakpoints previously created.
3144
3145@item show breakpoint pending
3146Show the current behavior setting for creating pending breakpoints.
3147@end table
2650777c 3148
fe6fbf8b
VP
3149The settings above only affect the @code{break} command and its
3150variants. Once breakpoint is set, it will be automatically updated
3151as shared libraries are loaded and unloaded.
2650777c 3152
765dc015
VP
3153@cindex automatic hardware breakpoints
3154For some targets, @value{GDBN} can automatically decide if hardware or
3155software breakpoints should be used, depending on whether the
3156breakpoint address is read-only or read-write. This applies to
3157breakpoints set with the @code{break} command as well as to internal
3158breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3159breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3160breakpoints.
3161
3162You can control this automatic behaviour with the following commands::
3163
3164@kindex set breakpoint auto-hw
3165@kindex show breakpoint auto-hw
3166@table @code
3167@item set breakpoint auto-hw on
3168This is the default behavior. When @value{GDBN} sets a breakpoint, it
3169will try to use the target memory map to decide if software or hardware
3170breakpoint must be used.
3171
3172@item set breakpoint auto-hw off
3173This indicates @value{GDBN} should not automatically select breakpoint
3174type. If the target provides a memory map, @value{GDBN} will warn when
3175trying to set software breakpoint at a read-only address.
3176@end table
3177
3178
c906108c
SS
3179@cindex negative breakpoint numbers
3180@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3181@value{GDBN} itself sometimes sets breakpoints in your program for
3182special purposes, such as proper handling of @code{longjmp} (in C
3183programs). These internal breakpoints are assigned negative numbers,
3184starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3185You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3186@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3187
3188
6d2ebf8b 3189@node Set Watchpoints
79a6e687 3190@subsection Setting Watchpoints
c906108c
SS
3191
3192@cindex setting watchpoints
c906108c
SS
3193You can use a watchpoint to stop execution whenever the value of an
3194expression changes, without having to predict a particular place where
fd60e0df
EZ
3195this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3196The expression may be as simple as the value of a single variable, or
3197as complex as many variables combined by operators. Examples include:
3198
3199@itemize @bullet
3200@item
3201A reference to the value of a single variable.
3202
3203@item
3204An address cast to an appropriate data type. For example,
3205@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3206address (assuming an @code{int} occupies 4 bytes).
3207
3208@item
3209An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3210expression can use any operators valid in the program's native
3211language (@pxref{Languages}).
3212@end itemize
c906108c 3213
fa4727a6
DJ
3214You can set a watchpoint on an expression even if the expression can
3215not be evaluated yet. For instance, you can set a watchpoint on
3216@samp{*global_ptr} before @samp{global_ptr} is initialized.
3217@value{GDBN} will stop when your program sets @samp{global_ptr} and
3218the expression produces a valid value. If the expression becomes
3219valid in some other way than changing a variable (e.g.@: if the memory
3220pointed to by @samp{*global_ptr} becomes readable as the result of a
3221@code{malloc} call), @value{GDBN} may not stop until the next time
3222the expression changes.
3223
82f2d802
EZ
3224@cindex software watchpoints
3225@cindex hardware watchpoints
c906108c 3226Depending on your system, watchpoints may be implemented in software or
2df3850c 3227hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3228program and testing the variable's value each time, which is hundreds of
3229times slower than normal execution. (But this may still be worth it, to
3230catch errors where you have no clue what part of your program is the
3231culprit.)
3232
37e4754d 3233On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3234x86-based targets, @value{GDBN} includes support for hardware
3235watchpoints, which do not slow down the running of your program.
c906108c
SS
3236
3237@table @code
3238@kindex watch
d8b2a693 3239@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3240Set a watchpoint for an expression. @value{GDBN} will break when the
3241expression @var{expr} is written into by the program and its value
3242changes. The simplest (and the most popular) use of this command is
3243to watch the value of a single variable:
3244
3245@smallexample
3246(@value{GDBP}) watch foo
3247@end smallexample
c906108c 3248
d8b2a693
JB
3249If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3250clause, @value{GDBN} breaks only when the thread identified by
3251@var{threadnum} changes the value of @var{expr}. If any other threads
3252change the value of @var{expr}, @value{GDBN} will not break. Note
3253that watchpoints restricted to a single thread in this way only work
3254with Hardware Watchpoints.
3255
c906108c 3256@kindex rwatch
d8b2a693 3257@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3258Set a watchpoint that will break when the value of @var{expr} is read
3259by the program.
c906108c
SS
3260
3261@kindex awatch
d8b2a693 3262@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3263Set a watchpoint that will break when @var{expr} is either read from
3264or written into by the program.
c906108c 3265
45ac1734 3266@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3267@item info watchpoints
3268This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3269it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3270@end table
3271
3272@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3273watchpoints execute very quickly, and the debugger reports a change in
3274value at the exact instruction where the change occurs. If @value{GDBN}
3275cannot set a hardware watchpoint, it sets a software watchpoint, which
3276executes more slowly and reports the change in value at the next
82f2d802
EZ
3277@emph{statement}, not the instruction, after the change occurs.
3278
82f2d802
EZ
3279@cindex use only software watchpoints
3280You can force @value{GDBN} to use only software watchpoints with the
3281@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3282zero, @value{GDBN} will never try to use hardware watchpoints, even if
3283the underlying system supports them. (Note that hardware-assisted
3284watchpoints that were set @emph{before} setting
3285@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3286mechanism of watching expression values.)
c906108c 3287
9c16f35a
EZ
3288@table @code
3289@item set can-use-hw-watchpoints
3290@kindex set can-use-hw-watchpoints
3291Set whether or not to use hardware watchpoints.
3292
3293@item show can-use-hw-watchpoints
3294@kindex show can-use-hw-watchpoints
3295Show the current mode of using hardware watchpoints.
3296@end table
3297
3298For remote targets, you can restrict the number of hardware
3299watchpoints @value{GDBN} will use, see @ref{set remote
3300hardware-breakpoint-limit}.
3301
c906108c
SS
3302When you issue the @code{watch} command, @value{GDBN} reports
3303
474c8240 3304@smallexample
c906108c 3305Hardware watchpoint @var{num}: @var{expr}
474c8240 3306@end smallexample
c906108c
SS
3307
3308@noindent
3309if it was able to set a hardware watchpoint.
3310
7be570e7
JM
3311Currently, the @code{awatch} and @code{rwatch} commands can only set
3312hardware watchpoints, because accesses to data that don't change the
3313value of the watched expression cannot be detected without examining
3314every instruction as it is being executed, and @value{GDBN} does not do
3315that currently. If @value{GDBN} finds that it is unable to set a
3316hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3317will print a message like this:
3318
3319@smallexample
3320Expression cannot be implemented with read/access watchpoint.
3321@end smallexample
3322
3323Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3324data type of the watched expression is wider than what a hardware
3325watchpoint on the target machine can handle. For example, some systems
3326can only watch regions that are up to 4 bytes wide; on such systems you
3327cannot set hardware watchpoints for an expression that yields a
3328double-precision floating-point number (which is typically 8 bytes
3329wide). As a work-around, it might be possible to break the large region
3330into a series of smaller ones and watch them with separate watchpoints.
3331
3332If you set too many hardware watchpoints, @value{GDBN} might be unable
3333to insert all of them when you resume the execution of your program.
3334Since the precise number of active watchpoints is unknown until such
3335time as the program is about to be resumed, @value{GDBN} might not be
3336able to warn you about this when you set the watchpoints, and the
3337warning will be printed only when the program is resumed:
3338
3339@smallexample
3340Hardware watchpoint @var{num}: Could not insert watchpoint
3341@end smallexample
3342
3343@noindent
3344If this happens, delete or disable some of the watchpoints.
3345
fd60e0df
EZ
3346Watching complex expressions that reference many variables can also
3347exhaust the resources available for hardware-assisted watchpoints.
3348That's because @value{GDBN} needs to watch every variable in the
3349expression with separately allocated resources.
3350
c906108c 3351If you call a function interactively using @code{print} or @code{call},
2df3850c 3352any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3353kind of breakpoint or the call completes.
3354
7be570e7
JM
3355@value{GDBN} automatically deletes watchpoints that watch local
3356(automatic) variables, or expressions that involve such variables, when
3357they go out of scope, that is, when the execution leaves the block in
3358which these variables were defined. In particular, when the program
3359being debugged terminates, @emph{all} local variables go out of scope,
3360and so only watchpoints that watch global variables remain set. If you
3361rerun the program, you will need to set all such watchpoints again. One
3362way of doing that would be to set a code breakpoint at the entry to the
3363@code{main} function and when it breaks, set all the watchpoints.
3364
c906108c
SS
3365@cindex watchpoints and threads
3366@cindex threads and watchpoints
d983da9c
DJ
3367In multi-threaded programs, watchpoints will detect changes to the
3368watched expression from every thread.
3369
3370@quotation
3371@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3372have only limited usefulness. If @value{GDBN} creates a software
3373watchpoint, it can only watch the value of an expression @emph{in a
3374single thread}. If you are confident that the expression can only
3375change due to the current thread's activity (and if you are also
3376confident that no other thread can become current), then you can use
3377software watchpoints as usual. However, @value{GDBN} may not notice
3378when a non-current thread's activity changes the expression. (Hardware
3379watchpoints, in contrast, watch an expression in all threads.)
c906108c 3380@end quotation
c906108c 3381
501eef12
AC
3382@xref{set remote hardware-watchpoint-limit}.
3383
6d2ebf8b 3384@node Set Catchpoints
79a6e687 3385@subsection Setting Catchpoints
d4f3574e 3386@cindex catchpoints, setting
c906108c
SS
3387@cindex exception handlers
3388@cindex event handling
3389
3390You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3391kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3392shared library. Use the @code{catch} command to set a catchpoint.
3393
3394@table @code
3395@kindex catch
3396@item catch @var{event}
3397Stop when @var{event} occurs. @var{event} can be any of the following:
3398@table @code
3399@item throw
4644b6e3 3400@cindex stop on C@t{++} exceptions
b37052ae 3401The throwing of a C@t{++} exception.
c906108c
SS
3402
3403@item catch
b37052ae 3404The catching of a C@t{++} exception.
c906108c 3405
8936fcda
JB
3406@item exception
3407@cindex Ada exception catching
3408@cindex catch Ada exceptions
3409An Ada exception being raised. If an exception name is specified
3410at the end of the command (eg @code{catch exception Program_Error}),
3411the debugger will stop only when this specific exception is raised.
3412Otherwise, the debugger stops execution when any Ada exception is raised.
3413
3414@item exception unhandled
3415An exception that was raised but is not handled by the program.
3416
3417@item assert
3418A failed Ada assertion.
3419
c906108c 3420@item exec
4644b6e3 3421@cindex break on fork/exec
5ee187d7
DJ
3422A call to @code{exec}. This is currently only available for HP-UX
3423and @sc{gnu}/Linux.
c906108c
SS
3424
3425@item fork
5ee187d7
DJ
3426A call to @code{fork}. This is currently only available for HP-UX
3427and @sc{gnu}/Linux.
c906108c
SS
3428
3429@item vfork
5ee187d7
DJ
3430A call to @code{vfork}. This is currently only available for HP-UX
3431and @sc{gnu}/Linux.
c906108c
SS
3432
3433@item load
3434@itemx load @var{libname}
4644b6e3 3435@cindex break on load/unload of shared library
c906108c
SS
3436The dynamic loading of any shared library, or the loading of the library
3437@var{libname}. This is currently only available for HP-UX.
3438
3439@item unload
3440@itemx unload @var{libname}
c906108c
SS
3441The unloading of any dynamically loaded shared library, or the unloading
3442of the library @var{libname}. This is currently only available for HP-UX.
3443@end table
3444
3445@item tcatch @var{event}
3446Set a catchpoint that is enabled only for one stop. The catchpoint is
3447automatically deleted after the first time the event is caught.
3448
3449@end table
3450
3451Use the @code{info break} command to list the current catchpoints.
3452
b37052ae 3453There are currently some limitations to C@t{++} exception handling
c906108c
SS
3454(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3455
3456@itemize @bullet
3457@item
3458If you call a function interactively, @value{GDBN} normally returns
3459control to you when the function has finished executing. If the call
3460raises an exception, however, the call may bypass the mechanism that
3461returns control to you and cause your program either to abort or to
3462simply continue running until it hits a breakpoint, catches a signal
3463that @value{GDBN} is listening for, or exits. This is the case even if
3464you set a catchpoint for the exception; catchpoints on exceptions are
3465disabled within interactive calls.
3466
3467@item
3468You cannot raise an exception interactively.
3469
3470@item
3471You cannot install an exception handler interactively.
3472@end itemize
3473
3474@cindex raise exceptions
3475Sometimes @code{catch} is not the best way to debug exception handling:
3476if you need to know exactly where an exception is raised, it is better to
3477stop @emph{before} the exception handler is called, since that way you
3478can see the stack before any unwinding takes place. If you set a
3479breakpoint in an exception handler instead, it may not be easy to find
3480out where the exception was raised.
3481
3482To stop just before an exception handler is called, you need some
b37052ae 3483knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3484raised by calling a library function named @code{__raise_exception}
3485which has the following ANSI C interface:
3486
474c8240 3487@smallexample
c906108c 3488 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3489 @var{id} is the exception identifier. */
3490 void __raise_exception (void **addr, void *id);
474c8240 3491@end smallexample
c906108c
SS
3492
3493@noindent
3494To make the debugger catch all exceptions before any stack
3495unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3496(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3497
79a6e687 3498With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3499that depends on the value of @var{id}, you can stop your program when
3500a specific exception is raised. You can use multiple conditional
3501breakpoints to stop your program when any of a number of exceptions are
3502raised.
3503
3504
6d2ebf8b 3505@node Delete Breaks
79a6e687 3506@subsection Deleting Breakpoints
c906108c
SS
3507
3508@cindex clearing breakpoints, watchpoints, catchpoints
3509@cindex deleting breakpoints, watchpoints, catchpoints
3510It is often necessary to eliminate a breakpoint, watchpoint, or
3511catchpoint once it has done its job and you no longer want your program
3512to stop there. This is called @dfn{deleting} the breakpoint. A
3513breakpoint that has been deleted no longer exists; it is forgotten.
3514
3515With the @code{clear} command you can delete breakpoints according to
3516where they are in your program. With the @code{delete} command you can
3517delete individual breakpoints, watchpoints, or catchpoints by specifying
3518their breakpoint numbers.
3519
3520It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3521automatically ignores breakpoints on the first instruction to be executed
3522when you continue execution without changing the execution address.
3523
3524@table @code
3525@kindex clear
3526@item clear
3527Delete any breakpoints at the next instruction to be executed in the
79a6e687 3528selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3529the innermost frame is selected, this is a good way to delete a
3530breakpoint where your program just stopped.
3531
2a25a5ba
EZ
3532@item clear @var{location}
3533Delete any breakpoints set at the specified @var{location}.
3534@xref{Specify Location}, for the various forms of @var{location}; the
3535most useful ones are listed below:
3536
3537@table @code
c906108c
SS
3538@item clear @var{function}
3539@itemx clear @var{filename}:@var{function}
09d4efe1 3540Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3541
3542@item clear @var{linenum}
3543@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3544Delete any breakpoints set at or within the code of the specified
3545@var{linenum} of the specified @var{filename}.
2a25a5ba 3546@end table
c906108c
SS
3547
3548@cindex delete breakpoints
3549@kindex delete
41afff9a 3550@kindex d @r{(@code{delete})}
c5394b80
JM
3551@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3552Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3553ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3554breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3555confirm off}). You can abbreviate this command as @code{d}.
3556@end table
3557
6d2ebf8b 3558@node Disabling
79a6e687 3559@subsection Disabling Breakpoints
c906108c 3560
4644b6e3 3561@cindex enable/disable a breakpoint
c906108c
SS
3562Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3563prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3564it had been deleted, but remembers the information on the breakpoint so
3565that you can @dfn{enable} it again later.
3566
3567You disable and enable breakpoints, watchpoints, and catchpoints with
3568the @code{enable} and @code{disable} commands, optionally specifying one
3569or more breakpoint numbers as arguments. Use @code{info break} or
3570@code{info watch} to print a list of breakpoints, watchpoints, and
3571catchpoints if you do not know which numbers to use.
3572
3b784c4f
EZ
3573Disabling and enabling a breakpoint that has multiple locations
3574affects all of its locations.
3575
c906108c
SS
3576A breakpoint, watchpoint, or catchpoint can have any of four different
3577states of enablement:
3578
3579@itemize @bullet
3580@item
3581Enabled. The breakpoint stops your program. A breakpoint set
3582with the @code{break} command starts out in this state.
3583@item
3584Disabled. The breakpoint has no effect on your program.
3585@item
3586Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3587disabled.
c906108c
SS
3588@item
3589Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3590immediately after it does so it is deleted permanently. A breakpoint
3591set with the @code{tbreak} command starts out in this state.
c906108c
SS
3592@end itemize
3593
3594You can use the following commands to enable or disable breakpoints,
3595watchpoints, and catchpoints:
3596
3597@table @code
c906108c 3598@kindex disable
41afff9a 3599@kindex dis @r{(@code{disable})}
c5394b80 3600@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3601Disable the specified breakpoints---or all breakpoints, if none are
3602listed. A disabled breakpoint has no effect but is not forgotten. All
3603options such as ignore-counts, conditions and commands are remembered in
3604case the breakpoint is enabled again later. You may abbreviate
3605@code{disable} as @code{dis}.
3606
c906108c 3607@kindex enable
c5394b80 3608@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3609Enable the specified breakpoints (or all defined breakpoints). They
3610become effective once again in stopping your program.
3611
c5394b80 3612@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3613Enable the specified breakpoints temporarily. @value{GDBN} disables any
3614of these breakpoints immediately after stopping your program.
3615
c5394b80 3616@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3617Enable the specified breakpoints to work once, then die. @value{GDBN}
3618deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3619Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3620@end table
3621
d4f3574e
SS
3622@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3623@c confusing: tbreak is also initially enabled.
c906108c 3624Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3625,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3626subsequently, they become disabled or enabled only when you use one of
3627the commands above. (The command @code{until} can set and delete a
3628breakpoint of its own, but it does not change the state of your other
3629breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3630Stepping}.)
c906108c 3631
6d2ebf8b 3632@node Conditions
79a6e687 3633@subsection Break Conditions
c906108c
SS
3634@cindex conditional breakpoints
3635@cindex breakpoint conditions
3636
3637@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3638@c in particular for a watchpoint?
c906108c
SS
3639The simplest sort of breakpoint breaks every time your program reaches a
3640specified place. You can also specify a @dfn{condition} for a
3641breakpoint. A condition is just a Boolean expression in your
3642programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3643a condition evaluates the expression each time your program reaches it,
3644and your program stops only if the condition is @emph{true}.
3645
3646This is the converse of using assertions for program validation; in that
3647situation, you want to stop when the assertion is violated---that is,
3648when the condition is false. In C, if you want to test an assertion expressed
3649by the condition @var{assert}, you should set the condition
3650@samp{! @var{assert}} on the appropriate breakpoint.
3651
3652Conditions are also accepted for watchpoints; you may not need them,
3653since a watchpoint is inspecting the value of an expression anyhow---but
3654it might be simpler, say, to just set a watchpoint on a variable name,
3655and specify a condition that tests whether the new value is an interesting
3656one.
3657
3658Break conditions can have side effects, and may even call functions in
3659your program. This can be useful, for example, to activate functions
3660that log program progress, or to use your own print functions to
3661format special data structures. The effects are completely predictable
3662unless there is another enabled breakpoint at the same address. (In
3663that case, @value{GDBN} might see the other breakpoint first and stop your
3664program without checking the condition of this one.) Note that
d4f3574e
SS
3665breakpoint commands are usually more convenient and flexible than break
3666conditions for the
c906108c 3667purpose of performing side effects when a breakpoint is reached
79a6e687 3668(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3669
3670Break conditions can be specified when a breakpoint is set, by using
3671@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3672Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3673with the @code{condition} command.
53a5351d 3674
c906108c
SS
3675You can also use the @code{if} keyword with the @code{watch} command.
3676The @code{catch} command does not recognize the @code{if} keyword;
3677@code{condition} is the only way to impose a further condition on a
3678catchpoint.
c906108c
SS
3679
3680@table @code
3681@kindex condition
3682@item condition @var{bnum} @var{expression}
3683Specify @var{expression} as the break condition for breakpoint,
3684watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3685breakpoint @var{bnum} stops your program only if the value of
3686@var{expression} is true (nonzero, in C). When you use
3687@code{condition}, @value{GDBN} checks @var{expression} immediately for
3688syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3689referents in the context of your breakpoint. If @var{expression} uses
3690symbols not referenced in the context of the breakpoint, @value{GDBN}
3691prints an error message:
3692
474c8240 3693@smallexample
d4f3574e 3694No symbol "foo" in current context.
474c8240 3695@end smallexample
d4f3574e
SS
3696
3697@noindent
c906108c
SS
3698@value{GDBN} does
3699not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3700command (or a command that sets a breakpoint with a condition, like
3701@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3702
3703@item condition @var{bnum}
3704Remove the condition from breakpoint number @var{bnum}. It becomes
3705an ordinary unconditional breakpoint.
3706@end table
3707
3708@cindex ignore count (of breakpoint)
3709A special case of a breakpoint condition is to stop only when the
3710breakpoint has been reached a certain number of times. This is so
3711useful that there is a special way to do it, using the @dfn{ignore
3712count} of the breakpoint. Every breakpoint has an ignore count, which
3713is an integer. Most of the time, the ignore count is zero, and
3714therefore has no effect. But if your program reaches a breakpoint whose
3715ignore count is positive, then instead of stopping, it just decrements
3716the ignore count by one and continues. As a result, if the ignore count
3717value is @var{n}, the breakpoint does not stop the next @var{n} times
3718your program reaches it.
3719
3720@table @code
3721@kindex ignore
3722@item ignore @var{bnum} @var{count}
3723Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3724The next @var{count} times the breakpoint is reached, your program's
3725execution does not stop; other than to decrement the ignore count, @value{GDBN}
3726takes no action.
3727
3728To make the breakpoint stop the next time it is reached, specify
3729a count of zero.
3730
3731When you use @code{continue} to resume execution of your program from a
3732breakpoint, you can specify an ignore count directly as an argument to
3733@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3734Stepping,,Continuing and Stepping}.
c906108c
SS
3735
3736If a breakpoint has a positive ignore count and a condition, the
3737condition is not checked. Once the ignore count reaches zero,
3738@value{GDBN} resumes checking the condition.
3739
3740You could achieve the effect of the ignore count with a condition such
3741as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3742is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3743Variables}.
c906108c
SS
3744@end table
3745
3746Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3747
3748
6d2ebf8b 3749@node Break Commands
79a6e687 3750@subsection Breakpoint Command Lists
c906108c
SS
3751
3752@cindex breakpoint commands
3753You can give any breakpoint (or watchpoint or catchpoint) a series of
3754commands to execute when your program stops due to that breakpoint. For
3755example, you might want to print the values of certain expressions, or
3756enable other breakpoints.
3757
3758@table @code
3759@kindex commands
ca91424e 3760@kindex end@r{ (breakpoint commands)}
c906108c
SS
3761@item commands @r{[}@var{bnum}@r{]}
3762@itemx @dots{} @var{command-list} @dots{}
3763@itemx end
3764Specify a list of commands for breakpoint number @var{bnum}. The commands
3765themselves appear on the following lines. Type a line containing just
3766@code{end} to terminate the commands.
3767
3768To remove all commands from a breakpoint, type @code{commands} and
3769follow it immediately with @code{end}; that is, give no commands.
3770
3771With no @var{bnum} argument, @code{commands} refers to the last
3772breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3773recently encountered).
3774@end table
3775
3776Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3777disabled within a @var{command-list}.
3778
3779You can use breakpoint commands to start your program up again. Simply
3780use the @code{continue} command, or @code{step}, or any other command
3781that resumes execution.
3782
3783Any other commands in the command list, after a command that resumes
3784execution, are ignored. This is because any time you resume execution
3785(even with a simple @code{next} or @code{step}), you may encounter
3786another breakpoint---which could have its own command list, leading to
3787ambiguities about which list to execute.
3788
3789@kindex silent
3790If the first command you specify in a command list is @code{silent}, the
3791usual message about stopping at a breakpoint is not printed. This may
3792be desirable for breakpoints that are to print a specific message and
3793then continue. If none of the remaining commands print anything, you
3794see no sign that the breakpoint was reached. @code{silent} is
3795meaningful only at the beginning of a breakpoint command list.
3796
3797The commands @code{echo}, @code{output}, and @code{printf} allow you to
3798print precisely controlled output, and are often useful in silent
79a6e687 3799breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3800
3801For example, here is how you could use breakpoint commands to print the
3802value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3803
474c8240 3804@smallexample
c906108c
SS
3805break foo if x>0
3806commands
3807silent
3808printf "x is %d\n",x
3809cont
3810end
474c8240 3811@end smallexample
c906108c
SS
3812
3813One application for breakpoint commands is to compensate for one bug so
3814you can test for another. Put a breakpoint just after the erroneous line
3815of code, give it a condition to detect the case in which something
3816erroneous has been done, and give it commands to assign correct values
3817to any variables that need them. End with the @code{continue} command
3818so that your program does not stop, and start with the @code{silent}
3819command so that no output is produced. Here is an example:
3820
474c8240 3821@smallexample
c906108c
SS
3822break 403
3823commands
3824silent
3825set x = y + 4
3826cont
3827end
474c8240 3828@end smallexample
c906108c 3829
6d2ebf8b 3830@node Breakpoint Menus
79a6e687 3831@subsection Breakpoint Menus
c906108c
SS
3832@cindex overloading
3833@cindex symbol overloading
3834
b383017d 3835Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3836single function name
c906108c
SS
3837to be defined several times, for application in different contexts.
3838This is called @dfn{overloading}. When a function name is overloaded,
3839@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3840a breakpoint. You can use explicit signature of the function, as in
3841@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3842particular version of the function you want. Otherwise, @value{GDBN} offers
3843you a menu of numbered choices for different possible breakpoints, and
3844waits for your selection with the prompt @samp{>}. The first two
3845options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3846sets a breakpoint at each definition of @var{function}, and typing
3847@kbd{0} aborts the @code{break} command without setting any new
3848breakpoints.
3849
3850For example, the following session excerpt shows an attempt to set a
3851breakpoint at the overloaded symbol @code{String::after}.
3852We choose three particular definitions of that function name:
3853
3854@c FIXME! This is likely to change to show arg type lists, at least
3855@smallexample
3856@group
3857(@value{GDBP}) b String::after
3858[0] cancel
3859[1] all
3860[2] file:String.cc; line number:867
3861[3] file:String.cc; line number:860
3862[4] file:String.cc; line number:875
3863[5] file:String.cc; line number:853
3864[6] file:String.cc; line number:846
3865[7] file:String.cc; line number:735
3866> 2 4 6
3867Breakpoint 1 at 0xb26c: file String.cc, line 867.
3868Breakpoint 2 at 0xb344: file String.cc, line 875.
3869Breakpoint 3 at 0xafcc: file String.cc, line 846.
3870Multiple breakpoints were set.
3871Use the "delete" command to delete unwanted
3872 breakpoints.
3873(@value{GDBP})
3874@end group
3875@end smallexample
c906108c
SS
3876
3877@c @ifclear BARETARGET
6d2ebf8b 3878@node Error in Breakpoints
d4f3574e 3879@subsection ``Cannot insert breakpoints''
c906108c
SS
3880@c
3881@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3882@c
d4f3574e
SS
3883Under some operating systems, breakpoints cannot be used in a program if
3884any other process is running that program. In this situation,
5d161b24 3885attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3886@value{GDBN} to print an error message:
3887
474c8240 3888@smallexample
d4f3574e
SS
3889Cannot insert breakpoints.
3890The same program may be running in another process.
474c8240 3891@end smallexample
d4f3574e
SS
3892
3893When this happens, you have three ways to proceed:
3894
3895@enumerate
3896@item
3897Remove or disable the breakpoints, then continue.
3898
3899@item
5d161b24 3900Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3901name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3902that @value{GDBN} should run your program under that name.
d4f3574e
SS
3903Then start your program again.
3904
3905@item
3906Relink your program so that the text segment is nonsharable, using the
3907linker option @samp{-N}. The operating system limitation may not apply
3908to nonsharable executables.
3909@end enumerate
c906108c
SS
3910@c @end ifclear
3911
d4f3574e
SS
3912A similar message can be printed if you request too many active
3913hardware-assisted breakpoints and watchpoints:
3914
3915@c FIXME: the precise wording of this message may change; the relevant
3916@c source change is not committed yet (Sep 3, 1999).
3917@smallexample
3918Stopped; cannot insert breakpoints.
3919You may have requested too many hardware breakpoints and watchpoints.
3920@end smallexample
3921
3922@noindent
3923This message is printed when you attempt to resume the program, since
3924only then @value{GDBN} knows exactly how many hardware breakpoints and
3925watchpoints it needs to insert.
3926
3927When this message is printed, you need to disable or remove some of the
3928hardware-assisted breakpoints and watchpoints, and then continue.
3929
79a6e687 3930@node Breakpoint-related Warnings
1485d690
KB
3931@subsection ``Breakpoint address adjusted...''
3932@cindex breakpoint address adjusted
3933
3934Some processor architectures place constraints on the addresses at
3935which breakpoints may be placed. For architectures thus constrained,
3936@value{GDBN} will attempt to adjust the breakpoint's address to comply
3937with the constraints dictated by the architecture.
3938
3939One example of such an architecture is the Fujitsu FR-V. The FR-V is
3940a VLIW architecture in which a number of RISC-like instructions may be
3941bundled together for parallel execution. The FR-V architecture
3942constrains the location of a breakpoint instruction within such a
3943bundle to the instruction with the lowest address. @value{GDBN}
3944honors this constraint by adjusting a breakpoint's address to the
3945first in the bundle.
3946
3947It is not uncommon for optimized code to have bundles which contain
3948instructions from different source statements, thus it may happen that
3949a breakpoint's address will be adjusted from one source statement to
3950another. Since this adjustment may significantly alter @value{GDBN}'s
3951breakpoint related behavior from what the user expects, a warning is
3952printed when the breakpoint is first set and also when the breakpoint
3953is hit.
3954
3955A warning like the one below is printed when setting a breakpoint
3956that's been subject to address adjustment:
3957
3958@smallexample
3959warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3960@end smallexample
3961
3962Such warnings are printed both for user settable and @value{GDBN}'s
3963internal breakpoints. If you see one of these warnings, you should
3964verify that a breakpoint set at the adjusted address will have the
3965desired affect. If not, the breakpoint in question may be removed and
b383017d 3966other breakpoints may be set which will have the desired behavior.
1485d690
KB
3967E.g., it may be sufficient to place the breakpoint at a later
3968instruction. A conditional breakpoint may also be useful in some
3969cases to prevent the breakpoint from triggering too often.
3970
3971@value{GDBN} will also issue a warning when stopping at one of these
3972adjusted breakpoints:
3973
3974@smallexample
3975warning: Breakpoint 1 address previously adjusted from 0x00010414
3976to 0x00010410.
3977@end smallexample
3978
3979When this warning is encountered, it may be too late to take remedial
3980action except in cases where the breakpoint is hit earlier or more
3981frequently than expected.
d4f3574e 3982
6d2ebf8b 3983@node Continuing and Stepping
79a6e687 3984@section Continuing and Stepping
c906108c
SS
3985
3986@cindex stepping
3987@cindex continuing
3988@cindex resuming execution
3989@dfn{Continuing} means resuming program execution until your program
3990completes normally. In contrast, @dfn{stepping} means executing just
3991one more ``step'' of your program, where ``step'' may mean either one
3992line of source code, or one machine instruction (depending on what
7a292a7a
SS
3993particular command you use). Either when continuing or when stepping,
3994your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3995it stops due to a signal, you may want to use @code{handle}, or use
3996@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3997
3998@table @code
3999@kindex continue
41afff9a
EZ
4000@kindex c @r{(@code{continue})}
4001@kindex fg @r{(resume foreground execution)}
c906108c
SS
4002@item continue @r{[}@var{ignore-count}@r{]}
4003@itemx c @r{[}@var{ignore-count}@r{]}
4004@itemx fg @r{[}@var{ignore-count}@r{]}
4005Resume program execution, at the address where your program last stopped;
4006any breakpoints set at that address are bypassed. The optional argument
4007@var{ignore-count} allows you to specify a further number of times to
4008ignore a breakpoint at this location; its effect is like that of
79a6e687 4009@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4010
4011The argument @var{ignore-count} is meaningful only when your program
4012stopped due to a breakpoint. At other times, the argument to
4013@code{continue} is ignored.
4014
d4f3574e
SS
4015The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4016debugged program is deemed to be the foreground program) are provided
4017purely for convenience, and have exactly the same behavior as
4018@code{continue}.
c906108c
SS
4019@end table
4020
4021To resume execution at a different place, you can use @code{return}
79a6e687 4022(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4023calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4024Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4025
4026A typical technique for using stepping is to set a breakpoint
79a6e687 4027(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4028beginning of the function or the section of your program where a problem
4029is believed to lie, run your program until it stops at that breakpoint,
4030and then step through the suspect area, examining the variables that are
4031interesting, until you see the problem happen.
4032
4033@table @code
4034@kindex step
41afff9a 4035@kindex s @r{(@code{step})}
c906108c
SS
4036@item step
4037Continue running your program until control reaches a different source
4038line, then stop it and return control to @value{GDBN}. This command is
4039abbreviated @code{s}.
4040
4041@quotation
4042@c "without debugging information" is imprecise; actually "without line
4043@c numbers in the debugging information". (gcc -g1 has debugging info but
4044@c not line numbers). But it seems complex to try to make that
4045@c distinction here.
4046@emph{Warning:} If you use the @code{step} command while control is
4047within a function that was compiled without debugging information,
4048execution proceeds until control reaches a function that does have
4049debugging information. Likewise, it will not step into a function which
4050is compiled without debugging information. To step through functions
4051without debugging information, use the @code{stepi} command, described
4052below.
4053@end quotation
4054
4a92d011
EZ
4055The @code{step} command only stops at the first instruction of a source
4056line. This prevents the multiple stops that could otherwise occur in
4057@code{switch} statements, @code{for} loops, etc. @code{step} continues
4058to stop if a function that has debugging information is called within
4059the line. In other words, @code{step} @emph{steps inside} any functions
4060called within the line.
c906108c 4061
d4f3574e
SS
4062Also, the @code{step} command only enters a function if there is line
4063number information for the function. Otherwise it acts like the
5d161b24 4064@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4065on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4066was any debugging information about the routine.
c906108c
SS
4067
4068@item step @var{count}
4069Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4070breakpoint is reached, or a signal not related to stepping occurs before
4071@var{count} steps, stepping stops right away.
c906108c
SS
4072
4073@kindex next
41afff9a 4074@kindex n @r{(@code{next})}
c906108c
SS
4075@item next @r{[}@var{count}@r{]}
4076Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4077This is similar to @code{step}, but function calls that appear within
4078the line of code are executed without stopping. Execution stops when
4079control reaches a different line of code at the original stack level
4080that was executing when you gave the @code{next} command. This command
4081is abbreviated @code{n}.
c906108c
SS
4082
4083An argument @var{count} is a repeat count, as for @code{step}.
4084
4085
4086@c FIX ME!! Do we delete this, or is there a way it fits in with
4087@c the following paragraph? --- Vctoria
4088@c
4089@c @code{next} within a function that lacks debugging information acts like
4090@c @code{step}, but any function calls appearing within the code of the
4091@c function are executed without stopping.
4092
d4f3574e
SS
4093The @code{next} command only stops at the first instruction of a
4094source line. This prevents multiple stops that could otherwise occur in
4a92d011 4095@code{switch} statements, @code{for} loops, etc.
c906108c 4096
b90a5f51
CF
4097@kindex set step-mode
4098@item set step-mode
4099@cindex functions without line info, and stepping
4100@cindex stepping into functions with no line info
4101@itemx set step-mode on
4a92d011 4102The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4103stop at the first instruction of a function which contains no debug line
4104information rather than stepping over it.
4105
4a92d011
EZ
4106This is useful in cases where you may be interested in inspecting the
4107machine instructions of a function which has no symbolic info and do not
4108want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4109
4110@item set step-mode off
4a92d011 4111Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4112debug information. This is the default.
4113
9c16f35a
EZ
4114@item show step-mode
4115Show whether @value{GDBN} will stop in or step over functions without
4116source line debug information.
4117
c906108c
SS
4118@kindex finish
4119@item finish
4120Continue running until just after function in the selected stack frame
4121returns. Print the returned value (if any).
4122
4123Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4124,Returning from a Function}).
c906108c
SS
4125
4126@kindex until
41afff9a 4127@kindex u @r{(@code{until})}
09d4efe1 4128@cindex run until specified location
c906108c
SS
4129@item until
4130@itemx u
4131Continue running until a source line past the current line, in the
4132current stack frame, is reached. This command is used to avoid single
4133stepping through a loop more than once. It is like the @code{next}
4134command, except that when @code{until} encounters a jump, it
4135automatically continues execution until the program counter is greater
4136than the address of the jump.
4137
4138This means that when you reach the end of a loop after single stepping
4139though it, @code{until} makes your program continue execution until it
4140exits the loop. In contrast, a @code{next} command at the end of a loop
4141simply steps back to the beginning of the loop, which forces you to step
4142through the next iteration.
4143
4144@code{until} always stops your program if it attempts to exit the current
4145stack frame.
4146
4147@code{until} may produce somewhat counterintuitive results if the order
4148of machine code does not match the order of the source lines. For
4149example, in the following excerpt from a debugging session, the @code{f}
4150(@code{frame}) command shows that execution is stopped at line
4151@code{206}; yet when we use @code{until}, we get to line @code{195}:
4152
474c8240 4153@smallexample
c906108c
SS
4154(@value{GDBP}) f
4155#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4156206 expand_input();
4157(@value{GDBP}) until
4158195 for ( ; argc > 0; NEXTARG) @{
474c8240 4159@end smallexample
c906108c
SS
4160
4161This happened because, for execution efficiency, the compiler had
4162generated code for the loop closure test at the end, rather than the
4163start, of the loop---even though the test in a C @code{for}-loop is
4164written before the body of the loop. The @code{until} command appeared
4165to step back to the beginning of the loop when it advanced to this
4166expression; however, it has not really gone to an earlier
4167statement---not in terms of the actual machine code.
4168
4169@code{until} with no argument works by means of single
4170instruction stepping, and hence is slower than @code{until} with an
4171argument.
4172
4173@item until @var{location}
4174@itemx u @var{location}
4175Continue running your program until either the specified location is
4176reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4177the forms described in @ref{Specify Location}.
4178This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4179hence is quicker than @code{until} without an argument. The specified
4180location is actually reached only if it is in the current frame. This
4181implies that @code{until} can be used to skip over recursive function
4182invocations. For instance in the code below, if the current location is
4183line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4184line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4185invocations have returned.
4186
4187@smallexample
418894 int factorial (int value)
418995 @{
419096 if (value > 1) @{
419197 value *= factorial (value - 1);
419298 @}
419399 return (value);
4194100 @}
4195@end smallexample
4196
4197
4198@kindex advance @var{location}
4199@itemx advance @var{location}
09d4efe1 4200Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4201required, which should be of one of the forms described in
4202@ref{Specify Location}.
4203Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4204frame. This command is similar to @code{until}, but @code{advance} will
4205not skip over recursive function calls, and the target location doesn't
4206have to be in the same frame as the current one.
4207
c906108c
SS
4208
4209@kindex stepi
41afff9a 4210@kindex si @r{(@code{stepi})}
c906108c 4211@item stepi
96a2c332 4212@itemx stepi @var{arg}
c906108c
SS
4213@itemx si
4214Execute one machine instruction, then stop and return to the debugger.
4215
4216It is often useful to do @samp{display/i $pc} when stepping by machine
4217instructions. This makes @value{GDBN} automatically display the next
4218instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4219Display,, Automatic Display}.
c906108c
SS
4220
4221An argument is a repeat count, as in @code{step}.
4222
4223@need 750
4224@kindex nexti
41afff9a 4225@kindex ni @r{(@code{nexti})}
c906108c 4226@item nexti
96a2c332 4227@itemx nexti @var{arg}
c906108c
SS
4228@itemx ni
4229Execute one machine instruction, but if it is a function call,
4230proceed until the function returns.
4231
4232An argument is a repeat count, as in @code{next}.
4233@end table
4234
6d2ebf8b 4235@node Signals
c906108c
SS
4236@section Signals
4237@cindex signals
4238
4239A signal is an asynchronous event that can happen in a program. The
4240operating system defines the possible kinds of signals, and gives each
4241kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4242signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4243@code{SIGSEGV} is the signal a program gets from referencing a place in
4244memory far away from all the areas in use; @code{SIGALRM} occurs when
4245the alarm clock timer goes off (which happens only if your program has
4246requested an alarm).
4247
4248@cindex fatal signals
4249Some signals, including @code{SIGALRM}, are a normal part of the
4250functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4251errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4252program has not specified in advance some other way to handle the signal.
4253@code{SIGINT} does not indicate an error in your program, but it is normally
4254fatal so it can carry out the purpose of the interrupt: to kill the program.
4255
4256@value{GDBN} has the ability to detect any occurrence of a signal in your
4257program. You can tell @value{GDBN} in advance what to do for each kind of
4258signal.
4259
4260@cindex handling signals
24f93129
EZ
4261Normally, @value{GDBN} is set up to let the non-erroneous signals like
4262@code{SIGALRM} be silently passed to your program
4263(so as not to interfere with their role in the program's functioning)
c906108c
SS
4264but to stop your program immediately whenever an error signal happens.
4265You can change these settings with the @code{handle} command.
4266
4267@table @code
4268@kindex info signals
09d4efe1 4269@kindex info handle
c906108c 4270@item info signals
96a2c332 4271@itemx info handle
c906108c
SS
4272Print a table of all the kinds of signals and how @value{GDBN} has been told to
4273handle each one. You can use this to see the signal numbers of all
4274the defined types of signals.
4275
45ac1734
EZ
4276@item info signals @var{sig}
4277Similar, but print information only about the specified signal number.
4278
d4f3574e 4279@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4280
4281@kindex handle
45ac1734 4282@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4283Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4284can be the number of a signal or its name (with or without the
24f93129 4285@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4286@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4287known signals. Optional arguments @var{keywords}, described below,
4288say what change to make.
c906108c
SS
4289@end table
4290
4291@c @group
4292The keywords allowed by the @code{handle} command can be abbreviated.
4293Their full names are:
4294
4295@table @code
4296@item nostop
4297@value{GDBN} should not stop your program when this signal happens. It may
4298still print a message telling you that the signal has come in.
4299
4300@item stop
4301@value{GDBN} should stop your program when this signal happens. This implies
4302the @code{print} keyword as well.
4303
4304@item print
4305@value{GDBN} should print a message when this signal happens.
4306
4307@item noprint
4308@value{GDBN} should not mention the occurrence of the signal at all. This
4309implies the @code{nostop} keyword as well.
4310
4311@item pass
5ece1a18 4312@itemx noignore
c906108c
SS
4313@value{GDBN} should allow your program to see this signal; your program
4314can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4315and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4316
4317@item nopass
5ece1a18 4318@itemx ignore
c906108c 4319@value{GDBN} should not allow your program to see this signal.
5ece1a18 4320@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4321@end table
4322@c @end group
4323
d4f3574e
SS
4324When a signal stops your program, the signal is not visible to the
4325program until you
c906108c
SS
4326continue. Your program sees the signal then, if @code{pass} is in
4327effect for the signal in question @emph{at that time}. In other words,
4328after @value{GDBN} reports a signal, you can use the @code{handle}
4329command with @code{pass} or @code{nopass} to control whether your
4330program sees that signal when you continue.
4331
24f93129
EZ
4332The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4333non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4334@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4335erroneous signals.
4336
c906108c
SS
4337You can also use the @code{signal} command to prevent your program from
4338seeing a signal, or cause it to see a signal it normally would not see,
4339or to give it any signal at any time. For example, if your program stopped
4340due to some sort of memory reference error, you might store correct
4341values into the erroneous variables and continue, hoping to see more
4342execution; but your program would probably terminate immediately as
4343a result of the fatal signal once it saw the signal. To prevent this,
4344you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4345Program a Signal}.
c906108c 4346
6d2ebf8b 4347@node Thread Stops
79a6e687 4348@section Stopping and Starting Multi-thread Programs
c906108c
SS
4349
4350When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4351Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4352breakpoints on all threads, or on a particular thread.
4353
4354@table @code
4355@cindex breakpoints and threads
4356@cindex thread breakpoints
4357@kindex break @dots{} thread @var{threadno}
4358@item break @var{linespec} thread @var{threadno}
4359@itemx break @var{linespec} thread @var{threadno} if @dots{}
4360@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4361writing them (@pxref{Specify Location}), but the effect is always to
4362specify some source line.
c906108c
SS
4363
4364Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4365to specify that you only want @value{GDBN} to stop the program when a
4366particular thread reaches this breakpoint. @var{threadno} is one of the
4367numeric thread identifiers assigned by @value{GDBN}, shown in the first
4368column of the @samp{info threads} display.
4369
4370If you do not specify @samp{thread @var{threadno}} when you set a
4371breakpoint, the breakpoint applies to @emph{all} threads of your
4372program.
4373
4374You can use the @code{thread} qualifier on conditional breakpoints as
4375well; in this case, place @samp{thread @var{threadno}} before the
4376breakpoint condition, like this:
4377
4378@smallexample
2df3850c 4379(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4380@end smallexample
4381
4382@end table
4383
4384@cindex stopped threads
4385@cindex threads, stopped
4386Whenever your program stops under @value{GDBN} for any reason,
4387@emph{all} threads of execution stop, not just the current thread. This
4388allows you to examine the overall state of the program, including
4389switching between threads, without worrying that things may change
4390underfoot.
4391
36d86913
MC
4392@cindex thread breakpoints and system calls
4393@cindex system calls and thread breakpoints
4394@cindex premature return from system calls
4395There is an unfortunate side effect. If one thread stops for a
4396breakpoint, or for some other reason, and another thread is blocked in a
4397system call, then the system call may return prematurely. This is a
4398consequence of the interaction between multiple threads and the signals
4399that @value{GDBN} uses to implement breakpoints and other events that
4400stop execution.
4401
4402To handle this problem, your program should check the return value of
4403each system call and react appropriately. This is good programming
4404style anyways.
4405
4406For example, do not write code like this:
4407
4408@smallexample
4409 sleep (10);
4410@end smallexample
4411
4412The call to @code{sleep} will return early if a different thread stops
4413at a breakpoint or for some other reason.
4414
4415Instead, write this:
4416
4417@smallexample
4418 int unslept = 10;
4419 while (unslept > 0)
4420 unslept = sleep (unslept);
4421@end smallexample
4422
4423A system call is allowed to return early, so the system is still
4424conforming to its specification. But @value{GDBN} does cause your
4425multi-threaded program to behave differently than it would without
4426@value{GDBN}.
4427
4428Also, @value{GDBN} uses internal breakpoints in the thread library to
4429monitor certain events such as thread creation and thread destruction.
4430When such an event happens, a system call in another thread may return
4431prematurely, even though your program does not appear to stop.
4432
c906108c
SS
4433@cindex continuing threads
4434@cindex threads, continuing
4435Conversely, whenever you restart the program, @emph{all} threads start
4436executing. @emph{This is true even when single-stepping} with commands
5d161b24 4437like @code{step} or @code{next}.
c906108c
SS
4438
4439In particular, @value{GDBN} cannot single-step all threads in lockstep.
4440Since thread scheduling is up to your debugging target's operating
4441system (not controlled by @value{GDBN}), other threads may
4442execute more than one statement while the current thread completes a
4443single step. Moreover, in general other threads stop in the middle of a
4444statement, rather than at a clean statement boundary, when the program
4445stops.
4446
4447You might even find your program stopped in another thread after
4448continuing or even single-stepping. This happens whenever some other
4449thread runs into a breakpoint, a signal, or an exception before the
4450first thread completes whatever you requested.
4451
4452On some OSes, you can lock the OS scheduler and thus allow only a single
4453thread to run.
4454
4455@table @code
4456@item set scheduler-locking @var{mode}
9c16f35a
EZ
4457@cindex scheduler locking mode
4458@cindex lock scheduler
c906108c
SS
4459Set the scheduler locking mode. If it is @code{off}, then there is no
4460locking and any thread may run at any time. If @code{on}, then only the
4461current thread may run when the inferior is resumed. The @code{step}
4462mode optimizes for single-stepping. It stops other threads from
4463``seizing the prompt'' by preempting the current thread while you are
4464stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4465when you step. They are more likely to run when you @samp{next} over a
c906108c 4466function call, and they are completely free to run when you use commands
d4f3574e 4467like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4468thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4469@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4470
4471@item show scheduler-locking
4472Display the current scheduler locking mode.
4473@end table
4474
c906108c 4475
6d2ebf8b 4476@node Stack
c906108c
SS
4477@chapter Examining the Stack
4478
4479When your program has stopped, the first thing you need to know is where it
4480stopped and how it got there.
4481
4482@cindex call stack
5d161b24
DB
4483Each time your program performs a function call, information about the call
4484is generated.
4485That information includes the location of the call in your program,
4486the arguments of the call,
c906108c 4487and the local variables of the function being called.
5d161b24 4488The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4489The stack frames are allocated in a region of memory called the @dfn{call
4490stack}.
4491
4492When your program stops, the @value{GDBN} commands for examining the
4493stack allow you to see all of this information.
4494
4495@cindex selected frame
4496One of the stack frames is @dfn{selected} by @value{GDBN} and many
4497@value{GDBN} commands refer implicitly to the selected frame. In
4498particular, whenever you ask @value{GDBN} for the value of a variable in
4499your program, the value is found in the selected frame. There are
4500special @value{GDBN} commands to select whichever frame you are
79a6e687 4501interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4502
4503When your program stops, @value{GDBN} automatically selects the
5d161b24 4504currently executing frame and describes it briefly, similar to the
79a6e687 4505@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4506
4507@menu
4508* Frames:: Stack frames
4509* Backtrace:: Backtraces
4510* Selection:: Selecting a frame
4511* Frame Info:: Information on a frame
c906108c
SS
4512
4513@end menu
4514
6d2ebf8b 4515@node Frames
79a6e687 4516@section Stack Frames
c906108c 4517
d4f3574e 4518@cindex frame, definition
c906108c
SS
4519@cindex stack frame
4520The call stack is divided up into contiguous pieces called @dfn{stack
4521frames}, or @dfn{frames} for short; each frame is the data associated
4522with one call to one function. The frame contains the arguments given
4523to the function, the function's local variables, and the address at
4524which the function is executing.
4525
4526@cindex initial frame
4527@cindex outermost frame
4528@cindex innermost frame
4529When your program is started, the stack has only one frame, that of the
4530function @code{main}. This is called the @dfn{initial} frame or the
4531@dfn{outermost} frame. Each time a function is called, a new frame is
4532made. Each time a function returns, the frame for that function invocation
4533is eliminated. If a function is recursive, there can be many frames for
4534the same function. The frame for the function in which execution is
4535actually occurring is called the @dfn{innermost} frame. This is the most
4536recently created of all the stack frames that still exist.
4537
4538@cindex frame pointer
4539Inside your program, stack frames are identified by their addresses. A
4540stack frame consists of many bytes, each of which has its own address; each
4541kind of computer has a convention for choosing one byte whose
4542address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4543in a register called the @dfn{frame pointer register}
4544(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4545
4546@cindex frame number
4547@value{GDBN} assigns numbers to all existing stack frames, starting with
4548zero for the innermost frame, one for the frame that called it,
4549and so on upward. These numbers do not really exist in your program;
4550they are assigned by @value{GDBN} to give you a way of designating stack
4551frames in @value{GDBN} commands.
4552
6d2ebf8b
SS
4553@c The -fomit-frame-pointer below perennially causes hbox overflow
4554@c underflow problems.
c906108c
SS
4555@cindex frameless execution
4556Some compilers provide a way to compile functions so that they operate
e22ea452 4557without stack frames. (For example, the @value{NGCC} option
474c8240 4558@smallexample
6d2ebf8b 4559@samp{-fomit-frame-pointer}
474c8240 4560@end smallexample
6d2ebf8b 4561generates functions without a frame.)
c906108c
SS
4562This is occasionally done with heavily used library functions to save
4563the frame setup time. @value{GDBN} has limited facilities for dealing
4564with these function invocations. If the innermost function invocation
4565has no stack frame, @value{GDBN} nevertheless regards it as though
4566it had a separate frame, which is numbered zero as usual, allowing
4567correct tracing of the function call chain. However, @value{GDBN} has
4568no provision for frameless functions elsewhere in the stack.
4569
4570@table @code
d4f3574e 4571@kindex frame@r{, command}
41afff9a 4572@cindex current stack frame
c906108c 4573@item frame @var{args}
5d161b24 4574The @code{frame} command allows you to move from one stack frame to another,
c906108c 4575and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4576address of the frame or the stack frame number. Without an argument,
4577@code{frame} prints the current stack frame.
c906108c
SS
4578
4579@kindex select-frame
41afff9a 4580@cindex selecting frame silently
c906108c
SS
4581@item select-frame
4582The @code{select-frame} command allows you to move from one stack frame
4583to another without printing the frame. This is the silent version of
4584@code{frame}.
4585@end table
4586
6d2ebf8b 4587@node Backtrace
c906108c
SS
4588@section Backtraces
4589
09d4efe1
EZ
4590@cindex traceback
4591@cindex call stack traces
c906108c
SS
4592A backtrace is a summary of how your program got where it is. It shows one
4593line per frame, for many frames, starting with the currently executing
4594frame (frame zero), followed by its caller (frame one), and on up the
4595stack.
4596
4597@table @code
4598@kindex backtrace
41afff9a 4599@kindex bt @r{(@code{backtrace})}
c906108c
SS
4600@item backtrace
4601@itemx bt
4602Print a backtrace of the entire stack: one line per frame for all
4603frames in the stack.
4604
4605You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4606character, normally @kbd{Ctrl-c}.
c906108c
SS
4607
4608@item backtrace @var{n}
4609@itemx bt @var{n}
4610Similar, but print only the innermost @var{n} frames.
4611
4612@item backtrace -@var{n}
4613@itemx bt -@var{n}
4614Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4615
4616@item backtrace full
0f061b69 4617@itemx bt full
dd74f6ae
NR
4618@itemx bt full @var{n}
4619@itemx bt full -@var{n}
e7109c7e 4620Print the values of the local variables also. @var{n} specifies the
286ba84d 4621number of frames to print, as described above.
c906108c
SS
4622@end table
4623
4624@kindex where
4625@kindex info stack
c906108c
SS
4626The names @code{where} and @code{info stack} (abbreviated @code{info s})
4627are additional aliases for @code{backtrace}.
4628
839c27b7
EZ
4629@cindex multiple threads, backtrace
4630In a multi-threaded program, @value{GDBN} by default shows the
4631backtrace only for the current thread. To display the backtrace for
4632several or all of the threads, use the command @code{thread apply}
4633(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4634apply all backtrace}, @value{GDBN} will display the backtrace for all
4635the threads; this is handy when you debug a core dump of a
4636multi-threaded program.
4637
c906108c
SS
4638Each line in the backtrace shows the frame number and the function name.
4639The program counter value is also shown---unless you use @code{set
4640print address off}. The backtrace also shows the source file name and
4641line number, as well as the arguments to the function. The program
4642counter value is omitted if it is at the beginning of the code for that
4643line number.
4644
4645Here is an example of a backtrace. It was made with the command
4646@samp{bt 3}, so it shows the innermost three frames.
4647
4648@smallexample
4649@group
5d161b24 4650#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4651 at builtin.c:993
4652#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4653#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4654 at macro.c:71
4655(More stack frames follow...)
4656@end group
4657@end smallexample
4658
4659@noindent
4660The display for frame zero does not begin with a program counter
4661value, indicating that your program has stopped at the beginning of the
4662code for line @code{993} of @code{builtin.c}.
4663
18999be5
EZ
4664@cindex value optimized out, in backtrace
4665@cindex function call arguments, optimized out
4666If your program was compiled with optimizations, some compilers will
4667optimize away arguments passed to functions if those arguments are
4668never used after the call. Such optimizations generate code that
4669passes arguments through registers, but doesn't store those arguments
4670in the stack frame. @value{GDBN} has no way of displaying such
4671arguments in stack frames other than the innermost one. Here's what
4672such a backtrace might look like:
4673
4674@smallexample
4675@group
4676#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4677 at builtin.c:993
4678#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4679#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4680 at macro.c:71
4681(More stack frames follow...)
4682@end group
4683@end smallexample
4684
4685@noindent
4686The values of arguments that were not saved in their stack frames are
4687shown as @samp{<value optimized out>}.
4688
4689If you need to display the values of such optimized-out arguments,
4690either deduce that from other variables whose values depend on the one
4691you are interested in, or recompile without optimizations.
4692
a8f24a35
EZ
4693@cindex backtrace beyond @code{main} function
4694@cindex program entry point
4695@cindex startup code, and backtrace
25d29d70
AC
4696Most programs have a standard user entry point---a place where system
4697libraries and startup code transition into user code. For C this is
d416eeec
EZ
4698@code{main}@footnote{
4699Note that embedded programs (the so-called ``free-standing''
4700environment) are not required to have a @code{main} function as the
4701entry point. They could even have multiple entry points.}.
4702When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4703it will terminate the backtrace, to avoid tracing into highly
4704system-specific (and generally uninteresting) code.
4705
4706If you need to examine the startup code, or limit the number of levels
4707in a backtrace, you can change this behavior:
95f90d25
DJ
4708
4709@table @code
25d29d70
AC
4710@item set backtrace past-main
4711@itemx set backtrace past-main on
4644b6e3 4712@kindex set backtrace
25d29d70
AC
4713Backtraces will continue past the user entry point.
4714
4715@item set backtrace past-main off
95f90d25
DJ
4716Backtraces will stop when they encounter the user entry point. This is the
4717default.
4718
25d29d70 4719@item show backtrace past-main
4644b6e3 4720@kindex show backtrace
25d29d70
AC
4721Display the current user entry point backtrace policy.
4722
2315ffec
RC
4723@item set backtrace past-entry
4724@itemx set backtrace past-entry on
a8f24a35 4725Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4726This entry point is encoded by the linker when the application is built,
4727and is likely before the user entry point @code{main} (or equivalent) is called.
4728
4729@item set backtrace past-entry off
d3e8051b 4730Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4731application. This is the default.
4732
4733@item show backtrace past-entry
4734Display the current internal entry point backtrace policy.
4735
25d29d70
AC
4736@item set backtrace limit @var{n}
4737@itemx set backtrace limit 0
4738@cindex backtrace limit
4739Limit the backtrace to @var{n} levels. A value of zero means
4740unlimited.
95f90d25 4741
25d29d70
AC
4742@item show backtrace limit
4743Display the current limit on backtrace levels.
95f90d25
DJ
4744@end table
4745
6d2ebf8b 4746@node Selection
79a6e687 4747@section Selecting a Frame
c906108c
SS
4748
4749Most commands for examining the stack and other data in your program work on
4750whichever stack frame is selected at the moment. Here are the commands for
4751selecting a stack frame; all of them finish by printing a brief description
4752of the stack frame just selected.
4753
4754@table @code
d4f3574e 4755@kindex frame@r{, selecting}
41afff9a 4756@kindex f @r{(@code{frame})}
c906108c
SS
4757@item frame @var{n}
4758@itemx f @var{n}
4759Select frame number @var{n}. Recall that frame zero is the innermost
4760(currently executing) frame, frame one is the frame that called the
4761innermost one, and so on. The highest-numbered frame is the one for
4762@code{main}.
4763
4764@item frame @var{addr}
4765@itemx f @var{addr}
4766Select the frame at address @var{addr}. This is useful mainly if the
4767chaining of stack frames has been damaged by a bug, making it
4768impossible for @value{GDBN} to assign numbers properly to all frames. In
4769addition, this can be useful when your program has multiple stacks and
4770switches between them.
4771
c906108c
SS
4772On the SPARC architecture, @code{frame} needs two addresses to
4773select an arbitrary frame: a frame pointer and a stack pointer.
4774
4775On the MIPS and Alpha architecture, it needs two addresses: a stack
4776pointer and a program counter.
4777
4778On the 29k architecture, it needs three addresses: a register stack
4779pointer, a program counter, and a memory stack pointer.
c906108c
SS
4780
4781@kindex up
4782@item up @var{n}
4783Move @var{n} frames up the stack. For positive numbers @var{n}, this
4784advances toward the outermost frame, to higher frame numbers, to frames
4785that have existed longer. @var{n} defaults to one.
4786
4787@kindex down
41afff9a 4788@kindex do @r{(@code{down})}
c906108c
SS
4789@item down @var{n}
4790Move @var{n} frames down the stack. For positive numbers @var{n}, this
4791advances toward the innermost frame, to lower frame numbers, to frames
4792that were created more recently. @var{n} defaults to one. You may
4793abbreviate @code{down} as @code{do}.
4794@end table
4795
4796All of these commands end by printing two lines of output describing the
4797frame. The first line shows the frame number, the function name, the
4798arguments, and the source file and line number of execution in that
5d161b24 4799frame. The second line shows the text of that source line.
c906108c
SS
4800
4801@need 1000
4802For example:
4803
4804@smallexample
4805@group
4806(@value{GDBP}) up
4807#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4808 at env.c:10
480910 read_input_file (argv[i]);
4810@end group
4811@end smallexample
4812
4813After such a printout, the @code{list} command with no arguments
4814prints ten lines centered on the point of execution in the frame.
87885426
FN
4815You can also edit the program at the point of execution with your favorite
4816editing program by typing @code{edit}.
79a6e687 4817@xref{List, ,Printing Source Lines},
87885426 4818for details.
c906108c
SS
4819
4820@table @code
4821@kindex down-silently
4822@kindex up-silently
4823@item up-silently @var{n}
4824@itemx down-silently @var{n}
4825These two commands are variants of @code{up} and @code{down},
4826respectively; they differ in that they do their work silently, without
4827causing display of the new frame. They are intended primarily for use
4828in @value{GDBN} command scripts, where the output might be unnecessary and
4829distracting.
4830@end table
4831
6d2ebf8b 4832@node Frame Info
79a6e687 4833@section Information About a Frame
c906108c
SS
4834
4835There are several other commands to print information about the selected
4836stack frame.
4837
4838@table @code
4839@item frame
4840@itemx f
4841When used without any argument, this command does not change which
4842frame is selected, but prints a brief description of the currently
4843selected stack frame. It can be abbreviated @code{f}. With an
4844argument, this command is used to select a stack frame.
79a6e687 4845@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4846
4847@kindex info frame
41afff9a 4848@kindex info f @r{(@code{info frame})}
c906108c
SS
4849@item info frame
4850@itemx info f
4851This command prints a verbose description of the selected stack frame,
4852including:
4853
4854@itemize @bullet
5d161b24
DB
4855@item
4856the address of the frame
c906108c
SS
4857@item
4858the address of the next frame down (called by this frame)
4859@item
4860the address of the next frame up (caller of this frame)
4861@item
4862the language in which the source code corresponding to this frame is written
4863@item
4864the address of the frame's arguments
4865@item
d4f3574e
SS
4866the address of the frame's local variables
4867@item
c906108c
SS
4868the program counter saved in it (the address of execution in the caller frame)
4869@item
4870which registers were saved in the frame
4871@end itemize
4872
4873@noindent The verbose description is useful when
4874something has gone wrong that has made the stack format fail to fit
4875the usual conventions.
4876
4877@item info frame @var{addr}
4878@itemx info f @var{addr}
4879Print a verbose description of the frame at address @var{addr}, without
4880selecting that frame. The selected frame remains unchanged by this
4881command. This requires the same kind of address (more than one for some
4882architectures) that you specify in the @code{frame} command.
79a6e687 4883@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4884
4885@kindex info args
4886@item info args
4887Print the arguments of the selected frame, each on a separate line.
4888
4889@item info locals
4890@kindex info locals
4891Print the local variables of the selected frame, each on a separate
4892line. These are all variables (declared either static or automatic)
4893accessible at the point of execution of the selected frame.
4894
c906108c 4895@kindex info catch
d4f3574e
SS
4896@cindex catch exceptions, list active handlers
4897@cindex exception handlers, how to list
c906108c
SS
4898@item info catch
4899Print a list of all the exception handlers that are active in the
4900current stack frame at the current point of execution. To see other
4901exception handlers, visit the associated frame (using the @code{up},
4902@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4903@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4904
c906108c
SS
4905@end table
4906
c906108c 4907
6d2ebf8b 4908@node Source
c906108c
SS
4909@chapter Examining Source Files
4910
4911@value{GDBN} can print parts of your program's source, since the debugging
4912information recorded in the program tells @value{GDBN} what source files were
4913used to build it. When your program stops, @value{GDBN} spontaneously prints
4914the line where it stopped. Likewise, when you select a stack frame
79a6e687 4915(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4916execution in that frame has stopped. You can print other portions of
4917source files by explicit command.
4918
7a292a7a 4919If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4920prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4921@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4922
4923@menu
4924* List:: Printing source lines
2a25a5ba 4925* Specify Location:: How to specify code locations
87885426 4926* Edit:: Editing source files
c906108c 4927* Search:: Searching source files
c906108c
SS
4928* Source Path:: Specifying source directories
4929* Machine Code:: Source and machine code
4930@end menu
4931
6d2ebf8b 4932@node List
79a6e687 4933@section Printing Source Lines
c906108c
SS
4934
4935@kindex list
41afff9a 4936@kindex l @r{(@code{list})}
c906108c 4937To print lines from a source file, use the @code{list} command
5d161b24 4938(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4939There are several ways to specify what part of the file you want to
4940print; see @ref{Specify Location}, for the full list.
c906108c
SS
4941
4942Here are the forms of the @code{list} command most commonly used:
4943
4944@table @code
4945@item list @var{linenum}
4946Print lines centered around line number @var{linenum} in the
4947current source file.
4948
4949@item list @var{function}
4950Print lines centered around the beginning of function
4951@var{function}.
4952
4953@item list
4954Print more lines. If the last lines printed were printed with a
4955@code{list} command, this prints lines following the last lines
4956printed; however, if the last line printed was a solitary line printed
4957as part of displaying a stack frame (@pxref{Stack, ,Examining the
4958Stack}), this prints lines centered around that line.
4959
4960@item list -
4961Print lines just before the lines last printed.
4962@end table
4963
9c16f35a 4964@cindex @code{list}, how many lines to display
c906108c
SS
4965By default, @value{GDBN} prints ten source lines with any of these forms of
4966the @code{list} command. You can change this using @code{set listsize}:
4967
4968@table @code
4969@kindex set listsize
4970@item set listsize @var{count}
4971Make the @code{list} command display @var{count} source lines (unless
4972the @code{list} argument explicitly specifies some other number).
4973
4974@kindex show listsize
4975@item show listsize
4976Display the number of lines that @code{list} prints.
4977@end table
4978
4979Repeating a @code{list} command with @key{RET} discards the argument,
4980so it is equivalent to typing just @code{list}. This is more useful
4981than listing the same lines again. An exception is made for an
4982argument of @samp{-}; that argument is preserved in repetition so that
4983each repetition moves up in the source file.
4984
c906108c
SS
4985In general, the @code{list} command expects you to supply zero, one or two
4986@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4987of writing them (@pxref{Specify Location}), but the effect is always
4988to specify some source line.
4989
c906108c
SS
4990Here is a complete description of the possible arguments for @code{list}:
4991
4992@table @code
4993@item list @var{linespec}
4994Print lines centered around the line specified by @var{linespec}.
4995
4996@item list @var{first},@var{last}
4997Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4998linespecs. When a @code{list} command has two linespecs, and the
4999source file of the second linespec is omitted, this refers to
5000the same source file as the first linespec.
c906108c
SS
5001
5002@item list ,@var{last}
5003Print lines ending with @var{last}.
5004
5005@item list @var{first},
5006Print lines starting with @var{first}.
5007
5008@item list +
5009Print lines just after the lines last printed.
5010
5011@item list -
5012Print lines just before the lines last printed.
5013
5014@item list
5015As described in the preceding table.
5016@end table
5017
2a25a5ba
EZ
5018@node Specify Location
5019@section Specifying a Location
5020@cindex specifying location
5021@cindex linespec
c906108c 5022
2a25a5ba
EZ
5023Several @value{GDBN} commands accept arguments that specify a location
5024of your program's code. Since @value{GDBN} is a source-level
5025debugger, a location usually specifies some line in the source code;
5026for that reason, locations are also known as @dfn{linespecs}.
c906108c 5027
2a25a5ba
EZ
5028Here are all the different ways of specifying a code location that
5029@value{GDBN} understands:
c906108c 5030
2a25a5ba
EZ
5031@table @code
5032@item @var{linenum}
5033Specifies the line number @var{linenum} of the current source file.
c906108c 5034
2a25a5ba
EZ
5035@item -@var{offset}
5036@itemx +@var{offset}
5037Specifies the line @var{offset} lines before or after the @dfn{current
5038line}. For the @code{list} command, the current line is the last one
5039printed; for the breakpoint commands, this is the line at which
5040execution stopped in the currently selected @dfn{stack frame}
5041(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5042used as the second of the two linespecs in a @code{list} command,
5043this specifies the line @var{offset} lines up or down from the first
5044linespec.
5045
5046@item @var{filename}:@var{linenum}
5047Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5048
5049@item @var{function}
5050Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5051For example, in C, this is the line with the open brace.
c906108c
SS
5052
5053@item @var{filename}:@var{function}
2a25a5ba
EZ
5054Specifies the line that begins the body of the function @var{function}
5055in the file @var{filename}. You only need the file name with a
5056function name to avoid ambiguity when there are identically named
5057functions in different source files.
c906108c
SS
5058
5059@item *@var{address}
2a25a5ba
EZ
5060Specifies the program address @var{address}. For line-oriented
5061commands, such as @code{list} and @code{edit}, this specifies a source
5062line that contains @var{address}. For @code{break} and other
5063breakpoint oriented commands, this can be used to set breakpoints in
5064parts of your program which do not have debugging information or
5065source files.
5066
5067Here @var{address} may be any expression valid in the current working
5068language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5069address. In addition, as a convenience, @value{GDBN} extends the
5070semantics of expressions used in locations to cover the situations
5071that frequently happen during debugging. Here are the various forms
5072of @var{address}:
2a25a5ba
EZ
5073
5074@table @code
5075@item @var{expression}
5076Any expression valid in the current working language.
5077
5078@item @var{funcaddr}
5079An address of a function or procedure derived from its name. In C,
5080C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5081simply the function's name @var{function} (and actually a special case
5082of a valid expression). In Pascal and Modula-2, this is
5083@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5084(although the Pascal form also works).
5085
5086This form specifies the address of the function's first instruction,
5087before the stack frame and arguments have been set up.
5088
5089@item '@var{filename}'::@var{funcaddr}
5090Like @var{funcaddr} above, but also specifies the name of the source
5091file explicitly. This is useful if the name of the function does not
5092specify the function unambiguously, e.g., if there are several
5093functions with identical names in different source files.
c906108c
SS
5094@end table
5095
2a25a5ba
EZ
5096@end table
5097
5098
87885426 5099@node Edit
79a6e687 5100@section Editing Source Files
87885426
FN
5101@cindex editing source files
5102
5103@kindex edit
5104@kindex e @r{(@code{edit})}
5105To edit the lines in a source file, use the @code{edit} command.
5106The editing program of your choice
5107is invoked with the current line set to
5108the active line in the program.
5109Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5110want to print if you want to see other parts of the program:
87885426
FN
5111
5112@table @code
2a25a5ba
EZ
5113@item edit @var{location}
5114Edit the source file specified by @code{location}. Editing starts at
5115that @var{location}, e.g., at the specified source line of the
5116specified file. @xref{Specify Location}, for all the possible forms
5117of the @var{location} argument; here are the forms of the @code{edit}
5118command most commonly used:
87885426 5119
2a25a5ba 5120@table @code
87885426
FN
5121@item edit @var{number}
5122Edit the current source file with @var{number} as the active line number.
5123
5124@item edit @var{function}
5125Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5126@end table
87885426 5127
87885426
FN
5128@end table
5129
79a6e687 5130@subsection Choosing your Editor
87885426
FN
5131You can customize @value{GDBN} to use any editor you want
5132@footnote{
5133The only restriction is that your editor (say @code{ex}), recognizes the
5134following command-line syntax:
10998722 5135@smallexample
87885426 5136ex +@var{number} file
10998722 5137@end smallexample
15387254
EZ
5138The optional numeric value +@var{number} specifies the number of the line in
5139the file where to start editing.}.
5140By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5141by setting the environment variable @code{EDITOR} before using
5142@value{GDBN}. For example, to configure @value{GDBN} to use the
5143@code{vi} editor, you could use these commands with the @code{sh} shell:
5144@smallexample
87885426
FN
5145EDITOR=/usr/bin/vi
5146export EDITOR
15387254 5147gdb @dots{}
10998722 5148@end smallexample
87885426 5149or in the @code{csh} shell,
10998722 5150@smallexample
87885426 5151setenv EDITOR /usr/bin/vi
15387254 5152gdb @dots{}
10998722 5153@end smallexample
87885426 5154
6d2ebf8b 5155@node Search
79a6e687 5156@section Searching Source Files
15387254 5157@cindex searching source files
c906108c
SS
5158
5159There are two commands for searching through the current source file for a
5160regular expression.
5161
5162@table @code
5163@kindex search
5164@kindex forward-search
5165@item forward-search @var{regexp}
5166@itemx search @var{regexp}
5167The command @samp{forward-search @var{regexp}} checks each line,
5168starting with the one following the last line listed, for a match for
5d161b24 5169@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5170synonym @samp{search @var{regexp}} or abbreviate the command name as
5171@code{fo}.
5172
09d4efe1 5173@kindex reverse-search
c906108c
SS
5174@item reverse-search @var{regexp}
5175The command @samp{reverse-search @var{regexp}} checks each line, starting
5176with the one before the last line listed and going backward, for a match
5177for @var{regexp}. It lists the line that is found. You can abbreviate
5178this command as @code{rev}.
5179@end table
c906108c 5180
6d2ebf8b 5181@node Source Path
79a6e687 5182@section Specifying Source Directories
c906108c
SS
5183
5184@cindex source path
5185@cindex directories for source files
5186Executable programs sometimes do not record the directories of the source
5187files from which they were compiled, just the names. Even when they do,
5188the directories could be moved between the compilation and your debugging
5189session. @value{GDBN} has a list of directories to search for source files;
5190this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5191it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5192in the list, until it finds a file with the desired name.
5193
5194For example, suppose an executable references the file
5195@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5196@file{/mnt/cross}. The file is first looked up literally; if this
5197fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5198fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5199message is printed. @value{GDBN} does not look up the parts of the
5200source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5201Likewise, the subdirectories of the source path are not searched: if
5202the source path is @file{/mnt/cross}, and the binary refers to
5203@file{foo.c}, @value{GDBN} would not find it under
5204@file{/mnt/cross/usr/src/foo-1.0/lib}.
5205
5206Plain file names, relative file names with leading directories, file
5207names containing dots, etc.@: are all treated as described above; for
5208instance, if the source path is @file{/mnt/cross}, and the source file
5209is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5210@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5211that---@file{/mnt/cross/foo.c}.
5212
5213Note that the executable search path is @emph{not} used to locate the
cd852561 5214source files.
c906108c
SS
5215
5216Whenever you reset or rearrange the source path, @value{GDBN} clears out
5217any information it has cached about where source files are found and where
5218each line is in the file.
5219
5220@kindex directory
5221@kindex dir
d4f3574e
SS
5222When you start @value{GDBN}, its source path includes only @samp{cdir}
5223and @samp{cwd}, in that order.
c906108c
SS
5224To add other directories, use the @code{directory} command.
5225
4b505b12
AS
5226The search path is used to find both program source files and @value{GDBN}
5227script files (read using the @samp{-command} option and @samp{source} command).
5228
30daae6c
JB
5229In addition to the source path, @value{GDBN} provides a set of commands
5230that manage a list of source path substitution rules. A @dfn{substitution
5231rule} specifies how to rewrite source directories stored in the program's
5232debug information in case the sources were moved to a different
5233directory between compilation and debugging. A rule is made of
5234two strings, the first specifying what needs to be rewritten in
5235the path, and the second specifying how it should be rewritten.
5236In @ref{set substitute-path}, we name these two parts @var{from} and
5237@var{to} respectively. @value{GDBN} does a simple string replacement
5238of @var{from} with @var{to} at the start of the directory part of the
5239source file name, and uses that result instead of the original file
5240name to look up the sources.
5241
5242Using the previous example, suppose the @file{foo-1.0} tree has been
5243moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5244@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5245@file{/mnt/cross}. The first lookup will then be
5246@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5247of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5248substitution rule, use the @code{set substitute-path} command
5249(@pxref{set substitute-path}).
5250
5251To avoid unexpected substitution results, a rule is applied only if the
5252@var{from} part of the directory name ends at a directory separator.
5253For instance, a rule substituting @file{/usr/source} into
5254@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5255not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5256is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5257not be applied to @file{/root/usr/source/baz.c} either.
5258
5259In many cases, you can achieve the same result using the @code{directory}
5260command. However, @code{set substitute-path} can be more efficient in
5261the case where the sources are organized in a complex tree with multiple
5262subdirectories. With the @code{directory} command, you need to add each
5263subdirectory of your project. If you moved the entire tree while
5264preserving its internal organization, then @code{set substitute-path}
5265allows you to direct the debugger to all the sources with one single
5266command.
5267
5268@code{set substitute-path} is also more than just a shortcut command.
5269The source path is only used if the file at the original location no
5270longer exists. On the other hand, @code{set substitute-path} modifies
5271the debugger behavior to look at the rewritten location instead. So, if
5272for any reason a source file that is not relevant to your executable is
5273located at the original location, a substitution rule is the only
3f94c067 5274method available to point @value{GDBN} at the new location.
30daae6c 5275
c906108c
SS
5276@table @code
5277@item directory @var{dirname} @dots{}
5278@item dir @var{dirname} @dots{}
5279Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5280directory names may be given to this command, separated by @samp{:}
5281(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5282part of absolute file names) or
c906108c
SS
5283whitespace. You may specify a directory that is already in the source
5284path; this moves it forward, so @value{GDBN} searches it sooner.
5285
5286@kindex cdir
5287@kindex cwd
41afff9a 5288@vindex $cdir@r{, convenience variable}
d3e8051b 5289@vindex $cwd@r{, convenience variable}
c906108c
SS
5290@cindex compilation directory
5291@cindex current directory
5292@cindex working directory
5293@cindex directory, current
5294@cindex directory, compilation
5295You can use the string @samp{$cdir} to refer to the compilation
5296directory (if one is recorded), and @samp{$cwd} to refer to the current
5297working directory. @samp{$cwd} is not the same as @samp{.}---the former
5298tracks the current working directory as it changes during your @value{GDBN}
5299session, while the latter is immediately expanded to the current
5300directory at the time you add an entry to the source path.
5301
5302@item directory
cd852561 5303Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5304
5305@c RET-repeat for @code{directory} is explicitly disabled, but since
5306@c repeating it would be a no-op we do not say that. (thanks to RMS)
5307
5308@item show directories
5309@kindex show directories
5310Print the source path: show which directories it contains.
30daae6c
JB
5311
5312@anchor{set substitute-path}
5313@item set substitute-path @var{from} @var{to}
5314@kindex set substitute-path
5315Define a source path substitution rule, and add it at the end of the
5316current list of existing substitution rules. If a rule with the same
5317@var{from} was already defined, then the old rule is also deleted.
5318
5319For example, if the file @file{/foo/bar/baz.c} was moved to
5320@file{/mnt/cross/baz.c}, then the command
5321
5322@smallexample
5323(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5324@end smallexample
5325
5326@noindent
5327will tell @value{GDBN} to replace @samp{/usr/src} with
5328@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5329@file{baz.c} even though it was moved.
5330
5331In the case when more than one substitution rule have been defined,
5332the rules are evaluated one by one in the order where they have been
5333defined. The first one matching, if any, is selected to perform
5334the substitution.
5335
5336For instance, if we had entered the following commands:
5337
5338@smallexample
5339(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5340(@value{GDBP}) set substitute-path /usr/src /mnt/src
5341@end smallexample
5342
5343@noindent
5344@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5345@file{/mnt/include/defs.h} by using the first rule. However, it would
5346use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5347@file{/mnt/src/lib/foo.c}.
5348
5349
5350@item unset substitute-path [path]
5351@kindex unset substitute-path
5352If a path is specified, search the current list of substitution rules
5353for a rule that would rewrite that path. Delete that rule if found.
5354A warning is emitted by the debugger if no rule could be found.
5355
5356If no path is specified, then all substitution rules are deleted.
5357
5358@item show substitute-path [path]
5359@kindex show substitute-path
5360If a path is specified, then print the source path substitution rule
5361which would rewrite that path, if any.
5362
5363If no path is specified, then print all existing source path substitution
5364rules.
5365
c906108c
SS
5366@end table
5367
5368If your source path is cluttered with directories that are no longer of
5369interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5370versions of source. You can correct the situation as follows:
5371
5372@enumerate
5373@item
cd852561 5374Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5375
5376@item
5377Use @code{directory} with suitable arguments to reinstall the
5378directories you want in the source path. You can add all the
5379directories in one command.
5380@end enumerate
5381
6d2ebf8b 5382@node Machine Code
79a6e687 5383@section Source and Machine Code
15387254 5384@cindex source line and its code address
c906108c
SS
5385
5386You can use the command @code{info line} to map source lines to program
5387addresses (and vice versa), and the command @code{disassemble} to display
5388a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5389mode, the @code{info line} command causes the arrow to point to the
5d161b24 5390line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5391well as hex.
5392
5393@table @code
5394@kindex info line
5395@item info line @var{linespec}
5396Print the starting and ending addresses of the compiled code for
5397source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5398the ways documented in @ref{Specify Location}.
c906108c
SS
5399@end table
5400
5401For example, we can use @code{info line} to discover the location of
5402the object code for the first line of function
5403@code{m4_changequote}:
5404
d4f3574e
SS
5405@c FIXME: I think this example should also show the addresses in
5406@c symbolic form, as they usually would be displayed.
c906108c 5407@smallexample
96a2c332 5408(@value{GDBP}) info line m4_changequote
c906108c
SS
5409Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5410@end smallexample
5411
5412@noindent
15387254 5413@cindex code address and its source line
c906108c
SS
5414We can also inquire (using @code{*@var{addr}} as the form for
5415@var{linespec}) what source line covers a particular address:
5416@smallexample
5417(@value{GDBP}) info line *0x63ff
5418Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5419@end smallexample
5420
5421@cindex @code{$_} and @code{info line}
15387254 5422@cindex @code{x} command, default address
41afff9a 5423@kindex x@r{(examine), and} info line
c906108c
SS
5424After @code{info line}, the default address for the @code{x} command
5425is changed to the starting address of the line, so that @samp{x/i} is
5426sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5427,Examining Memory}). Also, this address is saved as the value of the
c906108c 5428convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5429Variables}).
c906108c
SS
5430
5431@table @code
5432@kindex disassemble
5433@cindex assembly instructions
5434@cindex instructions, assembly
5435@cindex machine instructions
5436@cindex listing machine instructions
5437@item disassemble
5438This specialized command dumps a range of memory as machine
5439instructions. The default memory range is the function surrounding the
5440program counter of the selected frame. A single argument to this
5441command is a program counter value; @value{GDBN} dumps the function
5442surrounding this value. Two arguments specify a range of addresses
5443(first inclusive, second exclusive) to dump.
5444@end table
5445
c906108c
SS
5446The following example shows the disassembly of a range of addresses of
5447HP PA-RISC 2.0 code:
5448
5449@smallexample
5450(@value{GDBP}) disas 0x32c4 0x32e4
5451Dump of assembler code from 0x32c4 to 0x32e4:
54520x32c4 <main+204>: addil 0,dp
54530x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54540x32cc <main+212>: ldil 0x3000,r31
54550x32d0 <main+216>: ble 0x3f8(sr4,r31)
54560x32d4 <main+220>: ldo 0(r31),rp
54570x32d8 <main+224>: addil -0x800,dp
54580x32dc <main+228>: ldo 0x588(r1),r26
54590x32e0 <main+232>: ldil 0x3000,r31
5460End of assembler dump.
5461@end smallexample
c906108c
SS
5462
5463Some architectures have more than one commonly-used set of instruction
5464mnemonics or other syntax.
5465
76d17f34
EZ
5466For programs that were dynamically linked and use shared libraries,
5467instructions that call functions or branch to locations in the shared
5468libraries might show a seemingly bogus location---it's actually a
5469location of the relocation table. On some architectures, @value{GDBN}
5470might be able to resolve these to actual function names.
5471
c906108c 5472@table @code
d4f3574e 5473@kindex set disassembly-flavor
d4f3574e
SS
5474@cindex Intel disassembly flavor
5475@cindex AT&T disassembly flavor
5476@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5477Select the instruction set to use when disassembling the
5478program via the @code{disassemble} or @code{x/i} commands.
5479
5480Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5481can set @var{instruction-set} to either @code{intel} or @code{att}.
5482The default is @code{att}, the AT&T flavor used by default by Unix
5483assemblers for x86-based targets.
9c16f35a
EZ
5484
5485@kindex show disassembly-flavor
5486@item show disassembly-flavor
5487Show the current setting of the disassembly flavor.
c906108c
SS
5488@end table
5489
5490
6d2ebf8b 5491@node Data
c906108c
SS
5492@chapter Examining Data
5493
5494@cindex printing data
5495@cindex examining data
5496@kindex print
5497@kindex inspect
5498@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5499@c document because it is nonstandard... Under Epoch it displays in a
5500@c different window or something like that.
5501The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5502command (abbreviated @code{p}), or its synonym @code{inspect}. It
5503evaluates and prints the value of an expression of the language your
5504program is written in (@pxref{Languages, ,Using @value{GDBN} with
5505Different Languages}).
c906108c
SS
5506
5507@table @code
d4f3574e
SS
5508@item print @var{expr}
5509@itemx print /@var{f} @var{expr}
5510@var{expr} is an expression (in the source language). By default the
5511value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5512you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5513@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5514Formats}.
c906108c
SS
5515
5516@item print
5517@itemx print /@var{f}
15387254 5518@cindex reprint the last value
d4f3574e 5519If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5520@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5521conveniently inspect the same value in an alternative format.
5522@end table
5523
5524A more low-level way of examining data is with the @code{x} command.
5525It examines data in memory at a specified address and prints it in a
79a6e687 5526specified format. @xref{Memory, ,Examining Memory}.
c906108c 5527
7a292a7a 5528If you are interested in information about types, or about how the
d4f3574e
SS
5529fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5530command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5531Table}.
c906108c
SS
5532
5533@menu
5534* Expressions:: Expressions
5535* Variables:: Program variables
5536* Arrays:: Artificial arrays
5537* Output Formats:: Output formats
5538* Memory:: Examining memory
5539* Auto Display:: Automatic display
5540* Print Settings:: Print settings
5541* Value History:: Value history
5542* Convenience Vars:: Convenience variables
5543* Registers:: Registers
c906108c 5544* Floating Point Hardware:: Floating point hardware
53c69bd7 5545* Vector Unit:: Vector Unit
721c2651 5546* OS Information:: Auxiliary data provided by operating system
29e57380 5547* Memory Region Attributes:: Memory region attributes
16d9dec6 5548* Dump/Restore Files:: Copy between memory and a file
384ee23f 5549* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5550* Character Sets:: Debugging programs that use a different
5551 character set than GDB does
09d4efe1 5552* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5553@end menu
5554
6d2ebf8b 5555@node Expressions
c906108c
SS
5556@section Expressions
5557
5558@cindex expressions
5559@code{print} and many other @value{GDBN} commands accept an expression and
5560compute its value. Any kind of constant, variable or operator defined
5561by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5562@value{GDBN}. This includes conditional expressions, function calls,
5563casts, and string constants. It also includes preprocessor macros, if
5564you compiled your program to include this information; see
5565@ref{Compilation}.
c906108c 5566
15387254 5567@cindex arrays in expressions
d4f3574e
SS
5568@value{GDBN} supports array constants in expressions input by
5569the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5570you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5571memory that is @code{malloc}ed in the target program.
c906108c 5572
c906108c
SS
5573Because C is so widespread, most of the expressions shown in examples in
5574this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5575Languages}, for information on how to use expressions in other
5576languages.
5577
5578In this section, we discuss operators that you can use in @value{GDBN}
5579expressions regardless of your programming language.
5580
15387254 5581@cindex casts, in expressions
c906108c
SS
5582Casts are supported in all languages, not just in C, because it is so
5583useful to cast a number into a pointer in order to examine a structure
5584at that address in memory.
5585@c FIXME: casts supported---Mod2 true?
c906108c
SS
5586
5587@value{GDBN} supports these operators, in addition to those common
5588to programming languages:
5589
5590@table @code
5591@item @@
5592@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5593@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5594
5595@item ::
5596@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5597function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5598
5599@cindex @{@var{type}@}
5600@cindex type casting memory
5601@cindex memory, viewing as typed object
5602@cindex casts, to view memory
5603@item @{@var{type}@} @var{addr}
5604Refers to an object of type @var{type} stored at address @var{addr} in
5605memory. @var{addr} may be any expression whose value is an integer or
5606pointer (but parentheses are required around binary operators, just as in
5607a cast). This construct is allowed regardless of what kind of data is
5608normally supposed to reside at @var{addr}.
5609@end table
5610
6d2ebf8b 5611@node Variables
79a6e687 5612@section Program Variables
c906108c
SS
5613
5614The most common kind of expression to use is the name of a variable
5615in your program.
5616
5617Variables in expressions are understood in the selected stack frame
79a6e687 5618(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5619
5620@itemize @bullet
5621@item
5622global (or file-static)
5623@end itemize
5624
5d161b24 5625@noindent or
c906108c
SS
5626
5627@itemize @bullet
5628@item
5629visible according to the scope rules of the
5630programming language from the point of execution in that frame
5d161b24 5631@end itemize
c906108c
SS
5632
5633@noindent This means that in the function
5634
474c8240 5635@smallexample
c906108c
SS
5636foo (a)
5637 int a;
5638@{
5639 bar (a);
5640 @{
5641 int b = test ();
5642 bar (b);
5643 @}
5644@}
474c8240 5645@end smallexample
c906108c
SS
5646
5647@noindent
5648you can examine and use the variable @code{a} whenever your program is
5649executing within the function @code{foo}, but you can only use or
5650examine the variable @code{b} while your program is executing inside
5651the block where @code{b} is declared.
5652
5653@cindex variable name conflict
5654There is an exception: you can refer to a variable or function whose
5655scope is a single source file even if the current execution point is not
5656in this file. But it is possible to have more than one such variable or
5657function with the same name (in different source files). If that
5658happens, referring to that name has unpredictable effects. If you wish,
5659you can specify a static variable in a particular function or file,
15387254 5660using the colon-colon (@code{::}) notation:
c906108c 5661
d4f3574e 5662@cindex colon-colon, context for variables/functions
12c27660 5663@ifnotinfo
c906108c 5664@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5665@cindex @code{::}, context for variables/functions
12c27660 5666@end ifnotinfo
474c8240 5667@smallexample
c906108c
SS
5668@var{file}::@var{variable}
5669@var{function}::@var{variable}
474c8240 5670@end smallexample
c906108c
SS
5671
5672@noindent
5673Here @var{file} or @var{function} is the name of the context for the
5674static @var{variable}. In the case of file names, you can use quotes to
5675make sure @value{GDBN} parses the file name as a single word---for example,
5676to print a global value of @code{x} defined in @file{f2.c}:
5677
474c8240 5678@smallexample
c906108c 5679(@value{GDBP}) p 'f2.c'::x
474c8240 5680@end smallexample
c906108c 5681
b37052ae 5682@cindex C@t{++} scope resolution
c906108c 5683This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5684use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5685scope resolution operator in @value{GDBN} expressions.
5686@c FIXME: Um, so what happens in one of those rare cases where it's in
5687@c conflict?? --mew
c906108c
SS
5688
5689@cindex wrong values
5690@cindex variable values, wrong
15387254
EZ
5691@cindex function entry/exit, wrong values of variables
5692@cindex optimized code, wrong values of variables
c906108c
SS
5693@quotation
5694@emph{Warning:} Occasionally, a local variable may appear to have the
5695wrong value at certain points in a function---just after entry to a new
5696scope, and just before exit.
5697@end quotation
5698You may see this problem when you are stepping by machine instructions.
5699This is because, on most machines, it takes more than one instruction to
5700set up a stack frame (including local variable definitions); if you are
5701stepping by machine instructions, variables may appear to have the wrong
5702values until the stack frame is completely built. On exit, it usually
5703also takes more than one machine instruction to destroy a stack frame;
5704after you begin stepping through that group of instructions, local
5705variable definitions may be gone.
5706
5707This may also happen when the compiler does significant optimizations.
5708To be sure of always seeing accurate values, turn off all optimization
5709when compiling.
5710
d4f3574e
SS
5711@cindex ``No symbol "foo" in current context''
5712Another possible effect of compiler optimizations is to optimize
5713unused variables out of existence, or assign variables to registers (as
5714opposed to memory addresses). Depending on the support for such cases
5715offered by the debug info format used by the compiler, @value{GDBN}
5716might not be able to display values for such local variables. If that
5717happens, @value{GDBN} will print a message like this:
5718
474c8240 5719@smallexample
d4f3574e 5720No symbol "foo" in current context.
474c8240 5721@end smallexample
d4f3574e
SS
5722
5723To solve such problems, either recompile without optimizations, or use a
5724different debug info format, if the compiler supports several such
15387254 5725formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5726usually supports the @option{-gstabs+} option. @option{-gstabs+}
5727produces debug info in a format that is superior to formats such as
5728COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5729an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5730for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5731Compiler Collection (GCC)}.
79a6e687 5732@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5733that are best suited to C@t{++} programs.
d4f3574e 5734
ab1adacd
EZ
5735If you ask to print an object whose contents are unknown to
5736@value{GDBN}, e.g., because its data type is not completely specified
5737by the debug information, @value{GDBN} will say @samp{<incomplete
5738type>}. @xref{Symbols, incomplete type}, for more about this.
5739
3a60f64e
JK
5740Strings are identified as arrays of @code{char} values without specified
5741signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5742printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5743@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5744defines literal string type @code{"char"} as @code{char} without a sign.
5745For program code
5746
5747@smallexample
5748char var0[] = "A";
5749signed char var1[] = "A";
5750@end smallexample
5751
5752You get during debugging
5753@smallexample
5754(gdb) print var0
5755$1 = "A"
5756(gdb) print var1
5757$2 = @{65 'A', 0 '\0'@}
5758@end smallexample
5759
6d2ebf8b 5760@node Arrays
79a6e687 5761@section Artificial Arrays
c906108c
SS
5762
5763@cindex artificial array
15387254 5764@cindex arrays
41afff9a 5765@kindex @@@r{, referencing memory as an array}
c906108c
SS
5766It is often useful to print out several successive objects of the
5767same type in memory; a section of an array, or an array of
5768dynamically determined size for which only a pointer exists in the
5769program.
5770
5771You can do this by referring to a contiguous span of memory as an
5772@dfn{artificial array}, using the binary operator @samp{@@}. The left
5773operand of @samp{@@} should be the first element of the desired array
5774and be an individual object. The right operand should be the desired length
5775of the array. The result is an array value whose elements are all of
5776the type of the left argument. The first element is actually the left
5777argument; the second element comes from bytes of memory immediately
5778following those that hold the first element, and so on. Here is an
5779example. If a program says
5780
474c8240 5781@smallexample
c906108c 5782int *array = (int *) malloc (len * sizeof (int));
474c8240 5783@end smallexample
c906108c
SS
5784
5785@noindent
5786you can print the contents of @code{array} with
5787
474c8240 5788@smallexample
c906108c 5789p *array@@len
474c8240 5790@end smallexample
c906108c
SS
5791
5792The left operand of @samp{@@} must reside in memory. Array values made
5793with @samp{@@} in this way behave just like other arrays in terms of
5794subscripting, and are coerced to pointers when used in expressions.
5795Artificial arrays most often appear in expressions via the value history
79a6e687 5796(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5797
5798Another way to create an artificial array is to use a cast.
5799This re-interprets a value as if it were an array.
5800The value need not be in memory:
474c8240 5801@smallexample
c906108c
SS
5802(@value{GDBP}) p/x (short[2])0x12345678
5803$1 = @{0x1234, 0x5678@}
474c8240 5804@end smallexample
c906108c
SS
5805
5806As a convenience, if you leave the array length out (as in
c3f6f71d 5807@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5808the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5809@smallexample
c906108c
SS
5810(@value{GDBP}) p/x (short[])0x12345678
5811$2 = @{0x1234, 0x5678@}
474c8240 5812@end smallexample
c906108c
SS
5813
5814Sometimes the artificial array mechanism is not quite enough; in
5815moderately complex data structures, the elements of interest may not
5816actually be adjacent---for example, if you are interested in the values
5817of pointers in an array. One useful work-around in this situation is
5818to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5819Variables}) as a counter in an expression that prints the first
c906108c
SS
5820interesting value, and then repeat that expression via @key{RET}. For
5821instance, suppose you have an array @code{dtab} of pointers to
5822structures, and you are interested in the values of a field @code{fv}
5823in each structure. Here is an example of what you might type:
5824
474c8240 5825@smallexample
c906108c
SS
5826set $i = 0
5827p dtab[$i++]->fv
5828@key{RET}
5829@key{RET}
5830@dots{}
474c8240 5831@end smallexample
c906108c 5832
6d2ebf8b 5833@node Output Formats
79a6e687 5834@section Output Formats
c906108c
SS
5835
5836@cindex formatted output
5837@cindex output formats
5838By default, @value{GDBN} prints a value according to its data type. Sometimes
5839this is not what you want. For example, you might want to print a number
5840in hex, or a pointer in decimal. Or you might want to view data in memory
5841at a certain address as a character string or as an instruction. To do
5842these things, specify an @dfn{output format} when you print a value.
5843
5844The simplest use of output formats is to say how to print a value
5845already computed. This is done by starting the arguments of the
5846@code{print} command with a slash and a format letter. The format
5847letters supported are:
5848
5849@table @code
5850@item x
5851Regard the bits of the value as an integer, and print the integer in
5852hexadecimal.
5853
5854@item d
5855Print as integer in signed decimal.
5856
5857@item u
5858Print as integer in unsigned decimal.
5859
5860@item o
5861Print as integer in octal.
5862
5863@item t
5864Print as integer in binary. The letter @samp{t} stands for ``two''.
5865@footnote{@samp{b} cannot be used because these format letters are also
5866used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5867see @ref{Memory,,Examining Memory}.}
c906108c
SS
5868
5869@item a
5870@cindex unknown address, locating
3d67e040 5871@cindex locate address
c906108c
SS
5872Print as an address, both absolute in hexadecimal and as an offset from
5873the nearest preceding symbol. You can use this format used to discover
5874where (in what function) an unknown address is located:
5875
474c8240 5876@smallexample
c906108c
SS
5877(@value{GDBP}) p/a 0x54320
5878$3 = 0x54320 <_initialize_vx+396>
474c8240 5879@end smallexample
c906108c 5880
3d67e040
EZ
5881@noindent
5882The command @code{info symbol 0x54320} yields similar results.
5883@xref{Symbols, info symbol}.
5884
c906108c 5885@item c
51274035
EZ
5886Regard as an integer and print it as a character constant. This
5887prints both the numerical value and its character representation. The
5888character representation is replaced with the octal escape @samp{\nnn}
5889for characters outside the 7-bit @sc{ascii} range.
c906108c 5890
ea37ba09
DJ
5891Without this format, @value{GDBN} displays @code{char},
5892@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5893constants. Single-byte members of vectors are displayed as integer
5894data.
5895
c906108c
SS
5896@item f
5897Regard the bits of the value as a floating point number and print
5898using typical floating point syntax.
ea37ba09
DJ
5899
5900@item s
5901@cindex printing strings
5902@cindex printing byte arrays
5903Regard as a string, if possible. With this format, pointers to single-byte
5904data are displayed as null-terminated strings and arrays of single-byte data
5905are displayed as fixed-length strings. Other values are displayed in their
5906natural types.
5907
5908Without this format, @value{GDBN} displays pointers to and arrays of
5909@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5910strings. Single-byte members of a vector are displayed as an integer
5911array.
c906108c
SS
5912@end table
5913
5914For example, to print the program counter in hex (@pxref{Registers}), type
5915
474c8240 5916@smallexample
c906108c 5917p/x $pc
474c8240 5918@end smallexample
c906108c
SS
5919
5920@noindent
5921Note that no space is required before the slash; this is because command
5922names in @value{GDBN} cannot contain a slash.
5923
5924To reprint the last value in the value history with a different format,
5925you can use the @code{print} command with just a format and no
5926expression. For example, @samp{p/x} reprints the last value in hex.
5927
6d2ebf8b 5928@node Memory
79a6e687 5929@section Examining Memory
c906108c
SS
5930
5931You can use the command @code{x} (for ``examine'') to examine memory in
5932any of several formats, independently of your program's data types.
5933
5934@cindex examining memory
5935@table @code
41afff9a 5936@kindex x @r{(examine memory)}
c906108c
SS
5937@item x/@var{nfu} @var{addr}
5938@itemx x @var{addr}
5939@itemx x
5940Use the @code{x} command to examine memory.
5941@end table
5942
5943@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5944much memory to display and how to format it; @var{addr} is an
5945expression giving the address where you want to start displaying memory.
5946If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5947Several commands set convenient defaults for @var{addr}.
5948
5949@table @r
5950@item @var{n}, the repeat count
5951The repeat count is a decimal integer; the default is 1. It specifies
5952how much memory (counting by units @var{u}) to display.
5953@c This really is **decimal**; unaffected by 'set radix' as of GDB
5954@c 4.1.2.
5955
5956@item @var{f}, the display format
51274035
EZ
5957The display format is one of the formats used by @code{print}
5958(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5959@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5960The default is @samp{x} (hexadecimal) initially. The default changes
5961each time you use either @code{x} or @code{print}.
c906108c
SS
5962
5963@item @var{u}, the unit size
5964The unit size is any of
5965
5966@table @code
5967@item b
5968Bytes.
5969@item h
5970Halfwords (two bytes).
5971@item w
5972Words (four bytes). This is the initial default.
5973@item g
5974Giant words (eight bytes).
5975@end table
5976
5977Each time you specify a unit size with @code{x}, that size becomes the
5978default unit the next time you use @code{x}. (For the @samp{s} and
5979@samp{i} formats, the unit size is ignored and is normally not written.)
5980
5981@item @var{addr}, starting display address
5982@var{addr} is the address where you want @value{GDBN} to begin displaying
5983memory. The expression need not have a pointer value (though it may);
5984it is always interpreted as an integer address of a byte of memory.
5985@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5986@var{addr} is usually just after the last address examined---but several
5987other commands also set the default address: @code{info breakpoints} (to
5988the address of the last breakpoint listed), @code{info line} (to the
5989starting address of a line), and @code{print} (if you use it to display
5990a value from memory).
5991@end table
5992
5993For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5994(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5995starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5996words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5997@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5998
5999Since the letters indicating unit sizes are all distinct from the
6000letters specifying output formats, you do not have to remember whether
6001unit size or format comes first; either order works. The output
6002specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6003(However, the count @var{n} must come first; @samp{wx4} does not work.)
6004
6005Even though the unit size @var{u} is ignored for the formats @samp{s}
6006and @samp{i}, you might still want to use a count @var{n}; for example,
6007@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6008including any operands. For convenience, especially when used with
6009the @code{display} command, the @samp{i} format also prints branch delay
6010slot instructions, if any, beyond the count specified, which immediately
6011follow the last instruction that is within the count. The command
6012@code{disassemble} gives an alternative way of inspecting machine
6013instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6014
6015All the defaults for the arguments to @code{x} are designed to make it
6016easy to continue scanning memory with minimal specifications each time
6017you use @code{x}. For example, after you have inspected three machine
6018instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6019with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6020the repeat count @var{n} is used again; the other arguments default as
6021for successive uses of @code{x}.
6022
6023@cindex @code{$_}, @code{$__}, and value history
6024The addresses and contents printed by the @code{x} command are not saved
6025in the value history because there is often too much of them and they
6026would get in the way. Instead, @value{GDBN} makes these values available for
6027subsequent use in expressions as values of the convenience variables
6028@code{$_} and @code{$__}. After an @code{x} command, the last address
6029examined is available for use in expressions in the convenience variable
6030@code{$_}. The contents of that address, as examined, are available in
6031the convenience variable @code{$__}.
6032
6033If the @code{x} command has a repeat count, the address and contents saved
6034are from the last memory unit printed; this is not the same as the last
6035address printed if several units were printed on the last line of output.
6036
09d4efe1
EZ
6037@cindex remote memory comparison
6038@cindex verify remote memory image
6039When you are debugging a program running on a remote target machine
ea35711c 6040(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6041remote machine's memory against the executable file you downloaded to
6042the target. The @code{compare-sections} command is provided for such
6043situations.
6044
6045@table @code
6046@kindex compare-sections
6047@item compare-sections @r{[}@var{section-name}@r{]}
6048Compare the data of a loadable section @var{section-name} in the
6049executable file of the program being debugged with the same section in
6050the remote machine's memory, and report any mismatches. With no
6051arguments, compares all loadable sections. This command's
6052availability depends on the target's support for the @code{"qCRC"}
6053remote request.
6054@end table
6055
6d2ebf8b 6056@node Auto Display
79a6e687 6057@section Automatic Display
c906108c
SS
6058@cindex automatic display
6059@cindex display of expressions
6060
6061If you find that you want to print the value of an expression frequently
6062(to see how it changes), you might want to add it to the @dfn{automatic
6063display list} so that @value{GDBN} prints its value each time your program stops.
6064Each expression added to the list is given a number to identify it;
6065to remove an expression from the list, you specify that number.
6066The automatic display looks like this:
6067
474c8240 6068@smallexample
c906108c
SS
60692: foo = 38
60703: bar[5] = (struct hack *) 0x3804
474c8240 6071@end smallexample
c906108c
SS
6072
6073@noindent
6074This display shows item numbers, expressions and their current values. As with
6075displays you request manually using @code{x} or @code{print}, you can
6076specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6077whether to use @code{print} or @code{x} depending your format
6078specification---it uses @code{x} if you specify either the @samp{i}
6079or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6080
6081@table @code
6082@kindex display
d4f3574e
SS
6083@item display @var{expr}
6084Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6085each time your program stops. @xref{Expressions, ,Expressions}.
6086
6087@code{display} does not repeat if you press @key{RET} again after using it.
6088
d4f3574e 6089@item display/@var{fmt} @var{expr}
c906108c 6090For @var{fmt} specifying only a display format and not a size or
d4f3574e 6091count, add the expression @var{expr} to the auto-display list but
c906108c 6092arrange to display it each time in the specified format @var{fmt}.
79a6e687 6093@xref{Output Formats,,Output Formats}.
c906108c
SS
6094
6095@item display/@var{fmt} @var{addr}
6096For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6097number of units, add the expression @var{addr} as a memory address to
6098be examined each time your program stops. Examining means in effect
79a6e687 6099doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6100@end table
6101
6102For example, @samp{display/i $pc} can be helpful, to see the machine
6103instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6104is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6105
6106@table @code
6107@kindex delete display
6108@kindex undisplay
6109@item undisplay @var{dnums}@dots{}
6110@itemx delete display @var{dnums}@dots{}
6111Remove item numbers @var{dnums} from the list of expressions to display.
6112
6113@code{undisplay} does not repeat if you press @key{RET} after using it.
6114(Otherwise you would just get the error @samp{No display number @dots{}}.)
6115
6116@kindex disable display
6117@item disable display @var{dnums}@dots{}
6118Disable the display of item numbers @var{dnums}. A disabled display
6119item is not printed automatically, but is not forgotten. It may be
6120enabled again later.
6121
6122@kindex enable display
6123@item enable display @var{dnums}@dots{}
6124Enable display of item numbers @var{dnums}. It becomes effective once
6125again in auto display of its expression, until you specify otherwise.
6126
6127@item display
6128Display the current values of the expressions on the list, just as is
6129done when your program stops.
6130
6131@kindex info display
6132@item info display
6133Print the list of expressions previously set up to display
6134automatically, each one with its item number, but without showing the
6135values. This includes disabled expressions, which are marked as such.
6136It also includes expressions which would not be displayed right now
6137because they refer to automatic variables not currently available.
6138@end table
6139
15387254 6140@cindex display disabled out of scope
c906108c
SS
6141If a display expression refers to local variables, then it does not make
6142sense outside the lexical context for which it was set up. Such an
6143expression is disabled when execution enters a context where one of its
6144variables is not defined. For example, if you give the command
6145@code{display last_char} while inside a function with an argument
6146@code{last_char}, @value{GDBN} displays this argument while your program
6147continues to stop inside that function. When it stops elsewhere---where
6148there is no variable @code{last_char}---the display is disabled
6149automatically. The next time your program stops where @code{last_char}
6150is meaningful, you can enable the display expression once again.
6151
6d2ebf8b 6152@node Print Settings
79a6e687 6153@section Print Settings
c906108c
SS
6154
6155@cindex format options
6156@cindex print settings
6157@value{GDBN} provides the following ways to control how arrays, structures,
6158and symbols are printed.
6159
6160@noindent
6161These settings are useful for debugging programs in any language:
6162
6163@table @code
4644b6e3 6164@kindex set print
c906108c
SS
6165@item set print address
6166@itemx set print address on
4644b6e3 6167@cindex print/don't print memory addresses
c906108c
SS
6168@value{GDBN} prints memory addresses showing the location of stack
6169traces, structure values, pointer values, breakpoints, and so forth,
6170even when it also displays the contents of those addresses. The default
6171is @code{on}. For example, this is what a stack frame display looks like with
6172@code{set print address on}:
6173
6174@smallexample
6175@group
6176(@value{GDBP}) f
6177#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6178 at input.c:530
6179530 if (lquote != def_lquote)
6180@end group
6181@end smallexample
6182
6183@item set print address off
6184Do not print addresses when displaying their contents. For example,
6185this is the same stack frame displayed with @code{set print address off}:
6186
6187@smallexample
6188@group
6189(@value{GDBP}) set print addr off
6190(@value{GDBP}) f
6191#0 set_quotes (lq="<<", rq=">>") at input.c:530
6192530 if (lquote != def_lquote)
6193@end group
6194@end smallexample
6195
6196You can use @samp{set print address off} to eliminate all machine
6197dependent displays from the @value{GDBN} interface. For example, with
6198@code{print address off}, you should get the same text for backtraces on
6199all machines---whether or not they involve pointer arguments.
6200
4644b6e3 6201@kindex show print
c906108c
SS
6202@item show print address
6203Show whether or not addresses are to be printed.
6204@end table
6205
6206When @value{GDBN} prints a symbolic address, it normally prints the
6207closest earlier symbol plus an offset. If that symbol does not uniquely
6208identify the address (for example, it is a name whose scope is a single
6209source file), you may need to clarify. One way to do this is with
6210@code{info line}, for example @samp{info line *0x4537}. Alternately,
6211you can set @value{GDBN} to print the source file and line number when
6212it prints a symbolic address:
6213
6214@table @code
c906108c 6215@item set print symbol-filename on
9c16f35a
EZ
6216@cindex source file and line of a symbol
6217@cindex symbol, source file and line
c906108c
SS
6218Tell @value{GDBN} to print the source file name and line number of a
6219symbol in the symbolic form of an address.
6220
6221@item set print symbol-filename off
6222Do not print source file name and line number of a symbol. This is the
6223default.
6224
c906108c
SS
6225@item show print symbol-filename
6226Show whether or not @value{GDBN} will print the source file name and
6227line number of a symbol in the symbolic form of an address.
6228@end table
6229
6230Another situation where it is helpful to show symbol filenames and line
6231numbers is when disassembling code; @value{GDBN} shows you the line
6232number and source file that corresponds to each instruction.
6233
6234Also, you may wish to see the symbolic form only if the address being
6235printed is reasonably close to the closest earlier symbol:
6236
6237@table @code
c906108c 6238@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6239@cindex maximum value for offset of closest symbol
c906108c
SS
6240Tell @value{GDBN} to only display the symbolic form of an address if the
6241offset between the closest earlier symbol and the address is less than
5d161b24 6242@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6243to always print the symbolic form of an address if any symbol precedes it.
6244
c906108c
SS
6245@item show print max-symbolic-offset
6246Ask how large the maximum offset is that @value{GDBN} prints in a
6247symbolic address.
6248@end table
6249
6250@cindex wild pointer, interpreting
6251@cindex pointer, finding referent
6252If you have a pointer and you are not sure where it points, try
6253@samp{set print symbol-filename on}. Then you can determine the name
6254and source file location of the variable where it points, using
6255@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6256For example, here @value{GDBN} shows that a variable @code{ptt} points
6257at another variable @code{t}, defined in @file{hi2.c}:
6258
474c8240 6259@smallexample
c906108c
SS
6260(@value{GDBP}) set print symbol-filename on
6261(@value{GDBP}) p/a ptt
6262$4 = 0xe008 <t in hi2.c>
474c8240 6263@end smallexample
c906108c
SS
6264
6265@quotation
6266@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6267does not show the symbol name and filename of the referent, even with
6268the appropriate @code{set print} options turned on.
6269@end quotation
6270
6271Other settings control how different kinds of objects are printed:
6272
6273@table @code
c906108c
SS
6274@item set print array
6275@itemx set print array on
4644b6e3 6276@cindex pretty print arrays
c906108c
SS
6277Pretty print arrays. This format is more convenient to read,
6278but uses more space. The default is off.
6279
6280@item set print array off
6281Return to compressed format for arrays.
6282
c906108c
SS
6283@item show print array
6284Show whether compressed or pretty format is selected for displaying
6285arrays.
6286
3c9c013a
JB
6287@cindex print array indexes
6288@item set print array-indexes
6289@itemx set print array-indexes on
6290Print the index of each element when displaying arrays. May be more
6291convenient to locate a given element in the array or quickly find the
6292index of a given element in that printed array. The default is off.
6293
6294@item set print array-indexes off
6295Stop printing element indexes when displaying arrays.
6296
6297@item show print array-indexes
6298Show whether the index of each element is printed when displaying
6299arrays.
6300
c906108c 6301@item set print elements @var{number-of-elements}
4644b6e3 6302@cindex number of array elements to print
9c16f35a 6303@cindex limit on number of printed array elements
c906108c
SS
6304Set a limit on how many elements of an array @value{GDBN} will print.
6305If @value{GDBN} is printing a large array, it stops printing after it has
6306printed the number of elements set by the @code{set print elements} command.
6307This limit also applies to the display of strings.
d4f3574e 6308When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6309Setting @var{number-of-elements} to zero means that the printing is unlimited.
6310
c906108c
SS
6311@item show print elements
6312Display the number of elements of a large array that @value{GDBN} will print.
6313If the number is 0, then the printing is unlimited.
6314
b4740add
JB
6315@item set print frame-arguments @var{value}
6316@cindex printing frame argument values
6317@cindex print all frame argument values
6318@cindex print frame argument values for scalars only
6319@cindex do not print frame argument values
6320This command allows to control how the values of arguments are printed
6321when the debugger prints a frame (@pxref{Frames}). The possible
6322values are:
6323
6324@table @code
6325@item all
6326The values of all arguments are printed. This is the default.
6327
6328@item scalars
6329Print the value of an argument only if it is a scalar. The value of more
6330complex arguments such as arrays, structures, unions, etc, is replaced
6331by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6332
6333@smallexample
6334#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6335 at frame-args.c:23
6336@end smallexample
6337
6338@item none
6339None of the argument values are printed. Instead, the value of each argument
6340is replaced by @code{@dots{}}. In this case, the example above now becomes:
6341
6342@smallexample
6343#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6344 at frame-args.c:23
6345@end smallexample
6346@end table
6347
6348By default, all argument values are always printed. But this command
6349can be useful in several cases. For instance, it can be used to reduce
6350the amount of information printed in each frame, making the backtrace
6351more readable. Also, this command can be used to improve performance
6352when displaying Ada frames, because the computation of large arguments
6353can sometimes be CPU-intensive, especiallly in large applications.
6354Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6355avoids this computation, thus speeding up the display of each Ada frame.
6356
6357@item show print frame-arguments
6358Show how the value of arguments should be displayed when printing a frame.
6359
9c16f35a
EZ
6360@item set print repeats
6361@cindex repeated array elements
6362Set the threshold for suppressing display of repeated array
d3e8051b 6363elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6364array exceeds the threshold, @value{GDBN} prints the string
6365@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6366identical repetitions, instead of displaying the identical elements
6367themselves. Setting the threshold to zero will cause all elements to
6368be individually printed. The default threshold is 10.
6369
6370@item show print repeats
6371Display the current threshold for printing repeated identical
6372elements.
6373
c906108c 6374@item set print null-stop
4644b6e3 6375@cindex @sc{null} elements in arrays
c906108c 6376Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6377@sc{null} is encountered. This is useful when large arrays actually
c906108c 6378contain only short strings.
d4f3574e 6379The default is off.
c906108c 6380
9c16f35a
EZ
6381@item show print null-stop
6382Show whether @value{GDBN} stops printing an array on the first
6383@sc{null} character.
6384
c906108c 6385@item set print pretty on
9c16f35a
EZ
6386@cindex print structures in indented form
6387@cindex indentation in structure display
5d161b24 6388Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6389per line, like this:
6390
6391@smallexample
6392@group
6393$1 = @{
6394 next = 0x0,
6395 flags = @{
6396 sweet = 1,
6397 sour = 1
6398 @},
6399 meat = 0x54 "Pork"
6400@}
6401@end group
6402@end smallexample
6403
6404@item set print pretty off
6405Cause @value{GDBN} to print structures in a compact format, like this:
6406
6407@smallexample
6408@group
6409$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6410meat = 0x54 "Pork"@}
6411@end group
6412@end smallexample
6413
6414@noindent
6415This is the default format.
6416
c906108c
SS
6417@item show print pretty
6418Show which format @value{GDBN} is using to print structures.
6419
c906108c 6420@item set print sevenbit-strings on
4644b6e3
EZ
6421@cindex eight-bit characters in strings
6422@cindex octal escapes in strings
c906108c
SS
6423Print using only seven-bit characters; if this option is set,
6424@value{GDBN} displays any eight-bit characters (in strings or
6425character values) using the notation @code{\}@var{nnn}. This setting is
6426best if you are working in English (@sc{ascii}) and you use the
6427high-order bit of characters as a marker or ``meta'' bit.
6428
6429@item set print sevenbit-strings off
6430Print full eight-bit characters. This allows the use of more
6431international character sets, and is the default.
6432
c906108c
SS
6433@item show print sevenbit-strings
6434Show whether or not @value{GDBN} is printing only seven-bit characters.
6435
c906108c 6436@item set print union on
4644b6e3 6437@cindex unions in structures, printing
9c16f35a
EZ
6438Tell @value{GDBN} to print unions which are contained in structures
6439and other unions. This is the default setting.
c906108c
SS
6440
6441@item set print union off
9c16f35a
EZ
6442Tell @value{GDBN} not to print unions which are contained in
6443structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6444instead.
c906108c 6445
c906108c
SS
6446@item show print union
6447Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6448structures and other unions.
c906108c
SS
6449
6450For example, given the declarations
6451
6452@smallexample
6453typedef enum @{Tree, Bug@} Species;
6454typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6455typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6456 Bug_forms;
6457
6458struct thing @{
6459 Species it;
6460 union @{
6461 Tree_forms tree;
6462 Bug_forms bug;
6463 @} form;
6464@};
6465
6466struct thing foo = @{Tree, @{Acorn@}@};
6467@end smallexample
6468
6469@noindent
6470with @code{set print union on} in effect @samp{p foo} would print
6471
6472@smallexample
6473$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6474@end smallexample
6475
6476@noindent
6477and with @code{set print union off} in effect it would print
6478
6479@smallexample
6480$1 = @{it = Tree, form = @{...@}@}
6481@end smallexample
9c16f35a
EZ
6482
6483@noindent
6484@code{set print union} affects programs written in C-like languages
6485and in Pascal.
c906108c
SS
6486@end table
6487
c906108c
SS
6488@need 1000
6489@noindent
b37052ae 6490These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6491
6492@table @code
4644b6e3 6493@cindex demangling C@t{++} names
c906108c
SS
6494@item set print demangle
6495@itemx set print demangle on
b37052ae 6496Print C@t{++} names in their source form rather than in the encoded
c906108c 6497(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6498linkage. The default is on.
c906108c 6499
c906108c 6500@item show print demangle
b37052ae 6501Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6502
c906108c
SS
6503@item set print asm-demangle
6504@itemx set print asm-demangle on
b37052ae 6505Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6506in assembler code printouts such as instruction disassemblies.
6507The default is off.
6508
c906108c 6509@item show print asm-demangle
b37052ae 6510Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6511or demangled form.
6512
b37052ae
EZ
6513@cindex C@t{++} symbol decoding style
6514@cindex symbol decoding style, C@t{++}
a8f24a35 6515@kindex set demangle-style
c906108c
SS
6516@item set demangle-style @var{style}
6517Choose among several encoding schemes used by different compilers to
b37052ae 6518represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6519
6520@table @code
6521@item auto
6522Allow @value{GDBN} to choose a decoding style by inspecting your program.
6523
6524@item gnu
b37052ae 6525Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6526This is the default.
c906108c
SS
6527
6528@item hp
b37052ae 6529Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6530
6531@item lucid
b37052ae 6532Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6533
6534@item arm
b37052ae 6535Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6536@strong{Warning:} this setting alone is not sufficient to allow
6537debugging @code{cfront}-generated executables. @value{GDBN} would
6538require further enhancement to permit that.
6539
6540@end table
6541If you omit @var{style}, you will see a list of possible formats.
6542
c906108c 6543@item show demangle-style
b37052ae 6544Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6545
c906108c
SS
6546@item set print object
6547@itemx set print object on
4644b6e3 6548@cindex derived type of an object, printing
9c16f35a 6549@cindex display derived types
c906108c
SS
6550When displaying a pointer to an object, identify the @emph{actual}
6551(derived) type of the object rather than the @emph{declared} type, using
6552the virtual function table.
6553
6554@item set print object off
6555Display only the declared type of objects, without reference to the
6556virtual function table. This is the default setting.
6557
c906108c
SS
6558@item show print object
6559Show whether actual, or declared, object types are displayed.
6560
c906108c
SS
6561@item set print static-members
6562@itemx set print static-members on
4644b6e3 6563@cindex static members of C@t{++} objects
b37052ae 6564Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6565
6566@item set print static-members off
b37052ae 6567Do not print static members when displaying a C@t{++} object.
c906108c 6568
c906108c 6569@item show print static-members
9c16f35a
EZ
6570Show whether C@t{++} static members are printed or not.
6571
6572@item set print pascal_static-members
6573@itemx set print pascal_static-members on
d3e8051b
EZ
6574@cindex static members of Pascal objects
6575@cindex Pascal objects, static members display
9c16f35a
EZ
6576Print static members when displaying a Pascal object. The default is on.
6577
6578@item set print pascal_static-members off
6579Do not print static members when displaying a Pascal object.
6580
6581@item show print pascal_static-members
6582Show whether Pascal static members are printed or not.
c906108c
SS
6583
6584@c These don't work with HP ANSI C++ yet.
c906108c
SS
6585@item set print vtbl
6586@itemx set print vtbl on
4644b6e3 6587@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6588@cindex virtual functions (C@t{++}) display
6589@cindex VTBL display
b37052ae 6590Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6591(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6592ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6593
6594@item set print vtbl off
b37052ae 6595Do not pretty print C@t{++} virtual function tables.
c906108c 6596
c906108c 6597@item show print vtbl
b37052ae 6598Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6599@end table
c906108c 6600
6d2ebf8b 6601@node Value History
79a6e687 6602@section Value History
c906108c
SS
6603
6604@cindex value history
9c16f35a 6605@cindex history of values printed by @value{GDBN}
5d161b24
DB
6606Values printed by the @code{print} command are saved in the @value{GDBN}
6607@dfn{value history}. This allows you to refer to them in other expressions.
6608Values are kept until the symbol table is re-read or discarded
6609(for example with the @code{file} or @code{symbol-file} commands).
6610When the symbol table changes, the value history is discarded,
6611since the values may contain pointers back to the types defined in the
c906108c
SS
6612symbol table.
6613
6614@cindex @code{$}
6615@cindex @code{$$}
6616@cindex history number
6617The values printed are given @dfn{history numbers} by which you can
6618refer to them. These are successive integers starting with one.
6619@code{print} shows you the history number assigned to a value by
6620printing @samp{$@var{num} = } before the value; here @var{num} is the
6621history number.
6622
6623To refer to any previous value, use @samp{$} followed by the value's
6624history number. The way @code{print} labels its output is designed to
6625remind you of this. Just @code{$} refers to the most recent value in
6626the history, and @code{$$} refers to the value before that.
6627@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6628is the value just prior to @code{$$}, @code{$$1} is equivalent to
6629@code{$$}, and @code{$$0} is equivalent to @code{$}.
6630
6631For example, suppose you have just printed a pointer to a structure and
6632want to see the contents of the structure. It suffices to type
6633
474c8240 6634@smallexample
c906108c 6635p *$
474c8240 6636@end smallexample
c906108c
SS
6637
6638If you have a chain of structures where the component @code{next} points
6639to the next one, you can print the contents of the next one with this:
6640
474c8240 6641@smallexample
c906108c 6642p *$.next
474c8240 6643@end smallexample
c906108c
SS
6644
6645@noindent
6646You can print successive links in the chain by repeating this
6647command---which you can do by just typing @key{RET}.
6648
6649Note that the history records values, not expressions. If the value of
6650@code{x} is 4 and you type these commands:
6651
474c8240 6652@smallexample
c906108c
SS
6653print x
6654set x=5
474c8240 6655@end smallexample
c906108c
SS
6656
6657@noindent
6658then the value recorded in the value history by the @code{print} command
6659remains 4 even though the value of @code{x} has changed.
6660
6661@table @code
6662@kindex show values
6663@item show values
6664Print the last ten values in the value history, with their item numbers.
6665This is like @samp{p@ $$9} repeated ten times, except that @code{show
6666values} does not change the history.
6667
6668@item show values @var{n}
6669Print ten history values centered on history item number @var{n}.
6670
6671@item show values +
6672Print ten history values just after the values last printed. If no more
6673values are available, @code{show values +} produces no display.
6674@end table
6675
6676Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6677same effect as @samp{show values +}.
6678
6d2ebf8b 6679@node Convenience Vars
79a6e687 6680@section Convenience Variables
c906108c
SS
6681
6682@cindex convenience variables
9c16f35a 6683@cindex user-defined variables
c906108c
SS
6684@value{GDBN} provides @dfn{convenience variables} that you can use within
6685@value{GDBN} to hold on to a value and refer to it later. These variables
6686exist entirely within @value{GDBN}; they are not part of your program, and
6687setting a convenience variable has no direct effect on further execution
6688of your program. That is why you can use them freely.
6689
6690Convenience variables are prefixed with @samp{$}. Any name preceded by
6691@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6692the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6693(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6694by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6695
6696You can save a value in a convenience variable with an assignment
6697expression, just as you would set a variable in your program.
6698For example:
6699
474c8240 6700@smallexample
c906108c 6701set $foo = *object_ptr
474c8240 6702@end smallexample
c906108c
SS
6703
6704@noindent
6705would save in @code{$foo} the value contained in the object pointed to by
6706@code{object_ptr}.
6707
6708Using a convenience variable for the first time creates it, but its
6709value is @code{void} until you assign a new value. You can alter the
6710value with another assignment at any time.
6711
6712Convenience variables have no fixed types. You can assign a convenience
6713variable any type of value, including structures and arrays, even if
6714that variable already has a value of a different type. The convenience
6715variable, when used as an expression, has the type of its current value.
6716
6717@table @code
6718@kindex show convenience
9c16f35a 6719@cindex show all user variables
c906108c
SS
6720@item show convenience
6721Print a list of convenience variables used so far, and their values.
d4f3574e 6722Abbreviated @code{show conv}.
53e5f3cf
AS
6723
6724@kindex init-if-undefined
6725@cindex convenience variables, initializing
6726@item init-if-undefined $@var{variable} = @var{expression}
6727Set a convenience variable if it has not already been set. This is useful
6728for user-defined commands that keep some state. It is similar, in concept,
6729to using local static variables with initializers in C (except that
6730convenience variables are global). It can also be used to allow users to
6731override default values used in a command script.
6732
6733If the variable is already defined then the expression is not evaluated so
6734any side-effects do not occur.
c906108c
SS
6735@end table
6736
6737One of the ways to use a convenience variable is as a counter to be
6738incremented or a pointer to be advanced. For example, to print
6739a field from successive elements of an array of structures:
6740
474c8240 6741@smallexample
c906108c
SS
6742set $i = 0
6743print bar[$i++]->contents
474c8240 6744@end smallexample
c906108c 6745
d4f3574e
SS
6746@noindent
6747Repeat that command by typing @key{RET}.
c906108c
SS
6748
6749Some convenience variables are created automatically by @value{GDBN} and given
6750values likely to be useful.
6751
6752@table @code
41afff9a 6753@vindex $_@r{, convenience variable}
c906108c
SS
6754@item $_
6755The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6756the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6757commands which provide a default address for @code{x} to examine also
6758set @code{$_} to that address; these commands include @code{info line}
6759and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6760except when set by the @code{x} command, in which case it is a pointer
6761to the type of @code{$__}.
6762
41afff9a 6763@vindex $__@r{, convenience variable}
c906108c
SS
6764@item $__
6765The variable @code{$__} is automatically set by the @code{x} command
6766to the value found in the last address examined. Its type is chosen
6767to match the format in which the data was printed.
6768
6769@item $_exitcode
41afff9a 6770@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6771The variable @code{$_exitcode} is automatically set to the exit code when
6772the program being debugged terminates.
6773@end table
6774
53a5351d
JM
6775On HP-UX systems, if you refer to a function or variable name that
6776begins with a dollar sign, @value{GDBN} searches for a user or system
6777name first, before it searches for a convenience variable.
c906108c 6778
6d2ebf8b 6779@node Registers
c906108c
SS
6780@section Registers
6781
6782@cindex registers
6783You can refer to machine register contents, in expressions, as variables
6784with names starting with @samp{$}. The names of registers are different
6785for each machine; use @code{info registers} to see the names used on
6786your machine.
6787
6788@table @code
6789@kindex info registers
6790@item info registers
6791Print the names and values of all registers except floating-point
c85508ee 6792and vector registers (in the selected stack frame).
c906108c
SS
6793
6794@kindex info all-registers
6795@cindex floating point registers
6796@item info all-registers
6797Print the names and values of all registers, including floating-point
c85508ee 6798and vector registers (in the selected stack frame).
c906108c
SS
6799
6800@item info registers @var{regname} @dots{}
6801Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6802As discussed in detail below, register values are normally relative to
6803the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6804the machine you are using, with or without the initial @samp{$}.
6805@end table
6806
e09f16f9
EZ
6807@cindex stack pointer register
6808@cindex program counter register
6809@cindex process status register
6810@cindex frame pointer register
6811@cindex standard registers
c906108c
SS
6812@value{GDBN} has four ``standard'' register names that are available (in
6813expressions) on most machines---whenever they do not conflict with an
6814architecture's canonical mnemonics for registers. The register names
6815@code{$pc} and @code{$sp} are used for the program counter register and
6816the stack pointer. @code{$fp} is used for a register that contains a
6817pointer to the current stack frame, and @code{$ps} is used for a
6818register that contains the processor status. For example,
6819you could print the program counter in hex with
6820
474c8240 6821@smallexample
c906108c 6822p/x $pc
474c8240 6823@end smallexample
c906108c
SS
6824
6825@noindent
6826or print the instruction to be executed next with
6827
474c8240 6828@smallexample
c906108c 6829x/i $pc
474c8240 6830@end smallexample
c906108c
SS
6831
6832@noindent
6833or add four to the stack pointer@footnote{This is a way of removing
6834one word from the stack, on machines where stacks grow downward in
6835memory (most machines, nowadays). This assumes that the innermost
6836stack frame is selected; setting @code{$sp} is not allowed when other
6837stack frames are selected. To pop entire frames off the stack,
6838regardless of machine architecture, use @code{return};
79a6e687 6839see @ref{Returning, ,Returning from a Function}.} with
c906108c 6840
474c8240 6841@smallexample
c906108c 6842set $sp += 4
474c8240 6843@end smallexample
c906108c
SS
6844
6845Whenever possible, these four standard register names are available on
6846your machine even though the machine has different canonical mnemonics,
6847so long as there is no conflict. The @code{info registers} command
6848shows the canonical names. For example, on the SPARC, @code{info
6849registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6850can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6851is an alias for the @sc{eflags} register.
c906108c
SS
6852
6853@value{GDBN} always considers the contents of an ordinary register as an
6854integer when the register is examined in this way. Some machines have
6855special registers which can hold nothing but floating point; these
6856registers are considered to have floating point values. There is no way
6857to refer to the contents of an ordinary register as floating point value
6858(although you can @emph{print} it as a floating point value with
6859@samp{print/f $@var{regname}}).
6860
6861Some registers have distinct ``raw'' and ``virtual'' data formats. This
6862means that the data format in which the register contents are saved by
6863the operating system is not the same one that your program normally
6864sees. For example, the registers of the 68881 floating point
6865coprocessor are always saved in ``extended'' (raw) format, but all C
6866programs expect to work with ``double'' (virtual) format. In such
5d161b24 6867cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6868that makes sense for your program), but the @code{info registers} command
6869prints the data in both formats.
6870
36b80e65
EZ
6871@cindex SSE registers (x86)
6872@cindex MMX registers (x86)
6873Some machines have special registers whose contents can be interpreted
6874in several different ways. For example, modern x86-based machines
6875have SSE and MMX registers that can hold several values packed
6876together in several different formats. @value{GDBN} refers to such
6877registers in @code{struct} notation:
6878
6879@smallexample
6880(@value{GDBP}) print $xmm1
6881$1 = @{
6882 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6883 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6884 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6885 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6886 v4_int32 = @{0, 20657912, 11, 13@},
6887 v2_int64 = @{88725056443645952, 55834574859@},
6888 uint128 = 0x0000000d0000000b013b36f800000000
6889@}
6890@end smallexample
6891
6892@noindent
6893To set values of such registers, you need to tell @value{GDBN} which
6894view of the register you wish to change, as if you were assigning
6895value to a @code{struct} member:
6896
6897@smallexample
6898 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6899@end smallexample
6900
c906108c 6901Normally, register values are relative to the selected stack frame
79a6e687 6902(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6903value that the register would contain if all stack frames farther in
6904were exited and their saved registers restored. In order to see the
6905true contents of hardware registers, you must select the innermost
6906frame (with @samp{frame 0}).
6907
6908However, @value{GDBN} must deduce where registers are saved, from the machine
6909code generated by your compiler. If some registers are not saved, or if
6910@value{GDBN} is unable to locate the saved registers, the selected stack
6911frame makes no difference.
6912
6d2ebf8b 6913@node Floating Point Hardware
79a6e687 6914@section Floating Point Hardware
c906108c
SS
6915@cindex floating point
6916
6917Depending on the configuration, @value{GDBN} may be able to give
6918you more information about the status of the floating point hardware.
6919
6920@table @code
6921@kindex info float
6922@item info float
6923Display hardware-dependent information about the floating
6924point unit. The exact contents and layout vary depending on the
6925floating point chip. Currently, @samp{info float} is supported on
6926the ARM and x86 machines.
6927@end table
c906108c 6928
e76f1f2e
AC
6929@node Vector Unit
6930@section Vector Unit
6931@cindex vector unit
6932
6933Depending on the configuration, @value{GDBN} may be able to give you
6934more information about the status of the vector unit.
6935
6936@table @code
6937@kindex info vector
6938@item info vector
6939Display information about the vector unit. The exact contents and
6940layout vary depending on the hardware.
6941@end table
6942
721c2651 6943@node OS Information
79a6e687 6944@section Operating System Auxiliary Information
721c2651
EZ
6945@cindex OS information
6946
6947@value{GDBN} provides interfaces to useful OS facilities that can help
6948you debug your program.
6949
6950@cindex @code{ptrace} system call
6951@cindex @code{struct user} contents
6952When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6953machines), it interfaces with the inferior via the @code{ptrace}
6954system call. The operating system creates a special sata structure,
6955called @code{struct user}, for this interface. You can use the
6956command @code{info udot} to display the contents of this data
6957structure.
6958
6959@table @code
6960@item info udot
6961@kindex info udot
6962Display the contents of the @code{struct user} maintained by the OS
6963kernel for the program being debugged. @value{GDBN} displays the
6964contents of @code{struct user} as a list of hex numbers, similar to
6965the @code{examine} command.
6966@end table
6967
b383017d
RM
6968@cindex auxiliary vector
6969@cindex vector, auxiliary
b383017d
RM
6970Some operating systems supply an @dfn{auxiliary vector} to programs at
6971startup. This is akin to the arguments and environment that you
6972specify for a program, but contains a system-dependent variety of
6973binary values that tell system libraries important details about the
6974hardware, operating system, and process. Each value's purpose is
6975identified by an integer tag; the meanings are well-known but system-specific.
6976Depending on the configuration and operating system facilities,
9c16f35a
EZ
6977@value{GDBN} may be able to show you this information. For remote
6978targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6979support of the @samp{qXfer:auxv:read} packet, see
6980@ref{qXfer auxiliary vector read}.
b383017d
RM
6981
6982@table @code
6983@kindex info auxv
6984@item info auxv
6985Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6986live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6987numerically, and also shows names and text descriptions for recognized
6988tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6989pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6990most appropriate form for a recognized tag, and in hexadecimal for
6991an unrecognized tag.
6992@end table
6993
721c2651 6994
29e57380 6995@node Memory Region Attributes
79a6e687 6996@section Memory Region Attributes
29e57380
C
6997@cindex memory region attributes
6998
b383017d 6999@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7000required by regions of your target's memory. @value{GDBN} uses
7001attributes to determine whether to allow certain types of memory
7002accesses; whether to use specific width accesses; and whether to cache
7003target memory. By default the description of memory regions is
7004fetched from the target (if the current target supports this), but the
7005user can override the fetched regions.
29e57380
C
7006
7007Defined memory regions can be individually enabled and disabled. When a
7008memory region is disabled, @value{GDBN} uses the default attributes when
7009accessing memory in that region. Similarly, if no memory regions have
7010been defined, @value{GDBN} uses the default attributes when accessing
7011all memory.
7012
b383017d 7013When a memory region is defined, it is given a number to identify it;
29e57380
C
7014to enable, disable, or remove a memory region, you specify that number.
7015
7016@table @code
7017@kindex mem
bfac230e 7018@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7019Define a memory region bounded by @var{lower} and @var{upper} with
7020attributes @var{attributes}@dots{}, and add it to the list of regions
7021monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7022case: it is treated as the target's maximum memory address.
bfac230e 7023(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7024
fd79ecee
DJ
7025@item mem auto
7026Discard any user changes to the memory regions and use target-supplied
7027regions, if available, or no regions if the target does not support.
7028
29e57380
C
7029@kindex delete mem
7030@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7031Remove memory regions @var{nums}@dots{} from the list of regions
7032monitored by @value{GDBN}.
29e57380
C
7033
7034@kindex disable mem
7035@item disable mem @var{nums}@dots{}
09d4efe1 7036Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7037A disabled memory region is not forgotten.
29e57380
C
7038It may be enabled again later.
7039
7040@kindex enable mem
7041@item enable mem @var{nums}@dots{}
09d4efe1 7042Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7043
7044@kindex info mem
7045@item info mem
7046Print a table of all defined memory regions, with the following columns
09d4efe1 7047for each region:
29e57380
C
7048
7049@table @emph
7050@item Memory Region Number
7051@item Enabled or Disabled.
b383017d 7052Enabled memory regions are marked with @samp{y}.
29e57380
C
7053Disabled memory regions are marked with @samp{n}.
7054
7055@item Lo Address
7056The address defining the inclusive lower bound of the memory region.
7057
7058@item Hi Address
7059The address defining the exclusive upper bound of the memory region.
7060
7061@item Attributes
7062The list of attributes set for this memory region.
7063@end table
7064@end table
7065
7066
7067@subsection Attributes
7068
b383017d 7069@subsubsection Memory Access Mode
29e57380
C
7070The access mode attributes set whether @value{GDBN} may make read or
7071write accesses to a memory region.
7072
7073While these attributes prevent @value{GDBN} from performing invalid
7074memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7075etc.@: from accessing memory.
29e57380
C
7076
7077@table @code
7078@item ro
7079Memory is read only.
7080@item wo
7081Memory is write only.
7082@item rw
6ca652b0 7083Memory is read/write. This is the default.
29e57380
C
7084@end table
7085
7086@subsubsection Memory Access Size
d3e8051b 7087The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7088accesses in the memory region. Often memory mapped device registers
7089require specific sized accesses. If no access size attribute is
7090specified, @value{GDBN} may use accesses of any size.
7091
7092@table @code
7093@item 8
7094Use 8 bit memory accesses.
7095@item 16
7096Use 16 bit memory accesses.
7097@item 32
7098Use 32 bit memory accesses.
7099@item 64
7100Use 64 bit memory accesses.
7101@end table
7102
7103@c @subsubsection Hardware/Software Breakpoints
7104@c The hardware/software breakpoint attributes set whether @value{GDBN}
7105@c will use hardware or software breakpoints for the internal breakpoints
7106@c used by the step, next, finish, until, etc. commands.
7107@c
7108@c @table @code
7109@c @item hwbreak
b383017d 7110@c Always use hardware breakpoints
29e57380
C
7111@c @item swbreak (default)
7112@c @end table
7113
7114@subsubsection Data Cache
7115The data cache attributes set whether @value{GDBN} will cache target
7116memory. While this generally improves performance by reducing debug
7117protocol overhead, it can lead to incorrect results because @value{GDBN}
7118does not know about volatile variables or memory mapped device
7119registers.
7120
7121@table @code
7122@item cache
b383017d 7123Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7124@item nocache
7125Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7126@end table
7127
4b5752d0
VP
7128@subsection Memory Access Checking
7129@value{GDBN} can be instructed to refuse accesses to memory that is
7130not explicitly described. This can be useful if accessing such
7131regions has undesired effects for a specific target, or to provide
7132better error checking. The following commands control this behaviour.
7133
7134@table @code
7135@kindex set mem inaccessible-by-default
7136@item set mem inaccessible-by-default [on|off]
7137If @code{on} is specified, make @value{GDBN} treat memory not
7138explicitly described by the memory ranges as non-existent and refuse accesses
7139to such memory. The checks are only performed if there's at least one
7140memory range defined. If @code{off} is specified, make @value{GDBN}
7141treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7142The default value is @code{on}.
4b5752d0
VP
7143@kindex show mem inaccessible-by-default
7144@item show mem inaccessible-by-default
7145Show the current handling of accesses to unknown memory.
7146@end table
7147
7148
29e57380 7149@c @subsubsection Memory Write Verification
b383017d 7150@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7151@c will re-reads data after each write to verify the write was successful.
7152@c
7153@c @table @code
7154@c @item verify
7155@c @item noverify (default)
7156@c @end table
7157
16d9dec6 7158@node Dump/Restore Files
79a6e687 7159@section Copy Between Memory and a File
16d9dec6
MS
7160@cindex dump/restore files
7161@cindex append data to a file
7162@cindex dump data to a file
7163@cindex restore data from a file
16d9dec6 7164
df5215a6
JB
7165You can use the commands @code{dump}, @code{append}, and
7166@code{restore} to copy data between target memory and a file. The
7167@code{dump} and @code{append} commands write data to a file, and the
7168@code{restore} command reads data from a file back into the inferior's
7169memory. Files may be in binary, Motorola S-record, Intel hex, or
7170Tektronix Hex format; however, @value{GDBN} can only append to binary
7171files.
7172
7173@table @code
7174
7175@kindex dump
7176@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7177@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7178Dump the contents of memory from @var{start_addr} to @var{end_addr},
7179or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7180
df5215a6 7181The @var{format} parameter may be any one of:
16d9dec6 7182@table @code
df5215a6
JB
7183@item binary
7184Raw binary form.
7185@item ihex
7186Intel hex format.
7187@item srec
7188Motorola S-record format.
7189@item tekhex
7190Tektronix Hex format.
7191@end table
7192
7193@value{GDBN} uses the same definitions of these formats as the
7194@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7195@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7196form.
7197
7198@kindex append
7199@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7200@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7201Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7202or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7203(@value{GDBN} can only append data to files in raw binary form.)
7204
7205@kindex restore
7206@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7207Restore the contents of file @var{filename} into memory. The
7208@code{restore} command can automatically recognize any known @sc{bfd}
7209file format, except for raw binary. To restore a raw binary file you
7210must specify the optional keyword @code{binary} after the filename.
16d9dec6 7211
b383017d 7212If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7213contained in the file. Binary files always start at address zero, so
7214they will be restored at address @var{bias}. Other bfd files have
7215a built-in location; they will be restored at offset @var{bias}
7216from that location.
7217
7218If @var{start} and/or @var{end} are non-zero, then only data between
7219file offset @var{start} and file offset @var{end} will be restored.
b383017d 7220These offsets are relative to the addresses in the file, before
16d9dec6
MS
7221the @var{bias} argument is applied.
7222
7223@end table
7224
384ee23f
EZ
7225@node Core File Generation
7226@section How to Produce a Core File from Your Program
7227@cindex dump core from inferior
7228
7229A @dfn{core file} or @dfn{core dump} is a file that records the memory
7230image of a running process and its process status (register values
7231etc.). Its primary use is post-mortem debugging of a program that
7232crashed while it ran outside a debugger. A program that crashes
7233automatically produces a core file, unless this feature is disabled by
7234the user. @xref{Files}, for information on invoking @value{GDBN} in
7235the post-mortem debugging mode.
7236
7237Occasionally, you may wish to produce a core file of the program you
7238are debugging in order to preserve a snapshot of its state.
7239@value{GDBN} has a special command for that.
7240
7241@table @code
7242@kindex gcore
7243@kindex generate-core-file
7244@item generate-core-file [@var{file}]
7245@itemx gcore [@var{file}]
7246Produce a core dump of the inferior process. The optional argument
7247@var{file} specifies the file name where to put the core dump. If not
7248specified, the file name defaults to @file{core.@var{pid}}, where
7249@var{pid} is the inferior process ID.
7250
7251Note that this command is implemented only for some systems (as of
7252this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7253@end table
7254
a0eb71c5
KB
7255@node Character Sets
7256@section Character Sets
7257@cindex character sets
7258@cindex charset
7259@cindex translating between character sets
7260@cindex host character set
7261@cindex target character set
7262
7263If the program you are debugging uses a different character set to
7264represent characters and strings than the one @value{GDBN} uses itself,
7265@value{GDBN} can automatically translate between the character sets for
7266you. The character set @value{GDBN} uses we call the @dfn{host
7267character set}; the one the inferior program uses we call the
7268@dfn{target character set}.
7269
7270For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7271uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7272remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7273running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7274then the host character set is Latin-1, and the target character set is
7275@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7276target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7277@sc{ebcdic} and Latin 1 as you print character or string values, or use
7278character and string literals in expressions.
7279
7280@value{GDBN} has no way to automatically recognize which character set
7281the inferior program uses; you must tell it, using the @code{set
7282target-charset} command, described below.
7283
7284Here are the commands for controlling @value{GDBN}'s character set
7285support:
7286
7287@table @code
7288@item set target-charset @var{charset}
7289@kindex set target-charset
7290Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7291character set names @value{GDBN} recognizes below, but if you type
7292@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7293list the target character sets it supports.
a0eb71c5
KB
7294@end table
7295
7296@table @code
7297@item set host-charset @var{charset}
7298@kindex set host-charset
7299Set the current host character set to @var{charset}.
7300
7301By default, @value{GDBN} uses a host character set appropriate to the
7302system it is running on; you can override that default using the
7303@code{set host-charset} command.
7304
7305@value{GDBN} can only use certain character sets as its host character
7306set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7307indicate which can be host character sets, but if you type
7308@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7309list the host character sets it supports.
a0eb71c5
KB
7310
7311@item set charset @var{charset}
7312@kindex set charset
e33d66ec
EZ
7313Set the current host and target character sets to @var{charset}. As
7314above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7315@value{GDBN} will list the name of the character sets that can be used
7316for both host and target.
7317
a0eb71c5
KB
7318
7319@item show charset
a0eb71c5 7320@kindex show charset
b383017d 7321Show the names of the current host and target charsets.
e33d66ec
EZ
7322
7323@itemx show host-charset
a0eb71c5 7324@kindex show host-charset
b383017d 7325Show the name of the current host charset.
e33d66ec
EZ
7326
7327@itemx show target-charset
a0eb71c5 7328@kindex show target-charset
b383017d 7329Show the name of the current target charset.
a0eb71c5
KB
7330
7331@end table
7332
7333@value{GDBN} currently includes support for the following character
7334sets:
7335
7336@table @code
7337
7338@item ASCII
7339@cindex ASCII character set
7340Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7341character set.
7342
7343@item ISO-8859-1
7344@cindex ISO 8859-1 character set
7345@cindex ISO Latin 1 character set
e33d66ec 7346The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7347characters needed for French, German, and Spanish. @value{GDBN} can use
7348this as its host character set.
7349
7350@item EBCDIC-US
7351@itemx IBM1047
7352@cindex EBCDIC character set
7353@cindex IBM1047 character set
7354Variants of the @sc{ebcdic} character set, used on some of IBM's
7355mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7356@value{GDBN} cannot use these as its host character set.
7357
7358@end table
7359
7360Note that these are all single-byte character sets. More work inside
3f94c067 7361@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7362encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7363
7364Here is an example of @value{GDBN}'s character set support in action.
7365Assume that the following source code has been placed in the file
7366@file{charset-test.c}:
7367
7368@smallexample
7369#include <stdio.h>
7370
7371char ascii_hello[]
7372 = @{72, 101, 108, 108, 111, 44, 32, 119,
7373 111, 114, 108, 100, 33, 10, 0@};
7374char ibm1047_hello[]
7375 = @{200, 133, 147, 147, 150, 107, 64, 166,
7376 150, 153, 147, 132, 90, 37, 0@};
7377
7378main ()
7379@{
7380 printf ("Hello, world!\n");
7381@}
10998722 7382@end smallexample
a0eb71c5
KB
7383
7384In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7385containing the string @samp{Hello, world!} followed by a newline,
7386encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7387
7388We compile the program, and invoke the debugger on it:
7389
7390@smallexample
7391$ gcc -g charset-test.c -o charset-test
7392$ gdb -nw charset-test
7393GNU gdb 2001-12-19-cvs
7394Copyright 2001 Free Software Foundation, Inc.
7395@dots{}
f7dc1244 7396(@value{GDBP})
10998722 7397@end smallexample
a0eb71c5
KB
7398
7399We can use the @code{show charset} command to see what character sets
7400@value{GDBN} is currently using to interpret and display characters and
7401strings:
7402
7403@smallexample
f7dc1244 7404(@value{GDBP}) show charset
e33d66ec 7405The current host and target character set is `ISO-8859-1'.
f7dc1244 7406(@value{GDBP})
10998722 7407@end smallexample
a0eb71c5
KB
7408
7409For the sake of printing this manual, let's use @sc{ascii} as our
7410initial character set:
7411@smallexample
f7dc1244
EZ
7412(@value{GDBP}) set charset ASCII
7413(@value{GDBP}) show charset
e33d66ec 7414The current host and target character set is `ASCII'.
f7dc1244 7415(@value{GDBP})
10998722 7416@end smallexample
a0eb71c5
KB
7417
7418Let's assume that @sc{ascii} is indeed the correct character set for our
7419host system --- in other words, let's assume that if @value{GDBN} prints
7420characters using the @sc{ascii} character set, our terminal will display
7421them properly. Since our current target character set is also
7422@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7423
7424@smallexample
f7dc1244 7425(@value{GDBP}) print ascii_hello
a0eb71c5 7426$1 = 0x401698 "Hello, world!\n"
f7dc1244 7427(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7428$2 = 72 'H'
f7dc1244 7429(@value{GDBP})
10998722 7430@end smallexample
a0eb71c5
KB
7431
7432@value{GDBN} uses the target character set for character and string
7433literals you use in expressions:
7434
7435@smallexample
f7dc1244 7436(@value{GDBP}) print '+'
a0eb71c5 7437$3 = 43 '+'
f7dc1244 7438(@value{GDBP})
10998722 7439@end smallexample
a0eb71c5
KB
7440
7441The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7442character.
7443
7444@value{GDBN} relies on the user to tell it which character set the
7445target program uses. If we print @code{ibm1047_hello} while our target
7446character set is still @sc{ascii}, we get jibberish:
7447
7448@smallexample
f7dc1244 7449(@value{GDBP}) print ibm1047_hello
a0eb71c5 7450$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7451(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7452$5 = 200 '\310'
f7dc1244 7453(@value{GDBP})
10998722 7454@end smallexample
a0eb71c5 7455
e33d66ec 7456If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7457@value{GDBN} tells us the character sets it supports:
7458
7459@smallexample
f7dc1244 7460(@value{GDBP}) set target-charset
b383017d 7461ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7462(@value{GDBP}) set target-charset
10998722 7463@end smallexample
a0eb71c5
KB
7464
7465We can select @sc{ibm1047} as our target character set, and examine the
7466program's strings again. Now the @sc{ascii} string is wrong, but
7467@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7468target character set, @sc{ibm1047}, to the host character set,
7469@sc{ascii}, and they display correctly:
7470
7471@smallexample
f7dc1244
EZ
7472(@value{GDBP}) set target-charset IBM1047
7473(@value{GDBP}) show charset
e33d66ec
EZ
7474The current host character set is `ASCII'.
7475The current target character set is `IBM1047'.
f7dc1244 7476(@value{GDBP}) print ascii_hello
a0eb71c5 7477$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7478(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7479$7 = 72 '\110'
f7dc1244 7480(@value{GDBP}) print ibm1047_hello
a0eb71c5 7481$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7482(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7483$9 = 200 'H'
f7dc1244 7484(@value{GDBP})
10998722 7485@end smallexample
a0eb71c5
KB
7486
7487As above, @value{GDBN} uses the target character set for character and
7488string literals you use in expressions:
7489
7490@smallexample
f7dc1244 7491(@value{GDBP}) print '+'
a0eb71c5 7492$10 = 78 '+'
f7dc1244 7493(@value{GDBP})
10998722 7494@end smallexample
a0eb71c5 7495
e33d66ec 7496The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7497character.
7498
09d4efe1
EZ
7499@node Caching Remote Data
7500@section Caching Data of Remote Targets
7501@cindex caching data of remote targets
7502
7503@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7504remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7505performance, because it reduces the overhead of the remote protocol by
7506bundling memory reads and writes into large chunks. Unfortunately,
7507@value{GDBN} does not currently know anything about volatile
7508registers, and thus data caching will produce incorrect results when
7509volatile registers are in use.
7510
7511@table @code
7512@kindex set remotecache
7513@item set remotecache on
7514@itemx set remotecache off
7515Set caching state for remote targets. When @code{ON}, use data
7516caching. By default, this option is @code{OFF}.
7517
7518@kindex show remotecache
7519@item show remotecache
7520Show the current state of data caching for remote targets.
7521
7522@kindex info dcache
7523@item info dcache
7524Print the information about the data cache performance. The
7525information displayed includes: the dcache width and depth; and for
7526each cache line, how many times it was referenced, and its data and
7527state (dirty, bad, ok, etc.). This command is useful for debugging
7528the data cache operation.
7529@end table
7530
a0eb71c5 7531
e2e0bcd1
JB
7532@node Macros
7533@chapter C Preprocessor Macros
7534
49efadf5 7535Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7536``preprocessor macros'' which expand into strings of tokens.
7537@value{GDBN} can evaluate expressions containing macro invocations, show
7538the result of macro expansion, and show a macro's definition, including
7539where it was defined.
7540
7541You may need to compile your program specially to provide @value{GDBN}
7542with information about preprocessor macros. Most compilers do not
7543include macros in their debugging information, even when you compile
7544with the @option{-g} flag. @xref{Compilation}.
7545
7546A program may define a macro at one point, remove that definition later,
7547and then provide a different definition after that. Thus, at different
7548points in the program, a macro may have different definitions, or have
7549no definition at all. If there is a current stack frame, @value{GDBN}
7550uses the macros in scope at that frame's source code line. Otherwise,
7551@value{GDBN} uses the macros in scope at the current listing location;
7552see @ref{List}.
7553
7554At the moment, @value{GDBN} does not support the @code{##}
7555token-splicing operator, the @code{#} stringification operator, or
7556variable-arity macros.
7557
7558Whenever @value{GDBN} evaluates an expression, it always expands any
7559macro invocations present in the expression. @value{GDBN} also provides
7560the following commands for working with macros explicitly.
7561
7562@table @code
7563
7564@kindex macro expand
7565@cindex macro expansion, showing the results of preprocessor
7566@cindex preprocessor macro expansion, showing the results of
7567@cindex expanding preprocessor macros
7568@item macro expand @var{expression}
7569@itemx macro exp @var{expression}
7570Show the results of expanding all preprocessor macro invocations in
7571@var{expression}. Since @value{GDBN} simply expands macros, but does
7572not parse the result, @var{expression} need not be a valid expression;
7573it can be any string of tokens.
7574
09d4efe1 7575@kindex macro exp1
e2e0bcd1
JB
7576@item macro expand-once @var{expression}
7577@itemx macro exp1 @var{expression}
4644b6e3 7578@cindex expand macro once
e2e0bcd1
JB
7579@i{(This command is not yet implemented.)} Show the results of
7580expanding those preprocessor macro invocations that appear explicitly in
7581@var{expression}. Macro invocations appearing in that expansion are
7582left unchanged. This command allows you to see the effect of a
7583particular macro more clearly, without being confused by further
7584expansions. Since @value{GDBN} simply expands macros, but does not
7585parse the result, @var{expression} need not be a valid expression; it
7586can be any string of tokens.
7587
475b0867 7588@kindex info macro
e2e0bcd1
JB
7589@cindex macro definition, showing
7590@cindex definition, showing a macro's
475b0867 7591@item info macro @var{macro}
e2e0bcd1
JB
7592Show the definition of the macro named @var{macro}, and describe the
7593source location where that definition was established.
7594
7595@kindex macro define
7596@cindex user-defined macros
7597@cindex defining macros interactively
7598@cindex macros, user-defined
7599@item macro define @var{macro} @var{replacement-list}
7600@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7601@i{(This command is not yet implemented.)} Introduce a definition for a
7602preprocessor macro named @var{macro}, invocations of which are replaced
7603by the tokens given in @var{replacement-list}. The first form of this
7604command defines an ``object-like'' macro, which takes no arguments; the
7605second form defines a ``function-like'' macro, which takes the arguments
7606given in @var{arglist}.
7607
7608A definition introduced by this command is in scope in every expression
7609evaluated in @value{GDBN}, until it is removed with the @command{macro
7610undef} command, described below. The definition overrides all
7611definitions for @var{macro} present in the program being debugged, as
7612well as any previous user-supplied definition.
7613
7614@kindex macro undef
7615@item macro undef @var{macro}
7616@i{(This command is not yet implemented.)} Remove any user-supplied
7617definition for the macro named @var{macro}. This command only affects
7618definitions provided with the @command{macro define} command, described
7619above; it cannot remove definitions present in the program being
7620debugged.
7621
09d4efe1
EZ
7622@kindex macro list
7623@item macro list
7624@i{(This command is not yet implemented.)} List all the macros
7625defined using the @code{macro define} command.
e2e0bcd1
JB
7626@end table
7627
7628@cindex macros, example of debugging with
7629Here is a transcript showing the above commands in action. First, we
7630show our source files:
7631
7632@smallexample
7633$ cat sample.c
7634#include <stdio.h>
7635#include "sample.h"
7636
7637#define M 42
7638#define ADD(x) (M + x)
7639
7640main ()
7641@{
7642#define N 28
7643 printf ("Hello, world!\n");
7644#undef N
7645 printf ("We're so creative.\n");
7646#define N 1729
7647 printf ("Goodbye, world!\n");
7648@}
7649$ cat sample.h
7650#define Q <
7651$
7652@end smallexample
7653
7654Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7655We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7656compiler includes information about preprocessor macros in the debugging
7657information.
7658
7659@smallexample
7660$ gcc -gdwarf-2 -g3 sample.c -o sample
7661$
7662@end smallexample
7663
7664Now, we start @value{GDBN} on our sample program:
7665
7666@smallexample
7667$ gdb -nw sample
7668GNU gdb 2002-05-06-cvs
7669Copyright 2002 Free Software Foundation, Inc.
7670GDB is free software, @dots{}
f7dc1244 7671(@value{GDBP})
e2e0bcd1
JB
7672@end smallexample
7673
7674We can expand macros and examine their definitions, even when the
7675program is not running. @value{GDBN} uses the current listing position
7676to decide which macro definitions are in scope:
7677
7678@smallexample
f7dc1244 7679(@value{GDBP}) list main
e2e0bcd1
JB
76803
76814 #define M 42
76825 #define ADD(x) (M + x)
76836
76847 main ()
76858 @{
76869 #define N 28
768710 printf ("Hello, world!\n");
768811 #undef N
768912 printf ("We're so creative.\n");
f7dc1244 7690(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7691Defined at /home/jimb/gdb/macros/play/sample.c:5
7692#define ADD(x) (M + x)
f7dc1244 7693(@value{GDBP}) info macro Q
e2e0bcd1
JB
7694Defined at /home/jimb/gdb/macros/play/sample.h:1
7695 included at /home/jimb/gdb/macros/play/sample.c:2
7696#define Q <
f7dc1244 7697(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7698expands to: (42 + 1)
f7dc1244 7699(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7700expands to: once (M + 1)
f7dc1244 7701(@value{GDBP})
e2e0bcd1
JB
7702@end smallexample
7703
7704In the example above, note that @command{macro expand-once} expands only
7705the macro invocation explicit in the original text --- the invocation of
7706@code{ADD} --- but does not expand the invocation of the macro @code{M},
7707which was introduced by @code{ADD}.
7708
3f94c067
BW
7709Once the program is running, @value{GDBN} uses the macro definitions in
7710force at the source line of the current stack frame:
e2e0bcd1
JB
7711
7712@smallexample
f7dc1244 7713(@value{GDBP}) break main
e2e0bcd1 7714Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7715(@value{GDBP}) run
b383017d 7716Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7717
7718Breakpoint 1, main () at sample.c:10
771910 printf ("Hello, world!\n");
f7dc1244 7720(@value{GDBP})
e2e0bcd1
JB
7721@end smallexample
7722
7723At line 10, the definition of the macro @code{N} at line 9 is in force:
7724
7725@smallexample
f7dc1244 7726(@value{GDBP}) info macro N
e2e0bcd1
JB
7727Defined at /home/jimb/gdb/macros/play/sample.c:9
7728#define N 28
f7dc1244 7729(@value{GDBP}) macro expand N Q M
e2e0bcd1 7730expands to: 28 < 42
f7dc1244 7731(@value{GDBP}) print N Q M
e2e0bcd1 7732$1 = 1
f7dc1244 7733(@value{GDBP})
e2e0bcd1
JB
7734@end smallexample
7735
7736As we step over directives that remove @code{N}'s definition, and then
7737give it a new definition, @value{GDBN} finds the definition (or lack
7738thereof) in force at each point:
7739
7740@smallexample
f7dc1244 7741(@value{GDBP}) next
e2e0bcd1
JB
7742Hello, world!
774312 printf ("We're so creative.\n");
f7dc1244 7744(@value{GDBP}) info macro N
e2e0bcd1
JB
7745The symbol `N' has no definition as a C/C++ preprocessor macro
7746at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7747(@value{GDBP}) next
e2e0bcd1
JB
7748We're so creative.
774914 printf ("Goodbye, world!\n");
f7dc1244 7750(@value{GDBP}) info macro N
e2e0bcd1
JB
7751Defined at /home/jimb/gdb/macros/play/sample.c:13
7752#define N 1729
f7dc1244 7753(@value{GDBP}) macro expand N Q M
e2e0bcd1 7754expands to: 1729 < 42
f7dc1244 7755(@value{GDBP}) print N Q M
e2e0bcd1 7756$2 = 0
f7dc1244 7757(@value{GDBP})
e2e0bcd1
JB
7758@end smallexample
7759
7760
b37052ae
EZ
7761@node Tracepoints
7762@chapter Tracepoints
7763@c This chapter is based on the documentation written by Michael
7764@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7765
7766@cindex tracepoints
7767In some applications, it is not feasible for the debugger to interrupt
7768the program's execution long enough for the developer to learn
7769anything helpful about its behavior. If the program's correctness
7770depends on its real-time behavior, delays introduced by a debugger
7771might cause the program to change its behavior drastically, or perhaps
7772fail, even when the code itself is correct. It is useful to be able
7773to observe the program's behavior without interrupting it.
7774
7775Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7776specify locations in the program, called @dfn{tracepoints}, and
7777arbitrary expressions to evaluate when those tracepoints are reached.
7778Later, using the @code{tfind} command, you can examine the values
7779those expressions had when the program hit the tracepoints. The
7780expressions may also denote objects in memory---structures or arrays,
7781for example---whose values @value{GDBN} should record; while visiting
7782a particular tracepoint, you may inspect those objects as if they were
7783in memory at that moment. However, because @value{GDBN} records these
7784values without interacting with you, it can do so quickly and
7785unobtrusively, hopefully not disturbing the program's behavior.
7786
7787The tracepoint facility is currently available only for remote
9d29849a
JB
7788targets. @xref{Targets}. In addition, your remote target must know
7789how to collect trace data. This functionality is implemented in the
7790remote stub; however, none of the stubs distributed with @value{GDBN}
7791support tracepoints as of this writing. The format of the remote
7792packets used to implement tracepoints are described in @ref{Tracepoint
7793Packets}.
b37052ae
EZ
7794
7795This chapter describes the tracepoint commands and features.
7796
7797@menu
b383017d
RM
7798* Set Tracepoints::
7799* Analyze Collected Data::
7800* Tracepoint Variables::
b37052ae
EZ
7801@end menu
7802
7803@node Set Tracepoints
7804@section Commands to Set Tracepoints
7805
7806Before running such a @dfn{trace experiment}, an arbitrary number of
7807tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7808tracepoint has a number assigned to it by @value{GDBN}. Like with
7809breakpoints, tracepoint numbers are successive integers starting from
7810one. Many of the commands associated with tracepoints take the
7811tracepoint number as their argument, to identify which tracepoint to
7812work on.
7813
7814For each tracepoint, you can specify, in advance, some arbitrary set
7815of data that you want the target to collect in the trace buffer when
7816it hits that tracepoint. The collected data can include registers,
7817local variables, or global data. Later, you can use @value{GDBN}
7818commands to examine the values these data had at the time the
7819tracepoint was hit.
7820
7821This section describes commands to set tracepoints and associated
7822conditions and actions.
7823
7824@menu
b383017d
RM
7825* Create and Delete Tracepoints::
7826* Enable and Disable Tracepoints::
7827* Tracepoint Passcounts::
7828* Tracepoint Actions::
7829* Listing Tracepoints::
79a6e687 7830* Starting and Stopping Trace Experiments::
b37052ae
EZ
7831@end menu
7832
7833@node Create and Delete Tracepoints
7834@subsection Create and Delete Tracepoints
7835
7836@table @code
7837@cindex set tracepoint
7838@kindex trace
7839@item trace
7840The @code{trace} command is very similar to the @code{break} command.
7841Its argument can be a source line, a function name, or an address in
7842the target program. @xref{Set Breaks}. The @code{trace} command
7843defines a tracepoint, which is a point in the target program where the
7844debugger will briefly stop, collect some data, and then allow the
7845program to continue. Setting a tracepoint or changing its commands
7846doesn't take effect until the next @code{tstart} command; thus, you
7847cannot change the tracepoint attributes once a trace experiment is
7848running.
7849
7850Here are some examples of using the @code{trace} command:
7851
7852@smallexample
7853(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7854
7855(@value{GDBP}) @b{trace +2} // 2 lines forward
7856
7857(@value{GDBP}) @b{trace my_function} // first source line of function
7858
7859(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7860
7861(@value{GDBP}) @b{trace *0x2117c4} // an address
7862@end smallexample
7863
7864@noindent
7865You can abbreviate @code{trace} as @code{tr}.
7866
7867@vindex $tpnum
7868@cindex last tracepoint number
7869@cindex recent tracepoint number
7870@cindex tracepoint number
7871The convenience variable @code{$tpnum} records the tracepoint number
7872of the most recently set tracepoint.
7873
7874@kindex delete tracepoint
7875@cindex tracepoint deletion
7876@item delete tracepoint @r{[}@var{num}@r{]}
7877Permanently delete one or more tracepoints. With no argument, the
7878default is to delete all tracepoints.
7879
7880Examples:
7881
7882@smallexample
7883(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7884
7885(@value{GDBP}) @b{delete trace} // remove all tracepoints
7886@end smallexample
7887
7888@noindent
7889You can abbreviate this command as @code{del tr}.
7890@end table
7891
7892@node Enable and Disable Tracepoints
7893@subsection Enable and Disable Tracepoints
7894
7895@table @code
7896@kindex disable tracepoint
7897@item disable tracepoint @r{[}@var{num}@r{]}
7898Disable tracepoint @var{num}, or all tracepoints if no argument
7899@var{num} is given. A disabled tracepoint will have no effect during
7900the next trace experiment, but it is not forgotten. You can re-enable
7901a disabled tracepoint using the @code{enable tracepoint} command.
7902
7903@kindex enable tracepoint
7904@item enable tracepoint @r{[}@var{num}@r{]}
7905Enable tracepoint @var{num}, or all tracepoints. The enabled
7906tracepoints will become effective the next time a trace experiment is
7907run.
7908@end table
7909
7910@node Tracepoint Passcounts
7911@subsection Tracepoint Passcounts
7912
7913@table @code
7914@kindex passcount
7915@cindex tracepoint pass count
7916@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7917Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7918automatically stop a trace experiment. If a tracepoint's passcount is
7919@var{n}, then the trace experiment will be automatically stopped on
7920the @var{n}'th time that tracepoint is hit. If the tracepoint number
7921@var{num} is not specified, the @code{passcount} command sets the
7922passcount of the most recently defined tracepoint. If no passcount is
7923given, the trace experiment will run until stopped explicitly by the
7924user.
7925
7926Examples:
7927
7928@smallexample
b383017d 7929(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7930@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7931
7932(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7933@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7934(@value{GDBP}) @b{trace foo}
7935(@value{GDBP}) @b{pass 3}
7936(@value{GDBP}) @b{trace bar}
7937(@value{GDBP}) @b{pass 2}
7938(@value{GDBP}) @b{trace baz}
7939(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7940@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7941@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7942@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7943@end smallexample
7944@end table
7945
7946@node Tracepoint Actions
7947@subsection Tracepoint Action Lists
7948
7949@table @code
7950@kindex actions
7951@cindex tracepoint actions
7952@item actions @r{[}@var{num}@r{]}
7953This command will prompt for a list of actions to be taken when the
7954tracepoint is hit. If the tracepoint number @var{num} is not
7955specified, this command sets the actions for the one that was most
7956recently defined (so that you can define a tracepoint and then say
7957@code{actions} without bothering about its number). You specify the
7958actions themselves on the following lines, one action at a time, and
7959terminate the actions list with a line containing just @code{end}. So
7960far, the only defined actions are @code{collect} and
7961@code{while-stepping}.
7962
7963@cindex remove actions from a tracepoint
7964To remove all actions from a tracepoint, type @samp{actions @var{num}}
7965and follow it immediately with @samp{end}.
7966
7967@smallexample
7968(@value{GDBP}) @b{collect @var{data}} // collect some data
7969
6826cf00 7970(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7971
6826cf00 7972(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7973@end smallexample
7974
7975In the following example, the action list begins with @code{collect}
7976commands indicating the things to be collected when the tracepoint is
7977hit. Then, in order to single-step and collect additional data
7978following the tracepoint, a @code{while-stepping} command is used,
7979followed by the list of things to be collected while stepping. The
7980@code{while-stepping} command is terminated by its own separate
7981@code{end} command. Lastly, the action list is terminated by an
7982@code{end} command.
7983
7984@smallexample
7985(@value{GDBP}) @b{trace foo}
7986(@value{GDBP}) @b{actions}
7987Enter actions for tracepoint 1, one per line:
7988> collect bar,baz
7989> collect $regs
7990> while-stepping 12
7991 > collect $fp, $sp
7992 > end
7993end
7994@end smallexample
7995
7996@kindex collect @r{(tracepoints)}
7997@item collect @var{expr1}, @var{expr2}, @dots{}
7998Collect values of the given expressions when the tracepoint is hit.
7999This command accepts a comma-separated list of any valid expressions.
8000In addition to global, static, or local variables, the following
8001special arguments are supported:
8002
8003@table @code
8004@item $regs
8005collect all registers
8006
8007@item $args
8008collect all function arguments
8009
8010@item $locals
8011collect all local variables.
8012@end table
8013
8014You can give several consecutive @code{collect} commands, each one
8015with a single argument, or one @code{collect} command with several
8016arguments separated by commas: the effect is the same.
8017
f5c37c66
EZ
8018The command @code{info scope} (@pxref{Symbols, info scope}) is
8019particularly useful for figuring out what data to collect.
8020
b37052ae
EZ
8021@kindex while-stepping @r{(tracepoints)}
8022@item while-stepping @var{n}
8023Perform @var{n} single-step traces after the tracepoint, collecting
8024new data at each step. The @code{while-stepping} command is
8025followed by the list of what to collect while stepping (followed by
8026its own @code{end} command):
8027
8028@smallexample
8029> while-stepping 12
8030 > collect $regs, myglobal
8031 > end
8032>
8033@end smallexample
8034
8035@noindent
8036You may abbreviate @code{while-stepping} as @code{ws} or
8037@code{stepping}.
8038@end table
8039
8040@node Listing Tracepoints
8041@subsection Listing Tracepoints
8042
8043@table @code
8044@kindex info tracepoints
09d4efe1 8045@kindex info tp
b37052ae
EZ
8046@cindex information about tracepoints
8047@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8048Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8049a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8050defined so far. For each tracepoint, the following information is
8051shown:
8052
8053@itemize @bullet
8054@item
8055its number
8056@item
8057whether it is enabled or disabled
8058@item
8059its address
8060@item
8061its passcount as given by the @code{passcount @var{n}} command
8062@item
8063its step count as given by the @code{while-stepping @var{n}} command
8064@item
8065where in the source files is the tracepoint set
8066@item
8067its action list as given by the @code{actions} command
8068@end itemize
8069
8070@smallexample
8071(@value{GDBP}) @b{info trace}
8072Num Enb Address PassC StepC What
80731 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80742 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80753 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8076(@value{GDBP})
8077@end smallexample
8078
8079@noindent
8080This command can be abbreviated @code{info tp}.
8081@end table
8082
79a6e687
BW
8083@node Starting and Stopping Trace Experiments
8084@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8085
8086@table @code
8087@kindex tstart
8088@cindex start a new trace experiment
8089@cindex collected data discarded
8090@item tstart
8091This command takes no arguments. It starts the trace experiment, and
8092begins collecting data. This has the side effect of discarding all
8093the data collected in the trace buffer during the previous trace
8094experiment.
8095
8096@kindex tstop
8097@cindex stop a running trace experiment
8098@item tstop
8099This command takes no arguments. It ends the trace experiment, and
8100stops collecting data.
8101
68c71a2e 8102@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8103automatically if any tracepoint's passcount is reached
8104(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8105
8106@kindex tstatus
8107@cindex status of trace data collection
8108@cindex trace experiment, status of
8109@item tstatus
8110This command displays the status of the current trace data
8111collection.
8112@end table
8113
8114Here is an example of the commands we described so far:
8115
8116@smallexample
8117(@value{GDBP}) @b{trace gdb_c_test}
8118(@value{GDBP}) @b{actions}
8119Enter actions for tracepoint #1, one per line.
8120> collect $regs,$locals,$args
8121> while-stepping 11
8122 > collect $regs
8123 > end
8124> end
8125(@value{GDBP}) @b{tstart}
8126 [time passes @dots{}]
8127(@value{GDBP}) @b{tstop}
8128@end smallexample
8129
8130
8131@node Analyze Collected Data
79a6e687 8132@section Using the Collected Data
b37052ae
EZ
8133
8134After the tracepoint experiment ends, you use @value{GDBN} commands
8135for examining the trace data. The basic idea is that each tracepoint
8136collects a trace @dfn{snapshot} every time it is hit and another
8137snapshot every time it single-steps. All these snapshots are
8138consecutively numbered from zero and go into a buffer, and you can
8139examine them later. The way you examine them is to @dfn{focus} on a
8140specific trace snapshot. When the remote stub is focused on a trace
8141snapshot, it will respond to all @value{GDBN} requests for memory and
8142registers by reading from the buffer which belongs to that snapshot,
8143rather than from @emph{real} memory or registers of the program being
8144debugged. This means that @strong{all} @value{GDBN} commands
8145(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8146behave as if we were currently debugging the program state as it was
8147when the tracepoint occurred. Any requests for data that are not in
8148the buffer will fail.
8149
8150@menu
8151* tfind:: How to select a trace snapshot
8152* tdump:: How to display all data for a snapshot
8153* save-tracepoints:: How to save tracepoints for a future run
8154@end menu
8155
8156@node tfind
8157@subsection @code{tfind @var{n}}
8158
8159@kindex tfind
8160@cindex select trace snapshot
8161@cindex find trace snapshot
8162The basic command for selecting a trace snapshot from the buffer is
8163@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8164counting from zero. If no argument @var{n} is given, the next
8165snapshot is selected.
8166
8167Here are the various forms of using the @code{tfind} command.
8168
8169@table @code
8170@item tfind start
8171Find the first snapshot in the buffer. This is a synonym for
8172@code{tfind 0} (since 0 is the number of the first snapshot).
8173
8174@item tfind none
8175Stop debugging trace snapshots, resume @emph{live} debugging.
8176
8177@item tfind end
8178Same as @samp{tfind none}.
8179
8180@item tfind
8181No argument means find the next trace snapshot.
8182
8183@item tfind -
8184Find the previous trace snapshot before the current one. This permits
8185retracing earlier steps.
8186
8187@item tfind tracepoint @var{num}
8188Find the next snapshot associated with tracepoint @var{num}. Search
8189proceeds forward from the last examined trace snapshot. If no
8190argument @var{num} is given, it means find the next snapshot collected
8191for the same tracepoint as the current snapshot.
8192
8193@item tfind pc @var{addr}
8194Find the next snapshot associated with the value @var{addr} of the
8195program counter. Search proceeds forward from the last examined trace
8196snapshot. If no argument @var{addr} is given, it means find the next
8197snapshot with the same value of PC as the current snapshot.
8198
8199@item tfind outside @var{addr1}, @var{addr2}
8200Find the next snapshot whose PC is outside the given range of
8201addresses.
8202
8203@item tfind range @var{addr1}, @var{addr2}
8204Find the next snapshot whose PC is between @var{addr1} and
8205@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8206
8207@item tfind line @r{[}@var{file}:@r{]}@var{n}
8208Find the next snapshot associated with the source line @var{n}. If
8209the optional argument @var{file} is given, refer to line @var{n} in
8210that source file. Search proceeds forward from the last examined
8211trace snapshot. If no argument @var{n} is given, it means find the
8212next line other than the one currently being examined; thus saying
8213@code{tfind line} repeatedly can appear to have the same effect as
8214stepping from line to line in a @emph{live} debugging session.
8215@end table
8216
8217The default arguments for the @code{tfind} commands are specifically
8218designed to make it easy to scan through the trace buffer. For
8219instance, @code{tfind} with no argument selects the next trace
8220snapshot, and @code{tfind -} with no argument selects the previous
8221trace snapshot. So, by giving one @code{tfind} command, and then
8222simply hitting @key{RET} repeatedly you can examine all the trace
8223snapshots in order. Or, by saying @code{tfind -} and then hitting
8224@key{RET} repeatedly you can examine the snapshots in reverse order.
8225The @code{tfind line} command with no argument selects the snapshot
8226for the next source line executed. The @code{tfind pc} command with
8227no argument selects the next snapshot with the same program counter
8228(PC) as the current frame. The @code{tfind tracepoint} command with
8229no argument selects the next trace snapshot collected by the same
8230tracepoint as the current one.
8231
8232In addition to letting you scan through the trace buffer manually,
8233these commands make it easy to construct @value{GDBN} scripts that
8234scan through the trace buffer and print out whatever collected data
8235you are interested in. Thus, if we want to examine the PC, FP, and SP
8236registers from each trace frame in the buffer, we can say this:
8237
8238@smallexample
8239(@value{GDBP}) @b{tfind start}
8240(@value{GDBP}) @b{while ($trace_frame != -1)}
8241> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8242 $trace_frame, $pc, $sp, $fp
8243> tfind
8244> end
8245
8246Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8247Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8248Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8249Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8250Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8251Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8252Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8253Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8254Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8255Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8256Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8257@end smallexample
8258
8259Or, if we want to examine the variable @code{X} at each source line in
8260the buffer:
8261
8262@smallexample
8263(@value{GDBP}) @b{tfind start}
8264(@value{GDBP}) @b{while ($trace_frame != -1)}
8265> printf "Frame %d, X == %d\n", $trace_frame, X
8266> tfind line
8267> end
8268
8269Frame 0, X = 1
8270Frame 7, X = 2
8271Frame 13, X = 255
8272@end smallexample
8273
8274@node tdump
8275@subsection @code{tdump}
8276@kindex tdump
8277@cindex dump all data collected at tracepoint
8278@cindex tracepoint data, display
8279
8280This command takes no arguments. It prints all the data collected at
8281the current trace snapshot.
8282
8283@smallexample
8284(@value{GDBP}) @b{trace 444}
8285(@value{GDBP}) @b{actions}
8286Enter actions for tracepoint #2, one per line:
8287> collect $regs, $locals, $args, gdb_long_test
8288> end
8289
8290(@value{GDBP}) @b{tstart}
8291
8292(@value{GDBP}) @b{tfind line 444}
8293#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8294at gdb_test.c:444
8295444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8296
8297(@value{GDBP}) @b{tdump}
8298Data collected at tracepoint 2, trace frame 1:
8299d0 0xc4aa0085 -995491707
8300d1 0x18 24
8301d2 0x80 128
8302d3 0x33 51
8303d4 0x71aea3d 119204413
8304d5 0x22 34
8305d6 0xe0 224
8306d7 0x380035 3670069
8307a0 0x19e24a 1696330
8308a1 0x3000668 50333288
8309a2 0x100 256
8310a3 0x322000 3284992
8311a4 0x3000698 50333336
8312a5 0x1ad3cc 1758156
8313fp 0x30bf3c 0x30bf3c
8314sp 0x30bf34 0x30bf34
8315ps 0x0 0
8316pc 0x20b2c8 0x20b2c8
8317fpcontrol 0x0 0
8318fpstatus 0x0 0
8319fpiaddr 0x0 0
8320p = 0x20e5b4 "gdb-test"
8321p1 = (void *) 0x11
8322p2 = (void *) 0x22
8323p3 = (void *) 0x33
8324p4 = (void *) 0x44
8325p5 = (void *) 0x55
8326p6 = (void *) 0x66
8327gdb_long_test = 17 '\021'
8328
8329(@value{GDBP})
8330@end smallexample
8331
8332@node save-tracepoints
8333@subsection @code{save-tracepoints @var{filename}}
8334@kindex save-tracepoints
8335@cindex save tracepoints for future sessions
8336
8337This command saves all current tracepoint definitions together with
8338their actions and passcounts, into a file @file{@var{filename}}
8339suitable for use in a later debugging session. To read the saved
8340tracepoint definitions, use the @code{source} command (@pxref{Command
8341Files}).
8342
8343@node Tracepoint Variables
8344@section Convenience Variables for Tracepoints
8345@cindex tracepoint variables
8346@cindex convenience variables for tracepoints
8347
8348@table @code
8349@vindex $trace_frame
8350@item (int) $trace_frame
8351The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8352snapshot is selected.
8353
8354@vindex $tracepoint
8355@item (int) $tracepoint
8356The tracepoint for the current trace snapshot.
8357
8358@vindex $trace_line
8359@item (int) $trace_line
8360The line number for the current trace snapshot.
8361
8362@vindex $trace_file
8363@item (char []) $trace_file
8364The source file for the current trace snapshot.
8365
8366@vindex $trace_func
8367@item (char []) $trace_func
8368The name of the function containing @code{$tracepoint}.
8369@end table
8370
8371Note: @code{$trace_file} is not suitable for use in @code{printf},
8372use @code{output} instead.
8373
8374Here's a simple example of using these convenience variables for
8375stepping through all the trace snapshots and printing some of their
8376data.
8377
8378@smallexample
8379(@value{GDBP}) @b{tfind start}
8380
8381(@value{GDBP}) @b{while $trace_frame != -1}
8382> output $trace_file
8383> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8384> tfind
8385> end
8386@end smallexample
8387
df0cd8c5
JB
8388@node Overlays
8389@chapter Debugging Programs That Use Overlays
8390@cindex overlays
8391
8392If your program is too large to fit completely in your target system's
8393memory, you can sometimes use @dfn{overlays} to work around this
8394problem. @value{GDBN} provides some support for debugging programs that
8395use overlays.
8396
8397@menu
8398* How Overlays Work:: A general explanation of overlays.
8399* Overlay Commands:: Managing overlays in @value{GDBN}.
8400* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8401 mapped by asking the inferior.
8402* Overlay Sample Program:: A sample program using overlays.
8403@end menu
8404
8405@node How Overlays Work
8406@section How Overlays Work
8407@cindex mapped overlays
8408@cindex unmapped overlays
8409@cindex load address, overlay's
8410@cindex mapped address
8411@cindex overlay area
8412
8413Suppose you have a computer whose instruction address space is only 64
8414kilobytes long, but which has much more memory which can be accessed by
8415other means: special instructions, segment registers, or memory
8416management hardware, for example. Suppose further that you want to
8417adapt a program which is larger than 64 kilobytes to run on this system.
8418
8419One solution is to identify modules of your program which are relatively
8420independent, and need not call each other directly; call these modules
8421@dfn{overlays}. Separate the overlays from the main program, and place
8422their machine code in the larger memory. Place your main program in
8423instruction memory, but leave at least enough space there to hold the
8424largest overlay as well.
8425
8426Now, to call a function located in an overlay, you must first copy that
8427overlay's machine code from the large memory into the space set aside
8428for it in the instruction memory, and then jump to its entry point
8429there.
8430
c928edc0
AC
8431@c NB: In the below the mapped area's size is greater or equal to the
8432@c size of all overlays. This is intentional to remind the developer
8433@c that overlays don't necessarily need to be the same size.
8434
474c8240 8435@smallexample
df0cd8c5 8436@group
c928edc0
AC
8437 Data Instruction Larger
8438Address Space Address Space Address Space
8439+-----------+ +-----------+ +-----------+
8440| | | | | |
8441+-----------+ +-----------+ +-----------+<-- overlay 1
8442| program | | main | .----| overlay 1 | load address
8443| variables | | program | | +-----------+
8444| and heap | | | | | |
8445+-----------+ | | | +-----------+<-- overlay 2
8446| | +-----------+ | | | load address
8447+-----------+ | | | .-| overlay 2 |
8448 | | | | | |
8449 mapped --->+-----------+ | | +-----------+
8450 address | | | | | |
8451 | overlay | <-' | | |
8452 | area | <---' +-----------+<-- overlay 3
8453 | | <---. | | load address
8454 +-----------+ `--| overlay 3 |
8455 | | | |
8456 +-----------+ | |
8457 +-----------+
8458 | |
8459 +-----------+
8460
8461 @anchor{A code overlay}A code overlay
df0cd8c5 8462@end group
474c8240 8463@end smallexample
df0cd8c5 8464
c928edc0
AC
8465The diagram (@pxref{A code overlay}) shows a system with separate data
8466and instruction address spaces. To map an overlay, the program copies
8467its code from the larger address space to the instruction address space.
8468Since the overlays shown here all use the same mapped address, only one
8469may be mapped at a time. For a system with a single address space for
8470data and instructions, the diagram would be similar, except that the
8471program variables and heap would share an address space with the main
8472program and the overlay area.
df0cd8c5
JB
8473
8474An overlay loaded into instruction memory and ready for use is called a
8475@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8476instruction memory. An overlay not present (or only partially present)
8477in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8478is its address in the larger memory. The mapped address is also called
8479the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8480called the @dfn{load memory address}, or @dfn{LMA}.
8481
8482Unfortunately, overlays are not a completely transparent way to adapt a
8483program to limited instruction memory. They introduce a new set of
8484global constraints you must keep in mind as you design your program:
8485
8486@itemize @bullet
8487
8488@item
8489Before calling or returning to a function in an overlay, your program
8490must make sure that overlay is actually mapped. Otherwise, the call or
8491return will transfer control to the right address, but in the wrong
8492overlay, and your program will probably crash.
8493
8494@item
8495If the process of mapping an overlay is expensive on your system, you
8496will need to choose your overlays carefully to minimize their effect on
8497your program's performance.
8498
8499@item
8500The executable file you load onto your system must contain each
8501overlay's instructions, appearing at the overlay's load address, not its
8502mapped address. However, each overlay's instructions must be relocated
8503and its symbols defined as if the overlay were at its mapped address.
8504You can use GNU linker scripts to specify different load and relocation
8505addresses for pieces of your program; see @ref{Overlay Description,,,
8506ld.info, Using ld: the GNU linker}.
8507
8508@item
8509The procedure for loading executable files onto your system must be able
8510to load their contents into the larger address space as well as the
8511instruction and data spaces.
8512
8513@end itemize
8514
8515The overlay system described above is rather simple, and could be
8516improved in many ways:
8517
8518@itemize @bullet
8519
8520@item
8521If your system has suitable bank switch registers or memory management
8522hardware, you could use those facilities to make an overlay's load area
8523contents simply appear at their mapped address in instruction space.
8524This would probably be faster than copying the overlay to its mapped
8525area in the usual way.
8526
8527@item
8528If your overlays are small enough, you could set aside more than one
8529overlay area, and have more than one overlay mapped at a time.
8530
8531@item
8532You can use overlays to manage data, as well as instructions. In
8533general, data overlays are even less transparent to your design than
8534code overlays: whereas code overlays only require care when you call or
8535return to functions, data overlays require care every time you access
8536the data. Also, if you change the contents of a data overlay, you
8537must copy its contents back out to its load address before you can copy a
8538different data overlay into the same mapped area.
8539
8540@end itemize
8541
8542
8543@node Overlay Commands
8544@section Overlay Commands
8545
8546To use @value{GDBN}'s overlay support, each overlay in your program must
8547correspond to a separate section of the executable file. The section's
8548virtual memory address and load memory address must be the overlay's
8549mapped and load addresses. Identifying overlays with sections allows
8550@value{GDBN} to determine the appropriate address of a function or
8551variable, depending on whether the overlay is mapped or not.
8552
8553@value{GDBN}'s overlay commands all start with the word @code{overlay};
8554you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8555
8556@table @code
8557@item overlay off
4644b6e3 8558@kindex overlay
df0cd8c5
JB
8559Disable @value{GDBN}'s overlay support. When overlay support is
8560disabled, @value{GDBN} assumes that all functions and variables are
8561always present at their mapped addresses. By default, @value{GDBN}'s
8562overlay support is disabled.
8563
8564@item overlay manual
df0cd8c5
JB
8565@cindex manual overlay debugging
8566Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8567relies on you to tell it which overlays are mapped, and which are not,
8568using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8569commands described below.
8570
8571@item overlay map-overlay @var{overlay}
8572@itemx overlay map @var{overlay}
df0cd8c5
JB
8573@cindex map an overlay
8574Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8575be the name of the object file section containing the overlay. When an
8576overlay is mapped, @value{GDBN} assumes it can find the overlay's
8577functions and variables at their mapped addresses. @value{GDBN} assumes
8578that any other overlays whose mapped ranges overlap that of
8579@var{overlay} are now unmapped.
8580
8581@item overlay unmap-overlay @var{overlay}
8582@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8583@cindex unmap an overlay
8584Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8585must be the name of the object file section containing the overlay.
8586When an overlay is unmapped, @value{GDBN} assumes it can find the
8587overlay's functions and variables at their load addresses.
8588
8589@item overlay auto
df0cd8c5
JB
8590Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8591consults a data structure the overlay manager maintains in the inferior
8592to see which overlays are mapped. For details, see @ref{Automatic
8593Overlay Debugging}.
8594
8595@item overlay load-target
8596@itemx overlay load
df0cd8c5
JB
8597@cindex reloading the overlay table
8598Re-read the overlay table from the inferior. Normally, @value{GDBN}
8599re-reads the table @value{GDBN} automatically each time the inferior
8600stops, so this command should only be necessary if you have changed the
8601overlay mapping yourself using @value{GDBN}. This command is only
8602useful when using automatic overlay debugging.
8603
8604@item overlay list-overlays
8605@itemx overlay list
8606@cindex listing mapped overlays
8607Display a list of the overlays currently mapped, along with their mapped
8608addresses, load addresses, and sizes.
8609
8610@end table
8611
8612Normally, when @value{GDBN} prints a code address, it includes the name
8613of the function the address falls in:
8614
474c8240 8615@smallexample
f7dc1244 8616(@value{GDBP}) print main
df0cd8c5 8617$3 = @{int ()@} 0x11a0 <main>
474c8240 8618@end smallexample
df0cd8c5
JB
8619@noindent
8620When overlay debugging is enabled, @value{GDBN} recognizes code in
8621unmapped overlays, and prints the names of unmapped functions with
8622asterisks around them. For example, if @code{foo} is a function in an
8623unmapped overlay, @value{GDBN} prints it this way:
8624
474c8240 8625@smallexample
f7dc1244 8626(@value{GDBP}) overlay list
df0cd8c5 8627No sections are mapped.
f7dc1244 8628(@value{GDBP}) print foo
df0cd8c5 8629$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8630@end smallexample
df0cd8c5
JB
8631@noindent
8632When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8633name normally:
8634
474c8240 8635@smallexample
f7dc1244 8636(@value{GDBP}) overlay list
b383017d 8637Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8638 mapped at 0x1016 - 0x104a
f7dc1244 8639(@value{GDBP}) print foo
df0cd8c5 8640$6 = @{int (int)@} 0x1016 <foo>
474c8240 8641@end smallexample
df0cd8c5
JB
8642
8643When overlay debugging is enabled, @value{GDBN} can find the correct
8644address for functions and variables in an overlay, whether or not the
8645overlay is mapped. This allows most @value{GDBN} commands, like
8646@code{break} and @code{disassemble}, to work normally, even on unmapped
8647code. However, @value{GDBN}'s breakpoint support has some limitations:
8648
8649@itemize @bullet
8650@item
8651@cindex breakpoints in overlays
8652@cindex overlays, setting breakpoints in
8653You can set breakpoints in functions in unmapped overlays, as long as
8654@value{GDBN} can write to the overlay at its load address.
8655@item
8656@value{GDBN} can not set hardware or simulator-based breakpoints in
8657unmapped overlays. However, if you set a breakpoint at the end of your
8658overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8659you are using manual overlay management), @value{GDBN} will re-set its
8660breakpoints properly.
8661@end itemize
8662
8663
8664@node Automatic Overlay Debugging
8665@section Automatic Overlay Debugging
8666@cindex automatic overlay debugging
8667
8668@value{GDBN} can automatically track which overlays are mapped and which
8669are not, given some simple co-operation from the overlay manager in the
8670inferior. If you enable automatic overlay debugging with the
8671@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8672looks in the inferior's memory for certain variables describing the
8673current state of the overlays.
8674
8675Here are the variables your overlay manager must define to support
8676@value{GDBN}'s automatic overlay debugging:
8677
8678@table @asis
8679
8680@item @code{_ovly_table}:
8681This variable must be an array of the following structures:
8682
474c8240 8683@smallexample
df0cd8c5
JB
8684struct
8685@{
8686 /* The overlay's mapped address. */
8687 unsigned long vma;
8688
8689 /* The size of the overlay, in bytes. */
8690 unsigned long size;
8691
8692 /* The overlay's load address. */
8693 unsigned long lma;
8694
8695 /* Non-zero if the overlay is currently mapped;
8696 zero otherwise. */
8697 unsigned long mapped;
8698@}
474c8240 8699@end smallexample
df0cd8c5
JB
8700
8701@item @code{_novlys}:
8702This variable must be a four-byte signed integer, holding the total
8703number of elements in @code{_ovly_table}.
8704
8705@end table
8706
8707To decide whether a particular overlay is mapped or not, @value{GDBN}
8708looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8709@code{lma} members equal the VMA and LMA of the overlay's section in the
8710executable file. When @value{GDBN} finds a matching entry, it consults
8711the entry's @code{mapped} member to determine whether the overlay is
8712currently mapped.
8713
81d46470 8714In addition, your overlay manager may define a function called
def71bfa 8715@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8716will silently set a breakpoint there. If the overlay manager then
8717calls this function whenever it has changed the overlay table, this
8718will enable @value{GDBN} to accurately keep track of which overlays
8719are in program memory, and update any breakpoints that may be set
b383017d 8720in overlays. This will allow breakpoints to work even if the
81d46470
MS
8721overlays are kept in ROM or other non-writable memory while they
8722are not being executed.
df0cd8c5
JB
8723
8724@node Overlay Sample Program
8725@section Overlay Sample Program
8726@cindex overlay example program
8727
8728When linking a program which uses overlays, you must place the overlays
8729at their load addresses, while relocating them to run at their mapped
8730addresses. To do this, you must write a linker script (@pxref{Overlay
8731Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8732since linker scripts are specific to a particular host system, target
8733architecture, and target memory layout, this manual cannot provide
8734portable sample code demonstrating @value{GDBN}'s overlay support.
8735
8736However, the @value{GDBN} source distribution does contain an overlaid
8737program, with linker scripts for a few systems, as part of its test
8738suite. The program consists of the following files from
8739@file{gdb/testsuite/gdb.base}:
8740
8741@table @file
8742@item overlays.c
8743The main program file.
8744@item ovlymgr.c
8745A simple overlay manager, used by @file{overlays.c}.
8746@item foo.c
8747@itemx bar.c
8748@itemx baz.c
8749@itemx grbx.c
8750Overlay modules, loaded and used by @file{overlays.c}.
8751@item d10v.ld
8752@itemx m32r.ld
8753Linker scripts for linking the test program on the @code{d10v-elf}
8754and @code{m32r-elf} targets.
8755@end table
8756
8757You can build the test program using the @code{d10v-elf} GCC
8758cross-compiler like this:
8759
474c8240 8760@smallexample
df0cd8c5
JB
8761$ d10v-elf-gcc -g -c overlays.c
8762$ d10v-elf-gcc -g -c ovlymgr.c
8763$ d10v-elf-gcc -g -c foo.c
8764$ d10v-elf-gcc -g -c bar.c
8765$ d10v-elf-gcc -g -c baz.c
8766$ d10v-elf-gcc -g -c grbx.c
8767$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8768 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8769@end smallexample
df0cd8c5
JB
8770
8771The build process is identical for any other architecture, except that
8772you must substitute the appropriate compiler and linker script for the
8773target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8774
8775
6d2ebf8b 8776@node Languages
c906108c
SS
8777@chapter Using @value{GDBN} with Different Languages
8778@cindex languages
8779
c906108c
SS
8780Although programming languages generally have common aspects, they are
8781rarely expressed in the same manner. For instance, in ANSI C,
8782dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8783Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8784represented (and displayed) differently. Hex numbers in C appear as
c906108c 8785@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8786
8787@cindex working language
8788Language-specific information is built into @value{GDBN} for some languages,
8789allowing you to express operations like the above in your program's
8790native language, and allowing @value{GDBN} to output values in a manner
8791consistent with the syntax of your program's native language. The
8792language you use to build expressions is called the @dfn{working
8793language}.
8794
8795@menu
8796* Setting:: Switching between source languages
8797* Show:: Displaying the language
c906108c 8798* Checks:: Type and range checks
79a6e687
BW
8799* Supported Languages:: Supported languages
8800* Unsupported Languages:: Unsupported languages
c906108c
SS
8801@end menu
8802
6d2ebf8b 8803@node Setting
79a6e687 8804@section Switching Between Source Languages
c906108c
SS
8805
8806There are two ways to control the working language---either have @value{GDBN}
8807set it automatically, or select it manually yourself. You can use the
8808@code{set language} command for either purpose. On startup, @value{GDBN}
8809defaults to setting the language automatically. The working language is
8810used to determine how expressions you type are interpreted, how values
8811are printed, etc.
8812
8813In addition to the working language, every source file that
8814@value{GDBN} knows about has its own working language. For some object
8815file formats, the compiler might indicate which language a particular
8816source file is in. However, most of the time @value{GDBN} infers the
8817language from the name of the file. The language of a source file
b37052ae 8818controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8819show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8820set the language of a source file from within @value{GDBN}, but you can
8821set the language associated with a filename extension. @xref{Show, ,
79a6e687 8822Displaying the Language}.
c906108c
SS
8823
8824This is most commonly a problem when you use a program, such
5d161b24 8825as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8826another language. In that case, make the
8827program use @code{#line} directives in its C output; that way
8828@value{GDBN} will know the correct language of the source code of the original
8829program, and will display that source code, not the generated C code.
8830
8831@menu
8832* Filenames:: Filename extensions and languages.
8833* Manually:: Setting the working language manually
8834* Automatically:: Having @value{GDBN} infer the source language
8835@end menu
8836
6d2ebf8b 8837@node Filenames
79a6e687 8838@subsection List of Filename Extensions and Languages
c906108c
SS
8839
8840If a source file name ends in one of the following extensions, then
8841@value{GDBN} infers that its language is the one indicated.
8842
8843@table @file
e07c999f
PH
8844@item .ada
8845@itemx .ads
8846@itemx .adb
8847@itemx .a
8848Ada source file.
c906108c
SS
8849
8850@item .c
8851C source file
8852
8853@item .C
8854@itemx .cc
8855@itemx .cp
8856@itemx .cpp
8857@itemx .cxx
8858@itemx .c++
b37052ae 8859C@t{++} source file
c906108c 8860
b37303ee
AF
8861@item .m
8862Objective-C source file
8863
c906108c
SS
8864@item .f
8865@itemx .F
8866Fortran source file
8867
c906108c
SS
8868@item .mod
8869Modula-2 source file
c906108c
SS
8870
8871@item .s
8872@itemx .S
8873Assembler source file. This actually behaves almost like C, but
8874@value{GDBN} does not skip over function prologues when stepping.
8875@end table
8876
8877In addition, you may set the language associated with a filename
79a6e687 8878extension. @xref{Show, , Displaying the Language}.
c906108c 8879
6d2ebf8b 8880@node Manually
79a6e687 8881@subsection Setting the Working Language
c906108c
SS
8882
8883If you allow @value{GDBN} to set the language automatically,
8884expressions are interpreted the same way in your debugging session and
8885your program.
8886
8887@kindex set language
8888If you wish, you may set the language manually. To do this, issue the
8889command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8890a language, such as
c906108c 8891@code{c} or @code{modula-2}.
c906108c
SS
8892For a list of the supported languages, type @samp{set language}.
8893
c906108c
SS
8894Setting the language manually prevents @value{GDBN} from updating the working
8895language automatically. This can lead to confusion if you try
8896to debug a program when the working language is not the same as the
8897source language, when an expression is acceptable to both
8898languages---but means different things. For instance, if the current
8899source file were written in C, and @value{GDBN} was parsing Modula-2, a
8900command such as:
8901
474c8240 8902@smallexample
c906108c 8903print a = b + c
474c8240 8904@end smallexample
c906108c
SS
8905
8906@noindent
8907might not have the effect you intended. In C, this means to add
8908@code{b} and @code{c} and place the result in @code{a}. The result
8909printed would be the value of @code{a}. In Modula-2, this means to compare
8910@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8911
6d2ebf8b 8912@node Automatically
79a6e687 8913@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8914
8915To have @value{GDBN} set the working language automatically, use
8916@samp{set language local} or @samp{set language auto}. @value{GDBN}
8917then infers the working language. That is, when your program stops in a
8918frame (usually by encountering a breakpoint), @value{GDBN} sets the
8919working language to the language recorded for the function in that
8920frame. If the language for a frame is unknown (that is, if the function
8921or block corresponding to the frame was defined in a source file that
8922does not have a recognized extension), the current working language is
8923not changed, and @value{GDBN} issues a warning.
8924
8925This may not seem necessary for most programs, which are written
8926entirely in one source language. However, program modules and libraries
8927written in one source language can be used by a main program written in
8928a different source language. Using @samp{set language auto} in this
8929case frees you from having to set the working language manually.
8930
6d2ebf8b 8931@node Show
79a6e687 8932@section Displaying the Language
c906108c
SS
8933
8934The following commands help you find out which language is the
8935working language, and also what language source files were written in.
8936
c906108c
SS
8937@table @code
8938@item show language
9c16f35a 8939@kindex show language
c906108c
SS
8940Display the current working language. This is the
8941language you can use with commands such as @code{print} to
8942build and compute expressions that may involve variables in your program.
8943
8944@item info frame
4644b6e3 8945@kindex info frame@r{, show the source language}
5d161b24 8946Display the source language for this frame. This language becomes the
c906108c 8947working language if you use an identifier from this frame.
79a6e687 8948@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8949information listed here.
8950
8951@item info source
4644b6e3 8952@kindex info source@r{, show the source language}
c906108c 8953Display the source language of this source file.
5d161b24 8954@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8955information listed here.
8956@end table
8957
8958In unusual circumstances, you may have source files with extensions
8959not in the standard list. You can then set the extension associated
8960with a language explicitly:
8961
c906108c 8962@table @code
09d4efe1 8963@item set extension-language @var{ext} @var{language}
9c16f35a 8964@kindex set extension-language
09d4efe1
EZ
8965Tell @value{GDBN} that source files with extension @var{ext} are to be
8966assumed as written in the source language @var{language}.
c906108c
SS
8967
8968@item info extensions
9c16f35a 8969@kindex info extensions
c906108c
SS
8970List all the filename extensions and the associated languages.
8971@end table
8972
6d2ebf8b 8973@node Checks
79a6e687 8974@section Type and Range Checking
c906108c
SS
8975
8976@quotation
8977@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8978checking are included, but they do not yet have any effect. This
8979section documents the intended facilities.
8980@end quotation
8981@c FIXME remove warning when type/range code added
8982
8983Some languages are designed to guard you against making seemingly common
8984errors through a series of compile- and run-time checks. These include
8985checking the type of arguments to functions and operators, and making
8986sure mathematical overflows are caught at run time. Checks such as
8987these help to ensure a program's correctness once it has been compiled
8988by eliminating type mismatches, and providing active checks for range
8989errors when your program is running.
8990
8991@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8992Although @value{GDBN} does not check the statements in your program,
8993it can check expressions entered directly into @value{GDBN} for
8994evaluation via the @code{print} command, for example. As with the
8995working language, @value{GDBN} can also decide whether or not to check
8996automatically based on your program's source language.
79a6e687 8997@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8998settings of supported languages.
c906108c
SS
8999
9000@menu
9001* Type Checking:: An overview of type checking
9002* Range Checking:: An overview of range checking
9003@end menu
9004
9005@cindex type checking
9006@cindex checks, type
6d2ebf8b 9007@node Type Checking
79a6e687 9008@subsection An Overview of Type Checking
c906108c
SS
9009
9010Some languages, such as Modula-2, are strongly typed, meaning that the
9011arguments to operators and functions have to be of the correct type,
9012otherwise an error occurs. These checks prevent type mismatch
9013errors from ever causing any run-time problems. For example,
9014
9015@smallexample
90161 + 2 @result{} 3
9017@exdent but
9018@error{} 1 + 2.3
9019@end smallexample
9020
9021The second example fails because the @code{CARDINAL} 1 is not
9022type-compatible with the @code{REAL} 2.3.
9023
5d161b24
DB
9024For the expressions you use in @value{GDBN} commands, you can tell the
9025@value{GDBN} type checker to skip checking;
9026to treat any mismatches as errors and abandon the expression;
9027or to only issue warnings when type mismatches occur,
c906108c
SS
9028but evaluate the expression anyway. When you choose the last of
9029these, @value{GDBN} evaluates expressions like the second example above, but
9030also issues a warning.
9031
5d161b24
DB
9032Even if you turn type checking off, there may be other reasons
9033related to type that prevent @value{GDBN} from evaluating an expression.
9034For instance, @value{GDBN} does not know how to add an @code{int} and
9035a @code{struct foo}. These particular type errors have nothing to do
9036with the language in use, and usually arise from expressions, such as
c906108c
SS
9037the one described above, which make little sense to evaluate anyway.
9038
9039Each language defines to what degree it is strict about type. For
9040instance, both Modula-2 and C require the arguments to arithmetical
9041operators to be numbers. In C, enumerated types and pointers can be
9042represented as numbers, so that they are valid arguments to mathematical
79a6e687 9043operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9044details on specific languages.
9045
9046@value{GDBN} provides some additional commands for controlling the type checker:
9047
c906108c
SS
9048@kindex set check type
9049@kindex show check type
9050@table @code
9051@item set check type auto
9052Set type checking on or off based on the current working language.
79a6e687 9053@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9054each language.
9055
9056@item set check type on
9057@itemx set check type off
9058Set type checking on or off, overriding the default setting for the
9059current working language. Issue a warning if the setting does not
9060match the language default. If any type mismatches occur in
d4f3574e 9061evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9062message and aborts evaluation of the expression.
9063
9064@item set check type warn
9065Cause the type checker to issue warnings, but to always attempt to
9066evaluate the expression. Evaluating the expression may still
9067be impossible for other reasons. For example, @value{GDBN} cannot add
9068numbers and structures.
9069
9070@item show type
5d161b24 9071Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9072is setting it automatically.
9073@end table
9074
9075@cindex range checking
9076@cindex checks, range
6d2ebf8b 9077@node Range Checking
79a6e687 9078@subsection An Overview of Range Checking
c906108c
SS
9079
9080In some languages (such as Modula-2), it is an error to exceed the
9081bounds of a type; this is enforced with run-time checks. Such range
9082checking is meant to ensure program correctness by making sure
9083computations do not overflow, or indices on an array element access do
9084not exceed the bounds of the array.
9085
9086For expressions you use in @value{GDBN} commands, you can tell
9087@value{GDBN} to treat range errors in one of three ways: ignore them,
9088always treat them as errors and abandon the expression, or issue
9089warnings but evaluate the expression anyway.
9090
9091A range error can result from numerical overflow, from exceeding an
9092array index bound, or when you type a constant that is not a member
9093of any type. Some languages, however, do not treat overflows as an
9094error. In many implementations of C, mathematical overflow causes the
9095result to ``wrap around'' to lower values---for example, if @var{m} is
9096the largest integer value, and @var{s} is the smallest, then
9097
474c8240 9098@smallexample
c906108c 9099@var{m} + 1 @result{} @var{s}
474c8240 9100@end smallexample
c906108c
SS
9101
9102This, too, is specific to individual languages, and in some cases
79a6e687
BW
9103specific to individual compilers or machines. @xref{Supported Languages, ,
9104Supported Languages}, for further details on specific languages.
c906108c
SS
9105
9106@value{GDBN} provides some additional commands for controlling the range checker:
9107
c906108c
SS
9108@kindex set check range
9109@kindex show check range
9110@table @code
9111@item set check range auto
9112Set range checking on or off based on the current working language.
79a6e687 9113@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9114each language.
9115
9116@item set check range on
9117@itemx set check range off
9118Set range checking on or off, overriding the default setting for the
9119current working language. A warning is issued if the setting does not
c3f6f71d
JM
9120match the language default. If a range error occurs and range checking is on,
9121then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9122
9123@item set check range warn
9124Output messages when the @value{GDBN} range checker detects a range error,
9125but attempt to evaluate the expression anyway. Evaluating the
9126expression may still be impossible for other reasons, such as accessing
9127memory that the process does not own (a typical example from many Unix
9128systems).
9129
9130@item show range
9131Show the current setting of the range checker, and whether or not it is
9132being set automatically by @value{GDBN}.
9133@end table
c906108c 9134
79a6e687
BW
9135@node Supported Languages
9136@section Supported Languages
c906108c 9137
9c16f35a
EZ
9138@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9139assembly, Modula-2, and Ada.
cce74817 9140@c This is false ...
c906108c
SS
9141Some @value{GDBN} features may be used in expressions regardless of the
9142language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9143and the @samp{@{type@}addr} construct (@pxref{Expressions,
9144,Expressions}) can be used with the constructs of any supported
9145language.
9146
9147The following sections detail to what degree each source language is
9148supported by @value{GDBN}. These sections are not meant to be language
9149tutorials or references, but serve only as a reference guide to what the
9150@value{GDBN} expression parser accepts, and what input and output
9151formats should look like for different languages. There are many good
9152books written on each of these languages; please look to these for a
9153language reference or tutorial.
9154
c906108c 9155@menu
b37303ee 9156* C:: C and C@t{++}
b383017d 9157* Objective-C:: Objective-C
09d4efe1 9158* Fortran:: Fortran
9c16f35a 9159* Pascal:: Pascal
b37303ee 9160* Modula-2:: Modula-2
e07c999f 9161* Ada:: Ada
c906108c
SS
9162@end menu
9163
6d2ebf8b 9164@node C
b37052ae 9165@subsection C and C@t{++}
7a292a7a 9166
b37052ae
EZ
9167@cindex C and C@t{++}
9168@cindex expressions in C or C@t{++}
c906108c 9169
b37052ae 9170Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9171to both languages. Whenever this is the case, we discuss those languages
9172together.
9173
41afff9a
EZ
9174@cindex C@t{++}
9175@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9176@cindex @sc{gnu} C@t{++}
9177The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9178compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9179effectively, you must compile your C@t{++} programs with a supported
9180C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9181compiler (@code{aCC}).
9182
0179ffac
DC
9183For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9184format; if it doesn't work on your system, try the stabs+ debugging
9185format. You can select those formats explicitly with the @code{g++}
9186command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9187@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9188gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9189
c906108c 9190@menu
b37052ae
EZ
9191* C Operators:: C and C@t{++} operators
9192* C Constants:: C and C@t{++} constants
79a6e687 9193* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9194* C Defaults:: Default settings for C and C@t{++}
9195* C Checks:: C and C@t{++} type and range checks
c906108c 9196* Debugging C:: @value{GDBN} and C
79a6e687 9197* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9198* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9199@end menu
c906108c 9200
6d2ebf8b 9201@node C Operators
79a6e687 9202@subsubsection C and C@t{++} Operators
7a292a7a 9203
b37052ae 9204@cindex C and C@t{++} operators
c906108c
SS
9205
9206Operators must be defined on values of specific types. For instance,
9207@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9208often defined on groups of types.
c906108c 9209
b37052ae 9210For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9211
9212@itemize @bullet
53a5351d 9213
c906108c 9214@item
c906108c 9215@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9216specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9217
9218@item
d4f3574e
SS
9219@emph{Floating-point types} include @code{float}, @code{double}, and
9220@code{long double} (if supported by the target platform).
c906108c
SS
9221
9222@item
53a5351d 9223@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9224
9225@item
9226@emph{Scalar types} include all of the above.
53a5351d 9227
c906108c
SS
9228@end itemize
9229
9230@noindent
9231The following operators are supported. They are listed here
9232in order of increasing precedence:
9233
9234@table @code
9235@item ,
9236The comma or sequencing operator. Expressions in a comma-separated list
9237are evaluated from left to right, with the result of the entire
9238expression being the last expression evaluated.
9239
9240@item =
9241Assignment. The value of an assignment expression is the value
9242assigned. Defined on scalar types.
9243
9244@item @var{op}=
9245Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9246and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9247@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9248@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9249@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9250
9251@item ?:
9252The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9253of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9254integral type.
9255
9256@item ||
9257Logical @sc{or}. Defined on integral types.
9258
9259@item &&
9260Logical @sc{and}. Defined on integral types.
9261
9262@item |
9263Bitwise @sc{or}. Defined on integral types.
9264
9265@item ^
9266Bitwise exclusive-@sc{or}. Defined on integral types.
9267
9268@item &
9269Bitwise @sc{and}. Defined on integral types.
9270
9271@item ==@r{, }!=
9272Equality and inequality. Defined on scalar types. The value of these
9273expressions is 0 for false and non-zero for true.
9274
9275@item <@r{, }>@r{, }<=@r{, }>=
9276Less than, greater than, less than or equal, greater than or equal.
9277Defined on scalar types. The value of these expressions is 0 for false
9278and non-zero for true.
9279
9280@item <<@r{, }>>
9281left shift, and right shift. Defined on integral types.
9282
9283@item @@
9284The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9285
9286@item +@r{, }-
9287Addition and subtraction. Defined on integral types, floating-point types and
9288pointer types.
9289
9290@item *@r{, }/@r{, }%
9291Multiplication, division, and modulus. Multiplication and division are
9292defined on integral and floating-point types. Modulus is defined on
9293integral types.
9294
9295@item ++@r{, }--
9296Increment and decrement. When appearing before a variable, the
9297operation is performed before the variable is used in an expression;
9298when appearing after it, the variable's value is used before the
9299operation takes place.
9300
9301@item *
9302Pointer dereferencing. Defined on pointer types. Same precedence as
9303@code{++}.
9304
9305@item &
9306Address operator. Defined on variables. Same precedence as @code{++}.
9307
b37052ae
EZ
9308For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9309allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9310to examine the address
b37052ae 9311where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9312stored.
c906108c
SS
9313
9314@item -
9315Negative. Defined on integral and floating-point types. Same
9316precedence as @code{++}.
9317
9318@item !
9319Logical negation. Defined on integral types. Same precedence as
9320@code{++}.
9321
9322@item ~
9323Bitwise complement operator. Defined on integral types. Same precedence as
9324@code{++}.
9325
9326
9327@item .@r{, }->
9328Structure member, and pointer-to-structure member. For convenience,
9329@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9330pointer based on the stored type information.
9331Defined on @code{struct} and @code{union} data.
9332
c906108c
SS
9333@item .*@r{, }->*
9334Dereferences of pointers to members.
c906108c
SS
9335
9336@item []
9337Array indexing. @code{@var{a}[@var{i}]} is defined as
9338@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9339
9340@item ()
9341Function parameter list. Same precedence as @code{->}.
9342
c906108c 9343@item ::
b37052ae 9344C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9345and @code{class} types.
c906108c
SS
9346
9347@item ::
7a292a7a
SS
9348Doubled colons also represent the @value{GDBN} scope operator
9349(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9350above.
c906108c
SS
9351@end table
9352
c906108c
SS
9353If an operator is redefined in the user code, @value{GDBN} usually
9354attempts to invoke the redefined version instead of using the operator's
9355predefined meaning.
c906108c 9356
6d2ebf8b 9357@node C Constants
79a6e687 9358@subsubsection C and C@t{++} Constants
c906108c 9359
b37052ae 9360@cindex C and C@t{++} constants
c906108c 9361
b37052ae 9362@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9363following ways:
c906108c
SS
9364
9365@itemize @bullet
9366@item
9367Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9368specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9369by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9370@samp{l}, specifying that the constant should be treated as a
9371@code{long} value.
9372
9373@item
9374Floating point constants are a sequence of digits, followed by a decimal
9375point, followed by a sequence of digits, and optionally followed by an
9376exponent. An exponent is of the form:
9377@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9378sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9379A floating-point constant may also end with a letter @samp{f} or
9380@samp{F}, specifying that the constant should be treated as being of
9381the @code{float} (as opposed to the default @code{double}) type; or with
9382a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9383constant.
c906108c
SS
9384
9385@item
9386Enumerated constants consist of enumerated identifiers, or their
9387integral equivalents.
9388
9389@item
9390Character constants are a single character surrounded by single quotes
9391(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9392(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9393be represented by a letter or by @dfn{escape sequences}, which are of
9394the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9395of the character's ordinal value; or of the form @samp{\@var{x}}, where
9396@samp{@var{x}} is a predefined special character---for example,
9397@samp{\n} for newline.
9398
9399@item
96a2c332
SS
9400String constants are a sequence of character constants surrounded by
9401double quotes (@code{"}). Any valid character constant (as described
9402above) may appear. Double quotes within the string must be preceded by
9403a backslash, so for instance @samp{"a\"b'c"} is a string of five
9404characters.
c906108c
SS
9405
9406@item
9407Pointer constants are an integral value. You can also write pointers
9408to constants using the C operator @samp{&}.
9409
9410@item
9411Array constants are comma-separated lists surrounded by braces @samp{@{}
9412and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9413integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9414and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9415@end itemize
9416
79a6e687
BW
9417@node C Plus Plus Expressions
9418@subsubsection C@t{++} Expressions
b37052ae
EZ
9419
9420@cindex expressions in C@t{++}
9421@value{GDBN} expression handling can interpret most C@t{++} expressions.
9422
0179ffac
DC
9423@cindex debugging C@t{++} programs
9424@cindex C@t{++} compilers
9425@cindex debug formats and C@t{++}
9426@cindex @value{NGCC} and C@t{++}
c906108c 9427@quotation
b37052ae 9428@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9429proper compiler and the proper debug format. Currently, @value{GDBN}
9430works best when debugging C@t{++} code that is compiled with
9431@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9432@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9433stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9434stabs+ as their default debug format, so you usually don't need to
9435specify a debug format explicitly. Other compilers and/or debug formats
9436are likely to work badly or not at all when using @value{GDBN} to debug
9437C@t{++} code.
c906108c 9438@end quotation
c906108c
SS
9439
9440@enumerate
9441
9442@cindex member functions
9443@item
9444Member function calls are allowed; you can use expressions like
9445
474c8240 9446@smallexample
c906108c 9447count = aml->GetOriginal(x, y)
474c8240 9448@end smallexample
c906108c 9449
41afff9a 9450@vindex this@r{, inside C@t{++} member functions}
b37052ae 9451@cindex namespace in C@t{++}
c906108c
SS
9452@item
9453While a member function is active (in the selected stack frame), your
9454expressions have the same namespace available as the member function;
9455that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9456pointer @code{this} following the same rules as C@t{++}.
c906108c 9457
c906108c 9458@cindex call overloaded functions
d4f3574e 9459@cindex overloaded functions, calling
b37052ae 9460@cindex type conversions in C@t{++}
c906108c
SS
9461@item
9462You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9463call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9464perform overload resolution involving user-defined type conversions,
9465calls to constructors, or instantiations of templates that do not exist
9466in the program. It also cannot handle ellipsis argument lists or
9467default arguments.
9468
9469It does perform integral conversions and promotions, floating-point
9470promotions, arithmetic conversions, pointer conversions, conversions of
9471class objects to base classes, and standard conversions such as those of
9472functions or arrays to pointers; it requires an exact match on the
9473number of function arguments.
9474
9475Overload resolution is always performed, unless you have specified
79a6e687
BW
9476@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9477,@value{GDBN} Features for C@t{++}}.
c906108c 9478
d4f3574e 9479You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9480explicit function signature to call an overloaded function, as in
9481@smallexample
9482p 'foo(char,int)'('x', 13)
9483@end smallexample
d4f3574e 9484
c906108c 9485The @value{GDBN} command-completion facility can simplify this;
79a6e687 9486see @ref{Completion, ,Command Completion}.
c906108c 9487
c906108c
SS
9488@cindex reference declarations
9489@item
b37052ae
EZ
9490@value{GDBN} understands variables declared as C@t{++} references; you can use
9491them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9492dereferenced.
9493
9494In the parameter list shown when @value{GDBN} displays a frame, the values of
9495reference variables are not displayed (unlike other variables); this
9496avoids clutter, since references are often used for large structures.
9497The @emph{address} of a reference variable is always shown, unless
9498you have specified @samp{set print address off}.
9499
9500@item
b37052ae 9501@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9502expressions can use it just as expressions in your program do. Since
9503one scope may be defined in another, you can use @code{::} repeatedly if
9504necessary, for example in an expression like
9505@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9506resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9507debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9508@end enumerate
9509
b37052ae 9510In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9511calling virtual functions correctly, printing out virtual bases of
9512objects, calling functions in a base subobject, casting objects, and
9513invoking user-defined operators.
c906108c 9514
6d2ebf8b 9515@node C Defaults
79a6e687 9516@subsubsection C and C@t{++} Defaults
7a292a7a 9517
b37052ae 9518@cindex C and C@t{++} defaults
c906108c 9519
c906108c
SS
9520If you allow @value{GDBN} to set type and range checking automatically, they
9521both default to @code{off} whenever the working language changes to
b37052ae 9522C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9523selects the working language.
c906108c
SS
9524
9525If you allow @value{GDBN} to set the language automatically, it
9526recognizes source files whose names end with @file{.c}, @file{.C}, or
9527@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9528these files, it sets the working language to C or C@t{++}.
79a6e687 9529@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9530for further details.
9531
c906108c
SS
9532@c Type checking is (a) primarily motivated by Modula-2, and (b)
9533@c unimplemented. If (b) changes, it might make sense to let this node
9534@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9535
6d2ebf8b 9536@node C Checks
79a6e687 9537@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9538
b37052ae 9539@cindex C and C@t{++} checks
c906108c 9540
b37052ae 9541By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9542is not used. However, if you turn type checking on, @value{GDBN}
9543considers two variables type equivalent if:
9544
9545@itemize @bullet
9546@item
9547The two variables are structured and have the same structure, union, or
9548enumerated tag.
9549
9550@item
9551The two variables have the same type name, or types that have been
9552declared equivalent through @code{typedef}.
9553
9554@ignore
9555@c leaving this out because neither J Gilmore nor R Pesch understand it.
9556@c FIXME--beers?
9557@item
9558The two @code{struct}, @code{union}, or @code{enum} variables are
9559declared in the same declaration. (Note: this may not be true for all C
9560compilers.)
9561@end ignore
9562@end itemize
9563
9564Range checking, if turned on, is done on mathematical operations. Array
9565indices are not checked, since they are often used to index a pointer
9566that is not itself an array.
c906108c 9567
6d2ebf8b 9568@node Debugging C
c906108c 9569@subsubsection @value{GDBN} and C
c906108c
SS
9570
9571The @code{set print union} and @code{show print union} commands apply to
9572the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9573inside a @code{struct} or @code{class} is also printed. Otherwise, it
9574appears as @samp{@{...@}}.
c906108c
SS
9575
9576The @code{@@} operator aids in the debugging of dynamic arrays, formed
9577with pointers and a memory allocation function. @xref{Expressions,
9578,Expressions}.
9579
79a6e687
BW
9580@node Debugging C Plus Plus
9581@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9582
b37052ae 9583@cindex commands for C@t{++}
7a292a7a 9584
b37052ae
EZ
9585Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9586designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9587
9588@table @code
9589@cindex break in overloaded functions
9590@item @r{breakpoint menus}
9591When you want a breakpoint in a function whose name is overloaded,
9592@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9593you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9594
b37052ae 9595@cindex overloading in C@t{++}
c906108c
SS
9596@item rbreak @var{regex}
9597Setting breakpoints using regular expressions is helpful for setting
9598breakpoints on overloaded functions that are not members of any special
9599classes.
79a6e687 9600@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9601
b37052ae 9602@cindex C@t{++} exception handling
c906108c
SS
9603@item catch throw
9604@itemx catch catch
b37052ae 9605Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9606Catchpoints, , Setting Catchpoints}.
c906108c
SS
9607
9608@cindex inheritance
9609@item ptype @var{typename}
9610Print inheritance relationships as well as other information for type
9611@var{typename}.
9612@xref{Symbols, ,Examining the Symbol Table}.
9613
b37052ae 9614@cindex C@t{++} symbol display
c906108c
SS
9615@item set print demangle
9616@itemx show print demangle
9617@itemx set print asm-demangle
9618@itemx show print asm-demangle
b37052ae
EZ
9619Control whether C@t{++} symbols display in their source form, both when
9620displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9621@xref{Print Settings, ,Print Settings}.
c906108c
SS
9622
9623@item set print object
9624@itemx show print object
9625Choose whether to print derived (actual) or declared types of objects.
79a6e687 9626@xref{Print Settings, ,Print Settings}.
c906108c
SS
9627
9628@item set print vtbl
9629@itemx show print vtbl
9630Control the format for printing virtual function tables.
79a6e687 9631@xref{Print Settings, ,Print Settings}.
c906108c 9632(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9633ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9634
9635@kindex set overload-resolution
d4f3574e 9636@cindex overloaded functions, overload resolution
c906108c 9637@item set overload-resolution on
b37052ae 9638Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9639is on. For overloaded functions, @value{GDBN} evaluates the arguments
9640and searches for a function whose signature matches the argument types,
79a6e687
BW
9641using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9642Expressions, ,C@t{++} Expressions}, for details).
9643If it cannot find a match, it emits a message.
c906108c
SS
9644
9645@item set overload-resolution off
b37052ae 9646Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9647overloaded functions that are not class member functions, @value{GDBN}
9648chooses the first function of the specified name that it finds in the
9649symbol table, whether or not its arguments are of the correct type. For
9650overloaded functions that are class member functions, @value{GDBN}
9651searches for a function whose signature @emph{exactly} matches the
9652argument types.
c906108c 9653
9c16f35a
EZ
9654@kindex show overload-resolution
9655@item show overload-resolution
9656Show the current setting of overload resolution.
9657
c906108c
SS
9658@item @r{Overloaded symbol names}
9659You can specify a particular definition of an overloaded symbol, using
b37052ae 9660the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9661@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9662also use the @value{GDBN} command-line word completion facilities to list the
9663available choices, or to finish the type list for you.
79a6e687 9664@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9665@end table
c906108c 9666
febe4383
TJB
9667@node Decimal Floating Point
9668@subsubsection Decimal Floating Point format
9669@cindex decimal floating point format
9670
9671@value{GDBN} can examine, set and perform computations with numbers in
9672decimal floating point format, which in the C language correspond to the
9673@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9674specified by the extension to support decimal floating-point arithmetic.
9675
9676There are two encodings in use, depending on the architecture: BID (Binary
9677Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9678PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9679target.
9680
9681Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9682to manipulate decimal floating point numbers, it is not possible to convert
9683(using a cast, for example) integers wider than 32-bit to decimal float.
9684
9685In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9686point computations, error checking in decimal float operations ignores
9687underflow, overflow and divide by zero exceptions.
9688
4acd40f3
TJB
9689In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9690to inspect @code{_Decimal128} values stored in floating point registers. See
9691@ref{PowerPC,,PowerPC} for more details.
9692
b37303ee
AF
9693@node Objective-C
9694@subsection Objective-C
9695
9696@cindex Objective-C
9697This section provides information about some commands and command
721c2651
EZ
9698options that are useful for debugging Objective-C code. See also
9699@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9700few more commands specific to Objective-C support.
b37303ee
AF
9701
9702@menu
b383017d
RM
9703* Method Names in Commands::
9704* The Print Command with Objective-C::
b37303ee
AF
9705@end menu
9706
c8f4133a 9707@node Method Names in Commands
b37303ee
AF
9708@subsubsection Method Names in Commands
9709
9710The following commands have been extended to accept Objective-C method
9711names as line specifications:
9712
9713@kindex clear@r{, and Objective-C}
9714@kindex break@r{, and Objective-C}
9715@kindex info line@r{, and Objective-C}
9716@kindex jump@r{, and Objective-C}
9717@kindex list@r{, and Objective-C}
9718@itemize
9719@item @code{clear}
9720@item @code{break}
9721@item @code{info line}
9722@item @code{jump}
9723@item @code{list}
9724@end itemize
9725
9726A fully qualified Objective-C method name is specified as
9727
9728@smallexample
9729-[@var{Class} @var{methodName}]
9730@end smallexample
9731
c552b3bb
JM
9732where the minus sign is used to indicate an instance method and a
9733plus sign (not shown) is used to indicate a class method. The class
9734name @var{Class} and method name @var{methodName} are enclosed in
9735brackets, similar to the way messages are specified in Objective-C
9736source code. For example, to set a breakpoint at the @code{create}
9737instance method of class @code{Fruit} in the program currently being
9738debugged, enter:
b37303ee
AF
9739
9740@smallexample
9741break -[Fruit create]
9742@end smallexample
9743
9744To list ten program lines around the @code{initialize} class method,
9745enter:
9746
9747@smallexample
9748list +[NSText initialize]
9749@end smallexample
9750
c552b3bb
JM
9751In the current version of @value{GDBN}, the plus or minus sign is
9752required. In future versions of @value{GDBN}, the plus or minus
9753sign will be optional, but you can use it to narrow the search. It
9754is also possible to specify just a method name:
b37303ee
AF
9755
9756@smallexample
9757break create
9758@end smallexample
9759
9760You must specify the complete method name, including any colons. If
9761your program's source files contain more than one @code{create} method,
9762you'll be presented with a numbered list of classes that implement that
9763method. Indicate your choice by number, or type @samp{0} to exit if
9764none apply.
9765
9766As another example, to clear a breakpoint established at the
9767@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9768
9769@smallexample
9770clear -[NSWindow makeKeyAndOrderFront:]
9771@end smallexample
9772
9773@node The Print Command with Objective-C
9774@subsubsection The Print Command With Objective-C
721c2651 9775@cindex Objective-C, print objects
c552b3bb
JM
9776@kindex print-object
9777@kindex po @r{(@code{print-object})}
b37303ee 9778
c552b3bb 9779The print command has also been extended to accept methods. For example:
b37303ee
AF
9780
9781@smallexample
c552b3bb 9782print -[@var{object} hash]
b37303ee
AF
9783@end smallexample
9784
9785@cindex print an Objective-C object description
c552b3bb
JM
9786@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9787@noindent
9788will tell @value{GDBN} to send the @code{hash} message to @var{object}
9789and print the result. Also, an additional command has been added,
9790@code{print-object} or @code{po} for short, which is meant to print
9791the description of an object. However, this command may only work
9792with certain Objective-C libraries that have a particular hook
9793function, @code{_NSPrintForDebugger}, defined.
b37303ee 9794
09d4efe1
EZ
9795@node Fortran
9796@subsection Fortran
9797@cindex Fortran-specific support in @value{GDBN}
9798
814e32d7
WZ
9799@value{GDBN} can be used to debug programs written in Fortran, but it
9800currently supports only the features of Fortran 77 language.
9801
9802@cindex trailing underscore, in Fortran symbols
9803Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9804among them) append an underscore to the names of variables and
9805functions. When you debug programs compiled by those compilers, you
9806will need to refer to variables and functions with a trailing
9807underscore.
9808
9809@menu
9810* Fortran Operators:: Fortran operators and expressions
9811* Fortran Defaults:: Default settings for Fortran
79a6e687 9812* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9813@end menu
9814
9815@node Fortran Operators
79a6e687 9816@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9817
9818@cindex Fortran operators and expressions
9819
9820Operators must be defined on values of specific types. For instance,
9821@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9822arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9823
9824@table @code
9825@item **
9826The exponentiation operator. It raises the first operand to the power
9827of the second one.
9828
9829@item :
9830The range operator. Normally used in the form of array(low:high) to
9831represent a section of array.
9832@end table
9833
9834@node Fortran Defaults
9835@subsubsection Fortran Defaults
9836
9837@cindex Fortran Defaults
9838
9839Fortran symbols are usually case-insensitive, so @value{GDBN} by
9840default uses case-insensitive matches for Fortran symbols. You can
9841change that with the @samp{set case-insensitive} command, see
9842@ref{Symbols}, for the details.
9843
79a6e687
BW
9844@node Special Fortran Commands
9845@subsubsection Special Fortran Commands
814e32d7
WZ
9846
9847@cindex Special Fortran commands
9848
db2e3e2e
BW
9849@value{GDBN} has some commands to support Fortran-specific features,
9850such as displaying common blocks.
814e32d7 9851
09d4efe1
EZ
9852@table @code
9853@cindex @code{COMMON} blocks, Fortran
9854@kindex info common
9855@item info common @r{[}@var{common-name}@r{]}
9856This command prints the values contained in the Fortran @code{COMMON}
9857block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9858all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9859printed.
9860@end table
9861
9c16f35a
EZ
9862@node Pascal
9863@subsection Pascal
9864
9865@cindex Pascal support in @value{GDBN}, limitations
9866Debugging Pascal programs which use sets, subranges, file variables, or
9867nested functions does not currently work. @value{GDBN} does not support
9868entering expressions, printing values, or similar features using Pascal
9869syntax.
9870
9871The Pascal-specific command @code{set print pascal_static-members}
9872controls whether static members of Pascal objects are displayed.
9873@xref{Print Settings, pascal_static-members}.
9874
09d4efe1 9875@node Modula-2
c906108c 9876@subsection Modula-2
7a292a7a 9877
d4f3574e 9878@cindex Modula-2, @value{GDBN} support
c906108c
SS
9879
9880The extensions made to @value{GDBN} to support Modula-2 only support
9881output from the @sc{gnu} Modula-2 compiler (which is currently being
9882developed). Other Modula-2 compilers are not currently supported, and
9883attempting to debug executables produced by them is most likely
9884to give an error as @value{GDBN} reads in the executable's symbol
9885table.
9886
9887@cindex expressions in Modula-2
9888@menu
9889* M2 Operators:: Built-in operators
9890* Built-In Func/Proc:: Built-in functions and procedures
9891* M2 Constants:: Modula-2 constants
72019c9c 9892* M2 Types:: Modula-2 types
c906108c
SS
9893* M2 Defaults:: Default settings for Modula-2
9894* Deviations:: Deviations from standard Modula-2
9895* M2 Checks:: Modula-2 type and range checks
9896* M2 Scope:: The scope operators @code{::} and @code{.}
9897* GDB/M2:: @value{GDBN} and Modula-2
9898@end menu
9899
6d2ebf8b 9900@node M2 Operators
c906108c
SS
9901@subsubsection Operators
9902@cindex Modula-2 operators
9903
9904Operators must be defined on values of specific types. For instance,
9905@code{+} is defined on numbers, but not on structures. Operators are
9906often defined on groups of types. For the purposes of Modula-2, the
9907following definitions hold:
9908
9909@itemize @bullet
9910
9911@item
9912@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9913their subranges.
9914
9915@item
9916@emph{Character types} consist of @code{CHAR} and its subranges.
9917
9918@item
9919@emph{Floating-point types} consist of @code{REAL}.
9920
9921@item
9922@emph{Pointer types} consist of anything declared as @code{POINTER TO
9923@var{type}}.
9924
9925@item
9926@emph{Scalar types} consist of all of the above.
9927
9928@item
9929@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9930
9931@item
9932@emph{Boolean types} consist of @code{BOOLEAN}.
9933@end itemize
9934
9935@noindent
9936The following operators are supported, and appear in order of
9937increasing precedence:
9938
9939@table @code
9940@item ,
9941Function argument or array index separator.
9942
9943@item :=
9944Assignment. The value of @var{var} @code{:=} @var{value} is
9945@var{value}.
9946
9947@item <@r{, }>
9948Less than, greater than on integral, floating-point, or enumerated
9949types.
9950
9951@item <=@r{, }>=
96a2c332 9952Less than or equal to, greater than or equal to
c906108c
SS
9953on integral, floating-point and enumerated types, or set inclusion on
9954set types. Same precedence as @code{<}.
9955
9956@item =@r{, }<>@r{, }#
9957Equality and two ways of expressing inequality, valid on scalar types.
9958Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9959available for inequality, since @code{#} conflicts with the script
9960comment character.
9961
9962@item IN
9963Set membership. Defined on set types and the types of their members.
9964Same precedence as @code{<}.
9965
9966@item OR
9967Boolean disjunction. Defined on boolean types.
9968
9969@item AND@r{, }&
d4f3574e 9970Boolean conjunction. Defined on boolean types.
c906108c
SS
9971
9972@item @@
9973The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9974
9975@item +@r{, }-
9976Addition and subtraction on integral and floating-point types, or union
9977and difference on set types.
9978
9979@item *
9980Multiplication on integral and floating-point types, or set intersection
9981on set types.
9982
9983@item /
9984Division on floating-point types, or symmetric set difference on set
9985types. Same precedence as @code{*}.
9986
9987@item DIV@r{, }MOD
9988Integer division and remainder. Defined on integral types. Same
9989precedence as @code{*}.
9990
9991@item -
9992Negative. Defined on @code{INTEGER} and @code{REAL} data.
9993
9994@item ^
9995Pointer dereferencing. Defined on pointer types.
9996
9997@item NOT
9998Boolean negation. Defined on boolean types. Same precedence as
9999@code{^}.
10000
10001@item .
10002@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10003precedence as @code{^}.
10004
10005@item []
10006Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10007
10008@item ()
10009Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10010as @code{^}.
10011
10012@item ::@r{, }.
10013@value{GDBN} and Modula-2 scope operators.
10014@end table
10015
10016@quotation
72019c9c 10017@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10018treats the use of the operator @code{IN}, or the use of operators
10019@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10020@code{<=}, and @code{>=} on sets as an error.
10021@end quotation
10022
cb51c4e0 10023
6d2ebf8b 10024@node Built-In Func/Proc
79a6e687 10025@subsubsection Built-in Functions and Procedures
cb51c4e0 10026@cindex Modula-2 built-ins
c906108c
SS
10027
10028Modula-2 also makes available several built-in procedures and functions.
10029In describing these, the following metavariables are used:
10030
10031@table @var
10032
10033@item a
10034represents an @code{ARRAY} variable.
10035
10036@item c
10037represents a @code{CHAR} constant or variable.
10038
10039@item i
10040represents a variable or constant of integral type.
10041
10042@item m
10043represents an identifier that belongs to a set. Generally used in the
10044same function with the metavariable @var{s}. The type of @var{s} should
10045be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10046
10047@item n
10048represents a variable or constant of integral or floating-point type.
10049
10050@item r
10051represents a variable or constant of floating-point type.
10052
10053@item t
10054represents a type.
10055
10056@item v
10057represents a variable.
10058
10059@item x
10060represents a variable or constant of one of many types. See the
10061explanation of the function for details.
10062@end table
10063
10064All Modula-2 built-in procedures also return a result, described below.
10065
10066@table @code
10067@item ABS(@var{n})
10068Returns the absolute value of @var{n}.
10069
10070@item CAP(@var{c})
10071If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10072equivalent, otherwise it returns its argument.
c906108c
SS
10073
10074@item CHR(@var{i})
10075Returns the character whose ordinal value is @var{i}.
10076
10077@item DEC(@var{v})
c3f6f71d 10078Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10079
10080@item DEC(@var{v},@var{i})
10081Decrements the value in the variable @var{v} by @var{i}. Returns the
10082new value.
10083
10084@item EXCL(@var{m},@var{s})
10085Removes the element @var{m} from the set @var{s}. Returns the new
10086set.
10087
10088@item FLOAT(@var{i})
10089Returns the floating point equivalent of the integer @var{i}.
10090
10091@item HIGH(@var{a})
10092Returns the index of the last member of @var{a}.
10093
10094@item INC(@var{v})
c3f6f71d 10095Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10096
10097@item INC(@var{v},@var{i})
10098Increments the value in the variable @var{v} by @var{i}. Returns the
10099new value.
10100
10101@item INCL(@var{m},@var{s})
10102Adds the element @var{m} to the set @var{s} if it is not already
10103there. Returns the new set.
10104
10105@item MAX(@var{t})
10106Returns the maximum value of the type @var{t}.
10107
10108@item MIN(@var{t})
10109Returns the minimum value of the type @var{t}.
10110
10111@item ODD(@var{i})
10112Returns boolean TRUE if @var{i} is an odd number.
10113
10114@item ORD(@var{x})
10115Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10116value of a character is its @sc{ascii} value (on machines supporting the
10117@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10118integral, character and enumerated types.
10119
10120@item SIZE(@var{x})
10121Returns the size of its argument. @var{x} can be a variable or a type.
10122
10123@item TRUNC(@var{r})
10124Returns the integral part of @var{r}.
10125
844781a1
GM
10126@item TSIZE(@var{x})
10127Returns the size of its argument. @var{x} can be a variable or a type.
10128
c906108c
SS
10129@item VAL(@var{t},@var{i})
10130Returns the member of the type @var{t} whose ordinal value is @var{i}.
10131@end table
10132
10133@quotation
10134@emph{Warning:} Sets and their operations are not yet supported, so
10135@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10136an error.
10137@end quotation
10138
10139@cindex Modula-2 constants
6d2ebf8b 10140@node M2 Constants
c906108c
SS
10141@subsubsection Constants
10142
10143@value{GDBN} allows you to express the constants of Modula-2 in the following
10144ways:
10145
10146@itemize @bullet
10147
10148@item
10149Integer constants are simply a sequence of digits. When used in an
10150expression, a constant is interpreted to be type-compatible with the
10151rest of the expression. Hexadecimal integers are specified by a
10152trailing @samp{H}, and octal integers by a trailing @samp{B}.
10153
10154@item
10155Floating point constants appear as a sequence of digits, followed by a
10156decimal point and another sequence of digits. An optional exponent can
10157then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10158@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10159digits of the floating point constant must be valid decimal (base 10)
10160digits.
10161
10162@item
10163Character constants consist of a single character enclosed by a pair of
10164like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10165also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10166followed by a @samp{C}.
10167
10168@item
10169String constants consist of a sequence of characters enclosed by a
10170pair of like quotes, either single (@code{'}) or double (@code{"}).
10171Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10172Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10173sequences.
10174
10175@item
10176Enumerated constants consist of an enumerated identifier.
10177
10178@item
10179Boolean constants consist of the identifiers @code{TRUE} and
10180@code{FALSE}.
10181
10182@item
10183Pointer constants consist of integral values only.
10184
10185@item
10186Set constants are not yet supported.
10187@end itemize
10188
72019c9c
GM
10189@node M2 Types
10190@subsubsection Modula-2 Types
10191@cindex Modula-2 types
10192
10193Currently @value{GDBN} can print the following data types in Modula-2
10194syntax: array types, record types, set types, pointer types, procedure
10195types, enumerated types, subrange types and base types. You can also
10196print the contents of variables declared using these type.
10197This section gives a number of simple source code examples together with
10198sample @value{GDBN} sessions.
10199
10200The first example contains the following section of code:
10201
10202@smallexample
10203VAR
10204 s: SET OF CHAR ;
10205 r: [20..40] ;
10206@end smallexample
10207
10208@noindent
10209and you can request @value{GDBN} to interrogate the type and value of
10210@code{r} and @code{s}.
10211
10212@smallexample
10213(@value{GDBP}) print s
10214@{'A'..'C', 'Z'@}
10215(@value{GDBP}) ptype s
10216SET OF CHAR
10217(@value{GDBP}) print r
1021821
10219(@value{GDBP}) ptype r
10220[20..40]
10221@end smallexample
10222
10223@noindent
10224Likewise if your source code declares @code{s} as:
10225
10226@smallexample
10227VAR
10228 s: SET ['A'..'Z'] ;
10229@end smallexample
10230
10231@noindent
10232then you may query the type of @code{s} by:
10233
10234@smallexample
10235(@value{GDBP}) ptype s
10236type = SET ['A'..'Z']
10237@end smallexample
10238
10239@noindent
10240Note that at present you cannot interactively manipulate set
10241expressions using the debugger.
10242
10243The following example shows how you might declare an array in Modula-2
10244and how you can interact with @value{GDBN} to print its type and contents:
10245
10246@smallexample
10247VAR
10248 s: ARRAY [-10..10] OF CHAR ;
10249@end smallexample
10250
10251@smallexample
10252(@value{GDBP}) ptype s
10253ARRAY [-10..10] OF CHAR
10254@end smallexample
10255
10256Note that the array handling is not yet complete and although the type
10257is printed correctly, expression handling still assumes that all
10258arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10259above.
72019c9c
GM
10260
10261Here are some more type related Modula-2 examples:
10262
10263@smallexample
10264TYPE
10265 colour = (blue, red, yellow, green) ;
10266 t = [blue..yellow] ;
10267VAR
10268 s: t ;
10269BEGIN
10270 s := blue ;
10271@end smallexample
10272
10273@noindent
10274The @value{GDBN} interaction shows how you can query the data type
10275and value of a variable.
10276
10277@smallexample
10278(@value{GDBP}) print s
10279$1 = blue
10280(@value{GDBP}) ptype t
10281type = [blue..yellow]
10282@end smallexample
10283
10284@noindent
10285In this example a Modula-2 array is declared and its contents
10286displayed. Observe that the contents are written in the same way as
10287their @code{C} counterparts.
10288
10289@smallexample
10290VAR
10291 s: ARRAY [1..5] OF CARDINAL ;
10292BEGIN
10293 s[1] := 1 ;
10294@end smallexample
10295
10296@smallexample
10297(@value{GDBP}) print s
10298$1 = @{1, 0, 0, 0, 0@}
10299(@value{GDBP}) ptype s
10300type = ARRAY [1..5] OF CARDINAL
10301@end smallexample
10302
10303The Modula-2 language interface to @value{GDBN} also understands
10304pointer types as shown in this example:
10305
10306@smallexample
10307VAR
10308 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10309BEGIN
10310 NEW(s) ;
10311 s^[1] := 1 ;
10312@end smallexample
10313
10314@noindent
10315and you can request that @value{GDBN} describes the type of @code{s}.
10316
10317@smallexample
10318(@value{GDBP}) ptype s
10319type = POINTER TO ARRAY [1..5] OF CARDINAL
10320@end smallexample
10321
10322@value{GDBN} handles compound types as we can see in this example.
10323Here we combine array types, record types, pointer types and subrange
10324types:
10325
10326@smallexample
10327TYPE
10328 foo = RECORD
10329 f1: CARDINAL ;
10330 f2: CHAR ;
10331 f3: myarray ;
10332 END ;
10333
10334 myarray = ARRAY myrange OF CARDINAL ;
10335 myrange = [-2..2] ;
10336VAR
10337 s: POINTER TO ARRAY myrange OF foo ;
10338@end smallexample
10339
10340@noindent
10341and you can ask @value{GDBN} to describe the type of @code{s} as shown
10342below.
10343
10344@smallexample
10345(@value{GDBP}) ptype s
10346type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10347 f1 : CARDINAL;
10348 f2 : CHAR;
10349 f3 : ARRAY [-2..2] OF CARDINAL;
10350END
10351@end smallexample
10352
6d2ebf8b 10353@node M2 Defaults
79a6e687 10354@subsubsection Modula-2 Defaults
c906108c
SS
10355@cindex Modula-2 defaults
10356
10357If type and range checking are set automatically by @value{GDBN}, they
10358both default to @code{on} whenever the working language changes to
d4f3574e 10359Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10360selected the working language.
10361
10362If you allow @value{GDBN} to set the language automatically, then entering
10363code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10364working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10365Infer the Source Language}, for further details.
c906108c 10366
6d2ebf8b 10367@node Deviations
79a6e687 10368@subsubsection Deviations from Standard Modula-2
c906108c
SS
10369@cindex Modula-2, deviations from
10370
10371A few changes have been made to make Modula-2 programs easier to debug.
10372This is done primarily via loosening its type strictness:
10373
10374@itemize @bullet
10375@item
10376Unlike in standard Modula-2, pointer constants can be formed by
10377integers. This allows you to modify pointer variables during
10378debugging. (In standard Modula-2, the actual address contained in a
10379pointer variable is hidden from you; it can only be modified
10380through direct assignment to another pointer variable or expression that
10381returned a pointer.)
10382
10383@item
10384C escape sequences can be used in strings and characters to represent
10385non-printable characters. @value{GDBN} prints out strings with these
10386escape sequences embedded. Single non-printable characters are
10387printed using the @samp{CHR(@var{nnn})} format.
10388
10389@item
10390The assignment operator (@code{:=}) returns the value of its right-hand
10391argument.
10392
10393@item
10394All built-in procedures both modify @emph{and} return their argument.
10395@end itemize
10396
6d2ebf8b 10397@node M2 Checks
79a6e687 10398@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10399@cindex Modula-2 checks
10400
10401@quotation
10402@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10403range checking.
10404@end quotation
10405@c FIXME remove warning when type/range checks added
10406
10407@value{GDBN} considers two Modula-2 variables type equivalent if:
10408
10409@itemize @bullet
10410@item
10411They are of types that have been declared equivalent via a @code{TYPE
10412@var{t1} = @var{t2}} statement
10413
10414@item
10415They have been declared on the same line. (Note: This is true of the
10416@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10417@end itemize
10418
10419As long as type checking is enabled, any attempt to combine variables
10420whose types are not equivalent is an error.
10421
10422Range checking is done on all mathematical operations, assignment, array
10423index bounds, and all built-in functions and procedures.
10424
6d2ebf8b 10425@node M2 Scope
79a6e687 10426@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10427@cindex scope
41afff9a 10428@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10429@cindex colon, doubled as scope operator
10430@ifinfo
41afff9a 10431@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10432@c Info cannot handle :: but TeX can.
10433@end ifinfo
10434@iftex
41afff9a 10435@vindex ::@r{, in Modula-2}
c906108c
SS
10436@end iftex
10437
10438There are a few subtle differences between the Modula-2 scope operator
10439(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10440similar syntax:
10441
474c8240 10442@smallexample
c906108c
SS
10443
10444@var{module} . @var{id}
10445@var{scope} :: @var{id}
474c8240 10446@end smallexample
c906108c
SS
10447
10448@noindent
10449where @var{scope} is the name of a module or a procedure,
10450@var{module} the name of a module, and @var{id} is any declared
10451identifier within your program, except another module.
10452
10453Using the @code{::} operator makes @value{GDBN} search the scope
10454specified by @var{scope} for the identifier @var{id}. If it is not
10455found in the specified scope, then @value{GDBN} searches all scopes
10456enclosing the one specified by @var{scope}.
10457
10458Using the @code{.} operator makes @value{GDBN} search the current scope for
10459the identifier specified by @var{id} that was imported from the
10460definition module specified by @var{module}. With this operator, it is
10461an error if the identifier @var{id} was not imported from definition
10462module @var{module}, or if @var{id} is not an identifier in
10463@var{module}.
10464
6d2ebf8b 10465@node GDB/M2
c906108c
SS
10466@subsubsection @value{GDBN} and Modula-2
10467
10468Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10469Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10470specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10471@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10472apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10473analogue in Modula-2.
10474
10475The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10476with any language, is not useful with Modula-2. Its
c906108c 10477intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10478created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10479address can be specified by an integral constant, the construct
d4f3574e 10480@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10481
10482@cindex @code{#} in Modula-2
10483In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10484interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10485
e07c999f
PH
10486@node Ada
10487@subsection Ada
10488@cindex Ada
10489
10490The extensions made to @value{GDBN} for Ada only support
10491output from the @sc{gnu} Ada (GNAT) compiler.
10492Other Ada compilers are not currently supported, and
10493attempting to debug executables produced by them is most likely
10494to be difficult.
10495
10496
10497@cindex expressions in Ada
10498@menu
10499* Ada Mode Intro:: General remarks on the Ada syntax
10500 and semantics supported by Ada mode
10501 in @value{GDBN}.
10502* Omissions from Ada:: Restrictions on the Ada expression syntax.
10503* Additions to Ada:: Extensions of the Ada expression syntax.
10504* Stopping Before Main Program:: Debugging the program during elaboration.
10505* Ada Glitches:: Known peculiarities of Ada mode.
10506@end menu
10507
10508@node Ada Mode Intro
10509@subsubsection Introduction
10510@cindex Ada mode, general
10511
10512The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10513syntax, with some extensions.
10514The philosophy behind the design of this subset is
10515
10516@itemize @bullet
10517@item
10518That @value{GDBN} should provide basic literals and access to operations for
10519arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10520leaving more sophisticated computations to subprograms written into the
10521program (which therefore may be called from @value{GDBN}).
10522
10523@item
10524That type safety and strict adherence to Ada language restrictions
10525are not particularly important to the @value{GDBN} user.
10526
10527@item
10528That brevity is important to the @value{GDBN} user.
10529@end itemize
10530
10531Thus, for brevity, the debugger acts as if there were
10532implicit @code{with} and @code{use} clauses in effect for all user-written
10533packages, making it unnecessary to fully qualify most names with
10534their packages, regardless of context. Where this causes ambiguity,
10535@value{GDBN} asks the user's intent.
10536
10537The debugger will start in Ada mode if it detects an Ada main program.
10538As for other languages, it will enter Ada mode when stopped in a program that
10539was translated from an Ada source file.
10540
10541While in Ada mode, you may use `@t{--}' for comments. This is useful
10542mostly for documenting command files. The standard @value{GDBN} comment
10543(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10544middle (to allow based literals).
10545
10546The debugger supports limited overloading. Given a subprogram call in which
10547the function symbol has multiple definitions, it will use the number of
10548actual parameters and some information about their types to attempt to narrow
10549the set of definitions. It also makes very limited use of context, preferring
10550procedures to functions in the context of the @code{call} command, and
10551functions to procedures elsewhere.
10552
10553@node Omissions from Ada
10554@subsubsection Omissions from Ada
10555@cindex Ada, omissions from
10556
10557Here are the notable omissions from the subset:
10558
10559@itemize @bullet
10560@item
10561Only a subset of the attributes are supported:
10562
10563@itemize @minus
10564@item
10565@t{'First}, @t{'Last}, and @t{'Length}
10566 on array objects (not on types and subtypes).
10567
10568@item
10569@t{'Min} and @t{'Max}.
10570
10571@item
10572@t{'Pos} and @t{'Val}.
10573
10574@item
10575@t{'Tag}.
10576
10577@item
10578@t{'Range} on array objects (not subtypes), but only as the right
10579operand of the membership (@code{in}) operator.
10580
10581@item
10582@t{'Access}, @t{'Unchecked_Access}, and
10583@t{'Unrestricted_Access} (a GNAT extension).
10584
10585@item
10586@t{'Address}.
10587@end itemize
10588
10589@item
10590The names in
10591@code{Characters.Latin_1} are not available and
10592concatenation is not implemented. Thus, escape characters in strings are
10593not currently available.
10594
10595@item
10596Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10597equality of representations. They will generally work correctly
10598for strings and arrays whose elements have integer or enumeration types.
10599They may not work correctly for arrays whose element
10600types have user-defined equality, for arrays of real values
10601(in particular, IEEE-conformant floating point, because of negative
10602zeroes and NaNs), and for arrays whose elements contain unused bits with
10603indeterminate values.
10604
10605@item
10606The other component-by-component array operations (@code{and}, @code{or},
10607@code{xor}, @code{not}, and relational tests other than equality)
10608are not implemented.
10609
10610@item
860701dc
PH
10611@cindex array aggregates (Ada)
10612@cindex record aggregates (Ada)
10613@cindex aggregates (Ada)
10614There is limited support for array and record aggregates. They are
10615permitted only on the right sides of assignments, as in these examples:
10616
10617@smallexample
10618set An_Array := (1, 2, 3, 4, 5, 6)
10619set An_Array := (1, others => 0)
10620set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10621set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10622set A_Record := (1, "Peter", True);
10623set A_Record := (Name => "Peter", Id => 1, Alive => True)
10624@end smallexample
10625
10626Changing a
10627discriminant's value by assigning an aggregate has an
10628undefined effect if that discriminant is used within the record.
10629However, you can first modify discriminants by directly assigning to
10630them (which normally would not be allowed in Ada), and then performing an
10631aggregate assignment. For example, given a variable @code{A_Rec}
10632declared to have a type such as:
10633
10634@smallexample
10635type Rec (Len : Small_Integer := 0) is record
10636 Id : Integer;
10637 Vals : IntArray (1 .. Len);
10638end record;
10639@end smallexample
10640
10641you can assign a value with a different size of @code{Vals} with two
10642assignments:
10643
10644@smallexample
10645set A_Rec.Len := 4
10646set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10647@end smallexample
10648
10649As this example also illustrates, @value{GDBN} is very loose about the usual
10650rules concerning aggregates. You may leave out some of the
10651components of an array or record aggregate (such as the @code{Len}
10652component in the assignment to @code{A_Rec} above); they will retain their
10653original values upon assignment. You may freely use dynamic values as
10654indices in component associations. You may even use overlapping or
10655redundant component associations, although which component values are
10656assigned in such cases is not defined.
e07c999f
PH
10657
10658@item
10659Calls to dispatching subprograms are not implemented.
10660
10661@item
10662The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10663than that of real Ada. It makes only limited use of the context in
10664which a subexpression appears to resolve its meaning, and it is much
10665looser in its rules for allowing type matches. As a result, some
10666function calls will be ambiguous, and the user will be asked to choose
10667the proper resolution.
e07c999f
PH
10668
10669@item
10670The @code{new} operator is not implemented.
10671
10672@item
10673Entry calls are not implemented.
10674
10675@item
10676Aside from printing, arithmetic operations on the native VAX floating-point
10677formats are not supported.
10678
10679@item
10680It is not possible to slice a packed array.
10681@end itemize
10682
10683@node Additions to Ada
10684@subsubsection Additions to Ada
10685@cindex Ada, deviations from
10686
10687As it does for other languages, @value{GDBN} makes certain generic
10688extensions to Ada (@pxref{Expressions}):
10689
10690@itemize @bullet
10691@item
ae21e955
BW
10692If the expression @var{E} is a variable residing in memory (typically
10693a local variable or array element) and @var{N} is a positive integer,
10694then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10695@var{N}-1 adjacent variables following it in memory as an array. In
10696Ada, this operator is generally not necessary, since its prime use is
10697in displaying parts of an array, and slicing will usually do this in
10698Ada. However, there are occasional uses when debugging programs in
10699which certain debugging information has been optimized away.
e07c999f
PH
10700
10701@item
ae21e955
BW
10702@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10703appears in function or file @var{B}.'' When @var{B} is a file name,
10704you must typically surround it in single quotes.
e07c999f
PH
10705
10706@item
10707The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10708@var{type} that appears at address @var{addr}.''
10709
10710@item
10711A name starting with @samp{$} is a convenience variable
10712(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10713@end itemize
10714
ae21e955
BW
10715In addition, @value{GDBN} provides a few other shortcuts and outright
10716additions specific to Ada:
e07c999f
PH
10717
10718@itemize @bullet
10719@item
10720The assignment statement is allowed as an expression, returning
10721its right-hand operand as its value. Thus, you may enter
10722
10723@smallexample
10724set x := y + 3
10725print A(tmp := y + 1)
10726@end smallexample
10727
10728@item
10729The semicolon is allowed as an ``operator,'' returning as its value
10730the value of its right-hand operand.
10731This allows, for example,
10732complex conditional breaks:
10733
10734@smallexample
10735break f
10736condition 1 (report(i); k += 1; A(k) > 100)
10737@end smallexample
10738
10739@item
10740Rather than use catenation and symbolic character names to introduce special
10741characters into strings, one may instead use a special bracket notation,
10742which is also used to print strings. A sequence of characters of the form
10743@samp{["@var{XX}"]} within a string or character literal denotes the
10744(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10745sequence of characters @samp{["""]} also denotes a single quotation mark
10746in strings. For example,
10747@smallexample
10748 "One line.["0a"]Next line.["0a"]"
10749@end smallexample
10750@noindent
ae21e955
BW
10751contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10752after each period.
e07c999f
PH
10753
10754@item
10755The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10756@t{'Max} is optional (and is ignored in any case). For example, it is valid
10757to write
10758
10759@smallexample
10760print 'max(x, y)
10761@end smallexample
10762
10763@item
10764When printing arrays, @value{GDBN} uses positional notation when the
10765array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10766For example, a one-dimensional array of three integers with a lower bound
10767of 3 might print as
e07c999f
PH
10768
10769@smallexample
10770(3 => 10, 17, 1)
10771@end smallexample
10772
10773@noindent
10774That is, in contrast to valid Ada, only the first component has a @code{=>}
10775clause.
10776
10777@item
10778You may abbreviate attributes in expressions with any unique,
10779multi-character subsequence of
10780their names (an exact match gets preference).
10781For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10782in place of @t{a'length}.
10783
10784@item
10785@cindex quoting Ada internal identifiers
10786Since Ada is case-insensitive, the debugger normally maps identifiers you type
10787to lower case. The GNAT compiler uses upper-case characters for
10788some of its internal identifiers, which are normally of no interest to users.
10789For the rare occasions when you actually have to look at them,
10790enclose them in angle brackets to avoid the lower-case mapping.
10791For example,
10792@smallexample
10793@value{GDBP} print <JMPBUF_SAVE>[0]
10794@end smallexample
10795
10796@item
10797Printing an object of class-wide type or dereferencing an
10798access-to-class-wide value will display all the components of the object's
10799specific type (as indicated by its run-time tag). Likewise, component
10800selection on such a value will operate on the specific type of the
10801object.
10802
10803@end itemize
10804
10805@node Stopping Before Main Program
10806@subsubsection Stopping at the Very Beginning
10807
10808@cindex breakpointing Ada elaboration code
10809It is sometimes necessary to debug the program during elaboration, and
10810before reaching the main procedure.
10811As defined in the Ada Reference
10812Manual, the elaboration code is invoked from a procedure called
10813@code{adainit}. To run your program up to the beginning of
10814elaboration, simply use the following two commands:
10815@code{tbreak adainit} and @code{run}.
10816
10817@node Ada Glitches
10818@subsubsection Known Peculiarities of Ada Mode
10819@cindex Ada, problems
10820
10821Besides the omissions listed previously (@pxref{Omissions from Ada}),
10822we know of several problems with and limitations of Ada mode in
10823@value{GDBN},
10824some of which will be fixed with planned future releases of the debugger
10825and the GNU Ada compiler.
10826
10827@itemize @bullet
10828@item
10829Currently, the debugger
10830has insufficient information to determine whether certain pointers represent
10831pointers to objects or the objects themselves.
10832Thus, the user may have to tack an extra @code{.all} after an expression
10833to get it printed properly.
10834
10835@item
10836Static constants that the compiler chooses not to materialize as objects in
10837storage are invisible to the debugger.
10838
10839@item
10840Named parameter associations in function argument lists are ignored (the
10841argument lists are treated as positional).
10842
10843@item
10844Many useful library packages are currently invisible to the debugger.
10845
10846@item
10847Fixed-point arithmetic, conversions, input, and output is carried out using
10848floating-point arithmetic, and may give results that only approximate those on
10849the host machine.
10850
10851@item
10852The type of the @t{'Address} attribute may not be @code{System.Address}.
10853
10854@item
10855The GNAT compiler never generates the prefix @code{Standard} for any of
10856the standard symbols defined by the Ada language. @value{GDBN} knows about
10857this: it will strip the prefix from names when you use it, and will never
10858look for a name you have so qualified among local symbols, nor match against
10859symbols in other packages or subprograms. If you have
10860defined entities anywhere in your program other than parameters and
10861local variables whose simple names match names in @code{Standard},
10862GNAT's lack of qualification here can cause confusion. When this happens,
10863you can usually resolve the confusion
10864by qualifying the problematic names with package
10865@code{Standard} explicitly.
10866@end itemize
10867
79a6e687
BW
10868@node Unsupported Languages
10869@section Unsupported Languages
4e562065
JB
10870
10871@cindex unsupported languages
10872@cindex minimal language
10873In addition to the other fully-supported programming languages,
10874@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10875It does not represent a real programming language, but provides a set
10876of capabilities close to what the C or assembly languages provide.
10877This should allow most simple operations to be performed while debugging
10878an application that uses a language currently not supported by @value{GDBN}.
10879
10880If the language is set to @code{auto}, @value{GDBN} will automatically
10881select this language if the current frame corresponds to an unsupported
10882language.
10883
6d2ebf8b 10884@node Symbols
c906108c
SS
10885@chapter Examining the Symbol Table
10886
d4f3574e 10887The commands described in this chapter allow you to inquire about the
c906108c
SS
10888symbols (names of variables, functions and types) defined in your
10889program. This information is inherent in the text of your program and
10890does not change as your program executes. @value{GDBN} finds it in your
10891program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10892(@pxref{File Options, ,Choosing Files}), or by one of the
10893file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10894
10895@cindex symbol names
10896@cindex names of symbols
10897@cindex quoting names
10898Occasionally, you may need to refer to symbols that contain unusual
10899characters, which @value{GDBN} ordinarily treats as word delimiters. The
10900most frequent case is in referring to static variables in other
79a6e687 10901source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10902are recorded in object files as debugging symbols, but @value{GDBN} would
10903ordinarily parse a typical file name, like @file{foo.c}, as the three words
10904@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10905@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10906
474c8240 10907@smallexample
c906108c 10908p 'foo.c'::x
474c8240 10909@end smallexample
c906108c
SS
10910
10911@noindent
10912looks up the value of @code{x} in the scope of the file @file{foo.c}.
10913
10914@table @code
a8f24a35
EZ
10915@cindex case-insensitive symbol names
10916@cindex case sensitivity in symbol names
10917@kindex set case-sensitive
10918@item set case-sensitive on
10919@itemx set case-sensitive off
10920@itemx set case-sensitive auto
10921Normally, when @value{GDBN} looks up symbols, it matches their names
10922with case sensitivity determined by the current source language.
10923Occasionally, you may wish to control that. The command @code{set
10924case-sensitive} lets you do that by specifying @code{on} for
10925case-sensitive matches or @code{off} for case-insensitive ones. If
10926you specify @code{auto}, case sensitivity is reset to the default
10927suitable for the source language. The default is case-sensitive
10928matches for all languages except for Fortran, for which the default is
10929case-insensitive matches.
10930
9c16f35a
EZ
10931@kindex show case-sensitive
10932@item show case-sensitive
a8f24a35
EZ
10933This command shows the current setting of case sensitivity for symbols
10934lookups.
10935
c906108c 10936@kindex info address
b37052ae 10937@cindex address of a symbol
c906108c
SS
10938@item info address @var{symbol}
10939Describe where the data for @var{symbol} is stored. For a register
10940variable, this says which register it is kept in. For a non-register
10941local variable, this prints the stack-frame offset at which the variable
10942is always stored.
10943
10944Note the contrast with @samp{print &@var{symbol}}, which does not work
10945at all for a register variable, and for a stack local variable prints
10946the exact address of the current instantiation of the variable.
10947
3d67e040 10948@kindex info symbol
b37052ae 10949@cindex symbol from address
9c16f35a 10950@cindex closest symbol and offset for an address
3d67e040
EZ
10951@item info symbol @var{addr}
10952Print the name of a symbol which is stored at the address @var{addr}.
10953If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10954nearest symbol and an offset from it:
10955
474c8240 10956@smallexample
3d67e040
EZ
10957(@value{GDBP}) info symbol 0x54320
10958_initialize_vx + 396 in section .text
474c8240 10959@end smallexample
3d67e040
EZ
10960
10961@noindent
10962This is the opposite of the @code{info address} command. You can use
10963it to find out the name of a variable or a function given its address.
10964
c906108c 10965@kindex whatis
62f3a2ba
FF
10966@item whatis [@var{arg}]
10967Print the data type of @var{arg}, which can be either an expression or
10968a data type. With no argument, print the data type of @code{$}, the
10969last value in the value history. If @var{arg} is an expression, it is
10970not actually evaluated, and any side-effecting operations (such as
10971assignments or function calls) inside it do not take place. If
10972@var{arg} is a type name, it may be the name of a type or typedef, or
10973for C code it may have the form @samp{class @var{class-name}},
10974@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10975@samp{enum @var{enum-tag}}.
c906108c
SS
10976@xref{Expressions, ,Expressions}.
10977
c906108c 10978@kindex ptype
62f3a2ba
FF
10979@item ptype [@var{arg}]
10980@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10981detailed description of the type, instead of just the name of the type.
10982@xref{Expressions, ,Expressions}.
c906108c
SS
10983
10984For example, for this variable declaration:
10985
474c8240 10986@smallexample
c906108c 10987struct complex @{double real; double imag;@} v;
474c8240 10988@end smallexample
c906108c
SS
10989
10990@noindent
10991the two commands give this output:
10992
474c8240 10993@smallexample
c906108c
SS
10994@group
10995(@value{GDBP}) whatis v
10996type = struct complex
10997(@value{GDBP}) ptype v
10998type = struct complex @{
10999 double real;
11000 double imag;
11001@}
11002@end group
474c8240 11003@end smallexample
c906108c
SS
11004
11005@noindent
11006As with @code{whatis}, using @code{ptype} without an argument refers to
11007the type of @code{$}, the last value in the value history.
11008
ab1adacd
EZ
11009@cindex incomplete type
11010Sometimes, programs use opaque data types or incomplete specifications
11011of complex data structure. If the debug information included in the
11012program does not allow @value{GDBN} to display a full declaration of
11013the data type, it will say @samp{<incomplete type>}. For example,
11014given these declarations:
11015
11016@smallexample
11017 struct foo;
11018 struct foo *fooptr;
11019@end smallexample
11020
11021@noindent
11022but no definition for @code{struct foo} itself, @value{GDBN} will say:
11023
11024@smallexample
ddb50cd7 11025 (@value{GDBP}) ptype foo
ab1adacd
EZ
11026 $1 = <incomplete type>
11027@end smallexample
11028
11029@noindent
11030``Incomplete type'' is C terminology for data types that are not
11031completely specified.
11032
c906108c
SS
11033@kindex info types
11034@item info types @var{regexp}
11035@itemx info types
09d4efe1
EZ
11036Print a brief description of all types whose names match the regular
11037expression @var{regexp} (or all types in your program, if you supply
11038no argument). Each complete typename is matched as though it were a
11039complete line; thus, @samp{i type value} gives information on all
11040types in your program whose names include the string @code{value}, but
11041@samp{i type ^value$} gives information only on types whose complete
11042name is @code{value}.
c906108c
SS
11043
11044This command differs from @code{ptype} in two ways: first, like
11045@code{whatis}, it does not print a detailed description; second, it
11046lists all source files where a type is defined.
11047
b37052ae
EZ
11048@kindex info scope
11049@cindex local variables
09d4efe1 11050@item info scope @var{location}
b37052ae 11051List all the variables local to a particular scope. This command
09d4efe1
EZ
11052accepts a @var{location} argument---a function name, a source line, or
11053an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11054to the scope defined by that location. (@xref{Specify Location}, for
11055details about supported forms of @var{location}.) For example:
b37052ae
EZ
11056
11057@smallexample
11058(@value{GDBP}) @b{info scope command_line_handler}
11059Scope for command_line_handler:
11060Symbol rl is an argument at stack/frame offset 8, length 4.
11061Symbol linebuffer is in static storage at address 0x150a18, length 4.
11062Symbol linelength is in static storage at address 0x150a1c, length 4.
11063Symbol p is a local variable in register $esi, length 4.
11064Symbol p1 is a local variable in register $ebx, length 4.
11065Symbol nline is a local variable in register $edx, length 4.
11066Symbol repeat is a local variable at frame offset -8, length 4.
11067@end smallexample
11068
f5c37c66
EZ
11069@noindent
11070This command is especially useful for determining what data to collect
11071during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11072collect}.
11073
c906108c
SS
11074@kindex info source
11075@item info source
919d772c
JB
11076Show information about the current source file---that is, the source file for
11077the function containing the current point of execution:
11078@itemize @bullet
11079@item
11080the name of the source file, and the directory containing it,
11081@item
11082the directory it was compiled in,
11083@item
11084its length, in lines,
11085@item
11086which programming language it is written in,
11087@item
11088whether the executable includes debugging information for that file, and
11089if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11090@item
11091whether the debugging information includes information about
11092preprocessor macros.
11093@end itemize
11094
c906108c
SS
11095
11096@kindex info sources
11097@item info sources
11098Print the names of all source files in your program for which there is
11099debugging information, organized into two lists: files whose symbols
11100have already been read, and files whose symbols will be read when needed.
11101
11102@kindex info functions
11103@item info functions
11104Print the names and data types of all defined functions.
11105
11106@item info functions @var{regexp}
11107Print the names and data types of all defined functions
11108whose names contain a match for regular expression @var{regexp}.
11109Thus, @samp{info fun step} finds all functions whose names
11110include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11111start with @code{step}. If a function name contains characters
c1468174 11112that conflict with the regular expression language (e.g.@:
1c5dfdad 11113@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11114
11115@kindex info variables
11116@item info variables
11117Print the names and data types of all variables that are declared
6ca652b0 11118outside of functions (i.e.@: excluding local variables).
c906108c
SS
11119
11120@item info variables @var{regexp}
11121Print the names and data types of all variables (except for local
11122variables) whose names contain a match for regular expression
11123@var{regexp}.
11124
b37303ee 11125@kindex info classes
721c2651 11126@cindex Objective-C, classes and selectors
b37303ee
AF
11127@item info classes
11128@itemx info classes @var{regexp}
11129Display all Objective-C classes in your program, or
11130(with the @var{regexp} argument) all those matching a particular regular
11131expression.
11132
11133@kindex info selectors
11134@item info selectors
11135@itemx info selectors @var{regexp}
11136Display all Objective-C selectors in your program, or
11137(with the @var{regexp} argument) all those matching a particular regular
11138expression.
11139
c906108c
SS
11140@ignore
11141This was never implemented.
11142@kindex info methods
11143@item info methods
11144@itemx info methods @var{regexp}
11145The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11146methods within C@t{++} program, or (with the @var{regexp} argument) a
11147specific set of methods found in the various C@t{++} classes. Many
11148C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11149from the @code{ptype} command can be overwhelming and hard to use. The
11150@code{info-methods} command filters the methods, printing only those
11151which match the regular-expression @var{regexp}.
11152@end ignore
11153
c906108c
SS
11154@cindex reloading symbols
11155Some systems allow individual object files that make up your program to
7a292a7a
SS
11156be replaced without stopping and restarting your program. For example,
11157in VxWorks you can simply recompile a defective object file and keep on
11158running. If you are running on one of these systems, you can allow
11159@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11160
11161@table @code
11162@kindex set symbol-reloading
11163@item set symbol-reloading on
11164Replace symbol definitions for the corresponding source file when an
11165object file with a particular name is seen again.
11166
11167@item set symbol-reloading off
6d2ebf8b
SS
11168Do not replace symbol definitions when encountering object files of the
11169same name more than once. This is the default state; if you are not
11170running on a system that permits automatic relinking of modules, you
11171should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11172may discard symbols when linking large programs, that may contain
11173several modules (from different directories or libraries) with the same
11174name.
c906108c
SS
11175
11176@kindex show symbol-reloading
11177@item show symbol-reloading
11178Show the current @code{on} or @code{off} setting.
11179@end table
c906108c 11180
9c16f35a 11181@cindex opaque data types
c906108c
SS
11182@kindex set opaque-type-resolution
11183@item set opaque-type-resolution on
11184Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11185declared as a pointer to a @code{struct}, @code{class}, or
11186@code{union}---for example, @code{struct MyType *}---that is used in one
11187source file although the full declaration of @code{struct MyType} is in
11188another source file. The default is on.
11189
11190A change in the setting of this subcommand will not take effect until
11191the next time symbols for a file are loaded.
11192
11193@item set opaque-type-resolution off
11194Tell @value{GDBN} not to resolve opaque types. In this case, the type
11195is printed as follows:
11196@smallexample
11197@{<no data fields>@}
11198@end smallexample
11199
11200@kindex show opaque-type-resolution
11201@item show opaque-type-resolution
11202Show whether opaque types are resolved or not.
c906108c
SS
11203
11204@kindex maint print symbols
11205@cindex symbol dump
11206@kindex maint print psymbols
11207@cindex partial symbol dump
11208@item maint print symbols @var{filename}
11209@itemx maint print psymbols @var{filename}
11210@itemx maint print msymbols @var{filename}
11211Write a dump of debugging symbol data into the file @var{filename}.
11212These commands are used to debug the @value{GDBN} symbol-reading code. Only
11213symbols with debugging data are included. If you use @samp{maint print
11214symbols}, @value{GDBN} includes all the symbols for which it has already
11215collected full details: that is, @var{filename} reflects symbols for
11216only those files whose symbols @value{GDBN} has read. You can use the
11217command @code{info sources} to find out which files these are. If you
11218use @samp{maint print psymbols} instead, the dump shows information about
11219symbols that @value{GDBN} only knows partially---that is, symbols defined in
11220files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11221@samp{maint print msymbols} dumps just the minimal symbol information
11222required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11223@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11224@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11225
5e7b2f39
JB
11226@kindex maint info symtabs
11227@kindex maint info psymtabs
44ea7b70
JB
11228@cindex listing @value{GDBN}'s internal symbol tables
11229@cindex symbol tables, listing @value{GDBN}'s internal
11230@cindex full symbol tables, listing @value{GDBN}'s internal
11231@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11232@item maint info symtabs @r{[} @var{regexp} @r{]}
11233@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11234
11235List the @code{struct symtab} or @code{struct partial_symtab}
11236structures whose names match @var{regexp}. If @var{regexp} is not
11237given, list them all. The output includes expressions which you can
11238copy into a @value{GDBN} debugging this one to examine a particular
11239structure in more detail. For example:
11240
11241@smallexample
5e7b2f39 11242(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11243@{ objfile /home/gnu/build/gdb/gdb
11244 ((struct objfile *) 0x82e69d0)
b383017d 11245 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11246 ((struct partial_symtab *) 0x8474b10)
11247 readin no
11248 fullname (null)
11249 text addresses 0x814d3c8 -- 0x8158074
11250 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11251 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11252 dependencies (none)
11253 @}
11254@}
5e7b2f39 11255(@value{GDBP}) maint info symtabs
44ea7b70
JB
11256(@value{GDBP})
11257@end smallexample
11258@noindent
11259We see that there is one partial symbol table whose filename contains
11260the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11261and we see that @value{GDBN} has not read in any symtabs yet at all.
11262If we set a breakpoint on a function, that will cause @value{GDBN} to
11263read the symtab for the compilation unit containing that function:
11264
11265@smallexample
11266(@value{GDBP}) break dwarf2_psymtab_to_symtab
11267Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11268line 1574.
5e7b2f39 11269(@value{GDBP}) maint info symtabs
b383017d 11270@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11271 ((struct objfile *) 0x82e69d0)
b383017d 11272 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11273 ((struct symtab *) 0x86c1f38)
11274 dirname (null)
11275 fullname (null)
11276 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11277 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11278 debugformat DWARF 2
11279 @}
11280@}
b383017d 11281(@value{GDBP})
44ea7b70 11282@end smallexample
c906108c
SS
11283@end table
11284
44ea7b70 11285
6d2ebf8b 11286@node Altering
c906108c
SS
11287@chapter Altering Execution
11288
11289Once you think you have found an error in your program, you might want to
11290find out for certain whether correcting the apparent error would lead to
11291correct results in the rest of the run. You can find the answer by
11292experiment, using the @value{GDBN} features for altering execution of the
11293program.
11294
11295For example, you can store new values into variables or memory
7a292a7a
SS
11296locations, give your program a signal, restart it at a different
11297address, or even return prematurely from a function.
c906108c
SS
11298
11299@menu
11300* Assignment:: Assignment to variables
11301* Jumping:: Continuing at a different address
c906108c 11302* Signaling:: Giving your program a signal
c906108c
SS
11303* Returning:: Returning from a function
11304* Calling:: Calling your program's functions
11305* Patching:: Patching your program
11306@end menu
11307
6d2ebf8b 11308@node Assignment
79a6e687 11309@section Assignment to Variables
c906108c
SS
11310
11311@cindex assignment
11312@cindex setting variables
11313To alter the value of a variable, evaluate an assignment expression.
11314@xref{Expressions, ,Expressions}. For example,
11315
474c8240 11316@smallexample
c906108c 11317print x=4
474c8240 11318@end smallexample
c906108c
SS
11319
11320@noindent
11321stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11322value of the assignment expression (which is 4).
c906108c
SS
11323@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11324information on operators in supported languages.
c906108c
SS
11325
11326@kindex set variable
11327@cindex variables, setting
11328If you are not interested in seeing the value of the assignment, use the
11329@code{set} command instead of the @code{print} command. @code{set} is
11330really the same as @code{print} except that the expression's value is
11331not printed and is not put in the value history (@pxref{Value History,
79a6e687 11332,Value History}). The expression is evaluated only for its effects.
c906108c 11333
c906108c
SS
11334If the beginning of the argument string of the @code{set} command
11335appears identical to a @code{set} subcommand, use the @code{set
11336variable} command instead of just @code{set}. This command is identical
11337to @code{set} except for its lack of subcommands. For example, if your
11338program has a variable @code{width}, you get an error if you try to set
11339a new value with just @samp{set width=13}, because @value{GDBN} has the
11340command @code{set width}:
11341
474c8240 11342@smallexample
c906108c
SS
11343(@value{GDBP}) whatis width
11344type = double
11345(@value{GDBP}) p width
11346$4 = 13
11347(@value{GDBP}) set width=47
11348Invalid syntax in expression.
474c8240 11349@end smallexample
c906108c
SS
11350
11351@noindent
11352The invalid expression, of course, is @samp{=47}. In
11353order to actually set the program's variable @code{width}, use
11354
474c8240 11355@smallexample
c906108c 11356(@value{GDBP}) set var width=47
474c8240 11357@end smallexample
53a5351d 11358
c906108c
SS
11359Because the @code{set} command has many subcommands that can conflict
11360with the names of program variables, it is a good idea to use the
11361@code{set variable} command instead of just @code{set}. For example, if
11362your program has a variable @code{g}, you run into problems if you try
11363to set a new value with just @samp{set g=4}, because @value{GDBN} has
11364the command @code{set gnutarget}, abbreviated @code{set g}:
11365
474c8240 11366@smallexample
c906108c
SS
11367@group
11368(@value{GDBP}) whatis g
11369type = double
11370(@value{GDBP}) p g
11371$1 = 1
11372(@value{GDBP}) set g=4
2df3850c 11373(@value{GDBP}) p g
c906108c
SS
11374$2 = 1
11375(@value{GDBP}) r
11376The program being debugged has been started already.
11377Start it from the beginning? (y or n) y
11378Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11379"/home/smith/cc_progs/a.out": can't open to read symbols:
11380 Invalid bfd target.
c906108c
SS
11381(@value{GDBP}) show g
11382The current BFD target is "=4".
11383@end group
474c8240 11384@end smallexample
c906108c
SS
11385
11386@noindent
11387The program variable @code{g} did not change, and you silently set the
11388@code{gnutarget} to an invalid value. In order to set the variable
11389@code{g}, use
11390
474c8240 11391@smallexample
c906108c 11392(@value{GDBP}) set var g=4
474c8240 11393@end smallexample
c906108c
SS
11394
11395@value{GDBN} allows more implicit conversions in assignments than C; you can
11396freely store an integer value into a pointer variable or vice versa,
11397and you can convert any structure to any other structure that is the
11398same length or shorter.
11399@comment FIXME: how do structs align/pad in these conversions?
11400@comment /doc@cygnus.com 18dec1990
11401
11402To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11403construct to generate a value of specified type at a specified address
11404(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11405to memory location @code{0x83040} as an integer (which implies a certain size
11406and representation in memory), and
11407
474c8240 11408@smallexample
c906108c 11409set @{int@}0x83040 = 4
474c8240 11410@end smallexample
c906108c
SS
11411
11412@noindent
11413stores the value 4 into that memory location.
11414
6d2ebf8b 11415@node Jumping
79a6e687 11416@section Continuing at a Different Address
c906108c
SS
11417
11418Ordinarily, when you continue your program, you do so at the place where
11419it stopped, with the @code{continue} command. You can instead continue at
11420an address of your own choosing, with the following commands:
11421
11422@table @code
11423@kindex jump
11424@item jump @var{linespec}
2a25a5ba
EZ
11425@itemx jump @var{location}
11426Resume execution at line @var{linespec} or at address given by
11427@var{location}. Execution stops again immediately if there is a
11428breakpoint there. @xref{Specify Location}, for a description of the
11429different forms of @var{linespec} and @var{location}. It is common
11430practice to use the @code{tbreak} command in conjunction with
11431@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11432
11433The @code{jump} command does not change the current stack frame, or
11434the stack pointer, or the contents of any memory location or any
11435register other than the program counter. If line @var{linespec} is in
11436a different function from the one currently executing, the results may
11437be bizarre if the two functions expect different patterns of arguments or
11438of local variables. For this reason, the @code{jump} command requests
11439confirmation if the specified line is not in the function currently
11440executing. However, even bizarre results are predictable if you are
11441well acquainted with the machine-language code of your program.
c906108c
SS
11442@end table
11443
c906108c 11444@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11445On many systems, you can get much the same effect as the @code{jump}
11446command by storing a new value into the register @code{$pc}. The
11447difference is that this does not start your program running; it only
11448changes the address of where it @emph{will} run when you continue. For
11449example,
c906108c 11450
474c8240 11451@smallexample
c906108c 11452set $pc = 0x485
474c8240 11453@end smallexample
c906108c
SS
11454
11455@noindent
11456makes the next @code{continue} command or stepping command execute at
11457address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11458@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11459
11460The most common occasion to use the @code{jump} command is to back
11461up---perhaps with more breakpoints set---over a portion of a program
11462that has already executed, in order to examine its execution in more
11463detail.
11464
c906108c 11465@c @group
6d2ebf8b 11466@node Signaling
79a6e687 11467@section Giving your Program a Signal
9c16f35a 11468@cindex deliver a signal to a program
c906108c
SS
11469
11470@table @code
11471@kindex signal
11472@item signal @var{signal}
11473Resume execution where your program stopped, but immediately give it the
11474signal @var{signal}. @var{signal} can be the name or the number of a
11475signal. For example, on many systems @code{signal 2} and @code{signal
11476SIGINT} are both ways of sending an interrupt signal.
11477
11478Alternatively, if @var{signal} is zero, continue execution without
11479giving a signal. This is useful when your program stopped on account of
11480a signal and would ordinary see the signal when resumed with the
11481@code{continue} command; @samp{signal 0} causes it to resume without a
11482signal.
11483
11484@code{signal} does not repeat when you press @key{RET} a second time
11485after executing the command.
11486@end table
11487@c @end group
11488
11489Invoking the @code{signal} command is not the same as invoking the
11490@code{kill} utility from the shell. Sending a signal with @code{kill}
11491causes @value{GDBN} to decide what to do with the signal depending on
11492the signal handling tables (@pxref{Signals}). The @code{signal} command
11493passes the signal directly to your program.
11494
c906108c 11495
6d2ebf8b 11496@node Returning
79a6e687 11497@section Returning from a Function
c906108c
SS
11498
11499@table @code
11500@cindex returning from a function
11501@kindex return
11502@item return
11503@itemx return @var{expression}
11504You can cancel execution of a function call with the @code{return}
11505command. If you give an
11506@var{expression} argument, its value is used as the function's return
11507value.
11508@end table
11509
11510When you use @code{return}, @value{GDBN} discards the selected stack frame
11511(and all frames within it). You can think of this as making the
11512discarded frame return prematurely. If you wish to specify a value to
11513be returned, give that value as the argument to @code{return}.
11514
11515This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11516Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11517innermost remaining frame. That frame becomes selected. The
11518specified value is stored in the registers used for returning values
11519of functions.
11520
11521The @code{return} command does not resume execution; it leaves the
11522program stopped in the state that would exist if the function had just
11523returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11524and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11525selected stack frame returns naturally.
11526
6d2ebf8b 11527@node Calling
79a6e687 11528@section Calling Program Functions
c906108c 11529
f8568604 11530@table @code
c906108c 11531@cindex calling functions
f8568604
EZ
11532@cindex inferior functions, calling
11533@item print @var{expr}
d3e8051b 11534Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11535@var{expr} may include calls to functions in the program being
11536debugged.
11537
c906108c 11538@kindex call
c906108c
SS
11539@item call @var{expr}
11540Evaluate the expression @var{expr} without displaying @code{void}
11541returned values.
c906108c
SS
11542
11543You can use this variant of the @code{print} command if you want to
f8568604
EZ
11544execute a function from your program that does not return anything
11545(a.k.a.@: @dfn{a void function}), but without cluttering the output
11546with @code{void} returned values that @value{GDBN} will otherwise
11547print. If the result is not void, it is printed and saved in the
11548value history.
11549@end table
11550
9c16f35a
EZ
11551It is possible for the function you call via the @code{print} or
11552@code{call} command to generate a signal (e.g., if there's a bug in
11553the function, or if you passed it incorrect arguments). What happens
11554in that case is controlled by the @code{set unwindonsignal} command.
11555
11556@table @code
11557@item set unwindonsignal
11558@kindex set unwindonsignal
11559@cindex unwind stack in called functions
11560@cindex call dummy stack unwinding
11561Set unwinding of the stack if a signal is received while in a function
11562that @value{GDBN} called in the program being debugged. If set to on,
11563@value{GDBN} unwinds the stack it created for the call and restores
11564the context to what it was before the call. If set to off (the
11565default), @value{GDBN} stops in the frame where the signal was
11566received.
11567
11568@item show unwindonsignal
11569@kindex show unwindonsignal
11570Show the current setting of stack unwinding in the functions called by
11571@value{GDBN}.
11572@end table
11573
f8568604
EZ
11574@cindex weak alias functions
11575Sometimes, a function you wish to call is actually a @dfn{weak alias}
11576for another function. In such case, @value{GDBN} might not pick up
11577the type information, including the types of the function arguments,
11578which causes @value{GDBN} to call the inferior function incorrectly.
11579As a result, the called function will function erroneously and may
11580even crash. A solution to that is to use the name of the aliased
11581function instead.
c906108c 11582
6d2ebf8b 11583@node Patching
79a6e687 11584@section Patching Programs
7a292a7a 11585
c906108c
SS
11586@cindex patching binaries
11587@cindex writing into executables
c906108c 11588@cindex writing into corefiles
c906108c 11589
7a292a7a
SS
11590By default, @value{GDBN} opens the file containing your program's
11591executable code (or the corefile) read-only. This prevents accidental
11592alterations to machine code; but it also prevents you from intentionally
11593patching your program's binary.
c906108c
SS
11594
11595If you'd like to be able to patch the binary, you can specify that
11596explicitly with the @code{set write} command. For example, you might
11597want to turn on internal debugging flags, or even to make emergency
11598repairs.
11599
11600@table @code
11601@kindex set write
11602@item set write on
11603@itemx set write off
7a292a7a
SS
11604If you specify @samp{set write on}, @value{GDBN} opens executable and
11605core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11606off} (the default), @value{GDBN} opens them read-only.
11607
11608If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11609@code{exec-file} or @code{core-file} command) after changing @code{set
11610write}, for your new setting to take effect.
c906108c
SS
11611
11612@item show write
11613@kindex show write
7a292a7a
SS
11614Display whether executable files and core files are opened for writing
11615as well as reading.
c906108c
SS
11616@end table
11617
6d2ebf8b 11618@node GDB Files
c906108c
SS
11619@chapter @value{GDBN} Files
11620
7a292a7a
SS
11621@value{GDBN} needs to know the file name of the program to be debugged,
11622both in order to read its symbol table and in order to start your
11623program. To debug a core dump of a previous run, you must also tell
11624@value{GDBN} the name of the core dump file.
c906108c
SS
11625
11626@menu
11627* Files:: Commands to specify files
5b5d99cf 11628* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11629* Symbol Errors:: Errors reading symbol files
11630@end menu
11631
6d2ebf8b 11632@node Files
79a6e687 11633@section Commands to Specify Files
c906108c 11634
7a292a7a 11635@cindex symbol table
c906108c 11636@cindex core dump file
7a292a7a
SS
11637
11638You may want to specify executable and core dump file names. The usual
11639way to do this is at start-up time, using the arguments to
11640@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11641Out of @value{GDBN}}).
c906108c
SS
11642
11643Occasionally it is necessary to change to a different file during a
397ca115
EZ
11644@value{GDBN} session. Or you may run @value{GDBN} and forget to
11645specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11646via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11647Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11648new files are useful.
c906108c
SS
11649
11650@table @code
11651@cindex executable file
11652@kindex file
11653@item file @var{filename}
11654Use @var{filename} as the program to be debugged. It is read for its
11655symbols and for the contents of pure memory. It is also the program
11656executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11657directory and the file is not found in the @value{GDBN} working directory,
11658@value{GDBN} uses the environment variable @code{PATH} as a list of
11659directories to search, just as the shell does when looking for a program
11660to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11661and your program, using the @code{path} command.
11662
fc8be69e
EZ
11663@cindex unlinked object files
11664@cindex patching object files
11665You can load unlinked object @file{.o} files into @value{GDBN} using
11666the @code{file} command. You will not be able to ``run'' an object
11667file, but you can disassemble functions and inspect variables. Also,
11668if the underlying BFD functionality supports it, you could use
11669@kbd{gdb -write} to patch object files using this technique. Note
11670that @value{GDBN} can neither interpret nor modify relocations in this
11671case, so branches and some initialized variables will appear to go to
11672the wrong place. But this feature is still handy from time to time.
11673
c906108c
SS
11674@item file
11675@code{file} with no argument makes @value{GDBN} discard any information it
11676has on both executable file and the symbol table.
11677
11678@kindex exec-file
11679@item exec-file @r{[} @var{filename} @r{]}
11680Specify that the program to be run (but not the symbol table) is found
11681in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11682if necessary to locate your program. Omitting @var{filename} means to
11683discard information on the executable file.
11684
11685@kindex symbol-file
11686@item symbol-file @r{[} @var{filename} @r{]}
11687Read symbol table information from file @var{filename}. @code{PATH} is
11688searched when necessary. Use the @code{file} command to get both symbol
11689table and program to run from the same file.
11690
11691@code{symbol-file} with no argument clears out @value{GDBN} information on your
11692program's symbol table.
11693
ae5a43e0
DJ
11694The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11695some breakpoints and auto-display expressions. This is because they may
11696contain pointers to the internal data recording symbols and data types,
11697which are part of the old symbol table data being discarded inside
11698@value{GDBN}.
c906108c
SS
11699
11700@code{symbol-file} does not repeat if you press @key{RET} again after
11701executing it once.
11702
11703When @value{GDBN} is configured for a particular environment, it
11704understands debugging information in whatever format is the standard
11705generated for that environment; you may use either a @sc{gnu} compiler, or
11706other compilers that adhere to the local conventions.
c906108c 11707Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11708using @code{@value{NGCC}} you can generate debugging information for
c906108c 11709optimized code.
c906108c
SS
11710
11711For most kinds of object files, with the exception of old SVR3 systems
11712using COFF, the @code{symbol-file} command does not normally read the
11713symbol table in full right away. Instead, it scans the symbol table
11714quickly to find which source files and which symbols are present. The
11715details are read later, one source file at a time, as they are needed.
11716
11717The purpose of this two-stage reading strategy is to make @value{GDBN}
11718start up faster. For the most part, it is invisible except for
11719occasional pauses while the symbol table details for a particular source
11720file are being read. (The @code{set verbose} command can turn these
11721pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11722Warnings and Messages}.)
c906108c 11723
c906108c
SS
11724We have not implemented the two-stage strategy for COFF yet. When the
11725symbol table is stored in COFF format, @code{symbol-file} reads the
11726symbol table data in full right away. Note that ``stabs-in-COFF''
11727still does the two-stage strategy, since the debug info is actually
11728in stabs format.
11729
11730@kindex readnow
11731@cindex reading symbols immediately
11732@cindex symbols, reading immediately
a94ab193
EZ
11733@item symbol-file @var{filename} @r{[} -readnow @r{]}
11734@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11735You can override the @value{GDBN} two-stage strategy for reading symbol
11736tables by using the @samp{-readnow} option with any of the commands that
11737load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11738entire symbol table available.
c906108c 11739
c906108c
SS
11740@c FIXME: for now no mention of directories, since this seems to be in
11741@c flux. 13mar1992 status is that in theory GDB would look either in
11742@c current dir or in same dir as myprog; but issues like competing
11743@c GDB's, or clutter in system dirs, mean that in practice right now
11744@c only current dir is used. FFish says maybe a special GDB hierarchy
11745@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11746@c files.
11747
c906108c 11748@kindex core-file
09d4efe1 11749@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11750@itemx core
c906108c
SS
11751Specify the whereabouts of a core dump file to be used as the ``contents
11752of memory''. Traditionally, core files contain only some parts of the
11753address space of the process that generated them; @value{GDBN} can access the
11754executable file itself for other parts.
11755
11756@code{core-file} with no argument specifies that no core file is
11757to be used.
11758
11759Note that the core file is ignored when your program is actually running
7a292a7a
SS
11760under @value{GDBN}. So, if you have been running your program and you
11761wish to debug a core file instead, you must kill the subprocess in which
11762the program is running. To do this, use the @code{kill} command
79a6e687 11763(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11764
c906108c
SS
11765@kindex add-symbol-file
11766@cindex dynamic linking
11767@item add-symbol-file @var{filename} @var{address}
a94ab193 11768@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11769@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11770The @code{add-symbol-file} command reads additional symbol table
11771information from the file @var{filename}. You would use this command
11772when @var{filename} has been dynamically loaded (by some other means)
11773into the program that is running. @var{address} should be the memory
11774address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11775this out for itself. You can additionally specify an arbitrary number
11776of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11777section name and base address for that section. You can specify any
11778@var{address} as an expression.
c906108c
SS
11779
11780The symbol table of the file @var{filename} is added to the symbol table
11781originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11782@code{add-symbol-file} command any number of times; the new symbol data
11783thus read keeps adding to the old. To discard all old symbol data
11784instead, use the @code{symbol-file} command without any arguments.
c906108c 11785
17d9d558
JB
11786@cindex relocatable object files, reading symbols from
11787@cindex object files, relocatable, reading symbols from
11788@cindex reading symbols from relocatable object files
11789@cindex symbols, reading from relocatable object files
11790@cindex @file{.o} files, reading symbols from
11791Although @var{filename} is typically a shared library file, an
11792executable file, or some other object file which has been fully
11793relocated for loading into a process, you can also load symbolic
11794information from relocatable @file{.o} files, as long as:
11795
11796@itemize @bullet
11797@item
11798the file's symbolic information refers only to linker symbols defined in
11799that file, not to symbols defined by other object files,
11800@item
11801every section the file's symbolic information refers to has actually
11802been loaded into the inferior, as it appears in the file, and
11803@item
11804you can determine the address at which every section was loaded, and
11805provide these to the @code{add-symbol-file} command.
11806@end itemize
11807
11808@noindent
11809Some embedded operating systems, like Sun Chorus and VxWorks, can load
11810relocatable files into an already running program; such systems
11811typically make the requirements above easy to meet. However, it's
11812important to recognize that many native systems use complex link
49efadf5 11813procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11814assembly, for example) that make the requirements difficult to meet. In
11815general, one cannot assume that using @code{add-symbol-file} to read a
11816relocatable object file's symbolic information will have the same effect
11817as linking the relocatable object file into the program in the normal
11818way.
11819
c906108c
SS
11820@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11821
c45da7e6
EZ
11822@kindex add-symbol-file-from-memory
11823@cindex @code{syscall DSO}
11824@cindex load symbols from memory
11825@item add-symbol-file-from-memory @var{address}
11826Load symbols from the given @var{address} in a dynamically loaded
11827object file whose image is mapped directly into the inferior's memory.
11828For example, the Linux kernel maps a @code{syscall DSO} into each
11829process's address space; this DSO provides kernel-specific code for
11830some system calls. The argument can be any expression whose
11831evaluation yields the address of the file's shared object file header.
11832For this command to work, you must have used @code{symbol-file} or
11833@code{exec-file} commands in advance.
11834
09d4efe1
EZ
11835@kindex add-shared-symbol-files
11836@kindex assf
11837@item add-shared-symbol-files @var{library-file}
11838@itemx assf @var{library-file}
11839The @code{add-shared-symbol-files} command can currently be used only
11840in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11841alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11842@value{GDBN} automatically looks for shared libraries, however if
11843@value{GDBN} does not find yours, you can invoke
11844@code{add-shared-symbol-files}. It takes one argument: the shared
11845library's file name. @code{assf} is a shorthand alias for
11846@code{add-shared-symbol-files}.
c906108c 11847
c906108c 11848@kindex section
09d4efe1
EZ
11849@item section @var{section} @var{addr}
11850The @code{section} command changes the base address of the named
11851@var{section} of the exec file to @var{addr}. This can be used if the
11852exec file does not contain section addresses, (such as in the
11853@code{a.out} format), or when the addresses specified in the file
11854itself are wrong. Each section must be changed separately. The
11855@code{info files} command, described below, lists all the sections and
11856their addresses.
c906108c
SS
11857
11858@kindex info files
11859@kindex info target
11860@item info files
11861@itemx info target
7a292a7a
SS
11862@code{info files} and @code{info target} are synonymous; both print the
11863current target (@pxref{Targets, ,Specifying a Debugging Target}),
11864including the names of the executable and core dump files currently in
11865use by @value{GDBN}, and the files from which symbols were loaded. The
11866command @code{help target} lists all possible targets rather than
11867current ones.
11868
fe95c787
MS
11869@kindex maint info sections
11870@item maint info sections
11871Another command that can give you extra information about program sections
11872is @code{maint info sections}. In addition to the section information
11873displayed by @code{info files}, this command displays the flags and file
11874offset of each section in the executable and core dump files. In addition,
11875@code{maint info sections} provides the following command options (which
11876may be arbitrarily combined):
11877
11878@table @code
11879@item ALLOBJ
11880Display sections for all loaded object files, including shared libraries.
11881@item @var{sections}
6600abed 11882Display info only for named @var{sections}.
fe95c787
MS
11883@item @var{section-flags}
11884Display info only for sections for which @var{section-flags} are true.
11885The section flags that @value{GDBN} currently knows about are:
11886@table @code
11887@item ALLOC
11888Section will have space allocated in the process when loaded.
11889Set for all sections except those containing debug information.
11890@item LOAD
11891Section will be loaded from the file into the child process memory.
11892Set for pre-initialized code and data, clear for @code{.bss} sections.
11893@item RELOC
11894Section needs to be relocated before loading.
11895@item READONLY
11896Section cannot be modified by the child process.
11897@item CODE
11898Section contains executable code only.
6600abed 11899@item DATA
fe95c787
MS
11900Section contains data only (no executable code).
11901@item ROM
11902Section will reside in ROM.
11903@item CONSTRUCTOR
11904Section contains data for constructor/destructor lists.
11905@item HAS_CONTENTS
11906Section is not empty.
11907@item NEVER_LOAD
11908An instruction to the linker to not output the section.
11909@item COFF_SHARED_LIBRARY
11910A notification to the linker that the section contains
11911COFF shared library information.
11912@item IS_COMMON
11913Section contains common symbols.
11914@end table
11915@end table
6763aef9 11916@kindex set trust-readonly-sections
9c16f35a 11917@cindex read-only sections
6763aef9
MS
11918@item set trust-readonly-sections on
11919Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11920really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11921In that case, @value{GDBN} can fetch values from these sections
11922out of the object file, rather than from the target program.
11923For some targets (notably embedded ones), this can be a significant
11924enhancement to debugging performance.
11925
11926The default is off.
11927
11928@item set trust-readonly-sections off
15110bc3 11929Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11930the contents of the section might change while the program is running,
11931and must therefore be fetched from the target when needed.
9c16f35a
EZ
11932
11933@item show trust-readonly-sections
11934Show the current setting of trusting readonly sections.
c906108c
SS
11935@end table
11936
11937All file-specifying commands allow both absolute and relative file names
11938as arguments. @value{GDBN} always converts the file name to an absolute file
11939name and remembers it that way.
11940
c906108c 11941@cindex shared libraries
9cceb671
DJ
11942@anchor{Shared Libraries}
11943@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11944and IBM RS/6000 AIX shared libraries.
53a5351d 11945
9cceb671
DJ
11946On MS-Windows @value{GDBN} must be linked with the Expat library to support
11947shared libraries. @xref{Expat}.
11948
c906108c
SS
11949@value{GDBN} automatically loads symbol definitions from shared libraries
11950when you use the @code{run} command, or when you examine a core file.
11951(Before you issue the @code{run} command, @value{GDBN} does not understand
11952references to a function in a shared library, however---unless you are
11953debugging a core file).
53a5351d
JM
11954
11955On HP-UX, if the program loads a library explicitly, @value{GDBN}
11956automatically loads the symbols at the time of the @code{shl_load} call.
11957
c906108c
SS
11958@c FIXME: some @value{GDBN} release may permit some refs to undef
11959@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11960@c FIXME...lib; check this from time to time when updating manual
11961
b7209cb4
FF
11962There are times, however, when you may wish to not automatically load
11963symbol definitions from shared libraries, such as when they are
11964particularly large or there are many of them.
11965
11966To control the automatic loading of shared library symbols, use the
11967commands:
11968
11969@table @code
11970@kindex set auto-solib-add
11971@item set auto-solib-add @var{mode}
11972If @var{mode} is @code{on}, symbols from all shared object libraries
11973will be loaded automatically when the inferior begins execution, you
11974attach to an independently started inferior, or when the dynamic linker
11975informs @value{GDBN} that a new library has been loaded. If @var{mode}
11976is @code{off}, symbols must be loaded manually, using the
11977@code{sharedlibrary} command. The default value is @code{on}.
11978
dcaf7c2c
EZ
11979@cindex memory used for symbol tables
11980If your program uses lots of shared libraries with debug info that
11981takes large amounts of memory, you can decrease the @value{GDBN}
11982memory footprint by preventing it from automatically loading the
11983symbols from shared libraries. To that end, type @kbd{set
11984auto-solib-add off} before running the inferior, then load each
11985library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11986@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11987the libraries whose symbols you want to be loaded.
11988
b7209cb4
FF
11989@kindex show auto-solib-add
11990@item show auto-solib-add
11991Display the current autoloading mode.
11992@end table
11993
c45da7e6 11994@cindex load shared library
b7209cb4
FF
11995To explicitly load shared library symbols, use the @code{sharedlibrary}
11996command:
11997
c906108c
SS
11998@table @code
11999@kindex info sharedlibrary
12000@kindex info share
12001@item info share
12002@itemx info sharedlibrary
12003Print the names of the shared libraries which are currently loaded.
12004
12005@kindex sharedlibrary
12006@kindex share
12007@item sharedlibrary @var{regex}
12008@itemx share @var{regex}
c906108c
SS
12009Load shared object library symbols for files matching a
12010Unix regular expression.
12011As with files loaded automatically, it only loads shared libraries
12012required by your program for a core file or after typing @code{run}. If
12013@var{regex} is omitted all shared libraries required by your program are
12014loaded.
c45da7e6
EZ
12015
12016@item nosharedlibrary
12017@kindex nosharedlibrary
12018@cindex unload symbols from shared libraries
12019Unload all shared object library symbols. This discards all symbols
12020that have been loaded from all shared libraries. Symbols from shared
12021libraries that were loaded by explicit user requests are not
12022discarded.
c906108c
SS
12023@end table
12024
721c2651
EZ
12025Sometimes you may wish that @value{GDBN} stops and gives you control
12026when any of shared library events happen. Use the @code{set
12027stop-on-solib-events} command for this:
12028
12029@table @code
12030@item set stop-on-solib-events
12031@kindex set stop-on-solib-events
12032This command controls whether @value{GDBN} should give you control
12033when the dynamic linker notifies it about some shared library event.
12034The most common event of interest is loading or unloading of a new
12035shared library.
12036
12037@item show stop-on-solib-events
12038@kindex show stop-on-solib-events
12039Show whether @value{GDBN} stops and gives you control when shared
12040library events happen.
12041@end table
12042
f5ebfba0
DJ
12043Shared libraries are also supported in many cross or remote debugging
12044configurations. A copy of the target's libraries need to be present on the
12045host system; they need to be the same as the target libraries, although the
12046copies on the target can be stripped as long as the copies on the host are
12047not.
12048
59b7b46f
EZ
12049@cindex where to look for shared libraries
12050For remote debugging, you need to tell @value{GDBN} where the target
12051libraries are, so that it can load the correct copies---otherwise, it
12052may try to load the host's libraries. @value{GDBN} has two variables
12053to specify the search directories for target libraries.
f5ebfba0
DJ
12054
12055@table @code
59b7b46f 12056@cindex prefix for shared library file names
f822c95b 12057@cindex system root, alternate
f5ebfba0 12058@kindex set solib-absolute-prefix
f822c95b
DJ
12059@kindex set sysroot
12060@item set sysroot @var{path}
12061Use @var{path} as the system root for the program being debugged. Any
12062absolute shared library paths will be prefixed with @var{path}; many
12063runtime loaders store the absolute paths to the shared library in the
12064target program's memory. If you use @code{set sysroot} to find shared
12065libraries, they need to be laid out in the same way that they are on
12066the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12067under @var{path}.
12068
12069The @code{set solib-absolute-prefix} command is an alias for @code{set
12070sysroot}.
12071
12072@cindex default system root
59b7b46f 12073@cindex @samp{--with-sysroot}
f822c95b
DJ
12074You can set the default system root by using the configure-time
12075@samp{--with-sysroot} option. If the system root is inside
12076@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12077@samp{--exec-prefix}), then the default system root will be updated
12078automatically if the installed @value{GDBN} is moved to a new
12079location.
12080
12081@kindex show sysroot
12082@item show sysroot
f5ebfba0
DJ
12083Display the current shared library prefix.
12084
12085@kindex set solib-search-path
12086@item set solib-search-path @var{path}
f822c95b
DJ
12087If this variable is set, @var{path} is a colon-separated list of
12088directories to search for shared libraries. @samp{solib-search-path}
12089is used after @samp{sysroot} fails to locate the library, or if the
12090path to the library is relative instead of absolute. If you want to
12091use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12092@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12093finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12094it to a nonexistent directory may interfere with automatic loading
f822c95b 12095of shared library symbols.
f5ebfba0
DJ
12096
12097@kindex show solib-search-path
12098@item show solib-search-path
12099Display the current shared library search path.
12100@end table
12101
5b5d99cf
JB
12102
12103@node Separate Debug Files
12104@section Debugging Information in Separate Files
12105@cindex separate debugging information files
12106@cindex debugging information in separate files
12107@cindex @file{.debug} subdirectories
12108@cindex debugging information directory, global
12109@cindex global debugging information directory
c7e83d54
EZ
12110@cindex build ID, and separate debugging files
12111@cindex @file{.build-id} directory
5b5d99cf
JB
12112
12113@value{GDBN} allows you to put a program's debugging information in a
12114file separate from the executable itself, in a way that allows
12115@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12116Since debugging information can be very large---sometimes larger
12117than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12118information for their executables in separate files, which users can
12119install only when they need to debug a problem.
12120
c7e83d54
EZ
12121@value{GDBN} supports two ways of specifying the separate debug info
12122file:
5b5d99cf
JB
12123
12124@itemize @bullet
12125@item
c7e83d54
EZ
12126The executable contains a @dfn{debug link} that specifies the name of
12127the separate debug info file. The separate debug file's name is
12128usually @file{@var{executable}.debug}, where @var{executable} is the
12129name of the corresponding executable file without leading directories
12130(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12131debug link specifies a CRC32 checksum for the debug file, which
12132@value{GDBN} uses to validate that the executable and the debug file
12133came from the same build.
12134
12135@item
7e27a47a 12136The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12137also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12138only on some operating systems, notably those which use the ELF format
12139for binary files and the @sc{gnu} Binutils.) For more details about
12140this feature, see the description of the @option{--build-id}
12141command-line option in @ref{Options, , Command Line Options, ld.info,
12142The GNU Linker}. The debug info file's name is not specified
12143explicitly by the build ID, but can be computed from the build ID, see
12144below.
d3750b24
JK
12145@end itemize
12146
c7e83d54
EZ
12147Depending on the way the debug info file is specified, @value{GDBN}
12148uses two different methods of looking for the debug file:
d3750b24
JK
12149
12150@itemize @bullet
12151@item
c7e83d54
EZ
12152For the ``debug link'' method, @value{GDBN} looks up the named file in
12153the directory of the executable file, then in a subdirectory of that
12154directory named @file{.debug}, and finally under the global debug
12155directory, in a subdirectory whose name is identical to the leading
12156directories of the executable's absolute file name.
12157
12158@item
83f83d7f 12159For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12160@file{.build-id} subdirectory of the global debug directory for a file
12161named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12162first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12163are the rest of the bit string. (Real build ID strings are 32 or more
12164hex characters, not 10.)
c7e83d54
EZ
12165@end itemize
12166
12167So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12168@file{/usr/bin/ls}, which has a debug link that specifies the
12169file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12170@code{abcdef1234}. If the global debug directory is
12171@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12172debug information files, in the indicated order:
12173
12174@itemize @minus
12175@item
12176@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12177@item
c7e83d54 12178@file{/usr/bin/ls.debug}
5b5d99cf 12179@item
c7e83d54 12180@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12181@item
c7e83d54 12182@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12183@end itemize
5b5d99cf
JB
12184
12185You can set the global debugging info directory's name, and view the
12186name @value{GDBN} is currently using.
12187
12188@table @code
12189
12190@kindex set debug-file-directory
12191@item set debug-file-directory @var{directory}
12192Set the directory which @value{GDBN} searches for separate debugging
12193information files to @var{directory}.
12194
12195@kindex show debug-file-directory
12196@item show debug-file-directory
12197Show the directory @value{GDBN} searches for separate debugging
12198information files.
12199
12200@end table
12201
12202@cindex @code{.gnu_debuglink} sections
c7e83d54 12203@cindex debug link sections
5b5d99cf
JB
12204A debug link is a special section of the executable file named
12205@code{.gnu_debuglink}. The section must contain:
12206
12207@itemize
12208@item
12209A filename, with any leading directory components removed, followed by
12210a zero byte,
12211@item
12212zero to three bytes of padding, as needed to reach the next four-byte
12213boundary within the section, and
12214@item
12215a four-byte CRC checksum, stored in the same endianness used for the
12216executable file itself. The checksum is computed on the debugging
12217information file's full contents by the function given below, passing
12218zero as the @var{crc} argument.
12219@end itemize
12220
12221Any executable file format can carry a debug link, as long as it can
12222contain a section named @code{.gnu_debuglink} with the contents
12223described above.
12224
d3750b24 12225@cindex @code{.note.gnu.build-id} sections
c7e83d54 12226@cindex build ID sections
7e27a47a
EZ
12227The build ID is a special section in the executable file (and in other
12228ELF binary files that @value{GDBN} may consider). This section is
12229often named @code{.note.gnu.build-id}, but that name is not mandatory.
12230It contains unique identification for the built files---the ID remains
12231the same across multiple builds of the same build tree. The default
12232algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12233content for the build ID string. The same section with an identical
12234value is present in the original built binary with symbols, in its
12235stripped variant, and in the separate debugging information file.
d3750b24 12236
5b5d99cf
JB
12237The debugging information file itself should be an ordinary
12238executable, containing a full set of linker symbols, sections, and
12239debugging information. The sections of the debugging information file
c7e83d54
EZ
12240should have the same names, addresses, and sizes as the original file,
12241but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12242in an ordinary executable.
12243
7e27a47a 12244The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12245@samp{objcopy} utility that can produce
12246the separated executable / debugging information file pairs using the
12247following commands:
12248
12249@smallexample
12250@kbd{objcopy --only-keep-debug foo foo.debug}
12251@kbd{strip -g foo}
c7e83d54
EZ
12252@end smallexample
12253
12254@noindent
12255These commands remove the debugging
83f83d7f
JK
12256information from the executable file @file{foo} and place it in the file
12257@file{foo.debug}. You can use the first, second or both methods to link the
12258two files:
12259
12260@itemize @bullet
12261@item
12262The debug link method needs the following additional command to also leave
12263behind a debug link in @file{foo}:
12264
12265@smallexample
12266@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12267@end smallexample
12268
12269Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12270a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12271foo.debug} has the same functionality as the two @code{objcopy} commands and
12272the @code{ln -s} command above, together.
12273
12274@item
12275Build ID gets embedded into the main executable using @code{ld --build-id} or
12276the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12277compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12278utilities (Binutils) package since version 2.18.
83f83d7f
JK
12279@end itemize
12280
12281@noindent
d3750b24 12282
c7e83d54
EZ
12283Since there are many different ways to compute CRC's for the debug
12284link (different polynomials, reversals, byte ordering, etc.), the
12285simplest way to describe the CRC used in @code{.gnu_debuglink}
12286sections is to give the complete code for a function that computes it:
5b5d99cf 12287
4644b6e3 12288@kindex gnu_debuglink_crc32
5b5d99cf
JB
12289@smallexample
12290unsigned long
12291gnu_debuglink_crc32 (unsigned long crc,
12292 unsigned char *buf, size_t len)
12293@{
12294 static const unsigned long crc32_table[256] =
12295 @{
12296 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12297 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12298 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12299 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12300 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12301 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12302 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12303 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12304 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12305 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12306 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12307 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12308 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12309 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12310 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12311 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12312 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12313 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12314 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12315 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12316 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12317 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12318 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12319 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12320 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12321 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12322 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12323 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12324 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12325 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12326 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12327 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12328 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12329 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12330 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12331 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12332 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12333 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12334 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12335 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12336 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12337 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12338 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12339 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12340 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12341 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12342 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12343 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12344 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12345 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12346 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12347 0x2d02ef8d
12348 @};
12349 unsigned char *end;
12350
12351 crc = ~crc & 0xffffffff;
12352 for (end = buf + len; buf < end; ++buf)
12353 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12354 return ~crc & 0xffffffff;
5b5d99cf
JB
12355@}
12356@end smallexample
12357
c7e83d54
EZ
12358@noindent
12359This computation does not apply to the ``build ID'' method.
12360
5b5d99cf 12361
6d2ebf8b 12362@node Symbol Errors
79a6e687 12363@section Errors Reading Symbol Files
c906108c
SS
12364
12365While reading a symbol file, @value{GDBN} occasionally encounters problems,
12366such as symbol types it does not recognize, or known bugs in compiler
12367output. By default, @value{GDBN} does not notify you of such problems, since
12368they are relatively common and primarily of interest to people
12369debugging compilers. If you are interested in seeing information
12370about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12371only one message about each such type of problem, no matter how many
12372times the problem occurs; or you can ask @value{GDBN} to print more messages,
12373to see how many times the problems occur, with the @code{set
79a6e687
BW
12374complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12375Messages}).
c906108c
SS
12376
12377The messages currently printed, and their meanings, include:
12378
12379@table @code
12380@item inner block not inside outer block in @var{symbol}
12381
12382The symbol information shows where symbol scopes begin and end
12383(such as at the start of a function or a block of statements). This
12384error indicates that an inner scope block is not fully contained
12385in its outer scope blocks.
12386
12387@value{GDBN} circumvents the problem by treating the inner block as if it had
12388the same scope as the outer block. In the error message, @var{symbol}
12389may be shown as ``@code{(don't know)}'' if the outer block is not a
12390function.
12391
12392@item block at @var{address} out of order
12393
12394The symbol information for symbol scope blocks should occur in
12395order of increasing addresses. This error indicates that it does not
12396do so.
12397
12398@value{GDBN} does not circumvent this problem, and has trouble
12399locating symbols in the source file whose symbols it is reading. (You
12400can often determine what source file is affected by specifying
79a6e687
BW
12401@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12402Messages}.)
c906108c
SS
12403
12404@item bad block start address patched
12405
12406The symbol information for a symbol scope block has a start address
12407smaller than the address of the preceding source line. This is known
12408to occur in the SunOS 4.1.1 (and earlier) C compiler.
12409
12410@value{GDBN} circumvents the problem by treating the symbol scope block as
12411starting on the previous source line.
12412
12413@item bad string table offset in symbol @var{n}
12414
12415@cindex foo
12416Symbol number @var{n} contains a pointer into the string table which is
12417larger than the size of the string table.
12418
12419@value{GDBN} circumvents the problem by considering the symbol to have the
12420name @code{foo}, which may cause other problems if many symbols end up
12421with this name.
12422
12423@item unknown symbol type @code{0x@var{nn}}
12424
7a292a7a
SS
12425The symbol information contains new data types that @value{GDBN} does
12426not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12427uncomprehended information, in hexadecimal.
c906108c 12428
7a292a7a
SS
12429@value{GDBN} circumvents the error by ignoring this symbol information.
12430This usually allows you to debug your program, though certain symbols
c906108c 12431are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12432debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12433on @code{complain}, then go up to the function @code{read_dbx_symtab}
12434and examine @code{*bufp} to see the symbol.
c906108c
SS
12435
12436@item stub type has NULL name
c906108c 12437
7a292a7a 12438@value{GDBN} could not find the full definition for a struct or class.
c906108c 12439
7a292a7a 12440@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12441The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12442information that recent versions of the compiler should have output for
12443it.
c906108c
SS
12444
12445@item info mismatch between compiler and debugger
12446
12447@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12448
c906108c
SS
12449@end table
12450
6d2ebf8b 12451@node Targets
c906108c 12452@chapter Specifying a Debugging Target
7a292a7a 12453
c906108c 12454@cindex debugging target
c906108c 12455A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12456
12457Often, @value{GDBN} runs in the same host environment as your program;
12458in that case, the debugging target is specified as a side effect when
12459you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12460flexibility---for example, running @value{GDBN} on a physically separate
12461host, or controlling a standalone system over a serial port or a
53a5351d
JM
12462realtime system over a TCP/IP connection---you can use the @code{target}
12463command to specify one of the target types configured for @value{GDBN}
79a6e687 12464(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12465
a8f24a35
EZ
12466@cindex target architecture
12467It is possible to build @value{GDBN} for several different @dfn{target
12468architectures}. When @value{GDBN} is built like that, you can choose
12469one of the available architectures with the @kbd{set architecture}
12470command.
12471
12472@table @code
12473@kindex set architecture
12474@kindex show architecture
12475@item set architecture @var{arch}
12476This command sets the current target architecture to @var{arch}. The
12477value of @var{arch} can be @code{"auto"}, in addition to one of the
12478supported architectures.
12479
12480@item show architecture
12481Show the current target architecture.
9c16f35a
EZ
12482
12483@item set processor
12484@itemx processor
12485@kindex set processor
12486@kindex show processor
12487These are alias commands for, respectively, @code{set architecture}
12488and @code{show architecture}.
a8f24a35
EZ
12489@end table
12490
c906108c
SS
12491@menu
12492* Active Targets:: Active targets
12493* Target Commands:: Commands for managing targets
c906108c 12494* Byte Order:: Choosing target byte order
c906108c
SS
12495@end menu
12496
6d2ebf8b 12497@node Active Targets
79a6e687 12498@section Active Targets
7a292a7a 12499
c906108c
SS
12500@cindex stacking targets
12501@cindex active targets
12502@cindex multiple targets
12503
c906108c 12504There are three classes of targets: processes, core files, and
7a292a7a
SS
12505executable files. @value{GDBN} can work concurrently on up to three
12506active targets, one in each class. This allows you to (for example)
12507start a process and inspect its activity without abandoning your work on
12508a core file.
c906108c
SS
12509
12510For example, if you execute @samp{gdb a.out}, then the executable file
12511@code{a.out} is the only active target. If you designate a core file as
12512well---presumably from a prior run that crashed and coredumped---then
12513@value{GDBN} has two active targets and uses them in tandem, looking
12514first in the corefile target, then in the executable file, to satisfy
12515requests for memory addresses. (Typically, these two classes of target
12516are complementary, since core files contain only a program's
12517read-write memory---variables and so on---plus machine status, while
12518executable files contain only the program text and initialized data.)
c906108c
SS
12519
12520When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12521target as well. When a process target is active, all @value{GDBN}
12522commands requesting memory addresses refer to that target; addresses in
12523an active core file or executable file target are obscured while the
12524process target is active.
c906108c 12525
7a292a7a 12526Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12527core file or executable target (@pxref{Files, ,Commands to Specify
12528Files}). To specify as a target a process that is already running, use
12529the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12530Process}).
c906108c 12531
6d2ebf8b 12532@node Target Commands
79a6e687 12533@section Commands for Managing Targets
c906108c
SS
12534
12535@table @code
12536@item target @var{type} @var{parameters}
7a292a7a
SS
12537Connects the @value{GDBN} host environment to a target machine or
12538process. A target is typically a protocol for talking to debugging
12539facilities. You use the argument @var{type} to specify the type or
12540protocol of the target machine.
c906108c
SS
12541
12542Further @var{parameters} are interpreted by the target protocol, but
12543typically include things like device names or host names to connect
12544with, process numbers, and baud rates.
c906108c
SS
12545
12546The @code{target} command does not repeat if you press @key{RET} again
12547after executing the command.
12548
12549@kindex help target
12550@item help target
12551Displays the names of all targets available. To display targets
12552currently selected, use either @code{info target} or @code{info files}
79a6e687 12553(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12554
12555@item help target @var{name}
12556Describe a particular target, including any parameters necessary to
12557select it.
12558
12559@kindex set gnutarget
12560@item set gnutarget @var{args}
5d161b24 12561@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12562knows whether it is reading an @dfn{executable},
5d161b24
DB
12563a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12564with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12565with @code{gnutarget} the @code{target} refers to a program, not a machine.
12566
d4f3574e 12567@quotation
c906108c
SS
12568@emph{Warning:} To specify a file format with @code{set gnutarget},
12569you must know the actual BFD name.
d4f3574e 12570@end quotation
c906108c 12571
d4f3574e 12572@noindent
79a6e687 12573@xref{Files, , Commands to Specify Files}.
c906108c 12574
5d161b24 12575@kindex show gnutarget
c906108c
SS
12576@item show gnutarget
12577Use the @code{show gnutarget} command to display what file format
12578@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12579@value{GDBN} will determine the file format for each file automatically,
12580and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12581@end table
12582
4644b6e3 12583@cindex common targets
c906108c
SS
12584Here are some common targets (available, or not, depending on the GDB
12585configuration):
c906108c
SS
12586
12587@table @code
4644b6e3 12588@kindex target
c906108c 12589@item target exec @var{program}
4644b6e3 12590@cindex executable file target
c906108c
SS
12591An executable file. @samp{target exec @var{program}} is the same as
12592@samp{exec-file @var{program}}.
12593
c906108c 12594@item target core @var{filename}
4644b6e3 12595@cindex core dump file target
c906108c
SS
12596A core dump file. @samp{target core @var{filename}} is the same as
12597@samp{core-file @var{filename}}.
c906108c 12598
1a10341b 12599@item target remote @var{medium}
4644b6e3 12600@cindex remote target
1a10341b
JB
12601A remote system connected to @value{GDBN} via a serial line or network
12602connection. This command tells @value{GDBN} to use its own remote
12603protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12604
12605For example, if you have a board connected to @file{/dev/ttya} on the
12606machine running @value{GDBN}, you could say:
12607
12608@smallexample
12609target remote /dev/ttya
12610@end smallexample
12611
12612@code{target remote} supports the @code{load} command. This is only
12613useful if you have some other way of getting the stub to the target
12614system, and you can put it somewhere in memory where it won't get
12615clobbered by the download.
c906108c 12616
c906108c 12617@item target sim
4644b6e3 12618@cindex built-in simulator target
2df3850c 12619Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12620In general,
474c8240 12621@smallexample
104c1213
JM
12622 target sim
12623 load
12624 run
474c8240 12625@end smallexample
d4f3574e 12626@noindent
104c1213 12627works; however, you cannot assume that a specific memory map, device
d4f3574e 12628drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12629provide these. For info about any processor-specific simulator details,
12630see the appropriate section in @ref{Embedded Processors, ,Embedded
12631Processors}.
12632
c906108c
SS
12633@end table
12634
104c1213 12635Some configurations may include these targets as well:
c906108c
SS
12636
12637@table @code
12638
c906108c 12639@item target nrom @var{dev}
4644b6e3 12640@cindex NetROM ROM emulator target
c906108c
SS
12641NetROM ROM emulator. This target only supports downloading.
12642
c906108c
SS
12643@end table
12644
5d161b24 12645Different targets are available on different configurations of @value{GDBN};
c906108c 12646your configuration may have more or fewer targets.
c906108c 12647
721c2651
EZ
12648Many remote targets require you to download the executable's code once
12649you've successfully established a connection. You may wish to control
3d00d119
DJ
12650various aspects of this process.
12651
12652@table @code
721c2651
EZ
12653
12654@item set hash
12655@kindex set hash@r{, for remote monitors}
12656@cindex hash mark while downloading
12657This command controls whether a hash mark @samp{#} is displayed while
12658downloading a file to the remote monitor. If on, a hash mark is
12659displayed after each S-record is successfully downloaded to the
12660monitor.
12661
12662@item show hash
12663@kindex show hash@r{, for remote monitors}
12664Show the current status of displaying the hash mark.
12665
12666@item set debug monitor
12667@kindex set debug monitor
12668@cindex display remote monitor communications
12669Enable or disable display of communications messages between
12670@value{GDBN} and the remote monitor.
12671
12672@item show debug monitor
12673@kindex show debug monitor
12674Show the current status of displaying communications between
12675@value{GDBN} and the remote monitor.
a8f24a35 12676@end table
c906108c
SS
12677
12678@table @code
12679
12680@kindex load @var{filename}
12681@item load @var{filename}
8edfe269 12682@anchor{load}
c906108c
SS
12683Depending on what remote debugging facilities are configured into
12684@value{GDBN}, the @code{load} command may be available. Where it exists, it
12685is meant to make @var{filename} (an executable) available for debugging
12686on the remote system---by downloading, or dynamic linking, for example.
12687@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12688the @code{add-symbol-file} command.
12689
12690If your @value{GDBN} does not have a @code{load} command, attempting to
12691execute it gets the error message ``@code{You can't do that when your
12692target is @dots{}}''
c906108c
SS
12693
12694The file is loaded at whatever address is specified in the executable.
12695For some object file formats, you can specify the load address when you
12696link the program; for other formats, like a.out, the object file format
12697specifies a fixed address.
12698@c FIXME! This would be a good place for an xref to the GNU linker doc.
12699
68437a39
DJ
12700Depending on the remote side capabilities, @value{GDBN} may be able to
12701load programs into flash memory.
12702
c906108c
SS
12703@code{load} does not repeat if you press @key{RET} again after using it.
12704@end table
12705
6d2ebf8b 12706@node Byte Order
79a6e687 12707@section Choosing Target Byte Order
7a292a7a 12708
c906108c
SS
12709@cindex choosing target byte order
12710@cindex target byte order
c906108c 12711
172c2a43 12712Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12713offer the ability to run either big-endian or little-endian byte
12714orders. Usually the executable or symbol will include a bit to
12715designate the endian-ness, and you will not need to worry about
12716which to use. However, you may still find it useful to adjust
d4f3574e 12717@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12718
12719@table @code
4644b6e3 12720@kindex set endian
c906108c
SS
12721@item set endian big
12722Instruct @value{GDBN} to assume the target is big-endian.
12723
c906108c
SS
12724@item set endian little
12725Instruct @value{GDBN} to assume the target is little-endian.
12726
c906108c
SS
12727@item set endian auto
12728Instruct @value{GDBN} to use the byte order associated with the
12729executable.
12730
12731@item show endian
12732Display @value{GDBN}'s current idea of the target byte order.
12733
12734@end table
12735
12736Note that these commands merely adjust interpretation of symbolic
12737data on the host, and that they have absolutely no effect on the
12738target system.
12739
ea35711c
DJ
12740
12741@node Remote Debugging
12742@chapter Debugging Remote Programs
c906108c
SS
12743@cindex remote debugging
12744
12745If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12746@value{GDBN} in the usual way, it is often useful to use remote debugging.
12747For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12748or on a small system which does not have a general purpose operating system
12749powerful enough to run a full-featured debugger.
12750
12751Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12752to make this work with particular debugging targets. In addition,
5d161b24 12753@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12754but not specific to any particular target system) which you can use if you
12755write the remote stubs---the code that runs on the remote system to
12756communicate with @value{GDBN}.
12757
12758Other remote targets may be available in your
12759configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12760
6b2f586d 12761@menu
07f31aa6 12762* Connecting:: Connecting to a remote target
a6b151f1 12763* File Transfer:: Sending files to a remote system
6b2f586d 12764* Server:: Using the gdbserver program
79a6e687
BW
12765* Remote Configuration:: Remote configuration
12766* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12767@end menu
12768
07f31aa6 12769@node Connecting
79a6e687 12770@section Connecting to a Remote Target
07f31aa6
DJ
12771
12772On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12773your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12774Start up @value{GDBN} as usual, using the name of the local copy of your
12775program as the first argument.
12776
86941c27
JB
12777@cindex @code{target remote}
12778@value{GDBN} can communicate with the target over a serial line, or
12779over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12780each case, @value{GDBN} uses the same protocol for debugging your
12781program; only the medium carrying the debugging packets varies. The
12782@code{target remote} command establishes a connection to the target.
12783Its arguments indicate which medium to use:
12784
12785@table @code
12786
12787@item target remote @var{serial-device}
07f31aa6 12788@cindex serial line, @code{target remote}
86941c27
JB
12789Use @var{serial-device} to communicate with the target. For example,
12790to use a serial line connected to the device named @file{/dev/ttyb}:
12791
12792@smallexample
12793target remote /dev/ttyb
12794@end smallexample
12795
07f31aa6
DJ
12796If you're using a serial line, you may want to give @value{GDBN} the
12797@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12798(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12799@code{target} command.
07f31aa6 12800
86941c27
JB
12801@item target remote @code{@var{host}:@var{port}}
12802@itemx target remote @code{tcp:@var{host}:@var{port}}
12803@cindex @acronym{TCP} port, @code{target remote}
12804Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12805The @var{host} may be either a host name or a numeric @acronym{IP}
12806address; @var{port} must be a decimal number. The @var{host} could be
12807the target machine itself, if it is directly connected to the net, or
12808it might be a terminal server which in turn has a serial line to the
12809target.
07f31aa6 12810
86941c27
JB
12811For example, to connect to port 2828 on a terminal server named
12812@code{manyfarms}:
07f31aa6
DJ
12813
12814@smallexample
12815target remote manyfarms:2828
12816@end smallexample
12817
86941c27
JB
12818If your remote target is actually running on the same machine as your
12819debugger session (e.g.@: a simulator for your target running on the
12820same host), you can omit the hostname. For example, to connect to
12821port 1234 on your local machine:
07f31aa6
DJ
12822
12823@smallexample
12824target remote :1234
12825@end smallexample
12826@noindent
12827
12828Note that the colon is still required here.
12829
86941c27
JB
12830@item target remote @code{udp:@var{host}:@var{port}}
12831@cindex @acronym{UDP} port, @code{target remote}
12832Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12833connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12834
12835@smallexample
12836target remote udp:manyfarms:2828
12837@end smallexample
12838
86941c27
JB
12839When using a @acronym{UDP} connection for remote debugging, you should
12840keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12841can silently drop packets on busy or unreliable networks, which will
12842cause havoc with your debugging session.
12843
66b8c7f6
JB
12844@item target remote | @var{command}
12845@cindex pipe, @code{target remote} to
12846Run @var{command} in the background and communicate with it using a
12847pipe. The @var{command} is a shell command, to be parsed and expanded
12848by the system's command shell, @code{/bin/sh}; it should expect remote
12849protocol packets on its standard input, and send replies on its
12850standard output. You could use this to run a stand-alone simulator
12851that speaks the remote debugging protocol, to make net connections
12852using programs like @code{ssh}, or for other similar tricks.
12853
12854If @var{command} closes its standard output (perhaps by exiting),
12855@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12856program has already exited, this will have no effect.)
12857
86941c27 12858@end table
07f31aa6 12859
86941c27 12860Once the connection has been established, you can use all the usual
8edfe269
DJ
12861commands to examine and change data. The remote program is already
12862running; you can use @kbd{step} and @kbd{continue}, and you do not
12863need to use @kbd{run}.
07f31aa6
DJ
12864
12865@cindex interrupting remote programs
12866@cindex remote programs, interrupting
12867Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12868interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12869program. This may or may not succeed, depending in part on the hardware
12870and the serial drivers the remote system uses. If you type the
12871interrupt character once again, @value{GDBN} displays this prompt:
12872
12873@smallexample
12874Interrupted while waiting for the program.
12875Give up (and stop debugging it)? (y or n)
12876@end smallexample
12877
12878If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12879(If you decide you want to try again later, you can use @samp{target
12880remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12881goes back to waiting.
12882
12883@table @code
12884@kindex detach (remote)
12885@item detach
12886When you have finished debugging the remote program, you can use the
12887@code{detach} command to release it from @value{GDBN} control.
12888Detaching from the target normally resumes its execution, but the results
12889will depend on your particular remote stub. After the @code{detach}
12890command, @value{GDBN} is free to connect to another target.
12891
12892@kindex disconnect
12893@item disconnect
12894The @code{disconnect} command behaves like @code{detach}, except that
12895the target is generally not resumed. It will wait for @value{GDBN}
12896(this instance or another one) to connect and continue debugging. After
12897the @code{disconnect} command, @value{GDBN} is again free to connect to
12898another target.
09d4efe1
EZ
12899
12900@cindex send command to remote monitor
fad38dfa
EZ
12901@cindex extend @value{GDBN} for remote targets
12902@cindex add new commands for external monitor
09d4efe1
EZ
12903@kindex monitor
12904@item monitor @var{cmd}
fad38dfa
EZ
12905This command allows you to send arbitrary commands directly to the
12906remote monitor. Since @value{GDBN} doesn't care about the commands it
12907sends like this, this command is the way to extend @value{GDBN}---you
12908can add new commands that only the external monitor will understand
12909and implement.
07f31aa6
DJ
12910@end table
12911
a6b151f1
DJ
12912@node File Transfer
12913@section Sending files to a remote system
12914@cindex remote target, file transfer
12915@cindex file transfer
12916@cindex sending files to remote systems
12917
12918Some remote targets offer the ability to transfer files over the same
12919connection used to communicate with @value{GDBN}. This is convenient
12920for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12921running @code{gdbserver} over a network interface. For other targets,
12922e.g.@: embedded devices with only a single serial port, this may be
12923the only way to upload or download files.
12924
12925Not all remote targets support these commands.
12926
12927@table @code
12928@kindex remote put
12929@item remote put @var{hostfile} @var{targetfile}
12930Copy file @var{hostfile} from the host system (the machine running
12931@value{GDBN}) to @var{targetfile} on the target system.
12932
12933@kindex remote get
12934@item remote get @var{targetfile} @var{hostfile}
12935Copy file @var{targetfile} from the target system to @var{hostfile}
12936on the host system.
12937
12938@kindex remote delete
12939@item remote delete @var{targetfile}
12940Delete @var{targetfile} from the target system.
12941
12942@end table
12943
6f05cf9f 12944@node Server
79a6e687 12945@section Using the @code{gdbserver} Program
6f05cf9f
AC
12946
12947@kindex gdbserver
12948@cindex remote connection without stubs
12949@code{gdbserver} is a control program for Unix-like systems, which
12950allows you to connect your program with a remote @value{GDBN} via
12951@code{target remote}---but without linking in the usual debugging stub.
12952
12953@code{gdbserver} is not a complete replacement for the debugging stubs,
12954because it requires essentially the same operating-system facilities
12955that @value{GDBN} itself does. In fact, a system that can run
12956@code{gdbserver} to connect to a remote @value{GDBN} could also run
12957@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12958because it is a much smaller program than @value{GDBN} itself. It is
12959also easier to port than all of @value{GDBN}, so you may be able to get
12960started more quickly on a new system by using @code{gdbserver}.
12961Finally, if you develop code for real-time systems, you may find that
12962the tradeoffs involved in real-time operation make it more convenient to
12963do as much development work as possible on another system, for example
12964by cross-compiling. You can use @code{gdbserver} to make a similar
12965choice for debugging.
12966
12967@value{GDBN} and @code{gdbserver} communicate via either a serial line
12968or a TCP connection, using the standard @value{GDBN} remote serial
12969protocol.
12970
2d717e4f
DJ
12971@quotation
12972@emph{Warning:} @code{gdbserver} does not have any built-in security.
12973Do not run @code{gdbserver} connected to any public network; a
12974@value{GDBN} connection to @code{gdbserver} provides access to the
12975target system with the same privileges as the user running
12976@code{gdbserver}.
12977@end quotation
12978
12979@subsection Running @code{gdbserver}
12980@cindex arguments, to @code{gdbserver}
12981
12982Run @code{gdbserver} on the target system. You need a copy of the
12983program you want to debug, including any libraries it requires.
6f05cf9f
AC
12984@code{gdbserver} does not need your program's symbol table, so you can
12985strip the program if necessary to save space. @value{GDBN} on the host
12986system does all the symbol handling.
12987
12988To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12989the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12990syntax is:
12991
12992@smallexample
12993target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12994@end smallexample
12995
12996@var{comm} is either a device name (to use a serial line) or a TCP
12997hostname and portnumber. For example, to debug Emacs with the argument
12998@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12999@file{/dev/com1}:
13000
13001@smallexample
13002target> gdbserver /dev/com1 emacs foo.txt
13003@end smallexample
13004
13005@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13006with it.
13007
13008To use a TCP connection instead of a serial line:
13009
13010@smallexample
13011target> gdbserver host:2345 emacs foo.txt
13012@end smallexample
13013
13014The only difference from the previous example is the first argument,
13015specifying that you are communicating with the host @value{GDBN} via
13016TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13017expect a TCP connection from machine @samp{host} to local TCP port 2345.
13018(Currently, the @samp{host} part is ignored.) You can choose any number
13019you want for the port number as long as it does not conflict with any
13020TCP ports already in use on the target system (for example, @code{23} is
13021reserved for @code{telnet}).@footnote{If you choose a port number that
13022conflicts with another service, @code{gdbserver} prints an error message
13023and exits.} You must use the same port number with the host @value{GDBN}
13024@code{target remote} command.
13025
2d717e4f
DJ
13026@subsubsection Attaching to a Running Program
13027
56460a61
DJ
13028On some targets, @code{gdbserver} can also attach to running programs.
13029This is accomplished via the @code{--attach} argument. The syntax is:
13030
13031@smallexample
2d717e4f 13032target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13033@end smallexample
13034
13035@var{pid} is the process ID of a currently running process. It isn't necessary
13036to point @code{gdbserver} at a binary for the running process.
13037
b1fe9455
DJ
13038@pindex pidof
13039@cindex attach to a program by name
13040You can debug processes by name instead of process ID if your target has the
13041@code{pidof} utility:
13042
13043@smallexample
2d717e4f 13044target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13045@end smallexample
13046
f822c95b 13047In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13048has multiple threads, most versions of @code{pidof} support the
13049@code{-s} option to only return the first process ID.
13050
2d717e4f
DJ
13051@subsubsection Multi-Process Mode for @code{gdbserver}
13052@cindex gdbserver, multiple processes
13053@cindex multiple processes with gdbserver
13054
13055When you connect to @code{gdbserver} using @code{target remote},
13056@code{gdbserver} debugs the specified program only once. When the
13057program exits, or you detach from it, @value{GDBN} closes the connection
13058and @code{gdbserver} exits.
13059
6e6c6f50 13060If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13061enters multi-process mode. When the debugged program exits, or you
13062detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13063though no program is running. The @code{run} and @code{attach}
13064commands instruct @code{gdbserver} to run or attach to a new program.
13065The @code{run} command uses @code{set remote exec-file} (@pxref{set
13066remote exec-file}) to select the program to run. Command line
13067arguments are supported, except for wildcard expansion and I/O
13068redirection (@pxref{Arguments}).
13069
13070To start @code{gdbserver} without supplying an initial command to run
13071or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13072Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13073the program you want to debug.
13074
13075@code{gdbserver} does not automatically exit in multi-process mode.
13076You can terminate it by using @code{monitor exit}
13077(@pxref{Monitor Commands for gdbserver}).
13078
13079@subsubsection Other Command-Line Arguments for @code{gdbserver}
13080
13081You can include @option{--debug} on the @code{gdbserver} command line.
13082@code{gdbserver} will display extra status information about the debugging
13083process. This option is intended for @code{gdbserver} development and
13084for bug reports to the developers.
13085
13086@subsection Connecting to @code{gdbserver}
13087
13088Run @value{GDBN} on the host system.
13089
13090First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13091your application using the @code{file} command before you connect. Use
13092@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13093was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13094
13095The symbol file and target libraries must exactly match the executable
13096and libraries on the target, with one exception: the files on the host
13097system should not be stripped, even if the files on the target system
13098are. Mismatched or missing files will lead to confusing results
13099during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13100files may also prevent @code{gdbserver} from debugging multi-threaded
13101programs.
13102
79a6e687 13103Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13104For TCP connections, you must start up @code{gdbserver} prior to using
13105the @code{target remote} command. Otherwise you may get an error whose
13106text depends on the host system, but which usually looks something like
2d717e4f 13107@samp{Connection refused}. Don't use the @code{load}
397ca115 13108command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13109already on the target.
07f31aa6 13110
79a6e687 13111@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13112@cindex monitor commands, for @code{gdbserver}
2d717e4f 13113@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13114
13115During a @value{GDBN} session using @code{gdbserver}, you can use the
13116@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13117Here are the available commands.
c74d0ad8
DJ
13118
13119@table @code
13120@item monitor help
13121List the available monitor commands.
13122
13123@item monitor set debug 0
13124@itemx monitor set debug 1
13125Disable or enable general debugging messages.
13126
13127@item monitor set remote-debug 0
13128@itemx monitor set remote-debug 1
13129Disable or enable specific debugging messages associated with the remote
13130protocol (@pxref{Remote Protocol}).
13131
2d717e4f
DJ
13132@item monitor exit
13133Tell gdbserver to exit immediately. This command should be followed by
13134@code{disconnect} to close the debugging session. @code{gdbserver} will
13135detach from any attached processes and kill any processes it created.
13136Use @code{monitor exit} to terminate @code{gdbserver} at the end
13137of a multi-process mode debug session.
13138
c74d0ad8
DJ
13139@end table
13140
79a6e687
BW
13141@node Remote Configuration
13142@section Remote Configuration
501eef12 13143
9c16f35a
EZ
13144@kindex set remote
13145@kindex show remote
13146This section documents the configuration options available when
13147debugging remote programs. For the options related to the File I/O
fc320d37 13148extensions of the remote protocol, see @ref{system,
9c16f35a 13149system-call-allowed}.
501eef12
AC
13150
13151@table @code
9c16f35a 13152@item set remoteaddresssize @var{bits}
d3e8051b 13153@cindex address size for remote targets
9c16f35a
EZ
13154@cindex bits in remote address
13155Set the maximum size of address in a memory packet to the specified
13156number of bits. @value{GDBN} will mask off the address bits above
13157that number, when it passes addresses to the remote target. The
13158default value is the number of bits in the target's address.
13159
13160@item show remoteaddresssize
13161Show the current value of remote address size in bits.
13162
13163@item set remotebaud @var{n}
13164@cindex baud rate for remote targets
13165Set the baud rate for the remote serial I/O to @var{n} baud. The
13166value is used to set the speed of the serial port used for debugging
13167remote targets.
13168
13169@item show remotebaud
13170Show the current speed of the remote connection.
13171
13172@item set remotebreak
13173@cindex interrupt remote programs
13174@cindex BREAK signal instead of Ctrl-C
9a6253be 13175@anchor{set remotebreak}
9c16f35a 13176If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13177when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13178on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13179character instead. The default is off, since most remote systems
13180expect to see @samp{Ctrl-C} as the interrupt signal.
13181
13182@item show remotebreak
13183Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13184interrupt the remote program.
13185
23776285
MR
13186@item set remoteflow on
13187@itemx set remoteflow off
13188@kindex set remoteflow
13189Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13190on the serial port used to communicate to the remote target.
13191
13192@item show remoteflow
13193@kindex show remoteflow
13194Show the current setting of hardware flow control.
13195
9c16f35a
EZ
13196@item set remotelogbase @var{base}
13197Set the base (a.k.a.@: radix) of logging serial protocol
13198communications to @var{base}. Supported values of @var{base} are:
13199@code{ascii}, @code{octal}, and @code{hex}. The default is
13200@code{ascii}.
13201
13202@item show remotelogbase
13203Show the current setting of the radix for logging remote serial
13204protocol.
13205
13206@item set remotelogfile @var{file}
13207@cindex record serial communications on file
13208Record remote serial communications on the named @var{file}. The
13209default is not to record at all.
13210
13211@item show remotelogfile.
13212Show the current setting of the file name on which to record the
13213serial communications.
13214
13215@item set remotetimeout @var{num}
13216@cindex timeout for serial communications
13217@cindex remote timeout
13218Set the timeout limit to wait for the remote target to respond to
13219@var{num} seconds. The default is 2 seconds.
13220
13221@item show remotetimeout
13222Show the current number of seconds to wait for the remote target
13223responses.
13224
13225@cindex limit hardware breakpoints and watchpoints
13226@cindex remote target, limit break- and watchpoints
501eef12
AC
13227@anchor{set remote hardware-watchpoint-limit}
13228@anchor{set remote hardware-breakpoint-limit}
13229@item set remote hardware-watchpoint-limit @var{limit}
13230@itemx set remote hardware-breakpoint-limit @var{limit}
13231Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13232watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13233
13234@item set remote exec-file @var{filename}
13235@itemx show remote exec-file
13236@anchor{set remote exec-file}
13237@cindex executable file, for remote target
13238Select the file used for @code{run} with @code{target
13239extended-remote}. This should be set to a filename valid on the
13240target system. If it is not set, the target will use a default
13241filename (e.g.@: the last program run).
501eef12
AC
13242@end table
13243
427c3a89
DJ
13244@cindex remote packets, enabling and disabling
13245The @value{GDBN} remote protocol autodetects the packets supported by
13246your debugging stub. If you need to override the autodetection, you
13247can use these commands to enable or disable individual packets. Each
13248packet can be set to @samp{on} (the remote target supports this
13249packet), @samp{off} (the remote target does not support this packet),
13250or @samp{auto} (detect remote target support for this packet). They
13251all default to @samp{auto}. For more information about each packet,
13252see @ref{Remote Protocol}.
13253
13254During normal use, you should not have to use any of these commands.
13255If you do, that may be a bug in your remote debugging stub, or a bug
13256in @value{GDBN}. You may want to report the problem to the
13257@value{GDBN} developers.
13258
cfa9d6d9
DJ
13259For each packet @var{name}, the command to enable or disable the
13260packet is @code{set remote @var{name}-packet}. The available settings
13261are:
427c3a89 13262
cfa9d6d9 13263@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13264@item Command Name
13265@tab Remote Packet
13266@tab Related Features
13267
cfa9d6d9 13268@item @code{fetch-register}
427c3a89
DJ
13269@tab @code{p}
13270@tab @code{info registers}
13271
cfa9d6d9 13272@item @code{set-register}
427c3a89
DJ
13273@tab @code{P}
13274@tab @code{set}
13275
cfa9d6d9 13276@item @code{binary-download}
427c3a89
DJ
13277@tab @code{X}
13278@tab @code{load}, @code{set}
13279
cfa9d6d9 13280@item @code{read-aux-vector}
427c3a89
DJ
13281@tab @code{qXfer:auxv:read}
13282@tab @code{info auxv}
13283
cfa9d6d9 13284@item @code{symbol-lookup}
427c3a89
DJ
13285@tab @code{qSymbol}
13286@tab Detecting multiple threads
13287
2d717e4f
DJ
13288@item @code{attach}
13289@tab @code{vAttach}
13290@tab @code{attach}
13291
cfa9d6d9 13292@item @code{verbose-resume}
427c3a89
DJ
13293@tab @code{vCont}
13294@tab Stepping or resuming multiple threads
13295
2d717e4f
DJ
13296@item @code{run}
13297@tab @code{vRun}
13298@tab @code{run}
13299
cfa9d6d9 13300@item @code{software-breakpoint}
427c3a89
DJ
13301@tab @code{Z0}
13302@tab @code{break}
13303
cfa9d6d9 13304@item @code{hardware-breakpoint}
427c3a89
DJ
13305@tab @code{Z1}
13306@tab @code{hbreak}
13307
cfa9d6d9 13308@item @code{write-watchpoint}
427c3a89
DJ
13309@tab @code{Z2}
13310@tab @code{watch}
13311
cfa9d6d9 13312@item @code{read-watchpoint}
427c3a89
DJ
13313@tab @code{Z3}
13314@tab @code{rwatch}
13315
cfa9d6d9 13316@item @code{access-watchpoint}
427c3a89
DJ
13317@tab @code{Z4}
13318@tab @code{awatch}
13319
cfa9d6d9
DJ
13320@item @code{target-features}
13321@tab @code{qXfer:features:read}
13322@tab @code{set architecture}
13323
13324@item @code{library-info}
13325@tab @code{qXfer:libraries:read}
13326@tab @code{info sharedlibrary}
13327
13328@item @code{memory-map}
13329@tab @code{qXfer:memory-map:read}
13330@tab @code{info mem}
13331
13332@item @code{read-spu-object}
13333@tab @code{qXfer:spu:read}
13334@tab @code{info spu}
13335
13336@item @code{write-spu-object}
13337@tab @code{qXfer:spu:write}
13338@tab @code{info spu}
13339
13340@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13341@tab @code{qGetTLSAddr}
13342@tab Displaying @code{__thread} variables
13343
13344@item @code{supported-packets}
13345@tab @code{qSupported}
13346@tab Remote communications parameters
13347
cfa9d6d9 13348@item @code{pass-signals}
89be2091
DJ
13349@tab @code{QPassSignals}
13350@tab @code{handle @var{signal}}
13351
a6b151f1
DJ
13352@item @code{hostio-close-packet}
13353@tab @code{vFile:close}
13354@tab @code{remote get}, @code{remote put}
13355
13356@item @code{hostio-open-packet}
13357@tab @code{vFile:open}
13358@tab @code{remote get}, @code{remote put}
13359
13360@item @code{hostio-pread-packet}
13361@tab @code{vFile:pread}
13362@tab @code{remote get}, @code{remote put}
13363
13364@item @code{hostio-pwrite-packet}
13365@tab @code{vFile:pwrite}
13366@tab @code{remote get}, @code{remote put}
13367
13368@item @code{hostio-unlink-packet}
13369@tab @code{vFile:unlink}
13370@tab @code{remote delete}
427c3a89
DJ
13371@end multitable
13372
79a6e687
BW
13373@node Remote Stub
13374@section Implementing a Remote Stub
7a292a7a 13375
8e04817f
AC
13376@cindex debugging stub, example
13377@cindex remote stub, example
13378@cindex stub example, remote debugging
13379The stub files provided with @value{GDBN} implement the target side of the
13380communication protocol, and the @value{GDBN} side is implemented in the
13381@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13382these subroutines to communicate, and ignore the details. (If you're
13383implementing your own stub file, you can still ignore the details: start
13384with one of the existing stub files. @file{sparc-stub.c} is the best
13385organized, and therefore the easiest to read.)
13386
104c1213
JM
13387@cindex remote serial debugging, overview
13388To debug a program running on another machine (the debugging
13389@dfn{target} machine), you must first arrange for all the usual
13390prerequisites for the program to run by itself. For example, for a C
13391program, you need:
c906108c 13392
104c1213
JM
13393@enumerate
13394@item
13395A startup routine to set up the C runtime environment; these usually
13396have a name like @file{crt0}. The startup routine may be supplied by
13397your hardware supplier, or you may have to write your own.
96baa820 13398
5d161b24 13399@item
d4f3574e 13400A C subroutine library to support your program's
104c1213 13401subroutine calls, notably managing input and output.
96baa820 13402
104c1213
JM
13403@item
13404A way of getting your program to the other machine---for example, a
13405download program. These are often supplied by the hardware
13406manufacturer, but you may have to write your own from hardware
13407documentation.
13408@end enumerate
96baa820 13409
104c1213
JM
13410The next step is to arrange for your program to use a serial port to
13411communicate with the machine where @value{GDBN} is running (the @dfn{host}
13412machine). In general terms, the scheme looks like this:
96baa820 13413
104c1213
JM
13414@table @emph
13415@item On the host,
13416@value{GDBN} already understands how to use this protocol; when everything
13417else is set up, you can simply use the @samp{target remote} command
13418(@pxref{Targets,,Specifying a Debugging Target}).
13419
13420@item On the target,
13421you must link with your program a few special-purpose subroutines that
13422implement the @value{GDBN} remote serial protocol. The file containing these
13423subroutines is called a @dfn{debugging stub}.
13424
13425On certain remote targets, you can use an auxiliary program
13426@code{gdbserver} instead of linking a stub into your program.
79a6e687 13427@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13428@end table
96baa820 13429
104c1213
JM
13430The debugging stub is specific to the architecture of the remote
13431machine; for example, use @file{sparc-stub.c} to debug programs on
13432@sc{sparc} boards.
96baa820 13433
104c1213
JM
13434@cindex remote serial stub list
13435These working remote stubs are distributed with @value{GDBN}:
96baa820 13436
104c1213
JM
13437@table @code
13438
13439@item i386-stub.c
41afff9a 13440@cindex @file{i386-stub.c}
104c1213
JM
13441@cindex Intel
13442@cindex i386
13443For Intel 386 and compatible architectures.
13444
13445@item m68k-stub.c
41afff9a 13446@cindex @file{m68k-stub.c}
104c1213
JM
13447@cindex Motorola 680x0
13448@cindex m680x0
13449For Motorola 680x0 architectures.
13450
13451@item sh-stub.c
41afff9a 13452@cindex @file{sh-stub.c}
172c2a43 13453@cindex Renesas
104c1213 13454@cindex SH
172c2a43 13455For Renesas SH architectures.
104c1213
JM
13456
13457@item sparc-stub.c
41afff9a 13458@cindex @file{sparc-stub.c}
104c1213
JM
13459@cindex Sparc
13460For @sc{sparc} architectures.
13461
13462@item sparcl-stub.c
41afff9a 13463@cindex @file{sparcl-stub.c}
104c1213
JM
13464@cindex Fujitsu
13465@cindex SparcLite
13466For Fujitsu @sc{sparclite} architectures.
13467
13468@end table
13469
13470The @file{README} file in the @value{GDBN} distribution may list other
13471recently added stubs.
13472
13473@menu
13474* Stub Contents:: What the stub can do for you
13475* Bootstrapping:: What you must do for the stub
13476* Debug Session:: Putting it all together
104c1213
JM
13477@end menu
13478
6d2ebf8b 13479@node Stub Contents
79a6e687 13480@subsection What the Stub Can Do for You
104c1213
JM
13481
13482@cindex remote serial stub
13483The debugging stub for your architecture supplies these three
13484subroutines:
13485
13486@table @code
13487@item set_debug_traps
4644b6e3 13488@findex set_debug_traps
104c1213
JM
13489@cindex remote serial stub, initialization
13490This routine arranges for @code{handle_exception} to run when your
13491program stops. You must call this subroutine explicitly near the
13492beginning of your program.
13493
13494@item handle_exception
4644b6e3 13495@findex handle_exception
104c1213
JM
13496@cindex remote serial stub, main routine
13497This is the central workhorse, but your program never calls it
13498explicitly---the setup code arranges for @code{handle_exception} to
13499run when a trap is triggered.
13500
13501@code{handle_exception} takes control when your program stops during
13502execution (for example, on a breakpoint), and mediates communications
13503with @value{GDBN} on the host machine. This is where the communications
13504protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13505representative on the target machine. It begins by sending summary
104c1213
JM
13506information on the state of your program, then continues to execute,
13507retrieving and transmitting any information @value{GDBN} needs, until you
13508execute a @value{GDBN} command that makes your program resume; at that point,
13509@code{handle_exception} returns control to your own code on the target
5d161b24 13510machine.
104c1213
JM
13511
13512@item breakpoint
13513@cindex @code{breakpoint} subroutine, remote
13514Use this auxiliary subroutine to make your program contain a
13515breakpoint. Depending on the particular situation, this may be the only
13516way for @value{GDBN} to get control. For instance, if your target
13517machine has some sort of interrupt button, you won't need to call this;
13518pressing the interrupt button transfers control to
13519@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13520simply receiving characters on the serial port may also trigger a trap;
13521again, in that situation, you don't need to call @code{breakpoint} from
13522your own program---simply running @samp{target remote} from the host
5d161b24 13523@value{GDBN} session gets control.
104c1213
JM
13524
13525Call @code{breakpoint} if none of these is true, or if you simply want
13526to make certain your program stops at a predetermined point for the
13527start of your debugging session.
13528@end table
13529
6d2ebf8b 13530@node Bootstrapping
79a6e687 13531@subsection What You Must Do for the Stub
104c1213
JM
13532
13533@cindex remote stub, support routines
13534The debugging stubs that come with @value{GDBN} are set up for a particular
13535chip architecture, but they have no information about the rest of your
13536debugging target machine.
13537
13538First of all you need to tell the stub how to communicate with the
13539serial port.
13540
13541@table @code
13542@item int getDebugChar()
4644b6e3 13543@findex getDebugChar
104c1213
JM
13544Write this subroutine to read a single character from the serial port.
13545It may be identical to @code{getchar} for your target system; a
13546different name is used to allow you to distinguish the two if you wish.
13547
13548@item void putDebugChar(int)
4644b6e3 13549@findex putDebugChar
104c1213 13550Write this subroutine to write a single character to the serial port.
5d161b24 13551It may be identical to @code{putchar} for your target system; a
104c1213
JM
13552different name is used to allow you to distinguish the two if you wish.
13553@end table
13554
13555@cindex control C, and remote debugging
13556@cindex interrupting remote targets
13557If you want @value{GDBN} to be able to stop your program while it is
13558running, you need to use an interrupt-driven serial driver, and arrange
13559for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13560character). That is the character which @value{GDBN} uses to tell the
13561remote system to stop.
13562
13563Getting the debugging target to return the proper status to @value{GDBN}
13564probably requires changes to the standard stub; one quick and dirty way
13565is to just execute a breakpoint instruction (the ``dirty'' part is that
13566@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13567
13568Other routines you need to supply are:
13569
13570@table @code
13571@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13572@findex exceptionHandler
104c1213
JM
13573Write this function to install @var{exception_address} in the exception
13574handling tables. You need to do this because the stub does not have any
13575way of knowing what the exception handling tables on your target system
13576are like (for example, the processor's table might be in @sc{rom},
13577containing entries which point to a table in @sc{ram}).
13578@var{exception_number} is the exception number which should be changed;
13579its meaning is architecture-dependent (for example, different numbers
13580might represent divide by zero, misaligned access, etc). When this
13581exception occurs, control should be transferred directly to
13582@var{exception_address}, and the processor state (stack, registers,
13583and so on) should be just as it is when a processor exception occurs. So if
13584you want to use a jump instruction to reach @var{exception_address}, it
13585should be a simple jump, not a jump to subroutine.
13586
13587For the 386, @var{exception_address} should be installed as an interrupt
13588gate so that interrupts are masked while the handler runs. The gate
13589should be at privilege level 0 (the most privileged level). The
13590@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13591help from @code{exceptionHandler}.
13592
13593@item void flush_i_cache()
4644b6e3 13594@findex flush_i_cache
d4f3574e 13595On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13596instruction cache, if any, on your target machine. If there is no
13597instruction cache, this subroutine may be a no-op.
13598
13599On target machines that have instruction caches, @value{GDBN} requires this
13600function to make certain that the state of your program is stable.
13601@end table
13602
13603@noindent
13604You must also make sure this library routine is available:
13605
13606@table @code
13607@item void *memset(void *, int, int)
4644b6e3 13608@findex memset
104c1213
JM
13609This is the standard library function @code{memset} that sets an area of
13610memory to a known value. If you have one of the free versions of
13611@code{libc.a}, @code{memset} can be found there; otherwise, you must
13612either obtain it from your hardware manufacturer, or write your own.
13613@end table
13614
13615If you do not use the GNU C compiler, you may need other standard
13616library subroutines as well; this varies from one stub to another,
13617but in general the stubs are likely to use any of the common library
e22ea452 13618subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13619
13620
6d2ebf8b 13621@node Debug Session
79a6e687 13622@subsection Putting it All Together
104c1213
JM
13623
13624@cindex remote serial debugging summary
13625In summary, when your program is ready to debug, you must follow these
13626steps.
13627
13628@enumerate
13629@item
6d2ebf8b 13630Make sure you have defined the supporting low-level routines
79a6e687 13631(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13632@display
13633@code{getDebugChar}, @code{putDebugChar},
13634@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13635@end display
13636
13637@item
13638Insert these lines near the top of your program:
13639
474c8240 13640@smallexample
104c1213
JM
13641set_debug_traps();
13642breakpoint();
474c8240 13643@end smallexample
104c1213
JM
13644
13645@item
13646For the 680x0 stub only, you need to provide a variable called
13647@code{exceptionHook}. Normally you just use:
13648
474c8240 13649@smallexample
104c1213 13650void (*exceptionHook)() = 0;
474c8240 13651@end smallexample
104c1213 13652
d4f3574e 13653@noindent
104c1213 13654but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13655function in your program, that function is called when
104c1213
JM
13656@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13657error). The function indicated by @code{exceptionHook} is called with
13658one parameter: an @code{int} which is the exception number.
13659
13660@item
13661Compile and link together: your program, the @value{GDBN} debugging stub for
13662your target architecture, and the supporting subroutines.
13663
13664@item
13665Make sure you have a serial connection between your target machine and
13666the @value{GDBN} host, and identify the serial port on the host.
13667
13668@item
13669@c The "remote" target now provides a `load' command, so we should
13670@c document that. FIXME.
13671Download your program to your target machine (or get it there by
13672whatever means the manufacturer provides), and start it.
13673
13674@item
07f31aa6 13675Start @value{GDBN} on the host, and connect to the target
79a6e687 13676(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13677
104c1213
JM
13678@end enumerate
13679
8e04817f
AC
13680@node Configurations
13681@chapter Configuration-Specific Information
104c1213 13682
8e04817f
AC
13683While nearly all @value{GDBN} commands are available for all native and
13684cross versions of the debugger, there are some exceptions. This chapter
13685describes things that are only available in certain configurations.
104c1213 13686
8e04817f
AC
13687There are three major categories of configurations: native
13688configurations, where the host and target are the same, embedded
13689operating system configurations, which are usually the same for several
13690different processor architectures, and bare embedded processors, which
13691are quite different from each other.
104c1213 13692
8e04817f
AC
13693@menu
13694* Native::
13695* Embedded OS::
13696* Embedded Processors::
13697* Architectures::
13698@end menu
104c1213 13699
8e04817f
AC
13700@node Native
13701@section Native
104c1213 13702
8e04817f
AC
13703This section describes details specific to particular native
13704configurations.
6cf7e474 13705
8e04817f
AC
13706@menu
13707* HP-UX:: HP-UX
7561d450 13708* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13709* SVR4 Process Information:: SVR4 process information
13710* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13711* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13712* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13713* Neutrino:: Features specific to QNX Neutrino
8e04817f 13714@end menu
6cf7e474 13715
8e04817f
AC
13716@node HP-UX
13717@subsection HP-UX
104c1213 13718
8e04817f
AC
13719On HP-UX systems, if you refer to a function or variable name that
13720begins with a dollar sign, @value{GDBN} searches for a user or system
13721name first, before it searches for a convenience variable.
104c1213 13722
9c16f35a 13723
7561d450
MK
13724@node BSD libkvm Interface
13725@subsection BSD libkvm Interface
13726
13727@cindex libkvm
13728@cindex kernel memory image
13729@cindex kernel crash dump
13730
13731BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13732interface that provides a uniform interface for accessing kernel virtual
13733memory images, including live systems and crash dumps. @value{GDBN}
13734uses this interface to allow you to debug live kernels and kernel crash
13735dumps on many native BSD configurations. This is implemented as a
13736special @code{kvm} debugging target. For debugging a live system, load
13737the currently running kernel into @value{GDBN} and connect to the
13738@code{kvm} target:
13739
13740@smallexample
13741(@value{GDBP}) @b{target kvm}
13742@end smallexample
13743
13744For debugging crash dumps, provide the file name of the crash dump as an
13745argument:
13746
13747@smallexample
13748(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13749@end smallexample
13750
13751Once connected to the @code{kvm} target, the following commands are
13752available:
13753
13754@table @code
13755@kindex kvm
13756@item kvm pcb
721c2651 13757Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13758
13759@item kvm proc
13760Set current context from proc address. This command isn't available on
13761modern FreeBSD systems.
13762@end table
13763
8e04817f 13764@node SVR4 Process Information
79a6e687 13765@subsection SVR4 Process Information
60bf7e09
EZ
13766@cindex /proc
13767@cindex examine process image
13768@cindex process info via @file{/proc}
104c1213 13769
60bf7e09
EZ
13770Many versions of SVR4 and compatible systems provide a facility called
13771@samp{/proc} that can be used to examine the image of a running
13772process using file-system subroutines. If @value{GDBN} is configured
13773for an operating system with this facility, the command @code{info
13774proc} is available to report information about the process running
13775your program, or about any process running on your system. @code{info
13776proc} works only on SVR4 systems that include the @code{procfs} code.
13777This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13778Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13779
8e04817f
AC
13780@table @code
13781@kindex info proc
60bf7e09 13782@cindex process ID
8e04817f 13783@item info proc
60bf7e09
EZ
13784@itemx info proc @var{process-id}
13785Summarize available information about any running process. If a
13786process ID is specified by @var{process-id}, display information about
13787that process; otherwise display information about the program being
13788debugged. The summary includes the debugged process ID, the command
13789line used to invoke it, its current working directory, and its
13790executable file's absolute file name.
13791
13792On some systems, @var{process-id} can be of the form
13793@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13794within a process. If the optional @var{pid} part is missing, it means
13795a thread from the process being debugged (the leading @samp{/} still
13796needs to be present, or else @value{GDBN} will interpret the number as
13797a process ID rather than a thread ID).
6cf7e474 13798
8e04817f 13799@item info proc mappings
60bf7e09
EZ
13800@cindex memory address space mappings
13801Report the memory address space ranges accessible in the program, with
13802information on whether the process has read, write, or execute access
13803rights to each range. On @sc{gnu}/Linux systems, each memory range
13804includes the object file which is mapped to that range, instead of the
13805memory access rights to that range.
13806
13807@item info proc stat
13808@itemx info proc status
13809@cindex process detailed status information
13810These subcommands are specific to @sc{gnu}/Linux systems. They show
13811the process-related information, including the user ID and group ID;
13812how many threads are there in the process; its virtual memory usage;
13813the signals that are pending, blocked, and ignored; its TTY; its
13814consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13815value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13816(type @kbd{man 5 proc} from your shell prompt).
13817
13818@item info proc all
13819Show all the information about the process described under all of the
13820above @code{info proc} subcommands.
13821
8e04817f
AC
13822@ignore
13823@comment These sub-options of 'info proc' were not included when
13824@comment procfs.c was re-written. Keep their descriptions around
13825@comment against the day when someone finds the time to put them back in.
13826@kindex info proc times
13827@item info proc times
13828Starting time, user CPU time, and system CPU time for your program and
13829its children.
6cf7e474 13830
8e04817f
AC
13831@kindex info proc id
13832@item info proc id
13833Report on the process IDs related to your program: its own process ID,
13834the ID of its parent, the process group ID, and the session ID.
8e04817f 13835@end ignore
721c2651
EZ
13836
13837@item set procfs-trace
13838@kindex set procfs-trace
13839@cindex @code{procfs} API calls
13840This command enables and disables tracing of @code{procfs} API calls.
13841
13842@item show procfs-trace
13843@kindex show procfs-trace
13844Show the current state of @code{procfs} API call tracing.
13845
13846@item set procfs-file @var{file}
13847@kindex set procfs-file
13848Tell @value{GDBN} to write @code{procfs} API trace to the named
13849@var{file}. @value{GDBN} appends the trace info to the previous
13850contents of the file. The default is to display the trace on the
13851standard output.
13852
13853@item show procfs-file
13854@kindex show procfs-file
13855Show the file to which @code{procfs} API trace is written.
13856
13857@item proc-trace-entry
13858@itemx proc-trace-exit
13859@itemx proc-untrace-entry
13860@itemx proc-untrace-exit
13861@kindex proc-trace-entry
13862@kindex proc-trace-exit
13863@kindex proc-untrace-entry
13864@kindex proc-untrace-exit
13865These commands enable and disable tracing of entries into and exits
13866from the @code{syscall} interface.
13867
13868@item info pidlist
13869@kindex info pidlist
13870@cindex process list, QNX Neutrino
13871For QNX Neutrino only, this command displays the list of all the
13872processes and all the threads within each process.
13873
13874@item info meminfo
13875@kindex info meminfo
13876@cindex mapinfo list, QNX Neutrino
13877For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13878@end table
104c1213 13879
8e04817f
AC
13880@node DJGPP Native
13881@subsection Features for Debugging @sc{djgpp} Programs
13882@cindex @sc{djgpp} debugging
13883@cindex native @sc{djgpp} debugging
13884@cindex MS-DOS-specific commands
104c1213 13885
514c4d71
EZ
13886@cindex DPMI
13887@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13888MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13889that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13890top of real-mode DOS systems and their emulations.
104c1213 13891
8e04817f
AC
13892@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13893defines a few commands specific to the @sc{djgpp} port. This
13894subsection describes those commands.
104c1213 13895
8e04817f
AC
13896@table @code
13897@kindex info dos
13898@item info dos
13899This is a prefix of @sc{djgpp}-specific commands which print
13900information about the target system and important OS structures.
f1251bdd 13901
8e04817f
AC
13902@kindex sysinfo
13903@cindex MS-DOS system info
13904@cindex free memory information (MS-DOS)
13905@item info dos sysinfo
13906This command displays assorted information about the underlying
13907platform: the CPU type and features, the OS version and flavor, the
13908DPMI version, and the available conventional and DPMI memory.
104c1213 13909
8e04817f
AC
13910@cindex GDT
13911@cindex LDT
13912@cindex IDT
13913@cindex segment descriptor tables
13914@cindex descriptor tables display
13915@item info dos gdt
13916@itemx info dos ldt
13917@itemx info dos idt
13918These 3 commands display entries from, respectively, Global, Local,
13919and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13920tables are data structures which store a descriptor for each segment
13921that is currently in use. The segment's selector is an index into a
13922descriptor table; the table entry for that index holds the
13923descriptor's base address and limit, and its attributes and access
13924rights.
104c1213 13925
8e04817f
AC
13926A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13927segment (used for both data and the stack), and a DOS segment (which
13928allows access to DOS/BIOS data structures and absolute addresses in
13929conventional memory). However, the DPMI host will usually define
13930additional segments in order to support the DPMI environment.
d4f3574e 13931
8e04817f
AC
13932@cindex garbled pointers
13933These commands allow to display entries from the descriptor tables.
13934Without an argument, all entries from the specified table are
13935displayed. An argument, which should be an integer expression, means
13936display a single entry whose index is given by the argument. For
13937example, here's a convenient way to display information about the
13938debugged program's data segment:
104c1213 13939
8e04817f
AC
13940@smallexample
13941@exdent @code{(@value{GDBP}) info dos ldt $ds}
13942@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13943@end smallexample
104c1213 13944
8e04817f
AC
13945@noindent
13946This comes in handy when you want to see whether a pointer is outside
13947the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13948
8e04817f
AC
13949@cindex page tables display (MS-DOS)
13950@item info dos pde
13951@itemx info dos pte
13952These two commands display entries from, respectively, the Page
13953Directory and the Page Tables. Page Directories and Page Tables are
13954data structures which control how virtual memory addresses are mapped
13955into physical addresses. A Page Table includes an entry for every
13956page of memory that is mapped into the program's address space; there
13957may be several Page Tables, each one holding up to 4096 entries. A
13958Page Directory has up to 4096 entries, one each for every Page Table
13959that is currently in use.
104c1213 13960
8e04817f
AC
13961Without an argument, @kbd{info dos pde} displays the entire Page
13962Directory, and @kbd{info dos pte} displays all the entries in all of
13963the Page Tables. An argument, an integer expression, given to the
13964@kbd{info dos pde} command means display only that entry from the Page
13965Directory table. An argument given to the @kbd{info dos pte} command
13966means display entries from a single Page Table, the one pointed to by
13967the specified entry in the Page Directory.
104c1213 13968
8e04817f
AC
13969@cindex direct memory access (DMA) on MS-DOS
13970These commands are useful when your program uses @dfn{DMA} (Direct
13971Memory Access), which needs physical addresses to program the DMA
13972controller.
104c1213 13973
8e04817f 13974These commands are supported only with some DPMI servers.
104c1213 13975
8e04817f
AC
13976@cindex physical address from linear address
13977@item info dos address-pte @var{addr}
13978This command displays the Page Table entry for a specified linear
514c4d71
EZ
13979address. The argument @var{addr} is a linear address which should
13980already have the appropriate segment's base address added to it,
13981because this command accepts addresses which may belong to @emph{any}
13982segment. For example, here's how to display the Page Table entry for
13983the page where a variable @code{i} is stored:
104c1213 13984
b383017d 13985@smallexample
8e04817f
AC
13986@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13987@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13988@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13989@end smallexample
104c1213 13990
8e04817f
AC
13991@noindent
13992This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13993whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13994attributes of that page.
104c1213 13995
8e04817f
AC
13996Note that you must cast the addresses of variables to a @code{char *},
13997since otherwise the value of @code{__djgpp_base_address}, the base
13998address of all variables and functions in a @sc{djgpp} program, will
13999be added using the rules of C pointer arithmetics: if @code{i} is
14000declared an @code{int}, @value{GDBN} will add 4 times the value of
14001@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14002
8e04817f
AC
14003Here's another example, it displays the Page Table entry for the
14004transfer buffer:
104c1213 14005
8e04817f
AC
14006@smallexample
14007@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14008@exdent @code{Page Table entry for address 0x29110:}
14009@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14010@end smallexample
104c1213 14011
8e04817f
AC
14012@noindent
14013(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
140143rd member of the @code{_go32_info_block} structure.) The output
14015clearly shows that this DPMI server maps the addresses in conventional
14016memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14017linear (@code{0x29110}) addresses are identical.
104c1213 14018
8e04817f
AC
14019This command is supported only with some DPMI servers.
14020@end table
104c1213 14021
c45da7e6 14022@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14023In addition to native debugging, the DJGPP port supports remote
14024debugging via a serial data link. The following commands are specific
14025to remote serial debugging in the DJGPP port of @value{GDBN}.
14026
14027@table @code
14028@kindex set com1base
14029@kindex set com1irq
14030@kindex set com2base
14031@kindex set com2irq
14032@kindex set com3base
14033@kindex set com3irq
14034@kindex set com4base
14035@kindex set com4irq
14036@item set com1base @var{addr}
14037This command sets the base I/O port address of the @file{COM1} serial
14038port.
14039
14040@item set com1irq @var{irq}
14041This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14042for the @file{COM1} serial port.
14043
14044There are similar commands @samp{set com2base}, @samp{set com3irq},
14045etc.@: for setting the port address and the @code{IRQ} lines for the
14046other 3 COM ports.
14047
14048@kindex show com1base
14049@kindex show com1irq
14050@kindex show com2base
14051@kindex show com2irq
14052@kindex show com3base
14053@kindex show com3irq
14054@kindex show com4base
14055@kindex show com4irq
14056The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14057display the current settings of the base address and the @code{IRQ}
14058lines used by the COM ports.
c45da7e6
EZ
14059
14060@item info serial
14061@kindex info serial
14062@cindex DOS serial port status
14063This command prints the status of the 4 DOS serial ports. For each
14064port, it prints whether it's active or not, its I/O base address and
14065IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14066counts of various errors encountered so far.
a8f24a35
EZ
14067@end table
14068
14069
78c47bea 14070@node Cygwin Native
79a6e687 14071@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14072@cindex MS Windows debugging
14073@cindex native Cygwin debugging
14074@cindex Cygwin-specific commands
14075
be448670 14076@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14077DLLs with and without symbolic debugging information. There are various
14078additional Cygwin-specific commands, described in this section.
14079Working with DLLs that have no debugging symbols is described in
14080@ref{Non-debug DLL Symbols}.
78c47bea
PM
14081
14082@table @code
14083@kindex info w32
14084@item info w32
db2e3e2e 14085This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14086information about the target system and important OS structures.
14087
14088@item info w32 selector
14089This command displays information returned by
14090the Win32 API @code{GetThreadSelectorEntry} function.
14091It takes an optional argument that is evaluated to
14092a long value to give the information about this given selector.
14093Without argument, this command displays information
d3e8051b 14094about the six segment registers.
78c47bea
PM
14095
14096@kindex info dll
14097@item info dll
db2e3e2e 14098This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14099
14100@kindex dll-symbols
14101@item dll-symbols
14102This command loads symbols from a dll similarly to
14103add-sym command but without the need to specify a base address.
14104
be90c084 14105@kindex set cygwin-exceptions
e16b02ee
EZ
14106@cindex debugging the Cygwin DLL
14107@cindex Cygwin DLL, debugging
be90c084 14108@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14109If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14110happen inside the Cygwin DLL. If @var{mode} is @code{off},
14111@value{GDBN} will delay recognition of exceptions, and may ignore some
14112exceptions which seem to be caused by internal Cygwin DLL
14113``bookkeeping''. This option is meant primarily for debugging the
14114Cygwin DLL itself; the default value is @code{off} to avoid annoying
14115@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14116
14117@kindex show cygwin-exceptions
14118@item show cygwin-exceptions
e16b02ee
EZ
14119Displays whether @value{GDBN} will break on exceptions that happen
14120inside the Cygwin DLL itself.
be90c084 14121
b383017d 14122@kindex set new-console
78c47bea 14123@item set new-console @var{mode}
b383017d 14124If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14125be started in a new console on next start.
14126If @var{mode} is @code{off}i, the debuggee will
14127be started in the same console as the debugger.
14128
14129@kindex show new-console
14130@item show new-console
14131Displays whether a new console is used
14132when the debuggee is started.
14133
14134@kindex set new-group
14135@item set new-group @var{mode}
14136This boolean value controls whether the debuggee should
14137start a new group or stay in the same group as the debugger.
14138This affects the way the Windows OS handles
c8aa23ab 14139@samp{Ctrl-C}.
78c47bea
PM
14140
14141@kindex show new-group
14142@item show new-group
14143Displays current value of new-group boolean.
14144
14145@kindex set debugevents
14146@item set debugevents
219eec71
EZ
14147This boolean value adds debug output concerning kernel events related
14148to the debuggee seen by the debugger. This includes events that
14149signal thread and process creation and exit, DLL loading and
14150unloading, console interrupts, and debugging messages produced by the
14151Windows @code{OutputDebugString} API call.
78c47bea
PM
14152
14153@kindex set debugexec
14154@item set debugexec
b383017d 14155This boolean value adds debug output concerning execute events
219eec71 14156(such as resume thread) seen by the debugger.
78c47bea
PM
14157
14158@kindex set debugexceptions
14159@item set debugexceptions
219eec71
EZ
14160This boolean value adds debug output concerning exceptions in the
14161debuggee seen by the debugger.
78c47bea
PM
14162
14163@kindex set debugmemory
14164@item set debugmemory
219eec71
EZ
14165This boolean value adds debug output concerning debuggee memory reads
14166and writes by the debugger.
78c47bea
PM
14167
14168@kindex set shell
14169@item set shell
14170This boolean values specifies whether the debuggee is called
14171via a shell or directly (default value is on).
14172
14173@kindex show shell
14174@item show shell
14175Displays if the debuggee will be started with a shell.
14176
14177@end table
14178
be448670 14179@menu
79a6e687 14180* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14181@end menu
14182
79a6e687
BW
14183@node Non-debug DLL Symbols
14184@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14185@cindex DLLs with no debugging symbols
14186@cindex Minimal symbols and DLLs
14187
14188Very often on windows, some of the DLLs that your program relies on do
14189not include symbolic debugging information (for example,
db2e3e2e 14190@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14191symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14192information contained in the DLL's export table. This section
be448670
CF
14193describes working with such symbols, known internally to @value{GDBN} as
14194``minimal symbols''.
14195
14196Note that before the debugged program has started execution, no DLLs
db2e3e2e 14197will have been loaded. The easiest way around this problem is simply to
be448670 14198start the program --- either by setting a breakpoint or letting the
db2e3e2e 14199program run once to completion. It is also possible to force
be448670 14200@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14201see the shared library information in @ref{Files}, or the
db2e3e2e 14202@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14203explicitly loading symbols from a DLL with no debugging information will
14204cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14205which may adversely affect symbol lookup performance.
14206
79a6e687 14207@subsubsection DLL Name Prefixes
be448670
CF
14208
14209In keeping with the naming conventions used by the Microsoft debugging
14210tools, DLL export symbols are made available with a prefix based on the
14211DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14212also entered into the symbol table, so @code{CreateFileA} is often
14213sufficient. In some cases there will be name clashes within a program
14214(particularly if the executable itself includes full debugging symbols)
14215necessitating the use of the fully qualified name when referring to the
14216contents of the DLL. Use single-quotes around the name to avoid the
14217exclamation mark (``!'') being interpreted as a language operator.
14218
14219Note that the internal name of the DLL may be all upper-case, even
14220though the file name of the DLL is lower-case, or vice-versa. Since
14221symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14222some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14223@code{info variables} commands or even @code{maint print msymbols}
14224(@pxref{Symbols}). Here's an example:
be448670
CF
14225
14226@smallexample
f7dc1244 14227(@value{GDBP}) info function CreateFileA
be448670
CF
14228All functions matching regular expression "CreateFileA":
14229
14230Non-debugging symbols:
142310x77e885f4 CreateFileA
142320x77e885f4 KERNEL32!CreateFileA
14233@end smallexample
14234
14235@smallexample
f7dc1244 14236(@value{GDBP}) info function !
be448670
CF
14237All functions matching regular expression "!":
14238
14239Non-debugging symbols:
142400x6100114c cygwin1!__assert
142410x61004034 cygwin1!_dll_crt0@@0
142420x61004240 cygwin1!dll_crt0(per_process *)
14243[etc...]
14244@end smallexample
14245
79a6e687 14246@subsubsection Working with Minimal Symbols
be448670
CF
14247
14248Symbols extracted from a DLL's export table do not contain very much
14249type information. All that @value{GDBN} can do is guess whether a symbol
14250refers to a function or variable depending on the linker section that
14251contains the symbol. Also note that the actual contents of the memory
14252contained in a DLL are not available unless the program is running. This
14253means that you cannot examine the contents of a variable or disassemble
14254a function within a DLL without a running program.
14255
14256Variables are generally treated as pointers and dereferenced
14257automatically. For this reason, it is often necessary to prefix a
14258variable name with the address-of operator (``&'') and provide explicit
14259type information in the command. Here's an example of the type of
14260problem:
14261
14262@smallexample
f7dc1244 14263(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14264$1 = 268572168
14265@end smallexample
14266
14267@smallexample
f7dc1244 14268(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
142690x10021610: "\230y\""
14270@end smallexample
14271
14272And two possible solutions:
14273
14274@smallexample
f7dc1244 14275(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14276$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14277@end smallexample
14278
14279@smallexample
f7dc1244 14280(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 142810x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14282(@value{GDBP}) x/x 0x10021608
be448670 142830x10021608: 0x0022fd98
f7dc1244 14284(@value{GDBP}) x/s 0x0022fd98
be448670
CF
142850x22fd98: "/cygdrive/c/mydirectory/myprogram"
14286@end smallexample
14287
14288Setting a break point within a DLL is possible even before the program
14289starts execution. However, under these circumstances, @value{GDBN} can't
14290examine the initial instructions of the function in order to skip the
14291function's frame set-up code. You can work around this by using ``*&''
14292to set the breakpoint at a raw memory address:
14293
14294@smallexample
f7dc1244 14295(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14296Breakpoint 1 at 0x1e04eff0
14297@end smallexample
14298
14299The author of these extensions is not entirely convinced that setting a
14300break point within a shared DLL like @file{kernel32.dll} is completely
14301safe.
14302
14d6dd68 14303@node Hurd Native
79a6e687 14304@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14305@cindex @sc{gnu} Hurd debugging
14306
14307This subsection describes @value{GDBN} commands specific to the
14308@sc{gnu} Hurd native debugging.
14309
14310@table @code
14311@item set signals
14312@itemx set sigs
14313@kindex set signals@r{, Hurd command}
14314@kindex set sigs@r{, Hurd command}
14315This command toggles the state of inferior signal interception by
14316@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14317affected by this command. @code{sigs} is a shorthand alias for
14318@code{signals}.
14319
14320@item show signals
14321@itemx show sigs
14322@kindex show signals@r{, Hurd command}
14323@kindex show sigs@r{, Hurd command}
14324Show the current state of intercepting inferior's signals.
14325
14326@item set signal-thread
14327@itemx set sigthread
14328@kindex set signal-thread
14329@kindex set sigthread
14330This command tells @value{GDBN} which thread is the @code{libc} signal
14331thread. That thread is run when a signal is delivered to a running
14332process. @code{set sigthread} is the shorthand alias of @code{set
14333signal-thread}.
14334
14335@item show signal-thread
14336@itemx show sigthread
14337@kindex show signal-thread
14338@kindex show sigthread
14339These two commands show which thread will run when the inferior is
14340delivered a signal.
14341
14342@item set stopped
14343@kindex set stopped@r{, Hurd command}
14344This commands tells @value{GDBN} that the inferior process is stopped,
14345as with the @code{SIGSTOP} signal. The stopped process can be
14346continued by delivering a signal to it.
14347
14348@item show stopped
14349@kindex show stopped@r{, Hurd command}
14350This command shows whether @value{GDBN} thinks the debuggee is
14351stopped.
14352
14353@item set exceptions
14354@kindex set exceptions@r{, Hurd command}
14355Use this command to turn off trapping of exceptions in the inferior.
14356When exception trapping is off, neither breakpoints nor
14357single-stepping will work. To restore the default, set exception
14358trapping on.
14359
14360@item show exceptions
14361@kindex show exceptions@r{, Hurd command}
14362Show the current state of trapping exceptions in the inferior.
14363
14364@item set task pause
14365@kindex set task@r{, Hurd commands}
14366@cindex task attributes (@sc{gnu} Hurd)
14367@cindex pause current task (@sc{gnu} Hurd)
14368This command toggles task suspension when @value{GDBN} has control.
14369Setting it to on takes effect immediately, and the task is suspended
14370whenever @value{GDBN} gets control. Setting it to off will take
14371effect the next time the inferior is continued. If this option is set
14372to off, you can use @code{set thread default pause on} or @code{set
14373thread pause on} (see below) to pause individual threads.
14374
14375@item show task pause
14376@kindex show task@r{, Hurd commands}
14377Show the current state of task suspension.
14378
14379@item set task detach-suspend-count
14380@cindex task suspend count
14381@cindex detach from task, @sc{gnu} Hurd
14382This command sets the suspend count the task will be left with when
14383@value{GDBN} detaches from it.
14384
14385@item show task detach-suspend-count
14386Show the suspend count the task will be left with when detaching.
14387
14388@item set task exception-port
14389@itemx set task excp
14390@cindex task exception port, @sc{gnu} Hurd
14391This command sets the task exception port to which @value{GDBN} will
14392forward exceptions. The argument should be the value of the @dfn{send
14393rights} of the task. @code{set task excp} is a shorthand alias.
14394
14395@item set noninvasive
14396@cindex noninvasive task options
14397This command switches @value{GDBN} to a mode that is the least
14398invasive as far as interfering with the inferior is concerned. This
14399is the same as using @code{set task pause}, @code{set exceptions}, and
14400@code{set signals} to values opposite to the defaults.
14401
14402@item info send-rights
14403@itemx info receive-rights
14404@itemx info port-rights
14405@itemx info port-sets
14406@itemx info dead-names
14407@itemx info ports
14408@itemx info psets
14409@cindex send rights, @sc{gnu} Hurd
14410@cindex receive rights, @sc{gnu} Hurd
14411@cindex port rights, @sc{gnu} Hurd
14412@cindex port sets, @sc{gnu} Hurd
14413@cindex dead names, @sc{gnu} Hurd
14414These commands display information about, respectively, send rights,
14415receive rights, port rights, port sets, and dead names of a task.
14416There are also shorthand aliases: @code{info ports} for @code{info
14417port-rights} and @code{info psets} for @code{info port-sets}.
14418
14419@item set thread pause
14420@kindex set thread@r{, Hurd command}
14421@cindex thread properties, @sc{gnu} Hurd
14422@cindex pause current thread (@sc{gnu} Hurd)
14423This command toggles current thread suspension when @value{GDBN} has
14424control. Setting it to on takes effect immediately, and the current
14425thread is suspended whenever @value{GDBN} gets control. Setting it to
14426off will take effect the next time the inferior is continued.
14427Normally, this command has no effect, since when @value{GDBN} has
14428control, the whole task is suspended. However, if you used @code{set
14429task pause off} (see above), this command comes in handy to suspend
14430only the current thread.
14431
14432@item show thread pause
14433@kindex show thread@r{, Hurd command}
14434This command shows the state of current thread suspension.
14435
14436@item set thread run
d3e8051b 14437This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14438
14439@item show thread run
14440Show whether the current thread is allowed to run.
14441
14442@item set thread detach-suspend-count
14443@cindex thread suspend count, @sc{gnu} Hurd
14444@cindex detach from thread, @sc{gnu} Hurd
14445This command sets the suspend count @value{GDBN} will leave on a
14446thread when detaching. This number is relative to the suspend count
14447found by @value{GDBN} when it notices the thread; use @code{set thread
14448takeover-suspend-count} to force it to an absolute value.
14449
14450@item show thread detach-suspend-count
14451Show the suspend count @value{GDBN} will leave on the thread when
14452detaching.
14453
14454@item set thread exception-port
14455@itemx set thread excp
14456Set the thread exception port to which to forward exceptions. This
14457overrides the port set by @code{set task exception-port} (see above).
14458@code{set thread excp} is the shorthand alias.
14459
14460@item set thread takeover-suspend-count
14461Normally, @value{GDBN}'s thread suspend counts are relative to the
14462value @value{GDBN} finds when it notices each thread. This command
14463changes the suspend counts to be absolute instead.
14464
14465@item set thread default
14466@itemx show thread default
14467@cindex thread default settings, @sc{gnu} Hurd
14468Each of the above @code{set thread} commands has a @code{set thread
14469default} counterpart (e.g., @code{set thread default pause}, @code{set
14470thread default exception-port}, etc.). The @code{thread default}
14471variety of commands sets the default thread properties for all
14472threads; you can then change the properties of individual threads with
14473the non-default commands.
14474@end table
14475
14476
a64548ea
EZ
14477@node Neutrino
14478@subsection QNX Neutrino
14479@cindex QNX Neutrino
14480
14481@value{GDBN} provides the following commands specific to the QNX
14482Neutrino target:
14483
14484@table @code
14485@item set debug nto-debug
14486@kindex set debug nto-debug
14487When set to on, enables debugging messages specific to the QNX
14488Neutrino support.
14489
14490@item show debug nto-debug
14491@kindex show debug nto-debug
14492Show the current state of QNX Neutrino messages.
14493@end table
14494
14495
8e04817f
AC
14496@node Embedded OS
14497@section Embedded Operating Systems
104c1213 14498
8e04817f
AC
14499This section describes configurations involving the debugging of
14500embedded operating systems that are available for several different
14501architectures.
d4f3574e 14502
8e04817f
AC
14503@menu
14504* VxWorks:: Using @value{GDBN} with VxWorks
14505@end menu
104c1213 14506
8e04817f
AC
14507@value{GDBN} includes the ability to debug programs running on
14508various real-time operating systems.
104c1213 14509
8e04817f
AC
14510@node VxWorks
14511@subsection Using @value{GDBN} with VxWorks
104c1213 14512
8e04817f 14513@cindex VxWorks
104c1213 14514
8e04817f 14515@table @code
104c1213 14516
8e04817f
AC
14517@kindex target vxworks
14518@item target vxworks @var{machinename}
14519A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14520is the target system's machine name or IP address.
104c1213 14521
8e04817f 14522@end table
104c1213 14523
8e04817f
AC
14524On VxWorks, @code{load} links @var{filename} dynamically on the
14525current target system as well as adding its symbols in @value{GDBN}.
104c1213 14526
8e04817f
AC
14527@value{GDBN} enables developers to spawn and debug tasks running on networked
14528VxWorks targets from a Unix host. Already-running tasks spawned from
14529the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14530both the Unix host and on the VxWorks target. The program
14531@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14532installed with the name @code{vxgdb}, to distinguish it from a
14533@value{GDBN} for debugging programs on the host itself.)
104c1213 14534
8e04817f
AC
14535@table @code
14536@item VxWorks-timeout @var{args}
14537@kindex vxworks-timeout
14538All VxWorks-based targets now support the option @code{vxworks-timeout}.
14539This option is set by the user, and @var{args} represents the number of
14540seconds @value{GDBN} waits for responses to rpc's. You might use this if
14541your VxWorks target is a slow software simulator or is on the far side
14542of a thin network line.
14543@end table
104c1213 14544
8e04817f
AC
14545The following information on connecting to VxWorks was current when
14546this manual was produced; newer releases of VxWorks may use revised
14547procedures.
104c1213 14548
4644b6e3 14549@findex INCLUDE_RDB
8e04817f
AC
14550To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14551to include the remote debugging interface routines in the VxWorks
14552library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14553VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14554kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14555source debugging task @code{tRdbTask} when VxWorks is booted. For more
14556information on configuring and remaking VxWorks, see the manufacturer's
14557manual.
14558@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14559
8e04817f
AC
14560Once you have included @file{rdb.a} in your VxWorks system image and set
14561your Unix execution search path to find @value{GDBN}, you are ready to
14562run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14563@code{vxgdb}, depending on your installation).
104c1213 14564
8e04817f 14565@value{GDBN} comes up showing the prompt:
104c1213 14566
474c8240 14567@smallexample
8e04817f 14568(vxgdb)
474c8240 14569@end smallexample
104c1213 14570
8e04817f
AC
14571@menu
14572* VxWorks Connection:: Connecting to VxWorks
14573* VxWorks Download:: VxWorks download
14574* VxWorks Attach:: Running tasks
14575@end menu
104c1213 14576
8e04817f
AC
14577@node VxWorks Connection
14578@subsubsection Connecting to VxWorks
104c1213 14579
8e04817f
AC
14580The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14581network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14582
474c8240 14583@smallexample
8e04817f 14584(vxgdb) target vxworks tt
474c8240 14585@end smallexample
104c1213 14586
8e04817f
AC
14587@need 750
14588@value{GDBN} displays messages like these:
104c1213 14589
8e04817f
AC
14590@smallexample
14591Attaching remote machine across net...
14592Connected to tt.
14593@end smallexample
104c1213 14594
8e04817f
AC
14595@need 1000
14596@value{GDBN} then attempts to read the symbol tables of any object modules
14597loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14598these files by searching the directories listed in the command search
79a6e687 14599path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14600to find an object file, it displays a message such as:
5d161b24 14601
474c8240 14602@smallexample
8e04817f 14603prog.o: No such file or directory.
474c8240 14604@end smallexample
104c1213 14605
8e04817f
AC
14606When this happens, add the appropriate directory to the search path with
14607the @value{GDBN} command @code{path}, and execute the @code{target}
14608command again.
104c1213 14609
8e04817f 14610@node VxWorks Download
79a6e687 14611@subsubsection VxWorks Download
104c1213 14612
8e04817f
AC
14613@cindex download to VxWorks
14614If you have connected to the VxWorks target and you want to debug an
14615object that has not yet been loaded, you can use the @value{GDBN}
14616@code{load} command to download a file from Unix to VxWorks
14617incrementally. The object file given as an argument to the @code{load}
14618command is actually opened twice: first by the VxWorks target in order
14619to download the code, then by @value{GDBN} in order to read the symbol
14620table. This can lead to problems if the current working directories on
14621the two systems differ. If both systems have NFS mounted the same
14622filesystems, you can avoid these problems by using absolute paths.
14623Otherwise, it is simplest to set the working directory on both systems
14624to the directory in which the object file resides, and then to reference
14625the file by its name, without any path. For instance, a program
14626@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14627and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14628program, type this on VxWorks:
104c1213 14629
474c8240 14630@smallexample
8e04817f 14631-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14632@end smallexample
104c1213 14633
8e04817f
AC
14634@noindent
14635Then, in @value{GDBN}, type:
104c1213 14636
474c8240 14637@smallexample
8e04817f
AC
14638(vxgdb) cd @var{hostpath}/vw/demo/rdb
14639(vxgdb) load prog.o
474c8240 14640@end smallexample
104c1213 14641
8e04817f 14642@value{GDBN} displays a response similar to this:
104c1213 14643
8e04817f
AC
14644@smallexample
14645Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14646@end smallexample
104c1213 14647
8e04817f
AC
14648You can also use the @code{load} command to reload an object module
14649after editing and recompiling the corresponding source file. Note that
14650this makes @value{GDBN} delete all currently-defined breakpoints,
14651auto-displays, and convenience variables, and to clear the value
14652history. (This is necessary in order to preserve the integrity of
14653debugger's data structures that reference the target system's symbol
14654table.)
104c1213 14655
8e04817f 14656@node VxWorks Attach
79a6e687 14657@subsubsection Running Tasks
104c1213
JM
14658
14659@cindex running VxWorks tasks
14660You can also attach to an existing task using the @code{attach} command as
14661follows:
14662
474c8240 14663@smallexample
104c1213 14664(vxgdb) attach @var{task}
474c8240 14665@end smallexample
104c1213
JM
14666
14667@noindent
14668where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14669or suspended when you attach to it. Running tasks are suspended at
14670the time of attachment.
14671
6d2ebf8b 14672@node Embedded Processors
104c1213
JM
14673@section Embedded Processors
14674
14675This section goes into details specific to particular embedded
14676configurations.
14677
c45da7e6
EZ
14678@cindex send command to simulator
14679Whenever a specific embedded processor has a simulator, @value{GDBN}
14680allows to send an arbitrary command to the simulator.
14681
14682@table @code
14683@item sim @var{command}
14684@kindex sim@r{, a command}
14685Send an arbitrary @var{command} string to the simulator. Consult the
14686documentation for the specific simulator in use for information about
14687acceptable commands.
14688@end table
14689
7d86b5d5 14690
104c1213 14691@menu
c45da7e6 14692* ARM:: ARM RDI
172c2a43 14693* M32R/D:: Renesas M32R/D
104c1213 14694* M68K:: Motorola M68K
104c1213 14695* MIPS Embedded:: MIPS Embedded
a37295f9 14696* OpenRISC 1000:: OpenRisc 1000
104c1213 14697* PA:: HP PA Embedded
4acd40f3 14698* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14699* Sparclet:: Tsqware Sparclet
14700* Sparclite:: Fujitsu Sparclite
104c1213 14701* Z8000:: Zilog Z8000
a64548ea
EZ
14702* AVR:: Atmel AVR
14703* CRIS:: CRIS
14704* Super-H:: Renesas Super-H
104c1213
JM
14705@end menu
14706
6d2ebf8b 14707@node ARM
104c1213 14708@subsection ARM
c45da7e6 14709@cindex ARM RDI
104c1213
JM
14710
14711@table @code
8e04817f
AC
14712@kindex target rdi
14713@item target rdi @var{dev}
14714ARM Angel monitor, via RDI library interface to ADP protocol. You may
14715use this target to communicate with both boards running the Angel
14716monitor, or with the EmbeddedICE JTAG debug device.
14717
14718@kindex target rdp
14719@item target rdp @var{dev}
14720ARM Demon monitor.
14721
14722@end table
14723
e2f4edfd
EZ
14724@value{GDBN} provides the following ARM-specific commands:
14725
14726@table @code
14727@item set arm disassembler
14728@kindex set arm
14729This commands selects from a list of disassembly styles. The
14730@code{"std"} style is the standard style.
14731
14732@item show arm disassembler
14733@kindex show arm
14734Show the current disassembly style.
14735
14736@item set arm apcs32
14737@cindex ARM 32-bit mode
14738This command toggles ARM operation mode between 32-bit and 26-bit.
14739
14740@item show arm apcs32
14741Display the current usage of the ARM 32-bit mode.
14742
14743@item set arm fpu @var{fputype}
14744This command sets the ARM floating-point unit (FPU) type. The
14745argument @var{fputype} can be one of these:
14746
14747@table @code
14748@item auto
14749Determine the FPU type by querying the OS ABI.
14750@item softfpa
14751Software FPU, with mixed-endian doubles on little-endian ARM
14752processors.
14753@item fpa
14754GCC-compiled FPA co-processor.
14755@item softvfp
14756Software FPU with pure-endian doubles.
14757@item vfp
14758VFP co-processor.
14759@end table
14760
14761@item show arm fpu
14762Show the current type of the FPU.
14763
14764@item set arm abi
14765This command forces @value{GDBN} to use the specified ABI.
14766
14767@item show arm abi
14768Show the currently used ABI.
14769
14770@item set debug arm
14771Toggle whether to display ARM-specific debugging messages from the ARM
14772target support subsystem.
14773
14774@item show debug arm
14775Show whether ARM-specific debugging messages are enabled.
14776@end table
14777
c45da7e6
EZ
14778The following commands are available when an ARM target is debugged
14779using the RDI interface:
14780
14781@table @code
14782@item rdilogfile @r{[}@var{file}@r{]}
14783@kindex rdilogfile
14784@cindex ADP (Angel Debugger Protocol) logging
14785Set the filename for the ADP (Angel Debugger Protocol) packet log.
14786With an argument, sets the log file to the specified @var{file}. With
14787no argument, show the current log file name. The default log file is
14788@file{rdi.log}.
14789
14790@item rdilogenable @r{[}@var{arg}@r{]}
14791@kindex rdilogenable
14792Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14793enables logging, with an argument 0 or @code{"no"} disables it. With
14794no arguments displays the current setting. When logging is enabled,
14795ADP packets exchanged between @value{GDBN} and the RDI target device
14796are logged to a file.
14797
14798@item set rdiromatzero
14799@kindex set rdiromatzero
14800@cindex ROM at zero address, RDI
14801Tell @value{GDBN} whether the target has ROM at address 0. If on,
14802vector catching is disabled, so that zero address can be used. If off
14803(the default), vector catching is enabled. For this command to take
14804effect, it needs to be invoked prior to the @code{target rdi} command.
14805
14806@item show rdiromatzero
14807@kindex show rdiromatzero
14808Show the current setting of ROM at zero address.
14809
14810@item set rdiheartbeat
14811@kindex set rdiheartbeat
14812@cindex RDI heartbeat
14813Enable or disable RDI heartbeat packets. It is not recommended to
14814turn on this option, since it confuses ARM and EPI JTAG interface, as
14815well as the Angel monitor.
14816
14817@item show rdiheartbeat
14818@kindex show rdiheartbeat
14819Show the setting of RDI heartbeat packets.
14820@end table
14821
e2f4edfd 14822
8e04817f 14823@node M32R/D
ba04e063 14824@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14825
14826@table @code
8e04817f
AC
14827@kindex target m32r
14828@item target m32r @var{dev}
172c2a43 14829Renesas M32R/D ROM monitor.
8e04817f 14830
fb3e19c0
KI
14831@kindex target m32rsdi
14832@item target m32rsdi @var{dev}
14833Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14834@end table
14835
14836The following @value{GDBN} commands are specific to the M32R monitor:
14837
14838@table @code
14839@item set download-path @var{path}
14840@kindex set download-path
14841@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14842Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14843
14844@item show download-path
14845@kindex show download-path
14846Show the default path for downloadable @sc{srec} files.
fb3e19c0 14847
721c2651
EZ
14848@item set board-address @var{addr}
14849@kindex set board-address
14850@cindex M32-EVA target board address
14851Set the IP address for the M32R-EVA target board.
14852
14853@item show board-address
14854@kindex show board-address
14855Show the current IP address of the target board.
14856
14857@item set server-address @var{addr}
14858@kindex set server-address
14859@cindex download server address (M32R)
14860Set the IP address for the download server, which is the @value{GDBN}'s
14861host machine.
14862
14863@item show server-address
14864@kindex show server-address
14865Display the IP address of the download server.
14866
14867@item upload @r{[}@var{file}@r{]}
14868@kindex upload@r{, M32R}
14869Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14870upload capability. If no @var{file} argument is given, the current
14871executable file is uploaded.
14872
14873@item tload @r{[}@var{file}@r{]}
14874@kindex tload@r{, M32R}
14875Test the @code{upload} command.
8e04817f
AC
14876@end table
14877
ba04e063
EZ
14878The following commands are available for M32R/SDI:
14879
14880@table @code
14881@item sdireset
14882@kindex sdireset
14883@cindex reset SDI connection, M32R
14884This command resets the SDI connection.
14885
14886@item sdistatus
14887@kindex sdistatus
14888This command shows the SDI connection status.
14889
14890@item debug_chaos
14891@kindex debug_chaos
14892@cindex M32R/Chaos debugging
14893Instructs the remote that M32R/Chaos debugging is to be used.
14894
14895@item use_debug_dma
14896@kindex use_debug_dma
14897Instructs the remote to use the DEBUG_DMA method of accessing memory.
14898
14899@item use_mon_code
14900@kindex use_mon_code
14901Instructs the remote to use the MON_CODE method of accessing memory.
14902
14903@item use_ib_break
14904@kindex use_ib_break
14905Instructs the remote to set breakpoints by IB break.
14906
14907@item use_dbt_break
14908@kindex use_dbt_break
14909Instructs the remote to set breakpoints by DBT.
14910@end table
14911
8e04817f
AC
14912@node M68K
14913@subsection M68k
14914
7ce59000
DJ
14915The Motorola m68k configuration includes ColdFire support, and a
14916target command for the following ROM monitor.
8e04817f
AC
14917
14918@table @code
14919
8e04817f
AC
14920@kindex target dbug
14921@item target dbug @var{dev}
14922dBUG ROM monitor for Motorola ColdFire.
14923
8e04817f
AC
14924@end table
14925
8e04817f
AC
14926@node MIPS Embedded
14927@subsection MIPS Embedded
14928
14929@cindex MIPS boards
14930@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14931MIPS board attached to a serial line. This is available when
14932you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14933
8e04817f
AC
14934@need 1000
14935Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14936
8e04817f
AC
14937@table @code
14938@item target mips @var{port}
14939@kindex target mips @var{port}
14940To run a program on the board, start up @code{@value{GDBP}} with the
14941name of your program as the argument. To connect to the board, use the
14942command @samp{target mips @var{port}}, where @var{port} is the name of
14943the serial port connected to the board. If the program has not already
14944been downloaded to the board, you may use the @code{load} command to
14945download it. You can then use all the usual @value{GDBN} commands.
104c1213 14946
8e04817f
AC
14947For example, this sequence connects to the target board through a serial
14948port, and loads and runs a program called @var{prog} through the
14949debugger:
104c1213 14950
474c8240 14951@smallexample
8e04817f
AC
14952host$ @value{GDBP} @var{prog}
14953@value{GDBN} is free software and @dots{}
14954(@value{GDBP}) target mips /dev/ttyb
14955(@value{GDBP}) load @var{prog}
14956(@value{GDBP}) run
474c8240 14957@end smallexample
104c1213 14958
8e04817f
AC
14959@item target mips @var{hostname}:@var{portnumber}
14960On some @value{GDBN} host configurations, you can specify a TCP
14961connection (for instance, to a serial line managed by a terminal
14962concentrator) instead of a serial port, using the syntax
14963@samp{@var{hostname}:@var{portnumber}}.
104c1213 14964
8e04817f
AC
14965@item target pmon @var{port}
14966@kindex target pmon @var{port}
14967PMON ROM monitor.
104c1213 14968
8e04817f
AC
14969@item target ddb @var{port}
14970@kindex target ddb @var{port}
14971NEC's DDB variant of PMON for Vr4300.
104c1213 14972
8e04817f
AC
14973@item target lsi @var{port}
14974@kindex target lsi @var{port}
14975LSI variant of PMON.
104c1213 14976
8e04817f
AC
14977@kindex target r3900
14978@item target r3900 @var{dev}
14979Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14980
8e04817f
AC
14981@kindex target array
14982@item target array @var{dev}
14983Array Tech LSI33K RAID controller board.
104c1213 14984
8e04817f 14985@end table
104c1213 14986
104c1213 14987
8e04817f
AC
14988@noindent
14989@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14990
8e04817f 14991@table @code
8e04817f
AC
14992@item set mipsfpu double
14993@itemx set mipsfpu single
14994@itemx set mipsfpu none
a64548ea 14995@itemx set mipsfpu auto
8e04817f
AC
14996@itemx show mipsfpu
14997@kindex set mipsfpu
14998@kindex show mipsfpu
14999@cindex MIPS remote floating point
15000@cindex floating point, MIPS remote
15001If your target board does not support the MIPS floating point
15002coprocessor, you should use the command @samp{set mipsfpu none} (if you
15003need this, you may wish to put the command in your @value{GDBN} init
15004file). This tells @value{GDBN} how to find the return value of
15005functions which return floating point values. It also allows
15006@value{GDBN} to avoid saving the floating point registers when calling
15007functions on the board. If you are using a floating point coprocessor
15008with only single precision floating point support, as on the @sc{r4650}
15009processor, use the command @samp{set mipsfpu single}. The default
15010double precision floating point coprocessor may be selected using
15011@samp{set mipsfpu double}.
104c1213 15012
8e04817f
AC
15013In previous versions the only choices were double precision or no
15014floating point, so @samp{set mipsfpu on} will select double precision
15015and @samp{set mipsfpu off} will select no floating point.
104c1213 15016
8e04817f
AC
15017As usual, you can inquire about the @code{mipsfpu} variable with
15018@samp{show mipsfpu}.
104c1213 15019
8e04817f
AC
15020@item set timeout @var{seconds}
15021@itemx set retransmit-timeout @var{seconds}
15022@itemx show timeout
15023@itemx show retransmit-timeout
15024@cindex @code{timeout}, MIPS protocol
15025@cindex @code{retransmit-timeout}, MIPS protocol
15026@kindex set timeout
15027@kindex show timeout
15028@kindex set retransmit-timeout
15029@kindex show retransmit-timeout
15030You can control the timeout used while waiting for a packet, in the MIPS
15031remote protocol, with the @code{set timeout @var{seconds}} command. The
15032default is 5 seconds. Similarly, you can control the timeout used while
15033waiting for an acknowledgement of a packet with the @code{set
15034retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15035You can inspect both values with @code{show timeout} and @code{show
15036retransmit-timeout}. (These commands are @emph{only} available when
15037@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15038
8e04817f
AC
15039The timeout set by @code{set timeout} does not apply when @value{GDBN}
15040is waiting for your program to stop. In that case, @value{GDBN} waits
15041forever because it has no way of knowing how long the program is going
15042to run before stopping.
ba04e063
EZ
15043
15044@item set syn-garbage-limit @var{num}
15045@kindex set syn-garbage-limit@r{, MIPS remote}
15046@cindex synchronize with remote MIPS target
15047Limit the maximum number of characters @value{GDBN} should ignore when
15048it tries to synchronize with the remote target. The default is 10
15049characters. Setting the limit to -1 means there's no limit.
15050
15051@item show syn-garbage-limit
15052@kindex show syn-garbage-limit@r{, MIPS remote}
15053Show the current limit on the number of characters to ignore when
15054trying to synchronize with the remote system.
15055
15056@item set monitor-prompt @var{prompt}
15057@kindex set monitor-prompt@r{, MIPS remote}
15058@cindex remote monitor prompt
15059Tell @value{GDBN} to expect the specified @var{prompt} string from the
15060remote monitor. The default depends on the target:
15061@table @asis
15062@item pmon target
15063@samp{PMON}
15064@item ddb target
15065@samp{NEC010}
15066@item lsi target
15067@samp{PMON>}
15068@end table
15069
15070@item show monitor-prompt
15071@kindex show monitor-prompt@r{, MIPS remote}
15072Show the current strings @value{GDBN} expects as the prompt from the
15073remote monitor.
15074
15075@item set monitor-warnings
15076@kindex set monitor-warnings@r{, MIPS remote}
15077Enable or disable monitor warnings about hardware breakpoints. This
15078has effect only for the @code{lsi} target. When on, @value{GDBN} will
15079display warning messages whose codes are returned by the @code{lsi}
15080PMON monitor for breakpoint commands.
15081
15082@item show monitor-warnings
15083@kindex show monitor-warnings@r{, MIPS remote}
15084Show the current setting of printing monitor warnings.
15085
15086@item pmon @var{command}
15087@kindex pmon@r{, MIPS remote}
15088@cindex send PMON command
15089This command allows sending an arbitrary @var{command} string to the
15090monitor. The monitor must be in debug mode for this to work.
8e04817f 15091@end table
104c1213 15092
a37295f9
MM
15093@node OpenRISC 1000
15094@subsection OpenRISC 1000
15095@cindex OpenRISC 1000
15096
15097@cindex or1k boards
15098See OR1k Architecture document (@uref{www.opencores.org}) for more information
15099about platform and commands.
15100
15101@table @code
15102
15103@kindex target jtag
15104@item target jtag jtag://@var{host}:@var{port}
15105
15106Connects to remote JTAG server.
15107JTAG remote server can be either an or1ksim or JTAG server,
15108connected via parallel port to the board.
15109
15110Example: @code{target jtag jtag://localhost:9999}
15111
15112@kindex or1ksim
15113@item or1ksim @var{command}
15114If connected to @code{or1ksim} OpenRISC 1000 Architectural
15115Simulator, proprietary commands can be executed.
15116
15117@kindex info or1k spr
15118@item info or1k spr
15119Displays spr groups.
15120
15121@item info or1k spr @var{group}
15122@itemx info or1k spr @var{groupno}
15123Displays register names in selected group.
15124
15125@item info or1k spr @var{group} @var{register}
15126@itemx info or1k spr @var{register}
15127@itemx info or1k spr @var{groupno} @var{registerno}
15128@itemx info or1k spr @var{registerno}
15129Shows information about specified spr register.
15130
15131@kindex spr
15132@item spr @var{group} @var{register} @var{value}
15133@itemx spr @var{register @var{value}}
15134@itemx spr @var{groupno} @var{registerno @var{value}}
15135@itemx spr @var{registerno @var{value}}
15136Writes @var{value} to specified spr register.
15137@end table
15138
15139Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15140It is very similar to @value{GDBN} trace, except it does not interfere with normal
15141program execution and is thus much faster. Hardware breakpoints/watchpoint
15142triggers can be set using:
15143@table @code
15144@item $LEA/$LDATA
15145Load effective address/data
15146@item $SEA/$SDATA
15147Store effective address/data
15148@item $AEA/$ADATA
15149Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15150@item $FETCH
15151Fetch data
15152@end table
15153
15154When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15155@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15156
15157@code{htrace} commands:
15158@cindex OpenRISC 1000 htrace
15159@table @code
15160@kindex hwatch
15161@item hwatch @var{conditional}
d3e8051b 15162Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15163or Data. For example:
15164
15165@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15166
15167@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15168
4644b6e3 15169@kindex htrace
a37295f9
MM
15170@item htrace info
15171Display information about current HW trace configuration.
15172
a37295f9
MM
15173@item htrace trigger @var{conditional}
15174Set starting criteria for HW trace.
15175
a37295f9
MM
15176@item htrace qualifier @var{conditional}
15177Set acquisition qualifier for HW trace.
15178
a37295f9
MM
15179@item htrace stop @var{conditional}
15180Set HW trace stopping criteria.
15181
f153cc92 15182@item htrace record [@var{data}]*
a37295f9
MM
15183Selects the data to be recorded, when qualifier is met and HW trace was
15184triggered.
15185
a37295f9 15186@item htrace enable
a37295f9
MM
15187@itemx htrace disable
15188Enables/disables the HW trace.
15189
f153cc92 15190@item htrace rewind [@var{filename}]
a37295f9
MM
15191Clears currently recorded trace data.
15192
15193If filename is specified, new trace file is made and any newly collected data
15194will be written there.
15195
f153cc92 15196@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15197Prints trace buffer, using current record configuration.
15198
a37295f9
MM
15199@item htrace mode continuous
15200Set continuous trace mode.
15201
a37295f9
MM
15202@item htrace mode suspend
15203Set suspend trace mode.
15204
15205@end table
15206
4acd40f3
TJB
15207@node PowerPC Embedded
15208@subsection PowerPC Embedded
104c1213 15209
55eddb0f
DJ
15210@value{GDBN} provides the following PowerPC-specific commands:
15211
104c1213 15212@table @code
55eddb0f
DJ
15213@kindex set powerpc
15214@item set powerpc soft-float
15215@itemx show powerpc soft-float
15216Force @value{GDBN} to use (or not use) a software floating point calling
15217convention. By default, @value{GDBN} selects the calling convention based
15218on the selected architecture and the provided executable file.
15219
15220@item set powerpc vector-abi
15221@itemx show powerpc vector-abi
15222Force @value{GDBN} to use the specified calling convention for vector
15223arguments and return values. The valid options are @samp{auto};
15224@samp{generic}, to avoid vector registers even if they are present;
15225@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15226registers. By default, @value{GDBN} selects the calling convention
15227based on the selected architecture and the provided executable file.
15228
8e04817f
AC
15229@kindex target dink32
15230@item target dink32 @var{dev}
15231DINK32 ROM monitor.
104c1213 15232
8e04817f
AC
15233@kindex target ppcbug
15234@item target ppcbug @var{dev}
15235@kindex target ppcbug1
15236@item target ppcbug1 @var{dev}
15237PPCBUG ROM monitor for PowerPC.
104c1213 15238
8e04817f
AC
15239@kindex target sds
15240@item target sds @var{dev}
15241SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15242@end table
8e04817f 15243
c45da7e6 15244@cindex SDS protocol
d52fb0e9 15245The following commands specific to the SDS protocol are supported
55eddb0f 15246by @value{GDBN}:
c45da7e6
EZ
15247
15248@table @code
15249@item set sdstimeout @var{nsec}
15250@kindex set sdstimeout
15251Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15252default is 2 seconds.
15253
15254@item show sdstimeout
15255@kindex show sdstimeout
15256Show the current value of the SDS timeout.
15257
15258@item sds @var{command}
15259@kindex sds@r{, a command}
15260Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15261@end table
15262
c45da7e6 15263
8e04817f
AC
15264@node PA
15265@subsection HP PA Embedded
104c1213
JM
15266
15267@table @code
15268
8e04817f
AC
15269@kindex target op50n
15270@item target op50n @var{dev}
15271OP50N monitor, running on an OKI HPPA board.
15272
15273@kindex target w89k
15274@item target w89k @var{dev}
15275W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15276
15277@end table
15278
8e04817f
AC
15279@node Sparclet
15280@subsection Tsqware Sparclet
104c1213 15281
8e04817f
AC
15282@cindex Sparclet
15283
15284@value{GDBN} enables developers to debug tasks running on
15285Sparclet targets from a Unix host.
15286@value{GDBN} uses code that runs on
15287both the Unix host and on the Sparclet target. The program
15288@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15289
8e04817f
AC
15290@table @code
15291@item remotetimeout @var{args}
15292@kindex remotetimeout
15293@value{GDBN} supports the option @code{remotetimeout}.
15294This option is set by the user, and @var{args} represents the number of
15295seconds @value{GDBN} waits for responses.
104c1213
JM
15296@end table
15297
8e04817f
AC
15298@cindex compiling, on Sparclet
15299When compiling for debugging, include the options @samp{-g} to get debug
15300information and @samp{-Ttext} to relocate the program to where you wish to
15301load it on the target. You may also want to add the options @samp{-n} or
15302@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15303
474c8240 15304@smallexample
8e04817f 15305sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15306@end smallexample
104c1213 15307
8e04817f 15308You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15309
474c8240 15310@smallexample
8e04817f 15311sparclet-aout-objdump --headers --syms prog
474c8240 15312@end smallexample
104c1213 15313
8e04817f
AC
15314@cindex running, on Sparclet
15315Once you have set
15316your Unix execution search path to find @value{GDBN}, you are ready to
15317run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15318(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15319
8e04817f
AC
15320@value{GDBN} comes up showing the prompt:
15321
474c8240 15322@smallexample
8e04817f 15323(gdbslet)
474c8240 15324@end smallexample
104c1213
JM
15325
15326@menu
8e04817f
AC
15327* Sparclet File:: Setting the file to debug
15328* Sparclet Connection:: Connecting to Sparclet
15329* Sparclet Download:: Sparclet download
15330* Sparclet Execution:: Running and debugging
104c1213
JM
15331@end menu
15332
8e04817f 15333@node Sparclet File
79a6e687 15334@subsubsection Setting File to Debug
104c1213 15335
8e04817f 15336The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15337
474c8240 15338@smallexample
8e04817f 15339(gdbslet) file prog
474c8240 15340@end smallexample
104c1213 15341
8e04817f
AC
15342@need 1000
15343@value{GDBN} then attempts to read the symbol table of @file{prog}.
15344@value{GDBN} locates
15345the file by searching the directories listed in the command search
15346path.
12c27660 15347If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15348files will be searched as well.
15349@value{GDBN} locates
15350the source files by searching the directories listed in the directory search
79a6e687 15351path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15352If it fails
15353to find a file, it displays a message such as:
104c1213 15354
474c8240 15355@smallexample
8e04817f 15356prog: No such file or directory.
474c8240 15357@end smallexample
104c1213 15358
8e04817f
AC
15359When this happens, add the appropriate directories to the search paths with
15360the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15361@code{target} command again.
104c1213 15362
8e04817f
AC
15363@node Sparclet Connection
15364@subsubsection Connecting to Sparclet
104c1213 15365
8e04817f
AC
15366The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15367To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15368
474c8240 15369@smallexample
8e04817f
AC
15370(gdbslet) target sparclet /dev/ttya
15371Remote target sparclet connected to /dev/ttya
15372main () at ../prog.c:3
474c8240 15373@end smallexample
104c1213 15374
8e04817f
AC
15375@need 750
15376@value{GDBN} displays messages like these:
104c1213 15377
474c8240 15378@smallexample
8e04817f 15379Connected to ttya.
474c8240 15380@end smallexample
104c1213 15381
8e04817f 15382@node Sparclet Download
79a6e687 15383@subsubsection Sparclet Download
104c1213 15384
8e04817f
AC
15385@cindex download to Sparclet
15386Once connected to the Sparclet target,
15387you can use the @value{GDBN}
15388@code{load} command to download the file from the host to the target.
15389The file name and load offset should be given as arguments to the @code{load}
15390command.
15391Since the file format is aout, the program must be loaded to the starting
15392address. You can use @code{objdump} to find out what this value is. The load
15393offset is an offset which is added to the VMA (virtual memory address)
15394of each of the file's sections.
15395For instance, if the program
15396@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15397and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15398
474c8240 15399@smallexample
8e04817f
AC
15400(gdbslet) load prog 0x12010000
15401Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15402@end smallexample
104c1213 15403
8e04817f
AC
15404If the code is loaded at a different address then what the program was linked
15405to, you may need to use the @code{section} and @code{add-symbol-file} commands
15406to tell @value{GDBN} where to map the symbol table.
15407
15408@node Sparclet Execution
79a6e687 15409@subsubsection Running and Debugging
8e04817f
AC
15410
15411@cindex running and debugging Sparclet programs
15412You can now begin debugging the task using @value{GDBN}'s execution control
15413commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15414manual for the list of commands.
15415
474c8240 15416@smallexample
8e04817f
AC
15417(gdbslet) b main
15418Breakpoint 1 at 0x12010000: file prog.c, line 3.
15419(gdbslet) run
15420Starting program: prog
15421Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
154223 char *symarg = 0;
15423(gdbslet) step
154244 char *execarg = "hello!";
15425(gdbslet)
474c8240 15426@end smallexample
8e04817f
AC
15427
15428@node Sparclite
15429@subsection Fujitsu Sparclite
104c1213
JM
15430
15431@table @code
15432
8e04817f
AC
15433@kindex target sparclite
15434@item target sparclite @var{dev}
15435Fujitsu sparclite boards, used only for the purpose of loading.
15436You must use an additional command to debug the program.
15437For example: target remote @var{dev} using @value{GDBN} standard
15438remote protocol.
104c1213
JM
15439
15440@end table
15441
8e04817f
AC
15442@node Z8000
15443@subsection Zilog Z8000
104c1213 15444
8e04817f
AC
15445@cindex Z8000
15446@cindex simulator, Z8000
15447@cindex Zilog Z8000 simulator
104c1213 15448
8e04817f
AC
15449When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15450a Z8000 simulator.
15451
15452For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15453unsegmented variant of the Z8000 architecture) or the Z8001 (the
15454segmented variant). The simulator recognizes which architecture is
15455appropriate by inspecting the object code.
104c1213 15456
8e04817f
AC
15457@table @code
15458@item target sim @var{args}
15459@kindex sim
15460@kindex target sim@r{, with Z8000}
15461Debug programs on a simulated CPU. If the simulator supports setup
15462options, specify them via @var{args}.
104c1213
JM
15463@end table
15464
8e04817f
AC
15465@noindent
15466After specifying this target, you can debug programs for the simulated
15467CPU in the same style as programs for your host computer; use the
15468@code{file} command to load a new program image, the @code{run} command
15469to run your program, and so on.
15470
15471As well as making available all the usual machine registers
15472(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15473additional items of information as specially named registers:
104c1213
JM
15474
15475@table @code
15476
8e04817f
AC
15477@item cycles
15478Counts clock-ticks in the simulator.
104c1213 15479
8e04817f
AC
15480@item insts
15481Counts instructions run in the simulator.
104c1213 15482
8e04817f
AC
15483@item time
15484Execution time in 60ths of a second.
104c1213 15485
8e04817f 15486@end table
104c1213 15487
8e04817f
AC
15488You can refer to these values in @value{GDBN} expressions with the usual
15489conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15490conditional breakpoint that suspends only after at least 5000
15491simulated clock ticks.
104c1213 15492
a64548ea
EZ
15493@node AVR
15494@subsection Atmel AVR
15495@cindex AVR
15496
15497When configured for debugging the Atmel AVR, @value{GDBN} supports the
15498following AVR-specific commands:
15499
15500@table @code
15501@item info io_registers
15502@kindex info io_registers@r{, AVR}
15503@cindex I/O registers (Atmel AVR)
15504This command displays information about the AVR I/O registers. For
15505each register, @value{GDBN} prints its number and value.
15506@end table
15507
15508@node CRIS
15509@subsection CRIS
15510@cindex CRIS
15511
15512When configured for debugging CRIS, @value{GDBN} provides the
15513following CRIS-specific commands:
15514
15515@table @code
15516@item set cris-version @var{ver}
15517@cindex CRIS version
e22e55c9
OF
15518Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15519The CRIS version affects register names and sizes. This command is useful in
15520case autodetection of the CRIS version fails.
a64548ea
EZ
15521
15522@item show cris-version
15523Show the current CRIS version.
15524
15525@item set cris-dwarf2-cfi
15526@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15527Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15528Change to @samp{off} when using @code{gcc-cris} whose version is below
15529@code{R59}.
a64548ea
EZ
15530
15531@item show cris-dwarf2-cfi
15532Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15533
15534@item set cris-mode @var{mode}
15535@cindex CRIS mode
15536Set the current CRIS mode to @var{mode}. It should only be changed when
15537debugging in guru mode, in which case it should be set to
15538@samp{guru} (the default is @samp{normal}).
15539
15540@item show cris-mode
15541Show the current CRIS mode.
a64548ea
EZ
15542@end table
15543
15544@node Super-H
15545@subsection Renesas Super-H
15546@cindex Super-H
15547
15548For the Renesas Super-H processor, @value{GDBN} provides these
15549commands:
15550
15551@table @code
15552@item regs
15553@kindex regs@r{, Super-H}
15554Show the values of all Super-H registers.
15555@end table
15556
15557
8e04817f
AC
15558@node Architectures
15559@section Architectures
104c1213 15560
8e04817f
AC
15561This section describes characteristics of architectures that affect
15562all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15563
8e04817f 15564@menu
9c16f35a 15565* i386::
8e04817f
AC
15566* A29K::
15567* Alpha::
15568* MIPS::
a64548ea 15569* HPPA:: HP PA architecture
23d964e7 15570* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15571* PowerPC::
8e04817f 15572@end menu
104c1213 15573
9c16f35a 15574@node i386
db2e3e2e 15575@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15576
15577@table @code
15578@item set struct-convention @var{mode}
15579@kindex set struct-convention
15580@cindex struct return convention
15581@cindex struct/union returned in registers
15582Set the convention used by the inferior to return @code{struct}s and
15583@code{union}s from functions to @var{mode}. Possible values of
15584@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15585default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15586are returned on the stack, while @code{"reg"} means that a
15587@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15588be returned in a register.
15589
15590@item show struct-convention
15591@kindex show struct-convention
15592Show the current setting of the convention to return @code{struct}s
15593from functions.
15594@end table
15595
8e04817f
AC
15596@node A29K
15597@subsection A29K
104c1213
JM
15598
15599@table @code
104c1213 15600
8e04817f
AC
15601@kindex set rstack_high_address
15602@cindex AMD 29K register stack
15603@cindex register stack, AMD29K
15604@item set rstack_high_address @var{address}
15605On AMD 29000 family processors, registers are saved in a separate
15606@dfn{register stack}. There is no way for @value{GDBN} to determine the
15607extent of this stack. Normally, @value{GDBN} just assumes that the
15608stack is ``large enough''. This may result in @value{GDBN} referencing
15609memory locations that do not exist. If necessary, you can get around
15610this problem by specifying the ending address of the register stack with
15611the @code{set rstack_high_address} command. The argument should be an
15612address, which you probably want to precede with @samp{0x} to specify in
15613hexadecimal.
104c1213 15614
8e04817f
AC
15615@kindex show rstack_high_address
15616@item show rstack_high_address
15617Display the current limit of the register stack, on AMD 29000 family
15618processors.
104c1213 15619
8e04817f 15620@end table
104c1213 15621
8e04817f
AC
15622@node Alpha
15623@subsection Alpha
104c1213 15624
8e04817f 15625See the following section.
104c1213 15626
8e04817f
AC
15627@node MIPS
15628@subsection MIPS
104c1213 15629
8e04817f
AC
15630@cindex stack on Alpha
15631@cindex stack on MIPS
15632@cindex Alpha stack
15633@cindex MIPS stack
15634Alpha- and MIPS-based computers use an unusual stack frame, which
15635sometimes requires @value{GDBN} to search backward in the object code to
15636find the beginning of a function.
104c1213 15637
8e04817f
AC
15638@cindex response time, MIPS debugging
15639To improve response time (especially for embedded applications, where
15640@value{GDBN} may be restricted to a slow serial line for this search)
15641you may want to limit the size of this search, using one of these
15642commands:
104c1213 15643
8e04817f
AC
15644@table @code
15645@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15646@item set heuristic-fence-post @var{limit}
15647Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15648search for the beginning of a function. A value of @var{0} (the
15649default) means there is no limit. However, except for @var{0}, the
15650larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15651and therefore the longer it takes to run. You should only need to use
15652this command when debugging a stripped executable.
104c1213 15653
8e04817f
AC
15654@item show heuristic-fence-post
15655Display the current limit.
15656@end table
104c1213
JM
15657
15658@noindent
8e04817f
AC
15659These commands are available @emph{only} when @value{GDBN} is configured
15660for debugging programs on Alpha or MIPS processors.
104c1213 15661
a64548ea
EZ
15662Several MIPS-specific commands are available when debugging MIPS
15663programs:
15664
15665@table @code
a64548ea
EZ
15666@item set mips abi @var{arg}
15667@kindex set mips abi
15668@cindex set ABI for MIPS
15669Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15670values of @var{arg} are:
15671
15672@table @samp
15673@item auto
15674The default ABI associated with the current binary (this is the
15675default).
15676@item o32
15677@item o64
15678@item n32
15679@item n64
15680@item eabi32
15681@item eabi64
15682@item auto
15683@end table
15684
15685@item show mips abi
15686@kindex show mips abi
15687Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15688
15689@item set mipsfpu
15690@itemx show mipsfpu
15691@xref{MIPS Embedded, set mipsfpu}.
15692
15693@item set mips mask-address @var{arg}
15694@kindex set mips mask-address
15695@cindex MIPS addresses, masking
15696This command determines whether the most-significant 32 bits of 64-bit
15697MIPS addresses are masked off. The argument @var{arg} can be
15698@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15699setting, which lets @value{GDBN} determine the correct value.
15700
15701@item show mips mask-address
15702@kindex show mips mask-address
15703Show whether the upper 32 bits of MIPS addresses are masked off or
15704not.
15705
15706@item set remote-mips64-transfers-32bit-regs
15707@kindex set remote-mips64-transfers-32bit-regs
15708This command controls compatibility with 64-bit MIPS targets that
15709transfer data in 32-bit quantities. If you have an old MIPS 64 target
15710that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15711and 64 bits for other registers, set this option to @samp{on}.
15712
15713@item show remote-mips64-transfers-32bit-regs
15714@kindex show remote-mips64-transfers-32bit-regs
15715Show the current setting of compatibility with older MIPS 64 targets.
15716
15717@item set debug mips
15718@kindex set debug mips
15719This command turns on and off debugging messages for the MIPS-specific
15720target code in @value{GDBN}.
15721
15722@item show debug mips
15723@kindex show debug mips
15724Show the current setting of MIPS debugging messages.
15725@end table
15726
15727
15728@node HPPA
15729@subsection HPPA
15730@cindex HPPA support
15731
d3e8051b 15732When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15733following special commands:
15734
15735@table @code
15736@item set debug hppa
15737@kindex set debug hppa
db2e3e2e 15738This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15739messages are to be displayed.
15740
15741@item show debug hppa
15742Show whether HPPA debugging messages are displayed.
15743
15744@item maint print unwind @var{address}
15745@kindex maint print unwind@r{, HPPA}
15746This command displays the contents of the unwind table entry at the
15747given @var{address}.
15748
15749@end table
15750
104c1213 15751
23d964e7
UW
15752@node SPU
15753@subsection Cell Broadband Engine SPU architecture
15754@cindex Cell Broadband Engine
15755@cindex SPU
15756
15757When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15758it provides the following special commands:
15759
15760@table @code
15761@item info spu event
15762@kindex info spu
15763Display SPU event facility status. Shows current event mask
15764and pending event status.
15765
15766@item info spu signal
15767Display SPU signal notification facility status. Shows pending
15768signal-control word and signal notification mode of both signal
15769notification channels.
15770
15771@item info spu mailbox
15772Display SPU mailbox facility status. Shows all pending entries,
15773in order of processing, in each of the SPU Write Outbound,
15774SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15775
15776@item info spu dma
15777Display MFC DMA status. Shows all pending commands in the MFC
15778DMA queue. For each entry, opcode, tag, class IDs, effective
15779and local store addresses and transfer size are shown.
15780
15781@item info spu proxydma
15782Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15783Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15784and local store addresses and transfer size are shown.
15785
15786@end table
15787
4acd40f3
TJB
15788@node PowerPC
15789@subsection PowerPC
15790@cindex PowerPC architecture
15791
15792When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15793pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15794numbers stored in the floating point registers. These values must be stored
15795in two consecutive registers, always starting at an even register like
15796@code{f0} or @code{f2}.
15797
15798The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15799by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15800@code{f2} and @code{f3} for @code{$dl1} and so on.
15801
23d964e7 15802
8e04817f
AC
15803@node Controlling GDB
15804@chapter Controlling @value{GDBN}
15805
15806You can alter the way @value{GDBN} interacts with you by using the
15807@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15808data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15809described here.
15810
15811@menu
15812* Prompt:: Prompt
15813* Editing:: Command editing
d620b259 15814* Command History:: Command history
8e04817f
AC
15815* Screen Size:: Screen size
15816* Numbers:: Numbers
1e698235 15817* ABI:: Configuring the current ABI
8e04817f
AC
15818* Messages/Warnings:: Optional warnings and messages
15819* Debugging Output:: Optional messages about internal happenings
15820@end menu
15821
15822@node Prompt
15823@section Prompt
104c1213 15824
8e04817f 15825@cindex prompt
104c1213 15826
8e04817f
AC
15827@value{GDBN} indicates its readiness to read a command by printing a string
15828called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15829can change the prompt string with the @code{set prompt} command. For
15830instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15831the prompt in one of the @value{GDBN} sessions so that you can always tell
15832which one you are talking to.
104c1213 15833
8e04817f
AC
15834@emph{Note:} @code{set prompt} does not add a space for you after the
15835prompt you set. This allows you to set a prompt which ends in a space
15836or a prompt that does not.
104c1213 15837
8e04817f
AC
15838@table @code
15839@kindex set prompt
15840@item set prompt @var{newprompt}
15841Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15842
8e04817f
AC
15843@kindex show prompt
15844@item show prompt
15845Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15846@end table
15847
8e04817f 15848@node Editing
79a6e687 15849@section Command Editing
8e04817f
AC
15850@cindex readline
15851@cindex command line editing
104c1213 15852
703663ab 15853@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15854@sc{gnu} library provides consistent behavior for programs which provide a
15855command line interface to the user. Advantages are @sc{gnu} Emacs-style
15856or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15857substitution, and a storage and recall of command history across
15858debugging sessions.
104c1213 15859
8e04817f
AC
15860You may control the behavior of command line editing in @value{GDBN} with the
15861command @code{set}.
104c1213 15862
8e04817f
AC
15863@table @code
15864@kindex set editing
15865@cindex editing
15866@item set editing
15867@itemx set editing on
15868Enable command line editing (enabled by default).
104c1213 15869
8e04817f
AC
15870@item set editing off
15871Disable command line editing.
104c1213 15872
8e04817f
AC
15873@kindex show editing
15874@item show editing
15875Show whether command line editing is enabled.
104c1213
JM
15876@end table
15877
703663ab
EZ
15878@xref{Command Line Editing}, for more details about the Readline
15879interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15880encouraged to read that chapter.
15881
d620b259 15882@node Command History
79a6e687 15883@section Command History
703663ab 15884@cindex command history
8e04817f
AC
15885
15886@value{GDBN} can keep track of the commands you type during your
15887debugging sessions, so that you can be certain of precisely what
15888happened. Use these commands to manage the @value{GDBN} command
15889history facility.
104c1213 15890
703663ab
EZ
15891@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15892package, to provide the history facility. @xref{Using History
15893Interactively}, for the detailed description of the History library.
15894
d620b259 15895To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15896the state which is seen by users, prefix it with @samp{server }
15897(@pxref{Server Prefix}). This
d620b259
NR
15898means that this command will not affect the command history, nor will it
15899affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15900pressed on a line by itself.
15901
15902@cindex @code{server}, command prefix
15903The server prefix does not affect the recording of values into the value
15904history; to print a value without recording it into the value history,
15905use the @code{output} command instead of the @code{print} command.
15906
703663ab
EZ
15907Here is the description of @value{GDBN} commands related to command
15908history.
15909
104c1213 15910@table @code
8e04817f
AC
15911@cindex history substitution
15912@cindex history file
15913@kindex set history filename
4644b6e3 15914@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15915@item set history filename @var{fname}
15916Set the name of the @value{GDBN} command history file to @var{fname}.
15917This is the file where @value{GDBN} reads an initial command history
15918list, and where it writes the command history from this session when it
15919exits. You can access this list through history expansion or through
15920the history command editing characters listed below. This file defaults
15921to the value of the environment variable @code{GDBHISTFILE}, or to
15922@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15923is not set.
104c1213 15924
9c16f35a
EZ
15925@cindex save command history
15926@kindex set history save
8e04817f
AC
15927@item set history save
15928@itemx set history save on
15929Record command history in a file, whose name may be specified with the
15930@code{set history filename} command. By default, this option is disabled.
104c1213 15931
8e04817f
AC
15932@item set history save off
15933Stop recording command history in a file.
104c1213 15934
8e04817f 15935@cindex history size
9c16f35a 15936@kindex set history size
6fc08d32 15937@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15938@item set history size @var{size}
15939Set the number of commands which @value{GDBN} keeps in its history list.
15940This defaults to the value of the environment variable
15941@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15942@end table
15943
8e04817f 15944History expansion assigns special meaning to the character @kbd{!}.
703663ab 15945@xref{Event Designators}, for more details.
8e04817f 15946
703663ab 15947@cindex history expansion, turn on/off
8e04817f
AC
15948Since @kbd{!} is also the logical not operator in C, history expansion
15949is off by default. If you decide to enable history expansion with the
15950@code{set history expansion on} command, you may sometimes need to
15951follow @kbd{!} (when it is used as logical not, in an expression) with
15952a space or a tab to prevent it from being expanded. The readline
15953history facilities do not attempt substitution on the strings
15954@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15955
15956The commands to control history expansion are:
104c1213
JM
15957
15958@table @code
8e04817f
AC
15959@item set history expansion on
15960@itemx set history expansion
703663ab 15961@kindex set history expansion
8e04817f 15962Enable history expansion. History expansion is off by default.
104c1213 15963
8e04817f
AC
15964@item set history expansion off
15965Disable history expansion.
104c1213 15966
8e04817f
AC
15967@c @group
15968@kindex show history
15969@item show history
15970@itemx show history filename
15971@itemx show history save
15972@itemx show history size
15973@itemx show history expansion
15974These commands display the state of the @value{GDBN} history parameters.
15975@code{show history} by itself displays all four states.
15976@c @end group
15977@end table
15978
15979@table @code
9c16f35a
EZ
15980@kindex show commands
15981@cindex show last commands
15982@cindex display command history
8e04817f
AC
15983@item show commands
15984Display the last ten commands in the command history.
104c1213 15985
8e04817f
AC
15986@item show commands @var{n}
15987Print ten commands centered on command number @var{n}.
15988
15989@item show commands +
15990Print ten commands just after the commands last printed.
104c1213
JM
15991@end table
15992
8e04817f 15993@node Screen Size
79a6e687 15994@section Screen Size
8e04817f
AC
15995@cindex size of screen
15996@cindex pauses in output
104c1213 15997
8e04817f
AC
15998Certain commands to @value{GDBN} may produce large amounts of
15999information output to the screen. To help you read all of it,
16000@value{GDBN} pauses and asks you for input at the end of each page of
16001output. Type @key{RET} when you want to continue the output, or @kbd{q}
16002to discard the remaining output. Also, the screen width setting
16003determines when to wrap lines of output. Depending on what is being
16004printed, @value{GDBN} tries to break the line at a readable place,
16005rather than simply letting it overflow onto the following line.
16006
16007Normally @value{GDBN} knows the size of the screen from the terminal
16008driver software. For example, on Unix @value{GDBN} uses the termcap data base
16009together with the value of the @code{TERM} environment variable and the
16010@code{stty rows} and @code{stty cols} settings. If this is not correct,
16011you can override it with the @code{set height} and @code{set
16012width} commands:
16013
16014@table @code
16015@kindex set height
16016@kindex set width
16017@kindex show width
16018@kindex show height
16019@item set height @var{lpp}
16020@itemx show height
16021@itemx set width @var{cpl}
16022@itemx show width
16023These @code{set} commands specify a screen height of @var{lpp} lines and
16024a screen width of @var{cpl} characters. The associated @code{show}
16025commands display the current settings.
104c1213 16026
8e04817f
AC
16027If you specify a height of zero lines, @value{GDBN} does not pause during
16028output no matter how long the output is. This is useful if output is to a
16029file or to an editor buffer.
104c1213 16030
8e04817f
AC
16031Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16032from wrapping its output.
9c16f35a
EZ
16033
16034@item set pagination on
16035@itemx set pagination off
16036@kindex set pagination
16037Turn the output pagination on or off; the default is on. Turning
16038pagination off is the alternative to @code{set height 0}.
16039
16040@item show pagination
16041@kindex show pagination
16042Show the current pagination mode.
104c1213
JM
16043@end table
16044
8e04817f
AC
16045@node Numbers
16046@section Numbers
16047@cindex number representation
16048@cindex entering numbers
104c1213 16049
8e04817f
AC
16050You can always enter numbers in octal, decimal, or hexadecimal in
16051@value{GDBN} by the usual conventions: octal numbers begin with
16052@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16053begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16054@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1605510; likewise, the default display for numbers---when no particular
16056format is specified---is base 10. You can change the default base for
16057both input and output with the commands described below.
104c1213 16058
8e04817f
AC
16059@table @code
16060@kindex set input-radix
16061@item set input-radix @var{base}
16062Set the default base for numeric input. Supported choices
16063for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16064specified either unambiguously or using the current input radix; for
8e04817f 16065example, any of
104c1213 16066
8e04817f 16067@smallexample
9c16f35a
EZ
16068set input-radix 012
16069set input-radix 10.
16070set input-radix 0xa
8e04817f 16071@end smallexample
104c1213 16072
8e04817f 16073@noindent
9c16f35a 16074sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16075leaves the input radix unchanged, no matter what it was, since
16076@samp{10}, being without any leading or trailing signs of its base, is
16077interpreted in the current radix. Thus, if the current radix is 16,
16078@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16079change the radix.
104c1213 16080
8e04817f
AC
16081@kindex set output-radix
16082@item set output-radix @var{base}
16083Set the default base for numeric display. Supported choices
16084for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16085specified either unambiguously or using the current input radix.
104c1213 16086
8e04817f
AC
16087@kindex show input-radix
16088@item show input-radix
16089Display the current default base for numeric input.
104c1213 16090
8e04817f
AC
16091@kindex show output-radix
16092@item show output-radix
16093Display the current default base for numeric display.
9c16f35a
EZ
16094
16095@item set radix @r{[}@var{base}@r{]}
16096@itemx show radix
16097@kindex set radix
16098@kindex show radix
16099These commands set and show the default base for both input and output
16100of numbers. @code{set radix} sets the radix of input and output to
16101the same base; without an argument, it resets the radix back to its
16102default value of 10.
16103
8e04817f 16104@end table
104c1213 16105
1e698235 16106@node ABI
79a6e687 16107@section Configuring the Current ABI
1e698235
DJ
16108
16109@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16110application automatically. However, sometimes you need to override its
16111conclusions. Use these commands to manage @value{GDBN}'s view of the
16112current ABI.
16113
98b45e30
DJ
16114@cindex OS ABI
16115@kindex set osabi
b4e9345d 16116@kindex show osabi
98b45e30
DJ
16117
16118One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16119system targets, either via remote debugging or native emulation.
98b45e30
DJ
16120@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16121but you can override its conclusion using the @code{set osabi} command.
16122One example where this is useful is in debugging of binaries which use
16123an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16124not have the same identifying marks that the standard C library for your
16125platform provides.
16126
16127@table @code
16128@item show osabi
16129Show the OS ABI currently in use.
16130
16131@item set osabi
16132With no argument, show the list of registered available OS ABI's.
16133
16134@item set osabi @var{abi}
16135Set the current OS ABI to @var{abi}.
16136@end table
16137
1e698235 16138@cindex float promotion
1e698235
DJ
16139
16140Generally, the way that an argument of type @code{float} is passed to a
16141function depends on whether the function is prototyped. For a prototyped
16142(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16143according to the architecture's convention for @code{float}. For unprototyped
16144(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16145@code{double} and then passed.
16146
16147Unfortunately, some forms of debug information do not reliably indicate whether
16148a function is prototyped. If @value{GDBN} calls a function that is not marked
16149as prototyped, it consults @kbd{set coerce-float-to-double}.
16150
16151@table @code
a8f24a35 16152@kindex set coerce-float-to-double
1e698235
DJ
16153@item set coerce-float-to-double
16154@itemx set coerce-float-to-double on
16155Arguments of type @code{float} will be promoted to @code{double} when passed
16156to an unprototyped function. This is the default setting.
16157
16158@item set coerce-float-to-double off
16159Arguments of type @code{float} will be passed directly to unprototyped
16160functions.
9c16f35a
EZ
16161
16162@kindex show coerce-float-to-double
16163@item show coerce-float-to-double
16164Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16165@end table
16166
f1212245
DJ
16167@kindex set cp-abi
16168@kindex show cp-abi
16169@value{GDBN} needs to know the ABI used for your program's C@t{++}
16170objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16171used to build your application. @value{GDBN} only fully supports
16172programs with a single C@t{++} ABI; if your program contains code using
16173multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16174program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16175Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16176before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16177``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16178use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16179``auto''.
16180
16181@table @code
16182@item show cp-abi
16183Show the C@t{++} ABI currently in use.
16184
16185@item set cp-abi
16186With no argument, show the list of supported C@t{++} ABI's.
16187
16188@item set cp-abi @var{abi}
16189@itemx set cp-abi auto
16190Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16191@end table
16192
8e04817f 16193@node Messages/Warnings
79a6e687 16194@section Optional Warnings and Messages
104c1213 16195
9c16f35a
EZ
16196@cindex verbose operation
16197@cindex optional warnings
8e04817f
AC
16198By default, @value{GDBN} is silent about its inner workings. If you are
16199running on a slow machine, you may want to use the @code{set verbose}
16200command. This makes @value{GDBN} tell you when it does a lengthy
16201internal operation, so you will not think it has crashed.
104c1213 16202
8e04817f
AC
16203Currently, the messages controlled by @code{set verbose} are those
16204which announce that the symbol table for a source file is being read;
79a6e687 16205see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16206
8e04817f
AC
16207@table @code
16208@kindex set verbose
16209@item set verbose on
16210Enables @value{GDBN} output of certain informational messages.
104c1213 16211
8e04817f
AC
16212@item set verbose off
16213Disables @value{GDBN} output of certain informational messages.
104c1213 16214
8e04817f
AC
16215@kindex show verbose
16216@item show verbose
16217Displays whether @code{set verbose} is on or off.
16218@end table
104c1213 16219
8e04817f
AC
16220By default, if @value{GDBN} encounters bugs in the symbol table of an
16221object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16222find this information useful (@pxref{Symbol Errors, ,Errors Reading
16223Symbol Files}).
104c1213 16224
8e04817f 16225@table @code
104c1213 16226
8e04817f
AC
16227@kindex set complaints
16228@item set complaints @var{limit}
16229Permits @value{GDBN} to output @var{limit} complaints about each type of
16230unusual symbols before becoming silent about the problem. Set
16231@var{limit} to zero to suppress all complaints; set it to a large number
16232to prevent complaints from being suppressed.
104c1213 16233
8e04817f
AC
16234@kindex show complaints
16235@item show complaints
16236Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16237
8e04817f 16238@end table
104c1213 16239
8e04817f
AC
16240By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16241lot of stupid questions to confirm certain commands. For example, if
16242you try to run a program which is already running:
104c1213 16243
474c8240 16244@smallexample
8e04817f
AC
16245(@value{GDBP}) run
16246The program being debugged has been started already.
16247Start it from the beginning? (y or n)
474c8240 16248@end smallexample
104c1213 16249
8e04817f
AC
16250If you are willing to unflinchingly face the consequences of your own
16251commands, you can disable this ``feature'':
104c1213 16252
8e04817f 16253@table @code
104c1213 16254
8e04817f
AC
16255@kindex set confirm
16256@cindex flinching
16257@cindex confirmation
16258@cindex stupid questions
16259@item set confirm off
16260Disables confirmation requests.
104c1213 16261
8e04817f
AC
16262@item set confirm on
16263Enables confirmation requests (the default).
104c1213 16264
8e04817f
AC
16265@kindex show confirm
16266@item show confirm
16267Displays state of confirmation requests.
16268
16269@end table
104c1213 16270
16026cd7
AS
16271@cindex command tracing
16272If you need to debug user-defined commands or sourced files you may find it
16273useful to enable @dfn{command tracing}. In this mode each command will be
16274printed as it is executed, prefixed with one or more @samp{+} symbols, the
16275quantity denoting the call depth of each command.
16276
16277@table @code
16278@kindex set trace-commands
16279@cindex command scripts, debugging
16280@item set trace-commands on
16281Enable command tracing.
16282@item set trace-commands off
16283Disable command tracing.
16284@item show trace-commands
16285Display the current state of command tracing.
16286@end table
16287
8e04817f 16288@node Debugging Output
79a6e687 16289@section Optional Messages about Internal Happenings
4644b6e3
EZ
16290@cindex optional debugging messages
16291
da316a69
EZ
16292@value{GDBN} has commands that enable optional debugging messages from
16293various @value{GDBN} subsystems; normally these commands are of
16294interest to @value{GDBN} maintainers, or when reporting a bug. This
16295section documents those commands.
16296
104c1213 16297@table @code
a8f24a35
EZ
16298@kindex set exec-done-display
16299@item set exec-done-display
16300Turns on or off the notification of asynchronous commands'
16301completion. When on, @value{GDBN} will print a message when an
16302asynchronous command finishes its execution. The default is off.
16303@kindex show exec-done-display
16304@item show exec-done-display
16305Displays the current setting of asynchronous command completion
16306notification.
4644b6e3
EZ
16307@kindex set debug
16308@cindex gdbarch debugging info
a8f24a35 16309@cindex architecture debugging info
8e04817f 16310@item set debug arch
a8f24a35 16311Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16312@kindex show debug
8e04817f
AC
16313@item show debug arch
16314Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16315@item set debug aix-thread
16316@cindex AIX threads
16317Display debugging messages about inner workings of the AIX thread
16318module.
16319@item show debug aix-thread
16320Show the current state of AIX thread debugging info display.
8e04817f 16321@item set debug event
4644b6e3 16322@cindex event debugging info
a8f24a35 16323Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16324default is off.
8e04817f
AC
16325@item show debug event
16326Displays the current state of displaying @value{GDBN} event debugging
16327info.
8e04817f 16328@item set debug expression
4644b6e3 16329@cindex expression debugging info
721c2651
EZ
16330Turns on or off display of debugging info about @value{GDBN}
16331expression parsing. The default is off.
8e04817f 16332@item show debug expression
721c2651
EZ
16333Displays the current state of displaying debugging info about
16334@value{GDBN} expression parsing.
7453dc06 16335@item set debug frame
4644b6e3 16336@cindex frame debugging info
7453dc06
AC
16337Turns on or off display of @value{GDBN} frame debugging info. The
16338default is off.
7453dc06
AC
16339@item show debug frame
16340Displays the current state of displaying @value{GDBN} frame debugging
16341info.
30e91e0b
RC
16342@item set debug infrun
16343@cindex inferior debugging info
16344Turns on or off display of @value{GDBN} debugging info for running the inferior.
16345The default is off. @file{infrun.c} contains GDB's runtime state machine used
16346for implementing operations such as single-stepping the inferior.
16347@item show debug infrun
16348Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16349@item set debug lin-lwp
16350@cindex @sc{gnu}/Linux LWP debug messages
16351@cindex Linux lightweight processes
721c2651 16352Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16353@item show debug lin-lwp
16354Show the current state of Linux LWP debugging messages.
2b4855ab 16355@item set debug observer
4644b6e3 16356@cindex observer debugging info
2b4855ab
AC
16357Turns on or off display of @value{GDBN} observer debugging. This
16358includes info such as the notification of observable events.
2b4855ab
AC
16359@item show debug observer
16360Displays the current state of observer debugging.
8e04817f 16361@item set debug overload
4644b6e3 16362@cindex C@t{++} overload debugging info
8e04817f 16363Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16364info. This includes info such as ranking of functions, etc. The default
8e04817f 16365is off.
8e04817f
AC
16366@item show debug overload
16367Displays the current state of displaying @value{GDBN} C@t{++} overload
16368debugging info.
8e04817f
AC
16369@cindex packets, reporting on stdout
16370@cindex serial connections, debugging
605a56cb
DJ
16371@cindex debug remote protocol
16372@cindex remote protocol debugging
16373@cindex display remote packets
8e04817f
AC
16374@item set debug remote
16375Turns on or off display of reports on all packets sent back and forth across
16376the serial line to the remote machine. The info is printed on the
16377@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16378@item show debug remote
16379Displays the state of display of remote packets.
8e04817f
AC
16380@item set debug serial
16381Turns on or off display of @value{GDBN} serial debugging info. The
16382default is off.
8e04817f
AC
16383@item show debug serial
16384Displays the current state of displaying @value{GDBN} serial debugging
16385info.
c45da7e6
EZ
16386@item set debug solib-frv
16387@cindex FR-V shared-library debugging
16388Turns on or off debugging messages for FR-V shared-library code.
16389@item show debug solib-frv
16390Display the current state of FR-V shared-library code debugging
16391messages.
8e04817f 16392@item set debug target
4644b6e3 16393@cindex target debugging info
8e04817f
AC
16394Turns on or off display of @value{GDBN} target debugging info. This info
16395includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16396default is 0. Set it to 1 to track events, and to 2 to also track the
16397value of large memory transfers. Changes to this flag do not take effect
16398until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16399@item show debug target
16400Displays the current state of displaying @value{GDBN} target debugging
16401info.
75feb17d
DJ
16402@item set debug timestamp
16403@cindex timestampping debugging info
16404Turns on or off display of timestamps with @value{GDBN} debugging info.
16405When enabled, seconds and microseconds are displayed before each debugging
16406message.
16407@item show debug timestamp
16408Displays the current state of displaying timestamps with @value{GDBN}
16409debugging info.
c45da7e6 16410@item set debugvarobj
4644b6e3 16411@cindex variable object debugging info
8e04817f
AC
16412Turns on or off display of @value{GDBN} variable object debugging
16413info. The default is off.
c45da7e6 16414@item show debugvarobj
8e04817f
AC
16415Displays the current state of displaying @value{GDBN} variable object
16416debugging info.
e776119f
DJ
16417@item set debug xml
16418@cindex XML parser debugging
16419Turns on or off debugging messages for built-in XML parsers.
16420@item show debug xml
16421Displays the current state of XML debugging messages.
8e04817f 16422@end table
104c1213 16423
8e04817f
AC
16424@node Sequences
16425@chapter Canned Sequences of Commands
104c1213 16426
8e04817f 16427Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16428Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16429commands for execution as a unit: user-defined commands and command
16430files.
104c1213 16431
8e04817f 16432@menu
fcc73fe3
EZ
16433* Define:: How to define your own commands
16434* Hooks:: Hooks for user-defined commands
16435* Command Files:: How to write scripts of commands to be stored in a file
16436* Output:: Commands for controlled output
8e04817f 16437@end menu
104c1213 16438
8e04817f 16439@node Define
79a6e687 16440@section User-defined Commands
104c1213 16441
8e04817f 16442@cindex user-defined command
fcc73fe3 16443@cindex arguments, to user-defined commands
8e04817f
AC
16444A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16445which you assign a new name as a command. This is done with the
16446@code{define} command. User commands may accept up to 10 arguments
16447separated by whitespace. Arguments are accessed within the user command
c03c782f 16448via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16449
8e04817f
AC
16450@smallexample
16451define adder
16452 print $arg0 + $arg1 + $arg2
c03c782f 16453end
8e04817f 16454@end smallexample
104c1213
JM
16455
16456@noindent
8e04817f 16457To execute the command use:
104c1213 16458
8e04817f
AC
16459@smallexample
16460adder 1 2 3
16461@end smallexample
104c1213 16462
8e04817f
AC
16463@noindent
16464This defines the command @code{adder}, which prints the sum of
16465its three arguments. Note the arguments are text substitutions, so they may
16466reference variables, use complex expressions, or even perform inferior
16467functions calls.
104c1213 16468
fcc73fe3
EZ
16469@cindex argument count in user-defined commands
16470@cindex how many arguments (user-defined commands)
c03c782f
AS
16471In addition, @code{$argc} may be used to find out how many arguments have
16472been passed. This expands to a number in the range 0@dots{}10.
16473
16474@smallexample
16475define adder
16476 if $argc == 2
16477 print $arg0 + $arg1
16478 end
16479 if $argc == 3
16480 print $arg0 + $arg1 + $arg2
16481 end
16482end
16483@end smallexample
16484
104c1213 16485@table @code
104c1213 16486
8e04817f
AC
16487@kindex define
16488@item define @var{commandname}
16489Define a command named @var{commandname}. If there is already a command
16490by that name, you are asked to confirm that you want to redefine it.
104c1213 16491
8e04817f
AC
16492The definition of the command is made up of other @value{GDBN} command lines,
16493which are given following the @code{define} command. The end of these
16494commands is marked by a line containing @code{end}.
104c1213 16495
8e04817f 16496@kindex document
ca91424e 16497@kindex end@r{ (user-defined commands)}
8e04817f
AC
16498@item document @var{commandname}
16499Document the user-defined command @var{commandname}, so that it can be
16500accessed by @code{help}. The command @var{commandname} must already be
16501defined. This command reads lines of documentation just as @code{define}
16502reads the lines of the command definition, ending with @code{end}.
16503After the @code{document} command is finished, @code{help} on command
16504@var{commandname} displays the documentation you have written.
104c1213 16505
8e04817f
AC
16506You may use the @code{document} command again to change the
16507documentation of a command. Redefining the command with @code{define}
16508does not change the documentation.
104c1213 16509
c45da7e6
EZ
16510@kindex dont-repeat
16511@cindex don't repeat command
16512@item dont-repeat
16513Used inside a user-defined command, this tells @value{GDBN} that this
16514command should not be repeated when the user hits @key{RET}
16515(@pxref{Command Syntax, repeat last command}).
16516
8e04817f
AC
16517@kindex help user-defined
16518@item help user-defined
16519List all user-defined commands, with the first line of the documentation
16520(if any) for each.
104c1213 16521
8e04817f
AC
16522@kindex show user
16523@item show user
16524@itemx show user @var{commandname}
16525Display the @value{GDBN} commands used to define @var{commandname} (but
16526not its documentation). If no @var{commandname} is given, display the
16527definitions for all user-defined commands.
104c1213 16528
fcc73fe3 16529@cindex infinite recursion in user-defined commands
20f01a46
DH
16530@kindex show max-user-call-depth
16531@kindex set max-user-call-depth
16532@item show max-user-call-depth
5ca0cb28
DH
16533@itemx set max-user-call-depth
16534The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16535levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16536infinite recursion and aborts the command.
104c1213
JM
16537@end table
16538
fcc73fe3
EZ
16539In addition to the above commands, user-defined commands frequently
16540use control flow commands, described in @ref{Command Files}.
16541
8e04817f
AC
16542When user-defined commands are executed, the
16543commands of the definition are not printed. An error in any command
16544stops execution of the user-defined command.
104c1213 16545
8e04817f
AC
16546If used interactively, commands that would ask for confirmation proceed
16547without asking when used inside a user-defined command. Many @value{GDBN}
16548commands that normally print messages to say what they are doing omit the
16549messages when used in a user-defined command.
104c1213 16550
8e04817f 16551@node Hooks
79a6e687 16552@section User-defined Command Hooks
8e04817f
AC
16553@cindex command hooks
16554@cindex hooks, for commands
16555@cindex hooks, pre-command
104c1213 16556
8e04817f 16557@kindex hook
8e04817f
AC
16558You may define @dfn{hooks}, which are a special kind of user-defined
16559command. Whenever you run the command @samp{foo}, if the user-defined
16560command @samp{hook-foo} exists, it is executed (with no arguments)
16561before that command.
104c1213 16562
8e04817f
AC
16563@cindex hooks, post-command
16564@kindex hookpost
8e04817f
AC
16565A hook may also be defined which is run after the command you executed.
16566Whenever you run the command @samp{foo}, if the user-defined command
16567@samp{hookpost-foo} exists, it is executed (with no arguments) after
16568that command. Post-execution hooks may exist simultaneously with
16569pre-execution hooks, for the same command.
104c1213 16570
8e04817f 16571It is valid for a hook to call the command which it hooks. If this
9f1c6395 16572occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16573
8e04817f
AC
16574@c It would be nice if hookpost could be passed a parameter indicating
16575@c if the command it hooks executed properly or not. FIXME!
104c1213 16576
8e04817f
AC
16577@kindex stop@r{, a pseudo-command}
16578In addition, a pseudo-command, @samp{stop} exists. Defining
16579(@samp{hook-stop}) makes the associated commands execute every time
16580execution stops in your program: before breakpoint commands are run,
16581displays are printed, or the stack frame is printed.
104c1213 16582
8e04817f
AC
16583For example, to ignore @code{SIGALRM} signals while
16584single-stepping, but treat them normally during normal execution,
16585you could define:
104c1213 16586
474c8240 16587@smallexample
8e04817f
AC
16588define hook-stop
16589handle SIGALRM nopass
16590end
104c1213 16591
8e04817f
AC
16592define hook-run
16593handle SIGALRM pass
16594end
104c1213 16595
8e04817f 16596define hook-continue
d3e8051b 16597handle SIGALRM pass
8e04817f 16598end
474c8240 16599@end smallexample
104c1213 16600
d3e8051b 16601As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16602command, and to add extra text to the beginning and end of the message,
8e04817f 16603you could define:
104c1213 16604
474c8240 16605@smallexample
8e04817f
AC
16606define hook-echo
16607echo <<<---
16608end
104c1213 16609
8e04817f
AC
16610define hookpost-echo
16611echo --->>>\n
16612end
104c1213 16613
8e04817f
AC
16614(@value{GDBP}) echo Hello World
16615<<<---Hello World--->>>
16616(@value{GDBP})
104c1213 16617
474c8240 16618@end smallexample
104c1213 16619
8e04817f
AC
16620You can define a hook for any single-word command in @value{GDBN}, but
16621not for command aliases; you should define a hook for the basic command
c1468174 16622name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16623@c FIXME! So how does Joe User discover whether a command is an alias
16624@c or not?
16625If an error occurs during the execution of your hook, execution of
16626@value{GDBN} commands stops and @value{GDBN} issues a prompt
16627(before the command that you actually typed had a chance to run).
104c1213 16628
8e04817f
AC
16629If you try to define a hook which does not match any known command, you
16630get a warning from the @code{define} command.
c906108c 16631
8e04817f 16632@node Command Files
79a6e687 16633@section Command Files
c906108c 16634
8e04817f 16635@cindex command files
fcc73fe3 16636@cindex scripting commands
6fc08d32
EZ
16637A command file for @value{GDBN} is a text file made of lines that are
16638@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16639also be included. An empty line in a command file does nothing; it
16640does not mean to repeat the last command, as it would from the
16641terminal.
c906108c 16642
6fc08d32
EZ
16643You can request the execution of a command file with the @code{source}
16644command:
c906108c 16645
8e04817f
AC
16646@table @code
16647@kindex source
ca91424e 16648@cindex execute commands from a file
16026cd7 16649@item source [@code{-v}] @var{filename}
8e04817f 16650Execute the command file @var{filename}.
c906108c
SS
16651@end table
16652
fcc73fe3
EZ
16653The lines in a command file are generally executed sequentially,
16654unless the order of execution is changed by one of the
16655@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16656printed as they are executed. An error in any command terminates
16657execution of the command file and control is returned to the console.
c906108c 16658
4b505b12
AS
16659@value{GDBN} searches for @var{filename} in the current directory and then
16660on the search path (specified with the @samp{directory} command).
16661
16026cd7
AS
16662If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16663each command as it is executed. The option must be given before
16664@var{filename}, and is interpreted as part of the filename anywhere else.
16665
8e04817f
AC
16666Commands that would ask for confirmation if used interactively proceed
16667without asking when used in a command file. Many @value{GDBN} commands that
16668normally print messages to say what they are doing omit the messages
16669when called from command files.
c906108c 16670
8e04817f
AC
16671@value{GDBN} also accepts command input from standard input. In this
16672mode, normal output goes to standard output and error output goes to
16673standard error. Errors in a command file supplied on standard input do
6fc08d32 16674not terminate execution of the command file---execution continues with
8e04817f 16675the next command.
c906108c 16676
474c8240 16677@smallexample
8e04817f 16678gdb < cmds > log 2>&1
474c8240 16679@end smallexample
c906108c 16680
8e04817f
AC
16681(The syntax above will vary depending on the shell used.) This example
16682will execute commands from the file @file{cmds}. All output and errors
16683would be directed to @file{log}.
c906108c 16684
fcc73fe3
EZ
16685Since commands stored on command files tend to be more general than
16686commands typed interactively, they frequently need to deal with
16687complicated situations, such as different or unexpected values of
16688variables and symbols, changes in how the program being debugged is
16689built, etc. @value{GDBN} provides a set of flow-control commands to
16690deal with these complexities. Using these commands, you can write
16691complex scripts that loop over data structures, execute commands
16692conditionally, etc.
16693
16694@table @code
16695@kindex if
16696@kindex else
16697@item if
16698@itemx else
16699This command allows to include in your script conditionally executed
16700commands. The @code{if} command takes a single argument, which is an
16701expression to evaluate. It is followed by a series of commands that
16702are executed only if the expression is true (its value is nonzero).
16703There can then optionally be an @code{else} line, followed by a series
16704of commands that are only executed if the expression was false. The
16705end of the list is marked by a line containing @code{end}.
16706
16707@kindex while
16708@item while
16709This command allows to write loops. Its syntax is similar to
16710@code{if}: the command takes a single argument, which is an expression
16711to evaluate, and must be followed by the commands to execute, one per
16712line, terminated by an @code{end}. These commands are called the
16713@dfn{body} of the loop. The commands in the body of @code{while} are
16714executed repeatedly as long as the expression evaluates to true.
16715
16716@kindex loop_break
16717@item loop_break
16718This command exits the @code{while} loop in whose body it is included.
16719Execution of the script continues after that @code{while}s @code{end}
16720line.
16721
16722@kindex loop_continue
16723@item loop_continue
16724This command skips the execution of the rest of the body of commands
16725in the @code{while} loop in whose body it is included. Execution
16726branches to the beginning of the @code{while} loop, where it evaluates
16727the controlling expression.
ca91424e
EZ
16728
16729@kindex end@r{ (if/else/while commands)}
16730@item end
16731Terminate the block of commands that are the body of @code{if},
16732@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16733@end table
16734
16735
8e04817f 16736@node Output
79a6e687 16737@section Commands for Controlled Output
c906108c 16738
8e04817f
AC
16739During the execution of a command file or a user-defined command, normal
16740@value{GDBN} output is suppressed; the only output that appears is what is
16741explicitly printed by the commands in the definition. This section
16742describes three commands useful for generating exactly the output you
16743want.
c906108c
SS
16744
16745@table @code
8e04817f
AC
16746@kindex echo
16747@item echo @var{text}
16748@c I do not consider backslash-space a standard C escape sequence
16749@c because it is not in ANSI.
16750Print @var{text}. Nonprinting characters can be included in
16751@var{text} using C escape sequences, such as @samp{\n} to print a
16752newline. @strong{No newline is printed unless you specify one.}
16753In addition to the standard C escape sequences, a backslash followed
16754by a space stands for a space. This is useful for displaying a
16755string with spaces at the beginning or the end, since leading and
16756trailing spaces are otherwise trimmed from all arguments.
16757To print @samp{@w{ }and foo =@w{ }}, use the command
16758@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16759
8e04817f
AC
16760A backslash at the end of @var{text} can be used, as in C, to continue
16761the command onto subsequent lines. For example,
c906108c 16762
474c8240 16763@smallexample
8e04817f
AC
16764echo This is some text\n\
16765which is continued\n\
16766onto several lines.\n
474c8240 16767@end smallexample
c906108c 16768
8e04817f 16769produces the same output as
c906108c 16770
474c8240 16771@smallexample
8e04817f
AC
16772echo This is some text\n
16773echo which is continued\n
16774echo onto several lines.\n
474c8240 16775@end smallexample
c906108c 16776
8e04817f
AC
16777@kindex output
16778@item output @var{expression}
16779Print the value of @var{expression} and nothing but that value: no
16780newlines, no @samp{$@var{nn} = }. The value is not entered in the
16781value history either. @xref{Expressions, ,Expressions}, for more information
16782on expressions.
c906108c 16783
8e04817f
AC
16784@item output/@var{fmt} @var{expression}
16785Print the value of @var{expression} in format @var{fmt}. You can use
16786the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16787Formats}, for more information.
c906108c 16788
8e04817f 16789@kindex printf
82160952
EZ
16790@item printf @var{template}, @var{expressions}@dots{}
16791Print the values of one or more @var{expressions} under the control of
16792the string @var{template}. To print several values, make
16793@var{expressions} be a comma-separated list of individual expressions,
16794which may be either numbers or pointers. Their values are printed as
16795specified by @var{template}, exactly as a C program would do by
16796executing the code below:
c906108c 16797
474c8240 16798@smallexample
82160952 16799printf (@var{template}, @var{expressions}@dots{});
474c8240 16800@end smallexample
c906108c 16801
82160952
EZ
16802As in @code{C} @code{printf}, ordinary characters in @var{template}
16803are printed verbatim, while @dfn{conversion specification} introduced
16804by the @samp{%} character cause subsequent @var{expressions} to be
16805evaluated, their values converted and formatted according to type and
16806style information encoded in the conversion specifications, and then
16807printed.
16808
8e04817f 16809For example, you can print two values in hex like this:
c906108c 16810
8e04817f
AC
16811@smallexample
16812printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16813@end smallexample
c906108c 16814
82160952
EZ
16815@code{printf} supports all the standard @code{C} conversion
16816specifications, including the flags and modifiers between the @samp{%}
16817character and the conversion letter, with the following exceptions:
16818
16819@itemize @bullet
16820@item
16821The argument-ordering modifiers, such as @samp{2$}, are not supported.
16822
16823@item
16824The modifier @samp{*} is not supported for specifying precision or
16825width.
16826
16827@item
16828The @samp{'} flag (for separation of digits into groups according to
16829@code{LC_NUMERIC'}) is not supported.
16830
16831@item
16832The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16833supported.
16834
16835@item
16836The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16837
16838@item
16839The conversion letters @samp{a} and @samp{A} are not supported.
16840@end itemize
16841
16842@noindent
16843Note that the @samp{ll} type modifier is supported only if the
16844underlying @code{C} implementation used to build @value{GDBN} supports
16845the @code{long long int} type, and the @samp{L} type modifier is
16846supported only if @code{long double} type is available.
16847
16848As in @code{C}, @code{printf} supports simple backslash-escape
16849sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16850@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16851single character. Octal and hexadecimal escape sequences are not
16852supported.
1a619819
LM
16853
16854Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16855(@dfn{Decimal Floating Point}) types using the following length modifiers
16856together with a floating point specifier.
1a619819
LM
16857letters:
16858
16859@itemize @bullet
16860@item
16861@samp{H} for printing @code{Decimal32} types.
16862
16863@item
16864@samp{D} for printing @code{Decimal64} types.
16865
16866@item
16867@samp{DD} for printing @code{Decimal128} types.
16868@end itemize
16869
16870If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16871support for the three length modifiers for DFP types, other modifiers
3b784c4f 16872such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16873
16874In case there is no such @code{C} support, no additional modifiers will be
16875available and the value will be printed in the standard way.
16876
16877Here's an example of printing DFP types using the above conversion letters:
16878@smallexample
0aea4bf3 16879printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16880@end smallexample
16881
c906108c
SS
16882@end table
16883
21c294e6
AC
16884@node Interpreters
16885@chapter Command Interpreters
16886@cindex command interpreters
16887
16888@value{GDBN} supports multiple command interpreters, and some command
16889infrastructure to allow users or user interface writers to switch
16890between interpreters or run commands in other interpreters.
16891
16892@value{GDBN} currently supports two command interpreters, the console
16893interpreter (sometimes called the command-line interpreter or @sc{cli})
16894and the machine interface interpreter (or @sc{gdb/mi}). This manual
16895describes both of these interfaces in great detail.
16896
16897By default, @value{GDBN} will start with the console interpreter.
16898However, the user may choose to start @value{GDBN} with another
16899interpreter by specifying the @option{-i} or @option{--interpreter}
16900startup options. Defined interpreters include:
16901
16902@table @code
16903@item console
16904@cindex console interpreter
16905The traditional console or command-line interpreter. This is the most often
16906used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16907@value{GDBN} will use this interpreter.
16908
16909@item mi
16910@cindex mi interpreter
16911The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16912by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16913or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16914Interface}.
16915
16916@item mi2
16917@cindex mi2 interpreter
16918The current @sc{gdb/mi} interface.
16919
16920@item mi1
16921@cindex mi1 interpreter
16922The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16923
16924@end table
16925
16926@cindex invoke another interpreter
16927The interpreter being used by @value{GDBN} may not be dynamically
16928switched at runtime. Although possible, this could lead to a very
16929precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16930enters the command "interpreter-set console" in a console view,
16931@value{GDBN} would switch to using the console interpreter, rendering
16932the IDE inoperable!
16933
16934@kindex interpreter-exec
16935Although you may only choose a single interpreter at startup, you may execute
16936commands in any interpreter from the current interpreter using the appropriate
16937command. If you are running the console interpreter, simply use the
16938@code{interpreter-exec} command:
16939
16940@smallexample
16941interpreter-exec mi "-data-list-register-names"
16942@end smallexample
16943
16944@sc{gdb/mi} has a similar command, although it is only available in versions of
16945@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16946
8e04817f
AC
16947@node TUI
16948@chapter @value{GDBN} Text User Interface
16949@cindex TUI
d0d5df6f 16950@cindex Text User Interface
c906108c 16951
8e04817f
AC
16952@menu
16953* TUI Overview:: TUI overview
16954* TUI Keys:: TUI key bindings
7cf36c78 16955* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16956* TUI Commands:: TUI-specific commands
8e04817f
AC
16957* TUI Configuration:: TUI configuration variables
16958@end menu
c906108c 16959
46ba6afa 16960The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16961interface which uses the @code{curses} library to show the source
16962file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16963commands in separate text windows. The TUI mode is supported only
16964on platforms where a suitable version of the @code{curses} library
16965is available.
d0d5df6f 16966
46ba6afa
BW
16967@pindex @value{GDBTUI}
16968The TUI mode is enabled by default when you invoke @value{GDBN} as
16969either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16970You can also switch in and out of TUI mode while @value{GDBN} runs by
16971using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16972@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16973
8e04817f 16974@node TUI Overview
79a6e687 16975@section TUI Overview
c906108c 16976
46ba6afa 16977In TUI mode, @value{GDBN} can display several text windows:
c906108c 16978
8e04817f
AC
16979@table @emph
16980@item command
16981This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16982prompt and the @value{GDBN} output. The @value{GDBN} input is still
16983managed using readline.
c906108c 16984
8e04817f
AC
16985@item source
16986The source window shows the source file of the program. The current
46ba6afa 16987line and active breakpoints are displayed in this window.
c906108c 16988
8e04817f
AC
16989@item assembly
16990The assembly window shows the disassembly output of the program.
c906108c 16991
8e04817f 16992@item register
46ba6afa
BW
16993This window shows the processor registers. Registers are highlighted
16994when their values change.
c906108c
SS
16995@end table
16996
269c21fe 16997The source and assembly windows show the current program position
46ba6afa
BW
16998by highlighting the current line and marking it with a @samp{>} marker.
16999Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17000indicates the breakpoint type:
17001
17002@table @code
17003@item B
17004Breakpoint which was hit at least once.
17005
17006@item b
17007Breakpoint which was never hit.
17008
17009@item H
17010Hardware breakpoint which was hit at least once.
17011
17012@item h
17013Hardware breakpoint which was never hit.
269c21fe
SC
17014@end table
17015
17016The second marker indicates whether the breakpoint is enabled or not:
17017
17018@table @code
17019@item +
17020Breakpoint is enabled.
17021
17022@item -
17023Breakpoint is disabled.
269c21fe
SC
17024@end table
17025
46ba6afa
BW
17026The source, assembly and register windows are updated when the current
17027thread changes, when the frame changes, or when the program counter
17028changes.
17029
17030These windows are not all visible at the same time. The command
17031window is always visible. The others can be arranged in several
17032layouts:
c906108c 17033
8e04817f
AC
17034@itemize @bullet
17035@item
46ba6afa 17036source only,
2df3850c 17037
8e04817f 17038@item
46ba6afa 17039assembly only,
8e04817f
AC
17040
17041@item
46ba6afa 17042source and assembly,
8e04817f
AC
17043
17044@item
46ba6afa 17045source and registers, or
c906108c 17046
8e04817f 17047@item
46ba6afa 17048assembly and registers.
8e04817f 17049@end itemize
c906108c 17050
46ba6afa 17051A status line above the command window shows the following information:
b7bb15bc
SC
17052
17053@table @emph
17054@item target
46ba6afa 17055Indicates the current @value{GDBN} target.
b7bb15bc
SC
17056(@pxref{Targets, ,Specifying a Debugging Target}).
17057
17058@item process
46ba6afa 17059Gives the current process or thread number.
b7bb15bc
SC
17060When no process is being debugged, this field is set to @code{No process}.
17061
17062@item function
17063Gives the current function name for the selected frame.
17064The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17065When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17066the string @code{??} is displayed.
17067
17068@item line
17069Indicates the current line number for the selected frame.
46ba6afa 17070When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17071
17072@item pc
17073Indicates the current program counter address.
b7bb15bc
SC
17074@end table
17075
8e04817f
AC
17076@node TUI Keys
17077@section TUI Key Bindings
17078@cindex TUI key bindings
c906108c 17079
8e04817f 17080The TUI installs several key bindings in the readline keymaps
46ba6afa 17081(@pxref{Command Line Editing}). The following key bindings
8e04817f 17082are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17083
8e04817f
AC
17084@table @kbd
17085@kindex C-x C-a
17086@item C-x C-a
17087@kindex C-x a
17088@itemx C-x a
17089@kindex C-x A
17090@itemx C-x A
46ba6afa
BW
17091Enter or leave the TUI mode. When leaving the TUI mode,
17092the curses window management stops and @value{GDBN} operates using
17093its standard mode, writing on the terminal directly. When reentering
17094the TUI mode, control is given back to the curses windows.
8e04817f 17095The screen is then refreshed.
c906108c 17096
8e04817f
AC
17097@kindex C-x 1
17098@item C-x 1
17099Use a TUI layout with only one window. The layout will
17100either be @samp{source} or @samp{assembly}. When the TUI mode
17101is not active, it will switch to the TUI mode.
2df3850c 17102
8e04817f 17103Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17104
8e04817f
AC
17105@kindex C-x 2
17106@item C-x 2
17107Use a TUI layout with at least two windows. When the current
46ba6afa 17108layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17109When a new layout is chosen, one window will always be common to the
17110previous layout and the new one.
c906108c 17111
8e04817f 17112Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17113
72ffddc9
SC
17114@kindex C-x o
17115@item C-x o
17116Change the active window. The TUI associates several key bindings
46ba6afa 17117(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17118gives the focus to the next TUI window.
17119
17120Think of it as the Emacs @kbd{C-x o} binding.
17121
7cf36c78
SC
17122@kindex C-x s
17123@item C-x s
46ba6afa
BW
17124Switch in and out of the TUI SingleKey mode that binds single
17125keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17126@end table
17127
46ba6afa 17128The following key bindings only work in the TUI mode:
5d161b24 17129
46ba6afa 17130@table @asis
8e04817f 17131@kindex PgUp
46ba6afa 17132@item @key{PgUp}
8e04817f 17133Scroll the active window one page up.
c906108c 17134
8e04817f 17135@kindex PgDn
46ba6afa 17136@item @key{PgDn}
8e04817f 17137Scroll the active window one page down.
c906108c 17138
8e04817f 17139@kindex Up
46ba6afa 17140@item @key{Up}
8e04817f 17141Scroll the active window one line up.
c906108c 17142
8e04817f 17143@kindex Down
46ba6afa 17144@item @key{Down}
8e04817f 17145Scroll the active window one line down.
c906108c 17146
8e04817f 17147@kindex Left
46ba6afa 17148@item @key{Left}
8e04817f 17149Scroll the active window one column left.
c906108c 17150
8e04817f 17151@kindex Right
46ba6afa 17152@item @key{Right}
8e04817f 17153Scroll the active window one column right.
c906108c 17154
8e04817f 17155@kindex C-L
46ba6afa 17156@item @kbd{C-L}
8e04817f 17157Refresh the screen.
8e04817f 17158@end table
c906108c 17159
46ba6afa
BW
17160Because the arrow keys scroll the active window in the TUI mode, they
17161are not available for their normal use by readline unless the command
17162window has the focus. When another window is active, you must use
17163other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17164and @kbd{C-f} to control the command window.
8e04817f 17165
7cf36c78
SC
17166@node TUI Single Key Mode
17167@section TUI Single Key Mode
17168@cindex TUI single key mode
17169
46ba6afa
BW
17170The TUI also provides a @dfn{SingleKey} mode, which binds several
17171frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17172switch into this mode, where the following key bindings are used:
7cf36c78
SC
17173
17174@table @kbd
17175@kindex c @r{(SingleKey TUI key)}
17176@item c
17177continue
17178
17179@kindex d @r{(SingleKey TUI key)}
17180@item d
17181down
17182
17183@kindex f @r{(SingleKey TUI key)}
17184@item f
17185finish
17186
17187@kindex n @r{(SingleKey TUI key)}
17188@item n
17189next
17190
17191@kindex q @r{(SingleKey TUI key)}
17192@item q
46ba6afa 17193exit the SingleKey mode.
7cf36c78
SC
17194
17195@kindex r @r{(SingleKey TUI key)}
17196@item r
17197run
17198
17199@kindex s @r{(SingleKey TUI key)}
17200@item s
17201step
17202
17203@kindex u @r{(SingleKey TUI key)}
17204@item u
17205up
17206
17207@kindex v @r{(SingleKey TUI key)}
17208@item v
17209info locals
17210
17211@kindex w @r{(SingleKey TUI key)}
17212@item w
17213where
7cf36c78
SC
17214@end table
17215
17216Other keys temporarily switch to the @value{GDBN} command prompt.
17217The key that was pressed is inserted in the editing buffer so that
17218it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17219with the TUI SingleKey mode. Once the command is entered the TUI
17220SingleKey mode is restored. The only way to permanently leave
7f9087cb 17221this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17222
17223
8e04817f 17224@node TUI Commands
db2e3e2e 17225@section TUI-specific Commands
8e04817f
AC
17226@cindex TUI commands
17227
17228The TUI has specific commands to control the text windows.
46ba6afa
BW
17229These commands are always available, even when @value{GDBN} is not in
17230the TUI mode. When @value{GDBN} is in the standard mode, most
17231of these commands will automatically switch to the TUI mode.
c906108c
SS
17232
17233@table @code
3d757584
SC
17234@item info win
17235@kindex info win
17236List and give the size of all displayed windows.
17237
8e04817f 17238@item layout next
4644b6e3 17239@kindex layout
8e04817f 17240Display the next layout.
2df3850c 17241
8e04817f 17242@item layout prev
8e04817f 17243Display the previous layout.
c906108c 17244
8e04817f 17245@item layout src
8e04817f 17246Display the source window only.
c906108c 17247
8e04817f 17248@item layout asm
8e04817f 17249Display the assembly window only.
c906108c 17250
8e04817f 17251@item layout split
8e04817f 17252Display the source and assembly window.
c906108c 17253
8e04817f 17254@item layout regs
8e04817f
AC
17255Display the register window together with the source or assembly window.
17256
46ba6afa 17257@item focus next
8e04817f 17258@kindex focus
46ba6afa
BW
17259Make the next window active for scrolling.
17260
17261@item focus prev
17262Make the previous window active for scrolling.
17263
17264@item focus src
17265Make the source window active for scrolling.
17266
17267@item focus asm
17268Make the assembly window active for scrolling.
17269
17270@item focus regs
17271Make the register window active for scrolling.
17272
17273@item focus cmd
17274Make the command window active for scrolling.
c906108c 17275
8e04817f
AC
17276@item refresh
17277@kindex refresh
7f9087cb 17278Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17279
6a1b180d
SC
17280@item tui reg float
17281@kindex tui reg
17282Show the floating point registers in the register window.
17283
17284@item tui reg general
17285Show the general registers in the register window.
17286
17287@item tui reg next
17288Show the next register group. The list of register groups as well as
17289their order is target specific. The predefined register groups are the
17290following: @code{general}, @code{float}, @code{system}, @code{vector},
17291@code{all}, @code{save}, @code{restore}.
17292
17293@item tui reg system
17294Show the system registers in the register window.
17295
8e04817f
AC
17296@item update
17297@kindex update
17298Update the source window and the current execution point.
c906108c 17299
8e04817f
AC
17300@item winheight @var{name} +@var{count}
17301@itemx winheight @var{name} -@var{count}
17302@kindex winheight
17303Change the height of the window @var{name} by @var{count}
17304lines. Positive counts increase the height, while negative counts
17305decrease it.
2df3850c 17306
46ba6afa
BW
17307@item tabset @var{nchars}
17308@kindex tabset
c45da7e6 17309Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17310@end table
17311
8e04817f 17312@node TUI Configuration
79a6e687 17313@section TUI Configuration Variables
8e04817f 17314@cindex TUI configuration variables
c906108c 17315
46ba6afa 17316Several configuration variables control the appearance of TUI windows.
c906108c 17317
8e04817f
AC
17318@table @code
17319@item set tui border-kind @var{kind}
17320@kindex set tui border-kind
17321Select the border appearance for the source, assembly and register windows.
17322The possible values are the following:
17323@table @code
17324@item space
17325Use a space character to draw the border.
c906108c 17326
8e04817f 17327@item ascii
46ba6afa 17328Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17329
8e04817f
AC
17330@item acs
17331Use the Alternate Character Set to draw the border. The border is
17332drawn using character line graphics if the terminal supports them.
8e04817f 17333@end table
c78b4128 17334
8e04817f
AC
17335@item set tui border-mode @var{mode}
17336@kindex set tui border-mode
46ba6afa
BW
17337@itemx set tui active-border-mode @var{mode}
17338@kindex set tui active-border-mode
17339Select the display attributes for the borders of the inactive windows
17340or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17341@table @code
17342@item normal
17343Use normal attributes to display the border.
c906108c 17344
8e04817f
AC
17345@item standout
17346Use standout mode.
c906108c 17347
8e04817f
AC
17348@item reverse
17349Use reverse video mode.
c906108c 17350
8e04817f
AC
17351@item half
17352Use half bright mode.
c906108c 17353
8e04817f
AC
17354@item half-standout
17355Use half bright and standout mode.
c906108c 17356
8e04817f
AC
17357@item bold
17358Use extra bright or bold mode.
c78b4128 17359
8e04817f
AC
17360@item bold-standout
17361Use extra bright or bold and standout mode.
8e04817f 17362@end table
8e04817f 17363@end table
c78b4128 17364
8e04817f
AC
17365@node Emacs
17366@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17367
8e04817f
AC
17368@cindex Emacs
17369@cindex @sc{gnu} Emacs
17370A special interface allows you to use @sc{gnu} Emacs to view (and
17371edit) the source files for the program you are debugging with
17372@value{GDBN}.
c906108c 17373
8e04817f
AC
17374To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17375executable file you want to debug as an argument. This command starts
17376@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17377created Emacs buffer.
17378@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17379
5e252a2e 17380Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17381things:
c906108c 17382
8e04817f
AC
17383@itemize @bullet
17384@item
5e252a2e
NR
17385All ``terminal'' input and output goes through an Emacs buffer, called
17386the GUD buffer.
c906108c 17387
8e04817f
AC
17388This applies both to @value{GDBN} commands and their output, and to the input
17389and output done by the program you are debugging.
bf0184be 17390
8e04817f
AC
17391This is useful because it means that you can copy the text of previous
17392commands and input them again; you can even use parts of the output
17393in this way.
bf0184be 17394
8e04817f
AC
17395All the facilities of Emacs' Shell mode are available for interacting
17396with your program. In particular, you can send signals the usual
17397way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17398stop.
bf0184be
ND
17399
17400@item
8e04817f 17401@value{GDBN} displays source code through Emacs.
bf0184be 17402
8e04817f
AC
17403Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17404source file for that frame and puts an arrow (@samp{=>}) at the
17405left margin of the current line. Emacs uses a separate buffer for
17406source display, and splits the screen to show both your @value{GDBN} session
17407and the source.
bf0184be 17408
8e04817f
AC
17409Explicit @value{GDBN} @code{list} or search commands still produce output as
17410usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17411@end itemize
17412
17413We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17414a graphical mode, enabled by default, which provides further buffers
17415that can control the execution and describe the state of your program.
17416@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17417
64fabec2
AC
17418If you specify an absolute file name when prompted for the @kbd{M-x
17419gdb} argument, then Emacs sets your current working directory to where
17420your program resides. If you only specify the file name, then Emacs
17421sets your current working directory to to the directory associated
17422with the previous buffer. In this case, @value{GDBN} may find your
17423program by searching your environment's @code{PATH} variable, but on
17424some operating systems it might not find the source. So, although the
17425@value{GDBN} input and output session proceeds normally, the auxiliary
17426buffer does not display the current source and line of execution.
17427
17428The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17429line of the GUD buffer and this serves as a default for the commands
17430that specify files for @value{GDBN} to operate on. @xref{Files,
17431,Commands to Specify Files}.
64fabec2
AC
17432
17433By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17434need to call @value{GDBN} by a different name (for example, if you
17435keep several configurations around, with different names) you can
17436customize the Emacs variable @code{gud-gdb-command-name} to run the
17437one you want.
8e04817f 17438
5e252a2e 17439In the GUD buffer, you can use these special Emacs commands in
8e04817f 17440addition to the standard Shell mode commands:
c906108c 17441
8e04817f
AC
17442@table @kbd
17443@item C-h m
5e252a2e 17444Describe the features of Emacs' GUD Mode.
c906108c 17445
64fabec2 17446@item C-c C-s
8e04817f
AC
17447Execute to another source line, like the @value{GDBN} @code{step} command; also
17448update the display window to show the current file and location.
c906108c 17449
64fabec2 17450@item C-c C-n
8e04817f
AC
17451Execute to next source line in this function, skipping all function
17452calls, like the @value{GDBN} @code{next} command. Then update the display window
17453to show the current file and location.
c906108c 17454
64fabec2 17455@item C-c C-i
8e04817f
AC
17456Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17457display window accordingly.
c906108c 17458
8e04817f
AC
17459@item C-c C-f
17460Execute until exit from the selected stack frame, like the @value{GDBN}
17461@code{finish} command.
c906108c 17462
64fabec2 17463@item C-c C-r
8e04817f
AC
17464Continue execution of your program, like the @value{GDBN} @code{continue}
17465command.
b433d00b 17466
64fabec2 17467@item C-c <
8e04817f
AC
17468Go up the number of frames indicated by the numeric argument
17469(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17470like the @value{GDBN} @code{up} command.
b433d00b 17471
64fabec2 17472@item C-c >
8e04817f
AC
17473Go down the number of frames indicated by the numeric argument, like the
17474@value{GDBN} @code{down} command.
8e04817f 17475@end table
c906108c 17476
7f9087cb 17477In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17478tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17479
5e252a2e
NR
17480In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17481separate frame which shows a backtrace when the GUD buffer is current.
17482Move point to any frame in the stack and type @key{RET} to make it
17483become the current frame and display the associated source in the
17484source buffer. Alternatively, click @kbd{Mouse-2} to make the
17485selected frame become the current one. In graphical mode, the
17486speedbar displays watch expressions.
64fabec2 17487
8e04817f
AC
17488If you accidentally delete the source-display buffer, an easy way to get
17489it back is to type the command @code{f} in the @value{GDBN} buffer, to
17490request a frame display; when you run under Emacs, this recreates
17491the source buffer if necessary to show you the context of the current
17492frame.
c906108c 17493
8e04817f
AC
17494The source files displayed in Emacs are in ordinary Emacs buffers
17495which are visiting the source files in the usual way. You can edit
17496the files with these buffers if you wish; but keep in mind that @value{GDBN}
17497communicates with Emacs in terms of line numbers. If you add or
17498delete lines from the text, the line numbers that @value{GDBN} knows cease
17499to correspond properly with the code.
b383017d 17500
5e252a2e
NR
17501A more detailed description of Emacs' interaction with @value{GDBN} is
17502given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17503Emacs Manual}).
c906108c 17504
8e04817f
AC
17505@c The following dropped because Epoch is nonstandard. Reactivate
17506@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17507@ignore
17508@kindex Emacs Epoch environment
17509@kindex Epoch
17510@kindex inspect
c906108c 17511
8e04817f
AC
17512Version 18 of @sc{gnu} Emacs has a built-in window system
17513called the @code{epoch}
17514environment. Users of this environment can use a new command,
17515@code{inspect} which performs identically to @code{print} except that
17516each value is printed in its own window.
17517@end ignore
c906108c 17518
922fbb7b
AC
17519
17520@node GDB/MI
17521@chapter The @sc{gdb/mi} Interface
17522
17523@unnumberedsec Function and Purpose
17524
17525@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17526@sc{gdb/mi} is a line based machine oriented text interface to
17527@value{GDBN} and is activated by specifying using the
17528@option{--interpreter} command line option (@pxref{Mode Options}). It
17529is specifically intended to support the development of systems which
17530use the debugger as just one small component of a larger system.
922fbb7b
AC
17531
17532This chapter is a specification of the @sc{gdb/mi} interface. It is written
17533in the form of a reference manual.
17534
17535Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17536features described below are incomplete and subject to change
17537(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17538
17539@unnumberedsec Notation and Terminology
17540
17541@cindex notational conventions, for @sc{gdb/mi}
17542This chapter uses the following notation:
17543
17544@itemize @bullet
17545@item
17546@code{|} separates two alternatives.
17547
17548@item
17549@code{[ @var{something} ]} indicates that @var{something} is optional:
17550it may or may not be given.
17551
17552@item
17553@code{( @var{group} )*} means that @var{group} inside the parentheses
17554may repeat zero or more times.
17555
17556@item
17557@code{( @var{group} )+} means that @var{group} inside the parentheses
17558may repeat one or more times.
17559
17560@item
17561@code{"@var{string}"} means a literal @var{string}.
17562@end itemize
17563
17564@ignore
17565@heading Dependencies
17566@end ignore
17567
922fbb7b
AC
17568@menu
17569* GDB/MI Command Syntax::
17570* GDB/MI Compatibility with CLI::
af6eff6f 17571* GDB/MI Development and Front Ends::
922fbb7b 17572* GDB/MI Output Records::
ef21caaf 17573* GDB/MI Simple Examples::
922fbb7b 17574* GDB/MI Command Description Format::
ef21caaf 17575* GDB/MI Breakpoint Commands::
a2c02241
NR
17576* GDB/MI Program Context::
17577* GDB/MI Thread Commands::
17578* GDB/MI Program Execution::
17579* GDB/MI Stack Manipulation::
17580* GDB/MI Variable Objects::
922fbb7b 17581* GDB/MI Data Manipulation::
a2c02241
NR
17582* GDB/MI Tracepoint Commands::
17583* GDB/MI Symbol Query::
351ff01a 17584* GDB/MI File Commands::
922fbb7b
AC
17585@ignore
17586* GDB/MI Kod Commands::
17587* GDB/MI Memory Overlay Commands::
17588* GDB/MI Signal Handling Commands::
17589@end ignore
922fbb7b 17590* GDB/MI Target Manipulation::
a6b151f1 17591* GDB/MI File Transfer Commands::
ef21caaf 17592* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17593@end menu
17594
17595@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17596@node GDB/MI Command Syntax
17597@section @sc{gdb/mi} Command Syntax
17598
17599@menu
17600* GDB/MI Input Syntax::
17601* GDB/MI Output Syntax::
922fbb7b
AC
17602@end menu
17603
17604@node GDB/MI Input Syntax
17605@subsection @sc{gdb/mi} Input Syntax
17606
17607@cindex input syntax for @sc{gdb/mi}
17608@cindex @sc{gdb/mi}, input syntax
17609@table @code
17610@item @var{command} @expansion{}
17611@code{@var{cli-command} | @var{mi-command}}
17612
17613@item @var{cli-command} @expansion{}
17614@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17615@var{cli-command} is any existing @value{GDBN} CLI command.
17616
17617@item @var{mi-command} @expansion{}
17618@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17619@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17620
17621@item @var{token} @expansion{}
17622"any sequence of digits"
17623
17624@item @var{option} @expansion{}
17625@code{"-" @var{parameter} [ " " @var{parameter} ]}
17626
17627@item @var{parameter} @expansion{}
17628@code{@var{non-blank-sequence} | @var{c-string}}
17629
17630@item @var{operation} @expansion{}
17631@emph{any of the operations described in this chapter}
17632
17633@item @var{non-blank-sequence} @expansion{}
17634@emph{anything, provided it doesn't contain special characters such as
17635"-", @var{nl}, """ and of course " "}
17636
17637@item @var{c-string} @expansion{}
17638@code{""" @var{seven-bit-iso-c-string-content} """}
17639
17640@item @var{nl} @expansion{}
17641@code{CR | CR-LF}
17642@end table
17643
17644@noindent
17645Notes:
17646
17647@itemize @bullet
17648@item
17649The CLI commands are still handled by the @sc{mi} interpreter; their
17650output is described below.
17651
17652@item
17653The @code{@var{token}}, when present, is passed back when the command
17654finishes.
17655
17656@item
17657Some @sc{mi} commands accept optional arguments as part of the parameter
17658list. Each option is identified by a leading @samp{-} (dash) and may be
17659followed by an optional argument parameter. Options occur first in the
17660parameter list and can be delimited from normal parameters using
17661@samp{--} (this is useful when some parameters begin with a dash).
17662@end itemize
17663
17664Pragmatics:
17665
17666@itemize @bullet
17667@item
17668We want easy access to the existing CLI syntax (for debugging).
17669
17670@item
17671We want it to be easy to spot a @sc{mi} operation.
17672@end itemize
17673
17674@node GDB/MI Output Syntax
17675@subsection @sc{gdb/mi} Output Syntax
17676
17677@cindex output syntax of @sc{gdb/mi}
17678@cindex @sc{gdb/mi}, output syntax
17679The output from @sc{gdb/mi} consists of zero or more out-of-band records
17680followed, optionally, by a single result record. This result record
17681is for the most recent command. The sequence of output records is
594fe323 17682terminated by @samp{(gdb)}.
922fbb7b
AC
17683
17684If an input command was prefixed with a @code{@var{token}} then the
17685corresponding output for that command will also be prefixed by that same
17686@var{token}.
17687
17688@table @code
17689@item @var{output} @expansion{}
594fe323 17690@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17691
17692@item @var{result-record} @expansion{}
17693@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17694
17695@item @var{out-of-band-record} @expansion{}
17696@code{@var{async-record} | @var{stream-record}}
17697
17698@item @var{async-record} @expansion{}
17699@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17700
17701@item @var{exec-async-output} @expansion{}
17702@code{[ @var{token} ] "*" @var{async-output}}
17703
17704@item @var{status-async-output} @expansion{}
17705@code{[ @var{token} ] "+" @var{async-output}}
17706
17707@item @var{notify-async-output} @expansion{}
17708@code{[ @var{token} ] "=" @var{async-output}}
17709
17710@item @var{async-output} @expansion{}
17711@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17712
17713@item @var{result-class} @expansion{}
17714@code{"done" | "running" | "connected" | "error" | "exit"}
17715
17716@item @var{async-class} @expansion{}
17717@code{"stopped" | @var{others}} (where @var{others} will be added
17718depending on the needs---this is still in development).
17719
17720@item @var{result} @expansion{}
17721@code{ @var{variable} "=" @var{value}}
17722
17723@item @var{variable} @expansion{}
17724@code{ @var{string} }
17725
17726@item @var{value} @expansion{}
17727@code{ @var{const} | @var{tuple} | @var{list} }
17728
17729@item @var{const} @expansion{}
17730@code{@var{c-string}}
17731
17732@item @var{tuple} @expansion{}
17733@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17734
17735@item @var{list} @expansion{}
17736@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17737@var{result} ( "," @var{result} )* "]" }
17738
17739@item @var{stream-record} @expansion{}
17740@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17741
17742@item @var{console-stream-output} @expansion{}
17743@code{"~" @var{c-string}}
17744
17745@item @var{target-stream-output} @expansion{}
17746@code{"@@" @var{c-string}}
17747
17748@item @var{log-stream-output} @expansion{}
17749@code{"&" @var{c-string}}
17750
17751@item @var{nl} @expansion{}
17752@code{CR | CR-LF}
17753
17754@item @var{token} @expansion{}
17755@emph{any sequence of digits}.
17756@end table
17757
17758@noindent
17759Notes:
17760
17761@itemize @bullet
17762@item
17763All output sequences end in a single line containing a period.
17764
17765@item
17766The @code{@var{token}} is from the corresponding request. If an execution
17767command is interrupted by the @samp{-exec-interrupt} command, the
17768@var{token} associated with the @samp{*stopped} message is the one of the
17769original execution command, not the one of the interrupt command.
17770
17771@item
17772@cindex status output in @sc{gdb/mi}
17773@var{status-async-output} contains on-going status information about the
17774progress of a slow operation. It can be discarded. All status output is
17775prefixed by @samp{+}.
17776
17777@item
17778@cindex async output in @sc{gdb/mi}
17779@var{exec-async-output} contains asynchronous state change on the target
17780(stopped, started, disappeared). All async output is prefixed by
17781@samp{*}.
17782
17783@item
17784@cindex notify output in @sc{gdb/mi}
17785@var{notify-async-output} contains supplementary information that the
17786client should handle (e.g., a new breakpoint information). All notify
17787output is prefixed by @samp{=}.
17788
17789@item
17790@cindex console output in @sc{gdb/mi}
17791@var{console-stream-output} is output that should be displayed as is in the
17792console. It is the textual response to a CLI command. All the console
17793output is prefixed by @samp{~}.
17794
17795@item
17796@cindex target output in @sc{gdb/mi}
17797@var{target-stream-output} is the output produced by the target program.
17798All the target output is prefixed by @samp{@@}.
17799
17800@item
17801@cindex log output in @sc{gdb/mi}
17802@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17803instance messages that should be displayed as part of an error log. All
17804the log output is prefixed by @samp{&}.
17805
17806@item
17807@cindex list output in @sc{gdb/mi}
17808New @sc{gdb/mi} commands should only output @var{lists} containing
17809@var{values}.
17810
17811
17812@end itemize
17813
17814@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17815details about the various output records.
17816
922fbb7b
AC
17817@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17818@node GDB/MI Compatibility with CLI
17819@section @sc{gdb/mi} Compatibility with CLI
17820
17821@cindex compatibility, @sc{gdb/mi} and CLI
17822@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17823
a2c02241
NR
17824For the developers convenience CLI commands can be entered directly,
17825but there may be some unexpected behaviour. For example, commands
17826that query the user will behave as if the user replied yes, breakpoint
17827command lists are not executed and some CLI commands, such as
17828@code{if}, @code{when} and @code{define}, prompt for further input with
17829@samp{>}, which is not valid MI output.
ef21caaf
NR
17830
17831This feature may be removed at some stage in the future and it is
a2c02241
NR
17832recommended that front ends use the @code{-interpreter-exec} command
17833(@pxref{-interpreter-exec}).
922fbb7b 17834
af6eff6f
NR
17835@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17836@node GDB/MI Development and Front Ends
17837@section @sc{gdb/mi} Development and Front Ends
17838@cindex @sc{gdb/mi} development
17839
17840The application which takes the MI output and presents the state of the
17841program being debugged to the user is called a @dfn{front end}.
17842
17843Although @sc{gdb/mi} is still incomplete, it is currently being used
17844by a variety of front ends to @value{GDBN}. This makes it difficult
17845to introduce new functionality without breaking existing usage. This
17846section tries to minimize the problems by describing how the protocol
17847might change.
17848
17849Some changes in MI need not break a carefully designed front end, and
17850for these the MI version will remain unchanged. The following is a
17851list of changes that may occur within one level, so front ends should
17852parse MI output in a way that can handle them:
17853
17854@itemize @bullet
17855@item
17856New MI commands may be added.
17857
17858@item
17859New fields may be added to the output of any MI command.
17860
36ece8b3
NR
17861@item
17862The range of values for fields with specified values, e.g.,
9f708cb2 17863@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17864
af6eff6f
NR
17865@c The format of field's content e.g type prefix, may change so parse it
17866@c at your own risk. Yes, in general?
17867
17868@c The order of fields may change? Shouldn't really matter but it might
17869@c resolve inconsistencies.
17870@end itemize
17871
17872If the changes are likely to break front ends, the MI version level
17873will be increased by one. This will allow the front end to parse the
17874output according to the MI version. Apart from mi0, new versions of
17875@value{GDBN} will not support old versions of MI and it will be the
17876responsibility of the front end to work with the new one.
17877
17878@c Starting with mi3, add a new command -mi-version that prints the MI
17879@c version?
17880
17881The best way to avoid unexpected changes in MI that might break your front
17882end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17883follow development on @email{gdb@@sourceware.org} and
17884@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17885@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17886Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17887called Debugger Machine Interface (DMI) that will become a standard
17888for all debuggers, not just @value{GDBN}.
17889@cindex mailing lists
17890
922fbb7b
AC
17891@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17892@node GDB/MI Output Records
17893@section @sc{gdb/mi} Output Records
17894
17895@menu
17896* GDB/MI Result Records::
17897* GDB/MI Stream Records::
17898* GDB/MI Out-of-band Records::
17899@end menu
17900
17901@node GDB/MI Result Records
17902@subsection @sc{gdb/mi} Result Records
17903
17904@cindex result records in @sc{gdb/mi}
17905@cindex @sc{gdb/mi}, result records
17906In addition to a number of out-of-band notifications, the response to a
17907@sc{gdb/mi} command includes one of the following result indications:
17908
17909@table @code
17910@findex ^done
17911@item "^done" [ "," @var{results} ]
17912The synchronous operation was successful, @code{@var{results}} are the return
17913values.
17914
17915@item "^running"
17916@findex ^running
17917@c Is this one correct? Should it be an out-of-band notification?
17918The asynchronous operation was successfully started. The target is
17919running.
17920
ef21caaf
NR
17921@item "^connected"
17922@findex ^connected
3f94c067 17923@value{GDBN} has connected to a remote target.
ef21caaf 17924
922fbb7b
AC
17925@item "^error" "," @var{c-string}
17926@findex ^error
17927The operation failed. The @code{@var{c-string}} contains the corresponding
17928error message.
ef21caaf
NR
17929
17930@item "^exit"
17931@findex ^exit
3f94c067 17932@value{GDBN} has terminated.
ef21caaf 17933
922fbb7b
AC
17934@end table
17935
17936@node GDB/MI Stream Records
17937@subsection @sc{gdb/mi} Stream Records
17938
17939@cindex @sc{gdb/mi}, stream records
17940@cindex stream records in @sc{gdb/mi}
17941@value{GDBN} internally maintains a number of output streams: the console, the
17942target, and the log. The output intended for each of these streams is
17943funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17944
17945Each stream record begins with a unique @dfn{prefix character} which
17946identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17947Syntax}). In addition to the prefix, each stream record contains a
17948@code{@var{string-output}}. This is either raw text (with an implicit new
17949line) or a quoted C string (which does not contain an implicit newline).
17950
17951@table @code
17952@item "~" @var{string-output}
17953The console output stream contains text that should be displayed in the
17954CLI console window. It contains the textual responses to CLI commands.
17955
17956@item "@@" @var{string-output}
17957The target output stream contains any textual output from the running
ef21caaf
NR
17958target. This is only present when GDB's event loop is truly
17959asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17960
17961@item "&" @var{string-output}
17962The log stream contains debugging messages being produced by @value{GDBN}'s
17963internals.
17964@end table
17965
17966@node GDB/MI Out-of-band Records
17967@subsection @sc{gdb/mi} Out-of-band Records
17968
17969@cindex out-of-band records in @sc{gdb/mi}
17970@cindex @sc{gdb/mi}, out-of-band records
17971@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17972additional changes that have occurred. Those changes can either be a
17973consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17974target activity (e.g., target stopped).
17975
17976The following is a preliminary list of possible out-of-band records.
034dad6f 17977In particular, the @var{exec-async-output} records.
922fbb7b
AC
17978
17979@table @code
034dad6f
BR
17980@item *stopped,reason="@var{reason}"
17981@end table
17982
17983@var{reason} can be one of the following:
17984
17985@table @code
17986@item breakpoint-hit
17987A breakpoint was reached.
17988@item watchpoint-trigger
17989A watchpoint was triggered.
17990@item read-watchpoint-trigger
17991A read watchpoint was triggered.
17992@item access-watchpoint-trigger
17993An access watchpoint was triggered.
17994@item function-finished
17995An -exec-finish or similar CLI command was accomplished.
17996@item location-reached
17997An -exec-until or similar CLI command was accomplished.
17998@item watchpoint-scope
17999A watchpoint has gone out of scope.
18000@item end-stepping-range
18001An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18002similar CLI command was accomplished.
18003@item exited-signalled
18004The inferior exited because of a signal.
18005@item exited
18006The inferior exited.
18007@item exited-normally
18008The inferior exited normally.
18009@item signal-received
18010A signal was received by the inferior.
922fbb7b
AC
18011@end table
18012
18013
ef21caaf
NR
18014@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18015@node GDB/MI Simple Examples
18016@section Simple Examples of @sc{gdb/mi} Interaction
18017@cindex @sc{gdb/mi}, simple examples
18018
18019This subsection presents several simple examples of interaction using
18020the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18021following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18022the output received from @sc{gdb/mi}.
18023
d3e8051b 18024Note the line breaks shown in the examples are here only for
ef21caaf
NR
18025readability, they don't appear in the real output.
18026
79a6e687 18027@subheading Setting a Breakpoint
ef21caaf
NR
18028
18029Setting a breakpoint generates synchronous output which contains detailed
18030information of the breakpoint.
18031
18032@smallexample
18033-> -break-insert main
18034<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18035 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18036 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18037<- (gdb)
18038@end smallexample
18039
18040@subheading Program Execution
18041
18042Program execution generates asynchronous records and MI gives the
18043reason that execution stopped.
18044
18045@smallexample
18046-> -exec-run
18047<- ^running
18048<- (gdb)
18049<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18050 frame=@{addr="0x08048564",func="main",
18051 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18052 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18053<- (gdb)
18054-> -exec-continue
18055<- ^running
18056<- (gdb)
18057<- *stopped,reason="exited-normally"
18058<- (gdb)
18059@end smallexample
18060
3f94c067 18061@subheading Quitting @value{GDBN}
ef21caaf 18062
3f94c067 18063Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18064
18065@smallexample
18066-> (gdb)
18067<- -gdb-exit
18068<- ^exit
18069@end smallexample
18070
a2c02241 18071@subheading A Bad Command
ef21caaf
NR
18072
18073Here's what happens if you pass a non-existent command:
18074
18075@smallexample
18076-> -rubbish
18077<- ^error,msg="Undefined MI command: rubbish"
594fe323 18078<- (gdb)
ef21caaf
NR
18079@end smallexample
18080
18081
922fbb7b
AC
18082@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18083@node GDB/MI Command Description Format
18084@section @sc{gdb/mi} Command Description Format
18085
18086The remaining sections describe blocks of commands. Each block of
18087commands is laid out in a fashion similar to this section.
18088
922fbb7b
AC
18089@subheading Motivation
18090
18091The motivation for this collection of commands.
18092
18093@subheading Introduction
18094
18095A brief introduction to this collection of commands as a whole.
18096
18097@subheading Commands
18098
18099For each command in the block, the following is described:
18100
18101@subsubheading Synopsis
18102
18103@smallexample
18104 -command @var{args}@dots{}
18105@end smallexample
18106
922fbb7b
AC
18107@subsubheading Result
18108
265eeb58 18109@subsubheading @value{GDBN} Command
922fbb7b 18110
265eeb58 18111The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18112
18113@subsubheading Example
18114
ef21caaf
NR
18115Example(s) formatted for readability. Some of the described commands have
18116not been implemented yet and these are labeled N.A.@: (not available).
18117
18118
922fbb7b 18119@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18120@node GDB/MI Breakpoint Commands
18121@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18122
18123@cindex breakpoint commands for @sc{gdb/mi}
18124@cindex @sc{gdb/mi}, breakpoint commands
18125This section documents @sc{gdb/mi} commands for manipulating
18126breakpoints.
18127
18128@subheading The @code{-break-after} Command
18129@findex -break-after
18130
18131@subsubheading Synopsis
18132
18133@smallexample
18134 -break-after @var{number} @var{count}
18135@end smallexample
18136
18137The breakpoint number @var{number} is not in effect until it has been
18138hit @var{count} times. To see how this is reflected in the output of
18139the @samp{-break-list} command, see the description of the
18140@samp{-break-list} command below.
18141
18142@subsubheading @value{GDBN} Command
18143
18144The corresponding @value{GDBN} command is @samp{ignore}.
18145
18146@subsubheading Example
18147
18148@smallexample
594fe323 18149(gdb)
922fbb7b 18150-break-insert main
948d5102
NR
18151^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18152fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18153(gdb)
922fbb7b
AC
18154-break-after 1 3
18155~
18156^done
594fe323 18157(gdb)
922fbb7b
AC
18158-break-list
18159^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18160hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18161@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18162@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18163@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18164@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18165@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18166body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18167addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18168line="5",times="0",ignore="3"@}]@}
594fe323 18169(gdb)
922fbb7b
AC
18170@end smallexample
18171
18172@ignore
18173@subheading The @code{-break-catch} Command
18174@findex -break-catch
18175
18176@subheading The @code{-break-commands} Command
18177@findex -break-commands
18178@end ignore
18179
18180
18181@subheading The @code{-break-condition} Command
18182@findex -break-condition
18183
18184@subsubheading Synopsis
18185
18186@smallexample
18187 -break-condition @var{number} @var{expr}
18188@end smallexample
18189
18190Breakpoint @var{number} will stop the program only if the condition in
18191@var{expr} is true. The condition becomes part of the
18192@samp{-break-list} output (see the description of the @samp{-break-list}
18193command below).
18194
18195@subsubheading @value{GDBN} Command
18196
18197The corresponding @value{GDBN} command is @samp{condition}.
18198
18199@subsubheading Example
18200
18201@smallexample
594fe323 18202(gdb)
922fbb7b
AC
18203-break-condition 1 1
18204^done
594fe323 18205(gdb)
922fbb7b
AC
18206-break-list
18207^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18208hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18209@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18210@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18211@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18212@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18213@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18214body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18215addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18216line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18217(gdb)
922fbb7b
AC
18218@end smallexample
18219
18220@subheading The @code{-break-delete} Command
18221@findex -break-delete
18222
18223@subsubheading Synopsis
18224
18225@smallexample
18226 -break-delete ( @var{breakpoint} )+
18227@end smallexample
18228
18229Delete the breakpoint(s) whose number(s) are specified in the argument
18230list. This is obviously reflected in the breakpoint list.
18231
79a6e687 18232@subsubheading @value{GDBN} Command
922fbb7b
AC
18233
18234The corresponding @value{GDBN} command is @samp{delete}.
18235
18236@subsubheading Example
18237
18238@smallexample
594fe323 18239(gdb)
922fbb7b
AC
18240-break-delete 1
18241^done
594fe323 18242(gdb)
922fbb7b
AC
18243-break-list
18244^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18245hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18246@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18247@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18248@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18249@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18250@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18251body=[]@}
594fe323 18252(gdb)
922fbb7b
AC
18253@end smallexample
18254
18255@subheading The @code{-break-disable} Command
18256@findex -break-disable
18257
18258@subsubheading Synopsis
18259
18260@smallexample
18261 -break-disable ( @var{breakpoint} )+
18262@end smallexample
18263
18264Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18265break list is now set to @samp{n} for the named @var{breakpoint}(s).
18266
18267@subsubheading @value{GDBN} Command
18268
18269The corresponding @value{GDBN} command is @samp{disable}.
18270
18271@subsubheading Example
18272
18273@smallexample
594fe323 18274(gdb)
922fbb7b
AC
18275-break-disable 2
18276^done
594fe323 18277(gdb)
922fbb7b
AC
18278-break-list
18279^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18280hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18281@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18282@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18283@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18284@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18285@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18286body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18287addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18288line="5",times="0"@}]@}
594fe323 18289(gdb)
922fbb7b
AC
18290@end smallexample
18291
18292@subheading The @code{-break-enable} Command
18293@findex -break-enable
18294
18295@subsubheading Synopsis
18296
18297@smallexample
18298 -break-enable ( @var{breakpoint} )+
18299@end smallexample
18300
18301Enable (previously disabled) @var{breakpoint}(s).
18302
18303@subsubheading @value{GDBN} Command
18304
18305The corresponding @value{GDBN} command is @samp{enable}.
18306
18307@subsubheading Example
18308
18309@smallexample
594fe323 18310(gdb)
922fbb7b
AC
18311-break-enable 2
18312^done
594fe323 18313(gdb)
922fbb7b
AC
18314-break-list
18315^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18316hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18317@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18318@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18319@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18320@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18321@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18322body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18323addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18324line="5",times="0"@}]@}
594fe323 18325(gdb)
922fbb7b
AC
18326@end smallexample
18327
18328@subheading The @code{-break-info} Command
18329@findex -break-info
18330
18331@subsubheading Synopsis
18332
18333@smallexample
18334 -break-info @var{breakpoint}
18335@end smallexample
18336
18337@c REDUNDANT???
18338Get information about a single breakpoint.
18339
79a6e687 18340@subsubheading @value{GDBN} Command
922fbb7b
AC
18341
18342The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18343
18344@subsubheading Example
18345N.A.
18346
18347@subheading The @code{-break-insert} Command
18348@findex -break-insert
18349
18350@subsubheading Synopsis
18351
18352@smallexample
afe8ab22 18353 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18354 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18355 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18356@end smallexample
18357
18358@noindent
afe8ab22 18359If specified, @var{location}, can be one of:
922fbb7b
AC
18360
18361@itemize @bullet
18362@item function
18363@c @item +offset
18364@c @item -offset
18365@c @item linenum
18366@item filename:linenum
18367@item filename:function
18368@item *address
18369@end itemize
18370
18371The possible optional parameters of this command are:
18372
18373@table @samp
18374@item -t
948d5102 18375Insert a temporary breakpoint.
922fbb7b
AC
18376@item -h
18377Insert a hardware breakpoint.
18378@item -c @var{condition}
18379Make the breakpoint conditional on @var{condition}.
18380@item -i @var{ignore-count}
18381Initialize the @var{ignore-count}.
afe8ab22
VP
18382@item -f
18383If @var{location} cannot be parsed (for example if it
18384refers to unknown files or functions), create a pending
18385breakpoint. Without this flag, @value{GDBN} will report
18386an error, and won't create a breakpoint, if @var{location}
18387cannot be parsed.
922fbb7b
AC
18388@end table
18389
18390@subsubheading Result
18391
18392The result is in the form:
18393
18394@smallexample
948d5102
NR
18395^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18396enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18397fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18398times="@var{times}"@}
922fbb7b
AC
18399@end smallexample
18400
18401@noindent
948d5102
NR
18402where @var{number} is the @value{GDBN} number for this breakpoint,
18403@var{funcname} is the name of the function where the breakpoint was
18404inserted, @var{filename} is the name of the source file which contains
18405this function, @var{lineno} is the source line number within that file
18406and @var{times} the number of times that the breakpoint has been hit
18407(always 0 for -break-insert but may be greater for -break-info or -break-list
18408which use the same output).
922fbb7b
AC
18409
18410Note: this format is open to change.
18411@c An out-of-band breakpoint instead of part of the result?
18412
18413@subsubheading @value{GDBN} Command
18414
18415The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18416@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18417
18418@subsubheading Example
18419
18420@smallexample
594fe323 18421(gdb)
922fbb7b 18422-break-insert main
948d5102
NR
18423^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18424fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18425(gdb)
922fbb7b 18426-break-insert -t foo
948d5102
NR
18427^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18428fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18429(gdb)
922fbb7b
AC
18430-break-list
18431^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18432hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18433@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18434@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18435@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18436@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18437@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18438body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18439addr="0x0001072c", func="main",file="recursive2.c",
18440fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18441bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18442addr="0x00010774",func="foo",file="recursive2.c",
18443fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18444(gdb)
922fbb7b
AC
18445-break-insert -r foo.*
18446~int foo(int, int);
948d5102
NR
18447^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18448"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18449(gdb)
922fbb7b
AC
18450@end smallexample
18451
18452@subheading The @code{-break-list} Command
18453@findex -break-list
18454
18455@subsubheading Synopsis
18456
18457@smallexample
18458 -break-list
18459@end smallexample
18460
18461Displays the list of inserted breakpoints, showing the following fields:
18462
18463@table @samp
18464@item Number
18465number of the breakpoint
18466@item Type
18467type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18468@item Disposition
18469should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18470or @samp{nokeep}
18471@item Enabled
18472is the breakpoint enabled or no: @samp{y} or @samp{n}
18473@item Address
18474memory location at which the breakpoint is set
18475@item What
18476logical location of the breakpoint, expressed by function name, file
18477name, line number
18478@item Times
18479number of times the breakpoint has been hit
18480@end table
18481
18482If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18483@code{body} field is an empty list.
18484
18485@subsubheading @value{GDBN} Command
18486
18487The corresponding @value{GDBN} command is @samp{info break}.
18488
18489@subsubheading Example
18490
18491@smallexample
594fe323 18492(gdb)
922fbb7b
AC
18493-break-list
18494^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18495hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18496@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18497@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18498@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18499@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18500@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18501body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18502addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18503bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18504addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18505line="13",times="0"@}]@}
594fe323 18506(gdb)
922fbb7b
AC
18507@end smallexample
18508
18509Here's an example of the result when there are no breakpoints:
18510
18511@smallexample
594fe323 18512(gdb)
922fbb7b
AC
18513-break-list
18514^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18515hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18516@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18517@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18518@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18519@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18520@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18521body=[]@}
594fe323 18522(gdb)
922fbb7b
AC
18523@end smallexample
18524
18525@subheading The @code{-break-watch} Command
18526@findex -break-watch
18527
18528@subsubheading Synopsis
18529
18530@smallexample
18531 -break-watch [ -a | -r ]
18532@end smallexample
18533
18534Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18535@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18536read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18537option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18538trigger only when the memory location is accessed for reading. Without
18539either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18540i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18541@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18542
18543Note that @samp{-break-list} will report a single list of watchpoints and
18544breakpoints inserted.
18545
18546@subsubheading @value{GDBN} Command
18547
18548The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18549@samp{rwatch}.
18550
18551@subsubheading Example
18552
18553Setting a watchpoint on a variable in the @code{main} function:
18554
18555@smallexample
594fe323 18556(gdb)
922fbb7b
AC
18557-break-watch x
18558^done,wpt=@{number="2",exp="x"@}
594fe323 18559(gdb)
922fbb7b
AC
18560-exec-continue
18561^running
0869d01b
NR
18562(gdb)
18563*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18564value=@{old="-268439212",new="55"@},
76ff342d 18565frame=@{func="main",args=[],file="recursive2.c",
948d5102 18566fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18567(gdb)
922fbb7b
AC
18568@end smallexample
18569
18570Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18571the program execution twice: first for the variable changing value, then
18572for the watchpoint going out of scope.
18573
18574@smallexample
594fe323 18575(gdb)
922fbb7b
AC
18576-break-watch C
18577^done,wpt=@{number="5",exp="C"@}
594fe323 18578(gdb)
922fbb7b
AC
18579-exec-continue
18580^running
0869d01b
NR
18581(gdb)
18582*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18583wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18584frame=@{func="callee4",args=[],
76ff342d
DJ
18585file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18586fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18587(gdb)
922fbb7b
AC
18588-exec-continue
18589^running
0869d01b
NR
18590(gdb)
18591*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18592frame=@{func="callee3",args=[@{name="strarg",
18593value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18594file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18595fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18596(gdb)
922fbb7b
AC
18597@end smallexample
18598
18599Listing breakpoints and watchpoints, at different points in the program
18600execution. Note that once the watchpoint goes out of scope, it is
18601deleted.
18602
18603@smallexample
594fe323 18604(gdb)
922fbb7b
AC
18605-break-watch C
18606^done,wpt=@{number="2",exp="C"@}
594fe323 18607(gdb)
922fbb7b
AC
18608-break-list
18609^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18610hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18611@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18612@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18613@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18614@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18615@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18616body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18617addr="0x00010734",func="callee4",
948d5102
NR
18618file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18619fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18620bkpt=@{number="2",type="watchpoint",disp="keep",
18621enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18622(gdb)
922fbb7b
AC
18623-exec-continue
18624^running
0869d01b
NR
18625(gdb)
18626*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18627value=@{old="-276895068",new="3"@},
18628frame=@{func="callee4",args=[],
76ff342d
DJ
18629file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18630fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18631(gdb)
922fbb7b
AC
18632-break-list
18633^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18634hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18635@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18636@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18637@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18638@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18639@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18640body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18641addr="0x00010734",func="callee4",
948d5102
NR
18642file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18643fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18644bkpt=@{number="2",type="watchpoint",disp="keep",
18645enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18646(gdb)
922fbb7b
AC
18647-exec-continue
18648^running
18649^done,reason="watchpoint-scope",wpnum="2",
18650frame=@{func="callee3",args=[@{name="strarg",
18651value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18652file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18653fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18654(gdb)
922fbb7b
AC
18655-break-list
18656^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18657hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18658@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18659@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18660@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18661@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18662@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18663body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18664addr="0x00010734",func="callee4",
948d5102
NR
18665file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18666fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18667times="1"@}]@}
594fe323 18668(gdb)
922fbb7b
AC
18669@end smallexample
18670
18671@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18672@node GDB/MI Program Context
18673@section @sc{gdb/mi} Program Context
922fbb7b 18674
a2c02241
NR
18675@subheading The @code{-exec-arguments} Command
18676@findex -exec-arguments
922fbb7b 18677
922fbb7b
AC
18678
18679@subsubheading Synopsis
18680
18681@smallexample
a2c02241 18682 -exec-arguments @var{args}
922fbb7b
AC
18683@end smallexample
18684
a2c02241
NR
18685Set the inferior program arguments, to be used in the next
18686@samp{-exec-run}.
922fbb7b 18687
a2c02241 18688@subsubheading @value{GDBN} Command
922fbb7b 18689
a2c02241 18690The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18691
a2c02241 18692@subsubheading Example
922fbb7b 18693
a2c02241
NR
18694@c FIXME!
18695Don't have one around.
922fbb7b 18696
a2c02241
NR
18697
18698@subheading The @code{-exec-show-arguments} Command
18699@findex -exec-show-arguments
18700
18701@subsubheading Synopsis
18702
18703@smallexample
18704 -exec-show-arguments
18705@end smallexample
18706
18707Print the arguments of the program.
922fbb7b
AC
18708
18709@subsubheading @value{GDBN} Command
18710
a2c02241 18711The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18712
18713@subsubheading Example
a2c02241 18714N.A.
922fbb7b 18715
922fbb7b 18716
a2c02241
NR
18717@subheading The @code{-environment-cd} Command
18718@findex -environment-cd
922fbb7b 18719
a2c02241 18720@subsubheading Synopsis
922fbb7b
AC
18721
18722@smallexample
a2c02241 18723 -environment-cd @var{pathdir}
922fbb7b
AC
18724@end smallexample
18725
a2c02241 18726Set @value{GDBN}'s working directory.
922fbb7b 18727
a2c02241 18728@subsubheading @value{GDBN} Command
922fbb7b 18729
a2c02241
NR
18730The corresponding @value{GDBN} command is @samp{cd}.
18731
18732@subsubheading Example
922fbb7b
AC
18733
18734@smallexample
594fe323 18735(gdb)
a2c02241
NR
18736-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18737^done
594fe323 18738(gdb)
922fbb7b
AC
18739@end smallexample
18740
18741
a2c02241
NR
18742@subheading The @code{-environment-directory} Command
18743@findex -environment-directory
922fbb7b
AC
18744
18745@subsubheading Synopsis
18746
18747@smallexample
a2c02241 18748 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18749@end smallexample
18750
a2c02241
NR
18751Add directories @var{pathdir} to beginning of search path for source files.
18752If the @samp{-r} option is used, the search path is reset to the default
18753search path. If directories @var{pathdir} are supplied in addition to the
18754@samp{-r} option, the search path is first reset and then addition
18755occurs as normal.
18756Multiple directories may be specified, separated by blanks. Specifying
18757multiple directories in a single command
18758results in the directories added to the beginning of the
18759search path in the same order they were presented in the command.
18760If blanks are needed as
18761part of a directory name, double-quotes should be used around
18762the name. In the command output, the path will show up separated
d3e8051b 18763by the system directory-separator character. The directory-separator
a2c02241
NR
18764character must not be used
18765in any directory name.
18766If no directories are specified, the current search path is displayed.
922fbb7b
AC
18767
18768@subsubheading @value{GDBN} Command
18769
a2c02241 18770The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18771
18772@subsubheading Example
18773
922fbb7b 18774@smallexample
594fe323 18775(gdb)
a2c02241
NR
18776-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18777^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18778(gdb)
a2c02241
NR
18779-environment-directory ""
18780^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18781(gdb)
a2c02241
NR
18782-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18783^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18784(gdb)
a2c02241
NR
18785-environment-directory -r
18786^done,source-path="$cdir:$cwd"
594fe323 18787(gdb)
922fbb7b
AC
18788@end smallexample
18789
18790
a2c02241
NR
18791@subheading The @code{-environment-path} Command
18792@findex -environment-path
922fbb7b
AC
18793
18794@subsubheading Synopsis
18795
18796@smallexample
a2c02241 18797 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18798@end smallexample
18799
a2c02241
NR
18800Add directories @var{pathdir} to beginning of search path for object files.
18801If the @samp{-r} option is used, the search path is reset to the original
18802search path that existed at gdb start-up. If directories @var{pathdir} are
18803supplied in addition to the
18804@samp{-r} option, the search path is first reset and then addition
18805occurs as normal.
18806Multiple directories may be specified, separated by blanks. Specifying
18807multiple directories in a single command
18808results in the directories added to the beginning of the
18809search path in the same order they were presented in the command.
18810If blanks are needed as
18811part of a directory name, double-quotes should be used around
18812the name. In the command output, the path will show up separated
d3e8051b 18813by the system directory-separator character. The directory-separator
a2c02241
NR
18814character must not be used
18815in any directory name.
18816If no directories are specified, the current path is displayed.
18817
922fbb7b
AC
18818
18819@subsubheading @value{GDBN} Command
18820
a2c02241 18821The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18822
18823@subsubheading Example
18824
922fbb7b 18825@smallexample
594fe323 18826(gdb)
a2c02241
NR
18827-environment-path
18828^done,path="/usr/bin"
594fe323 18829(gdb)
a2c02241
NR
18830-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18831^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18832(gdb)
a2c02241
NR
18833-environment-path -r /usr/local/bin
18834^done,path="/usr/local/bin:/usr/bin"
594fe323 18835(gdb)
922fbb7b
AC
18836@end smallexample
18837
18838
a2c02241
NR
18839@subheading The @code{-environment-pwd} Command
18840@findex -environment-pwd
922fbb7b
AC
18841
18842@subsubheading Synopsis
18843
18844@smallexample
a2c02241 18845 -environment-pwd
922fbb7b
AC
18846@end smallexample
18847
a2c02241 18848Show the current working directory.
922fbb7b 18849
79a6e687 18850@subsubheading @value{GDBN} Command
922fbb7b 18851
a2c02241 18852The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18853
18854@subsubheading Example
18855
922fbb7b 18856@smallexample
594fe323 18857(gdb)
a2c02241
NR
18858-environment-pwd
18859^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18860(gdb)
922fbb7b
AC
18861@end smallexample
18862
a2c02241
NR
18863@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18864@node GDB/MI Thread Commands
18865@section @sc{gdb/mi} Thread Commands
18866
18867
18868@subheading The @code{-thread-info} Command
18869@findex -thread-info
922fbb7b
AC
18870
18871@subsubheading Synopsis
18872
18873@smallexample
a2c02241 18874 -thread-info
922fbb7b
AC
18875@end smallexample
18876
79a6e687 18877@subsubheading @value{GDBN} Command
922fbb7b 18878
a2c02241 18879No equivalent.
922fbb7b
AC
18880
18881@subsubheading Example
a2c02241 18882N.A.
922fbb7b
AC
18883
18884
a2c02241
NR
18885@subheading The @code{-thread-list-all-threads} Command
18886@findex -thread-list-all-threads
922fbb7b
AC
18887
18888@subsubheading Synopsis
18889
18890@smallexample
a2c02241 18891 -thread-list-all-threads
922fbb7b
AC
18892@end smallexample
18893
a2c02241 18894@subsubheading @value{GDBN} Command
922fbb7b 18895
a2c02241 18896The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18897
a2c02241
NR
18898@subsubheading Example
18899N.A.
922fbb7b 18900
922fbb7b 18901
a2c02241
NR
18902@subheading The @code{-thread-list-ids} Command
18903@findex -thread-list-ids
922fbb7b 18904
a2c02241 18905@subsubheading Synopsis
922fbb7b 18906
a2c02241
NR
18907@smallexample
18908 -thread-list-ids
18909@end smallexample
922fbb7b 18910
a2c02241
NR
18911Produces a list of the currently known @value{GDBN} thread ids. At the
18912end of the list it also prints the total number of such threads.
922fbb7b
AC
18913
18914@subsubheading @value{GDBN} Command
18915
a2c02241 18916Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18917
18918@subsubheading Example
18919
a2c02241 18920No threads present, besides the main process:
922fbb7b
AC
18921
18922@smallexample
594fe323 18923(gdb)
a2c02241
NR
18924-thread-list-ids
18925^done,thread-ids=@{@},number-of-threads="0"
594fe323 18926(gdb)
922fbb7b
AC
18927@end smallexample
18928
922fbb7b 18929
a2c02241 18930Several threads:
922fbb7b
AC
18931
18932@smallexample
594fe323 18933(gdb)
a2c02241
NR
18934-thread-list-ids
18935^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18936number-of-threads="3"
594fe323 18937(gdb)
922fbb7b
AC
18938@end smallexample
18939
a2c02241
NR
18940
18941@subheading The @code{-thread-select} Command
18942@findex -thread-select
922fbb7b
AC
18943
18944@subsubheading Synopsis
18945
18946@smallexample
a2c02241 18947 -thread-select @var{threadnum}
922fbb7b
AC
18948@end smallexample
18949
a2c02241
NR
18950Make @var{threadnum} the current thread. It prints the number of the new
18951current thread, and the topmost frame for that thread.
922fbb7b
AC
18952
18953@subsubheading @value{GDBN} Command
18954
a2c02241 18955The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18956
18957@subsubheading Example
922fbb7b
AC
18958
18959@smallexample
594fe323 18960(gdb)
a2c02241
NR
18961-exec-next
18962^running
594fe323 18963(gdb)
a2c02241
NR
18964*stopped,reason="end-stepping-range",thread-id="2",line="187",
18965file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18966(gdb)
a2c02241
NR
18967-thread-list-ids
18968^done,
18969thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18970number-of-threads="3"
594fe323 18971(gdb)
a2c02241
NR
18972-thread-select 3
18973^done,new-thread-id="3",
18974frame=@{level="0",func="vprintf",
18975args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18976@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18977(gdb)
922fbb7b
AC
18978@end smallexample
18979
a2c02241
NR
18980@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18981@node GDB/MI Program Execution
18982@section @sc{gdb/mi} Program Execution
922fbb7b 18983
ef21caaf 18984These are the asynchronous commands which generate the out-of-band
3f94c067 18985record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18986asynchronously with remote targets and this interaction is mimicked in
18987other cases.
922fbb7b 18988
922fbb7b
AC
18989@subheading The @code{-exec-continue} Command
18990@findex -exec-continue
18991
18992@subsubheading Synopsis
18993
18994@smallexample
18995 -exec-continue
18996@end smallexample
18997
ef21caaf
NR
18998Resumes the execution of the inferior program until a breakpoint is
18999encountered, or until the inferior exits.
922fbb7b
AC
19000
19001@subsubheading @value{GDBN} Command
19002
19003The corresponding @value{GDBN} corresponding is @samp{continue}.
19004
19005@subsubheading Example
19006
19007@smallexample
19008-exec-continue
19009^running
594fe323 19010(gdb)
922fbb7b
AC
19011@@Hello world
19012*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 19013file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 19014(gdb)
922fbb7b
AC
19015@end smallexample
19016
19017
19018@subheading The @code{-exec-finish} Command
19019@findex -exec-finish
19020
19021@subsubheading Synopsis
19022
19023@smallexample
19024 -exec-finish
19025@end smallexample
19026
ef21caaf
NR
19027Resumes the execution of the inferior program until the current
19028function is exited. Displays the results returned by the function.
922fbb7b
AC
19029
19030@subsubheading @value{GDBN} Command
19031
19032The corresponding @value{GDBN} command is @samp{finish}.
19033
19034@subsubheading Example
19035
19036Function returning @code{void}.
19037
19038@smallexample
19039-exec-finish
19040^running
594fe323 19041(gdb)
922fbb7b
AC
19042@@hello from foo
19043*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19044file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19045(gdb)
922fbb7b
AC
19046@end smallexample
19047
19048Function returning other than @code{void}. The name of the internal
19049@value{GDBN} variable storing the result is printed, together with the
19050value itself.
19051
19052@smallexample
19053-exec-finish
19054^running
594fe323 19055(gdb)
922fbb7b
AC
19056*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19057args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19058file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19059gdb-result-var="$1",return-value="0"
594fe323 19060(gdb)
922fbb7b
AC
19061@end smallexample
19062
19063
19064@subheading The @code{-exec-interrupt} Command
19065@findex -exec-interrupt
19066
19067@subsubheading Synopsis
19068
19069@smallexample
19070 -exec-interrupt
19071@end smallexample
19072
ef21caaf
NR
19073Interrupts the background execution of the target. Note how the token
19074associated with the stop message is the one for the execution command
19075that has been interrupted. The token for the interrupt itself only
19076appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19077interrupt a non-running program, an error message will be printed.
19078
19079@subsubheading @value{GDBN} Command
19080
19081The corresponding @value{GDBN} command is @samp{interrupt}.
19082
19083@subsubheading Example
19084
19085@smallexample
594fe323 19086(gdb)
922fbb7b
AC
19087111-exec-continue
19088111^running
19089
594fe323 19090(gdb)
922fbb7b
AC
19091222-exec-interrupt
19092222^done
594fe323 19093(gdb)
922fbb7b 19094111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19095frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19096fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19097(gdb)
922fbb7b 19098
594fe323 19099(gdb)
922fbb7b
AC
19100-exec-interrupt
19101^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19102(gdb)
922fbb7b
AC
19103@end smallexample
19104
19105
19106@subheading The @code{-exec-next} Command
19107@findex -exec-next
19108
19109@subsubheading Synopsis
19110
19111@smallexample
19112 -exec-next
19113@end smallexample
19114
ef21caaf
NR
19115Resumes execution of the inferior program, stopping when the beginning
19116of the next source line is reached.
922fbb7b
AC
19117
19118@subsubheading @value{GDBN} Command
19119
19120The corresponding @value{GDBN} command is @samp{next}.
19121
19122@subsubheading Example
19123
19124@smallexample
19125-exec-next
19126^running
594fe323 19127(gdb)
922fbb7b 19128*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19129(gdb)
922fbb7b
AC
19130@end smallexample
19131
19132
19133@subheading The @code{-exec-next-instruction} Command
19134@findex -exec-next-instruction
19135
19136@subsubheading Synopsis
19137
19138@smallexample
19139 -exec-next-instruction
19140@end smallexample
19141
ef21caaf
NR
19142Executes one machine instruction. If the instruction is a function
19143call, continues until the function returns. If the program stops at an
19144instruction in the middle of a source line, the address will be
19145printed as well.
922fbb7b
AC
19146
19147@subsubheading @value{GDBN} Command
19148
19149The corresponding @value{GDBN} command is @samp{nexti}.
19150
19151@subsubheading Example
19152
19153@smallexample
594fe323 19154(gdb)
922fbb7b
AC
19155-exec-next-instruction
19156^running
19157
594fe323 19158(gdb)
922fbb7b
AC
19159*stopped,reason="end-stepping-range",
19160addr="0x000100d4",line="5",file="hello.c"
594fe323 19161(gdb)
922fbb7b
AC
19162@end smallexample
19163
19164
19165@subheading The @code{-exec-return} Command
19166@findex -exec-return
19167
19168@subsubheading Synopsis
19169
19170@smallexample
19171 -exec-return
19172@end smallexample
19173
19174Makes current function return immediately. Doesn't execute the inferior.
19175Displays the new current frame.
19176
19177@subsubheading @value{GDBN} Command
19178
19179The corresponding @value{GDBN} command is @samp{return}.
19180
19181@subsubheading Example
19182
19183@smallexample
594fe323 19184(gdb)
922fbb7b
AC
19185200-break-insert callee4
19186200^done,bkpt=@{number="1",addr="0x00010734",
19187file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19188(gdb)
922fbb7b
AC
19189000-exec-run
19190000^running
594fe323 19191(gdb)
922fbb7b
AC
19192000*stopped,reason="breakpoint-hit",bkptno="1",
19193frame=@{func="callee4",args=[],
76ff342d
DJ
19194file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19195fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19196(gdb)
922fbb7b
AC
19197205-break-delete
19198205^done
594fe323 19199(gdb)
922fbb7b
AC
19200111-exec-return
19201111^done,frame=@{level="0",func="callee3",
19202args=[@{name="strarg",
19203value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19204file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19205fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19206(gdb)
922fbb7b
AC
19207@end smallexample
19208
19209
19210@subheading The @code{-exec-run} Command
19211@findex -exec-run
19212
19213@subsubheading Synopsis
19214
19215@smallexample
19216 -exec-run
19217@end smallexample
19218
ef21caaf
NR
19219Starts execution of the inferior from the beginning. The inferior
19220executes until either a breakpoint is encountered or the program
19221exits. In the latter case the output will include an exit code, if
19222the program has exited exceptionally.
922fbb7b
AC
19223
19224@subsubheading @value{GDBN} Command
19225
19226The corresponding @value{GDBN} command is @samp{run}.
19227
ef21caaf 19228@subsubheading Examples
922fbb7b
AC
19229
19230@smallexample
594fe323 19231(gdb)
922fbb7b
AC
19232-break-insert main
19233^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19234(gdb)
922fbb7b
AC
19235-exec-run
19236^running
594fe323 19237(gdb)
922fbb7b 19238*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19239frame=@{func="main",args=[],file="recursive2.c",
948d5102 19240fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19241(gdb)
922fbb7b
AC
19242@end smallexample
19243
ef21caaf
NR
19244@noindent
19245Program exited normally:
19246
19247@smallexample
594fe323 19248(gdb)
ef21caaf
NR
19249-exec-run
19250^running
594fe323 19251(gdb)
ef21caaf
NR
19252x = 55
19253*stopped,reason="exited-normally"
594fe323 19254(gdb)
ef21caaf
NR
19255@end smallexample
19256
19257@noindent
19258Program exited exceptionally:
19259
19260@smallexample
594fe323 19261(gdb)
ef21caaf
NR
19262-exec-run
19263^running
594fe323 19264(gdb)
ef21caaf
NR
19265x = 55
19266*stopped,reason="exited",exit-code="01"
594fe323 19267(gdb)
ef21caaf
NR
19268@end smallexample
19269
19270Another way the program can terminate is if it receives a signal such as
19271@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19272
19273@smallexample
594fe323 19274(gdb)
ef21caaf
NR
19275*stopped,reason="exited-signalled",signal-name="SIGINT",
19276signal-meaning="Interrupt"
19277@end smallexample
19278
922fbb7b 19279
a2c02241
NR
19280@c @subheading -exec-signal
19281
19282
19283@subheading The @code{-exec-step} Command
19284@findex -exec-step
922fbb7b
AC
19285
19286@subsubheading Synopsis
19287
19288@smallexample
a2c02241 19289 -exec-step
922fbb7b
AC
19290@end smallexample
19291
a2c02241
NR
19292Resumes execution of the inferior program, stopping when the beginning
19293of the next source line is reached, if the next source line is not a
19294function call. If it is, stop at the first instruction of the called
19295function.
922fbb7b
AC
19296
19297@subsubheading @value{GDBN} Command
19298
a2c02241 19299The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19300
19301@subsubheading Example
19302
19303Stepping into a function:
19304
19305@smallexample
19306-exec-step
19307^running
594fe323 19308(gdb)
922fbb7b
AC
19309*stopped,reason="end-stepping-range",
19310frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19311@{name="b",value="0"@}],file="recursive2.c",
948d5102 19312fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19313(gdb)
922fbb7b
AC
19314@end smallexample
19315
19316Regular stepping:
19317
19318@smallexample
19319-exec-step
19320^running
594fe323 19321(gdb)
922fbb7b 19322*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19323(gdb)
922fbb7b
AC
19324@end smallexample
19325
19326
19327@subheading The @code{-exec-step-instruction} Command
19328@findex -exec-step-instruction
19329
19330@subsubheading Synopsis
19331
19332@smallexample
19333 -exec-step-instruction
19334@end smallexample
19335
ef21caaf
NR
19336Resumes the inferior which executes one machine instruction. The
19337output, once @value{GDBN} has stopped, will vary depending on whether
19338we have stopped in the middle of a source line or not. In the former
19339case, the address at which the program stopped will be printed as
922fbb7b
AC
19340well.
19341
19342@subsubheading @value{GDBN} Command
19343
19344The corresponding @value{GDBN} command is @samp{stepi}.
19345
19346@subsubheading Example
19347
19348@smallexample
594fe323 19349(gdb)
922fbb7b
AC
19350-exec-step-instruction
19351^running
19352
594fe323 19353(gdb)
922fbb7b 19354*stopped,reason="end-stepping-range",
76ff342d 19355frame=@{func="foo",args=[],file="try.c",
948d5102 19356fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19357(gdb)
922fbb7b
AC
19358-exec-step-instruction
19359^running
19360
594fe323 19361(gdb)
922fbb7b 19362*stopped,reason="end-stepping-range",
76ff342d 19363frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19364fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19365(gdb)
922fbb7b
AC
19366@end smallexample
19367
19368
19369@subheading The @code{-exec-until} Command
19370@findex -exec-until
19371
19372@subsubheading Synopsis
19373
19374@smallexample
19375 -exec-until [ @var{location} ]
19376@end smallexample
19377
ef21caaf
NR
19378Executes the inferior until the @var{location} specified in the
19379argument is reached. If there is no argument, the inferior executes
19380until a source line greater than the current one is reached. The
19381reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19382
19383@subsubheading @value{GDBN} Command
19384
19385The corresponding @value{GDBN} command is @samp{until}.
19386
19387@subsubheading Example
19388
19389@smallexample
594fe323 19390(gdb)
922fbb7b
AC
19391-exec-until recursive2.c:6
19392^running
594fe323 19393(gdb)
922fbb7b
AC
19394x = 55
19395*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19396file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19397(gdb)
922fbb7b
AC
19398@end smallexample
19399
19400@ignore
19401@subheading -file-clear
19402Is this going away????
19403@end ignore
19404
351ff01a 19405@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19406@node GDB/MI Stack Manipulation
19407@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19408
922fbb7b 19409
a2c02241
NR
19410@subheading The @code{-stack-info-frame} Command
19411@findex -stack-info-frame
922fbb7b
AC
19412
19413@subsubheading Synopsis
19414
19415@smallexample
a2c02241 19416 -stack-info-frame
922fbb7b
AC
19417@end smallexample
19418
a2c02241 19419Get info on the selected frame.
922fbb7b
AC
19420
19421@subsubheading @value{GDBN} Command
19422
a2c02241
NR
19423The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19424(without arguments).
922fbb7b
AC
19425
19426@subsubheading Example
19427
19428@smallexample
594fe323 19429(gdb)
a2c02241
NR
19430-stack-info-frame
19431^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19432file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19433fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19434(gdb)
922fbb7b
AC
19435@end smallexample
19436
a2c02241
NR
19437@subheading The @code{-stack-info-depth} Command
19438@findex -stack-info-depth
922fbb7b
AC
19439
19440@subsubheading Synopsis
19441
19442@smallexample
a2c02241 19443 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19444@end smallexample
19445
a2c02241
NR
19446Return the depth of the stack. If the integer argument @var{max-depth}
19447is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19448
19449@subsubheading @value{GDBN} Command
19450
a2c02241 19451There's no equivalent @value{GDBN} command.
922fbb7b
AC
19452
19453@subsubheading Example
19454
a2c02241
NR
19455For a stack with frame levels 0 through 11:
19456
922fbb7b 19457@smallexample
594fe323 19458(gdb)
a2c02241
NR
19459-stack-info-depth
19460^done,depth="12"
594fe323 19461(gdb)
a2c02241
NR
19462-stack-info-depth 4
19463^done,depth="4"
594fe323 19464(gdb)
a2c02241
NR
19465-stack-info-depth 12
19466^done,depth="12"
594fe323 19467(gdb)
a2c02241
NR
19468-stack-info-depth 11
19469^done,depth="11"
594fe323 19470(gdb)
a2c02241
NR
19471-stack-info-depth 13
19472^done,depth="12"
594fe323 19473(gdb)
922fbb7b
AC
19474@end smallexample
19475
a2c02241
NR
19476@subheading The @code{-stack-list-arguments} Command
19477@findex -stack-list-arguments
922fbb7b
AC
19478
19479@subsubheading Synopsis
19480
19481@smallexample
a2c02241
NR
19482 -stack-list-arguments @var{show-values}
19483 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19484@end smallexample
19485
a2c02241
NR
19486Display a list of the arguments for the frames between @var{low-frame}
19487and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19488@var{high-frame} are not provided, list the arguments for the whole
19489call stack. If the two arguments are equal, show the single frame
19490at the corresponding level. It is an error if @var{low-frame} is
19491larger than the actual number of frames. On the other hand,
19492@var{high-frame} may be larger than the actual number of frames, in
19493which case only existing frames will be returned.
a2c02241
NR
19494
19495The @var{show-values} argument must have a value of 0 or 1. A value of
194960 means that only the names of the arguments are listed, a value of 1
19497means that both names and values of the arguments are printed.
922fbb7b
AC
19498
19499@subsubheading @value{GDBN} Command
19500
a2c02241
NR
19501@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19502@samp{gdb_get_args} command which partially overlaps with the
19503functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19504
19505@subsubheading Example
922fbb7b 19506
a2c02241 19507@smallexample
594fe323 19508(gdb)
a2c02241
NR
19509-stack-list-frames
19510^done,
19511stack=[
19512frame=@{level="0",addr="0x00010734",func="callee4",
19513file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19514fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19515frame=@{level="1",addr="0x0001076c",func="callee3",
19516file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19517fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19518frame=@{level="2",addr="0x0001078c",func="callee2",
19519file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19520fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19521frame=@{level="3",addr="0x000107b4",func="callee1",
19522file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19523fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19524frame=@{level="4",addr="0x000107e0",func="main",
19525file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19526fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19527(gdb)
a2c02241
NR
19528-stack-list-arguments 0
19529^done,
19530stack-args=[
19531frame=@{level="0",args=[]@},
19532frame=@{level="1",args=[name="strarg"]@},
19533frame=@{level="2",args=[name="intarg",name="strarg"]@},
19534frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19535frame=@{level="4",args=[]@}]
594fe323 19536(gdb)
a2c02241
NR
19537-stack-list-arguments 1
19538^done,
19539stack-args=[
19540frame=@{level="0",args=[]@},
19541frame=@{level="1",
19542 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19543frame=@{level="2",args=[
19544@{name="intarg",value="2"@},
19545@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19546@{frame=@{level="3",args=[
19547@{name="intarg",value="2"@},
19548@{name="strarg",value="0x11940 \"A string argument.\""@},
19549@{name="fltarg",value="3.5"@}]@},
19550frame=@{level="4",args=[]@}]
594fe323 19551(gdb)
a2c02241
NR
19552-stack-list-arguments 0 2 2
19553^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19554(gdb)
a2c02241
NR
19555-stack-list-arguments 1 2 2
19556^done,stack-args=[frame=@{level="2",
19557args=[@{name="intarg",value="2"@},
19558@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19559(gdb)
a2c02241
NR
19560@end smallexample
19561
19562@c @subheading -stack-list-exception-handlers
922fbb7b 19563
a2c02241
NR
19564
19565@subheading The @code{-stack-list-frames} Command
19566@findex -stack-list-frames
1abaf70c
BR
19567
19568@subsubheading Synopsis
19569
19570@smallexample
a2c02241 19571 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19572@end smallexample
19573
a2c02241
NR
19574List the frames currently on the stack. For each frame it displays the
19575following info:
19576
19577@table @samp
19578@item @var{level}
d3e8051b 19579The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19580@item @var{addr}
19581The @code{$pc} value for that frame.
19582@item @var{func}
19583Function name.
19584@item @var{file}
19585File name of the source file where the function lives.
19586@item @var{line}
19587Line number corresponding to the @code{$pc}.
19588@end table
19589
19590If invoked without arguments, this command prints a backtrace for the
19591whole stack. If given two integer arguments, it shows the frames whose
19592levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19593are equal, it shows the single frame at the corresponding level. It is
19594an error if @var{low-frame} is larger than the actual number of
a5451f4e 19595frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19596actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19597
19598@subsubheading @value{GDBN} Command
19599
a2c02241 19600The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19601
19602@subsubheading Example
19603
a2c02241
NR
19604Full stack backtrace:
19605
1abaf70c 19606@smallexample
594fe323 19607(gdb)
a2c02241
NR
19608-stack-list-frames
19609^done,stack=
19610[frame=@{level="0",addr="0x0001076c",func="foo",
19611 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19612frame=@{level="1",addr="0x000107a4",func="foo",
19613 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19614frame=@{level="2",addr="0x000107a4",func="foo",
19615 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19616frame=@{level="3",addr="0x000107a4",func="foo",
19617 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19618frame=@{level="4",addr="0x000107a4",func="foo",
19619 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19620frame=@{level="5",addr="0x000107a4",func="foo",
19621 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19622frame=@{level="6",addr="0x000107a4",func="foo",
19623 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19624frame=@{level="7",addr="0x000107a4",func="foo",
19625 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19626frame=@{level="8",addr="0x000107a4",func="foo",
19627 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19628frame=@{level="9",addr="0x000107a4",func="foo",
19629 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19630frame=@{level="10",addr="0x000107a4",func="foo",
19631 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19632frame=@{level="11",addr="0x00010738",func="main",
19633 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19634(gdb)
1abaf70c
BR
19635@end smallexample
19636
a2c02241 19637Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19638
a2c02241 19639@smallexample
594fe323 19640(gdb)
a2c02241
NR
19641-stack-list-frames 3 5
19642^done,stack=
19643[frame=@{level="3",addr="0x000107a4",func="foo",
19644 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19645frame=@{level="4",addr="0x000107a4",func="foo",
19646 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19647frame=@{level="5",addr="0x000107a4",func="foo",
19648 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19649(gdb)
a2c02241 19650@end smallexample
922fbb7b 19651
a2c02241 19652Show a single frame:
922fbb7b
AC
19653
19654@smallexample
594fe323 19655(gdb)
a2c02241
NR
19656-stack-list-frames 3 3
19657^done,stack=
19658[frame=@{level="3",addr="0x000107a4",func="foo",
19659 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19660(gdb)
922fbb7b
AC
19661@end smallexample
19662
922fbb7b 19663
a2c02241
NR
19664@subheading The @code{-stack-list-locals} Command
19665@findex -stack-list-locals
57c22c6c 19666
a2c02241 19667@subsubheading Synopsis
922fbb7b
AC
19668
19669@smallexample
a2c02241 19670 -stack-list-locals @var{print-values}
922fbb7b
AC
19671@end smallexample
19672
a2c02241
NR
19673Display the local variable names for the selected frame. If
19674@var{print-values} is 0 or @code{--no-values}, print only the names of
19675the variables; if it is 1 or @code{--all-values}, print also their
19676values; and if it is 2 or @code{--simple-values}, print the name,
19677type and value for simple data types and the name and type for arrays,
19678structures and unions. In this last case, a frontend can immediately
19679display the value of simple data types and create variable objects for
d3e8051b 19680other data types when the user wishes to explore their values in
a2c02241 19681more detail.
922fbb7b
AC
19682
19683@subsubheading @value{GDBN} Command
19684
a2c02241 19685@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19686
19687@subsubheading Example
922fbb7b
AC
19688
19689@smallexample
594fe323 19690(gdb)
a2c02241
NR
19691-stack-list-locals 0
19692^done,locals=[name="A",name="B",name="C"]
594fe323 19693(gdb)
a2c02241
NR
19694-stack-list-locals --all-values
19695^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19696 @{name="C",value="@{1, 2, 3@}"@}]
19697-stack-list-locals --simple-values
19698^done,locals=[@{name="A",type="int",value="1"@},
19699 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19700(gdb)
922fbb7b
AC
19701@end smallexample
19702
922fbb7b 19703
a2c02241
NR
19704@subheading The @code{-stack-select-frame} Command
19705@findex -stack-select-frame
922fbb7b
AC
19706
19707@subsubheading Synopsis
19708
19709@smallexample
a2c02241 19710 -stack-select-frame @var{framenum}
922fbb7b
AC
19711@end smallexample
19712
a2c02241
NR
19713Change the selected frame. Select a different frame @var{framenum} on
19714the stack.
922fbb7b
AC
19715
19716@subsubheading @value{GDBN} Command
19717
a2c02241
NR
19718The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19719@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19720
19721@subsubheading Example
19722
19723@smallexample
594fe323 19724(gdb)
a2c02241 19725-stack-select-frame 2
922fbb7b 19726^done
594fe323 19727(gdb)
922fbb7b
AC
19728@end smallexample
19729
19730@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19731@node GDB/MI Variable Objects
19732@section @sc{gdb/mi} Variable Objects
922fbb7b 19733
a1b5960f 19734@ignore
922fbb7b 19735
a2c02241 19736@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19737
a2c02241
NR
19738For the implementation of a variable debugger window (locals, watched
19739expressions, etc.), we are proposing the adaptation of the existing code
19740used by @code{Insight}.
922fbb7b 19741
a2c02241 19742The two main reasons for that are:
922fbb7b 19743
a2c02241
NR
19744@enumerate 1
19745@item
19746It has been proven in practice (it is already on its second generation).
922fbb7b 19747
a2c02241
NR
19748@item
19749It will shorten development time (needless to say how important it is
19750now).
19751@end enumerate
922fbb7b 19752
a2c02241
NR
19753The original interface was designed to be used by Tcl code, so it was
19754slightly changed so it could be used through @sc{gdb/mi}. This section
19755describes the @sc{gdb/mi} operations that will be available and gives some
19756hints about their use.
922fbb7b 19757
a2c02241
NR
19758@emph{Note}: In addition to the set of operations described here, we
19759expect the @sc{gui} implementation of a variable window to require, at
19760least, the following operations:
922fbb7b 19761
a2c02241
NR
19762@itemize @bullet
19763@item @code{-gdb-show} @code{output-radix}
19764@item @code{-stack-list-arguments}
19765@item @code{-stack-list-locals}
19766@item @code{-stack-select-frame}
19767@end itemize
922fbb7b 19768
a1b5960f
VP
19769@end ignore
19770
c8b2f53c 19771@subheading Introduction to Variable Objects
922fbb7b 19772
a2c02241 19773@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19774
19775Variable objects are "object-oriented" MI interface for examining and
19776changing values of expressions. Unlike some other MI interfaces that
19777work with expressions, variable objects are specifically designed for
19778simple and efficient presentation in the frontend. A variable object
19779is identified by string name. When a variable object is created, the
19780frontend specifies the expression for that variable object. The
19781expression can be a simple variable, or it can be an arbitrary complex
19782expression, and can even involve CPU registers. After creating a
19783variable object, the frontend can invoke other variable object
19784operations---for example to obtain or change the value of a variable
19785object, or to change display format.
19786
19787Variable objects have hierarchical tree structure. Any variable object
19788that corresponds to a composite type, such as structure in C, has
19789a number of child variable objects, for example corresponding to each
19790element of a structure. A child variable object can itself have
19791children, recursively. Recursion ends when we reach
25d5ea92
VP
19792leaf variable objects, which always have built-in types. Child variable
19793objects are created only by explicit request, so if a frontend
19794is not interested in the children of a particular variable object, no
19795child will be created.
c8b2f53c
VP
19796
19797For a leaf variable object it is possible to obtain its value as a
19798string, or set the value from a string. String value can be also
19799obtained for a non-leaf variable object, but it's generally a string
19800that only indicates the type of the object, and does not list its
19801contents. Assignment to a non-leaf variable object is not allowed.
19802
19803A frontend does not need to read the values of all variable objects each time
19804the program stops. Instead, MI provides an update command that lists all
19805variable objects whose values has changed since the last update
19806operation. This considerably reduces the amount of data that must
25d5ea92
VP
19807be transferred to the frontend. As noted above, children variable
19808objects are created on demand, and only leaf variable objects have a
19809real value. As result, gdb will read target memory only for leaf
19810variables that frontend has created.
19811
19812The automatic update is not always desirable. For example, a frontend
19813might want to keep a value of some expression for future reference,
19814and never update it. For another example, fetching memory is
19815relatively slow for embedded targets, so a frontend might want
19816to disable automatic update for the variables that are either not
19817visible on the screen, or ``closed''. This is possible using so
19818called ``frozen variable objects''. Such variable objects are never
19819implicitly updated.
922fbb7b 19820
a2c02241
NR
19821The following is the complete set of @sc{gdb/mi} operations defined to
19822access this functionality:
922fbb7b 19823
a2c02241
NR
19824@multitable @columnfractions .4 .6
19825@item @strong{Operation}
19826@tab @strong{Description}
922fbb7b 19827
a2c02241
NR
19828@item @code{-var-create}
19829@tab create a variable object
19830@item @code{-var-delete}
22d8a470 19831@tab delete the variable object and/or its children
a2c02241
NR
19832@item @code{-var-set-format}
19833@tab set the display format of this variable
19834@item @code{-var-show-format}
19835@tab show the display format of this variable
19836@item @code{-var-info-num-children}
19837@tab tells how many children this object has
19838@item @code{-var-list-children}
19839@tab return a list of the object's children
19840@item @code{-var-info-type}
19841@tab show the type of this variable object
19842@item @code{-var-info-expression}
02142340
VP
19843@tab print parent-relative expression that this variable object represents
19844@item @code{-var-info-path-expression}
19845@tab print full expression that this variable object represents
a2c02241
NR
19846@item @code{-var-show-attributes}
19847@tab is this variable editable? does it exist here?
19848@item @code{-var-evaluate-expression}
19849@tab get the value of this variable
19850@item @code{-var-assign}
19851@tab set the value of this variable
19852@item @code{-var-update}
19853@tab update the variable and its children
25d5ea92
VP
19854@item @code{-var-set-frozen}
19855@tab set frozeness attribute
a2c02241 19856@end multitable
922fbb7b 19857
a2c02241
NR
19858In the next subsection we describe each operation in detail and suggest
19859how it can be used.
922fbb7b 19860
a2c02241 19861@subheading Description And Use of Operations on Variable Objects
922fbb7b 19862
a2c02241
NR
19863@subheading The @code{-var-create} Command
19864@findex -var-create
ef21caaf 19865
a2c02241 19866@subsubheading Synopsis
ef21caaf 19867
a2c02241
NR
19868@smallexample
19869 -var-create @{@var{name} | "-"@}
19870 @{@var{frame-addr} | "*"@} @var{expression}
19871@end smallexample
19872
19873This operation creates a variable object, which allows the monitoring of
19874a variable, the result of an expression, a memory cell or a CPU
19875register.
ef21caaf 19876
a2c02241
NR
19877The @var{name} parameter is the string by which the object can be
19878referenced. It must be unique. If @samp{-} is specified, the varobj
19879system will generate a string ``varNNNNNN'' automatically. It will be
19880unique provided that one does not specify @var{name} on that format.
19881The command fails if a duplicate name is found.
ef21caaf 19882
a2c02241
NR
19883The frame under which the expression should be evaluated can be
19884specified by @var{frame-addr}. A @samp{*} indicates that the current
19885frame should be used.
922fbb7b 19886
a2c02241
NR
19887@var{expression} is any expression valid on the current language set (must not
19888begin with a @samp{*}), or one of the following:
922fbb7b 19889
a2c02241
NR
19890@itemize @bullet
19891@item
19892@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19893
a2c02241
NR
19894@item
19895@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19896
a2c02241
NR
19897@item
19898@samp{$@var{regname}} --- a CPU register name
19899@end itemize
922fbb7b 19900
a2c02241 19901@subsubheading Result
922fbb7b 19902
a2c02241
NR
19903This operation returns the name, number of children and the type of the
19904object created. Type is returned as a string as the ones generated by
19905the @value{GDBN} CLI:
922fbb7b
AC
19906
19907@smallexample
a2c02241 19908 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19909@end smallexample
19910
a2c02241
NR
19911
19912@subheading The @code{-var-delete} Command
19913@findex -var-delete
922fbb7b
AC
19914
19915@subsubheading Synopsis
19916
19917@smallexample
22d8a470 19918 -var-delete [ -c ] @var{name}
922fbb7b
AC
19919@end smallexample
19920
a2c02241 19921Deletes a previously created variable object and all of its children.
22d8a470 19922With the @samp{-c} option, just deletes the children.
922fbb7b 19923
a2c02241 19924Returns an error if the object @var{name} is not found.
922fbb7b 19925
922fbb7b 19926
a2c02241
NR
19927@subheading The @code{-var-set-format} Command
19928@findex -var-set-format
922fbb7b 19929
a2c02241 19930@subsubheading Synopsis
922fbb7b
AC
19931
19932@smallexample
a2c02241 19933 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19934@end smallexample
19935
a2c02241
NR
19936Sets the output format for the value of the object @var{name} to be
19937@var{format-spec}.
19938
19939The syntax for the @var{format-spec} is as follows:
19940
19941@smallexample
19942 @var{format-spec} @expansion{}
19943 @{binary | decimal | hexadecimal | octal | natural@}
19944@end smallexample
19945
c8b2f53c
VP
19946The natural format is the default format choosen automatically
19947based on the variable type (like decimal for an @code{int}, hex
19948for pointers, etc.).
19949
19950For a variable with children, the format is set only on the
19951variable itself, and the children are not affected.
a2c02241
NR
19952
19953@subheading The @code{-var-show-format} Command
19954@findex -var-show-format
922fbb7b
AC
19955
19956@subsubheading Synopsis
19957
19958@smallexample
a2c02241 19959 -var-show-format @var{name}
922fbb7b
AC
19960@end smallexample
19961
a2c02241 19962Returns the format used to display the value of the object @var{name}.
922fbb7b 19963
a2c02241
NR
19964@smallexample
19965 @var{format} @expansion{}
19966 @var{format-spec}
19967@end smallexample
922fbb7b 19968
922fbb7b 19969
a2c02241
NR
19970@subheading The @code{-var-info-num-children} Command
19971@findex -var-info-num-children
19972
19973@subsubheading Synopsis
19974
19975@smallexample
19976 -var-info-num-children @var{name}
19977@end smallexample
19978
19979Returns the number of children of a variable object @var{name}:
19980
19981@smallexample
19982 numchild=@var{n}
19983@end smallexample
19984
19985
19986@subheading The @code{-var-list-children} Command
19987@findex -var-list-children
19988
19989@subsubheading Synopsis
19990
19991@smallexample
19992 -var-list-children [@var{print-values}] @var{name}
19993@end smallexample
19994@anchor{-var-list-children}
19995
19996Return a list of the children of the specified variable object and
19997create variable objects for them, if they do not already exist. With
19998a single argument or if @var{print-values} has a value for of 0 or
19999@code{--no-values}, print only the names of the variables; if
20000@var{print-values} is 1 or @code{--all-values}, also print their
20001values; and if it is 2 or @code{--simple-values} print the name and
20002value for simple data types and just the name for arrays, structures
20003and unions.
922fbb7b
AC
20004
20005@subsubheading Example
20006
20007@smallexample
594fe323 20008(gdb)
a2c02241
NR
20009 -var-list-children n
20010 ^done,numchild=@var{n},children=[@{name=@var{name},
20011 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20012(gdb)
a2c02241
NR
20013 -var-list-children --all-values n
20014 ^done,numchild=@var{n},children=[@{name=@var{name},
20015 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20016@end smallexample
20017
922fbb7b 20018
a2c02241
NR
20019@subheading The @code{-var-info-type} Command
20020@findex -var-info-type
922fbb7b 20021
a2c02241
NR
20022@subsubheading Synopsis
20023
20024@smallexample
20025 -var-info-type @var{name}
20026@end smallexample
20027
20028Returns the type of the specified variable @var{name}. The type is
20029returned as a string in the same format as it is output by the
20030@value{GDBN} CLI:
20031
20032@smallexample
20033 type=@var{typename}
20034@end smallexample
20035
20036
20037@subheading The @code{-var-info-expression} Command
20038@findex -var-info-expression
922fbb7b
AC
20039
20040@subsubheading Synopsis
20041
20042@smallexample
a2c02241 20043 -var-info-expression @var{name}
922fbb7b
AC
20044@end smallexample
20045
02142340
VP
20046Returns a string that is suitable for presenting this
20047variable object in user interface. The string is generally
20048not valid expression in the current language, and cannot be evaluated.
20049
20050For example, if @code{a} is an array, and variable object
20051@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20052
a2c02241 20053@smallexample
02142340
VP
20054(gdb) -var-info-expression A.1
20055^done,lang="C",exp="1"
a2c02241 20056@end smallexample
922fbb7b 20057
a2c02241 20058@noindent
02142340
VP
20059Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20060
20061Note that the output of the @code{-var-list-children} command also
20062includes those expressions, so the @code{-var-info-expression} command
20063is of limited use.
20064
20065@subheading The @code{-var-info-path-expression} Command
20066@findex -var-info-path-expression
20067
20068@subsubheading Synopsis
20069
20070@smallexample
20071 -var-info-path-expression @var{name}
20072@end smallexample
20073
20074Returns an expression that can be evaluated in the current
20075context and will yield the same value that a variable object has.
20076Compare this with the @code{-var-info-expression} command, which
20077result can be used only for UI presentation. Typical use of
20078the @code{-var-info-path-expression} command is creating a
20079watchpoint from a variable object.
20080
20081For example, suppose @code{C} is a C@t{++} class, derived from class
20082@code{Base}, and that the @code{Base} class has a member called
20083@code{m_size}. Assume a variable @code{c} is has the type of
20084@code{C} and a variable object @code{C} was created for variable
20085@code{c}. Then, we'll get this output:
20086@smallexample
20087(gdb) -var-info-path-expression C.Base.public.m_size
20088^done,path_expr=((Base)c).m_size)
20089@end smallexample
922fbb7b 20090
a2c02241
NR
20091@subheading The @code{-var-show-attributes} Command
20092@findex -var-show-attributes
922fbb7b 20093
a2c02241 20094@subsubheading Synopsis
922fbb7b 20095
a2c02241
NR
20096@smallexample
20097 -var-show-attributes @var{name}
20098@end smallexample
922fbb7b 20099
a2c02241 20100List attributes of the specified variable object @var{name}:
922fbb7b
AC
20101
20102@smallexample
a2c02241 20103 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20104@end smallexample
20105
a2c02241
NR
20106@noindent
20107where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20108
20109@subheading The @code{-var-evaluate-expression} Command
20110@findex -var-evaluate-expression
20111
20112@subsubheading Synopsis
20113
20114@smallexample
20115 -var-evaluate-expression @var{name}
20116@end smallexample
20117
20118Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20119object and returns its value as a string. The format of the
20120string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20121
20122@smallexample
20123 value=@var{value}
20124@end smallexample
20125
20126Note that one must invoke @code{-var-list-children} for a variable
20127before the value of a child variable can be evaluated.
20128
20129@subheading The @code{-var-assign} Command
20130@findex -var-assign
20131
20132@subsubheading Synopsis
20133
20134@smallexample
20135 -var-assign @var{name} @var{expression}
20136@end smallexample
20137
20138Assigns the value of @var{expression} to the variable object specified
20139by @var{name}. The object must be @samp{editable}. If the variable's
20140value is altered by the assign, the variable will show up in any
20141subsequent @code{-var-update} list.
20142
20143@subsubheading Example
922fbb7b
AC
20144
20145@smallexample
594fe323 20146(gdb)
a2c02241
NR
20147-var-assign var1 3
20148^done,value="3"
594fe323 20149(gdb)
a2c02241
NR
20150-var-update *
20151^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20152(gdb)
922fbb7b
AC
20153@end smallexample
20154
a2c02241
NR
20155@subheading The @code{-var-update} Command
20156@findex -var-update
20157
20158@subsubheading Synopsis
20159
20160@smallexample
20161 -var-update [@var{print-values}] @{@var{name} | "*"@}
20162@end smallexample
20163
c8b2f53c
VP
20164Reevaluate the expressions corresponding to the variable object
20165@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20166list of variable objects whose values have changed; @var{name} must
20167be a root variable object. Here, ``changed'' means that the result of
20168@code{-var-evaluate-expression} before and after the
20169@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20170object names, all existing variable objects are updated, except
20171for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20172@var{print-values} determines whether both names and values, or just
20173names are printed. The possible values of this options are the same
20174as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20175recommended to use the @samp{--all-values} option, to reduce the
20176number of MI commands needed on each program stop.
c8b2f53c 20177
a2c02241
NR
20178
20179@subsubheading Example
922fbb7b
AC
20180
20181@smallexample
594fe323 20182(gdb)
a2c02241
NR
20183-var-assign var1 3
20184^done,value="3"
594fe323 20185(gdb)
a2c02241
NR
20186-var-update --all-values var1
20187^done,changelist=[@{name="var1",value="3",in_scope="true",
20188type_changed="false"@}]
594fe323 20189(gdb)
922fbb7b
AC
20190@end smallexample
20191
9f708cb2 20192@anchor{-var-update}
36ece8b3
NR
20193The field in_scope may take three values:
20194
20195@table @code
20196@item "true"
20197The variable object's current value is valid.
20198
20199@item "false"
20200The variable object does not currently hold a valid value but it may
20201hold one in the future if its associated expression comes back into
20202scope.
20203
20204@item "invalid"
20205The variable object no longer holds a valid value.
20206This can occur when the executable file being debugged has changed,
20207either through recompilation or by using the @value{GDBN} @code{file}
20208command. The front end should normally choose to delete these variable
20209objects.
20210@end table
20211
20212In the future new values may be added to this list so the front should
20213be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20214
25d5ea92
VP
20215@subheading The @code{-var-set-frozen} Command
20216@findex -var-set-frozen
9f708cb2 20217@anchor{-var-set-frozen}
25d5ea92
VP
20218
20219@subsubheading Synopsis
20220
20221@smallexample
9f708cb2 20222 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20223@end smallexample
20224
9f708cb2 20225Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20226@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20227frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20228frozen, then neither itself, nor any of its children, are
9f708cb2 20229implicitly updated by @code{-var-update} of
25d5ea92
VP
20230a parent variable or by @code{-var-update *}. Only
20231@code{-var-update} of the variable itself will update its value and
20232values of its children. After a variable object is unfrozen, it is
20233implicitly updated by all subsequent @code{-var-update} operations.
20234Unfreezing a variable does not update it, only subsequent
20235@code{-var-update} does.
20236
20237@subsubheading Example
20238
20239@smallexample
20240(gdb)
20241-var-set-frozen V 1
20242^done
20243(gdb)
20244@end smallexample
20245
20246
a2c02241
NR
20247@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20248@node GDB/MI Data Manipulation
20249@section @sc{gdb/mi} Data Manipulation
922fbb7b 20250
a2c02241
NR
20251@cindex data manipulation, in @sc{gdb/mi}
20252@cindex @sc{gdb/mi}, data manipulation
20253This section describes the @sc{gdb/mi} commands that manipulate data:
20254examine memory and registers, evaluate expressions, etc.
20255
20256@c REMOVED FROM THE INTERFACE.
20257@c @subheading -data-assign
20258@c Change the value of a program variable. Plenty of side effects.
79a6e687 20259@c @subsubheading GDB Command
a2c02241
NR
20260@c set variable
20261@c @subsubheading Example
20262@c N.A.
20263
20264@subheading The @code{-data-disassemble} Command
20265@findex -data-disassemble
922fbb7b
AC
20266
20267@subsubheading Synopsis
20268
20269@smallexample
a2c02241
NR
20270 -data-disassemble
20271 [ -s @var{start-addr} -e @var{end-addr} ]
20272 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20273 -- @var{mode}
922fbb7b
AC
20274@end smallexample
20275
a2c02241
NR
20276@noindent
20277Where:
20278
20279@table @samp
20280@item @var{start-addr}
20281is the beginning address (or @code{$pc})
20282@item @var{end-addr}
20283is the end address
20284@item @var{filename}
20285is the name of the file to disassemble
20286@item @var{linenum}
20287is the line number to disassemble around
20288@item @var{lines}
d3e8051b 20289is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20290the whole function will be disassembled, in case no @var{end-addr} is
20291specified. If @var{end-addr} is specified as a non-zero value, and
20292@var{lines} is lower than the number of disassembly lines between
20293@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20294displayed; if @var{lines} is higher than the number of lines between
20295@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20296are displayed.
20297@item @var{mode}
20298is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20299disassembly).
20300@end table
20301
20302@subsubheading Result
20303
20304The output for each instruction is composed of four fields:
20305
20306@itemize @bullet
20307@item Address
20308@item Func-name
20309@item Offset
20310@item Instruction
20311@end itemize
20312
20313Note that whatever included in the instruction field, is not manipulated
d3e8051b 20314directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20315
20316@subsubheading @value{GDBN} Command
20317
a2c02241 20318There's no direct mapping from this command to the CLI.
922fbb7b
AC
20319
20320@subsubheading Example
20321
a2c02241
NR
20322Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20323
922fbb7b 20324@smallexample
594fe323 20325(gdb)
a2c02241
NR
20326-data-disassemble -s $pc -e "$pc + 20" -- 0
20327^done,
20328asm_insns=[
20329@{address="0x000107c0",func-name="main",offset="4",
20330inst="mov 2, %o0"@},
20331@{address="0x000107c4",func-name="main",offset="8",
20332inst="sethi %hi(0x11800), %o2"@},
20333@{address="0x000107c8",func-name="main",offset="12",
20334inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20335@{address="0x000107cc",func-name="main",offset="16",
20336inst="sethi %hi(0x11800), %o2"@},
20337@{address="0x000107d0",func-name="main",offset="20",
20338inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20339(gdb)
a2c02241
NR
20340@end smallexample
20341
20342Disassemble the whole @code{main} function. Line 32 is part of
20343@code{main}.
20344
20345@smallexample
20346-data-disassemble -f basics.c -l 32 -- 0
20347^done,asm_insns=[
20348@{address="0x000107bc",func-name="main",offset="0",
20349inst="save %sp, -112, %sp"@},
20350@{address="0x000107c0",func-name="main",offset="4",
20351inst="mov 2, %o0"@},
20352@{address="0x000107c4",func-name="main",offset="8",
20353inst="sethi %hi(0x11800), %o2"@},
20354[@dots{}]
20355@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20356@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20357(gdb)
922fbb7b
AC
20358@end smallexample
20359
a2c02241 20360Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20361
a2c02241 20362@smallexample
594fe323 20363(gdb)
a2c02241
NR
20364-data-disassemble -f basics.c -l 32 -n 3 -- 0
20365^done,asm_insns=[
20366@{address="0x000107bc",func-name="main",offset="0",
20367inst="save %sp, -112, %sp"@},
20368@{address="0x000107c0",func-name="main",offset="4",
20369inst="mov 2, %o0"@},
20370@{address="0x000107c4",func-name="main",offset="8",
20371inst="sethi %hi(0x11800), %o2"@}]
594fe323 20372(gdb)
a2c02241
NR
20373@end smallexample
20374
20375Disassemble 3 instructions from the start of @code{main} in mixed mode:
20376
20377@smallexample
594fe323 20378(gdb)
a2c02241
NR
20379-data-disassemble -f basics.c -l 32 -n 3 -- 1
20380^done,asm_insns=[
20381src_and_asm_line=@{line="31",
20382file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20383 testsuite/gdb.mi/basics.c",line_asm_insn=[
20384@{address="0x000107bc",func-name="main",offset="0",
20385inst="save %sp, -112, %sp"@}]@},
20386src_and_asm_line=@{line="32",
20387file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20388 testsuite/gdb.mi/basics.c",line_asm_insn=[
20389@{address="0x000107c0",func-name="main",offset="4",
20390inst="mov 2, %o0"@},
20391@{address="0x000107c4",func-name="main",offset="8",
20392inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20393(gdb)
a2c02241
NR
20394@end smallexample
20395
20396
20397@subheading The @code{-data-evaluate-expression} Command
20398@findex -data-evaluate-expression
922fbb7b
AC
20399
20400@subsubheading Synopsis
20401
20402@smallexample
a2c02241 20403 -data-evaluate-expression @var{expr}
922fbb7b
AC
20404@end smallexample
20405
a2c02241
NR
20406Evaluate @var{expr} as an expression. The expression could contain an
20407inferior function call. The function call will execute synchronously.
20408If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20409
20410@subsubheading @value{GDBN} Command
20411
a2c02241
NR
20412The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20413@samp{call}. In @code{gdbtk} only, there's a corresponding
20414@samp{gdb_eval} command.
922fbb7b
AC
20415
20416@subsubheading Example
20417
a2c02241
NR
20418In the following example, the numbers that precede the commands are the
20419@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20420Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20421output.
20422
922fbb7b 20423@smallexample
a2c02241
NR
20424211-data-evaluate-expression A
20425211^done,value="1"
594fe323 20426(gdb)
a2c02241
NR
20427311-data-evaluate-expression &A
20428311^done,value="0xefffeb7c"
594fe323 20429(gdb)
a2c02241
NR
20430411-data-evaluate-expression A+3
20431411^done,value="4"
594fe323 20432(gdb)
a2c02241
NR
20433511-data-evaluate-expression "A + 3"
20434511^done,value="4"
594fe323 20435(gdb)
a2c02241 20436@end smallexample
922fbb7b
AC
20437
20438
a2c02241
NR
20439@subheading The @code{-data-list-changed-registers} Command
20440@findex -data-list-changed-registers
922fbb7b
AC
20441
20442@subsubheading Synopsis
20443
20444@smallexample
a2c02241 20445 -data-list-changed-registers
922fbb7b
AC
20446@end smallexample
20447
a2c02241 20448Display a list of the registers that have changed.
922fbb7b
AC
20449
20450@subsubheading @value{GDBN} Command
20451
a2c02241
NR
20452@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20453has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20454
20455@subsubheading Example
922fbb7b 20456
a2c02241 20457On a PPC MBX board:
922fbb7b
AC
20458
20459@smallexample
594fe323 20460(gdb)
a2c02241
NR
20461-exec-continue
20462^running
922fbb7b 20463
594fe323 20464(gdb)
a2c02241
NR
20465*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20466args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20467(gdb)
a2c02241
NR
20468-data-list-changed-registers
20469^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20470"10","11","13","14","15","16","17","18","19","20","21","22","23",
20471"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20472(gdb)
a2c02241 20473@end smallexample
922fbb7b
AC
20474
20475
a2c02241
NR
20476@subheading The @code{-data-list-register-names} Command
20477@findex -data-list-register-names
922fbb7b
AC
20478
20479@subsubheading Synopsis
20480
20481@smallexample
a2c02241 20482 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20483@end smallexample
20484
a2c02241
NR
20485Show a list of register names for the current target. If no arguments
20486are given, it shows a list of the names of all the registers. If
20487integer numbers are given as arguments, it will print a list of the
20488names of the registers corresponding to the arguments. To ensure
20489consistency between a register name and its number, the output list may
20490include empty register names.
922fbb7b
AC
20491
20492@subsubheading @value{GDBN} Command
20493
a2c02241
NR
20494@value{GDBN} does not have a command which corresponds to
20495@samp{-data-list-register-names}. In @code{gdbtk} there is a
20496corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20497
20498@subsubheading Example
922fbb7b 20499
a2c02241
NR
20500For the PPC MBX board:
20501@smallexample
594fe323 20502(gdb)
a2c02241
NR
20503-data-list-register-names
20504^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20505"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20506"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20507"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20508"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20509"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20510"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20511(gdb)
a2c02241
NR
20512-data-list-register-names 1 2 3
20513^done,register-names=["r1","r2","r3"]
594fe323 20514(gdb)
a2c02241 20515@end smallexample
922fbb7b 20516
a2c02241
NR
20517@subheading The @code{-data-list-register-values} Command
20518@findex -data-list-register-values
922fbb7b
AC
20519
20520@subsubheading Synopsis
20521
20522@smallexample
a2c02241 20523 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20524@end smallexample
20525
a2c02241
NR
20526Display the registers' contents. @var{fmt} is the format according to
20527which the registers' contents are to be returned, followed by an optional
20528list of numbers specifying the registers to display. A missing list of
20529numbers indicates that the contents of all the registers must be returned.
20530
20531Allowed formats for @var{fmt} are:
20532
20533@table @code
20534@item x
20535Hexadecimal
20536@item o
20537Octal
20538@item t
20539Binary
20540@item d
20541Decimal
20542@item r
20543Raw
20544@item N
20545Natural
20546@end table
922fbb7b
AC
20547
20548@subsubheading @value{GDBN} Command
20549
a2c02241
NR
20550The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20551all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20552
20553@subsubheading Example
922fbb7b 20554
a2c02241
NR
20555For a PPC MBX board (note: line breaks are for readability only, they
20556don't appear in the actual output):
20557
20558@smallexample
594fe323 20559(gdb)
a2c02241
NR
20560-data-list-register-values r 64 65
20561^done,register-values=[@{number="64",value="0xfe00a300"@},
20562@{number="65",value="0x00029002"@}]
594fe323 20563(gdb)
a2c02241
NR
20564-data-list-register-values x
20565^done,register-values=[@{number="0",value="0xfe0043c8"@},
20566@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20567@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20568@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20569@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20570@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20571@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20572@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20573@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20574@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20575@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20576@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20577@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20578@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20579@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20580@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20581@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20582@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20583@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20584@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20585@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20586@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20587@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20588@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20589@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20590@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20591@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20592@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20593@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20594@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20595@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20596@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20597@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20598@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20599@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20600@{number="69",value="0x20002b03"@}]
594fe323 20601(gdb)
a2c02241 20602@end smallexample
922fbb7b 20603
a2c02241
NR
20604
20605@subheading The @code{-data-read-memory} Command
20606@findex -data-read-memory
922fbb7b
AC
20607
20608@subsubheading Synopsis
20609
20610@smallexample
a2c02241
NR
20611 -data-read-memory [ -o @var{byte-offset} ]
20612 @var{address} @var{word-format} @var{word-size}
20613 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20614@end smallexample
20615
a2c02241
NR
20616@noindent
20617where:
922fbb7b 20618
a2c02241
NR
20619@table @samp
20620@item @var{address}
20621An expression specifying the address of the first memory word to be
20622read. Complex expressions containing embedded white space should be
20623quoted using the C convention.
922fbb7b 20624
a2c02241
NR
20625@item @var{word-format}
20626The format to be used to print the memory words. The notation is the
20627same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20628,Output Formats}).
922fbb7b 20629
a2c02241
NR
20630@item @var{word-size}
20631The size of each memory word in bytes.
922fbb7b 20632
a2c02241
NR
20633@item @var{nr-rows}
20634The number of rows in the output table.
922fbb7b 20635
a2c02241
NR
20636@item @var{nr-cols}
20637The number of columns in the output table.
922fbb7b 20638
a2c02241
NR
20639@item @var{aschar}
20640If present, indicates that each row should include an @sc{ascii} dump. The
20641value of @var{aschar} is used as a padding character when a byte is not a
20642member of the printable @sc{ascii} character set (printable @sc{ascii}
20643characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20644
a2c02241
NR
20645@item @var{byte-offset}
20646An offset to add to the @var{address} before fetching memory.
20647@end table
922fbb7b 20648
a2c02241
NR
20649This command displays memory contents as a table of @var{nr-rows} by
20650@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20651@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20652(returned as @samp{total-bytes}). Should less than the requested number
20653of bytes be returned by the target, the missing words are identified
20654using @samp{N/A}. The number of bytes read from the target is returned
20655in @samp{nr-bytes} and the starting address used to read memory in
20656@samp{addr}.
20657
20658The address of the next/previous row or page is available in
20659@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20660@samp{prev-page}.
922fbb7b
AC
20661
20662@subsubheading @value{GDBN} Command
20663
a2c02241
NR
20664The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20665@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20666
20667@subsubheading Example
32e7087d 20668
a2c02241
NR
20669Read six bytes of memory starting at @code{bytes+6} but then offset by
20670@code{-6} bytes. Format as three rows of two columns. One byte per
20671word. Display each word in hex.
32e7087d
JB
20672
20673@smallexample
594fe323 20674(gdb)
a2c02241
NR
206759-data-read-memory -o -6 -- bytes+6 x 1 3 2
206769^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20677next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20678prev-page="0x0000138a",memory=[
20679@{addr="0x00001390",data=["0x00","0x01"]@},
20680@{addr="0x00001392",data=["0x02","0x03"]@},
20681@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20682(gdb)
32e7087d
JB
20683@end smallexample
20684
a2c02241
NR
20685Read two bytes of memory starting at address @code{shorts + 64} and
20686display as a single word formatted in decimal.
32e7087d 20687
32e7087d 20688@smallexample
594fe323 20689(gdb)
a2c02241
NR
206905-data-read-memory shorts+64 d 2 1 1
206915^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20692next-row="0x00001512",prev-row="0x0000150e",
20693next-page="0x00001512",prev-page="0x0000150e",memory=[
20694@{addr="0x00001510",data=["128"]@}]
594fe323 20695(gdb)
32e7087d
JB
20696@end smallexample
20697
a2c02241
NR
20698Read thirty two bytes of memory starting at @code{bytes+16} and format
20699as eight rows of four columns. Include a string encoding with @samp{x}
20700used as the non-printable character.
922fbb7b
AC
20701
20702@smallexample
594fe323 20703(gdb)
a2c02241
NR
207044-data-read-memory bytes+16 x 1 8 4 x
207054^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20706next-row="0x000013c0",prev-row="0x0000139c",
20707next-page="0x000013c0",prev-page="0x00001380",memory=[
20708@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20709@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20710@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20711@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20712@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20713@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20714@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20715@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20716(gdb)
922fbb7b
AC
20717@end smallexample
20718
a2c02241
NR
20719@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20720@node GDB/MI Tracepoint Commands
20721@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20722
a2c02241 20723The tracepoint commands are not yet implemented.
922fbb7b 20724
a2c02241 20725@c @subheading -trace-actions
922fbb7b 20726
a2c02241 20727@c @subheading -trace-delete
922fbb7b 20728
a2c02241 20729@c @subheading -trace-disable
922fbb7b 20730
a2c02241 20731@c @subheading -trace-dump
922fbb7b 20732
a2c02241 20733@c @subheading -trace-enable
922fbb7b 20734
a2c02241 20735@c @subheading -trace-exists
922fbb7b 20736
a2c02241 20737@c @subheading -trace-find
922fbb7b 20738
a2c02241 20739@c @subheading -trace-frame-number
922fbb7b 20740
a2c02241 20741@c @subheading -trace-info
922fbb7b 20742
a2c02241 20743@c @subheading -trace-insert
922fbb7b 20744
a2c02241 20745@c @subheading -trace-list
922fbb7b 20746
a2c02241 20747@c @subheading -trace-pass-count
922fbb7b 20748
a2c02241 20749@c @subheading -trace-save
922fbb7b 20750
a2c02241 20751@c @subheading -trace-start
922fbb7b 20752
a2c02241 20753@c @subheading -trace-stop
922fbb7b 20754
922fbb7b 20755
a2c02241
NR
20756@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20757@node GDB/MI Symbol Query
20758@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20759
20760
a2c02241
NR
20761@subheading The @code{-symbol-info-address} Command
20762@findex -symbol-info-address
922fbb7b
AC
20763
20764@subsubheading Synopsis
20765
20766@smallexample
a2c02241 20767 -symbol-info-address @var{symbol}
922fbb7b
AC
20768@end smallexample
20769
a2c02241 20770Describe where @var{symbol} is stored.
922fbb7b
AC
20771
20772@subsubheading @value{GDBN} Command
20773
a2c02241 20774The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20775
20776@subsubheading Example
20777N.A.
20778
20779
a2c02241
NR
20780@subheading The @code{-symbol-info-file} Command
20781@findex -symbol-info-file
922fbb7b
AC
20782
20783@subsubheading Synopsis
20784
20785@smallexample
a2c02241 20786 -symbol-info-file
922fbb7b
AC
20787@end smallexample
20788
a2c02241 20789Show the file for the symbol.
922fbb7b 20790
a2c02241 20791@subsubheading @value{GDBN} Command
922fbb7b 20792
a2c02241
NR
20793There's no equivalent @value{GDBN} command. @code{gdbtk} has
20794@samp{gdb_find_file}.
922fbb7b
AC
20795
20796@subsubheading Example
20797N.A.
20798
20799
a2c02241
NR
20800@subheading The @code{-symbol-info-function} Command
20801@findex -symbol-info-function
922fbb7b
AC
20802
20803@subsubheading Synopsis
20804
20805@smallexample
a2c02241 20806 -symbol-info-function
922fbb7b
AC
20807@end smallexample
20808
a2c02241 20809Show which function the symbol lives in.
922fbb7b
AC
20810
20811@subsubheading @value{GDBN} Command
20812
a2c02241 20813@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20814
20815@subsubheading Example
20816N.A.
20817
20818
a2c02241
NR
20819@subheading The @code{-symbol-info-line} Command
20820@findex -symbol-info-line
922fbb7b
AC
20821
20822@subsubheading Synopsis
20823
20824@smallexample
a2c02241 20825 -symbol-info-line
922fbb7b
AC
20826@end smallexample
20827
a2c02241 20828Show the core addresses of the code for a source line.
922fbb7b 20829
a2c02241 20830@subsubheading @value{GDBN} Command
922fbb7b 20831
a2c02241
NR
20832The corresponding @value{GDBN} command is @samp{info line}.
20833@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20834
20835@subsubheading Example
a2c02241 20836N.A.
922fbb7b
AC
20837
20838
a2c02241
NR
20839@subheading The @code{-symbol-info-symbol} Command
20840@findex -symbol-info-symbol
07f31aa6
DJ
20841
20842@subsubheading Synopsis
20843
a2c02241
NR
20844@smallexample
20845 -symbol-info-symbol @var{addr}
20846@end smallexample
07f31aa6 20847
a2c02241 20848Describe what symbol is at location @var{addr}.
07f31aa6 20849
a2c02241 20850@subsubheading @value{GDBN} Command
07f31aa6 20851
a2c02241 20852The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20853
20854@subsubheading Example
a2c02241 20855N.A.
07f31aa6
DJ
20856
20857
a2c02241
NR
20858@subheading The @code{-symbol-list-functions} Command
20859@findex -symbol-list-functions
922fbb7b
AC
20860
20861@subsubheading Synopsis
20862
20863@smallexample
a2c02241 20864 -symbol-list-functions
922fbb7b
AC
20865@end smallexample
20866
a2c02241 20867List the functions in the executable.
922fbb7b
AC
20868
20869@subsubheading @value{GDBN} Command
20870
a2c02241
NR
20871@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20872@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20873
20874@subsubheading Example
a2c02241 20875N.A.
922fbb7b
AC
20876
20877
a2c02241
NR
20878@subheading The @code{-symbol-list-lines} Command
20879@findex -symbol-list-lines
922fbb7b
AC
20880
20881@subsubheading Synopsis
20882
20883@smallexample
a2c02241 20884 -symbol-list-lines @var{filename}
922fbb7b
AC
20885@end smallexample
20886
a2c02241
NR
20887Print the list of lines that contain code and their associated program
20888addresses for the given source filename. The entries are sorted in
20889ascending PC order.
922fbb7b
AC
20890
20891@subsubheading @value{GDBN} Command
20892
a2c02241 20893There is no corresponding @value{GDBN} command.
922fbb7b
AC
20894
20895@subsubheading Example
a2c02241 20896@smallexample
594fe323 20897(gdb)
a2c02241
NR
20898-symbol-list-lines basics.c
20899^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20900(gdb)
a2c02241 20901@end smallexample
922fbb7b
AC
20902
20903
a2c02241
NR
20904@subheading The @code{-symbol-list-types} Command
20905@findex -symbol-list-types
922fbb7b
AC
20906
20907@subsubheading Synopsis
20908
20909@smallexample
a2c02241 20910 -symbol-list-types
922fbb7b
AC
20911@end smallexample
20912
a2c02241 20913List all the type names.
922fbb7b
AC
20914
20915@subsubheading @value{GDBN} Command
20916
a2c02241
NR
20917The corresponding commands are @samp{info types} in @value{GDBN},
20918@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20919
20920@subsubheading Example
20921N.A.
20922
20923
a2c02241
NR
20924@subheading The @code{-symbol-list-variables} Command
20925@findex -symbol-list-variables
922fbb7b
AC
20926
20927@subsubheading Synopsis
20928
20929@smallexample
a2c02241 20930 -symbol-list-variables
922fbb7b
AC
20931@end smallexample
20932
a2c02241 20933List all the global and static variable names.
922fbb7b
AC
20934
20935@subsubheading @value{GDBN} Command
20936
a2c02241 20937@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20938
20939@subsubheading Example
20940N.A.
20941
20942
a2c02241
NR
20943@subheading The @code{-symbol-locate} Command
20944@findex -symbol-locate
922fbb7b
AC
20945
20946@subsubheading Synopsis
20947
20948@smallexample
a2c02241 20949 -symbol-locate
922fbb7b
AC
20950@end smallexample
20951
922fbb7b
AC
20952@subsubheading @value{GDBN} Command
20953
a2c02241 20954@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20955
20956@subsubheading Example
20957N.A.
20958
20959
a2c02241
NR
20960@subheading The @code{-symbol-type} Command
20961@findex -symbol-type
922fbb7b
AC
20962
20963@subsubheading Synopsis
20964
20965@smallexample
a2c02241 20966 -symbol-type @var{variable}
922fbb7b
AC
20967@end smallexample
20968
a2c02241 20969Show type of @var{variable}.
922fbb7b 20970
a2c02241 20971@subsubheading @value{GDBN} Command
922fbb7b 20972
a2c02241
NR
20973The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20974@samp{gdb_obj_variable}.
20975
20976@subsubheading Example
20977N.A.
20978
20979
20980@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20981@node GDB/MI File Commands
20982@section @sc{gdb/mi} File Commands
20983
20984This section describes the GDB/MI commands to specify executable file names
20985and to read in and obtain symbol table information.
20986
20987@subheading The @code{-file-exec-and-symbols} Command
20988@findex -file-exec-and-symbols
20989
20990@subsubheading Synopsis
922fbb7b
AC
20991
20992@smallexample
a2c02241 20993 -file-exec-and-symbols @var{file}
922fbb7b
AC
20994@end smallexample
20995
a2c02241
NR
20996Specify the executable file to be debugged. This file is the one from
20997which the symbol table is also read. If no file is specified, the
20998command clears the executable and symbol information. If breakpoints
20999are set when using this command with no arguments, @value{GDBN} will produce
21000error messages. Otherwise, no output is produced, except a completion
21001notification.
21002
922fbb7b
AC
21003@subsubheading @value{GDBN} Command
21004
a2c02241 21005The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21006
21007@subsubheading Example
21008
21009@smallexample
594fe323 21010(gdb)
a2c02241
NR
21011-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21012^done
594fe323 21013(gdb)
922fbb7b
AC
21014@end smallexample
21015
922fbb7b 21016
a2c02241
NR
21017@subheading The @code{-file-exec-file} Command
21018@findex -file-exec-file
922fbb7b
AC
21019
21020@subsubheading Synopsis
21021
21022@smallexample
a2c02241 21023 -file-exec-file @var{file}
922fbb7b
AC
21024@end smallexample
21025
a2c02241
NR
21026Specify the executable file to be debugged. Unlike
21027@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21028from this file. If used without argument, @value{GDBN} clears the information
21029about the executable file. No output is produced, except a completion
21030notification.
922fbb7b 21031
a2c02241
NR
21032@subsubheading @value{GDBN} Command
21033
21034The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21035
21036@subsubheading Example
a2c02241
NR
21037
21038@smallexample
594fe323 21039(gdb)
a2c02241
NR
21040-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21041^done
594fe323 21042(gdb)
a2c02241 21043@end smallexample
922fbb7b
AC
21044
21045
a2c02241
NR
21046@subheading The @code{-file-list-exec-sections} Command
21047@findex -file-list-exec-sections
922fbb7b
AC
21048
21049@subsubheading Synopsis
21050
21051@smallexample
a2c02241 21052 -file-list-exec-sections
922fbb7b
AC
21053@end smallexample
21054
a2c02241
NR
21055List the sections of the current executable file.
21056
922fbb7b
AC
21057@subsubheading @value{GDBN} Command
21058
a2c02241
NR
21059The @value{GDBN} command @samp{info file} shows, among the rest, the same
21060information as this command. @code{gdbtk} has a corresponding command
21061@samp{gdb_load_info}.
922fbb7b
AC
21062
21063@subsubheading Example
21064N.A.
21065
21066
a2c02241
NR
21067@subheading The @code{-file-list-exec-source-file} Command
21068@findex -file-list-exec-source-file
922fbb7b
AC
21069
21070@subsubheading Synopsis
21071
21072@smallexample
a2c02241 21073 -file-list-exec-source-file
922fbb7b
AC
21074@end smallexample
21075
a2c02241 21076List the line number, the current source file, and the absolute path
44288b44
NR
21077to the current source file for the current executable. The macro
21078information field has a value of @samp{1} or @samp{0} depending on
21079whether or not the file includes preprocessor macro information.
922fbb7b
AC
21080
21081@subsubheading @value{GDBN} Command
21082
a2c02241 21083The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21084
21085@subsubheading Example
21086
922fbb7b 21087@smallexample
594fe323 21088(gdb)
a2c02241 21089123-file-list-exec-source-file
44288b44 21090123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21091(gdb)
922fbb7b
AC
21092@end smallexample
21093
21094
a2c02241
NR
21095@subheading The @code{-file-list-exec-source-files} Command
21096@findex -file-list-exec-source-files
922fbb7b
AC
21097
21098@subsubheading Synopsis
21099
21100@smallexample
a2c02241 21101 -file-list-exec-source-files
922fbb7b
AC
21102@end smallexample
21103
a2c02241
NR
21104List the source files for the current executable.
21105
3f94c067
BW
21106It will always output the filename, but only when @value{GDBN} can find
21107the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21108
21109@subsubheading @value{GDBN} Command
21110
a2c02241
NR
21111The @value{GDBN} equivalent is @samp{info sources}.
21112@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21113
21114@subsubheading Example
922fbb7b 21115@smallexample
594fe323 21116(gdb)
a2c02241
NR
21117-file-list-exec-source-files
21118^done,files=[
21119@{file=foo.c,fullname=/home/foo.c@},
21120@{file=/home/bar.c,fullname=/home/bar.c@},
21121@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21122(gdb)
922fbb7b
AC
21123@end smallexample
21124
a2c02241
NR
21125@subheading The @code{-file-list-shared-libraries} Command
21126@findex -file-list-shared-libraries
922fbb7b 21127
a2c02241 21128@subsubheading Synopsis
922fbb7b 21129
a2c02241
NR
21130@smallexample
21131 -file-list-shared-libraries
21132@end smallexample
922fbb7b 21133
a2c02241 21134List the shared libraries in the program.
922fbb7b 21135
a2c02241 21136@subsubheading @value{GDBN} Command
922fbb7b 21137
a2c02241 21138The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21139
a2c02241
NR
21140@subsubheading Example
21141N.A.
922fbb7b
AC
21142
21143
a2c02241
NR
21144@subheading The @code{-file-list-symbol-files} Command
21145@findex -file-list-symbol-files
922fbb7b 21146
a2c02241 21147@subsubheading Synopsis
922fbb7b 21148
a2c02241
NR
21149@smallexample
21150 -file-list-symbol-files
21151@end smallexample
922fbb7b 21152
a2c02241 21153List symbol files.
922fbb7b 21154
a2c02241 21155@subsubheading @value{GDBN} Command
922fbb7b 21156
a2c02241 21157The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21158
a2c02241
NR
21159@subsubheading Example
21160N.A.
922fbb7b 21161
922fbb7b 21162
a2c02241
NR
21163@subheading The @code{-file-symbol-file} Command
21164@findex -file-symbol-file
922fbb7b 21165
a2c02241 21166@subsubheading Synopsis
922fbb7b 21167
a2c02241
NR
21168@smallexample
21169 -file-symbol-file @var{file}
21170@end smallexample
922fbb7b 21171
a2c02241
NR
21172Read symbol table info from the specified @var{file} argument. When
21173used without arguments, clears @value{GDBN}'s symbol table info. No output is
21174produced, except for a completion notification.
922fbb7b 21175
a2c02241 21176@subsubheading @value{GDBN} Command
922fbb7b 21177
a2c02241 21178The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21179
a2c02241 21180@subsubheading Example
922fbb7b 21181
a2c02241 21182@smallexample
594fe323 21183(gdb)
a2c02241
NR
21184-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21185^done
594fe323 21186(gdb)
a2c02241 21187@end smallexample
922fbb7b 21188
a2c02241 21189@ignore
a2c02241
NR
21190@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21191@node GDB/MI Memory Overlay Commands
21192@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21193
a2c02241 21194The memory overlay commands are not implemented.
922fbb7b 21195
a2c02241 21196@c @subheading -overlay-auto
922fbb7b 21197
a2c02241 21198@c @subheading -overlay-list-mapping-state
922fbb7b 21199
a2c02241 21200@c @subheading -overlay-list-overlays
922fbb7b 21201
a2c02241 21202@c @subheading -overlay-map
922fbb7b 21203
a2c02241 21204@c @subheading -overlay-off
922fbb7b 21205
a2c02241 21206@c @subheading -overlay-on
922fbb7b 21207
a2c02241 21208@c @subheading -overlay-unmap
922fbb7b 21209
a2c02241
NR
21210@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21211@node GDB/MI Signal Handling Commands
21212@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21213
a2c02241 21214Signal handling commands are not implemented.
922fbb7b 21215
a2c02241 21216@c @subheading -signal-handle
922fbb7b 21217
a2c02241 21218@c @subheading -signal-list-handle-actions
922fbb7b 21219
a2c02241
NR
21220@c @subheading -signal-list-signal-types
21221@end ignore
922fbb7b 21222
922fbb7b 21223
a2c02241
NR
21224@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21225@node GDB/MI Target Manipulation
21226@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21227
21228
a2c02241
NR
21229@subheading The @code{-target-attach} Command
21230@findex -target-attach
922fbb7b
AC
21231
21232@subsubheading Synopsis
21233
21234@smallexample
a2c02241 21235 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21236@end smallexample
21237
a2c02241 21238Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21239
79a6e687 21240@subsubheading @value{GDBN} Command
922fbb7b 21241
a2c02241 21242The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21243
a2c02241
NR
21244@subsubheading Example
21245N.A.
922fbb7b 21246
a2c02241
NR
21247
21248@subheading The @code{-target-compare-sections} Command
21249@findex -target-compare-sections
922fbb7b
AC
21250
21251@subsubheading Synopsis
21252
21253@smallexample
a2c02241 21254 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21255@end smallexample
21256
a2c02241
NR
21257Compare data of section @var{section} on target to the exec file.
21258Without the argument, all sections are compared.
922fbb7b 21259
a2c02241 21260@subsubheading @value{GDBN} Command
922fbb7b 21261
a2c02241 21262The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21263
a2c02241
NR
21264@subsubheading Example
21265N.A.
21266
21267
21268@subheading The @code{-target-detach} Command
21269@findex -target-detach
922fbb7b
AC
21270
21271@subsubheading Synopsis
21272
21273@smallexample
a2c02241 21274 -target-detach
922fbb7b
AC
21275@end smallexample
21276
a2c02241
NR
21277Detach from the remote target which normally resumes its execution.
21278There's no output.
21279
79a6e687 21280@subsubheading @value{GDBN} Command
a2c02241
NR
21281
21282The corresponding @value{GDBN} command is @samp{detach}.
21283
21284@subsubheading Example
922fbb7b
AC
21285
21286@smallexample
594fe323 21287(gdb)
a2c02241
NR
21288-target-detach
21289^done
594fe323 21290(gdb)
922fbb7b
AC
21291@end smallexample
21292
21293
a2c02241
NR
21294@subheading The @code{-target-disconnect} Command
21295@findex -target-disconnect
922fbb7b
AC
21296
21297@subsubheading Synopsis
21298
123dc839 21299@smallexample
a2c02241 21300 -target-disconnect
123dc839 21301@end smallexample
922fbb7b 21302
a2c02241
NR
21303Disconnect from the remote target. There's no output and the target is
21304generally not resumed.
21305
79a6e687 21306@subsubheading @value{GDBN} Command
a2c02241
NR
21307
21308The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21309
21310@subsubheading Example
922fbb7b
AC
21311
21312@smallexample
594fe323 21313(gdb)
a2c02241
NR
21314-target-disconnect
21315^done
594fe323 21316(gdb)
922fbb7b
AC
21317@end smallexample
21318
21319
a2c02241
NR
21320@subheading The @code{-target-download} Command
21321@findex -target-download
922fbb7b
AC
21322
21323@subsubheading Synopsis
21324
21325@smallexample
a2c02241 21326 -target-download
922fbb7b
AC
21327@end smallexample
21328
a2c02241
NR
21329Loads the executable onto the remote target.
21330It prints out an update message every half second, which includes the fields:
21331
21332@table @samp
21333@item section
21334The name of the section.
21335@item section-sent
21336The size of what has been sent so far for that section.
21337@item section-size
21338The size of the section.
21339@item total-sent
21340The total size of what was sent so far (the current and the previous sections).
21341@item total-size
21342The size of the overall executable to download.
21343@end table
21344
21345@noindent
21346Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21347@sc{gdb/mi} Output Syntax}).
21348
21349In addition, it prints the name and size of the sections, as they are
21350downloaded. These messages include the following fields:
21351
21352@table @samp
21353@item section
21354The name of the section.
21355@item section-size
21356The size of the section.
21357@item total-size
21358The size of the overall executable to download.
21359@end table
21360
21361@noindent
21362At the end, a summary is printed.
21363
21364@subsubheading @value{GDBN} Command
21365
21366The corresponding @value{GDBN} command is @samp{load}.
21367
21368@subsubheading Example
21369
21370Note: each status message appears on a single line. Here the messages
21371have been broken down so that they can fit onto a page.
922fbb7b
AC
21372
21373@smallexample
594fe323 21374(gdb)
a2c02241
NR
21375-target-download
21376+download,@{section=".text",section-size="6668",total-size="9880"@}
21377+download,@{section=".text",section-sent="512",section-size="6668",
21378total-sent="512",total-size="9880"@}
21379+download,@{section=".text",section-sent="1024",section-size="6668",
21380total-sent="1024",total-size="9880"@}
21381+download,@{section=".text",section-sent="1536",section-size="6668",
21382total-sent="1536",total-size="9880"@}
21383+download,@{section=".text",section-sent="2048",section-size="6668",
21384total-sent="2048",total-size="9880"@}
21385+download,@{section=".text",section-sent="2560",section-size="6668",
21386total-sent="2560",total-size="9880"@}
21387+download,@{section=".text",section-sent="3072",section-size="6668",
21388total-sent="3072",total-size="9880"@}
21389+download,@{section=".text",section-sent="3584",section-size="6668",
21390total-sent="3584",total-size="9880"@}
21391+download,@{section=".text",section-sent="4096",section-size="6668",
21392total-sent="4096",total-size="9880"@}
21393+download,@{section=".text",section-sent="4608",section-size="6668",
21394total-sent="4608",total-size="9880"@}
21395+download,@{section=".text",section-sent="5120",section-size="6668",
21396total-sent="5120",total-size="9880"@}
21397+download,@{section=".text",section-sent="5632",section-size="6668",
21398total-sent="5632",total-size="9880"@}
21399+download,@{section=".text",section-sent="6144",section-size="6668",
21400total-sent="6144",total-size="9880"@}
21401+download,@{section=".text",section-sent="6656",section-size="6668",
21402total-sent="6656",total-size="9880"@}
21403+download,@{section=".init",section-size="28",total-size="9880"@}
21404+download,@{section=".fini",section-size="28",total-size="9880"@}
21405+download,@{section=".data",section-size="3156",total-size="9880"@}
21406+download,@{section=".data",section-sent="512",section-size="3156",
21407total-sent="7236",total-size="9880"@}
21408+download,@{section=".data",section-sent="1024",section-size="3156",
21409total-sent="7748",total-size="9880"@}
21410+download,@{section=".data",section-sent="1536",section-size="3156",
21411total-sent="8260",total-size="9880"@}
21412+download,@{section=".data",section-sent="2048",section-size="3156",
21413total-sent="8772",total-size="9880"@}
21414+download,@{section=".data",section-sent="2560",section-size="3156",
21415total-sent="9284",total-size="9880"@}
21416+download,@{section=".data",section-sent="3072",section-size="3156",
21417total-sent="9796",total-size="9880"@}
21418^done,address="0x10004",load-size="9880",transfer-rate="6586",
21419write-rate="429"
594fe323 21420(gdb)
922fbb7b
AC
21421@end smallexample
21422
21423
a2c02241
NR
21424@subheading The @code{-target-exec-status} Command
21425@findex -target-exec-status
922fbb7b
AC
21426
21427@subsubheading Synopsis
21428
21429@smallexample
a2c02241 21430 -target-exec-status
922fbb7b
AC
21431@end smallexample
21432
a2c02241
NR
21433Provide information on the state of the target (whether it is running or
21434not, for instance).
922fbb7b 21435
a2c02241 21436@subsubheading @value{GDBN} Command
922fbb7b 21437
a2c02241
NR
21438There's no equivalent @value{GDBN} command.
21439
21440@subsubheading Example
21441N.A.
922fbb7b 21442
a2c02241
NR
21443
21444@subheading The @code{-target-list-available-targets} Command
21445@findex -target-list-available-targets
922fbb7b
AC
21446
21447@subsubheading Synopsis
21448
21449@smallexample
a2c02241 21450 -target-list-available-targets
922fbb7b
AC
21451@end smallexample
21452
a2c02241 21453List the possible targets to connect to.
922fbb7b 21454
a2c02241 21455@subsubheading @value{GDBN} Command
922fbb7b 21456
a2c02241 21457The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21458
a2c02241
NR
21459@subsubheading Example
21460N.A.
21461
21462
21463@subheading The @code{-target-list-current-targets} Command
21464@findex -target-list-current-targets
922fbb7b
AC
21465
21466@subsubheading Synopsis
21467
21468@smallexample
a2c02241 21469 -target-list-current-targets
922fbb7b
AC
21470@end smallexample
21471
a2c02241 21472Describe the current target.
922fbb7b 21473
a2c02241 21474@subsubheading @value{GDBN} Command
922fbb7b 21475
a2c02241
NR
21476The corresponding information is printed by @samp{info file} (among
21477other things).
922fbb7b 21478
a2c02241
NR
21479@subsubheading Example
21480N.A.
21481
21482
21483@subheading The @code{-target-list-parameters} Command
21484@findex -target-list-parameters
922fbb7b
AC
21485
21486@subsubheading Synopsis
21487
21488@smallexample
a2c02241 21489 -target-list-parameters
922fbb7b
AC
21490@end smallexample
21491
a2c02241
NR
21492@c ????
21493
21494@subsubheading @value{GDBN} Command
21495
21496No equivalent.
922fbb7b
AC
21497
21498@subsubheading Example
a2c02241
NR
21499N.A.
21500
21501
21502@subheading The @code{-target-select} Command
21503@findex -target-select
21504
21505@subsubheading Synopsis
922fbb7b
AC
21506
21507@smallexample
a2c02241 21508 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21509@end smallexample
21510
a2c02241 21511Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21512
a2c02241
NR
21513@table @samp
21514@item @var{type}
21515The type of target, for instance @samp{async}, @samp{remote}, etc.
21516@item @var{parameters}
21517Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21518Commands for Managing Targets}, for more details.
a2c02241
NR
21519@end table
21520
21521The output is a connection notification, followed by the address at
21522which the target program is, in the following form:
922fbb7b
AC
21523
21524@smallexample
a2c02241
NR
21525^connected,addr="@var{address}",func="@var{function name}",
21526 args=[@var{arg list}]
922fbb7b
AC
21527@end smallexample
21528
a2c02241
NR
21529@subsubheading @value{GDBN} Command
21530
21531The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21532
21533@subsubheading Example
922fbb7b 21534
265eeb58 21535@smallexample
594fe323 21536(gdb)
a2c02241
NR
21537-target-select async /dev/ttya
21538^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21539(gdb)
265eeb58 21540@end smallexample
ef21caaf 21541
a6b151f1
DJ
21542@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21543@node GDB/MI File Transfer Commands
21544@section @sc{gdb/mi} File Transfer Commands
21545
21546
21547@subheading The @code{-target-file-put} Command
21548@findex -target-file-put
21549
21550@subsubheading Synopsis
21551
21552@smallexample
21553 -target-file-put @var{hostfile} @var{targetfile}
21554@end smallexample
21555
21556Copy file @var{hostfile} from the host system (the machine running
21557@value{GDBN}) to @var{targetfile} on the target system.
21558
21559@subsubheading @value{GDBN} Command
21560
21561The corresponding @value{GDBN} command is @samp{remote put}.
21562
21563@subsubheading Example
21564
21565@smallexample
21566(gdb)
21567-target-file-put localfile remotefile
21568^done
21569(gdb)
21570@end smallexample
21571
21572
21573@subheading The @code{-target-file-put} Command
21574@findex -target-file-get
21575
21576@subsubheading Synopsis
21577
21578@smallexample
21579 -target-file-get @var{targetfile} @var{hostfile}
21580@end smallexample
21581
21582Copy file @var{targetfile} from the target system to @var{hostfile}
21583on the host system.
21584
21585@subsubheading @value{GDBN} Command
21586
21587The corresponding @value{GDBN} command is @samp{remote get}.
21588
21589@subsubheading Example
21590
21591@smallexample
21592(gdb)
21593-target-file-get remotefile localfile
21594^done
21595(gdb)
21596@end smallexample
21597
21598
21599@subheading The @code{-target-file-delete} Command
21600@findex -target-file-delete
21601
21602@subsubheading Synopsis
21603
21604@smallexample
21605 -target-file-delete @var{targetfile}
21606@end smallexample
21607
21608Delete @var{targetfile} from the target system.
21609
21610@subsubheading @value{GDBN} Command
21611
21612The corresponding @value{GDBN} command is @samp{remote delete}.
21613
21614@subsubheading Example
21615
21616@smallexample
21617(gdb)
21618-target-file-delete remotefile
21619^done
21620(gdb)
21621@end smallexample
21622
21623
ef21caaf
NR
21624@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21625@node GDB/MI Miscellaneous Commands
21626@section Miscellaneous @sc{gdb/mi} Commands
21627
21628@c @subheading -gdb-complete
21629
21630@subheading The @code{-gdb-exit} Command
21631@findex -gdb-exit
21632
21633@subsubheading Synopsis
21634
21635@smallexample
21636 -gdb-exit
21637@end smallexample
21638
21639Exit @value{GDBN} immediately.
21640
21641@subsubheading @value{GDBN} Command
21642
21643Approximately corresponds to @samp{quit}.
21644
21645@subsubheading Example
21646
21647@smallexample
594fe323 21648(gdb)
ef21caaf
NR
21649-gdb-exit
21650^exit
21651@end smallexample
21652
a2c02241
NR
21653
21654@subheading The @code{-exec-abort} Command
21655@findex -exec-abort
21656
21657@subsubheading Synopsis
21658
21659@smallexample
21660 -exec-abort
21661@end smallexample
21662
21663Kill the inferior running program.
21664
21665@subsubheading @value{GDBN} Command
21666
21667The corresponding @value{GDBN} command is @samp{kill}.
21668
21669@subsubheading Example
21670N.A.
21671
21672
ef21caaf
NR
21673@subheading The @code{-gdb-set} Command
21674@findex -gdb-set
21675
21676@subsubheading Synopsis
21677
21678@smallexample
21679 -gdb-set
21680@end smallexample
21681
21682Set an internal @value{GDBN} variable.
21683@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21684
21685@subsubheading @value{GDBN} Command
21686
21687The corresponding @value{GDBN} command is @samp{set}.
21688
21689@subsubheading Example
21690
21691@smallexample
594fe323 21692(gdb)
ef21caaf
NR
21693-gdb-set $foo=3
21694^done
594fe323 21695(gdb)
ef21caaf
NR
21696@end smallexample
21697
21698
21699@subheading The @code{-gdb-show} Command
21700@findex -gdb-show
21701
21702@subsubheading Synopsis
21703
21704@smallexample
21705 -gdb-show
21706@end smallexample
21707
21708Show the current value of a @value{GDBN} variable.
21709
79a6e687 21710@subsubheading @value{GDBN} Command
ef21caaf
NR
21711
21712The corresponding @value{GDBN} command is @samp{show}.
21713
21714@subsubheading Example
21715
21716@smallexample
594fe323 21717(gdb)
ef21caaf
NR
21718-gdb-show annotate
21719^done,value="0"
594fe323 21720(gdb)
ef21caaf
NR
21721@end smallexample
21722
21723@c @subheading -gdb-source
21724
21725
21726@subheading The @code{-gdb-version} Command
21727@findex -gdb-version
21728
21729@subsubheading Synopsis
21730
21731@smallexample
21732 -gdb-version
21733@end smallexample
21734
21735Show version information for @value{GDBN}. Used mostly in testing.
21736
21737@subsubheading @value{GDBN} Command
21738
21739The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21740default shows this information when you start an interactive session.
21741
21742@subsubheading Example
21743
21744@c This example modifies the actual output from GDB to avoid overfull
21745@c box in TeX.
21746@smallexample
594fe323 21747(gdb)
ef21caaf
NR
21748-gdb-version
21749~GNU gdb 5.2.1
21750~Copyright 2000 Free Software Foundation, Inc.
21751~GDB is free software, covered by the GNU General Public License, and
21752~you are welcome to change it and/or distribute copies of it under
21753~ certain conditions.
21754~Type "show copying" to see the conditions.
21755~There is absolutely no warranty for GDB. Type "show warranty" for
21756~ details.
21757~This GDB was configured as
21758 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21759^done
594fe323 21760(gdb)
ef21caaf
NR
21761@end smallexample
21762
084344da
VP
21763@subheading The @code{-list-features} Command
21764@findex -list-features
21765
21766Returns a list of particular features of the MI protocol that
21767this version of gdb implements. A feature can be a command,
21768or a new field in an output of some command, or even an
21769important bugfix. While a frontend can sometimes detect presence
21770of a feature at runtime, it is easier to perform detection at debugger
21771startup.
21772
21773The command returns a list of strings, with each string naming an
21774available feature. Each returned string is just a name, it does not
21775have any internal structure. The list of possible feature names
21776is given below.
21777
21778Example output:
21779
21780@smallexample
21781(gdb) -list-features
21782^done,result=["feature1","feature2"]
21783@end smallexample
21784
21785The current list of features is:
21786
21787@itemize @minus
21788@item
21789@samp{frozen-varobjs}---indicates presence of the
21790@code{-var-set-frozen} command, as well as possible presense of the
21791@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21792@item
21793@samp{pending-breakpoints}---indicates presence of the @code{-f}
21794option to the @code{-break-insert} command.
21795
084344da
VP
21796@end itemize
21797
ef21caaf
NR
21798@subheading The @code{-interpreter-exec} Command
21799@findex -interpreter-exec
21800
21801@subheading Synopsis
21802
21803@smallexample
21804-interpreter-exec @var{interpreter} @var{command}
21805@end smallexample
a2c02241 21806@anchor{-interpreter-exec}
ef21caaf
NR
21807
21808Execute the specified @var{command} in the given @var{interpreter}.
21809
21810@subheading @value{GDBN} Command
21811
21812The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21813
21814@subheading Example
21815
21816@smallexample
594fe323 21817(gdb)
ef21caaf
NR
21818-interpreter-exec console "break main"
21819&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21820&"During symbol reading, bad structure-type format.\n"
21821~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21822^done
594fe323 21823(gdb)
ef21caaf
NR
21824@end smallexample
21825
21826@subheading The @code{-inferior-tty-set} Command
21827@findex -inferior-tty-set
21828
21829@subheading Synopsis
21830
21831@smallexample
21832-inferior-tty-set /dev/pts/1
21833@end smallexample
21834
21835Set terminal for future runs of the program being debugged.
21836
21837@subheading @value{GDBN} Command
21838
21839The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21840
21841@subheading Example
21842
21843@smallexample
594fe323 21844(gdb)
ef21caaf
NR
21845-inferior-tty-set /dev/pts/1
21846^done
594fe323 21847(gdb)
ef21caaf
NR
21848@end smallexample
21849
21850@subheading The @code{-inferior-tty-show} Command
21851@findex -inferior-tty-show
21852
21853@subheading Synopsis
21854
21855@smallexample
21856-inferior-tty-show
21857@end smallexample
21858
21859Show terminal for future runs of program being debugged.
21860
21861@subheading @value{GDBN} Command
21862
21863The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21864
21865@subheading Example
21866
21867@smallexample
594fe323 21868(gdb)
ef21caaf
NR
21869-inferior-tty-set /dev/pts/1
21870^done
594fe323 21871(gdb)
ef21caaf
NR
21872-inferior-tty-show
21873^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21874(gdb)
ef21caaf 21875@end smallexample
922fbb7b 21876
a4eefcd8
NR
21877@subheading The @code{-enable-timings} Command
21878@findex -enable-timings
21879
21880@subheading Synopsis
21881
21882@smallexample
21883-enable-timings [yes | no]
21884@end smallexample
21885
21886Toggle the printing of the wallclock, user and system times for an MI
21887command as a field in its output. This command is to help frontend
21888developers optimize the performance of their code. No argument is
21889equivalent to @samp{yes}.
21890
21891@subheading @value{GDBN} Command
21892
21893No equivalent.
21894
21895@subheading Example
21896
21897@smallexample
21898(gdb)
21899-enable-timings
21900^done
21901(gdb)
21902-break-insert main
21903^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21904addr="0x080484ed",func="main",file="myprog.c",
21905fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21906time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21907(gdb)
21908-enable-timings no
21909^done
21910(gdb)
21911-exec-run
21912^running
21913(gdb)
21914*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21915frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21916@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21917fullname="/home/nickrob/myprog.c",line="73"@}
21918(gdb)
21919@end smallexample
21920
922fbb7b
AC
21921@node Annotations
21922@chapter @value{GDBN} Annotations
21923
086432e2
AC
21924This chapter describes annotations in @value{GDBN}. Annotations were
21925designed to interface @value{GDBN} to graphical user interfaces or other
21926similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21927relatively high level.
21928
d3e8051b 21929The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21930(@pxref{GDB/MI}).
21931
922fbb7b
AC
21932@ignore
21933This is Edition @value{EDITION}, @value{DATE}.
21934@end ignore
21935
21936@menu
21937* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21938* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21939* Prompting:: Annotations marking @value{GDBN}'s need for input.
21940* Errors:: Annotations for error messages.
922fbb7b
AC
21941* Invalidation:: Some annotations describe things now invalid.
21942* Annotations for Running::
21943 Whether the program is running, how it stopped, etc.
21944* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21945@end menu
21946
21947@node Annotations Overview
21948@section What is an Annotation?
21949@cindex annotations
21950
922fbb7b
AC
21951Annotations start with a newline character, two @samp{control-z}
21952characters, and the name of the annotation. If there is no additional
21953information associated with this annotation, the name of the annotation
21954is followed immediately by a newline. If there is additional
21955information, the name of the annotation is followed by a space, the
21956additional information, and a newline. The additional information
21957cannot contain newline characters.
21958
21959Any output not beginning with a newline and two @samp{control-z}
21960characters denotes literal output from @value{GDBN}. Currently there is
21961no need for @value{GDBN} to output a newline followed by two
21962@samp{control-z} characters, but if there was such a need, the
21963annotations could be extended with an @samp{escape} annotation which
21964means those three characters as output.
21965
086432e2
AC
21966The annotation @var{level}, which is specified using the
21967@option{--annotate} command line option (@pxref{Mode Options}), controls
21968how much information @value{GDBN} prints together with its prompt,
21969values of expressions, source lines, and other types of output. Level 0
d3e8051b 21970is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21971subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21972for programs that control @value{GDBN}, and level 2 annotations have
21973been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21974Interface, annotate, GDB's Obsolete Annotations}).
21975
21976@table @code
21977@kindex set annotate
21978@item set annotate @var{level}
e09f16f9 21979The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21980annotations to the specified @var{level}.
9c16f35a
EZ
21981
21982@item show annotate
21983@kindex show annotate
21984Show the current annotation level.
09d4efe1
EZ
21985@end table
21986
21987This chapter describes level 3 annotations.
086432e2 21988
922fbb7b
AC
21989A simple example of starting up @value{GDBN} with annotations is:
21990
21991@smallexample
086432e2
AC
21992$ @kbd{gdb --annotate=3}
21993GNU gdb 6.0
21994Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21995GDB is free software, covered by the GNU General Public License,
21996and you are welcome to change it and/or distribute copies of it
21997under certain conditions.
21998Type "show copying" to see the conditions.
21999There is absolutely no warranty for GDB. Type "show warranty"
22000for details.
086432e2 22001This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22002
22003^Z^Zpre-prompt
f7dc1244 22004(@value{GDBP})
922fbb7b 22005^Z^Zprompt
086432e2 22006@kbd{quit}
922fbb7b
AC
22007
22008^Z^Zpost-prompt
b383017d 22009$
922fbb7b
AC
22010@end smallexample
22011
22012Here @samp{quit} is input to @value{GDBN}; the rest is output from
22013@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22014denotes a @samp{control-z} character) are annotations; the rest is
22015output from @value{GDBN}.
22016
9e6c4bd5
NR
22017@node Server Prefix
22018@section The Server Prefix
22019@cindex server prefix
22020
22021If you prefix a command with @samp{server } then it will not affect
22022the command history, nor will it affect @value{GDBN}'s notion of which
22023command to repeat if @key{RET} is pressed on a line by itself. This
22024means that commands can be run behind a user's back by a front-end in
22025a transparent manner.
22026
22027The server prefix does not affect the recording of values into the value
22028history; to print a value without recording it into the value history,
22029use the @code{output} command instead of the @code{print} command.
22030
922fbb7b
AC
22031@node Prompting
22032@section Annotation for @value{GDBN} Input
22033
22034@cindex annotations for prompts
22035When @value{GDBN} prompts for input, it annotates this fact so it is possible
22036to know when to send output, when the output from a given command is
22037over, etc.
22038
22039Different kinds of input each have a different @dfn{input type}. Each
22040input type has three annotations: a @code{pre-} annotation, which
22041denotes the beginning of any prompt which is being output, a plain
22042annotation, which denotes the end of the prompt, and then a @code{post-}
22043annotation which denotes the end of any echo which may (or may not) be
22044associated with the input. For example, the @code{prompt} input type
22045features the following annotations:
22046
22047@smallexample
22048^Z^Zpre-prompt
22049^Z^Zprompt
22050^Z^Zpost-prompt
22051@end smallexample
22052
22053The input types are
22054
22055@table @code
e5ac9b53
EZ
22056@findex pre-prompt annotation
22057@findex prompt annotation
22058@findex post-prompt annotation
922fbb7b
AC
22059@item prompt
22060When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22061
e5ac9b53
EZ
22062@findex pre-commands annotation
22063@findex commands annotation
22064@findex post-commands annotation
922fbb7b
AC
22065@item commands
22066When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22067command. The annotations are repeated for each command which is input.
22068
e5ac9b53
EZ
22069@findex pre-overload-choice annotation
22070@findex overload-choice annotation
22071@findex post-overload-choice annotation
922fbb7b
AC
22072@item overload-choice
22073When @value{GDBN} wants the user to select between various overloaded functions.
22074
e5ac9b53
EZ
22075@findex pre-query annotation
22076@findex query annotation
22077@findex post-query annotation
922fbb7b
AC
22078@item query
22079When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22080
e5ac9b53
EZ
22081@findex pre-prompt-for-continue annotation
22082@findex prompt-for-continue annotation
22083@findex post-prompt-for-continue annotation
922fbb7b
AC
22084@item prompt-for-continue
22085When @value{GDBN} is asking the user to press return to continue. Note: Don't
22086expect this to work well; instead use @code{set height 0} to disable
22087prompting. This is because the counting of lines is buggy in the
22088presence of annotations.
22089@end table
22090
22091@node Errors
22092@section Errors
22093@cindex annotations for errors, warnings and interrupts
22094
e5ac9b53 22095@findex quit annotation
922fbb7b
AC
22096@smallexample
22097^Z^Zquit
22098@end smallexample
22099
22100This annotation occurs right before @value{GDBN} responds to an interrupt.
22101
e5ac9b53 22102@findex error annotation
922fbb7b
AC
22103@smallexample
22104^Z^Zerror
22105@end smallexample
22106
22107This annotation occurs right before @value{GDBN} responds to an error.
22108
22109Quit and error annotations indicate that any annotations which @value{GDBN} was
22110in the middle of may end abruptly. For example, if a
22111@code{value-history-begin} annotation is followed by a @code{error}, one
22112cannot expect to receive the matching @code{value-history-end}. One
22113cannot expect not to receive it either, however; an error annotation
22114does not necessarily mean that @value{GDBN} is immediately returning all the way
22115to the top level.
22116
e5ac9b53 22117@findex error-begin annotation
922fbb7b
AC
22118A quit or error annotation may be preceded by
22119
22120@smallexample
22121^Z^Zerror-begin
22122@end smallexample
22123
22124Any output between that and the quit or error annotation is the error
22125message.
22126
22127Warning messages are not yet annotated.
22128@c If we want to change that, need to fix warning(), type_error(),
22129@c range_error(), and possibly other places.
22130
922fbb7b
AC
22131@node Invalidation
22132@section Invalidation Notices
22133
22134@cindex annotations for invalidation messages
22135The following annotations say that certain pieces of state may have
22136changed.
22137
22138@table @code
e5ac9b53 22139@findex frames-invalid annotation
922fbb7b
AC
22140@item ^Z^Zframes-invalid
22141
22142The frames (for example, output from the @code{backtrace} command) may
22143have changed.
22144
e5ac9b53 22145@findex breakpoints-invalid annotation
922fbb7b
AC
22146@item ^Z^Zbreakpoints-invalid
22147
22148The breakpoints may have changed. For example, the user just added or
22149deleted a breakpoint.
22150@end table
22151
22152@node Annotations for Running
22153@section Running the Program
22154@cindex annotations for running programs
22155
e5ac9b53
EZ
22156@findex starting annotation
22157@findex stopping annotation
922fbb7b 22158When the program starts executing due to a @value{GDBN} command such as
b383017d 22159@code{step} or @code{continue},
922fbb7b
AC
22160
22161@smallexample
22162^Z^Zstarting
22163@end smallexample
22164
b383017d 22165is output. When the program stops,
922fbb7b
AC
22166
22167@smallexample
22168^Z^Zstopped
22169@end smallexample
22170
22171is output. Before the @code{stopped} annotation, a variety of
22172annotations describe how the program stopped.
22173
22174@table @code
e5ac9b53 22175@findex exited annotation
922fbb7b
AC
22176@item ^Z^Zexited @var{exit-status}
22177The program exited, and @var{exit-status} is the exit status (zero for
22178successful exit, otherwise nonzero).
22179
e5ac9b53
EZ
22180@findex signalled annotation
22181@findex signal-name annotation
22182@findex signal-name-end annotation
22183@findex signal-string annotation
22184@findex signal-string-end annotation
922fbb7b
AC
22185@item ^Z^Zsignalled
22186The program exited with a signal. After the @code{^Z^Zsignalled}, the
22187annotation continues:
22188
22189@smallexample
22190@var{intro-text}
22191^Z^Zsignal-name
22192@var{name}
22193^Z^Zsignal-name-end
22194@var{middle-text}
22195^Z^Zsignal-string
22196@var{string}
22197^Z^Zsignal-string-end
22198@var{end-text}
22199@end smallexample
22200
22201@noindent
22202where @var{name} is the name of the signal, such as @code{SIGILL} or
22203@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22204as @code{Illegal Instruction} or @code{Segmentation fault}.
22205@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22206user's benefit and have no particular format.
22207
e5ac9b53 22208@findex signal annotation
922fbb7b
AC
22209@item ^Z^Zsignal
22210The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22211just saying that the program received the signal, not that it was
22212terminated with it.
22213
e5ac9b53 22214@findex breakpoint annotation
922fbb7b
AC
22215@item ^Z^Zbreakpoint @var{number}
22216The program hit breakpoint number @var{number}.
22217
e5ac9b53 22218@findex watchpoint annotation
922fbb7b
AC
22219@item ^Z^Zwatchpoint @var{number}
22220The program hit watchpoint number @var{number}.
22221@end table
22222
22223@node Source Annotations
22224@section Displaying Source
22225@cindex annotations for source display
22226
e5ac9b53 22227@findex source annotation
922fbb7b
AC
22228The following annotation is used instead of displaying source code:
22229
22230@smallexample
22231^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22232@end smallexample
22233
22234where @var{filename} is an absolute file name indicating which source
22235file, @var{line} is the line number within that file (where 1 is the
22236first line in the file), @var{character} is the character position
22237within the file (where 0 is the first character in the file) (for most
22238debug formats this will necessarily point to the beginning of a line),
22239@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22240line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22241@var{addr} is the address in the target program associated with the
22242source which is being displayed. @var{addr} is in the form @samp{0x}
22243followed by one or more lowercase hex digits (note that this does not
22244depend on the language).
22245
8e04817f
AC
22246@node GDB Bugs
22247@chapter Reporting Bugs in @value{GDBN}
22248@cindex bugs in @value{GDBN}
22249@cindex reporting bugs in @value{GDBN}
c906108c 22250
8e04817f 22251Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22252
8e04817f
AC
22253Reporting a bug may help you by bringing a solution to your problem, or it
22254may not. But in any case the principal function of a bug report is to help
22255the entire community by making the next version of @value{GDBN} work better. Bug
22256reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22257
8e04817f
AC
22258In order for a bug report to serve its purpose, you must include the
22259information that enables us to fix the bug.
c4555f82
SC
22260
22261@menu
8e04817f
AC
22262* Bug Criteria:: Have you found a bug?
22263* Bug Reporting:: How to report bugs
c4555f82
SC
22264@end menu
22265
8e04817f 22266@node Bug Criteria
79a6e687 22267@section Have You Found a Bug?
8e04817f 22268@cindex bug criteria
c4555f82 22269
8e04817f 22270If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22271
22272@itemize @bullet
8e04817f
AC
22273@cindex fatal signal
22274@cindex debugger crash
22275@cindex crash of debugger
c4555f82 22276@item
8e04817f
AC
22277If the debugger gets a fatal signal, for any input whatever, that is a
22278@value{GDBN} bug. Reliable debuggers never crash.
22279
22280@cindex error on valid input
22281@item
22282If @value{GDBN} produces an error message for valid input, that is a
22283bug. (Note that if you're cross debugging, the problem may also be
22284somewhere in the connection to the target.)
c4555f82 22285
8e04817f 22286@cindex invalid input
c4555f82 22287@item
8e04817f
AC
22288If @value{GDBN} does not produce an error message for invalid input,
22289that is a bug. However, you should note that your idea of
22290``invalid input'' might be our idea of ``an extension'' or ``support
22291for traditional practice''.
22292
22293@item
22294If you are an experienced user of debugging tools, your suggestions
22295for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22296@end itemize
22297
8e04817f 22298@node Bug Reporting
79a6e687 22299@section How to Report Bugs
8e04817f
AC
22300@cindex bug reports
22301@cindex @value{GDBN} bugs, reporting
22302
22303A number of companies and individuals offer support for @sc{gnu} products.
22304If you obtained @value{GDBN} from a support organization, we recommend you
22305contact that organization first.
22306
22307You can find contact information for many support companies and
22308individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22309distribution.
22310@c should add a web page ref...
22311
129188f6 22312In any event, we also recommend that you submit bug reports for
d3e8051b 22313@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22314@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22315page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22316be used.
8e04817f
AC
22317
22318@strong{Do not send bug reports to @samp{info-gdb}, or to
22319@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22320not want to receive bug reports. Those that do have arranged to receive
22321@samp{bug-gdb}.
22322
22323The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22324serves as a repeater. The mailing list and the newsgroup carry exactly
22325the same messages. Often people think of posting bug reports to the
22326newsgroup instead of mailing them. This appears to work, but it has one
22327problem which can be crucial: a newsgroup posting often lacks a mail
22328path back to the sender. Thus, if we need to ask for more information,
22329we may be unable to reach you. For this reason, it is better to send
22330bug reports to the mailing list.
c4555f82 22331
8e04817f
AC
22332The fundamental principle of reporting bugs usefully is this:
22333@strong{report all the facts}. If you are not sure whether to state a
22334fact or leave it out, state it!
c4555f82 22335
8e04817f
AC
22336Often people omit facts because they think they know what causes the
22337problem and assume that some details do not matter. Thus, you might
22338assume that the name of the variable you use in an example does not matter.
22339Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22340stray memory reference which happens to fetch from the location where that
22341name is stored in memory; perhaps, if the name were different, the contents
22342of that location would fool the debugger into doing the right thing despite
22343the bug. Play it safe and give a specific, complete example. That is the
22344easiest thing for you to do, and the most helpful.
c4555f82 22345
8e04817f
AC
22346Keep in mind that the purpose of a bug report is to enable us to fix the
22347bug. It may be that the bug has been reported previously, but neither
22348you nor we can know that unless your bug report is complete and
22349self-contained.
c4555f82 22350
8e04817f
AC
22351Sometimes people give a few sketchy facts and ask, ``Does this ring a
22352bell?'' Those bug reports are useless, and we urge everyone to
22353@emph{refuse to respond to them} except to chide the sender to report
22354bugs properly.
22355
22356To enable us to fix the bug, you should include all these things:
c4555f82
SC
22357
22358@itemize @bullet
22359@item
8e04817f
AC
22360The version of @value{GDBN}. @value{GDBN} announces it if you start
22361with no arguments; you can also print it at any time using @code{show
22362version}.
c4555f82 22363
8e04817f
AC
22364Without this, we will not know whether there is any point in looking for
22365the bug in the current version of @value{GDBN}.
c4555f82
SC
22366
22367@item
8e04817f
AC
22368The type of machine you are using, and the operating system name and
22369version number.
c4555f82
SC
22370
22371@item
c1468174 22372What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22373``@value{GCC}--2.8.1''.
c4555f82
SC
22374
22375@item
8e04817f 22376What compiler (and its version) was used to compile the program you are
c1468174 22377debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22378C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22379to get this information; for other compilers, see the documentation for
22380those compilers.
c4555f82 22381
8e04817f
AC
22382@item
22383The command arguments you gave the compiler to compile your example and
22384observe the bug. For example, did you use @samp{-O}? To guarantee
22385you will not omit something important, list them all. A copy of the
22386Makefile (or the output from make) is sufficient.
c4555f82 22387
8e04817f
AC
22388If we were to try to guess the arguments, we would probably guess wrong
22389and then we might not encounter the bug.
c4555f82 22390
8e04817f
AC
22391@item
22392A complete input script, and all necessary source files, that will
22393reproduce the bug.
c4555f82 22394
8e04817f
AC
22395@item
22396A description of what behavior you observe that you believe is
22397incorrect. For example, ``It gets a fatal signal.''
c4555f82 22398
8e04817f
AC
22399Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22400will certainly notice it. But if the bug is incorrect output, we might
22401not notice unless it is glaringly wrong. You might as well not give us
22402a chance to make a mistake.
c4555f82 22403
8e04817f
AC
22404Even if the problem you experience is a fatal signal, you should still
22405say so explicitly. Suppose something strange is going on, such as, your
22406copy of @value{GDBN} is out of synch, or you have encountered a bug in
22407the C library on your system. (This has happened!) Your copy might
22408crash and ours would not. If you told us to expect a crash, then when
22409ours fails to crash, we would know that the bug was not happening for
22410us. If you had not told us to expect a crash, then we would not be able
22411to draw any conclusion from our observations.
c4555f82 22412
e0c07bf0
MC
22413@pindex script
22414@cindex recording a session script
22415To collect all this information, you can use a session recording program
22416such as @command{script}, which is available on many Unix systems.
22417Just run your @value{GDBN} session inside @command{script} and then
22418include the @file{typescript} file with your bug report.
22419
22420Another way to record a @value{GDBN} session is to run @value{GDBN}
22421inside Emacs and then save the entire buffer to a file.
22422
8e04817f
AC
22423@item
22424If you wish to suggest changes to the @value{GDBN} source, send us context
22425diffs. If you even discuss something in the @value{GDBN} source, refer to
22426it by context, not by line number.
c4555f82 22427
8e04817f
AC
22428The line numbers in our development sources will not match those in your
22429sources. Your line numbers would convey no useful information to us.
c4555f82 22430
8e04817f 22431@end itemize
c4555f82 22432
8e04817f 22433Here are some things that are not necessary:
c4555f82 22434
8e04817f
AC
22435@itemize @bullet
22436@item
22437A description of the envelope of the bug.
c4555f82 22438
8e04817f
AC
22439Often people who encounter a bug spend a lot of time investigating
22440which changes to the input file will make the bug go away and which
22441changes will not affect it.
c4555f82 22442
8e04817f
AC
22443This is often time consuming and not very useful, because the way we
22444will find the bug is by running a single example under the debugger
22445with breakpoints, not by pure deduction from a series of examples.
22446We recommend that you save your time for something else.
c4555f82 22447
8e04817f
AC
22448Of course, if you can find a simpler example to report @emph{instead}
22449of the original one, that is a convenience for us. Errors in the
22450output will be easier to spot, running under the debugger will take
22451less time, and so on.
c4555f82 22452
8e04817f
AC
22453However, simplification is not vital; if you do not want to do this,
22454report the bug anyway and send us the entire test case you used.
c4555f82 22455
8e04817f
AC
22456@item
22457A patch for the bug.
c4555f82 22458
8e04817f
AC
22459A patch for the bug does help us if it is a good one. But do not omit
22460the necessary information, such as the test case, on the assumption that
22461a patch is all we need. We might see problems with your patch and decide
22462to fix the problem another way, or we might not understand it at all.
c4555f82 22463
8e04817f
AC
22464Sometimes with a program as complicated as @value{GDBN} it is very hard to
22465construct an example that will make the program follow a certain path
22466through the code. If you do not send us the example, we will not be able
22467to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22468
8e04817f
AC
22469And if we cannot understand what bug you are trying to fix, or why your
22470patch should be an improvement, we will not install it. A test case will
22471help us to understand.
c4555f82 22472
8e04817f
AC
22473@item
22474A guess about what the bug is or what it depends on.
c4555f82 22475
8e04817f
AC
22476Such guesses are usually wrong. Even we cannot guess right about such
22477things without first using the debugger to find the facts.
22478@end itemize
c4555f82 22479
8e04817f
AC
22480@c The readline documentation is distributed with the readline code
22481@c and consists of the two following files:
22482@c rluser.texinfo
22483@c inc-hist.texinfo
22484@c Use -I with makeinfo to point to the appropriate directory,
22485@c environment var TEXINPUTS with TeX.
5bdf8622 22486@include rluser.texi
8e04817f 22487@include inc-hist.texinfo
c4555f82 22488
c4555f82 22489
8e04817f
AC
22490@node Formatting Documentation
22491@appendix Formatting Documentation
c4555f82 22492
8e04817f
AC
22493@cindex @value{GDBN} reference card
22494@cindex reference card
22495The @value{GDBN} 4 release includes an already-formatted reference card, ready
22496for printing with PostScript or Ghostscript, in the @file{gdb}
22497subdirectory of the main source directory@footnote{In
22498@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22499release.}. If you can use PostScript or Ghostscript with your printer,
22500you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22501
8e04817f
AC
22502The release also includes the source for the reference card. You
22503can format it, using @TeX{}, by typing:
c4555f82 22504
474c8240 22505@smallexample
8e04817f 22506make refcard.dvi
474c8240 22507@end smallexample
c4555f82 22508
8e04817f
AC
22509The @value{GDBN} reference card is designed to print in @dfn{landscape}
22510mode on US ``letter'' size paper;
22511that is, on a sheet 11 inches wide by 8.5 inches
22512high. You will need to specify this form of printing as an option to
22513your @sc{dvi} output program.
c4555f82 22514
8e04817f 22515@cindex documentation
c4555f82 22516
8e04817f
AC
22517All the documentation for @value{GDBN} comes as part of the machine-readable
22518distribution. The documentation is written in Texinfo format, which is
22519a documentation system that uses a single source file to produce both
22520on-line information and a printed manual. You can use one of the Info
22521formatting commands to create the on-line version of the documentation
22522and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22523
8e04817f
AC
22524@value{GDBN} includes an already formatted copy of the on-line Info
22525version of this manual in the @file{gdb} subdirectory. The main Info
22526file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22527subordinate files matching @samp{gdb.info*} in the same directory. If
22528necessary, you can print out these files, or read them with any editor;
22529but they are easier to read using the @code{info} subsystem in @sc{gnu}
22530Emacs or the standalone @code{info} program, available as part of the
22531@sc{gnu} Texinfo distribution.
c4555f82 22532
8e04817f
AC
22533If you want to format these Info files yourself, you need one of the
22534Info formatting programs, such as @code{texinfo-format-buffer} or
22535@code{makeinfo}.
c4555f82 22536
8e04817f
AC
22537If you have @code{makeinfo} installed, and are in the top level
22538@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22539version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22540
474c8240 22541@smallexample
8e04817f
AC
22542cd gdb
22543make gdb.info
474c8240 22544@end smallexample
c4555f82 22545
8e04817f
AC
22546If you want to typeset and print copies of this manual, you need @TeX{},
22547a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22548Texinfo definitions file.
c4555f82 22549
8e04817f
AC
22550@TeX{} is a typesetting program; it does not print files directly, but
22551produces output files called @sc{dvi} files. To print a typeset
22552document, you need a program to print @sc{dvi} files. If your system
22553has @TeX{} installed, chances are it has such a program. The precise
22554command to use depends on your system; @kbd{lpr -d} is common; another
22555(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22556require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22557
8e04817f
AC
22558@TeX{} also requires a macro definitions file called
22559@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22560written in Texinfo format. On its own, @TeX{} cannot either read or
22561typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22562and is located in the @file{gdb-@var{version-number}/texinfo}
22563directory.
c4555f82 22564
8e04817f 22565If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22566typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22567subdirectory of the main source directory (for example, to
22568@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22569
474c8240 22570@smallexample
8e04817f 22571make gdb.dvi
474c8240 22572@end smallexample
c4555f82 22573
8e04817f 22574Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22575
8e04817f
AC
22576@node Installing GDB
22577@appendix Installing @value{GDBN}
8e04817f 22578@cindex installation
c4555f82 22579
7fa2210b
DJ
22580@menu
22581* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22582* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22583* Separate Objdir:: Compiling @value{GDBN} in another directory
22584* Config Names:: Specifying names for hosts and targets
22585* Configure Options:: Summary of options for configure
22586@end menu
22587
22588@node Requirements
79a6e687 22589@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22590@cindex building @value{GDBN}, requirements for
22591
22592Building @value{GDBN} requires various tools and packages to be available.
22593Other packages will be used only if they are found.
22594
79a6e687 22595@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22596@table @asis
22597@item ISO C90 compiler
22598@value{GDBN} is written in ISO C90. It should be buildable with any
22599working C90 compiler, e.g.@: GCC.
22600
22601@end table
22602
79a6e687 22603@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22604@table @asis
22605@item Expat
123dc839 22606@anchor{Expat}
7fa2210b
DJ
22607@value{GDBN} can use the Expat XML parsing library. This library may be
22608included with your operating system distribution; if it is not, you
22609can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22610The @file{configure} script will search for this library in several
7fa2210b
DJ
22611standard locations; if it is installed in an unusual path, you can
22612use the @option{--with-libexpat-prefix} option to specify its location.
22613
9cceb671
DJ
22614Expat is used for:
22615
22616@itemize @bullet
22617@item
22618Remote protocol memory maps (@pxref{Memory Map Format})
22619@item
22620Target descriptions (@pxref{Target Descriptions})
22621@item
22622Remote shared library lists (@pxref{Library List Format})
22623@item
22624MS-Windows shared libraries (@pxref{Shared Libraries})
22625@end itemize
7fa2210b
DJ
22626
22627@end table
22628
22629@node Running Configure
db2e3e2e 22630@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22631@cindex configuring @value{GDBN}
db2e3e2e 22632@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22633of preparing @value{GDBN} for installation; you can then use @code{make} to
22634build the @code{gdb} program.
22635@iftex
22636@c irrelevant in info file; it's as current as the code it lives with.
22637@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22638look at the @file{README} file in the sources; we may have improved the
22639installation procedures since publishing this manual.}
22640@end iftex
c4555f82 22641
8e04817f
AC
22642The @value{GDBN} distribution includes all the source code you need for
22643@value{GDBN} in a single directory, whose name is usually composed by
22644appending the version number to @samp{gdb}.
c4555f82 22645
8e04817f
AC
22646For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22647@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22648
8e04817f
AC
22649@table @code
22650@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22651script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22652
8e04817f
AC
22653@item gdb-@value{GDBVN}/gdb
22654the source specific to @value{GDBN} itself
c4555f82 22655
8e04817f
AC
22656@item gdb-@value{GDBVN}/bfd
22657source for the Binary File Descriptor library
c906108c 22658
8e04817f
AC
22659@item gdb-@value{GDBVN}/include
22660@sc{gnu} include files
c906108c 22661
8e04817f
AC
22662@item gdb-@value{GDBVN}/libiberty
22663source for the @samp{-liberty} free software library
c906108c 22664
8e04817f
AC
22665@item gdb-@value{GDBVN}/opcodes
22666source for the library of opcode tables and disassemblers
c906108c 22667
8e04817f
AC
22668@item gdb-@value{GDBVN}/readline
22669source for the @sc{gnu} command-line interface
c906108c 22670
8e04817f
AC
22671@item gdb-@value{GDBVN}/glob
22672source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22673
8e04817f
AC
22674@item gdb-@value{GDBVN}/mmalloc
22675source for the @sc{gnu} memory-mapped malloc package
22676@end table
c906108c 22677
db2e3e2e 22678The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22679from the @file{gdb-@var{version-number}} source directory, which in
22680this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22681
8e04817f 22682First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22683if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22684identifier for the platform on which @value{GDBN} will run as an
22685argument.
c906108c 22686
8e04817f 22687For example:
c906108c 22688
474c8240 22689@smallexample
8e04817f
AC
22690cd gdb-@value{GDBVN}
22691./configure @var{host}
22692make
474c8240 22693@end smallexample
c906108c 22694
8e04817f
AC
22695@noindent
22696where @var{host} is an identifier such as @samp{sun4} or
22697@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22698(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22699correct value by examining your system.)
c906108c 22700
8e04817f
AC
22701Running @samp{configure @var{host}} and then running @code{make} builds the
22702@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22703libraries, then @code{gdb} itself. The configured source files, and the
22704binaries, are left in the corresponding source directories.
c906108c 22705
8e04817f 22706@need 750
db2e3e2e 22707@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22708system does not recognize this automatically when you run a different
22709shell, you may need to run @code{sh} on it explicitly:
c906108c 22710
474c8240 22711@smallexample
8e04817f 22712sh configure @var{host}
474c8240 22713@end smallexample
c906108c 22714
db2e3e2e 22715If you run @file{configure} from a directory that contains source
8e04817f 22716directories for multiple libraries or programs, such as the
db2e3e2e
BW
22717@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22718@file{configure}
8e04817f
AC
22719creates configuration files for every directory level underneath (unless
22720you tell it not to, with the @samp{--norecursion} option).
22721
db2e3e2e 22722You should run the @file{configure} script from the top directory in the
94e91d6d 22723source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22724@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22725that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22726if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22727of the @file{gdb-@var{version-number}} directory, you will omit the
22728configuration of @file{bfd}, @file{readline}, and other sibling
22729directories of the @file{gdb} subdirectory. This leads to build errors
22730about missing include files such as @file{bfd/bfd.h}.
c906108c 22731
8e04817f
AC
22732You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22733However, you should make sure that the shell on your path (named by
22734the @samp{SHELL} environment variable) is publicly readable. Remember
22735that @value{GDBN} uses the shell to start your program---some systems refuse to
22736let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22737
8e04817f 22738@node Separate Objdir
79a6e687 22739@section Compiling @value{GDBN} in Another Directory
c906108c 22740
8e04817f
AC
22741If you want to run @value{GDBN} versions for several host or target machines,
22742you need a different @code{gdb} compiled for each combination of
db2e3e2e 22743host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22744allowing you to generate each configuration in a separate subdirectory,
22745rather than in the source directory. If your @code{make} program
22746handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22747@code{make} in each of these directories builds the @code{gdb}
22748program specified there.
c906108c 22749
db2e3e2e 22750To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22751with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22752(You also need to specify a path to find @file{configure}
22753itself from your working directory. If the path to @file{configure}
8e04817f
AC
22754would be the same as the argument to @samp{--srcdir}, you can leave out
22755the @samp{--srcdir} option; it is assumed.)
c906108c 22756
8e04817f
AC
22757For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22758separate directory for a Sun 4 like this:
c906108c 22759
474c8240 22760@smallexample
8e04817f
AC
22761@group
22762cd gdb-@value{GDBVN}
22763mkdir ../gdb-sun4
22764cd ../gdb-sun4
22765../gdb-@value{GDBVN}/configure sun4
22766make
22767@end group
474c8240 22768@end smallexample
c906108c 22769
db2e3e2e 22770When @file{configure} builds a configuration using a remote source
8e04817f
AC
22771directory, it creates a tree for the binaries with the same structure
22772(and using the same names) as the tree under the source directory. In
22773the example, you'd find the Sun 4 library @file{libiberty.a} in the
22774directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22775@file{gdb-sun4/gdb}.
c906108c 22776
94e91d6d
MC
22777Make sure that your path to the @file{configure} script has just one
22778instance of @file{gdb} in it. If your path to @file{configure} looks
22779like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22780one subdirectory of @value{GDBN}, not the whole package. This leads to
22781build errors about missing include files such as @file{bfd/bfd.h}.
22782
8e04817f
AC
22783One popular reason to build several @value{GDBN} configurations in separate
22784directories is to configure @value{GDBN} for cross-compiling (where
22785@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22786programs that run on another machine---the @dfn{target}).
22787You specify a cross-debugging target by
db2e3e2e 22788giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22789
8e04817f
AC
22790When you run @code{make} to build a program or library, you must run
22791it in a configured directory---whatever directory you were in when you
db2e3e2e 22792called @file{configure} (or one of its subdirectories).
c906108c 22793
db2e3e2e 22794The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22795directory also runs recursively. If you type @code{make} in a source
22796directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22797directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22798will build all the required libraries, and then build GDB.
c906108c 22799
8e04817f
AC
22800When you have multiple hosts or targets configured in separate
22801directories, you can run @code{make} on them in parallel (for example,
22802if they are NFS-mounted on each of the hosts); they will not interfere
22803with each other.
c906108c 22804
8e04817f 22805@node Config Names
79a6e687 22806@section Specifying Names for Hosts and Targets
c906108c 22807
db2e3e2e 22808The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22809script are based on a three-part naming scheme, but some short predefined
22810aliases are also supported. The full naming scheme encodes three pieces
22811of information in the following pattern:
c906108c 22812
474c8240 22813@smallexample
8e04817f 22814@var{architecture}-@var{vendor}-@var{os}
474c8240 22815@end smallexample
c906108c 22816
8e04817f
AC
22817For example, you can use the alias @code{sun4} as a @var{host} argument,
22818or as the value for @var{target} in a @code{--target=@var{target}}
22819option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22820
db2e3e2e 22821The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22822any query facility to list all supported host and target names or
db2e3e2e 22823aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22824@code{config.sub} to map abbreviations to full names; you can read the
22825script, if you wish, or you can use it to test your guesses on
22826abbreviations---for example:
c906108c 22827
8e04817f
AC
22828@smallexample
22829% sh config.sub i386-linux
22830i386-pc-linux-gnu
22831% sh config.sub alpha-linux
22832alpha-unknown-linux-gnu
22833% sh config.sub hp9k700
22834hppa1.1-hp-hpux
22835% sh config.sub sun4
22836sparc-sun-sunos4.1.1
22837% sh config.sub sun3
22838m68k-sun-sunos4.1.1
22839% sh config.sub i986v
22840Invalid configuration `i986v': machine `i986v' not recognized
22841@end smallexample
c906108c 22842
8e04817f
AC
22843@noindent
22844@code{config.sub} is also distributed in the @value{GDBN} source
22845directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22846
8e04817f 22847@node Configure Options
db2e3e2e 22848@section @file{configure} Options
c906108c 22849
db2e3e2e
BW
22850Here is a summary of the @file{configure} options and arguments that
22851are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22852several other options not listed here. @inforef{What Configure
db2e3e2e 22853Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22854
474c8240 22855@smallexample
8e04817f
AC
22856configure @r{[}--help@r{]}
22857 @r{[}--prefix=@var{dir}@r{]}
22858 @r{[}--exec-prefix=@var{dir}@r{]}
22859 @r{[}--srcdir=@var{dirname}@r{]}
22860 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22861 @r{[}--target=@var{target}@r{]}
22862 @var{host}
474c8240 22863@end smallexample
c906108c 22864
8e04817f
AC
22865@noindent
22866You may introduce options with a single @samp{-} rather than
22867@samp{--} if you prefer; but you may abbreviate option names if you use
22868@samp{--}.
c906108c 22869
8e04817f
AC
22870@table @code
22871@item --help
db2e3e2e 22872Display a quick summary of how to invoke @file{configure}.
c906108c 22873
8e04817f
AC
22874@item --prefix=@var{dir}
22875Configure the source to install programs and files under directory
22876@file{@var{dir}}.
c906108c 22877
8e04817f
AC
22878@item --exec-prefix=@var{dir}
22879Configure the source to install programs under directory
22880@file{@var{dir}}.
c906108c 22881
8e04817f
AC
22882@c avoid splitting the warning from the explanation:
22883@need 2000
22884@item --srcdir=@var{dirname}
22885@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22886@code{make} that implements the @code{VPATH} feature.}@*
22887Use this option to make configurations in directories separate from the
22888@value{GDBN} source directories. Among other things, you can use this to
22889build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22890directories. @file{configure} writes configuration-specific files in
8e04817f 22891the current directory, but arranges for them to use the source in the
db2e3e2e 22892directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22893the working directory in parallel to the source directories below
22894@var{dirname}.
c906108c 22895
8e04817f 22896@item --norecursion
db2e3e2e 22897Configure only the directory level where @file{configure} is executed; do not
8e04817f 22898propagate configuration to subdirectories.
c906108c 22899
8e04817f
AC
22900@item --target=@var{target}
22901Configure @value{GDBN} for cross-debugging programs running on the specified
22902@var{target}. Without this option, @value{GDBN} is configured to debug
22903programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22904
8e04817f 22905There is no convenient way to generate a list of all available targets.
c906108c 22906
8e04817f
AC
22907@item @var{host} @dots{}
22908Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22909
8e04817f
AC
22910There is no convenient way to generate a list of all available hosts.
22911@end table
c906108c 22912
8e04817f
AC
22913There are many other options available as well, but they are generally
22914needed for special purposes only.
c906108c 22915
8e04817f
AC
22916@node Maintenance Commands
22917@appendix Maintenance Commands
22918@cindex maintenance commands
22919@cindex internal commands
c906108c 22920
8e04817f 22921In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22922includes a number of commands intended for @value{GDBN} developers,
22923that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22924provided here for reference. (For commands that turn on debugging
22925messages, see @ref{Debugging Output}.)
c906108c 22926
8e04817f 22927@table @code
09d4efe1
EZ
22928@kindex maint agent
22929@item maint agent @var{expression}
22930Translate the given @var{expression} into remote agent bytecodes.
22931This command is useful for debugging the Agent Expression mechanism
22932(@pxref{Agent Expressions}).
22933
8e04817f
AC
22934@kindex maint info breakpoints
22935@item @anchor{maint info breakpoints}maint info breakpoints
22936Using the same format as @samp{info breakpoints}, display both the
22937breakpoints you've set explicitly, and those @value{GDBN} is using for
22938internal purposes. Internal breakpoints are shown with negative
22939breakpoint numbers. The type column identifies what kind of breakpoint
22940is shown:
c906108c 22941
8e04817f
AC
22942@table @code
22943@item breakpoint
22944Normal, explicitly set breakpoint.
c906108c 22945
8e04817f
AC
22946@item watchpoint
22947Normal, explicitly set watchpoint.
c906108c 22948
8e04817f
AC
22949@item longjmp
22950Internal breakpoint, used to handle correctly stepping through
22951@code{longjmp} calls.
c906108c 22952
8e04817f
AC
22953@item longjmp resume
22954Internal breakpoint at the target of a @code{longjmp}.
c906108c 22955
8e04817f
AC
22956@item until
22957Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22958
8e04817f
AC
22959@item finish
22960Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22961
8e04817f
AC
22962@item shlib events
22963Shared library events.
c906108c 22964
8e04817f 22965@end table
c906108c 22966
09d4efe1
EZ
22967@kindex maint check-symtabs
22968@item maint check-symtabs
22969Check the consistency of psymtabs and symtabs.
22970
22971@kindex maint cplus first_component
22972@item maint cplus first_component @var{name}
22973Print the first C@t{++} class/namespace component of @var{name}.
22974
22975@kindex maint cplus namespace
22976@item maint cplus namespace
22977Print the list of possible C@t{++} namespaces.
22978
22979@kindex maint demangle
22980@item maint demangle @var{name}
d3e8051b 22981Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22982
22983@kindex maint deprecate
22984@kindex maint undeprecate
22985@cindex deprecated commands
22986@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22987@itemx maint undeprecate @var{command}
22988Deprecate or undeprecate the named @var{command}. Deprecated commands
22989cause @value{GDBN} to issue a warning when you use them. The optional
22990argument @var{replacement} says which newer command should be used in
22991favor of the deprecated one; if it is given, @value{GDBN} will mention
22992the replacement as part of the warning.
22993
22994@kindex maint dump-me
22995@item maint dump-me
721c2651 22996@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22997Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22998This is supported only on systems which support aborting a program
22999with the @code{SIGQUIT} signal.
09d4efe1 23000
8d30a00d
AC
23001@kindex maint internal-error
23002@kindex maint internal-warning
09d4efe1
EZ
23003@item maint internal-error @r{[}@var{message-text}@r{]}
23004@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23005Cause @value{GDBN} to call the internal function @code{internal_error}
23006or @code{internal_warning} and hence behave as though an internal error
23007or internal warning has been detected. In addition to reporting the
23008internal problem, these functions give the user the opportunity to
23009either quit @value{GDBN} or create a core file of the current
23010@value{GDBN} session.
23011
09d4efe1
EZ
23012These commands take an optional parameter @var{message-text} that is
23013used as the text of the error or warning message.
23014
d3e8051b 23015Here's an example of using @code{internal-error}:
09d4efe1 23016
8d30a00d 23017@smallexample
f7dc1244 23018(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23019@dots{}/maint.c:121: internal-error: testing, 1, 2
23020A problem internal to GDB has been detected. Further
23021debugging may prove unreliable.
23022Quit this debugging session? (y or n) @kbd{n}
23023Create a core file? (y or n) @kbd{n}
f7dc1244 23024(@value{GDBP})
8d30a00d
AC
23025@end smallexample
23026
09d4efe1
EZ
23027@kindex maint packet
23028@item maint packet @var{text}
23029If @value{GDBN} is talking to an inferior via the serial protocol,
23030then this command sends the string @var{text} to the inferior, and
23031displays the response packet. @value{GDBN} supplies the initial
23032@samp{$} character, the terminating @samp{#} character, and the
23033checksum.
23034
23035@kindex maint print architecture
23036@item maint print architecture @r{[}@var{file}@r{]}
23037Print the entire architecture configuration. The optional argument
23038@var{file} names the file where the output goes.
8d30a00d 23039
81adfced
DJ
23040@kindex maint print c-tdesc
23041@item maint print c-tdesc
23042Print the current target description (@pxref{Target Descriptions}) as
23043a C source file. The created source file can be used in @value{GDBN}
23044when an XML parser is not available to parse the description.
23045
00905d52
AC
23046@kindex maint print dummy-frames
23047@item maint print dummy-frames
00905d52
AC
23048Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23049
23050@smallexample
f7dc1244 23051(@value{GDBP}) @kbd{b add}
00905d52 23052@dots{}
f7dc1244 23053(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23054Breakpoint 2, add (a=2, b=3) at @dots{}
2305558 return (a + b);
23056The program being debugged stopped while in a function called from GDB.
23057@dots{}
f7dc1244 23058(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
230590x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23060 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23061 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23062(@value{GDBP})
00905d52
AC
23063@end smallexample
23064
23065Takes an optional file parameter.
23066
0680b120
AC
23067@kindex maint print registers
23068@kindex maint print raw-registers
23069@kindex maint print cooked-registers
617073a9 23070@kindex maint print register-groups
09d4efe1
EZ
23071@item maint print registers @r{[}@var{file}@r{]}
23072@itemx maint print raw-registers @r{[}@var{file}@r{]}
23073@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23074@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23075Print @value{GDBN}'s internal register data structures.
23076
617073a9
AC
23077The command @code{maint print raw-registers} includes the contents of
23078the raw register cache; the command @code{maint print cooked-registers}
23079includes the (cooked) value of all registers; and the command
23080@code{maint print register-groups} includes the groups that each
23081register is a member of. @xref{Registers,, Registers, gdbint,
23082@value{GDBN} Internals}.
0680b120 23083
09d4efe1
EZ
23084These commands take an optional parameter, a file name to which to
23085write the information.
0680b120 23086
617073a9 23087@kindex maint print reggroups
09d4efe1
EZ
23088@item maint print reggroups @r{[}@var{file}@r{]}
23089Print @value{GDBN}'s internal register group data structures. The
23090optional argument @var{file} tells to what file to write the
23091information.
617073a9 23092
09d4efe1 23093The register groups info looks like this:
617073a9
AC
23094
23095@smallexample
f7dc1244 23096(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23097 Group Type
23098 general user
23099 float user
23100 all user
23101 vector user
23102 system user
23103 save internal
23104 restore internal
617073a9
AC
23105@end smallexample
23106
09d4efe1
EZ
23107@kindex flushregs
23108@item flushregs
23109This command forces @value{GDBN} to flush its internal register cache.
23110
23111@kindex maint print objfiles
23112@cindex info for known object files
23113@item maint print objfiles
23114Print a dump of all known object files. For each object file, this
23115command prints its name, address in memory, and all of its psymtabs
23116and symtabs.
23117
23118@kindex maint print statistics
23119@cindex bcache statistics
23120@item maint print statistics
23121This command prints, for each object file in the program, various data
23122about that object file followed by the byte cache (@dfn{bcache})
23123statistics for the object file. The objfile data includes the number
d3e8051b 23124of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23125defined by the objfile, the number of as yet unexpanded psym tables,
23126the number of line tables and string tables, and the amount of memory
23127used by the various tables. The bcache statistics include the counts,
23128sizes, and counts of duplicates of all and unique objects, max,
23129average, and median entry size, total memory used and its overhead and
23130savings, and various measures of the hash table size and chain
23131lengths.
23132
c7ba131e
JB
23133@kindex maint print target-stack
23134@cindex target stack description
23135@item maint print target-stack
23136A @dfn{target} is an interface between the debugger and a particular
23137kind of file or process. Targets can be stacked in @dfn{strata},
23138so that more than one target can potentially respond to a request.
23139In particular, memory accesses will walk down the stack of targets
23140until they find a target that is interested in handling that particular
23141address.
23142
23143This command prints a short description of each layer that was pushed on
23144the @dfn{target stack}, starting from the top layer down to the bottom one.
23145
09d4efe1
EZ
23146@kindex maint print type
23147@cindex type chain of a data type
23148@item maint print type @var{expr}
23149Print the type chain for a type specified by @var{expr}. The argument
23150can be either a type name or a symbol. If it is a symbol, the type of
23151that symbol is described. The type chain produced by this command is
23152a recursive definition of the data type as stored in @value{GDBN}'s
23153data structures, including its flags and contained types.
23154
23155@kindex maint set dwarf2 max-cache-age
23156@kindex maint show dwarf2 max-cache-age
23157@item maint set dwarf2 max-cache-age
23158@itemx maint show dwarf2 max-cache-age
23159Control the DWARF 2 compilation unit cache.
23160
23161@cindex DWARF 2 compilation units cache
23162In object files with inter-compilation-unit references, such as those
23163produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23164reader needs to frequently refer to previously read compilation units.
23165This setting controls how long a compilation unit will remain in the
23166cache if it is not referenced. A higher limit means that cached
23167compilation units will be stored in memory longer, and more total
23168memory will be used. Setting it to zero disables caching, which will
23169slow down @value{GDBN} startup, but reduce memory consumption.
23170
e7ba9c65
DJ
23171@kindex maint set profile
23172@kindex maint show profile
23173@cindex profiling GDB
23174@item maint set profile
23175@itemx maint show profile
23176Control profiling of @value{GDBN}.
23177
23178Profiling will be disabled until you use the @samp{maint set profile}
23179command to enable it. When you enable profiling, the system will begin
23180collecting timing and execution count data; when you disable profiling or
23181exit @value{GDBN}, the results will be written to a log file. Remember that
23182if you use profiling, @value{GDBN} will overwrite the profiling log file
23183(often called @file{gmon.out}). If you have a record of important profiling
23184data in a @file{gmon.out} file, be sure to move it to a safe location.
23185
23186Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23187compiled with the @samp{-pg} compiler option.
e7ba9c65 23188
09d4efe1
EZ
23189@kindex maint show-debug-regs
23190@cindex x86 hardware debug registers
23191@item maint show-debug-regs
23192Control whether to show variables that mirror the x86 hardware debug
23193registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23194enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23195removes a hardware breakpoint or watchpoint, and when the inferior
23196triggers a hardware-assisted breakpoint or watchpoint.
23197
23198@kindex maint space
23199@cindex memory used by commands
23200@item maint space
23201Control whether to display memory usage for each command. If set to a
23202nonzero value, @value{GDBN} will display how much memory each command
23203took, following the command's own output. This can also be requested
23204by invoking @value{GDBN} with the @option{--statistics} command-line
23205switch (@pxref{Mode Options}).
23206
23207@kindex maint time
23208@cindex time of command execution
23209@item maint time
23210Control whether to display the execution time for each command. If
23211set to a nonzero value, @value{GDBN} will display how much time it
23212took to execute each command, following the command's own output.
23213This can also be requested by invoking @value{GDBN} with the
23214@option{--statistics} command-line switch (@pxref{Mode Options}).
23215
23216@kindex maint translate-address
23217@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23218Find the symbol stored at the location specified by the address
23219@var{addr} and an optional section name @var{section}. If found,
23220@value{GDBN} prints the name of the closest symbol and an offset from
23221the symbol's location to the specified address. This is similar to
23222the @code{info address} command (@pxref{Symbols}), except that this
23223command also allows to find symbols in other sections.
ae038cb0 23224
8e04817f 23225@end table
c906108c 23226
9c16f35a
EZ
23227The following command is useful for non-interactive invocations of
23228@value{GDBN}, such as in the test suite.
23229
23230@table @code
23231@item set watchdog @var{nsec}
23232@kindex set watchdog
23233@cindex watchdog timer
23234@cindex timeout for commands
23235Set the maximum number of seconds @value{GDBN} will wait for the
23236target operation to finish. If this time expires, @value{GDBN}
23237reports and error and the command is aborted.
23238
23239@item show watchdog
23240Show the current setting of the target wait timeout.
23241@end table
c906108c 23242
e0ce93ac 23243@node Remote Protocol
8e04817f 23244@appendix @value{GDBN} Remote Serial Protocol
c906108c 23245
ee2d5c50
AC
23246@menu
23247* Overview::
23248* Packets::
23249* Stop Reply Packets::
23250* General Query Packets::
23251* Register Packet Format::
9d29849a 23252* Tracepoint Packets::
a6b151f1 23253* Host I/O Packets::
9a6253be 23254* Interrupts::
ee2d5c50 23255* Examples::
79a6e687 23256* File-I/O Remote Protocol Extension::
cfa9d6d9 23257* Library List Format::
79a6e687 23258* Memory Map Format::
ee2d5c50
AC
23259@end menu
23260
23261@node Overview
23262@section Overview
23263
8e04817f
AC
23264There may be occasions when you need to know something about the
23265protocol---for example, if there is only one serial port to your target
23266machine, you might want your program to do something special if it
23267recognizes a packet meant for @value{GDBN}.
c906108c 23268
d2c6833e 23269In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23270transmitted and received data, respectively.
c906108c 23271
8e04817f
AC
23272@cindex protocol, @value{GDBN} remote serial
23273@cindex serial protocol, @value{GDBN} remote
23274@cindex remote serial protocol
23275All @value{GDBN} commands and responses (other than acknowledgments) are
23276sent as a @var{packet}. A @var{packet} is introduced with the character
23277@samp{$}, the actual @var{packet-data}, and the terminating character
23278@samp{#} followed by a two-digit @var{checksum}:
c906108c 23279
474c8240 23280@smallexample
8e04817f 23281@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23282@end smallexample
8e04817f 23283@noindent
c906108c 23284
8e04817f
AC
23285@cindex checksum, for @value{GDBN} remote
23286@noindent
23287The two-digit @var{checksum} is computed as the modulo 256 sum of all
23288characters between the leading @samp{$} and the trailing @samp{#} (an
23289eight bit unsigned checksum).
c906108c 23290
8e04817f
AC
23291Implementors should note that prior to @value{GDBN} 5.0 the protocol
23292specification also included an optional two-digit @var{sequence-id}:
c906108c 23293
474c8240 23294@smallexample
8e04817f 23295@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23296@end smallexample
c906108c 23297
8e04817f
AC
23298@cindex sequence-id, for @value{GDBN} remote
23299@noindent
23300That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23301has never output @var{sequence-id}s. Stubs that handle packets added
23302since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23303
8e04817f
AC
23304@cindex acknowledgment, for @value{GDBN} remote
23305When either the host or the target machine receives a packet, the first
23306response expected is an acknowledgment: either @samp{+} (to indicate
23307the package was received correctly) or @samp{-} (to request
23308retransmission):
c906108c 23309
474c8240 23310@smallexample
d2c6833e
AC
23311-> @code{$}@var{packet-data}@code{#}@var{checksum}
23312<- @code{+}
474c8240 23313@end smallexample
8e04817f 23314@noindent
53a5351d 23315
8e04817f
AC
23316The host (@value{GDBN}) sends @var{command}s, and the target (the
23317debugging stub incorporated in your program) sends a @var{response}. In
23318the case of step and continue @var{command}s, the response is only sent
23319when the operation has completed (the target has again stopped).
c906108c 23320
8e04817f
AC
23321@var{packet-data} consists of a sequence of characters with the
23322exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23323exceptions).
c906108c 23324
ee2d5c50 23325@cindex remote protocol, field separator
0876f84a 23326Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23327@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23328@sc{hex} with leading zeros suppressed.
c906108c 23329
8e04817f
AC
23330Implementors should note that prior to @value{GDBN} 5.0, the character
23331@samp{:} could not appear as the third character in a packet (as it
23332would potentially conflict with the @var{sequence-id}).
c906108c 23333
0876f84a
DJ
23334@cindex remote protocol, binary data
23335@anchor{Binary Data}
23336Binary data in most packets is encoded either as two hexadecimal
23337digits per byte of binary data. This allowed the traditional remote
23338protocol to work over connections which were only seven-bit clean.
23339Some packets designed more recently assume an eight-bit clean
23340connection, and use a more efficient encoding to send and receive
23341binary data.
23342
23343The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23344as an escape character. Any escaped byte is transmitted as the escape
23345character followed by the original character XORed with @code{0x20}.
23346For example, the byte @code{0x7d} would be transmitted as the two
23347bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23348@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23349@samp{@}}) must always be escaped. Responses sent by the stub
23350must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23351is not interpreted as the start of a run-length encoded sequence
23352(described next).
23353
1d3811f6
DJ
23354Response @var{data} can be run-length encoded to save space.
23355Run-length encoding replaces runs of identical characters with one
23356instance of the repeated character, followed by a @samp{*} and a
23357repeat count. The repeat count is itself sent encoded, to avoid
23358binary characters in @var{data}: a value of @var{n} is sent as
23359@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23360produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23361code 32) for a repeat count of 3. (This is because run-length
23362encoding starts to win for counts 3 or more.) Thus, for example,
23363@samp{0* } is a run-length encoding of ``0000'': the space character
23364after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
233653}} more times.
23366
23367The printable characters @samp{#} and @samp{$} or with a numeric value
23368greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23369seven repeats (@samp{$}) can be expanded using a repeat count of only
23370five (@samp{"}). For example, @samp{00000000} can be encoded as
23371@samp{0*"00}.
c906108c 23372
8e04817f
AC
23373The error response returned for some packets includes a two character
23374error number. That number is not well defined.
c906108c 23375
f8da2bff 23376@cindex empty response, for unsupported packets
8e04817f
AC
23377For any @var{command} not supported by the stub, an empty response
23378(@samp{$#00}) should be returned. That way it is possible to extend the
23379protocol. A newer @value{GDBN} can tell if a packet is supported based
23380on that response.
c906108c 23381
b383017d
RM
23382A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23383@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23384optional.
c906108c 23385
ee2d5c50
AC
23386@node Packets
23387@section Packets
23388
23389The following table provides a complete list of all currently defined
23390@var{command}s and their corresponding response @var{data}.
79a6e687 23391@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23392I/O extension of the remote protocol.
ee2d5c50 23393
b8ff78ce
JB
23394Each packet's description has a template showing the packet's overall
23395syntax, followed by an explanation of the packet's meaning. We
23396include spaces in some of the templates for clarity; these are not
23397part of the packet's syntax. No @value{GDBN} packet uses spaces to
23398separate its components. For example, a template like @samp{foo
23399@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23400bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23401@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23402@samp{foo} and the @var{bar}, or between the @var{bar} and the
23403@var{baz}.
23404
8ffe2530
JB
23405Note that all packet forms beginning with an upper- or lower-case
23406letter, other than those described here, are reserved for future use.
23407
b8ff78ce 23408Here are the packet descriptions.
ee2d5c50 23409
b8ff78ce 23410@table @samp
ee2d5c50 23411
b8ff78ce
JB
23412@item !
23413@cindex @samp{!} packet
2d717e4f 23414@anchor{extended mode}
8e04817f
AC
23415Enable extended mode. In extended mode, the remote server is made
23416persistent. The @samp{R} packet is used to restart the program being
23417debugged.
ee2d5c50
AC
23418
23419Reply:
23420@table @samp
23421@item OK
8e04817f 23422The remote target both supports and has enabled extended mode.
ee2d5c50 23423@end table
c906108c 23424
b8ff78ce
JB
23425@item ?
23426@cindex @samp{?} packet
ee2d5c50
AC
23427Indicate the reason the target halted. The reply is the same as for
23428step and continue.
c906108c 23429
ee2d5c50
AC
23430Reply:
23431@xref{Stop Reply Packets}, for the reply specifications.
23432
b8ff78ce
JB
23433@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23434@cindex @samp{A} packet
23435Initialized @code{argv[]} array passed into program. @var{arglen}
23436specifies the number of bytes in the hex encoded byte stream
23437@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23438
23439Reply:
23440@table @samp
23441@item OK
b8ff78ce
JB
23442The arguments were set.
23443@item E @var{NN}
23444An error occurred.
ee2d5c50
AC
23445@end table
23446
b8ff78ce
JB
23447@item b @var{baud}
23448@cindex @samp{b} packet
23449(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23450Change the serial line speed to @var{baud}.
23451
23452JTC: @emph{When does the transport layer state change? When it's
23453received, or after the ACK is transmitted. In either case, there are
23454problems if the command or the acknowledgment packet is dropped.}
23455
23456Stan: @emph{If people really wanted to add something like this, and get
23457it working for the first time, they ought to modify ser-unix.c to send
23458some kind of out-of-band message to a specially-setup stub and have the
23459switch happen "in between" packets, so that from remote protocol's point
23460of view, nothing actually happened.}
23461
b8ff78ce
JB
23462@item B @var{addr},@var{mode}
23463@cindex @samp{B} packet
8e04817f 23464Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23465breakpoint at @var{addr}.
23466
b8ff78ce 23467Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23468(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23469
4f553f88 23470@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23471@cindex @samp{c} packet
23472Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23473resume at current address.
c906108c 23474
ee2d5c50
AC
23475Reply:
23476@xref{Stop Reply Packets}, for the reply specifications.
23477
4f553f88 23478@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23479@cindex @samp{C} packet
8e04817f 23480Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23481@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23482
ee2d5c50
AC
23483Reply:
23484@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23485
b8ff78ce
JB
23486@item d
23487@cindex @samp{d} packet
ee2d5c50
AC
23488Toggle debug flag.
23489
b8ff78ce
JB
23490Don't use this packet; instead, define a general set packet
23491(@pxref{General Query Packets}).
ee2d5c50 23492
b8ff78ce
JB
23493@item D
23494@cindex @samp{D} packet
ee2d5c50 23495Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23496before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23497
23498Reply:
23499@table @samp
10fac096
NW
23500@item OK
23501for success
b8ff78ce 23502@item E @var{NN}
10fac096 23503for an error
ee2d5c50 23504@end table
c906108c 23505
b8ff78ce
JB
23506@item F @var{RC},@var{EE},@var{CF};@var{XX}
23507@cindex @samp{F} packet
23508A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23509This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23510Remote Protocol Extension}, for the specification.
ee2d5c50 23511
b8ff78ce 23512@item g
ee2d5c50 23513@anchor{read registers packet}
b8ff78ce 23514@cindex @samp{g} packet
ee2d5c50
AC
23515Read general registers.
23516
23517Reply:
23518@table @samp
23519@item @var{XX@dots{}}
8e04817f
AC
23520Each byte of register data is described by two hex digits. The bytes
23521with the register are transmitted in target byte order. The size of
b8ff78ce 23522each register and their position within the @samp{g} packet are
4a9bb1df
UW
23523determined by the @value{GDBN} internal gdbarch functions
23524@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23525specification of several standard @samp{g} packets is specified below.
23526@item E @var{NN}
ee2d5c50
AC
23527for an error.
23528@end table
c906108c 23529
b8ff78ce
JB
23530@item G @var{XX@dots{}}
23531@cindex @samp{G} packet
23532Write general registers. @xref{read registers packet}, for a
23533description of the @var{XX@dots{}} data.
ee2d5c50
AC
23534
23535Reply:
23536@table @samp
23537@item OK
23538for success
b8ff78ce 23539@item E @var{NN}
ee2d5c50
AC
23540for an error
23541@end table
23542
b8ff78ce
JB
23543@item H @var{c} @var{t}
23544@cindex @samp{H} packet
8e04817f 23545Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23546@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23547should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23548operations. The thread designator @var{t} may be @samp{-1}, meaning all
23549the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23550
23551Reply:
23552@table @samp
23553@item OK
23554for success
b8ff78ce 23555@item E @var{NN}
ee2d5c50
AC
23556for an error
23557@end table
c906108c 23558
8e04817f
AC
23559@c FIXME: JTC:
23560@c 'H': How restrictive (or permissive) is the thread model. If a
23561@c thread is selected and stopped, are other threads allowed
23562@c to continue to execute? As I mentioned above, I think the
23563@c semantics of each command when a thread is selected must be
23564@c described. For example:
23565@c
23566@c 'g': If the stub supports threads and a specific thread is
23567@c selected, returns the register block from that thread;
23568@c otherwise returns current registers.
23569@c
23570@c 'G' If the stub supports threads and a specific thread is
23571@c selected, sets the registers of the register block of
23572@c that thread; otherwise sets current registers.
c906108c 23573
b8ff78ce 23574@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23575@anchor{cycle step packet}
b8ff78ce
JB
23576@cindex @samp{i} packet
23577Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23578present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23579step starting at that address.
c906108c 23580
b8ff78ce
JB
23581@item I
23582@cindex @samp{I} packet
23583Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23584step packet}.
ee2d5c50 23585
b8ff78ce
JB
23586@item k
23587@cindex @samp{k} packet
23588Kill request.
c906108c 23589
ac282366 23590FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23591thread context has been selected (i.e.@: does 'k' kill only that
23592thread?)}.
c906108c 23593
b8ff78ce
JB
23594@item m @var{addr},@var{length}
23595@cindex @samp{m} packet
8e04817f 23596Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23597Note that @var{addr} may not be aligned to any particular boundary.
23598
23599The stub need not use any particular size or alignment when gathering
23600data from memory for the response; even if @var{addr} is word-aligned
23601and @var{length} is a multiple of the word size, the stub is free to
23602use byte accesses, or not. For this reason, this packet may not be
23603suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23604@cindex alignment of remote memory accesses
23605@cindex size of remote memory accesses
23606@cindex memory, alignment and size of remote accesses
c906108c 23607
ee2d5c50
AC
23608Reply:
23609@table @samp
23610@item @var{XX@dots{}}
599b237a 23611Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23612number. The reply may contain fewer bytes than requested if the
23613server was able to read only part of the region of memory.
23614@item E @var{NN}
ee2d5c50
AC
23615@var{NN} is errno
23616@end table
23617
b8ff78ce
JB
23618@item M @var{addr},@var{length}:@var{XX@dots{}}
23619@cindex @samp{M} packet
8e04817f 23620Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23621@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23622hexadecimal number.
ee2d5c50
AC
23623
23624Reply:
23625@table @samp
23626@item OK
23627for success
b8ff78ce 23628@item E @var{NN}
8e04817f
AC
23629for an error (this includes the case where only part of the data was
23630written).
ee2d5c50 23631@end table
c906108c 23632
b8ff78ce
JB
23633@item p @var{n}
23634@cindex @samp{p} packet
23635Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23636@xref{read registers packet}, for a description of how the returned
23637register value is encoded.
ee2d5c50
AC
23638
23639Reply:
23640@table @samp
2e868123
AC
23641@item @var{XX@dots{}}
23642the register's value
b8ff78ce 23643@item E @var{NN}
2e868123
AC
23644for an error
23645@item
23646Indicating an unrecognized @var{query}.
ee2d5c50
AC
23647@end table
23648
b8ff78ce 23649@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23650@anchor{write register packet}
b8ff78ce
JB
23651@cindex @samp{P} packet
23652Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23653number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23654digits for each byte in the register (target byte order).
c906108c 23655
ee2d5c50
AC
23656Reply:
23657@table @samp
23658@item OK
23659for success
b8ff78ce 23660@item E @var{NN}
ee2d5c50
AC
23661for an error
23662@end table
23663
5f3bebba
JB
23664@item q @var{name} @var{params}@dots{}
23665@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23666@cindex @samp{q} packet
b8ff78ce 23667@cindex @samp{Q} packet
5f3bebba
JB
23668General query (@samp{q}) and set (@samp{Q}). These packets are
23669described fully in @ref{General Query Packets}.
c906108c 23670
b8ff78ce
JB
23671@item r
23672@cindex @samp{r} packet
8e04817f 23673Reset the entire system.
c906108c 23674
b8ff78ce 23675Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23676
b8ff78ce
JB
23677@item R @var{XX}
23678@cindex @samp{R} packet
8e04817f 23679Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23680This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23681
8e04817f 23682The @samp{R} packet has no reply.
ee2d5c50 23683
4f553f88 23684@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23685@cindex @samp{s} packet
23686Single step. @var{addr} is the address at which to resume. If
23687@var{addr} is omitted, resume at same address.
c906108c 23688
ee2d5c50
AC
23689Reply:
23690@xref{Stop Reply Packets}, for the reply specifications.
23691
4f553f88 23692@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23693@anchor{step with signal packet}
b8ff78ce
JB
23694@cindex @samp{S} packet
23695Step with signal. This is analogous to the @samp{C} packet, but
23696requests a single-step, rather than a normal resumption of execution.
c906108c 23697
ee2d5c50
AC
23698Reply:
23699@xref{Stop Reply Packets}, for the reply specifications.
23700
b8ff78ce
JB
23701@item t @var{addr}:@var{PP},@var{MM}
23702@cindex @samp{t} packet
8e04817f 23703Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23704@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23705@var{addr} must be at least 3 digits.
c906108c 23706
b8ff78ce
JB
23707@item T @var{XX}
23708@cindex @samp{T} packet
ee2d5c50 23709Find out if the thread XX is alive.
c906108c 23710
ee2d5c50
AC
23711Reply:
23712@table @samp
23713@item OK
23714thread is still alive
b8ff78ce 23715@item E @var{NN}
ee2d5c50
AC
23716thread is dead
23717@end table
23718
b8ff78ce
JB
23719@item v
23720Packets starting with @samp{v} are identified by a multi-letter name,
23721up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23722
2d717e4f
DJ
23723@item vAttach;@var{pid}
23724@cindex @samp{vAttach} packet
23725Attach to a new process with the specified process ID. @var{pid} is a
fd96d250
PA
23726hexadecimal integer identifying the process. The attached process is
23727stopped.
2d717e4f
DJ
23728
23729This packet is only available in extended mode (@pxref{extended mode}).
23730
23731Reply:
23732@table @samp
23733@item E @var{nn}
23734for an error
23735@item @r{Any stop packet}
23736for success (@pxref{Stop Reply Packets})
23737@end table
23738
b8ff78ce
JB
23739@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23740@cindex @samp{vCont} packet
23741Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23742If an action is specified with no @var{tid}, then it is applied to any
23743threads that don't have a specific action specified; if no default action is
23744specified then other threads should remain stopped. Specifying multiple
23745default actions is an error; specifying no actions is also an error.
23746Thread IDs are specified in hexadecimal. Currently supported actions are:
23747
b8ff78ce 23748@table @samp
86d30acc
DJ
23749@item c
23750Continue.
b8ff78ce 23751@item C @var{sig}
86d30acc
DJ
23752Continue with signal @var{sig}. @var{sig} should be two hex digits.
23753@item s
23754Step.
b8ff78ce 23755@item S @var{sig}
86d30acc
DJ
23756Step with signal @var{sig}. @var{sig} should be two hex digits.
23757@end table
23758
23759The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23760not supported in @samp{vCont}.
86d30acc
DJ
23761
23762Reply:
23763@xref{Stop Reply Packets}, for the reply specifications.
23764
b8ff78ce
JB
23765@item vCont?
23766@cindex @samp{vCont?} packet
d3e8051b 23767Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23768
23769Reply:
23770@table @samp
b8ff78ce
JB
23771@item vCont@r{[};@var{action}@dots{}@r{]}
23772The @samp{vCont} packet is supported. Each @var{action} is a supported
23773command in the @samp{vCont} packet.
86d30acc 23774@item
b8ff78ce 23775The @samp{vCont} packet is not supported.
86d30acc 23776@end table
ee2d5c50 23777
a6b151f1
DJ
23778@item vFile:@var{operation}:@var{parameter}@dots{}
23779@cindex @samp{vFile} packet
23780Perform a file operation on the target system. For details,
23781see @ref{Host I/O Packets}.
23782
68437a39
DJ
23783@item vFlashErase:@var{addr},@var{length}
23784@cindex @samp{vFlashErase} packet
23785Direct the stub to erase @var{length} bytes of flash starting at
23786@var{addr}. The region may enclose any number of flash blocks, but
23787its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23788flash block size appearing in the memory map (@pxref{Memory Map
23789Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23790together, and sends a @samp{vFlashDone} request after each group; the
23791stub is allowed to delay erase operation until the @samp{vFlashDone}
23792packet is received.
23793
23794Reply:
23795@table @samp
23796@item OK
23797for success
23798@item E @var{NN}
23799for an error
23800@end table
23801
23802@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23803@cindex @samp{vFlashWrite} packet
23804Direct the stub to write data to flash address @var{addr}. The data
23805is passed in binary form using the same encoding as for the @samp{X}
23806packet (@pxref{Binary Data}). The memory ranges specified by
23807@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23808not overlap, and must appear in order of increasing addresses
23809(although @samp{vFlashErase} packets for higher addresses may already
23810have been received; the ordering is guaranteed only between
23811@samp{vFlashWrite} packets). If a packet writes to an address that was
23812neither erased by a preceding @samp{vFlashErase} packet nor by some other
23813target-specific method, the results are unpredictable.
23814
23815
23816Reply:
23817@table @samp
23818@item OK
23819for success
23820@item E.memtype
23821for vFlashWrite addressing non-flash memory
23822@item E @var{NN}
23823for an error
23824@end table
23825
23826@item vFlashDone
23827@cindex @samp{vFlashDone} packet
23828Indicate to the stub that flash programming operation is finished.
23829The stub is permitted to delay or batch the effects of a group of
23830@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23831@samp{vFlashDone} packet is received. The contents of the affected
23832regions of flash memory are unpredictable until the @samp{vFlashDone}
23833request is completed.
23834
2d717e4f
DJ
23835@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23836@cindex @samp{vRun} packet
23837Run the program @var{filename}, passing it each @var{argument} on its
23838command line. The file and arguments are hex-encoded strings. If
23839@var{filename} is an empty string, the stub may use a default program
23840(e.g.@: the last program run). The program is created in the stopped
fd96d250 23841state.
2d717e4f
DJ
23842
23843This packet is only available in extended mode (@pxref{extended mode}).
23844
23845Reply:
23846@table @samp
23847@item E @var{nn}
23848for an error
23849@item @r{Any stop packet}
23850for success (@pxref{Stop Reply Packets})
23851@end table
23852
b8ff78ce 23853@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23854@anchor{X packet}
b8ff78ce
JB
23855@cindex @samp{X} packet
23856Write data to memory, where the data is transmitted in binary.
23857@var{addr} is address, @var{length} is number of bytes,
0876f84a 23858@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23859
ee2d5c50
AC
23860Reply:
23861@table @samp
23862@item OK
23863for success
b8ff78ce 23864@item E @var{NN}
ee2d5c50
AC
23865for an error
23866@end table
23867
b8ff78ce
JB
23868@item z @var{type},@var{addr},@var{length}
23869@itemx Z @var{type},@var{addr},@var{length}
2f870471 23870@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23871@cindex @samp{z} packet
23872@cindex @samp{Z} packets
23873Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23874watchpoint starting at address @var{address} and covering the next
23875@var{length} bytes.
ee2d5c50 23876
2f870471
AC
23877Each breakpoint and watchpoint packet @var{type} is documented
23878separately.
23879
512217c7
AC
23880@emph{Implementation notes: A remote target shall return an empty string
23881for an unrecognized breakpoint or watchpoint packet @var{type}. A
23882remote target shall support either both or neither of a given
b8ff78ce 23883@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23884avoid potential problems with duplicate packets, the operations should
23885be implemented in an idempotent way.}
23886
b8ff78ce
JB
23887@item z0,@var{addr},@var{length}
23888@itemx Z0,@var{addr},@var{length}
23889@cindex @samp{z0} packet
23890@cindex @samp{Z0} packet
23891Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23892@var{addr} of size @var{length}.
2f870471
AC
23893
23894A memory breakpoint is implemented by replacing the instruction at
23895@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23896@var{length} is used by targets that indicates the size of the
2f870471
AC
23897breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23898@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23899
2f870471
AC
23900@emph{Implementation note: It is possible for a target to copy or move
23901code that contains memory breakpoints (e.g., when implementing
23902overlays). The behavior of this packet, in the presence of such a
23903target, is not defined.}
c906108c 23904
ee2d5c50
AC
23905Reply:
23906@table @samp
2f870471
AC
23907@item OK
23908success
23909@item
23910not supported
b8ff78ce 23911@item E @var{NN}
ee2d5c50 23912for an error
2f870471
AC
23913@end table
23914
b8ff78ce
JB
23915@item z1,@var{addr},@var{length}
23916@itemx Z1,@var{addr},@var{length}
23917@cindex @samp{z1} packet
23918@cindex @samp{Z1} packet
23919Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23920address @var{addr} of size @var{length}.
2f870471
AC
23921
23922A hardware breakpoint is implemented using a mechanism that is not
23923dependant on being able to modify the target's memory.
23924
23925@emph{Implementation note: A hardware breakpoint is not affected by code
23926movement.}
23927
23928Reply:
23929@table @samp
ee2d5c50 23930@item OK
2f870471
AC
23931success
23932@item
23933not supported
b8ff78ce 23934@item E @var{NN}
2f870471
AC
23935for an error
23936@end table
23937
b8ff78ce
JB
23938@item z2,@var{addr},@var{length}
23939@itemx Z2,@var{addr},@var{length}
23940@cindex @samp{z2} packet
23941@cindex @samp{Z2} packet
23942Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23943
23944Reply:
23945@table @samp
23946@item OK
23947success
23948@item
23949not supported
b8ff78ce 23950@item E @var{NN}
2f870471
AC
23951for an error
23952@end table
23953
b8ff78ce
JB
23954@item z3,@var{addr},@var{length}
23955@itemx Z3,@var{addr},@var{length}
23956@cindex @samp{z3} packet
23957@cindex @samp{Z3} packet
23958Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23959
23960Reply:
23961@table @samp
23962@item OK
23963success
23964@item
23965not supported
b8ff78ce 23966@item E @var{NN}
2f870471
AC
23967for an error
23968@end table
23969
b8ff78ce
JB
23970@item z4,@var{addr},@var{length}
23971@itemx Z4,@var{addr},@var{length}
23972@cindex @samp{z4} packet
23973@cindex @samp{Z4} packet
23974Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23975
23976Reply:
23977@table @samp
23978@item OK
23979success
23980@item
23981not supported
b8ff78ce 23982@item E @var{NN}
2f870471 23983for an error
ee2d5c50
AC
23984@end table
23985
23986@end table
c906108c 23987
ee2d5c50
AC
23988@node Stop Reply Packets
23989@section Stop Reply Packets
23990@cindex stop reply packets
c906108c 23991
8e04817f
AC
23992The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23993receive any of the below as a reply. In the case of the @samp{C},
23994@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23995when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23996number} is defined by the header @file{include/gdb/signals.h} in the
23997@value{GDBN} source code.
c906108c 23998
b8ff78ce
JB
23999As in the description of request packets, we include spaces in the
24000reply templates for clarity; these are not part of the reply packet's
24001syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24002components.
c906108c 24003
b8ff78ce 24004@table @samp
ee2d5c50 24005
b8ff78ce 24006@item S @var{AA}
599b237a 24007The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24008number). This is equivalent to a @samp{T} response with no
24009@var{n}:@var{r} pairs.
c906108c 24010
b8ff78ce
JB
24011@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24012@cindex @samp{T} packet reply
599b237a 24013The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24014number). This is equivalent to an @samp{S} response, except that the
24015@samp{@var{n}:@var{r}} pairs can carry values of important registers
24016and other information directly in the stop reply packet, reducing
24017round-trip latency. Single-step and breakpoint traps are reported
24018this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24019
24020@itemize @bullet
b8ff78ce 24021@item
599b237a 24022If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24023corresponding @var{r} gives that register's value. @var{r} is a
24024series of bytes in target byte order, with each byte given by a
24025two-digit hex number.
cfa9d6d9 24026
b8ff78ce
JB
24027@item
24028If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24029hex.
cfa9d6d9 24030
b8ff78ce 24031@item
cfa9d6d9
DJ
24032If @var{n} is a recognized @dfn{stop reason}, it describes a more
24033specific event that stopped the target. The currently defined stop
24034reasons are listed below. @var{aa} should be @samp{05}, the trap
24035signal. At most one stop reason should be present.
24036
b8ff78ce
JB
24037@item
24038Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24039and go on to the next; this allows us to extend the protocol in the
24040future.
cfa9d6d9
DJ
24041@end itemize
24042
24043The currently defined stop reasons are:
24044
24045@table @samp
24046@item watch
24047@itemx rwatch
24048@itemx awatch
24049The packet indicates a watchpoint hit, and @var{r} is the data address, in
24050hex.
24051
24052@cindex shared library events, remote reply
24053@item library
24054The packet indicates that the loaded libraries have changed.
24055@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24056list of loaded libraries. @var{r} is ignored.
24057@end table
ee2d5c50 24058
b8ff78ce 24059@item W @var{AA}
8e04817f 24060The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24061applicable to certain targets.
24062
b8ff78ce 24063@item X @var{AA}
8e04817f 24064The process terminated with signal @var{AA}.
c906108c 24065
b8ff78ce
JB
24066@item O @var{XX}@dots{}
24067@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24068written as the program's console output. This can happen at any time
24069while the program is running and the debugger should continue to wait
24070for @samp{W}, @samp{T}, etc.
0ce1b118 24071
b8ff78ce 24072@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24073@var{call-id} is the identifier which says which host system call should
24074be called. This is just the name of the function. Translation into the
24075correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24076@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24077system calls.
24078
b8ff78ce
JB
24079@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24080this very system call.
0ce1b118 24081
b8ff78ce
JB
24082The target replies with this packet when it expects @value{GDBN} to
24083call a host system call on behalf of the target. @value{GDBN} replies
24084with an appropriate @samp{F} packet and keeps up waiting for the next
24085reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24086or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24087Protocol Extension}, for more details.
0ce1b118 24088
ee2d5c50
AC
24089@end table
24090
24091@node General Query Packets
24092@section General Query Packets
9c16f35a 24093@cindex remote query requests
c906108c 24094
5f3bebba
JB
24095Packets starting with @samp{q} are @dfn{general query packets};
24096packets starting with @samp{Q} are @dfn{general set packets}. General
24097query and set packets are a semi-unified form for retrieving and
24098sending information to and from the stub.
24099
24100The initial letter of a query or set packet is followed by a name
24101indicating what sort of thing the packet applies to. For example,
24102@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24103definitions with the stub. These packet names follow some
24104conventions:
24105
24106@itemize @bullet
24107@item
24108The name must not contain commas, colons or semicolons.
24109@item
24110Most @value{GDBN} query and set packets have a leading upper case
24111letter.
24112@item
24113The names of custom vendor packets should use a company prefix, in
24114lower case, followed by a period. For example, packets designed at
24115the Acme Corporation might begin with @samp{qacme.foo} (for querying
24116foos) or @samp{Qacme.bar} (for setting bars).
24117@end itemize
24118
aa56d27a
JB
24119The name of a query or set packet should be separated from any
24120parameters by a @samp{:}; the parameters themselves should be
24121separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24122full packet name, and check for a separator or the end of the packet,
24123in case two packet names share a common prefix. New packets should not begin
24124with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24125packets predate these conventions, and have arguments without any terminator
24126for the packet name; we suspect they are in widespread use in places that
24127are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24128existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24129packet.}.
c906108c 24130
b8ff78ce
JB
24131Like the descriptions of the other packets, each description here
24132has a template showing the packet's overall syntax, followed by an
24133explanation of the packet's meaning. We include spaces in some of the
24134templates for clarity; these are not part of the packet's syntax. No
24135@value{GDBN} packet uses spaces to separate its components.
24136
5f3bebba
JB
24137Here are the currently defined query and set packets:
24138
b8ff78ce 24139@table @samp
c906108c 24140
b8ff78ce 24141@item qC
9c16f35a 24142@cindex current thread, remote request
b8ff78ce 24143@cindex @samp{qC} packet
ee2d5c50
AC
24144Return the current thread id.
24145
24146Reply:
24147@table @samp
b8ff78ce 24148@item QC @var{pid}
599b237a 24149Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24150@item @r{(anything else)}
ee2d5c50
AC
24151Any other reply implies the old pid.
24152@end table
24153
b8ff78ce 24154@item qCRC:@var{addr},@var{length}
ff2587ec 24155@cindex CRC of memory block, remote request
b8ff78ce
JB
24156@cindex @samp{qCRC} packet
24157Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24158Reply:
24159@table @samp
b8ff78ce 24160@item E @var{NN}
ff2587ec 24161An error (such as memory fault)
b8ff78ce
JB
24162@item C @var{crc32}
24163The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24164@end table
24165
b8ff78ce
JB
24166@item qfThreadInfo
24167@itemx qsThreadInfo
9c16f35a 24168@cindex list active threads, remote request
b8ff78ce
JB
24169@cindex @samp{qfThreadInfo} packet
24170@cindex @samp{qsThreadInfo} packet
24171Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24172may be too many active threads to fit into one reply packet, this query
24173works iteratively: it may require more than one query/reply sequence to
24174obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24175be the @samp{qfThreadInfo} query; subsequent queries in the
24176sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24177
b8ff78ce 24178NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24179
24180Reply:
24181@table @samp
b8ff78ce 24182@item m @var{id}
ee2d5c50 24183A single thread id
b8ff78ce 24184@item m @var{id},@var{id}@dots{}
ee2d5c50 24185a comma-separated list of thread ids
b8ff78ce
JB
24186@item l
24187(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24188@end table
24189
24190In response to each query, the target will reply with a list of one or
e1aac25b
JB
24191more thread ids, in big-endian unsigned hex, separated by commas.
24192@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24193ids (using the @samp{qs} form of the query), until the target responds
24194with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24195
b8ff78ce 24196@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24197@cindex get thread-local storage address, remote request
b8ff78ce 24198@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24199Fetch the address associated with thread local storage specified
24200by @var{thread-id}, @var{offset}, and @var{lm}.
24201
24202@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24203thread for which to fetch the TLS address.
24204
24205@var{offset} is the (big endian, hex encoded) offset associated with the
24206thread local variable. (This offset is obtained from the debug
24207information associated with the variable.)
24208
db2e3e2e 24209@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24210the load module associated with the thread local storage. For example,
24211a @sc{gnu}/Linux system will pass the link map address of the shared
24212object associated with the thread local storage under consideration.
24213Other operating environments may choose to represent the load module
24214differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24215
24216Reply:
b8ff78ce
JB
24217@table @samp
24218@item @var{XX}@dots{}
ff2587ec
WZ
24219Hex encoded (big endian) bytes representing the address of the thread
24220local storage requested.
24221
b8ff78ce
JB
24222@item E @var{nn}
24223An error occurred. @var{nn} are hex digits.
ff2587ec 24224
b8ff78ce
JB
24225@item
24226An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24227@end table
24228
b8ff78ce 24229@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24230Obtain thread information from RTOS. Where: @var{startflag} (one hex
24231digit) is one to indicate the first query and zero to indicate a
24232subsequent query; @var{threadcount} (two hex digits) is the maximum
24233number of threads the response packet can contain; and @var{nextthread}
24234(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24235returned in the response as @var{argthread}.
ee2d5c50 24236
b8ff78ce 24237Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24238
24239Reply:
24240@table @samp
b8ff78ce 24241@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24242Where: @var{count} (two hex digits) is the number of threads being
24243returned; @var{done} (one hex digit) is zero to indicate more threads
24244and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24245digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24246is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24247digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24248@end table
c906108c 24249
b8ff78ce 24250@item qOffsets
9c16f35a 24251@cindex section offsets, remote request
b8ff78ce 24252@cindex @samp{qOffsets} packet
31d99776
DJ
24253Get section offsets that the target used when relocating the downloaded
24254image.
c906108c 24255
ee2d5c50
AC
24256Reply:
24257@table @samp
31d99776
DJ
24258@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24259Relocate the @code{Text} section by @var{xxx} from its original address.
24260Relocate the @code{Data} section by @var{yyy} from its original address.
24261If the object file format provides segment information (e.g.@: @sc{elf}
24262@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24263segments by the supplied offsets.
24264
24265@emph{Note: while a @code{Bss} offset may be included in the response,
24266@value{GDBN} ignores this and instead applies the @code{Data} offset
24267to the @code{Bss} section.}
24268
24269@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24270Relocate the first segment of the object file, which conventionally
24271contains program code, to a starting address of @var{xxx}. If
24272@samp{DataSeg} is specified, relocate the second segment, which
24273conventionally contains modifiable data, to a starting address of
24274@var{yyy}. @value{GDBN} will report an error if the object file
24275does not contain segment information, or does not contain at least
24276as many segments as mentioned in the reply. Extra segments are
24277kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24278@end table
24279
b8ff78ce 24280@item qP @var{mode} @var{threadid}
9c16f35a 24281@cindex thread information, remote request
b8ff78ce 24282@cindex @samp{qP} packet
8e04817f
AC
24283Returns information on @var{threadid}. Where: @var{mode} is a hex
24284encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24285
aa56d27a
JB
24286Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24287(see below).
24288
b8ff78ce 24289Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24290
89be2091
DJ
24291@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24292@cindex pass signals to inferior, remote request
24293@cindex @samp{QPassSignals} packet
23181151 24294@anchor{QPassSignals}
89be2091
DJ
24295Each listed @var{signal} should be passed directly to the inferior process.
24296Signals are numbered identically to continue packets and stop replies
24297(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24298strictly greater than the previous item. These signals do not need to stop
24299the inferior, or be reported to @value{GDBN}. All other signals should be
24300reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24301combine; any earlier @samp{QPassSignals} list is completely replaced by the
24302new list. This packet improves performance when using @samp{handle
24303@var{signal} nostop noprint pass}.
24304
24305Reply:
24306@table @samp
24307@item OK
24308The request succeeded.
24309
24310@item E @var{nn}
24311An error occurred. @var{nn} are hex digits.
24312
24313@item
24314An empty reply indicates that @samp{QPassSignals} is not supported by
24315the stub.
24316@end table
24317
24318Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24319command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24320This packet is not probed by default; the remote stub must request it,
24321by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24322
b8ff78ce 24323@item qRcmd,@var{command}
ff2587ec 24324@cindex execute remote command, remote request
b8ff78ce 24325@cindex @samp{qRcmd} packet
ff2587ec 24326@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24327execution. Invalid commands should be reported using the output
24328string. Before the final result packet, the target may also respond
24329with a number of intermediate @samp{O@var{output}} console output
24330packets. @emph{Implementors should note that providing access to a
24331stubs's interpreter may have security implications}.
fa93a9d8 24332
ff2587ec
WZ
24333Reply:
24334@table @samp
24335@item OK
24336A command response with no output.
24337@item @var{OUTPUT}
24338A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24339@item E @var{NN}
ff2587ec 24340Indicate a badly formed request.
b8ff78ce
JB
24341@item
24342An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24343@end table
fa93a9d8 24344
aa56d27a
JB
24345(Note that the @code{qRcmd} packet's name is separated from the
24346command by a @samp{,}, not a @samp{:}, contrary to the naming
24347conventions above. Please don't use this packet as a model for new
24348packets.)
24349
be2a5f71
DJ
24350@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24351@cindex supported packets, remote query
24352@cindex features of the remote protocol
24353@cindex @samp{qSupported} packet
0876f84a 24354@anchor{qSupported}
be2a5f71
DJ
24355Tell the remote stub about features supported by @value{GDBN}, and
24356query the stub for features it supports. This packet allows
24357@value{GDBN} and the remote stub to take advantage of each others'
24358features. @samp{qSupported} also consolidates multiple feature probes
24359at startup, to improve @value{GDBN} performance---a single larger
24360packet performs better than multiple smaller probe packets on
24361high-latency links. Some features may enable behavior which must not
24362be on by default, e.g.@: because it would confuse older clients or
24363stubs. Other features may describe packets which could be
24364automatically probed for, but are not. These features must be
24365reported before @value{GDBN} will use them. This ``default
24366unsupported'' behavior is not appropriate for all packets, but it
24367helps to keep the initial connection time under control with new
24368versions of @value{GDBN} which support increasing numbers of packets.
24369
24370Reply:
24371@table @samp
24372@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24373The stub supports or does not support each returned @var{stubfeature},
24374depending on the form of each @var{stubfeature} (see below for the
24375possible forms).
24376@item
24377An empty reply indicates that @samp{qSupported} is not recognized,
24378or that no features needed to be reported to @value{GDBN}.
24379@end table
24380
24381The allowed forms for each feature (either a @var{gdbfeature} in the
24382@samp{qSupported} packet, or a @var{stubfeature} in the response)
24383are:
24384
24385@table @samp
24386@item @var{name}=@var{value}
24387The remote protocol feature @var{name} is supported, and associated
24388with the specified @var{value}. The format of @var{value} depends
24389on the feature, but it must not include a semicolon.
24390@item @var{name}+
24391The remote protocol feature @var{name} is supported, and does not
24392need an associated value.
24393@item @var{name}-
24394The remote protocol feature @var{name} is not supported.
24395@item @var{name}?
24396The remote protocol feature @var{name} may be supported, and
24397@value{GDBN} should auto-detect support in some other way when it is
24398needed. This form will not be used for @var{gdbfeature} notifications,
24399but may be used for @var{stubfeature} responses.
24400@end table
24401
24402Whenever the stub receives a @samp{qSupported} request, the
24403supplied set of @value{GDBN} features should override any previous
24404request. This allows @value{GDBN} to put the stub in a known
24405state, even if the stub had previously been communicating with
24406a different version of @value{GDBN}.
24407
24408No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24409are defined yet. Stubs should ignore any unknown values for
24410@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24411packet supports receiving packets of unlimited length (earlier
24412versions of @value{GDBN} may reject overly long responses). Values
24413for @var{gdbfeature} may be defined in the future to let the stub take
24414advantage of new features in @value{GDBN}, e.g.@: incompatible
24415improvements in the remote protocol---support for unlimited length
24416responses would be a @var{gdbfeature} example, if it were not implied by
24417the @samp{qSupported} query. The stub's reply should be independent
24418of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24419describes all the features it supports, and then the stub replies with
24420all the features it supports.
24421
24422Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24423responses, as long as each response uses one of the standard forms.
24424
24425Some features are flags. A stub which supports a flag feature
24426should respond with a @samp{+} form response. Other features
24427require values, and the stub should respond with an @samp{=}
24428form response.
24429
24430Each feature has a default value, which @value{GDBN} will use if
24431@samp{qSupported} is not available or if the feature is not mentioned
24432in the @samp{qSupported} response. The default values are fixed; a
24433stub is free to omit any feature responses that match the defaults.
24434
24435Not all features can be probed, but for those which can, the probing
24436mechanism is useful: in some cases, a stub's internal
24437architecture may not allow the protocol layer to know some information
24438about the underlying target in advance. This is especially common in
24439stubs which may be configured for multiple targets.
24440
24441These are the currently defined stub features and their properties:
24442
cfa9d6d9 24443@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24444@c NOTE: The first row should be @headitem, but we do not yet require
24445@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24446@item Feature Name
be2a5f71
DJ
24447@tab Value Required
24448@tab Default
24449@tab Probe Allowed
24450
24451@item @samp{PacketSize}
24452@tab Yes
24453@tab @samp{-}
24454@tab No
24455
0876f84a
DJ
24456@item @samp{qXfer:auxv:read}
24457@tab No
24458@tab @samp{-}
24459@tab Yes
24460
23181151
DJ
24461@item @samp{qXfer:features:read}
24462@tab No
24463@tab @samp{-}
24464@tab Yes
24465
cfa9d6d9
DJ
24466@item @samp{qXfer:libraries:read}
24467@tab No
24468@tab @samp{-}
24469@tab Yes
24470
68437a39
DJ
24471@item @samp{qXfer:memory-map:read}
24472@tab No
24473@tab @samp{-}
24474@tab Yes
24475
0e7f50da
UW
24476@item @samp{qXfer:spu:read}
24477@tab No
24478@tab @samp{-}
24479@tab Yes
24480
24481@item @samp{qXfer:spu:write}
24482@tab No
24483@tab @samp{-}
24484@tab Yes
24485
89be2091
DJ
24486@item @samp{QPassSignals}
24487@tab No
24488@tab @samp{-}
24489@tab Yes
24490
be2a5f71
DJ
24491@end multitable
24492
24493These are the currently defined stub features, in more detail:
24494
24495@table @samp
24496@cindex packet size, remote protocol
24497@item PacketSize=@var{bytes}
24498The remote stub can accept packets up to at least @var{bytes} in
24499length. @value{GDBN} will send packets up to this size for bulk
24500transfers, and will never send larger packets. This is a limit on the
24501data characters in the packet, including the frame and checksum.
24502There is no trailing NUL byte in a remote protocol packet; if the stub
24503stores packets in a NUL-terminated format, it should allow an extra
24504byte in its buffer for the NUL. If this stub feature is not supported,
24505@value{GDBN} guesses based on the size of the @samp{g} packet response.
24506
0876f84a
DJ
24507@item qXfer:auxv:read
24508The remote stub understands the @samp{qXfer:auxv:read} packet
24509(@pxref{qXfer auxiliary vector read}).
24510
23181151
DJ
24511@item qXfer:features:read
24512The remote stub understands the @samp{qXfer:features:read} packet
24513(@pxref{qXfer target description read}).
24514
cfa9d6d9
DJ
24515@item qXfer:libraries:read
24516The remote stub understands the @samp{qXfer:libraries:read} packet
24517(@pxref{qXfer library list read}).
24518
23181151
DJ
24519@item qXfer:memory-map:read
24520The remote stub understands the @samp{qXfer:memory-map:read} packet
24521(@pxref{qXfer memory map read}).
24522
0e7f50da
UW
24523@item qXfer:spu:read
24524The remote stub understands the @samp{qXfer:spu:read} packet
24525(@pxref{qXfer spu read}).
24526
24527@item qXfer:spu:write
24528The remote stub understands the @samp{qXfer:spu:write} packet
24529(@pxref{qXfer spu write}).
24530
23181151
DJ
24531@item QPassSignals
24532The remote stub understands the @samp{QPassSignals} packet
24533(@pxref{QPassSignals}).
24534
be2a5f71
DJ
24535@end table
24536
b8ff78ce 24537@item qSymbol::
ff2587ec 24538@cindex symbol lookup, remote request
b8ff78ce 24539@cindex @samp{qSymbol} packet
ff2587ec
WZ
24540Notify the target that @value{GDBN} is prepared to serve symbol lookup
24541requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24542
24543Reply:
ff2587ec 24544@table @samp
b8ff78ce 24545@item OK
ff2587ec 24546The target does not need to look up any (more) symbols.
b8ff78ce 24547@item qSymbol:@var{sym_name}
ff2587ec
WZ
24548The target requests the value of symbol @var{sym_name} (hex encoded).
24549@value{GDBN} may provide the value by using the
b8ff78ce
JB
24550@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24551below.
ff2587ec 24552@end table
83761cbd 24553
b8ff78ce 24554@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24555Set the value of @var{sym_name} to @var{sym_value}.
24556
24557@var{sym_name} (hex encoded) is the name of a symbol whose value the
24558target has previously requested.
24559
24560@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24561@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24562will be empty.
24563
24564Reply:
24565@table @samp
b8ff78ce 24566@item OK
ff2587ec 24567The target does not need to look up any (more) symbols.
b8ff78ce 24568@item qSymbol:@var{sym_name}
ff2587ec
WZ
24569The target requests the value of a new symbol @var{sym_name} (hex
24570encoded). @value{GDBN} will continue to supply the values of symbols
24571(if available), until the target ceases to request them.
fa93a9d8 24572@end table
0abb7bc7 24573
9d29849a
JB
24574@item QTDP
24575@itemx QTFrame
24576@xref{Tracepoint Packets}.
24577
b8ff78ce 24578@item qThreadExtraInfo,@var{id}
ff2587ec 24579@cindex thread attributes info, remote request
b8ff78ce
JB
24580@cindex @samp{qThreadExtraInfo} packet
24581Obtain a printable string description of a thread's attributes from
24582the target OS. @var{id} is a thread-id in big-endian hex. This
24583string may contain anything that the target OS thinks is interesting
24584for @value{GDBN} to tell the user about the thread. The string is
24585displayed in @value{GDBN}'s @code{info threads} display. Some
24586examples of possible thread extra info strings are @samp{Runnable}, or
24587@samp{Blocked on Mutex}.
ff2587ec
WZ
24588
24589Reply:
24590@table @samp
b8ff78ce
JB
24591@item @var{XX}@dots{}
24592Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24593comprising the printable string containing the extra information about
24594the thread's attributes.
ff2587ec 24595@end table
814e32d7 24596
aa56d27a
JB
24597(Note that the @code{qThreadExtraInfo} packet's name is separated from
24598the command by a @samp{,}, not a @samp{:}, contrary to the naming
24599conventions above. Please don't use this packet as a model for new
24600packets.)
24601
9d29849a
JB
24602@item QTStart
24603@itemx QTStop
24604@itemx QTinit
24605@itemx QTro
24606@itemx qTStatus
24607@xref{Tracepoint Packets}.
24608
0876f84a
DJ
24609@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24610@cindex read special object, remote request
24611@cindex @samp{qXfer} packet
68437a39 24612@anchor{qXfer read}
0876f84a
DJ
24613Read uninterpreted bytes from the target's special data area
24614identified by the keyword @var{object}. Request @var{length} bytes
24615starting at @var{offset} bytes into the data. The content and
0e7f50da 24616encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24617additional details about what data to access.
24618
24619Here are the specific requests of this form defined so far. All
24620@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24621formats, listed below.
24622
24623@table @samp
24624@item qXfer:auxv:read::@var{offset},@var{length}
24625@anchor{qXfer auxiliary vector read}
24626Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24627auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24628
24629This packet is not probed by default; the remote stub must request it,
89be2091 24630by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24631
23181151
DJ
24632@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24633@anchor{qXfer target description read}
24634Access the @dfn{target description}. @xref{Target Descriptions}. The
24635annex specifies which XML document to access. The main description is
24636always loaded from the @samp{target.xml} annex.
24637
24638This packet is not probed by default; the remote stub must request it,
24639by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24640
cfa9d6d9
DJ
24641@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24642@anchor{qXfer library list read}
24643Access the target's list of loaded libraries. @xref{Library List Format}.
24644The annex part of the generic @samp{qXfer} packet must be empty
24645(@pxref{qXfer read}).
24646
24647Targets which maintain a list of libraries in the program's memory do
24648not need to implement this packet; it is designed for platforms where
24649the operating system manages the list of loaded libraries.
24650
24651This packet is not probed by default; the remote stub must request it,
24652by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24653
68437a39
DJ
24654@item qXfer:memory-map:read::@var{offset},@var{length}
24655@anchor{qXfer memory map read}
79a6e687 24656Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24657annex part of the generic @samp{qXfer} packet must be empty
24658(@pxref{qXfer read}).
24659
0e7f50da
UW
24660This packet is not probed by default; the remote stub must request it,
24661by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24662
24663@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24664@anchor{qXfer spu read}
24665Read contents of an @code{spufs} file on the target system. The
24666annex specifies which file to read; it must be of the form
24667@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24668in the target process, and @var{name} identifes the @code{spufs} file
24669in that context to be accessed.
24670
68437a39
DJ
24671This packet is not probed by default; the remote stub must request it,
24672by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24673@end table
24674
0876f84a
DJ
24675Reply:
24676@table @samp
24677@item m @var{data}
24678Data @var{data} (@pxref{Binary Data}) has been read from the
24679target. There may be more data at a higher address (although
24680it is permitted to return @samp{m} even for the last valid
24681block of data, as long as at least one byte of data was read).
24682@var{data} may have fewer bytes than the @var{length} in the
24683request.
24684
24685@item l @var{data}
24686Data @var{data} (@pxref{Binary Data}) has been read from the target.
24687There is no more data to be read. @var{data} may have fewer bytes
24688than the @var{length} in the request.
24689
24690@item l
24691The @var{offset} in the request is at the end of the data.
24692There is no more data to be read.
24693
24694@item E00
24695The request was malformed, or @var{annex} was invalid.
24696
24697@item E @var{nn}
24698The offset was invalid, or there was an error encountered reading the data.
24699@var{nn} is a hex-encoded @code{errno} value.
24700
24701@item
24702An empty reply indicates the @var{object} string was not recognized by
24703the stub, or that the object does not support reading.
24704@end table
24705
24706@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24707@cindex write data into object, remote request
24708Write uninterpreted bytes into the target's special data area
24709identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24710into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24711(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24712is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24713to access.
24714
0e7f50da
UW
24715Here are the specific requests of this form defined so far. All
24716@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24717formats, listed below.
24718
24719@table @samp
24720@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24721@anchor{qXfer spu write}
24722Write @var{data} to an @code{spufs} file on the target system. The
24723annex specifies which file to write; it must be of the form
24724@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24725in the target process, and @var{name} identifes the @code{spufs} file
24726in that context to be accessed.
24727
24728This packet is not probed by default; the remote stub must request it,
24729by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24730@end table
0876f84a
DJ
24731
24732Reply:
24733@table @samp
24734@item @var{nn}
24735@var{nn} (hex encoded) is the number of bytes written.
24736This may be fewer bytes than supplied in the request.
24737
24738@item E00
24739The request was malformed, or @var{annex} was invalid.
24740
24741@item E @var{nn}
24742The offset was invalid, or there was an error encountered writing the data.
24743@var{nn} is a hex-encoded @code{errno} value.
24744
24745@item
24746An empty reply indicates the @var{object} string was not
24747recognized by the stub, or that the object does not support writing.
24748@end table
24749
24750@item qXfer:@var{object}:@var{operation}:@dots{}
24751Requests of this form may be added in the future. When a stub does
24752not recognize the @var{object} keyword, or its support for
24753@var{object} does not recognize the @var{operation} keyword, the stub
24754must respond with an empty packet.
24755
ee2d5c50
AC
24756@end table
24757
24758@node Register Packet Format
24759@section Register Packet Format
eb12ee30 24760
b8ff78ce 24761The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24762In the below, some thirty-two bit registers are transferred as
24763sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24764to fill the space allocated. Register bytes are transferred in target
24765byte order. The two nibbles within a register byte are transferred
ee2d5c50 24766most-significant - least-significant.
eb12ee30 24767
ee2d5c50 24768@table @r
eb12ee30 24769
8e04817f 24770@item MIPS32
ee2d5c50 24771
599b237a 24772All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2477332 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24774registers; fsr; fir; fp.
eb12ee30 24775
8e04817f 24776@item MIPS64
ee2d5c50 24777
599b237a 24778All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24779thirty-two bit registers such as @code{sr}). The ordering is the same
24780as @code{MIPS32}.
eb12ee30 24781
ee2d5c50
AC
24782@end table
24783
9d29849a
JB
24784@node Tracepoint Packets
24785@section Tracepoint Packets
24786@cindex tracepoint packets
24787@cindex packets, tracepoint
24788
24789Here we describe the packets @value{GDBN} uses to implement
24790tracepoints (@pxref{Tracepoints}).
24791
24792@table @samp
24793
24794@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24795Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24796is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24797the tracepoint is disabled. @var{step} is the tracepoint's step
24798count, and @var{pass} is its pass count. If the trailing @samp{-} is
24799present, further @samp{QTDP} packets will follow to specify this
24800tracepoint's actions.
24801
24802Replies:
24803@table @samp
24804@item OK
24805The packet was understood and carried out.
24806@item
24807The packet was not recognized.
24808@end table
24809
24810@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24811Define actions to be taken when a tracepoint is hit. @var{n} and
24812@var{addr} must be the same as in the initial @samp{QTDP} packet for
24813this tracepoint. This packet may only be sent immediately after
24814another @samp{QTDP} packet that ended with a @samp{-}. If the
24815trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24816specifying more actions for this tracepoint.
24817
24818In the series of action packets for a given tracepoint, at most one
24819can have an @samp{S} before its first @var{action}. If such a packet
24820is sent, it and the following packets define ``while-stepping''
24821actions. Any prior packets define ordinary actions --- that is, those
24822taken when the tracepoint is first hit. If no action packet has an
24823@samp{S}, then all the packets in the series specify ordinary
24824tracepoint actions.
24825
24826The @samp{@var{action}@dots{}} portion of the packet is a series of
24827actions, concatenated without separators. Each action has one of the
24828following forms:
24829
24830@table @samp
24831
24832@item R @var{mask}
24833Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24834a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24835@var{i} should be collected. (The least significant bit is numbered
24836zero.) Note that @var{mask} may be any number of digits long; it may
24837not fit in a 32-bit word.
24838
24839@item M @var{basereg},@var{offset},@var{len}
24840Collect @var{len} bytes of memory starting at the address in register
24841number @var{basereg}, plus @var{offset}. If @var{basereg} is
24842@samp{-1}, then the range has a fixed address: @var{offset} is the
24843address of the lowest byte to collect. The @var{basereg},
599b237a 24844@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24845values (the @samp{-1} value for @var{basereg} is a special case).
24846
24847@item X @var{len},@var{expr}
24848Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24849it directs. @var{expr} is an agent expression, as described in
24850@ref{Agent Expressions}. Each byte of the expression is encoded as a
24851two-digit hex number in the packet; @var{len} is the number of bytes
24852in the expression (and thus one-half the number of hex digits in the
24853packet).
24854
24855@end table
24856
24857Any number of actions may be packed together in a single @samp{QTDP}
24858packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24859length (400 bytes, for many stubs). There may be only one @samp{R}
24860action per tracepoint, and it must precede any @samp{M} or @samp{X}
24861actions. Any registers referred to by @samp{M} and @samp{X} actions
24862must be collected by a preceding @samp{R} action. (The
24863``while-stepping'' actions are treated as if they were attached to a
24864separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24865
24866Replies:
24867@table @samp
24868@item OK
24869The packet was understood and carried out.
24870@item
24871The packet was not recognized.
24872@end table
24873
24874@item QTFrame:@var{n}
24875Select the @var{n}'th tracepoint frame from the buffer, and use the
24876register and memory contents recorded there to answer subsequent
24877request packets from @value{GDBN}.
24878
24879A successful reply from the stub indicates that the stub has found the
24880requested frame. The response is a series of parts, concatenated
24881without separators, describing the frame we selected. Each part has
24882one of the following forms:
24883
24884@table @samp
24885@item F @var{f}
24886The selected frame is number @var{n} in the trace frame buffer;
599b237a 24887@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24888was no frame matching the criteria in the request packet.
24889
24890@item T @var{t}
24891The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24892@var{t} is a hexadecimal number.
9d29849a
JB
24893
24894@end table
24895
24896@item QTFrame:pc:@var{addr}
24897Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24898currently selected frame whose PC is @var{addr};
599b237a 24899@var{addr} is a hexadecimal number.
9d29849a
JB
24900
24901@item QTFrame:tdp:@var{t}
24902Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24903currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24904is a hexadecimal number.
9d29849a
JB
24905
24906@item QTFrame:range:@var{start}:@var{end}
24907Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24908currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24909and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24910numbers.
24911
24912@item QTFrame:outside:@var{start}:@var{end}
24913Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24914frame @emph{outside} the given range of addresses.
24915
24916@item QTStart
24917Begin the tracepoint experiment. Begin collecting data from tracepoint
24918hits in the trace frame buffer.
24919
24920@item QTStop
24921End the tracepoint experiment. Stop collecting trace frames.
24922
24923@item QTinit
24924Clear the table of tracepoints, and empty the trace frame buffer.
24925
24926@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24927Establish the given ranges of memory as ``transparent''. The stub
24928will answer requests for these ranges from memory's current contents,
24929if they were not collected as part of the tracepoint hit.
24930
24931@value{GDBN} uses this to mark read-only regions of memory, like those
24932containing program code. Since these areas never change, they should
24933still have the same contents they did when the tracepoint was hit, so
24934there's no reason for the stub to refuse to provide their contents.
24935
24936@item qTStatus
24937Ask the stub if there is a trace experiment running right now.
24938
24939Replies:
24940@table @samp
24941@item T0
24942There is no trace experiment running.
24943@item T1
24944There is a trace experiment running.
24945@end table
24946
24947@end table
24948
24949
a6b151f1
DJ
24950@node Host I/O Packets
24951@section Host I/O Packets
24952@cindex Host I/O, remote protocol
24953@cindex file transfer, remote protocol
24954
24955The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24956operations on the far side of a remote link. For example, Host I/O is
24957used to upload and download files to a remote target with its own
24958filesystem. Host I/O uses the same constant values and data structure
24959layout as the target-initiated File-I/O protocol. However, the
24960Host I/O packets are structured differently. The target-initiated
24961protocol relies on target memory to store parameters and buffers.
24962Host I/O requests are initiated by @value{GDBN}, and the
24963target's memory is not involved. @xref{File-I/O Remote Protocol
24964Extension}, for more details on the target-initiated protocol.
24965
24966The Host I/O request packets all encode a single operation along with
24967its arguments. They have this format:
24968
24969@table @samp
24970
24971@item vFile:@var{operation}: @var{parameter}@dots{}
24972@var{operation} is the name of the particular request; the target
24973should compare the entire packet name up to the second colon when checking
24974for a supported operation. The format of @var{parameter} depends on
24975the operation. Numbers are always passed in hexadecimal. Negative
24976numbers have an explicit minus sign (i.e.@: two's complement is not
24977used). Strings (e.g.@: filenames) are encoded as a series of
24978hexadecimal bytes. The last argument to a system call may be a
24979buffer of escaped binary data (@pxref{Binary Data}).
24980
24981@end table
24982
24983The valid responses to Host I/O packets are:
24984
24985@table @samp
24986
24987@item F @var{result} [, @var{errno}] [; @var{attachment}]
24988@var{result} is the integer value returned by this operation, usually
24989non-negative for success and -1 for errors. If an error has occured,
24990@var{errno} will be included in the result. @var{errno} will have a
24991value defined by the File-I/O protocol (@pxref{Errno Values}). For
24992operations which return data, @var{attachment} supplies the data as a
24993binary buffer. Binary buffers in response packets are escaped in the
24994normal way (@pxref{Binary Data}). See the individual packet
24995documentation for the interpretation of @var{result} and
24996@var{attachment}.
24997
24998@item
24999An empty response indicates that this operation is not recognized.
25000
25001@end table
25002
25003These are the supported Host I/O operations:
25004
25005@table @samp
25006@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25007Open a file at @var{pathname} and return a file descriptor for it, or
25008return -1 if an error occurs. @var{pathname} is a string,
25009@var{flags} is an integer indicating a mask of open flags
25010(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25011of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25012@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25013
25014@item vFile:close: @var{fd}
25015Close the open file corresponding to @var{fd} and return 0, or
25016-1 if an error occurs.
25017
25018@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25019Read data from the open file corresponding to @var{fd}. Up to
25020@var{count} bytes will be read from the file, starting at @var{offset}
25021relative to the start of the file. The target may read fewer bytes;
25022common reasons include packet size limits and an end-of-file
25023condition. The number of bytes read is returned. Zero should only be
25024returned for a successful read at the end of the file, or if
25025@var{count} was zero.
25026
25027The data read should be returned as a binary attachment on success.
25028If zero bytes were read, the response should include an empty binary
25029attachment (i.e.@: a trailing semicolon). The return value is the
25030number of target bytes read; the binary attachment may be longer if
25031some characters were escaped.
25032
25033@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25034Write @var{data} (a binary buffer) to the open file corresponding
25035to @var{fd}. Start the write at @var{offset} from the start of the
25036file. Unlike many @code{write} system calls, there is no
25037separate @var{count} argument; the length of @var{data} in the
25038packet is used. @samp{vFile:write} returns the number of bytes written,
25039which may be shorter than the length of @var{data}, or -1 if an
25040error occurred.
25041
25042@item vFile:unlink: @var{pathname}
25043Delete the file at @var{pathname} on the target. Return 0,
25044or -1 if an error occurs. @var{pathname} is a string.
25045
25046@end table
25047
9a6253be
KB
25048@node Interrupts
25049@section Interrupts
25050@cindex interrupts (remote protocol)
25051
25052When a program on the remote target is running, @value{GDBN} may
25053attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25054control of which is specified via @value{GDBN}'s @samp{remotebreak}
25055setting (@pxref{set remotebreak}).
25056
25057The precise meaning of @code{BREAK} is defined by the transport
25058mechanism and may, in fact, be undefined. @value{GDBN} does
25059not currently define a @code{BREAK} mechanism for any of the network
25060interfaces.
25061
25062@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25063transport mechanisms. It is represented by sending the single byte
25064@code{0x03} without any of the usual packet overhead described in
25065the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25066transmitted as part of a packet, it is considered to be packet data
25067and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25068(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25069@code{0x03} as part of its packet.
25070
25071Stubs are not required to recognize these interrupt mechanisms and the
25072precise meaning associated with receipt of the interrupt is
25073implementation defined. If the stub is successful at interrupting the
25074running program, it is expected that it will send one of the Stop
25075Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25076of successfully stopping the program. Interrupts received while the
25077program is stopped will be discarded.
25078
ee2d5c50
AC
25079@node Examples
25080@section Examples
eb12ee30 25081
8e04817f
AC
25082Example sequence of a target being re-started. Notice how the restart
25083does not get any direct output:
eb12ee30 25084
474c8240 25085@smallexample
d2c6833e
AC
25086-> @code{R00}
25087<- @code{+}
8e04817f 25088@emph{target restarts}
d2c6833e 25089-> @code{?}
8e04817f 25090<- @code{+}
d2c6833e
AC
25091<- @code{T001:1234123412341234}
25092-> @code{+}
474c8240 25093@end smallexample
eb12ee30 25094
8e04817f 25095Example sequence of a target being stepped by a single instruction:
eb12ee30 25096
474c8240 25097@smallexample
d2c6833e 25098-> @code{G1445@dots{}}
8e04817f 25099<- @code{+}
d2c6833e
AC
25100-> @code{s}
25101<- @code{+}
25102@emph{time passes}
25103<- @code{T001:1234123412341234}
8e04817f 25104-> @code{+}
d2c6833e 25105-> @code{g}
8e04817f 25106<- @code{+}
d2c6833e
AC
25107<- @code{1455@dots{}}
25108-> @code{+}
474c8240 25109@end smallexample
eb12ee30 25110
79a6e687
BW
25111@node File-I/O Remote Protocol Extension
25112@section File-I/O Remote Protocol Extension
0ce1b118
CV
25113@cindex File-I/O remote protocol extension
25114
25115@menu
25116* File-I/O Overview::
79a6e687
BW
25117* Protocol Basics::
25118* The F Request Packet::
25119* The F Reply Packet::
25120* The Ctrl-C Message::
0ce1b118 25121* Console I/O::
79a6e687 25122* List of Supported Calls::
db2e3e2e 25123* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25124* Constants::
25125* File-I/O Examples::
25126@end menu
25127
25128@node File-I/O Overview
25129@subsection File-I/O Overview
25130@cindex file-i/o overview
25131
9c16f35a 25132The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25133target to use the host's file system and console I/O to perform various
0ce1b118 25134system calls. System calls on the target system are translated into a
fc320d37
SL
25135remote protocol packet to the host system, which then performs the needed
25136actions and returns a response packet to the target system.
0ce1b118
CV
25137This simulates file system operations even on targets that lack file systems.
25138
fc320d37
SL
25139The protocol is defined to be independent of both the host and target systems.
25140It uses its own internal representation of datatypes and values. Both
0ce1b118 25141@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25142translating the system-dependent value representations into the internal
25143protocol representations when data is transmitted.
0ce1b118 25144
fc320d37
SL
25145The communication is synchronous. A system call is possible only when
25146@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25147or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25148the target is stopped to allow deterministic access to the target's
fc320d37
SL
25149memory. Therefore File-I/O is not interruptible by target signals. On
25150the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25151(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25152
25153The target's request to perform a host system call does not finish
25154the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25155after finishing the system call, the target returns to continuing the
25156previous activity (continue, step). No additional continue or step
25157request from @value{GDBN} is required.
25158
25159@smallexample
f7dc1244 25160(@value{GDBP}) continue
0ce1b118
CV
25161 <- target requests 'system call X'
25162 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25163 -> @value{GDBN} returns result
25164 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25165 <- target hits breakpoint and sends a Txx packet
25166@end smallexample
25167
fc320d37
SL
25168The protocol only supports I/O on the console and to regular files on
25169the host file system. Character or block special devices, pipes,
25170named pipes, sockets or any other communication method on the host
0ce1b118
CV
25171system are not supported by this protocol.
25172
79a6e687
BW
25173@node Protocol Basics
25174@subsection Protocol Basics
0ce1b118
CV
25175@cindex protocol basics, file-i/o
25176
fc320d37
SL
25177The File-I/O protocol uses the @code{F} packet as the request as well
25178as reply packet. Since a File-I/O system call can only occur when
25179@value{GDBN} is waiting for a response from the continuing or stepping target,
25180the File-I/O request is a reply that @value{GDBN} has to expect as a result
25181of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25182This @code{F} packet contains all information needed to allow @value{GDBN}
25183to call the appropriate host system call:
25184
25185@itemize @bullet
b383017d 25186@item
0ce1b118
CV
25187A unique identifier for the requested system call.
25188
25189@item
25190All parameters to the system call. Pointers are given as addresses
25191in the target memory address space. Pointers to strings are given as
b383017d 25192pointer/length pair. Numerical values are given as they are.
db2e3e2e 25193Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25194
25195@end itemize
25196
fc320d37 25197At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25198
25199@itemize @bullet
b383017d 25200@item
fc320d37
SL
25201If the parameters include pointer values to data needed as input to a
25202system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25203standard @code{m} packet request. This additional communication has to be
25204expected by the target implementation and is handled as any other @code{m}
25205packet.
25206
25207@item
25208@value{GDBN} translates all value from protocol representation to host
25209representation as needed. Datatypes are coerced into the host types.
25210
25211@item
fc320d37 25212@value{GDBN} calls the system call.
0ce1b118
CV
25213
25214@item
25215It then coerces datatypes back to protocol representation.
25216
25217@item
fc320d37
SL
25218If the system call is expected to return data in buffer space specified
25219by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25220target using a @code{M} or @code{X} packet. This packet has to be expected
25221by the target implementation and is handled as any other @code{M} or @code{X}
25222packet.
25223
25224@end itemize
25225
25226Eventually @value{GDBN} replies with another @code{F} packet which contains all
25227necessary information for the target to continue. This at least contains
25228
25229@itemize @bullet
25230@item
25231Return value.
25232
25233@item
25234@code{errno}, if has been changed by the system call.
25235
25236@item
25237``Ctrl-C'' flag.
25238
25239@end itemize
25240
25241After having done the needed type and value coercion, the target continues
25242the latest continue or step action.
25243
79a6e687
BW
25244@node The F Request Packet
25245@subsection The @code{F} Request Packet
0ce1b118
CV
25246@cindex file-i/o request packet
25247@cindex @code{F} request packet
25248
25249The @code{F} request packet has the following format:
25250
25251@table @samp
fc320d37 25252@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25253
25254@var{call-id} is the identifier to indicate the host system call to be called.
25255This is just the name of the function.
25256
fc320d37
SL
25257@var{parameter@dots{}} are the parameters to the system call.
25258Parameters are hexadecimal integer values, either the actual values in case
25259of scalar datatypes, pointers to target buffer space in case of compound
25260datatypes and unspecified memory areas, or pointer/length pairs in case
25261of string parameters. These are appended to the @var{call-id} as a
25262comma-delimited list. All values are transmitted in ASCII
25263string representation, pointer/length pairs separated by a slash.
0ce1b118 25264
b383017d 25265@end table
0ce1b118 25266
fc320d37 25267
0ce1b118 25268
79a6e687
BW
25269@node The F Reply Packet
25270@subsection The @code{F} Reply Packet
0ce1b118
CV
25271@cindex file-i/o reply packet
25272@cindex @code{F} reply packet
25273
25274The @code{F} reply packet has the following format:
25275
25276@table @samp
25277
d3bdde98 25278@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25279
25280@var{retcode} is the return code of the system call as hexadecimal value.
25281
db2e3e2e
BW
25282@var{errno} is the @code{errno} set by the call, in protocol-specific
25283representation.
0ce1b118
CV
25284This parameter can be omitted if the call was successful.
25285
fc320d37
SL
25286@var{Ctrl-C flag} is only sent if the user requested a break. In this
25287case, @var{errno} must be sent as well, even if the call was successful.
25288The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25289
25290@smallexample
25291F0,0,C
25292@end smallexample
25293
25294@noindent
fc320d37 25295or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25296
25297@smallexample
25298F-1,4,C
25299@end smallexample
25300
25301@noindent
db2e3e2e 25302assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25303
25304@end table
25305
0ce1b118 25306
79a6e687
BW
25307@node The Ctrl-C Message
25308@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25309@cindex ctrl-c message, in file-i/o protocol
25310
c8aa23ab 25311If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25312reply packet (@pxref{The F Reply Packet}),
fc320d37 25313the target should behave as if it had
0ce1b118 25314gotten a break message. The meaning for the target is ``system call
fc320d37 25315interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25316(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25317packet.
fc320d37
SL
25318
25319It's important for the target to know in which
25320state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25321
25322@itemize @bullet
25323@item
25324The system call hasn't been performed on the host yet.
25325
25326@item
25327The system call on the host has been finished.
25328
25329@end itemize
25330
25331These two states can be distinguished by the target by the value of the
25332returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25333call hasn't been performed. This is equivalent to the @code{EINTR} handling
25334on POSIX systems. In any other case, the target may presume that the
fc320d37 25335system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25336as if the break message arrived right after the system call.
25337
fc320d37 25338@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25339yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25340@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25341before the user requests a break, the full action must be finished by
25342@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25343The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25344or the full action has been completed.
25345
25346@node Console I/O
25347@subsection Console I/O
25348@cindex console i/o as part of file-i/o
25349
d3e8051b 25350By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25351descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25352on the @value{GDBN} console is handled as any other file output operation
25353(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25354by @value{GDBN} so that after the target read request from file descriptor
253550 all following typing is buffered until either one of the following
25356conditions is met:
25357
25358@itemize @bullet
25359@item
c8aa23ab 25360The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25361@code{read}
25362system call is treated as finished.
25363
25364@item
7f9087cb 25365The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25366newline.
0ce1b118
CV
25367
25368@item
c8aa23ab
EZ
25369The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25370character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25371
25372@end itemize
25373
fc320d37
SL
25374If the user has typed more characters than fit in the buffer given to
25375the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25376either another @code{read(0, @dots{})} is requested by the target, or debugging
25377is stopped at the user's request.
0ce1b118 25378
0ce1b118 25379
79a6e687
BW
25380@node List of Supported Calls
25381@subsection List of Supported Calls
0ce1b118
CV
25382@cindex list of supported file-i/o calls
25383
25384@menu
25385* open::
25386* close::
25387* read::
25388* write::
25389* lseek::
25390* rename::
25391* unlink::
25392* stat/fstat::
25393* gettimeofday::
25394* isatty::
25395* system::
25396@end menu
25397
25398@node open
25399@unnumberedsubsubsec open
25400@cindex open, file-i/o system call
25401
fc320d37
SL
25402@table @asis
25403@item Synopsis:
0ce1b118 25404@smallexample
0ce1b118
CV
25405int open(const char *pathname, int flags);
25406int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25407@end smallexample
25408
fc320d37
SL
25409@item Request:
25410@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25411
0ce1b118 25412@noindent
fc320d37 25413@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25414
25415@table @code
b383017d 25416@item O_CREAT
0ce1b118
CV
25417If the file does not exist it will be created. The host
25418rules apply as far as file ownership and time stamps
25419are concerned.
25420
b383017d 25421@item O_EXCL
fc320d37 25422When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25423an error and open() fails.
25424
b383017d 25425@item O_TRUNC
0ce1b118 25426If the file already exists and the open mode allows
fc320d37
SL
25427writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25428truncated to zero length.
0ce1b118 25429
b383017d 25430@item O_APPEND
0ce1b118
CV
25431The file is opened in append mode.
25432
b383017d 25433@item O_RDONLY
0ce1b118
CV
25434The file is opened for reading only.
25435
b383017d 25436@item O_WRONLY
0ce1b118
CV
25437The file is opened for writing only.
25438
b383017d 25439@item O_RDWR
0ce1b118 25440The file is opened for reading and writing.
fc320d37 25441@end table
0ce1b118
CV
25442
25443@noindent
fc320d37 25444Other bits are silently ignored.
0ce1b118 25445
0ce1b118
CV
25446
25447@noindent
fc320d37 25448@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25449
25450@table @code
b383017d 25451@item S_IRUSR
0ce1b118
CV
25452User has read permission.
25453
b383017d 25454@item S_IWUSR
0ce1b118
CV
25455User has write permission.
25456
b383017d 25457@item S_IRGRP
0ce1b118
CV
25458Group has read permission.
25459
b383017d 25460@item S_IWGRP
0ce1b118
CV
25461Group has write permission.
25462
b383017d 25463@item S_IROTH
0ce1b118
CV
25464Others have read permission.
25465
b383017d 25466@item S_IWOTH
0ce1b118 25467Others have write permission.
fc320d37 25468@end table
0ce1b118
CV
25469
25470@noindent
fc320d37 25471Other bits are silently ignored.
0ce1b118 25472
0ce1b118 25473
fc320d37
SL
25474@item Return value:
25475@code{open} returns the new file descriptor or -1 if an error
25476occurred.
0ce1b118 25477
fc320d37 25478@item Errors:
0ce1b118
CV
25479
25480@table @code
b383017d 25481@item EEXIST
fc320d37 25482@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25483
b383017d 25484@item EISDIR
fc320d37 25485@var{pathname} refers to a directory.
0ce1b118 25486
b383017d 25487@item EACCES
0ce1b118
CV
25488The requested access is not allowed.
25489
25490@item ENAMETOOLONG
fc320d37 25491@var{pathname} was too long.
0ce1b118 25492
b383017d 25493@item ENOENT
fc320d37 25494A directory component in @var{pathname} does not exist.
0ce1b118 25495
b383017d 25496@item ENODEV
fc320d37 25497@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25498
b383017d 25499@item EROFS
fc320d37 25500@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25501write access was requested.
25502
b383017d 25503@item EFAULT
fc320d37 25504@var{pathname} is an invalid pointer value.
0ce1b118 25505
b383017d 25506@item ENOSPC
0ce1b118
CV
25507No space on device to create the file.
25508
b383017d 25509@item EMFILE
0ce1b118
CV
25510The process already has the maximum number of files open.
25511
b383017d 25512@item ENFILE
0ce1b118
CV
25513The limit on the total number of files open on the system
25514has been reached.
25515
b383017d 25516@item EINTR
0ce1b118
CV
25517The call was interrupted by the user.
25518@end table
25519
fc320d37
SL
25520@end table
25521
0ce1b118
CV
25522@node close
25523@unnumberedsubsubsec close
25524@cindex close, file-i/o system call
25525
fc320d37
SL
25526@table @asis
25527@item Synopsis:
0ce1b118 25528@smallexample
0ce1b118 25529int close(int fd);
fc320d37 25530@end smallexample
0ce1b118 25531
fc320d37
SL
25532@item Request:
25533@samp{Fclose,@var{fd}}
0ce1b118 25534
fc320d37
SL
25535@item Return value:
25536@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25537
fc320d37 25538@item Errors:
0ce1b118
CV
25539
25540@table @code
b383017d 25541@item EBADF
fc320d37 25542@var{fd} isn't a valid open file descriptor.
0ce1b118 25543
b383017d 25544@item EINTR
0ce1b118
CV
25545The call was interrupted by the user.
25546@end table
25547
fc320d37
SL
25548@end table
25549
0ce1b118
CV
25550@node read
25551@unnumberedsubsubsec read
25552@cindex read, file-i/o system call
25553
fc320d37
SL
25554@table @asis
25555@item Synopsis:
0ce1b118 25556@smallexample
0ce1b118 25557int read(int fd, void *buf, unsigned int count);
fc320d37 25558@end smallexample
0ce1b118 25559
fc320d37
SL
25560@item Request:
25561@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25562
fc320d37 25563@item Return value:
0ce1b118
CV
25564On success, the number of bytes read is returned.
25565Zero indicates end of file. If count is zero, read
b383017d 25566returns zero as well. On error, -1 is returned.
0ce1b118 25567
fc320d37 25568@item Errors:
0ce1b118
CV
25569
25570@table @code
b383017d 25571@item EBADF
fc320d37 25572@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25573reading.
25574
b383017d 25575@item EFAULT
fc320d37 25576@var{bufptr} is an invalid pointer value.
0ce1b118 25577
b383017d 25578@item EINTR
0ce1b118
CV
25579The call was interrupted by the user.
25580@end table
25581
fc320d37
SL
25582@end table
25583
0ce1b118
CV
25584@node write
25585@unnumberedsubsubsec write
25586@cindex write, file-i/o system call
25587
fc320d37
SL
25588@table @asis
25589@item Synopsis:
0ce1b118 25590@smallexample
0ce1b118 25591int write(int fd, const void *buf, unsigned int count);
fc320d37 25592@end smallexample
0ce1b118 25593
fc320d37
SL
25594@item Request:
25595@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25596
fc320d37 25597@item Return value:
0ce1b118
CV
25598On success, the number of bytes written are returned.
25599Zero indicates nothing was written. On error, -1
25600is returned.
25601
fc320d37 25602@item Errors:
0ce1b118
CV
25603
25604@table @code
b383017d 25605@item EBADF
fc320d37 25606@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25607writing.
25608
b383017d 25609@item EFAULT
fc320d37 25610@var{bufptr} is an invalid pointer value.
0ce1b118 25611
b383017d 25612@item EFBIG
0ce1b118 25613An attempt was made to write a file that exceeds the
db2e3e2e 25614host-specific maximum file size allowed.
0ce1b118 25615
b383017d 25616@item ENOSPC
0ce1b118
CV
25617No space on device to write the data.
25618
b383017d 25619@item EINTR
0ce1b118
CV
25620The call was interrupted by the user.
25621@end table
25622
fc320d37
SL
25623@end table
25624
0ce1b118
CV
25625@node lseek
25626@unnumberedsubsubsec lseek
25627@cindex lseek, file-i/o system call
25628
fc320d37
SL
25629@table @asis
25630@item Synopsis:
0ce1b118 25631@smallexample
0ce1b118 25632long lseek (int fd, long offset, int flag);
0ce1b118
CV
25633@end smallexample
25634
fc320d37
SL
25635@item Request:
25636@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25637
25638@var{flag} is one of:
0ce1b118
CV
25639
25640@table @code
b383017d 25641@item SEEK_SET
fc320d37 25642The offset is set to @var{offset} bytes.
0ce1b118 25643
b383017d 25644@item SEEK_CUR
fc320d37 25645The offset is set to its current location plus @var{offset}
0ce1b118
CV
25646bytes.
25647
b383017d 25648@item SEEK_END
fc320d37 25649The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25650bytes.
25651@end table
25652
fc320d37 25653@item Return value:
0ce1b118
CV
25654On success, the resulting unsigned offset in bytes from
25655the beginning of the file is returned. Otherwise, a
25656value of -1 is returned.
25657
fc320d37 25658@item Errors:
0ce1b118
CV
25659
25660@table @code
b383017d 25661@item EBADF
fc320d37 25662@var{fd} is not a valid open file descriptor.
0ce1b118 25663
b383017d 25664@item ESPIPE
fc320d37 25665@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25666
b383017d 25667@item EINVAL
fc320d37 25668@var{flag} is not a proper value.
0ce1b118 25669
b383017d 25670@item EINTR
0ce1b118
CV
25671The call was interrupted by the user.
25672@end table
25673
fc320d37
SL
25674@end table
25675
0ce1b118
CV
25676@node rename
25677@unnumberedsubsubsec rename
25678@cindex rename, file-i/o system call
25679
fc320d37
SL
25680@table @asis
25681@item Synopsis:
0ce1b118 25682@smallexample
0ce1b118 25683int rename(const char *oldpath, const char *newpath);
fc320d37 25684@end smallexample
0ce1b118 25685
fc320d37
SL
25686@item Request:
25687@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25688
fc320d37 25689@item Return value:
0ce1b118
CV
25690On success, zero is returned. On error, -1 is returned.
25691
fc320d37 25692@item Errors:
0ce1b118
CV
25693
25694@table @code
b383017d 25695@item EISDIR
fc320d37 25696@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25697directory.
25698
b383017d 25699@item EEXIST
fc320d37 25700@var{newpath} is a non-empty directory.
0ce1b118 25701
b383017d 25702@item EBUSY
fc320d37 25703@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25704process.
25705
b383017d 25706@item EINVAL
0ce1b118
CV
25707An attempt was made to make a directory a subdirectory
25708of itself.
25709
b383017d 25710@item ENOTDIR
fc320d37
SL
25711A component used as a directory in @var{oldpath} or new
25712path is not a directory. Or @var{oldpath} is a directory
25713and @var{newpath} exists but is not a directory.
0ce1b118 25714
b383017d 25715@item EFAULT
fc320d37 25716@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25717
b383017d 25718@item EACCES
0ce1b118
CV
25719No access to the file or the path of the file.
25720
25721@item ENAMETOOLONG
b383017d 25722
fc320d37 25723@var{oldpath} or @var{newpath} was too long.
0ce1b118 25724
b383017d 25725@item ENOENT
fc320d37 25726A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25727
b383017d 25728@item EROFS
0ce1b118
CV
25729The file is on a read-only filesystem.
25730
b383017d 25731@item ENOSPC
0ce1b118
CV
25732The device containing the file has no room for the new
25733directory entry.
25734
b383017d 25735@item EINTR
0ce1b118
CV
25736The call was interrupted by the user.
25737@end table
25738
fc320d37
SL
25739@end table
25740
0ce1b118
CV
25741@node unlink
25742@unnumberedsubsubsec unlink
25743@cindex unlink, file-i/o system call
25744
fc320d37
SL
25745@table @asis
25746@item Synopsis:
0ce1b118 25747@smallexample
0ce1b118 25748int unlink(const char *pathname);
fc320d37 25749@end smallexample
0ce1b118 25750
fc320d37
SL
25751@item Request:
25752@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25753
fc320d37 25754@item Return value:
0ce1b118
CV
25755On success, zero is returned. On error, -1 is returned.
25756
fc320d37 25757@item Errors:
0ce1b118
CV
25758
25759@table @code
b383017d 25760@item EACCES
0ce1b118
CV
25761No access to the file or the path of the file.
25762
b383017d 25763@item EPERM
0ce1b118
CV
25764The system does not allow unlinking of directories.
25765
b383017d 25766@item EBUSY
fc320d37 25767The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25768being used by another process.
25769
b383017d 25770@item EFAULT
fc320d37 25771@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25772
25773@item ENAMETOOLONG
fc320d37 25774@var{pathname} was too long.
0ce1b118 25775
b383017d 25776@item ENOENT
fc320d37 25777A directory component in @var{pathname} does not exist.
0ce1b118 25778
b383017d 25779@item ENOTDIR
0ce1b118
CV
25780A component of the path is not a directory.
25781
b383017d 25782@item EROFS
0ce1b118
CV
25783The file is on a read-only filesystem.
25784
b383017d 25785@item EINTR
0ce1b118
CV
25786The call was interrupted by the user.
25787@end table
25788
fc320d37
SL
25789@end table
25790
0ce1b118
CV
25791@node stat/fstat
25792@unnumberedsubsubsec stat/fstat
25793@cindex fstat, file-i/o system call
25794@cindex stat, file-i/o system call
25795
fc320d37
SL
25796@table @asis
25797@item Synopsis:
0ce1b118 25798@smallexample
0ce1b118
CV
25799int stat(const char *pathname, struct stat *buf);
25800int fstat(int fd, struct stat *buf);
fc320d37 25801@end smallexample
0ce1b118 25802
fc320d37
SL
25803@item Request:
25804@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25805@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25806
fc320d37 25807@item Return value:
0ce1b118
CV
25808On success, zero is returned. On error, -1 is returned.
25809
fc320d37 25810@item Errors:
0ce1b118
CV
25811
25812@table @code
b383017d 25813@item EBADF
fc320d37 25814@var{fd} is not a valid open file.
0ce1b118 25815
b383017d 25816@item ENOENT
fc320d37 25817A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25818path is an empty string.
25819
b383017d 25820@item ENOTDIR
0ce1b118
CV
25821A component of the path is not a directory.
25822
b383017d 25823@item EFAULT
fc320d37 25824@var{pathnameptr} is an invalid pointer value.
0ce1b118 25825
b383017d 25826@item EACCES
0ce1b118
CV
25827No access to the file or the path of the file.
25828
25829@item ENAMETOOLONG
fc320d37 25830@var{pathname} was too long.
0ce1b118 25831
b383017d 25832@item EINTR
0ce1b118
CV
25833The call was interrupted by the user.
25834@end table
25835
fc320d37
SL
25836@end table
25837
0ce1b118
CV
25838@node gettimeofday
25839@unnumberedsubsubsec gettimeofday
25840@cindex gettimeofday, file-i/o system call
25841
fc320d37
SL
25842@table @asis
25843@item Synopsis:
0ce1b118 25844@smallexample
0ce1b118 25845int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25846@end smallexample
0ce1b118 25847
fc320d37
SL
25848@item Request:
25849@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25850
fc320d37 25851@item Return value:
0ce1b118
CV
25852On success, 0 is returned, -1 otherwise.
25853
fc320d37 25854@item Errors:
0ce1b118
CV
25855
25856@table @code
b383017d 25857@item EINVAL
fc320d37 25858@var{tz} is a non-NULL pointer.
0ce1b118 25859
b383017d 25860@item EFAULT
fc320d37
SL
25861@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25862@end table
25863
0ce1b118
CV
25864@end table
25865
25866@node isatty
25867@unnumberedsubsubsec isatty
25868@cindex isatty, file-i/o system call
25869
fc320d37
SL
25870@table @asis
25871@item Synopsis:
0ce1b118 25872@smallexample
0ce1b118 25873int isatty(int fd);
fc320d37 25874@end smallexample
0ce1b118 25875
fc320d37
SL
25876@item Request:
25877@samp{Fisatty,@var{fd}}
0ce1b118 25878
fc320d37
SL
25879@item Return value:
25880Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25881
fc320d37 25882@item Errors:
0ce1b118
CV
25883
25884@table @code
b383017d 25885@item EINTR
0ce1b118
CV
25886The call was interrupted by the user.
25887@end table
25888
fc320d37
SL
25889@end table
25890
25891Note that the @code{isatty} call is treated as a special case: it returns
258921 to the target if the file descriptor is attached
25893to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25894would require implementing @code{ioctl} and would be more complex than
25895needed.
25896
25897
0ce1b118
CV
25898@node system
25899@unnumberedsubsubsec system
25900@cindex system, file-i/o system call
25901
fc320d37
SL
25902@table @asis
25903@item Synopsis:
0ce1b118 25904@smallexample
0ce1b118 25905int system(const char *command);
fc320d37 25906@end smallexample
0ce1b118 25907
fc320d37
SL
25908@item Request:
25909@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25910
fc320d37 25911@item Return value:
5600ea19
NS
25912If @var{len} is zero, the return value indicates whether a shell is
25913available. A zero return value indicates a shell is not available.
25914For non-zero @var{len}, the value returned is -1 on error and the
25915return status of the command otherwise. Only the exit status of the
25916command is returned, which is extracted from the host's @code{system}
25917return value by calling @code{WEXITSTATUS(retval)}. In case
25918@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25919
fc320d37 25920@item Errors:
0ce1b118
CV
25921
25922@table @code
b383017d 25923@item EINTR
0ce1b118
CV
25924The call was interrupted by the user.
25925@end table
25926
fc320d37
SL
25927@end table
25928
25929@value{GDBN} takes over the full task of calling the necessary host calls
25930to perform the @code{system} call. The return value of @code{system} on
25931the host is simplified before it's returned
25932to the target. Any termination signal information from the child process
25933is discarded, and the return value consists
25934entirely of the exit status of the called command.
25935
25936Due to security concerns, the @code{system} call is by default refused
25937by @value{GDBN}. The user has to allow this call explicitly with the
25938@code{set remote system-call-allowed 1} command.
25939
25940@table @code
25941@item set remote system-call-allowed
25942@kindex set remote system-call-allowed
25943Control whether to allow the @code{system} calls in the File I/O
25944protocol for the remote target. The default is zero (disabled).
25945
25946@item show remote system-call-allowed
25947@kindex show remote system-call-allowed
25948Show whether the @code{system} calls are allowed in the File I/O
25949protocol.
25950@end table
25951
db2e3e2e
BW
25952@node Protocol-specific Representation of Datatypes
25953@subsection Protocol-specific Representation of Datatypes
25954@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25955
25956@menu
79a6e687
BW
25957* Integral Datatypes::
25958* Pointer Values::
25959* Memory Transfer::
0ce1b118
CV
25960* struct stat::
25961* struct timeval::
25962@end menu
25963
79a6e687
BW
25964@node Integral Datatypes
25965@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25966@cindex integral datatypes, in file-i/o protocol
25967
fc320d37
SL
25968The integral datatypes used in the system calls are @code{int},
25969@code{unsigned int}, @code{long}, @code{unsigned long},
25970@code{mode_t}, and @code{time_t}.
0ce1b118 25971
fc320d37 25972@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25973implemented as 32 bit values in this protocol.
25974
fc320d37 25975@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25976
0ce1b118
CV
25977@xref{Limits}, for corresponding MIN and MAX values (similar to those
25978in @file{limits.h}) to allow range checking on host and target.
25979
25980@code{time_t} datatypes are defined as seconds since the Epoch.
25981
25982All integral datatypes transferred as part of a memory read or write of a
25983structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25984byte order.
25985
79a6e687
BW
25986@node Pointer Values
25987@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25988@cindex pointer values, in file-i/o protocol
25989
25990Pointers to target data are transmitted as they are. An exception
25991is made for pointers to buffers for which the length isn't
25992transmitted as part of the function call, namely strings. Strings
25993are transmitted as a pointer/length pair, both as hex values, e.g.@:
25994
25995@smallexample
25996@code{1aaf/12}
25997@end smallexample
25998
25999@noindent
26000which is a pointer to data of length 18 bytes at position 0x1aaf.
26001The length is defined as the full string length in bytes, including
fc320d37
SL
26002the trailing null byte. For example, the string @code{"hello world"}
26003at address 0x123456 is transmitted as
0ce1b118
CV
26004
26005@smallexample
fc320d37 26006@code{123456/d}
0ce1b118
CV
26007@end smallexample
26008
79a6e687
BW
26009@node Memory Transfer
26010@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26011@cindex memory transfer, in file-i/o protocol
26012
26013Structured data which is transferred using a memory read or write (for
db2e3e2e 26014example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26015with all scalar multibyte datatypes being big endian. Translation to
26016this representation needs to be done both by the target before the @code{F}
26017packet is sent, and by @value{GDBN} before
26018it transfers memory to the target. Transferred pointers to structured
26019data should point to the already-coerced data at any time.
0ce1b118 26020
0ce1b118
CV
26021
26022@node struct stat
26023@unnumberedsubsubsec struct stat
26024@cindex struct stat, in file-i/o protocol
26025
fc320d37
SL
26026The buffer of type @code{struct stat} used by the target and @value{GDBN}
26027is defined as follows:
0ce1b118
CV
26028
26029@smallexample
26030struct stat @{
26031 unsigned int st_dev; /* device */
26032 unsigned int st_ino; /* inode */
26033 mode_t st_mode; /* protection */
26034 unsigned int st_nlink; /* number of hard links */
26035 unsigned int st_uid; /* user ID of owner */
26036 unsigned int st_gid; /* group ID of owner */
26037 unsigned int st_rdev; /* device type (if inode device) */
26038 unsigned long st_size; /* total size, in bytes */
26039 unsigned long st_blksize; /* blocksize for filesystem I/O */
26040 unsigned long st_blocks; /* number of blocks allocated */
26041 time_t st_atime; /* time of last access */
26042 time_t st_mtime; /* time of last modification */
26043 time_t st_ctime; /* time of last change */
26044@};
26045@end smallexample
26046
fc320d37 26047The integral datatypes conform to the definitions given in the
79a6e687 26048appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26049structure is of size 64 bytes.
26050
26051The values of several fields have a restricted meaning and/or
26052range of values.
26053
fc320d37 26054@table @code
0ce1b118 26055
fc320d37
SL
26056@item st_dev
26057A value of 0 represents a file, 1 the console.
0ce1b118 26058
fc320d37
SL
26059@item st_ino
26060No valid meaning for the target. Transmitted unchanged.
0ce1b118 26061
fc320d37
SL
26062@item st_mode
26063Valid mode bits are described in @ref{Constants}. Any other
26064bits have currently no meaning for the target.
0ce1b118 26065
fc320d37
SL
26066@item st_uid
26067@itemx st_gid
26068@itemx st_rdev
26069No valid meaning for the target. Transmitted unchanged.
0ce1b118 26070
fc320d37
SL
26071@item st_atime
26072@itemx st_mtime
26073@itemx st_ctime
26074These values have a host and file system dependent
26075accuracy. Especially on Windows hosts, the file system may not
26076support exact timing values.
26077@end table
0ce1b118 26078
fc320d37
SL
26079The target gets a @code{struct stat} of the above representation and is
26080responsible for coercing it to the target representation before
0ce1b118
CV
26081continuing.
26082
fc320d37
SL
26083Note that due to size differences between the host, target, and protocol
26084representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26085get truncated on the target.
26086
26087@node struct timeval
26088@unnumberedsubsubsec struct timeval
26089@cindex struct timeval, in file-i/o protocol
26090
fc320d37 26091The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26092is defined as follows:
26093
26094@smallexample
b383017d 26095struct timeval @{
0ce1b118
CV
26096 time_t tv_sec; /* second */
26097 long tv_usec; /* microsecond */
26098@};
26099@end smallexample
26100
fc320d37 26101The integral datatypes conform to the definitions given in the
79a6e687 26102appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26103structure is of size 8 bytes.
26104
26105@node Constants
26106@subsection Constants
26107@cindex constants, in file-i/o protocol
26108
26109The following values are used for the constants inside of the
fc320d37 26110protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26111values before and after the call as needed.
26112
26113@menu
79a6e687
BW
26114* Open Flags::
26115* mode_t Values::
26116* Errno Values::
26117* Lseek Flags::
0ce1b118
CV
26118* Limits::
26119@end menu
26120
79a6e687
BW
26121@node Open Flags
26122@unnumberedsubsubsec Open Flags
0ce1b118
CV
26123@cindex open flags, in file-i/o protocol
26124
26125All values are given in hexadecimal representation.
26126
26127@smallexample
26128 O_RDONLY 0x0
26129 O_WRONLY 0x1
26130 O_RDWR 0x2
26131 O_APPEND 0x8
26132 O_CREAT 0x200
26133 O_TRUNC 0x400
26134 O_EXCL 0x800
26135@end smallexample
26136
79a6e687
BW
26137@node mode_t Values
26138@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26139@cindex mode_t values, in file-i/o protocol
26140
26141All values are given in octal representation.
26142
26143@smallexample
26144 S_IFREG 0100000
26145 S_IFDIR 040000
26146 S_IRUSR 0400
26147 S_IWUSR 0200
26148 S_IXUSR 0100
26149 S_IRGRP 040
26150 S_IWGRP 020
26151 S_IXGRP 010
26152 S_IROTH 04
26153 S_IWOTH 02
26154 S_IXOTH 01
26155@end smallexample
26156
79a6e687
BW
26157@node Errno Values
26158@unnumberedsubsubsec Errno Values
0ce1b118
CV
26159@cindex errno values, in file-i/o protocol
26160
26161All values are given in decimal representation.
26162
26163@smallexample
26164 EPERM 1
26165 ENOENT 2
26166 EINTR 4
26167 EBADF 9
26168 EACCES 13
26169 EFAULT 14
26170 EBUSY 16
26171 EEXIST 17
26172 ENODEV 19
26173 ENOTDIR 20
26174 EISDIR 21
26175 EINVAL 22
26176 ENFILE 23
26177 EMFILE 24
26178 EFBIG 27
26179 ENOSPC 28
26180 ESPIPE 29
26181 EROFS 30
26182 ENAMETOOLONG 91
26183 EUNKNOWN 9999
26184@end smallexample
26185
fc320d37 26186 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26187 any error value not in the list of supported error numbers.
26188
79a6e687
BW
26189@node Lseek Flags
26190@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26191@cindex lseek flags, in file-i/o protocol
26192
26193@smallexample
26194 SEEK_SET 0
26195 SEEK_CUR 1
26196 SEEK_END 2
26197@end smallexample
26198
26199@node Limits
26200@unnumberedsubsubsec Limits
26201@cindex limits, in file-i/o protocol
26202
26203All values are given in decimal representation.
26204
26205@smallexample
26206 INT_MIN -2147483648
26207 INT_MAX 2147483647
26208 UINT_MAX 4294967295
26209 LONG_MIN -9223372036854775808
26210 LONG_MAX 9223372036854775807
26211 ULONG_MAX 18446744073709551615
26212@end smallexample
26213
26214@node File-I/O Examples
26215@subsection File-I/O Examples
26216@cindex file-i/o examples
26217
26218Example sequence of a write call, file descriptor 3, buffer is at target
26219address 0x1234, 6 bytes should be written:
26220
26221@smallexample
26222<- @code{Fwrite,3,1234,6}
26223@emph{request memory read from target}
26224-> @code{m1234,6}
26225<- XXXXXX
26226@emph{return "6 bytes written"}
26227-> @code{F6}
26228@end smallexample
26229
26230Example sequence of a read call, file descriptor 3, buffer is at target
26231address 0x1234, 6 bytes should be read:
26232
26233@smallexample
26234<- @code{Fread,3,1234,6}
26235@emph{request memory write to target}
26236-> @code{X1234,6:XXXXXX}
26237@emph{return "6 bytes read"}
26238-> @code{F6}
26239@end smallexample
26240
26241Example sequence of a read call, call fails on the host due to invalid
fc320d37 26242file descriptor (@code{EBADF}):
0ce1b118
CV
26243
26244@smallexample
26245<- @code{Fread,3,1234,6}
26246-> @code{F-1,9}
26247@end smallexample
26248
c8aa23ab 26249Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26250host is called:
26251
26252@smallexample
26253<- @code{Fread,3,1234,6}
26254-> @code{F-1,4,C}
26255<- @code{T02}
26256@end smallexample
26257
c8aa23ab 26258Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26259host is called:
26260
26261@smallexample
26262<- @code{Fread,3,1234,6}
26263-> @code{X1234,6:XXXXXX}
26264<- @code{T02}
26265@end smallexample
26266
cfa9d6d9
DJ
26267@node Library List Format
26268@section Library List Format
26269@cindex library list format, remote protocol
26270
26271On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26272same process as your application to manage libraries. In this case,
26273@value{GDBN} can use the loader's symbol table and normal memory
26274operations to maintain a list of shared libraries. On other
26275platforms, the operating system manages loaded libraries.
26276@value{GDBN} can not retrieve the list of currently loaded libraries
26277through memory operations, so it uses the @samp{qXfer:libraries:read}
26278packet (@pxref{qXfer library list read}) instead. The remote stub
26279queries the target's operating system and reports which libraries
26280are loaded.
26281
26282The @samp{qXfer:libraries:read} packet returns an XML document which
26283lists loaded libraries and their offsets. Each library has an
26284associated name and one or more segment base addresses, which report
26285where the library was loaded in memory. The segment bases are start
26286addresses, not relocation offsets; they do not depend on the library's
26287link-time base addresses.
26288
9cceb671
DJ
26289@value{GDBN} must be linked with the Expat library to support XML
26290library lists. @xref{Expat}.
26291
cfa9d6d9
DJ
26292A simple memory map, with one loaded library relocated by a single
26293offset, looks like this:
26294
26295@smallexample
26296<library-list>
26297 <library name="/lib/libc.so.6">
26298 <segment address="0x10000000"/>
26299 </library>
26300</library-list>
26301@end smallexample
26302
26303The format of a library list is described by this DTD:
26304
26305@smallexample
26306<!-- library-list: Root element with versioning -->
26307<!ELEMENT library-list (library)*>
26308<!ATTLIST library-list version CDATA #FIXED "1.0">
26309<!ELEMENT library (segment)*>
26310<!ATTLIST library name CDATA #REQUIRED>
26311<!ELEMENT segment EMPTY>
26312<!ATTLIST segment address CDATA #REQUIRED>
26313@end smallexample
26314
79a6e687
BW
26315@node Memory Map Format
26316@section Memory Map Format
68437a39
DJ
26317@cindex memory map format
26318
26319To be able to write into flash memory, @value{GDBN} needs to obtain a
26320memory map from the target. This section describes the format of the
26321memory map.
26322
26323The memory map is obtained using the @samp{qXfer:memory-map:read}
26324(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26325lists memory regions.
26326
26327@value{GDBN} must be linked with the Expat library to support XML
26328memory maps. @xref{Expat}.
26329
26330The top-level structure of the document is shown below:
68437a39
DJ
26331
26332@smallexample
26333<?xml version="1.0"?>
26334<!DOCTYPE memory-map
26335 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26336 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26337<memory-map>
26338 region...
26339</memory-map>
26340@end smallexample
26341
26342Each region can be either:
26343
26344@itemize
26345
26346@item
26347A region of RAM starting at @var{addr} and extending for @var{length}
26348bytes from there:
26349
26350@smallexample
26351<memory type="ram" start="@var{addr}" length="@var{length}"/>
26352@end smallexample
26353
26354
26355@item
26356A region of read-only memory:
26357
26358@smallexample
26359<memory type="rom" start="@var{addr}" length="@var{length}"/>
26360@end smallexample
26361
26362
26363@item
26364A region of flash memory, with erasure blocks @var{blocksize}
26365bytes in length:
26366
26367@smallexample
26368<memory type="flash" start="@var{addr}" length="@var{length}">
26369 <property name="blocksize">@var{blocksize}</property>
26370</memory>
26371@end smallexample
26372
26373@end itemize
26374
26375Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26376by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26377packets to write to addresses in such ranges.
26378
26379The formal DTD for memory map format is given below:
26380
26381@smallexample
26382<!-- ................................................... -->
26383<!-- Memory Map XML DTD ................................ -->
26384<!-- File: memory-map.dtd .............................. -->
26385<!-- .................................... .............. -->
26386<!-- memory-map.dtd -->
26387<!-- memory-map: Root element with versioning -->
26388<!ELEMENT memory-map (memory | property)>
26389<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26390<!ELEMENT memory (property)>
26391<!-- memory: Specifies a memory region,
26392 and its type, or device. -->
26393<!ATTLIST memory type CDATA #REQUIRED
26394 start CDATA #REQUIRED
26395 length CDATA #REQUIRED
26396 device CDATA #IMPLIED>
26397<!-- property: Generic attribute tag -->
26398<!ELEMENT property (#PCDATA | property)*>
26399<!ATTLIST property name CDATA #REQUIRED>
26400@end smallexample
26401
f418dd93
DJ
26402@include agentexpr.texi
26403
23181151
DJ
26404@node Target Descriptions
26405@appendix Target Descriptions
26406@cindex target descriptions
26407
26408@strong{Warning:} target descriptions are still under active development,
26409and the contents and format may change between @value{GDBN} releases.
26410The format is expected to stabilize in the future.
26411
26412One of the challenges of using @value{GDBN} to debug embedded systems
26413is that there are so many minor variants of each processor
26414architecture in use. It is common practice for vendors to start with
26415a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26416and then make changes to adapt it to a particular market niche. Some
26417architectures have hundreds of variants, available from dozens of
26418vendors. This leads to a number of problems:
26419
26420@itemize @bullet
26421@item
26422With so many different customized processors, it is difficult for
26423the @value{GDBN} maintainers to keep up with the changes.
26424@item
26425Since individual variants may have short lifetimes or limited
26426audiences, it may not be worthwhile to carry information about every
26427variant in the @value{GDBN} source tree.
26428@item
26429When @value{GDBN} does support the architecture of the embedded system
26430at hand, the task of finding the correct architecture name to give the
26431@command{set architecture} command can be error-prone.
26432@end itemize
26433
26434To address these problems, the @value{GDBN} remote protocol allows a
26435target system to not only identify itself to @value{GDBN}, but to
26436actually describe its own features. This lets @value{GDBN} support
26437processor variants it has never seen before --- to the extent that the
26438descriptions are accurate, and that @value{GDBN} understands them.
26439
9cceb671
DJ
26440@value{GDBN} must be linked with the Expat library to support XML
26441target descriptions. @xref{Expat}.
123dc839 26442
23181151
DJ
26443@menu
26444* Retrieving Descriptions:: How descriptions are fetched from a target.
26445* Target Description Format:: The contents of a target description.
123dc839
DJ
26446* Predefined Target Types:: Standard types available for target
26447 descriptions.
26448* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26449@end menu
26450
26451@node Retrieving Descriptions
26452@section Retrieving Descriptions
26453
26454Target descriptions can be read from the target automatically, or
26455specified by the user manually. The default behavior is to read the
26456description from the target. @value{GDBN} retrieves it via the remote
26457protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26458qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26459@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26460XML document, of the form described in @ref{Target Description
26461Format}.
26462
26463Alternatively, you can specify a file to read for the target description.
26464If a file is set, the target will not be queried. The commands to
26465specify a file are:
26466
26467@table @code
26468@cindex set tdesc filename
26469@item set tdesc filename @var{path}
26470Read the target description from @var{path}.
26471
26472@cindex unset tdesc filename
26473@item unset tdesc filename
26474Do not read the XML target description from a file. @value{GDBN}
26475will use the description supplied by the current target.
26476
26477@cindex show tdesc filename
26478@item show tdesc filename
26479Show the filename to read for a target description, if any.
26480@end table
26481
26482
26483@node Target Description Format
26484@section Target Description Format
26485@cindex target descriptions, XML format
26486
26487A target description annex is an @uref{http://www.w3.org/XML/, XML}
26488document which complies with the Document Type Definition provided in
26489the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26490means you can use generally available tools like @command{xmllint} to
26491check that your feature descriptions are well-formed and valid.
26492However, to help people unfamiliar with XML write descriptions for
26493their targets, we also describe the grammar here.
26494
123dc839
DJ
26495Target descriptions can identify the architecture of the remote target
26496and (for some architectures) provide information about custom register
26497sets. @value{GDBN} can use this information to autoconfigure for your
26498target, or to warn you if you connect to an unsupported target.
23181151
DJ
26499
26500Here is a simple target description:
26501
123dc839 26502@smallexample
1780a0ed 26503<target version="1.0">
23181151
DJ
26504 <architecture>i386:x86-64</architecture>
26505</target>
123dc839 26506@end smallexample
23181151
DJ
26507
26508@noindent
26509This minimal description only says that the target uses
26510the x86-64 architecture.
26511
123dc839
DJ
26512A target description has the following overall form, with [ ] marking
26513optional elements and @dots{} marking repeatable elements. The elements
26514are explained further below.
23181151 26515
123dc839 26516@smallexample
23181151
DJ
26517<?xml version="1.0"?>
26518<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26519<target version="1.0">
123dc839
DJ
26520 @r{[}@var{architecture}@r{]}
26521 @r{[}@var{feature}@dots{}@r{]}
23181151 26522</target>
123dc839 26523@end smallexample
23181151
DJ
26524
26525@noindent
26526The description is generally insensitive to whitespace and line
26527breaks, under the usual common-sense rules. The XML version
26528declaration and document type declaration can generally be omitted
26529(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26530useful for XML validation tools. The @samp{version} attribute for
26531@samp{<target>} may also be omitted, but we recommend
26532including it; if future versions of @value{GDBN} use an incompatible
26533revision of @file{gdb-target.dtd}, they will detect and report
26534the version mismatch.
23181151 26535
108546a0
DJ
26536@subsection Inclusion
26537@cindex target descriptions, inclusion
26538@cindex XInclude
26539@ifnotinfo
26540@cindex <xi:include>
26541@end ifnotinfo
26542
26543It can sometimes be valuable to split a target description up into
26544several different annexes, either for organizational purposes, or to
26545share files between different possible target descriptions. You can
26546divide a description into multiple files by replacing any element of
26547the target description with an inclusion directive of the form:
26548
123dc839 26549@smallexample
108546a0 26550<xi:include href="@var{document}"/>
123dc839 26551@end smallexample
108546a0
DJ
26552
26553@noindent
26554When @value{GDBN} encounters an element of this form, it will retrieve
26555the named XML @var{document}, and replace the inclusion directive with
26556the contents of that document. If the current description was read
26557using @samp{qXfer}, then so will be the included document;
26558@var{document} will be interpreted as the name of an annex. If the
26559current description was read from a file, @value{GDBN} will look for
26560@var{document} as a file in the same directory where it found the
26561original description.
26562
123dc839
DJ
26563@subsection Architecture
26564@cindex <architecture>
26565
26566An @samp{<architecture>} element has this form:
26567
26568@smallexample
26569 <architecture>@var{arch}</architecture>
26570@end smallexample
26571
26572@var{arch} is an architecture name from the same selection
26573accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26574Debugging Target}).
26575
26576@subsection Features
26577@cindex <feature>
26578
26579Each @samp{<feature>} describes some logical portion of the target
26580system. Features are currently used to describe available CPU
26581registers and the types of their contents. A @samp{<feature>} element
26582has this form:
26583
26584@smallexample
26585<feature name="@var{name}">
26586 @r{[}@var{type}@dots{}@r{]}
26587 @var{reg}@dots{}
26588</feature>
26589@end smallexample
26590
26591@noindent
26592Each feature's name should be unique within the description. The name
26593of a feature does not matter unless @value{GDBN} has some special
26594knowledge of the contents of that feature; if it does, the feature
26595should have its standard name. @xref{Standard Target Features}.
26596
26597@subsection Types
26598
26599Any register's value is a collection of bits which @value{GDBN} must
26600interpret. The default interpretation is a two's complement integer,
26601but other types can be requested by name in the register description.
26602Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26603Target Types}), and the description can define additional composite types.
26604
26605Each type element must have an @samp{id} attribute, which gives
26606a unique (within the containing @samp{<feature>}) name to the type.
26607Types must be defined before they are used.
26608
26609@cindex <vector>
26610Some targets offer vector registers, which can be treated as arrays
26611of scalar elements. These types are written as @samp{<vector>} elements,
26612specifying the array element type, @var{type}, and the number of elements,
26613@var{count}:
26614
26615@smallexample
26616<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26617@end smallexample
26618
26619@cindex <union>
26620If a register's value is usefully viewed in multiple ways, define it
26621with a union type containing the useful representations. The
26622@samp{<union>} element contains one or more @samp{<field>} elements,
26623each of which has a @var{name} and a @var{type}:
26624
26625@smallexample
26626<union id="@var{id}">
26627 <field name="@var{name}" type="@var{type}"/>
26628 @dots{}
26629</union>
26630@end smallexample
26631
26632@subsection Registers
26633@cindex <reg>
26634
26635Each register is represented as an element with this form:
26636
26637@smallexample
26638<reg name="@var{name}"
26639 bitsize="@var{size}"
26640 @r{[}regnum="@var{num}"@r{]}
26641 @r{[}save-restore="@var{save-restore}"@r{]}
26642 @r{[}type="@var{type}"@r{]}
26643 @r{[}group="@var{group}"@r{]}/>
26644@end smallexample
26645
26646@noindent
26647The components are as follows:
26648
26649@table @var
26650
26651@item name
26652The register's name; it must be unique within the target description.
26653
26654@item bitsize
26655The register's size, in bits.
26656
26657@item regnum
26658The register's number. If omitted, a register's number is one greater
26659than that of the previous register (either in the current feature or in
26660a preceeding feature); the first register in the target description
26661defaults to zero. This register number is used to read or write
26662the register; e.g.@: it is used in the remote @code{p} and @code{P}
26663packets, and registers appear in the @code{g} and @code{G} packets
26664in order of increasing register number.
26665
26666@item save-restore
26667Whether the register should be preserved across inferior function
26668calls; this must be either @code{yes} or @code{no}. The default is
26669@code{yes}, which is appropriate for most registers except for
26670some system control registers; this is not related to the target's
26671ABI.
26672
26673@item type
26674The type of the register. @var{type} may be a predefined type, a type
26675defined in the current feature, or one of the special types @code{int}
26676and @code{float}. @code{int} is an integer type of the correct size
26677for @var{bitsize}, and @code{float} is a floating point type (in the
26678architecture's normal floating point format) of the correct size for
26679@var{bitsize}. The default is @code{int}.
26680
26681@item group
26682The register group to which this register belongs. @var{group} must
26683be either @code{general}, @code{float}, or @code{vector}. If no
26684@var{group} is specified, @value{GDBN} will not display the register
26685in @code{info registers}.
26686
26687@end table
26688
26689@node Predefined Target Types
26690@section Predefined Target Types
26691@cindex target descriptions, predefined types
26692
26693Type definitions in the self-description can build up composite types
26694from basic building blocks, but can not define fundamental types. Instead,
26695standard identifiers are provided by @value{GDBN} for the fundamental
26696types. The currently supported types are:
26697
26698@table @code
26699
26700@item int8
26701@itemx int16
26702@itemx int32
26703@itemx int64
7cc46491 26704@itemx int128
123dc839
DJ
26705Signed integer types holding the specified number of bits.
26706
26707@item uint8
26708@itemx uint16
26709@itemx uint32
26710@itemx uint64
7cc46491 26711@itemx uint128
123dc839
DJ
26712Unsigned integer types holding the specified number of bits.
26713
26714@item code_ptr
26715@itemx data_ptr
26716Pointers to unspecified code and data. The program counter and
26717any dedicated return address register may be marked as code
26718pointers; printing a code pointer converts it into a symbolic
26719address. The stack pointer and any dedicated address registers
26720may be marked as data pointers.
26721
6e3bbd1a
PB
26722@item ieee_single
26723Single precision IEEE floating point.
26724
26725@item ieee_double
26726Double precision IEEE floating point.
26727
123dc839
DJ
26728@item arm_fpa_ext
26729The 12-byte extended precision format used by ARM FPA registers.
26730
26731@end table
26732
26733@node Standard Target Features
26734@section Standard Target Features
26735@cindex target descriptions, standard features
26736
26737A target description must contain either no registers or all the
26738target's registers. If the description contains no registers, then
26739@value{GDBN} will assume a default register layout, selected based on
26740the architecture. If the description contains any registers, the
26741default layout will not be used; the standard registers must be
26742described in the target description, in such a way that @value{GDBN}
26743can recognize them.
26744
26745This is accomplished by giving specific names to feature elements
26746which contain standard registers. @value{GDBN} will look for features
26747with those names and verify that they contain the expected registers;
26748if any known feature is missing required registers, or if any required
26749feature is missing, @value{GDBN} will reject the target
26750description. You can add additional registers to any of the
26751standard features --- @value{GDBN} will display them just as if
26752they were added to an unrecognized feature.
26753
26754This section lists the known features and their expected contents.
26755Sample XML documents for these features are included in the
26756@value{GDBN} source tree, in the directory @file{gdb/features}.
26757
26758Names recognized by @value{GDBN} should include the name of the
26759company or organization which selected the name, and the overall
26760architecture to which the feature applies; so e.g.@: the feature
26761containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26762
ff6f572f
DJ
26763The names of registers are not case sensitive for the purpose
26764of recognizing standard features, but @value{GDBN} will only display
26765registers using the capitalization used in the description.
26766
e9c17194
VP
26767@menu
26768* ARM Features::
26769* M68K Features::
26770@end menu
26771
26772
26773@node ARM Features
123dc839
DJ
26774@subsection ARM Features
26775@cindex target descriptions, ARM features
26776
26777The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26778It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26779@samp{lr}, @samp{pc}, and @samp{cpsr}.
26780
26781The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26782should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26783
ff6f572f
DJ
26784The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26785it should contain at least registers @samp{wR0} through @samp{wR15} and
26786@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26787@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26788
f8b73d13
DJ
26789@subsection MIPS Features
26790@cindex target descriptions, MIPS features
26791
26792The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26793It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26794@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26795on the target.
26796
26797The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26798contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26799registers. They may be 32-bit or 64-bit depending on the target.
26800
26801The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26802it may be optional in a future version of @value{GDBN}. It should
26803contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26804@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26805
822b6570
DJ
26806The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26807contain a single register, @samp{restart}, which is used by the
26808Linux kernel to control restartable syscalls.
26809
e9c17194
VP
26810@node M68K Features
26811@subsection M68K Features
26812@cindex target descriptions, M68K features
26813
26814@table @code
26815@item @samp{org.gnu.gdb.m68k.core}
26816@itemx @samp{org.gnu.gdb.coldfire.core}
26817@itemx @samp{org.gnu.gdb.fido.core}
26818One of those features must be always present.
26819The feature that is present determines which flavor of m86k is
26820used. The feature that is present should contain registers
26821@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26822@samp{sp}, @samp{ps} and @samp{pc}.
26823
26824@item @samp{org.gnu.gdb.coldfire.fp}
26825This feature is optional. If present, it should contain registers
26826@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26827@samp{fpiaddr}.
26828@end table
26829
7cc46491
DJ
26830@subsection PowerPC Features
26831@cindex target descriptions, PowerPC features
26832
26833The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26834targets. It should contain registers @samp{r0} through @samp{r31},
26835@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26836@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26837
26838The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26839contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26840
26841The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26842contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26843and @samp{vrsave}.
26844
26845The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26846contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26847@samp{spefscr}. SPE targets should provide 32-bit registers in
26848@samp{org.gnu.gdb.power.core} and provide the upper halves in
26849@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26850these to present registers @samp{ev0} through @samp{ev31} to the
26851user.
26852
aab4e0ec 26853@include gpl.texi
eb12ee30 26854
2154891a 26855@raisesections
6826cf00 26856@include fdl.texi
2154891a 26857@lowersections
6826cf00 26858
6d2ebf8b 26859@node Index
c906108c
SS
26860@unnumbered Index
26861
26862@printindex cp
26863
26864@tex
26865% I think something like @colophon should be in texinfo. In the
26866% meantime:
26867\long\def\colophon{\hbox to0pt{}\vfill
26868\centerline{The body of this manual is set in}
26869\centerline{\fontname\tenrm,}
26870\centerline{with headings in {\bf\fontname\tenbf}}
26871\centerline{and examples in {\tt\fontname\tentt}.}
26872\centerline{{\it\fontname\tenit\/},}
26873\centerline{{\bf\fontname\tenbf}, and}
26874\centerline{{\sl\fontname\tensl\/}}
26875\centerline{are used for emphasis.}\vfill}
26876\page\colophon
26877% Blame: doc@cygnus.com, 1991.
26878@end tex
26879
c906108c 26880@bye
This page took 2.653898 seconds and 4 git commands to generate.