gdb: Make python display_hint None handling defined behaviour
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
42a4f53d 1@c Copyright (C) 2008-2019 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
774returns @code{gdb.Value} objects corresonding to the values pointed to
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
867@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
868If this @code{gdb.Value} represents a string, then this method
869converts the contents to a Python string. Otherwise, this method will
870throw an exception.
871
b3ce5e5f
DE
872Values are interpreted as strings according to the rules of the
873current language. If the optional length argument is given, the
874string will be converted to that length, and will include any embedded
875zeroes that the string may contain. Otherwise, for languages
876where the string is zero-terminated, the entire string will be
877converted.
329baa95 878
b3ce5e5f
DE
879For example, in C-like languages, a value is a string if it is a pointer
880to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
881or @code{char32_t}.
329baa95
DE
882
883If the optional @var{encoding} argument is given, it must be a string
884naming the encoding of the string in the @code{gdb.Value}, such as
885@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
886the same encodings as the corresponding argument to Python's
887@code{string.decode} method, and the Python codec machinery will be used
888to convert the string. If @var{encoding} is not given, or if
889@var{encoding} is the empty string, then either the @code{target-charset}
890(@pxref{Character Sets}) will be used, or a language-specific encoding
891will be used, if the current language is able to supply one.
892
893The optional @var{errors} argument is the same as the corresponding
894argument to Python's @code{string.decode} method.
895
896If the optional @var{length} argument is given, the string will be
897fetched and converted to the given length.
898@end defun
899
900@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
901If this @code{gdb.Value} represents a string, then this method
902converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
903In Python}). Otherwise, this method will throw an exception.
904
905If the optional @var{encoding} argument is given, it must be a string
906naming the encoding of the @code{gdb.LazyString}. Some examples are:
907@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
908@var{encoding} argument is an encoding that @value{GDBN} does
909recognize, @value{GDBN} will raise an error.
910
911When a lazy string is printed, the @value{GDBN} encoding machinery is
912used to convert the string during printing. If the optional
913@var{encoding} argument is not provided, or is an empty string,
914@value{GDBN} will automatically select the encoding most suitable for
915the string type. For further information on encoding in @value{GDBN}
916please see @ref{Character Sets}.
917
918If the optional @var{length} argument is given, the string will be
919fetched and encoded to the length of characters specified. If
920the @var{length} argument is not provided, the string will be fetched
921and encoded until a null of appropriate width is found.
922@end defun
923
924@defun Value.fetch_lazy ()
925If the @code{gdb.Value} object is currently a lazy value
926(@code{gdb.Value.is_lazy} is @code{True}), then the value is
927fetched from the inferior. Any errors that occur in the process
928will produce a Python exception.
929
930If the @code{gdb.Value} object is not a lazy value, this method
931has no effect.
932
933This method does not return a value.
934@end defun
935
936
937@node Types In Python
938@subsubsection Types In Python
939@cindex types in Python
940@cindex Python, working with types
941
942@tindex gdb.Type
943@value{GDBN} represents types from the inferior using the class
944@code{gdb.Type}.
945
946The following type-related functions are available in the @code{gdb}
947module:
948
949@findex gdb.lookup_type
950@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 951This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
952
953If @var{block} is given, then @var{name} is looked up in that scope.
954Otherwise, it is searched for globally.
955
956Ordinarily, this function will return an instance of @code{gdb.Type}.
957If the named type cannot be found, it will throw an exception.
958@end defun
959
960If the type is a structure or class type, or an enum type, the fields
961of that type can be accessed using the Python @dfn{dictionary syntax}.
962For example, if @code{some_type} is a @code{gdb.Type} instance holding
963a structure type, you can access its @code{foo} field with:
964
965@smallexample
966bar = some_type['foo']
967@end smallexample
968
969@code{bar} will be a @code{gdb.Field} object; see below under the
970description of the @code{Type.fields} method for a description of the
971@code{gdb.Field} class.
972
973An instance of @code{Type} has the following attributes:
974
6d7bb824
TT
975@defvar Type.alignof
976The alignment of this type, in bytes. Type alignment comes from the
977debugging information; if it was not specified, then @value{GDBN} will
978use the relevant ABI to try to determine the alignment. In some
979cases, even this is not possible, and zero will be returned.
980@end defvar
981
329baa95
DE
982@defvar Type.code
983The type code for this type. The type code will be one of the
984@code{TYPE_CODE_} constants defined below.
985@end defvar
986
987@defvar Type.name
988The name of this type. If this type has no name, then @code{None}
989is returned.
990@end defvar
991
992@defvar Type.sizeof
993The size of this type, in target @code{char} units. Usually, a
994target's @code{char} type will be an 8-bit byte. However, on some
995unusual platforms, this type may have a different size.
996@end defvar
997
998@defvar Type.tag
999The tag name for this type. The tag name is the name after
1000@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1001languages have this concept. If this type has no tag name, then
1002@code{None} is returned.
1003@end defvar
1004
1005The following methods are provided:
1006
1007@defun Type.fields ()
1008For structure and union types, this method returns the fields. Range
1009types have two fields, the minimum and maximum values. Enum types
1010have one field per enum constant. Function and method types have one
1011field per parameter. The base types of C@t{++} classes are also
1012represented as fields. If the type has no fields, or does not fit
1013into one of these categories, an empty sequence will be returned.
1014
1015Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1016@table @code
1017@item bitpos
1018This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1019(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1020in bits, from the start of the containing type.
1021
1022@item enumval
1023This attribute is only available for @code{enum} fields, and its value
1024is the enumeration member's integer representation.
1025
1026@item name
1027The name of the field, or @code{None} for anonymous fields.
1028
1029@item artificial
1030This is @code{True} if the field is artificial, usually meaning that
1031it was provided by the compiler and not the user. This attribute is
1032always provided, and is @code{False} if the field is not artificial.
1033
1034@item is_base_class
1035This is @code{True} if the field represents a base class of a C@t{++}
1036structure. This attribute is always provided, and is @code{False}
1037if the field is not a base class of the type that is the argument of
1038@code{fields}, or if that type was not a C@t{++} class.
1039
1040@item bitsize
1041If the field is packed, or is a bitfield, then this will have a
1042non-zero value, which is the size of the field in bits. Otherwise,
1043this will be zero; in this case the field's size is given by its type.
1044
1045@item type
1046The type of the field. This is usually an instance of @code{Type},
1047but it can be @code{None} in some situations.
1048
1049@item parent_type
1050The type which contains this field. This is an instance of
1051@code{gdb.Type}.
1052@end table
1053@end defun
1054
1055@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1056Return a new @code{gdb.Type} object which represents an array of this
1057type. If one argument is given, it is the inclusive upper bound of
1058the array; in this case the lower bound is zero. If two arguments are
1059given, the first argument is the lower bound of the array, and the
1060second argument is the upper bound of the array. An array's length
1061must not be negative, but the bounds can be.
1062@end defun
1063
1064@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1065Return a new @code{gdb.Type} object which represents a vector of this
1066type. If one argument is given, it is the inclusive upper bound of
1067the vector; in this case the lower bound is zero. If two arguments are
1068given, the first argument is the lower bound of the vector, and the
1069second argument is the upper bound of the vector. A vector's length
1070must not be negative, but the bounds can be.
1071
1072The difference between an @code{array} and a @code{vector} is that
1073arrays behave like in C: when used in expressions they decay to a pointer
1074to the first element whereas vectors are treated as first class values.
1075@end defun
1076
1077@defun Type.const ()
1078Return a new @code{gdb.Type} object which represents a
1079@code{const}-qualified variant of this type.
1080@end defun
1081
1082@defun Type.volatile ()
1083Return a new @code{gdb.Type} object which represents a
1084@code{volatile}-qualified variant of this type.
1085@end defun
1086
1087@defun Type.unqualified ()
1088Return a new @code{gdb.Type} object which represents an unqualified
1089variant of this type. That is, the result is neither @code{const} nor
1090@code{volatile}.
1091@end defun
1092
1093@defun Type.range ()
1094Return a Python @code{Tuple} object that contains two elements: the
1095low bound of the argument type and the high bound of that type. If
1096the type does not have a range, @value{GDBN} will raise a
1097@code{gdb.error} exception (@pxref{Exception Handling}).
1098@end defun
1099
1100@defun Type.reference ()
1101Return a new @code{gdb.Type} object which represents a reference to this
1102type.
1103@end defun
1104
1105@defun Type.pointer ()
1106Return a new @code{gdb.Type} object which represents a pointer to this
1107type.
1108@end defun
1109
1110@defun Type.strip_typedefs ()
1111Return a new @code{gdb.Type} that represents the real type,
1112after removing all layers of typedefs.
1113@end defun
1114
1115@defun Type.target ()
1116Return a new @code{gdb.Type} object which represents the target type
1117of this type.
1118
1119For a pointer type, the target type is the type of the pointed-to
1120object. For an array type (meaning C-like arrays), the target type is
1121the type of the elements of the array. For a function or method type,
1122the target type is the type of the return value. For a complex type,
1123the target type is the type of the elements. For a typedef, the
1124target type is the aliased type.
1125
1126If the type does not have a target, this method will throw an
1127exception.
1128@end defun
1129
1130@defun Type.template_argument (n @r{[}, block@r{]})
1131If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1132return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1133value of the @var{n}th template argument (indexed starting at 0).
329baa95 1134
1a6a384b
JL
1135If this @code{gdb.Type} is not a template type, or if the type has fewer
1136than @var{n} template arguments, this will throw an exception.
1137Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1138
1139If @var{block} is given, then @var{name} is looked up in that scope.
1140Otherwise, it is searched for globally.
1141@end defun
1142
59fb7612
SS
1143@defun Type.optimized_out ()
1144Return @code{gdb.Value} instance of this type whose value is optimized
1145out. This allows a frame decorator to indicate that the value of an
1146argument or a local variable is not known.
1147@end defun
329baa95
DE
1148
1149Each type has a code, which indicates what category this type falls
1150into. The available type categories are represented by constants
1151defined in the @code{gdb} module:
1152
b3ce5e5f
DE
1153@vtable @code
1154@vindex TYPE_CODE_PTR
329baa95
DE
1155@item gdb.TYPE_CODE_PTR
1156The type is a pointer.
1157
b3ce5e5f 1158@vindex TYPE_CODE_ARRAY
329baa95
DE
1159@item gdb.TYPE_CODE_ARRAY
1160The type is an array.
1161
b3ce5e5f 1162@vindex TYPE_CODE_STRUCT
329baa95
DE
1163@item gdb.TYPE_CODE_STRUCT
1164The type is a structure.
1165
b3ce5e5f 1166@vindex TYPE_CODE_UNION
329baa95
DE
1167@item gdb.TYPE_CODE_UNION
1168The type is a union.
1169
b3ce5e5f 1170@vindex TYPE_CODE_ENUM
329baa95
DE
1171@item gdb.TYPE_CODE_ENUM
1172The type is an enum.
1173
b3ce5e5f 1174@vindex TYPE_CODE_FLAGS
329baa95
DE
1175@item gdb.TYPE_CODE_FLAGS
1176A bit flags type, used for things such as status registers.
1177
b3ce5e5f 1178@vindex TYPE_CODE_FUNC
329baa95
DE
1179@item gdb.TYPE_CODE_FUNC
1180The type is a function.
1181
b3ce5e5f 1182@vindex TYPE_CODE_INT
329baa95
DE
1183@item gdb.TYPE_CODE_INT
1184The type is an integer type.
1185
b3ce5e5f 1186@vindex TYPE_CODE_FLT
329baa95
DE
1187@item gdb.TYPE_CODE_FLT
1188A floating point type.
1189
b3ce5e5f 1190@vindex TYPE_CODE_VOID
329baa95
DE
1191@item gdb.TYPE_CODE_VOID
1192The special type @code{void}.
1193
b3ce5e5f 1194@vindex TYPE_CODE_SET
329baa95
DE
1195@item gdb.TYPE_CODE_SET
1196A Pascal set type.
1197
b3ce5e5f 1198@vindex TYPE_CODE_RANGE
329baa95
DE
1199@item gdb.TYPE_CODE_RANGE
1200A range type, that is, an integer type with bounds.
1201
b3ce5e5f 1202@vindex TYPE_CODE_STRING
329baa95
DE
1203@item gdb.TYPE_CODE_STRING
1204A string type. Note that this is only used for certain languages with
1205language-defined string types; C strings are not represented this way.
1206
b3ce5e5f 1207@vindex TYPE_CODE_BITSTRING
329baa95
DE
1208@item gdb.TYPE_CODE_BITSTRING
1209A string of bits. It is deprecated.
1210
b3ce5e5f 1211@vindex TYPE_CODE_ERROR
329baa95
DE
1212@item gdb.TYPE_CODE_ERROR
1213An unknown or erroneous type.
1214
b3ce5e5f 1215@vindex TYPE_CODE_METHOD
329baa95 1216@item gdb.TYPE_CODE_METHOD
9c37b5ae 1217A method type, as found in C@t{++}.
329baa95 1218
b3ce5e5f 1219@vindex TYPE_CODE_METHODPTR
329baa95
DE
1220@item gdb.TYPE_CODE_METHODPTR
1221A pointer-to-member-function.
1222
b3ce5e5f 1223@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1224@item gdb.TYPE_CODE_MEMBERPTR
1225A pointer-to-member.
1226
b3ce5e5f 1227@vindex TYPE_CODE_REF
329baa95
DE
1228@item gdb.TYPE_CODE_REF
1229A reference type.
1230
3fcf899d
AV
1231@vindex TYPE_CODE_RVALUE_REF
1232@item gdb.TYPE_CODE_RVALUE_REF
1233A C@t{++}11 rvalue reference type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_CHAR
329baa95
DE
1236@item gdb.TYPE_CODE_CHAR
1237A character type.
1238
b3ce5e5f 1239@vindex TYPE_CODE_BOOL
329baa95
DE
1240@item gdb.TYPE_CODE_BOOL
1241A boolean type.
1242
b3ce5e5f 1243@vindex TYPE_CODE_COMPLEX
329baa95
DE
1244@item gdb.TYPE_CODE_COMPLEX
1245A complex float type.
1246
b3ce5e5f 1247@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1248@item gdb.TYPE_CODE_TYPEDEF
1249A typedef to some other type.
1250
b3ce5e5f 1251@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1252@item gdb.TYPE_CODE_NAMESPACE
1253A C@t{++} namespace.
1254
b3ce5e5f 1255@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1256@item gdb.TYPE_CODE_DECFLOAT
1257A decimal floating point type.
1258
b3ce5e5f 1259@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1260@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1261A function internal to @value{GDBN}. This is the type used to represent
1262convenience functions.
b3ce5e5f 1263@end vtable
329baa95
DE
1264
1265Further support for types is provided in the @code{gdb.types}
1266Python module (@pxref{gdb.types}).
1267
1268@node Pretty Printing API
1269@subsubsection Pretty Printing API
b3ce5e5f 1270@cindex python pretty printing api
329baa95 1271
329baa95 1272A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1273specific interface, defined here. An example output is provided
1274(@pxref{Pretty Printing}).
329baa95
DE
1275
1276@defun pretty_printer.children (self)
1277@value{GDBN} will call this method on a pretty-printer to compute the
1278children of the pretty-printer's value.
1279
1280This method must return an object conforming to the Python iterator
1281protocol. Each item returned by the iterator must be a tuple holding
1282two elements. The first element is the ``name'' of the child; the
1283second element is the child's value. The value can be any Python
1284object which is convertible to a @value{GDBN} value.
1285
1286This method is optional. If it does not exist, @value{GDBN} will act
1287as though the value has no children.
1288@end defun
1289
1290@defun pretty_printer.display_hint (self)
1291The CLI may call this method and use its result to change the
1292formatting of a value. The result will also be supplied to an MI
1293consumer as a @samp{displayhint} attribute of the variable being
1294printed.
1295
1296This method is optional. If it does exist, this method must return a
9f9aa852 1297string or the special value @code{None}.
329baa95
DE
1298
1299Some display hints are predefined by @value{GDBN}:
1300
1301@table @samp
1302@item array
1303Indicate that the object being printed is ``array-like''. The CLI
1304uses this to respect parameters such as @code{set print elements} and
1305@code{set print array}.
1306
1307@item map
1308Indicate that the object being printed is ``map-like'', and that the
1309children of this value can be assumed to alternate between keys and
1310values.
1311
1312@item string
1313Indicate that the object being printed is ``string-like''. If the
1314printer's @code{to_string} method returns a Python string of some
1315kind, then @value{GDBN} will call its internal language-specific
1316string-printing function to format the string. For the CLI this means
1317adding quotation marks, possibly escaping some characters, respecting
1318@code{set print elements}, and the like.
1319@end table
9f9aa852
AB
1320
1321The special value @code{None} causes @value{GDBN} to apply the default
1322display rules.
329baa95
DE
1323@end defun
1324
1325@defun pretty_printer.to_string (self)
1326@value{GDBN} will call this method to display the string
1327representation of the value passed to the object's constructor.
1328
1329When printing from the CLI, if the @code{to_string} method exists,
1330then @value{GDBN} will prepend its result to the values returned by
1331@code{children}. Exactly how this formatting is done is dependent on
1332the display hint, and may change as more hints are added. Also,
1333depending on the print settings (@pxref{Print Settings}), the CLI may
1334print just the result of @code{to_string} in a stack trace, omitting
1335the result of @code{children}.
1336
1337If this method returns a string, it is printed verbatim.
1338
1339Otherwise, if this method returns an instance of @code{gdb.Value},
1340then @value{GDBN} prints this value. This may result in a call to
1341another pretty-printer.
1342
1343If instead the method returns a Python value which is convertible to a
1344@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1345the resulting value. Again, this may result in a call to another
1346pretty-printer. Python scalars (integers, floats, and booleans) and
1347strings are convertible to @code{gdb.Value}; other types are not.
1348
1349Finally, if this method returns @code{None} then no further operations
1350are peformed in this method and nothing is printed.
1351
1352If the result is not one of these types, an exception is raised.
1353@end defun
1354
1355@value{GDBN} provides a function which can be used to look up the
1356default pretty-printer for a @code{gdb.Value}:
1357
1358@findex gdb.default_visualizer
1359@defun gdb.default_visualizer (value)
1360This function takes a @code{gdb.Value} object as an argument. If a
1361pretty-printer for this value exists, then it is returned. If no such
1362printer exists, then this returns @code{None}.
1363@end defun
1364
1365@node Selecting Pretty-Printers
1366@subsubsection Selecting Pretty-Printers
b3ce5e5f 1367@cindex selecting python pretty-printers
329baa95 1368
48869a5f
TT
1369@value{GDBN} provides several ways to register a pretty-printer:
1370globally, per program space, and per objfile. When choosing how to
1371register your pretty-printer, a good rule is to register it with the
1372smallest scope possible: that is prefer a specific objfile first, then
1373a program space, and only register a printer globally as a last
1374resort.
1375
1376@findex gdb.pretty_printers
1377@defvar gdb.pretty_printers
329baa95
DE
1378The Python list @code{gdb.pretty_printers} contains an array of
1379functions or callable objects that have been registered via addition
1380as a pretty-printer. Printers in this list are called @code{global}
1381printers, they're available when debugging all inferiors.
48869a5f
TT
1382@end defvar
1383
329baa95
DE
1384Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1385Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1386attribute.
1387
1388Each function on these lists is passed a single @code{gdb.Value}
1389argument and should return a pretty-printer object conforming to the
1390interface definition above (@pxref{Pretty Printing API}). If a function
1391cannot create a pretty-printer for the value, it should return
1392@code{None}.
1393
1394@value{GDBN} first checks the @code{pretty_printers} attribute of each
1395@code{gdb.Objfile} in the current program space and iteratively calls
1396each enabled lookup routine in the list for that @code{gdb.Objfile}
1397until it receives a pretty-printer object.
1398If no pretty-printer is found in the objfile lists, @value{GDBN} then
1399searches the pretty-printer list of the current program space,
1400calling each enabled function until an object is returned.
1401After these lists have been exhausted, it tries the global
1402@code{gdb.pretty_printers} list, again calling each enabled function until an
1403object is returned.
1404
1405The order in which the objfiles are searched is not specified. For a
1406given list, functions are always invoked from the head of the list,
1407and iterated over sequentially until the end of the list, or a printer
1408object is returned.
1409
1410For various reasons a pretty-printer may not work.
1411For example, the underlying data structure may have changed and
1412the pretty-printer is out of date.
1413
1414The consequences of a broken pretty-printer are severe enough that
1415@value{GDBN} provides support for enabling and disabling individual
1416printers. For example, if @code{print frame-arguments} is on,
1417a backtrace can become highly illegible if any argument is printed
1418with a broken printer.
1419
1420Pretty-printers are enabled and disabled by attaching an @code{enabled}
1421attribute to the registered function or callable object. If this attribute
1422is present and its value is @code{False}, the printer is disabled, otherwise
1423the printer is enabled.
1424
1425@node Writing a Pretty-Printer
1426@subsubsection Writing a Pretty-Printer
1427@cindex writing a pretty-printer
1428
1429A pretty-printer consists of two parts: a lookup function to detect
1430if the type is supported, and the printer itself.
1431
1432Here is an example showing how a @code{std::string} printer might be
1433written. @xref{Pretty Printing API}, for details on the API this class
1434must provide.
1435
1436@smallexample
1437class StdStringPrinter(object):
1438 "Print a std::string"
1439
1440 def __init__(self, val):
1441 self.val = val
1442
1443 def to_string(self):
1444 return self.val['_M_dataplus']['_M_p']
1445
1446 def display_hint(self):
1447 return 'string'
1448@end smallexample
1449
1450And here is an example showing how a lookup function for the printer
1451example above might be written.
1452
1453@smallexample
1454def str_lookup_function(val):
1455 lookup_tag = val.type.tag
1456 if lookup_tag == None:
1457 return None
1458 regex = re.compile("^std::basic_string<char,.*>$")
1459 if regex.match(lookup_tag):
1460 return StdStringPrinter(val)
1461 return None
1462@end smallexample
1463
1464The example lookup function extracts the value's type, and attempts to
1465match it to a type that it can pretty-print. If it is a type the
1466printer can pretty-print, it will return a printer object. If not, it
1467returns @code{None}.
1468
1469We recommend that you put your core pretty-printers into a Python
1470package. If your pretty-printers are for use with a library, we
1471further recommend embedding a version number into the package name.
1472This practice will enable @value{GDBN} to load multiple versions of
1473your pretty-printers at the same time, because they will have
1474different names.
1475
1476You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1477can be evaluated multiple times without changing its meaning. An
1478ideal auto-load file will consist solely of @code{import}s of your
1479printer modules, followed by a call to a register pretty-printers with
1480the current objfile.
1481
1482Taken as a whole, this approach will scale nicely to multiple
1483inferiors, each potentially using a different library version.
1484Embedding a version number in the Python package name will ensure that
1485@value{GDBN} is able to load both sets of printers simultaneously.
1486Then, because the search for pretty-printers is done by objfile, and
1487because your auto-loaded code took care to register your library's
1488printers with a specific objfile, @value{GDBN} will find the correct
1489printers for the specific version of the library used by each
1490inferior.
1491
1492To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1493this code might appear in @code{gdb.libstdcxx.v6}:
1494
1495@smallexample
1496def register_printers(objfile):
1497 objfile.pretty_printers.append(str_lookup_function)
1498@end smallexample
1499
1500@noindent
1501And then the corresponding contents of the auto-load file would be:
1502
1503@smallexample
1504import gdb.libstdcxx.v6
1505gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1506@end smallexample
1507
1508The previous example illustrates a basic pretty-printer.
1509There are a few things that can be improved on.
1510The printer doesn't have a name, making it hard to identify in a
1511list of installed printers. The lookup function has a name, but
1512lookup functions can have arbitrary, even identical, names.
1513
1514Second, the printer only handles one type, whereas a library typically has
1515several types. One could install a lookup function for each desired type
1516in the library, but one could also have a single lookup function recognize
1517several types. The latter is the conventional way this is handled.
1518If a pretty-printer can handle multiple data types, then its
1519@dfn{subprinters} are the printers for the individual data types.
1520
1521The @code{gdb.printing} module provides a formal way of solving these
1522problems (@pxref{gdb.printing}).
1523Here is another example that handles multiple types.
1524
1525These are the types we are going to pretty-print:
1526
1527@smallexample
1528struct foo @{ int a, b; @};
1529struct bar @{ struct foo x, y; @};
1530@end smallexample
1531
1532Here are the printers:
1533
1534@smallexample
1535class fooPrinter:
1536 """Print a foo object."""
1537
1538 def __init__(self, val):
1539 self.val = val
1540
1541 def to_string(self):
1542 return ("a=<" + str(self.val["a"]) +
1543 "> b=<" + str(self.val["b"]) + ">")
1544
1545class barPrinter:
1546 """Print a bar object."""
1547
1548 def __init__(self, val):
1549 self.val = val
1550
1551 def to_string(self):
1552 return ("x=<" + str(self.val["x"]) +
1553 "> y=<" + str(self.val["y"]) + ">")
1554@end smallexample
1555
1556This example doesn't need a lookup function, that is handled by the
1557@code{gdb.printing} module. Instead a function is provided to build up
1558the object that handles the lookup.
1559
1560@smallexample
1561import gdb.printing
1562
1563def build_pretty_printer():
1564 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1565 "my_library")
1566 pp.add_printer('foo', '^foo$', fooPrinter)
1567 pp.add_printer('bar', '^bar$', barPrinter)
1568 return pp
1569@end smallexample
1570
1571And here is the autoload support:
1572
1573@smallexample
1574import gdb.printing
1575import my_library
1576gdb.printing.register_pretty_printer(
1577 gdb.current_objfile(),
1578 my_library.build_pretty_printer())
1579@end smallexample
1580
1581Finally, when this printer is loaded into @value{GDBN}, here is the
1582corresponding output of @samp{info pretty-printer}:
1583
1584@smallexample
1585(gdb) info pretty-printer
1586my_library.so:
1587 my_library
1588 foo
1589 bar
1590@end smallexample
1591
1592@node Type Printing API
1593@subsubsection Type Printing API
1594@cindex type printing API for Python
1595
1596@value{GDBN} provides a way for Python code to customize type display.
1597This is mainly useful for substituting canonical typedef names for
1598types.
1599
1600@cindex type printer
1601A @dfn{type printer} is just a Python object conforming to a certain
1602protocol. A simple base class implementing the protocol is provided;
1603see @ref{gdb.types}. A type printer must supply at least:
1604
1605@defivar type_printer enabled
1606A boolean which is True if the printer is enabled, and False
1607otherwise. This is manipulated by the @code{enable type-printer}
1608and @code{disable type-printer} commands.
1609@end defivar
1610
1611@defivar type_printer name
1612The name of the type printer. This must be a string. This is used by
1613the @code{enable type-printer} and @code{disable type-printer}
1614commands.
1615@end defivar
1616
1617@defmethod type_printer instantiate (self)
1618This is called by @value{GDBN} at the start of type-printing. It is
1619only called if the type printer is enabled. This method must return a
1620new object that supplies a @code{recognize} method, as described below.
1621@end defmethod
1622
1623
1624When displaying a type, say via the @code{ptype} command, @value{GDBN}
1625will compute a list of type recognizers. This is done by iterating
1626first over the per-objfile type printers (@pxref{Objfiles In Python}),
1627followed by the per-progspace type printers (@pxref{Progspaces In
1628Python}), and finally the global type printers.
1629
1630@value{GDBN} will call the @code{instantiate} method of each enabled
1631type printer. If this method returns @code{None}, then the result is
1632ignored; otherwise, it is appended to the list of recognizers.
1633
1634Then, when @value{GDBN} is going to display a type name, it iterates
1635over the list of recognizers. For each one, it calls the recognition
1636function, stopping if the function returns a non-@code{None} value.
1637The recognition function is defined as:
1638
1639@defmethod type_recognizer recognize (self, type)
1640If @var{type} is not recognized, return @code{None}. Otherwise,
1641return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1642The @var{type} argument will be an instance of @code{gdb.Type}
1643(@pxref{Types In Python}).
329baa95
DE
1644@end defmethod
1645
1646@value{GDBN} uses this two-pass approach so that type printers can
1647efficiently cache information without holding on to it too long. For
1648example, it can be convenient to look up type information in a type
1649printer and hold it for a recognizer's lifetime; if a single pass were
1650done then type printers would have to make use of the event system in
1651order to avoid holding information that could become stale as the
1652inferior changed.
1653
1654@node Frame Filter API
521b499b 1655@subsubsection Filtering Frames
329baa95
DE
1656@cindex frame filters api
1657
1658Frame filters are Python objects that manipulate the visibility of a
1659frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1660@value{GDBN}.
1661
1662Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1663commands (@pxref{GDB/MI}), those that return a collection of frames
1664are affected. The commands that work with frame filters are:
1665
1666@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1667@code{-stack-list-frames}
1668(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1669@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1670-stack-list-variables command}), @code{-stack-list-arguments}
1671@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1672@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1673-stack-list-locals command}).
1674
1675A frame filter works by taking an iterator as an argument, applying
1676actions to the contents of that iterator, and returning another
1677iterator (or, possibly, the same iterator it was provided in the case
1678where the filter does not perform any operations). Typically, frame
1679filters utilize tools such as the Python's @code{itertools} module to
1680work with and create new iterators from the source iterator.
1681Regardless of how a filter chooses to apply actions, it must not alter
1682the underlying @value{GDBN} frame or frames, or attempt to alter the
1683call-stack within @value{GDBN}. This preserves data integrity within
1684@value{GDBN}. Frame filters are executed on a priority basis and care
1685should be taken that some frame filters may have been executed before,
1686and that some frame filters will be executed after.
1687
1688An important consideration when designing frame filters, and well
1689worth reflecting upon, is that frame filters should avoid unwinding
1690the call stack if possible. Some stacks can run very deep, into the
1691tens of thousands in some cases. To search every frame when a frame
1692filter executes may be too expensive at that step. The frame filter
1693cannot know how many frames it has to iterate over, and it may have to
1694iterate through them all. This ends up duplicating effort as
1695@value{GDBN} performs this iteration when it prints the frames. If
1696the filter can defer unwinding frames until frame decorators are
1697executed, after the last filter has executed, it should. @xref{Frame
1698Decorator API}, for more information on decorators. Also, there are
1699examples for both frame decorators and filters in later chapters.
1700@xref{Writing a Frame Filter}, for more information.
1701
1702The Python dictionary @code{gdb.frame_filters} contains key/object
1703pairings that comprise a frame filter. Frame filters in this
1704dictionary are called @code{global} frame filters, and they are
1705available when debugging all inferiors. These frame filters must
1706register with the dictionary directly. In addition to the
1707@code{global} dictionary, there are other dictionaries that are loaded
1708with different inferiors via auto-loading (@pxref{Python
1709Auto-loading}). The two other areas where frame filter dictionaries
1710can be found are: @code{gdb.Progspace} which contains a
1711@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1712object which also contains a @code{frame_filters} dictionary
1713attribute.
1714
1715When a command is executed from @value{GDBN} that is compatible with
1716frame filters, @value{GDBN} combines the @code{global},
1717@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1718loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1719several frames, and thus several object files, might be in use.
1720@value{GDBN} then prunes any frame filter whose @code{enabled}
1721attribute is @code{False}. This pruned list is then sorted according
1722to the @code{priority} attribute in each filter.
1723
1724Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1725creates an iterator which wraps each frame in the call stack in a
1726@code{FrameDecorator} object, and calls each filter in order. The
1727output from the previous filter will always be the input to the next
1728filter, and so on.
1729
1730Frame filters have a mandatory interface which each frame filter must
1731implement, defined here:
1732
1733@defun FrameFilter.filter (iterator)
1734@value{GDBN} will call this method on a frame filter when it has
1735reached the order in the priority list for that filter.
1736
1737For example, if there are four frame filters:
1738
1739@smallexample
1740Name Priority
1741
1742Filter1 5
1743Filter2 10
1744Filter3 100
1745Filter4 1
1746@end smallexample
1747
1748The order that the frame filters will be called is:
1749
1750@smallexample
1751Filter3 -> Filter2 -> Filter1 -> Filter4
1752@end smallexample
1753
1754Note that the output from @code{Filter3} is passed to the input of
1755@code{Filter2}, and so on.
1756
1757This @code{filter} method is passed a Python iterator. This iterator
1758contains a sequence of frame decorators that wrap each
1759@code{gdb.Frame}, or a frame decorator that wraps another frame
1760decorator. The first filter that is executed in the sequence of frame
1761filters will receive an iterator entirely comprised of default
1762@code{FrameDecorator} objects. However, after each frame filter is
1763executed, the previous frame filter may have wrapped some or all of
1764the frame decorators with their own frame decorator. As frame
1765decorators must also conform to a mandatory interface, these
1766decorators can be assumed to act in a uniform manner (@pxref{Frame
1767Decorator API}).
1768
1769This method must return an object conforming to the Python iterator
1770protocol. Each item in the iterator must be an object conforming to
1771the frame decorator interface. If a frame filter does not wish to
1772perform any operations on this iterator, it should return that
1773iterator untouched.
1774
1775This method is not optional. If it does not exist, @value{GDBN} will
1776raise and print an error.
1777@end defun
1778
1779@defvar FrameFilter.name
1780The @code{name} attribute must be Python string which contains the
1781name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1782Management}). This attribute may contain any combination of letters
1783or numbers. Care should be taken to ensure that it is unique. This
1784attribute is mandatory.
1785@end defvar
1786
1787@defvar FrameFilter.enabled
1788The @code{enabled} attribute must be Python boolean. This attribute
1789indicates to @value{GDBN} whether the frame filter is enabled, and
1790should be considered when frame filters are executed. If
1791@code{enabled} is @code{True}, then the frame filter will be executed
1792when any of the backtrace commands detailed earlier in this chapter
1793are executed. If @code{enabled} is @code{False}, then the frame
1794filter will not be executed. This attribute is mandatory.
1795@end defvar
1796
1797@defvar FrameFilter.priority
1798The @code{priority} attribute must be Python integer. This attribute
1799controls the order of execution in relation to other frame filters.
1800There are no imposed limits on the range of @code{priority} other than
1801it must be a valid integer. The higher the @code{priority} attribute,
1802the sooner the frame filter will be executed in relation to other
1803frame filters. Although @code{priority} can be negative, it is
1804recommended practice to assume zero is the lowest priority that a
1805frame filter can be assigned. Frame filters that have the same
1806priority are executed in unsorted order in that priority slot. This
521b499b 1807attribute is mandatory. 100 is a good default priority.
329baa95
DE
1808@end defvar
1809
1810@node Frame Decorator API
521b499b 1811@subsubsection Decorating Frames
329baa95
DE
1812@cindex frame decorator api
1813
1814Frame decorators are sister objects to frame filters (@pxref{Frame
1815Filter API}). Frame decorators are applied by a frame filter and can
1816only be used in conjunction with frame filters.
1817
1818The purpose of a frame decorator is to customize the printed content
1819of each @code{gdb.Frame} in commands where frame filters are executed.
1820This concept is called decorating a frame. Frame decorators decorate
1821a @code{gdb.Frame} with Python code contained within each API call.
1822This separates the actual data contained in a @code{gdb.Frame} from
1823the decorated data produced by a frame decorator. This abstraction is
1824necessary to maintain integrity of the data contained in each
1825@code{gdb.Frame}.
1826
1827Frame decorators have a mandatory interface, defined below.
1828
1829@value{GDBN} already contains a frame decorator called
1830@code{FrameDecorator}. This contains substantial amounts of
1831boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1832recommended that other frame decorators inherit and extend this
1833object, and only to override the methods needed.
1834
521b499b
TT
1835@tindex gdb.FrameDecorator
1836@code{FrameDecorator} is defined in the Python module
1837@code{gdb.FrameDecorator}, so your code can import it like:
1838@smallexample
1839from gdb.FrameDecorator import FrameDecorator
1840@end smallexample
1841
329baa95
DE
1842@defun FrameDecorator.elided (self)
1843
1844The @code{elided} method groups frames together in a hierarchical
1845system. An example would be an interpreter, where multiple low-level
1846frames make up a single call in the interpreted language. In this
1847example, the frame filter would elide the low-level frames and present
1848a single high-level frame, representing the call in the interpreted
1849language, to the user.
1850
1851The @code{elided} function must return an iterable and this iterable
1852must contain the frames that are being elided wrapped in a suitable
1853frame decorator. If no frames are being elided this function may
1854return an empty iterable, or @code{None}. Elided frames are indented
1855from normal frames in a @code{CLI} backtrace, or in the case of
1856@code{GDB/MI}, are placed in the @code{children} field of the eliding
1857frame.
1858
1859It is the frame filter's task to also filter out the elided frames from
1860the source iterator. This will avoid printing the frame twice.
1861@end defun
1862
1863@defun FrameDecorator.function (self)
1864
1865This method returns the name of the function in the frame that is to
1866be printed.
1867
1868This method must return a Python string describing the function, or
1869@code{None}.
1870
1871If this function returns @code{None}, @value{GDBN} will not print any
1872data for this field.
1873@end defun
1874
1875@defun FrameDecorator.address (self)
1876
1877This method returns the address of the frame that is to be printed.
1878
1879This method must return a Python numeric integer type of sufficient
1880size to describe the address of the frame, or @code{None}.
1881
1882If this function returns a @code{None}, @value{GDBN} will not print
1883any data for this field.
1884@end defun
1885
1886@defun FrameDecorator.filename (self)
1887
1888This method returns the filename and path associated with this frame.
1889
1890This method must return a Python string containing the filename and
1891the path to the object file backing the frame, or @code{None}.
1892
1893If this function returns a @code{None}, @value{GDBN} will not print
1894any data for this field.
1895@end defun
1896
1897@defun FrameDecorator.line (self):
1898
1899This method returns the line number associated with the current
1900position within the function addressed by this frame.
1901
1902This method must return a Python integer type, or @code{None}.
1903
1904If this function returns a @code{None}, @value{GDBN} will not print
1905any data for this field.
1906@end defun
1907
1908@defun FrameDecorator.frame_args (self)
1909@anchor{frame_args}
1910
1911This method must return an iterable, or @code{None}. Returning an
1912empty iterable, or @code{None} means frame arguments will not be
1913printed for this frame. This iterable must contain objects that
1914implement two methods, described here.
1915
1916This object must implement a @code{argument} method which takes a
1917single @code{self} parameter and must return a @code{gdb.Symbol}
1918(@pxref{Symbols In Python}), or a Python string. The object must also
1919implement a @code{value} method which takes a single @code{self}
1920parameter and must return a @code{gdb.Value} (@pxref{Values From
1921Inferior}), a Python value, or @code{None}. If the @code{value}
1922method returns @code{None}, and the @code{argument} method returns a
1923@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1924the @code{gdb.Symbol} automatically.
1925
1926A brief example:
1927
1928@smallexample
1929class SymValueWrapper():
1930
1931 def __init__(self, symbol, value):
1932 self.sym = symbol
1933 self.val = value
1934
1935 def value(self):
1936 return self.val
1937
1938 def symbol(self):
1939 return self.sym
1940
1941class SomeFrameDecorator()
1942...
1943...
1944 def frame_args(self):
1945 args = []
1946 try:
1947 block = self.inferior_frame.block()
1948 except:
1949 return None
1950
1951 # Iterate over all symbols in a block. Only add
1952 # symbols that are arguments.
1953 for sym in block:
1954 if not sym.is_argument:
1955 continue
1956 args.append(SymValueWrapper(sym,None))
1957
1958 # Add example synthetic argument.
1959 args.append(SymValueWrapper(``foo'', 42))
1960
1961 return args
1962@end smallexample
1963@end defun
1964
1965@defun FrameDecorator.frame_locals (self)
1966
1967This method must return an iterable or @code{None}. Returning an
1968empty iterable, or @code{None} means frame local arguments will not be
1969printed for this frame.
1970
1971The object interface, the description of the various strategies for
1972reading frame locals, and the example are largely similar to those
1973described in the @code{frame_args} function, (@pxref{frame_args,,The
1974frame filter frame_args function}). Below is a modified example:
1975
1976@smallexample
1977class SomeFrameDecorator()
1978...
1979...
1980 def frame_locals(self):
1981 vars = []
1982 try:
1983 block = self.inferior_frame.block()
1984 except:
1985 return None
1986
1987 # Iterate over all symbols in a block. Add all
1988 # symbols, except arguments.
1989 for sym in block:
1990 if sym.is_argument:
1991 continue
1992 vars.append(SymValueWrapper(sym,None))
1993
1994 # Add an example of a synthetic local variable.
1995 vars.append(SymValueWrapper(``bar'', 99))
1996
1997 return vars
1998@end smallexample
1999@end defun
2000
2001@defun FrameDecorator.inferior_frame (self):
2002
2003This method must return the underlying @code{gdb.Frame} that this
2004frame decorator is decorating. @value{GDBN} requires the underlying
2005frame for internal frame information to determine how to print certain
2006values when printing a frame.
2007@end defun
2008
2009@node Writing a Frame Filter
2010@subsubsection Writing a Frame Filter
2011@cindex writing a frame filter
2012
2013There are three basic elements that a frame filter must implement: it
2014must correctly implement the documented interface (@pxref{Frame Filter
2015API}), it must register itself with @value{GDBN}, and finally, it must
2016decide if it is to work on the data provided by @value{GDBN}. In all
2017cases, whether it works on the iterator or not, each frame filter must
2018return an iterator. A bare-bones frame filter follows the pattern in
2019the following example.
2020
2021@smallexample
2022import gdb
2023
2024class FrameFilter():
2025
2026 def __init__(self):
2027 # Frame filter attribute creation.
2028 #
2029 # 'name' is the name of the filter that GDB will display.
2030 #
2031 # 'priority' is the priority of the filter relative to other
2032 # filters.
2033 #
2034 # 'enabled' is a boolean that indicates whether this filter is
2035 # enabled and should be executed.
2036
2037 self.name = "Foo"
2038 self.priority = 100
2039 self.enabled = True
2040
2041 # Register this frame filter with the global frame_filters
2042 # dictionary.
2043 gdb.frame_filters[self.name] = self
2044
2045 def filter(self, frame_iter):
2046 # Just return the iterator.
2047 return frame_iter
2048@end smallexample
2049
2050The frame filter in the example above implements the three
2051requirements for all frame filters. It implements the API, self
2052registers, and makes a decision on the iterator (in this case, it just
2053returns the iterator untouched).
2054
2055The first step is attribute creation and assignment, and as shown in
2056the comments the filter assigns the following attributes: @code{name},
2057@code{priority} and whether the filter should be enabled with the
2058@code{enabled} attribute.
2059
2060The second step is registering the frame filter with the dictionary or
2061dictionaries that the frame filter has interest in. As shown in the
2062comments, this filter just registers itself with the global dictionary
2063@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2064is a dictionary that is initialized in the @code{gdb} module when
2065@value{GDBN} starts. What dictionary a filter registers with is an
2066important consideration. Generally, if a filter is specific to a set
2067of code, it should be registered either in the @code{objfile} or
2068@code{progspace} dictionaries as they are specific to the program
2069currently loaded in @value{GDBN}. The global dictionary is always
2070present in @value{GDBN} and is never unloaded. Any filters registered
2071with the global dictionary will exist until @value{GDBN} exits. To
2072avoid filters that may conflict, it is generally better to register
2073frame filters against the dictionaries that more closely align with
2074the usage of the filter currently in question. @xref{Python
2075Auto-loading}, for further information on auto-loading Python scripts.
2076
2077@value{GDBN} takes a hands-off approach to frame filter registration,
2078therefore it is the frame filter's responsibility to ensure
2079registration has occurred, and that any exceptions are handled
2080appropriately. In particular, you may wish to handle exceptions
2081relating to Python dictionary key uniqueness. It is mandatory that
2082the dictionary key is the same as frame filter's @code{name}
2083attribute. When a user manages frame filters (@pxref{Frame Filter
2084Management}), the names @value{GDBN} will display are those contained
2085in the @code{name} attribute.
2086
2087The final step of this example is the implementation of the
2088@code{filter} method. As shown in the example comments, we define the
2089@code{filter} method and note that the method must take an iterator,
2090and also must return an iterator. In this bare-bones example, the
2091frame filter is not very useful as it just returns the iterator
2092untouched. However this is a valid operation for frame filters that
2093have the @code{enabled} attribute set, but decide not to operate on
2094any frames.
2095
2096In the next example, the frame filter operates on all frames and
2097utilizes a frame decorator to perform some work on the frames.
2098@xref{Frame Decorator API}, for further information on the frame
2099decorator interface.
2100
2101This example works on inlined frames. It highlights frames which are
2102inlined by tagging them with an ``[inlined]'' tag. By applying a
2103frame decorator to all frames with the Python @code{itertools imap}
2104method, the example defers actions to the frame decorator. Frame
2105decorators are only processed when @value{GDBN} prints the backtrace.
2106
2107This introduces a new decision making topic: whether to perform
2108decision making operations at the filtering step, or at the printing
2109step. In this example's approach, it does not perform any filtering
2110decisions at the filtering step beyond mapping a frame decorator to
2111each frame. This allows the actual decision making to be performed
2112when each frame is printed. This is an important consideration, and
2113well worth reflecting upon when designing a frame filter. An issue
2114that frame filters should avoid is unwinding the stack if possible.
2115Some stacks can run very deep, into the tens of thousands in some
2116cases. To search every frame to determine if it is inlined ahead of
2117time may be too expensive at the filtering step. The frame filter
2118cannot know how many frames it has to iterate over, and it would have
2119to iterate through them all. This ends up duplicating effort as
2120@value{GDBN} performs this iteration when it prints the frames.
2121
2122In this example decision making can be deferred to the printing step.
2123As each frame is printed, the frame decorator can examine each frame
2124in turn when @value{GDBN} iterates. From a performance viewpoint,
2125this is the most appropriate decision to make as it avoids duplicating
2126the effort that the printing step would undertake anyway. Also, if
2127there are many frame filters unwinding the stack during filtering, it
2128can substantially delay the printing of the backtrace which will
2129result in large memory usage, and a poor user experience.
2130
2131@smallexample
2132class InlineFilter():
2133
2134 def __init__(self):
2135 self.name = "InlinedFrameFilter"
2136 self.priority = 100
2137 self.enabled = True
2138 gdb.frame_filters[self.name] = self
2139
2140 def filter(self, frame_iter):
2141 frame_iter = itertools.imap(InlinedFrameDecorator,
2142 frame_iter)
2143 return frame_iter
2144@end smallexample
2145
2146This frame filter is somewhat similar to the earlier example, except
2147that the @code{filter} method applies a frame decorator object called
2148@code{InlinedFrameDecorator} to each element in the iterator. The
2149@code{imap} Python method is light-weight. It does not proactively
2150iterate over the iterator, but rather creates a new iterator which
2151wraps the existing one.
2152
2153Below is the frame decorator for this example.
2154
2155@smallexample
2156class InlinedFrameDecorator(FrameDecorator):
2157
2158 def __init__(self, fobj):
2159 super(InlinedFrameDecorator, self).__init__(fobj)
2160
2161 def function(self):
2162 frame = fobj.inferior_frame()
2163 name = str(frame.name())
2164
2165 if frame.type() == gdb.INLINE_FRAME:
2166 name = name + " [inlined]"
2167
2168 return name
2169@end smallexample
2170
2171This frame decorator only defines and overrides the @code{function}
2172method. It lets the supplied @code{FrameDecorator}, which is shipped
2173with @value{GDBN}, perform the other work associated with printing
2174this frame.
2175
2176The combination of these two objects create this output from a
2177backtrace:
2178
2179@smallexample
2180#0 0x004004e0 in bar () at inline.c:11
2181#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2182#2 0x00400566 in main () at inline.c:31
2183@end smallexample
2184
2185So in the case of this example, a frame decorator is applied to all
2186frames, regardless of whether they may be inlined or not. As
2187@value{GDBN} iterates over the iterator produced by the frame filters,
2188@value{GDBN} executes each frame decorator which then makes a decision
2189on what to print in the @code{function} callback. Using a strategy
2190like this is a way to defer decisions on the frame content to printing
2191time.
2192
2193@subheading Eliding Frames
2194
2195It might be that the above example is not desirable for representing
2196inlined frames, and a hierarchical approach may be preferred. If we
2197want to hierarchically represent frames, the @code{elided} frame
2198decorator interface might be preferable.
2199
2200This example approaches the issue with the @code{elided} method. This
2201example is quite long, but very simplistic. It is out-of-scope for
2202this section to write a complete example that comprehensively covers
2203all approaches of finding and printing inlined frames. However, this
2204example illustrates the approach an author might use.
2205
2206This example comprises of three sections.
2207
2208@smallexample
2209class InlineFrameFilter():
2210
2211 def __init__(self):
2212 self.name = "InlinedFrameFilter"
2213 self.priority = 100
2214 self.enabled = True
2215 gdb.frame_filters[self.name] = self
2216
2217 def filter(self, frame_iter):
2218 return ElidingInlineIterator(frame_iter)
2219@end smallexample
2220
2221This frame filter is very similar to the other examples. The only
2222difference is this frame filter is wrapping the iterator provided to
2223it (@code{frame_iter}) with a custom iterator called
2224@code{ElidingInlineIterator}. This again defers actions to when
2225@value{GDBN} prints the backtrace, as the iterator is not traversed
2226until printing.
2227
2228The iterator for this example is as follows. It is in this section of
2229the example where decisions are made on the content of the backtrace.
2230
2231@smallexample
2232class ElidingInlineIterator:
2233 def __init__(self, ii):
2234 self.input_iterator = ii
2235
2236 def __iter__(self):
2237 return self
2238
2239 def next(self):
2240 frame = next(self.input_iterator)
2241
2242 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2243 return frame
2244
2245 try:
2246 eliding_frame = next(self.input_iterator)
2247 except StopIteration:
2248 return frame
2249 return ElidingFrameDecorator(eliding_frame, [frame])
2250@end smallexample
2251
2252This iterator implements the Python iterator protocol. When the
2253@code{next} function is called (when @value{GDBN} prints each frame),
2254the iterator checks if this frame decorator, @code{frame}, is wrapping
2255an inlined frame. If it is not, it returns the existing frame decorator
2256untouched. If it is wrapping an inlined frame, it assumes that the
2257inlined frame was contained within the next oldest frame,
2258@code{eliding_frame}, which it fetches. It then creates and returns a
2259frame decorator, @code{ElidingFrameDecorator}, which contains both the
2260elided frame, and the eliding frame.
2261
2262@smallexample
2263class ElidingInlineDecorator(FrameDecorator):
2264
2265 def __init__(self, frame, elided_frames):
2266 super(ElidingInlineDecorator, self).__init__(frame)
2267 self.frame = frame
2268 self.elided_frames = elided_frames
2269
2270 def elided(self):
2271 return iter(self.elided_frames)
2272@end smallexample
2273
2274This frame decorator overrides one function and returns the inlined
2275frame in the @code{elided} method. As before it lets
2276@code{FrameDecorator} do the rest of the work involved in printing
2277this frame. This produces the following output.
2278
2279@smallexample
2280#0 0x004004e0 in bar () at inline.c:11
2281#2 0x00400529 in main () at inline.c:25
2282 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2283@end smallexample
2284
2285In that output, @code{max} which has been inlined into @code{main} is
2286printed hierarchically. Another approach would be to combine the
2287@code{function} method, and the @code{elided} method to both print a
2288marker in the inlined frame, and also show the hierarchical
2289relationship.
2290
d11916aa
SS
2291@node Unwinding Frames in Python
2292@subsubsection Unwinding Frames in Python
2293@cindex unwinding frames in Python
2294
2295In @value{GDBN} terminology ``unwinding'' is the process of finding
2296the previous frame (that is, caller's) from the current one. An
2297unwinder has three methods. The first one checks if it can handle
2298given frame (``sniff'' it). For the frames it can sniff an unwinder
2299provides two additional methods: it can return frame's ID, and it can
2300fetch registers from the previous frame. A running @value{GDBN}
2301mantains a list of the unwinders and calls each unwinder's sniffer in
2302turn until it finds the one that recognizes the current frame. There
2303is an API to register an unwinder.
2304
2305The unwinders that come with @value{GDBN} handle standard frames.
2306However, mixed language applications (for example, an application
2307running Java Virtual Machine) sometimes use frame layouts that cannot
2308be handled by the @value{GDBN} unwinders. You can write Python code
2309that can handle such custom frames.
2310
2311You implement a frame unwinder in Python as a class with which has two
2312attributes, @code{name} and @code{enabled}, with obvious meanings, and
2313a single method @code{__call__}, which examines a given frame and
2314returns an object (an instance of @code{gdb.UnwindInfo class)}
2315describing it. If an unwinder does not recognize a frame, it should
2316return @code{None}. The code in @value{GDBN} that enables writing
2317unwinders in Python uses this object to return frame's ID and previous
2318frame registers when @value{GDBN} core asks for them.
2319
e7b5068c
TT
2320An unwinder should do as little work as possible. Some otherwise
2321innocuous operations can cause problems (even crashes, as this code is
2322not not well-hardened yet). For example, making an inferior call from
2323an unwinder is unadvisable, as an inferior call will reset
2324@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2325unwinding.
2326
d11916aa
SS
2327@subheading Unwinder Input
2328
2329An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2330provides a method to read frame's registers:
2331
2332@defun PendingFrame.read_register (reg)
e7b5068c 2333This method returns the contents of the register @var{reg} in the
d11916aa
SS
2334frame as a @code{gdb.Value} object. @var{reg} can be either a
2335register number or a register name; the values are platform-specific.
2336They are usually found in the corresponding
e7b5068c
TT
2337@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2338@var{reg} does not name a register for the current architecture, this
2339method will throw an exception.
2340
2341Note that this method will always return a @code{gdb.Value} for a
2342valid register name. This does not mean that the value will be valid.
2343For example, you may request a register that an earlier unwinder could
2344not unwind---the value will be unavailable. Instead, the
2345@code{gdb.Value} returned from this method will be lazy; that is, its
2346underlying bits will not be fetched until it is first used. So,
2347attempting to use such a value will cause an exception at the point of
2348use.
2349
2350The type of the returned @code{gdb.Value} depends on the register and
2351the architecture. It is common for registers to have a scalar type,
2352like @code{long long}; but many other types are possible, such as
2353pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2354@end defun
2355
2356It also provides a factory method to create a @code{gdb.UnwindInfo}
2357instance to be returned to @value{GDBN}:
2358
2359@defun PendingFrame.create_unwind_info (frame_id)
2360Returns a new @code{gdb.UnwindInfo} instance identified by given
2361@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2362using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2363determine which function will be used, as follows:
2364
2365@table @code
d11916aa 2366@item sp, pc
e7b5068c
TT
2367The frame is identified by the given stack address and PC. The stack
2368address must be chosen so that it is constant throughout the lifetime
2369of the frame, so a typical choice is the value of the stack pointer at
2370the start of the function---in the DWARF standard, this would be the
2371``Call Frame Address''.
d11916aa 2372
e7b5068c
TT
2373This is the most common case by far. The other cases are documented
2374for completeness but are only useful in specialized situations.
2375
2376@item sp, pc, special
2377The frame is identified by the stack address, the PC, and a
2378``special'' address. The special address is used on architectures
2379that can have frames that do not change the stack, but which are still
2380distinct, for example the IA-64, which has a second stack for
2381registers. Both @var{sp} and @var{special} must be constant
2382throughout the lifetime of the frame.
d11916aa
SS
2383
2384@item sp
e7b5068c
TT
2385The frame is identified by the stack address only. Any other stack
2386frame with a matching @var{sp} will be considered to match this frame.
2387Inside gdb, this is called a ``wild frame''. You will never need
2388this.
d11916aa 2389@end table
e7b5068c
TT
2390
2391Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2392
2393@end defun
2394
2395@subheading Unwinder Output: UnwindInfo
2396
2397Use @code{PendingFrame.create_unwind_info} method described above to
2398create a @code{gdb.UnwindInfo} instance. Use the following method to
2399specify caller registers that have been saved in this frame:
2400
2401@defun gdb.UnwindInfo.add_saved_register (reg, value)
2402@var{reg} identifies the register. It can be a number or a name, just
2403as for the @code{PendingFrame.read_register} method above.
2404@var{value} is a register value (a @code{gdb.Value} object).
2405@end defun
2406
2407@subheading Unwinder Skeleton Code
2408
2409@value{GDBN} comes with the module containing the base @code{Unwinder}
2410class. Derive your unwinder class from it and structure the code as
2411follows:
2412
2413@smallexample
2414from gdb.unwinders import Unwinder
2415
2416class FrameId(object):
2417 def __init__(self, sp, pc):
2418 self.sp = sp
2419 self.pc = pc
2420
2421
2422class MyUnwinder(Unwinder):
2423 def __init__(....):
2424 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2425
2426 def __call__(pending_frame):
2427 if not <we recognize frame>:
2428 return None
2429 # Create UnwindInfo. Usually the frame is identified by the stack
2430 # pointer and the program counter.
2431 sp = pending_frame.read_register(<SP number>)
2432 pc = pending_frame.read_register(<PC number>)
2433 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2434
2435 # Find the values of the registers in the caller's frame and
2436 # save them in the result:
2437 unwind_info.add_saved_register(<register>, <value>)
2438 ....
2439
2440 # Return the result:
2441 return unwind_info
2442
2443@end smallexample
2444
2445@subheading Registering a Unwinder
2446
2447An object file, a program space, and the @value{GDBN} proper can have
2448unwinders registered with it.
2449
2450The @code{gdb.unwinders} module provides the function to register a
2451unwinder:
2452
2453@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2454@var{locus} is specifies an object file or a program space to which
2455@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2456@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2457added @var{unwinder} will be called before any other unwinder from the
2458same locus. Two unwinders in the same locus cannot have the same
2459name. An attempt to add a unwinder with already existing name raises
2460an exception unless @var{replace} is @code{True}, in which case the
2461old unwinder is deleted.
2462@end defun
2463
2464@subheading Unwinder Precedence
2465
2466@value{GDBN} first calls the unwinders from all the object files in no
2467particular order, then the unwinders from the current program space,
2468and finally the unwinders from @value{GDBN}.
2469
0c6e92a5
SC
2470@node Xmethods In Python
2471@subsubsection Xmethods In Python
2472@cindex xmethods in Python
2473
2474@dfn{Xmethods} are additional methods or replacements for existing
2475methods of a C@t{++} class. This feature is useful for those cases
2476where a method defined in C@t{++} source code could be inlined or
2477optimized out by the compiler, making it unavailable to @value{GDBN}.
2478For such cases, one can define an xmethod to serve as a replacement
2479for the method defined in the C@t{++} source code. @value{GDBN} will
2480then invoke the xmethod, instead of the C@t{++} method, to
2481evaluate expressions. One can also use xmethods when debugging
2482with core files. Moreover, when debugging live programs, invoking an
2483xmethod need not involve running the inferior (which can potentially
2484perturb its state). Hence, even if the C@t{++} method is available, it
2485is better to use its replacement xmethod if one is defined.
2486
2487The xmethods feature in Python is available via the concepts of an
2488@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2489implement an xmethod, one has to implement a matcher and a
2490corresponding worker for it (more than one worker can be
2491implemented, each catering to a different overloaded instance of the
2492method). Internally, @value{GDBN} invokes the @code{match} method of a
2493matcher to match the class type and method name. On a match, the
2494@code{match} method returns a list of matching @emph{worker} objects.
2495Each worker object typically corresponds to an overloaded instance of
2496the xmethod. They implement a @code{get_arg_types} method which
2497returns a sequence of types corresponding to the arguments the xmethod
2498requires. @value{GDBN} uses this sequence of types to perform
2499overload resolution and picks a winning xmethod worker. A winner
2500is also selected from among the methods @value{GDBN} finds in the
2501C@t{++} source code. Next, the winning xmethod worker and the
2502winning C@t{++} method are compared to select an overall winner. In
2503case of a tie between a xmethod worker and a C@t{++} method, the
2504xmethod worker is selected as the winner. That is, if a winning
2505xmethod worker is found to be equivalent to the winning C@t{++}
2506method, then the xmethod worker is treated as a replacement for
2507the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2508method. If the winning xmethod worker is the overall winner, then
897c3d32 2509the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2510of the worker object.
2511
2512If one wants to implement an xmethod as a replacement for an
2513existing C@t{++} method, then they have to implement an equivalent
2514xmethod which has exactly the same name and takes arguments of
2515exactly the same type as the C@t{++} method. If the user wants to
2516invoke the C@t{++} method even though a replacement xmethod is
2517available for that method, then they can disable the xmethod.
2518
2519@xref{Xmethod API}, for API to implement xmethods in Python.
2520@xref{Writing an Xmethod}, for implementing xmethods in Python.
2521
2522@node Xmethod API
2523@subsubsection Xmethod API
2524@cindex xmethod API
2525
2526The @value{GDBN} Python API provides classes, interfaces and functions
2527to implement, register and manipulate xmethods.
2528@xref{Xmethods In Python}.
2529
2530An xmethod matcher should be an instance of a class derived from
2531@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2532object with similar interface and attributes. An instance of
2533@code{XMethodMatcher} has the following attributes:
2534
2535@defvar name
2536The name of the matcher.
2537@end defvar
2538
2539@defvar enabled
2540A boolean value indicating whether the matcher is enabled or disabled.
2541@end defvar
2542
2543@defvar methods
2544A list of named methods managed by the matcher. Each object in the list
2545is an instance of the class @code{XMethod} defined in the module
2546@code{gdb.xmethod}, or any object with the following attributes:
2547
2548@table @code
2549
2550@item name
2551Name of the xmethod which should be unique for each xmethod
2552managed by the matcher.
2553
2554@item enabled
2555A boolean value indicating whether the xmethod is enabled or
2556disabled.
2557
2558@end table
2559
2560The class @code{XMethod} is a convenience class with same
2561attributes as above along with the following constructor:
2562
dd5d5494 2563@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2564Constructs an enabled xmethod with name @var{name}.
2565@end defun
2566@end defvar
2567
2568@noindent
2569The @code{XMethodMatcher} class has the following methods:
2570
dd5d5494 2571@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2572Constructs an enabled xmethod matcher with name @var{name}. The
2573@code{methods} attribute is initialized to @code{None}.
2574@end defun
2575
dd5d5494 2576@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2577Derived classes should override this method. It should return a
2578xmethod worker object (or a sequence of xmethod worker
2579objects) matching the @var{class_type} and @var{method_name}.
2580@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2581is a string value. If the matcher manages named methods as listed in
2582its @code{methods} attribute, then only those worker objects whose
2583corresponding entries in the @code{methods} list are enabled should be
2584returned.
2585@end defun
2586
2587An xmethod worker should be an instance of a class derived from
2588@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2589or support the following interface:
2590
dd5d5494 2591@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2592This method returns a sequence of @code{gdb.Type} objects corresponding
2593to the arguments that the xmethod takes. It can return an empty
2594sequence or @code{None} if the xmethod does not take any arguments.
2595If the xmethod takes a single argument, then a single
2596@code{gdb.Type} object corresponding to it can be returned.
2597@end defun
2598
2ce1cdbf
DE
2599@defun XMethodWorker.get_result_type (self, *args)
2600This method returns a @code{gdb.Type} object representing the type
2601of the result of invoking this xmethod.
2602The @var{args} argument is the same tuple of arguments that would be
2603passed to the @code{__call__} method of this worker.
2604@end defun
2605
dd5d5494 2606@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2607This is the method which does the @emph{work} of the xmethod. The
2608@var{args} arguments is the tuple of arguments to the xmethod. Each
2609element in this tuple is a gdb.Value object. The first element is
2610always the @code{this} pointer value.
2611@end defun
2612
2613For @value{GDBN} to lookup xmethods, the xmethod matchers
2614should be registered using the following function defined in the module
2615@code{gdb.xmethod}:
2616
dd5d5494 2617@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2618The @code{matcher} is registered with @code{locus}, replacing an
2619existing matcher with the same name as @code{matcher} if
2620@code{replace} is @code{True}. @code{locus} can be a
2621@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2622@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2623@code{None}. If it is @code{None}, then @code{matcher} is registered
2624globally.
2625@end defun
2626
2627@node Writing an Xmethod
2628@subsubsection Writing an Xmethod
2629@cindex writing xmethods in Python
2630
2631Implementing xmethods in Python will require implementing xmethod
2632matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2633the following C@t{++} class:
2634
2635@smallexample
2636class MyClass
2637@{
2638public:
2639 MyClass (int a) : a_(a) @{ @}
2640
2641 int geta (void) @{ return a_; @}
2642 int operator+ (int b);
2643
2644private:
2645 int a_;
2646@};
2647
2648int
2649MyClass::operator+ (int b)
2650@{
2651 return a_ + b;
2652@}
2653@end smallexample
2654
2655@noindent
2656Let us define two xmethods for the class @code{MyClass}, one
2657replacing the method @code{geta}, and another adding an overloaded
2658flavor of @code{operator+} which takes a @code{MyClass} argument (the
2659C@t{++} code above already has an overloaded @code{operator+}
2660which takes an @code{int} argument). The xmethod matcher can be
2661defined as follows:
2662
2663@smallexample
2664class MyClass_geta(gdb.xmethod.XMethod):
2665 def __init__(self):
2666 gdb.xmethod.XMethod.__init__(self, 'geta')
2667
2668 def get_worker(self, method_name):
2669 if method_name == 'geta':
2670 return MyClassWorker_geta()
2671
2672
2673class MyClass_sum(gdb.xmethod.XMethod):
2674 def __init__(self):
2675 gdb.xmethod.XMethod.__init__(self, 'sum')
2676
2677 def get_worker(self, method_name):
2678 if method_name == 'operator+':
2679 return MyClassWorker_plus()
2680
2681
2682class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2683 def __init__(self):
2684 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2685 # List of methods 'managed' by this matcher
2686 self.methods = [MyClass_geta(), MyClass_sum()]
2687
2688 def match(self, class_type, method_name):
2689 if class_type.tag != 'MyClass':
2690 return None
2691 workers = []
2692 for method in self.methods:
2693 if method.enabled:
2694 worker = method.get_worker(method_name)
2695 if worker:
2696 workers.append(worker)
2697
2698 return workers
2699@end smallexample
2700
2701@noindent
2702Notice that the @code{match} method of @code{MyClassMatcher} returns
2703a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2704method, and a worker object of type @code{MyClassWorker_plus} for the
2705@code{operator+} method. This is done indirectly via helper classes
2706derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2707@code{methods} attribute in a matcher as it is optional. However, if a
2708matcher manages more than one xmethod, it is a good practice to list the
2709xmethods in the @code{methods} attribute of the matcher. This will then
2710facilitate enabling and disabling individual xmethods via the
2711@code{enable/disable} commands. Notice also that a worker object is
2712returned only if the corresponding entry in the @code{methods} attribute
2713of the matcher is enabled.
2714
2715The implementation of the worker classes returned by the matcher setup
2716above is as follows:
2717
2718@smallexample
2719class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2720 def get_arg_types(self):
2721 return None
2ce1cdbf
DE
2722
2723 def get_result_type(self, obj):
2724 return gdb.lookup_type('int')
0c6e92a5
SC
2725
2726 def __call__(self, obj):
2727 return obj['a_']
2728
2729
2730class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2731 def get_arg_types(self):
2732 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2733
2734 def get_result_type(self, obj):
2735 return gdb.lookup_type('int')
0c6e92a5
SC
2736
2737 def __call__(self, obj, other):
2738 return obj['a_'] + other['a_']
2739@end smallexample
2740
2741For @value{GDBN} to actually lookup a xmethod, it has to be
2742registered with it. The matcher defined above is registered with
2743@value{GDBN} globally as follows:
2744
2745@smallexample
2746gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2747@end smallexample
2748
2749If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2750code as follows:
2751
2752@smallexample
2753MyClass obj(5);
2754@end smallexample
2755
2756@noindent
2757then, after loading the Python script defining the xmethod matchers
2758and workers into @code{GDBN}, invoking the method @code{geta} or using
2759the operator @code{+} on @code{obj} will invoke the xmethods
2760defined above:
2761
2762@smallexample
2763(gdb) p obj.geta()
2764$1 = 5
2765
2766(gdb) p obj + obj
2767$2 = 10
2768@end smallexample
2769
2770Consider another example with a C++ template class:
2771
2772@smallexample
2773template <class T>
2774class MyTemplate
2775@{
2776public:
2777 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2778 ~MyTemplate () @{ delete [] data_; @}
2779
2780 int footprint (void)
2781 @{
2782 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2783 @}
2784
2785private:
2786 int dsize_;
2787 T *data_;
2788@};
2789@end smallexample
2790
2791Let us implement an xmethod for the above class which serves as a
2792replacement for the @code{footprint} method. The full code listing
2793of the xmethod workers and xmethod matchers is as follows:
2794
2795@smallexample
2796class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2797 def __init__(self, class_type):
2798 self.class_type = class_type
2ce1cdbf 2799
0c6e92a5
SC
2800 def get_arg_types(self):
2801 return None
2ce1cdbf
DE
2802
2803 def get_result_type(self):
2804 return gdb.lookup_type('int')
2805
0c6e92a5
SC
2806 def __call__(self, obj):
2807 return (self.class_type.sizeof +
2808 obj['dsize_'] *
2809 self.class_type.template_argument(0).sizeof)
2810
2811
2812class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2813 def __init__(self):
2814 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2815
2816 def match(self, class_type, method_name):
2817 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2818 class_type.tag) and
2819 method_name == 'footprint'):
2820 return MyTemplateWorker_footprint(class_type)
2821@end smallexample
2822
2823Notice that, in this example, we have not used the @code{methods}
2824attribute of the matcher as the matcher manages only one xmethod. The
2825user can enable/disable this xmethod by enabling/disabling the matcher
2826itself.
2827
329baa95
DE
2828@node Inferiors In Python
2829@subsubsection Inferiors In Python
2830@cindex inferiors in Python
2831
2832@findex gdb.Inferior
2833Programs which are being run under @value{GDBN} are called inferiors
2834(@pxref{Inferiors and Programs}). Python scripts can access
2835information about and manipulate inferiors controlled by @value{GDBN}
2836via objects of the @code{gdb.Inferior} class.
2837
2838The following inferior-related functions are available in the @code{gdb}
2839module:
2840
2841@defun gdb.inferiors ()
2842Return a tuple containing all inferior objects.
2843@end defun
2844
2845@defun gdb.selected_inferior ()
2846Return an object representing the current inferior.
2847@end defun
2848
2849A @code{gdb.Inferior} object has the following attributes:
2850
2851@defvar Inferior.num
2852ID of inferior, as assigned by GDB.
2853@end defvar
2854
2855@defvar Inferior.pid
2856Process ID of the inferior, as assigned by the underlying operating
2857system.
2858@end defvar
2859
2860@defvar Inferior.was_attached
2861Boolean signaling whether the inferior was created using `attach', or
2862started by @value{GDBN} itself.
2863@end defvar
2864
a40bf0c2
SM
2865@defvar Inferior.progspace
2866The inferior's program space. @xref{Progspaces In Python}.
2867@end defvar
2868
329baa95
DE
2869A @code{gdb.Inferior} object has the following methods:
2870
2871@defun Inferior.is_valid ()
2872Returns @code{True} if the @code{gdb.Inferior} object is valid,
2873@code{False} if not. A @code{gdb.Inferior} object will become invalid
2874if the inferior no longer exists within @value{GDBN}. All other
2875@code{gdb.Inferior} methods will throw an exception if it is invalid
2876at the time the method is called.
2877@end defun
2878
2879@defun Inferior.threads ()
2880This method returns a tuple holding all the threads which are valid
2881when it is called. If there are no valid threads, the method will
2882return an empty tuple.
2883@end defun
2884
add5ded5
TT
2885@defun Inferior.architecture ()
2886Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2887for this inferior. This represents the architecture of the inferior
2888as a whole. Some platforms can have multiple architectures in a
2889single address space, so this may not match the architecture of a
163cffef 2890particular frame (@pxref{Frames In Python}).
9e1698c6 2891@end defun
add5ded5 2892
329baa95
DE
2893@findex Inferior.read_memory
2894@defun Inferior.read_memory (address, length)
a86c90e6 2895Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2896@var{address}. Returns a buffer object, which behaves much like an array
2897or a string. It can be modified and given to the
79778b30 2898@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2899value is a @code{memoryview} object.
2900@end defun
2901
2902@findex Inferior.write_memory
2903@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2904Write the contents of @var{buffer} to the inferior, starting at
2905@var{address}. The @var{buffer} parameter must be a Python object
2906which supports the buffer protocol, i.e., a string, an array or the
2907object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2908determines the number of addressable memory units from @var{buffer} to be
2909written.
329baa95
DE
2910@end defun
2911
2912@findex gdb.search_memory
2913@defun Inferior.search_memory (address, length, pattern)
2914Search a region of the inferior memory starting at @var{address} with
2915the given @var{length} using the search pattern supplied in
2916@var{pattern}. The @var{pattern} parameter must be a Python object
2917which supports the buffer protocol, i.e., a string, an array or the
2918object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2919containing the address where the pattern was found, or @code{None} if
2920the pattern could not be found.
2921@end defun
2922
da2c323b
KB
2923@findex Inferior.thread_from_thread_handle
2924@defun Inferior.thread_from_thread_handle (thread_handle)
2925Return the thread object corresponding to @var{thread_handle}, a thread
2926library specific data structure such as @code{pthread_t} for pthreads
2927library implementations.
2928@end defun
2929
329baa95
DE
2930@node Events In Python
2931@subsubsection Events In Python
2932@cindex inferior events in Python
2933
2934@value{GDBN} provides a general event facility so that Python code can be
2935notified of various state changes, particularly changes that occur in
2936the inferior.
2937
2938An @dfn{event} is just an object that describes some state change. The
2939type of the object and its attributes will vary depending on the details
2940of the change. All the existing events are described below.
2941
2942In order to be notified of an event, you must register an event handler
2943with an @dfn{event registry}. An event registry is an object in the
2944@code{gdb.events} module which dispatches particular events. A registry
2945provides methods to register and unregister event handlers:
2946
2947@defun EventRegistry.connect (object)
2948Add the given callable @var{object} to the registry. This object will be
2949called when an event corresponding to this registry occurs.
2950@end defun
2951
2952@defun EventRegistry.disconnect (object)
2953Remove the given @var{object} from the registry. Once removed, the object
2954will no longer receive notifications of events.
2955@end defun
2956
2957Here is an example:
2958
2959@smallexample
2960def exit_handler (event):
2961 print "event type: exit"
2962 print "exit code: %d" % (event.exit_code)
2963
2964gdb.events.exited.connect (exit_handler)
2965@end smallexample
2966
2967In the above example we connect our handler @code{exit_handler} to the
2968registry @code{events.exited}. Once connected, @code{exit_handler} gets
2969called when the inferior exits. The argument @dfn{event} in this example is
2970of type @code{gdb.ExitedEvent}. As you can see in the example the
2971@code{ExitedEvent} object has an attribute which indicates the exit code of
2972the inferior.
2973
2974The following is a listing of the event registries that are available and
2975details of the events they emit:
2976
2977@table @code
2978
2979@item events.cont
2980Emits @code{gdb.ThreadEvent}.
2981
2982Some events can be thread specific when @value{GDBN} is running in non-stop
2983mode. When represented in Python, these events all extend
2984@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2985events which are emitted by this or other modules might extend this event.
2986Examples of these events are @code{gdb.BreakpointEvent} and
2987@code{gdb.ContinueEvent}.
2988
2989@defvar ThreadEvent.inferior_thread
2990In non-stop mode this attribute will be set to the specific thread which was
2991involved in the emitted event. Otherwise, it will be set to @code{None}.
2992@end defvar
2993
2994Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2995
2996This event indicates that the inferior has been continued after a stop. For
2997inherited attribute refer to @code{gdb.ThreadEvent} above.
2998
2999@item events.exited
3000Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3001@code{events.ExitedEvent} has two attributes:
3002@defvar ExitedEvent.exit_code
3003An integer representing the exit code, if available, which the inferior
3004has returned. (The exit code could be unavailable if, for example,
3005@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3006the attribute does not exist.
3007@end defvar
373832b6 3008@defvar ExitedEvent.inferior
329baa95
DE
3009A reference to the inferior which triggered the @code{exited} event.
3010@end defvar
3011
3012@item events.stop
3013Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3014
3015Indicates that the inferior has stopped. All events emitted by this registry
3016extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3017will indicate the stopped thread when @value{GDBN} is running in non-stop
3018mode. Refer to @code{gdb.ThreadEvent} above for more details.
3019
3020Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3021
3022This event indicates that the inferior or one of its threads has received as
3023signal. @code{gdb.SignalEvent} has the following attributes:
3024
3025@defvar SignalEvent.stop_signal
3026A string representing the signal received by the inferior. A list of possible
3027signal values can be obtained by running the command @code{info signals} in
3028the @value{GDBN} command prompt.
3029@end defvar
3030
3031Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3032
3033@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3034been hit, and has the following attributes:
3035
3036@defvar BreakpointEvent.breakpoints
3037A sequence containing references to all the breakpoints (type
3038@code{gdb.Breakpoint}) that were hit.
3039@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3040@end defvar
3041@defvar BreakpointEvent.breakpoint
3042A reference to the first breakpoint that was hit.
3043This function is maintained for backward compatibility and is now deprecated
3044in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3045@end defvar
3046
3047@item events.new_objfile
3048Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3049been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3050
3051@defvar NewObjFileEvent.new_objfile
3052A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3053@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3054@end defvar
3055
4ffbba72
DE
3056@item events.clear_objfiles
3057Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3058files for a program space has been reset.
3059@code{gdb.ClearObjFilesEvent} has one attribute:
3060
3061@defvar ClearObjFilesEvent.progspace
3062A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3063been cleared. @xref{Progspaces In Python}.
3064@end defvar
3065
fb5af5e3
TT
3066@item events.inferior_call
3067Emits events just before and after a function in the inferior is
3068called by @value{GDBN}. Before an inferior call, this emits an event
3069of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3070this emits an event of type @code{gdb.InferiorCallPostEvent}.
3071
3072@table @code
3073@tindex gdb.InferiorCallPreEvent
3074@item @code{gdb.InferiorCallPreEvent}
3075Indicates that a function in the inferior is about to be called.
162078c8
NB
3076
3077@defvar InferiorCallPreEvent.ptid
3078The thread in which the call will be run.
3079@end defvar
3080
3081@defvar InferiorCallPreEvent.address
3082The location of the function to be called.
3083@end defvar
3084
fb5af5e3
TT
3085@tindex gdb.InferiorCallPostEvent
3086@item @code{gdb.InferiorCallPostEvent}
3087Indicates that a function in the inferior has just been called.
162078c8
NB
3088
3089@defvar InferiorCallPostEvent.ptid
3090The thread in which the call was run.
3091@end defvar
3092
3093@defvar InferiorCallPostEvent.address
3094The location of the function that was called.
3095@end defvar
fb5af5e3 3096@end table
162078c8
NB
3097
3098@item events.memory_changed
3099Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3100inferior has been modified by the @value{GDBN} user, for instance via a
3101command like @w{@code{set *addr = value}}. The event has the following
3102attributes:
3103
3104@defvar MemoryChangedEvent.address
3105The start address of the changed region.
3106@end defvar
3107
3108@defvar MemoryChangedEvent.length
3109Length in bytes of the changed region.
3110@end defvar
3111
3112@item events.register_changed
3113Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3114inferior has been modified by the @value{GDBN} user.
3115
3116@defvar RegisterChangedEvent.frame
3117A gdb.Frame object representing the frame in which the register was modified.
3118@end defvar
3119@defvar RegisterChangedEvent.regnum
3120Denotes which register was modified.
3121@end defvar
3122
dac790e1
TT
3123@item events.breakpoint_created
3124This is emitted when a new breakpoint has been created. The argument
3125that is passed is the new @code{gdb.Breakpoint} object.
3126
3127@item events.breakpoint_modified
3128This is emitted when a breakpoint has been modified in some way. The
3129argument that is passed is the new @code{gdb.Breakpoint} object.
3130
3131@item events.breakpoint_deleted
3132This is emitted when a breakpoint has been deleted. The argument that
3133is passed is the @code{gdb.Breakpoint} object. When this event is
3134emitted, the @code{gdb.Breakpoint} object will already be in its
3135invalid state; that is, the @code{is_valid} method will return
3136@code{False}.
3137
3f77c769
TT
3138@item events.before_prompt
3139This event carries no payload. It is emitted each time @value{GDBN}
3140presents a prompt to the user.
3141
7c96f8c1
TT
3142@item events.new_inferior
3143This is emitted when a new inferior is created. Note that the
3144inferior is not necessarily running; in fact, it may not even have an
3145associated executable.
3146
3147The event is of type @code{gdb.NewInferiorEvent}. This has a single
3148attribute:
3149
3150@defvar NewInferiorEvent.inferior
3151The new inferior, a @code{gdb.Inferior} object.
3152@end defvar
3153
3154@item events.inferior_deleted
3155This is emitted when an inferior has been deleted. Note that this is
3156not the same as process exit; it is notified when the inferior itself
3157is removed, say via @code{remove-inferiors}.
3158
3159The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3160attribute:
3161
3162@defvar NewInferiorEvent.inferior
3163The inferior that is being removed, a @code{gdb.Inferior} object.
3164@end defvar
3165
3166@item events.new_thread
3167This is emitted when @value{GDBN} notices a new thread. The event is of
3168type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3169This has a single attribute:
3170
3171@defvar NewThreadEvent.inferior_thread
3172The new thread.
3173@end defvar
3174
329baa95
DE
3175@end table
3176
3177@node Threads In Python
3178@subsubsection Threads In Python
3179@cindex threads in python
3180
3181@findex gdb.InferiorThread
3182Python scripts can access information about, and manipulate inferior threads
3183controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3184
3185The following thread-related functions are available in the @code{gdb}
3186module:
3187
3188@findex gdb.selected_thread
3189@defun gdb.selected_thread ()
3190This function returns the thread object for the selected thread. If there
3191is no selected thread, this will return @code{None}.
3192@end defun
3193
3194A @code{gdb.InferiorThread} object has the following attributes:
3195
3196@defvar InferiorThread.name
3197The name of the thread. If the user specified a name using
3198@code{thread name}, then this returns that name. Otherwise, if an
3199OS-supplied name is available, then it is returned. Otherwise, this
3200returns @code{None}.
3201
3202This attribute can be assigned to. The new value must be a string
3203object, which sets the new name, or @code{None}, which removes any
3204user-specified thread name.
3205@end defvar
3206
3207@defvar InferiorThread.num
5d5658a1 3208The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3209@end defvar
3210
22a02324
PA
3211@defvar InferiorThread.global_num
3212The global ID of the thread, as assigned by GDB. You can use this to
3213make Python breakpoints thread-specific, for example
3214(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3215@end defvar
3216
329baa95
DE
3217@defvar InferiorThread.ptid
3218ID of the thread, as assigned by the operating system. This attribute is a
3219tuple containing three integers. The first is the Process ID (PID); the second
3220is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3221Either the LWPID or TID may be 0, which indicates that the operating system
3222does not use that identifier.
3223@end defvar
3224
84654457
PA
3225@defvar InferiorThread.inferior
3226The inferior this thread belongs to. This attribute is represented as
3227a @code{gdb.Inferior} object. This attribute is not writable.
3228@end defvar
3229
329baa95
DE
3230A @code{gdb.InferiorThread} object has the following methods:
3231
3232@defun InferiorThread.is_valid ()
3233Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3234@code{False} if not. A @code{gdb.InferiorThread} object will become
3235invalid if the thread exits, or the inferior that the thread belongs
3236is deleted. All other @code{gdb.InferiorThread} methods will throw an
3237exception if it is invalid at the time the method is called.
3238@end defun
3239
3240@defun InferiorThread.switch ()
3241This changes @value{GDBN}'s currently selected thread to the one represented
3242by this object.
3243@end defun
3244
3245@defun InferiorThread.is_stopped ()
3246Return a Boolean indicating whether the thread is stopped.
3247@end defun
3248
3249@defun InferiorThread.is_running ()
3250Return a Boolean indicating whether the thread is running.
3251@end defun
3252
3253@defun InferiorThread.is_exited ()
3254Return a Boolean indicating whether the thread is exited.
3255@end defun
3256
0a0faf9f
TW
3257@node Recordings In Python
3258@subsubsection Recordings In Python
3259@cindex recordings in python
3260
3261The following recordings-related functions
3262(@pxref{Process Record and Replay}) are available in the @code{gdb}
3263module:
3264
3265@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3266Start a recording using the given @var{method} and @var{format}. If
3267no @var{format} is given, the default format for the recording method
3268is used. If no @var{method} is given, the default method will be used.
3269Returns a @code{gdb.Record} object on success. Throw an exception on
3270failure.
3271
3272The following strings can be passed as @var{method}:
3273
3274@itemize @bullet
3275@item
3276@code{"full"}
3277@item
3278@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3279@code{"bts"} or leave out for default format.
3280@end itemize
3281@end defun
3282
3283@defun gdb.current_recording ()
3284Access a currently running recording. Return a @code{gdb.Record}
3285object on success. Return @code{None} if no recording is currently
3286active.
3287@end defun
3288
3289@defun gdb.stop_recording ()
3290Stop the current recording. Throw an exception if no recording is
3291currently active. All record objects become invalid after this call.
3292@end defun
3293
3294A @code{gdb.Record} object has the following attributes:
3295
0a0faf9f
TW
3296@defvar Record.method
3297A string with the current recording method, e.g.@: @code{full} or
3298@code{btrace}.
3299@end defvar
3300
3301@defvar Record.format
3302A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3303@code{None}.
3304@end defvar
3305
3306@defvar Record.begin
3307A method specific instruction object representing the first instruction
3308in this recording.
3309@end defvar
3310
3311@defvar Record.end
3312A method specific instruction object representing the current
3313instruction, that is not actually part of the recording.
3314@end defvar
3315
3316@defvar Record.replay_position
3317The instruction representing the current replay position. If there is
3318no replay active, this will be @code{None}.
3319@end defvar
3320
3321@defvar Record.instruction_history
3322A list with all recorded instructions.
3323@end defvar
3324
3325@defvar Record.function_call_history
3326A list with all recorded function call segments.
3327@end defvar
3328
3329A @code{gdb.Record} object has the following methods:
3330
3331@defun Record.goto (instruction)
3332Move the replay position to the given @var{instruction}.
3333@end defun
3334
d050f7d7
TW
3335The common @code{gdb.Instruction} class that recording method specific
3336instruction objects inherit from, has the following attributes:
0a0faf9f 3337
d050f7d7 3338@defvar Instruction.pc
913aeadd 3339An integer representing this instruction's address.
0a0faf9f
TW
3340@end defvar
3341
d050f7d7 3342@defvar Instruction.data
913aeadd
TW
3343A buffer with the raw instruction data. In Python 3, the return value is a
3344@code{memoryview} object.
0a0faf9f
TW
3345@end defvar
3346
d050f7d7 3347@defvar Instruction.decoded
913aeadd 3348A human readable string with the disassembled instruction.
0a0faf9f
TW
3349@end defvar
3350
d050f7d7 3351@defvar Instruction.size
913aeadd 3352The size of the instruction in bytes.
0a0faf9f
TW
3353@end defvar
3354
d050f7d7
TW
3355Additionally @code{gdb.RecordInstruction} has the following attributes:
3356
3357@defvar RecordInstruction.number
3358An integer identifying this instruction. @code{number} corresponds to
3359the numbers seen in @code{record instruction-history}
3360(@pxref{Process Record and Replay}).
3361@end defvar
3362
3363@defvar RecordInstruction.sal
3364A @code{gdb.Symtab_and_line} object representing the associated symtab
3365and line of this instruction. May be @code{None} if no debug information is
3366available.
3367@end defvar
3368
0ed5da75 3369@defvar RecordInstruction.is_speculative
d050f7d7 3370A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3371@end defvar
3372
3373If an error occured during recording or decoding a recording, this error is
3374represented by a @code{gdb.RecordGap} object in the instruction list. It has
3375the following attributes:
3376
3377@defvar RecordGap.number
3378An integer identifying this gap. @code{number} corresponds to the numbers seen
3379in @code{record instruction-history} (@pxref{Process Record and Replay}).
3380@end defvar
3381
3382@defvar RecordGap.error_code
3383A numerical representation of the reason for the gap. The value is specific to
3384the current recording method.
3385@end defvar
3386
3387@defvar RecordGap.error_string
3388A human readable string with the reason for the gap.
0a0faf9f
TW
3389@end defvar
3390
14f819c8 3391A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3392
14f819c8
TW
3393@defvar RecordFunctionSegment.number
3394An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3395the numbers seen in @code{record function-call-history}
3396(@pxref{Process Record and Replay}).
3397@end defvar
3398
14f819c8 3399@defvar RecordFunctionSegment.symbol
0a0faf9f 3400A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3401@code{None} if no debug information is available.
0a0faf9f
TW
3402@end defvar
3403
14f819c8 3404@defvar RecordFunctionSegment.level
0a0faf9f
TW
3405An integer representing the function call's stack level. May be
3406@code{None} if the function call is a gap.
3407@end defvar
3408
14f819c8 3409@defvar RecordFunctionSegment.instructions
0ed5da75 3410A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3411associated with this function call.
0a0faf9f
TW
3412@end defvar
3413
14f819c8
TW
3414@defvar RecordFunctionSegment.up
3415A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3416function segment. If the call has not been recorded, this will be the
3417function segment to which control returns. If neither the call nor the
3418return have been recorded, this will be @code{None}.
3419@end defvar
3420
14f819c8
TW
3421@defvar RecordFunctionSegment.prev
3422A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3423segment of this function call. May be @code{None}.
3424@end defvar
3425
14f819c8
TW
3426@defvar RecordFunctionSegment.next
3427A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3428this function call. May be @code{None}.
3429@end defvar
3430
3431The following example demonstrates the usage of these objects and
3432functions to create a function that will rewind a record to the last
3433time a function in a different file was executed. This would typically
3434be used to track the execution of user provided callback functions in a
3435library which typically are not visible in a back trace.
3436
3437@smallexample
3438def bringback ():
3439 rec = gdb.current_recording ()
3440 if not rec:
3441 return
3442
3443 insn = rec.instruction_history
3444 if len (insn) == 0:
3445 return
3446
3447 try:
3448 position = insn.index (rec.replay_position)
3449 except:
3450 position = -1
3451 try:
3452 filename = insn[position].sal.symtab.fullname ()
3453 except:
3454 filename = None
3455
3456 for i in reversed (insn[:position]):
3457 try:
3458 current = i.sal.symtab.fullname ()
3459 except:
3460 current = None
3461
3462 if filename == current:
3463 continue
3464
3465 rec.goto (i)
3466 return
3467@end smallexample
3468
3469Another possible application is to write a function that counts the
3470number of code executions in a given line range. This line range can
3471contain parts of functions or span across several functions and is not
3472limited to be contiguous.
3473
3474@smallexample
3475def countrange (filename, linerange):
3476 count = 0
3477
3478 def filter_only (file_name):
3479 for call in gdb.current_recording ().function_call_history:
3480 try:
3481 if file_name in call.symbol.symtab.fullname ():
3482 yield call
3483 except:
3484 pass
3485
3486 for c in filter_only (filename):
3487 for i in c.instructions:
3488 try:
3489 if i.sal.line in linerange:
3490 count += 1
3491 break;
3492 except:
3493 pass
3494
3495 return count
3496@end smallexample
3497
329baa95
DE
3498@node Commands In Python
3499@subsubsection Commands In Python
3500
3501@cindex commands in python
3502@cindex python commands
3503You can implement new @value{GDBN} CLI commands in Python. A CLI
3504command is implemented using an instance of the @code{gdb.Command}
3505class, most commonly using a subclass.
3506
3507@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3508The object initializer for @code{Command} registers the new command
3509with @value{GDBN}. This initializer is normally invoked from the
3510subclass' own @code{__init__} method.
3511
3512@var{name} is the name of the command. If @var{name} consists of
3513multiple words, then the initial words are looked for as prefix
3514commands. In this case, if one of the prefix commands does not exist,
3515an exception is raised.
3516
3517There is no support for multi-line commands.
3518
3519@var{command_class} should be one of the @samp{COMMAND_} constants
3520defined below. This argument tells @value{GDBN} how to categorize the
3521new command in the help system.
3522
3523@var{completer_class} is an optional argument. If given, it should be
3524one of the @samp{COMPLETE_} constants defined below. This argument
3525tells @value{GDBN} how to perform completion for this command. If not
3526given, @value{GDBN} will attempt to complete using the object's
3527@code{complete} method (see below); if no such method is found, an
3528error will occur when completion is attempted.
3529
3530@var{prefix} is an optional argument. If @code{True}, then the new
3531command is a prefix command; sub-commands of this command may be
3532registered.
3533
3534The help text for the new command is taken from the Python
3535documentation string for the command's class, if there is one. If no
3536documentation string is provided, the default value ``This command is
3537not documented.'' is used.
3538@end defun
3539
3540@cindex don't repeat Python command
3541@defun Command.dont_repeat ()
3542By default, a @value{GDBN} command is repeated when the user enters a
3543blank line at the command prompt. A command can suppress this
3544behavior by invoking the @code{dont_repeat} method. This is similar
3545to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3546@end defun
3547
3548@defun Command.invoke (argument, from_tty)
3549This method is called by @value{GDBN} when this command is invoked.
3550
3551@var{argument} is a string. It is the argument to the command, after
3552leading and trailing whitespace has been stripped.
3553
3554@var{from_tty} is a boolean argument. When true, this means that the
3555command was entered by the user at the terminal; when false it means
3556that the command came from elsewhere.
3557
3558If this method throws an exception, it is turned into a @value{GDBN}
3559@code{error} call. Otherwise, the return value is ignored.
3560
3561@findex gdb.string_to_argv
3562To break @var{argument} up into an argv-like string use
3563@code{gdb.string_to_argv}. This function behaves identically to
3564@value{GDBN}'s internal argument lexer @code{buildargv}.
3565It is recommended to use this for consistency.
3566Arguments are separated by spaces and may be quoted.
3567Example:
3568
3569@smallexample
3570print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3571['1', '2 "3', '4 "5', "6 '7"]
3572@end smallexample
3573
3574@end defun
3575
3576@cindex completion of Python commands
3577@defun Command.complete (text, word)
3578This method is called by @value{GDBN} when the user attempts
3579completion on this command. All forms of completion are handled by
3580this method, that is, the @key{TAB} and @key{M-?} key bindings
3581(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3582complete}).
3583
697aa1b7
EZ
3584The arguments @var{text} and @var{word} are both strings; @var{text}
3585holds the complete command line up to the cursor's location, while
329baa95
DE
3586@var{word} holds the last word of the command line; this is computed
3587using a word-breaking heuristic.
3588
3589The @code{complete} method can return several values:
3590@itemize @bullet
3591@item
3592If the return value is a sequence, the contents of the sequence are
3593used as the completions. It is up to @code{complete} to ensure that the
3594contents actually do complete the word. A zero-length sequence is
3595allowed, it means that there were no completions available. Only
3596string elements of the sequence are used; other elements in the
3597sequence are ignored.
3598
3599@item
3600If the return value is one of the @samp{COMPLETE_} constants defined
3601below, then the corresponding @value{GDBN}-internal completion
3602function is invoked, and its result is used.
3603
3604@item
3605All other results are treated as though there were no available
3606completions.
3607@end itemize
3608@end defun
3609
3610When a new command is registered, it must be declared as a member of
3611some general class of commands. This is used to classify top-level
3612commands in the on-line help system; note that prefix commands are not
3613listed under their own category but rather that of their top-level
3614command. The available classifications are represented by constants
3615defined in the @code{gdb} module:
3616
3617@table @code
3618@findex COMMAND_NONE
3619@findex gdb.COMMAND_NONE
3620@item gdb.COMMAND_NONE
3621The command does not belong to any particular class. A command in
3622this category will not be displayed in any of the help categories.
3623
3624@findex COMMAND_RUNNING
3625@findex gdb.COMMAND_RUNNING
3626@item gdb.COMMAND_RUNNING
3627The command is related to running the inferior. For example,
3628@code{start}, @code{step}, and @code{continue} are in this category.
3629Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3630commands in this category.
3631
3632@findex COMMAND_DATA
3633@findex gdb.COMMAND_DATA
3634@item gdb.COMMAND_DATA
3635The command is related to data or variables. For example,
3636@code{call}, @code{find}, and @code{print} are in this category. Type
3637@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3638in this category.
3639
3640@findex COMMAND_STACK
3641@findex gdb.COMMAND_STACK
3642@item gdb.COMMAND_STACK
3643The command has to do with manipulation of the stack. For example,
3644@code{backtrace}, @code{frame}, and @code{return} are in this
3645category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3646list of commands in this category.
3647
3648@findex COMMAND_FILES
3649@findex gdb.COMMAND_FILES
3650@item gdb.COMMAND_FILES
3651This class is used for file-related commands. For example,
3652@code{file}, @code{list} and @code{section} are in this category.
3653Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3654commands in this category.
3655
3656@findex COMMAND_SUPPORT
3657@findex gdb.COMMAND_SUPPORT
3658@item gdb.COMMAND_SUPPORT
3659This should be used for ``support facilities'', generally meaning
3660things that are useful to the user when interacting with @value{GDBN},
3661but not related to the state of the inferior. For example,
3662@code{help}, @code{make}, and @code{shell} are in this category. Type
3663@kbd{help support} at the @value{GDBN} prompt to see a list of
3664commands in this category.
3665
3666@findex COMMAND_STATUS
3667@findex gdb.COMMAND_STATUS
3668@item gdb.COMMAND_STATUS
3669The command is an @samp{info}-related command, that is, related to the
3670state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3671and @code{show} are in this category. Type @kbd{help status} at the
3672@value{GDBN} prompt to see a list of commands in this category.
3673
3674@findex COMMAND_BREAKPOINTS
3675@findex gdb.COMMAND_BREAKPOINTS
3676@item gdb.COMMAND_BREAKPOINTS
3677The command has to do with breakpoints. For example, @code{break},
3678@code{clear}, and @code{delete} are in this category. Type @kbd{help
3679breakpoints} at the @value{GDBN} prompt to see a list of commands in
3680this category.
3681
3682@findex COMMAND_TRACEPOINTS
3683@findex gdb.COMMAND_TRACEPOINTS
3684@item gdb.COMMAND_TRACEPOINTS
3685The command has to do with tracepoints. For example, @code{trace},
3686@code{actions}, and @code{tfind} are in this category. Type
3687@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3688commands in this category.
3689
3690@findex COMMAND_USER
3691@findex gdb.COMMAND_USER
3692@item gdb.COMMAND_USER
3693The command is a general purpose command for the user, and typically
3694does not fit in one of the other categories.
3695Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3696a list of commands in this category, as well as the list of gdb macros
3697(@pxref{Sequences}).
3698
3699@findex COMMAND_OBSCURE
3700@findex gdb.COMMAND_OBSCURE
3701@item gdb.COMMAND_OBSCURE
3702The command is only used in unusual circumstances, or is not of
3703general interest to users. For example, @code{checkpoint},
3704@code{fork}, and @code{stop} are in this category. Type @kbd{help
3705obscure} at the @value{GDBN} prompt to see a list of commands in this
3706category.
3707
3708@findex COMMAND_MAINTENANCE
3709@findex gdb.COMMAND_MAINTENANCE
3710@item gdb.COMMAND_MAINTENANCE
3711The command is only useful to @value{GDBN} maintainers. The
3712@code{maintenance} and @code{flushregs} commands are in this category.
3713Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3714commands in this category.
3715@end table
3716
3717A new command can use a predefined completion function, either by
3718specifying it via an argument at initialization, or by returning it
3719from the @code{complete} method. These predefined completion
3720constants are all defined in the @code{gdb} module:
3721
b3ce5e5f
DE
3722@vtable @code
3723@vindex COMPLETE_NONE
329baa95
DE
3724@item gdb.COMPLETE_NONE
3725This constant means that no completion should be done.
3726
b3ce5e5f 3727@vindex COMPLETE_FILENAME
329baa95
DE
3728@item gdb.COMPLETE_FILENAME
3729This constant means that filename completion should be performed.
3730
b3ce5e5f 3731@vindex COMPLETE_LOCATION
329baa95
DE
3732@item gdb.COMPLETE_LOCATION
3733This constant means that location completion should be done.
3734@xref{Specify Location}.
3735
b3ce5e5f 3736@vindex COMPLETE_COMMAND
329baa95
DE
3737@item gdb.COMPLETE_COMMAND
3738This constant means that completion should examine @value{GDBN}
3739command names.
3740
b3ce5e5f 3741@vindex COMPLETE_SYMBOL
329baa95
DE
3742@item gdb.COMPLETE_SYMBOL
3743This constant means that completion should be done using symbol names
3744as the source.
3745
b3ce5e5f 3746@vindex COMPLETE_EXPRESSION
329baa95
DE
3747@item gdb.COMPLETE_EXPRESSION
3748This constant means that completion should be done on expressions.
3749Often this means completing on symbol names, but some language
3750parsers also have support for completing on field names.
b3ce5e5f 3751@end vtable
329baa95
DE
3752
3753The following code snippet shows how a trivial CLI command can be
3754implemented in Python:
3755
3756@smallexample
3757class HelloWorld (gdb.Command):
3758 """Greet the whole world."""
3759
3760 def __init__ (self):
3761 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3762
3763 def invoke (self, arg, from_tty):
3764 print "Hello, World!"
3765
3766HelloWorld ()
3767@end smallexample
3768
3769The last line instantiates the class, and is necessary to trigger the
3770registration of the command with @value{GDBN}. Depending on how the
3771Python code is read into @value{GDBN}, you may need to import the
3772@code{gdb} module explicitly.
3773
3774@node Parameters In Python
3775@subsubsection Parameters In Python
3776
3777@cindex parameters in python
3778@cindex python parameters
3779@tindex gdb.Parameter
3780@tindex Parameter
3781You can implement new @value{GDBN} parameters using Python. A new
3782parameter is implemented as an instance of the @code{gdb.Parameter}
3783class.
3784
3785Parameters are exposed to the user via the @code{set} and
3786@code{show} commands. @xref{Help}.
3787
3788There are many parameters that already exist and can be set in
3789@value{GDBN}. Two examples are: @code{set follow fork} and
3790@code{set charset}. Setting these parameters influences certain
3791behavior in @value{GDBN}. Similarly, you can define parameters that
3792can be used to influence behavior in custom Python scripts and commands.
3793
3794@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3795The object initializer for @code{Parameter} registers the new
3796parameter with @value{GDBN}. This initializer is normally invoked
3797from the subclass' own @code{__init__} method.
3798
3799@var{name} is the name of the new parameter. If @var{name} consists
3800of multiple words, then the initial words are looked for as prefix
3801parameters. An example of this can be illustrated with the
3802@code{set print} set of parameters. If @var{name} is
3803@code{print foo}, then @code{print} will be searched as the prefix
3804parameter. In this case the parameter can subsequently be accessed in
3805@value{GDBN} as @code{set print foo}.
3806
3807If @var{name} consists of multiple words, and no prefix parameter group
3808can be found, an exception is raised.
3809
3810@var{command-class} should be one of the @samp{COMMAND_} constants
3811(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3812categorize the new parameter in the help system.
3813
3814@var{parameter-class} should be one of the @samp{PARAM_} constants
3815defined below. This argument tells @value{GDBN} the type of the new
3816parameter; this information is used for input validation and
3817completion.
3818
3819If @var{parameter-class} is @code{PARAM_ENUM}, then
3820@var{enum-sequence} must be a sequence of strings. These strings
3821represent the possible values for the parameter.
3822
3823If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3824of a fourth argument will cause an exception to be thrown.
3825
3826The help text for the new parameter is taken from the Python
3827documentation string for the parameter's class, if there is one. If
3828there is no documentation string, a default value is used.
3829@end defun
3830
3831@defvar Parameter.set_doc
3832If this attribute exists, and is a string, then its value is used as
3833the help text for this parameter's @code{set} command. The value is
3834examined when @code{Parameter.__init__} is invoked; subsequent changes
3835have no effect.
3836@end defvar
3837
3838@defvar Parameter.show_doc
3839If this attribute exists, and is a string, then its value is used as
3840the help text for this parameter's @code{show} command. The value is
3841examined when @code{Parameter.__init__} is invoked; subsequent changes
3842have no effect.
3843@end defvar
3844
3845@defvar Parameter.value
3846The @code{value} attribute holds the underlying value of the
3847parameter. It can be read and assigned to just as any other
3848attribute. @value{GDBN} does validation when assignments are made.
3849@end defvar
3850
984ee559
TT
3851There are two methods that may be implemented in any @code{Parameter}
3852class. These are:
329baa95
DE
3853
3854@defun Parameter.get_set_string (self)
984ee559
TT
3855If this method exists, @value{GDBN} will call it when a
3856@var{parameter}'s value has been changed via the @code{set} API (for
3857example, @kbd{set foo off}). The @code{value} attribute has already
3858been populated with the new value and may be used in output. This
3859method must return a string. If the returned string is not empty,
3860@value{GDBN} will present it to the user.
ae778caf
TT
3861
3862If this method raises the @code{gdb.GdbError} exception
3863(@pxref{Exception Handling}), then @value{GDBN} will print the
3864exception's string and the @code{set} command will fail. Note,
3865however, that the @code{value} attribute will not be reset in this
3866case. So, if your parameter must validate values, it should store the
3867old value internally and reset the exposed value, like so:
3868
3869@smallexample
3870class ExampleParam (gdb.Parameter):
3871 def __init__ (self, name):
3872 super (ExampleParam, self).__init__ (name,
3873 gdb.COMMAND_DATA,
3874 gdb.PARAM_BOOLEAN)
3875 self.value = True
3876 self.saved_value = True
3877 def validate(self):
3878 return False
3879 def get_set_string (self):
3880 if not self.validate():
3881 self.value = self.saved_value
3882 raise gdb.GdbError('Failed to validate')
3883 self.saved_value = self.value
3884@end smallexample
329baa95
DE
3885@end defun
3886
3887@defun Parameter.get_show_string (self, svalue)
3888@value{GDBN} will call this method when a @var{parameter}'s
3889@code{show} API has been invoked (for example, @kbd{show foo}). The
3890argument @code{svalue} receives the string representation of the
3891current value. This method must return a string.
3892@end defun
3893
3894When a new parameter is defined, its type must be specified. The
3895available types are represented by constants defined in the @code{gdb}
3896module:
3897
3898@table @code
3899@findex PARAM_BOOLEAN
3900@findex gdb.PARAM_BOOLEAN
3901@item gdb.PARAM_BOOLEAN
3902The value is a plain boolean. The Python boolean values, @code{True}
3903and @code{False} are the only valid values.
3904
3905@findex PARAM_AUTO_BOOLEAN
3906@findex gdb.PARAM_AUTO_BOOLEAN
3907@item gdb.PARAM_AUTO_BOOLEAN
3908The value has three possible states: true, false, and @samp{auto}. In
3909Python, true and false are represented using boolean constants, and
3910@samp{auto} is represented using @code{None}.
3911
3912@findex PARAM_UINTEGER
3913@findex gdb.PARAM_UINTEGER
3914@item gdb.PARAM_UINTEGER
3915The value is an unsigned integer. The value of 0 should be
3916interpreted to mean ``unlimited''.
3917
3918@findex PARAM_INTEGER
3919@findex gdb.PARAM_INTEGER
3920@item gdb.PARAM_INTEGER
3921The value is a signed integer. The value of 0 should be interpreted
3922to mean ``unlimited''.
3923
3924@findex PARAM_STRING
3925@findex gdb.PARAM_STRING
3926@item gdb.PARAM_STRING
3927The value is a string. When the user modifies the string, any escape
3928sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3929translated into corresponding characters and encoded into the current
3930host charset.
3931
3932@findex PARAM_STRING_NOESCAPE
3933@findex gdb.PARAM_STRING_NOESCAPE
3934@item gdb.PARAM_STRING_NOESCAPE
3935The value is a string. When the user modifies the string, escapes are
3936passed through untranslated.
3937
3938@findex PARAM_OPTIONAL_FILENAME
3939@findex gdb.PARAM_OPTIONAL_FILENAME
3940@item gdb.PARAM_OPTIONAL_FILENAME
3941The value is a either a filename (a string), or @code{None}.
3942
3943@findex PARAM_FILENAME
3944@findex gdb.PARAM_FILENAME
3945@item gdb.PARAM_FILENAME
3946The value is a filename. This is just like
3947@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3948
3949@findex PARAM_ZINTEGER
3950@findex gdb.PARAM_ZINTEGER
3951@item gdb.PARAM_ZINTEGER
3952The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3953is interpreted as itself.
3954
0489430a
TT
3955@findex PARAM_ZUINTEGER
3956@findex gdb.PARAM_ZUINTEGER
3957@item gdb.PARAM_ZUINTEGER
3958The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3959except 0 is interpreted as itself, and the value cannot be negative.
3960
3961@findex PARAM_ZUINTEGER_UNLIMITED
3962@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3963@item gdb.PARAM_ZUINTEGER_UNLIMITED
3964The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3965except the special value -1 should be interpreted to mean
3966``unlimited''. Other negative values are not allowed.
3967
329baa95
DE
3968@findex PARAM_ENUM
3969@findex gdb.PARAM_ENUM
3970@item gdb.PARAM_ENUM
3971The value is a string, which must be one of a collection string
3972constants provided when the parameter is created.
3973@end table
3974
3975@node Functions In Python
3976@subsubsection Writing new convenience functions
3977
3978@cindex writing convenience functions
3979@cindex convenience functions in python
3980@cindex python convenience functions
3981@tindex gdb.Function
3982@tindex Function
3983You can implement new convenience functions (@pxref{Convenience Vars})
3984in Python. A convenience function is an instance of a subclass of the
3985class @code{gdb.Function}.
3986
3987@defun Function.__init__ (name)
3988The initializer for @code{Function} registers the new function with
3989@value{GDBN}. The argument @var{name} is the name of the function,
3990a string. The function will be visible to the user as a convenience
3991variable of type @code{internal function}, whose name is the same as
3992the given @var{name}.
3993
3994The documentation for the new function is taken from the documentation
3995string for the new class.
3996@end defun
3997
3998@defun Function.invoke (@var{*args})
3999When a convenience function is evaluated, its arguments are converted
4000to instances of @code{gdb.Value}, and then the function's
4001@code{invoke} method is called. Note that @value{GDBN} does not
4002predetermine the arity of convenience functions. Instead, all
4003available arguments are passed to @code{invoke}, following the
4004standard Python calling convention. In particular, a convenience
4005function can have default values for parameters without ill effect.
4006
4007The return value of this method is used as its value in the enclosing
4008expression. If an ordinary Python value is returned, it is converted
4009to a @code{gdb.Value} following the usual rules.
4010@end defun
4011
4012The following code snippet shows how a trivial convenience function can
4013be implemented in Python:
4014
4015@smallexample
4016class Greet (gdb.Function):
4017 """Return string to greet someone.
4018Takes a name as argument."""
4019
4020 def __init__ (self):
4021 super (Greet, self).__init__ ("greet")
4022
4023 def invoke (self, name):
4024 return "Hello, %s!" % name.string ()
4025
4026Greet ()
4027@end smallexample
4028
4029The last line instantiates the class, and is necessary to trigger the
4030registration of the function with @value{GDBN}. Depending on how the
4031Python code is read into @value{GDBN}, you may need to import the
4032@code{gdb} module explicitly.
4033
4034Now you can use the function in an expression:
4035
4036@smallexample
4037(gdb) print $greet("Bob")
4038$1 = "Hello, Bob!"
4039@end smallexample
4040
4041@node Progspaces In Python
4042@subsubsection Program Spaces In Python
4043
4044@cindex progspaces in python
4045@tindex gdb.Progspace
4046@tindex Progspace
4047A program space, or @dfn{progspace}, represents a symbolic view
4048of an address space.
4049It consists of all of the objfiles of the program.
4050@xref{Objfiles In Python}.
4051@xref{Inferiors and Programs, program spaces}, for more details
4052about program spaces.
4053
4054The following progspace-related functions are available in the
4055@code{gdb} module:
4056
4057@findex gdb.current_progspace
4058@defun gdb.current_progspace ()
4059This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4060@xref{Inferiors and Programs}. This is identical to
4061@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4062included for historical compatibility.
329baa95
DE
4063@end defun
4064
4065@findex gdb.progspaces
4066@defun gdb.progspaces ()
4067Return a sequence of all the progspaces currently known to @value{GDBN}.
4068@end defun
4069
4070Each progspace is represented by an instance of the @code{gdb.Progspace}
4071class.
4072
4073@defvar Progspace.filename
4074The file name of the progspace as a string.
4075@end defvar
4076
4077@defvar Progspace.pretty_printers
4078The @code{pretty_printers} attribute is a list of functions. It is
4079used to look up pretty-printers. A @code{Value} is passed to each
4080function in order; if the function returns @code{None}, then the
4081search continues. Otherwise, the return value should be an object
4082which is used to format the value. @xref{Pretty Printing API}, for more
4083information.
4084@end defvar
4085
4086@defvar Progspace.type_printers
4087The @code{type_printers} attribute is a list of type printer objects.
4088@xref{Type Printing API}, for more information.
4089@end defvar
4090
4091@defvar Progspace.frame_filters
4092The @code{frame_filters} attribute is a dictionary of frame filter
4093objects. @xref{Frame Filter API}, for more information.
4094@end defvar
4095
8743a9cd
TT
4096A program space has the following methods:
4097
4098@findex Progspace.block_for_pc
4099@defun Progspace.block_for_pc (pc)
4100Return the innermost @code{gdb.Block} containing the given @var{pc}
4101value. If the block cannot be found for the @var{pc} value specified,
4102the function will return @code{None}.
4103@end defun
4104
4105@findex Progspace.find_pc_line
4106@defun Progspace.find_pc_line (pc)
4107Return the @code{gdb.Symtab_and_line} object corresponding to the
4108@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4109of @var{pc} is passed as an argument, then the @code{symtab} and
4110@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4111object will be @code{None} and 0 respectively.
4112@end defun
4113
4114@findex Progspace.is_valid
4115@defun Progspace.is_valid ()
4116Returns @code{True} if the @code{gdb.Progspace} object is valid,
4117@code{False} if not. A @code{gdb.Progspace} object can become invalid
4118if the program space file it refers to is not referenced by any
4119inferior. All other @code{gdb.Progspace} methods will throw an
4120exception if it is invalid at the time the method is called.
4121@end defun
4122
4123@findex Progspace.objfiles
4124@defun Progspace.objfiles ()
4125Return a sequence of all the objfiles referenced by this program
4126space. @xref{Objfiles In Python}.
4127@end defun
4128
4129@findex Progspace.solib_name
4130@defun Progspace.solib_name (address)
4131Return the name of the shared library holding the given @var{address}
4132as a string, or @code{None}.
4133@end defun
4134
02be9a71
DE
4135One may add arbitrary attributes to @code{gdb.Progspace} objects
4136in the usual Python way.
4137This is useful if, for example, one needs to do some extra record keeping
4138associated with the program space.
4139
4140In this contrived example, we want to perform some processing when
4141an objfile with a certain symbol is loaded, but we only want to do
4142this once because it is expensive. To achieve this we record the results
4143with the program space because we can't predict when the desired objfile
4144will be loaded.
4145
4146@smallexample
4147(gdb) python
4148def clear_objfiles_handler(event):
4149 event.progspace.expensive_computation = None
4150def expensive(symbol):
4151 """A mock routine to perform an "expensive" computation on symbol."""
4152 print "Computing the answer to the ultimate question ..."
4153 return 42
4154def new_objfile_handler(event):
4155 objfile = event.new_objfile
4156 progspace = objfile.progspace
4157 if not hasattr(progspace, 'expensive_computation') or \
4158 progspace.expensive_computation is None:
4159 # We use 'main' for the symbol to keep the example simple.
4160 # Note: There's no current way to constrain the lookup
4161 # to one objfile.
4162 symbol = gdb.lookup_global_symbol('main')
4163 if symbol is not None:
4164 progspace.expensive_computation = expensive(symbol)
4165gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4166gdb.events.new_objfile.connect(new_objfile_handler)
4167end
4168(gdb) file /tmp/hello
4169Reading symbols from /tmp/hello...done.
4170Computing the answer to the ultimate question ...
4171(gdb) python print gdb.current_progspace().expensive_computation
417242
4173(gdb) run
4174Starting program: /tmp/hello
4175Hello.
4176[Inferior 1 (process 4242) exited normally]
4177@end smallexample
4178
329baa95
DE
4179@node Objfiles In Python
4180@subsubsection Objfiles In Python
4181
4182@cindex objfiles in python
4183@tindex gdb.Objfile
4184@tindex Objfile
4185@value{GDBN} loads symbols for an inferior from various
4186symbol-containing files (@pxref{Files}). These include the primary
4187executable file, any shared libraries used by the inferior, and any
4188separate debug info files (@pxref{Separate Debug Files}).
4189@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4190
4191The following objfile-related functions are available in the
4192@code{gdb} module:
4193
4194@findex gdb.current_objfile
4195@defun gdb.current_objfile ()
4196When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4197sets the ``current objfile'' to the corresponding objfile. This
4198function returns the current objfile. If there is no current objfile,
4199this function returns @code{None}.
4200@end defun
4201
4202@findex gdb.objfiles
4203@defun gdb.objfiles ()
74d3fbbb
SM
4204Return a sequence of objfiles referenced by the current program space.
4205@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4206to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4207historical compatibility.
329baa95
DE
4208@end defun
4209
6dddd6a5
DE
4210@findex gdb.lookup_objfile
4211@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4212Look up @var{name}, a file name or build ID, in the list of objfiles
4213for the current program space (@pxref{Progspaces In Python}).
4214If the objfile is not found throw the Python @code{ValueError} exception.
4215
4216If @var{name} is a relative file name, then it will match any
4217source file name with the same trailing components. For example, if
4218@var{name} is @samp{gcc/expr.c}, then it will match source file
4219name of @file{/build/trunk/gcc/expr.c}, but not
4220@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4221
4222If @var{by_build_id} is provided and is @code{True} then @var{name}
4223is the build ID of the objfile. Otherwise, @var{name} is a file name.
4224This is supported only on some operating systems, notably those which use
4225the ELF format for binary files and the @sc{gnu} Binutils. For more details
4226about this feature, see the description of the @option{--build-id}
f5a476a7 4227command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4228The GNU Linker}.
4229@end defun
4230
329baa95
DE
4231Each objfile is represented by an instance of the @code{gdb.Objfile}
4232class.
4233
4234@defvar Objfile.filename
1b549396
DE
4235The file name of the objfile as a string, with symbolic links resolved.
4236
4237The value is @code{None} if the objfile is no longer valid.
4238See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4239@end defvar
4240
3a8b707a
DE
4241@defvar Objfile.username
4242The file name of the objfile as specified by the user as a string.
4243
4244The value is @code{None} if the objfile is no longer valid.
4245See the @code{gdb.Objfile.is_valid} method, described below.
4246@end defvar
4247
a0be3e44
DE
4248@defvar Objfile.owner
4249For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4250object that debug info is being provided for.
4251Otherwise this is @code{None}.
4252Separate debug info objfiles are added with the
4253@code{gdb.Objfile.add_separate_debug_file} method, described below.
4254@end defvar
4255
7c50a931
DE
4256@defvar Objfile.build_id
4257The build ID of the objfile as a string.
4258If the objfile does not have a build ID then the value is @code{None}.
4259
4260This is supported only on some operating systems, notably those which use
4261the ELF format for binary files and the @sc{gnu} Binutils. For more details
4262about this feature, see the description of the @option{--build-id}
f5a476a7 4263command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4264The GNU Linker}.
4265@end defvar
4266
d096d8c1
DE
4267@defvar Objfile.progspace
4268The containing program space of the objfile as a @code{gdb.Progspace}
4269object. @xref{Progspaces In Python}.
4270@end defvar
4271
329baa95
DE
4272@defvar Objfile.pretty_printers
4273The @code{pretty_printers} attribute is a list of functions. It is
4274used to look up pretty-printers. A @code{Value} is passed to each
4275function in order; if the function returns @code{None}, then the
4276search continues. Otherwise, the return value should be an object
4277which is used to format the value. @xref{Pretty Printing API}, for more
4278information.
4279@end defvar
4280
4281@defvar Objfile.type_printers
4282The @code{type_printers} attribute is a list of type printer objects.
4283@xref{Type Printing API}, for more information.
4284@end defvar
4285
4286@defvar Objfile.frame_filters
4287The @code{frame_filters} attribute is a dictionary of frame filter
4288objects. @xref{Frame Filter API}, for more information.
4289@end defvar
4290
02be9a71
DE
4291One may add arbitrary attributes to @code{gdb.Objfile} objects
4292in the usual Python way.
4293This is useful if, for example, one needs to do some extra record keeping
4294associated with the objfile.
4295
4296In this contrived example we record the time when @value{GDBN}
4297loaded the objfile.
4298
4299@smallexample
4300(gdb) python
4301import datetime
4302def new_objfile_handler(event):
4303 # Set the time_loaded attribute of the new objfile.
4304 event.new_objfile.time_loaded = datetime.datetime.today()
4305gdb.events.new_objfile.connect(new_objfile_handler)
4306end
4307(gdb) file ./hello
4308Reading symbols from ./hello...done.
4309(gdb) python print gdb.objfiles()[0].time_loaded
43102014-10-09 11:41:36.770345
4311@end smallexample
4312
329baa95
DE
4313A @code{gdb.Objfile} object has the following methods:
4314
4315@defun Objfile.is_valid ()
4316Returns @code{True} if the @code{gdb.Objfile} object is valid,
4317@code{False} if not. A @code{gdb.Objfile} object can become invalid
4318if the object file it refers to is not loaded in @value{GDBN} any
4319longer. All other @code{gdb.Objfile} methods will throw an exception
4320if it is invalid at the time the method is called.
4321@end defun
4322
86e4ed39
DE
4323@defun Objfile.add_separate_debug_file (file)
4324Add @var{file} to the list of files that @value{GDBN} will search for
4325debug information for the objfile.
4326This is useful when the debug info has been removed from the program
4327and stored in a separate file. @value{GDBN} has built-in support for
4328finding separate debug info files (@pxref{Separate Debug Files}), but if
4329the file doesn't live in one of the standard places that @value{GDBN}
4330searches then this function can be used to add a debug info file
4331from a different place.
4332@end defun
4333
329baa95 4334@node Frames In Python
849cba3b 4335@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4336
4337@cindex frames in python
4338When the debugged program stops, @value{GDBN} is able to analyze its call
4339stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4340represents a frame in the stack. A @code{gdb.Frame} object is only valid
4341while its corresponding frame exists in the inferior's stack. If you try
4342to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4343exception (@pxref{Exception Handling}).
4344
4345Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4346operator, like:
4347
4348@smallexample
4349(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4350True
4351@end smallexample
4352
4353The following frame-related functions are available in the @code{gdb} module:
4354
4355@findex gdb.selected_frame
4356@defun gdb.selected_frame ()
4357Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4358@end defun
4359
4360@findex gdb.newest_frame
4361@defun gdb.newest_frame ()
4362Return the newest frame object for the selected thread.
4363@end defun
4364
4365@defun gdb.frame_stop_reason_string (reason)
4366Return a string explaining the reason why @value{GDBN} stopped unwinding
4367frames, as expressed by the given @var{reason} code (an integer, see the
4368@code{unwind_stop_reason} method further down in this section).
4369@end defun
4370
e0f3fd7c
TT
4371@findex gdb.invalidate_cached_frames
4372@defun gdb.invalidate_cached_frames
4373@value{GDBN} internally keeps a cache of the frames that have been
4374unwound. This function invalidates this cache.
4375
4376This function should not generally be called by ordinary Python code.
4377It is documented for the sake of completeness.
4378@end defun
4379
329baa95
DE
4380A @code{gdb.Frame} object has the following methods:
4381
4382@defun Frame.is_valid ()
4383Returns true if the @code{gdb.Frame} object is valid, false if not.
4384A frame object can become invalid if the frame it refers to doesn't
4385exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4386an exception if it is invalid at the time the method is called.
4387@end defun
4388
4389@defun Frame.name ()
4390Returns the function name of the frame, or @code{None} if it can't be
4391obtained.
4392@end defun
4393
4394@defun Frame.architecture ()
4395Returns the @code{gdb.Architecture} object corresponding to the frame's
4396architecture. @xref{Architectures In Python}.
4397@end defun
4398
4399@defun Frame.type ()
4400Returns the type of the frame. The value can be one of:
4401@table @code
4402@item gdb.NORMAL_FRAME
4403An ordinary stack frame.
4404
4405@item gdb.DUMMY_FRAME
4406A fake stack frame that was created by @value{GDBN} when performing an
4407inferior function call.
4408
4409@item gdb.INLINE_FRAME
4410A frame representing an inlined function. The function was inlined
4411into a @code{gdb.NORMAL_FRAME} that is older than this one.
4412
4413@item gdb.TAILCALL_FRAME
4414A frame representing a tail call. @xref{Tail Call Frames}.
4415
4416@item gdb.SIGTRAMP_FRAME
4417A signal trampoline frame. This is the frame created by the OS when
4418it calls into a signal handler.
4419
4420@item gdb.ARCH_FRAME
4421A fake stack frame representing a cross-architecture call.
4422
4423@item gdb.SENTINEL_FRAME
4424This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4425newest frame.
4426@end table
4427@end defun
4428
4429@defun Frame.unwind_stop_reason ()
4430Return an integer representing the reason why it's not possible to find
4431more frames toward the outermost frame. Use
4432@code{gdb.frame_stop_reason_string} to convert the value returned by this
4433function to a string. The value can be one of:
4434
4435@table @code
4436@item gdb.FRAME_UNWIND_NO_REASON
4437No particular reason (older frames should be available).
4438
4439@item gdb.FRAME_UNWIND_NULL_ID
4440The previous frame's analyzer returns an invalid result. This is no
4441longer used by @value{GDBN}, and is kept only for backward
4442compatibility.
4443
4444@item gdb.FRAME_UNWIND_OUTERMOST
4445This frame is the outermost.
4446
4447@item gdb.FRAME_UNWIND_UNAVAILABLE
4448Cannot unwind further, because that would require knowing the
4449values of registers or memory that have not been collected.
4450
4451@item gdb.FRAME_UNWIND_INNER_ID
4452This frame ID looks like it ought to belong to a NEXT frame,
4453but we got it for a PREV frame. Normally, this is a sign of
4454unwinder failure. It could also indicate stack corruption.
4455
4456@item gdb.FRAME_UNWIND_SAME_ID
4457This frame has the same ID as the previous one. That means
4458that unwinding further would almost certainly give us another
4459frame with exactly the same ID, so break the chain. Normally,
4460this is a sign of unwinder failure. It could also indicate
4461stack corruption.
4462
4463@item gdb.FRAME_UNWIND_NO_SAVED_PC
4464The frame unwinder did not find any saved PC, but we needed
4465one to unwind further.
4466
53e8a631
AB
4467@item gdb.FRAME_UNWIND_MEMORY_ERROR
4468The frame unwinder caused an error while trying to access memory.
4469
329baa95
DE
4470@item gdb.FRAME_UNWIND_FIRST_ERROR
4471Any stop reason greater or equal to this value indicates some kind
4472of error. This special value facilitates writing code that tests
4473for errors in unwinding in a way that will work correctly even if
4474the list of the other values is modified in future @value{GDBN}
4475versions. Using it, you could write:
4476@smallexample
4477reason = gdb.selected_frame().unwind_stop_reason ()
4478reason_str = gdb.frame_stop_reason_string (reason)
4479if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4480 print "An error occured: %s" % reason_str
4481@end smallexample
4482@end table
4483
4484@end defun
4485
4486@defun Frame.pc ()
4487Returns the frame's resume address.
4488@end defun
4489
4490@defun Frame.block ()
60c0454d
TT
4491Return the frame's code block. @xref{Blocks In Python}. If the frame
4492does not have a block -- for example, if there is no debugging
4493information for the code in question -- then this will throw an
4494exception.
329baa95
DE
4495@end defun
4496
4497@defun Frame.function ()
4498Return the symbol for the function corresponding to this frame.
4499@xref{Symbols In Python}.
4500@end defun
4501
4502@defun Frame.older ()
4503Return the frame that called this frame.
4504@end defun
4505
4506@defun Frame.newer ()
4507Return the frame called by this frame.
4508@end defun
4509
4510@defun Frame.find_sal ()
4511Return the frame's symtab and line object.
4512@xref{Symbol Tables In Python}.
4513@end defun
4514
5f3b99cf
SS
4515@defun Frame.read_register (register)
4516Return the value of @var{register} in this frame. The @var{register}
4517argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4518Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4519does not exist.
4520@end defun
4521
329baa95
DE
4522@defun Frame.read_var (variable @r{[}, block@r{]})
4523Return the value of @var{variable} in this frame. If the optional
4524argument @var{block} is provided, search for the variable from that
4525block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4526determined by the frame's current program counter). The @var{variable}
4527argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4528@code{gdb.Block} object.
4529@end defun
4530
4531@defun Frame.select ()
4532Set this frame to be the selected frame. @xref{Stack, ,Examining the
4533Stack}.
4534@end defun
4535
4536@node Blocks In Python
849cba3b 4537@subsubsection Accessing blocks from Python
329baa95
DE
4538
4539@cindex blocks in python
4540@tindex gdb.Block
4541
4542In @value{GDBN}, symbols are stored in blocks. A block corresponds
4543roughly to a scope in the source code. Blocks are organized
4544hierarchically, and are represented individually in Python as a
4545@code{gdb.Block}. Blocks rely on debugging information being
4546available.
4547
4548A frame has a block. Please see @ref{Frames In Python}, for a more
4549in-depth discussion of frames.
4550
4551The outermost block is known as the @dfn{global block}. The global
4552block typically holds public global variables and functions.
4553
4554The block nested just inside the global block is the @dfn{static
4555block}. The static block typically holds file-scoped variables and
4556functions.
4557
4558@value{GDBN} provides a method to get a block's superblock, but there
4559is currently no way to examine the sub-blocks of a block, or to
4560iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4561Python}).
4562
4563Here is a short example that should help explain blocks:
4564
4565@smallexample
4566/* This is in the global block. */
4567int global;
4568
4569/* This is in the static block. */
4570static int file_scope;
4571
4572/* 'function' is in the global block, and 'argument' is
4573 in a block nested inside of 'function'. */
4574int function (int argument)
4575@{
4576 /* 'local' is in a block inside 'function'. It may or may
4577 not be in the same block as 'argument'. */
4578 int local;
4579
4580 @{
4581 /* 'inner' is in a block whose superblock is the one holding
4582 'local'. */
4583 int inner;
4584
4585 /* If this call is expanded by the compiler, you may see
4586 a nested block here whose function is 'inline_function'
4587 and whose superblock is the one holding 'inner'. */
4588 inline_function ();
4589 @}
4590@}
4591@end smallexample
4592
4593A @code{gdb.Block} is iterable. The iterator returns the symbols
4594(@pxref{Symbols In Python}) local to the block. Python programs
4595should not assume that a specific block object will always contain a
4596given symbol, since changes in @value{GDBN} features and
4597infrastructure may cause symbols move across blocks in a symbol
4598table.
4599
4600The following block-related functions are available in the @code{gdb}
4601module:
4602
4603@findex gdb.block_for_pc
4604@defun gdb.block_for_pc (pc)
4605Return the innermost @code{gdb.Block} containing the given @var{pc}
4606value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4607the function will return @code{None}. This is identical to
4608@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4609historical compatibility.
329baa95
DE
4610@end defun
4611
4612A @code{gdb.Block} object has the following methods:
4613
4614@defun Block.is_valid ()
4615Returns @code{True} if the @code{gdb.Block} object is valid,
4616@code{False} if not. A block object can become invalid if the block it
4617refers to doesn't exist anymore in the inferior. All other
4618@code{gdb.Block} methods will throw an exception if it is invalid at
4619the time the method is called. The block's validity is also checked
4620during iteration over symbols of the block.
4621@end defun
4622
4623A @code{gdb.Block} object has the following attributes:
4624
4625@defvar Block.start
4626The start address of the block. This attribute is not writable.
4627@end defvar
4628
4629@defvar Block.end
22eb9e92
TT
4630One past the last address that appears in the block. This attribute
4631is not writable.
329baa95
DE
4632@end defvar
4633
4634@defvar Block.function
4635The name of the block represented as a @code{gdb.Symbol}. If the
4636block is not named, then this attribute holds @code{None}. This
4637attribute is not writable.
4638
4639For ordinary function blocks, the superblock is the static block.
4640However, you should note that it is possible for a function block to
4641have a superblock that is not the static block -- for instance this
4642happens for an inlined function.
4643@end defvar
4644
4645@defvar Block.superblock
4646The block containing this block. If this parent block does not exist,
4647this attribute holds @code{None}. This attribute is not writable.
4648@end defvar
4649
4650@defvar Block.global_block
4651The global block associated with this block. This attribute is not
4652writable.
4653@end defvar
4654
4655@defvar Block.static_block
4656The static block associated with this block. This attribute is not
4657writable.
4658@end defvar
4659
4660@defvar Block.is_global
4661@code{True} if the @code{gdb.Block} object is a global block,
4662@code{False} if not. This attribute is not
4663writable.
4664@end defvar
4665
4666@defvar Block.is_static
4667@code{True} if the @code{gdb.Block} object is a static block,
4668@code{False} if not. This attribute is not writable.
4669@end defvar
4670
4671@node Symbols In Python
849cba3b 4672@subsubsection Python representation of Symbols
329baa95
DE
4673
4674@cindex symbols in python
4675@tindex gdb.Symbol
4676
4677@value{GDBN} represents every variable, function and type as an
4678entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4679Similarly, Python represents these symbols in @value{GDBN} with the
4680@code{gdb.Symbol} object.
4681
4682The following symbol-related functions are available in the @code{gdb}
4683module:
4684
4685@findex gdb.lookup_symbol
4686@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4687This function searches for a symbol by name. The search scope can be
4688restricted to the parameters defined in the optional domain and block
4689arguments.
4690
4691@var{name} is the name of the symbol. It must be a string. The
4692optional @var{block} argument restricts the search to symbols visible
4693in that @var{block}. The @var{block} argument must be a
4694@code{gdb.Block} object. If omitted, the block for the current frame
4695is used. The optional @var{domain} argument restricts
4696the search to the domain type. The @var{domain} argument must be a
4697domain constant defined in the @code{gdb} module and described later
4698in this chapter.
4699
4700The result is a tuple of two elements.
4701The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4702is not found.
4703If the symbol is found, the second element is @code{True} if the symbol
4704is a field of a method's object (e.g., @code{this} in C@t{++}),
4705otherwise it is @code{False}.
4706If the symbol is not found, the second element is @code{False}.
4707@end defun
4708
4709@findex gdb.lookup_global_symbol
4710@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4711This function searches for a global symbol by name.
4712The search scope can be restricted to by the domain argument.
4713
4714@var{name} is the name of the symbol. It must be a string.
4715The optional @var{domain} argument restricts the search to the domain type.
4716The @var{domain} argument must be a domain constant defined in the @code{gdb}
4717module and described later in this chapter.
4718
4719The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4720is not found.
4721@end defun
4722
4723A @code{gdb.Symbol} object has the following attributes:
4724
4725@defvar Symbol.type
4726The type of the symbol or @code{None} if no type is recorded.
4727This attribute is represented as a @code{gdb.Type} object.
4728@xref{Types In Python}. This attribute is not writable.
4729@end defvar
4730
4731@defvar Symbol.symtab
4732The symbol table in which the symbol appears. This attribute is
4733represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4734Python}. This attribute is not writable.
4735@end defvar
4736
4737@defvar Symbol.line
4738The line number in the source code at which the symbol was defined.
4739This is an integer.
4740@end defvar
4741
4742@defvar Symbol.name
4743The name of the symbol as a string. This attribute is not writable.
4744@end defvar
4745
4746@defvar Symbol.linkage_name
4747The name of the symbol, as used by the linker (i.e., may be mangled).
4748This attribute is not writable.
4749@end defvar
4750
4751@defvar Symbol.print_name
4752The name of the symbol in a form suitable for output. This is either
4753@code{name} or @code{linkage_name}, depending on whether the user
4754asked @value{GDBN} to display demangled or mangled names.
4755@end defvar
4756
4757@defvar Symbol.addr_class
4758The address class of the symbol. This classifies how to find the value
4759of a symbol. Each address class is a constant defined in the
4760@code{gdb} module and described later in this chapter.
4761@end defvar
4762
4763@defvar Symbol.needs_frame
4764This is @code{True} if evaluating this symbol's value requires a frame
4765(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4766local variables will require a frame, but other symbols will not.
4767@end defvar
4768
4769@defvar Symbol.is_argument
4770@code{True} if the symbol is an argument of a function.
4771@end defvar
4772
4773@defvar Symbol.is_constant
4774@code{True} if the symbol is a constant.
4775@end defvar
4776
4777@defvar Symbol.is_function
4778@code{True} if the symbol is a function or a method.
4779@end defvar
4780
4781@defvar Symbol.is_variable
4782@code{True} if the symbol is a variable.
4783@end defvar
4784
4785A @code{gdb.Symbol} object has the following methods:
4786
4787@defun Symbol.is_valid ()
4788Returns @code{True} if the @code{gdb.Symbol} object is valid,
4789@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4790the symbol it refers to does not exist in @value{GDBN} any longer.
4791All other @code{gdb.Symbol} methods will throw an exception if it is
4792invalid at the time the method is called.
4793@end defun
4794
4795@defun Symbol.value (@r{[}frame@r{]})
4796Compute the value of the symbol, as a @code{gdb.Value}. For
4797functions, this computes the address of the function, cast to the
4798appropriate type. If the symbol requires a frame in order to compute
4799its value, then @var{frame} must be given. If @var{frame} is not
4800given, or if @var{frame} is invalid, then this method will throw an
4801exception.
4802@end defun
4803
4804The available domain categories in @code{gdb.Symbol} are represented
4805as constants in the @code{gdb} module:
4806
b3ce5e5f
DE
4807@vtable @code
4808@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4809@item gdb.SYMBOL_UNDEF_DOMAIN
4810This is used when a domain has not been discovered or none of the
4811following domains apply. This usually indicates an error either
4812in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4813
4814@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4815@item gdb.SYMBOL_VAR_DOMAIN
4816This domain contains variables, function names, typedef names and enum
4817type values.
b3ce5e5f
DE
4818
4819@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4820@item gdb.SYMBOL_STRUCT_DOMAIN
4821This domain holds struct, union and enum type names.
b3ce5e5f
DE
4822
4823@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4824@item gdb.SYMBOL_LABEL_DOMAIN
4825This domain contains names of labels (for gotos).
b3ce5e5f 4826
51e78fc5
TT
4827@vindex SYMBOL_MODULE_DOMAIN
4828@item gdb.SYMBOL_MODULE_DOMAIN
4829This domain contains names of Fortran module types.
4830
4831@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4832@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4833This domain contains names of Fortran common blocks.
b3ce5e5f 4834@end vtable
329baa95
DE
4835
4836The available address class categories in @code{gdb.Symbol} are represented
4837as constants in the @code{gdb} module:
4838
b3ce5e5f
DE
4839@vtable @code
4840@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4841@item gdb.SYMBOL_LOC_UNDEF
4842If this is returned by address class, it indicates an error either in
4843the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4844
4845@vindex SYMBOL_LOC_CONST
329baa95
DE
4846@item gdb.SYMBOL_LOC_CONST
4847Value is constant int.
b3ce5e5f
DE
4848
4849@vindex SYMBOL_LOC_STATIC
329baa95
DE
4850@item gdb.SYMBOL_LOC_STATIC
4851Value is at a fixed address.
b3ce5e5f
DE
4852
4853@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4854@item gdb.SYMBOL_LOC_REGISTER
4855Value is in a register.
b3ce5e5f
DE
4856
4857@vindex SYMBOL_LOC_ARG
329baa95
DE
4858@item gdb.SYMBOL_LOC_ARG
4859Value is an argument. This value is at the offset stored within the
4860symbol inside the frame's argument list.
b3ce5e5f
DE
4861
4862@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4863@item gdb.SYMBOL_LOC_REF_ARG
4864Value address is stored in the frame's argument list. Just like
4865@code{LOC_ARG} except that the value's address is stored at the
4866offset, not the value itself.
b3ce5e5f
DE
4867
4868@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4869@item gdb.SYMBOL_LOC_REGPARM_ADDR
4870Value is a specified register. Just like @code{LOC_REGISTER} except
4871the register holds the address of the argument instead of the argument
4872itself.
b3ce5e5f
DE
4873
4874@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4875@item gdb.SYMBOL_LOC_LOCAL
4876Value is a local variable.
b3ce5e5f
DE
4877
4878@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4879@item gdb.SYMBOL_LOC_TYPEDEF
4880Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4881have this class.
b3ce5e5f
DE
4882
4883@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4884@item gdb.SYMBOL_LOC_BLOCK
4885Value is a block.
b3ce5e5f
DE
4886
4887@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4888@item gdb.SYMBOL_LOC_CONST_BYTES
4889Value is a byte-sequence.
b3ce5e5f
DE
4890
4891@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4892@item gdb.SYMBOL_LOC_UNRESOLVED
4893Value is at a fixed address, but the address of the variable has to be
4894determined from the minimal symbol table whenever the variable is
4895referenced.
b3ce5e5f
DE
4896
4897@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4898@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4899The value does not actually exist in the program.
b3ce5e5f
DE
4900
4901@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4902@item gdb.SYMBOL_LOC_COMPUTED
4903The value's address is a computed location.
51e78fc5
TT
4904
4905@vindex SYMBOL_LOC_COMPUTED
4906@item gdb.SYMBOL_LOC_COMPUTED
4907The value's address is a symbol. This is only used for Fortran common
4908blocks.
b3ce5e5f 4909@end vtable
329baa95
DE
4910
4911@node Symbol Tables In Python
849cba3b 4912@subsubsection Symbol table representation in Python
329baa95
DE
4913
4914@cindex symbol tables in python
4915@tindex gdb.Symtab
4916@tindex gdb.Symtab_and_line
4917
4918Access to symbol table data maintained by @value{GDBN} on the inferior
4919is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4920@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4921from the @code{find_sal} method in @code{gdb.Frame} object.
4922@xref{Frames In Python}.
4923
4924For more information on @value{GDBN}'s symbol table management, see
4925@ref{Symbols, ,Examining the Symbol Table}, for more information.
4926
4927A @code{gdb.Symtab_and_line} object has the following attributes:
4928
4929@defvar Symtab_and_line.symtab
4930The symbol table object (@code{gdb.Symtab}) for this frame.
4931This attribute is not writable.
4932@end defvar
4933
4934@defvar Symtab_and_line.pc
4935Indicates the start of the address range occupied by code for the
4936current source line. This attribute is not writable.
4937@end defvar
4938
4939@defvar Symtab_and_line.last
4940Indicates the end of the address range occupied by code for the current
4941source line. This attribute is not writable.
4942@end defvar
4943
4944@defvar Symtab_and_line.line
4945Indicates the current line number for this object. This
4946attribute is not writable.
4947@end defvar
4948
4949A @code{gdb.Symtab_and_line} object has the following methods:
4950
4951@defun Symtab_and_line.is_valid ()
4952Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4953@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4954invalid if the Symbol table and line object it refers to does not
4955exist in @value{GDBN} any longer. All other
4956@code{gdb.Symtab_and_line} methods will throw an exception if it is
4957invalid at the time the method is called.
4958@end defun
4959
4960A @code{gdb.Symtab} object has the following attributes:
4961
4962@defvar Symtab.filename
4963The symbol table's source filename. This attribute is not writable.
4964@end defvar
4965
4966@defvar Symtab.objfile
4967The symbol table's backing object file. @xref{Objfiles In Python}.
4968This attribute is not writable.
4969@end defvar
4970
2b4fd423
DE
4971@defvar Symtab.producer
4972The name and possibly version number of the program that
4973compiled the code in the symbol table.
4974The contents of this string is up to the compiler.
4975If no producer information is available then @code{None} is returned.
4976This attribute is not writable.
4977@end defvar
4978
329baa95
DE
4979A @code{gdb.Symtab} object has the following methods:
4980
4981@defun Symtab.is_valid ()
4982Returns @code{True} if the @code{gdb.Symtab} object is valid,
4983@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4984the symbol table it refers to does not exist in @value{GDBN} any
4985longer. All other @code{gdb.Symtab} methods will throw an exception
4986if it is invalid at the time the method is called.
4987@end defun
4988
4989@defun Symtab.fullname ()
4990Return the symbol table's source absolute file name.
4991@end defun
4992
4993@defun Symtab.global_block ()
4994Return the global block of the underlying symbol table.
4995@xref{Blocks In Python}.
4996@end defun
4997
4998@defun Symtab.static_block ()
4999Return the static block of the underlying symbol table.
5000@xref{Blocks In Python}.
5001@end defun
5002
5003@defun Symtab.linetable ()
5004Return the line table associated with the symbol table.
5005@xref{Line Tables In Python}.
5006@end defun
5007
5008@node Line Tables In Python
5009@subsubsection Manipulating line tables using Python
5010
5011@cindex line tables in python
5012@tindex gdb.LineTable
5013
5014Python code can request and inspect line table information from a
5015symbol table that is loaded in @value{GDBN}. A line table is a
5016mapping of source lines to their executable locations in memory. To
5017acquire the line table information for a particular symbol table, use
5018the @code{linetable} function (@pxref{Symbol Tables In Python}).
5019
5020A @code{gdb.LineTable} is iterable. The iterator returns
5021@code{LineTableEntry} objects that correspond to the source line and
5022address for each line table entry. @code{LineTableEntry} objects have
5023the following attributes:
5024
5025@defvar LineTableEntry.line
5026The source line number for this line table entry. This number
5027corresponds to the actual line of source. This attribute is not
5028writable.
5029@end defvar
5030
5031@defvar LineTableEntry.pc
5032The address that is associated with the line table entry where the
5033executable code for that source line resides in memory. This
5034attribute is not writable.
5035@end defvar
5036
5037As there can be multiple addresses for a single source line, you may
5038receive multiple @code{LineTableEntry} objects with matching
5039@code{line} attributes, but with different @code{pc} attributes. The
5040iterator is sorted in ascending @code{pc} order. Here is a small
5041example illustrating iterating over a line table.
5042
5043@smallexample
5044symtab = gdb.selected_frame().find_sal().symtab
5045linetable = symtab.linetable()
5046for line in linetable:
5047 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5048@end smallexample
5049
5050This will have the following output:
5051
5052@smallexample
5053Line: 33 Address: 0x4005c8L
5054Line: 37 Address: 0x4005caL
5055Line: 39 Address: 0x4005d2L
5056Line: 40 Address: 0x4005f8L
5057Line: 42 Address: 0x4005ffL
5058Line: 44 Address: 0x400608L
5059Line: 42 Address: 0x40060cL
5060Line: 45 Address: 0x400615L
5061@end smallexample
5062
5063In addition to being able to iterate over a @code{LineTable}, it also
5064has the following direct access methods:
5065
5066@defun LineTable.line (line)
5067Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5068entries in the line table for the given @var{line}, which specifies
5069the source code line. If there are no entries for that source code
329baa95
DE
5070@var{line}, the Python @code{None} is returned.
5071@end defun
5072
5073@defun LineTable.has_line (line)
5074Return a Python @code{Boolean} indicating whether there is an entry in
5075the line table for this source line. Return @code{True} if an entry
5076is found, or @code{False} if not.
5077@end defun
5078
5079@defun LineTable.source_lines ()
5080Return a Python @code{List} of the source line numbers in the symbol
5081table. Only lines with executable code locations are returned. The
5082contents of the @code{List} will just be the source line entries
5083represented as Python @code{Long} values.
5084@end defun
5085
5086@node Breakpoints In Python
5087@subsubsection Manipulating breakpoints using Python
5088
5089@cindex breakpoints in python
5090@tindex gdb.Breakpoint
5091
5092Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5093class.
5094
0b982d68
SM
5095A breakpoint can be created using one of the two forms of the
5096@code{gdb.Breakpoint} constructor. The first one accepts a string
5097like one would pass to the @code{break}
5098(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5099(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5100create both breakpoints and watchpoints. The second accepts separate Python
5101arguments similar to @ref{Explicit Locations}, and can only be used to create
5102breakpoints.
5103
b89641ba 5104@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5105Create a new breakpoint according to @var{spec}, which is a string naming the
5106location of a breakpoint, or an expression that defines a watchpoint. The
5107string should describe a location in a format recognized by the @code{break}
5108command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5109watchpoint, by the @code{watch} command
5110(@pxref{Set Watchpoints, , Setting Watchpoints}).
5111
5112The optional @var{type} argument specifies the type of the breakpoint to create,
5113as defined below.
5114
5115The optional @var{wp_class} argument defines the class of watchpoint to create,
5116if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5117defaults to @code{gdb.WP_WRITE}.
5118
5119The optional @var{internal} argument allows the breakpoint to become invisible
5120to the user. The breakpoint will neither be reported when created, nor will it
5121be listed in the output from @code{info breakpoints} (but will be listed with
5122the @code{maint info breakpoints} command).
5123
5124The optional @var{temporary} argument makes the breakpoint a temporary
5125breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5126further access to the Python breakpoint after it has been hit will result in a
5127runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5128
5129The optional @var{qualified} argument is a boolean that allows interpreting
5130the function passed in @code{spec} as a fully-qualified name. It is equivalent
5131to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5132@ref{Explicit Locations}).
5133
0b982d68
SM
5134@end defun
5135
b89641ba 5136@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5137This second form of creating a new breakpoint specifies the explicit
5138location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5139be created in the specified source file @var{source}, at the specified
5140@var{function}, @var{label} and @var{line}.
5141
b89641ba
SM
5142@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5143explained previously.
329baa95
DE
5144@end defun
5145
cda75e70
TT
5146The available types are represented by constants defined in the @code{gdb}
5147module:
5148
5149@vtable @code
5150@vindex BP_BREAKPOINT
5151@item gdb.BP_BREAKPOINT
5152Normal code breakpoint.
5153
5154@vindex BP_WATCHPOINT
5155@item gdb.BP_WATCHPOINT
5156Watchpoint breakpoint.
5157
5158@vindex BP_HARDWARE_WATCHPOINT
5159@item gdb.BP_HARDWARE_WATCHPOINT
5160Hardware assisted watchpoint.
5161
5162@vindex BP_READ_WATCHPOINT
5163@item gdb.BP_READ_WATCHPOINT
5164Hardware assisted read watchpoint.
5165
5166@vindex BP_ACCESS_WATCHPOINT
5167@item gdb.BP_ACCESS_WATCHPOINT
5168Hardware assisted access watchpoint.
5169@end vtable
5170
5171The available watchpoint types represented by constants are defined in the
5172@code{gdb} module:
5173
5174@vtable @code
5175@vindex WP_READ
5176@item gdb.WP_READ
5177Read only watchpoint.
5178
5179@vindex WP_WRITE
5180@item gdb.WP_WRITE
5181Write only watchpoint.
5182
5183@vindex WP_ACCESS
5184@item gdb.WP_ACCESS
5185Read/Write watchpoint.
5186@end vtable
5187
329baa95
DE
5188@defun Breakpoint.stop (self)
5189The @code{gdb.Breakpoint} class can be sub-classed and, in
5190particular, you may choose to implement the @code{stop} method.
5191If this method is defined in a sub-class of @code{gdb.Breakpoint},
5192it will be called when the inferior reaches any location of a
5193breakpoint which instantiates that sub-class. If the method returns
5194@code{True}, the inferior will be stopped at the location of the
5195breakpoint, otherwise the inferior will continue.
5196
5197If there are multiple breakpoints at the same location with a
5198@code{stop} method, each one will be called regardless of the
5199return status of the previous. This ensures that all @code{stop}
5200methods have a chance to execute at that location. In this scenario
5201if one of the methods returns @code{True} but the others return
5202@code{False}, the inferior will still be stopped.
5203
5204You should not alter the execution state of the inferior (i.e.@:, step,
5205next, etc.), alter the current frame context (i.e.@:, change the current
5206active frame), or alter, add or delete any breakpoint. As a general
5207rule, you should not alter any data within @value{GDBN} or the inferior
5208at this time.
5209
5210Example @code{stop} implementation:
5211
5212@smallexample
5213class MyBreakpoint (gdb.Breakpoint):
5214 def stop (self):
5215 inf_val = gdb.parse_and_eval("foo")
5216 if inf_val == 3:
5217 return True
5218 return False
5219@end smallexample
5220@end defun
5221
329baa95
DE
5222@defun Breakpoint.is_valid ()
5223Return @code{True} if this @code{Breakpoint} object is valid,
5224@code{False} otherwise. A @code{Breakpoint} object can become invalid
5225if the user deletes the breakpoint. In this case, the object still
5226exists, but the underlying breakpoint does not. In the cases of
5227watchpoint scope, the watchpoint remains valid even if execution of the
5228inferior leaves the scope of that watchpoint.
5229@end defun
5230
fab3a15d 5231@defun Breakpoint.delete ()
329baa95
DE
5232Permanently deletes the @value{GDBN} breakpoint. This also
5233invalidates the Python @code{Breakpoint} object. Any further access
5234to this object's attributes or methods will raise an error.
5235@end defun
5236
5237@defvar Breakpoint.enabled
5238This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5239@code{False} otherwise. This attribute is writable. You can use it to enable
5240or disable the breakpoint.
329baa95
DE
5241@end defvar
5242
5243@defvar Breakpoint.silent
5244This attribute is @code{True} if the breakpoint is silent, and
5245@code{False} otherwise. This attribute is writable.
5246
5247Note that a breakpoint can also be silent if it has commands and the
5248first command is @code{silent}. This is not reported by the
5249@code{silent} attribute.
5250@end defvar
5251
93daf339
TT
5252@defvar Breakpoint.pending
5253This attribute is @code{True} if the breakpoint is pending, and
5254@code{False} otherwise. @xref{Set Breaks}. This attribute is
5255read-only.
5256@end defvar
5257
22a02324 5258@anchor{python_breakpoint_thread}
329baa95 5259@defvar Breakpoint.thread
5d5658a1
PA
5260If the breakpoint is thread-specific, this attribute holds the
5261thread's global id. If the breakpoint is not thread-specific, this
5262attribute is @code{None}. This attribute is writable.
329baa95
DE
5263@end defvar
5264
5265@defvar Breakpoint.task
5266If the breakpoint is Ada task-specific, this attribute holds the Ada task
5267id. If the breakpoint is not task-specific (or the underlying
5268language is not Ada), this attribute is @code{None}. This attribute
5269is writable.
5270@end defvar
5271
5272@defvar Breakpoint.ignore_count
5273This attribute holds the ignore count for the breakpoint, an integer.
5274This attribute is writable.
5275@end defvar
5276
5277@defvar Breakpoint.number
5278This attribute holds the breakpoint's number --- the identifier used by
5279the user to manipulate the breakpoint. This attribute is not writable.
5280@end defvar
5281
5282@defvar Breakpoint.type
5283This attribute holds the breakpoint's type --- the identifier used to
5284determine the actual breakpoint type or use-case. This attribute is not
5285writable.
5286@end defvar
5287
5288@defvar Breakpoint.visible
5289This attribute tells whether the breakpoint is visible to the user
5290when set, or when the @samp{info breakpoints} command is run. This
5291attribute is not writable.
5292@end defvar
5293
5294@defvar Breakpoint.temporary
5295This attribute indicates whether the breakpoint was created as a
5296temporary breakpoint. Temporary breakpoints are automatically deleted
5297after that breakpoint has been hit. Access to this attribute, and all
5298other attributes and functions other than the @code{is_valid}
5299function, will result in an error after the breakpoint has been hit
5300(as it has been automatically deleted). This attribute is not
5301writable.
5302@end defvar
5303
329baa95
DE
5304@defvar Breakpoint.hit_count
5305This attribute holds the hit count for the breakpoint, an integer.
5306This attribute is writable, but currently it can only be set to zero.
5307@end defvar
5308
5309@defvar Breakpoint.location
5310This attribute holds the location of the breakpoint, as specified by
5311the user. It is a string. If the breakpoint does not have a location
5312(that is, it is a watchpoint) the attribute's value is @code{None}. This
5313attribute is not writable.
5314@end defvar
5315
5316@defvar Breakpoint.expression
5317This attribute holds a breakpoint expression, as specified by
5318the user. It is a string. If the breakpoint does not have an
5319expression (the breakpoint is not a watchpoint) the attribute's value
5320is @code{None}. This attribute is not writable.
5321@end defvar
5322
5323@defvar Breakpoint.condition
5324This attribute holds the condition of the breakpoint, as specified by
5325the user. It is a string. If there is no condition, this attribute's
5326value is @code{None}. This attribute is writable.
5327@end defvar
5328
5329@defvar Breakpoint.commands
5330This attribute holds the commands attached to the breakpoint. If
5331there are commands, this attribute's value is a string holding all the
5332commands, separated by newlines. If there are no commands, this
a913fffb 5333attribute is @code{None}. This attribute is writable.
329baa95
DE
5334@end defvar
5335
5336@node Finish Breakpoints in Python
5337@subsubsection Finish Breakpoints
5338
5339@cindex python finish breakpoints
5340@tindex gdb.FinishBreakpoint
5341
5342A finish breakpoint is a temporary breakpoint set at the return address of
5343a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5344extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5345and deleted when the execution will run out of the breakpoint scope (i.e.@:
5346@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5347Finish breakpoints are thread specific and must be create with the right
5348thread selected.
5349
5350@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5351Create a finish breakpoint at the return address of the @code{gdb.Frame}
5352object @var{frame}. If @var{frame} is not provided, this defaults to the
5353newest frame. The optional @var{internal} argument allows the breakpoint to
5354become invisible to the user. @xref{Breakpoints In Python}, for further
5355details about this argument.
5356@end defun
5357
5358@defun FinishBreakpoint.out_of_scope (self)
5359In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5360@code{return} command, @dots{}), a function may not properly terminate, and
5361thus never hit the finish breakpoint. When @value{GDBN} notices such a
5362situation, the @code{out_of_scope} callback will be triggered.
5363
5364You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5365method:
5366
5367@smallexample
5368class MyFinishBreakpoint (gdb.FinishBreakpoint)
5369 def stop (self):
5370 print "normal finish"
5371 return True
5372
5373 def out_of_scope ():
5374 print "abnormal finish"
5375@end smallexample
5376@end defun
5377
5378@defvar FinishBreakpoint.return_value
5379When @value{GDBN} is stopped at a finish breakpoint and the frame
5380used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5381attribute will contain a @code{gdb.Value} object corresponding to the return
5382value of the function. The value will be @code{None} if the function return
5383type is @code{void} or if the return value was not computable. This attribute
5384is not writable.
5385@end defvar
5386
5387@node Lazy Strings In Python
849cba3b 5388@subsubsection Python representation of lazy strings
329baa95
DE
5389
5390@cindex lazy strings in python
5391@tindex gdb.LazyString
5392
5393A @dfn{lazy string} is a string whose contents is not retrieved or
5394encoded until it is needed.
5395
5396A @code{gdb.LazyString} is represented in @value{GDBN} as an
5397@code{address} that points to a region of memory, an @code{encoding}
5398that will be used to encode that region of memory, and a @code{length}
5399to delimit the region of memory that represents the string. The
5400difference between a @code{gdb.LazyString} and a string wrapped within
5401a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5402differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5403retrieved and encoded during printing, while a @code{gdb.Value}
5404wrapping a string is immediately retrieved and encoded on creation.
5405
5406A @code{gdb.LazyString} object has the following functions:
5407
5408@defun LazyString.value ()
5409Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5410will point to the string in memory, but will lose all the delayed
5411retrieval, encoding and handling that @value{GDBN} applies to a
5412@code{gdb.LazyString}.
5413@end defun
5414
5415@defvar LazyString.address
5416This attribute holds the address of the string. This attribute is not
5417writable.
5418@end defvar
5419
5420@defvar LazyString.length
5421This attribute holds the length of the string in characters. If the
5422length is -1, then the string will be fetched and encoded up to the
5423first null of appropriate width. This attribute is not writable.
5424@end defvar
5425
5426@defvar LazyString.encoding
5427This attribute holds the encoding that will be applied to the string
5428when the string is printed by @value{GDBN}. If the encoding is not
5429set, or contains an empty string, then @value{GDBN} will select the
5430most appropriate encoding when the string is printed. This attribute
5431is not writable.
5432@end defvar
5433
5434@defvar LazyString.type
5435This attribute holds the type that is represented by the lazy string's
f8d99587 5436type. For a lazy string this is a pointer or array type. To
329baa95
DE
5437resolve this to the lazy string's character type, use the type's
5438@code{target} method. @xref{Types In Python}. This attribute is not
5439writable.
5440@end defvar
5441
5442@node Architectures In Python
5443@subsubsection Python representation of architectures
5444@cindex Python architectures
5445
5446@value{GDBN} uses architecture specific parameters and artifacts in a
5447number of its various computations. An architecture is represented
5448by an instance of the @code{gdb.Architecture} class.
5449
5450A @code{gdb.Architecture} class has the following methods:
5451
5452@defun Architecture.name ()
5453Return the name (string value) of the architecture.
5454@end defun
5455
5456@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5457Return a list of disassembled instructions starting from the memory
5458address @var{start_pc}. The optional arguments @var{end_pc} and
5459@var{count} determine the number of instructions in the returned list.
5460If both the optional arguments @var{end_pc} and @var{count} are
5461specified, then a list of at most @var{count} disassembled instructions
5462whose start address falls in the closed memory address interval from
5463@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5464specified, but @var{count} is specified, then @var{count} number of
5465instructions starting from the address @var{start_pc} are returned. If
5466@var{count} is not specified but @var{end_pc} is specified, then all
5467instructions whose start address falls in the closed memory address
5468interval from @var{start_pc} to @var{end_pc} are returned. If neither
5469@var{end_pc} nor @var{count} are specified, then a single instruction at
5470@var{start_pc} is returned. For all of these cases, each element of the
5471returned list is a Python @code{dict} with the following string keys:
5472
5473@table @code
5474
5475@item addr
5476The value corresponding to this key is a Python long integer capturing
5477the memory address of the instruction.
5478
5479@item asm
5480The value corresponding to this key is a string value which represents
5481the instruction with assembly language mnemonics. The assembly
5482language flavor used is the same as that specified by the current CLI
5483variable @code{disassembly-flavor}. @xref{Machine Code}.
5484
5485@item length
5486The value corresponding to this key is the length (integer value) of the
5487instruction in bytes.
5488
5489@end table
5490@end defun
5491
5492@node Python Auto-loading
5493@subsection Python Auto-loading
5494@cindex Python auto-loading
5495
5496When a new object file is read (for example, due to the @code{file}
5497command, or because the inferior has loaded a shared library),
5498@value{GDBN} will look for Python support scripts in several ways:
5499@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5500@xref{Auto-loading extensions}.
5501
5502The auto-loading feature is useful for supplying application-specific
5503debugging commands and scripts.
5504
5505Auto-loading can be enabled or disabled,
5506and the list of auto-loaded scripts can be printed.
5507
5508@table @code
5509@anchor{set auto-load python-scripts}
5510@kindex set auto-load python-scripts
5511@item set auto-load python-scripts [on|off]
5512Enable or disable the auto-loading of Python scripts.
5513
5514@anchor{show auto-load python-scripts}
5515@kindex show auto-load python-scripts
5516@item show auto-load python-scripts
5517Show whether auto-loading of Python scripts is enabled or disabled.
5518
5519@anchor{info auto-load python-scripts}
5520@kindex info auto-load python-scripts
5521@cindex print list of auto-loaded Python scripts
5522@item info auto-load python-scripts [@var{regexp}]
5523Print the list of all Python scripts that @value{GDBN} auto-loaded.
5524
5525Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5526the @code{.debug_gdb_scripts} section and were either not found
5527(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5528@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5529This is useful because their names are not printed when @value{GDBN}
5530tries to load them and fails. There may be many of them, and printing
5531an error message for each one is problematic.
5532
5533If @var{regexp} is supplied only Python scripts with matching names are printed.
5534
5535Example:
5536
5537@smallexample
5538(gdb) info auto-load python-scripts
5539Loaded Script
5540Yes py-section-script.py
5541 full name: /tmp/py-section-script.py
5542No my-foo-pretty-printers.py
5543@end smallexample
5544@end table
5545
9f050062 5546When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5547@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5548function (@pxref{Objfiles In Python}). This can be useful for
5549registering objfile-specific pretty-printers and frame-filters.
5550
5551@node Python modules
5552@subsection Python modules
5553@cindex python modules
5554
5555@value{GDBN} comes with several modules to assist writing Python code.
5556
5557@menu
5558* gdb.printing:: Building and registering pretty-printers.
5559* gdb.types:: Utilities for working with types.
5560* gdb.prompt:: Utilities for prompt value substitution.
5561@end menu
5562
5563@node gdb.printing
5564@subsubsection gdb.printing
5565@cindex gdb.printing
5566
5567This module provides a collection of utilities for working with
5568pretty-printers.
5569
5570@table @code
5571@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5572This class specifies the API that makes @samp{info pretty-printer},
5573@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5574Pretty-printers should generally inherit from this class.
5575
5576@item SubPrettyPrinter (@var{name})
5577For printers that handle multiple types, this class specifies the
5578corresponding API for the subprinters.
5579
5580@item RegexpCollectionPrettyPrinter (@var{name})
5581Utility class for handling multiple printers, all recognized via
5582regular expressions.
5583@xref{Writing a Pretty-Printer}, for an example.
5584
5585@item FlagEnumerationPrinter (@var{name})
5586A pretty-printer which handles printing of @code{enum} values. Unlike
5587@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5588work properly when there is some overlap between the enumeration
697aa1b7
EZ
5589constants. The argument @var{name} is the name of the printer and
5590also the name of the @code{enum} type to look up.
329baa95
DE
5591
5592@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5593Register @var{printer} with the pretty-printer list of @var{obj}.
5594If @var{replace} is @code{True} then any existing copy of the printer
5595is replaced. Otherwise a @code{RuntimeError} exception is raised
5596if a printer with the same name already exists.
5597@end table
5598
5599@node gdb.types
5600@subsubsection gdb.types
5601@cindex gdb.types
5602
5603This module provides a collection of utilities for working with
5604@code{gdb.Type} objects.
5605
5606@table @code
5607@item get_basic_type (@var{type})
5608Return @var{type} with const and volatile qualifiers stripped,
5609and with typedefs and C@t{++} references converted to the underlying type.
5610
5611C@t{++} example:
5612
5613@smallexample
5614typedef const int const_int;
5615const_int foo (3);
5616const_int& foo_ref (foo);
5617int main () @{ return 0; @}
5618@end smallexample
5619
5620Then in gdb:
5621
5622@smallexample
5623(gdb) start
5624(gdb) python import gdb.types
5625(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5626(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5627int
5628@end smallexample
5629
5630@item has_field (@var{type}, @var{field})
5631Return @code{True} if @var{type}, assumed to be a type with fields
5632(e.g., a structure or union), has field @var{field}.
5633
5634@item make_enum_dict (@var{enum_type})
5635Return a Python @code{dictionary} type produced from @var{enum_type}.
5636
5637@item deep_items (@var{type})
5638Returns a Python iterator similar to the standard
5639@code{gdb.Type.iteritems} method, except that the iterator returned
5640by @code{deep_items} will recursively traverse anonymous struct or
5641union fields. For example:
5642
5643@smallexample
5644struct A
5645@{
5646 int a;
5647 union @{
5648 int b0;
5649 int b1;
5650 @};
5651@};
5652@end smallexample
5653
5654@noindent
5655Then in @value{GDBN}:
5656@smallexample
5657(@value{GDBP}) python import gdb.types
5658(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5659(@value{GDBP}) python print struct_a.keys ()
5660@{['a', '']@}
5661(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5662@{['a', 'b0', 'b1']@}
5663@end smallexample
5664
5665@item get_type_recognizers ()
5666Return a list of the enabled type recognizers for the current context.
5667This is called by @value{GDBN} during the type-printing process
5668(@pxref{Type Printing API}).
5669
5670@item apply_type_recognizers (recognizers, type_obj)
5671Apply the type recognizers, @var{recognizers}, to the type object
5672@var{type_obj}. If any recognizer returns a string, return that
5673string. Otherwise, return @code{None}. This is called by
5674@value{GDBN} during the type-printing process (@pxref{Type Printing
5675API}).
5676
5677@item register_type_printer (locus, printer)
697aa1b7
EZ
5678This is a convenience function to register a type printer
5679@var{printer}. The printer must implement the type printer protocol.
5680The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5681the printer is registered with that objfile; a @code{gdb.Progspace},
5682in which case the printer is registered with that progspace; or
5683@code{None}, in which case the printer is registered globally.
329baa95
DE
5684
5685@item TypePrinter
5686This is a base class that implements the type printer protocol. Type
5687printers are encouraged, but not required, to derive from this class.
5688It defines a constructor:
5689
5690@defmethod TypePrinter __init__ (self, name)
5691Initialize the type printer with the given name. The new printer
5692starts in the enabled state.
5693@end defmethod
5694
5695@end table
5696
5697@node gdb.prompt
5698@subsubsection gdb.prompt
5699@cindex gdb.prompt
5700
5701This module provides a method for prompt value-substitution.
5702
5703@table @code
5704@item substitute_prompt (@var{string})
5705Return @var{string} with escape sequences substituted by values. Some
5706escape sequences take arguments. You can specify arguments inside
5707``@{@}'' immediately following the escape sequence.
5708
5709The escape sequences you can pass to this function are:
5710
5711@table @code
5712@item \\
5713Substitute a backslash.
5714@item \e
5715Substitute an ESC character.
5716@item \f
5717Substitute the selected frame; an argument names a frame parameter.
5718@item \n
5719Substitute a newline.
5720@item \p
5721Substitute a parameter's value; the argument names the parameter.
5722@item \r
5723Substitute a carriage return.
5724@item \t
5725Substitute the selected thread; an argument names a thread parameter.
5726@item \v
5727Substitute the version of GDB.
5728@item \w
5729Substitute the current working directory.
5730@item \[
5731Begin a sequence of non-printing characters. These sequences are
5732typically used with the ESC character, and are not counted in the string
5733length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5734blue-colored ``(gdb)'' prompt where the length is five.
5735@item \]
5736End a sequence of non-printing characters.
5737@end table
5738
5739For example:
5740
5741@smallexample
5742substitute_prompt (``frame: \f,
5743 print arguments: \p@{print frame-arguments@}'')
5744@end smallexample
5745
5746@exdent will return the string:
5747
5748@smallexample
5749"frame: main, print arguments: scalars"
5750@end smallexample
5751@end table
This page took 0.673677 seconds and 4 git commands to generate.