Big-endian targets: Fix implptrpiece.exp
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
61baf725 1@c Copyright (C) 2008-2017 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
246@findex gdb.parameter
247@defun gdb.parameter (parameter)
697aa1b7
EZ
248Return the value of a @value{GDBN} @var{parameter} given by its name,
249a string; the parameter name string may contain spaces if the parameter has a
250multi-part name. For example, @samp{print object} is a valid
251parameter name.
329baa95
DE
252
253If the named parameter does not exist, this function throws a
254@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
255parameter's value is converted to a Python value of the appropriate
256type, and returned.
257@end defun
258
259@findex gdb.history
260@defun gdb.history (number)
261Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 262History}). The @var{number} argument indicates which history element to return.
329baa95
DE
263If @var{number} is negative, then @value{GDBN} will take its absolute value
264and count backward from the last element (i.e., the most recent element) to
265find the value to return. If @var{number} is zero, then @value{GDBN} will
266return the most recent element. If the element specified by @var{number}
267doesn't exist in the value history, a @code{gdb.error} exception will be
268raised.
269
270If no exception is raised, the return value is always an instance of
271@code{gdb.Value} (@pxref{Values From Inferior}).
272@end defun
273
274@findex gdb.parse_and_eval
275@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
276Parse @var{expression}, which must be a string, as an expression in
277the current language, evaluate it, and return the result as a
278@code{gdb.Value}.
329baa95
DE
279
280This function can be useful when implementing a new command
281(@pxref{Commands In Python}), as it provides a way to parse the
282command's argument as an expression. It is also useful simply to
283compute values, for example, it is the only way to get the value of a
284convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
285@end defun
286
287@findex gdb.find_pc_line
288@defun gdb.find_pc_line (pc)
289Return the @code{gdb.Symtab_and_line} object corresponding to the
290@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
291value of @var{pc} is passed as an argument, then the @code{symtab} and
292@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
293will be @code{None} and 0 respectively.
294@end defun
295
296@findex gdb.post_event
297@defun gdb.post_event (event)
298Put @var{event}, a callable object taking no arguments, into
299@value{GDBN}'s internal event queue. This callable will be invoked at
300some later point, during @value{GDBN}'s event processing. Events
301posted using @code{post_event} will be run in the order in which they
302were posted; however, there is no way to know when they will be
303processed relative to other events inside @value{GDBN}.
304
305@value{GDBN} is not thread-safe. If your Python program uses multiple
306threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 307functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
308this. For example:
309
310@smallexample
311(@value{GDBP}) python
312>import threading
313>
314>class Writer():
315> def __init__(self, message):
316> self.message = message;
317> def __call__(self):
318> gdb.write(self.message)
319>
320>class MyThread1 (threading.Thread):
321> def run (self):
322> gdb.post_event(Writer("Hello "))
323>
324>class MyThread2 (threading.Thread):
325> def run (self):
326> gdb.post_event(Writer("World\n"))
327>
328>MyThread1().start()
329>MyThread2().start()
330>end
331(@value{GDBP}) Hello World
332@end smallexample
333@end defun
334
335@findex gdb.write
336@defun gdb.write (string @r{[}, stream{]})
337Print a string to @value{GDBN}'s paginated output stream. The
338optional @var{stream} determines the stream to print to. The default
339stream is @value{GDBN}'s standard output stream. Possible stream
340values are:
341
342@table @code
343@findex STDOUT
344@findex gdb.STDOUT
345@item gdb.STDOUT
346@value{GDBN}'s standard output stream.
347
348@findex STDERR
349@findex gdb.STDERR
350@item gdb.STDERR
351@value{GDBN}'s standard error stream.
352
353@findex STDLOG
354@findex gdb.STDLOG
355@item gdb.STDLOG
356@value{GDBN}'s log stream (@pxref{Logging Output}).
357@end table
358
359Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
360call this function and will automatically direct the output to the
361relevant stream.
362@end defun
363
364@findex gdb.flush
365@defun gdb.flush ()
366Flush the buffer of a @value{GDBN} paginated stream so that the
367contents are displayed immediately. @value{GDBN} will flush the
368contents of a stream automatically when it encounters a newline in the
369buffer. The optional @var{stream} determines the stream to flush. The
370default stream is @value{GDBN}'s standard output stream. Possible
371stream values are:
372
373@table @code
374@findex STDOUT
375@findex gdb.STDOUT
376@item gdb.STDOUT
377@value{GDBN}'s standard output stream.
378
379@findex STDERR
380@findex gdb.STDERR
381@item gdb.STDERR
382@value{GDBN}'s standard error stream.
383
384@findex STDLOG
385@findex gdb.STDLOG
386@item gdb.STDLOG
387@value{GDBN}'s log stream (@pxref{Logging Output}).
388
389@end table
390
391Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
392call this function for the relevant stream.
393@end defun
394
395@findex gdb.target_charset
396@defun gdb.target_charset ()
397Return the name of the current target character set (@pxref{Character
398Sets}). This differs from @code{gdb.parameter('target-charset')} in
399that @samp{auto} is never returned.
400@end defun
401
402@findex gdb.target_wide_charset
403@defun gdb.target_wide_charset ()
404Return the name of the current target wide character set
405(@pxref{Character Sets}). This differs from
406@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
407never returned.
408@end defun
409
410@findex gdb.solib_name
411@defun gdb.solib_name (address)
412Return the name of the shared library holding the given @var{address}
413as a string, or @code{None}.
414@end defun
415
416@findex gdb.decode_line
417@defun gdb.decode_line @r{[}expression@r{]}
418Return locations of the line specified by @var{expression}, or of the
419current line if no argument was given. This function returns a Python
420tuple containing two elements. The first element contains a string
421holding any unparsed section of @var{expression} (or @code{None} if
422the expression has been fully parsed). The second element contains
423either @code{None} or another tuple that contains all the locations
424that match the expression represented as @code{gdb.Symtab_and_line}
425objects (@pxref{Symbol Tables In Python}). If @var{expression} is
426provided, it is decoded the way that @value{GDBN}'s inbuilt
427@code{break} or @code{edit} commands do (@pxref{Specify Location}).
428@end defun
429
430@defun gdb.prompt_hook (current_prompt)
431@anchor{prompt_hook}
432
433If @var{prompt_hook} is callable, @value{GDBN} will call the method
434assigned to this operation before a prompt is displayed by
435@value{GDBN}.
436
437The parameter @code{current_prompt} contains the current @value{GDBN}
438prompt. This method must return a Python string, or @code{None}. If
439a string is returned, the @value{GDBN} prompt will be set to that
440string. If @code{None} is returned, @value{GDBN} will continue to use
441the current prompt.
442
443Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
444such as those used by readline for command input, and annotation
445related prompts are prohibited from being changed.
446@end defun
447
448@node Exception Handling
449@subsubsection Exception Handling
450@cindex python exceptions
451@cindex exceptions, python
452
453When executing the @code{python} command, Python exceptions
454uncaught within the Python code are translated to calls to
455@value{GDBN} error-reporting mechanism. If the command that called
456@code{python} does not handle the error, @value{GDBN} will
457terminate it and print an error message containing the Python
458exception name, the associated value, and the Python call stack
459backtrace at the point where the exception was raised. Example:
460
461@smallexample
462(@value{GDBP}) python print foo
463Traceback (most recent call last):
464 File "<string>", line 1, in <module>
465NameError: name 'foo' is not defined
466@end smallexample
467
468@value{GDBN} errors that happen in @value{GDBN} commands invoked by
469Python code are converted to Python exceptions. The type of the
470Python exception depends on the error.
471
472@ftable @code
473@item gdb.error
474This is the base class for most exceptions generated by @value{GDBN}.
475It is derived from @code{RuntimeError}, for compatibility with earlier
476versions of @value{GDBN}.
477
478If an error occurring in @value{GDBN} does not fit into some more
479specific category, then the generated exception will have this type.
480
481@item gdb.MemoryError
482This is a subclass of @code{gdb.error} which is thrown when an
483operation tried to access invalid memory in the inferior.
484
485@item KeyboardInterrupt
486User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
487prompt) is translated to a Python @code{KeyboardInterrupt} exception.
488@end ftable
489
490In all cases, your exception handler will see the @value{GDBN} error
491message as its value and the Python call stack backtrace at the Python
492statement closest to where the @value{GDBN} error occured as the
493traceback.
494
495@findex gdb.GdbError
496When implementing @value{GDBN} commands in Python via @code{gdb.Command},
497it is useful to be able to throw an exception that doesn't cause a
498traceback to be printed. For example, the user may have invoked the
499command incorrectly. Use the @code{gdb.GdbError} exception
500to handle this case. Example:
501
502@smallexample
503(gdb) python
504>class HelloWorld (gdb.Command):
505> """Greet the whole world."""
506> def __init__ (self):
507> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
508> def invoke (self, args, from_tty):
509> argv = gdb.string_to_argv (args)
510> if len (argv) != 0:
511> raise gdb.GdbError ("hello-world takes no arguments")
512> print "Hello, World!"
513>HelloWorld ()
514>end
515(gdb) hello-world 42
516hello-world takes no arguments
517@end smallexample
518
519@node Values From Inferior
520@subsubsection Values From Inferior
521@cindex values from inferior, with Python
522@cindex python, working with values from inferior
523
524@cindex @code{gdb.Value}
525@value{GDBN} provides values it obtains from the inferior program in
526an object of type @code{gdb.Value}. @value{GDBN} uses this object
527for its internal bookkeeping of the inferior's values, and for
528fetching values when necessary.
529
530Inferior values that are simple scalars can be used directly in
531Python expressions that are valid for the value's data type. Here's
532an example for an integer or floating-point value @code{some_val}:
533
534@smallexample
535bar = some_val + 2
536@end smallexample
537
538@noindent
539As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
540whose values are of the same type as those of @code{some_val}. Valid
541Python operations can also be performed on @code{gdb.Value} objects
542representing a @code{struct} or @code{class} object. For such cases,
543the overloaded operator (if present), is used to perform the operation.
544For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
545representing instances of a @code{class} which overloads the @code{+}
546operator, then one can use the @code{+} operator in their Python script
547as follows:
548
549@smallexample
550val3 = val1 + val2
551@end smallexample
552
553@noindent
554The result of the operation @code{val3} is also a @code{gdb.Value}
555object corresponding to the value returned by the overloaded @code{+}
556operator. In general, overloaded operators are invoked for the
557following operations: @code{+} (binary addition), @code{-} (binary
558subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
559@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
560
561Inferior values that are structures or instances of some class can
562be accessed using the Python @dfn{dictionary syntax}. For example, if
563@code{some_val} is a @code{gdb.Value} instance holding a structure, you
564can access its @code{foo} element with:
565
566@smallexample
567bar = some_val['foo']
568@end smallexample
569
570@cindex getting structure elements using gdb.Field objects as subscripts
571Again, @code{bar} will also be a @code{gdb.Value} object. Structure
572elements can also be accessed by using @code{gdb.Field} objects as
573subscripts (@pxref{Types In Python}, for more information on
574@code{gdb.Field} objects). For example, if @code{foo_field} is a
575@code{gdb.Field} object corresponding to element @code{foo} of the above
576structure, then @code{bar} can also be accessed as follows:
577
578@smallexample
579bar = some_val[foo_field]
580@end smallexample
581
582A @code{gdb.Value} that represents a function can be executed via
583inferior function call. Any arguments provided to the call must match
584the function's prototype, and must be provided in the order specified
585by that prototype.
586
587For example, @code{some_val} is a @code{gdb.Value} instance
588representing a function that takes two integers as arguments. To
589execute this function, call it like so:
590
591@smallexample
592result = some_val (10,20)
593@end smallexample
594
595Any values returned from a function call will be stored as a
596@code{gdb.Value}.
597
598The following attributes are provided:
599
600@defvar Value.address
601If this object is addressable, this read-only attribute holds a
602@code{gdb.Value} object representing the address. Otherwise,
603this attribute holds @code{None}.
604@end defvar
605
606@cindex optimized out value in Python
607@defvar Value.is_optimized_out
608This read-only boolean attribute is true if the compiler optimized out
609this value, thus it is not available for fetching from the inferior.
610@end defvar
611
612@defvar Value.type
613The type of this @code{gdb.Value}. The value of this attribute is a
614@code{gdb.Type} object (@pxref{Types In Python}).
615@end defvar
616
617@defvar Value.dynamic_type
618The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
619type information (@acronym{RTTI}) to determine the dynamic type of the
620value. If this value is of class type, it will return the class in
621which the value is embedded, if any. If this value is of pointer or
622reference to a class type, it will compute the dynamic type of the
623referenced object, and return a pointer or reference to that type,
624respectively. In all other cases, it will return the value's static
625type.
626
627Note that this feature will only work when debugging a C@t{++} program
628that includes @acronym{RTTI} for the object in question. Otherwise,
629it will just return the static type of the value as in @kbd{ptype foo}
630(@pxref{Symbols, ptype}).
631@end defvar
632
633@defvar Value.is_lazy
634The value of this read-only boolean attribute is @code{True} if this
635@code{gdb.Value} has not yet been fetched from the inferior.
636@value{GDBN} does not fetch values until necessary, for efficiency.
637For example:
638
639@smallexample
640myval = gdb.parse_and_eval ('somevar')
641@end smallexample
642
643The value of @code{somevar} is not fetched at this time. It will be
644fetched when the value is needed, or when the @code{fetch_lazy}
645method is invoked.
646@end defvar
647
648The following methods are provided:
649
650@defun Value.__init__ (@var{val})
651Many Python values can be converted directly to a @code{gdb.Value} via
652this object initializer. Specifically:
653
654@table @asis
655@item Python boolean
656A Python boolean is converted to the boolean type from the current
657language.
658
659@item Python integer
660A Python integer is converted to the C @code{long} type for the
661current architecture.
662
663@item Python long
664A Python long is converted to the C @code{long long} type for the
665current architecture.
666
667@item Python float
668A Python float is converted to the C @code{double} type for the
669current architecture.
670
671@item Python string
b3ce5e5f
DE
672A Python string is converted to a target string in the current target
673language using the current target encoding.
674If a character cannot be represented in the current target encoding,
675then an exception is thrown.
329baa95
DE
676
677@item @code{gdb.Value}
678If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
679
680@item @code{gdb.LazyString}
681If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
682Python}), then the lazy string's @code{value} method is called, and
683its result is used.
684@end table
685@end defun
686
687@defun Value.cast (type)
688Return a new instance of @code{gdb.Value} that is the result of
689casting this instance to the type described by @var{type}, which must
690be a @code{gdb.Type} object. If the cast cannot be performed for some
691reason, this method throws an exception.
692@end defun
693
694@defun Value.dereference ()
695For pointer data types, this method returns a new @code{gdb.Value} object
696whose contents is the object pointed to by the pointer. For example, if
697@code{foo} is a C pointer to an @code{int}, declared in your C program as
698
699@smallexample
700int *foo;
701@end smallexample
702
703@noindent
704then you can use the corresponding @code{gdb.Value} to access what
705@code{foo} points to like this:
706
707@smallexample
708bar = foo.dereference ()
709@end smallexample
710
711The result @code{bar} will be a @code{gdb.Value} object holding the
712value pointed to by @code{foo}.
713
714A similar function @code{Value.referenced_value} exists which also
715returns @code{gdb.Value} objects corresonding to the values pointed to
716by pointer values (and additionally, values referenced by reference
717values). However, the behavior of @code{Value.dereference}
718differs from @code{Value.referenced_value} by the fact that the
719behavior of @code{Value.dereference} is identical to applying the C
720unary operator @code{*} on a given value. For example, consider a
721reference to a pointer @code{ptrref}, declared in your C@t{++} program
722as
723
724@smallexample
725typedef int *intptr;
726...
727int val = 10;
728intptr ptr = &val;
729intptr &ptrref = ptr;
730@end smallexample
731
732Though @code{ptrref} is a reference value, one can apply the method
733@code{Value.dereference} to the @code{gdb.Value} object corresponding
734to it and obtain a @code{gdb.Value} which is identical to that
735corresponding to @code{val}. However, if you apply the method
736@code{Value.referenced_value}, the result would be a @code{gdb.Value}
737object identical to that corresponding to @code{ptr}.
738
739@smallexample
740py_ptrref = gdb.parse_and_eval ("ptrref")
741py_val = py_ptrref.dereference ()
742py_ptr = py_ptrref.referenced_value ()
743@end smallexample
744
745The @code{gdb.Value} object @code{py_val} is identical to that
746corresponding to @code{val}, and @code{py_ptr} is identical to that
747corresponding to @code{ptr}. In general, @code{Value.dereference} can
748be applied whenever the C unary operator @code{*} can be applied
749to the corresponding C value. For those cases where applying both
750@code{Value.dereference} and @code{Value.referenced_value} is allowed,
751the results obtained need not be identical (as we have seen in the above
752example). The results are however identical when applied on
753@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
754objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
755@end defun
756
757@defun Value.referenced_value ()
758For pointer or reference data types, this method returns a new
759@code{gdb.Value} object corresponding to the value referenced by the
760pointer/reference value. For pointer data types,
761@code{Value.dereference} and @code{Value.referenced_value} produce
762identical results. The difference between these methods is that
763@code{Value.dereference} cannot get the values referenced by reference
764values. For example, consider a reference to an @code{int}, declared
765in your C@t{++} program as
766
767@smallexample
768int val = 10;
769int &ref = val;
770@end smallexample
771
772@noindent
773then applying @code{Value.dereference} to the @code{gdb.Value} object
774corresponding to @code{ref} will result in an error, while applying
775@code{Value.referenced_value} will result in a @code{gdb.Value} object
776identical to that corresponding to @code{val}.
777
778@smallexample
779py_ref = gdb.parse_and_eval ("ref")
780er_ref = py_ref.dereference () # Results in error
781py_val = py_ref.referenced_value () # Returns the referenced value
782@end smallexample
783
784The @code{gdb.Value} object @code{py_val} is identical to that
785corresponding to @code{val}.
786@end defun
787
4c082a81
SC
788@defun Value.reference_value ()
789Return a @code{gdb.Value} object which is a reference to the value
790encapsulated by this instance.
791@end defun
792
793@defun Value.const_value ()
794Return a @code{gdb.Value} object which is a @code{const} version of the
795value encapsulated by this instance.
796@end defun
797
329baa95
DE
798@defun Value.dynamic_cast (type)
799Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
800operator were used. Consult a C@t{++} reference for details.
801@end defun
802
803@defun Value.reinterpret_cast (type)
804Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
805operator were used. Consult a C@t{++} reference for details.
806@end defun
807
808@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
809If this @code{gdb.Value} represents a string, then this method
810converts the contents to a Python string. Otherwise, this method will
811throw an exception.
812
b3ce5e5f
DE
813Values are interpreted as strings according to the rules of the
814current language. If the optional length argument is given, the
815string will be converted to that length, and will include any embedded
816zeroes that the string may contain. Otherwise, for languages
817where the string is zero-terminated, the entire string will be
818converted.
329baa95 819
b3ce5e5f
DE
820For example, in C-like languages, a value is a string if it is a pointer
821to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
822or @code{char32_t}.
329baa95
DE
823
824If the optional @var{encoding} argument is given, it must be a string
825naming the encoding of the string in the @code{gdb.Value}, such as
826@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
827the same encodings as the corresponding argument to Python's
828@code{string.decode} method, and the Python codec machinery will be used
829to convert the string. If @var{encoding} is not given, or if
830@var{encoding} is the empty string, then either the @code{target-charset}
831(@pxref{Character Sets}) will be used, or a language-specific encoding
832will be used, if the current language is able to supply one.
833
834The optional @var{errors} argument is the same as the corresponding
835argument to Python's @code{string.decode} method.
836
837If the optional @var{length} argument is given, the string will be
838fetched and converted to the given length.
839@end defun
840
841@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
842If this @code{gdb.Value} represents a string, then this method
843converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
844In Python}). Otherwise, this method will throw an exception.
845
846If the optional @var{encoding} argument is given, it must be a string
847naming the encoding of the @code{gdb.LazyString}. Some examples are:
848@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
849@var{encoding} argument is an encoding that @value{GDBN} does
850recognize, @value{GDBN} will raise an error.
851
852When a lazy string is printed, the @value{GDBN} encoding machinery is
853used to convert the string during printing. If the optional
854@var{encoding} argument is not provided, or is an empty string,
855@value{GDBN} will automatically select the encoding most suitable for
856the string type. For further information on encoding in @value{GDBN}
857please see @ref{Character Sets}.
858
859If the optional @var{length} argument is given, the string will be
860fetched and encoded to the length of characters specified. If
861the @var{length} argument is not provided, the string will be fetched
862and encoded until a null of appropriate width is found.
863@end defun
864
865@defun Value.fetch_lazy ()
866If the @code{gdb.Value} object is currently a lazy value
867(@code{gdb.Value.is_lazy} is @code{True}), then the value is
868fetched from the inferior. Any errors that occur in the process
869will produce a Python exception.
870
871If the @code{gdb.Value} object is not a lazy value, this method
872has no effect.
873
874This method does not return a value.
875@end defun
876
877
878@node Types In Python
879@subsubsection Types In Python
880@cindex types in Python
881@cindex Python, working with types
882
883@tindex gdb.Type
884@value{GDBN} represents types from the inferior using the class
885@code{gdb.Type}.
886
887The following type-related functions are available in the @code{gdb}
888module:
889
890@findex gdb.lookup_type
891@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 892This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
893
894If @var{block} is given, then @var{name} is looked up in that scope.
895Otherwise, it is searched for globally.
896
897Ordinarily, this function will return an instance of @code{gdb.Type}.
898If the named type cannot be found, it will throw an exception.
899@end defun
900
901If the type is a structure or class type, or an enum type, the fields
902of that type can be accessed using the Python @dfn{dictionary syntax}.
903For example, if @code{some_type} is a @code{gdb.Type} instance holding
904a structure type, you can access its @code{foo} field with:
905
906@smallexample
907bar = some_type['foo']
908@end smallexample
909
910@code{bar} will be a @code{gdb.Field} object; see below under the
911description of the @code{Type.fields} method for a description of the
912@code{gdb.Field} class.
913
914An instance of @code{Type} has the following attributes:
915
916@defvar Type.code
917The type code for this type. The type code will be one of the
918@code{TYPE_CODE_} constants defined below.
919@end defvar
920
921@defvar Type.name
922The name of this type. If this type has no name, then @code{None}
923is returned.
924@end defvar
925
926@defvar Type.sizeof
927The size of this type, in target @code{char} units. Usually, a
928target's @code{char} type will be an 8-bit byte. However, on some
929unusual platforms, this type may have a different size.
930@end defvar
931
932@defvar Type.tag
933The tag name for this type. The tag name is the name after
934@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
935languages have this concept. If this type has no tag name, then
936@code{None} is returned.
937@end defvar
938
939The following methods are provided:
940
941@defun Type.fields ()
942For structure and union types, this method returns the fields. Range
943types have two fields, the minimum and maximum values. Enum types
944have one field per enum constant. Function and method types have one
945field per parameter. The base types of C@t{++} classes are also
946represented as fields. If the type has no fields, or does not fit
947into one of these categories, an empty sequence will be returned.
948
949Each field is a @code{gdb.Field} object, with some pre-defined attributes:
950@table @code
951@item bitpos
952This attribute is not available for @code{enum} or @code{static}
9c37b5ae 953(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
954in bits, from the start of the containing type.
955
956@item enumval
957This attribute is only available for @code{enum} fields, and its value
958is the enumeration member's integer representation.
959
960@item name
961The name of the field, or @code{None} for anonymous fields.
962
963@item artificial
964This is @code{True} if the field is artificial, usually meaning that
965it was provided by the compiler and not the user. This attribute is
966always provided, and is @code{False} if the field is not artificial.
967
968@item is_base_class
969This is @code{True} if the field represents a base class of a C@t{++}
970structure. This attribute is always provided, and is @code{False}
971if the field is not a base class of the type that is the argument of
972@code{fields}, or if that type was not a C@t{++} class.
973
974@item bitsize
975If the field is packed, or is a bitfield, then this will have a
976non-zero value, which is the size of the field in bits. Otherwise,
977this will be zero; in this case the field's size is given by its type.
978
979@item type
980The type of the field. This is usually an instance of @code{Type},
981but it can be @code{None} in some situations.
982
983@item parent_type
984The type which contains this field. This is an instance of
985@code{gdb.Type}.
986@end table
987@end defun
988
989@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
990Return a new @code{gdb.Type} object which represents an array of this
991type. If one argument is given, it is the inclusive upper bound of
992the array; in this case the lower bound is zero. If two arguments are
993given, the first argument is the lower bound of the array, and the
994second argument is the upper bound of the array. An array's length
995must not be negative, but the bounds can be.
996@end defun
997
998@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
999Return a new @code{gdb.Type} object which represents a vector of this
1000type. If one argument is given, it is the inclusive upper bound of
1001the vector; in this case the lower bound is zero. If two arguments are
1002given, the first argument is the lower bound of the vector, and the
1003second argument is the upper bound of the vector. A vector's length
1004must not be negative, but the bounds can be.
1005
1006The difference between an @code{array} and a @code{vector} is that
1007arrays behave like in C: when used in expressions they decay to a pointer
1008to the first element whereas vectors are treated as first class values.
1009@end defun
1010
1011@defun Type.const ()
1012Return a new @code{gdb.Type} object which represents a
1013@code{const}-qualified variant of this type.
1014@end defun
1015
1016@defun Type.volatile ()
1017Return a new @code{gdb.Type} object which represents a
1018@code{volatile}-qualified variant of this type.
1019@end defun
1020
1021@defun Type.unqualified ()
1022Return a new @code{gdb.Type} object which represents an unqualified
1023variant of this type. That is, the result is neither @code{const} nor
1024@code{volatile}.
1025@end defun
1026
1027@defun Type.range ()
1028Return a Python @code{Tuple} object that contains two elements: the
1029low bound of the argument type and the high bound of that type. If
1030the type does not have a range, @value{GDBN} will raise a
1031@code{gdb.error} exception (@pxref{Exception Handling}).
1032@end defun
1033
1034@defun Type.reference ()
1035Return a new @code{gdb.Type} object which represents a reference to this
1036type.
1037@end defun
1038
1039@defun Type.pointer ()
1040Return a new @code{gdb.Type} object which represents a pointer to this
1041type.
1042@end defun
1043
1044@defun Type.strip_typedefs ()
1045Return a new @code{gdb.Type} that represents the real type,
1046after removing all layers of typedefs.
1047@end defun
1048
1049@defun Type.target ()
1050Return a new @code{gdb.Type} object which represents the target type
1051of this type.
1052
1053For a pointer type, the target type is the type of the pointed-to
1054object. For an array type (meaning C-like arrays), the target type is
1055the type of the elements of the array. For a function or method type,
1056the target type is the type of the return value. For a complex type,
1057the target type is the type of the elements. For a typedef, the
1058target type is the aliased type.
1059
1060If the type does not have a target, this method will throw an
1061exception.
1062@end defun
1063
1064@defun Type.template_argument (n @r{[}, block@r{]})
1065If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1066return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1067value of the @var{n}th template argument (indexed starting at 0).
329baa95 1068
1a6a384b
JL
1069If this @code{gdb.Type} is not a template type, or if the type has fewer
1070than @var{n} template arguments, this will throw an exception.
1071Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1072
1073If @var{block} is given, then @var{name} is looked up in that scope.
1074Otherwise, it is searched for globally.
1075@end defun
1076
59fb7612
SS
1077@defun Type.optimized_out ()
1078Return @code{gdb.Value} instance of this type whose value is optimized
1079out. This allows a frame decorator to indicate that the value of an
1080argument or a local variable is not known.
1081@end defun
329baa95
DE
1082
1083Each type has a code, which indicates what category this type falls
1084into. The available type categories are represented by constants
1085defined in the @code{gdb} module:
1086
b3ce5e5f
DE
1087@vtable @code
1088@vindex TYPE_CODE_PTR
329baa95
DE
1089@item gdb.TYPE_CODE_PTR
1090The type is a pointer.
1091
b3ce5e5f 1092@vindex TYPE_CODE_ARRAY
329baa95
DE
1093@item gdb.TYPE_CODE_ARRAY
1094The type is an array.
1095
b3ce5e5f 1096@vindex TYPE_CODE_STRUCT
329baa95
DE
1097@item gdb.TYPE_CODE_STRUCT
1098The type is a structure.
1099
b3ce5e5f 1100@vindex TYPE_CODE_UNION
329baa95
DE
1101@item gdb.TYPE_CODE_UNION
1102The type is a union.
1103
b3ce5e5f 1104@vindex TYPE_CODE_ENUM
329baa95
DE
1105@item gdb.TYPE_CODE_ENUM
1106The type is an enum.
1107
b3ce5e5f 1108@vindex TYPE_CODE_FLAGS
329baa95
DE
1109@item gdb.TYPE_CODE_FLAGS
1110A bit flags type, used for things such as status registers.
1111
b3ce5e5f 1112@vindex TYPE_CODE_FUNC
329baa95
DE
1113@item gdb.TYPE_CODE_FUNC
1114The type is a function.
1115
b3ce5e5f 1116@vindex TYPE_CODE_INT
329baa95
DE
1117@item gdb.TYPE_CODE_INT
1118The type is an integer type.
1119
b3ce5e5f 1120@vindex TYPE_CODE_FLT
329baa95
DE
1121@item gdb.TYPE_CODE_FLT
1122A floating point type.
1123
b3ce5e5f 1124@vindex TYPE_CODE_VOID
329baa95
DE
1125@item gdb.TYPE_CODE_VOID
1126The special type @code{void}.
1127
b3ce5e5f 1128@vindex TYPE_CODE_SET
329baa95
DE
1129@item gdb.TYPE_CODE_SET
1130A Pascal set type.
1131
b3ce5e5f 1132@vindex TYPE_CODE_RANGE
329baa95
DE
1133@item gdb.TYPE_CODE_RANGE
1134A range type, that is, an integer type with bounds.
1135
b3ce5e5f 1136@vindex TYPE_CODE_STRING
329baa95
DE
1137@item gdb.TYPE_CODE_STRING
1138A string type. Note that this is only used for certain languages with
1139language-defined string types; C strings are not represented this way.
1140
b3ce5e5f 1141@vindex TYPE_CODE_BITSTRING
329baa95
DE
1142@item gdb.TYPE_CODE_BITSTRING
1143A string of bits. It is deprecated.
1144
b3ce5e5f 1145@vindex TYPE_CODE_ERROR
329baa95
DE
1146@item gdb.TYPE_CODE_ERROR
1147An unknown or erroneous type.
1148
b3ce5e5f 1149@vindex TYPE_CODE_METHOD
329baa95 1150@item gdb.TYPE_CODE_METHOD
9c37b5ae 1151A method type, as found in C@t{++}.
329baa95 1152
b3ce5e5f 1153@vindex TYPE_CODE_METHODPTR
329baa95
DE
1154@item gdb.TYPE_CODE_METHODPTR
1155A pointer-to-member-function.
1156
b3ce5e5f 1157@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1158@item gdb.TYPE_CODE_MEMBERPTR
1159A pointer-to-member.
1160
b3ce5e5f 1161@vindex TYPE_CODE_REF
329baa95
DE
1162@item gdb.TYPE_CODE_REF
1163A reference type.
1164
b3ce5e5f 1165@vindex TYPE_CODE_CHAR
329baa95
DE
1166@item gdb.TYPE_CODE_CHAR
1167A character type.
1168
b3ce5e5f 1169@vindex TYPE_CODE_BOOL
329baa95
DE
1170@item gdb.TYPE_CODE_BOOL
1171A boolean type.
1172
b3ce5e5f 1173@vindex TYPE_CODE_COMPLEX
329baa95
DE
1174@item gdb.TYPE_CODE_COMPLEX
1175A complex float type.
1176
b3ce5e5f 1177@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1178@item gdb.TYPE_CODE_TYPEDEF
1179A typedef to some other type.
1180
b3ce5e5f 1181@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1182@item gdb.TYPE_CODE_NAMESPACE
1183A C@t{++} namespace.
1184
b3ce5e5f 1185@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1186@item gdb.TYPE_CODE_DECFLOAT
1187A decimal floating point type.
1188
b3ce5e5f 1189@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1190@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1191A function internal to @value{GDBN}. This is the type used to represent
1192convenience functions.
b3ce5e5f 1193@end vtable
329baa95
DE
1194
1195Further support for types is provided in the @code{gdb.types}
1196Python module (@pxref{gdb.types}).
1197
1198@node Pretty Printing API
1199@subsubsection Pretty Printing API
b3ce5e5f 1200@cindex python pretty printing api
329baa95
DE
1201
1202An example output is provided (@pxref{Pretty Printing}).
1203
1204A pretty-printer is just an object that holds a value and implements a
1205specific interface, defined here.
1206
1207@defun pretty_printer.children (self)
1208@value{GDBN} will call this method on a pretty-printer to compute the
1209children of the pretty-printer's value.
1210
1211This method must return an object conforming to the Python iterator
1212protocol. Each item returned by the iterator must be a tuple holding
1213two elements. The first element is the ``name'' of the child; the
1214second element is the child's value. The value can be any Python
1215object which is convertible to a @value{GDBN} value.
1216
1217This method is optional. If it does not exist, @value{GDBN} will act
1218as though the value has no children.
1219@end defun
1220
1221@defun pretty_printer.display_hint (self)
1222The CLI may call this method and use its result to change the
1223formatting of a value. The result will also be supplied to an MI
1224consumer as a @samp{displayhint} attribute of the variable being
1225printed.
1226
1227This method is optional. If it does exist, this method must return a
1228string.
1229
1230Some display hints are predefined by @value{GDBN}:
1231
1232@table @samp
1233@item array
1234Indicate that the object being printed is ``array-like''. The CLI
1235uses this to respect parameters such as @code{set print elements} and
1236@code{set print array}.
1237
1238@item map
1239Indicate that the object being printed is ``map-like'', and that the
1240children of this value can be assumed to alternate between keys and
1241values.
1242
1243@item string
1244Indicate that the object being printed is ``string-like''. If the
1245printer's @code{to_string} method returns a Python string of some
1246kind, then @value{GDBN} will call its internal language-specific
1247string-printing function to format the string. For the CLI this means
1248adding quotation marks, possibly escaping some characters, respecting
1249@code{set print elements}, and the like.
1250@end table
1251@end defun
1252
1253@defun pretty_printer.to_string (self)
1254@value{GDBN} will call this method to display the string
1255representation of the value passed to the object's constructor.
1256
1257When printing from the CLI, if the @code{to_string} method exists,
1258then @value{GDBN} will prepend its result to the values returned by
1259@code{children}. Exactly how this formatting is done is dependent on
1260the display hint, and may change as more hints are added. Also,
1261depending on the print settings (@pxref{Print Settings}), the CLI may
1262print just the result of @code{to_string} in a stack trace, omitting
1263the result of @code{children}.
1264
1265If this method returns a string, it is printed verbatim.
1266
1267Otherwise, if this method returns an instance of @code{gdb.Value},
1268then @value{GDBN} prints this value. This may result in a call to
1269another pretty-printer.
1270
1271If instead the method returns a Python value which is convertible to a
1272@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1273the resulting value. Again, this may result in a call to another
1274pretty-printer. Python scalars (integers, floats, and booleans) and
1275strings are convertible to @code{gdb.Value}; other types are not.
1276
1277Finally, if this method returns @code{None} then no further operations
1278are peformed in this method and nothing is printed.
1279
1280If the result is not one of these types, an exception is raised.
1281@end defun
1282
1283@value{GDBN} provides a function which can be used to look up the
1284default pretty-printer for a @code{gdb.Value}:
1285
1286@findex gdb.default_visualizer
1287@defun gdb.default_visualizer (value)
1288This function takes a @code{gdb.Value} object as an argument. If a
1289pretty-printer for this value exists, then it is returned. If no such
1290printer exists, then this returns @code{None}.
1291@end defun
1292
1293@node Selecting Pretty-Printers
1294@subsubsection Selecting Pretty-Printers
b3ce5e5f 1295@cindex selecting python pretty-printers
329baa95
DE
1296
1297The Python list @code{gdb.pretty_printers} contains an array of
1298functions or callable objects that have been registered via addition
1299as a pretty-printer. Printers in this list are called @code{global}
1300printers, they're available when debugging all inferiors.
1301Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1302Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1303attribute.
1304
1305Each function on these lists is passed a single @code{gdb.Value}
1306argument and should return a pretty-printer object conforming to the
1307interface definition above (@pxref{Pretty Printing API}). If a function
1308cannot create a pretty-printer for the value, it should return
1309@code{None}.
1310
1311@value{GDBN} first checks the @code{pretty_printers} attribute of each
1312@code{gdb.Objfile} in the current program space and iteratively calls
1313each enabled lookup routine in the list for that @code{gdb.Objfile}
1314until it receives a pretty-printer object.
1315If no pretty-printer is found in the objfile lists, @value{GDBN} then
1316searches the pretty-printer list of the current program space,
1317calling each enabled function until an object is returned.
1318After these lists have been exhausted, it tries the global
1319@code{gdb.pretty_printers} list, again calling each enabled function until an
1320object is returned.
1321
1322The order in which the objfiles are searched is not specified. For a
1323given list, functions are always invoked from the head of the list,
1324and iterated over sequentially until the end of the list, or a printer
1325object is returned.
1326
1327For various reasons a pretty-printer may not work.
1328For example, the underlying data structure may have changed and
1329the pretty-printer is out of date.
1330
1331The consequences of a broken pretty-printer are severe enough that
1332@value{GDBN} provides support for enabling and disabling individual
1333printers. For example, if @code{print frame-arguments} is on,
1334a backtrace can become highly illegible if any argument is printed
1335with a broken printer.
1336
1337Pretty-printers are enabled and disabled by attaching an @code{enabled}
1338attribute to the registered function or callable object. If this attribute
1339is present and its value is @code{False}, the printer is disabled, otherwise
1340the printer is enabled.
1341
1342@node Writing a Pretty-Printer
1343@subsubsection Writing a Pretty-Printer
1344@cindex writing a pretty-printer
1345
1346A pretty-printer consists of two parts: a lookup function to detect
1347if the type is supported, and the printer itself.
1348
1349Here is an example showing how a @code{std::string} printer might be
1350written. @xref{Pretty Printing API}, for details on the API this class
1351must provide.
1352
1353@smallexample
1354class StdStringPrinter(object):
1355 "Print a std::string"
1356
1357 def __init__(self, val):
1358 self.val = val
1359
1360 def to_string(self):
1361 return self.val['_M_dataplus']['_M_p']
1362
1363 def display_hint(self):
1364 return 'string'
1365@end smallexample
1366
1367And here is an example showing how a lookup function for the printer
1368example above might be written.
1369
1370@smallexample
1371def str_lookup_function(val):
1372 lookup_tag = val.type.tag
1373 if lookup_tag == None:
1374 return None
1375 regex = re.compile("^std::basic_string<char,.*>$")
1376 if regex.match(lookup_tag):
1377 return StdStringPrinter(val)
1378 return None
1379@end smallexample
1380
1381The example lookup function extracts the value's type, and attempts to
1382match it to a type that it can pretty-print. If it is a type the
1383printer can pretty-print, it will return a printer object. If not, it
1384returns @code{None}.
1385
1386We recommend that you put your core pretty-printers into a Python
1387package. If your pretty-printers are for use with a library, we
1388further recommend embedding a version number into the package name.
1389This practice will enable @value{GDBN} to load multiple versions of
1390your pretty-printers at the same time, because they will have
1391different names.
1392
1393You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1394can be evaluated multiple times without changing its meaning. An
1395ideal auto-load file will consist solely of @code{import}s of your
1396printer modules, followed by a call to a register pretty-printers with
1397the current objfile.
1398
1399Taken as a whole, this approach will scale nicely to multiple
1400inferiors, each potentially using a different library version.
1401Embedding a version number in the Python package name will ensure that
1402@value{GDBN} is able to load both sets of printers simultaneously.
1403Then, because the search for pretty-printers is done by objfile, and
1404because your auto-loaded code took care to register your library's
1405printers with a specific objfile, @value{GDBN} will find the correct
1406printers for the specific version of the library used by each
1407inferior.
1408
1409To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1410this code might appear in @code{gdb.libstdcxx.v6}:
1411
1412@smallexample
1413def register_printers(objfile):
1414 objfile.pretty_printers.append(str_lookup_function)
1415@end smallexample
1416
1417@noindent
1418And then the corresponding contents of the auto-load file would be:
1419
1420@smallexample
1421import gdb.libstdcxx.v6
1422gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1423@end smallexample
1424
1425The previous example illustrates a basic pretty-printer.
1426There are a few things that can be improved on.
1427The printer doesn't have a name, making it hard to identify in a
1428list of installed printers. The lookup function has a name, but
1429lookup functions can have arbitrary, even identical, names.
1430
1431Second, the printer only handles one type, whereas a library typically has
1432several types. One could install a lookup function for each desired type
1433in the library, but one could also have a single lookup function recognize
1434several types. The latter is the conventional way this is handled.
1435If a pretty-printer can handle multiple data types, then its
1436@dfn{subprinters} are the printers for the individual data types.
1437
1438The @code{gdb.printing} module provides a formal way of solving these
1439problems (@pxref{gdb.printing}).
1440Here is another example that handles multiple types.
1441
1442These are the types we are going to pretty-print:
1443
1444@smallexample
1445struct foo @{ int a, b; @};
1446struct bar @{ struct foo x, y; @};
1447@end smallexample
1448
1449Here are the printers:
1450
1451@smallexample
1452class fooPrinter:
1453 """Print a foo object."""
1454
1455 def __init__(self, val):
1456 self.val = val
1457
1458 def to_string(self):
1459 return ("a=<" + str(self.val["a"]) +
1460 "> b=<" + str(self.val["b"]) + ">")
1461
1462class barPrinter:
1463 """Print a bar object."""
1464
1465 def __init__(self, val):
1466 self.val = val
1467
1468 def to_string(self):
1469 return ("x=<" + str(self.val["x"]) +
1470 "> y=<" + str(self.val["y"]) + ">")
1471@end smallexample
1472
1473This example doesn't need a lookup function, that is handled by the
1474@code{gdb.printing} module. Instead a function is provided to build up
1475the object that handles the lookup.
1476
1477@smallexample
1478import gdb.printing
1479
1480def build_pretty_printer():
1481 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1482 "my_library")
1483 pp.add_printer('foo', '^foo$', fooPrinter)
1484 pp.add_printer('bar', '^bar$', barPrinter)
1485 return pp
1486@end smallexample
1487
1488And here is the autoload support:
1489
1490@smallexample
1491import gdb.printing
1492import my_library
1493gdb.printing.register_pretty_printer(
1494 gdb.current_objfile(),
1495 my_library.build_pretty_printer())
1496@end smallexample
1497
1498Finally, when this printer is loaded into @value{GDBN}, here is the
1499corresponding output of @samp{info pretty-printer}:
1500
1501@smallexample
1502(gdb) info pretty-printer
1503my_library.so:
1504 my_library
1505 foo
1506 bar
1507@end smallexample
1508
1509@node Type Printing API
1510@subsubsection Type Printing API
1511@cindex type printing API for Python
1512
1513@value{GDBN} provides a way for Python code to customize type display.
1514This is mainly useful for substituting canonical typedef names for
1515types.
1516
1517@cindex type printer
1518A @dfn{type printer} is just a Python object conforming to a certain
1519protocol. A simple base class implementing the protocol is provided;
1520see @ref{gdb.types}. A type printer must supply at least:
1521
1522@defivar type_printer enabled
1523A boolean which is True if the printer is enabled, and False
1524otherwise. This is manipulated by the @code{enable type-printer}
1525and @code{disable type-printer} commands.
1526@end defivar
1527
1528@defivar type_printer name
1529The name of the type printer. This must be a string. This is used by
1530the @code{enable type-printer} and @code{disable type-printer}
1531commands.
1532@end defivar
1533
1534@defmethod type_printer instantiate (self)
1535This is called by @value{GDBN} at the start of type-printing. It is
1536only called if the type printer is enabled. This method must return a
1537new object that supplies a @code{recognize} method, as described below.
1538@end defmethod
1539
1540
1541When displaying a type, say via the @code{ptype} command, @value{GDBN}
1542will compute a list of type recognizers. This is done by iterating
1543first over the per-objfile type printers (@pxref{Objfiles In Python}),
1544followed by the per-progspace type printers (@pxref{Progspaces In
1545Python}), and finally the global type printers.
1546
1547@value{GDBN} will call the @code{instantiate} method of each enabled
1548type printer. If this method returns @code{None}, then the result is
1549ignored; otherwise, it is appended to the list of recognizers.
1550
1551Then, when @value{GDBN} is going to display a type name, it iterates
1552over the list of recognizers. For each one, it calls the recognition
1553function, stopping if the function returns a non-@code{None} value.
1554The recognition function is defined as:
1555
1556@defmethod type_recognizer recognize (self, type)
1557If @var{type} is not recognized, return @code{None}. Otherwise,
1558return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1559The @var{type} argument will be an instance of @code{gdb.Type}
1560(@pxref{Types In Python}).
329baa95
DE
1561@end defmethod
1562
1563@value{GDBN} uses this two-pass approach so that type printers can
1564efficiently cache information without holding on to it too long. For
1565example, it can be convenient to look up type information in a type
1566printer and hold it for a recognizer's lifetime; if a single pass were
1567done then type printers would have to make use of the event system in
1568order to avoid holding information that could become stale as the
1569inferior changed.
1570
1571@node Frame Filter API
1572@subsubsection Filtering Frames.
1573@cindex frame filters api
1574
1575Frame filters are Python objects that manipulate the visibility of a
1576frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1577@value{GDBN}.
1578
1579Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1580commands (@pxref{GDB/MI}), those that return a collection of frames
1581are affected. The commands that work with frame filters are:
1582
1583@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1584@code{-stack-list-frames}
1585(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1586@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1587-stack-list-variables command}), @code{-stack-list-arguments}
1588@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1589@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1590-stack-list-locals command}).
1591
1592A frame filter works by taking an iterator as an argument, applying
1593actions to the contents of that iterator, and returning another
1594iterator (or, possibly, the same iterator it was provided in the case
1595where the filter does not perform any operations). Typically, frame
1596filters utilize tools such as the Python's @code{itertools} module to
1597work with and create new iterators from the source iterator.
1598Regardless of how a filter chooses to apply actions, it must not alter
1599the underlying @value{GDBN} frame or frames, or attempt to alter the
1600call-stack within @value{GDBN}. This preserves data integrity within
1601@value{GDBN}. Frame filters are executed on a priority basis and care
1602should be taken that some frame filters may have been executed before,
1603and that some frame filters will be executed after.
1604
1605An important consideration when designing frame filters, and well
1606worth reflecting upon, is that frame filters should avoid unwinding
1607the call stack if possible. Some stacks can run very deep, into the
1608tens of thousands in some cases. To search every frame when a frame
1609filter executes may be too expensive at that step. The frame filter
1610cannot know how many frames it has to iterate over, and it may have to
1611iterate through them all. This ends up duplicating effort as
1612@value{GDBN} performs this iteration when it prints the frames. If
1613the filter can defer unwinding frames until frame decorators are
1614executed, after the last filter has executed, it should. @xref{Frame
1615Decorator API}, for more information on decorators. Also, there are
1616examples for both frame decorators and filters in later chapters.
1617@xref{Writing a Frame Filter}, for more information.
1618
1619The Python dictionary @code{gdb.frame_filters} contains key/object
1620pairings that comprise a frame filter. Frame filters in this
1621dictionary are called @code{global} frame filters, and they are
1622available when debugging all inferiors. These frame filters must
1623register with the dictionary directly. In addition to the
1624@code{global} dictionary, there are other dictionaries that are loaded
1625with different inferiors via auto-loading (@pxref{Python
1626Auto-loading}). The two other areas where frame filter dictionaries
1627can be found are: @code{gdb.Progspace} which contains a
1628@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1629object which also contains a @code{frame_filters} dictionary
1630attribute.
1631
1632When a command is executed from @value{GDBN} that is compatible with
1633frame filters, @value{GDBN} combines the @code{global},
1634@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1635loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1636several frames, and thus several object files, might be in use.
1637@value{GDBN} then prunes any frame filter whose @code{enabled}
1638attribute is @code{False}. This pruned list is then sorted according
1639to the @code{priority} attribute in each filter.
1640
1641Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1642creates an iterator which wraps each frame in the call stack in a
1643@code{FrameDecorator} object, and calls each filter in order. The
1644output from the previous filter will always be the input to the next
1645filter, and so on.
1646
1647Frame filters have a mandatory interface which each frame filter must
1648implement, defined here:
1649
1650@defun FrameFilter.filter (iterator)
1651@value{GDBN} will call this method on a frame filter when it has
1652reached the order in the priority list for that filter.
1653
1654For example, if there are four frame filters:
1655
1656@smallexample
1657Name Priority
1658
1659Filter1 5
1660Filter2 10
1661Filter3 100
1662Filter4 1
1663@end smallexample
1664
1665The order that the frame filters will be called is:
1666
1667@smallexample
1668Filter3 -> Filter2 -> Filter1 -> Filter4
1669@end smallexample
1670
1671Note that the output from @code{Filter3} is passed to the input of
1672@code{Filter2}, and so on.
1673
1674This @code{filter} method is passed a Python iterator. This iterator
1675contains a sequence of frame decorators that wrap each
1676@code{gdb.Frame}, or a frame decorator that wraps another frame
1677decorator. The first filter that is executed in the sequence of frame
1678filters will receive an iterator entirely comprised of default
1679@code{FrameDecorator} objects. However, after each frame filter is
1680executed, the previous frame filter may have wrapped some or all of
1681the frame decorators with their own frame decorator. As frame
1682decorators must also conform to a mandatory interface, these
1683decorators can be assumed to act in a uniform manner (@pxref{Frame
1684Decorator API}).
1685
1686This method must return an object conforming to the Python iterator
1687protocol. Each item in the iterator must be an object conforming to
1688the frame decorator interface. If a frame filter does not wish to
1689perform any operations on this iterator, it should return that
1690iterator untouched.
1691
1692This method is not optional. If it does not exist, @value{GDBN} will
1693raise and print an error.
1694@end defun
1695
1696@defvar FrameFilter.name
1697The @code{name} attribute must be Python string which contains the
1698name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1699Management}). This attribute may contain any combination of letters
1700or numbers. Care should be taken to ensure that it is unique. This
1701attribute is mandatory.
1702@end defvar
1703
1704@defvar FrameFilter.enabled
1705The @code{enabled} attribute must be Python boolean. This attribute
1706indicates to @value{GDBN} whether the frame filter is enabled, and
1707should be considered when frame filters are executed. If
1708@code{enabled} is @code{True}, then the frame filter will be executed
1709when any of the backtrace commands detailed earlier in this chapter
1710are executed. If @code{enabled} is @code{False}, then the frame
1711filter will not be executed. This attribute is mandatory.
1712@end defvar
1713
1714@defvar FrameFilter.priority
1715The @code{priority} attribute must be Python integer. This attribute
1716controls the order of execution in relation to other frame filters.
1717There are no imposed limits on the range of @code{priority} other than
1718it must be a valid integer. The higher the @code{priority} attribute,
1719the sooner the frame filter will be executed in relation to other
1720frame filters. Although @code{priority} can be negative, it is
1721recommended practice to assume zero is the lowest priority that a
1722frame filter can be assigned. Frame filters that have the same
1723priority are executed in unsorted order in that priority slot. This
1724attribute is mandatory.
1725@end defvar
1726
1727@node Frame Decorator API
1728@subsubsection Decorating Frames.
1729@cindex frame decorator api
1730
1731Frame decorators are sister objects to frame filters (@pxref{Frame
1732Filter API}). Frame decorators are applied by a frame filter and can
1733only be used in conjunction with frame filters.
1734
1735The purpose of a frame decorator is to customize the printed content
1736of each @code{gdb.Frame} in commands where frame filters are executed.
1737This concept is called decorating a frame. Frame decorators decorate
1738a @code{gdb.Frame} with Python code contained within each API call.
1739This separates the actual data contained in a @code{gdb.Frame} from
1740the decorated data produced by a frame decorator. This abstraction is
1741necessary to maintain integrity of the data contained in each
1742@code{gdb.Frame}.
1743
1744Frame decorators have a mandatory interface, defined below.
1745
1746@value{GDBN} already contains a frame decorator called
1747@code{FrameDecorator}. This contains substantial amounts of
1748boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1749recommended that other frame decorators inherit and extend this
1750object, and only to override the methods needed.
1751
1752@defun FrameDecorator.elided (self)
1753
1754The @code{elided} method groups frames together in a hierarchical
1755system. An example would be an interpreter, where multiple low-level
1756frames make up a single call in the interpreted language. In this
1757example, the frame filter would elide the low-level frames and present
1758a single high-level frame, representing the call in the interpreted
1759language, to the user.
1760
1761The @code{elided} function must return an iterable and this iterable
1762must contain the frames that are being elided wrapped in a suitable
1763frame decorator. If no frames are being elided this function may
1764return an empty iterable, or @code{None}. Elided frames are indented
1765from normal frames in a @code{CLI} backtrace, or in the case of
1766@code{GDB/MI}, are placed in the @code{children} field of the eliding
1767frame.
1768
1769It is the frame filter's task to also filter out the elided frames from
1770the source iterator. This will avoid printing the frame twice.
1771@end defun
1772
1773@defun FrameDecorator.function (self)
1774
1775This method returns the name of the function in the frame that is to
1776be printed.
1777
1778This method must return a Python string describing the function, or
1779@code{None}.
1780
1781If this function returns @code{None}, @value{GDBN} will not print any
1782data for this field.
1783@end defun
1784
1785@defun FrameDecorator.address (self)
1786
1787This method returns the address of the frame that is to be printed.
1788
1789This method must return a Python numeric integer type of sufficient
1790size to describe the address of the frame, or @code{None}.
1791
1792If this function returns a @code{None}, @value{GDBN} will not print
1793any data for this field.
1794@end defun
1795
1796@defun FrameDecorator.filename (self)
1797
1798This method returns the filename and path associated with this frame.
1799
1800This method must return a Python string containing the filename and
1801the path to the object file backing the frame, or @code{None}.
1802
1803If this function returns a @code{None}, @value{GDBN} will not print
1804any data for this field.
1805@end defun
1806
1807@defun FrameDecorator.line (self):
1808
1809This method returns the line number associated with the current
1810position within the function addressed by this frame.
1811
1812This method must return a Python integer type, or @code{None}.
1813
1814If this function returns a @code{None}, @value{GDBN} will not print
1815any data for this field.
1816@end defun
1817
1818@defun FrameDecorator.frame_args (self)
1819@anchor{frame_args}
1820
1821This method must return an iterable, or @code{None}. Returning an
1822empty iterable, or @code{None} means frame arguments will not be
1823printed for this frame. This iterable must contain objects that
1824implement two methods, described here.
1825
1826This object must implement a @code{argument} method which takes a
1827single @code{self} parameter and must return a @code{gdb.Symbol}
1828(@pxref{Symbols In Python}), or a Python string. The object must also
1829implement a @code{value} method which takes a single @code{self}
1830parameter and must return a @code{gdb.Value} (@pxref{Values From
1831Inferior}), a Python value, or @code{None}. If the @code{value}
1832method returns @code{None}, and the @code{argument} method returns a
1833@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1834the @code{gdb.Symbol} automatically.
1835
1836A brief example:
1837
1838@smallexample
1839class SymValueWrapper():
1840
1841 def __init__(self, symbol, value):
1842 self.sym = symbol
1843 self.val = value
1844
1845 def value(self):
1846 return self.val
1847
1848 def symbol(self):
1849 return self.sym
1850
1851class SomeFrameDecorator()
1852...
1853...
1854 def frame_args(self):
1855 args = []
1856 try:
1857 block = self.inferior_frame.block()
1858 except:
1859 return None
1860
1861 # Iterate over all symbols in a block. Only add
1862 # symbols that are arguments.
1863 for sym in block:
1864 if not sym.is_argument:
1865 continue
1866 args.append(SymValueWrapper(sym,None))
1867
1868 # Add example synthetic argument.
1869 args.append(SymValueWrapper(``foo'', 42))
1870
1871 return args
1872@end smallexample
1873@end defun
1874
1875@defun FrameDecorator.frame_locals (self)
1876
1877This method must return an iterable or @code{None}. Returning an
1878empty iterable, or @code{None} means frame local arguments will not be
1879printed for this frame.
1880
1881The object interface, the description of the various strategies for
1882reading frame locals, and the example are largely similar to those
1883described in the @code{frame_args} function, (@pxref{frame_args,,The
1884frame filter frame_args function}). Below is a modified example:
1885
1886@smallexample
1887class SomeFrameDecorator()
1888...
1889...
1890 def frame_locals(self):
1891 vars = []
1892 try:
1893 block = self.inferior_frame.block()
1894 except:
1895 return None
1896
1897 # Iterate over all symbols in a block. Add all
1898 # symbols, except arguments.
1899 for sym in block:
1900 if sym.is_argument:
1901 continue
1902 vars.append(SymValueWrapper(sym,None))
1903
1904 # Add an example of a synthetic local variable.
1905 vars.append(SymValueWrapper(``bar'', 99))
1906
1907 return vars
1908@end smallexample
1909@end defun
1910
1911@defun FrameDecorator.inferior_frame (self):
1912
1913This method must return the underlying @code{gdb.Frame} that this
1914frame decorator is decorating. @value{GDBN} requires the underlying
1915frame for internal frame information to determine how to print certain
1916values when printing a frame.
1917@end defun
1918
1919@node Writing a Frame Filter
1920@subsubsection Writing a Frame Filter
1921@cindex writing a frame filter
1922
1923There are three basic elements that a frame filter must implement: it
1924must correctly implement the documented interface (@pxref{Frame Filter
1925API}), it must register itself with @value{GDBN}, and finally, it must
1926decide if it is to work on the data provided by @value{GDBN}. In all
1927cases, whether it works on the iterator or not, each frame filter must
1928return an iterator. A bare-bones frame filter follows the pattern in
1929the following example.
1930
1931@smallexample
1932import gdb
1933
1934class FrameFilter():
1935
1936 def __init__(self):
1937 # Frame filter attribute creation.
1938 #
1939 # 'name' is the name of the filter that GDB will display.
1940 #
1941 # 'priority' is the priority of the filter relative to other
1942 # filters.
1943 #
1944 # 'enabled' is a boolean that indicates whether this filter is
1945 # enabled and should be executed.
1946
1947 self.name = "Foo"
1948 self.priority = 100
1949 self.enabled = True
1950
1951 # Register this frame filter with the global frame_filters
1952 # dictionary.
1953 gdb.frame_filters[self.name] = self
1954
1955 def filter(self, frame_iter):
1956 # Just return the iterator.
1957 return frame_iter
1958@end smallexample
1959
1960The frame filter in the example above implements the three
1961requirements for all frame filters. It implements the API, self
1962registers, and makes a decision on the iterator (in this case, it just
1963returns the iterator untouched).
1964
1965The first step is attribute creation and assignment, and as shown in
1966the comments the filter assigns the following attributes: @code{name},
1967@code{priority} and whether the filter should be enabled with the
1968@code{enabled} attribute.
1969
1970The second step is registering the frame filter with the dictionary or
1971dictionaries that the frame filter has interest in. As shown in the
1972comments, this filter just registers itself with the global dictionary
1973@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1974is a dictionary that is initialized in the @code{gdb} module when
1975@value{GDBN} starts. What dictionary a filter registers with is an
1976important consideration. Generally, if a filter is specific to a set
1977of code, it should be registered either in the @code{objfile} or
1978@code{progspace} dictionaries as they are specific to the program
1979currently loaded in @value{GDBN}. The global dictionary is always
1980present in @value{GDBN} and is never unloaded. Any filters registered
1981with the global dictionary will exist until @value{GDBN} exits. To
1982avoid filters that may conflict, it is generally better to register
1983frame filters against the dictionaries that more closely align with
1984the usage of the filter currently in question. @xref{Python
1985Auto-loading}, for further information on auto-loading Python scripts.
1986
1987@value{GDBN} takes a hands-off approach to frame filter registration,
1988therefore it is the frame filter's responsibility to ensure
1989registration has occurred, and that any exceptions are handled
1990appropriately. In particular, you may wish to handle exceptions
1991relating to Python dictionary key uniqueness. It is mandatory that
1992the dictionary key is the same as frame filter's @code{name}
1993attribute. When a user manages frame filters (@pxref{Frame Filter
1994Management}), the names @value{GDBN} will display are those contained
1995in the @code{name} attribute.
1996
1997The final step of this example is the implementation of the
1998@code{filter} method. As shown in the example comments, we define the
1999@code{filter} method and note that the method must take an iterator,
2000and also must return an iterator. In this bare-bones example, the
2001frame filter is not very useful as it just returns the iterator
2002untouched. However this is a valid operation for frame filters that
2003have the @code{enabled} attribute set, but decide not to operate on
2004any frames.
2005
2006In the next example, the frame filter operates on all frames and
2007utilizes a frame decorator to perform some work on the frames.
2008@xref{Frame Decorator API}, for further information on the frame
2009decorator interface.
2010
2011This example works on inlined frames. It highlights frames which are
2012inlined by tagging them with an ``[inlined]'' tag. By applying a
2013frame decorator to all frames with the Python @code{itertools imap}
2014method, the example defers actions to the frame decorator. Frame
2015decorators are only processed when @value{GDBN} prints the backtrace.
2016
2017This introduces a new decision making topic: whether to perform
2018decision making operations at the filtering step, or at the printing
2019step. In this example's approach, it does not perform any filtering
2020decisions at the filtering step beyond mapping a frame decorator to
2021each frame. This allows the actual decision making to be performed
2022when each frame is printed. This is an important consideration, and
2023well worth reflecting upon when designing a frame filter. An issue
2024that frame filters should avoid is unwinding the stack if possible.
2025Some stacks can run very deep, into the tens of thousands in some
2026cases. To search every frame to determine if it is inlined ahead of
2027time may be too expensive at the filtering step. The frame filter
2028cannot know how many frames it has to iterate over, and it would have
2029to iterate through them all. This ends up duplicating effort as
2030@value{GDBN} performs this iteration when it prints the frames.
2031
2032In this example decision making can be deferred to the printing step.
2033As each frame is printed, the frame decorator can examine each frame
2034in turn when @value{GDBN} iterates. From a performance viewpoint,
2035this is the most appropriate decision to make as it avoids duplicating
2036the effort that the printing step would undertake anyway. Also, if
2037there are many frame filters unwinding the stack during filtering, it
2038can substantially delay the printing of the backtrace which will
2039result in large memory usage, and a poor user experience.
2040
2041@smallexample
2042class InlineFilter():
2043
2044 def __init__(self):
2045 self.name = "InlinedFrameFilter"
2046 self.priority = 100
2047 self.enabled = True
2048 gdb.frame_filters[self.name] = self
2049
2050 def filter(self, frame_iter):
2051 frame_iter = itertools.imap(InlinedFrameDecorator,
2052 frame_iter)
2053 return frame_iter
2054@end smallexample
2055
2056This frame filter is somewhat similar to the earlier example, except
2057that the @code{filter} method applies a frame decorator object called
2058@code{InlinedFrameDecorator} to each element in the iterator. The
2059@code{imap} Python method is light-weight. It does not proactively
2060iterate over the iterator, but rather creates a new iterator which
2061wraps the existing one.
2062
2063Below is the frame decorator for this example.
2064
2065@smallexample
2066class InlinedFrameDecorator(FrameDecorator):
2067
2068 def __init__(self, fobj):
2069 super(InlinedFrameDecorator, self).__init__(fobj)
2070
2071 def function(self):
2072 frame = fobj.inferior_frame()
2073 name = str(frame.name())
2074
2075 if frame.type() == gdb.INLINE_FRAME:
2076 name = name + " [inlined]"
2077
2078 return name
2079@end smallexample
2080
2081This frame decorator only defines and overrides the @code{function}
2082method. It lets the supplied @code{FrameDecorator}, which is shipped
2083with @value{GDBN}, perform the other work associated with printing
2084this frame.
2085
2086The combination of these two objects create this output from a
2087backtrace:
2088
2089@smallexample
2090#0 0x004004e0 in bar () at inline.c:11
2091#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2092#2 0x00400566 in main () at inline.c:31
2093@end smallexample
2094
2095So in the case of this example, a frame decorator is applied to all
2096frames, regardless of whether they may be inlined or not. As
2097@value{GDBN} iterates over the iterator produced by the frame filters,
2098@value{GDBN} executes each frame decorator which then makes a decision
2099on what to print in the @code{function} callback. Using a strategy
2100like this is a way to defer decisions on the frame content to printing
2101time.
2102
2103@subheading Eliding Frames
2104
2105It might be that the above example is not desirable for representing
2106inlined frames, and a hierarchical approach may be preferred. If we
2107want to hierarchically represent frames, the @code{elided} frame
2108decorator interface might be preferable.
2109
2110This example approaches the issue with the @code{elided} method. This
2111example is quite long, but very simplistic. It is out-of-scope for
2112this section to write a complete example that comprehensively covers
2113all approaches of finding and printing inlined frames. However, this
2114example illustrates the approach an author might use.
2115
2116This example comprises of three sections.
2117
2118@smallexample
2119class InlineFrameFilter():
2120
2121 def __init__(self):
2122 self.name = "InlinedFrameFilter"
2123 self.priority = 100
2124 self.enabled = True
2125 gdb.frame_filters[self.name] = self
2126
2127 def filter(self, frame_iter):
2128 return ElidingInlineIterator(frame_iter)
2129@end smallexample
2130
2131This frame filter is very similar to the other examples. The only
2132difference is this frame filter is wrapping the iterator provided to
2133it (@code{frame_iter}) with a custom iterator called
2134@code{ElidingInlineIterator}. This again defers actions to when
2135@value{GDBN} prints the backtrace, as the iterator is not traversed
2136until printing.
2137
2138The iterator for this example is as follows. It is in this section of
2139the example where decisions are made on the content of the backtrace.
2140
2141@smallexample
2142class ElidingInlineIterator:
2143 def __init__(self, ii):
2144 self.input_iterator = ii
2145
2146 def __iter__(self):
2147 return self
2148
2149 def next(self):
2150 frame = next(self.input_iterator)
2151
2152 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2153 return frame
2154
2155 try:
2156 eliding_frame = next(self.input_iterator)
2157 except StopIteration:
2158 return frame
2159 return ElidingFrameDecorator(eliding_frame, [frame])
2160@end smallexample
2161
2162This iterator implements the Python iterator protocol. When the
2163@code{next} function is called (when @value{GDBN} prints each frame),
2164the iterator checks if this frame decorator, @code{frame}, is wrapping
2165an inlined frame. If it is not, it returns the existing frame decorator
2166untouched. If it is wrapping an inlined frame, it assumes that the
2167inlined frame was contained within the next oldest frame,
2168@code{eliding_frame}, which it fetches. It then creates and returns a
2169frame decorator, @code{ElidingFrameDecorator}, which contains both the
2170elided frame, and the eliding frame.
2171
2172@smallexample
2173class ElidingInlineDecorator(FrameDecorator):
2174
2175 def __init__(self, frame, elided_frames):
2176 super(ElidingInlineDecorator, self).__init__(frame)
2177 self.frame = frame
2178 self.elided_frames = elided_frames
2179
2180 def elided(self):
2181 return iter(self.elided_frames)
2182@end smallexample
2183
2184This frame decorator overrides one function and returns the inlined
2185frame in the @code{elided} method. As before it lets
2186@code{FrameDecorator} do the rest of the work involved in printing
2187this frame. This produces the following output.
2188
2189@smallexample
2190#0 0x004004e0 in bar () at inline.c:11
2191#2 0x00400529 in main () at inline.c:25
2192 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2193@end smallexample
2194
2195In that output, @code{max} which has been inlined into @code{main} is
2196printed hierarchically. Another approach would be to combine the
2197@code{function} method, and the @code{elided} method to both print a
2198marker in the inlined frame, and also show the hierarchical
2199relationship.
2200
d11916aa
SS
2201@node Unwinding Frames in Python
2202@subsubsection Unwinding Frames in Python
2203@cindex unwinding frames in Python
2204
2205In @value{GDBN} terminology ``unwinding'' is the process of finding
2206the previous frame (that is, caller's) from the current one. An
2207unwinder has three methods. The first one checks if it can handle
2208given frame (``sniff'' it). For the frames it can sniff an unwinder
2209provides two additional methods: it can return frame's ID, and it can
2210fetch registers from the previous frame. A running @value{GDBN}
2211mantains a list of the unwinders and calls each unwinder's sniffer in
2212turn until it finds the one that recognizes the current frame. There
2213is an API to register an unwinder.
2214
2215The unwinders that come with @value{GDBN} handle standard frames.
2216However, mixed language applications (for example, an application
2217running Java Virtual Machine) sometimes use frame layouts that cannot
2218be handled by the @value{GDBN} unwinders. You can write Python code
2219that can handle such custom frames.
2220
2221You implement a frame unwinder in Python as a class with which has two
2222attributes, @code{name} and @code{enabled}, with obvious meanings, and
2223a single method @code{__call__}, which examines a given frame and
2224returns an object (an instance of @code{gdb.UnwindInfo class)}
2225describing it. If an unwinder does not recognize a frame, it should
2226return @code{None}. The code in @value{GDBN} that enables writing
2227unwinders in Python uses this object to return frame's ID and previous
2228frame registers when @value{GDBN} core asks for them.
2229
2230@subheading Unwinder Input
2231
2232An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2233provides a method to read frame's registers:
2234
2235@defun PendingFrame.read_register (reg)
2236This method returns the contents of the register @var{regn} in the
2237frame as a @code{gdb.Value} object. @var{reg} can be either a
2238register number or a register name; the values are platform-specific.
2239They are usually found in the corresponding
2240@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2241@end defun
2242
2243It also provides a factory method to create a @code{gdb.UnwindInfo}
2244instance to be returned to @value{GDBN}:
2245
2246@defun PendingFrame.create_unwind_info (frame_id)
2247Returns a new @code{gdb.UnwindInfo} instance identified by given
2248@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2249using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2250determine which function will be used, as follows:
2251
2252@table @code
2253@item sp, pc, special
2254@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2255
2256@item sp, pc
2257@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2258
2259This is the most common case.
2260
2261@item sp
2262@code{frame_id_build_wild (@var{frame_id}.sp)}
2263@end table
2264The attribute values should be @code{gdb.Value}
2265
2266@end defun
2267
2268@subheading Unwinder Output: UnwindInfo
2269
2270Use @code{PendingFrame.create_unwind_info} method described above to
2271create a @code{gdb.UnwindInfo} instance. Use the following method to
2272specify caller registers that have been saved in this frame:
2273
2274@defun gdb.UnwindInfo.add_saved_register (reg, value)
2275@var{reg} identifies the register. It can be a number or a name, just
2276as for the @code{PendingFrame.read_register} method above.
2277@var{value} is a register value (a @code{gdb.Value} object).
2278@end defun
2279
2280@subheading Unwinder Skeleton Code
2281
2282@value{GDBN} comes with the module containing the base @code{Unwinder}
2283class. Derive your unwinder class from it and structure the code as
2284follows:
2285
2286@smallexample
2287from gdb.unwinders import Unwinder
2288
2289class FrameId(object):
2290 def __init__(self, sp, pc):
2291 self.sp = sp
2292 self.pc = pc
2293
2294
2295class MyUnwinder(Unwinder):
2296 def __init__(....):
2297 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2298
2299 def __call__(pending_frame):
2300 if not <we recognize frame>:
2301 return None
2302 # Create UnwindInfo. Usually the frame is identified by the stack
2303 # pointer and the program counter.
2304 sp = pending_frame.read_register(<SP number>)
2305 pc = pending_frame.read_register(<PC number>)
2306 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2307
2308 # Find the values of the registers in the caller's frame and
2309 # save them in the result:
2310 unwind_info.add_saved_register(<register>, <value>)
2311 ....
2312
2313 # Return the result:
2314 return unwind_info
2315
2316@end smallexample
2317
2318@subheading Registering a Unwinder
2319
2320An object file, a program space, and the @value{GDBN} proper can have
2321unwinders registered with it.
2322
2323The @code{gdb.unwinders} module provides the function to register a
2324unwinder:
2325
2326@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2327@var{locus} is specifies an object file or a program space to which
2328@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2329@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2330added @var{unwinder} will be called before any other unwinder from the
2331same locus. Two unwinders in the same locus cannot have the same
2332name. An attempt to add a unwinder with already existing name raises
2333an exception unless @var{replace} is @code{True}, in which case the
2334old unwinder is deleted.
2335@end defun
2336
2337@subheading Unwinder Precedence
2338
2339@value{GDBN} first calls the unwinders from all the object files in no
2340particular order, then the unwinders from the current program space,
2341and finally the unwinders from @value{GDBN}.
2342
0c6e92a5
SC
2343@node Xmethods In Python
2344@subsubsection Xmethods In Python
2345@cindex xmethods in Python
2346
2347@dfn{Xmethods} are additional methods or replacements for existing
2348methods of a C@t{++} class. This feature is useful for those cases
2349where a method defined in C@t{++} source code could be inlined or
2350optimized out by the compiler, making it unavailable to @value{GDBN}.
2351For such cases, one can define an xmethod to serve as a replacement
2352for the method defined in the C@t{++} source code. @value{GDBN} will
2353then invoke the xmethod, instead of the C@t{++} method, to
2354evaluate expressions. One can also use xmethods when debugging
2355with core files. Moreover, when debugging live programs, invoking an
2356xmethod need not involve running the inferior (which can potentially
2357perturb its state). Hence, even if the C@t{++} method is available, it
2358is better to use its replacement xmethod if one is defined.
2359
2360The xmethods feature in Python is available via the concepts of an
2361@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2362implement an xmethod, one has to implement a matcher and a
2363corresponding worker for it (more than one worker can be
2364implemented, each catering to a different overloaded instance of the
2365method). Internally, @value{GDBN} invokes the @code{match} method of a
2366matcher to match the class type and method name. On a match, the
2367@code{match} method returns a list of matching @emph{worker} objects.
2368Each worker object typically corresponds to an overloaded instance of
2369the xmethod. They implement a @code{get_arg_types} method which
2370returns a sequence of types corresponding to the arguments the xmethod
2371requires. @value{GDBN} uses this sequence of types to perform
2372overload resolution and picks a winning xmethod worker. A winner
2373is also selected from among the methods @value{GDBN} finds in the
2374C@t{++} source code. Next, the winning xmethod worker and the
2375winning C@t{++} method are compared to select an overall winner. In
2376case of a tie between a xmethod worker and a C@t{++} method, the
2377xmethod worker is selected as the winner. That is, if a winning
2378xmethod worker is found to be equivalent to the winning C@t{++}
2379method, then the xmethod worker is treated as a replacement for
2380the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2381method. If the winning xmethod worker is the overall winner, then
897c3d32 2382the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2383of the worker object.
2384
2385If one wants to implement an xmethod as a replacement for an
2386existing C@t{++} method, then they have to implement an equivalent
2387xmethod which has exactly the same name and takes arguments of
2388exactly the same type as the C@t{++} method. If the user wants to
2389invoke the C@t{++} method even though a replacement xmethod is
2390available for that method, then they can disable the xmethod.
2391
2392@xref{Xmethod API}, for API to implement xmethods in Python.
2393@xref{Writing an Xmethod}, for implementing xmethods in Python.
2394
2395@node Xmethod API
2396@subsubsection Xmethod API
2397@cindex xmethod API
2398
2399The @value{GDBN} Python API provides classes, interfaces and functions
2400to implement, register and manipulate xmethods.
2401@xref{Xmethods In Python}.
2402
2403An xmethod matcher should be an instance of a class derived from
2404@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2405object with similar interface and attributes. An instance of
2406@code{XMethodMatcher} has the following attributes:
2407
2408@defvar name
2409The name of the matcher.
2410@end defvar
2411
2412@defvar enabled
2413A boolean value indicating whether the matcher is enabled or disabled.
2414@end defvar
2415
2416@defvar methods
2417A list of named methods managed by the matcher. Each object in the list
2418is an instance of the class @code{XMethod} defined in the module
2419@code{gdb.xmethod}, or any object with the following attributes:
2420
2421@table @code
2422
2423@item name
2424Name of the xmethod which should be unique for each xmethod
2425managed by the matcher.
2426
2427@item enabled
2428A boolean value indicating whether the xmethod is enabled or
2429disabled.
2430
2431@end table
2432
2433The class @code{XMethod} is a convenience class with same
2434attributes as above along with the following constructor:
2435
dd5d5494 2436@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2437Constructs an enabled xmethod with name @var{name}.
2438@end defun
2439@end defvar
2440
2441@noindent
2442The @code{XMethodMatcher} class has the following methods:
2443
dd5d5494 2444@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2445Constructs an enabled xmethod matcher with name @var{name}. The
2446@code{methods} attribute is initialized to @code{None}.
2447@end defun
2448
dd5d5494 2449@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2450Derived classes should override this method. It should return a
2451xmethod worker object (or a sequence of xmethod worker
2452objects) matching the @var{class_type} and @var{method_name}.
2453@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2454is a string value. If the matcher manages named methods as listed in
2455its @code{methods} attribute, then only those worker objects whose
2456corresponding entries in the @code{methods} list are enabled should be
2457returned.
2458@end defun
2459
2460An xmethod worker should be an instance of a class derived from
2461@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2462or support the following interface:
2463
dd5d5494 2464@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2465This method returns a sequence of @code{gdb.Type} objects corresponding
2466to the arguments that the xmethod takes. It can return an empty
2467sequence or @code{None} if the xmethod does not take any arguments.
2468If the xmethod takes a single argument, then a single
2469@code{gdb.Type} object corresponding to it can be returned.
2470@end defun
2471
2ce1cdbf
DE
2472@defun XMethodWorker.get_result_type (self, *args)
2473This method returns a @code{gdb.Type} object representing the type
2474of the result of invoking this xmethod.
2475The @var{args} argument is the same tuple of arguments that would be
2476passed to the @code{__call__} method of this worker.
2477@end defun
2478
dd5d5494 2479@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2480This is the method which does the @emph{work} of the xmethod. The
2481@var{args} arguments is the tuple of arguments to the xmethod. Each
2482element in this tuple is a gdb.Value object. The first element is
2483always the @code{this} pointer value.
2484@end defun
2485
2486For @value{GDBN} to lookup xmethods, the xmethod matchers
2487should be registered using the following function defined in the module
2488@code{gdb.xmethod}:
2489
dd5d5494 2490@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2491The @code{matcher} is registered with @code{locus}, replacing an
2492existing matcher with the same name as @code{matcher} if
2493@code{replace} is @code{True}. @code{locus} can be a
2494@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2495@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2496@code{None}. If it is @code{None}, then @code{matcher} is registered
2497globally.
2498@end defun
2499
2500@node Writing an Xmethod
2501@subsubsection Writing an Xmethod
2502@cindex writing xmethods in Python
2503
2504Implementing xmethods in Python will require implementing xmethod
2505matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2506the following C@t{++} class:
2507
2508@smallexample
2509class MyClass
2510@{
2511public:
2512 MyClass (int a) : a_(a) @{ @}
2513
2514 int geta (void) @{ return a_; @}
2515 int operator+ (int b);
2516
2517private:
2518 int a_;
2519@};
2520
2521int
2522MyClass::operator+ (int b)
2523@{
2524 return a_ + b;
2525@}
2526@end smallexample
2527
2528@noindent
2529Let us define two xmethods for the class @code{MyClass}, one
2530replacing the method @code{geta}, and another adding an overloaded
2531flavor of @code{operator+} which takes a @code{MyClass} argument (the
2532C@t{++} code above already has an overloaded @code{operator+}
2533which takes an @code{int} argument). The xmethod matcher can be
2534defined as follows:
2535
2536@smallexample
2537class MyClass_geta(gdb.xmethod.XMethod):
2538 def __init__(self):
2539 gdb.xmethod.XMethod.__init__(self, 'geta')
2540
2541 def get_worker(self, method_name):
2542 if method_name == 'geta':
2543 return MyClassWorker_geta()
2544
2545
2546class MyClass_sum(gdb.xmethod.XMethod):
2547 def __init__(self):
2548 gdb.xmethod.XMethod.__init__(self, 'sum')
2549
2550 def get_worker(self, method_name):
2551 if method_name == 'operator+':
2552 return MyClassWorker_plus()
2553
2554
2555class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2556 def __init__(self):
2557 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2558 # List of methods 'managed' by this matcher
2559 self.methods = [MyClass_geta(), MyClass_sum()]
2560
2561 def match(self, class_type, method_name):
2562 if class_type.tag != 'MyClass':
2563 return None
2564 workers = []
2565 for method in self.methods:
2566 if method.enabled:
2567 worker = method.get_worker(method_name)
2568 if worker:
2569 workers.append(worker)
2570
2571 return workers
2572@end smallexample
2573
2574@noindent
2575Notice that the @code{match} method of @code{MyClassMatcher} returns
2576a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2577method, and a worker object of type @code{MyClassWorker_plus} for the
2578@code{operator+} method. This is done indirectly via helper classes
2579derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2580@code{methods} attribute in a matcher as it is optional. However, if a
2581matcher manages more than one xmethod, it is a good practice to list the
2582xmethods in the @code{methods} attribute of the matcher. This will then
2583facilitate enabling and disabling individual xmethods via the
2584@code{enable/disable} commands. Notice also that a worker object is
2585returned only if the corresponding entry in the @code{methods} attribute
2586of the matcher is enabled.
2587
2588The implementation of the worker classes returned by the matcher setup
2589above is as follows:
2590
2591@smallexample
2592class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2593 def get_arg_types(self):
2594 return None
2ce1cdbf
DE
2595
2596 def get_result_type(self, obj):
2597 return gdb.lookup_type('int')
0c6e92a5
SC
2598
2599 def __call__(self, obj):
2600 return obj['a_']
2601
2602
2603class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2604 def get_arg_types(self):
2605 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2606
2607 def get_result_type(self, obj):
2608 return gdb.lookup_type('int')
0c6e92a5
SC
2609
2610 def __call__(self, obj, other):
2611 return obj['a_'] + other['a_']
2612@end smallexample
2613
2614For @value{GDBN} to actually lookup a xmethod, it has to be
2615registered with it. The matcher defined above is registered with
2616@value{GDBN} globally as follows:
2617
2618@smallexample
2619gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2620@end smallexample
2621
2622If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2623code as follows:
2624
2625@smallexample
2626MyClass obj(5);
2627@end smallexample
2628
2629@noindent
2630then, after loading the Python script defining the xmethod matchers
2631and workers into @code{GDBN}, invoking the method @code{geta} or using
2632the operator @code{+} on @code{obj} will invoke the xmethods
2633defined above:
2634
2635@smallexample
2636(gdb) p obj.geta()
2637$1 = 5
2638
2639(gdb) p obj + obj
2640$2 = 10
2641@end smallexample
2642
2643Consider another example with a C++ template class:
2644
2645@smallexample
2646template <class T>
2647class MyTemplate
2648@{
2649public:
2650 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2651 ~MyTemplate () @{ delete [] data_; @}
2652
2653 int footprint (void)
2654 @{
2655 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2656 @}
2657
2658private:
2659 int dsize_;
2660 T *data_;
2661@};
2662@end smallexample
2663
2664Let us implement an xmethod for the above class which serves as a
2665replacement for the @code{footprint} method. The full code listing
2666of the xmethod workers and xmethod matchers is as follows:
2667
2668@smallexample
2669class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2670 def __init__(self, class_type):
2671 self.class_type = class_type
2ce1cdbf 2672
0c6e92a5
SC
2673 def get_arg_types(self):
2674 return None
2ce1cdbf
DE
2675
2676 def get_result_type(self):
2677 return gdb.lookup_type('int')
2678
0c6e92a5
SC
2679 def __call__(self, obj):
2680 return (self.class_type.sizeof +
2681 obj['dsize_'] *
2682 self.class_type.template_argument(0).sizeof)
2683
2684
2685class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2686 def __init__(self):
2687 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2688
2689 def match(self, class_type, method_name):
2690 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2691 class_type.tag) and
2692 method_name == 'footprint'):
2693 return MyTemplateWorker_footprint(class_type)
2694@end smallexample
2695
2696Notice that, in this example, we have not used the @code{methods}
2697attribute of the matcher as the matcher manages only one xmethod. The
2698user can enable/disable this xmethod by enabling/disabling the matcher
2699itself.
2700
329baa95
DE
2701@node Inferiors In Python
2702@subsubsection Inferiors In Python
2703@cindex inferiors in Python
2704
2705@findex gdb.Inferior
2706Programs which are being run under @value{GDBN} are called inferiors
2707(@pxref{Inferiors and Programs}). Python scripts can access
2708information about and manipulate inferiors controlled by @value{GDBN}
2709via objects of the @code{gdb.Inferior} class.
2710
2711The following inferior-related functions are available in the @code{gdb}
2712module:
2713
2714@defun gdb.inferiors ()
2715Return a tuple containing all inferior objects.
2716@end defun
2717
2718@defun gdb.selected_inferior ()
2719Return an object representing the current inferior.
2720@end defun
2721
2722A @code{gdb.Inferior} object has the following attributes:
2723
2724@defvar Inferior.num
2725ID of inferior, as assigned by GDB.
2726@end defvar
2727
2728@defvar Inferior.pid
2729Process ID of the inferior, as assigned by the underlying operating
2730system.
2731@end defvar
2732
2733@defvar Inferior.was_attached
2734Boolean signaling whether the inferior was created using `attach', or
2735started by @value{GDBN} itself.
2736@end defvar
2737
2738A @code{gdb.Inferior} object has the following methods:
2739
2740@defun Inferior.is_valid ()
2741Returns @code{True} if the @code{gdb.Inferior} object is valid,
2742@code{False} if not. A @code{gdb.Inferior} object will become invalid
2743if the inferior no longer exists within @value{GDBN}. All other
2744@code{gdb.Inferior} methods will throw an exception if it is invalid
2745at the time the method is called.
2746@end defun
2747
2748@defun Inferior.threads ()
2749This method returns a tuple holding all the threads which are valid
2750when it is called. If there are no valid threads, the method will
2751return an empty tuple.
2752@end defun
2753
2754@findex Inferior.read_memory
2755@defun Inferior.read_memory (address, length)
a86c90e6 2756Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2757@var{address}. Returns a buffer object, which behaves much like an array
2758or a string. It can be modified and given to the
2759@code{Inferior.write_memory} function. In @code{Python} 3, the return
2760value is a @code{memoryview} object.
2761@end defun
2762
2763@findex Inferior.write_memory
2764@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2765Write the contents of @var{buffer} to the inferior, starting at
2766@var{address}. The @var{buffer} parameter must be a Python object
2767which supports the buffer protocol, i.e., a string, an array or the
2768object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2769determines the number of addressable memory units from @var{buffer} to be
2770written.
329baa95
DE
2771@end defun
2772
2773@findex gdb.search_memory
2774@defun Inferior.search_memory (address, length, pattern)
2775Search a region of the inferior memory starting at @var{address} with
2776the given @var{length} using the search pattern supplied in
2777@var{pattern}. The @var{pattern} parameter must be a Python object
2778which supports the buffer protocol, i.e., a string, an array or the
2779object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2780containing the address where the pattern was found, or @code{None} if
2781the pattern could not be found.
2782@end defun
2783
2784@node Events In Python
2785@subsubsection Events In Python
2786@cindex inferior events in Python
2787
2788@value{GDBN} provides a general event facility so that Python code can be
2789notified of various state changes, particularly changes that occur in
2790the inferior.
2791
2792An @dfn{event} is just an object that describes some state change. The
2793type of the object and its attributes will vary depending on the details
2794of the change. All the existing events are described below.
2795
2796In order to be notified of an event, you must register an event handler
2797with an @dfn{event registry}. An event registry is an object in the
2798@code{gdb.events} module which dispatches particular events. A registry
2799provides methods to register and unregister event handlers:
2800
2801@defun EventRegistry.connect (object)
2802Add the given callable @var{object} to the registry. This object will be
2803called when an event corresponding to this registry occurs.
2804@end defun
2805
2806@defun EventRegistry.disconnect (object)
2807Remove the given @var{object} from the registry. Once removed, the object
2808will no longer receive notifications of events.
2809@end defun
2810
2811Here is an example:
2812
2813@smallexample
2814def exit_handler (event):
2815 print "event type: exit"
2816 print "exit code: %d" % (event.exit_code)
2817
2818gdb.events.exited.connect (exit_handler)
2819@end smallexample
2820
2821In the above example we connect our handler @code{exit_handler} to the
2822registry @code{events.exited}. Once connected, @code{exit_handler} gets
2823called when the inferior exits. The argument @dfn{event} in this example is
2824of type @code{gdb.ExitedEvent}. As you can see in the example the
2825@code{ExitedEvent} object has an attribute which indicates the exit code of
2826the inferior.
2827
2828The following is a listing of the event registries that are available and
2829details of the events they emit:
2830
2831@table @code
2832
2833@item events.cont
2834Emits @code{gdb.ThreadEvent}.
2835
2836Some events can be thread specific when @value{GDBN} is running in non-stop
2837mode. When represented in Python, these events all extend
2838@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2839events which are emitted by this or other modules might extend this event.
2840Examples of these events are @code{gdb.BreakpointEvent} and
2841@code{gdb.ContinueEvent}.
2842
2843@defvar ThreadEvent.inferior_thread
2844In non-stop mode this attribute will be set to the specific thread which was
2845involved in the emitted event. Otherwise, it will be set to @code{None}.
2846@end defvar
2847
2848Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2849
2850This event indicates that the inferior has been continued after a stop. For
2851inherited attribute refer to @code{gdb.ThreadEvent} above.
2852
2853@item events.exited
2854Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2855@code{events.ExitedEvent} has two attributes:
2856@defvar ExitedEvent.exit_code
2857An integer representing the exit code, if available, which the inferior
2858has returned. (The exit code could be unavailable if, for example,
2859@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2860the attribute does not exist.
2861@end defvar
373832b6 2862@defvar ExitedEvent.inferior
329baa95
DE
2863A reference to the inferior which triggered the @code{exited} event.
2864@end defvar
2865
2866@item events.stop
2867Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2868
2869Indicates that the inferior has stopped. All events emitted by this registry
2870extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2871will indicate the stopped thread when @value{GDBN} is running in non-stop
2872mode. Refer to @code{gdb.ThreadEvent} above for more details.
2873
2874Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2875
2876This event indicates that the inferior or one of its threads has received as
2877signal. @code{gdb.SignalEvent} has the following attributes:
2878
2879@defvar SignalEvent.stop_signal
2880A string representing the signal received by the inferior. A list of possible
2881signal values can be obtained by running the command @code{info signals} in
2882the @value{GDBN} command prompt.
2883@end defvar
2884
2885Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2886
2887@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2888been hit, and has the following attributes:
2889
2890@defvar BreakpointEvent.breakpoints
2891A sequence containing references to all the breakpoints (type
2892@code{gdb.Breakpoint}) that were hit.
2893@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2894@end defvar
2895@defvar BreakpointEvent.breakpoint
2896A reference to the first breakpoint that was hit.
2897This function is maintained for backward compatibility and is now deprecated
2898in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2899@end defvar
2900
2901@item events.new_objfile
2902Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2903been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2904
2905@defvar NewObjFileEvent.new_objfile
2906A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2907@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2908@end defvar
2909
4ffbba72
DE
2910@item events.clear_objfiles
2911Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2912files for a program space has been reset.
2913@code{gdb.ClearObjFilesEvent} has one attribute:
2914
2915@defvar ClearObjFilesEvent.progspace
2916A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2917been cleared. @xref{Progspaces In Python}.
2918@end defvar
2919
162078c8
NB
2920@item events.inferior_call_pre
2921Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2922the inferior is about to be called.
2923
2924@defvar InferiorCallPreEvent.ptid
2925The thread in which the call will be run.
2926@end defvar
2927
2928@defvar InferiorCallPreEvent.address
2929The location of the function to be called.
2930@end defvar
2931
2932@item events.inferior_call_post
2933Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2934the inferior has returned.
2935
2936@defvar InferiorCallPostEvent.ptid
2937The thread in which the call was run.
2938@end defvar
2939
2940@defvar InferiorCallPostEvent.address
2941The location of the function that was called.
2942@end defvar
2943
2944@item events.memory_changed
2945Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2946inferior has been modified by the @value{GDBN} user, for instance via a
2947command like @w{@code{set *addr = value}}. The event has the following
2948attributes:
2949
2950@defvar MemoryChangedEvent.address
2951The start address of the changed region.
2952@end defvar
2953
2954@defvar MemoryChangedEvent.length
2955Length in bytes of the changed region.
2956@end defvar
2957
2958@item events.register_changed
2959Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2960inferior has been modified by the @value{GDBN} user.
2961
2962@defvar RegisterChangedEvent.frame
2963A gdb.Frame object representing the frame in which the register was modified.
2964@end defvar
2965@defvar RegisterChangedEvent.regnum
2966Denotes which register was modified.
2967@end defvar
2968
dac790e1
TT
2969@item events.breakpoint_created
2970This is emitted when a new breakpoint has been created. The argument
2971that is passed is the new @code{gdb.Breakpoint} object.
2972
2973@item events.breakpoint_modified
2974This is emitted when a breakpoint has been modified in some way. The
2975argument that is passed is the new @code{gdb.Breakpoint} object.
2976
2977@item events.breakpoint_deleted
2978This is emitted when a breakpoint has been deleted. The argument that
2979is passed is the @code{gdb.Breakpoint} object. When this event is
2980emitted, the @code{gdb.Breakpoint} object will already be in its
2981invalid state; that is, the @code{is_valid} method will return
2982@code{False}.
2983
329baa95
DE
2984@end table
2985
2986@node Threads In Python
2987@subsubsection Threads In Python
2988@cindex threads in python
2989
2990@findex gdb.InferiorThread
2991Python scripts can access information about, and manipulate inferior threads
2992controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2993
2994The following thread-related functions are available in the @code{gdb}
2995module:
2996
2997@findex gdb.selected_thread
2998@defun gdb.selected_thread ()
2999This function returns the thread object for the selected thread. If there
3000is no selected thread, this will return @code{None}.
3001@end defun
3002
3003A @code{gdb.InferiorThread} object has the following attributes:
3004
3005@defvar InferiorThread.name
3006The name of the thread. If the user specified a name using
3007@code{thread name}, then this returns that name. Otherwise, if an
3008OS-supplied name is available, then it is returned. Otherwise, this
3009returns @code{None}.
3010
3011This attribute can be assigned to. The new value must be a string
3012object, which sets the new name, or @code{None}, which removes any
3013user-specified thread name.
3014@end defvar
3015
3016@defvar InferiorThread.num
5d5658a1 3017The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3018@end defvar
3019
22a02324
PA
3020@defvar InferiorThread.global_num
3021The global ID of the thread, as assigned by GDB. You can use this to
3022make Python breakpoints thread-specific, for example
3023(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3024@end defvar
3025
329baa95
DE
3026@defvar InferiorThread.ptid
3027ID of the thread, as assigned by the operating system. This attribute is a
3028tuple containing three integers. The first is the Process ID (PID); the second
3029is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3030Either the LWPID or TID may be 0, which indicates that the operating system
3031does not use that identifier.
3032@end defvar
3033
84654457
PA
3034@defvar InferiorThread.inferior
3035The inferior this thread belongs to. This attribute is represented as
3036a @code{gdb.Inferior} object. This attribute is not writable.
3037@end defvar
3038
329baa95
DE
3039A @code{gdb.InferiorThread} object has the following methods:
3040
3041@defun InferiorThread.is_valid ()
3042Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3043@code{False} if not. A @code{gdb.InferiorThread} object will become
3044invalid if the thread exits, or the inferior that the thread belongs
3045is deleted. All other @code{gdb.InferiorThread} methods will throw an
3046exception if it is invalid at the time the method is called.
3047@end defun
3048
3049@defun InferiorThread.switch ()
3050This changes @value{GDBN}'s currently selected thread to the one represented
3051by this object.
3052@end defun
3053
3054@defun InferiorThread.is_stopped ()
3055Return a Boolean indicating whether the thread is stopped.
3056@end defun
3057
3058@defun InferiorThread.is_running ()
3059Return a Boolean indicating whether the thread is running.
3060@end defun
3061
3062@defun InferiorThread.is_exited ()
3063Return a Boolean indicating whether the thread is exited.
3064@end defun
3065
0a0faf9f
TW
3066@node Recordings In Python
3067@subsubsection Recordings In Python
3068@cindex recordings in python
3069
3070The following recordings-related functions
3071(@pxref{Process Record and Replay}) are available in the @code{gdb}
3072module:
3073
3074@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3075Start a recording using the given @var{method} and @var{format}. If
3076no @var{format} is given, the default format for the recording method
3077is used. If no @var{method} is given, the default method will be used.
3078Returns a @code{gdb.Record} object on success. Throw an exception on
3079failure.
3080
3081The following strings can be passed as @var{method}:
3082
3083@itemize @bullet
3084@item
3085@code{"full"}
3086@item
3087@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3088@code{"bts"} or leave out for default format.
3089@end itemize
3090@end defun
3091
3092@defun gdb.current_recording ()
3093Access a currently running recording. Return a @code{gdb.Record}
3094object on success. Return @code{None} if no recording is currently
3095active.
3096@end defun
3097
3098@defun gdb.stop_recording ()
3099Stop the current recording. Throw an exception if no recording is
3100currently active. All record objects become invalid after this call.
3101@end defun
3102
3103A @code{gdb.Record} object has the following attributes:
3104
3105@defvar Record.ptid
3106ID of the thread associated with this object as a tuple of three integers. The
3107first is the Process ID (PID); the second is the Lightweight Process ID (LWPID),
3108and the third is the Thread ID (TID). Either the LWPID or TID may be 0, which
3109indicates that the operating system does not use that identifier.
3110@end defvar
3111
3112@defvar Record.method
3113A string with the current recording method, e.g.@: @code{full} or
3114@code{btrace}.
3115@end defvar
3116
3117@defvar Record.format
3118A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3119@code{None}.
3120@end defvar
3121
3122@defvar Record.begin
3123A method specific instruction object representing the first instruction
3124in this recording.
3125@end defvar
3126
3127@defvar Record.end
3128A method specific instruction object representing the current
3129instruction, that is not actually part of the recording.
3130@end defvar
3131
3132@defvar Record.replay_position
3133The instruction representing the current replay position. If there is
3134no replay active, this will be @code{None}.
3135@end defvar
3136
3137@defvar Record.instruction_history
3138A list with all recorded instructions.
3139@end defvar
3140
3141@defvar Record.function_call_history
3142A list with all recorded function call segments.
3143@end defvar
3144
3145A @code{gdb.Record} object has the following methods:
3146
3147@defun Record.goto (instruction)
3148Move the replay position to the given @var{instruction}.
3149@end defun
3150
3151The attributes and methods of instruction objects depend on the current
3152recording method. Currently, only btrace instructions are supported.
3153
3154A @code{gdb.BtraceInstruction} object has the following attributes:
3155
3156@defvar BtraceInstruction.number
3157An integer identifying this instruction. @var{number} corresponds to
3158the numbers seen in @code{record instruction-history}
3159(@pxref{Process Record and Replay}).
3160@end defvar
3161
3162@defvar BtraceInstruction.error
3163An integer identifying the error code for gaps in the history.
3164@code{None} for regular instructions.
3165@end defvar
3166
3167@defvar BtraceInstruction.sal
3168A @code{gdb.Symtab_and_line} object representing the associated symtab
3169and line of this instruction. May be @code{None} if the instruction
3170is a gap.
3171@end defvar
3172
3173@defvar BtraceInstruction.pc
3174An integer representing this instruction's address. May be @code{None}
3175if the instruction is a gap or the debug symbols could not be read.
3176@end defvar
3177
3178@defvar BtraceInstruction.data
3179A buffer with the raw instruction data. May be @code{None} if the
3180instruction is a gap.
3181@end defvar
3182
3183@defvar BtraceInstruction.decoded
3184A human readable string with the disassembled instruction. Contains the
3185error message for gaps.
3186@end defvar
3187
3188@defvar BtraceInstruction.size
3189The size of the instruction in bytes. Will be @code{None} if the
3190instruction is a gap.
3191@end defvar
3192
3193@defvar BtraceInstruction.is_speculative
3194A boolean indicating whether the instruction was executed
3195speculatively. Will be @code{None} for gaps.
3196@end defvar
3197
3198The attributes and methods of function call objects depend on the
3199current recording format. Currently, only btrace function calls are
3200supported.
3201
3202A @code{gdb.BtraceFunctionCall} object has the following attributes:
3203
3204@defvar BtraceFunctionCall.number
3205An integer identifying this function call. @var{number} corresponds to
3206the numbers seen in @code{record function-call-history}
3207(@pxref{Process Record and Replay}).
3208@end defvar
3209
3210@defvar BtraceFunctionCall.symbol
3211A @code{gdb.Symbol} object representing the associated symbol. May be
3212@code{None} if the function call is a gap or the debug symbols could
3213not be read.
3214@end defvar
3215
3216@defvar BtraceFunctionCall.level
3217An integer representing the function call's stack level. May be
3218@code{None} if the function call is a gap.
3219@end defvar
3220
3221@defvar BtraceFunctionCall.instructions
3222A list of @code{gdb.BtraceInstruction} objects associated with this function
3223call.
3224@end defvar
3225
3226@defvar BtraceFunctionCall.up
3227A @code{gdb.BtraceFunctionCall} object representing the caller's
3228function segment. If the call has not been recorded, this will be the
3229function segment to which control returns. If neither the call nor the
3230return have been recorded, this will be @code{None}.
3231@end defvar
3232
3233@defvar BtraceFunctionCall.prev_sibling
3234A @code{gdb.BtraceFunctionCall} object representing the previous
3235segment of this function call. May be @code{None}.
3236@end defvar
3237
3238@defvar BtraceFunctionCall.next_sibling
3239A @code{gdb.BtraceFunctionCall} object representing the next segment of
3240this function call. May be @code{None}.
3241@end defvar
3242
3243The following example demonstrates the usage of these objects and
3244functions to create a function that will rewind a record to the last
3245time a function in a different file was executed. This would typically
3246be used to track the execution of user provided callback functions in a
3247library which typically are not visible in a back trace.
3248
3249@smallexample
3250def bringback ():
3251 rec = gdb.current_recording ()
3252 if not rec:
3253 return
3254
3255 insn = rec.instruction_history
3256 if len (insn) == 0:
3257 return
3258
3259 try:
3260 position = insn.index (rec.replay_position)
3261 except:
3262 position = -1
3263 try:
3264 filename = insn[position].sal.symtab.fullname ()
3265 except:
3266 filename = None
3267
3268 for i in reversed (insn[:position]):
3269 try:
3270 current = i.sal.symtab.fullname ()
3271 except:
3272 current = None
3273
3274 if filename == current:
3275 continue
3276
3277 rec.goto (i)
3278 return
3279@end smallexample
3280
3281Another possible application is to write a function that counts the
3282number of code executions in a given line range. This line range can
3283contain parts of functions or span across several functions and is not
3284limited to be contiguous.
3285
3286@smallexample
3287def countrange (filename, linerange):
3288 count = 0
3289
3290 def filter_only (file_name):
3291 for call in gdb.current_recording ().function_call_history:
3292 try:
3293 if file_name in call.symbol.symtab.fullname ():
3294 yield call
3295 except:
3296 pass
3297
3298 for c in filter_only (filename):
3299 for i in c.instructions:
3300 try:
3301 if i.sal.line in linerange:
3302 count += 1
3303 break;
3304 except:
3305 pass
3306
3307 return count
3308@end smallexample
3309
329baa95
DE
3310@node Commands In Python
3311@subsubsection Commands In Python
3312
3313@cindex commands in python
3314@cindex python commands
3315You can implement new @value{GDBN} CLI commands in Python. A CLI
3316command is implemented using an instance of the @code{gdb.Command}
3317class, most commonly using a subclass.
3318
3319@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3320The object initializer for @code{Command} registers the new command
3321with @value{GDBN}. This initializer is normally invoked from the
3322subclass' own @code{__init__} method.
3323
3324@var{name} is the name of the command. If @var{name} consists of
3325multiple words, then the initial words are looked for as prefix
3326commands. In this case, if one of the prefix commands does not exist,
3327an exception is raised.
3328
3329There is no support for multi-line commands.
3330
3331@var{command_class} should be one of the @samp{COMMAND_} constants
3332defined below. This argument tells @value{GDBN} how to categorize the
3333new command in the help system.
3334
3335@var{completer_class} is an optional argument. If given, it should be
3336one of the @samp{COMPLETE_} constants defined below. This argument
3337tells @value{GDBN} how to perform completion for this command. If not
3338given, @value{GDBN} will attempt to complete using the object's
3339@code{complete} method (see below); if no such method is found, an
3340error will occur when completion is attempted.
3341
3342@var{prefix} is an optional argument. If @code{True}, then the new
3343command is a prefix command; sub-commands of this command may be
3344registered.
3345
3346The help text for the new command is taken from the Python
3347documentation string for the command's class, if there is one. If no
3348documentation string is provided, the default value ``This command is
3349not documented.'' is used.
3350@end defun
3351
3352@cindex don't repeat Python command
3353@defun Command.dont_repeat ()
3354By default, a @value{GDBN} command is repeated when the user enters a
3355blank line at the command prompt. A command can suppress this
3356behavior by invoking the @code{dont_repeat} method. This is similar
3357to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3358@end defun
3359
3360@defun Command.invoke (argument, from_tty)
3361This method is called by @value{GDBN} when this command is invoked.
3362
3363@var{argument} is a string. It is the argument to the command, after
3364leading and trailing whitespace has been stripped.
3365
3366@var{from_tty} is a boolean argument. When true, this means that the
3367command was entered by the user at the terminal; when false it means
3368that the command came from elsewhere.
3369
3370If this method throws an exception, it is turned into a @value{GDBN}
3371@code{error} call. Otherwise, the return value is ignored.
3372
3373@findex gdb.string_to_argv
3374To break @var{argument} up into an argv-like string use
3375@code{gdb.string_to_argv}. This function behaves identically to
3376@value{GDBN}'s internal argument lexer @code{buildargv}.
3377It is recommended to use this for consistency.
3378Arguments are separated by spaces and may be quoted.
3379Example:
3380
3381@smallexample
3382print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3383['1', '2 "3', '4 "5', "6 '7"]
3384@end smallexample
3385
3386@end defun
3387
3388@cindex completion of Python commands
3389@defun Command.complete (text, word)
3390This method is called by @value{GDBN} when the user attempts
3391completion on this command. All forms of completion are handled by
3392this method, that is, the @key{TAB} and @key{M-?} key bindings
3393(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3394complete}).
3395
697aa1b7
EZ
3396The arguments @var{text} and @var{word} are both strings; @var{text}
3397holds the complete command line up to the cursor's location, while
329baa95
DE
3398@var{word} holds the last word of the command line; this is computed
3399using a word-breaking heuristic.
3400
3401The @code{complete} method can return several values:
3402@itemize @bullet
3403@item
3404If the return value is a sequence, the contents of the sequence are
3405used as the completions. It is up to @code{complete} to ensure that the
3406contents actually do complete the word. A zero-length sequence is
3407allowed, it means that there were no completions available. Only
3408string elements of the sequence are used; other elements in the
3409sequence are ignored.
3410
3411@item
3412If the return value is one of the @samp{COMPLETE_} constants defined
3413below, then the corresponding @value{GDBN}-internal completion
3414function is invoked, and its result is used.
3415
3416@item
3417All other results are treated as though there were no available
3418completions.
3419@end itemize
3420@end defun
3421
3422When a new command is registered, it must be declared as a member of
3423some general class of commands. This is used to classify top-level
3424commands in the on-line help system; note that prefix commands are not
3425listed under their own category but rather that of their top-level
3426command. The available classifications are represented by constants
3427defined in the @code{gdb} module:
3428
3429@table @code
3430@findex COMMAND_NONE
3431@findex gdb.COMMAND_NONE
3432@item gdb.COMMAND_NONE
3433The command does not belong to any particular class. A command in
3434this category will not be displayed in any of the help categories.
3435
3436@findex COMMAND_RUNNING
3437@findex gdb.COMMAND_RUNNING
3438@item gdb.COMMAND_RUNNING
3439The command is related to running the inferior. For example,
3440@code{start}, @code{step}, and @code{continue} are in this category.
3441Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3442commands in this category.
3443
3444@findex COMMAND_DATA
3445@findex gdb.COMMAND_DATA
3446@item gdb.COMMAND_DATA
3447The command is related to data or variables. For example,
3448@code{call}, @code{find}, and @code{print} are in this category. Type
3449@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3450in this category.
3451
3452@findex COMMAND_STACK
3453@findex gdb.COMMAND_STACK
3454@item gdb.COMMAND_STACK
3455The command has to do with manipulation of the stack. For example,
3456@code{backtrace}, @code{frame}, and @code{return} are in this
3457category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3458list of commands in this category.
3459
3460@findex COMMAND_FILES
3461@findex gdb.COMMAND_FILES
3462@item gdb.COMMAND_FILES
3463This class is used for file-related commands. For example,
3464@code{file}, @code{list} and @code{section} are in this category.
3465Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3466commands in this category.
3467
3468@findex COMMAND_SUPPORT
3469@findex gdb.COMMAND_SUPPORT
3470@item gdb.COMMAND_SUPPORT
3471This should be used for ``support facilities'', generally meaning
3472things that are useful to the user when interacting with @value{GDBN},
3473but not related to the state of the inferior. For example,
3474@code{help}, @code{make}, and @code{shell} are in this category. Type
3475@kbd{help support} at the @value{GDBN} prompt to see a list of
3476commands in this category.
3477
3478@findex COMMAND_STATUS
3479@findex gdb.COMMAND_STATUS
3480@item gdb.COMMAND_STATUS
3481The command is an @samp{info}-related command, that is, related to the
3482state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3483and @code{show} are in this category. Type @kbd{help status} at the
3484@value{GDBN} prompt to see a list of commands in this category.
3485
3486@findex COMMAND_BREAKPOINTS
3487@findex gdb.COMMAND_BREAKPOINTS
3488@item gdb.COMMAND_BREAKPOINTS
3489The command has to do with breakpoints. For example, @code{break},
3490@code{clear}, and @code{delete} are in this category. Type @kbd{help
3491breakpoints} at the @value{GDBN} prompt to see a list of commands in
3492this category.
3493
3494@findex COMMAND_TRACEPOINTS
3495@findex gdb.COMMAND_TRACEPOINTS
3496@item gdb.COMMAND_TRACEPOINTS
3497The command has to do with tracepoints. For example, @code{trace},
3498@code{actions}, and @code{tfind} are in this category. Type
3499@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3500commands in this category.
3501
3502@findex COMMAND_USER
3503@findex gdb.COMMAND_USER
3504@item gdb.COMMAND_USER
3505The command is a general purpose command for the user, and typically
3506does not fit in one of the other categories.
3507Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3508a list of commands in this category, as well as the list of gdb macros
3509(@pxref{Sequences}).
3510
3511@findex COMMAND_OBSCURE
3512@findex gdb.COMMAND_OBSCURE
3513@item gdb.COMMAND_OBSCURE
3514The command is only used in unusual circumstances, or is not of
3515general interest to users. For example, @code{checkpoint},
3516@code{fork}, and @code{stop} are in this category. Type @kbd{help
3517obscure} at the @value{GDBN} prompt to see a list of commands in this
3518category.
3519
3520@findex COMMAND_MAINTENANCE
3521@findex gdb.COMMAND_MAINTENANCE
3522@item gdb.COMMAND_MAINTENANCE
3523The command is only useful to @value{GDBN} maintainers. The
3524@code{maintenance} and @code{flushregs} commands are in this category.
3525Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3526commands in this category.
3527@end table
3528
3529A new command can use a predefined completion function, either by
3530specifying it via an argument at initialization, or by returning it
3531from the @code{complete} method. These predefined completion
3532constants are all defined in the @code{gdb} module:
3533
b3ce5e5f
DE
3534@vtable @code
3535@vindex COMPLETE_NONE
329baa95
DE
3536@item gdb.COMPLETE_NONE
3537This constant means that no completion should be done.
3538
b3ce5e5f 3539@vindex COMPLETE_FILENAME
329baa95
DE
3540@item gdb.COMPLETE_FILENAME
3541This constant means that filename completion should be performed.
3542
b3ce5e5f 3543@vindex COMPLETE_LOCATION
329baa95
DE
3544@item gdb.COMPLETE_LOCATION
3545This constant means that location completion should be done.
3546@xref{Specify Location}.
3547
b3ce5e5f 3548@vindex COMPLETE_COMMAND
329baa95
DE
3549@item gdb.COMPLETE_COMMAND
3550This constant means that completion should examine @value{GDBN}
3551command names.
3552
b3ce5e5f 3553@vindex COMPLETE_SYMBOL
329baa95
DE
3554@item gdb.COMPLETE_SYMBOL
3555This constant means that completion should be done using symbol names
3556as the source.
3557
b3ce5e5f 3558@vindex COMPLETE_EXPRESSION
329baa95
DE
3559@item gdb.COMPLETE_EXPRESSION
3560This constant means that completion should be done on expressions.
3561Often this means completing on symbol names, but some language
3562parsers also have support for completing on field names.
b3ce5e5f 3563@end vtable
329baa95
DE
3564
3565The following code snippet shows how a trivial CLI command can be
3566implemented in Python:
3567
3568@smallexample
3569class HelloWorld (gdb.Command):
3570 """Greet the whole world."""
3571
3572 def __init__ (self):
3573 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3574
3575 def invoke (self, arg, from_tty):
3576 print "Hello, World!"
3577
3578HelloWorld ()
3579@end smallexample
3580
3581The last line instantiates the class, and is necessary to trigger the
3582registration of the command with @value{GDBN}. Depending on how the
3583Python code is read into @value{GDBN}, you may need to import the
3584@code{gdb} module explicitly.
3585
3586@node Parameters In Python
3587@subsubsection Parameters In Python
3588
3589@cindex parameters in python
3590@cindex python parameters
3591@tindex gdb.Parameter
3592@tindex Parameter
3593You can implement new @value{GDBN} parameters using Python. A new
3594parameter is implemented as an instance of the @code{gdb.Parameter}
3595class.
3596
3597Parameters are exposed to the user via the @code{set} and
3598@code{show} commands. @xref{Help}.
3599
3600There are many parameters that already exist and can be set in
3601@value{GDBN}. Two examples are: @code{set follow fork} and
3602@code{set charset}. Setting these parameters influences certain
3603behavior in @value{GDBN}. Similarly, you can define parameters that
3604can be used to influence behavior in custom Python scripts and commands.
3605
3606@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3607The object initializer for @code{Parameter} registers the new
3608parameter with @value{GDBN}. This initializer is normally invoked
3609from the subclass' own @code{__init__} method.
3610
3611@var{name} is the name of the new parameter. If @var{name} consists
3612of multiple words, then the initial words are looked for as prefix
3613parameters. An example of this can be illustrated with the
3614@code{set print} set of parameters. If @var{name} is
3615@code{print foo}, then @code{print} will be searched as the prefix
3616parameter. In this case the parameter can subsequently be accessed in
3617@value{GDBN} as @code{set print foo}.
3618
3619If @var{name} consists of multiple words, and no prefix parameter group
3620can be found, an exception is raised.
3621
3622@var{command-class} should be one of the @samp{COMMAND_} constants
3623(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3624categorize the new parameter in the help system.
3625
3626@var{parameter-class} should be one of the @samp{PARAM_} constants
3627defined below. This argument tells @value{GDBN} the type of the new
3628parameter; this information is used for input validation and
3629completion.
3630
3631If @var{parameter-class} is @code{PARAM_ENUM}, then
3632@var{enum-sequence} must be a sequence of strings. These strings
3633represent the possible values for the parameter.
3634
3635If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3636of a fourth argument will cause an exception to be thrown.
3637
3638The help text for the new parameter is taken from the Python
3639documentation string for the parameter's class, if there is one. If
3640there is no documentation string, a default value is used.
3641@end defun
3642
3643@defvar Parameter.set_doc
3644If this attribute exists, and is a string, then its value is used as
3645the help text for this parameter's @code{set} command. The value is
3646examined when @code{Parameter.__init__} is invoked; subsequent changes
3647have no effect.
3648@end defvar
3649
3650@defvar Parameter.show_doc
3651If this attribute exists, and is a string, then its value is used as
3652the help text for this parameter's @code{show} command. The value is
3653examined when @code{Parameter.__init__} is invoked; subsequent changes
3654have no effect.
3655@end defvar
3656
3657@defvar Parameter.value
3658The @code{value} attribute holds the underlying value of the
3659parameter. It can be read and assigned to just as any other
3660attribute. @value{GDBN} does validation when assignments are made.
3661@end defvar
3662
3663There are two methods that should be implemented in any
3664@code{Parameter} class. These are:
3665
3666@defun Parameter.get_set_string (self)
3667@value{GDBN} will call this method when a @var{parameter}'s value has
3668been changed via the @code{set} API (for example, @kbd{set foo off}).
3669The @code{value} attribute has already been populated with the new
3670value and may be used in output. This method must return a string.
3671@end defun
3672
3673@defun Parameter.get_show_string (self, svalue)
3674@value{GDBN} will call this method when a @var{parameter}'s
3675@code{show} API has been invoked (for example, @kbd{show foo}). The
3676argument @code{svalue} receives the string representation of the
3677current value. This method must return a string.
3678@end defun
3679
3680When a new parameter is defined, its type must be specified. The
3681available types are represented by constants defined in the @code{gdb}
3682module:
3683
3684@table @code
3685@findex PARAM_BOOLEAN
3686@findex gdb.PARAM_BOOLEAN
3687@item gdb.PARAM_BOOLEAN
3688The value is a plain boolean. The Python boolean values, @code{True}
3689and @code{False} are the only valid values.
3690
3691@findex PARAM_AUTO_BOOLEAN
3692@findex gdb.PARAM_AUTO_BOOLEAN
3693@item gdb.PARAM_AUTO_BOOLEAN
3694The value has three possible states: true, false, and @samp{auto}. In
3695Python, true and false are represented using boolean constants, and
3696@samp{auto} is represented using @code{None}.
3697
3698@findex PARAM_UINTEGER
3699@findex gdb.PARAM_UINTEGER
3700@item gdb.PARAM_UINTEGER
3701The value is an unsigned integer. The value of 0 should be
3702interpreted to mean ``unlimited''.
3703
3704@findex PARAM_INTEGER
3705@findex gdb.PARAM_INTEGER
3706@item gdb.PARAM_INTEGER
3707The value is a signed integer. The value of 0 should be interpreted
3708to mean ``unlimited''.
3709
3710@findex PARAM_STRING
3711@findex gdb.PARAM_STRING
3712@item gdb.PARAM_STRING
3713The value is a string. When the user modifies the string, any escape
3714sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3715translated into corresponding characters and encoded into the current
3716host charset.
3717
3718@findex PARAM_STRING_NOESCAPE
3719@findex gdb.PARAM_STRING_NOESCAPE
3720@item gdb.PARAM_STRING_NOESCAPE
3721The value is a string. When the user modifies the string, escapes are
3722passed through untranslated.
3723
3724@findex PARAM_OPTIONAL_FILENAME
3725@findex gdb.PARAM_OPTIONAL_FILENAME
3726@item gdb.PARAM_OPTIONAL_FILENAME
3727The value is a either a filename (a string), or @code{None}.
3728
3729@findex PARAM_FILENAME
3730@findex gdb.PARAM_FILENAME
3731@item gdb.PARAM_FILENAME
3732The value is a filename. This is just like
3733@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3734
3735@findex PARAM_ZINTEGER
3736@findex gdb.PARAM_ZINTEGER
3737@item gdb.PARAM_ZINTEGER
3738The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3739is interpreted as itself.
3740
3741@findex PARAM_ENUM
3742@findex gdb.PARAM_ENUM
3743@item gdb.PARAM_ENUM
3744The value is a string, which must be one of a collection string
3745constants provided when the parameter is created.
3746@end table
3747
3748@node Functions In Python
3749@subsubsection Writing new convenience functions
3750
3751@cindex writing convenience functions
3752@cindex convenience functions in python
3753@cindex python convenience functions
3754@tindex gdb.Function
3755@tindex Function
3756You can implement new convenience functions (@pxref{Convenience Vars})
3757in Python. A convenience function is an instance of a subclass of the
3758class @code{gdb.Function}.
3759
3760@defun Function.__init__ (name)
3761The initializer for @code{Function} registers the new function with
3762@value{GDBN}. The argument @var{name} is the name of the function,
3763a string. The function will be visible to the user as a convenience
3764variable of type @code{internal function}, whose name is the same as
3765the given @var{name}.
3766
3767The documentation for the new function is taken from the documentation
3768string for the new class.
3769@end defun
3770
3771@defun Function.invoke (@var{*args})
3772When a convenience function is evaluated, its arguments are converted
3773to instances of @code{gdb.Value}, and then the function's
3774@code{invoke} method is called. Note that @value{GDBN} does not
3775predetermine the arity of convenience functions. Instead, all
3776available arguments are passed to @code{invoke}, following the
3777standard Python calling convention. In particular, a convenience
3778function can have default values for parameters without ill effect.
3779
3780The return value of this method is used as its value in the enclosing
3781expression. If an ordinary Python value is returned, it is converted
3782to a @code{gdb.Value} following the usual rules.
3783@end defun
3784
3785The following code snippet shows how a trivial convenience function can
3786be implemented in Python:
3787
3788@smallexample
3789class Greet (gdb.Function):
3790 """Return string to greet someone.
3791Takes a name as argument."""
3792
3793 def __init__ (self):
3794 super (Greet, self).__init__ ("greet")
3795
3796 def invoke (self, name):
3797 return "Hello, %s!" % name.string ()
3798
3799Greet ()
3800@end smallexample
3801
3802The last line instantiates the class, and is necessary to trigger the
3803registration of the function with @value{GDBN}. Depending on how the
3804Python code is read into @value{GDBN}, you may need to import the
3805@code{gdb} module explicitly.
3806
3807Now you can use the function in an expression:
3808
3809@smallexample
3810(gdb) print $greet("Bob")
3811$1 = "Hello, Bob!"
3812@end smallexample
3813
3814@node Progspaces In Python
3815@subsubsection Program Spaces In Python
3816
3817@cindex progspaces in python
3818@tindex gdb.Progspace
3819@tindex Progspace
3820A program space, or @dfn{progspace}, represents a symbolic view
3821of an address space.
3822It consists of all of the objfiles of the program.
3823@xref{Objfiles In Python}.
3824@xref{Inferiors and Programs, program spaces}, for more details
3825about program spaces.
3826
3827The following progspace-related functions are available in the
3828@code{gdb} module:
3829
3830@findex gdb.current_progspace
3831@defun gdb.current_progspace ()
3832This function returns the program space of the currently selected inferior.
3833@xref{Inferiors and Programs}.
3834@end defun
3835
3836@findex gdb.progspaces
3837@defun gdb.progspaces ()
3838Return a sequence of all the progspaces currently known to @value{GDBN}.
3839@end defun
3840
3841Each progspace is represented by an instance of the @code{gdb.Progspace}
3842class.
3843
3844@defvar Progspace.filename
3845The file name of the progspace as a string.
3846@end defvar
3847
3848@defvar Progspace.pretty_printers
3849The @code{pretty_printers} attribute is a list of functions. It is
3850used to look up pretty-printers. A @code{Value} is passed to each
3851function in order; if the function returns @code{None}, then the
3852search continues. Otherwise, the return value should be an object
3853which is used to format the value. @xref{Pretty Printing API}, for more
3854information.
3855@end defvar
3856
3857@defvar Progspace.type_printers
3858The @code{type_printers} attribute is a list of type printer objects.
3859@xref{Type Printing API}, for more information.
3860@end defvar
3861
3862@defvar Progspace.frame_filters
3863The @code{frame_filters} attribute is a dictionary of frame filter
3864objects. @xref{Frame Filter API}, for more information.
3865@end defvar
3866
02be9a71
DE
3867One may add arbitrary attributes to @code{gdb.Progspace} objects
3868in the usual Python way.
3869This is useful if, for example, one needs to do some extra record keeping
3870associated with the program space.
3871
3872In this contrived example, we want to perform some processing when
3873an objfile with a certain symbol is loaded, but we only want to do
3874this once because it is expensive. To achieve this we record the results
3875with the program space because we can't predict when the desired objfile
3876will be loaded.
3877
3878@smallexample
3879(gdb) python
3880def clear_objfiles_handler(event):
3881 event.progspace.expensive_computation = None
3882def expensive(symbol):
3883 """A mock routine to perform an "expensive" computation on symbol."""
3884 print "Computing the answer to the ultimate question ..."
3885 return 42
3886def new_objfile_handler(event):
3887 objfile = event.new_objfile
3888 progspace = objfile.progspace
3889 if not hasattr(progspace, 'expensive_computation') or \
3890 progspace.expensive_computation is None:
3891 # We use 'main' for the symbol to keep the example simple.
3892 # Note: There's no current way to constrain the lookup
3893 # to one objfile.
3894 symbol = gdb.lookup_global_symbol('main')
3895 if symbol is not None:
3896 progspace.expensive_computation = expensive(symbol)
3897gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3898gdb.events.new_objfile.connect(new_objfile_handler)
3899end
3900(gdb) file /tmp/hello
3901Reading symbols from /tmp/hello...done.
3902Computing the answer to the ultimate question ...
3903(gdb) python print gdb.current_progspace().expensive_computation
390442
3905(gdb) run
3906Starting program: /tmp/hello
3907Hello.
3908[Inferior 1 (process 4242) exited normally]
3909@end smallexample
3910
329baa95
DE
3911@node Objfiles In Python
3912@subsubsection Objfiles In Python
3913
3914@cindex objfiles in python
3915@tindex gdb.Objfile
3916@tindex Objfile
3917@value{GDBN} loads symbols for an inferior from various
3918symbol-containing files (@pxref{Files}). These include the primary
3919executable file, any shared libraries used by the inferior, and any
3920separate debug info files (@pxref{Separate Debug Files}).
3921@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3922
3923The following objfile-related functions are available in the
3924@code{gdb} module:
3925
3926@findex gdb.current_objfile
3927@defun gdb.current_objfile ()
3928When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3929sets the ``current objfile'' to the corresponding objfile. This
3930function returns the current objfile. If there is no current objfile,
3931this function returns @code{None}.
3932@end defun
3933
3934@findex gdb.objfiles
3935@defun gdb.objfiles ()
3936Return a sequence of all the objfiles current known to @value{GDBN}.
3937@xref{Objfiles In Python}.
3938@end defun
3939
6dddd6a5
DE
3940@findex gdb.lookup_objfile
3941@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3942Look up @var{name}, a file name or build ID, in the list of objfiles
3943for the current program space (@pxref{Progspaces In Python}).
3944If the objfile is not found throw the Python @code{ValueError} exception.
3945
3946If @var{name} is a relative file name, then it will match any
3947source file name with the same trailing components. For example, if
3948@var{name} is @samp{gcc/expr.c}, then it will match source file
3949name of @file{/build/trunk/gcc/expr.c}, but not
3950@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3951
3952If @var{by_build_id} is provided and is @code{True} then @var{name}
3953is the build ID of the objfile. Otherwise, @var{name} is a file name.
3954This is supported only on some operating systems, notably those which use
3955the ELF format for binary files and the @sc{gnu} Binutils. For more details
3956about this feature, see the description of the @option{--build-id}
3957command-line option in @ref{Options, , Command Line Options, ld.info,
3958The GNU Linker}.
3959@end defun
3960
329baa95
DE
3961Each objfile is represented by an instance of the @code{gdb.Objfile}
3962class.
3963
3964@defvar Objfile.filename
1b549396
DE
3965The file name of the objfile as a string, with symbolic links resolved.
3966
3967The value is @code{None} if the objfile is no longer valid.
3968See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3969@end defvar
3970
3a8b707a
DE
3971@defvar Objfile.username
3972The file name of the objfile as specified by the user as a string.
3973
3974The value is @code{None} if the objfile is no longer valid.
3975See the @code{gdb.Objfile.is_valid} method, described below.
3976@end defvar
3977
a0be3e44
DE
3978@defvar Objfile.owner
3979For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3980object that debug info is being provided for.
3981Otherwise this is @code{None}.
3982Separate debug info objfiles are added with the
3983@code{gdb.Objfile.add_separate_debug_file} method, described below.
3984@end defvar
3985
7c50a931
DE
3986@defvar Objfile.build_id
3987The build ID of the objfile as a string.
3988If the objfile does not have a build ID then the value is @code{None}.
3989
3990This is supported only on some operating systems, notably those which use
3991the ELF format for binary files and the @sc{gnu} Binutils. For more details
3992about this feature, see the description of the @option{--build-id}
3993command-line option in @ref{Options, , Command Line Options, ld.info,
3994The GNU Linker}.
3995@end defvar
3996
d096d8c1
DE
3997@defvar Objfile.progspace
3998The containing program space of the objfile as a @code{gdb.Progspace}
3999object. @xref{Progspaces In Python}.
4000@end defvar
4001
329baa95
DE
4002@defvar Objfile.pretty_printers
4003The @code{pretty_printers} attribute is a list of functions. It is
4004used to look up pretty-printers. A @code{Value} is passed to each
4005function in order; if the function returns @code{None}, then the
4006search continues. Otherwise, the return value should be an object
4007which is used to format the value. @xref{Pretty Printing API}, for more
4008information.
4009@end defvar
4010
4011@defvar Objfile.type_printers
4012The @code{type_printers} attribute is a list of type printer objects.
4013@xref{Type Printing API}, for more information.
4014@end defvar
4015
4016@defvar Objfile.frame_filters
4017The @code{frame_filters} attribute is a dictionary of frame filter
4018objects. @xref{Frame Filter API}, for more information.
4019@end defvar
4020
02be9a71
DE
4021One may add arbitrary attributes to @code{gdb.Objfile} objects
4022in the usual Python way.
4023This is useful if, for example, one needs to do some extra record keeping
4024associated with the objfile.
4025
4026In this contrived example we record the time when @value{GDBN}
4027loaded the objfile.
4028
4029@smallexample
4030(gdb) python
4031import datetime
4032def new_objfile_handler(event):
4033 # Set the time_loaded attribute of the new objfile.
4034 event.new_objfile.time_loaded = datetime.datetime.today()
4035gdb.events.new_objfile.connect(new_objfile_handler)
4036end
4037(gdb) file ./hello
4038Reading symbols from ./hello...done.
4039(gdb) python print gdb.objfiles()[0].time_loaded
40402014-10-09 11:41:36.770345
4041@end smallexample
4042
329baa95
DE
4043A @code{gdb.Objfile} object has the following methods:
4044
4045@defun Objfile.is_valid ()
4046Returns @code{True} if the @code{gdb.Objfile} object is valid,
4047@code{False} if not. A @code{gdb.Objfile} object can become invalid
4048if the object file it refers to is not loaded in @value{GDBN} any
4049longer. All other @code{gdb.Objfile} methods will throw an exception
4050if it is invalid at the time the method is called.
4051@end defun
4052
86e4ed39
DE
4053@defun Objfile.add_separate_debug_file (file)
4054Add @var{file} to the list of files that @value{GDBN} will search for
4055debug information for the objfile.
4056This is useful when the debug info has been removed from the program
4057and stored in a separate file. @value{GDBN} has built-in support for
4058finding separate debug info files (@pxref{Separate Debug Files}), but if
4059the file doesn't live in one of the standard places that @value{GDBN}
4060searches then this function can be used to add a debug info file
4061from a different place.
4062@end defun
4063
329baa95
DE
4064@node Frames In Python
4065@subsubsection Accessing inferior stack frames from Python.
4066
4067@cindex frames in python
4068When the debugged program stops, @value{GDBN} is able to analyze its call
4069stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4070represents a frame in the stack. A @code{gdb.Frame} object is only valid
4071while its corresponding frame exists in the inferior's stack. If you try
4072to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4073exception (@pxref{Exception Handling}).
4074
4075Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4076operator, like:
4077
4078@smallexample
4079(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4080True
4081@end smallexample
4082
4083The following frame-related functions are available in the @code{gdb} module:
4084
4085@findex gdb.selected_frame
4086@defun gdb.selected_frame ()
4087Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4088@end defun
4089
4090@findex gdb.newest_frame
4091@defun gdb.newest_frame ()
4092Return the newest frame object for the selected thread.
4093@end defun
4094
4095@defun gdb.frame_stop_reason_string (reason)
4096Return a string explaining the reason why @value{GDBN} stopped unwinding
4097frames, as expressed by the given @var{reason} code (an integer, see the
4098@code{unwind_stop_reason} method further down in this section).
4099@end defun
4100
e0f3fd7c
TT
4101@findex gdb.invalidate_cached_frames
4102@defun gdb.invalidate_cached_frames
4103@value{GDBN} internally keeps a cache of the frames that have been
4104unwound. This function invalidates this cache.
4105
4106This function should not generally be called by ordinary Python code.
4107It is documented for the sake of completeness.
4108@end defun
4109
329baa95
DE
4110A @code{gdb.Frame} object has the following methods:
4111
4112@defun Frame.is_valid ()
4113Returns true if the @code{gdb.Frame} object is valid, false if not.
4114A frame object can become invalid if the frame it refers to doesn't
4115exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4116an exception if it is invalid at the time the method is called.
4117@end defun
4118
4119@defun Frame.name ()
4120Returns the function name of the frame, or @code{None} if it can't be
4121obtained.
4122@end defun
4123
4124@defun Frame.architecture ()
4125Returns the @code{gdb.Architecture} object corresponding to the frame's
4126architecture. @xref{Architectures In Python}.
4127@end defun
4128
4129@defun Frame.type ()
4130Returns the type of the frame. The value can be one of:
4131@table @code
4132@item gdb.NORMAL_FRAME
4133An ordinary stack frame.
4134
4135@item gdb.DUMMY_FRAME
4136A fake stack frame that was created by @value{GDBN} when performing an
4137inferior function call.
4138
4139@item gdb.INLINE_FRAME
4140A frame representing an inlined function. The function was inlined
4141into a @code{gdb.NORMAL_FRAME} that is older than this one.
4142
4143@item gdb.TAILCALL_FRAME
4144A frame representing a tail call. @xref{Tail Call Frames}.
4145
4146@item gdb.SIGTRAMP_FRAME
4147A signal trampoline frame. This is the frame created by the OS when
4148it calls into a signal handler.
4149
4150@item gdb.ARCH_FRAME
4151A fake stack frame representing a cross-architecture call.
4152
4153@item gdb.SENTINEL_FRAME
4154This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4155newest frame.
4156@end table
4157@end defun
4158
4159@defun Frame.unwind_stop_reason ()
4160Return an integer representing the reason why it's not possible to find
4161more frames toward the outermost frame. Use
4162@code{gdb.frame_stop_reason_string} to convert the value returned by this
4163function to a string. The value can be one of:
4164
4165@table @code
4166@item gdb.FRAME_UNWIND_NO_REASON
4167No particular reason (older frames should be available).
4168
4169@item gdb.FRAME_UNWIND_NULL_ID
4170The previous frame's analyzer returns an invalid result. This is no
4171longer used by @value{GDBN}, and is kept only for backward
4172compatibility.
4173
4174@item gdb.FRAME_UNWIND_OUTERMOST
4175This frame is the outermost.
4176
4177@item gdb.FRAME_UNWIND_UNAVAILABLE
4178Cannot unwind further, because that would require knowing the
4179values of registers or memory that have not been collected.
4180
4181@item gdb.FRAME_UNWIND_INNER_ID
4182This frame ID looks like it ought to belong to a NEXT frame,
4183but we got it for a PREV frame. Normally, this is a sign of
4184unwinder failure. It could also indicate stack corruption.
4185
4186@item gdb.FRAME_UNWIND_SAME_ID
4187This frame has the same ID as the previous one. That means
4188that unwinding further would almost certainly give us another
4189frame with exactly the same ID, so break the chain. Normally,
4190this is a sign of unwinder failure. It could also indicate
4191stack corruption.
4192
4193@item gdb.FRAME_UNWIND_NO_SAVED_PC
4194The frame unwinder did not find any saved PC, but we needed
4195one to unwind further.
4196
53e8a631
AB
4197@item gdb.FRAME_UNWIND_MEMORY_ERROR
4198The frame unwinder caused an error while trying to access memory.
4199
329baa95
DE
4200@item gdb.FRAME_UNWIND_FIRST_ERROR
4201Any stop reason greater or equal to this value indicates some kind
4202of error. This special value facilitates writing code that tests
4203for errors in unwinding in a way that will work correctly even if
4204the list of the other values is modified in future @value{GDBN}
4205versions. Using it, you could write:
4206@smallexample
4207reason = gdb.selected_frame().unwind_stop_reason ()
4208reason_str = gdb.frame_stop_reason_string (reason)
4209if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4210 print "An error occured: %s" % reason_str
4211@end smallexample
4212@end table
4213
4214@end defun
4215
4216@defun Frame.pc ()
4217Returns the frame's resume address.
4218@end defun
4219
4220@defun Frame.block ()
4221Return the frame's code block. @xref{Blocks In Python}.
4222@end defun
4223
4224@defun Frame.function ()
4225Return the symbol for the function corresponding to this frame.
4226@xref{Symbols In Python}.
4227@end defun
4228
4229@defun Frame.older ()
4230Return the frame that called this frame.
4231@end defun
4232
4233@defun Frame.newer ()
4234Return the frame called by this frame.
4235@end defun
4236
4237@defun Frame.find_sal ()
4238Return the frame's symtab and line object.
4239@xref{Symbol Tables In Python}.
4240@end defun
4241
5f3b99cf
SS
4242@defun Frame.read_register (register)
4243Return the value of @var{register} in this frame. The @var{register}
4244argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4245Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4246does not exist.
4247@end defun
4248
329baa95
DE
4249@defun Frame.read_var (variable @r{[}, block@r{]})
4250Return the value of @var{variable} in this frame. If the optional
4251argument @var{block} is provided, search for the variable from that
4252block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4253determined by the frame's current program counter). The @var{variable}
4254argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4255@code{gdb.Block} object.
4256@end defun
4257
4258@defun Frame.select ()
4259Set this frame to be the selected frame. @xref{Stack, ,Examining the
4260Stack}.
4261@end defun
4262
4263@node Blocks In Python
4264@subsubsection Accessing blocks from Python.
4265
4266@cindex blocks in python
4267@tindex gdb.Block
4268
4269In @value{GDBN}, symbols are stored in blocks. A block corresponds
4270roughly to a scope in the source code. Blocks are organized
4271hierarchically, and are represented individually in Python as a
4272@code{gdb.Block}. Blocks rely on debugging information being
4273available.
4274
4275A frame has a block. Please see @ref{Frames In Python}, for a more
4276in-depth discussion of frames.
4277
4278The outermost block is known as the @dfn{global block}. The global
4279block typically holds public global variables and functions.
4280
4281The block nested just inside the global block is the @dfn{static
4282block}. The static block typically holds file-scoped variables and
4283functions.
4284
4285@value{GDBN} provides a method to get a block's superblock, but there
4286is currently no way to examine the sub-blocks of a block, or to
4287iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4288Python}).
4289
4290Here is a short example that should help explain blocks:
4291
4292@smallexample
4293/* This is in the global block. */
4294int global;
4295
4296/* This is in the static block. */
4297static int file_scope;
4298
4299/* 'function' is in the global block, and 'argument' is
4300 in a block nested inside of 'function'. */
4301int function (int argument)
4302@{
4303 /* 'local' is in a block inside 'function'. It may or may
4304 not be in the same block as 'argument'. */
4305 int local;
4306
4307 @{
4308 /* 'inner' is in a block whose superblock is the one holding
4309 'local'. */
4310 int inner;
4311
4312 /* If this call is expanded by the compiler, you may see
4313 a nested block here whose function is 'inline_function'
4314 and whose superblock is the one holding 'inner'. */
4315 inline_function ();
4316 @}
4317@}
4318@end smallexample
4319
4320A @code{gdb.Block} is iterable. The iterator returns the symbols
4321(@pxref{Symbols In Python}) local to the block. Python programs
4322should not assume that a specific block object will always contain a
4323given symbol, since changes in @value{GDBN} features and
4324infrastructure may cause symbols move across blocks in a symbol
4325table.
4326
4327The following block-related functions are available in the @code{gdb}
4328module:
4329
4330@findex gdb.block_for_pc
4331@defun gdb.block_for_pc (pc)
4332Return the innermost @code{gdb.Block} containing the given @var{pc}
4333value. If the block cannot be found for the @var{pc} value specified,
4334the function will return @code{None}.
4335@end defun
4336
4337A @code{gdb.Block} object has the following methods:
4338
4339@defun Block.is_valid ()
4340Returns @code{True} if the @code{gdb.Block} object is valid,
4341@code{False} if not. A block object can become invalid if the block it
4342refers to doesn't exist anymore in the inferior. All other
4343@code{gdb.Block} methods will throw an exception if it is invalid at
4344the time the method is called. The block's validity is also checked
4345during iteration over symbols of the block.
4346@end defun
4347
4348A @code{gdb.Block} object has the following attributes:
4349
4350@defvar Block.start
4351The start address of the block. This attribute is not writable.
4352@end defvar
4353
4354@defvar Block.end
4355The end address of the block. This attribute is not writable.
4356@end defvar
4357
4358@defvar Block.function
4359The name of the block represented as a @code{gdb.Symbol}. If the
4360block is not named, then this attribute holds @code{None}. This
4361attribute is not writable.
4362
4363For ordinary function blocks, the superblock is the static block.
4364However, you should note that it is possible for a function block to
4365have a superblock that is not the static block -- for instance this
4366happens for an inlined function.
4367@end defvar
4368
4369@defvar Block.superblock
4370The block containing this block. If this parent block does not exist,
4371this attribute holds @code{None}. This attribute is not writable.
4372@end defvar
4373
4374@defvar Block.global_block
4375The global block associated with this block. This attribute is not
4376writable.
4377@end defvar
4378
4379@defvar Block.static_block
4380The static block associated with this block. This attribute is not
4381writable.
4382@end defvar
4383
4384@defvar Block.is_global
4385@code{True} if the @code{gdb.Block} object is a global block,
4386@code{False} if not. This attribute is not
4387writable.
4388@end defvar
4389
4390@defvar Block.is_static
4391@code{True} if the @code{gdb.Block} object is a static block,
4392@code{False} if not. This attribute is not writable.
4393@end defvar
4394
4395@node Symbols In Python
4396@subsubsection Python representation of Symbols.
4397
4398@cindex symbols in python
4399@tindex gdb.Symbol
4400
4401@value{GDBN} represents every variable, function and type as an
4402entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4403Similarly, Python represents these symbols in @value{GDBN} with the
4404@code{gdb.Symbol} object.
4405
4406The following symbol-related functions are available in the @code{gdb}
4407module:
4408
4409@findex gdb.lookup_symbol
4410@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4411This function searches for a symbol by name. The search scope can be
4412restricted to the parameters defined in the optional domain and block
4413arguments.
4414
4415@var{name} is the name of the symbol. It must be a string. The
4416optional @var{block} argument restricts the search to symbols visible
4417in that @var{block}. The @var{block} argument must be a
4418@code{gdb.Block} object. If omitted, the block for the current frame
4419is used. The optional @var{domain} argument restricts
4420the search to the domain type. The @var{domain} argument must be a
4421domain constant defined in the @code{gdb} module and described later
4422in this chapter.
4423
4424The result is a tuple of two elements.
4425The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4426is not found.
4427If the symbol is found, the second element is @code{True} if the symbol
4428is a field of a method's object (e.g., @code{this} in C@t{++}),
4429otherwise it is @code{False}.
4430If the symbol is not found, the second element is @code{False}.
4431@end defun
4432
4433@findex gdb.lookup_global_symbol
4434@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4435This function searches for a global symbol by name.
4436The search scope can be restricted to by the domain argument.
4437
4438@var{name} is the name of the symbol. It must be a string.
4439The optional @var{domain} argument restricts the search to the domain type.
4440The @var{domain} argument must be a domain constant defined in the @code{gdb}
4441module and described later in this chapter.
4442
4443The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4444is not found.
4445@end defun
4446
4447A @code{gdb.Symbol} object has the following attributes:
4448
4449@defvar Symbol.type
4450The type of the symbol or @code{None} if no type is recorded.
4451This attribute is represented as a @code{gdb.Type} object.
4452@xref{Types In Python}. This attribute is not writable.
4453@end defvar
4454
4455@defvar Symbol.symtab
4456The symbol table in which the symbol appears. This attribute is
4457represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4458Python}. This attribute is not writable.
4459@end defvar
4460
4461@defvar Symbol.line
4462The line number in the source code at which the symbol was defined.
4463This is an integer.
4464@end defvar
4465
4466@defvar Symbol.name
4467The name of the symbol as a string. This attribute is not writable.
4468@end defvar
4469
4470@defvar Symbol.linkage_name
4471The name of the symbol, as used by the linker (i.e., may be mangled).
4472This attribute is not writable.
4473@end defvar
4474
4475@defvar Symbol.print_name
4476The name of the symbol in a form suitable for output. This is either
4477@code{name} or @code{linkage_name}, depending on whether the user
4478asked @value{GDBN} to display demangled or mangled names.
4479@end defvar
4480
4481@defvar Symbol.addr_class
4482The address class of the symbol. This classifies how to find the value
4483of a symbol. Each address class is a constant defined in the
4484@code{gdb} module and described later in this chapter.
4485@end defvar
4486
4487@defvar Symbol.needs_frame
4488This is @code{True} if evaluating this symbol's value requires a frame
4489(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4490local variables will require a frame, but other symbols will not.
4491@end defvar
4492
4493@defvar Symbol.is_argument
4494@code{True} if the symbol is an argument of a function.
4495@end defvar
4496
4497@defvar Symbol.is_constant
4498@code{True} if the symbol is a constant.
4499@end defvar
4500
4501@defvar Symbol.is_function
4502@code{True} if the symbol is a function or a method.
4503@end defvar
4504
4505@defvar Symbol.is_variable
4506@code{True} if the symbol is a variable.
4507@end defvar
4508
4509A @code{gdb.Symbol} object has the following methods:
4510
4511@defun Symbol.is_valid ()
4512Returns @code{True} if the @code{gdb.Symbol} object is valid,
4513@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4514the symbol it refers to does not exist in @value{GDBN} any longer.
4515All other @code{gdb.Symbol} methods will throw an exception if it is
4516invalid at the time the method is called.
4517@end defun
4518
4519@defun Symbol.value (@r{[}frame@r{]})
4520Compute the value of the symbol, as a @code{gdb.Value}. For
4521functions, this computes the address of the function, cast to the
4522appropriate type. If the symbol requires a frame in order to compute
4523its value, then @var{frame} must be given. If @var{frame} is not
4524given, or if @var{frame} is invalid, then this method will throw an
4525exception.
4526@end defun
4527
4528The available domain categories in @code{gdb.Symbol} are represented
4529as constants in the @code{gdb} module:
4530
b3ce5e5f
DE
4531@vtable @code
4532@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4533@item gdb.SYMBOL_UNDEF_DOMAIN
4534This is used when a domain has not been discovered or none of the
4535following domains apply. This usually indicates an error either
4536in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4537
4538@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4539@item gdb.SYMBOL_VAR_DOMAIN
4540This domain contains variables, function names, typedef names and enum
4541type values.
b3ce5e5f
DE
4542
4543@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4544@item gdb.SYMBOL_STRUCT_DOMAIN
4545This domain holds struct, union and enum type names.
b3ce5e5f
DE
4546
4547@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4548@item gdb.SYMBOL_LABEL_DOMAIN
4549This domain contains names of labels (for gotos).
b3ce5e5f
DE
4550
4551@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4552@item gdb.SYMBOL_VARIABLES_DOMAIN
4553This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4554contains everything minus functions and types.
b3ce5e5f
DE
4555
4556@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
4557@item gdb.SYMBOL_FUNCTION_DOMAIN
4558This domain contains all functions.
b3ce5e5f
DE
4559
4560@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4561@item gdb.SYMBOL_TYPES_DOMAIN
4562This domain contains all types.
b3ce5e5f 4563@end vtable
329baa95
DE
4564
4565The available address class categories in @code{gdb.Symbol} are represented
4566as constants in the @code{gdb} module:
4567
b3ce5e5f
DE
4568@vtable @code
4569@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4570@item gdb.SYMBOL_LOC_UNDEF
4571If this is returned by address class, it indicates an error either in
4572the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4573
4574@vindex SYMBOL_LOC_CONST
329baa95
DE
4575@item gdb.SYMBOL_LOC_CONST
4576Value is constant int.
b3ce5e5f
DE
4577
4578@vindex SYMBOL_LOC_STATIC
329baa95
DE
4579@item gdb.SYMBOL_LOC_STATIC
4580Value is at a fixed address.
b3ce5e5f
DE
4581
4582@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4583@item gdb.SYMBOL_LOC_REGISTER
4584Value is in a register.
b3ce5e5f
DE
4585
4586@vindex SYMBOL_LOC_ARG
329baa95
DE
4587@item gdb.SYMBOL_LOC_ARG
4588Value is an argument. This value is at the offset stored within the
4589symbol inside the frame's argument list.
b3ce5e5f
DE
4590
4591@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4592@item gdb.SYMBOL_LOC_REF_ARG
4593Value address is stored in the frame's argument list. Just like
4594@code{LOC_ARG} except that the value's address is stored at the
4595offset, not the value itself.
b3ce5e5f
DE
4596
4597@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4598@item gdb.SYMBOL_LOC_REGPARM_ADDR
4599Value is a specified register. Just like @code{LOC_REGISTER} except
4600the register holds the address of the argument instead of the argument
4601itself.
b3ce5e5f
DE
4602
4603@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4604@item gdb.SYMBOL_LOC_LOCAL
4605Value is a local variable.
b3ce5e5f
DE
4606
4607@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4608@item gdb.SYMBOL_LOC_TYPEDEF
4609Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4610have this class.
b3ce5e5f
DE
4611
4612@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4613@item gdb.SYMBOL_LOC_BLOCK
4614Value is a block.
b3ce5e5f
DE
4615
4616@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4617@item gdb.SYMBOL_LOC_CONST_BYTES
4618Value is a byte-sequence.
b3ce5e5f
DE
4619
4620@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4621@item gdb.SYMBOL_LOC_UNRESOLVED
4622Value is at a fixed address, but the address of the variable has to be
4623determined from the minimal symbol table whenever the variable is
4624referenced.
b3ce5e5f
DE
4625
4626@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4627@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4628The value does not actually exist in the program.
b3ce5e5f
DE
4629
4630@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4631@item gdb.SYMBOL_LOC_COMPUTED
4632The value's address is a computed location.
b3ce5e5f 4633@end vtable
329baa95
DE
4634
4635@node Symbol Tables In Python
4636@subsubsection Symbol table representation in Python.
4637
4638@cindex symbol tables in python
4639@tindex gdb.Symtab
4640@tindex gdb.Symtab_and_line
4641
4642Access to symbol table data maintained by @value{GDBN} on the inferior
4643is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4644@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4645from the @code{find_sal} method in @code{gdb.Frame} object.
4646@xref{Frames In Python}.
4647
4648For more information on @value{GDBN}'s symbol table management, see
4649@ref{Symbols, ,Examining the Symbol Table}, for more information.
4650
4651A @code{gdb.Symtab_and_line} object has the following attributes:
4652
4653@defvar Symtab_and_line.symtab
4654The symbol table object (@code{gdb.Symtab}) for this frame.
4655This attribute is not writable.
4656@end defvar
4657
4658@defvar Symtab_and_line.pc
4659Indicates the start of the address range occupied by code for the
4660current source line. This attribute is not writable.
4661@end defvar
4662
4663@defvar Symtab_and_line.last
4664Indicates the end of the address range occupied by code for the current
4665source line. This attribute is not writable.
4666@end defvar
4667
4668@defvar Symtab_and_line.line
4669Indicates the current line number for this object. This
4670attribute is not writable.
4671@end defvar
4672
4673A @code{gdb.Symtab_and_line} object has the following methods:
4674
4675@defun Symtab_and_line.is_valid ()
4676Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4677@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4678invalid if the Symbol table and line object it refers to does not
4679exist in @value{GDBN} any longer. All other
4680@code{gdb.Symtab_and_line} methods will throw an exception if it is
4681invalid at the time the method is called.
4682@end defun
4683
4684A @code{gdb.Symtab} object has the following attributes:
4685
4686@defvar Symtab.filename
4687The symbol table's source filename. This attribute is not writable.
4688@end defvar
4689
4690@defvar Symtab.objfile
4691The symbol table's backing object file. @xref{Objfiles In Python}.
4692This attribute is not writable.
4693@end defvar
4694
2b4fd423
DE
4695@defvar Symtab.producer
4696The name and possibly version number of the program that
4697compiled the code in the symbol table.
4698The contents of this string is up to the compiler.
4699If no producer information is available then @code{None} is returned.
4700This attribute is not writable.
4701@end defvar
4702
329baa95
DE
4703A @code{gdb.Symtab} object has the following methods:
4704
4705@defun Symtab.is_valid ()
4706Returns @code{True} if the @code{gdb.Symtab} object is valid,
4707@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4708the symbol table it refers to does not exist in @value{GDBN} any
4709longer. All other @code{gdb.Symtab} methods will throw an exception
4710if it is invalid at the time the method is called.
4711@end defun
4712
4713@defun Symtab.fullname ()
4714Return the symbol table's source absolute file name.
4715@end defun
4716
4717@defun Symtab.global_block ()
4718Return the global block of the underlying symbol table.
4719@xref{Blocks In Python}.
4720@end defun
4721
4722@defun Symtab.static_block ()
4723Return the static block of the underlying symbol table.
4724@xref{Blocks In Python}.
4725@end defun
4726
4727@defun Symtab.linetable ()
4728Return the line table associated with the symbol table.
4729@xref{Line Tables In Python}.
4730@end defun
4731
4732@node Line Tables In Python
4733@subsubsection Manipulating line tables using Python
4734
4735@cindex line tables in python
4736@tindex gdb.LineTable
4737
4738Python code can request and inspect line table information from a
4739symbol table that is loaded in @value{GDBN}. A line table is a
4740mapping of source lines to their executable locations in memory. To
4741acquire the line table information for a particular symbol table, use
4742the @code{linetable} function (@pxref{Symbol Tables In Python}).
4743
4744A @code{gdb.LineTable} is iterable. The iterator returns
4745@code{LineTableEntry} objects that correspond to the source line and
4746address for each line table entry. @code{LineTableEntry} objects have
4747the following attributes:
4748
4749@defvar LineTableEntry.line
4750The source line number for this line table entry. This number
4751corresponds to the actual line of source. This attribute is not
4752writable.
4753@end defvar
4754
4755@defvar LineTableEntry.pc
4756The address that is associated with the line table entry where the
4757executable code for that source line resides in memory. This
4758attribute is not writable.
4759@end defvar
4760
4761As there can be multiple addresses for a single source line, you may
4762receive multiple @code{LineTableEntry} objects with matching
4763@code{line} attributes, but with different @code{pc} attributes. The
4764iterator is sorted in ascending @code{pc} order. Here is a small
4765example illustrating iterating over a line table.
4766
4767@smallexample
4768symtab = gdb.selected_frame().find_sal().symtab
4769linetable = symtab.linetable()
4770for line in linetable:
4771 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4772@end smallexample
4773
4774This will have the following output:
4775
4776@smallexample
4777Line: 33 Address: 0x4005c8L
4778Line: 37 Address: 0x4005caL
4779Line: 39 Address: 0x4005d2L
4780Line: 40 Address: 0x4005f8L
4781Line: 42 Address: 0x4005ffL
4782Line: 44 Address: 0x400608L
4783Line: 42 Address: 0x40060cL
4784Line: 45 Address: 0x400615L
4785@end smallexample
4786
4787In addition to being able to iterate over a @code{LineTable}, it also
4788has the following direct access methods:
4789
4790@defun LineTable.line (line)
4791Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4792entries in the line table for the given @var{line}, which specifies
4793the source code line. If there are no entries for that source code
329baa95
DE
4794@var{line}, the Python @code{None} is returned.
4795@end defun
4796
4797@defun LineTable.has_line (line)
4798Return a Python @code{Boolean} indicating whether there is an entry in
4799the line table for this source line. Return @code{True} if an entry
4800is found, or @code{False} if not.
4801@end defun
4802
4803@defun LineTable.source_lines ()
4804Return a Python @code{List} of the source line numbers in the symbol
4805table. Only lines with executable code locations are returned. The
4806contents of the @code{List} will just be the source line entries
4807represented as Python @code{Long} values.
4808@end defun
4809
4810@node Breakpoints In Python
4811@subsubsection Manipulating breakpoints using Python
4812
4813@cindex breakpoints in python
4814@tindex gdb.Breakpoint
4815
4816Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4817class.
4818
4819@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4820Create a new breakpoint according to @var{spec}, which is a string
4821naming the location of the breakpoint, or an expression that defines a
4822watchpoint. The contents can be any location recognized by the
4823@code{break} command, or in the case of a watchpoint, by the
4824@code{watch} command. The optional @var{type} denotes the breakpoint
4825to create from the types defined later in this chapter. This argument
4826can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4827defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4828argument allows the breakpoint to become invisible to the user. The
4829breakpoint will neither be reported when created, nor will it be
4830listed in the output from @code{info breakpoints} (but will be listed
4831with the @code{maint info breakpoints} command). The optional
4832@var{temporary} argument makes the breakpoint a temporary breakpoint.
4833Temporary breakpoints are deleted after they have been hit. Any
4834further access to the Python breakpoint after it has been hit will
4835result in a runtime error (as that breakpoint has now been
4836automatically deleted). The optional @var{wp_class} argument defines
4837the class of watchpoint to create, if @var{type} is
4838@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4839is assumed to be a @code{gdb.WP_WRITE} class.
4840@end defun
4841
cda75e70
TT
4842The available types are represented by constants defined in the @code{gdb}
4843module:
4844
4845@vtable @code
4846@vindex BP_BREAKPOINT
4847@item gdb.BP_BREAKPOINT
4848Normal code breakpoint.
4849
4850@vindex BP_WATCHPOINT
4851@item gdb.BP_WATCHPOINT
4852Watchpoint breakpoint.
4853
4854@vindex BP_HARDWARE_WATCHPOINT
4855@item gdb.BP_HARDWARE_WATCHPOINT
4856Hardware assisted watchpoint.
4857
4858@vindex BP_READ_WATCHPOINT
4859@item gdb.BP_READ_WATCHPOINT
4860Hardware assisted read watchpoint.
4861
4862@vindex BP_ACCESS_WATCHPOINT
4863@item gdb.BP_ACCESS_WATCHPOINT
4864Hardware assisted access watchpoint.
4865@end vtable
4866
4867The available watchpoint types represented by constants are defined in the
4868@code{gdb} module:
4869
4870@vtable @code
4871@vindex WP_READ
4872@item gdb.WP_READ
4873Read only watchpoint.
4874
4875@vindex WP_WRITE
4876@item gdb.WP_WRITE
4877Write only watchpoint.
4878
4879@vindex WP_ACCESS
4880@item gdb.WP_ACCESS
4881Read/Write watchpoint.
4882@end vtable
4883
329baa95
DE
4884@defun Breakpoint.stop (self)
4885The @code{gdb.Breakpoint} class can be sub-classed and, in
4886particular, you may choose to implement the @code{stop} method.
4887If this method is defined in a sub-class of @code{gdb.Breakpoint},
4888it will be called when the inferior reaches any location of a
4889breakpoint which instantiates that sub-class. If the method returns
4890@code{True}, the inferior will be stopped at the location of the
4891breakpoint, otherwise the inferior will continue.
4892
4893If there are multiple breakpoints at the same location with a
4894@code{stop} method, each one will be called regardless of the
4895return status of the previous. This ensures that all @code{stop}
4896methods have a chance to execute at that location. In this scenario
4897if one of the methods returns @code{True} but the others return
4898@code{False}, the inferior will still be stopped.
4899
4900You should not alter the execution state of the inferior (i.e.@:, step,
4901next, etc.), alter the current frame context (i.e.@:, change the current
4902active frame), or alter, add or delete any breakpoint. As a general
4903rule, you should not alter any data within @value{GDBN} or the inferior
4904at this time.
4905
4906Example @code{stop} implementation:
4907
4908@smallexample
4909class MyBreakpoint (gdb.Breakpoint):
4910 def stop (self):
4911 inf_val = gdb.parse_and_eval("foo")
4912 if inf_val == 3:
4913 return True
4914 return False
4915@end smallexample
4916@end defun
4917
329baa95
DE
4918@defun Breakpoint.is_valid ()
4919Return @code{True} if this @code{Breakpoint} object is valid,
4920@code{False} otherwise. A @code{Breakpoint} object can become invalid
4921if the user deletes the breakpoint. In this case, the object still
4922exists, but the underlying breakpoint does not. In the cases of
4923watchpoint scope, the watchpoint remains valid even if execution of the
4924inferior leaves the scope of that watchpoint.
4925@end defun
4926
fab3a15d 4927@defun Breakpoint.delete ()
329baa95
DE
4928Permanently deletes the @value{GDBN} breakpoint. This also
4929invalidates the Python @code{Breakpoint} object. Any further access
4930to this object's attributes or methods will raise an error.
4931@end defun
4932
4933@defvar Breakpoint.enabled
4934This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4935@code{False} otherwise. This attribute is writable. You can use it to enable
4936or disable the breakpoint.
329baa95
DE
4937@end defvar
4938
4939@defvar Breakpoint.silent
4940This attribute is @code{True} if the breakpoint is silent, and
4941@code{False} otherwise. This attribute is writable.
4942
4943Note that a breakpoint can also be silent if it has commands and the
4944first command is @code{silent}. This is not reported by the
4945@code{silent} attribute.
4946@end defvar
4947
93daf339
TT
4948@defvar Breakpoint.pending
4949This attribute is @code{True} if the breakpoint is pending, and
4950@code{False} otherwise. @xref{Set Breaks}. This attribute is
4951read-only.
4952@end defvar
4953
22a02324 4954@anchor{python_breakpoint_thread}
329baa95 4955@defvar Breakpoint.thread
5d5658a1
PA
4956If the breakpoint is thread-specific, this attribute holds the
4957thread's global id. If the breakpoint is not thread-specific, this
4958attribute is @code{None}. This attribute is writable.
329baa95
DE
4959@end defvar
4960
4961@defvar Breakpoint.task
4962If the breakpoint is Ada task-specific, this attribute holds the Ada task
4963id. If the breakpoint is not task-specific (or the underlying
4964language is not Ada), this attribute is @code{None}. This attribute
4965is writable.
4966@end defvar
4967
4968@defvar Breakpoint.ignore_count
4969This attribute holds the ignore count for the breakpoint, an integer.
4970This attribute is writable.
4971@end defvar
4972
4973@defvar Breakpoint.number
4974This attribute holds the breakpoint's number --- the identifier used by
4975the user to manipulate the breakpoint. This attribute is not writable.
4976@end defvar
4977
4978@defvar Breakpoint.type
4979This attribute holds the breakpoint's type --- the identifier used to
4980determine the actual breakpoint type or use-case. This attribute is not
4981writable.
4982@end defvar
4983
4984@defvar Breakpoint.visible
4985This attribute tells whether the breakpoint is visible to the user
4986when set, or when the @samp{info breakpoints} command is run. This
4987attribute is not writable.
4988@end defvar
4989
4990@defvar Breakpoint.temporary
4991This attribute indicates whether the breakpoint was created as a
4992temporary breakpoint. Temporary breakpoints are automatically deleted
4993after that breakpoint has been hit. Access to this attribute, and all
4994other attributes and functions other than the @code{is_valid}
4995function, will result in an error after the breakpoint has been hit
4996(as it has been automatically deleted). This attribute is not
4997writable.
4998@end defvar
4999
329baa95
DE
5000@defvar Breakpoint.hit_count
5001This attribute holds the hit count for the breakpoint, an integer.
5002This attribute is writable, but currently it can only be set to zero.
5003@end defvar
5004
5005@defvar Breakpoint.location
5006This attribute holds the location of the breakpoint, as specified by
5007the user. It is a string. If the breakpoint does not have a location
5008(that is, it is a watchpoint) the attribute's value is @code{None}. This
5009attribute is not writable.
5010@end defvar
5011
5012@defvar Breakpoint.expression
5013This attribute holds a breakpoint expression, as specified by
5014the user. It is a string. If the breakpoint does not have an
5015expression (the breakpoint is not a watchpoint) the attribute's value
5016is @code{None}. This attribute is not writable.
5017@end defvar
5018
5019@defvar Breakpoint.condition
5020This attribute holds the condition of the breakpoint, as specified by
5021the user. It is a string. If there is no condition, this attribute's
5022value is @code{None}. This attribute is writable.
5023@end defvar
5024
5025@defvar Breakpoint.commands
5026This attribute holds the commands attached to the breakpoint. If
5027there are commands, this attribute's value is a string holding all the
5028commands, separated by newlines. If there are no commands, this
5029attribute is @code{None}. This attribute is not writable.
5030@end defvar
5031
5032@node Finish Breakpoints in Python
5033@subsubsection Finish Breakpoints
5034
5035@cindex python finish breakpoints
5036@tindex gdb.FinishBreakpoint
5037
5038A finish breakpoint is a temporary breakpoint set at the return address of
5039a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5040extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5041and deleted when the execution will run out of the breakpoint scope (i.e.@:
5042@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5043Finish breakpoints are thread specific and must be create with the right
5044thread selected.
5045
5046@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5047Create a finish breakpoint at the return address of the @code{gdb.Frame}
5048object @var{frame}. If @var{frame} is not provided, this defaults to the
5049newest frame. The optional @var{internal} argument allows the breakpoint to
5050become invisible to the user. @xref{Breakpoints In Python}, for further
5051details about this argument.
5052@end defun
5053
5054@defun FinishBreakpoint.out_of_scope (self)
5055In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5056@code{return} command, @dots{}), a function may not properly terminate, and
5057thus never hit the finish breakpoint. When @value{GDBN} notices such a
5058situation, the @code{out_of_scope} callback will be triggered.
5059
5060You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5061method:
5062
5063@smallexample
5064class MyFinishBreakpoint (gdb.FinishBreakpoint)
5065 def stop (self):
5066 print "normal finish"
5067 return True
5068
5069 def out_of_scope ():
5070 print "abnormal finish"
5071@end smallexample
5072@end defun
5073
5074@defvar FinishBreakpoint.return_value
5075When @value{GDBN} is stopped at a finish breakpoint and the frame
5076used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5077attribute will contain a @code{gdb.Value} object corresponding to the return
5078value of the function. The value will be @code{None} if the function return
5079type is @code{void} or if the return value was not computable. This attribute
5080is not writable.
5081@end defvar
5082
5083@node Lazy Strings In Python
5084@subsubsection Python representation of lazy strings.
5085
5086@cindex lazy strings in python
5087@tindex gdb.LazyString
5088
5089A @dfn{lazy string} is a string whose contents is not retrieved or
5090encoded until it is needed.
5091
5092A @code{gdb.LazyString} is represented in @value{GDBN} as an
5093@code{address} that points to a region of memory, an @code{encoding}
5094that will be used to encode that region of memory, and a @code{length}
5095to delimit the region of memory that represents the string. The
5096difference between a @code{gdb.LazyString} and a string wrapped within
5097a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5098differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5099retrieved and encoded during printing, while a @code{gdb.Value}
5100wrapping a string is immediately retrieved and encoded on creation.
5101
5102A @code{gdb.LazyString} object has the following functions:
5103
5104@defun LazyString.value ()
5105Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5106will point to the string in memory, but will lose all the delayed
5107retrieval, encoding and handling that @value{GDBN} applies to a
5108@code{gdb.LazyString}.
5109@end defun
5110
5111@defvar LazyString.address
5112This attribute holds the address of the string. This attribute is not
5113writable.
5114@end defvar
5115
5116@defvar LazyString.length
5117This attribute holds the length of the string in characters. If the
5118length is -1, then the string will be fetched and encoded up to the
5119first null of appropriate width. This attribute is not writable.
5120@end defvar
5121
5122@defvar LazyString.encoding
5123This attribute holds the encoding that will be applied to the string
5124when the string is printed by @value{GDBN}. If the encoding is not
5125set, or contains an empty string, then @value{GDBN} will select the
5126most appropriate encoding when the string is printed. This attribute
5127is not writable.
5128@end defvar
5129
5130@defvar LazyString.type
5131This attribute holds the type that is represented by the lazy string's
5132type. For a lazy string this will always be a pointer type. To
5133resolve this to the lazy string's character type, use the type's
5134@code{target} method. @xref{Types In Python}. This attribute is not
5135writable.
5136@end defvar
5137
5138@node Architectures In Python
5139@subsubsection Python representation of architectures
5140@cindex Python architectures
5141
5142@value{GDBN} uses architecture specific parameters and artifacts in a
5143number of its various computations. An architecture is represented
5144by an instance of the @code{gdb.Architecture} class.
5145
5146A @code{gdb.Architecture} class has the following methods:
5147
5148@defun Architecture.name ()
5149Return the name (string value) of the architecture.
5150@end defun
5151
5152@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5153Return a list of disassembled instructions starting from the memory
5154address @var{start_pc}. The optional arguments @var{end_pc} and
5155@var{count} determine the number of instructions in the returned list.
5156If both the optional arguments @var{end_pc} and @var{count} are
5157specified, then a list of at most @var{count} disassembled instructions
5158whose start address falls in the closed memory address interval from
5159@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5160specified, but @var{count} is specified, then @var{count} number of
5161instructions starting from the address @var{start_pc} are returned. If
5162@var{count} is not specified but @var{end_pc} is specified, then all
5163instructions whose start address falls in the closed memory address
5164interval from @var{start_pc} to @var{end_pc} are returned. If neither
5165@var{end_pc} nor @var{count} are specified, then a single instruction at
5166@var{start_pc} is returned. For all of these cases, each element of the
5167returned list is a Python @code{dict} with the following string keys:
5168
5169@table @code
5170
5171@item addr
5172The value corresponding to this key is a Python long integer capturing
5173the memory address of the instruction.
5174
5175@item asm
5176The value corresponding to this key is a string value which represents
5177the instruction with assembly language mnemonics. The assembly
5178language flavor used is the same as that specified by the current CLI
5179variable @code{disassembly-flavor}. @xref{Machine Code}.
5180
5181@item length
5182The value corresponding to this key is the length (integer value) of the
5183instruction in bytes.
5184
5185@end table
5186@end defun
5187
5188@node Python Auto-loading
5189@subsection Python Auto-loading
5190@cindex Python auto-loading
5191
5192When a new object file is read (for example, due to the @code{file}
5193command, or because the inferior has loaded a shared library),
5194@value{GDBN} will look for Python support scripts in several ways:
5195@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5196@xref{Auto-loading extensions}.
5197
5198The auto-loading feature is useful for supplying application-specific
5199debugging commands and scripts.
5200
5201Auto-loading can be enabled or disabled,
5202and the list of auto-loaded scripts can be printed.
5203
5204@table @code
5205@anchor{set auto-load python-scripts}
5206@kindex set auto-load python-scripts
5207@item set auto-load python-scripts [on|off]
5208Enable or disable the auto-loading of Python scripts.
5209
5210@anchor{show auto-load python-scripts}
5211@kindex show auto-load python-scripts
5212@item show auto-load python-scripts
5213Show whether auto-loading of Python scripts is enabled or disabled.
5214
5215@anchor{info auto-load python-scripts}
5216@kindex info auto-load python-scripts
5217@cindex print list of auto-loaded Python scripts
5218@item info auto-load python-scripts [@var{regexp}]
5219Print the list of all Python scripts that @value{GDBN} auto-loaded.
5220
5221Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5222the @code{.debug_gdb_scripts} section and were either not found
5223(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5224@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5225This is useful because their names are not printed when @value{GDBN}
5226tries to load them and fails. There may be many of them, and printing
5227an error message for each one is problematic.
5228
5229If @var{regexp} is supplied only Python scripts with matching names are printed.
5230
5231Example:
5232
5233@smallexample
5234(gdb) info auto-load python-scripts
5235Loaded Script
5236Yes py-section-script.py
5237 full name: /tmp/py-section-script.py
5238No my-foo-pretty-printers.py
5239@end smallexample
5240@end table
5241
9f050062 5242When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5243@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5244function (@pxref{Objfiles In Python}). This can be useful for
5245registering objfile-specific pretty-printers and frame-filters.
5246
5247@node Python modules
5248@subsection Python modules
5249@cindex python modules
5250
5251@value{GDBN} comes with several modules to assist writing Python code.
5252
5253@menu
5254* gdb.printing:: Building and registering pretty-printers.
5255* gdb.types:: Utilities for working with types.
5256* gdb.prompt:: Utilities for prompt value substitution.
5257@end menu
5258
5259@node gdb.printing
5260@subsubsection gdb.printing
5261@cindex gdb.printing
5262
5263This module provides a collection of utilities for working with
5264pretty-printers.
5265
5266@table @code
5267@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5268This class specifies the API that makes @samp{info pretty-printer},
5269@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5270Pretty-printers should generally inherit from this class.
5271
5272@item SubPrettyPrinter (@var{name})
5273For printers that handle multiple types, this class specifies the
5274corresponding API for the subprinters.
5275
5276@item RegexpCollectionPrettyPrinter (@var{name})
5277Utility class for handling multiple printers, all recognized via
5278regular expressions.
5279@xref{Writing a Pretty-Printer}, for an example.
5280
5281@item FlagEnumerationPrinter (@var{name})
5282A pretty-printer which handles printing of @code{enum} values. Unlike
5283@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5284work properly when there is some overlap between the enumeration
697aa1b7
EZ
5285constants. The argument @var{name} is the name of the printer and
5286also the name of the @code{enum} type to look up.
329baa95
DE
5287
5288@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5289Register @var{printer} with the pretty-printer list of @var{obj}.
5290If @var{replace} is @code{True} then any existing copy of the printer
5291is replaced. Otherwise a @code{RuntimeError} exception is raised
5292if a printer with the same name already exists.
5293@end table
5294
5295@node gdb.types
5296@subsubsection gdb.types
5297@cindex gdb.types
5298
5299This module provides a collection of utilities for working with
5300@code{gdb.Type} objects.
5301
5302@table @code
5303@item get_basic_type (@var{type})
5304Return @var{type} with const and volatile qualifiers stripped,
5305and with typedefs and C@t{++} references converted to the underlying type.
5306
5307C@t{++} example:
5308
5309@smallexample
5310typedef const int const_int;
5311const_int foo (3);
5312const_int& foo_ref (foo);
5313int main () @{ return 0; @}
5314@end smallexample
5315
5316Then in gdb:
5317
5318@smallexample
5319(gdb) start
5320(gdb) python import gdb.types
5321(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5322(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5323int
5324@end smallexample
5325
5326@item has_field (@var{type}, @var{field})
5327Return @code{True} if @var{type}, assumed to be a type with fields
5328(e.g., a structure or union), has field @var{field}.
5329
5330@item make_enum_dict (@var{enum_type})
5331Return a Python @code{dictionary} type produced from @var{enum_type}.
5332
5333@item deep_items (@var{type})
5334Returns a Python iterator similar to the standard
5335@code{gdb.Type.iteritems} method, except that the iterator returned
5336by @code{deep_items} will recursively traverse anonymous struct or
5337union fields. For example:
5338
5339@smallexample
5340struct A
5341@{
5342 int a;
5343 union @{
5344 int b0;
5345 int b1;
5346 @};
5347@};
5348@end smallexample
5349
5350@noindent
5351Then in @value{GDBN}:
5352@smallexample
5353(@value{GDBP}) python import gdb.types
5354(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5355(@value{GDBP}) python print struct_a.keys ()
5356@{['a', '']@}
5357(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5358@{['a', 'b0', 'b1']@}
5359@end smallexample
5360
5361@item get_type_recognizers ()
5362Return a list of the enabled type recognizers for the current context.
5363This is called by @value{GDBN} during the type-printing process
5364(@pxref{Type Printing API}).
5365
5366@item apply_type_recognizers (recognizers, type_obj)
5367Apply the type recognizers, @var{recognizers}, to the type object
5368@var{type_obj}. If any recognizer returns a string, return that
5369string. Otherwise, return @code{None}. This is called by
5370@value{GDBN} during the type-printing process (@pxref{Type Printing
5371API}).
5372
5373@item register_type_printer (locus, printer)
697aa1b7
EZ
5374This is a convenience function to register a type printer
5375@var{printer}. The printer must implement the type printer protocol.
5376The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5377the printer is registered with that objfile; a @code{gdb.Progspace},
5378in which case the printer is registered with that progspace; or
5379@code{None}, in which case the printer is registered globally.
329baa95
DE
5380
5381@item TypePrinter
5382This is a base class that implements the type printer protocol. Type
5383printers are encouraged, but not required, to derive from this class.
5384It defines a constructor:
5385
5386@defmethod TypePrinter __init__ (self, name)
5387Initialize the type printer with the given name. The new printer
5388starts in the enabled state.
5389@end defmethod
5390
5391@end table
5392
5393@node gdb.prompt
5394@subsubsection gdb.prompt
5395@cindex gdb.prompt
5396
5397This module provides a method for prompt value-substitution.
5398
5399@table @code
5400@item substitute_prompt (@var{string})
5401Return @var{string} with escape sequences substituted by values. Some
5402escape sequences take arguments. You can specify arguments inside
5403``@{@}'' immediately following the escape sequence.
5404
5405The escape sequences you can pass to this function are:
5406
5407@table @code
5408@item \\
5409Substitute a backslash.
5410@item \e
5411Substitute an ESC character.
5412@item \f
5413Substitute the selected frame; an argument names a frame parameter.
5414@item \n
5415Substitute a newline.
5416@item \p
5417Substitute a parameter's value; the argument names the parameter.
5418@item \r
5419Substitute a carriage return.
5420@item \t
5421Substitute the selected thread; an argument names a thread parameter.
5422@item \v
5423Substitute the version of GDB.
5424@item \w
5425Substitute the current working directory.
5426@item \[
5427Begin a sequence of non-printing characters. These sequences are
5428typically used with the ESC character, and are not counted in the string
5429length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5430blue-colored ``(gdb)'' prompt where the length is five.
5431@item \]
5432End a sequence of non-printing characters.
5433@end table
5434
5435For example:
5436
5437@smallexample
5438substitute_prompt (``frame: \f,
5439 print arguments: \p@{print frame-arguments@}'')
5440@end smallexample
5441
5442@exdent will return the string:
5443
5444@smallexample
5445"frame: main, print arguments: scalars"
5446@end smallexample
5447@end table
This page took 0.442521 seconds and 4 git commands to generate.