Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
32d0add0 1@c Copyright (C) 2008-2015 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
154* Commands In Python:: Implementing new commands in Python.
155* Parameters In Python:: Adding new @value{GDBN} parameters.
156* Functions In Python:: Writing new convenience functions.
157* Progspaces In Python:: Program spaces.
158* Objfiles In Python:: Object files.
159* Frames In Python:: Accessing inferior stack frames from Python.
160* Blocks In Python:: Accessing blocks from Python.
161* Symbols In Python:: Python representation of symbols.
162* Symbol Tables In Python:: Python representation of symbol tables.
163* Line Tables In Python:: Python representation of line tables.
164* Breakpoints In Python:: Manipulating breakpoints using Python.
165* Finish Breakpoints in Python:: Setting Breakpoints on function return
166 using Python.
167* Lazy Strings In Python:: Python representation of lazy strings.
168* Architectures In Python:: Python representation of architectures.
169@end menu
170
171@node Basic Python
172@subsubsection Basic Python
173
174@cindex python stdout
175@cindex python pagination
176At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
177@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
178A Python program which outputs to one of these streams may have its
179output interrupted by the user (@pxref{Screen Size}). In this
180situation, a Python @code{KeyboardInterrupt} exception is thrown.
181
182Some care must be taken when writing Python code to run in
183@value{GDBN}. Two things worth noting in particular:
184
185@itemize @bullet
186@item
187@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
188Python code must not override these, or even change the options using
189@code{sigaction}. If your program changes the handling of these
190signals, @value{GDBN} will most likely stop working correctly. Note
191that it is unfortunately common for GUI toolkits to install a
192@code{SIGCHLD} handler.
193
194@item
195@value{GDBN} takes care to mark its internal file descriptors as
196close-on-exec. However, this cannot be done in a thread-safe way on
197all platforms. Your Python programs should be aware of this and
198should both create new file descriptors with the close-on-exec flag
199set and arrange to close unneeded file descriptors before starting a
200child process.
201@end itemize
202
203@cindex python functions
204@cindex python module
205@cindex gdb module
206@value{GDBN} introduces a new Python module, named @code{gdb}. All
207methods and classes added by @value{GDBN} are placed in this module.
208@value{GDBN} automatically @code{import}s the @code{gdb} module for
209use in all scripts evaluated by the @code{python} command.
210
211@findex gdb.PYTHONDIR
212@defvar gdb.PYTHONDIR
213A string containing the python directory (@pxref{Python}).
214@end defvar
215
216@findex gdb.execute
217@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
218Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
219If a GDB exception happens while @var{command} runs, it is
220translated as described in @ref{Exception Handling,,Exception Handling}.
221
697aa1b7 222The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
223command as having originated from the user invoking it interactively.
224It must be a boolean value. If omitted, it defaults to @code{False}.
225
226By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
227@value{GDBN}'s standard output (and to the log output if logging is
228turned on). If the @var{to_string} parameter is
329baa95
DE
229@code{True}, then output will be collected by @code{gdb.execute} and
230returned as a string. The default is @code{False}, in which case the
231return value is @code{None}. If @var{to_string} is @code{True}, the
232@value{GDBN} virtual terminal will be temporarily set to unlimited width
233and height, and its pagination will be disabled; @pxref{Screen Size}.
234@end defun
235
236@findex gdb.breakpoints
237@defun gdb.breakpoints ()
238Return a sequence holding all of @value{GDBN}'s breakpoints.
239@xref{Breakpoints In Python}, for more information.
240@end defun
241
242@findex gdb.parameter
243@defun gdb.parameter (parameter)
697aa1b7
EZ
244Return the value of a @value{GDBN} @var{parameter} given by its name,
245a string; the parameter name string may contain spaces if the parameter has a
246multi-part name. For example, @samp{print object} is a valid
247parameter name.
329baa95
DE
248
249If the named parameter does not exist, this function throws a
250@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
251parameter's value is converted to a Python value of the appropriate
252type, and returned.
253@end defun
254
255@findex gdb.history
256@defun gdb.history (number)
257Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 258History}). The @var{number} argument indicates which history element to return.
329baa95
DE
259If @var{number} is negative, then @value{GDBN} will take its absolute value
260and count backward from the last element (i.e., the most recent element) to
261find the value to return. If @var{number} is zero, then @value{GDBN} will
262return the most recent element. If the element specified by @var{number}
263doesn't exist in the value history, a @code{gdb.error} exception will be
264raised.
265
266If no exception is raised, the return value is always an instance of
267@code{gdb.Value} (@pxref{Values From Inferior}).
268@end defun
269
270@findex gdb.parse_and_eval
271@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
272Parse @var{expression}, which must be a string, as an expression in
273the current language, evaluate it, and return the result as a
274@code{gdb.Value}.
329baa95
DE
275
276This function can be useful when implementing a new command
277(@pxref{Commands In Python}), as it provides a way to parse the
278command's argument as an expression. It is also useful simply to
279compute values, for example, it is the only way to get the value of a
280convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
281@end defun
282
283@findex gdb.find_pc_line
284@defun gdb.find_pc_line (pc)
285Return the @code{gdb.Symtab_and_line} object corresponding to the
286@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
287value of @var{pc} is passed as an argument, then the @code{symtab} and
288@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
289will be @code{None} and 0 respectively.
290@end defun
291
292@findex gdb.post_event
293@defun gdb.post_event (event)
294Put @var{event}, a callable object taking no arguments, into
295@value{GDBN}'s internal event queue. This callable will be invoked at
296some later point, during @value{GDBN}'s event processing. Events
297posted using @code{post_event} will be run in the order in which they
298were posted; however, there is no way to know when they will be
299processed relative to other events inside @value{GDBN}.
300
301@value{GDBN} is not thread-safe. If your Python program uses multiple
302threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 303functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
304this. For example:
305
306@smallexample
307(@value{GDBP}) python
308>import threading
309>
310>class Writer():
311> def __init__(self, message):
312> self.message = message;
313> def __call__(self):
314> gdb.write(self.message)
315>
316>class MyThread1 (threading.Thread):
317> def run (self):
318> gdb.post_event(Writer("Hello "))
319>
320>class MyThread2 (threading.Thread):
321> def run (self):
322> gdb.post_event(Writer("World\n"))
323>
324>MyThread1().start()
325>MyThread2().start()
326>end
327(@value{GDBP}) Hello World
328@end smallexample
329@end defun
330
331@findex gdb.write
332@defun gdb.write (string @r{[}, stream{]})
333Print a string to @value{GDBN}'s paginated output stream. The
334optional @var{stream} determines the stream to print to. The default
335stream is @value{GDBN}'s standard output stream. Possible stream
336values are:
337
338@table @code
339@findex STDOUT
340@findex gdb.STDOUT
341@item gdb.STDOUT
342@value{GDBN}'s standard output stream.
343
344@findex STDERR
345@findex gdb.STDERR
346@item gdb.STDERR
347@value{GDBN}'s standard error stream.
348
349@findex STDLOG
350@findex gdb.STDLOG
351@item gdb.STDLOG
352@value{GDBN}'s log stream (@pxref{Logging Output}).
353@end table
354
355Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
356call this function and will automatically direct the output to the
357relevant stream.
358@end defun
359
360@findex gdb.flush
361@defun gdb.flush ()
362Flush the buffer of a @value{GDBN} paginated stream so that the
363contents are displayed immediately. @value{GDBN} will flush the
364contents of a stream automatically when it encounters a newline in the
365buffer. The optional @var{stream} determines the stream to flush. The
366default stream is @value{GDBN}'s standard output stream. Possible
367stream values are:
368
369@table @code
370@findex STDOUT
371@findex gdb.STDOUT
372@item gdb.STDOUT
373@value{GDBN}'s standard output stream.
374
375@findex STDERR
376@findex gdb.STDERR
377@item gdb.STDERR
378@value{GDBN}'s standard error stream.
379
380@findex STDLOG
381@findex gdb.STDLOG
382@item gdb.STDLOG
383@value{GDBN}'s log stream (@pxref{Logging Output}).
384
385@end table
386
387Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
388call this function for the relevant stream.
389@end defun
390
391@findex gdb.target_charset
392@defun gdb.target_charset ()
393Return the name of the current target character set (@pxref{Character
394Sets}). This differs from @code{gdb.parameter('target-charset')} in
395that @samp{auto} is never returned.
396@end defun
397
398@findex gdb.target_wide_charset
399@defun gdb.target_wide_charset ()
400Return the name of the current target wide character set
401(@pxref{Character Sets}). This differs from
402@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
403never returned.
404@end defun
405
406@findex gdb.solib_name
407@defun gdb.solib_name (address)
408Return the name of the shared library holding the given @var{address}
409as a string, or @code{None}.
410@end defun
411
412@findex gdb.decode_line
413@defun gdb.decode_line @r{[}expression@r{]}
414Return locations of the line specified by @var{expression}, or of the
415current line if no argument was given. This function returns a Python
416tuple containing two elements. The first element contains a string
417holding any unparsed section of @var{expression} (or @code{None} if
418the expression has been fully parsed). The second element contains
419either @code{None} or another tuple that contains all the locations
420that match the expression represented as @code{gdb.Symtab_and_line}
421objects (@pxref{Symbol Tables In Python}). If @var{expression} is
422provided, it is decoded the way that @value{GDBN}'s inbuilt
423@code{break} or @code{edit} commands do (@pxref{Specify Location}).
424@end defun
425
426@defun gdb.prompt_hook (current_prompt)
427@anchor{prompt_hook}
428
429If @var{prompt_hook} is callable, @value{GDBN} will call the method
430assigned to this operation before a prompt is displayed by
431@value{GDBN}.
432
433The parameter @code{current_prompt} contains the current @value{GDBN}
434prompt. This method must return a Python string, or @code{None}. If
435a string is returned, the @value{GDBN} prompt will be set to that
436string. If @code{None} is returned, @value{GDBN} will continue to use
437the current prompt.
438
439Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
440such as those used by readline for command input, and annotation
441related prompts are prohibited from being changed.
442@end defun
443
444@node Exception Handling
445@subsubsection Exception Handling
446@cindex python exceptions
447@cindex exceptions, python
448
449When executing the @code{python} command, Python exceptions
450uncaught within the Python code are translated to calls to
451@value{GDBN} error-reporting mechanism. If the command that called
452@code{python} does not handle the error, @value{GDBN} will
453terminate it and print an error message containing the Python
454exception name, the associated value, and the Python call stack
455backtrace at the point where the exception was raised. Example:
456
457@smallexample
458(@value{GDBP}) python print foo
459Traceback (most recent call last):
460 File "<string>", line 1, in <module>
461NameError: name 'foo' is not defined
462@end smallexample
463
464@value{GDBN} errors that happen in @value{GDBN} commands invoked by
465Python code are converted to Python exceptions. The type of the
466Python exception depends on the error.
467
468@ftable @code
469@item gdb.error
470This is the base class for most exceptions generated by @value{GDBN}.
471It is derived from @code{RuntimeError}, for compatibility with earlier
472versions of @value{GDBN}.
473
474If an error occurring in @value{GDBN} does not fit into some more
475specific category, then the generated exception will have this type.
476
477@item gdb.MemoryError
478This is a subclass of @code{gdb.error} which is thrown when an
479operation tried to access invalid memory in the inferior.
480
481@item KeyboardInterrupt
482User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
483prompt) is translated to a Python @code{KeyboardInterrupt} exception.
484@end ftable
485
486In all cases, your exception handler will see the @value{GDBN} error
487message as its value and the Python call stack backtrace at the Python
488statement closest to where the @value{GDBN} error occured as the
489traceback.
490
491@findex gdb.GdbError
492When implementing @value{GDBN} commands in Python via @code{gdb.Command},
493it is useful to be able to throw an exception that doesn't cause a
494traceback to be printed. For example, the user may have invoked the
495command incorrectly. Use the @code{gdb.GdbError} exception
496to handle this case. Example:
497
498@smallexample
499(gdb) python
500>class HelloWorld (gdb.Command):
501> """Greet the whole world."""
502> def __init__ (self):
503> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
504> def invoke (self, args, from_tty):
505> argv = gdb.string_to_argv (args)
506> if len (argv) != 0:
507> raise gdb.GdbError ("hello-world takes no arguments")
508> print "Hello, World!"
509>HelloWorld ()
510>end
511(gdb) hello-world 42
512hello-world takes no arguments
513@end smallexample
514
515@node Values From Inferior
516@subsubsection Values From Inferior
517@cindex values from inferior, with Python
518@cindex python, working with values from inferior
519
520@cindex @code{gdb.Value}
521@value{GDBN} provides values it obtains from the inferior program in
522an object of type @code{gdb.Value}. @value{GDBN} uses this object
523for its internal bookkeeping of the inferior's values, and for
524fetching values when necessary.
525
526Inferior values that are simple scalars can be used directly in
527Python expressions that are valid for the value's data type. Here's
528an example for an integer or floating-point value @code{some_val}:
529
530@smallexample
531bar = some_val + 2
532@end smallexample
533
534@noindent
535As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
536whose values are of the same type as those of @code{some_val}. Valid
537Python operations can also be performed on @code{gdb.Value} objects
538representing a @code{struct} or @code{class} object. For such cases,
539the overloaded operator (if present), is used to perform the operation.
540For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
541representing instances of a @code{class} which overloads the @code{+}
542operator, then one can use the @code{+} operator in their Python script
543as follows:
544
545@smallexample
546val3 = val1 + val2
547@end smallexample
548
549@noindent
550The result of the operation @code{val3} is also a @code{gdb.Value}
551object corresponding to the value returned by the overloaded @code{+}
552operator. In general, overloaded operators are invoked for the
553following operations: @code{+} (binary addition), @code{-} (binary
554subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
555@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
556
557Inferior values that are structures or instances of some class can
558be accessed using the Python @dfn{dictionary syntax}. For example, if
559@code{some_val} is a @code{gdb.Value} instance holding a structure, you
560can access its @code{foo} element with:
561
562@smallexample
563bar = some_val['foo']
564@end smallexample
565
566@cindex getting structure elements using gdb.Field objects as subscripts
567Again, @code{bar} will also be a @code{gdb.Value} object. Structure
568elements can also be accessed by using @code{gdb.Field} objects as
569subscripts (@pxref{Types In Python}, for more information on
570@code{gdb.Field} objects). For example, if @code{foo_field} is a
571@code{gdb.Field} object corresponding to element @code{foo} of the above
572structure, then @code{bar} can also be accessed as follows:
573
574@smallexample
575bar = some_val[foo_field]
576@end smallexample
577
578A @code{gdb.Value} that represents a function can be executed via
579inferior function call. Any arguments provided to the call must match
580the function's prototype, and must be provided in the order specified
581by that prototype.
582
583For example, @code{some_val} is a @code{gdb.Value} instance
584representing a function that takes two integers as arguments. To
585execute this function, call it like so:
586
587@smallexample
588result = some_val (10,20)
589@end smallexample
590
591Any values returned from a function call will be stored as a
592@code{gdb.Value}.
593
594The following attributes are provided:
595
596@defvar Value.address
597If this object is addressable, this read-only attribute holds a
598@code{gdb.Value} object representing the address. Otherwise,
599this attribute holds @code{None}.
600@end defvar
601
602@cindex optimized out value in Python
603@defvar Value.is_optimized_out
604This read-only boolean attribute is true if the compiler optimized out
605this value, thus it is not available for fetching from the inferior.
606@end defvar
607
608@defvar Value.type
609The type of this @code{gdb.Value}. The value of this attribute is a
610@code{gdb.Type} object (@pxref{Types In Python}).
611@end defvar
612
613@defvar Value.dynamic_type
614The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
615type information (@acronym{RTTI}) to determine the dynamic type of the
616value. If this value is of class type, it will return the class in
617which the value is embedded, if any. If this value is of pointer or
618reference to a class type, it will compute the dynamic type of the
619referenced object, and return a pointer or reference to that type,
620respectively. In all other cases, it will return the value's static
621type.
622
623Note that this feature will only work when debugging a C@t{++} program
624that includes @acronym{RTTI} for the object in question. Otherwise,
625it will just return the static type of the value as in @kbd{ptype foo}
626(@pxref{Symbols, ptype}).
627@end defvar
628
629@defvar Value.is_lazy
630The value of this read-only boolean attribute is @code{True} if this
631@code{gdb.Value} has not yet been fetched from the inferior.
632@value{GDBN} does not fetch values until necessary, for efficiency.
633For example:
634
635@smallexample
636myval = gdb.parse_and_eval ('somevar')
637@end smallexample
638
639The value of @code{somevar} is not fetched at this time. It will be
640fetched when the value is needed, or when the @code{fetch_lazy}
641method is invoked.
642@end defvar
643
644The following methods are provided:
645
646@defun Value.__init__ (@var{val})
647Many Python values can be converted directly to a @code{gdb.Value} via
648this object initializer. Specifically:
649
650@table @asis
651@item Python boolean
652A Python boolean is converted to the boolean type from the current
653language.
654
655@item Python integer
656A Python integer is converted to the C @code{long} type for the
657current architecture.
658
659@item Python long
660A Python long is converted to the C @code{long long} type for the
661current architecture.
662
663@item Python float
664A Python float is converted to the C @code{double} type for the
665current architecture.
666
667@item Python string
b3ce5e5f
DE
668A Python string is converted to a target string in the current target
669language using the current target encoding.
670If a character cannot be represented in the current target encoding,
671then an exception is thrown.
329baa95
DE
672
673@item @code{gdb.Value}
674If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
675
676@item @code{gdb.LazyString}
677If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
678Python}), then the lazy string's @code{value} method is called, and
679its result is used.
680@end table
681@end defun
682
683@defun Value.cast (type)
684Return a new instance of @code{gdb.Value} that is the result of
685casting this instance to the type described by @var{type}, which must
686be a @code{gdb.Type} object. If the cast cannot be performed for some
687reason, this method throws an exception.
688@end defun
689
690@defun Value.dereference ()
691For pointer data types, this method returns a new @code{gdb.Value} object
692whose contents is the object pointed to by the pointer. For example, if
693@code{foo} is a C pointer to an @code{int}, declared in your C program as
694
695@smallexample
696int *foo;
697@end smallexample
698
699@noindent
700then you can use the corresponding @code{gdb.Value} to access what
701@code{foo} points to like this:
702
703@smallexample
704bar = foo.dereference ()
705@end smallexample
706
707The result @code{bar} will be a @code{gdb.Value} object holding the
708value pointed to by @code{foo}.
709
710A similar function @code{Value.referenced_value} exists which also
711returns @code{gdb.Value} objects corresonding to the values pointed to
712by pointer values (and additionally, values referenced by reference
713values). However, the behavior of @code{Value.dereference}
714differs from @code{Value.referenced_value} by the fact that the
715behavior of @code{Value.dereference} is identical to applying the C
716unary operator @code{*} on a given value. For example, consider a
717reference to a pointer @code{ptrref}, declared in your C@t{++} program
718as
719
720@smallexample
721typedef int *intptr;
722...
723int val = 10;
724intptr ptr = &val;
725intptr &ptrref = ptr;
726@end smallexample
727
728Though @code{ptrref} is a reference value, one can apply the method
729@code{Value.dereference} to the @code{gdb.Value} object corresponding
730to it and obtain a @code{gdb.Value} which is identical to that
731corresponding to @code{val}. However, if you apply the method
732@code{Value.referenced_value}, the result would be a @code{gdb.Value}
733object identical to that corresponding to @code{ptr}.
734
735@smallexample
736py_ptrref = gdb.parse_and_eval ("ptrref")
737py_val = py_ptrref.dereference ()
738py_ptr = py_ptrref.referenced_value ()
739@end smallexample
740
741The @code{gdb.Value} object @code{py_val} is identical to that
742corresponding to @code{val}, and @code{py_ptr} is identical to that
743corresponding to @code{ptr}. In general, @code{Value.dereference} can
744be applied whenever the C unary operator @code{*} can be applied
745to the corresponding C value. For those cases where applying both
746@code{Value.dereference} and @code{Value.referenced_value} is allowed,
747the results obtained need not be identical (as we have seen in the above
748example). The results are however identical when applied on
749@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
750objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
751@end defun
752
753@defun Value.referenced_value ()
754For pointer or reference data types, this method returns a new
755@code{gdb.Value} object corresponding to the value referenced by the
756pointer/reference value. For pointer data types,
757@code{Value.dereference} and @code{Value.referenced_value} produce
758identical results. The difference between these methods is that
759@code{Value.dereference} cannot get the values referenced by reference
760values. For example, consider a reference to an @code{int}, declared
761in your C@t{++} program as
762
763@smallexample
764int val = 10;
765int &ref = val;
766@end smallexample
767
768@noindent
769then applying @code{Value.dereference} to the @code{gdb.Value} object
770corresponding to @code{ref} will result in an error, while applying
771@code{Value.referenced_value} will result in a @code{gdb.Value} object
772identical to that corresponding to @code{val}.
773
774@smallexample
775py_ref = gdb.parse_and_eval ("ref")
776er_ref = py_ref.dereference () # Results in error
777py_val = py_ref.referenced_value () # Returns the referenced value
778@end smallexample
779
780The @code{gdb.Value} object @code{py_val} is identical to that
781corresponding to @code{val}.
782@end defun
783
784@defun Value.dynamic_cast (type)
785Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
786operator were used. Consult a C@t{++} reference for details.
787@end defun
788
789@defun Value.reinterpret_cast (type)
790Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
791operator were used. Consult a C@t{++} reference for details.
792@end defun
793
794@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
795If this @code{gdb.Value} represents a string, then this method
796converts the contents to a Python string. Otherwise, this method will
797throw an exception.
798
b3ce5e5f
DE
799Values are interpreted as strings according to the rules of the
800current language. If the optional length argument is given, the
801string will be converted to that length, and will include any embedded
802zeroes that the string may contain. Otherwise, for languages
803where the string is zero-terminated, the entire string will be
804converted.
329baa95 805
b3ce5e5f
DE
806For example, in C-like languages, a value is a string if it is a pointer
807to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
808or @code{char32_t}.
329baa95
DE
809
810If the optional @var{encoding} argument is given, it must be a string
811naming the encoding of the string in the @code{gdb.Value}, such as
812@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
813the same encodings as the corresponding argument to Python's
814@code{string.decode} method, and the Python codec machinery will be used
815to convert the string. If @var{encoding} is not given, or if
816@var{encoding} is the empty string, then either the @code{target-charset}
817(@pxref{Character Sets}) will be used, or a language-specific encoding
818will be used, if the current language is able to supply one.
819
820The optional @var{errors} argument is the same as the corresponding
821argument to Python's @code{string.decode} method.
822
823If the optional @var{length} argument is given, the string will be
824fetched and converted to the given length.
825@end defun
826
827@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
828If this @code{gdb.Value} represents a string, then this method
829converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
830In Python}). Otherwise, this method will throw an exception.
831
832If the optional @var{encoding} argument is given, it must be a string
833naming the encoding of the @code{gdb.LazyString}. Some examples are:
834@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
835@var{encoding} argument is an encoding that @value{GDBN} does
836recognize, @value{GDBN} will raise an error.
837
838When a lazy string is printed, the @value{GDBN} encoding machinery is
839used to convert the string during printing. If the optional
840@var{encoding} argument is not provided, or is an empty string,
841@value{GDBN} will automatically select the encoding most suitable for
842the string type. For further information on encoding in @value{GDBN}
843please see @ref{Character Sets}.
844
845If the optional @var{length} argument is given, the string will be
846fetched and encoded to the length of characters specified. If
847the @var{length} argument is not provided, the string will be fetched
848and encoded until a null of appropriate width is found.
849@end defun
850
851@defun Value.fetch_lazy ()
852If the @code{gdb.Value} object is currently a lazy value
853(@code{gdb.Value.is_lazy} is @code{True}), then the value is
854fetched from the inferior. Any errors that occur in the process
855will produce a Python exception.
856
857If the @code{gdb.Value} object is not a lazy value, this method
858has no effect.
859
860This method does not return a value.
861@end defun
862
863
864@node Types In Python
865@subsubsection Types In Python
866@cindex types in Python
867@cindex Python, working with types
868
869@tindex gdb.Type
870@value{GDBN} represents types from the inferior using the class
871@code{gdb.Type}.
872
873The following type-related functions are available in the @code{gdb}
874module:
875
876@findex gdb.lookup_type
877@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 878This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
879
880If @var{block} is given, then @var{name} is looked up in that scope.
881Otherwise, it is searched for globally.
882
883Ordinarily, this function will return an instance of @code{gdb.Type}.
884If the named type cannot be found, it will throw an exception.
885@end defun
886
887If the type is a structure or class type, or an enum type, the fields
888of that type can be accessed using the Python @dfn{dictionary syntax}.
889For example, if @code{some_type} is a @code{gdb.Type} instance holding
890a structure type, you can access its @code{foo} field with:
891
892@smallexample
893bar = some_type['foo']
894@end smallexample
895
896@code{bar} will be a @code{gdb.Field} object; see below under the
897description of the @code{Type.fields} method for a description of the
898@code{gdb.Field} class.
899
900An instance of @code{Type} has the following attributes:
901
902@defvar Type.code
903The type code for this type. The type code will be one of the
904@code{TYPE_CODE_} constants defined below.
905@end defvar
906
907@defvar Type.name
908The name of this type. If this type has no name, then @code{None}
909is returned.
910@end defvar
911
912@defvar Type.sizeof
913The size of this type, in target @code{char} units. Usually, a
914target's @code{char} type will be an 8-bit byte. However, on some
915unusual platforms, this type may have a different size.
916@end defvar
917
918@defvar Type.tag
919The tag name for this type. The tag name is the name after
920@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
921languages have this concept. If this type has no tag name, then
922@code{None} is returned.
923@end defvar
924
925The following methods are provided:
926
927@defun Type.fields ()
928For structure and union types, this method returns the fields. Range
929types have two fields, the minimum and maximum values. Enum types
930have one field per enum constant. Function and method types have one
931field per parameter. The base types of C@t{++} classes are also
932represented as fields. If the type has no fields, or does not fit
933into one of these categories, an empty sequence will be returned.
934
935Each field is a @code{gdb.Field} object, with some pre-defined attributes:
936@table @code
937@item bitpos
938This attribute is not available for @code{enum} or @code{static}
939(as in C@t{++} or Java) fields. The value is the position, counting
940in bits, from the start of the containing type.
941
942@item enumval
943This attribute is only available for @code{enum} fields, and its value
944is the enumeration member's integer representation.
945
946@item name
947The name of the field, or @code{None} for anonymous fields.
948
949@item artificial
950This is @code{True} if the field is artificial, usually meaning that
951it was provided by the compiler and not the user. This attribute is
952always provided, and is @code{False} if the field is not artificial.
953
954@item is_base_class
955This is @code{True} if the field represents a base class of a C@t{++}
956structure. This attribute is always provided, and is @code{False}
957if the field is not a base class of the type that is the argument of
958@code{fields}, or if that type was not a C@t{++} class.
959
960@item bitsize
961If the field is packed, or is a bitfield, then this will have a
962non-zero value, which is the size of the field in bits. Otherwise,
963this will be zero; in this case the field's size is given by its type.
964
965@item type
966The type of the field. This is usually an instance of @code{Type},
967but it can be @code{None} in some situations.
968
969@item parent_type
970The type which contains this field. This is an instance of
971@code{gdb.Type}.
972@end table
973@end defun
974
975@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
976Return a new @code{gdb.Type} object which represents an array of this
977type. If one argument is given, it is the inclusive upper bound of
978the array; in this case the lower bound is zero. If two arguments are
979given, the first argument is the lower bound of the array, and the
980second argument is the upper bound of the array. An array's length
981must not be negative, but the bounds can be.
982@end defun
983
984@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
985Return a new @code{gdb.Type} object which represents a vector of this
986type. If one argument is given, it is the inclusive upper bound of
987the vector; in this case the lower bound is zero. If two arguments are
988given, the first argument is the lower bound of the vector, and the
989second argument is the upper bound of the vector. A vector's length
990must not be negative, but the bounds can be.
991
992The difference between an @code{array} and a @code{vector} is that
993arrays behave like in C: when used in expressions they decay to a pointer
994to the first element whereas vectors are treated as first class values.
995@end defun
996
997@defun Type.const ()
998Return a new @code{gdb.Type} object which represents a
999@code{const}-qualified variant of this type.
1000@end defun
1001
1002@defun Type.volatile ()
1003Return a new @code{gdb.Type} object which represents a
1004@code{volatile}-qualified variant of this type.
1005@end defun
1006
1007@defun Type.unqualified ()
1008Return a new @code{gdb.Type} object which represents an unqualified
1009variant of this type. That is, the result is neither @code{const} nor
1010@code{volatile}.
1011@end defun
1012
1013@defun Type.range ()
1014Return a Python @code{Tuple} object that contains two elements: the
1015low bound of the argument type and the high bound of that type. If
1016the type does not have a range, @value{GDBN} will raise a
1017@code{gdb.error} exception (@pxref{Exception Handling}).
1018@end defun
1019
1020@defun Type.reference ()
1021Return a new @code{gdb.Type} object which represents a reference to this
1022type.
1023@end defun
1024
1025@defun Type.pointer ()
1026Return a new @code{gdb.Type} object which represents a pointer to this
1027type.
1028@end defun
1029
1030@defun Type.strip_typedefs ()
1031Return a new @code{gdb.Type} that represents the real type,
1032after removing all layers of typedefs.
1033@end defun
1034
1035@defun Type.target ()
1036Return a new @code{gdb.Type} object which represents the target type
1037of this type.
1038
1039For a pointer type, the target type is the type of the pointed-to
1040object. For an array type (meaning C-like arrays), the target type is
1041the type of the elements of the array. For a function or method type,
1042the target type is the type of the return value. For a complex type,
1043the target type is the type of the elements. For a typedef, the
1044target type is the aliased type.
1045
1046If the type does not have a target, this method will throw an
1047exception.
1048@end defun
1049
1050@defun Type.template_argument (n @r{[}, block@r{]})
1051If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1052return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1053value of the @var{n}th template argument (indexed starting at 0).
329baa95 1054
1a6a384b
JL
1055If this @code{gdb.Type} is not a template type, or if the type has fewer
1056than @var{n} template arguments, this will throw an exception.
1057Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1058
1059If @var{block} is given, then @var{name} is looked up in that scope.
1060Otherwise, it is searched for globally.
1061@end defun
1062
59fb7612
SS
1063@defun Type.optimized_out ()
1064Return @code{gdb.Value} instance of this type whose value is optimized
1065out. This allows a frame decorator to indicate that the value of an
1066argument or a local variable is not known.
1067@end defun
329baa95
DE
1068
1069Each type has a code, which indicates what category this type falls
1070into. The available type categories are represented by constants
1071defined in the @code{gdb} module:
1072
b3ce5e5f
DE
1073@vtable @code
1074@vindex TYPE_CODE_PTR
329baa95
DE
1075@item gdb.TYPE_CODE_PTR
1076The type is a pointer.
1077
b3ce5e5f 1078@vindex TYPE_CODE_ARRAY
329baa95
DE
1079@item gdb.TYPE_CODE_ARRAY
1080The type is an array.
1081
b3ce5e5f 1082@vindex TYPE_CODE_STRUCT
329baa95
DE
1083@item gdb.TYPE_CODE_STRUCT
1084The type is a structure.
1085
b3ce5e5f 1086@vindex TYPE_CODE_UNION
329baa95
DE
1087@item gdb.TYPE_CODE_UNION
1088The type is a union.
1089
b3ce5e5f 1090@vindex TYPE_CODE_ENUM
329baa95
DE
1091@item gdb.TYPE_CODE_ENUM
1092The type is an enum.
1093
b3ce5e5f 1094@vindex TYPE_CODE_FLAGS
329baa95
DE
1095@item gdb.TYPE_CODE_FLAGS
1096A bit flags type, used for things such as status registers.
1097
b3ce5e5f 1098@vindex TYPE_CODE_FUNC
329baa95
DE
1099@item gdb.TYPE_CODE_FUNC
1100The type is a function.
1101
b3ce5e5f 1102@vindex TYPE_CODE_INT
329baa95
DE
1103@item gdb.TYPE_CODE_INT
1104The type is an integer type.
1105
b3ce5e5f 1106@vindex TYPE_CODE_FLT
329baa95
DE
1107@item gdb.TYPE_CODE_FLT
1108A floating point type.
1109
b3ce5e5f 1110@vindex TYPE_CODE_VOID
329baa95
DE
1111@item gdb.TYPE_CODE_VOID
1112The special type @code{void}.
1113
b3ce5e5f 1114@vindex TYPE_CODE_SET
329baa95
DE
1115@item gdb.TYPE_CODE_SET
1116A Pascal set type.
1117
b3ce5e5f 1118@vindex TYPE_CODE_RANGE
329baa95
DE
1119@item gdb.TYPE_CODE_RANGE
1120A range type, that is, an integer type with bounds.
1121
b3ce5e5f 1122@vindex TYPE_CODE_STRING
329baa95
DE
1123@item gdb.TYPE_CODE_STRING
1124A string type. Note that this is only used for certain languages with
1125language-defined string types; C strings are not represented this way.
1126
b3ce5e5f 1127@vindex TYPE_CODE_BITSTRING
329baa95
DE
1128@item gdb.TYPE_CODE_BITSTRING
1129A string of bits. It is deprecated.
1130
b3ce5e5f 1131@vindex TYPE_CODE_ERROR
329baa95
DE
1132@item gdb.TYPE_CODE_ERROR
1133An unknown or erroneous type.
1134
b3ce5e5f 1135@vindex TYPE_CODE_METHOD
329baa95
DE
1136@item gdb.TYPE_CODE_METHOD
1137A method type, as found in C@t{++} or Java.
1138
b3ce5e5f 1139@vindex TYPE_CODE_METHODPTR
329baa95
DE
1140@item gdb.TYPE_CODE_METHODPTR
1141A pointer-to-member-function.
1142
b3ce5e5f 1143@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1144@item gdb.TYPE_CODE_MEMBERPTR
1145A pointer-to-member.
1146
b3ce5e5f 1147@vindex TYPE_CODE_REF
329baa95
DE
1148@item gdb.TYPE_CODE_REF
1149A reference type.
1150
b3ce5e5f 1151@vindex TYPE_CODE_CHAR
329baa95
DE
1152@item gdb.TYPE_CODE_CHAR
1153A character type.
1154
b3ce5e5f 1155@vindex TYPE_CODE_BOOL
329baa95
DE
1156@item gdb.TYPE_CODE_BOOL
1157A boolean type.
1158
b3ce5e5f 1159@vindex TYPE_CODE_COMPLEX
329baa95
DE
1160@item gdb.TYPE_CODE_COMPLEX
1161A complex float type.
1162
b3ce5e5f 1163@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1164@item gdb.TYPE_CODE_TYPEDEF
1165A typedef to some other type.
1166
b3ce5e5f 1167@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1168@item gdb.TYPE_CODE_NAMESPACE
1169A C@t{++} namespace.
1170
b3ce5e5f 1171@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1172@item gdb.TYPE_CODE_DECFLOAT
1173A decimal floating point type.
1174
b3ce5e5f 1175@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1176@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1177A function internal to @value{GDBN}. This is the type used to represent
1178convenience functions.
b3ce5e5f 1179@end vtable
329baa95
DE
1180
1181Further support for types is provided in the @code{gdb.types}
1182Python module (@pxref{gdb.types}).
1183
1184@node Pretty Printing API
1185@subsubsection Pretty Printing API
b3ce5e5f 1186@cindex python pretty printing api
329baa95
DE
1187
1188An example output is provided (@pxref{Pretty Printing}).
1189
1190A pretty-printer is just an object that holds a value and implements a
1191specific interface, defined here.
1192
1193@defun pretty_printer.children (self)
1194@value{GDBN} will call this method on a pretty-printer to compute the
1195children of the pretty-printer's value.
1196
1197This method must return an object conforming to the Python iterator
1198protocol. Each item returned by the iterator must be a tuple holding
1199two elements. The first element is the ``name'' of the child; the
1200second element is the child's value. The value can be any Python
1201object which is convertible to a @value{GDBN} value.
1202
1203This method is optional. If it does not exist, @value{GDBN} will act
1204as though the value has no children.
1205@end defun
1206
1207@defun pretty_printer.display_hint (self)
1208The CLI may call this method and use its result to change the
1209formatting of a value. The result will also be supplied to an MI
1210consumer as a @samp{displayhint} attribute of the variable being
1211printed.
1212
1213This method is optional. If it does exist, this method must return a
1214string.
1215
1216Some display hints are predefined by @value{GDBN}:
1217
1218@table @samp
1219@item array
1220Indicate that the object being printed is ``array-like''. The CLI
1221uses this to respect parameters such as @code{set print elements} and
1222@code{set print array}.
1223
1224@item map
1225Indicate that the object being printed is ``map-like'', and that the
1226children of this value can be assumed to alternate between keys and
1227values.
1228
1229@item string
1230Indicate that the object being printed is ``string-like''. If the
1231printer's @code{to_string} method returns a Python string of some
1232kind, then @value{GDBN} will call its internal language-specific
1233string-printing function to format the string. For the CLI this means
1234adding quotation marks, possibly escaping some characters, respecting
1235@code{set print elements}, and the like.
1236@end table
1237@end defun
1238
1239@defun pretty_printer.to_string (self)
1240@value{GDBN} will call this method to display the string
1241representation of the value passed to the object's constructor.
1242
1243When printing from the CLI, if the @code{to_string} method exists,
1244then @value{GDBN} will prepend its result to the values returned by
1245@code{children}. Exactly how this formatting is done is dependent on
1246the display hint, and may change as more hints are added. Also,
1247depending on the print settings (@pxref{Print Settings}), the CLI may
1248print just the result of @code{to_string} in a stack trace, omitting
1249the result of @code{children}.
1250
1251If this method returns a string, it is printed verbatim.
1252
1253Otherwise, if this method returns an instance of @code{gdb.Value},
1254then @value{GDBN} prints this value. This may result in a call to
1255another pretty-printer.
1256
1257If instead the method returns a Python value which is convertible to a
1258@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1259the resulting value. Again, this may result in a call to another
1260pretty-printer. Python scalars (integers, floats, and booleans) and
1261strings are convertible to @code{gdb.Value}; other types are not.
1262
1263Finally, if this method returns @code{None} then no further operations
1264are peformed in this method and nothing is printed.
1265
1266If the result is not one of these types, an exception is raised.
1267@end defun
1268
1269@value{GDBN} provides a function which can be used to look up the
1270default pretty-printer for a @code{gdb.Value}:
1271
1272@findex gdb.default_visualizer
1273@defun gdb.default_visualizer (value)
1274This function takes a @code{gdb.Value} object as an argument. If a
1275pretty-printer for this value exists, then it is returned. If no such
1276printer exists, then this returns @code{None}.
1277@end defun
1278
1279@node Selecting Pretty-Printers
1280@subsubsection Selecting Pretty-Printers
b3ce5e5f 1281@cindex selecting python pretty-printers
329baa95
DE
1282
1283The Python list @code{gdb.pretty_printers} contains an array of
1284functions or callable objects that have been registered via addition
1285as a pretty-printer. Printers in this list are called @code{global}
1286printers, they're available when debugging all inferiors.
1287Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1288Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1289attribute.
1290
1291Each function on these lists is passed a single @code{gdb.Value}
1292argument and should return a pretty-printer object conforming to the
1293interface definition above (@pxref{Pretty Printing API}). If a function
1294cannot create a pretty-printer for the value, it should return
1295@code{None}.
1296
1297@value{GDBN} first checks the @code{pretty_printers} attribute of each
1298@code{gdb.Objfile} in the current program space and iteratively calls
1299each enabled lookup routine in the list for that @code{gdb.Objfile}
1300until it receives a pretty-printer object.
1301If no pretty-printer is found in the objfile lists, @value{GDBN} then
1302searches the pretty-printer list of the current program space,
1303calling each enabled function until an object is returned.
1304After these lists have been exhausted, it tries the global
1305@code{gdb.pretty_printers} list, again calling each enabled function until an
1306object is returned.
1307
1308The order in which the objfiles are searched is not specified. For a
1309given list, functions are always invoked from the head of the list,
1310and iterated over sequentially until the end of the list, or a printer
1311object is returned.
1312
1313For various reasons a pretty-printer may not work.
1314For example, the underlying data structure may have changed and
1315the pretty-printer is out of date.
1316
1317The consequences of a broken pretty-printer are severe enough that
1318@value{GDBN} provides support for enabling and disabling individual
1319printers. For example, if @code{print frame-arguments} is on,
1320a backtrace can become highly illegible if any argument is printed
1321with a broken printer.
1322
1323Pretty-printers are enabled and disabled by attaching an @code{enabled}
1324attribute to the registered function or callable object. If this attribute
1325is present and its value is @code{False}, the printer is disabled, otherwise
1326the printer is enabled.
1327
1328@node Writing a Pretty-Printer
1329@subsubsection Writing a Pretty-Printer
1330@cindex writing a pretty-printer
1331
1332A pretty-printer consists of two parts: a lookup function to detect
1333if the type is supported, and the printer itself.
1334
1335Here is an example showing how a @code{std::string} printer might be
1336written. @xref{Pretty Printing API}, for details on the API this class
1337must provide.
1338
1339@smallexample
1340class StdStringPrinter(object):
1341 "Print a std::string"
1342
1343 def __init__(self, val):
1344 self.val = val
1345
1346 def to_string(self):
1347 return self.val['_M_dataplus']['_M_p']
1348
1349 def display_hint(self):
1350 return 'string'
1351@end smallexample
1352
1353And here is an example showing how a lookup function for the printer
1354example above might be written.
1355
1356@smallexample
1357def str_lookup_function(val):
1358 lookup_tag = val.type.tag
1359 if lookup_tag == None:
1360 return None
1361 regex = re.compile("^std::basic_string<char,.*>$")
1362 if regex.match(lookup_tag):
1363 return StdStringPrinter(val)
1364 return None
1365@end smallexample
1366
1367The example lookup function extracts the value's type, and attempts to
1368match it to a type that it can pretty-print. If it is a type the
1369printer can pretty-print, it will return a printer object. If not, it
1370returns @code{None}.
1371
1372We recommend that you put your core pretty-printers into a Python
1373package. If your pretty-printers are for use with a library, we
1374further recommend embedding a version number into the package name.
1375This practice will enable @value{GDBN} to load multiple versions of
1376your pretty-printers at the same time, because they will have
1377different names.
1378
1379You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1380can be evaluated multiple times without changing its meaning. An
1381ideal auto-load file will consist solely of @code{import}s of your
1382printer modules, followed by a call to a register pretty-printers with
1383the current objfile.
1384
1385Taken as a whole, this approach will scale nicely to multiple
1386inferiors, each potentially using a different library version.
1387Embedding a version number in the Python package name will ensure that
1388@value{GDBN} is able to load both sets of printers simultaneously.
1389Then, because the search for pretty-printers is done by objfile, and
1390because your auto-loaded code took care to register your library's
1391printers with a specific objfile, @value{GDBN} will find the correct
1392printers for the specific version of the library used by each
1393inferior.
1394
1395To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1396this code might appear in @code{gdb.libstdcxx.v6}:
1397
1398@smallexample
1399def register_printers(objfile):
1400 objfile.pretty_printers.append(str_lookup_function)
1401@end smallexample
1402
1403@noindent
1404And then the corresponding contents of the auto-load file would be:
1405
1406@smallexample
1407import gdb.libstdcxx.v6
1408gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1409@end smallexample
1410
1411The previous example illustrates a basic pretty-printer.
1412There are a few things that can be improved on.
1413The printer doesn't have a name, making it hard to identify in a
1414list of installed printers. The lookup function has a name, but
1415lookup functions can have arbitrary, even identical, names.
1416
1417Second, the printer only handles one type, whereas a library typically has
1418several types. One could install a lookup function for each desired type
1419in the library, but one could also have a single lookup function recognize
1420several types. The latter is the conventional way this is handled.
1421If a pretty-printer can handle multiple data types, then its
1422@dfn{subprinters} are the printers for the individual data types.
1423
1424The @code{gdb.printing} module provides a formal way of solving these
1425problems (@pxref{gdb.printing}).
1426Here is another example that handles multiple types.
1427
1428These are the types we are going to pretty-print:
1429
1430@smallexample
1431struct foo @{ int a, b; @};
1432struct bar @{ struct foo x, y; @};
1433@end smallexample
1434
1435Here are the printers:
1436
1437@smallexample
1438class fooPrinter:
1439 """Print a foo object."""
1440
1441 def __init__(self, val):
1442 self.val = val
1443
1444 def to_string(self):
1445 return ("a=<" + str(self.val["a"]) +
1446 "> b=<" + str(self.val["b"]) + ">")
1447
1448class barPrinter:
1449 """Print a bar object."""
1450
1451 def __init__(self, val):
1452 self.val = val
1453
1454 def to_string(self):
1455 return ("x=<" + str(self.val["x"]) +
1456 "> y=<" + str(self.val["y"]) + ">")
1457@end smallexample
1458
1459This example doesn't need a lookup function, that is handled by the
1460@code{gdb.printing} module. Instead a function is provided to build up
1461the object that handles the lookup.
1462
1463@smallexample
1464import gdb.printing
1465
1466def build_pretty_printer():
1467 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1468 "my_library")
1469 pp.add_printer('foo', '^foo$', fooPrinter)
1470 pp.add_printer('bar', '^bar$', barPrinter)
1471 return pp
1472@end smallexample
1473
1474And here is the autoload support:
1475
1476@smallexample
1477import gdb.printing
1478import my_library
1479gdb.printing.register_pretty_printer(
1480 gdb.current_objfile(),
1481 my_library.build_pretty_printer())
1482@end smallexample
1483
1484Finally, when this printer is loaded into @value{GDBN}, here is the
1485corresponding output of @samp{info pretty-printer}:
1486
1487@smallexample
1488(gdb) info pretty-printer
1489my_library.so:
1490 my_library
1491 foo
1492 bar
1493@end smallexample
1494
1495@node Type Printing API
1496@subsubsection Type Printing API
1497@cindex type printing API for Python
1498
1499@value{GDBN} provides a way for Python code to customize type display.
1500This is mainly useful for substituting canonical typedef names for
1501types.
1502
1503@cindex type printer
1504A @dfn{type printer} is just a Python object conforming to a certain
1505protocol. A simple base class implementing the protocol is provided;
1506see @ref{gdb.types}. A type printer must supply at least:
1507
1508@defivar type_printer enabled
1509A boolean which is True if the printer is enabled, and False
1510otherwise. This is manipulated by the @code{enable type-printer}
1511and @code{disable type-printer} commands.
1512@end defivar
1513
1514@defivar type_printer name
1515The name of the type printer. This must be a string. This is used by
1516the @code{enable type-printer} and @code{disable type-printer}
1517commands.
1518@end defivar
1519
1520@defmethod type_printer instantiate (self)
1521This is called by @value{GDBN} at the start of type-printing. It is
1522only called if the type printer is enabled. This method must return a
1523new object that supplies a @code{recognize} method, as described below.
1524@end defmethod
1525
1526
1527When displaying a type, say via the @code{ptype} command, @value{GDBN}
1528will compute a list of type recognizers. This is done by iterating
1529first over the per-objfile type printers (@pxref{Objfiles In Python}),
1530followed by the per-progspace type printers (@pxref{Progspaces In
1531Python}), and finally the global type printers.
1532
1533@value{GDBN} will call the @code{instantiate} method of each enabled
1534type printer. If this method returns @code{None}, then the result is
1535ignored; otherwise, it is appended to the list of recognizers.
1536
1537Then, when @value{GDBN} is going to display a type name, it iterates
1538over the list of recognizers. For each one, it calls the recognition
1539function, stopping if the function returns a non-@code{None} value.
1540The recognition function is defined as:
1541
1542@defmethod type_recognizer recognize (self, type)
1543If @var{type} is not recognized, return @code{None}. Otherwise,
1544return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1545The @var{type} argument will be an instance of @code{gdb.Type}
1546(@pxref{Types In Python}).
329baa95
DE
1547@end defmethod
1548
1549@value{GDBN} uses this two-pass approach so that type printers can
1550efficiently cache information without holding on to it too long. For
1551example, it can be convenient to look up type information in a type
1552printer and hold it for a recognizer's lifetime; if a single pass were
1553done then type printers would have to make use of the event system in
1554order to avoid holding information that could become stale as the
1555inferior changed.
1556
1557@node Frame Filter API
1558@subsubsection Filtering Frames.
1559@cindex frame filters api
1560
1561Frame filters are Python objects that manipulate the visibility of a
1562frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1563@value{GDBN}.
1564
1565Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1566commands (@pxref{GDB/MI}), those that return a collection of frames
1567are affected. The commands that work with frame filters are:
1568
1569@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1570@code{-stack-list-frames}
1571(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1572@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1573-stack-list-variables command}), @code{-stack-list-arguments}
1574@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1575@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1576-stack-list-locals command}).
1577
1578A frame filter works by taking an iterator as an argument, applying
1579actions to the contents of that iterator, and returning another
1580iterator (or, possibly, the same iterator it was provided in the case
1581where the filter does not perform any operations). Typically, frame
1582filters utilize tools such as the Python's @code{itertools} module to
1583work with and create new iterators from the source iterator.
1584Regardless of how a filter chooses to apply actions, it must not alter
1585the underlying @value{GDBN} frame or frames, or attempt to alter the
1586call-stack within @value{GDBN}. This preserves data integrity within
1587@value{GDBN}. Frame filters are executed on a priority basis and care
1588should be taken that some frame filters may have been executed before,
1589and that some frame filters will be executed after.
1590
1591An important consideration when designing frame filters, and well
1592worth reflecting upon, is that frame filters should avoid unwinding
1593the call stack if possible. Some stacks can run very deep, into the
1594tens of thousands in some cases. To search every frame when a frame
1595filter executes may be too expensive at that step. The frame filter
1596cannot know how many frames it has to iterate over, and it may have to
1597iterate through them all. This ends up duplicating effort as
1598@value{GDBN} performs this iteration when it prints the frames. If
1599the filter can defer unwinding frames until frame decorators are
1600executed, after the last filter has executed, it should. @xref{Frame
1601Decorator API}, for more information on decorators. Also, there are
1602examples for both frame decorators and filters in later chapters.
1603@xref{Writing a Frame Filter}, for more information.
1604
1605The Python dictionary @code{gdb.frame_filters} contains key/object
1606pairings that comprise a frame filter. Frame filters in this
1607dictionary are called @code{global} frame filters, and they are
1608available when debugging all inferiors. These frame filters must
1609register with the dictionary directly. In addition to the
1610@code{global} dictionary, there are other dictionaries that are loaded
1611with different inferiors via auto-loading (@pxref{Python
1612Auto-loading}). The two other areas where frame filter dictionaries
1613can be found are: @code{gdb.Progspace} which contains a
1614@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1615object which also contains a @code{frame_filters} dictionary
1616attribute.
1617
1618When a command is executed from @value{GDBN} that is compatible with
1619frame filters, @value{GDBN} combines the @code{global},
1620@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1621loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1622several frames, and thus several object files, might be in use.
1623@value{GDBN} then prunes any frame filter whose @code{enabled}
1624attribute is @code{False}. This pruned list is then sorted according
1625to the @code{priority} attribute in each filter.
1626
1627Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1628creates an iterator which wraps each frame in the call stack in a
1629@code{FrameDecorator} object, and calls each filter in order. The
1630output from the previous filter will always be the input to the next
1631filter, and so on.
1632
1633Frame filters have a mandatory interface which each frame filter must
1634implement, defined here:
1635
1636@defun FrameFilter.filter (iterator)
1637@value{GDBN} will call this method on a frame filter when it has
1638reached the order in the priority list for that filter.
1639
1640For example, if there are four frame filters:
1641
1642@smallexample
1643Name Priority
1644
1645Filter1 5
1646Filter2 10
1647Filter3 100
1648Filter4 1
1649@end smallexample
1650
1651The order that the frame filters will be called is:
1652
1653@smallexample
1654Filter3 -> Filter2 -> Filter1 -> Filter4
1655@end smallexample
1656
1657Note that the output from @code{Filter3} is passed to the input of
1658@code{Filter2}, and so on.
1659
1660This @code{filter} method is passed a Python iterator. This iterator
1661contains a sequence of frame decorators that wrap each
1662@code{gdb.Frame}, or a frame decorator that wraps another frame
1663decorator. The first filter that is executed in the sequence of frame
1664filters will receive an iterator entirely comprised of default
1665@code{FrameDecorator} objects. However, after each frame filter is
1666executed, the previous frame filter may have wrapped some or all of
1667the frame decorators with their own frame decorator. As frame
1668decorators must also conform to a mandatory interface, these
1669decorators can be assumed to act in a uniform manner (@pxref{Frame
1670Decorator API}).
1671
1672This method must return an object conforming to the Python iterator
1673protocol. Each item in the iterator must be an object conforming to
1674the frame decorator interface. If a frame filter does not wish to
1675perform any operations on this iterator, it should return that
1676iterator untouched.
1677
1678This method is not optional. If it does not exist, @value{GDBN} will
1679raise and print an error.
1680@end defun
1681
1682@defvar FrameFilter.name
1683The @code{name} attribute must be Python string which contains the
1684name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1685Management}). This attribute may contain any combination of letters
1686or numbers. Care should be taken to ensure that it is unique. This
1687attribute is mandatory.
1688@end defvar
1689
1690@defvar FrameFilter.enabled
1691The @code{enabled} attribute must be Python boolean. This attribute
1692indicates to @value{GDBN} whether the frame filter is enabled, and
1693should be considered when frame filters are executed. If
1694@code{enabled} is @code{True}, then the frame filter will be executed
1695when any of the backtrace commands detailed earlier in this chapter
1696are executed. If @code{enabled} is @code{False}, then the frame
1697filter will not be executed. This attribute is mandatory.
1698@end defvar
1699
1700@defvar FrameFilter.priority
1701The @code{priority} attribute must be Python integer. This attribute
1702controls the order of execution in relation to other frame filters.
1703There are no imposed limits on the range of @code{priority} other than
1704it must be a valid integer. The higher the @code{priority} attribute,
1705the sooner the frame filter will be executed in relation to other
1706frame filters. Although @code{priority} can be negative, it is
1707recommended practice to assume zero is the lowest priority that a
1708frame filter can be assigned. Frame filters that have the same
1709priority are executed in unsorted order in that priority slot. This
1710attribute is mandatory.
1711@end defvar
1712
1713@node Frame Decorator API
1714@subsubsection Decorating Frames.
1715@cindex frame decorator api
1716
1717Frame decorators are sister objects to frame filters (@pxref{Frame
1718Filter API}). Frame decorators are applied by a frame filter and can
1719only be used in conjunction with frame filters.
1720
1721The purpose of a frame decorator is to customize the printed content
1722of each @code{gdb.Frame} in commands where frame filters are executed.
1723This concept is called decorating a frame. Frame decorators decorate
1724a @code{gdb.Frame} with Python code contained within each API call.
1725This separates the actual data contained in a @code{gdb.Frame} from
1726the decorated data produced by a frame decorator. This abstraction is
1727necessary to maintain integrity of the data contained in each
1728@code{gdb.Frame}.
1729
1730Frame decorators have a mandatory interface, defined below.
1731
1732@value{GDBN} already contains a frame decorator called
1733@code{FrameDecorator}. This contains substantial amounts of
1734boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1735recommended that other frame decorators inherit and extend this
1736object, and only to override the methods needed.
1737
1738@defun FrameDecorator.elided (self)
1739
1740The @code{elided} method groups frames together in a hierarchical
1741system. An example would be an interpreter, where multiple low-level
1742frames make up a single call in the interpreted language. In this
1743example, the frame filter would elide the low-level frames and present
1744a single high-level frame, representing the call in the interpreted
1745language, to the user.
1746
1747The @code{elided} function must return an iterable and this iterable
1748must contain the frames that are being elided wrapped in a suitable
1749frame decorator. If no frames are being elided this function may
1750return an empty iterable, or @code{None}. Elided frames are indented
1751from normal frames in a @code{CLI} backtrace, or in the case of
1752@code{GDB/MI}, are placed in the @code{children} field of the eliding
1753frame.
1754
1755It is the frame filter's task to also filter out the elided frames from
1756the source iterator. This will avoid printing the frame twice.
1757@end defun
1758
1759@defun FrameDecorator.function (self)
1760
1761This method returns the name of the function in the frame that is to
1762be printed.
1763
1764This method must return a Python string describing the function, or
1765@code{None}.
1766
1767If this function returns @code{None}, @value{GDBN} will not print any
1768data for this field.
1769@end defun
1770
1771@defun FrameDecorator.address (self)
1772
1773This method returns the address of the frame that is to be printed.
1774
1775This method must return a Python numeric integer type of sufficient
1776size to describe the address of the frame, or @code{None}.
1777
1778If this function returns a @code{None}, @value{GDBN} will not print
1779any data for this field.
1780@end defun
1781
1782@defun FrameDecorator.filename (self)
1783
1784This method returns the filename and path associated with this frame.
1785
1786This method must return a Python string containing the filename and
1787the path to the object file backing the frame, or @code{None}.
1788
1789If this function returns a @code{None}, @value{GDBN} will not print
1790any data for this field.
1791@end defun
1792
1793@defun FrameDecorator.line (self):
1794
1795This method returns the line number associated with the current
1796position within the function addressed by this frame.
1797
1798This method must return a Python integer type, or @code{None}.
1799
1800If this function returns a @code{None}, @value{GDBN} will not print
1801any data for this field.
1802@end defun
1803
1804@defun FrameDecorator.frame_args (self)
1805@anchor{frame_args}
1806
1807This method must return an iterable, or @code{None}. Returning an
1808empty iterable, or @code{None} means frame arguments will not be
1809printed for this frame. This iterable must contain objects that
1810implement two methods, described here.
1811
1812This object must implement a @code{argument} method which takes a
1813single @code{self} parameter and must return a @code{gdb.Symbol}
1814(@pxref{Symbols In Python}), or a Python string. The object must also
1815implement a @code{value} method which takes a single @code{self}
1816parameter and must return a @code{gdb.Value} (@pxref{Values From
1817Inferior}), a Python value, or @code{None}. If the @code{value}
1818method returns @code{None}, and the @code{argument} method returns a
1819@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1820the @code{gdb.Symbol} automatically.
1821
1822A brief example:
1823
1824@smallexample
1825class SymValueWrapper():
1826
1827 def __init__(self, symbol, value):
1828 self.sym = symbol
1829 self.val = value
1830
1831 def value(self):
1832 return self.val
1833
1834 def symbol(self):
1835 return self.sym
1836
1837class SomeFrameDecorator()
1838...
1839...
1840 def frame_args(self):
1841 args = []
1842 try:
1843 block = self.inferior_frame.block()
1844 except:
1845 return None
1846
1847 # Iterate over all symbols in a block. Only add
1848 # symbols that are arguments.
1849 for sym in block:
1850 if not sym.is_argument:
1851 continue
1852 args.append(SymValueWrapper(sym,None))
1853
1854 # Add example synthetic argument.
1855 args.append(SymValueWrapper(``foo'', 42))
1856
1857 return args
1858@end smallexample
1859@end defun
1860
1861@defun FrameDecorator.frame_locals (self)
1862
1863This method must return an iterable or @code{None}. Returning an
1864empty iterable, or @code{None} means frame local arguments will not be
1865printed for this frame.
1866
1867The object interface, the description of the various strategies for
1868reading frame locals, and the example are largely similar to those
1869described in the @code{frame_args} function, (@pxref{frame_args,,The
1870frame filter frame_args function}). Below is a modified example:
1871
1872@smallexample
1873class SomeFrameDecorator()
1874...
1875...
1876 def frame_locals(self):
1877 vars = []
1878 try:
1879 block = self.inferior_frame.block()
1880 except:
1881 return None
1882
1883 # Iterate over all symbols in a block. Add all
1884 # symbols, except arguments.
1885 for sym in block:
1886 if sym.is_argument:
1887 continue
1888 vars.append(SymValueWrapper(sym,None))
1889
1890 # Add an example of a synthetic local variable.
1891 vars.append(SymValueWrapper(``bar'', 99))
1892
1893 return vars
1894@end smallexample
1895@end defun
1896
1897@defun FrameDecorator.inferior_frame (self):
1898
1899This method must return the underlying @code{gdb.Frame} that this
1900frame decorator is decorating. @value{GDBN} requires the underlying
1901frame for internal frame information to determine how to print certain
1902values when printing a frame.
1903@end defun
1904
1905@node Writing a Frame Filter
1906@subsubsection Writing a Frame Filter
1907@cindex writing a frame filter
1908
1909There are three basic elements that a frame filter must implement: it
1910must correctly implement the documented interface (@pxref{Frame Filter
1911API}), it must register itself with @value{GDBN}, and finally, it must
1912decide if it is to work on the data provided by @value{GDBN}. In all
1913cases, whether it works on the iterator or not, each frame filter must
1914return an iterator. A bare-bones frame filter follows the pattern in
1915the following example.
1916
1917@smallexample
1918import gdb
1919
1920class FrameFilter():
1921
1922 def __init__(self):
1923 # Frame filter attribute creation.
1924 #
1925 # 'name' is the name of the filter that GDB will display.
1926 #
1927 # 'priority' is the priority of the filter relative to other
1928 # filters.
1929 #
1930 # 'enabled' is a boolean that indicates whether this filter is
1931 # enabled and should be executed.
1932
1933 self.name = "Foo"
1934 self.priority = 100
1935 self.enabled = True
1936
1937 # Register this frame filter with the global frame_filters
1938 # dictionary.
1939 gdb.frame_filters[self.name] = self
1940
1941 def filter(self, frame_iter):
1942 # Just return the iterator.
1943 return frame_iter
1944@end smallexample
1945
1946The frame filter in the example above implements the three
1947requirements for all frame filters. It implements the API, self
1948registers, and makes a decision on the iterator (in this case, it just
1949returns the iterator untouched).
1950
1951The first step is attribute creation and assignment, and as shown in
1952the comments the filter assigns the following attributes: @code{name},
1953@code{priority} and whether the filter should be enabled with the
1954@code{enabled} attribute.
1955
1956The second step is registering the frame filter with the dictionary or
1957dictionaries that the frame filter has interest in. As shown in the
1958comments, this filter just registers itself with the global dictionary
1959@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1960is a dictionary that is initialized in the @code{gdb} module when
1961@value{GDBN} starts. What dictionary a filter registers with is an
1962important consideration. Generally, if a filter is specific to a set
1963of code, it should be registered either in the @code{objfile} or
1964@code{progspace} dictionaries as they are specific to the program
1965currently loaded in @value{GDBN}. The global dictionary is always
1966present in @value{GDBN} and is never unloaded. Any filters registered
1967with the global dictionary will exist until @value{GDBN} exits. To
1968avoid filters that may conflict, it is generally better to register
1969frame filters against the dictionaries that more closely align with
1970the usage of the filter currently in question. @xref{Python
1971Auto-loading}, for further information on auto-loading Python scripts.
1972
1973@value{GDBN} takes a hands-off approach to frame filter registration,
1974therefore it is the frame filter's responsibility to ensure
1975registration has occurred, and that any exceptions are handled
1976appropriately. In particular, you may wish to handle exceptions
1977relating to Python dictionary key uniqueness. It is mandatory that
1978the dictionary key is the same as frame filter's @code{name}
1979attribute. When a user manages frame filters (@pxref{Frame Filter
1980Management}), the names @value{GDBN} will display are those contained
1981in the @code{name} attribute.
1982
1983The final step of this example is the implementation of the
1984@code{filter} method. As shown in the example comments, we define the
1985@code{filter} method and note that the method must take an iterator,
1986and also must return an iterator. In this bare-bones example, the
1987frame filter is not very useful as it just returns the iterator
1988untouched. However this is a valid operation for frame filters that
1989have the @code{enabled} attribute set, but decide not to operate on
1990any frames.
1991
1992In the next example, the frame filter operates on all frames and
1993utilizes a frame decorator to perform some work on the frames.
1994@xref{Frame Decorator API}, for further information on the frame
1995decorator interface.
1996
1997This example works on inlined frames. It highlights frames which are
1998inlined by tagging them with an ``[inlined]'' tag. By applying a
1999frame decorator to all frames with the Python @code{itertools imap}
2000method, the example defers actions to the frame decorator. Frame
2001decorators are only processed when @value{GDBN} prints the backtrace.
2002
2003This introduces a new decision making topic: whether to perform
2004decision making operations at the filtering step, or at the printing
2005step. In this example's approach, it does not perform any filtering
2006decisions at the filtering step beyond mapping a frame decorator to
2007each frame. This allows the actual decision making to be performed
2008when each frame is printed. This is an important consideration, and
2009well worth reflecting upon when designing a frame filter. An issue
2010that frame filters should avoid is unwinding the stack if possible.
2011Some stacks can run very deep, into the tens of thousands in some
2012cases. To search every frame to determine if it is inlined ahead of
2013time may be too expensive at the filtering step. The frame filter
2014cannot know how many frames it has to iterate over, and it would have
2015to iterate through them all. This ends up duplicating effort as
2016@value{GDBN} performs this iteration when it prints the frames.
2017
2018In this example decision making can be deferred to the printing step.
2019As each frame is printed, the frame decorator can examine each frame
2020in turn when @value{GDBN} iterates. From a performance viewpoint,
2021this is the most appropriate decision to make as it avoids duplicating
2022the effort that the printing step would undertake anyway. Also, if
2023there are many frame filters unwinding the stack during filtering, it
2024can substantially delay the printing of the backtrace which will
2025result in large memory usage, and a poor user experience.
2026
2027@smallexample
2028class InlineFilter():
2029
2030 def __init__(self):
2031 self.name = "InlinedFrameFilter"
2032 self.priority = 100
2033 self.enabled = True
2034 gdb.frame_filters[self.name] = self
2035
2036 def filter(self, frame_iter):
2037 frame_iter = itertools.imap(InlinedFrameDecorator,
2038 frame_iter)
2039 return frame_iter
2040@end smallexample
2041
2042This frame filter is somewhat similar to the earlier example, except
2043that the @code{filter} method applies a frame decorator object called
2044@code{InlinedFrameDecorator} to each element in the iterator. The
2045@code{imap} Python method is light-weight. It does not proactively
2046iterate over the iterator, but rather creates a new iterator which
2047wraps the existing one.
2048
2049Below is the frame decorator for this example.
2050
2051@smallexample
2052class InlinedFrameDecorator(FrameDecorator):
2053
2054 def __init__(self, fobj):
2055 super(InlinedFrameDecorator, self).__init__(fobj)
2056
2057 def function(self):
2058 frame = fobj.inferior_frame()
2059 name = str(frame.name())
2060
2061 if frame.type() == gdb.INLINE_FRAME:
2062 name = name + " [inlined]"
2063
2064 return name
2065@end smallexample
2066
2067This frame decorator only defines and overrides the @code{function}
2068method. It lets the supplied @code{FrameDecorator}, which is shipped
2069with @value{GDBN}, perform the other work associated with printing
2070this frame.
2071
2072The combination of these two objects create this output from a
2073backtrace:
2074
2075@smallexample
2076#0 0x004004e0 in bar () at inline.c:11
2077#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2078#2 0x00400566 in main () at inline.c:31
2079@end smallexample
2080
2081So in the case of this example, a frame decorator is applied to all
2082frames, regardless of whether they may be inlined or not. As
2083@value{GDBN} iterates over the iterator produced by the frame filters,
2084@value{GDBN} executes each frame decorator which then makes a decision
2085on what to print in the @code{function} callback. Using a strategy
2086like this is a way to defer decisions on the frame content to printing
2087time.
2088
2089@subheading Eliding Frames
2090
2091It might be that the above example is not desirable for representing
2092inlined frames, and a hierarchical approach may be preferred. If we
2093want to hierarchically represent frames, the @code{elided} frame
2094decorator interface might be preferable.
2095
2096This example approaches the issue with the @code{elided} method. This
2097example is quite long, but very simplistic. It is out-of-scope for
2098this section to write a complete example that comprehensively covers
2099all approaches of finding and printing inlined frames. However, this
2100example illustrates the approach an author might use.
2101
2102This example comprises of three sections.
2103
2104@smallexample
2105class InlineFrameFilter():
2106
2107 def __init__(self):
2108 self.name = "InlinedFrameFilter"
2109 self.priority = 100
2110 self.enabled = True
2111 gdb.frame_filters[self.name] = self
2112
2113 def filter(self, frame_iter):
2114 return ElidingInlineIterator(frame_iter)
2115@end smallexample
2116
2117This frame filter is very similar to the other examples. The only
2118difference is this frame filter is wrapping the iterator provided to
2119it (@code{frame_iter}) with a custom iterator called
2120@code{ElidingInlineIterator}. This again defers actions to when
2121@value{GDBN} prints the backtrace, as the iterator is not traversed
2122until printing.
2123
2124The iterator for this example is as follows. It is in this section of
2125the example where decisions are made on the content of the backtrace.
2126
2127@smallexample
2128class ElidingInlineIterator:
2129 def __init__(self, ii):
2130 self.input_iterator = ii
2131
2132 def __iter__(self):
2133 return self
2134
2135 def next(self):
2136 frame = next(self.input_iterator)
2137
2138 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2139 return frame
2140
2141 try:
2142 eliding_frame = next(self.input_iterator)
2143 except StopIteration:
2144 return frame
2145 return ElidingFrameDecorator(eliding_frame, [frame])
2146@end smallexample
2147
2148This iterator implements the Python iterator protocol. When the
2149@code{next} function is called (when @value{GDBN} prints each frame),
2150the iterator checks if this frame decorator, @code{frame}, is wrapping
2151an inlined frame. If it is not, it returns the existing frame decorator
2152untouched. If it is wrapping an inlined frame, it assumes that the
2153inlined frame was contained within the next oldest frame,
2154@code{eliding_frame}, which it fetches. It then creates and returns a
2155frame decorator, @code{ElidingFrameDecorator}, which contains both the
2156elided frame, and the eliding frame.
2157
2158@smallexample
2159class ElidingInlineDecorator(FrameDecorator):
2160
2161 def __init__(self, frame, elided_frames):
2162 super(ElidingInlineDecorator, self).__init__(frame)
2163 self.frame = frame
2164 self.elided_frames = elided_frames
2165
2166 def elided(self):
2167 return iter(self.elided_frames)
2168@end smallexample
2169
2170This frame decorator overrides one function and returns the inlined
2171frame in the @code{elided} method. As before it lets
2172@code{FrameDecorator} do the rest of the work involved in printing
2173this frame. This produces the following output.
2174
2175@smallexample
2176#0 0x004004e0 in bar () at inline.c:11
2177#2 0x00400529 in main () at inline.c:25
2178 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2179@end smallexample
2180
2181In that output, @code{max} which has been inlined into @code{main} is
2182printed hierarchically. Another approach would be to combine the
2183@code{function} method, and the @code{elided} method to both print a
2184marker in the inlined frame, and also show the hierarchical
2185relationship.
2186
d11916aa
SS
2187@node Unwinding Frames in Python
2188@subsubsection Unwinding Frames in Python
2189@cindex unwinding frames in Python
2190
2191In @value{GDBN} terminology ``unwinding'' is the process of finding
2192the previous frame (that is, caller's) from the current one. An
2193unwinder has three methods. The first one checks if it can handle
2194given frame (``sniff'' it). For the frames it can sniff an unwinder
2195provides two additional methods: it can return frame's ID, and it can
2196fetch registers from the previous frame. A running @value{GDBN}
2197mantains a list of the unwinders and calls each unwinder's sniffer in
2198turn until it finds the one that recognizes the current frame. There
2199is an API to register an unwinder.
2200
2201The unwinders that come with @value{GDBN} handle standard frames.
2202However, mixed language applications (for example, an application
2203running Java Virtual Machine) sometimes use frame layouts that cannot
2204be handled by the @value{GDBN} unwinders. You can write Python code
2205that can handle such custom frames.
2206
2207You implement a frame unwinder in Python as a class with which has two
2208attributes, @code{name} and @code{enabled}, with obvious meanings, and
2209a single method @code{__call__}, which examines a given frame and
2210returns an object (an instance of @code{gdb.UnwindInfo class)}
2211describing it. If an unwinder does not recognize a frame, it should
2212return @code{None}. The code in @value{GDBN} that enables writing
2213unwinders in Python uses this object to return frame's ID and previous
2214frame registers when @value{GDBN} core asks for them.
2215
2216@subheading Unwinder Input
2217
2218An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2219provides a method to read frame's registers:
2220
2221@defun PendingFrame.read_register (reg)
2222This method returns the contents of the register @var{regn} in the
2223frame as a @code{gdb.Value} object. @var{reg} can be either a
2224register number or a register name; the values are platform-specific.
2225They are usually found in the corresponding
2226@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2227@end defun
2228
2229It also provides a factory method to create a @code{gdb.UnwindInfo}
2230instance to be returned to @value{GDBN}:
2231
2232@defun PendingFrame.create_unwind_info (frame_id)
2233Returns a new @code{gdb.UnwindInfo} instance identified by given
2234@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2235using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2236determine which function will be used, as follows:
2237
2238@table @code
2239@item sp, pc, special
2240@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2241
2242@item sp, pc
2243@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2244
2245This is the most common case.
2246
2247@item sp
2248@code{frame_id_build_wild (@var{frame_id}.sp)}
2249@end table
2250The attribute values should be @code{gdb.Value}
2251
2252@end defun
2253
2254@subheading Unwinder Output: UnwindInfo
2255
2256Use @code{PendingFrame.create_unwind_info} method described above to
2257create a @code{gdb.UnwindInfo} instance. Use the following method to
2258specify caller registers that have been saved in this frame:
2259
2260@defun gdb.UnwindInfo.add_saved_register (reg, value)
2261@var{reg} identifies the register. It can be a number or a name, just
2262as for the @code{PendingFrame.read_register} method above.
2263@var{value} is a register value (a @code{gdb.Value} object).
2264@end defun
2265
2266@subheading Unwinder Skeleton Code
2267
2268@value{GDBN} comes with the module containing the base @code{Unwinder}
2269class. Derive your unwinder class from it and structure the code as
2270follows:
2271
2272@smallexample
2273from gdb.unwinders import Unwinder
2274
2275class FrameId(object):
2276 def __init__(self, sp, pc):
2277 self.sp = sp
2278 self.pc = pc
2279
2280
2281class MyUnwinder(Unwinder):
2282 def __init__(....):
2283 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2284
2285 def __call__(pending_frame):
2286 if not <we recognize frame>:
2287 return None
2288 # Create UnwindInfo. Usually the frame is identified by the stack
2289 # pointer and the program counter.
2290 sp = pending_frame.read_register(<SP number>)
2291 pc = pending_frame.read_register(<PC number>)
2292 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2293
2294 # Find the values of the registers in the caller's frame and
2295 # save them in the result:
2296 unwind_info.add_saved_register(<register>, <value>)
2297 ....
2298
2299 # Return the result:
2300 return unwind_info
2301
2302@end smallexample
2303
2304@subheading Registering a Unwinder
2305
2306An object file, a program space, and the @value{GDBN} proper can have
2307unwinders registered with it.
2308
2309The @code{gdb.unwinders} module provides the function to register a
2310unwinder:
2311
2312@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2313@var{locus} is specifies an object file or a program space to which
2314@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2315@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2316added @var{unwinder} will be called before any other unwinder from the
2317same locus. Two unwinders in the same locus cannot have the same
2318name. An attempt to add a unwinder with already existing name raises
2319an exception unless @var{replace} is @code{True}, in which case the
2320old unwinder is deleted.
2321@end defun
2322
2323@subheading Unwinder Precedence
2324
2325@value{GDBN} first calls the unwinders from all the object files in no
2326particular order, then the unwinders from the current program space,
2327and finally the unwinders from @value{GDBN}.
2328
0c6e92a5
SC
2329@node Xmethods In Python
2330@subsubsection Xmethods In Python
2331@cindex xmethods in Python
2332
2333@dfn{Xmethods} are additional methods or replacements for existing
2334methods of a C@t{++} class. This feature is useful for those cases
2335where a method defined in C@t{++} source code could be inlined or
2336optimized out by the compiler, making it unavailable to @value{GDBN}.
2337For such cases, one can define an xmethod to serve as a replacement
2338for the method defined in the C@t{++} source code. @value{GDBN} will
2339then invoke the xmethod, instead of the C@t{++} method, to
2340evaluate expressions. One can also use xmethods when debugging
2341with core files. Moreover, when debugging live programs, invoking an
2342xmethod need not involve running the inferior (which can potentially
2343perturb its state). Hence, even if the C@t{++} method is available, it
2344is better to use its replacement xmethod if one is defined.
2345
2346The xmethods feature in Python is available via the concepts of an
2347@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2348implement an xmethod, one has to implement a matcher and a
2349corresponding worker for it (more than one worker can be
2350implemented, each catering to a different overloaded instance of the
2351method). Internally, @value{GDBN} invokes the @code{match} method of a
2352matcher to match the class type and method name. On a match, the
2353@code{match} method returns a list of matching @emph{worker} objects.
2354Each worker object typically corresponds to an overloaded instance of
2355the xmethod. They implement a @code{get_arg_types} method which
2356returns a sequence of types corresponding to the arguments the xmethod
2357requires. @value{GDBN} uses this sequence of types to perform
2358overload resolution and picks a winning xmethod worker. A winner
2359is also selected from among the methods @value{GDBN} finds in the
2360C@t{++} source code. Next, the winning xmethod worker and the
2361winning C@t{++} method are compared to select an overall winner. In
2362case of a tie between a xmethod worker and a C@t{++} method, the
2363xmethod worker is selected as the winner. That is, if a winning
2364xmethod worker is found to be equivalent to the winning C@t{++}
2365method, then the xmethod worker is treated as a replacement for
2366the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2367method. If the winning xmethod worker is the overall winner, then
897c3d32 2368the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2369of the worker object.
2370
2371If one wants to implement an xmethod as a replacement for an
2372existing C@t{++} method, then they have to implement an equivalent
2373xmethod which has exactly the same name and takes arguments of
2374exactly the same type as the C@t{++} method. If the user wants to
2375invoke the C@t{++} method even though a replacement xmethod is
2376available for that method, then they can disable the xmethod.
2377
2378@xref{Xmethod API}, for API to implement xmethods in Python.
2379@xref{Writing an Xmethod}, for implementing xmethods in Python.
2380
2381@node Xmethod API
2382@subsubsection Xmethod API
2383@cindex xmethod API
2384
2385The @value{GDBN} Python API provides classes, interfaces and functions
2386to implement, register and manipulate xmethods.
2387@xref{Xmethods In Python}.
2388
2389An xmethod matcher should be an instance of a class derived from
2390@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2391object with similar interface and attributes. An instance of
2392@code{XMethodMatcher} has the following attributes:
2393
2394@defvar name
2395The name of the matcher.
2396@end defvar
2397
2398@defvar enabled
2399A boolean value indicating whether the matcher is enabled or disabled.
2400@end defvar
2401
2402@defvar methods
2403A list of named methods managed by the matcher. Each object in the list
2404is an instance of the class @code{XMethod} defined in the module
2405@code{gdb.xmethod}, or any object with the following attributes:
2406
2407@table @code
2408
2409@item name
2410Name of the xmethod which should be unique for each xmethod
2411managed by the matcher.
2412
2413@item enabled
2414A boolean value indicating whether the xmethod is enabled or
2415disabled.
2416
2417@end table
2418
2419The class @code{XMethod} is a convenience class with same
2420attributes as above along with the following constructor:
2421
dd5d5494 2422@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2423Constructs an enabled xmethod with name @var{name}.
2424@end defun
2425@end defvar
2426
2427@noindent
2428The @code{XMethodMatcher} class has the following methods:
2429
dd5d5494 2430@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2431Constructs an enabled xmethod matcher with name @var{name}. The
2432@code{methods} attribute is initialized to @code{None}.
2433@end defun
2434
dd5d5494 2435@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2436Derived classes should override this method. It should return a
2437xmethod worker object (or a sequence of xmethod worker
2438objects) matching the @var{class_type} and @var{method_name}.
2439@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2440is a string value. If the matcher manages named methods as listed in
2441its @code{methods} attribute, then only those worker objects whose
2442corresponding entries in the @code{methods} list are enabled should be
2443returned.
2444@end defun
2445
2446An xmethod worker should be an instance of a class derived from
2447@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2448or support the following interface:
2449
dd5d5494 2450@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2451This method returns a sequence of @code{gdb.Type} objects corresponding
2452to the arguments that the xmethod takes. It can return an empty
2453sequence or @code{None} if the xmethod does not take any arguments.
2454If the xmethod takes a single argument, then a single
2455@code{gdb.Type} object corresponding to it can be returned.
2456@end defun
2457
2ce1cdbf
DE
2458@defun XMethodWorker.get_result_type (self, *args)
2459This method returns a @code{gdb.Type} object representing the type
2460of the result of invoking this xmethod.
2461The @var{args} argument is the same tuple of arguments that would be
2462passed to the @code{__call__} method of this worker.
2463@end defun
2464
dd5d5494 2465@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2466This is the method which does the @emph{work} of the xmethod. The
2467@var{args} arguments is the tuple of arguments to the xmethod. Each
2468element in this tuple is a gdb.Value object. The first element is
2469always the @code{this} pointer value.
2470@end defun
2471
2472For @value{GDBN} to lookup xmethods, the xmethod matchers
2473should be registered using the following function defined in the module
2474@code{gdb.xmethod}:
2475
dd5d5494 2476@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2477The @code{matcher} is registered with @code{locus}, replacing an
2478existing matcher with the same name as @code{matcher} if
2479@code{replace} is @code{True}. @code{locus} can be a
2480@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2481@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2482@code{None}. If it is @code{None}, then @code{matcher} is registered
2483globally.
2484@end defun
2485
2486@node Writing an Xmethod
2487@subsubsection Writing an Xmethod
2488@cindex writing xmethods in Python
2489
2490Implementing xmethods in Python will require implementing xmethod
2491matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2492the following C@t{++} class:
2493
2494@smallexample
2495class MyClass
2496@{
2497public:
2498 MyClass (int a) : a_(a) @{ @}
2499
2500 int geta (void) @{ return a_; @}
2501 int operator+ (int b);
2502
2503private:
2504 int a_;
2505@};
2506
2507int
2508MyClass::operator+ (int b)
2509@{
2510 return a_ + b;
2511@}
2512@end smallexample
2513
2514@noindent
2515Let us define two xmethods for the class @code{MyClass}, one
2516replacing the method @code{geta}, and another adding an overloaded
2517flavor of @code{operator+} which takes a @code{MyClass} argument (the
2518C@t{++} code above already has an overloaded @code{operator+}
2519which takes an @code{int} argument). The xmethod matcher can be
2520defined as follows:
2521
2522@smallexample
2523class MyClass_geta(gdb.xmethod.XMethod):
2524 def __init__(self):
2525 gdb.xmethod.XMethod.__init__(self, 'geta')
2526
2527 def get_worker(self, method_name):
2528 if method_name == 'geta':
2529 return MyClassWorker_geta()
2530
2531
2532class MyClass_sum(gdb.xmethod.XMethod):
2533 def __init__(self):
2534 gdb.xmethod.XMethod.__init__(self, 'sum')
2535
2536 def get_worker(self, method_name):
2537 if method_name == 'operator+':
2538 return MyClassWorker_plus()
2539
2540
2541class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2542 def __init__(self):
2543 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2544 # List of methods 'managed' by this matcher
2545 self.methods = [MyClass_geta(), MyClass_sum()]
2546
2547 def match(self, class_type, method_name):
2548 if class_type.tag != 'MyClass':
2549 return None
2550 workers = []
2551 for method in self.methods:
2552 if method.enabled:
2553 worker = method.get_worker(method_name)
2554 if worker:
2555 workers.append(worker)
2556
2557 return workers
2558@end smallexample
2559
2560@noindent
2561Notice that the @code{match} method of @code{MyClassMatcher} returns
2562a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2563method, and a worker object of type @code{MyClassWorker_plus} for the
2564@code{operator+} method. This is done indirectly via helper classes
2565derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2566@code{methods} attribute in a matcher as it is optional. However, if a
2567matcher manages more than one xmethod, it is a good practice to list the
2568xmethods in the @code{methods} attribute of the matcher. This will then
2569facilitate enabling and disabling individual xmethods via the
2570@code{enable/disable} commands. Notice also that a worker object is
2571returned only if the corresponding entry in the @code{methods} attribute
2572of the matcher is enabled.
2573
2574The implementation of the worker classes returned by the matcher setup
2575above is as follows:
2576
2577@smallexample
2578class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2579 def get_arg_types(self):
2580 return None
2ce1cdbf
DE
2581
2582 def get_result_type(self, obj):
2583 return gdb.lookup_type('int')
0c6e92a5
SC
2584
2585 def __call__(self, obj):
2586 return obj['a_']
2587
2588
2589class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2590 def get_arg_types(self):
2591 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2592
2593 def get_result_type(self, obj):
2594 return gdb.lookup_type('int')
0c6e92a5
SC
2595
2596 def __call__(self, obj, other):
2597 return obj['a_'] + other['a_']
2598@end smallexample
2599
2600For @value{GDBN} to actually lookup a xmethod, it has to be
2601registered with it. The matcher defined above is registered with
2602@value{GDBN} globally as follows:
2603
2604@smallexample
2605gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2606@end smallexample
2607
2608If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2609code as follows:
2610
2611@smallexample
2612MyClass obj(5);
2613@end smallexample
2614
2615@noindent
2616then, after loading the Python script defining the xmethod matchers
2617and workers into @code{GDBN}, invoking the method @code{geta} or using
2618the operator @code{+} on @code{obj} will invoke the xmethods
2619defined above:
2620
2621@smallexample
2622(gdb) p obj.geta()
2623$1 = 5
2624
2625(gdb) p obj + obj
2626$2 = 10
2627@end smallexample
2628
2629Consider another example with a C++ template class:
2630
2631@smallexample
2632template <class T>
2633class MyTemplate
2634@{
2635public:
2636 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2637 ~MyTemplate () @{ delete [] data_; @}
2638
2639 int footprint (void)
2640 @{
2641 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2642 @}
2643
2644private:
2645 int dsize_;
2646 T *data_;
2647@};
2648@end smallexample
2649
2650Let us implement an xmethod for the above class which serves as a
2651replacement for the @code{footprint} method. The full code listing
2652of the xmethod workers and xmethod matchers is as follows:
2653
2654@smallexample
2655class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2656 def __init__(self, class_type):
2657 self.class_type = class_type
2ce1cdbf 2658
0c6e92a5
SC
2659 def get_arg_types(self):
2660 return None
2ce1cdbf
DE
2661
2662 def get_result_type(self):
2663 return gdb.lookup_type('int')
2664
0c6e92a5
SC
2665 def __call__(self, obj):
2666 return (self.class_type.sizeof +
2667 obj['dsize_'] *
2668 self.class_type.template_argument(0).sizeof)
2669
2670
2671class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2672 def __init__(self):
2673 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2674
2675 def match(self, class_type, method_name):
2676 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2677 class_type.tag) and
2678 method_name == 'footprint'):
2679 return MyTemplateWorker_footprint(class_type)
2680@end smallexample
2681
2682Notice that, in this example, we have not used the @code{methods}
2683attribute of the matcher as the matcher manages only one xmethod. The
2684user can enable/disable this xmethod by enabling/disabling the matcher
2685itself.
2686
329baa95
DE
2687@node Inferiors In Python
2688@subsubsection Inferiors In Python
2689@cindex inferiors in Python
2690
2691@findex gdb.Inferior
2692Programs which are being run under @value{GDBN} are called inferiors
2693(@pxref{Inferiors and Programs}). Python scripts can access
2694information about and manipulate inferiors controlled by @value{GDBN}
2695via objects of the @code{gdb.Inferior} class.
2696
2697The following inferior-related functions are available in the @code{gdb}
2698module:
2699
2700@defun gdb.inferiors ()
2701Return a tuple containing all inferior objects.
2702@end defun
2703
2704@defun gdb.selected_inferior ()
2705Return an object representing the current inferior.
2706@end defun
2707
2708A @code{gdb.Inferior} object has the following attributes:
2709
2710@defvar Inferior.num
2711ID of inferior, as assigned by GDB.
2712@end defvar
2713
2714@defvar Inferior.pid
2715Process ID of the inferior, as assigned by the underlying operating
2716system.
2717@end defvar
2718
2719@defvar Inferior.was_attached
2720Boolean signaling whether the inferior was created using `attach', or
2721started by @value{GDBN} itself.
2722@end defvar
2723
2724A @code{gdb.Inferior} object has the following methods:
2725
2726@defun Inferior.is_valid ()
2727Returns @code{True} if the @code{gdb.Inferior} object is valid,
2728@code{False} if not. A @code{gdb.Inferior} object will become invalid
2729if the inferior no longer exists within @value{GDBN}. All other
2730@code{gdb.Inferior} methods will throw an exception if it is invalid
2731at the time the method is called.
2732@end defun
2733
2734@defun Inferior.threads ()
2735This method returns a tuple holding all the threads which are valid
2736when it is called. If there are no valid threads, the method will
2737return an empty tuple.
2738@end defun
2739
2740@findex Inferior.read_memory
2741@defun Inferior.read_memory (address, length)
2742Read @var{length} bytes of memory from the inferior, starting at
2743@var{address}. Returns a buffer object, which behaves much like an array
2744or a string. It can be modified and given to the
2745@code{Inferior.write_memory} function. In @code{Python} 3, the return
2746value is a @code{memoryview} object.
2747@end defun
2748
2749@findex Inferior.write_memory
2750@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2751Write the contents of @var{buffer} to the inferior, starting at
2752@var{address}. The @var{buffer} parameter must be a Python object
2753which supports the buffer protocol, i.e., a string, an array or the
2754object returned from @code{Inferior.read_memory}. If given, @var{length}
2755determines the number of bytes from @var{buffer} to be written.
2756@end defun
2757
2758@findex gdb.search_memory
2759@defun Inferior.search_memory (address, length, pattern)
2760Search a region of the inferior memory starting at @var{address} with
2761the given @var{length} using the search pattern supplied in
2762@var{pattern}. The @var{pattern} parameter must be a Python object
2763which supports the buffer protocol, i.e., a string, an array or the
2764object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2765containing the address where the pattern was found, or @code{None} if
2766the pattern could not be found.
2767@end defun
2768
2769@node Events In Python
2770@subsubsection Events In Python
2771@cindex inferior events in Python
2772
2773@value{GDBN} provides a general event facility so that Python code can be
2774notified of various state changes, particularly changes that occur in
2775the inferior.
2776
2777An @dfn{event} is just an object that describes some state change. The
2778type of the object and its attributes will vary depending on the details
2779of the change. All the existing events are described below.
2780
2781In order to be notified of an event, you must register an event handler
2782with an @dfn{event registry}. An event registry is an object in the
2783@code{gdb.events} module which dispatches particular events. A registry
2784provides methods to register and unregister event handlers:
2785
2786@defun EventRegistry.connect (object)
2787Add the given callable @var{object} to the registry. This object will be
2788called when an event corresponding to this registry occurs.
2789@end defun
2790
2791@defun EventRegistry.disconnect (object)
2792Remove the given @var{object} from the registry. Once removed, the object
2793will no longer receive notifications of events.
2794@end defun
2795
2796Here is an example:
2797
2798@smallexample
2799def exit_handler (event):
2800 print "event type: exit"
2801 print "exit code: %d" % (event.exit_code)
2802
2803gdb.events.exited.connect (exit_handler)
2804@end smallexample
2805
2806In the above example we connect our handler @code{exit_handler} to the
2807registry @code{events.exited}. Once connected, @code{exit_handler} gets
2808called when the inferior exits. The argument @dfn{event} in this example is
2809of type @code{gdb.ExitedEvent}. As you can see in the example the
2810@code{ExitedEvent} object has an attribute which indicates the exit code of
2811the inferior.
2812
2813The following is a listing of the event registries that are available and
2814details of the events they emit:
2815
2816@table @code
2817
2818@item events.cont
2819Emits @code{gdb.ThreadEvent}.
2820
2821Some events can be thread specific when @value{GDBN} is running in non-stop
2822mode. When represented in Python, these events all extend
2823@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2824events which are emitted by this or other modules might extend this event.
2825Examples of these events are @code{gdb.BreakpointEvent} and
2826@code{gdb.ContinueEvent}.
2827
2828@defvar ThreadEvent.inferior_thread
2829In non-stop mode this attribute will be set to the specific thread which was
2830involved in the emitted event. Otherwise, it will be set to @code{None}.
2831@end defvar
2832
2833Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2834
2835This event indicates that the inferior has been continued after a stop. For
2836inherited attribute refer to @code{gdb.ThreadEvent} above.
2837
2838@item events.exited
2839Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2840@code{events.ExitedEvent} has two attributes:
2841@defvar ExitedEvent.exit_code
2842An integer representing the exit code, if available, which the inferior
2843has returned. (The exit code could be unavailable if, for example,
2844@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2845the attribute does not exist.
2846@end defvar
2847@defvar ExitedEvent inferior
2848A reference to the inferior which triggered the @code{exited} event.
2849@end defvar
2850
2851@item events.stop
2852Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2853
2854Indicates that the inferior has stopped. All events emitted by this registry
2855extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2856will indicate the stopped thread when @value{GDBN} is running in non-stop
2857mode. Refer to @code{gdb.ThreadEvent} above for more details.
2858
2859Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2860
2861This event indicates that the inferior or one of its threads has received as
2862signal. @code{gdb.SignalEvent} has the following attributes:
2863
2864@defvar SignalEvent.stop_signal
2865A string representing the signal received by the inferior. A list of possible
2866signal values can be obtained by running the command @code{info signals} in
2867the @value{GDBN} command prompt.
2868@end defvar
2869
2870Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2871
2872@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2873been hit, and has the following attributes:
2874
2875@defvar BreakpointEvent.breakpoints
2876A sequence containing references to all the breakpoints (type
2877@code{gdb.Breakpoint}) that were hit.
2878@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2879@end defvar
2880@defvar BreakpointEvent.breakpoint
2881A reference to the first breakpoint that was hit.
2882This function is maintained for backward compatibility and is now deprecated
2883in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2884@end defvar
2885
2886@item events.new_objfile
2887Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2888been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2889
2890@defvar NewObjFileEvent.new_objfile
2891A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2892@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2893@end defvar
2894
4ffbba72
DE
2895@item events.clear_objfiles
2896Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2897files for a program space has been reset.
2898@code{gdb.ClearObjFilesEvent} has one attribute:
2899
2900@defvar ClearObjFilesEvent.progspace
2901A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2902been cleared. @xref{Progspaces In Python}.
2903@end defvar
2904
162078c8
NB
2905@item events.inferior_call_pre
2906Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2907the inferior is about to be called.
2908
2909@defvar InferiorCallPreEvent.ptid
2910The thread in which the call will be run.
2911@end defvar
2912
2913@defvar InferiorCallPreEvent.address
2914The location of the function to be called.
2915@end defvar
2916
2917@item events.inferior_call_post
2918Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2919the inferior has returned.
2920
2921@defvar InferiorCallPostEvent.ptid
2922The thread in which the call was run.
2923@end defvar
2924
2925@defvar InferiorCallPostEvent.address
2926The location of the function that was called.
2927@end defvar
2928
2929@item events.memory_changed
2930Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2931inferior has been modified by the @value{GDBN} user, for instance via a
2932command like @w{@code{set *addr = value}}. The event has the following
2933attributes:
2934
2935@defvar MemoryChangedEvent.address
2936The start address of the changed region.
2937@end defvar
2938
2939@defvar MemoryChangedEvent.length
2940Length in bytes of the changed region.
2941@end defvar
2942
2943@item events.register_changed
2944Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2945inferior has been modified by the @value{GDBN} user.
2946
2947@defvar RegisterChangedEvent.frame
2948A gdb.Frame object representing the frame in which the register was modified.
2949@end defvar
2950@defvar RegisterChangedEvent.regnum
2951Denotes which register was modified.
2952@end defvar
2953
329baa95
DE
2954@end table
2955
2956@node Threads In Python
2957@subsubsection Threads In Python
2958@cindex threads in python
2959
2960@findex gdb.InferiorThread
2961Python scripts can access information about, and manipulate inferior threads
2962controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2963
2964The following thread-related functions are available in the @code{gdb}
2965module:
2966
2967@findex gdb.selected_thread
2968@defun gdb.selected_thread ()
2969This function returns the thread object for the selected thread. If there
2970is no selected thread, this will return @code{None}.
2971@end defun
2972
2973A @code{gdb.InferiorThread} object has the following attributes:
2974
2975@defvar InferiorThread.name
2976The name of the thread. If the user specified a name using
2977@code{thread name}, then this returns that name. Otherwise, if an
2978OS-supplied name is available, then it is returned. Otherwise, this
2979returns @code{None}.
2980
2981This attribute can be assigned to. The new value must be a string
2982object, which sets the new name, or @code{None}, which removes any
2983user-specified thread name.
2984@end defvar
2985
2986@defvar InferiorThread.num
2987ID of the thread, as assigned by GDB.
2988@end defvar
2989
2990@defvar InferiorThread.ptid
2991ID of the thread, as assigned by the operating system. This attribute is a
2992tuple containing three integers. The first is the Process ID (PID); the second
2993is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
2994Either the LWPID or TID may be 0, which indicates that the operating system
2995does not use that identifier.
2996@end defvar
2997
2998A @code{gdb.InferiorThread} object has the following methods:
2999
3000@defun InferiorThread.is_valid ()
3001Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3002@code{False} if not. A @code{gdb.InferiorThread} object will become
3003invalid if the thread exits, or the inferior that the thread belongs
3004is deleted. All other @code{gdb.InferiorThread} methods will throw an
3005exception if it is invalid at the time the method is called.
3006@end defun
3007
3008@defun InferiorThread.switch ()
3009This changes @value{GDBN}'s currently selected thread to the one represented
3010by this object.
3011@end defun
3012
3013@defun InferiorThread.is_stopped ()
3014Return a Boolean indicating whether the thread is stopped.
3015@end defun
3016
3017@defun InferiorThread.is_running ()
3018Return a Boolean indicating whether the thread is running.
3019@end defun
3020
3021@defun InferiorThread.is_exited ()
3022Return a Boolean indicating whether the thread is exited.
3023@end defun
3024
3025@node Commands In Python
3026@subsubsection Commands In Python
3027
3028@cindex commands in python
3029@cindex python commands
3030You can implement new @value{GDBN} CLI commands in Python. A CLI
3031command is implemented using an instance of the @code{gdb.Command}
3032class, most commonly using a subclass.
3033
3034@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3035The object initializer for @code{Command} registers the new command
3036with @value{GDBN}. This initializer is normally invoked from the
3037subclass' own @code{__init__} method.
3038
3039@var{name} is the name of the command. If @var{name} consists of
3040multiple words, then the initial words are looked for as prefix
3041commands. In this case, if one of the prefix commands does not exist,
3042an exception is raised.
3043
3044There is no support for multi-line commands.
3045
3046@var{command_class} should be one of the @samp{COMMAND_} constants
3047defined below. This argument tells @value{GDBN} how to categorize the
3048new command in the help system.
3049
3050@var{completer_class} is an optional argument. If given, it should be
3051one of the @samp{COMPLETE_} constants defined below. This argument
3052tells @value{GDBN} how to perform completion for this command. If not
3053given, @value{GDBN} will attempt to complete using the object's
3054@code{complete} method (see below); if no such method is found, an
3055error will occur when completion is attempted.
3056
3057@var{prefix} is an optional argument. If @code{True}, then the new
3058command is a prefix command; sub-commands of this command may be
3059registered.
3060
3061The help text for the new command is taken from the Python
3062documentation string for the command's class, if there is one. If no
3063documentation string is provided, the default value ``This command is
3064not documented.'' is used.
3065@end defun
3066
3067@cindex don't repeat Python command
3068@defun Command.dont_repeat ()
3069By default, a @value{GDBN} command is repeated when the user enters a
3070blank line at the command prompt. A command can suppress this
3071behavior by invoking the @code{dont_repeat} method. This is similar
3072to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3073@end defun
3074
3075@defun Command.invoke (argument, from_tty)
3076This method is called by @value{GDBN} when this command is invoked.
3077
3078@var{argument} is a string. It is the argument to the command, after
3079leading and trailing whitespace has been stripped.
3080
3081@var{from_tty} is a boolean argument. When true, this means that the
3082command was entered by the user at the terminal; when false it means
3083that the command came from elsewhere.
3084
3085If this method throws an exception, it is turned into a @value{GDBN}
3086@code{error} call. Otherwise, the return value is ignored.
3087
3088@findex gdb.string_to_argv
3089To break @var{argument} up into an argv-like string use
3090@code{gdb.string_to_argv}. This function behaves identically to
3091@value{GDBN}'s internal argument lexer @code{buildargv}.
3092It is recommended to use this for consistency.
3093Arguments are separated by spaces and may be quoted.
3094Example:
3095
3096@smallexample
3097print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3098['1', '2 "3', '4 "5', "6 '7"]
3099@end smallexample
3100
3101@end defun
3102
3103@cindex completion of Python commands
3104@defun Command.complete (text, word)
3105This method is called by @value{GDBN} when the user attempts
3106completion on this command. All forms of completion are handled by
3107this method, that is, the @key{TAB} and @key{M-?} key bindings
3108(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3109complete}).
3110
697aa1b7
EZ
3111The arguments @var{text} and @var{word} are both strings; @var{text}
3112holds the complete command line up to the cursor's location, while
329baa95
DE
3113@var{word} holds the last word of the command line; this is computed
3114using a word-breaking heuristic.
3115
3116The @code{complete} method can return several values:
3117@itemize @bullet
3118@item
3119If the return value is a sequence, the contents of the sequence are
3120used as the completions. It is up to @code{complete} to ensure that the
3121contents actually do complete the word. A zero-length sequence is
3122allowed, it means that there were no completions available. Only
3123string elements of the sequence are used; other elements in the
3124sequence are ignored.
3125
3126@item
3127If the return value is one of the @samp{COMPLETE_} constants defined
3128below, then the corresponding @value{GDBN}-internal completion
3129function is invoked, and its result is used.
3130
3131@item
3132All other results are treated as though there were no available
3133completions.
3134@end itemize
3135@end defun
3136
3137When a new command is registered, it must be declared as a member of
3138some general class of commands. This is used to classify top-level
3139commands in the on-line help system; note that prefix commands are not
3140listed under their own category but rather that of their top-level
3141command. The available classifications are represented by constants
3142defined in the @code{gdb} module:
3143
3144@table @code
3145@findex COMMAND_NONE
3146@findex gdb.COMMAND_NONE
3147@item gdb.COMMAND_NONE
3148The command does not belong to any particular class. A command in
3149this category will not be displayed in any of the help categories.
3150
3151@findex COMMAND_RUNNING
3152@findex gdb.COMMAND_RUNNING
3153@item gdb.COMMAND_RUNNING
3154The command is related to running the inferior. For example,
3155@code{start}, @code{step}, and @code{continue} are in this category.
3156Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3157commands in this category.
3158
3159@findex COMMAND_DATA
3160@findex gdb.COMMAND_DATA
3161@item gdb.COMMAND_DATA
3162The command is related to data or variables. For example,
3163@code{call}, @code{find}, and @code{print} are in this category. Type
3164@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3165in this category.
3166
3167@findex COMMAND_STACK
3168@findex gdb.COMMAND_STACK
3169@item gdb.COMMAND_STACK
3170The command has to do with manipulation of the stack. For example,
3171@code{backtrace}, @code{frame}, and @code{return} are in this
3172category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3173list of commands in this category.
3174
3175@findex COMMAND_FILES
3176@findex gdb.COMMAND_FILES
3177@item gdb.COMMAND_FILES
3178This class is used for file-related commands. For example,
3179@code{file}, @code{list} and @code{section} are in this category.
3180Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3181commands in this category.
3182
3183@findex COMMAND_SUPPORT
3184@findex gdb.COMMAND_SUPPORT
3185@item gdb.COMMAND_SUPPORT
3186This should be used for ``support facilities'', generally meaning
3187things that are useful to the user when interacting with @value{GDBN},
3188but not related to the state of the inferior. For example,
3189@code{help}, @code{make}, and @code{shell} are in this category. Type
3190@kbd{help support} at the @value{GDBN} prompt to see a list of
3191commands in this category.
3192
3193@findex COMMAND_STATUS
3194@findex gdb.COMMAND_STATUS
3195@item gdb.COMMAND_STATUS
3196The command is an @samp{info}-related command, that is, related to the
3197state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3198and @code{show} are in this category. Type @kbd{help status} at the
3199@value{GDBN} prompt to see a list of commands in this category.
3200
3201@findex COMMAND_BREAKPOINTS
3202@findex gdb.COMMAND_BREAKPOINTS
3203@item gdb.COMMAND_BREAKPOINTS
3204The command has to do with breakpoints. For example, @code{break},
3205@code{clear}, and @code{delete} are in this category. Type @kbd{help
3206breakpoints} at the @value{GDBN} prompt to see a list of commands in
3207this category.
3208
3209@findex COMMAND_TRACEPOINTS
3210@findex gdb.COMMAND_TRACEPOINTS
3211@item gdb.COMMAND_TRACEPOINTS
3212The command has to do with tracepoints. For example, @code{trace},
3213@code{actions}, and @code{tfind} are in this category. Type
3214@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3215commands in this category.
3216
3217@findex COMMAND_USER
3218@findex gdb.COMMAND_USER
3219@item gdb.COMMAND_USER
3220The command is a general purpose command for the user, and typically
3221does not fit in one of the other categories.
3222Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3223a list of commands in this category, as well as the list of gdb macros
3224(@pxref{Sequences}).
3225
3226@findex COMMAND_OBSCURE
3227@findex gdb.COMMAND_OBSCURE
3228@item gdb.COMMAND_OBSCURE
3229The command is only used in unusual circumstances, or is not of
3230general interest to users. For example, @code{checkpoint},
3231@code{fork}, and @code{stop} are in this category. Type @kbd{help
3232obscure} at the @value{GDBN} prompt to see a list of commands in this
3233category.
3234
3235@findex COMMAND_MAINTENANCE
3236@findex gdb.COMMAND_MAINTENANCE
3237@item gdb.COMMAND_MAINTENANCE
3238The command is only useful to @value{GDBN} maintainers. The
3239@code{maintenance} and @code{flushregs} commands are in this category.
3240Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3241commands in this category.
3242@end table
3243
3244A new command can use a predefined completion function, either by
3245specifying it via an argument at initialization, or by returning it
3246from the @code{complete} method. These predefined completion
3247constants are all defined in the @code{gdb} module:
3248
b3ce5e5f
DE
3249@vtable @code
3250@vindex COMPLETE_NONE
329baa95
DE
3251@item gdb.COMPLETE_NONE
3252This constant means that no completion should be done.
3253
b3ce5e5f 3254@vindex COMPLETE_FILENAME
329baa95
DE
3255@item gdb.COMPLETE_FILENAME
3256This constant means that filename completion should be performed.
3257
b3ce5e5f 3258@vindex COMPLETE_LOCATION
329baa95
DE
3259@item gdb.COMPLETE_LOCATION
3260This constant means that location completion should be done.
3261@xref{Specify Location}.
3262
b3ce5e5f 3263@vindex COMPLETE_COMMAND
329baa95
DE
3264@item gdb.COMPLETE_COMMAND
3265This constant means that completion should examine @value{GDBN}
3266command names.
3267
b3ce5e5f 3268@vindex COMPLETE_SYMBOL
329baa95
DE
3269@item gdb.COMPLETE_SYMBOL
3270This constant means that completion should be done using symbol names
3271as the source.
3272
b3ce5e5f 3273@vindex COMPLETE_EXPRESSION
329baa95
DE
3274@item gdb.COMPLETE_EXPRESSION
3275This constant means that completion should be done on expressions.
3276Often this means completing on symbol names, but some language
3277parsers also have support for completing on field names.
b3ce5e5f 3278@end vtable
329baa95
DE
3279
3280The following code snippet shows how a trivial CLI command can be
3281implemented in Python:
3282
3283@smallexample
3284class HelloWorld (gdb.Command):
3285 """Greet the whole world."""
3286
3287 def __init__ (self):
3288 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3289
3290 def invoke (self, arg, from_tty):
3291 print "Hello, World!"
3292
3293HelloWorld ()
3294@end smallexample
3295
3296The last line instantiates the class, and is necessary to trigger the
3297registration of the command with @value{GDBN}. Depending on how the
3298Python code is read into @value{GDBN}, you may need to import the
3299@code{gdb} module explicitly.
3300
3301@node Parameters In Python
3302@subsubsection Parameters In Python
3303
3304@cindex parameters in python
3305@cindex python parameters
3306@tindex gdb.Parameter
3307@tindex Parameter
3308You can implement new @value{GDBN} parameters using Python. A new
3309parameter is implemented as an instance of the @code{gdb.Parameter}
3310class.
3311
3312Parameters are exposed to the user via the @code{set} and
3313@code{show} commands. @xref{Help}.
3314
3315There are many parameters that already exist and can be set in
3316@value{GDBN}. Two examples are: @code{set follow fork} and
3317@code{set charset}. Setting these parameters influences certain
3318behavior in @value{GDBN}. Similarly, you can define parameters that
3319can be used to influence behavior in custom Python scripts and commands.
3320
3321@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3322The object initializer for @code{Parameter} registers the new
3323parameter with @value{GDBN}. This initializer is normally invoked
3324from the subclass' own @code{__init__} method.
3325
3326@var{name} is the name of the new parameter. If @var{name} consists
3327of multiple words, then the initial words are looked for as prefix
3328parameters. An example of this can be illustrated with the
3329@code{set print} set of parameters. If @var{name} is
3330@code{print foo}, then @code{print} will be searched as the prefix
3331parameter. In this case the parameter can subsequently be accessed in
3332@value{GDBN} as @code{set print foo}.
3333
3334If @var{name} consists of multiple words, and no prefix parameter group
3335can be found, an exception is raised.
3336
3337@var{command-class} should be one of the @samp{COMMAND_} constants
3338(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3339categorize the new parameter in the help system.
3340
3341@var{parameter-class} should be one of the @samp{PARAM_} constants
3342defined below. This argument tells @value{GDBN} the type of the new
3343parameter; this information is used for input validation and
3344completion.
3345
3346If @var{parameter-class} is @code{PARAM_ENUM}, then
3347@var{enum-sequence} must be a sequence of strings. These strings
3348represent the possible values for the parameter.
3349
3350If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3351of a fourth argument will cause an exception to be thrown.
3352
3353The help text for the new parameter is taken from the Python
3354documentation string for the parameter's class, if there is one. If
3355there is no documentation string, a default value is used.
3356@end defun
3357
3358@defvar Parameter.set_doc
3359If this attribute exists, and is a string, then its value is used as
3360the help text for this parameter's @code{set} command. The value is
3361examined when @code{Parameter.__init__} is invoked; subsequent changes
3362have no effect.
3363@end defvar
3364
3365@defvar Parameter.show_doc
3366If this attribute exists, and is a string, then its value is used as
3367the help text for this parameter's @code{show} command. The value is
3368examined when @code{Parameter.__init__} is invoked; subsequent changes
3369have no effect.
3370@end defvar
3371
3372@defvar Parameter.value
3373The @code{value} attribute holds the underlying value of the
3374parameter. It can be read and assigned to just as any other
3375attribute. @value{GDBN} does validation when assignments are made.
3376@end defvar
3377
3378There are two methods that should be implemented in any
3379@code{Parameter} class. These are:
3380
3381@defun Parameter.get_set_string (self)
3382@value{GDBN} will call this method when a @var{parameter}'s value has
3383been changed via the @code{set} API (for example, @kbd{set foo off}).
3384The @code{value} attribute has already been populated with the new
3385value and may be used in output. This method must return a string.
3386@end defun
3387
3388@defun Parameter.get_show_string (self, svalue)
3389@value{GDBN} will call this method when a @var{parameter}'s
3390@code{show} API has been invoked (for example, @kbd{show foo}). The
3391argument @code{svalue} receives the string representation of the
3392current value. This method must return a string.
3393@end defun
3394
3395When a new parameter is defined, its type must be specified. The
3396available types are represented by constants defined in the @code{gdb}
3397module:
3398
3399@table @code
3400@findex PARAM_BOOLEAN
3401@findex gdb.PARAM_BOOLEAN
3402@item gdb.PARAM_BOOLEAN
3403The value is a plain boolean. The Python boolean values, @code{True}
3404and @code{False} are the only valid values.
3405
3406@findex PARAM_AUTO_BOOLEAN
3407@findex gdb.PARAM_AUTO_BOOLEAN
3408@item gdb.PARAM_AUTO_BOOLEAN
3409The value has three possible states: true, false, and @samp{auto}. In
3410Python, true and false are represented using boolean constants, and
3411@samp{auto} is represented using @code{None}.
3412
3413@findex PARAM_UINTEGER
3414@findex gdb.PARAM_UINTEGER
3415@item gdb.PARAM_UINTEGER
3416The value is an unsigned integer. The value of 0 should be
3417interpreted to mean ``unlimited''.
3418
3419@findex PARAM_INTEGER
3420@findex gdb.PARAM_INTEGER
3421@item gdb.PARAM_INTEGER
3422The value is a signed integer. The value of 0 should be interpreted
3423to mean ``unlimited''.
3424
3425@findex PARAM_STRING
3426@findex gdb.PARAM_STRING
3427@item gdb.PARAM_STRING
3428The value is a string. When the user modifies the string, any escape
3429sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3430translated into corresponding characters and encoded into the current
3431host charset.
3432
3433@findex PARAM_STRING_NOESCAPE
3434@findex gdb.PARAM_STRING_NOESCAPE
3435@item gdb.PARAM_STRING_NOESCAPE
3436The value is a string. When the user modifies the string, escapes are
3437passed through untranslated.
3438
3439@findex PARAM_OPTIONAL_FILENAME
3440@findex gdb.PARAM_OPTIONAL_FILENAME
3441@item gdb.PARAM_OPTIONAL_FILENAME
3442The value is a either a filename (a string), or @code{None}.
3443
3444@findex PARAM_FILENAME
3445@findex gdb.PARAM_FILENAME
3446@item gdb.PARAM_FILENAME
3447The value is a filename. This is just like
3448@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3449
3450@findex PARAM_ZINTEGER
3451@findex gdb.PARAM_ZINTEGER
3452@item gdb.PARAM_ZINTEGER
3453The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3454is interpreted as itself.
3455
3456@findex PARAM_ENUM
3457@findex gdb.PARAM_ENUM
3458@item gdb.PARAM_ENUM
3459The value is a string, which must be one of a collection string
3460constants provided when the parameter is created.
3461@end table
3462
3463@node Functions In Python
3464@subsubsection Writing new convenience functions
3465
3466@cindex writing convenience functions
3467@cindex convenience functions in python
3468@cindex python convenience functions
3469@tindex gdb.Function
3470@tindex Function
3471You can implement new convenience functions (@pxref{Convenience Vars})
3472in Python. A convenience function is an instance of a subclass of the
3473class @code{gdb.Function}.
3474
3475@defun Function.__init__ (name)
3476The initializer for @code{Function} registers the new function with
3477@value{GDBN}. The argument @var{name} is the name of the function,
3478a string. The function will be visible to the user as a convenience
3479variable of type @code{internal function}, whose name is the same as
3480the given @var{name}.
3481
3482The documentation for the new function is taken from the documentation
3483string for the new class.
3484@end defun
3485
3486@defun Function.invoke (@var{*args})
3487When a convenience function is evaluated, its arguments are converted
3488to instances of @code{gdb.Value}, and then the function's
3489@code{invoke} method is called. Note that @value{GDBN} does not
3490predetermine the arity of convenience functions. Instead, all
3491available arguments are passed to @code{invoke}, following the
3492standard Python calling convention. In particular, a convenience
3493function can have default values for parameters without ill effect.
3494
3495The return value of this method is used as its value in the enclosing
3496expression. If an ordinary Python value is returned, it is converted
3497to a @code{gdb.Value} following the usual rules.
3498@end defun
3499
3500The following code snippet shows how a trivial convenience function can
3501be implemented in Python:
3502
3503@smallexample
3504class Greet (gdb.Function):
3505 """Return string to greet someone.
3506Takes a name as argument."""
3507
3508 def __init__ (self):
3509 super (Greet, self).__init__ ("greet")
3510
3511 def invoke (self, name):
3512 return "Hello, %s!" % name.string ()
3513
3514Greet ()
3515@end smallexample
3516
3517The last line instantiates the class, and is necessary to trigger the
3518registration of the function with @value{GDBN}. Depending on how the
3519Python code is read into @value{GDBN}, you may need to import the
3520@code{gdb} module explicitly.
3521
3522Now you can use the function in an expression:
3523
3524@smallexample
3525(gdb) print $greet("Bob")
3526$1 = "Hello, Bob!"
3527@end smallexample
3528
3529@node Progspaces In Python
3530@subsubsection Program Spaces In Python
3531
3532@cindex progspaces in python
3533@tindex gdb.Progspace
3534@tindex Progspace
3535A program space, or @dfn{progspace}, represents a symbolic view
3536of an address space.
3537It consists of all of the objfiles of the program.
3538@xref{Objfiles In Python}.
3539@xref{Inferiors and Programs, program spaces}, for more details
3540about program spaces.
3541
3542The following progspace-related functions are available in the
3543@code{gdb} module:
3544
3545@findex gdb.current_progspace
3546@defun gdb.current_progspace ()
3547This function returns the program space of the currently selected inferior.
3548@xref{Inferiors and Programs}.
3549@end defun
3550
3551@findex gdb.progspaces
3552@defun gdb.progspaces ()
3553Return a sequence of all the progspaces currently known to @value{GDBN}.
3554@end defun
3555
3556Each progspace is represented by an instance of the @code{gdb.Progspace}
3557class.
3558
3559@defvar Progspace.filename
3560The file name of the progspace as a string.
3561@end defvar
3562
3563@defvar Progspace.pretty_printers
3564The @code{pretty_printers} attribute is a list of functions. It is
3565used to look up pretty-printers. A @code{Value} is passed to each
3566function in order; if the function returns @code{None}, then the
3567search continues. Otherwise, the return value should be an object
3568which is used to format the value. @xref{Pretty Printing API}, for more
3569information.
3570@end defvar
3571
3572@defvar Progspace.type_printers
3573The @code{type_printers} attribute is a list of type printer objects.
3574@xref{Type Printing API}, for more information.
3575@end defvar
3576
3577@defvar Progspace.frame_filters
3578The @code{frame_filters} attribute is a dictionary of frame filter
3579objects. @xref{Frame Filter API}, for more information.
3580@end defvar
3581
02be9a71
DE
3582One may add arbitrary attributes to @code{gdb.Progspace} objects
3583in the usual Python way.
3584This is useful if, for example, one needs to do some extra record keeping
3585associated with the program space.
3586
3587In this contrived example, we want to perform some processing when
3588an objfile with a certain symbol is loaded, but we only want to do
3589this once because it is expensive. To achieve this we record the results
3590with the program space because we can't predict when the desired objfile
3591will be loaded.
3592
3593@smallexample
3594(gdb) python
3595def clear_objfiles_handler(event):
3596 event.progspace.expensive_computation = None
3597def expensive(symbol):
3598 """A mock routine to perform an "expensive" computation on symbol."""
3599 print "Computing the answer to the ultimate question ..."
3600 return 42
3601def new_objfile_handler(event):
3602 objfile = event.new_objfile
3603 progspace = objfile.progspace
3604 if not hasattr(progspace, 'expensive_computation') or \
3605 progspace.expensive_computation is None:
3606 # We use 'main' for the symbol to keep the example simple.
3607 # Note: There's no current way to constrain the lookup
3608 # to one objfile.
3609 symbol = gdb.lookup_global_symbol('main')
3610 if symbol is not None:
3611 progspace.expensive_computation = expensive(symbol)
3612gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3613gdb.events.new_objfile.connect(new_objfile_handler)
3614end
3615(gdb) file /tmp/hello
3616Reading symbols from /tmp/hello...done.
3617Computing the answer to the ultimate question ...
3618(gdb) python print gdb.current_progspace().expensive_computation
361942
3620(gdb) run
3621Starting program: /tmp/hello
3622Hello.
3623[Inferior 1 (process 4242) exited normally]
3624@end smallexample
3625
329baa95
DE
3626@node Objfiles In Python
3627@subsubsection Objfiles In Python
3628
3629@cindex objfiles in python
3630@tindex gdb.Objfile
3631@tindex Objfile
3632@value{GDBN} loads symbols for an inferior from various
3633symbol-containing files (@pxref{Files}). These include the primary
3634executable file, any shared libraries used by the inferior, and any
3635separate debug info files (@pxref{Separate Debug Files}).
3636@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3637
3638The following objfile-related functions are available in the
3639@code{gdb} module:
3640
3641@findex gdb.current_objfile
3642@defun gdb.current_objfile ()
3643When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3644sets the ``current objfile'' to the corresponding objfile. This
3645function returns the current objfile. If there is no current objfile,
3646this function returns @code{None}.
3647@end defun
3648
3649@findex gdb.objfiles
3650@defun gdb.objfiles ()
3651Return a sequence of all the objfiles current known to @value{GDBN}.
3652@xref{Objfiles In Python}.
3653@end defun
3654
6dddd6a5
DE
3655@findex gdb.lookup_objfile
3656@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3657Look up @var{name}, a file name or build ID, in the list of objfiles
3658for the current program space (@pxref{Progspaces In Python}).
3659If the objfile is not found throw the Python @code{ValueError} exception.
3660
3661If @var{name} is a relative file name, then it will match any
3662source file name with the same trailing components. For example, if
3663@var{name} is @samp{gcc/expr.c}, then it will match source file
3664name of @file{/build/trunk/gcc/expr.c}, but not
3665@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3666
3667If @var{by_build_id} is provided and is @code{True} then @var{name}
3668is the build ID of the objfile. Otherwise, @var{name} is a file name.
3669This is supported only on some operating systems, notably those which use
3670the ELF format for binary files and the @sc{gnu} Binutils. For more details
3671about this feature, see the description of the @option{--build-id}
3672command-line option in @ref{Options, , Command Line Options, ld.info,
3673The GNU Linker}.
3674@end defun
3675
329baa95
DE
3676Each objfile is represented by an instance of the @code{gdb.Objfile}
3677class.
3678
3679@defvar Objfile.filename
1b549396
DE
3680The file name of the objfile as a string, with symbolic links resolved.
3681
3682The value is @code{None} if the objfile is no longer valid.
3683See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3684@end defvar
3685
3a8b707a
DE
3686@defvar Objfile.username
3687The file name of the objfile as specified by the user as a string.
3688
3689The value is @code{None} if the objfile is no longer valid.
3690See the @code{gdb.Objfile.is_valid} method, described below.
3691@end defvar
3692
a0be3e44
DE
3693@defvar Objfile.owner
3694For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3695object that debug info is being provided for.
3696Otherwise this is @code{None}.
3697Separate debug info objfiles are added with the
3698@code{gdb.Objfile.add_separate_debug_file} method, described below.
3699@end defvar
3700
7c50a931
DE
3701@defvar Objfile.build_id
3702The build ID of the objfile as a string.
3703If the objfile does not have a build ID then the value is @code{None}.
3704
3705This is supported only on some operating systems, notably those which use
3706the ELF format for binary files and the @sc{gnu} Binutils. For more details
3707about this feature, see the description of the @option{--build-id}
3708command-line option in @ref{Options, , Command Line Options, ld.info,
3709The GNU Linker}.
3710@end defvar
3711
d096d8c1
DE
3712@defvar Objfile.progspace
3713The containing program space of the objfile as a @code{gdb.Progspace}
3714object. @xref{Progspaces In Python}.
3715@end defvar
3716
329baa95
DE
3717@defvar Objfile.pretty_printers
3718The @code{pretty_printers} attribute is a list of functions. It is
3719used to look up pretty-printers. A @code{Value} is passed to each
3720function in order; if the function returns @code{None}, then the
3721search continues. Otherwise, the return value should be an object
3722which is used to format the value. @xref{Pretty Printing API}, for more
3723information.
3724@end defvar
3725
3726@defvar Objfile.type_printers
3727The @code{type_printers} attribute is a list of type printer objects.
3728@xref{Type Printing API}, for more information.
3729@end defvar
3730
3731@defvar Objfile.frame_filters
3732The @code{frame_filters} attribute is a dictionary of frame filter
3733objects. @xref{Frame Filter API}, for more information.
3734@end defvar
3735
02be9a71
DE
3736One may add arbitrary attributes to @code{gdb.Objfile} objects
3737in the usual Python way.
3738This is useful if, for example, one needs to do some extra record keeping
3739associated with the objfile.
3740
3741In this contrived example we record the time when @value{GDBN}
3742loaded the objfile.
3743
3744@smallexample
3745(gdb) python
3746import datetime
3747def new_objfile_handler(event):
3748 # Set the time_loaded attribute of the new objfile.
3749 event.new_objfile.time_loaded = datetime.datetime.today()
3750gdb.events.new_objfile.connect(new_objfile_handler)
3751end
3752(gdb) file ./hello
3753Reading symbols from ./hello...done.
3754(gdb) python print gdb.objfiles()[0].time_loaded
37552014-10-09 11:41:36.770345
3756@end smallexample
3757
329baa95
DE
3758A @code{gdb.Objfile} object has the following methods:
3759
3760@defun Objfile.is_valid ()
3761Returns @code{True} if the @code{gdb.Objfile} object is valid,
3762@code{False} if not. A @code{gdb.Objfile} object can become invalid
3763if the object file it refers to is not loaded in @value{GDBN} any
3764longer. All other @code{gdb.Objfile} methods will throw an exception
3765if it is invalid at the time the method is called.
3766@end defun
3767
86e4ed39
DE
3768@defun Objfile.add_separate_debug_file (file)
3769Add @var{file} to the list of files that @value{GDBN} will search for
3770debug information for the objfile.
3771This is useful when the debug info has been removed from the program
3772and stored in a separate file. @value{GDBN} has built-in support for
3773finding separate debug info files (@pxref{Separate Debug Files}), but if
3774the file doesn't live in one of the standard places that @value{GDBN}
3775searches then this function can be used to add a debug info file
3776from a different place.
3777@end defun
3778
329baa95
DE
3779@node Frames In Python
3780@subsubsection Accessing inferior stack frames from Python.
3781
3782@cindex frames in python
3783When the debugged program stops, @value{GDBN} is able to analyze its call
3784stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
3785represents a frame in the stack. A @code{gdb.Frame} object is only valid
3786while its corresponding frame exists in the inferior's stack. If you try
3787to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
3788exception (@pxref{Exception Handling}).
3789
3790Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
3791operator, like:
3792
3793@smallexample
3794(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
3795True
3796@end smallexample
3797
3798The following frame-related functions are available in the @code{gdb} module:
3799
3800@findex gdb.selected_frame
3801@defun gdb.selected_frame ()
3802Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
3803@end defun
3804
3805@findex gdb.newest_frame
3806@defun gdb.newest_frame ()
3807Return the newest frame object for the selected thread.
3808@end defun
3809
3810@defun gdb.frame_stop_reason_string (reason)
3811Return a string explaining the reason why @value{GDBN} stopped unwinding
3812frames, as expressed by the given @var{reason} code (an integer, see the
3813@code{unwind_stop_reason} method further down in this section).
3814@end defun
3815
3816A @code{gdb.Frame} object has the following methods:
3817
3818@defun Frame.is_valid ()
3819Returns true if the @code{gdb.Frame} object is valid, false if not.
3820A frame object can become invalid if the frame it refers to doesn't
3821exist anymore in the inferior. All @code{gdb.Frame} methods will throw
3822an exception if it is invalid at the time the method is called.
3823@end defun
3824
3825@defun Frame.name ()
3826Returns the function name of the frame, or @code{None} if it can't be
3827obtained.
3828@end defun
3829
3830@defun Frame.architecture ()
3831Returns the @code{gdb.Architecture} object corresponding to the frame's
3832architecture. @xref{Architectures In Python}.
3833@end defun
3834
3835@defun Frame.type ()
3836Returns the type of the frame. The value can be one of:
3837@table @code
3838@item gdb.NORMAL_FRAME
3839An ordinary stack frame.
3840
3841@item gdb.DUMMY_FRAME
3842A fake stack frame that was created by @value{GDBN} when performing an
3843inferior function call.
3844
3845@item gdb.INLINE_FRAME
3846A frame representing an inlined function. The function was inlined
3847into a @code{gdb.NORMAL_FRAME} that is older than this one.
3848
3849@item gdb.TAILCALL_FRAME
3850A frame representing a tail call. @xref{Tail Call Frames}.
3851
3852@item gdb.SIGTRAMP_FRAME
3853A signal trampoline frame. This is the frame created by the OS when
3854it calls into a signal handler.
3855
3856@item gdb.ARCH_FRAME
3857A fake stack frame representing a cross-architecture call.
3858
3859@item gdb.SENTINEL_FRAME
3860This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
3861newest frame.
3862@end table
3863@end defun
3864
3865@defun Frame.unwind_stop_reason ()
3866Return an integer representing the reason why it's not possible to find
3867more frames toward the outermost frame. Use
3868@code{gdb.frame_stop_reason_string} to convert the value returned by this
3869function to a string. The value can be one of:
3870
3871@table @code
3872@item gdb.FRAME_UNWIND_NO_REASON
3873No particular reason (older frames should be available).
3874
3875@item gdb.FRAME_UNWIND_NULL_ID
3876The previous frame's analyzer returns an invalid result. This is no
3877longer used by @value{GDBN}, and is kept only for backward
3878compatibility.
3879
3880@item gdb.FRAME_UNWIND_OUTERMOST
3881This frame is the outermost.
3882
3883@item gdb.FRAME_UNWIND_UNAVAILABLE
3884Cannot unwind further, because that would require knowing the
3885values of registers or memory that have not been collected.
3886
3887@item gdb.FRAME_UNWIND_INNER_ID
3888This frame ID looks like it ought to belong to a NEXT frame,
3889but we got it for a PREV frame. Normally, this is a sign of
3890unwinder failure. It could also indicate stack corruption.
3891
3892@item gdb.FRAME_UNWIND_SAME_ID
3893This frame has the same ID as the previous one. That means
3894that unwinding further would almost certainly give us another
3895frame with exactly the same ID, so break the chain. Normally,
3896this is a sign of unwinder failure. It could also indicate
3897stack corruption.
3898
3899@item gdb.FRAME_UNWIND_NO_SAVED_PC
3900The frame unwinder did not find any saved PC, but we needed
3901one to unwind further.
3902
53e8a631
AB
3903@item gdb.FRAME_UNWIND_MEMORY_ERROR
3904The frame unwinder caused an error while trying to access memory.
3905
329baa95
DE
3906@item gdb.FRAME_UNWIND_FIRST_ERROR
3907Any stop reason greater or equal to this value indicates some kind
3908of error. This special value facilitates writing code that tests
3909for errors in unwinding in a way that will work correctly even if
3910the list of the other values is modified in future @value{GDBN}
3911versions. Using it, you could write:
3912@smallexample
3913reason = gdb.selected_frame().unwind_stop_reason ()
3914reason_str = gdb.frame_stop_reason_string (reason)
3915if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
3916 print "An error occured: %s" % reason_str
3917@end smallexample
3918@end table
3919
3920@end defun
3921
3922@defun Frame.pc ()
3923Returns the frame's resume address.
3924@end defun
3925
3926@defun Frame.block ()
3927Return the frame's code block. @xref{Blocks In Python}.
3928@end defun
3929
3930@defun Frame.function ()
3931Return the symbol for the function corresponding to this frame.
3932@xref{Symbols In Python}.
3933@end defun
3934
3935@defun Frame.older ()
3936Return the frame that called this frame.
3937@end defun
3938
3939@defun Frame.newer ()
3940Return the frame called by this frame.
3941@end defun
3942
3943@defun Frame.find_sal ()
3944Return the frame's symtab and line object.
3945@xref{Symbol Tables In Python}.
3946@end defun
3947
5f3b99cf
SS
3948@defun Frame.read_register (register)
3949Return the value of @var{register} in this frame. The @var{register}
3950argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
3951Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
3952does not exist.
3953@end defun
3954
329baa95
DE
3955@defun Frame.read_var (variable @r{[}, block@r{]})
3956Return the value of @var{variable} in this frame. If the optional
3957argument @var{block} is provided, search for the variable from that
3958block; otherwise start at the frame's current block (which is
697aa1b7
EZ
3959determined by the frame's current program counter). The @var{variable}
3960argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
3961@code{gdb.Block} object.
3962@end defun
3963
3964@defun Frame.select ()
3965Set this frame to be the selected frame. @xref{Stack, ,Examining the
3966Stack}.
3967@end defun
3968
3969@node Blocks In Python
3970@subsubsection Accessing blocks from Python.
3971
3972@cindex blocks in python
3973@tindex gdb.Block
3974
3975In @value{GDBN}, symbols are stored in blocks. A block corresponds
3976roughly to a scope in the source code. Blocks are organized
3977hierarchically, and are represented individually in Python as a
3978@code{gdb.Block}. Blocks rely on debugging information being
3979available.
3980
3981A frame has a block. Please see @ref{Frames In Python}, for a more
3982in-depth discussion of frames.
3983
3984The outermost block is known as the @dfn{global block}. The global
3985block typically holds public global variables and functions.
3986
3987The block nested just inside the global block is the @dfn{static
3988block}. The static block typically holds file-scoped variables and
3989functions.
3990
3991@value{GDBN} provides a method to get a block's superblock, but there
3992is currently no way to examine the sub-blocks of a block, or to
3993iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
3994Python}).
3995
3996Here is a short example that should help explain blocks:
3997
3998@smallexample
3999/* This is in the global block. */
4000int global;
4001
4002/* This is in the static block. */
4003static int file_scope;
4004
4005/* 'function' is in the global block, and 'argument' is
4006 in a block nested inside of 'function'. */
4007int function (int argument)
4008@{
4009 /* 'local' is in a block inside 'function'. It may or may
4010 not be in the same block as 'argument'. */
4011 int local;
4012
4013 @{
4014 /* 'inner' is in a block whose superblock is the one holding
4015 'local'. */
4016 int inner;
4017
4018 /* If this call is expanded by the compiler, you may see
4019 a nested block here whose function is 'inline_function'
4020 and whose superblock is the one holding 'inner'. */
4021 inline_function ();
4022 @}
4023@}
4024@end smallexample
4025
4026A @code{gdb.Block} is iterable. The iterator returns the symbols
4027(@pxref{Symbols In Python}) local to the block. Python programs
4028should not assume that a specific block object will always contain a
4029given symbol, since changes in @value{GDBN} features and
4030infrastructure may cause symbols move across blocks in a symbol
4031table.
4032
4033The following block-related functions are available in the @code{gdb}
4034module:
4035
4036@findex gdb.block_for_pc
4037@defun gdb.block_for_pc (pc)
4038Return the innermost @code{gdb.Block} containing the given @var{pc}
4039value. If the block cannot be found for the @var{pc} value specified,
4040the function will return @code{None}.
4041@end defun
4042
4043A @code{gdb.Block} object has the following methods:
4044
4045@defun Block.is_valid ()
4046Returns @code{True} if the @code{gdb.Block} object is valid,
4047@code{False} if not. A block object can become invalid if the block it
4048refers to doesn't exist anymore in the inferior. All other
4049@code{gdb.Block} methods will throw an exception if it is invalid at
4050the time the method is called. The block's validity is also checked
4051during iteration over symbols of the block.
4052@end defun
4053
4054A @code{gdb.Block} object has the following attributes:
4055
4056@defvar Block.start
4057The start address of the block. This attribute is not writable.
4058@end defvar
4059
4060@defvar Block.end
4061The end address of the block. This attribute is not writable.
4062@end defvar
4063
4064@defvar Block.function
4065The name of the block represented as a @code{gdb.Symbol}. If the
4066block is not named, then this attribute holds @code{None}. This
4067attribute is not writable.
4068
4069For ordinary function blocks, the superblock is the static block.
4070However, you should note that it is possible for a function block to
4071have a superblock that is not the static block -- for instance this
4072happens for an inlined function.
4073@end defvar
4074
4075@defvar Block.superblock
4076The block containing this block. If this parent block does not exist,
4077this attribute holds @code{None}. This attribute is not writable.
4078@end defvar
4079
4080@defvar Block.global_block
4081The global block associated with this block. This attribute is not
4082writable.
4083@end defvar
4084
4085@defvar Block.static_block
4086The static block associated with this block. This attribute is not
4087writable.
4088@end defvar
4089
4090@defvar Block.is_global
4091@code{True} if the @code{gdb.Block} object is a global block,
4092@code{False} if not. This attribute is not
4093writable.
4094@end defvar
4095
4096@defvar Block.is_static
4097@code{True} if the @code{gdb.Block} object is a static block,
4098@code{False} if not. This attribute is not writable.
4099@end defvar
4100
4101@node Symbols In Python
4102@subsubsection Python representation of Symbols.
4103
4104@cindex symbols in python
4105@tindex gdb.Symbol
4106
4107@value{GDBN} represents every variable, function and type as an
4108entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4109Similarly, Python represents these symbols in @value{GDBN} with the
4110@code{gdb.Symbol} object.
4111
4112The following symbol-related functions are available in the @code{gdb}
4113module:
4114
4115@findex gdb.lookup_symbol
4116@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4117This function searches for a symbol by name. The search scope can be
4118restricted to the parameters defined in the optional domain and block
4119arguments.
4120
4121@var{name} is the name of the symbol. It must be a string. The
4122optional @var{block} argument restricts the search to symbols visible
4123in that @var{block}. The @var{block} argument must be a
4124@code{gdb.Block} object. If omitted, the block for the current frame
4125is used. The optional @var{domain} argument restricts
4126the search to the domain type. The @var{domain} argument must be a
4127domain constant defined in the @code{gdb} module and described later
4128in this chapter.
4129
4130The result is a tuple of two elements.
4131The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4132is not found.
4133If the symbol is found, the second element is @code{True} if the symbol
4134is a field of a method's object (e.g., @code{this} in C@t{++}),
4135otherwise it is @code{False}.
4136If the symbol is not found, the second element is @code{False}.
4137@end defun
4138
4139@findex gdb.lookup_global_symbol
4140@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4141This function searches for a global symbol by name.
4142The search scope can be restricted to by the domain argument.
4143
4144@var{name} is the name of the symbol. It must be a string.
4145The optional @var{domain} argument restricts the search to the domain type.
4146The @var{domain} argument must be a domain constant defined in the @code{gdb}
4147module and described later in this chapter.
4148
4149The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4150is not found.
4151@end defun
4152
4153A @code{gdb.Symbol} object has the following attributes:
4154
4155@defvar Symbol.type
4156The type of the symbol or @code{None} if no type is recorded.
4157This attribute is represented as a @code{gdb.Type} object.
4158@xref{Types In Python}. This attribute is not writable.
4159@end defvar
4160
4161@defvar Symbol.symtab
4162The symbol table in which the symbol appears. This attribute is
4163represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4164Python}. This attribute is not writable.
4165@end defvar
4166
4167@defvar Symbol.line
4168The line number in the source code at which the symbol was defined.
4169This is an integer.
4170@end defvar
4171
4172@defvar Symbol.name
4173The name of the symbol as a string. This attribute is not writable.
4174@end defvar
4175
4176@defvar Symbol.linkage_name
4177The name of the symbol, as used by the linker (i.e., may be mangled).
4178This attribute is not writable.
4179@end defvar
4180
4181@defvar Symbol.print_name
4182The name of the symbol in a form suitable for output. This is either
4183@code{name} or @code{linkage_name}, depending on whether the user
4184asked @value{GDBN} to display demangled or mangled names.
4185@end defvar
4186
4187@defvar Symbol.addr_class
4188The address class of the symbol. This classifies how to find the value
4189of a symbol. Each address class is a constant defined in the
4190@code{gdb} module and described later in this chapter.
4191@end defvar
4192
4193@defvar Symbol.needs_frame
4194This is @code{True} if evaluating this symbol's value requires a frame
4195(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4196local variables will require a frame, but other symbols will not.
4197@end defvar
4198
4199@defvar Symbol.is_argument
4200@code{True} if the symbol is an argument of a function.
4201@end defvar
4202
4203@defvar Symbol.is_constant
4204@code{True} if the symbol is a constant.
4205@end defvar
4206
4207@defvar Symbol.is_function
4208@code{True} if the symbol is a function or a method.
4209@end defvar
4210
4211@defvar Symbol.is_variable
4212@code{True} if the symbol is a variable.
4213@end defvar
4214
4215A @code{gdb.Symbol} object has the following methods:
4216
4217@defun Symbol.is_valid ()
4218Returns @code{True} if the @code{gdb.Symbol} object is valid,
4219@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4220the symbol it refers to does not exist in @value{GDBN} any longer.
4221All other @code{gdb.Symbol} methods will throw an exception if it is
4222invalid at the time the method is called.
4223@end defun
4224
4225@defun Symbol.value (@r{[}frame@r{]})
4226Compute the value of the symbol, as a @code{gdb.Value}. For
4227functions, this computes the address of the function, cast to the
4228appropriate type. If the symbol requires a frame in order to compute
4229its value, then @var{frame} must be given. If @var{frame} is not
4230given, or if @var{frame} is invalid, then this method will throw an
4231exception.
4232@end defun
4233
4234The available domain categories in @code{gdb.Symbol} are represented
4235as constants in the @code{gdb} module:
4236
b3ce5e5f
DE
4237@vtable @code
4238@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4239@item gdb.SYMBOL_UNDEF_DOMAIN
4240This is used when a domain has not been discovered or none of the
4241following domains apply. This usually indicates an error either
4242in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4243
4244@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4245@item gdb.SYMBOL_VAR_DOMAIN
4246This domain contains variables, function names, typedef names and enum
4247type values.
b3ce5e5f
DE
4248
4249@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4250@item gdb.SYMBOL_STRUCT_DOMAIN
4251This domain holds struct, union and enum type names.
b3ce5e5f
DE
4252
4253@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4254@item gdb.SYMBOL_LABEL_DOMAIN
4255This domain contains names of labels (for gotos).
b3ce5e5f
DE
4256
4257@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4258@item gdb.SYMBOL_VARIABLES_DOMAIN
4259This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4260contains everything minus functions and types.
b3ce5e5f
DE
4261
4262@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
4263@item gdb.SYMBOL_FUNCTION_DOMAIN
4264This domain contains all functions.
b3ce5e5f
DE
4265
4266@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4267@item gdb.SYMBOL_TYPES_DOMAIN
4268This domain contains all types.
b3ce5e5f 4269@end vtable
329baa95
DE
4270
4271The available address class categories in @code{gdb.Symbol} are represented
4272as constants in the @code{gdb} module:
4273
b3ce5e5f
DE
4274@vtable @code
4275@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4276@item gdb.SYMBOL_LOC_UNDEF
4277If this is returned by address class, it indicates an error either in
4278the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4279
4280@vindex SYMBOL_LOC_CONST
329baa95
DE
4281@item gdb.SYMBOL_LOC_CONST
4282Value is constant int.
b3ce5e5f
DE
4283
4284@vindex SYMBOL_LOC_STATIC
329baa95
DE
4285@item gdb.SYMBOL_LOC_STATIC
4286Value is at a fixed address.
b3ce5e5f
DE
4287
4288@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4289@item gdb.SYMBOL_LOC_REGISTER
4290Value is in a register.
b3ce5e5f
DE
4291
4292@vindex SYMBOL_LOC_ARG
329baa95
DE
4293@item gdb.SYMBOL_LOC_ARG
4294Value is an argument. This value is at the offset stored within the
4295symbol inside the frame's argument list.
b3ce5e5f
DE
4296
4297@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4298@item gdb.SYMBOL_LOC_REF_ARG
4299Value address is stored in the frame's argument list. Just like
4300@code{LOC_ARG} except that the value's address is stored at the
4301offset, not the value itself.
b3ce5e5f
DE
4302
4303@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4304@item gdb.SYMBOL_LOC_REGPARM_ADDR
4305Value is a specified register. Just like @code{LOC_REGISTER} except
4306the register holds the address of the argument instead of the argument
4307itself.
b3ce5e5f
DE
4308
4309@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4310@item gdb.SYMBOL_LOC_LOCAL
4311Value is a local variable.
b3ce5e5f
DE
4312
4313@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4314@item gdb.SYMBOL_LOC_TYPEDEF
4315Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4316have this class.
b3ce5e5f
DE
4317
4318@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4319@item gdb.SYMBOL_LOC_BLOCK
4320Value is a block.
b3ce5e5f
DE
4321
4322@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4323@item gdb.SYMBOL_LOC_CONST_BYTES
4324Value is a byte-sequence.
b3ce5e5f
DE
4325
4326@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4327@item gdb.SYMBOL_LOC_UNRESOLVED
4328Value is at a fixed address, but the address of the variable has to be
4329determined from the minimal symbol table whenever the variable is
4330referenced.
b3ce5e5f
DE
4331
4332@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4333@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4334The value does not actually exist in the program.
b3ce5e5f
DE
4335
4336@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4337@item gdb.SYMBOL_LOC_COMPUTED
4338The value's address is a computed location.
b3ce5e5f 4339@end vtable
329baa95
DE
4340
4341@node Symbol Tables In Python
4342@subsubsection Symbol table representation in Python.
4343
4344@cindex symbol tables in python
4345@tindex gdb.Symtab
4346@tindex gdb.Symtab_and_line
4347
4348Access to symbol table data maintained by @value{GDBN} on the inferior
4349is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4350@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4351from the @code{find_sal} method in @code{gdb.Frame} object.
4352@xref{Frames In Python}.
4353
4354For more information on @value{GDBN}'s symbol table management, see
4355@ref{Symbols, ,Examining the Symbol Table}, for more information.
4356
4357A @code{gdb.Symtab_and_line} object has the following attributes:
4358
4359@defvar Symtab_and_line.symtab
4360The symbol table object (@code{gdb.Symtab}) for this frame.
4361This attribute is not writable.
4362@end defvar
4363
4364@defvar Symtab_and_line.pc
4365Indicates the start of the address range occupied by code for the
4366current source line. This attribute is not writable.
4367@end defvar
4368
4369@defvar Symtab_and_line.last
4370Indicates the end of the address range occupied by code for the current
4371source line. This attribute is not writable.
4372@end defvar
4373
4374@defvar Symtab_and_line.line
4375Indicates the current line number for this object. This
4376attribute is not writable.
4377@end defvar
4378
4379A @code{gdb.Symtab_and_line} object has the following methods:
4380
4381@defun Symtab_and_line.is_valid ()
4382Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4383@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4384invalid if the Symbol table and line object it refers to does not
4385exist in @value{GDBN} any longer. All other
4386@code{gdb.Symtab_and_line} methods will throw an exception if it is
4387invalid at the time the method is called.
4388@end defun
4389
4390A @code{gdb.Symtab} object has the following attributes:
4391
4392@defvar Symtab.filename
4393The symbol table's source filename. This attribute is not writable.
4394@end defvar
4395
4396@defvar Symtab.objfile
4397The symbol table's backing object file. @xref{Objfiles In Python}.
4398This attribute is not writable.
4399@end defvar
4400
2b4fd423
DE
4401@defvar Symtab.producer
4402The name and possibly version number of the program that
4403compiled the code in the symbol table.
4404The contents of this string is up to the compiler.
4405If no producer information is available then @code{None} is returned.
4406This attribute is not writable.
4407@end defvar
4408
329baa95
DE
4409A @code{gdb.Symtab} object has the following methods:
4410
4411@defun Symtab.is_valid ()
4412Returns @code{True} if the @code{gdb.Symtab} object is valid,
4413@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4414the symbol table it refers to does not exist in @value{GDBN} any
4415longer. All other @code{gdb.Symtab} methods will throw an exception
4416if it is invalid at the time the method is called.
4417@end defun
4418
4419@defun Symtab.fullname ()
4420Return the symbol table's source absolute file name.
4421@end defun
4422
4423@defun Symtab.global_block ()
4424Return the global block of the underlying symbol table.
4425@xref{Blocks In Python}.
4426@end defun
4427
4428@defun Symtab.static_block ()
4429Return the static block of the underlying symbol table.
4430@xref{Blocks In Python}.
4431@end defun
4432
4433@defun Symtab.linetable ()
4434Return the line table associated with the symbol table.
4435@xref{Line Tables In Python}.
4436@end defun
4437
4438@node Line Tables In Python
4439@subsubsection Manipulating line tables using Python
4440
4441@cindex line tables in python
4442@tindex gdb.LineTable
4443
4444Python code can request and inspect line table information from a
4445symbol table that is loaded in @value{GDBN}. A line table is a
4446mapping of source lines to their executable locations in memory. To
4447acquire the line table information for a particular symbol table, use
4448the @code{linetable} function (@pxref{Symbol Tables In Python}).
4449
4450A @code{gdb.LineTable} is iterable. The iterator returns
4451@code{LineTableEntry} objects that correspond to the source line and
4452address for each line table entry. @code{LineTableEntry} objects have
4453the following attributes:
4454
4455@defvar LineTableEntry.line
4456The source line number for this line table entry. This number
4457corresponds to the actual line of source. This attribute is not
4458writable.
4459@end defvar
4460
4461@defvar LineTableEntry.pc
4462The address that is associated with the line table entry where the
4463executable code for that source line resides in memory. This
4464attribute is not writable.
4465@end defvar
4466
4467As there can be multiple addresses for a single source line, you may
4468receive multiple @code{LineTableEntry} objects with matching
4469@code{line} attributes, but with different @code{pc} attributes. The
4470iterator is sorted in ascending @code{pc} order. Here is a small
4471example illustrating iterating over a line table.
4472
4473@smallexample
4474symtab = gdb.selected_frame().find_sal().symtab
4475linetable = symtab.linetable()
4476for line in linetable:
4477 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4478@end smallexample
4479
4480This will have the following output:
4481
4482@smallexample
4483Line: 33 Address: 0x4005c8L
4484Line: 37 Address: 0x4005caL
4485Line: 39 Address: 0x4005d2L
4486Line: 40 Address: 0x4005f8L
4487Line: 42 Address: 0x4005ffL
4488Line: 44 Address: 0x400608L
4489Line: 42 Address: 0x40060cL
4490Line: 45 Address: 0x400615L
4491@end smallexample
4492
4493In addition to being able to iterate over a @code{LineTable}, it also
4494has the following direct access methods:
4495
4496@defun LineTable.line (line)
4497Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4498entries in the line table for the given @var{line}, which specifies
4499the source code line. If there are no entries for that source code
329baa95
DE
4500@var{line}, the Python @code{None} is returned.
4501@end defun
4502
4503@defun LineTable.has_line (line)
4504Return a Python @code{Boolean} indicating whether there is an entry in
4505the line table for this source line. Return @code{True} if an entry
4506is found, or @code{False} if not.
4507@end defun
4508
4509@defun LineTable.source_lines ()
4510Return a Python @code{List} of the source line numbers in the symbol
4511table. Only lines with executable code locations are returned. The
4512contents of the @code{List} will just be the source line entries
4513represented as Python @code{Long} values.
4514@end defun
4515
4516@node Breakpoints In Python
4517@subsubsection Manipulating breakpoints using Python
4518
4519@cindex breakpoints in python
4520@tindex gdb.Breakpoint
4521
4522Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4523class.
4524
4525@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4526Create a new breakpoint according to @var{spec}, which is a string
4527naming the location of the breakpoint, or an expression that defines a
4528watchpoint. The contents can be any location recognized by the
4529@code{break} command, or in the case of a watchpoint, by the
4530@code{watch} command. The optional @var{type} denotes the breakpoint
4531to create from the types defined later in this chapter. This argument
4532can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4533defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4534argument allows the breakpoint to become invisible to the user. The
4535breakpoint will neither be reported when created, nor will it be
4536listed in the output from @code{info breakpoints} (but will be listed
4537with the @code{maint info breakpoints} command). The optional
4538@var{temporary} argument makes the breakpoint a temporary breakpoint.
4539Temporary breakpoints are deleted after they have been hit. Any
4540further access to the Python breakpoint after it has been hit will
4541result in a runtime error (as that breakpoint has now been
4542automatically deleted). The optional @var{wp_class} argument defines
4543the class of watchpoint to create, if @var{type} is
4544@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4545is assumed to be a @code{gdb.WP_WRITE} class.
4546@end defun
4547
4548@defun Breakpoint.stop (self)
4549The @code{gdb.Breakpoint} class can be sub-classed and, in
4550particular, you may choose to implement the @code{stop} method.
4551If this method is defined in a sub-class of @code{gdb.Breakpoint},
4552it will be called when the inferior reaches any location of a
4553breakpoint which instantiates that sub-class. If the method returns
4554@code{True}, the inferior will be stopped at the location of the
4555breakpoint, otherwise the inferior will continue.
4556
4557If there are multiple breakpoints at the same location with a
4558@code{stop} method, each one will be called regardless of the
4559return status of the previous. This ensures that all @code{stop}
4560methods have a chance to execute at that location. In this scenario
4561if one of the methods returns @code{True} but the others return
4562@code{False}, the inferior will still be stopped.
4563
4564You should not alter the execution state of the inferior (i.e.@:, step,
4565next, etc.), alter the current frame context (i.e.@:, change the current
4566active frame), or alter, add or delete any breakpoint. As a general
4567rule, you should not alter any data within @value{GDBN} or the inferior
4568at this time.
4569
4570Example @code{stop} implementation:
4571
4572@smallexample
4573class MyBreakpoint (gdb.Breakpoint):
4574 def stop (self):
4575 inf_val = gdb.parse_and_eval("foo")
4576 if inf_val == 3:
4577 return True
4578 return False
4579@end smallexample
4580@end defun
4581
4582The available watchpoint types represented by constants are defined in the
4583@code{gdb} module:
4584
b3ce5e5f
DE
4585@vtable @code
4586@vindex WP_READ
329baa95
DE
4587@item gdb.WP_READ
4588Read only watchpoint.
4589
b3ce5e5f 4590@vindex WP_WRITE
329baa95
DE
4591@item gdb.WP_WRITE
4592Write only watchpoint.
4593
b3ce5e5f 4594@vindex WP_ACCESS
329baa95
DE
4595@item gdb.WP_ACCESS
4596Read/Write watchpoint.
b3ce5e5f 4597@end vtable
329baa95
DE
4598
4599@defun Breakpoint.is_valid ()
4600Return @code{True} if this @code{Breakpoint} object is valid,
4601@code{False} otherwise. A @code{Breakpoint} object can become invalid
4602if the user deletes the breakpoint. In this case, the object still
4603exists, but the underlying breakpoint does not. In the cases of
4604watchpoint scope, the watchpoint remains valid even if execution of the
4605inferior leaves the scope of that watchpoint.
4606@end defun
4607
fab3a15d 4608@defun Breakpoint.delete ()
329baa95
DE
4609Permanently deletes the @value{GDBN} breakpoint. This also
4610invalidates the Python @code{Breakpoint} object. Any further access
4611to this object's attributes or methods will raise an error.
4612@end defun
4613
4614@defvar Breakpoint.enabled
4615This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4616@code{False} otherwise. This attribute is writable. You can use it to enable
4617or disable the breakpoint.
329baa95
DE
4618@end defvar
4619
4620@defvar Breakpoint.silent
4621This attribute is @code{True} if the breakpoint is silent, and
4622@code{False} otherwise. This attribute is writable.
4623
4624Note that a breakpoint can also be silent if it has commands and the
4625first command is @code{silent}. This is not reported by the
4626@code{silent} attribute.
4627@end defvar
4628
4629@defvar Breakpoint.thread
4630If the breakpoint is thread-specific, this attribute holds the thread
4631id. If the breakpoint is not thread-specific, this attribute is
4632@code{None}. This attribute is writable.
4633@end defvar
4634
4635@defvar Breakpoint.task
4636If the breakpoint is Ada task-specific, this attribute holds the Ada task
4637id. If the breakpoint is not task-specific (or the underlying
4638language is not Ada), this attribute is @code{None}. This attribute
4639is writable.
4640@end defvar
4641
4642@defvar Breakpoint.ignore_count
4643This attribute holds the ignore count for the breakpoint, an integer.
4644This attribute is writable.
4645@end defvar
4646
4647@defvar Breakpoint.number
4648This attribute holds the breakpoint's number --- the identifier used by
4649the user to manipulate the breakpoint. This attribute is not writable.
4650@end defvar
4651
4652@defvar Breakpoint.type
4653This attribute holds the breakpoint's type --- the identifier used to
4654determine the actual breakpoint type or use-case. This attribute is not
4655writable.
4656@end defvar
4657
4658@defvar Breakpoint.visible
4659This attribute tells whether the breakpoint is visible to the user
4660when set, or when the @samp{info breakpoints} command is run. This
4661attribute is not writable.
4662@end defvar
4663
4664@defvar Breakpoint.temporary
4665This attribute indicates whether the breakpoint was created as a
4666temporary breakpoint. Temporary breakpoints are automatically deleted
4667after that breakpoint has been hit. Access to this attribute, and all
4668other attributes and functions other than the @code{is_valid}
4669function, will result in an error after the breakpoint has been hit
4670(as it has been automatically deleted). This attribute is not
4671writable.
4672@end defvar
4673
4674The available types are represented by constants defined in the @code{gdb}
4675module:
4676
b3ce5e5f
DE
4677@vtable @code
4678@vindex BP_BREAKPOINT
329baa95
DE
4679@item gdb.BP_BREAKPOINT
4680Normal code breakpoint.
4681
b3ce5e5f 4682@vindex BP_WATCHPOINT
329baa95
DE
4683@item gdb.BP_WATCHPOINT
4684Watchpoint breakpoint.
4685
b3ce5e5f 4686@vindex BP_HARDWARE_WATCHPOINT
329baa95
DE
4687@item gdb.BP_HARDWARE_WATCHPOINT
4688Hardware assisted watchpoint.
4689
b3ce5e5f 4690@vindex BP_READ_WATCHPOINT
329baa95
DE
4691@item gdb.BP_READ_WATCHPOINT
4692Hardware assisted read watchpoint.
4693
b3ce5e5f 4694@vindex BP_ACCESS_WATCHPOINT
329baa95
DE
4695@item gdb.BP_ACCESS_WATCHPOINT
4696Hardware assisted access watchpoint.
b3ce5e5f 4697@end vtable
329baa95
DE
4698
4699@defvar Breakpoint.hit_count
4700This attribute holds the hit count for the breakpoint, an integer.
4701This attribute is writable, but currently it can only be set to zero.
4702@end defvar
4703
4704@defvar Breakpoint.location
4705This attribute holds the location of the breakpoint, as specified by
4706the user. It is a string. If the breakpoint does not have a location
4707(that is, it is a watchpoint) the attribute's value is @code{None}. This
4708attribute is not writable.
4709@end defvar
4710
4711@defvar Breakpoint.expression
4712This attribute holds a breakpoint expression, as specified by
4713the user. It is a string. If the breakpoint does not have an
4714expression (the breakpoint is not a watchpoint) the attribute's value
4715is @code{None}. This attribute is not writable.
4716@end defvar
4717
4718@defvar Breakpoint.condition
4719This attribute holds the condition of the breakpoint, as specified by
4720the user. It is a string. If there is no condition, this attribute's
4721value is @code{None}. This attribute is writable.
4722@end defvar
4723
4724@defvar Breakpoint.commands
4725This attribute holds the commands attached to the breakpoint. If
4726there are commands, this attribute's value is a string holding all the
4727commands, separated by newlines. If there are no commands, this
4728attribute is @code{None}. This attribute is not writable.
4729@end defvar
4730
4731@node Finish Breakpoints in Python
4732@subsubsection Finish Breakpoints
4733
4734@cindex python finish breakpoints
4735@tindex gdb.FinishBreakpoint
4736
4737A finish breakpoint is a temporary breakpoint set at the return address of
4738a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
4739extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
4740and deleted when the execution will run out of the breakpoint scope (i.e.@:
4741@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
4742Finish breakpoints are thread specific and must be create with the right
4743thread selected.
4744
4745@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
4746Create a finish breakpoint at the return address of the @code{gdb.Frame}
4747object @var{frame}. If @var{frame} is not provided, this defaults to the
4748newest frame. The optional @var{internal} argument allows the breakpoint to
4749become invisible to the user. @xref{Breakpoints In Python}, for further
4750details about this argument.
4751@end defun
4752
4753@defun FinishBreakpoint.out_of_scope (self)
4754In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
4755@code{return} command, @dots{}), a function may not properly terminate, and
4756thus never hit the finish breakpoint. When @value{GDBN} notices such a
4757situation, the @code{out_of_scope} callback will be triggered.
4758
4759You may want to sub-class @code{gdb.FinishBreakpoint} and override this
4760method:
4761
4762@smallexample
4763class MyFinishBreakpoint (gdb.FinishBreakpoint)
4764 def stop (self):
4765 print "normal finish"
4766 return True
4767
4768 def out_of_scope ():
4769 print "abnormal finish"
4770@end smallexample
4771@end defun
4772
4773@defvar FinishBreakpoint.return_value
4774When @value{GDBN} is stopped at a finish breakpoint and the frame
4775used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
4776attribute will contain a @code{gdb.Value} object corresponding to the return
4777value of the function. The value will be @code{None} if the function return
4778type is @code{void} or if the return value was not computable. This attribute
4779is not writable.
4780@end defvar
4781
4782@node Lazy Strings In Python
4783@subsubsection Python representation of lazy strings.
4784
4785@cindex lazy strings in python
4786@tindex gdb.LazyString
4787
4788A @dfn{lazy string} is a string whose contents is not retrieved or
4789encoded until it is needed.
4790
4791A @code{gdb.LazyString} is represented in @value{GDBN} as an
4792@code{address} that points to a region of memory, an @code{encoding}
4793that will be used to encode that region of memory, and a @code{length}
4794to delimit the region of memory that represents the string. The
4795difference between a @code{gdb.LazyString} and a string wrapped within
4796a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
4797differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
4798retrieved and encoded during printing, while a @code{gdb.Value}
4799wrapping a string is immediately retrieved and encoded on creation.
4800
4801A @code{gdb.LazyString} object has the following functions:
4802
4803@defun LazyString.value ()
4804Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
4805will point to the string in memory, but will lose all the delayed
4806retrieval, encoding and handling that @value{GDBN} applies to a
4807@code{gdb.LazyString}.
4808@end defun
4809
4810@defvar LazyString.address
4811This attribute holds the address of the string. This attribute is not
4812writable.
4813@end defvar
4814
4815@defvar LazyString.length
4816This attribute holds the length of the string in characters. If the
4817length is -1, then the string will be fetched and encoded up to the
4818first null of appropriate width. This attribute is not writable.
4819@end defvar
4820
4821@defvar LazyString.encoding
4822This attribute holds the encoding that will be applied to the string
4823when the string is printed by @value{GDBN}. If the encoding is not
4824set, or contains an empty string, then @value{GDBN} will select the
4825most appropriate encoding when the string is printed. This attribute
4826is not writable.
4827@end defvar
4828
4829@defvar LazyString.type
4830This attribute holds the type that is represented by the lazy string's
4831type. For a lazy string this will always be a pointer type. To
4832resolve this to the lazy string's character type, use the type's
4833@code{target} method. @xref{Types In Python}. This attribute is not
4834writable.
4835@end defvar
4836
4837@node Architectures In Python
4838@subsubsection Python representation of architectures
4839@cindex Python architectures
4840
4841@value{GDBN} uses architecture specific parameters and artifacts in a
4842number of its various computations. An architecture is represented
4843by an instance of the @code{gdb.Architecture} class.
4844
4845A @code{gdb.Architecture} class has the following methods:
4846
4847@defun Architecture.name ()
4848Return the name (string value) of the architecture.
4849@end defun
4850
4851@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
4852Return a list of disassembled instructions starting from the memory
4853address @var{start_pc}. The optional arguments @var{end_pc} and
4854@var{count} determine the number of instructions in the returned list.
4855If both the optional arguments @var{end_pc} and @var{count} are
4856specified, then a list of at most @var{count} disassembled instructions
4857whose start address falls in the closed memory address interval from
4858@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
4859specified, but @var{count} is specified, then @var{count} number of
4860instructions starting from the address @var{start_pc} are returned. If
4861@var{count} is not specified but @var{end_pc} is specified, then all
4862instructions whose start address falls in the closed memory address
4863interval from @var{start_pc} to @var{end_pc} are returned. If neither
4864@var{end_pc} nor @var{count} are specified, then a single instruction at
4865@var{start_pc} is returned. For all of these cases, each element of the
4866returned list is a Python @code{dict} with the following string keys:
4867
4868@table @code
4869
4870@item addr
4871The value corresponding to this key is a Python long integer capturing
4872the memory address of the instruction.
4873
4874@item asm
4875The value corresponding to this key is a string value which represents
4876the instruction with assembly language mnemonics. The assembly
4877language flavor used is the same as that specified by the current CLI
4878variable @code{disassembly-flavor}. @xref{Machine Code}.
4879
4880@item length
4881The value corresponding to this key is the length (integer value) of the
4882instruction in bytes.
4883
4884@end table
4885@end defun
4886
4887@node Python Auto-loading
4888@subsection Python Auto-loading
4889@cindex Python auto-loading
4890
4891When a new object file is read (for example, due to the @code{file}
4892command, or because the inferior has loaded a shared library),
4893@value{GDBN} will look for Python support scripts in several ways:
4894@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
4895@xref{Auto-loading extensions}.
4896
4897The auto-loading feature is useful for supplying application-specific
4898debugging commands and scripts.
4899
4900Auto-loading can be enabled or disabled,
4901and the list of auto-loaded scripts can be printed.
4902
4903@table @code
4904@anchor{set auto-load python-scripts}
4905@kindex set auto-load python-scripts
4906@item set auto-load python-scripts [on|off]
4907Enable or disable the auto-loading of Python scripts.
4908
4909@anchor{show auto-load python-scripts}
4910@kindex show auto-load python-scripts
4911@item show auto-load python-scripts
4912Show whether auto-loading of Python scripts is enabled or disabled.
4913
4914@anchor{info auto-load python-scripts}
4915@kindex info auto-load python-scripts
4916@cindex print list of auto-loaded Python scripts
4917@item info auto-load python-scripts [@var{regexp}]
4918Print the list of all Python scripts that @value{GDBN} auto-loaded.
4919
4920Also printed is the list of Python scripts that were mentioned in
9f050062
DE
4921the @code{.debug_gdb_scripts} section and were either not found
4922(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
4923@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
4924This is useful because their names are not printed when @value{GDBN}
4925tries to load them and fails. There may be many of them, and printing
4926an error message for each one is problematic.
4927
4928If @var{regexp} is supplied only Python scripts with matching names are printed.
4929
4930Example:
4931
4932@smallexample
4933(gdb) info auto-load python-scripts
4934Loaded Script
4935Yes py-section-script.py
4936 full name: /tmp/py-section-script.py
4937No my-foo-pretty-printers.py
4938@end smallexample
4939@end table
4940
9f050062 4941When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
4942@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
4943function (@pxref{Objfiles In Python}). This can be useful for
4944registering objfile-specific pretty-printers and frame-filters.
4945
4946@node Python modules
4947@subsection Python modules
4948@cindex python modules
4949
4950@value{GDBN} comes with several modules to assist writing Python code.
4951
4952@menu
4953* gdb.printing:: Building and registering pretty-printers.
4954* gdb.types:: Utilities for working with types.
4955* gdb.prompt:: Utilities for prompt value substitution.
4956@end menu
4957
4958@node gdb.printing
4959@subsubsection gdb.printing
4960@cindex gdb.printing
4961
4962This module provides a collection of utilities for working with
4963pretty-printers.
4964
4965@table @code
4966@item PrettyPrinter (@var{name}, @var{subprinters}=None)
4967This class specifies the API that makes @samp{info pretty-printer},
4968@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
4969Pretty-printers should generally inherit from this class.
4970
4971@item SubPrettyPrinter (@var{name})
4972For printers that handle multiple types, this class specifies the
4973corresponding API for the subprinters.
4974
4975@item RegexpCollectionPrettyPrinter (@var{name})
4976Utility class for handling multiple printers, all recognized via
4977regular expressions.
4978@xref{Writing a Pretty-Printer}, for an example.
4979
4980@item FlagEnumerationPrinter (@var{name})
4981A pretty-printer which handles printing of @code{enum} values. Unlike
4982@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
4983work properly when there is some overlap between the enumeration
697aa1b7
EZ
4984constants. The argument @var{name} is the name of the printer and
4985also the name of the @code{enum} type to look up.
329baa95
DE
4986
4987@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
4988Register @var{printer} with the pretty-printer list of @var{obj}.
4989If @var{replace} is @code{True} then any existing copy of the printer
4990is replaced. Otherwise a @code{RuntimeError} exception is raised
4991if a printer with the same name already exists.
4992@end table
4993
4994@node gdb.types
4995@subsubsection gdb.types
4996@cindex gdb.types
4997
4998This module provides a collection of utilities for working with
4999@code{gdb.Type} objects.
5000
5001@table @code
5002@item get_basic_type (@var{type})
5003Return @var{type} with const and volatile qualifiers stripped,
5004and with typedefs and C@t{++} references converted to the underlying type.
5005
5006C@t{++} example:
5007
5008@smallexample
5009typedef const int const_int;
5010const_int foo (3);
5011const_int& foo_ref (foo);
5012int main () @{ return 0; @}
5013@end smallexample
5014
5015Then in gdb:
5016
5017@smallexample
5018(gdb) start
5019(gdb) python import gdb.types
5020(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5021(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5022int
5023@end smallexample
5024
5025@item has_field (@var{type}, @var{field})
5026Return @code{True} if @var{type}, assumed to be a type with fields
5027(e.g., a structure or union), has field @var{field}.
5028
5029@item make_enum_dict (@var{enum_type})
5030Return a Python @code{dictionary} type produced from @var{enum_type}.
5031
5032@item deep_items (@var{type})
5033Returns a Python iterator similar to the standard
5034@code{gdb.Type.iteritems} method, except that the iterator returned
5035by @code{deep_items} will recursively traverse anonymous struct or
5036union fields. For example:
5037
5038@smallexample
5039struct A
5040@{
5041 int a;
5042 union @{
5043 int b0;
5044 int b1;
5045 @};
5046@};
5047@end smallexample
5048
5049@noindent
5050Then in @value{GDBN}:
5051@smallexample
5052(@value{GDBP}) python import gdb.types
5053(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5054(@value{GDBP}) python print struct_a.keys ()
5055@{['a', '']@}
5056(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5057@{['a', 'b0', 'b1']@}
5058@end smallexample
5059
5060@item get_type_recognizers ()
5061Return a list of the enabled type recognizers for the current context.
5062This is called by @value{GDBN} during the type-printing process
5063(@pxref{Type Printing API}).
5064
5065@item apply_type_recognizers (recognizers, type_obj)
5066Apply the type recognizers, @var{recognizers}, to the type object
5067@var{type_obj}. If any recognizer returns a string, return that
5068string. Otherwise, return @code{None}. This is called by
5069@value{GDBN} during the type-printing process (@pxref{Type Printing
5070API}).
5071
5072@item register_type_printer (locus, printer)
697aa1b7
EZ
5073This is a convenience function to register a type printer
5074@var{printer}. The printer must implement the type printer protocol.
5075The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5076the printer is registered with that objfile; a @code{gdb.Progspace},
5077in which case the printer is registered with that progspace; or
5078@code{None}, in which case the printer is registered globally.
329baa95
DE
5079
5080@item TypePrinter
5081This is a base class that implements the type printer protocol. Type
5082printers are encouraged, but not required, to derive from this class.
5083It defines a constructor:
5084
5085@defmethod TypePrinter __init__ (self, name)
5086Initialize the type printer with the given name. The new printer
5087starts in the enabled state.
5088@end defmethod
5089
5090@end table
5091
5092@node gdb.prompt
5093@subsubsection gdb.prompt
5094@cindex gdb.prompt
5095
5096This module provides a method for prompt value-substitution.
5097
5098@table @code
5099@item substitute_prompt (@var{string})
5100Return @var{string} with escape sequences substituted by values. Some
5101escape sequences take arguments. You can specify arguments inside
5102``@{@}'' immediately following the escape sequence.
5103
5104The escape sequences you can pass to this function are:
5105
5106@table @code
5107@item \\
5108Substitute a backslash.
5109@item \e
5110Substitute an ESC character.
5111@item \f
5112Substitute the selected frame; an argument names a frame parameter.
5113@item \n
5114Substitute a newline.
5115@item \p
5116Substitute a parameter's value; the argument names the parameter.
5117@item \r
5118Substitute a carriage return.
5119@item \t
5120Substitute the selected thread; an argument names a thread parameter.
5121@item \v
5122Substitute the version of GDB.
5123@item \w
5124Substitute the current working directory.
5125@item \[
5126Begin a sequence of non-printing characters. These sequences are
5127typically used with the ESC character, and are not counted in the string
5128length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5129blue-colored ``(gdb)'' prompt where the length is five.
5130@item \]
5131End a sequence of non-printing characters.
5132@end table
5133
5134For example:
5135
5136@smallexample
5137substitute_prompt (``frame: \f,
5138 print arguments: \p@{print frame-arguments@}'')
5139@end smallexample
5140
5141@exdent will return the string:
5142
5143@smallexample
5144"frame: main, print arguments: scalars"
5145@end smallexample
5146@end table
This page took 0.342386 seconds and 4 git commands to generate.