python: Provide textual representation for Inferior and Objfile
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
331will be @code{None} and 0 respectively.
332@end defun
333
334@findex gdb.post_event
335@defun gdb.post_event (event)
336Put @var{event}, a callable object taking no arguments, into
337@value{GDBN}'s internal event queue. This callable will be invoked at
338some later point, during @value{GDBN}'s event processing. Events
339posted using @code{post_event} will be run in the order in which they
340were posted; however, there is no way to know when they will be
341processed relative to other events inside @value{GDBN}.
342
343@value{GDBN} is not thread-safe. If your Python program uses multiple
344threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 345functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
346this. For example:
347
348@smallexample
349(@value{GDBP}) python
350>import threading
351>
352>class Writer():
353> def __init__(self, message):
354> self.message = message;
355> def __call__(self):
356> gdb.write(self.message)
357>
358>class MyThread1 (threading.Thread):
359> def run (self):
360> gdb.post_event(Writer("Hello "))
361>
362>class MyThread2 (threading.Thread):
363> def run (self):
364> gdb.post_event(Writer("World\n"))
365>
366>MyThread1().start()
367>MyThread2().start()
368>end
369(@value{GDBP}) Hello World
370@end smallexample
371@end defun
372
373@findex gdb.write
374@defun gdb.write (string @r{[}, stream{]})
375Print a string to @value{GDBN}'s paginated output stream. The
376optional @var{stream} determines the stream to print to. The default
377stream is @value{GDBN}'s standard output stream. Possible stream
378values are:
379
380@table @code
381@findex STDOUT
382@findex gdb.STDOUT
383@item gdb.STDOUT
384@value{GDBN}'s standard output stream.
385
386@findex STDERR
387@findex gdb.STDERR
388@item gdb.STDERR
389@value{GDBN}'s standard error stream.
390
391@findex STDLOG
392@findex gdb.STDLOG
393@item gdb.STDLOG
394@value{GDBN}'s log stream (@pxref{Logging Output}).
395@end table
396
397Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
398call this function and will automatically direct the output to the
399relevant stream.
400@end defun
401
402@findex gdb.flush
403@defun gdb.flush ()
404Flush the buffer of a @value{GDBN} paginated stream so that the
405contents are displayed immediately. @value{GDBN} will flush the
406contents of a stream automatically when it encounters a newline in the
407buffer. The optional @var{stream} determines the stream to flush. The
408default stream is @value{GDBN}'s standard output stream. Possible
409stream values are:
410
411@table @code
412@findex STDOUT
413@findex gdb.STDOUT
414@item gdb.STDOUT
415@value{GDBN}'s standard output stream.
416
417@findex STDERR
418@findex gdb.STDERR
419@item gdb.STDERR
420@value{GDBN}'s standard error stream.
421
422@findex STDLOG
423@findex gdb.STDLOG
424@item gdb.STDLOG
425@value{GDBN}'s log stream (@pxref{Logging Output}).
426
427@end table
428
429Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
430call this function for the relevant stream.
431@end defun
432
433@findex gdb.target_charset
434@defun gdb.target_charset ()
435Return the name of the current target character set (@pxref{Character
436Sets}). This differs from @code{gdb.parameter('target-charset')} in
437that @samp{auto} is never returned.
438@end defun
439
440@findex gdb.target_wide_charset
441@defun gdb.target_wide_charset ()
442Return the name of the current target wide character set
443(@pxref{Character Sets}). This differs from
444@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
445never returned.
446@end defun
447
448@findex gdb.solib_name
449@defun gdb.solib_name (address)
450Return the name of the shared library holding the given @var{address}
451as a string, or @code{None}.
452@end defun
453
454@findex gdb.decode_line
0d2a5839 455@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
456Return locations of the line specified by @var{expression}, or of the
457current line if no argument was given. This function returns a Python
458tuple containing two elements. The first element contains a string
459holding any unparsed section of @var{expression} (or @code{None} if
460the expression has been fully parsed). The second element contains
461either @code{None} or another tuple that contains all the locations
462that match the expression represented as @code{gdb.Symtab_and_line}
463objects (@pxref{Symbol Tables In Python}). If @var{expression} is
464provided, it is decoded the way that @value{GDBN}'s inbuilt
465@code{break} or @code{edit} commands do (@pxref{Specify Location}).
466@end defun
467
468@defun gdb.prompt_hook (current_prompt)
469@anchor{prompt_hook}
470
471If @var{prompt_hook} is callable, @value{GDBN} will call the method
472assigned to this operation before a prompt is displayed by
473@value{GDBN}.
474
475The parameter @code{current_prompt} contains the current @value{GDBN}
476prompt. This method must return a Python string, or @code{None}. If
477a string is returned, the @value{GDBN} prompt will be set to that
478string. If @code{None} is returned, @value{GDBN} will continue to use
479the current prompt.
480
481Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
482such as those used by readline for command input, and annotation
483related prompts are prohibited from being changed.
484@end defun
485
486@node Exception Handling
487@subsubsection Exception Handling
488@cindex python exceptions
489@cindex exceptions, python
490
491When executing the @code{python} command, Python exceptions
492uncaught within the Python code are translated to calls to
493@value{GDBN} error-reporting mechanism. If the command that called
494@code{python} does not handle the error, @value{GDBN} will
495terminate it and print an error message containing the Python
496exception name, the associated value, and the Python call stack
497backtrace at the point where the exception was raised. Example:
498
499@smallexample
500(@value{GDBP}) python print foo
501Traceback (most recent call last):
502 File "<string>", line 1, in <module>
503NameError: name 'foo' is not defined
504@end smallexample
505
506@value{GDBN} errors that happen in @value{GDBN} commands invoked by
507Python code are converted to Python exceptions. The type of the
508Python exception depends on the error.
509
510@ftable @code
511@item gdb.error
512This is the base class for most exceptions generated by @value{GDBN}.
513It is derived from @code{RuntimeError}, for compatibility with earlier
514versions of @value{GDBN}.
515
516If an error occurring in @value{GDBN} does not fit into some more
517specific category, then the generated exception will have this type.
518
519@item gdb.MemoryError
520This is a subclass of @code{gdb.error} which is thrown when an
521operation tried to access invalid memory in the inferior.
522
523@item KeyboardInterrupt
524User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
525prompt) is translated to a Python @code{KeyboardInterrupt} exception.
526@end ftable
527
528In all cases, your exception handler will see the @value{GDBN} error
529message as its value and the Python call stack backtrace at the Python
530statement closest to where the @value{GDBN} error occured as the
531traceback.
532
4a5a194a
TT
533
534When implementing @value{GDBN} commands in Python via
535@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
536to be able to throw an exception that doesn't cause a traceback to be
537printed. For example, the user may have invoked the command
538incorrectly. @value{GDBN} provides a special exception class that can
539be used for this purpose.
540
541@ftable @code
542@item gdb.GdbError
543When thrown from a command or function, this exception will cause the
544command or function to fail, but the Python stack will not be
545displayed. @value{GDBN} does not throw this exception itself, but
546rather recognizes it when thrown from user Python code. Example:
329baa95
DE
547
548@smallexample
549(gdb) python
550>class HelloWorld (gdb.Command):
551> """Greet the whole world."""
552> def __init__ (self):
553> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
554> def invoke (self, args, from_tty):
555> argv = gdb.string_to_argv (args)
556> if len (argv) != 0:
557> raise gdb.GdbError ("hello-world takes no arguments")
558> print "Hello, World!"
559>HelloWorld ()
560>end
561(gdb) hello-world 42
562hello-world takes no arguments
563@end smallexample
4a5a194a 564@end ftable
329baa95
DE
565
566@node Values From Inferior
567@subsubsection Values From Inferior
568@cindex values from inferior, with Python
569@cindex python, working with values from inferior
570
571@cindex @code{gdb.Value}
572@value{GDBN} provides values it obtains from the inferior program in
573an object of type @code{gdb.Value}. @value{GDBN} uses this object
574for its internal bookkeeping of the inferior's values, and for
575fetching values when necessary.
576
577Inferior values that are simple scalars can be used directly in
578Python expressions that are valid for the value's data type. Here's
579an example for an integer or floating-point value @code{some_val}:
580
581@smallexample
582bar = some_val + 2
583@end smallexample
584
585@noindent
586As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
587whose values are of the same type as those of @code{some_val}. Valid
588Python operations can also be performed on @code{gdb.Value} objects
589representing a @code{struct} or @code{class} object. For such cases,
590the overloaded operator (if present), is used to perform the operation.
591For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
592representing instances of a @code{class} which overloads the @code{+}
593operator, then one can use the @code{+} operator in their Python script
594as follows:
595
596@smallexample
597val3 = val1 + val2
598@end smallexample
599
600@noindent
601The result of the operation @code{val3} is also a @code{gdb.Value}
602object corresponding to the value returned by the overloaded @code{+}
603operator. In general, overloaded operators are invoked for the
604following operations: @code{+} (binary addition), @code{-} (binary
605subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
606@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
607
608Inferior values that are structures or instances of some class can
609be accessed using the Python @dfn{dictionary syntax}. For example, if
610@code{some_val} is a @code{gdb.Value} instance holding a structure, you
611can access its @code{foo} element with:
612
613@smallexample
614bar = some_val['foo']
615@end smallexample
616
617@cindex getting structure elements using gdb.Field objects as subscripts
618Again, @code{bar} will also be a @code{gdb.Value} object. Structure
619elements can also be accessed by using @code{gdb.Field} objects as
620subscripts (@pxref{Types In Python}, for more information on
621@code{gdb.Field} objects). For example, if @code{foo_field} is a
622@code{gdb.Field} object corresponding to element @code{foo} of the above
623structure, then @code{bar} can also be accessed as follows:
624
625@smallexample
626bar = some_val[foo_field]
627@end smallexample
628
629A @code{gdb.Value} that represents a function can be executed via
630inferior function call. Any arguments provided to the call must match
631the function's prototype, and must be provided in the order specified
632by that prototype.
633
634For example, @code{some_val} is a @code{gdb.Value} instance
635representing a function that takes two integers as arguments. To
636execute this function, call it like so:
637
638@smallexample
639result = some_val (10,20)
640@end smallexample
641
642Any values returned from a function call will be stored as a
643@code{gdb.Value}.
644
645The following attributes are provided:
646
647@defvar Value.address
648If this object is addressable, this read-only attribute holds a
649@code{gdb.Value} object representing the address. Otherwise,
650this attribute holds @code{None}.
651@end defvar
652
653@cindex optimized out value in Python
654@defvar Value.is_optimized_out
655This read-only boolean attribute is true if the compiler optimized out
656this value, thus it is not available for fetching from the inferior.
657@end defvar
658
659@defvar Value.type
660The type of this @code{gdb.Value}. The value of this attribute is a
661@code{gdb.Type} object (@pxref{Types In Python}).
662@end defvar
663
664@defvar Value.dynamic_type
9da10427
TT
665The dynamic type of this @code{gdb.Value}. This uses the object's
666virtual table and the C@t{++} run-time type information
667(@acronym{RTTI}) to determine the dynamic type of the value. If this
668value is of class type, it will return the class in which the value is
669embedded, if any. If this value is of pointer or reference to a class
670type, it will compute the dynamic type of the referenced object, and
671return a pointer or reference to that type, respectively. In all
672other cases, it will return the value's static type.
329baa95
DE
673
674Note that this feature will only work when debugging a C@t{++} program
675that includes @acronym{RTTI} for the object in question. Otherwise,
676it will just return the static type of the value as in @kbd{ptype foo}
677(@pxref{Symbols, ptype}).
678@end defvar
679
680@defvar Value.is_lazy
681The value of this read-only boolean attribute is @code{True} if this
682@code{gdb.Value} has not yet been fetched from the inferior.
683@value{GDBN} does not fetch values until necessary, for efficiency.
684For example:
685
686@smallexample
687myval = gdb.parse_and_eval ('somevar')
688@end smallexample
689
690The value of @code{somevar} is not fetched at this time. It will be
691fetched when the value is needed, or when the @code{fetch_lazy}
692method is invoked.
693@end defvar
694
695The following methods are provided:
696
697@defun Value.__init__ (@var{val})
698Many Python values can be converted directly to a @code{gdb.Value} via
699this object initializer. Specifically:
700
701@table @asis
702@item Python boolean
703A Python boolean is converted to the boolean type from the current
704language.
705
706@item Python integer
707A Python integer is converted to the C @code{long} type for the
708current architecture.
709
710@item Python long
711A Python long is converted to the C @code{long long} type for the
712current architecture.
713
714@item Python float
715A Python float is converted to the C @code{double} type for the
716current architecture.
717
718@item Python string
b3ce5e5f
DE
719A Python string is converted to a target string in the current target
720language using the current target encoding.
721If a character cannot be represented in the current target encoding,
722then an exception is thrown.
329baa95
DE
723
724@item @code{gdb.Value}
725If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
726
727@item @code{gdb.LazyString}
728If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
729Python}), then the lazy string's @code{value} method is called, and
730its result is used.
731@end table
732@end defun
733
734@defun Value.cast (type)
735Return a new instance of @code{gdb.Value} that is the result of
736casting this instance to the type described by @var{type}, which must
737be a @code{gdb.Type} object. If the cast cannot be performed for some
738reason, this method throws an exception.
739@end defun
740
741@defun Value.dereference ()
742For pointer data types, this method returns a new @code{gdb.Value} object
743whose contents is the object pointed to by the pointer. For example, if
744@code{foo} is a C pointer to an @code{int}, declared in your C program as
745
746@smallexample
747int *foo;
748@end smallexample
749
750@noindent
751then you can use the corresponding @code{gdb.Value} to access what
752@code{foo} points to like this:
753
754@smallexample
755bar = foo.dereference ()
756@end smallexample
757
758The result @code{bar} will be a @code{gdb.Value} object holding the
759value pointed to by @code{foo}.
760
761A similar function @code{Value.referenced_value} exists which also
762returns @code{gdb.Value} objects corresonding to the values pointed to
763by pointer values (and additionally, values referenced by reference
764values). However, the behavior of @code{Value.dereference}
765differs from @code{Value.referenced_value} by the fact that the
766behavior of @code{Value.dereference} is identical to applying the C
767unary operator @code{*} on a given value. For example, consider a
768reference to a pointer @code{ptrref}, declared in your C@t{++} program
769as
770
771@smallexample
772typedef int *intptr;
773...
774int val = 10;
775intptr ptr = &val;
776intptr &ptrref = ptr;
777@end smallexample
778
779Though @code{ptrref} is a reference value, one can apply the method
780@code{Value.dereference} to the @code{gdb.Value} object corresponding
781to it and obtain a @code{gdb.Value} which is identical to that
782corresponding to @code{val}. However, if you apply the method
783@code{Value.referenced_value}, the result would be a @code{gdb.Value}
784object identical to that corresponding to @code{ptr}.
785
786@smallexample
787py_ptrref = gdb.parse_and_eval ("ptrref")
788py_val = py_ptrref.dereference ()
789py_ptr = py_ptrref.referenced_value ()
790@end smallexample
791
792The @code{gdb.Value} object @code{py_val} is identical to that
793corresponding to @code{val}, and @code{py_ptr} is identical to that
794corresponding to @code{ptr}. In general, @code{Value.dereference} can
795be applied whenever the C unary operator @code{*} can be applied
796to the corresponding C value. For those cases where applying both
797@code{Value.dereference} and @code{Value.referenced_value} is allowed,
798the results obtained need not be identical (as we have seen in the above
799example). The results are however identical when applied on
800@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
801objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
802@end defun
803
804@defun Value.referenced_value ()
805For pointer or reference data types, this method returns a new
806@code{gdb.Value} object corresponding to the value referenced by the
807pointer/reference value. For pointer data types,
808@code{Value.dereference} and @code{Value.referenced_value} produce
809identical results. The difference between these methods is that
810@code{Value.dereference} cannot get the values referenced by reference
811values. For example, consider a reference to an @code{int}, declared
812in your C@t{++} program as
813
814@smallexample
815int val = 10;
816int &ref = val;
817@end smallexample
818
819@noindent
820then applying @code{Value.dereference} to the @code{gdb.Value} object
821corresponding to @code{ref} will result in an error, while applying
822@code{Value.referenced_value} will result in a @code{gdb.Value} object
823identical to that corresponding to @code{val}.
824
825@smallexample
826py_ref = gdb.parse_and_eval ("ref")
827er_ref = py_ref.dereference () # Results in error
828py_val = py_ref.referenced_value () # Returns the referenced value
829@end smallexample
830
831The @code{gdb.Value} object @code{py_val} is identical to that
832corresponding to @code{val}.
833@end defun
834
4c082a81
SC
835@defun Value.reference_value ()
836Return a @code{gdb.Value} object which is a reference to the value
837encapsulated by this instance.
838@end defun
839
840@defun Value.const_value ()
841Return a @code{gdb.Value} object which is a @code{const} version of the
842value encapsulated by this instance.
843@end defun
844
329baa95
DE
845@defun Value.dynamic_cast (type)
846Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
847operator were used. Consult a C@t{++} reference for details.
848@end defun
849
850@defun Value.reinterpret_cast (type)
851Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
852operator were used. Consult a C@t{++} reference for details.
853@end defun
854
855@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
856If this @code{gdb.Value} represents a string, then this method
857converts the contents to a Python string. Otherwise, this method will
858throw an exception.
859
b3ce5e5f
DE
860Values are interpreted as strings according to the rules of the
861current language. If the optional length argument is given, the
862string will be converted to that length, and will include any embedded
863zeroes that the string may contain. Otherwise, for languages
864where the string is zero-terminated, the entire string will be
865converted.
329baa95 866
b3ce5e5f
DE
867For example, in C-like languages, a value is a string if it is a pointer
868to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
869or @code{char32_t}.
329baa95
DE
870
871If the optional @var{encoding} argument is given, it must be a string
872naming the encoding of the string in the @code{gdb.Value}, such as
873@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
874the same encodings as the corresponding argument to Python's
875@code{string.decode} method, and the Python codec machinery will be used
876to convert the string. If @var{encoding} is not given, or if
877@var{encoding} is the empty string, then either the @code{target-charset}
878(@pxref{Character Sets}) will be used, or a language-specific encoding
879will be used, if the current language is able to supply one.
880
881The optional @var{errors} argument is the same as the corresponding
882argument to Python's @code{string.decode} method.
883
884If the optional @var{length} argument is given, the string will be
885fetched and converted to the given length.
886@end defun
887
888@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
889If this @code{gdb.Value} represents a string, then this method
890converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
891In Python}). Otherwise, this method will throw an exception.
892
893If the optional @var{encoding} argument is given, it must be a string
894naming the encoding of the @code{gdb.LazyString}. Some examples are:
895@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
896@var{encoding} argument is an encoding that @value{GDBN} does
897recognize, @value{GDBN} will raise an error.
898
899When a lazy string is printed, the @value{GDBN} encoding machinery is
900used to convert the string during printing. If the optional
901@var{encoding} argument is not provided, or is an empty string,
902@value{GDBN} will automatically select the encoding most suitable for
903the string type. For further information on encoding in @value{GDBN}
904please see @ref{Character Sets}.
905
906If the optional @var{length} argument is given, the string will be
907fetched and encoded to the length of characters specified. If
908the @var{length} argument is not provided, the string will be fetched
909and encoded until a null of appropriate width is found.
910@end defun
911
912@defun Value.fetch_lazy ()
913If the @code{gdb.Value} object is currently a lazy value
914(@code{gdb.Value.is_lazy} is @code{True}), then the value is
915fetched from the inferior. Any errors that occur in the process
916will produce a Python exception.
917
918If the @code{gdb.Value} object is not a lazy value, this method
919has no effect.
920
921This method does not return a value.
922@end defun
923
924
925@node Types In Python
926@subsubsection Types In Python
927@cindex types in Python
928@cindex Python, working with types
929
930@tindex gdb.Type
931@value{GDBN} represents types from the inferior using the class
932@code{gdb.Type}.
933
934The following type-related functions are available in the @code{gdb}
935module:
936
937@findex gdb.lookup_type
938@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 939This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
940
941If @var{block} is given, then @var{name} is looked up in that scope.
942Otherwise, it is searched for globally.
943
944Ordinarily, this function will return an instance of @code{gdb.Type}.
945If the named type cannot be found, it will throw an exception.
946@end defun
947
948If the type is a structure or class type, or an enum type, the fields
949of that type can be accessed using the Python @dfn{dictionary syntax}.
950For example, if @code{some_type} is a @code{gdb.Type} instance holding
951a structure type, you can access its @code{foo} field with:
952
953@smallexample
954bar = some_type['foo']
955@end smallexample
956
957@code{bar} will be a @code{gdb.Field} object; see below under the
958description of the @code{Type.fields} method for a description of the
959@code{gdb.Field} class.
960
961An instance of @code{Type} has the following attributes:
962
6d7bb824
TT
963@defvar Type.alignof
964The alignment of this type, in bytes. Type alignment comes from the
965debugging information; if it was not specified, then @value{GDBN} will
966use the relevant ABI to try to determine the alignment. In some
967cases, even this is not possible, and zero will be returned.
968@end defvar
969
329baa95
DE
970@defvar Type.code
971The type code for this type. The type code will be one of the
972@code{TYPE_CODE_} constants defined below.
973@end defvar
974
975@defvar Type.name
976The name of this type. If this type has no name, then @code{None}
977is returned.
978@end defvar
979
980@defvar Type.sizeof
981The size of this type, in target @code{char} units. Usually, a
982target's @code{char} type will be an 8-bit byte. However, on some
983unusual platforms, this type may have a different size.
984@end defvar
985
986@defvar Type.tag
987The tag name for this type. The tag name is the name after
988@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
989languages have this concept. If this type has no tag name, then
990@code{None} is returned.
991@end defvar
992
993The following methods are provided:
994
995@defun Type.fields ()
996For structure and union types, this method returns the fields. Range
997types have two fields, the minimum and maximum values. Enum types
998have one field per enum constant. Function and method types have one
999field per parameter. The base types of C@t{++} classes are also
1000represented as fields. If the type has no fields, or does not fit
1001into one of these categories, an empty sequence will be returned.
1002
1003Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1004@table @code
1005@item bitpos
1006This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1007(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1008in bits, from the start of the containing type.
1009
1010@item enumval
1011This attribute is only available for @code{enum} fields, and its value
1012is the enumeration member's integer representation.
1013
1014@item name
1015The name of the field, or @code{None} for anonymous fields.
1016
1017@item artificial
1018This is @code{True} if the field is artificial, usually meaning that
1019it was provided by the compiler and not the user. This attribute is
1020always provided, and is @code{False} if the field is not artificial.
1021
1022@item is_base_class
1023This is @code{True} if the field represents a base class of a C@t{++}
1024structure. This attribute is always provided, and is @code{False}
1025if the field is not a base class of the type that is the argument of
1026@code{fields}, or if that type was not a C@t{++} class.
1027
1028@item bitsize
1029If the field is packed, or is a bitfield, then this will have a
1030non-zero value, which is the size of the field in bits. Otherwise,
1031this will be zero; in this case the field's size is given by its type.
1032
1033@item type
1034The type of the field. This is usually an instance of @code{Type},
1035but it can be @code{None} in some situations.
1036
1037@item parent_type
1038The type which contains this field. This is an instance of
1039@code{gdb.Type}.
1040@end table
1041@end defun
1042
1043@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1044Return a new @code{gdb.Type} object which represents an array of this
1045type. If one argument is given, it is the inclusive upper bound of
1046the array; in this case the lower bound is zero. If two arguments are
1047given, the first argument is the lower bound of the array, and the
1048second argument is the upper bound of the array. An array's length
1049must not be negative, but the bounds can be.
1050@end defun
1051
1052@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1053Return a new @code{gdb.Type} object which represents a vector of this
1054type. If one argument is given, it is the inclusive upper bound of
1055the vector; in this case the lower bound is zero. If two arguments are
1056given, the first argument is the lower bound of the vector, and the
1057second argument is the upper bound of the vector. A vector's length
1058must not be negative, but the bounds can be.
1059
1060The difference between an @code{array} and a @code{vector} is that
1061arrays behave like in C: when used in expressions they decay to a pointer
1062to the first element whereas vectors are treated as first class values.
1063@end defun
1064
1065@defun Type.const ()
1066Return a new @code{gdb.Type} object which represents a
1067@code{const}-qualified variant of this type.
1068@end defun
1069
1070@defun Type.volatile ()
1071Return a new @code{gdb.Type} object which represents a
1072@code{volatile}-qualified variant of this type.
1073@end defun
1074
1075@defun Type.unqualified ()
1076Return a new @code{gdb.Type} object which represents an unqualified
1077variant of this type. That is, the result is neither @code{const} nor
1078@code{volatile}.
1079@end defun
1080
1081@defun Type.range ()
1082Return a Python @code{Tuple} object that contains two elements: the
1083low bound of the argument type and the high bound of that type. If
1084the type does not have a range, @value{GDBN} will raise a
1085@code{gdb.error} exception (@pxref{Exception Handling}).
1086@end defun
1087
1088@defun Type.reference ()
1089Return a new @code{gdb.Type} object which represents a reference to this
1090type.
1091@end defun
1092
1093@defun Type.pointer ()
1094Return a new @code{gdb.Type} object which represents a pointer to this
1095type.
1096@end defun
1097
1098@defun Type.strip_typedefs ()
1099Return a new @code{gdb.Type} that represents the real type,
1100after removing all layers of typedefs.
1101@end defun
1102
1103@defun Type.target ()
1104Return a new @code{gdb.Type} object which represents the target type
1105of this type.
1106
1107For a pointer type, the target type is the type of the pointed-to
1108object. For an array type (meaning C-like arrays), the target type is
1109the type of the elements of the array. For a function or method type,
1110the target type is the type of the return value. For a complex type,
1111the target type is the type of the elements. For a typedef, the
1112target type is the aliased type.
1113
1114If the type does not have a target, this method will throw an
1115exception.
1116@end defun
1117
1118@defun Type.template_argument (n @r{[}, block@r{]})
1119If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1120return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1121value of the @var{n}th template argument (indexed starting at 0).
329baa95 1122
1a6a384b
JL
1123If this @code{gdb.Type} is not a template type, or if the type has fewer
1124than @var{n} template arguments, this will throw an exception.
1125Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1126
1127If @var{block} is given, then @var{name} is looked up in that scope.
1128Otherwise, it is searched for globally.
1129@end defun
1130
59fb7612
SS
1131@defun Type.optimized_out ()
1132Return @code{gdb.Value} instance of this type whose value is optimized
1133out. This allows a frame decorator to indicate that the value of an
1134argument or a local variable is not known.
1135@end defun
329baa95
DE
1136
1137Each type has a code, which indicates what category this type falls
1138into. The available type categories are represented by constants
1139defined in the @code{gdb} module:
1140
b3ce5e5f
DE
1141@vtable @code
1142@vindex TYPE_CODE_PTR
329baa95
DE
1143@item gdb.TYPE_CODE_PTR
1144The type is a pointer.
1145
b3ce5e5f 1146@vindex TYPE_CODE_ARRAY
329baa95
DE
1147@item gdb.TYPE_CODE_ARRAY
1148The type is an array.
1149
b3ce5e5f 1150@vindex TYPE_CODE_STRUCT
329baa95
DE
1151@item gdb.TYPE_CODE_STRUCT
1152The type is a structure.
1153
b3ce5e5f 1154@vindex TYPE_CODE_UNION
329baa95
DE
1155@item gdb.TYPE_CODE_UNION
1156The type is a union.
1157
b3ce5e5f 1158@vindex TYPE_CODE_ENUM
329baa95
DE
1159@item gdb.TYPE_CODE_ENUM
1160The type is an enum.
1161
b3ce5e5f 1162@vindex TYPE_CODE_FLAGS
329baa95
DE
1163@item gdb.TYPE_CODE_FLAGS
1164A bit flags type, used for things such as status registers.
1165
b3ce5e5f 1166@vindex TYPE_CODE_FUNC
329baa95
DE
1167@item gdb.TYPE_CODE_FUNC
1168The type is a function.
1169
b3ce5e5f 1170@vindex TYPE_CODE_INT
329baa95
DE
1171@item gdb.TYPE_CODE_INT
1172The type is an integer type.
1173
b3ce5e5f 1174@vindex TYPE_CODE_FLT
329baa95
DE
1175@item gdb.TYPE_CODE_FLT
1176A floating point type.
1177
b3ce5e5f 1178@vindex TYPE_CODE_VOID
329baa95
DE
1179@item gdb.TYPE_CODE_VOID
1180The special type @code{void}.
1181
b3ce5e5f 1182@vindex TYPE_CODE_SET
329baa95
DE
1183@item gdb.TYPE_CODE_SET
1184A Pascal set type.
1185
b3ce5e5f 1186@vindex TYPE_CODE_RANGE
329baa95
DE
1187@item gdb.TYPE_CODE_RANGE
1188A range type, that is, an integer type with bounds.
1189
b3ce5e5f 1190@vindex TYPE_CODE_STRING
329baa95
DE
1191@item gdb.TYPE_CODE_STRING
1192A string type. Note that this is only used for certain languages with
1193language-defined string types; C strings are not represented this way.
1194
b3ce5e5f 1195@vindex TYPE_CODE_BITSTRING
329baa95
DE
1196@item gdb.TYPE_CODE_BITSTRING
1197A string of bits. It is deprecated.
1198
b3ce5e5f 1199@vindex TYPE_CODE_ERROR
329baa95
DE
1200@item gdb.TYPE_CODE_ERROR
1201An unknown or erroneous type.
1202
b3ce5e5f 1203@vindex TYPE_CODE_METHOD
329baa95 1204@item gdb.TYPE_CODE_METHOD
9c37b5ae 1205A method type, as found in C@t{++}.
329baa95 1206
b3ce5e5f 1207@vindex TYPE_CODE_METHODPTR
329baa95
DE
1208@item gdb.TYPE_CODE_METHODPTR
1209A pointer-to-member-function.
1210
b3ce5e5f 1211@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1212@item gdb.TYPE_CODE_MEMBERPTR
1213A pointer-to-member.
1214
b3ce5e5f 1215@vindex TYPE_CODE_REF
329baa95
DE
1216@item gdb.TYPE_CODE_REF
1217A reference type.
1218
3fcf899d
AV
1219@vindex TYPE_CODE_RVALUE_REF
1220@item gdb.TYPE_CODE_RVALUE_REF
1221A C@t{++}11 rvalue reference type.
1222
b3ce5e5f 1223@vindex TYPE_CODE_CHAR
329baa95
DE
1224@item gdb.TYPE_CODE_CHAR
1225A character type.
1226
b3ce5e5f 1227@vindex TYPE_CODE_BOOL
329baa95
DE
1228@item gdb.TYPE_CODE_BOOL
1229A boolean type.
1230
b3ce5e5f 1231@vindex TYPE_CODE_COMPLEX
329baa95
DE
1232@item gdb.TYPE_CODE_COMPLEX
1233A complex float type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1236@item gdb.TYPE_CODE_TYPEDEF
1237A typedef to some other type.
1238
b3ce5e5f 1239@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1240@item gdb.TYPE_CODE_NAMESPACE
1241A C@t{++} namespace.
1242
b3ce5e5f 1243@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1244@item gdb.TYPE_CODE_DECFLOAT
1245A decimal floating point type.
1246
b3ce5e5f 1247@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1248@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1249A function internal to @value{GDBN}. This is the type used to represent
1250convenience functions.
b3ce5e5f 1251@end vtable
329baa95
DE
1252
1253Further support for types is provided in the @code{gdb.types}
1254Python module (@pxref{gdb.types}).
1255
1256@node Pretty Printing API
1257@subsubsection Pretty Printing API
b3ce5e5f 1258@cindex python pretty printing api
329baa95 1259
329baa95 1260A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1261specific interface, defined here. An example output is provided
1262(@pxref{Pretty Printing}).
329baa95
DE
1263
1264@defun pretty_printer.children (self)
1265@value{GDBN} will call this method on a pretty-printer to compute the
1266children of the pretty-printer's value.
1267
1268This method must return an object conforming to the Python iterator
1269protocol. Each item returned by the iterator must be a tuple holding
1270two elements. The first element is the ``name'' of the child; the
1271second element is the child's value. The value can be any Python
1272object which is convertible to a @value{GDBN} value.
1273
1274This method is optional. If it does not exist, @value{GDBN} will act
1275as though the value has no children.
1276@end defun
1277
1278@defun pretty_printer.display_hint (self)
1279The CLI may call this method and use its result to change the
1280formatting of a value. The result will also be supplied to an MI
1281consumer as a @samp{displayhint} attribute of the variable being
1282printed.
1283
1284This method is optional. If it does exist, this method must return a
1285string.
1286
1287Some display hints are predefined by @value{GDBN}:
1288
1289@table @samp
1290@item array
1291Indicate that the object being printed is ``array-like''. The CLI
1292uses this to respect parameters such as @code{set print elements} and
1293@code{set print array}.
1294
1295@item map
1296Indicate that the object being printed is ``map-like'', and that the
1297children of this value can be assumed to alternate between keys and
1298values.
1299
1300@item string
1301Indicate that the object being printed is ``string-like''. If the
1302printer's @code{to_string} method returns a Python string of some
1303kind, then @value{GDBN} will call its internal language-specific
1304string-printing function to format the string. For the CLI this means
1305adding quotation marks, possibly escaping some characters, respecting
1306@code{set print elements}, and the like.
1307@end table
1308@end defun
1309
1310@defun pretty_printer.to_string (self)
1311@value{GDBN} will call this method to display the string
1312representation of the value passed to the object's constructor.
1313
1314When printing from the CLI, if the @code{to_string} method exists,
1315then @value{GDBN} will prepend its result to the values returned by
1316@code{children}. Exactly how this formatting is done is dependent on
1317the display hint, and may change as more hints are added. Also,
1318depending on the print settings (@pxref{Print Settings}), the CLI may
1319print just the result of @code{to_string} in a stack trace, omitting
1320the result of @code{children}.
1321
1322If this method returns a string, it is printed verbatim.
1323
1324Otherwise, if this method returns an instance of @code{gdb.Value},
1325then @value{GDBN} prints this value. This may result in a call to
1326another pretty-printer.
1327
1328If instead the method returns a Python value which is convertible to a
1329@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1330the resulting value. Again, this may result in a call to another
1331pretty-printer. Python scalars (integers, floats, and booleans) and
1332strings are convertible to @code{gdb.Value}; other types are not.
1333
1334Finally, if this method returns @code{None} then no further operations
1335are peformed in this method and nothing is printed.
1336
1337If the result is not one of these types, an exception is raised.
1338@end defun
1339
1340@value{GDBN} provides a function which can be used to look up the
1341default pretty-printer for a @code{gdb.Value}:
1342
1343@findex gdb.default_visualizer
1344@defun gdb.default_visualizer (value)
1345This function takes a @code{gdb.Value} object as an argument. If a
1346pretty-printer for this value exists, then it is returned. If no such
1347printer exists, then this returns @code{None}.
1348@end defun
1349
1350@node Selecting Pretty-Printers
1351@subsubsection Selecting Pretty-Printers
b3ce5e5f 1352@cindex selecting python pretty-printers
329baa95
DE
1353
1354The Python list @code{gdb.pretty_printers} contains an array of
1355functions or callable objects that have been registered via addition
1356as a pretty-printer. Printers in this list are called @code{global}
1357printers, they're available when debugging all inferiors.
1358Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1359Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1360attribute.
1361
1362Each function on these lists is passed a single @code{gdb.Value}
1363argument and should return a pretty-printer object conforming to the
1364interface definition above (@pxref{Pretty Printing API}). If a function
1365cannot create a pretty-printer for the value, it should return
1366@code{None}.
1367
1368@value{GDBN} first checks the @code{pretty_printers} attribute of each
1369@code{gdb.Objfile} in the current program space and iteratively calls
1370each enabled lookup routine in the list for that @code{gdb.Objfile}
1371until it receives a pretty-printer object.
1372If no pretty-printer is found in the objfile lists, @value{GDBN} then
1373searches the pretty-printer list of the current program space,
1374calling each enabled function until an object is returned.
1375After these lists have been exhausted, it tries the global
1376@code{gdb.pretty_printers} list, again calling each enabled function until an
1377object is returned.
1378
1379The order in which the objfiles are searched is not specified. For a
1380given list, functions are always invoked from the head of the list,
1381and iterated over sequentially until the end of the list, or a printer
1382object is returned.
1383
1384For various reasons a pretty-printer may not work.
1385For example, the underlying data structure may have changed and
1386the pretty-printer is out of date.
1387
1388The consequences of a broken pretty-printer are severe enough that
1389@value{GDBN} provides support for enabling and disabling individual
1390printers. For example, if @code{print frame-arguments} is on,
1391a backtrace can become highly illegible if any argument is printed
1392with a broken printer.
1393
1394Pretty-printers are enabled and disabled by attaching an @code{enabled}
1395attribute to the registered function or callable object. If this attribute
1396is present and its value is @code{False}, the printer is disabled, otherwise
1397the printer is enabled.
1398
1399@node Writing a Pretty-Printer
1400@subsubsection Writing a Pretty-Printer
1401@cindex writing a pretty-printer
1402
1403A pretty-printer consists of two parts: a lookup function to detect
1404if the type is supported, and the printer itself.
1405
1406Here is an example showing how a @code{std::string} printer might be
1407written. @xref{Pretty Printing API}, for details on the API this class
1408must provide.
1409
1410@smallexample
1411class StdStringPrinter(object):
1412 "Print a std::string"
1413
1414 def __init__(self, val):
1415 self.val = val
1416
1417 def to_string(self):
1418 return self.val['_M_dataplus']['_M_p']
1419
1420 def display_hint(self):
1421 return 'string'
1422@end smallexample
1423
1424And here is an example showing how a lookup function for the printer
1425example above might be written.
1426
1427@smallexample
1428def str_lookup_function(val):
1429 lookup_tag = val.type.tag
1430 if lookup_tag == None:
1431 return None
1432 regex = re.compile("^std::basic_string<char,.*>$")
1433 if regex.match(lookup_tag):
1434 return StdStringPrinter(val)
1435 return None
1436@end smallexample
1437
1438The example lookup function extracts the value's type, and attempts to
1439match it to a type that it can pretty-print. If it is a type the
1440printer can pretty-print, it will return a printer object. If not, it
1441returns @code{None}.
1442
1443We recommend that you put your core pretty-printers into a Python
1444package. If your pretty-printers are for use with a library, we
1445further recommend embedding a version number into the package name.
1446This practice will enable @value{GDBN} to load multiple versions of
1447your pretty-printers at the same time, because they will have
1448different names.
1449
1450You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1451can be evaluated multiple times without changing its meaning. An
1452ideal auto-load file will consist solely of @code{import}s of your
1453printer modules, followed by a call to a register pretty-printers with
1454the current objfile.
1455
1456Taken as a whole, this approach will scale nicely to multiple
1457inferiors, each potentially using a different library version.
1458Embedding a version number in the Python package name will ensure that
1459@value{GDBN} is able to load both sets of printers simultaneously.
1460Then, because the search for pretty-printers is done by objfile, and
1461because your auto-loaded code took care to register your library's
1462printers with a specific objfile, @value{GDBN} will find the correct
1463printers for the specific version of the library used by each
1464inferior.
1465
1466To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1467this code might appear in @code{gdb.libstdcxx.v6}:
1468
1469@smallexample
1470def register_printers(objfile):
1471 objfile.pretty_printers.append(str_lookup_function)
1472@end smallexample
1473
1474@noindent
1475And then the corresponding contents of the auto-load file would be:
1476
1477@smallexample
1478import gdb.libstdcxx.v6
1479gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1480@end smallexample
1481
1482The previous example illustrates a basic pretty-printer.
1483There are a few things that can be improved on.
1484The printer doesn't have a name, making it hard to identify in a
1485list of installed printers. The lookup function has a name, but
1486lookup functions can have arbitrary, even identical, names.
1487
1488Second, the printer only handles one type, whereas a library typically has
1489several types. One could install a lookup function for each desired type
1490in the library, but one could also have a single lookup function recognize
1491several types. The latter is the conventional way this is handled.
1492If a pretty-printer can handle multiple data types, then its
1493@dfn{subprinters} are the printers for the individual data types.
1494
1495The @code{gdb.printing} module provides a formal way of solving these
1496problems (@pxref{gdb.printing}).
1497Here is another example that handles multiple types.
1498
1499These are the types we are going to pretty-print:
1500
1501@smallexample
1502struct foo @{ int a, b; @};
1503struct bar @{ struct foo x, y; @};
1504@end smallexample
1505
1506Here are the printers:
1507
1508@smallexample
1509class fooPrinter:
1510 """Print a foo object."""
1511
1512 def __init__(self, val):
1513 self.val = val
1514
1515 def to_string(self):
1516 return ("a=<" + str(self.val["a"]) +
1517 "> b=<" + str(self.val["b"]) + ">")
1518
1519class barPrinter:
1520 """Print a bar object."""
1521
1522 def __init__(self, val):
1523 self.val = val
1524
1525 def to_string(self):
1526 return ("x=<" + str(self.val["x"]) +
1527 "> y=<" + str(self.val["y"]) + ">")
1528@end smallexample
1529
1530This example doesn't need a lookup function, that is handled by the
1531@code{gdb.printing} module. Instead a function is provided to build up
1532the object that handles the lookup.
1533
1534@smallexample
1535import gdb.printing
1536
1537def build_pretty_printer():
1538 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1539 "my_library")
1540 pp.add_printer('foo', '^foo$', fooPrinter)
1541 pp.add_printer('bar', '^bar$', barPrinter)
1542 return pp
1543@end smallexample
1544
1545And here is the autoload support:
1546
1547@smallexample
1548import gdb.printing
1549import my_library
1550gdb.printing.register_pretty_printer(
1551 gdb.current_objfile(),
1552 my_library.build_pretty_printer())
1553@end smallexample
1554
1555Finally, when this printer is loaded into @value{GDBN}, here is the
1556corresponding output of @samp{info pretty-printer}:
1557
1558@smallexample
1559(gdb) info pretty-printer
1560my_library.so:
1561 my_library
1562 foo
1563 bar
1564@end smallexample
1565
1566@node Type Printing API
1567@subsubsection Type Printing API
1568@cindex type printing API for Python
1569
1570@value{GDBN} provides a way for Python code to customize type display.
1571This is mainly useful for substituting canonical typedef names for
1572types.
1573
1574@cindex type printer
1575A @dfn{type printer} is just a Python object conforming to a certain
1576protocol. A simple base class implementing the protocol is provided;
1577see @ref{gdb.types}. A type printer must supply at least:
1578
1579@defivar type_printer enabled
1580A boolean which is True if the printer is enabled, and False
1581otherwise. This is manipulated by the @code{enable type-printer}
1582and @code{disable type-printer} commands.
1583@end defivar
1584
1585@defivar type_printer name
1586The name of the type printer. This must be a string. This is used by
1587the @code{enable type-printer} and @code{disable type-printer}
1588commands.
1589@end defivar
1590
1591@defmethod type_printer instantiate (self)
1592This is called by @value{GDBN} at the start of type-printing. It is
1593only called if the type printer is enabled. This method must return a
1594new object that supplies a @code{recognize} method, as described below.
1595@end defmethod
1596
1597
1598When displaying a type, say via the @code{ptype} command, @value{GDBN}
1599will compute a list of type recognizers. This is done by iterating
1600first over the per-objfile type printers (@pxref{Objfiles In Python}),
1601followed by the per-progspace type printers (@pxref{Progspaces In
1602Python}), and finally the global type printers.
1603
1604@value{GDBN} will call the @code{instantiate} method of each enabled
1605type printer. If this method returns @code{None}, then the result is
1606ignored; otherwise, it is appended to the list of recognizers.
1607
1608Then, when @value{GDBN} is going to display a type name, it iterates
1609over the list of recognizers. For each one, it calls the recognition
1610function, stopping if the function returns a non-@code{None} value.
1611The recognition function is defined as:
1612
1613@defmethod type_recognizer recognize (self, type)
1614If @var{type} is not recognized, return @code{None}. Otherwise,
1615return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1616The @var{type} argument will be an instance of @code{gdb.Type}
1617(@pxref{Types In Python}).
329baa95
DE
1618@end defmethod
1619
1620@value{GDBN} uses this two-pass approach so that type printers can
1621efficiently cache information without holding on to it too long. For
1622example, it can be convenient to look up type information in a type
1623printer and hold it for a recognizer's lifetime; if a single pass were
1624done then type printers would have to make use of the event system in
1625order to avoid holding information that could become stale as the
1626inferior changed.
1627
1628@node Frame Filter API
521b499b 1629@subsubsection Filtering Frames
329baa95
DE
1630@cindex frame filters api
1631
1632Frame filters are Python objects that manipulate the visibility of a
1633frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1634@value{GDBN}.
1635
1636Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1637commands (@pxref{GDB/MI}), those that return a collection of frames
1638are affected. The commands that work with frame filters are:
1639
1640@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1641@code{-stack-list-frames}
1642(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1643@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1644-stack-list-variables command}), @code{-stack-list-arguments}
1645@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1646@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1647-stack-list-locals command}).
1648
1649A frame filter works by taking an iterator as an argument, applying
1650actions to the contents of that iterator, and returning another
1651iterator (or, possibly, the same iterator it was provided in the case
1652where the filter does not perform any operations). Typically, frame
1653filters utilize tools such as the Python's @code{itertools} module to
1654work with and create new iterators from the source iterator.
1655Regardless of how a filter chooses to apply actions, it must not alter
1656the underlying @value{GDBN} frame or frames, or attempt to alter the
1657call-stack within @value{GDBN}. This preserves data integrity within
1658@value{GDBN}. Frame filters are executed on a priority basis and care
1659should be taken that some frame filters may have been executed before,
1660and that some frame filters will be executed after.
1661
1662An important consideration when designing frame filters, and well
1663worth reflecting upon, is that frame filters should avoid unwinding
1664the call stack if possible. Some stacks can run very deep, into the
1665tens of thousands in some cases. To search every frame when a frame
1666filter executes may be too expensive at that step. The frame filter
1667cannot know how many frames it has to iterate over, and it may have to
1668iterate through them all. This ends up duplicating effort as
1669@value{GDBN} performs this iteration when it prints the frames. If
1670the filter can defer unwinding frames until frame decorators are
1671executed, after the last filter has executed, it should. @xref{Frame
1672Decorator API}, for more information on decorators. Also, there are
1673examples for both frame decorators and filters in later chapters.
1674@xref{Writing a Frame Filter}, for more information.
1675
1676The Python dictionary @code{gdb.frame_filters} contains key/object
1677pairings that comprise a frame filter. Frame filters in this
1678dictionary are called @code{global} frame filters, and they are
1679available when debugging all inferiors. These frame filters must
1680register with the dictionary directly. In addition to the
1681@code{global} dictionary, there are other dictionaries that are loaded
1682with different inferiors via auto-loading (@pxref{Python
1683Auto-loading}). The two other areas where frame filter dictionaries
1684can be found are: @code{gdb.Progspace} which contains a
1685@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1686object which also contains a @code{frame_filters} dictionary
1687attribute.
1688
1689When a command is executed from @value{GDBN} that is compatible with
1690frame filters, @value{GDBN} combines the @code{global},
1691@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1692loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1693several frames, and thus several object files, might be in use.
1694@value{GDBN} then prunes any frame filter whose @code{enabled}
1695attribute is @code{False}. This pruned list is then sorted according
1696to the @code{priority} attribute in each filter.
1697
1698Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1699creates an iterator which wraps each frame in the call stack in a
1700@code{FrameDecorator} object, and calls each filter in order. The
1701output from the previous filter will always be the input to the next
1702filter, and so on.
1703
1704Frame filters have a mandatory interface which each frame filter must
1705implement, defined here:
1706
1707@defun FrameFilter.filter (iterator)
1708@value{GDBN} will call this method on a frame filter when it has
1709reached the order in the priority list for that filter.
1710
1711For example, if there are four frame filters:
1712
1713@smallexample
1714Name Priority
1715
1716Filter1 5
1717Filter2 10
1718Filter3 100
1719Filter4 1
1720@end smallexample
1721
1722The order that the frame filters will be called is:
1723
1724@smallexample
1725Filter3 -> Filter2 -> Filter1 -> Filter4
1726@end smallexample
1727
1728Note that the output from @code{Filter3} is passed to the input of
1729@code{Filter2}, and so on.
1730
1731This @code{filter} method is passed a Python iterator. This iterator
1732contains a sequence of frame decorators that wrap each
1733@code{gdb.Frame}, or a frame decorator that wraps another frame
1734decorator. The first filter that is executed in the sequence of frame
1735filters will receive an iterator entirely comprised of default
1736@code{FrameDecorator} objects. However, after each frame filter is
1737executed, the previous frame filter may have wrapped some or all of
1738the frame decorators with their own frame decorator. As frame
1739decorators must also conform to a mandatory interface, these
1740decorators can be assumed to act in a uniform manner (@pxref{Frame
1741Decorator API}).
1742
1743This method must return an object conforming to the Python iterator
1744protocol. Each item in the iterator must be an object conforming to
1745the frame decorator interface. If a frame filter does not wish to
1746perform any operations on this iterator, it should return that
1747iterator untouched.
1748
1749This method is not optional. If it does not exist, @value{GDBN} will
1750raise and print an error.
1751@end defun
1752
1753@defvar FrameFilter.name
1754The @code{name} attribute must be Python string which contains the
1755name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1756Management}). This attribute may contain any combination of letters
1757or numbers. Care should be taken to ensure that it is unique. This
1758attribute is mandatory.
1759@end defvar
1760
1761@defvar FrameFilter.enabled
1762The @code{enabled} attribute must be Python boolean. This attribute
1763indicates to @value{GDBN} whether the frame filter is enabled, and
1764should be considered when frame filters are executed. If
1765@code{enabled} is @code{True}, then the frame filter will be executed
1766when any of the backtrace commands detailed earlier in this chapter
1767are executed. If @code{enabled} is @code{False}, then the frame
1768filter will not be executed. This attribute is mandatory.
1769@end defvar
1770
1771@defvar FrameFilter.priority
1772The @code{priority} attribute must be Python integer. This attribute
1773controls the order of execution in relation to other frame filters.
1774There are no imposed limits on the range of @code{priority} other than
1775it must be a valid integer. The higher the @code{priority} attribute,
1776the sooner the frame filter will be executed in relation to other
1777frame filters. Although @code{priority} can be negative, it is
1778recommended practice to assume zero is the lowest priority that a
1779frame filter can be assigned. Frame filters that have the same
1780priority are executed in unsorted order in that priority slot. This
521b499b 1781attribute is mandatory. 100 is a good default priority.
329baa95
DE
1782@end defvar
1783
1784@node Frame Decorator API
521b499b 1785@subsubsection Decorating Frames
329baa95
DE
1786@cindex frame decorator api
1787
1788Frame decorators are sister objects to frame filters (@pxref{Frame
1789Filter API}). Frame decorators are applied by a frame filter and can
1790only be used in conjunction with frame filters.
1791
1792The purpose of a frame decorator is to customize the printed content
1793of each @code{gdb.Frame} in commands where frame filters are executed.
1794This concept is called decorating a frame. Frame decorators decorate
1795a @code{gdb.Frame} with Python code contained within each API call.
1796This separates the actual data contained in a @code{gdb.Frame} from
1797the decorated data produced by a frame decorator. This abstraction is
1798necessary to maintain integrity of the data contained in each
1799@code{gdb.Frame}.
1800
1801Frame decorators have a mandatory interface, defined below.
1802
1803@value{GDBN} already contains a frame decorator called
1804@code{FrameDecorator}. This contains substantial amounts of
1805boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1806recommended that other frame decorators inherit and extend this
1807object, and only to override the methods needed.
1808
521b499b
TT
1809@tindex gdb.FrameDecorator
1810@code{FrameDecorator} is defined in the Python module
1811@code{gdb.FrameDecorator}, so your code can import it like:
1812@smallexample
1813from gdb.FrameDecorator import FrameDecorator
1814@end smallexample
1815
329baa95
DE
1816@defun FrameDecorator.elided (self)
1817
1818The @code{elided} method groups frames together in a hierarchical
1819system. An example would be an interpreter, where multiple low-level
1820frames make up a single call in the interpreted language. In this
1821example, the frame filter would elide the low-level frames and present
1822a single high-level frame, representing the call in the interpreted
1823language, to the user.
1824
1825The @code{elided} function must return an iterable and this iterable
1826must contain the frames that are being elided wrapped in a suitable
1827frame decorator. If no frames are being elided this function may
1828return an empty iterable, or @code{None}. Elided frames are indented
1829from normal frames in a @code{CLI} backtrace, or in the case of
1830@code{GDB/MI}, are placed in the @code{children} field of the eliding
1831frame.
1832
1833It is the frame filter's task to also filter out the elided frames from
1834the source iterator. This will avoid printing the frame twice.
1835@end defun
1836
1837@defun FrameDecorator.function (self)
1838
1839This method returns the name of the function in the frame that is to
1840be printed.
1841
1842This method must return a Python string describing the function, or
1843@code{None}.
1844
1845If this function returns @code{None}, @value{GDBN} will not print any
1846data for this field.
1847@end defun
1848
1849@defun FrameDecorator.address (self)
1850
1851This method returns the address of the frame that is to be printed.
1852
1853This method must return a Python numeric integer type of sufficient
1854size to describe the address of the frame, or @code{None}.
1855
1856If this function returns a @code{None}, @value{GDBN} will not print
1857any data for this field.
1858@end defun
1859
1860@defun FrameDecorator.filename (self)
1861
1862This method returns the filename and path associated with this frame.
1863
1864This method must return a Python string containing the filename and
1865the path to the object file backing the frame, or @code{None}.
1866
1867If this function returns a @code{None}, @value{GDBN} will not print
1868any data for this field.
1869@end defun
1870
1871@defun FrameDecorator.line (self):
1872
1873This method returns the line number associated with the current
1874position within the function addressed by this frame.
1875
1876This method must return a Python integer type, or @code{None}.
1877
1878If this function returns a @code{None}, @value{GDBN} will not print
1879any data for this field.
1880@end defun
1881
1882@defun FrameDecorator.frame_args (self)
1883@anchor{frame_args}
1884
1885This method must return an iterable, or @code{None}. Returning an
1886empty iterable, or @code{None} means frame arguments will not be
1887printed for this frame. This iterable must contain objects that
1888implement two methods, described here.
1889
1890This object must implement a @code{argument} method which takes a
1891single @code{self} parameter and must return a @code{gdb.Symbol}
1892(@pxref{Symbols In Python}), or a Python string. The object must also
1893implement a @code{value} method which takes a single @code{self}
1894parameter and must return a @code{gdb.Value} (@pxref{Values From
1895Inferior}), a Python value, or @code{None}. If the @code{value}
1896method returns @code{None}, and the @code{argument} method returns a
1897@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1898the @code{gdb.Symbol} automatically.
1899
1900A brief example:
1901
1902@smallexample
1903class SymValueWrapper():
1904
1905 def __init__(self, symbol, value):
1906 self.sym = symbol
1907 self.val = value
1908
1909 def value(self):
1910 return self.val
1911
1912 def symbol(self):
1913 return self.sym
1914
1915class SomeFrameDecorator()
1916...
1917...
1918 def frame_args(self):
1919 args = []
1920 try:
1921 block = self.inferior_frame.block()
1922 except:
1923 return None
1924
1925 # Iterate over all symbols in a block. Only add
1926 # symbols that are arguments.
1927 for sym in block:
1928 if not sym.is_argument:
1929 continue
1930 args.append(SymValueWrapper(sym,None))
1931
1932 # Add example synthetic argument.
1933 args.append(SymValueWrapper(``foo'', 42))
1934
1935 return args
1936@end smallexample
1937@end defun
1938
1939@defun FrameDecorator.frame_locals (self)
1940
1941This method must return an iterable or @code{None}. Returning an
1942empty iterable, or @code{None} means frame local arguments will not be
1943printed for this frame.
1944
1945The object interface, the description of the various strategies for
1946reading frame locals, and the example are largely similar to those
1947described in the @code{frame_args} function, (@pxref{frame_args,,The
1948frame filter frame_args function}). Below is a modified example:
1949
1950@smallexample
1951class SomeFrameDecorator()
1952...
1953...
1954 def frame_locals(self):
1955 vars = []
1956 try:
1957 block = self.inferior_frame.block()
1958 except:
1959 return None
1960
1961 # Iterate over all symbols in a block. Add all
1962 # symbols, except arguments.
1963 for sym in block:
1964 if sym.is_argument:
1965 continue
1966 vars.append(SymValueWrapper(sym,None))
1967
1968 # Add an example of a synthetic local variable.
1969 vars.append(SymValueWrapper(``bar'', 99))
1970
1971 return vars
1972@end smallexample
1973@end defun
1974
1975@defun FrameDecorator.inferior_frame (self):
1976
1977This method must return the underlying @code{gdb.Frame} that this
1978frame decorator is decorating. @value{GDBN} requires the underlying
1979frame for internal frame information to determine how to print certain
1980values when printing a frame.
1981@end defun
1982
1983@node Writing a Frame Filter
1984@subsubsection Writing a Frame Filter
1985@cindex writing a frame filter
1986
1987There are three basic elements that a frame filter must implement: it
1988must correctly implement the documented interface (@pxref{Frame Filter
1989API}), it must register itself with @value{GDBN}, and finally, it must
1990decide if it is to work on the data provided by @value{GDBN}. In all
1991cases, whether it works on the iterator or not, each frame filter must
1992return an iterator. A bare-bones frame filter follows the pattern in
1993the following example.
1994
1995@smallexample
1996import gdb
1997
1998class FrameFilter():
1999
2000 def __init__(self):
2001 # Frame filter attribute creation.
2002 #
2003 # 'name' is the name of the filter that GDB will display.
2004 #
2005 # 'priority' is the priority of the filter relative to other
2006 # filters.
2007 #
2008 # 'enabled' is a boolean that indicates whether this filter is
2009 # enabled and should be executed.
2010
2011 self.name = "Foo"
2012 self.priority = 100
2013 self.enabled = True
2014
2015 # Register this frame filter with the global frame_filters
2016 # dictionary.
2017 gdb.frame_filters[self.name] = self
2018
2019 def filter(self, frame_iter):
2020 # Just return the iterator.
2021 return frame_iter
2022@end smallexample
2023
2024The frame filter in the example above implements the three
2025requirements for all frame filters. It implements the API, self
2026registers, and makes a decision on the iterator (in this case, it just
2027returns the iterator untouched).
2028
2029The first step is attribute creation and assignment, and as shown in
2030the comments the filter assigns the following attributes: @code{name},
2031@code{priority} and whether the filter should be enabled with the
2032@code{enabled} attribute.
2033
2034The second step is registering the frame filter with the dictionary or
2035dictionaries that the frame filter has interest in. As shown in the
2036comments, this filter just registers itself with the global dictionary
2037@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2038is a dictionary that is initialized in the @code{gdb} module when
2039@value{GDBN} starts. What dictionary a filter registers with is an
2040important consideration. Generally, if a filter is specific to a set
2041of code, it should be registered either in the @code{objfile} or
2042@code{progspace} dictionaries as they are specific to the program
2043currently loaded in @value{GDBN}. The global dictionary is always
2044present in @value{GDBN} and is never unloaded. Any filters registered
2045with the global dictionary will exist until @value{GDBN} exits. To
2046avoid filters that may conflict, it is generally better to register
2047frame filters against the dictionaries that more closely align with
2048the usage of the filter currently in question. @xref{Python
2049Auto-loading}, for further information on auto-loading Python scripts.
2050
2051@value{GDBN} takes a hands-off approach to frame filter registration,
2052therefore it is the frame filter's responsibility to ensure
2053registration has occurred, and that any exceptions are handled
2054appropriately. In particular, you may wish to handle exceptions
2055relating to Python dictionary key uniqueness. It is mandatory that
2056the dictionary key is the same as frame filter's @code{name}
2057attribute. When a user manages frame filters (@pxref{Frame Filter
2058Management}), the names @value{GDBN} will display are those contained
2059in the @code{name} attribute.
2060
2061The final step of this example is the implementation of the
2062@code{filter} method. As shown in the example comments, we define the
2063@code{filter} method and note that the method must take an iterator,
2064and also must return an iterator. In this bare-bones example, the
2065frame filter is not very useful as it just returns the iterator
2066untouched. However this is a valid operation for frame filters that
2067have the @code{enabled} attribute set, but decide not to operate on
2068any frames.
2069
2070In the next example, the frame filter operates on all frames and
2071utilizes a frame decorator to perform some work on the frames.
2072@xref{Frame Decorator API}, for further information on the frame
2073decorator interface.
2074
2075This example works on inlined frames. It highlights frames which are
2076inlined by tagging them with an ``[inlined]'' tag. By applying a
2077frame decorator to all frames with the Python @code{itertools imap}
2078method, the example defers actions to the frame decorator. Frame
2079decorators are only processed when @value{GDBN} prints the backtrace.
2080
2081This introduces a new decision making topic: whether to perform
2082decision making operations at the filtering step, or at the printing
2083step. In this example's approach, it does not perform any filtering
2084decisions at the filtering step beyond mapping a frame decorator to
2085each frame. This allows the actual decision making to be performed
2086when each frame is printed. This is an important consideration, and
2087well worth reflecting upon when designing a frame filter. An issue
2088that frame filters should avoid is unwinding the stack if possible.
2089Some stacks can run very deep, into the tens of thousands in some
2090cases. To search every frame to determine if it is inlined ahead of
2091time may be too expensive at the filtering step. The frame filter
2092cannot know how many frames it has to iterate over, and it would have
2093to iterate through them all. This ends up duplicating effort as
2094@value{GDBN} performs this iteration when it prints the frames.
2095
2096In this example decision making can be deferred to the printing step.
2097As each frame is printed, the frame decorator can examine each frame
2098in turn when @value{GDBN} iterates. From a performance viewpoint,
2099this is the most appropriate decision to make as it avoids duplicating
2100the effort that the printing step would undertake anyway. Also, if
2101there are many frame filters unwinding the stack during filtering, it
2102can substantially delay the printing of the backtrace which will
2103result in large memory usage, and a poor user experience.
2104
2105@smallexample
2106class InlineFilter():
2107
2108 def __init__(self):
2109 self.name = "InlinedFrameFilter"
2110 self.priority = 100
2111 self.enabled = True
2112 gdb.frame_filters[self.name] = self
2113
2114 def filter(self, frame_iter):
2115 frame_iter = itertools.imap(InlinedFrameDecorator,
2116 frame_iter)
2117 return frame_iter
2118@end smallexample
2119
2120This frame filter is somewhat similar to the earlier example, except
2121that the @code{filter} method applies a frame decorator object called
2122@code{InlinedFrameDecorator} to each element in the iterator. The
2123@code{imap} Python method is light-weight. It does not proactively
2124iterate over the iterator, but rather creates a new iterator which
2125wraps the existing one.
2126
2127Below is the frame decorator for this example.
2128
2129@smallexample
2130class InlinedFrameDecorator(FrameDecorator):
2131
2132 def __init__(self, fobj):
2133 super(InlinedFrameDecorator, self).__init__(fobj)
2134
2135 def function(self):
2136 frame = fobj.inferior_frame()
2137 name = str(frame.name())
2138
2139 if frame.type() == gdb.INLINE_FRAME:
2140 name = name + " [inlined]"
2141
2142 return name
2143@end smallexample
2144
2145This frame decorator only defines and overrides the @code{function}
2146method. It lets the supplied @code{FrameDecorator}, which is shipped
2147with @value{GDBN}, perform the other work associated with printing
2148this frame.
2149
2150The combination of these two objects create this output from a
2151backtrace:
2152
2153@smallexample
2154#0 0x004004e0 in bar () at inline.c:11
2155#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2156#2 0x00400566 in main () at inline.c:31
2157@end smallexample
2158
2159So in the case of this example, a frame decorator is applied to all
2160frames, regardless of whether they may be inlined or not. As
2161@value{GDBN} iterates over the iterator produced by the frame filters,
2162@value{GDBN} executes each frame decorator which then makes a decision
2163on what to print in the @code{function} callback. Using a strategy
2164like this is a way to defer decisions on the frame content to printing
2165time.
2166
2167@subheading Eliding Frames
2168
2169It might be that the above example is not desirable for representing
2170inlined frames, and a hierarchical approach may be preferred. If we
2171want to hierarchically represent frames, the @code{elided} frame
2172decorator interface might be preferable.
2173
2174This example approaches the issue with the @code{elided} method. This
2175example is quite long, but very simplistic. It is out-of-scope for
2176this section to write a complete example that comprehensively covers
2177all approaches of finding and printing inlined frames. However, this
2178example illustrates the approach an author might use.
2179
2180This example comprises of three sections.
2181
2182@smallexample
2183class InlineFrameFilter():
2184
2185 def __init__(self):
2186 self.name = "InlinedFrameFilter"
2187 self.priority = 100
2188 self.enabled = True
2189 gdb.frame_filters[self.name] = self
2190
2191 def filter(self, frame_iter):
2192 return ElidingInlineIterator(frame_iter)
2193@end smallexample
2194
2195This frame filter is very similar to the other examples. The only
2196difference is this frame filter is wrapping the iterator provided to
2197it (@code{frame_iter}) with a custom iterator called
2198@code{ElidingInlineIterator}. This again defers actions to when
2199@value{GDBN} prints the backtrace, as the iterator is not traversed
2200until printing.
2201
2202The iterator for this example is as follows. It is in this section of
2203the example where decisions are made on the content of the backtrace.
2204
2205@smallexample
2206class ElidingInlineIterator:
2207 def __init__(self, ii):
2208 self.input_iterator = ii
2209
2210 def __iter__(self):
2211 return self
2212
2213 def next(self):
2214 frame = next(self.input_iterator)
2215
2216 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2217 return frame
2218
2219 try:
2220 eliding_frame = next(self.input_iterator)
2221 except StopIteration:
2222 return frame
2223 return ElidingFrameDecorator(eliding_frame, [frame])
2224@end smallexample
2225
2226This iterator implements the Python iterator protocol. When the
2227@code{next} function is called (when @value{GDBN} prints each frame),
2228the iterator checks if this frame decorator, @code{frame}, is wrapping
2229an inlined frame. If it is not, it returns the existing frame decorator
2230untouched. If it is wrapping an inlined frame, it assumes that the
2231inlined frame was contained within the next oldest frame,
2232@code{eliding_frame}, which it fetches. It then creates and returns a
2233frame decorator, @code{ElidingFrameDecorator}, which contains both the
2234elided frame, and the eliding frame.
2235
2236@smallexample
2237class ElidingInlineDecorator(FrameDecorator):
2238
2239 def __init__(self, frame, elided_frames):
2240 super(ElidingInlineDecorator, self).__init__(frame)
2241 self.frame = frame
2242 self.elided_frames = elided_frames
2243
2244 def elided(self):
2245 return iter(self.elided_frames)
2246@end smallexample
2247
2248This frame decorator overrides one function and returns the inlined
2249frame in the @code{elided} method. As before it lets
2250@code{FrameDecorator} do the rest of the work involved in printing
2251this frame. This produces the following output.
2252
2253@smallexample
2254#0 0x004004e0 in bar () at inline.c:11
2255#2 0x00400529 in main () at inline.c:25
2256 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2257@end smallexample
2258
2259In that output, @code{max} which has been inlined into @code{main} is
2260printed hierarchically. Another approach would be to combine the
2261@code{function} method, and the @code{elided} method to both print a
2262marker in the inlined frame, and also show the hierarchical
2263relationship.
2264
d11916aa
SS
2265@node Unwinding Frames in Python
2266@subsubsection Unwinding Frames in Python
2267@cindex unwinding frames in Python
2268
2269In @value{GDBN} terminology ``unwinding'' is the process of finding
2270the previous frame (that is, caller's) from the current one. An
2271unwinder has three methods. The first one checks if it can handle
2272given frame (``sniff'' it). For the frames it can sniff an unwinder
2273provides two additional methods: it can return frame's ID, and it can
2274fetch registers from the previous frame. A running @value{GDBN}
2275mantains a list of the unwinders and calls each unwinder's sniffer in
2276turn until it finds the one that recognizes the current frame. There
2277is an API to register an unwinder.
2278
2279The unwinders that come with @value{GDBN} handle standard frames.
2280However, mixed language applications (for example, an application
2281running Java Virtual Machine) sometimes use frame layouts that cannot
2282be handled by the @value{GDBN} unwinders. You can write Python code
2283that can handle such custom frames.
2284
2285You implement a frame unwinder in Python as a class with which has two
2286attributes, @code{name} and @code{enabled}, with obvious meanings, and
2287a single method @code{__call__}, which examines a given frame and
2288returns an object (an instance of @code{gdb.UnwindInfo class)}
2289describing it. If an unwinder does not recognize a frame, it should
2290return @code{None}. The code in @value{GDBN} that enables writing
2291unwinders in Python uses this object to return frame's ID and previous
2292frame registers when @value{GDBN} core asks for them.
2293
e7b5068c
TT
2294An unwinder should do as little work as possible. Some otherwise
2295innocuous operations can cause problems (even crashes, as this code is
2296not not well-hardened yet). For example, making an inferior call from
2297an unwinder is unadvisable, as an inferior call will reset
2298@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2299unwinding.
2300
d11916aa
SS
2301@subheading Unwinder Input
2302
2303An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2304provides a method to read frame's registers:
2305
2306@defun PendingFrame.read_register (reg)
e7b5068c 2307This method returns the contents of the register @var{reg} in the
d11916aa
SS
2308frame as a @code{gdb.Value} object. @var{reg} can be either a
2309register number or a register name; the values are platform-specific.
2310They are usually found in the corresponding
e7b5068c
TT
2311@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2312@var{reg} does not name a register for the current architecture, this
2313method will throw an exception.
2314
2315Note that this method will always return a @code{gdb.Value} for a
2316valid register name. This does not mean that the value will be valid.
2317For example, you may request a register that an earlier unwinder could
2318not unwind---the value will be unavailable. Instead, the
2319@code{gdb.Value} returned from this method will be lazy; that is, its
2320underlying bits will not be fetched until it is first used. So,
2321attempting to use such a value will cause an exception at the point of
2322use.
2323
2324The type of the returned @code{gdb.Value} depends on the register and
2325the architecture. It is common for registers to have a scalar type,
2326like @code{long long}; but many other types are possible, such as
2327pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2328@end defun
2329
2330It also provides a factory method to create a @code{gdb.UnwindInfo}
2331instance to be returned to @value{GDBN}:
2332
2333@defun PendingFrame.create_unwind_info (frame_id)
2334Returns a new @code{gdb.UnwindInfo} instance identified by given
2335@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2336using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2337determine which function will be used, as follows:
2338
2339@table @code
d11916aa 2340@item sp, pc
e7b5068c
TT
2341The frame is identified by the given stack address and PC. The stack
2342address must be chosen so that it is constant throughout the lifetime
2343of the frame, so a typical choice is the value of the stack pointer at
2344the start of the function---in the DWARF standard, this would be the
2345``Call Frame Address''.
d11916aa 2346
e7b5068c
TT
2347This is the most common case by far. The other cases are documented
2348for completeness but are only useful in specialized situations.
2349
2350@item sp, pc, special
2351The frame is identified by the stack address, the PC, and a
2352``special'' address. The special address is used on architectures
2353that can have frames that do not change the stack, but which are still
2354distinct, for example the IA-64, which has a second stack for
2355registers. Both @var{sp} and @var{special} must be constant
2356throughout the lifetime of the frame.
d11916aa
SS
2357
2358@item sp
e7b5068c
TT
2359The frame is identified by the stack address only. Any other stack
2360frame with a matching @var{sp} will be considered to match this frame.
2361Inside gdb, this is called a ``wild frame''. You will never need
2362this.
d11916aa 2363@end table
e7b5068c
TT
2364
2365Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2366
2367@end defun
2368
2369@subheading Unwinder Output: UnwindInfo
2370
2371Use @code{PendingFrame.create_unwind_info} method described above to
2372create a @code{gdb.UnwindInfo} instance. Use the following method to
2373specify caller registers that have been saved in this frame:
2374
2375@defun gdb.UnwindInfo.add_saved_register (reg, value)
2376@var{reg} identifies the register. It can be a number or a name, just
2377as for the @code{PendingFrame.read_register} method above.
2378@var{value} is a register value (a @code{gdb.Value} object).
2379@end defun
2380
2381@subheading Unwinder Skeleton Code
2382
2383@value{GDBN} comes with the module containing the base @code{Unwinder}
2384class. Derive your unwinder class from it and structure the code as
2385follows:
2386
2387@smallexample
2388from gdb.unwinders import Unwinder
2389
2390class FrameId(object):
2391 def __init__(self, sp, pc):
2392 self.sp = sp
2393 self.pc = pc
2394
2395
2396class MyUnwinder(Unwinder):
2397 def __init__(....):
2398 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2399
2400 def __call__(pending_frame):
2401 if not <we recognize frame>:
2402 return None
2403 # Create UnwindInfo. Usually the frame is identified by the stack
2404 # pointer and the program counter.
2405 sp = pending_frame.read_register(<SP number>)
2406 pc = pending_frame.read_register(<PC number>)
2407 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2408
2409 # Find the values of the registers in the caller's frame and
2410 # save them in the result:
2411 unwind_info.add_saved_register(<register>, <value>)
2412 ....
2413
2414 # Return the result:
2415 return unwind_info
2416
2417@end smallexample
2418
2419@subheading Registering a Unwinder
2420
2421An object file, a program space, and the @value{GDBN} proper can have
2422unwinders registered with it.
2423
2424The @code{gdb.unwinders} module provides the function to register a
2425unwinder:
2426
2427@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2428@var{locus} is specifies an object file or a program space to which
2429@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2430@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2431added @var{unwinder} will be called before any other unwinder from the
2432same locus. Two unwinders in the same locus cannot have the same
2433name. An attempt to add a unwinder with already existing name raises
2434an exception unless @var{replace} is @code{True}, in which case the
2435old unwinder is deleted.
2436@end defun
2437
2438@subheading Unwinder Precedence
2439
2440@value{GDBN} first calls the unwinders from all the object files in no
2441particular order, then the unwinders from the current program space,
2442and finally the unwinders from @value{GDBN}.
2443
0c6e92a5
SC
2444@node Xmethods In Python
2445@subsubsection Xmethods In Python
2446@cindex xmethods in Python
2447
2448@dfn{Xmethods} are additional methods or replacements for existing
2449methods of a C@t{++} class. This feature is useful for those cases
2450where a method defined in C@t{++} source code could be inlined or
2451optimized out by the compiler, making it unavailable to @value{GDBN}.
2452For such cases, one can define an xmethod to serve as a replacement
2453for the method defined in the C@t{++} source code. @value{GDBN} will
2454then invoke the xmethod, instead of the C@t{++} method, to
2455evaluate expressions. One can also use xmethods when debugging
2456with core files. Moreover, when debugging live programs, invoking an
2457xmethod need not involve running the inferior (which can potentially
2458perturb its state). Hence, even if the C@t{++} method is available, it
2459is better to use its replacement xmethod if one is defined.
2460
2461The xmethods feature in Python is available via the concepts of an
2462@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2463implement an xmethod, one has to implement a matcher and a
2464corresponding worker for it (more than one worker can be
2465implemented, each catering to a different overloaded instance of the
2466method). Internally, @value{GDBN} invokes the @code{match} method of a
2467matcher to match the class type and method name. On a match, the
2468@code{match} method returns a list of matching @emph{worker} objects.
2469Each worker object typically corresponds to an overloaded instance of
2470the xmethod. They implement a @code{get_arg_types} method which
2471returns a sequence of types corresponding to the arguments the xmethod
2472requires. @value{GDBN} uses this sequence of types to perform
2473overload resolution and picks a winning xmethod worker. A winner
2474is also selected from among the methods @value{GDBN} finds in the
2475C@t{++} source code. Next, the winning xmethod worker and the
2476winning C@t{++} method are compared to select an overall winner. In
2477case of a tie between a xmethod worker and a C@t{++} method, the
2478xmethod worker is selected as the winner. That is, if a winning
2479xmethod worker is found to be equivalent to the winning C@t{++}
2480method, then the xmethod worker is treated as a replacement for
2481the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2482method. If the winning xmethod worker is the overall winner, then
897c3d32 2483the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2484of the worker object.
2485
2486If one wants to implement an xmethod as a replacement for an
2487existing C@t{++} method, then they have to implement an equivalent
2488xmethod which has exactly the same name and takes arguments of
2489exactly the same type as the C@t{++} method. If the user wants to
2490invoke the C@t{++} method even though a replacement xmethod is
2491available for that method, then they can disable the xmethod.
2492
2493@xref{Xmethod API}, for API to implement xmethods in Python.
2494@xref{Writing an Xmethod}, for implementing xmethods in Python.
2495
2496@node Xmethod API
2497@subsubsection Xmethod API
2498@cindex xmethod API
2499
2500The @value{GDBN} Python API provides classes, interfaces and functions
2501to implement, register and manipulate xmethods.
2502@xref{Xmethods In Python}.
2503
2504An xmethod matcher should be an instance of a class derived from
2505@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2506object with similar interface and attributes. An instance of
2507@code{XMethodMatcher} has the following attributes:
2508
2509@defvar name
2510The name of the matcher.
2511@end defvar
2512
2513@defvar enabled
2514A boolean value indicating whether the matcher is enabled or disabled.
2515@end defvar
2516
2517@defvar methods
2518A list of named methods managed by the matcher. Each object in the list
2519is an instance of the class @code{XMethod} defined in the module
2520@code{gdb.xmethod}, or any object with the following attributes:
2521
2522@table @code
2523
2524@item name
2525Name of the xmethod which should be unique for each xmethod
2526managed by the matcher.
2527
2528@item enabled
2529A boolean value indicating whether the xmethod is enabled or
2530disabled.
2531
2532@end table
2533
2534The class @code{XMethod} is a convenience class with same
2535attributes as above along with the following constructor:
2536
dd5d5494 2537@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2538Constructs an enabled xmethod with name @var{name}.
2539@end defun
2540@end defvar
2541
2542@noindent
2543The @code{XMethodMatcher} class has the following methods:
2544
dd5d5494 2545@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2546Constructs an enabled xmethod matcher with name @var{name}. The
2547@code{methods} attribute is initialized to @code{None}.
2548@end defun
2549
dd5d5494 2550@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2551Derived classes should override this method. It should return a
2552xmethod worker object (or a sequence of xmethod worker
2553objects) matching the @var{class_type} and @var{method_name}.
2554@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2555is a string value. If the matcher manages named methods as listed in
2556its @code{methods} attribute, then only those worker objects whose
2557corresponding entries in the @code{methods} list are enabled should be
2558returned.
2559@end defun
2560
2561An xmethod worker should be an instance of a class derived from
2562@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2563or support the following interface:
2564
dd5d5494 2565@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2566This method returns a sequence of @code{gdb.Type} objects corresponding
2567to the arguments that the xmethod takes. It can return an empty
2568sequence or @code{None} if the xmethod does not take any arguments.
2569If the xmethod takes a single argument, then a single
2570@code{gdb.Type} object corresponding to it can be returned.
2571@end defun
2572
2ce1cdbf
DE
2573@defun XMethodWorker.get_result_type (self, *args)
2574This method returns a @code{gdb.Type} object representing the type
2575of the result of invoking this xmethod.
2576The @var{args} argument is the same tuple of arguments that would be
2577passed to the @code{__call__} method of this worker.
2578@end defun
2579
dd5d5494 2580@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2581This is the method which does the @emph{work} of the xmethod. The
2582@var{args} arguments is the tuple of arguments to the xmethod. Each
2583element in this tuple is a gdb.Value object. The first element is
2584always the @code{this} pointer value.
2585@end defun
2586
2587For @value{GDBN} to lookup xmethods, the xmethod matchers
2588should be registered using the following function defined in the module
2589@code{gdb.xmethod}:
2590
dd5d5494 2591@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2592The @code{matcher} is registered with @code{locus}, replacing an
2593existing matcher with the same name as @code{matcher} if
2594@code{replace} is @code{True}. @code{locus} can be a
2595@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2596@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2597@code{None}. If it is @code{None}, then @code{matcher} is registered
2598globally.
2599@end defun
2600
2601@node Writing an Xmethod
2602@subsubsection Writing an Xmethod
2603@cindex writing xmethods in Python
2604
2605Implementing xmethods in Python will require implementing xmethod
2606matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2607the following C@t{++} class:
2608
2609@smallexample
2610class MyClass
2611@{
2612public:
2613 MyClass (int a) : a_(a) @{ @}
2614
2615 int geta (void) @{ return a_; @}
2616 int operator+ (int b);
2617
2618private:
2619 int a_;
2620@};
2621
2622int
2623MyClass::operator+ (int b)
2624@{
2625 return a_ + b;
2626@}
2627@end smallexample
2628
2629@noindent
2630Let us define two xmethods for the class @code{MyClass}, one
2631replacing the method @code{geta}, and another adding an overloaded
2632flavor of @code{operator+} which takes a @code{MyClass} argument (the
2633C@t{++} code above already has an overloaded @code{operator+}
2634which takes an @code{int} argument). The xmethod matcher can be
2635defined as follows:
2636
2637@smallexample
2638class MyClass_geta(gdb.xmethod.XMethod):
2639 def __init__(self):
2640 gdb.xmethod.XMethod.__init__(self, 'geta')
2641
2642 def get_worker(self, method_name):
2643 if method_name == 'geta':
2644 return MyClassWorker_geta()
2645
2646
2647class MyClass_sum(gdb.xmethod.XMethod):
2648 def __init__(self):
2649 gdb.xmethod.XMethod.__init__(self, 'sum')
2650
2651 def get_worker(self, method_name):
2652 if method_name == 'operator+':
2653 return MyClassWorker_plus()
2654
2655
2656class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2657 def __init__(self):
2658 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2659 # List of methods 'managed' by this matcher
2660 self.methods = [MyClass_geta(), MyClass_sum()]
2661
2662 def match(self, class_type, method_name):
2663 if class_type.tag != 'MyClass':
2664 return None
2665 workers = []
2666 for method in self.methods:
2667 if method.enabled:
2668 worker = method.get_worker(method_name)
2669 if worker:
2670 workers.append(worker)
2671
2672 return workers
2673@end smallexample
2674
2675@noindent
2676Notice that the @code{match} method of @code{MyClassMatcher} returns
2677a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2678method, and a worker object of type @code{MyClassWorker_plus} for the
2679@code{operator+} method. This is done indirectly via helper classes
2680derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2681@code{methods} attribute in a matcher as it is optional. However, if a
2682matcher manages more than one xmethod, it is a good practice to list the
2683xmethods in the @code{methods} attribute of the matcher. This will then
2684facilitate enabling and disabling individual xmethods via the
2685@code{enable/disable} commands. Notice also that a worker object is
2686returned only if the corresponding entry in the @code{methods} attribute
2687of the matcher is enabled.
2688
2689The implementation of the worker classes returned by the matcher setup
2690above is as follows:
2691
2692@smallexample
2693class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2694 def get_arg_types(self):
2695 return None
2ce1cdbf
DE
2696
2697 def get_result_type(self, obj):
2698 return gdb.lookup_type('int')
0c6e92a5
SC
2699
2700 def __call__(self, obj):
2701 return obj['a_']
2702
2703
2704class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2705 def get_arg_types(self):
2706 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2707
2708 def get_result_type(self, obj):
2709 return gdb.lookup_type('int')
0c6e92a5
SC
2710
2711 def __call__(self, obj, other):
2712 return obj['a_'] + other['a_']
2713@end smallexample
2714
2715For @value{GDBN} to actually lookup a xmethod, it has to be
2716registered with it. The matcher defined above is registered with
2717@value{GDBN} globally as follows:
2718
2719@smallexample
2720gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2721@end smallexample
2722
2723If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2724code as follows:
2725
2726@smallexample
2727MyClass obj(5);
2728@end smallexample
2729
2730@noindent
2731then, after loading the Python script defining the xmethod matchers
2732and workers into @code{GDBN}, invoking the method @code{geta} or using
2733the operator @code{+} on @code{obj} will invoke the xmethods
2734defined above:
2735
2736@smallexample
2737(gdb) p obj.geta()
2738$1 = 5
2739
2740(gdb) p obj + obj
2741$2 = 10
2742@end smallexample
2743
2744Consider another example with a C++ template class:
2745
2746@smallexample
2747template <class T>
2748class MyTemplate
2749@{
2750public:
2751 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2752 ~MyTemplate () @{ delete [] data_; @}
2753
2754 int footprint (void)
2755 @{
2756 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2757 @}
2758
2759private:
2760 int dsize_;
2761 T *data_;
2762@};
2763@end smallexample
2764
2765Let us implement an xmethod for the above class which serves as a
2766replacement for the @code{footprint} method. The full code listing
2767of the xmethod workers and xmethod matchers is as follows:
2768
2769@smallexample
2770class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2771 def __init__(self, class_type):
2772 self.class_type = class_type
2ce1cdbf 2773
0c6e92a5
SC
2774 def get_arg_types(self):
2775 return None
2ce1cdbf
DE
2776
2777 def get_result_type(self):
2778 return gdb.lookup_type('int')
2779
0c6e92a5
SC
2780 def __call__(self, obj):
2781 return (self.class_type.sizeof +
2782 obj['dsize_'] *
2783 self.class_type.template_argument(0).sizeof)
2784
2785
2786class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2787 def __init__(self):
2788 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2789
2790 def match(self, class_type, method_name):
2791 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2792 class_type.tag) and
2793 method_name == 'footprint'):
2794 return MyTemplateWorker_footprint(class_type)
2795@end smallexample
2796
2797Notice that, in this example, we have not used the @code{methods}
2798attribute of the matcher as the matcher manages only one xmethod. The
2799user can enable/disable this xmethod by enabling/disabling the matcher
2800itself.
2801
329baa95
DE
2802@node Inferiors In Python
2803@subsubsection Inferiors In Python
2804@cindex inferiors in Python
2805
2806@findex gdb.Inferior
2807Programs which are being run under @value{GDBN} are called inferiors
2808(@pxref{Inferiors and Programs}). Python scripts can access
2809information about and manipulate inferiors controlled by @value{GDBN}
2810via objects of the @code{gdb.Inferior} class.
2811
2812The following inferior-related functions are available in the @code{gdb}
2813module:
2814
2815@defun gdb.inferiors ()
2816Return a tuple containing all inferior objects.
2817@end defun
2818
2819@defun gdb.selected_inferior ()
2820Return an object representing the current inferior.
2821@end defun
2822
2823A @code{gdb.Inferior} object has the following attributes:
2824
2825@defvar Inferior.num
2826ID of inferior, as assigned by GDB.
2827@end defvar
2828
2829@defvar Inferior.pid
2830Process ID of the inferior, as assigned by the underlying operating
2831system.
2832@end defvar
2833
2834@defvar Inferior.was_attached
2835Boolean signaling whether the inferior was created using `attach', or
2836started by @value{GDBN} itself.
2837@end defvar
2838
2839A @code{gdb.Inferior} object has the following methods:
2840
2841@defun Inferior.is_valid ()
2842Returns @code{True} if the @code{gdb.Inferior} object is valid,
2843@code{False} if not. A @code{gdb.Inferior} object will become invalid
2844if the inferior no longer exists within @value{GDBN}. All other
2845@code{gdb.Inferior} methods will throw an exception if it is invalid
2846at the time the method is called.
2847@end defun
2848
2849@defun Inferior.threads ()
2850This method returns a tuple holding all the threads which are valid
2851when it is called. If there are no valid threads, the method will
2852return an empty tuple.
2853@end defun
2854
2855@findex Inferior.read_memory
2856@defun Inferior.read_memory (address, length)
a86c90e6 2857Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2858@var{address}. Returns a buffer object, which behaves much like an array
2859or a string. It can be modified and given to the
79778b30 2860@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2861value is a @code{memoryview} object.
2862@end defun
2863
2864@findex Inferior.write_memory
2865@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2866Write the contents of @var{buffer} to the inferior, starting at
2867@var{address}. The @var{buffer} parameter must be a Python object
2868which supports the buffer protocol, i.e., a string, an array or the
2869object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2870determines the number of addressable memory units from @var{buffer} to be
2871written.
329baa95
DE
2872@end defun
2873
2874@findex gdb.search_memory
2875@defun Inferior.search_memory (address, length, pattern)
2876Search a region of the inferior memory starting at @var{address} with
2877the given @var{length} using the search pattern supplied in
2878@var{pattern}. The @var{pattern} parameter must be a Python object
2879which supports the buffer protocol, i.e., a string, an array or the
2880object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2881containing the address where the pattern was found, or @code{None} if
2882the pattern could not be found.
2883@end defun
2884
da2c323b
KB
2885@findex Inferior.thread_from_thread_handle
2886@defun Inferior.thread_from_thread_handle (thread_handle)
2887Return the thread object corresponding to @var{thread_handle}, a thread
2888library specific data structure such as @code{pthread_t} for pthreads
2889library implementations.
2890@end defun
2891
329baa95
DE
2892@node Events In Python
2893@subsubsection Events In Python
2894@cindex inferior events in Python
2895
2896@value{GDBN} provides a general event facility so that Python code can be
2897notified of various state changes, particularly changes that occur in
2898the inferior.
2899
2900An @dfn{event} is just an object that describes some state change. The
2901type of the object and its attributes will vary depending on the details
2902of the change. All the existing events are described below.
2903
2904In order to be notified of an event, you must register an event handler
2905with an @dfn{event registry}. An event registry is an object in the
2906@code{gdb.events} module which dispatches particular events. A registry
2907provides methods to register and unregister event handlers:
2908
2909@defun EventRegistry.connect (object)
2910Add the given callable @var{object} to the registry. This object will be
2911called when an event corresponding to this registry occurs.
2912@end defun
2913
2914@defun EventRegistry.disconnect (object)
2915Remove the given @var{object} from the registry. Once removed, the object
2916will no longer receive notifications of events.
2917@end defun
2918
2919Here is an example:
2920
2921@smallexample
2922def exit_handler (event):
2923 print "event type: exit"
2924 print "exit code: %d" % (event.exit_code)
2925
2926gdb.events.exited.connect (exit_handler)
2927@end smallexample
2928
2929In the above example we connect our handler @code{exit_handler} to the
2930registry @code{events.exited}. Once connected, @code{exit_handler} gets
2931called when the inferior exits. The argument @dfn{event} in this example is
2932of type @code{gdb.ExitedEvent}. As you can see in the example the
2933@code{ExitedEvent} object has an attribute which indicates the exit code of
2934the inferior.
2935
2936The following is a listing of the event registries that are available and
2937details of the events they emit:
2938
2939@table @code
2940
2941@item events.cont
2942Emits @code{gdb.ThreadEvent}.
2943
2944Some events can be thread specific when @value{GDBN} is running in non-stop
2945mode. When represented in Python, these events all extend
2946@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2947events which are emitted by this or other modules might extend this event.
2948Examples of these events are @code{gdb.BreakpointEvent} and
2949@code{gdb.ContinueEvent}.
2950
2951@defvar ThreadEvent.inferior_thread
2952In non-stop mode this attribute will be set to the specific thread which was
2953involved in the emitted event. Otherwise, it will be set to @code{None}.
2954@end defvar
2955
2956Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2957
2958This event indicates that the inferior has been continued after a stop. For
2959inherited attribute refer to @code{gdb.ThreadEvent} above.
2960
2961@item events.exited
2962Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2963@code{events.ExitedEvent} has two attributes:
2964@defvar ExitedEvent.exit_code
2965An integer representing the exit code, if available, which the inferior
2966has returned. (The exit code could be unavailable if, for example,
2967@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2968the attribute does not exist.
2969@end defvar
373832b6 2970@defvar ExitedEvent.inferior
329baa95
DE
2971A reference to the inferior which triggered the @code{exited} event.
2972@end defvar
2973
2974@item events.stop
2975Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2976
2977Indicates that the inferior has stopped. All events emitted by this registry
2978extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2979will indicate the stopped thread when @value{GDBN} is running in non-stop
2980mode. Refer to @code{gdb.ThreadEvent} above for more details.
2981
2982Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2983
2984This event indicates that the inferior or one of its threads has received as
2985signal. @code{gdb.SignalEvent} has the following attributes:
2986
2987@defvar SignalEvent.stop_signal
2988A string representing the signal received by the inferior. A list of possible
2989signal values can be obtained by running the command @code{info signals} in
2990the @value{GDBN} command prompt.
2991@end defvar
2992
2993Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2994
2995@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2996been hit, and has the following attributes:
2997
2998@defvar BreakpointEvent.breakpoints
2999A sequence containing references to all the breakpoints (type
3000@code{gdb.Breakpoint}) that were hit.
3001@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3002@end defvar
3003@defvar BreakpointEvent.breakpoint
3004A reference to the first breakpoint that was hit.
3005This function is maintained for backward compatibility and is now deprecated
3006in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3007@end defvar
3008
3009@item events.new_objfile
3010Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3011been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3012
3013@defvar NewObjFileEvent.new_objfile
3014A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3015@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3016@end defvar
3017
4ffbba72
DE
3018@item events.clear_objfiles
3019Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3020files for a program space has been reset.
3021@code{gdb.ClearObjFilesEvent} has one attribute:
3022
3023@defvar ClearObjFilesEvent.progspace
3024A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3025been cleared. @xref{Progspaces In Python}.
3026@end defvar
3027
fb5af5e3
TT
3028@item events.inferior_call
3029Emits events just before and after a function in the inferior is
3030called by @value{GDBN}. Before an inferior call, this emits an event
3031of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3032this emits an event of type @code{gdb.InferiorCallPostEvent}.
3033
3034@table @code
3035@tindex gdb.InferiorCallPreEvent
3036@item @code{gdb.InferiorCallPreEvent}
3037Indicates that a function in the inferior is about to be called.
162078c8
NB
3038
3039@defvar InferiorCallPreEvent.ptid
3040The thread in which the call will be run.
3041@end defvar
3042
3043@defvar InferiorCallPreEvent.address
3044The location of the function to be called.
3045@end defvar
3046
fb5af5e3
TT
3047@tindex gdb.InferiorCallPostEvent
3048@item @code{gdb.InferiorCallPostEvent}
3049Indicates that a function in the inferior has just been called.
162078c8
NB
3050
3051@defvar InferiorCallPostEvent.ptid
3052The thread in which the call was run.
3053@end defvar
3054
3055@defvar InferiorCallPostEvent.address
3056The location of the function that was called.
3057@end defvar
fb5af5e3 3058@end table
162078c8
NB
3059
3060@item events.memory_changed
3061Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3062inferior has been modified by the @value{GDBN} user, for instance via a
3063command like @w{@code{set *addr = value}}. The event has the following
3064attributes:
3065
3066@defvar MemoryChangedEvent.address
3067The start address of the changed region.
3068@end defvar
3069
3070@defvar MemoryChangedEvent.length
3071Length in bytes of the changed region.
3072@end defvar
3073
3074@item events.register_changed
3075Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3076inferior has been modified by the @value{GDBN} user.
3077
3078@defvar RegisterChangedEvent.frame
3079A gdb.Frame object representing the frame in which the register was modified.
3080@end defvar
3081@defvar RegisterChangedEvent.regnum
3082Denotes which register was modified.
3083@end defvar
3084
dac790e1
TT
3085@item events.breakpoint_created
3086This is emitted when a new breakpoint has been created. The argument
3087that is passed is the new @code{gdb.Breakpoint} object.
3088
3089@item events.breakpoint_modified
3090This is emitted when a breakpoint has been modified in some way. The
3091argument that is passed is the new @code{gdb.Breakpoint} object.
3092
3093@item events.breakpoint_deleted
3094This is emitted when a breakpoint has been deleted. The argument that
3095is passed is the @code{gdb.Breakpoint} object. When this event is
3096emitted, the @code{gdb.Breakpoint} object will already be in its
3097invalid state; that is, the @code{is_valid} method will return
3098@code{False}.
3099
3f77c769
TT
3100@item events.before_prompt
3101This event carries no payload. It is emitted each time @value{GDBN}
3102presents a prompt to the user.
3103
7c96f8c1
TT
3104@item events.new_inferior
3105This is emitted when a new inferior is created. Note that the
3106inferior is not necessarily running; in fact, it may not even have an
3107associated executable.
3108
3109The event is of type @code{gdb.NewInferiorEvent}. This has a single
3110attribute:
3111
3112@defvar NewInferiorEvent.inferior
3113The new inferior, a @code{gdb.Inferior} object.
3114@end defvar
3115
3116@item events.inferior_deleted
3117This is emitted when an inferior has been deleted. Note that this is
3118not the same as process exit; it is notified when the inferior itself
3119is removed, say via @code{remove-inferiors}.
3120
3121The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3122attribute:
3123
3124@defvar NewInferiorEvent.inferior
3125The inferior that is being removed, a @code{gdb.Inferior} object.
3126@end defvar
3127
3128@item events.new_thread
3129This is emitted when @value{GDBN} notices a new thread. The event is of
3130type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3131This has a single attribute:
3132
3133@defvar NewThreadEvent.inferior_thread
3134The new thread.
3135@end defvar
3136
329baa95
DE
3137@end table
3138
3139@node Threads In Python
3140@subsubsection Threads In Python
3141@cindex threads in python
3142
3143@findex gdb.InferiorThread
3144Python scripts can access information about, and manipulate inferior threads
3145controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3146
3147The following thread-related functions are available in the @code{gdb}
3148module:
3149
3150@findex gdb.selected_thread
3151@defun gdb.selected_thread ()
3152This function returns the thread object for the selected thread. If there
3153is no selected thread, this will return @code{None}.
3154@end defun
3155
3156A @code{gdb.InferiorThread} object has the following attributes:
3157
3158@defvar InferiorThread.name
3159The name of the thread. If the user specified a name using
3160@code{thread name}, then this returns that name. Otherwise, if an
3161OS-supplied name is available, then it is returned. Otherwise, this
3162returns @code{None}.
3163
3164This attribute can be assigned to. The new value must be a string
3165object, which sets the new name, or @code{None}, which removes any
3166user-specified thread name.
3167@end defvar
3168
3169@defvar InferiorThread.num
5d5658a1 3170The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3171@end defvar
3172
22a02324
PA
3173@defvar InferiorThread.global_num
3174The global ID of the thread, as assigned by GDB. You can use this to
3175make Python breakpoints thread-specific, for example
3176(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3177@end defvar
3178
329baa95
DE
3179@defvar InferiorThread.ptid
3180ID of the thread, as assigned by the operating system. This attribute is a
3181tuple containing three integers. The first is the Process ID (PID); the second
3182is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3183Either the LWPID or TID may be 0, which indicates that the operating system
3184does not use that identifier.
3185@end defvar
3186
84654457
PA
3187@defvar InferiorThread.inferior
3188The inferior this thread belongs to. This attribute is represented as
3189a @code{gdb.Inferior} object. This attribute is not writable.
3190@end defvar
3191
329baa95
DE
3192A @code{gdb.InferiorThread} object has the following methods:
3193
3194@defun InferiorThread.is_valid ()
3195Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3196@code{False} if not. A @code{gdb.InferiorThread} object will become
3197invalid if the thread exits, or the inferior that the thread belongs
3198is deleted. All other @code{gdb.InferiorThread} methods will throw an
3199exception if it is invalid at the time the method is called.
3200@end defun
3201
3202@defun InferiorThread.switch ()
3203This changes @value{GDBN}'s currently selected thread to the one represented
3204by this object.
3205@end defun
3206
3207@defun InferiorThread.is_stopped ()
3208Return a Boolean indicating whether the thread is stopped.
3209@end defun
3210
3211@defun InferiorThread.is_running ()
3212Return a Boolean indicating whether the thread is running.
3213@end defun
3214
3215@defun InferiorThread.is_exited ()
3216Return a Boolean indicating whether the thread is exited.
3217@end defun
3218
0a0faf9f
TW
3219@node Recordings In Python
3220@subsubsection Recordings In Python
3221@cindex recordings in python
3222
3223The following recordings-related functions
3224(@pxref{Process Record and Replay}) are available in the @code{gdb}
3225module:
3226
3227@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3228Start a recording using the given @var{method} and @var{format}. If
3229no @var{format} is given, the default format for the recording method
3230is used. If no @var{method} is given, the default method will be used.
3231Returns a @code{gdb.Record} object on success. Throw an exception on
3232failure.
3233
3234The following strings can be passed as @var{method}:
3235
3236@itemize @bullet
3237@item
3238@code{"full"}
3239@item
3240@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3241@code{"bts"} or leave out for default format.
3242@end itemize
3243@end defun
3244
3245@defun gdb.current_recording ()
3246Access a currently running recording. Return a @code{gdb.Record}
3247object on success. Return @code{None} if no recording is currently
3248active.
3249@end defun
3250
3251@defun gdb.stop_recording ()
3252Stop the current recording. Throw an exception if no recording is
3253currently active. All record objects become invalid after this call.
3254@end defun
3255
3256A @code{gdb.Record} object has the following attributes:
3257
0a0faf9f
TW
3258@defvar Record.method
3259A string with the current recording method, e.g.@: @code{full} or
3260@code{btrace}.
3261@end defvar
3262
3263@defvar Record.format
3264A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3265@code{None}.
3266@end defvar
3267
3268@defvar Record.begin
3269A method specific instruction object representing the first instruction
3270in this recording.
3271@end defvar
3272
3273@defvar Record.end
3274A method specific instruction object representing the current
3275instruction, that is not actually part of the recording.
3276@end defvar
3277
3278@defvar Record.replay_position
3279The instruction representing the current replay position. If there is
3280no replay active, this will be @code{None}.
3281@end defvar
3282
3283@defvar Record.instruction_history
3284A list with all recorded instructions.
3285@end defvar
3286
3287@defvar Record.function_call_history
3288A list with all recorded function call segments.
3289@end defvar
3290
3291A @code{gdb.Record} object has the following methods:
3292
3293@defun Record.goto (instruction)
3294Move the replay position to the given @var{instruction}.
3295@end defun
3296
d050f7d7
TW
3297The common @code{gdb.Instruction} class that recording method specific
3298instruction objects inherit from, has the following attributes:
0a0faf9f 3299
d050f7d7 3300@defvar Instruction.pc
913aeadd 3301An integer representing this instruction's address.
0a0faf9f
TW
3302@end defvar
3303
d050f7d7 3304@defvar Instruction.data
913aeadd
TW
3305A buffer with the raw instruction data. In Python 3, the return value is a
3306@code{memoryview} object.
0a0faf9f
TW
3307@end defvar
3308
d050f7d7 3309@defvar Instruction.decoded
913aeadd 3310A human readable string with the disassembled instruction.
0a0faf9f
TW
3311@end defvar
3312
d050f7d7 3313@defvar Instruction.size
913aeadd 3314The size of the instruction in bytes.
0a0faf9f
TW
3315@end defvar
3316
d050f7d7
TW
3317Additionally @code{gdb.RecordInstruction} has the following attributes:
3318
3319@defvar RecordInstruction.number
3320An integer identifying this instruction. @code{number} corresponds to
3321the numbers seen in @code{record instruction-history}
3322(@pxref{Process Record and Replay}).
3323@end defvar
3324
3325@defvar RecordInstruction.sal
3326A @code{gdb.Symtab_and_line} object representing the associated symtab
3327and line of this instruction. May be @code{None} if no debug information is
3328available.
3329@end defvar
3330
0ed5da75 3331@defvar RecordInstruction.is_speculative
d050f7d7 3332A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3333@end defvar
3334
3335If an error occured during recording or decoding a recording, this error is
3336represented by a @code{gdb.RecordGap} object in the instruction list. It has
3337the following attributes:
3338
3339@defvar RecordGap.number
3340An integer identifying this gap. @code{number} corresponds to the numbers seen
3341in @code{record instruction-history} (@pxref{Process Record and Replay}).
3342@end defvar
3343
3344@defvar RecordGap.error_code
3345A numerical representation of the reason for the gap. The value is specific to
3346the current recording method.
3347@end defvar
3348
3349@defvar RecordGap.error_string
3350A human readable string with the reason for the gap.
0a0faf9f
TW
3351@end defvar
3352
14f819c8 3353A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3354
14f819c8
TW
3355@defvar RecordFunctionSegment.number
3356An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3357the numbers seen in @code{record function-call-history}
3358(@pxref{Process Record and Replay}).
3359@end defvar
3360
14f819c8 3361@defvar RecordFunctionSegment.symbol
0a0faf9f 3362A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3363@code{None} if no debug information is available.
0a0faf9f
TW
3364@end defvar
3365
14f819c8 3366@defvar RecordFunctionSegment.level
0a0faf9f
TW
3367An integer representing the function call's stack level. May be
3368@code{None} if the function call is a gap.
3369@end defvar
3370
14f819c8 3371@defvar RecordFunctionSegment.instructions
0ed5da75 3372A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3373associated with this function call.
0a0faf9f
TW
3374@end defvar
3375
14f819c8
TW
3376@defvar RecordFunctionSegment.up
3377A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3378function segment. If the call has not been recorded, this will be the
3379function segment to which control returns. If neither the call nor the
3380return have been recorded, this will be @code{None}.
3381@end defvar
3382
14f819c8
TW
3383@defvar RecordFunctionSegment.prev
3384A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3385segment of this function call. May be @code{None}.
3386@end defvar
3387
14f819c8
TW
3388@defvar RecordFunctionSegment.next
3389A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3390this function call. May be @code{None}.
3391@end defvar
3392
3393The following example demonstrates the usage of these objects and
3394functions to create a function that will rewind a record to the last
3395time a function in a different file was executed. This would typically
3396be used to track the execution of user provided callback functions in a
3397library which typically are not visible in a back trace.
3398
3399@smallexample
3400def bringback ():
3401 rec = gdb.current_recording ()
3402 if not rec:
3403 return
3404
3405 insn = rec.instruction_history
3406 if len (insn) == 0:
3407 return
3408
3409 try:
3410 position = insn.index (rec.replay_position)
3411 except:
3412 position = -1
3413 try:
3414 filename = insn[position].sal.symtab.fullname ()
3415 except:
3416 filename = None
3417
3418 for i in reversed (insn[:position]):
3419 try:
3420 current = i.sal.symtab.fullname ()
3421 except:
3422 current = None
3423
3424 if filename == current:
3425 continue
3426
3427 rec.goto (i)
3428 return
3429@end smallexample
3430
3431Another possible application is to write a function that counts the
3432number of code executions in a given line range. This line range can
3433contain parts of functions or span across several functions and is not
3434limited to be contiguous.
3435
3436@smallexample
3437def countrange (filename, linerange):
3438 count = 0
3439
3440 def filter_only (file_name):
3441 for call in gdb.current_recording ().function_call_history:
3442 try:
3443 if file_name in call.symbol.symtab.fullname ():
3444 yield call
3445 except:
3446 pass
3447
3448 for c in filter_only (filename):
3449 for i in c.instructions:
3450 try:
3451 if i.sal.line in linerange:
3452 count += 1
3453 break;
3454 except:
3455 pass
3456
3457 return count
3458@end smallexample
3459
329baa95
DE
3460@node Commands In Python
3461@subsubsection Commands In Python
3462
3463@cindex commands in python
3464@cindex python commands
3465You can implement new @value{GDBN} CLI commands in Python. A CLI
3466command is implemented using an instance of the @code{gdb.Command}
3467class, most commonly using a subclass.
3468
3469@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3470The object initializer for @code{Command} registers the new command
3471with @value{GDBN}. This initializer is normally invoked from the
3472subclass' own @code{__init__} method.
3473
3474@var{name} is the name of the command. If @var{name} consists of
3475multiple words, then the initial words are looked for as prefix
3476commands. In this case, if one of the prefix commands does not exist,
3477an exception is raised.
3478
3479There is no support for multi-line commands.
3480
3481@var{command_class} should be one of the @samp{COMMAND_} constants
3482defined below. This argument tells @value{GDBN} how to categorize the
3483new command in the help system.
3484
3485@var{completer_class} is an optional argument. If given, it should be
3486one of the @samp{COMPLETE_} constants defined below. This argument
3487tells @value{GDBN} how to perform completion for this command. If not
3488given, @value{GDBN} will attempt to complete using the object's
3489@code{complete} method (see below); if no such method is found, an
3490error will occur when completion is attempted.
3491
3492@var{prefix} is an optional argument. If @code{True}, then the new
3493command is a prefix command; sub-commands of this command may be
3494registered.
3495
3496The help text for the new command is taken from the Python
3497documentation string for the command's class, if there is one. If no
3498documentation string is provided, the default value ``This command is
3499not documented.'' is used.
3500@end defun
3501
3502@cindex don't repeat Python command
3503@defun Command.dont_repeat ()
3504By default, a @value{GDBN} command is repeated when the user enters a
3505blank line at the command prompt. A command can suppress this
3506behavior by invoking the @code{dont_repeat} method. This is similar
3507to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3508@end defun
3509
3510@defun Command.invoke (argument, from_tty)
3511This method is called by @value{GDBN} when this command is invoked.
3512
3513@var{argument} is a string. It is the argument to the command, after
3514leading and trailing whitespace has been stripped.
3515
3516@var{from_tty} is a boolean argument. When true, this means that the
3517command was entered by the user at the terminal; when false it means
3518that the command came from elsewhere.
3519
3520If this method throws an exception, it is turned into a @value{GDBN}
3521@code{error} call. Otherwise, the return value is ignored.
3522
3523@findex gdb.string_to_argv
3524To break @var{argument} up into an argv-like string use
3525@code{gdb.string_to_argv}. This function behaves identically to
3526@value{GDBN}'s internal argument lexer @code{buildargv}.
3527It is recommended to use this for consistency.
3528Arguments are separated by spaces and may be quoted.
3529Example:
3530
3531@smallexample
3532print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3533['1', '2 "3', '4 "5', "6 '7"]
3534@end smallexample
3535
3536@end defun
3537
3538@cindex completion of Python commands
3539@defun Command.complete (text, word)
3540This method is called by @value{GDBN} when the user attempts
3541completion on this command. All forms of completion are handled by
3542this method, that is, the @key{TAB} and @key{M-?} key bindings
3543(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3544complete}).
3545
697aa1b7
EZ
3546The arguments @var{text} and @var{word} are both strings; @var{text}
3547holds the complete command line up to the cursor's location, while
329baa95
DE
3548@var{word} holds the last word of the command line; this is computed
3549using a word-breaking heuristic.
3550
3551The @code{complete} method can return several values:
3552@itemize @bullet
3553@item
3554If the return value is a sequence, the contents of the sequence are
3555used as the completions. It is up to @code{complete} to ensure that the
3556contents actually do complete the word. A zero-length sequence is
3557allowed, it means that there were no completions available. Only
3558string elements of the sequence are used; other elements in the
3559sequence are ignored.
3560
3561@item
3562If the return value is one of the @samp{COMPLETE_} constants defined
3563below, then the corresponding @value{GDBN}-internal completion
3564function is invoked, and its result is used.
3565
3566@item
3567All other results are treated as though there were no available
3568completions.
3569@end itemize
3570@end defun
3571
3572When a new command is registered, it must be declared as a member of
3573some general class of commands. This is used to classify top-level
3574commands in the on-line help system; note that prefix commands are not
3575listed under their own category but rather that of their top-level
3576command. The available classifications are represented by constants
3577defined in the @code{gdb} module:
3578
3579@table @code
3580@findex COMMAND_NONE
3581@findex gdb.COMMAND_NONE
3582@item gdb.COMMAND_NONE
3583The command does not belong to any particular class. A command in
3584this category will not be displayed in any of the help categories.
3585
3586@findex COMMAND_RUNNING
3587@findex gdb.COMMAND_RUNNING
3588@item gdb.COMMAND_RUNNING
3589The command is related to running the inferior. For example,
3590@code{start}, @code{step}, and @code{continue} are in this category.
3591Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3592commands in this category.
3593
3594@findex COMMAND_DATA
3595@findex gdb.COMMAND_DATA
3596@item gdb.COMMAND_DATA
3597The command is related to data or variables. For example,
3598@code{call}, @code{find}, and @code{print} are in this category. Type
3599@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3600in this category.
3601
3602@findex COMMAND_STACK
3603@findex gdb.COMMAND_STACK
3604@item gdb.COMMAND_STACK
3605The command has to do with manipulation of the stack. For example,
3606@code{backtrace}, @code{frame}, and @code{return} are in this
3607category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3608list of commands in this category.
3609
3610@findex COMMAND_FILES
3611@findex gdb.COMMAND_FILES
3612@item gdb.COMMAND_FILES
3613This class is used for file-related commands. For example,
3614@code{file}, @code{list} and @code{section} are in this category.
3615Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3616commands in this category.
3617
3618@findex COMMAND_SUPPORT
3619@findex gdb.COMMAND_SUPPORT
3620@item gdb.COMMAND_SUPPORT
3621This should be used for ``support facilities'', generally meaning
3622things that are useful to the user when interacting with @value{GDBN},
3623but not related to the state of the inferior. For example,
3624@code{help}, @code{make}, and @code{shell} are in this category. Type
3625@kbd{help support} at the @value{GDBN} prompt to see a list of
3626commands in this category.
3627
3628@findex COMMAND_STATUS
3629@findex gdb.COMMAND_STATUS
3630@item gdb.COMMAND_STATUS
3631The command is an @samp{info}-related command, that is, related to the
3632state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3633and @code{show} are in this category. Type @kbd{help status} at the
3634@value{GDBN} prompt to see a list of commands in this category.
3635
3636@findex COMMAND_BREAKPOINTS
3637@findex gdb.COMMAND_BREAKPOINTS
3638@item gdb.COMMAND_BREAKPOINTS
3639The command has to do with breakpoints. For example, @code{break},
3640@code{clear}, and @code{delete} are in this category. Type @kbd{help
3641breakpoints} at the @value{GDBN} prompt to see a list of commands in
3642this category.
3643
3644@findex COMMAND_TRACEPOINTS
3645@findex gdb.COMMAND_TRACEPOINTS
3646@item gdb.COMMAND_TRACEPOINTS
3647The command has to do with tracepoints. For example, @code{trace},
3648@code{actions}, and @code{tfind} are in this category. Type
3649@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3650commands in this category.
3651
3652@findex COMMAND_USER
3653@findex gdb.COMMAND_USER
3654@item gdb.COMMAND_USER
3655The command is a general purpose command for the user, and typically
3656does not fit in one of the other categories.
3657Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3658a list of commands in this category, as well as the list of gdb macros
3659(@pxref{Sequences}).
3660
3661@findex COMMAND_OBSCURE
3662@findex gdb.COMMAND_OBSCURE
3663@item gdb.COMMAND_OBSCURE
3664The command is only used in unusual circumstances, or is not of
3665general interest to users. For example, @code{checkpoint},
3666@code{fork}, and @code{stop} are in this category. Type @kbd{help
3667obscure} at the @value{GDBN} prompt to see a list of commands in this
3668category.
3669
3670@findex COMMAND_MAINTENANCE
3671@findex gdb.COMMAND_MAINTENANCE
3672@item gdb.COMMAND_MAINTENANCE
3673The command is only useful to @value{GDBN} maintainers. The
3674@code{maintenance} and @code{flushregs} commands are in this category.
3675Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3676commands in this category.
3677@end table
3678
3679A new command can use a predefined completion function, either by
3680specifying it via an argument at initialization, or by returning it
3681from the @code{complete} method. These predefined completion
3682constants are all defined in the @code{gdb} module:
3683
b3ce5e5f
DE
3684@vtable @code
3685@vindex COMPLETE_NONE
329baa95
DE
3686@item gdb.COMPLETE_NONE
3687This constant means that no completion should be done.
3688
b3ce5e5f 3689@vindex COMPLETE_FILENAME
329baa95
DE
3690@item gdb.COMPLETE_FILENAME
3691This constant means that filename completion should be performed.
3692
b3ce5e5f 3693@vindex COMPLETE_LOCATION
329baa95
DE
3694@item gdb.COMPLETE_LOCATION
3695This constant means that location completion should be done.
3696@xref{Specify Location}.
3697
b3ce5e5f 3698@vindex COMPLETE_COMMAND
329baa95
DE
3699@item gdb.COMPLETE_COMMAND
3700This constant means that completion should examine @value{GDBN}
3701command names.
3702
b3ce5e5f 3703@vindex COMPLETE_SYMBOL
329baa95
DE
3704@item gdb.COMPLETE_SYMBOL
3705This constant means that completion should be done using symbol names
3706as the source.
3707
b3ce5e5f 3708@vindex COMPLETE_EXPRESSION
329baa95
DE
3709@item gdb.COMPLETE_EXPRESSION
3710This constant means that completion should be done on expressions.
3711Often this means completing on symbol names, but some language
3712parsers also have support for completing on field names.
b3ce5e5f 3713@end vtable
329baa95
DE
3714
3715The following code snippet shows how a trivial CLI command can be
3716implemented in Python:
3717
3718@smallexample
3719class HelloWorld (gdb.Command):
3720 """Greet the whole world."""
3721
3722 def __init__ (self):
3723 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3724
3725 def invoke (self, arg, from_tty):
3726 print "Hello, World!"
3727
3728HelloWorld ()
3729@end smallexample
3730
3731The last line instantiates the class, and is necessary to trigger the
3732registration of the command with @value{GDBN}. Depending on how the
3733Python code is read into @value{GDBN}, you may need to import the
3734@code{gdb} module explicitly.
3735
3736@node Parameters In Python
3737@subsubsection Parameters In Python
3738
3739@cindex parameters in python
3740@cindex python parameters
3741@tindex gdb.Parameter
3742@tindex Parameter
3743You can implement new @value{GDBN} parameters using Python. A new
3744parameter is implemented as an instance of the @code{gdb.Parameter}
3745class.
3746
3747Parameters are exposed to the user via the @code{set} and
3748@code{show} commands. @xref{Help}.
3749
3750There are many parameters that already exist and can be set in
3751@value{GDBN}. Two examples are: @code{set follow fork} and
3752@code{set charset}. Setting these parameters influences certain
3753behavior in @value{GDBN}. Similarly, you can define parameters that
3754can be used to influence behavior in custom Python scripts and commands.
3755
3756@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3757The object initializer for @code{Parameter} registers the new
3758parameter with @value{GDBN}. This initializer is normally invoked
3759from the subclass' own @code{__init__} method.
3760
3761@var{name} is the name of the new parameter. If @var{name} consists
3762of multiple words, then the initial words are looked for as prefix
3763parameters. An example of this can be illustrated with the
3764@code{set print} set of parameters. If @var{name} is
3765@code{print foo}, then @code{print} will be searched as the prefix
3766parameter. In this case the parameter can subsequently be accessed in
3767@value{GDBN} as @code{set print foo}.
3768
3769If @var{name} consists of multiple words, and no prefix parameter group
3770can be found, an exception is raised.
3771
3772@var{command-class} should be one of the @samp{COMMAND_} constants
3773(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3774categorize the new parameter in the help system.
3775
3776@var{parameter-class} should be one of the @samp{PARAM_} constants
3777defined below. This argument tells @value{GDBN} the type of the new
3778parameter; this information is used for input validation and
3779completion.
3780
3781If @var{parameter-class} is @code{PARAM_ENUM}, then
3782@var{enum-sequence} must be a sequence of strings. These strings
3783represent the possible values for the parameter.
3784
3785If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3786of a fourth argument will cause an exception to be thrown.
3787
3788The help text for the new parameter is taken from the Python
3789documentation string for the parameter's class, if there is one. If
3790there is no documentation string, a default value is used.
3791@end defun
3792
3793@defvar Parameter.set_doc
3794If this attribute exists, and is a string, then its value is used as
3795the help text for this parameter's @code{set} command. The value is
3796examined when @code{Parameter.__init__} is invoked; subsequent changes
3797have no effect.
3798@end defvar
3799
3800@defvar Parameter.show_doc
3801If this attribute exists, and is a string, then its value is used as
3802the help text for this parameter's @code{show} command. The value is
3803examined when @code{Parameter.__init__} is invoked; subsequent changes
3804have no effect.
3805@end defvar
3806
3807@defvar Parameter.value
3808The @code{value} attribute holds the underlying value of the
3809parameter. It can be read and assigned to just as any other
3810attribute. @value{GDBN} does validation when assignments are made.
3811@end defvar
3812
984ee559
TT
3813There are two methods that may be implemented in any @code{Parameter}
3814class. These are:
329baa95
DE
3815
3816@defun Parameter.get_set_string (self)
984ee559
TT
3817If this method exists, @value{GDBN} will call it when a
3818@var{parameter}'s value has been changed via the @code{set} API (for
3819example, @kbd{set foo off}). The @code{value} attribute has already
3820been populated with the new value and may be used in output. This
3821method must return a string. If the returned string is not empty,
3822@value{GDBN} will present it to the user.
329baa95
DE
3823@end defun
3824
3825@defun Parameter.get_show_string (self, svalue)
3826@value{GDBN} will call this method when a @var{parameter}'s
3827@code{show} API has been invoked (for example, @kbd{show foo}). The
3828argument @code{svalue} receives the string representation of the
3829current value. This method must return a string.
3830@end defun
3831
3832When a new parameter is defined, its type must be specified. The
3833available types are represented by constants defined in the @code{gdb}
3834module:
3835
3836@table @code
3837@findex PARAM_BOOLEAN
3838@findex gdb.PARAM_BOOLEAN
3839@item gdb.PARAM_BOOLEAN
3840The value is a plain boolean. The Python boolean values, @code{True}
3841and @code{False} are the only valid values.
3842
3843@findex PARAM_AUTO_BOOLEAN
3844@findex gdb.PARAM_AUTO_BOOLEAN
3845@item gdb.PARAM_AUTO_BOOLEAN
3846The value has three possible states: true, false, and @samp{auto}. In
3847Python, true and false are represented using boolean constants, and
3848@samp{auto} is represented using @code{None}.
3849
3850@findex PARAM_UINTEGER
3851@findex gdb.PARAM_UINTEGER
3852@item gdb.PARAM_UINTEGER
3853The value is an unsigned integer. The value of 0 should be
3854interpreted to mean ``unlimited''.
3855
3856@findex PARAM_INTEGER
3857@findex gdb.PARAM_INTEGER
3858@item gdb.PARAM_INTEGER
3859The value is a signed integer. The value of 0 should be interpreted
3860to mean ``unlimited''.
3861
3862@findex PARAM_STRING
3863@findex gdb.PARAM_STRING
3864@item gdb.PARAM_STRING
3865The value is a string. When the user modifies the string, any escape
3866sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3867translated into corresponding characters and encoded into the current
3868host charset.
3869
3870@findex PARAM_STRING_NOESCAPE
3871@findex gdb.PARAM_STRING_NOESCAPE
3872@item gdb.PARAM_STRING_NOESCAPE
3873The value is a string. When the user modifies the string, escapes are
3874passed through untranslated.
3875
3876@findex PARAM_OPTIONAL_FILENAME
3877@findex gdb.PARAM_OPTIONAL_FILENAME
3878@item gdb.PARAM_OPTIONAL_FILENAME
3879The value is a either a filename (a string), or @code{None}.
3880
3881@findex PARAM_FILENAME
3882@findex gdb.PARAM_FILENAME
3883@item gdb.PARAM_FILENAME
3884The value is a filename. This is just like
3885@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3886
3887@findex PARAM_ZINTEGER
3888@findex gdb.PARAM_ZINTEGER
3889@item gdb.PARAM_ZINTEGER
3890The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3891is interpreted as itself.
3892
0489430a
TT
3893@findex PARAM_ZUINTEGER
3894@findex gdb.PARAM_ZUINTEGER
3895@item gdb.PARAM_ZUINTEGER
3896The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3897except 0 is interpreted as itself, and the value cannot be negative.
3898
3899@findex PARAM_ZUINTEGER_UNLIMITED
3900@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3901@item gdb.PARAM_ZUINTEGER_UNLIMITED
3902The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3903except the special value -1 should be interpreted to mean
3904``unlimited''. Other negative values are not allowed.
3905
329baa95
DE
3906@findex PARAM_ENUM
3907@findex gdb.PARAM_ENUM
3908@item gdb.PARAM_ENUM
3909The value is a string, which must be one of a collection string
3910constants provided when the parameter is created.
3911@end table
3912
3913@node Functions In Python
3914@subsubsection Writing new convenience functions
3915
3916@cindex writing convenience functions
3917@cindex convenience functions in python
3918@cindex python convenience functions
3919@tindex gdb.Function
3920@tindex Function
3921You can implement new convenience functions (@pxref{Convenience Vars})
3922in Python. A convenience function is an instance of a subclass of the
3923class @code{gdb.Function}.
3924
3925@defun Function.__init__ (name)
3926The initializer for @code{Function} registers the new function with
3927@value{GDBN}. The argument @var{name} is the name of the function,
3928a string. The function will be visible to the user as a convenience
3929variable of type @code{internal function}, whose name is the same as
3930the given @var{name}.
3931
3932The documentation for the new function is taken from the documentation
3933string for the new class.
3934@end defun
3935
3936@defun Function.invoke (@var{*args})
3937When a convenience function is evaluated, its arguments are converted
3938to instances of @code{gdb.Value}, and then the function's
3939@code{invoke} method is called. Note that @value{GDBN} does not
3940predetermine the arity of convenience functions. Instead, all
3941available arguments are passed to @code{invoke}, following the
3942standard Python calling convention. In particular, a convenience
3943function can have default values for parameters without ill effect.
3944
3945The return value of this method is used as its value in the enclosing
3946expression. If an ordinary Python value is returned, it is converted
3947to a @code{gdb.Value} following the usual rules.
3948@end defun
3949
3950The following code snippet shows how a trivial convenience function can
3951be implemented in Python:
3952
3953@smallexample
3954class Greet (gdb.Function):
3955 """Return string to greet someone.
3956Takes a name as argument."""
3957
3958 def __init__ (self):
3959 super (Greet, self).__init__ ("greet")
3960
3961 def invoke (self, name):
3962 return "Hello, %s!" % name.string ()
3963
3964Greet ()
3965@end smallexample
3966
3967The last line instantiates the class, and is necessary to trigger the
3968registration of the function with @value{GDBN}. Depending on how the
3969Python code is read into @value{GDBN}, you may need to import the
3970@code{gdb} module explicitly.
3971
3972Now you can use the function in an expression:
3973
3974@smallexample
3975(gdb) print $greet("Bob")
3976$1 = "Hello, Bob!"
3977@end smallexample
3978
3979@node Progspaces In Python
3980@subsubsection Program Spaces In Python
3981
3982@cindex progspaces in python
3983@tindex gdb.Progspace
3984@tindex Progspace
3985A program space, or @dfn{progspace}, represents a symbolic view
3986of an address space.
3987It consists of all of the objfiles of the program.
3988@xref{Objfiles In Python}.
3989@xref{Inferiors and Programs, program spaces}, for more details
3990about program spaces.
3991
3992The following progspace-related functions are available in the
3993@code{gdb} module:
3994
3995@findex gdb.current_progspace
3996@defun gdb.current_progspace ()
3997This function returns the program space of the currently selected inferior.
3998@xref{Inferiors and Programs}.
3999@end defun
4000
4001@findex gdb.progspaces
4002@defun gdb.progspaces ()
4003Return a sequence of all the progspaces currently known to @value{GDBN}.
4004@end defun
4005
4006Each progspace is represented by an instance of the @code{gdb.Progspace}
4007class.
4008
4009@defvar Progspace.filename
4010The file name of the progspace as a string.
4011@end defvar
4012
4013@defvar Progspace.pretty_printers
4014The @code{pretty_printers} attribute is a list of functions. It is
4015used to look up pretty-printers. A @code{Value} is passed to each
4016function in order; if the function returns @code{None}, then the
4017search continues. Otherwise, the return value should be an object
4018which is used to format the value. @xref{Pretty Printing API}, for more
4019information.
4020@end defvar
4021
4022@defvar Progspace.type_printers
4023The @code{type_printers} attribute is a list of type printer objects.
4024@xref{Type Printing API}, for more information.
4025@end defvar
4026
4027@defvar Progspace.frame_filters
4028The @code{frame_filters} attribute is a dictionary of frame filter
4029objects. @xref{Frame Filter API}, for more information.
4030@end defvar
4031
02be9a71
DE
4032One may add arbitrary attributes to @code{gdb.Progspace} objects
4033in the usual Python way.
4034This is useful if, for example, one needs to do some extra record keeping
4035associated with the program space.
4036
4037In this contrived example, we want to perform some processing when
4038an objfile with a certain symbol is loaded, but we only want to do
4039this once because it is expensive. To achieve this we record the results
4040with the program space because we can't predict when the desired objfile
4041will be loaded.
4042
4043@smallexample
4044(gdb) python
4045def clear_objfiles_handler(event):
4046 event.progspace.expensive_computation = None
4047def expensive(symbol):
4048 """A mock routine to perform an "expensive" computation on symbol."""
4049 print "Computing the answer to the ultimate question ..."
4050 return 42
4051def new_objfile_handler(event):
4052 objfile = event.new_objfile
4053 progspace = objfile.progspace
4054 if not hasattr(progspace, 'expensive_computation') or \
4055 progspace.expensive_computation is None:
4056 # We use 'main' for the symbol to keep the example simple.
4057 # Note: There's no current way to constrain the lookup
4058 # to one objfile.
4059 symbol = gdb.lookup_global_symbol('main')
4060 if symbol is not None:
4061 progspace.expensive_computation = expensive(symbol)
4062gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4063gdb.events.new_objfile.connect(new_objfile_handler)
4064end
4065(gdb) file /tmp/hello
4066Reading symbols from /tmp/hello...done.
4067Computing the answer to the ultimate question ...
4068(gdb) python print gdb.current_progspace().expensive_computation
406942
4070(gdb) run
4071Starting program: /tmp/hello
4072Hello.
4073[Inferior 1 (process 4242) exited normally]
4074@end smallexample
4075
329baa95
DE
4076@node Objfiles In Python
4077@subsubsection Objfiles In Python
4078
4079@cindex objfiles in python
4080@tindex gdb.Objfile
4081@tindex Objfile
4082@value{GDBN} loads symbols for an inferior from various
4083symbol-containing files (@pxref{Files}). These include the primary
4084executable file, any shared libraries used by the inferior, and any
4085separate debug info files (@pxref{Separate Debug Files}).
4086@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4087
4088The following objfile-related functions are available in the
4089@code{gdb} module:
4090
4091@findex gdb.current_objfile
4092@defun gdb.current_objfile ()
4093When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4094sets the ``current objfile'' to the corresponding objfile. This
4095function returns the current objfile. If there is no current objfile,
4096this function returns @code{None}.
4097@end defun
4098
4099@findex gdb.objfiles
4100@defun gdb.objfiles ()
4101Return a sequence of all the objfiles current known to @value{GDBN}.
4102@xref{Objfiles In Python}.
4103@end defun
4104
6dddd6a5
DE
4105@findex gdb.lookup_objfile
4106@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4107Look up @var{name}, a file name or build ID, in the list of objfiles
4108for the current program space (@pxref{Progspaces In Python}).
4109If the objfile is not found throw the Python @code{ValueError} exception.
4110
4111If @var{name} is a relative file name, then it will match any
4112source file name with the same trailing components. For example, if
4113@var{name} is @samp{gcc/expr.c}, then it will match source file
4114name of @file{/build/trunk/gcc/expr.c}, but not
4115@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4116
4117If @var{by_build_id} is provided and is @code{True} then @var{name}
4118is the build ID of the objfile. Otherwise, @var{name} is a file name.
4119This is supported only on some operating systems, notably those which use
4120the ELF format for binary files and the @sc{gnu} Binutils. For more details
4121about this feature, see the description of the @option{--build-id}
f5a476a7 4122command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4123The GNU Linker}.
4124@end defun
4125
329baa95
DE
4126Each objfile is represented by an instance of the @code{gdb.Objfile}
4127class.
4128
4129@defvar Objfile.filename
1b549396
DE
4130The file name of the objfile as a string, with symbolic links resolved.
4131
4132The value is @code{None} if the objfile is no longer valid.
4133See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4134@end defvar
4135
3a8b707a
DE
4136@defvar Objfile.username
4137The file name of the objfile as specified by the user as a string.
4138
4139The value is @code{None} if the objfile is no longer valid.
4140See the @code{gdb.Objfile.is_valid} method, described below.
4141@end defvar
4142
a0be3e44
DE
4143@defvar Objfile.owner
4144For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4145object that debug info is being provided for.
4146Otherwise this is @code{None}.
4147Separate debug info objfiles are added with the
4148@code{gdb.Objfile.add_separate_debug_file} method, described below.
4149@end defvar
4150
7c50a931
DE
4151@defvar Objfile.build_id
4152The build ID of the objfile as a string.
4153If the objfile does not have a build ID then the value is @code{None}.
4154
4155This is supported only on some operating systems, notably those which use
4156the ELF format for binary files and the @sc{gnu} Binutils. For more details
4157about this feature, see the description of the @option{--build-id}
f5a476a7 4158command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4159The GNU Linker}.
4160@end defvar
4161
d096d8c1
DE
4162@defvar Objfile.progspace
4163The containing program space of the objfile as a @code{gdb.Progspace}
4164object. @xref{Progspaces In Python}.
4165@end defvar
4166
329baa95
DE
4167@defvar Objfile.pretty_printers
4168The @code{pretty_printers} attribute is a list of functions. It is
4169used to look up pretty-printers. A @code{Value} is passed to each
4170function in order; if the function returns @code{None}, then the
4171search continues. Otherwise, the return value should be an object
4172which is used to format the value. @xref{Pretty Printing API}, for more
4173information.
4174@end defvar
4175
4176@defvar Objfile.type_printers
4177The @code{type_printers} attribute is a list of type printer objects.
4178@xref{Type Printing API}, for more information.
4179@end defvar
4180
4181@defvar Objfile.frame_filters
4182The @code{frame_filters} attribute is a dictionary of frame filter
4183objects. @xref{Frame Filter API}, for more information.
4184@end defvar
4185
02be9a71
DE
4186One may add arbitrary attributes to @code{gdb.Objfile} objects
4187in the usual Python way.
4188This is useful if, for example, one needs to do some extra record keeping
4189associated with the objfile.
4190
4191In this contrived example we record the time when @value{GDBN}
4192loaded the objfile.
4193
4194@smallexample
4195(gdb) python
4196import datetime
4197def new_objfile_handler(event):
4198 # Set the time_loaded attribute of the new objfile.
4199 event.new_objfile.time_loaded = datetime.datetime.today()
4200gdb.events.new_objfile.connect(new_objfile_handler)
4201end
4202(gdb) file ./hello
4203Reading symbols from ./hello...done.
4204(gdb) python print gdb.objfiles()[0].time_loaded
42052014-10-09 11:41:36.770345
4206@end smallexample
4207
329baa95
DE
4208A @code{gdb.Objfile} object has the following methods:
4209
4210@defun Objfile.is_valid ()
4211Returns @code{True} if the @code{gdb.Objfile} object is valid,
4212@code{False} if not. A @code{gdb.Objfile} object can become invalid
4213if the object file it refers to is not loaded in @value{GDBN} any
4214longer. All other @code{gdb.Objfile} methods will throw an exception
4215if it is invalid at the time the method is called.
4216@end defun
4217
86e4ed39
DE
4218@defun Objfile.add_separate_debug_file (file)
4219Add @var{file} to the list of files that @value{GDBN} will search for
4220debug information for the objfile.
4221This is useful when the debug info has been removed from the program
4222and stored in a separate file. @value{GDBN} has built-in support for
4223finding separate debug info files (@pxref{Separate Debug Files}), but if
4224the file doesn't live in one of the standard places that @value{GDBN}
4225searches then this function can be used to add a debug info file
4226from a different place.
4227@end defun
4228
329baa95 4229@node Frames In Python
849cba3b 4230@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4231
4232@cindex frames in python
4233When the debugged program stops, @value{GDBN} is able to analyze its call
4234stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4235represents a frame in the stack. A @code{gdb.Frame} object is only valid
4236while its corresponding frame exists in the inferior's stack. If you try
4237to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4238exception (@pxref{Exception Handling}).
4239
4240Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4241operator, like:
4242
4243@smallexample
4244(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4245True
4246@end smallexample
4247
4248The following frame-related functions are available in the @code{gdb} module:
4249
4250@findex gdb.selected_frame
4251@defun gdb.selected_frame ()
4252Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4253@end defun
4254
4255@findex gdb.newest_frame
4256@defun gdb.newest_frame ()
4257Return the newest frame object for the selected thread.
4258@end defun
4259
4260@defun gdb.frame_stop_reason_string (reason)
4261Return a string explaining the reason why @value{GDBN} stopped unwinding
4262frames, as expressed by the given @var{reason} code (an integer, see the
4263@code{unwind_stop_reason} method further down in this section).
4264@end defun
4265
e0f3fd7c
TT
4266@findex gdb.invalidate_cached_frames
4267@defun gdb.invalidate_cached_frames
4268@value{GDBN} internally keeps a cache of the frames that have been
4269unwound. This function invalidates this cache.
4270
4271This function should not generally be called by ordinary Python code.
4272It is documented for the sake of completeness.
4273@end defun
4274
329baa95
DE
4275A @code{gdb.Frame} object has the following methods:
4276
4277@defun Frame.is_valid ()
4278Returns true if the @code{gdb.Frame} object is valid, false if not.
4279A frame object can become invalid if the frame it refers to doesn't
4280exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4281an exception if it is invalid at the time the method is called.
4282@end defun
4283
4284@defun Frame.name ()
4285Returns the function name of the frame, or @code{None} if it can't be
4286obtained.
4287@end defun
4288
4289@defun Frame.architecture ()
4290Returns the @code{gdb.Architecture} object corresponding to the frame's
4291architecture. @xref{Architectures In Python}.
4292@end defun
4293
4294@defun Frame.type ()
4295Returns the type of the frame. The value can be one of:
4296@table @code
4297@item gdb.NORMAL_FRAME
4298An ordinary stack frame.
4299
4300@item gdb.DUMMY_FRAME
4301A fake stack frame that was created by @value{GDBN} when performing an
4302inferior function call.
4303
4304@item gdb.INLINE_FRAME
4305A frame representing an inlined function. The function was inlined
4306into a @code{gdb.NORMAL_FRAME} that is older than this one.
4307
4308@item gdb.TAILCALL_FRAME
4309A frame representing a tail call. @xref{Tail Call Frames}.
4310
4311@item gdb.SIGTRAMP_FRAME
4312A signal trampoline frame. This is the frame created by the OS when
4313it calls into a signal handler.
4314
4315@item gdb.ARCH_FRAME
4316A fake stack frame representing a cross-architecture call.
4317
4318@item gdb.SENTINEL_FRAME
4319This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4320newest frame.
4321@end table
4322@end defun
4323
4324@defun Frame.unwind_stop_reason ()
4325Return an integer representing the reason why it's not possible to find
4326more frames toward the outermost frame. Use
4327@code{gdb.frame_stop_reason_string} to convert the value returned by this
4328function to a string. The value can be one of:
4329
4330@table @code
4331@item gdb.FRAME_UNWIND_NO_REASON
4332No particular reason (older frames should be available).
4333
4334@item gdb.FRAME_UNWIND_NULL_ID
4335The previous frame's analyzer returns an invalid result. This is no
4336longer used by @value{GDBN}, and is kept only for backward
4337compatibility.
4338
4339@item gdb.FRAME_UNWIND_OUTERMOST
4340This frame is the outermost.
4341
4342@item gdb.FRAME_UNWIND_UNAVAILABLE
4343Cannot unwind further, because that would require knowing the
4344values of registers or memory that have not been collected.
4345
4346@item gdb.FRAME_UNWIND_INNER_ID
4347This frame ID looks like it ought to belong to a NEXT frame,
4348but we got it for a PREV frame. Normally, this is a sign of
4349unwinder failure. It could also indicate stack corruption.
4350
4351@item gdb.FRAME_UNWIND_SAME_ID
4352This frame has the same ID as the previous one. That means
4353that unwinding further would almost certainly give us another
4354frame with exactly the same ID, so break the chain. Normally,
4355this is a sign of unwinder failure. It could also indicate
4356stack corruption.
4357
4358@item gdb.FRAME_UNWIND_NO_SAVED_PC
4359The frame unwinder did not find any saved PC, but we needed
4360one to unwind further.
4361
53e8a631
AB
4362@item gdb.FRAME_UNWIND_MEMORY_ERROR
4363The frame unwinder caused an error while trying to access memory.
4364
329baa95
DE
4365@item gdb.FRAME_UNWIND_FIRST_ERROR
4366Any stop reason greater or equal to this value indicates some kind
4367of error. This special value facilitates writing code that tests
4368for errors in unwinding in a way that will work correctly even if
4369the list of the other values is modified in future @value{GDBN}
4370versions. Using it, you could write:
4371@smallexample
4372reason = gdb.selected_frame().unwind_stop_reason ()
4373reason_str = gdb.frame_stop_reason_string (reason)
4374if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4375 print "An error occured: %s" % reason_str
4376@end smallexample
4377@end table
4378
4379@end defun
4380
4381@defun Frame.pc ()
4382Returns the frame's resume address.
4383@end defun
4384
4385@defun Frame.block ()
60c0454d
TT
4386Return the frame's code block. @xref{Blocks In Python}. If the frame
4387does not have a block -- for example, if there is no debugging
4388information for the code in question -- then this will throw an
4389exception.
329baa95
DE
4390@end defun
4391
4392@defun Frame.function ()
4393Return the symbol for the function corresponding to this frame.
4394@xref{Symbols In Python}.
4395@end defun
4396
4397@defun Frame.older ()
4398Return the frame that called this frame.
4399@end defun
4400
4401@defun Frame.newer ()
4402Return the frame called by this frame.
4403@end defun
4404
4405@defun Frame.find_sal ()
4406Return the frame's symtab and line object.
4407@xref{Symbol Tables In Python}.
4408@end defun
4409
5f3b99cf
SS
4410@defun Frame.read_register (register)
4411Return the value of @var{register} in this frame. The @var{register}
4412argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4413Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4414does not exist.
4415@end defun
4416
329baa95
DE
4417@defun Frame.read_var (variable @r{[}, block@r{]})
4418Return the value of @var{variable} in this frame. If the optional
4419argument @var{block} is provided, search for the variable from that
4420block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4421determined by the frame's current program counter). The @var{variable}
4422argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4423@code{gdb.Block} object.
4424@end defun
4425
4426@defun Frame.select ()
4427Set this frame to be the selected frame. @xref{Stack, ,Examining the
4428Stack}.
4429@end defun
4430
4431@node Blocks In Python
849cba3b 4432@subsubsection Accessing blocks from Python
329baa95
DE
4433
4434@cindex blocks in python
4435@tindex gdb.Block
4436
4437In @value{GDBN}, symbols are stored in blocks. A block corresponds
4438roughly to a scope in the source code. Blocks are organized
4439hierarchically, and are represented individually in Python as a
4440@code{gdb.Block}. Blocks rely on debugging information being
4441available.
4442
4443A frame has a block. Please see @ref{Frames In Python}, for a more
4444in-depth discussion of frames.
4445
4446The outermost block is known as the @dfn{global block}. The global
4447block typically holds public global variables and functions.
4448
4449The block nested just inside the global block is the @dfn{static
4450block}. The static block typically holds file-scoped variables and
4451functions.
4452
4453@value{GDBN} provides a method to get a block's superblock, but there
4454is currently no way to examine the sub-blocks of a block, or to
4455iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4456Python}).
4457
4458Here is a short example that should help explain blocks:
4459
4460@smallexample
4461/* This is in the global block. */
4462int global;
4463
4464/* This is in the static block. */
4465static int file_scope;
4466
4467/* 'function' is in the global block, and 'argument' is
4468 in a block nested inside of 'function'. */
4469int function (int argument)
4470@{
4471 /* 'local' is in a block inside 'function'. It may or may
4472 not be in the same block as 'argument'. */
4473 int local;
4474
4475 @{
4476 /* 'inner' is in a block whose superblock is the one holding
4477 'local'. */
4478 int inner;
4479
4480 /* If this call is expanded by the compiler, you may see
4481 a nested block here whose function is 'inline_function'
4482 and whose superblock is the one holding 'inner'. */
4483 inline_function ();
4484 @}
4485@}
4486@end smallexample
4487
4488A @code{gdb.Block} is iterable. The iterator returns the symbols
4489(@pxref{Symbols In Python}) local to the block. Python programs
4490should not assume that a specific block object will always contain a
4491given symbol, since changes in @value{GDBN} features and
4492infrastructure may cause symbols move across blocks in a symbol
4493table.
4494
4495The following block-related functions are available in the @code{gdb}
4496module:
4497
4498@findex gdb.block_for_pc
4499@defun gdb.block_for_pc (pc)
4500Return the innermost @code{gdb.Block} containing the given @var{pc}
4501value. If the block cannot be found for the @var{pc} value specified,
4502the function will return @code{None}.
4503@end defun
4504
4505A @code{gdb.Block} object has the following methods:
4506
4507@defun Block.is_valid ()
4508Returns @code{True} if the @code{gdb.Block} object is valid,
4509@code{False} if not. A block object can become invalid if the block it
4510refers to doesn't exist anymore in the inferior. All other
4511@code{gdb.Block} methods will throw an exception if it is invalid at
4512the time the method is called. The block's validity is also checked
4513during iteration over symbols of the block.
4514@end defun
4515
4516A @code{gdb.Block} object has the following attributes:
4517
4518@defvar Block.start
4519The start address of the block. This attribute is not writable.
4520@end defvar
4521
4522@defvar Block.end
22eb9e92
TT
4523One past the last address that appears in the block. This attribute
4524is not writable.
329baa95
DE
4525@end defvar
4526
4527@defvar Block.function
4528The name of the block represented as a @code{gdb.Symbol}. If the
4529block is not named, then this attribute holds @code{None}. This
4530attribute is not writable.
4531
4532For ordinary function blocks, the superblock is the static block.
4533However, you should note that it is possible for a function block to
4534have a superblock that is not the static block -- for instance this
4535happens for an inlined function.
4536@end defvar
4537
4538@defvar Block.superblock
4539The block containing this block. If this parent block does not exist,
4540this attribute holds @code{None}. This attribute is not writable.
4541@end defvar
4542
4543@defvar Block.global_block
4544The global block associated with this block. This attribute is not
4545writable.
4546@end defvar
4547
4548@defvar Block.static_block
4549The static block associated with this block. This attribute is not
4550writable.
4551@end defvar
4552
4553@defvar Block.is_global
4554@code{True} if the @code{gdb.Block} object is a global block,
4555@code{False} if not. This attribute is not
4556writable.
4557@end defvar
4558
4559@defvar Block.is_static
4560@code{True} if the @code{gdb.Block} object is a static block,
4561@code{False} if not. This attribute is not writable.
4562@end defvar
4563
4564@node Symbols In Python
849cba3b 4565@subsubsection Python representation of Symbols
329baa95
DE
4566
4567@cindex symbols in python
4568@tindex gdb.Symbol
4569
4570@value{GDBN} represents every variable, function and type as an
4571entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4572Similarly, Python represents these symbols in @value{GDBN} with the
4573@code{gdb.Symbol} object.
4574
4575The following symbol-related functions are available in the @code{gdb}
4576module:
4577
4578@findex gdb.lookup_symbol
4579@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4580This function searches for a symbol by name. The search scope can be
4581restricted to the parameters defined in the optional domain and block
4582arguments.
4583
4584@var{name} is the name of the symbol. It must be a string. The
4585optional @var{block} argument restricts the search to symbols visible
4586in that @var{block}. The @var{block} argument must be a
4587@code{gdb.Block} object. If omitted, the block for the current frame
4588is used. The optional @var{domain} argument restricts
4589the search to the domain type. The @var{domain} argument must be a
4590domain constant defined in the @code{gdb} module and described later
4591in this chapter.
4592
4593The result is a tuple of two elements.
4594The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4595is not found.
4596If the symbol is found, the second element is @code{True} if the symbol
4597is a field of a method's object (e.g., @code{this} in C@t{++}),
4598otherwise it is @code{False}.
4599If the symbol is not found, the second element is @code{False}.
4600@end defun
4601
4602@findex gdb.lookup_global_symbol
4603@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4604This function searches for a global symbol by name.
4605The search scope can be restricted to by the domain argument.
4606
4607@var{name} is the name of the symbol. It must be a string.
4608The optional @var{domain} argument restricts the search to the domain type.
4609The @var{domain} argument must be a domain constant defined in the @code{gdb}
4610module and described later in this chapter.
4611
4612The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4613is not found.
4614@end defun
4615
4616A @code{gdb.Symbol} object has the following attributes:
4617
4618@defvar Symbol.type
4619The type of the symbol or @code{None} if no type is recorded.
4620This attribute is represented as a @code{gdb.Type} object.
4621@xref{Types In Python}. This attribute is not writable.
4622@end defvar
4623
4624@defvar Symbol.symtab
4625The symbol table in which the symbol appears. This attribute is
4626represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4627Python}. This attribute is not writable.
4628@end defvar
4629
4630@defvar Symbol.line
4631The line number in the source code at which the symbol was defined.
4632This is an integer.
4633@end defvar
4634
4635@defvar Symbol.name
4636The name of the symbol as a string. This attribute is not writable.
4637@end defvar
4638
4639@defvar Symbol.linkage_name
4640The name of the symbol, as used by the linker (i.e., may be mangled).
4641This attribute is not writable.
4642@end defvar
4643
4644@defvar Symbol.print_name
4645The name of the symbol in a form suitable for output. This is either
4646@code{name} or @code{linkage_name}, depending on whether the user
4647asked @value{GDBN} to display demangled or mangled names.
4648@end defvar
4649
4650@defvar Symbol.addr_class
4651The address class of the symbol. This classifies how to find the value
4652of a symbol. Each address class is a constant defined in the
4653@code{gdb} module and described later in this chapter.
4654@end defvar
4655
4656@defvar Symbol.needs_frame
4657This is @code{True} if evaluating this symbol's value requires a frame
4658(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4659local variables will require a frame, but other symbols will not.
4660@end defvar
4661
4662@defvar Symbol.is_argument
4663@code{True} if the symbol is an argument of a function.
4664@end defvar
4665
4666@defvar Symbol.is_constant
4667@code{True} if the symbol is a constant.
4668@end defvar
4669
4670@defvar Symbol.is_function
4671@code{True} if the symbol is a function or a method.
4672@end defvar
4673
4674@defvar Symbol.is_variable
4675@code{True} if the symbol is a variable.
4676@end defvar
4677
4678A @code{gdb.Symbol} object has the following methods:
4679
4680@defun Symbol.is_valid ()
4681Returns @code{True} if the @code{gdb.Symbol} object is valid,
4682@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4683the symbol it refers to does not exist in @value{GDBN} any longer.
4684All other @code{gdb.Symbol} methods will throw an exception if it is
4685invalid at the time the method is called.
4686@end defun
4687
4688@defun Symbol.value (@r{[}frame@r{]})
4689Compute the value of the symbol, as a @code{gdb.Value}. For
4690functions, this computes the address of the function, cast to the
4691appropriate type. If the symbol requires a frame in order to compute
4692its value, then @var{frame} must be given. If @var{frame} is not
4693given, or if @var{frame} is invalid, then this method will throw an
4694exception.
4695@end defun
4696
4697The available domain categories in @code{gdb.Symbol} are represented
4698as constants in the @code{gdb} module:
4699
b3ce5e5f
DE
4700@vtable @code
4701@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4702@item gdb.SYMBOL_UNDEF_DOMAIN
4703This is used when a domain has not been discovered or none of the
4704following domains apply. This usually indicates an error either
4705in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4706
4707@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4708@item gdb.SYMBOL_VAR_DOMAIN
4709This domain contains variables, function names, typedef names and enum
4710type values.
b3ce5e5f
DE
4711
4712@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4713@item gdb.SYMBOL_STRUCT_DOMAIN
4714This domain holds struct, union and enum type names.
b3ce5e5f
DE
4715
4716@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4717@item gdb.SYMBOL_LABEL_DOMAIN
4718This domain contains names of labels (for gotos).
b3ce5e5f
DE
4719
4720@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4721@item gdb.SYMBOL_VARIABLES_DOMAIN
4722This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4723contains everything minus functions and types.
b3ce5e5f
DE
4724
4725@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4726@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4727This domain contains all functions.
b3ce5e5f
DE
4728
4729@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4730@item gdb.SYMBOL_TYPES_DOMAIN
4731This domain contains all types.
b3ce5e5f 4732@end vtable
329baa95
DE
4733
4734The available address class categories in @code{gdb.Symbol} are represented
4735as constants in the @code{gdb} module:
4736
b3ce5e5f
DE
4737@vtable @code
4738@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4739@item gdb.SYMBOL_LOC_UNDEF
4740If this is returned by address class, it indicates an error either in
4741the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4742
4743@vindex SYMBOL_LOC_CONST
329baa95
DE
4744@item gdb.SYMBOL_LOC_CONST
4745Value is constant int.
b3ce5e5f
DE
4746
4747@vindex SYMBOL_LOC_STATIC
329baa95
DE
4748@item gdb.SYMBOL_LOC_STATIC
4749Value is at a fixed address.
b3ce5e5f
DE
4750
4751@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4752@item gdb.SYMBOL_LOC_REGISTER
4753Value is in a register.
b3ce5e5f
DE
4754
4755@vindex SYMBOL_LOC_ARG
329baa95
DE
4756@item gdb.SYMBOL_LOC_ARG
4757Value is an argument. This value is at the offset stored within the
4758symbol inside the frame's argument list.
b3ce5e5f
DE
4759
4760@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4761@item gdb.SYMBOL_LOC_REF_ARG
4762Value address is stored in the frame's argument list. Just like
4763@code{LOC_ARG} except that the value's address is stored at the
4764offset, not the value itself.
b3ce5e5f
DE
4765
4766@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4767@item gdb.SYMBOL_LOC_REGPARM_ADDR
4768Value is a specified register. Just like @code{LOC_REGISTER} except
4769the register holds the address of the argument instead of the argument
4770itself.
b3ce5e5f
DE
4771
4772@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4773@item gdb.SYMBOL_LOC_LOCAL
4774Value is a local variable.
b3ce5e5f
DE
4775
4776@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4777@item gdb.SYMBOL_LOC_TYPEDEF
4778Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4779have this class.
b3ce5e5f
DE
4780
4781@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4782@item gdb.SYMBOL_LOC_BLOCK
4783Value is a block.
b3ce5e5f
DE
4784
4785@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4786@item gdb.SYMBOL_LOC_CONST_BYTES
4787Value is a byte-sequence.
b3ce5e5f
DE
4788
4789@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4790@item gdb.SYMBOL_LOC_UNRESOLVED
4791Value is at a fixed address, but the address of the variable has to be
4792determined from the minimal symbol table whenever the variable is
4793referenced.
b3ce5e5f
DE
4794
4795@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4796@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4797The value does not actually exist in the program.
b3ce5e5f
DE
4798
4799@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4800@item gdb.SYMBOL_LOC_COMPUTED
4801The value's address is a computed location.
b3ce5e5f 4802@end vtable
329baa95
DE
4803
4804@node Symbol Tables In Python
849cba3b 4805@subsubsection Symbol table representation in Python
329baa95
DE
4806
4807@cindex symbol tables in python
4808@tindex gdb.Symtab
4809@tindex gdb.Symtab_and_line
4810
4811Access to symbol table data maintained by @value{GDBN} on the inferior
4812is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4813@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4814from the @code{find_sal} method in @code{gdb.Frame} object.
4815@xref{Frames In Python}.
4816
4817For more information on @value{GDBN}'s symbol table management, see
4818@ref{Symbols, ,Examining the Symbol Table}, for more information.
4819
4820A @code{gdb.Symtab_and_line} object has the following attributes:
4821
4822@defvar Symtab_and_line.symtab
4823The symbol table object (@code{gdb.Symtab}) for this frame.
4824This attribute is not writable.
4825@end defvar
4826
4827@defvar Symtab_and_line.pc
4828Indicates the start of the address range occupied by code for the
4829current source line. This attribute is not writable.
4830@end defvar
4831
4832@defvar Symtab_and_line.last
4833Indicates the end of the address range occupied by code for the current
4834source line. This attribute is not writable.
4835@end defvar
4836
4837@defvar Symtab_and_line.line
4838Indicates the current line number for this object. This
4839attribute is not writable.
4840@end defvar
4841
4842A @code{gdb.Symtab_and_line} object has the following methods:
4843
4844@defun Symtab_and_line.is_valid ()
4845Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4846@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4847invalid if the Symbol table and line object it refers to does not
4848exist in @value{GDBN} any longer. All other
4849@code{gdb.Symtab_and_line} methods will throw an exception if it is
4850invalid at the time the method is called.
4851@end defun
4852
4853A @code{gdb.Symtab} object has the following attributes:
4854
4855@defvar Symtab.filename
4856The symbol table's source filename. This attribute is not writable.
4857@end defvar
4858
4859@defvar Symtab.objfile
4860The symbol table's backing object file. @xref{Objfiles In Python}.
4861This attribute is not writable.
4862@end defvar
4863
2b4fd423
DE
4864@defvar Symtab.producer
4865The name and possibly version number of the program that
4866compiled the code in the symbol table.
4867The contents of this string is up to the compiler.
4868If no producer information is available then @code{None} is returned.
4869This attribute is not writable.
4870@end defvar
4871
329baa95
DE
4872A @code{gdb.Symtab} object has the following methods:
4873
4874@defun Symtab.is_valid ()
4875Returns @code{True} if the @code{gdb.Symtab} object is valid,
4876@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4877the symbol table it refers to does not exist in @value{GDBN} any
4878longer. All other @code{gdb.Symtab} methods will throw an exception
4879if it is invalid at the time the method is called.
4880@end defun
4881
4882@defun Symtab.fullname ()
4883Return the symbol table's source absolute file name.
4884@end defun
4885
4886@defun Symtab.global_block ()
4887Return the global block of the underlying symbol table.
4888@xref{Blocks In Python}.
4889@end defun
4890
4891@defun Symtab.static_block ()
4892Return the static block of the underlying symbol table.
4893@xref{Blocks In Python}.
4894@end defun
4895
4896@defun Symtab.linetable ()
4897Return the line table associated with the symbol table.
4898@xref{Line Tables In Python}.
4899@end defun
4900
4901@node Line Tables In Python
4902@subsubsection Manipulating line tables using Python
4903
4904@cindex line tables in python
4905@tindex gdb.LineTable
4906
4907Python code can request and inspect line table information from a
4908symbol table that is loaded in @value{GDBN}. A line table is a
4909mapping of source lines to their executable locations in memory. To
4910acquire the line table information for a particular symbol table, use
4911the @code{linetable} function (@pxref{Symbol Tables In Python}).
4912
4913A @code{gdb.LineTable} is iterable. The iterator returns
4914@code{LineTableEntry} objects that correspond to the source line and
4915address for each line table entry. @code{LineTableEntry} objects have
4916the following attributes:
4917
4918@defvar LineTableEntry.line
4919The source line number for this line table entry. This number
4920corresponds to the actual line of source. This attribute is not
4921writable.
4922@end defvar
4923
4924@defvar LineTableEntry.pc
4925The address that is associated with the line table entry where the
4926executable code for that source line resides in memory. This
4927attribute is not writable.
4928@end defvar
4929
4930As there can be multiple addresses for a single source line, you may
4931receive multiple @code{LineTableEntry} objects with matching
4932@code{line} attributes, but with different @code{pc} attributes. The
4933iterator is sorted in ascending @code{pc} order. Here is a small
4934example illustrating iterating over a line table.
4935
4936@smallexample
4937symtab = gdb.selected_frame().find_sal().symtab
4938linetable = symtab.linetable()
4939for line in linetable:
4940 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4941@end smallexample
4942
4943This will have the following output:
4944
4945@smallexample
4946Line: 33 Address: 0x4005c8L
4947Line: 37 Address: 0x4005caL
4948Line: 39 Address: 0x4005d2L
4949Line: 40 Address: 0x4005f8L
4950Line: 42 Address: 0x4005ffL
4951Line: 44 Address: 0x400608L
4952Line: 42 Address: 0x40060cL
4953Line: 45 Address: 0x400615L
4954@end smallexample
4955
4956In addition to being able to iterate over a @code{LineTable}, it also
4957has the following direct access methods:
4958
4959@defun LineTable.line (line)
4960Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4961entries in the line table for the given @var{line}, which specifies
4962the source code line. If there are no entries for that source code
329baa95
DE
4963@var{line}, the Python @code{None} is returned.
4964@end defun
4965
4966@defun LineTable.has_line (line)
4967Return a Python @code{Boolean} indicating whether there is an entry in
4968the line table for this source line. Return @code{True} if an entry
4969is found, or @code{False} if not.
4970@end defun
4971
4972@defun LineTable.source_lines ()
4973Return a Python @code{List} of the source line numbers in the symbol
4974table. Only lines with executable code locations are returned. The
4975contents of the @code{List} will just be the source line entries
4976represented as Python @code{Long} values.
4977@end defun
4978
4979@node Breakpoints In Python
4980@subsubsection Manipulating breakpoints using Python
4981
4982@cindex breakpoints in python
4983@tindex gdb.Breakpoint
4984
4985Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4986class.
4987
0b982d68
SM
4988A breakpoint can be created using one of the two forms of the
4989@code{gdb.Breakpoint} constructor. The first one accepts a string
4990like one would pass to the @code{break}
4991(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
4992(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
4993create both breakpoints and watchpoints. The second accepts separate Python
4994arguments similar to @ref{Explicit Locations}, and can only be used to create
4995breakpoints.
4996
b89641ba 4997@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4998Create a new breakpoint according to @var{spec}, which is a string naming the
4999location of a breakpoint, or an expression that defines a watchpoint. The
5000string should describe a location in a format recognized by the @code{break}
5001command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5002watchpoint, by the @code{watch} command
5003(@pxref{Set Watchpoints, , Setting Watchpoints}).
5004
5005The optional @var{type} argument specifies the type of the breakpoint to create,
5006as defined below.
5007
5008The optional @var{wp_class} argument defines the class of watchpoint to create,
5009if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5010defaults to @code{gdb.WP_WRITE}.
5011
5012The optional @var{internal} argument allows the breakpoint to become invisible
5013to the user. The breakpoint will neither be reported when created, nor will it
5014be listed in the output from @code{info breakpoints} (but will be listed with
5015the @code{maint info breakpoints} command).
5016
5017The optional @var{temporary} argument makes the breakpoint a temporary
5018breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5019further access to the Python breakpoint after it has been hit will result in a
5020runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5021
5022The optional @var{qualified} argument is a boolean that allows interpreting
5023the function passed in @code{spec} as a fully-qualified name. It is equivalent
5024to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5025@ref{Explicit Locations}).
5026
0b982d68
SM
5027@end defun
5028
b89641ba 5029@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5030This second form of creating a new breakpoint specifies the explicit
5031location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5032be created in the specified source file @var{source}, at the specified
5033@var{function}, @var{label} and @var{line}.
5034
b89641ba
SM
5035@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5036explained previously.
329baa95
DE
5037@end defun
5038
cda75e70
TT
5039The available types are represented by constants defined in the @code{gdb}
5040module:
5041
5042@vtable @code
5043@vindex BP_BREAKPOINT
5044@item gdb.BP_BREAKPOINT
5045Normal code breakpoint.
5046
5047@vindex BP_WATCHPOINT
5048@item gdb.BP_WATCHPOINT
5049Watchpoint breakpoint.
5050
5051@vindex BP_HARDWARE_WATCHPOINT
5052@item gdb.BP_HARDWARE_WATCHPOINT
5053Hardware assisted watchpoint.
5054
5055@vindex BP_READ_WATCHPOINT
5056@item gdb.BP_READ_WATCHPOINT
5057Hardware assisted read watchpoint.
5058
5059@vindex BP_ACCESS_WATCHPOINT
5060@item gdb.BP_ACCESS_WATCHPOINT
5061Hardware assisted access watchpoint.
5062@end vtable
5063
5064The available watchpoint types represented by constants are defined in the
5065@code{gdb} module:
5066
5067@vtable @code
5068@vindex WP_READ
5069@item gdb.WP_READ
5070Read only watchpoint.
5071
5072@vindex WP_WRITE
5073@item gdb.WP_WRITE
5074Write only watchpoint.
5075
5076@vindex WP_ACCESS
5077@item gdb.WP_ACCESS
5078Read/Write watchpoint.
5079@end vtable
5080
329baa95
DE
5081@defun Breakpoint.stop (self)
5082The @code{gdb.Breakpoint} class can be sub-classed and, in
5083particular, you may choose to implement the @code{stop} method.
5084If this method is defined in a sub-class of @code{gdb.Breakpoint},
5085it will be called when the inferior reaches any location of a
5086breakpoint which instantiates that sub-class. If the method returns
5087@code{True}, the inferior will be stopped at the location of the
5088breakpoint, otherwise the inferior will continue.
5089
5090If there are multiple breakpoints at the same location with a
5091@code{stop} method, each one will be called regardless of the
5092return status of the previous. This ensures that all @code{stop}
5093methods have a chance to execute at that location. In this scenario
5094if one of the methods returns @code{True} but the others return
5095@code{False}, the inferior will still be stopped.
5096
5097You should not alter the execution state of the inferior (i.e.@:, step,
5098next, etc.), alter the current frame context (i.e.@:, change the current
5099active frame), or alter, add or delete any breakpoint. As a general
5100rule, you should not alter any data within @value{GDBN} or the inferior
5101at this time.
5102
5103Example @code{stop} implementation:
5104
5105@smallexample
5106class MyBreakpoint (gdb.Breakpoint):
5107 def stop (self):
5108 inf_val = gdb.parse_and_eval("foo")
5109 if inf_val == 3:
5110 return True
5111 return False
5112@end smallexample
5113@end defun
5114
329baa95
DE
5115@defun Breakpoint.is_valid ()
5116Return @code{True} if this @code{Breakpoint} object is valid,
5117@code{False} otherwise. A @code{Breakpoint} object can become invalid
5118if the user deletes the breakpoint. In this case, the object still
5119exists, but the underlying breakpoint does not. In the cases of
5120watchpoint scope, the watchpoint remains valid even if execution of the
5121inferior leaves the scope of that watchpoint.
5122@end defun
5123
fab3a15d 5124@defun Breakpoint.delete ()
329baa95
DE
5125Permanently deletes the @value{GDBN} breakpoint. This also
5126invalidates the Python @code{Breakpoint} object. Any further access
5127to this object's attributes or methods will raise an error.
5128@end defun
5129
5130@defvar Breakpoint.enabled
5131This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5132@code{False} otherwise. This attribute is writable. You can use it to enable
5133or disable the breakpoint.
329baa95
DE
5134@end defvar
5135
5136@defvar Breakpoint.silent
5137This attribute is @code{True} if the breakpoint is silent, and
5138@code{False} otherwise. This attribute is writable.
5139
5140Note that a breakpoint can also be silent if it has commands and the
5141first command is @code{silent}. This is not reported by the
5142@code{silent} attribute.
5143@end defvar
5144
93daf339
TT
5145@defvar Breakpoint.pending
5146This attribute is @code{True} if the breakpoint is pending, and
5147@code{False} otherwise. @xref{Set Breaks}. This attribute is
5148read-only.
5149@end defvar
5150
22a02324 5151@anchor{python_breakpoint_thread}
329baa95 5152@defvar Breakpoint.thread
5d5658a1
PA
5153If the breakpoint is thread-specific, this attribute holds the
5154thread's global id. If the breakpoint is not thread-specific, this
5155attribute is @code{None}. This attribute is writable.
329baa95
DE
5156@end defvar
5157
5158@defvar Breakpoint.task
5159If the breakpoint is Ada task-specific, this attribute holds the Ada task
5160id. If the breakpoint is not task-specific (or the underlying
5161language is not Ada), this attribute is @code{None}. This attribute
5162is writable.
5163@end defvar
5164
5165@defvar Breakpoint.ignore_count
5166This attribute holds the ignore count for the breakpoint, an integer.
5167This attribute is writable.
5168@end defvar
5169
5170@defvar Breakpoint.number
5171This attribute holds the breakpoint's number --- the identifier used by
5172the user to manipulate the breakpoint. This attribute is not writable.
5173@end defvar
5174
5175@defvar Breakpoint.type
5176This attribute holds the breakpoint's type --- the identifier used to
5177determine the actual breakpoint type or use-case. This attribute is not
5178writable.
5179@end defvar
5180
5181@defvar Breakpoint.visible
5182This attribute tells whether the breakpoint is visible to the user
5183when set, or when the @samp{info breakpoints} command is run. This
5184attribute is not writable.
5185@end defvar
5186
5187@defvar Breakpoint.temporary
5188This attribute indicates whether the breakpoint was created as a
5189temporary breakpoint. Temporary breakpoints are automatically deleted
5190after that breakpoint has been hit. Access to this attribute, and all
5191other attributes and functions other than the @code{is_valid}
5192function, will result in an error after the breakpoint has been hit
5193(as it has been automatically deleted). This attribute is not
5194writable.
5195@end defvar
5196
329baa95
DE
5197@defvar Breakpoint.hit_count
5198This attribute holds the hit count for the breakpoint, an integer.
5199This attribute is writable, but currently it can only be set to zero.
5200@end defvar
5201
5202@defvar Breakpoint.location
5203This attribute holds the location of the breakpoint, as specified by
5204the user. It is a string. If the breakpoint does not have a location
5205(that is, it is a watchpoint) the attribute's value is @code{None}. This
5206attribute is not writable.
5207@end defvar
5208
5209@defvar Breakpoint.expression
5210This attribute holds a breakpoint expression, as specified by
5211the user. It is a string. If the breakpoint does not have an
5212expression (the breakpoint is not a watchpoint) the attribute's value
5213is @code{None}. This attribute is not writable.
5214@end defvar
5215
5216@defvar Breakpoint.condition
5217This attribute holds the condition of the breakpoint, as specified by
5218the user. It is a string. If there is no condition, this attribute's
5219value is @code{None}. This attribute is writable.
5220@end defvar
5221
5222@defvar Breakpoint.commands
5223This attribute holds the commands attached to the breakpoint. If
5224there are commands, this attribute's value is a string holding all the
5225commands, separated by newlines. If there are no commands, this
a913fffb 5226attribute is @code{None}. This attribute is writable.
329baa95
DE
5227@end defvar
5228
5229@node Finish Breakpoints in Python
5230@subsubsection Finish Breakpoints
5231
5232@cindex python finish breakpoints
5233@tindex gdb.FinishBreakpoint
5234
5235A finish breakpoint is a temporary breakpoint set at the return address of
5236a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5237extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5238and deleted when the execution will run out of the breakpoint scope (i.e.@:
5239@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5240Finish breakpoints are thread specific and must be create with the right
5241thread selected.
5242
5243@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5244Create a finish breakpoint at the return address of the @code{gdb.Frame}
5245object @var{frame}. If @var{frame} is not provided, this defaults to the
5246newest frame. The optional @var{internal} argument allows the breakpoint to
5247become invisible to the user. @xref{Breakpoints In Python}, for further
5248details about this argument.
5249@end defun
5250
5251@defun FinishBreakpoint.out_of_scope (self)
5252In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5253@code{return} command, @dots{}), a function may not properly terminate, and
5254thus never hit the finish breakpoint. When @value{GDBN} notices such a
5255situation, the @code{out_of_scope} callback will be triggered.
5256
5257You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5258method:
5259
5260@smallexample
5261class MyFinishBreakpoint (gdb.FinishBreakpoint)
5262 def stop (self):
5263 print "normal finish"
5264 return True
5265
5266 def out_of_scope ():
5267 print "abnormal finish"
5268@end smallexample
5269@end defun
5270
5271@defvar FinishBreakpoint.return_value
5272When @value{GDBN} is stopped at a finish breakpoint and the frame
5273used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5274attribute will contain a @code{gdb.Value} object corresponding to the return
5275value of the function. The value will be @code{None} if the function return
5276type is @code{void} or if the return value was not computable. This attribute
5277is not writable.
5278@end defvar
5279
5280@node Lazy Strings In Python
849cba3b 5281@subsubsection Python representation of lazy strings
329baa95
DE
5282
5283@cindex lazy strings in python
5284@tindex gdb.LazyString
5285
5286A @dfn{lazy string} is a string whose contents is not retrieved or
5287encoded until it is needed.
5288
5289A @code{gdb.LazyString} is represented in @value{GDBN} as an
5290@code{address} that points to a region of memory, an @code{encoding}
5291that will be used to encode that region of memory, and a @code{length}
5292to delimit the region of memory that represents the string. The
5293difference between a @code{gdb.LazyString} and a string wrapped within
5294a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5295differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5296retrieved and encoded during printing, while a @code{gdb.Value}
5297wrapping a string is immediately retrieved and encoded on creation.
5298
5299A @code{gdb.LazyString} object has the following functions:
5300
5301@defun LazyString.value ()
5302Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5303will point to the string in memory, but will lose all the delayed
5304retrieval, encoding and handling that @value{GDBN} applies to a
5305@code{gdb.LazyString}.
5306@end defun
5307
5308@defvar LazyString.address
5309This attribute holds the address of the string. This attribute is not
5310writable.
5311@end defvar
5312
5313@defvar LazyString.length
5314This attribute holds the length of the string in characters. If the
5315length is -1, then the string will be fetched and encoded up to the
5316first null of appropriate width. This attribute is not writable.
5317@end defvar
5318
5319@defvar LazyString.encoding
5320This attribute holds the encoding that will be applied to the string
5321when the string is printed by @value{GDBN}. If the encoding is not
5322set, or contains an empty string, then @value{GDBN} will select the
5323most appropriate encoding when the string is printed. This attribute
5324is not writable.
5325@end defvar
5326
5327@defvar LazyString.type
5328This attribute holds the type that is represented by the lazy string's
f8d99587 5329type. For a lazy string this is a pointer or array type. To
329baa95
DE
5330resolve this to the lazy string's character type, use the type's
5331@code{target} method. @xref{Types In Python}. This attribute is not
5332writable.
5333@end defvar
5334
5335@node Architectures In Python
5336@subsubsection Python representation of architectures
5337@cindex Python architectures
5338
5339@value{GDBN} uses architecture specific parameters and artifacts in a
5340number of its various computations. An architecture is represented
5341by an instance of the @code{gdb.Architecture} class.
5342
5343A @code{gdb.Architecture} class has the following methods:
5344
5345@defun Architecture.name ()
5346Return the name (string value) of the architecture.
5347@end defun
5348
5349@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5350Return a list of disassembled instructions starting from the memory
5351address @var{start_pc}. The optional arguments @var{end_pc} and
5352@var{count} determine the number of instructions in the returned list.
5353If both the optional arguments @var{end_pc} and @var{count} are
5354specified, then a list of at most @var{count} disassembled instructions
5355whose start address falls in the closed memory address interval from
5356@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5357specified, but @var{count} is specified, then @var{count} number of
5358instructions starting from the address @var{start_pc} are returned. If
5359@var{count} is not specified but @var{end_pc} is specified, then all
5360instructions whose start address falls in the closed memory address
5361interval from @var{start_pc} to @var{end_pc} are returned. If neither
5362@var{end_pc} nor @var{count} are specified, then a single instruction at
5363@var{start_pc} is returned. For all of these cases, each element of the
5364returned list is a Python @code{dict} with the following string keys:
5365
5366@table @code
5367
5368@item addr
5369The value corresponding to this key is a Python long integer capturing
5370the memory address of the instruction.
5371
5372@item asm
5373The value corresponding to this key is a string value which represents
5374the instruction with assembly language mnemonics. The assembly
5375language flavor used is the same as that specified by the current CLI
5376variable @code{disassembly-flavor}. @xref{Machine Code}.
5377
5378@item length
5379The value corresponding to this key is the length (integer value) of the
5380instruction in bytes.
5381
5382@end table
5383@end defun
5384
5385@node Python Auto-loading
5386@subsection Python Auto-loading
5387@cindex Python auto-loading
5388
5389When a new object file is read (for example, due to the @code{file}
5390command, or because the inferior has loaded a shared library),
5391@value{GDBN} will look for Python support scripts in several ways:
5392@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5393@xref{Auto-loading extensions}.
5394
5395The auto-loading feature is useful for supplying application-specific
5396debugging commands and scripts.
5397
5398Auto-loading can be enabled or disabled,
5399and the list of auto-loaded scripts can be printed.
5400
5401@table @code
5402@anchor{set auto-load python-scripts}
5403@kindex set auto-load python-scripts
5404@item set auto-load python-scripts [on|off]
5405Enable or disable the auto-loading of Python scripts.
5406
5407@anchor{show auto-load python-scripts}
5408@kindex show auto-load python-scripts
5409@item show auto-load python-scripts
5410Show whether auto-loading of Python scripts is enabled or disabled.
5411
5412@anchor{info auto-load python-scripts}
5413@kindex info auto-load python-scripts
5414@cindex print list of auto-loaded Python scripts
5415@item info auto-load python-scripts [@var{regexp}]
5416Print the list of all Python scripts that @value{GDBN} auto-loaded.
5417
5418Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5419the @code{.debug_gdb_scripts} section and were either not found
5420(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5421@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5422This is useful because their names are not printed when @value{GDBN}
5423tries to load them and fails. There may be many of them, and printing
5424an error message for each one is problematic.
5425
5426If @var{regexp} is supplied only Python scripts with matching names are printed.
5427
5428Example:
5429
5430@smallexample
5431(gdb) info auto-load python-scripts
5432Loaded Script
5433Yes py-section-script.py
5434 full name: /tmp/py-section-script.py
5435No my-foo-pretty-printers.py
5436@end smallexample
5437@end table
5438
9f050062 5439When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5440@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5441function (@pxref{Objfiles In Python}). This can be useful for
5442registering objfile-specific pretty-printers and frame-filters.
5443
5444@node Python modules
5445@subsection Python modules
5446@cindex python modules
5447
5448@value{GDBN} comes with several modules to assist writing Python code.
5449
5450@menu
5451* gdb.printing:: Building and registering pretty-printers.
5452* gdb.types:: Utilities for working with types.
5453* gdb.prompt:: Utilities for prompt value substitution.
5454@end menu
5455
5456@node gdb.printing
5457@subsubsection gdb.printing
5458@cindex gdb.printing
5459
5460This module provides a collection of utilities for working with
5461pretty-printers.
5462
5463@table @code
5464@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5465This class specifies the API that makes @samp{info pretty-printer},
5466@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5467Pretty-printers should generally inherit from this class.
5468
5469@item SubPrettyPrinter (@var{name})
5470For printers that handle multiple types, this class specifies the
5471corresponding API for the subprinters.
5472
5473@item RegexpCollectionPrettyPrinter (@var{name})
5474Utility class for handling multiple printers, all recognized via
5475regular expressions.
5476@xref{Writing a Pretty-Printer}, for an example.
5477
5478@item FlagEnumerationPrinter (@var{name})
5479A pretty-printer which handles printing of @code{enum} values. Unlike
5480@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5481work properly when there is some overlap between the enumeration
697aa1b7
EZ
5482constants. The argument @var{name} is the name of the printer and
5483also the name of the @code{enum} type to look up.
329baa95
DE
5484
5485@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5486Register @var{printer} with the pretty-printer list of @var{obj}.
5487If @var{replace} is @code{True} then any existing copy of the printer
5488is replaced. Otherwise a @code{RuntimeError} exception is raised
5489if a printer with the same name already exists.
5490@end table
5491
5492@node gdb.types
5493@subsubsection gdb.types
5494@cindex gdb.types
5495
5496This module provides a collection of utilities for working with
5497@code{gdb.Type} objects.
5498
5499@table @code
5500@item get_basic_type (@var{type})
5501Return @var{type} with const and volatile qualifiers stripped,
5502and with typedefs and C@t{++} references converted to the underlying type.
5503
5504C@t{++} example:
5505
5506@smallexample
5507typedef const int const_int;
5508const_int foo (3);
5509const_int& foo_ref (foo);
5510int main () @{ return 0; @}
5511@end smallexample
5512
5513Then in gdb:
5514
5515@smallexample
5516(gdb) start
5517(gdb) python import gdb.types
5518(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5519(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5520int
5521@end smallexample
5522
5523@item has_field (@var{type}, @var{field})
5524Return @code{True} if @var{type}, assumed to be a type with fields
5525(e.g., a structure or union), has field @var{field}.
5526
5527@item make_enum_dict (@var{enum_type})
5528Return a Python @code{dictionary} type produced from @var{enum_type}.
5529
5530@item deep_items (@var{type})
5531Returns a Python iterator similar to the standard
5532@code{gdb.Type.iteritems} method, except that the iterator returned
5533by @code{deep_items} will recursively traverse anonymous struct or
5534union fields. For example:
5535
5536@smallexample
5537struct A
5538@{
5539 int a;
5540 union @{
5541 int b0;
5542 int b1;
5543 @};
5544@};
5545@end smallexample
5546
5547@noindent
5548Then in @value{GDBN}:
5549@smallexample
5550(@value{GDBP}) python import gdb.types
5551(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5552(@value{GDBP}) python print struct_a.keys ()
5553@{['a', '']@}
5554(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5555@{['a', 'b0', 'b1']@}
5556@end smallexample
5557
5558@item get_type_recognizers ()
5559Return a list of the enabled type recognizers for the current context.
5560This is called by @value{GDBN} during the type-printing process
5561(@pxref{Type Printing API}).
5562
5563@item apply_type_recognizers (recognizers, type_obj)
5564Apply the type recognizers, @var{recognizers}, to the type object
5565@var{type_obj}. If any recognizer returns a string, return that
5566string. Otherwise, return @code{None}. This is called by
5567@value{GDBN} during the type-printing process (@pxref{Type Printing
5568API}).
5569
5570@item register_type_printer (locus, printer)
697aa1b7
EZ
5571This is a convenience function to register a type printer
5572@var{printer}. The printer must implement the type printer protocol.
5573The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5574the printer is registered with that objfile; a @code{gdb.Progspace},
5575in which case the printer is registered with that progspace; or
5576@code{None}, in which case the printer is registered globally.
329baa95
DE
5577
5578@item TypePrinter
5579This is a base class that implements the type printer protocol. Type
5580printers are encouraged, but not required, to derive from this class.
5581It defines a constructor:
5582
5583@defmethod TypePrinter __init__ (self, name)
5584Initialize the type printer with the given name. The new printer
5585starts in the enabled state.
5586@end defmethod
5587
5588@end table
5589
5590@node gdb.prompt
5591@subsubsection gdb.prompt
5592@cindex gdb.prompt
5593
5594This module provides a method for prompt value-substitution.
5595
5596@table @code
5597@item substitute_prompt (@var{string})
5598Return @var{string} with escape sequences substituted by values. Some
5599escape sequences take arguments. You can specify arguments inside
5600``@{@}'' immediately following the escape sequence.
5601
5602The escape sequences you can pass to this function are:
5603
5604@table @code
5605@item \\
5606Substitute a backslash.
5607@item \e
5608Substitute an ESC character.
5609@item \f
5610Substitute the selected frame; an argument names a frame parameter.
5611@item \n
5612Substitute a newline.
5613@item \p
5614Substitute a parameter's value; the argument names the parameter.
5615@item \r
5616Substitute a carriage return.
5617@item \t
5618Substitute the selected thread; an argument names a thread parameter.
5619@item \v
5620Substitute the version of GDB.
5621@item \w
5622Substitute the current working directory.
5623@item \[
5624Begin a sequence of non-printing characters. These sequences are
5625typically used with the ESC character, and are not counted in the string
5626length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5627blue-colored ``(gdb)'' prompt where the length is five.
5628@item \]
5629End a sequence of non-printing characters.
5630@end table
5631
5632For example:
5633
5634@smallexample
5635substitute_prompt (``frame: \f,
5636 print arguments: \p@{print frame-arguments@}'')
5637@end smallexample
5638
5639@exdent will return the string:
5640
5641@smallexample
5642"frame: main, print arguments: scalars"
5643@end smallexample
5644@end table
This page took 0.758112 seconds and 4 git commands to generate.