bfd_is_const_section thinko
[deliverable/binutils-gdb.git] / gdb / dwarf2 / loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
b811d2c2 3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
4de283e4
TT
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
d55e5aa6 29#include "ax.h"
4de283e4
TT
30#include "ax-gdb.h"
31#include "regcache.h"
32#include "objfiles.h"
edb3359d 33#include "block.h"
4de283e4 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
82ca8957
TT
37#include "dwarf2/expr.h"
38#include "dwarf2/loc.h"
39#include "dwarf2/read.h"
40#include "dwarf2/frame.h"
f4382c45 41#include "dwarf2/leb.h"
4de283e4 42#include "compile/compile.h"
268a13a5 43#include "gdbsupport/selftest.h"
4de283e4
TT
44#include <algorithm>
45#include <vector>
46#include <unordered_set>
268a13a5
TT
47#include "gdbsupport/underlying.h"
48#include "gdbsupport/byte-vector.h"
4c2df51b 49
1632a688
JK
50static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
56eb65bd
SP
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
8cf6f0b1 57
192ca6d8
TT
58static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
a6b786da
KB
64static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
e4a62c65 68 struct type *type, bool resolve_abstract_p = false);
a6b786da 69
f664829e
DE
70/* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75enum debug_loc_kind
76{
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
3771a44c
DE
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
f664829e 94
9fc3eaae 95 /* This is followed by two unsigned LEB128 operands. The values of these
96 operands are the starting and ending offsets, respectively, relative to
97 the applicable base address. */
98 DEBUG_LOC_OFFSET_PAIR = 4,
99
f664829e
DE
100 /* An internal value indicating there is insufficient data. */
101 DEBUG_LOC_BUFFER_OVERFLOW = -1,
102
103 /* An internal value indicating an invalid kind of entry was found. */
104 DEBUG_LOC_INVALID_ENTRY = -2
105};
106
b6807d98
TT
107/* Helper function which throws an error if a synthetic pointer is
108 invalid. */
109
110static void
111invalid_synthetic_pointer (void)
112{
113 error (_("access outside bounds of object "
114 "referenced via synthetic pointer"));
115}
116
f664829e
DE
117/* Decode the addresses in a non-dwo .debug_loc entry.
118 A pointer to the next byte to examine is returned in *NEW_PTR.
119 The encoded low,high addresses are return in *LOW,*HIGH.
120 The result indicates the kind of entry found. */
121
122static enum debug_loc_kind
123decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
124 const gdb_byte **new_ptr,
125 CORE_ADDR *low, CORE_ADDR *high,
126 enum bfd_endian byte_order,
127 unsigned int addr_size,
128 int signed_addr_p)
129{
130 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
131
132 if (buf_end - loc_ptr < 2 * addr_size)
133 return DEBUG_LOC_BUFFER_OVERFLOW;
134
135 if (signed_addr_p)
136 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
137 else
138 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
139 loc_ptr += addr_size;
140
141 if (signed_addr_p)
142 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
143 else
144 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
145 loc_ptr += addr_size;
146
147 *new_ptr = loc_ptr;
148
149 /* A base-address-selection entry. */
150 if ((*low & base_mask) == base_mask)
151 return DEBUG_LOC_BASE_ADDRESS;
152
153 /* An end-of-list entry. */
154 if (*low == 0 && *high == 0)
155 return DEBUG_LOC_END_OF_LIST;
156
3771a44c 157 return DEBUG_LOC_START_END;
f664829e
DE
158}
159
43988095
JK
160/* Decode the addresses in .debug_loclists entry.
161 A pointer to the next byte to examine is returned in *NEW_PTR.
162 The encoded low,high addresses are return in *LOW,*HIGH.
163 The result indicates the kind of entry found. */
164
165static enum debug_loc_kind
166decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
167 const gdb_byte *loc_ptr,
168 const gdb_byte *buf_end,
169 const gdb_byte **new_ptr,
170 CORE_ADDR *low, CORE_ADDR *high,
171 enum bfd_endian byte_order,
172 unsigned int addr_size,
173 int signed_addr_p)
174{
175 uint64_t u64;
176
177 if (loc_ptr == buf_end)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179
180 switch (*loc_ptr++)
181 {
3112ed97
NA
182 case DW_LLE_base_addressx:
183 *low = 0;
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = dwarf2_read_addr_index (per_cu, u64);
188 *new_ptr = loc_ptr;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_startx_length:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *low = dwarf2_read_addr_index (per_cu, u64);
195 *high = *low;
196 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
197 if (loc_ptr == NULL)
198 return DEBUG_LOC_BUFFER_OVERFLOW;
199 *high += u64;
200 *new_ptr = loc_ptr;
201 return DEBUG_LOC_START_LENGTH;
202 case DW_LLE_start_length:
203 if (buf_end - loc_ptr < addr_size)
204 return DEBUG_LOC_BUFFER_OVERFLOW;
205 if (signed_addr_p)
206 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
207 else
208 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
209 loc_ptr += addr_size;
210 *high = *low;
211 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
212 if (loc_ptr == NULL)
213 return DEBUG_LOC_BUFFER_OVERFLOW;
214 *high += u64;
215 *new_ptr = loc_ptr;
216 return DEBUG_LOC_START_LENGTH;
43988095
JK
217 case DW_LLE_end_of_list:
218 *new_ptr = loc_ptr;
219 return DEBUG_LOC_END_OF_LIST;
220 case DW_LLE_base_address:
221 if (loc_ptr + addr_size > buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
223 if (signed_addr_p)
224 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
225 else
226 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
227 loc_ptr += addr_size;
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_offset_pair:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = u64;
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = u64;
239 *new_ptr = loc_ptr;
9fc3eaae 240 return DEBUG_LOC_OFFSET_PAIR;
3112ed97
NA
241 /* Following cases are not supported yet. */
242 case DW_LLE_startx_endx:
243 case DW_LLE_start_end:
244 case DW_LLE_default_location:
43988095
JK
245 default:
246 return DEBUG_LOC_INVALID_ENTRY;
247 }
248}
249
f664829e
DE
250/* Decode the addresses in .debug_loc.dwo entry.
251 A pointer to the next byte to examine is returned in *NEW_PTR.
252 The encoded low,high addresses are return in *LOW,*HIGH.
253 The result indicates the kind of entry found. */
254
255static enum debug_loc_kind
256decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
257 const gdb_byte *loc_ptr,
258 const gdb_byte *buf_end,
259 const gdb_byte **new_ptr,
3771a44c
DE
260 CORE_ADDR *low, CORE_ADDR *high,
261 enum bfd_endian byte_order)
f664829e 262{
9fccedf7 263 uint64_t low_index, high_index;
f664829e
DE
264
265 if (loc_ptr == buf_end)
266 return DEBUG_LOC_BUFFER_OVERFLOW;
267
268 switch (*loc_ptr++)
269 {
43988095 270 case DW_LLE_GNU_end_of_list_entry:
f664829e
DE
271 *new_ptr = loc_ptr;
272 return DEBUG_LOC_END_OF_LIST;
43988095 273 case DW_LLE_GNU_base_address_selection_entry:
f664829e
DE
274 *low = 0;
275 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
276 if (loc_ptr == NULL)
277 return DEBUG_LOC_BUFFER_OVERFLOW;
278 *high = dwarf2_read_addr_index (per_cu, high_index);
279 *new_ptr = loc_ptr;
280 return DEBUG_LOC_BASE_ADDRESS;
43988095 281 case DW_LLE_GNU_start_end_entry:
f664829e
DE
282 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
283 if (loc_ptr == NULL)
284 return DEBUG_LOC_BUFFER_OVERFLOW;
285 *low = dwarf2_read_addr_index (per_cu, low_index);
286 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
287 if (loc_ptr == NULL)
288 return DEBUG_LOC_BUFFER_OVERFLOW;
289 *high = dwarf2_read_addr_index (per_cu, high_index);
290 *new_ptr = loc_ptr;
3771a44c 291 return DEBUG_LOC_START_END;
43988095 292 case DW_LLE_GNU_start_length_entry:
3771a44c
DE
293 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
294 if (loc_ptr == NULL)
295 return DEBUG_LOC_BUFFER_OVERFLOW;
296 *low = dwarf2_read_addr_index (per_cu, low_index);
297 if (loc_ptr + 4 > buf_end)
298 return DEBUG_LOC_BUFFER_OVERFLOW;
299 *high = *low;
300 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
301 *new_ptr = loc_ptr + 4;
302 return DEBUG_LOC_START_LENGTH;
f664829e
DE
303 default:
304 return DEBUG_LOC_INVALID_ENTRY;
305 }
306}
307
8cf6f0b1 308/* A function for dealing with location lists. Given a
0d53c4c4
DJ
309 symbol baton (BATON) and a pc value (PC), find the appropriate
310 location expression, set *LOCEXPR_LENGTH, and return a pointer
311 to the beginning of the expression. Returns NULL on failure.
312
313 For now, only return the first matching location expression; there
314 can be more than one in the list. */
315
8cf6f0b1
TT
316const gdb_byte *
317dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
318 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 319{
09ba997f 320 struct objfile *objfile = baton->per_cu->objfile ();
f7fd4728 321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
09ba997f 323 unsigned int addr_size = baton->per_cu->addr_size ();
d4a087c7 324 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 325 /* Adjust base_address for relocatable objects. */
09ba997f 326 CORE_ADDR base_offset = baton->per_cu->text_offset ();
8edfa926 327 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 328 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
329
330 loc_ptr = baton->data;
331 buf_end = baton->data + baton->size;
332
333 while (1)
334 {
f664829e
DE
335 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
336 int length;
337 enum debug_loc_kind kind;
338 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
339
9fc3eaae 340 if (baton->per_cu->version () < 5 && baton->from_dwo)
f664829e
DE
341 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
342 loc_ptr, buf_end, &new_ptr,
3771a44c 343 &low, &high, byte_order);
09ba997f 344 else if (baton->per_cu->version () < 5)
f664829e
DE
345 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
346 &low, &high,
347 byte_order, addr_size,
348 signed_addr_p);
43988095
JK
349 else
350 kind = decode_debug_loclists_addresses (baton->per_cu,
351 loc_ptr, buf_end, &new_ptr,
352 &low, &high, byte_order,
353 addr_size, signed_addr_p);
354
f664829e
DE
355 loc_ptr = new_ptr;
356 switch (kind)
1d6edc3c 357 {
f664829e 358 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
359 *locexpr_length = 0;
360 return NULL;
f664829e
DE
361 case DEBUG_LOC_BASE_ADDRESS:
362 base_address = high + base_offset;
363 continue;
3771a44c
DE
364 case DEBUG_LOC_START_END:
365 case DEBUG_LOC_START_LENGTH:
9fc3eaae 366 case DEBUG_LOC_OFFSET_PAIR:
f664829e
DE
367 break;
368 case DEBUG_LOC_BUFFER_OVERFLOW:
369 case DEBUG_LOC_INVALID_ENTRY:
370 error (_("dwarf2_find_location_expression: "
371 "Corrupted DWARF expression."));
372 default:
373 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 374 }
b5758fe4 375
bed911e5 376 /* Otherwise, a location expression entry.
8ddd5a6c 377 If the entry is from a DWO, don't add base address: the entry is from
9fc3eaae 378 .debug_addr which already has the DWARF "base address". We still add
379 base_offset in case we're debugging a PIE executable. However, if the
380 entry is DW_LLE_offset_pair from a DWO, add the base address as the
381 operands are offsets relative to the applicable base address. */
382 if (baton->from_dwo && kind != DEBUG_LOC_OFFSET_PAIR)
8ddd5a6c
DE
383 {
384 low += base_offset;
385 high += base_offset;
386 }
387 else
bed911e5
DE
388 {
389 low += base_address;
390 high += base_address;
391 }
0d53c4c4 392
09ba997f 393 if (baton->per_cu->version () < 5)
43988095
JK
394 {
395 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
396 loc_ptr += 2;
397 }
398 else
399 {
400 unsigned int bytes_read;
401
402 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
403 loc_ptr += bytes_read;
404 }
0d53c4c4 405
e18b2753
JK
406 if (low == high && pc == low)
407 {
408 /* This is entry PC record present only at entry point
409 of a function. Verify it is really the function entry point. */
410
3977b71f 411 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
412 struct symbol *pc_func = NULL;
413
414 if (pc_block)
415 pc_func = block_linkage_function (pc_block);
416
2b1ffcfd 417 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
e18b2753
JK
418 {
419 *locexpr_length = length;
420 return loc_ptr;
421 }
422 }
423
0d53c4c4
DJ
424 if (pc >= low && pc < high)
425 {
426 *locexpr_length = length;
427 return loc_ptr;
428 }
429
430 loc_ptr += length;
431 }
432}
433
f1e6e072
TT
434/* Implement find_frame_base_location method for LOC_BLOCK functions using
435 DWARF expression for its DW_AT_frame_base. */
436
437static void
438locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
439 const gdb_byte **start, size_t *length)
440{
9a3c8263
SM
441 struct dwarf2_locexpr_baton *symbaton
442 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
443
444 *length = symbaton->size;
445 *start = symbaton->data;
446}
447
7d1c9c9b
JB
448/* Implement the struct symbol_block_ops::get_frame_base method for
449 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
450
451static CORE_ADDR
7d1c9c9b 452locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
453{
454 struct gdbarch *gdbarch;
455 struct type *type;
456 struct dwarf2_locexpr_baton *dlbaton;
457 const gdb_byte *start;
458 size_t length;
459 struct value *result;
460
461 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
462 Thus, it's supposed to provide the find_frame_base_location method as
463 well. */
464 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
465
466 gdbarch = get_frame_arch (frame);
467 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 468 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
469
470 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
471 (framefunc, get_frame_pc (frame), &start, &length);
472 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
473 dlbaton->per_cu);
474
475 /* The DW_AT_frame_base attribute contains a location description which
476 computes the base address itself. However, the call to
477 dwarf2_evaluate_loc_desc returns a value representing a variable at
478 that address. The frame base address is thus this variable's
479 address. */
480 return value_address (result);
481}
482
f1e6e072
TT
483/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
484 function uses DWARF expression for its DW_AT_frame_base. */
485
486const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
487{
63e43d3a 488 locexpr_find_frame_base_location,
7d1c9c9b 489 locexpr_get_frame_base
f1e6e072
TT
490};
491
492/* Implement find_frame_base_location method for LOC_BLOCK functions using
493 DWARF location list for its DW_AT_frame_base. */
494
495static void
496loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
497 const gdb_byte **start, size_t *length)
498{
9a3c8263
SM
499 struct dwarf2_loclist_baton *symbaton
500 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
501
502 *start = dwarf2_find_location_expression (symbaton, length, pc);
503}
504
7d1c9c9b
JB
505/* Implement the struct symbol_block_ops::get_frame_base method for
506 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
507
508static CORE_ADDR
509loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
510{
511 struct gdbarch *gdbarch;
512 struct type *type;
513 struct dwarf2_loclist_baton *dlbaton;
514 const gdb_byte *start;
515 size_t length;
516 struct value *result;
517
518 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
519 Thus, it's supposed to provide the find_frame_base_location method as
520 well. */
521 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
522
523 gdbarch = get_frame_arch (frame);
524 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 525 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
526
527 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
528 (framefunc, get_frame_pc (frame), &start, &length);
529 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
530 dlbaton->per_cu);
531
532 /* The DW_AT_frame_base attribute contains a location description which
533 computes the base address itself. However, the call to
534 dwarf2_evaluate_loc_desc returns a value representing a variable at
535 that address. The frame base address is thus this variable's
536 address. */
537 return value_address (result);
538}
539
f1e6e072
TT
540/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
541 function uses DWARF location list for its DW_AT_frame_base. */
542
543const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
544{
63e43d3a 545 loclist_find_frame_base_location,
7d1c9c9b 546 loclist_get_frame_base
f1e6e072
TT
547};
548
af945b75
TT
549/* See dwarf2loc.h. */
550
551void
552func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
553 const gdb_byte **start, size_t *length)
0936ad1d 554{
f1e6e072 555 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 556 {
f1e6e072 557 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 558
f1e6e072 559 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
560 }
561 else
f1e6e072 562 *length = 0;
0d53c4c4 563
1d6edc3c 564 if (*length == 0)
8a3fe4f8 565 error (_("Could not find the frame base for \"%s\"."),
987012b8 566 framefunc->natural_name ());
4c2df51b
DJ
567}
568
4c2df51b 569static CORE_ADDR
192ca6d8 570get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 571{
192ca6d8 572 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 573
192ca6d8 574 return ctx->get_frame_pc ();
4c2df51b
DJ
575}
576
5c631832 577static void
b64f50a1 578per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 579 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
580{
581 struct dwarf2_locexpr_baton block;
582
192ca6d8
TT
583 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
584 get_frame_pc_for_per_cu_dwarf_call,
585 ctx);
5c631832
JK
586
587 /* DW_OP_call_ref is currently not supported. */
588 gdb_assert (block.per_cu == per_cu);
589
595d2e30 590 ctx->eval (block.data, block.size);
5c631832
JK
591}
592
a6b786da
KB
593/* Given context CTX, section offset SECT_OFF, and compilation unit
594 data PER_CU, execute the "variable value" operation on the DIE
595 found at SECT_OFF. */
596
597static struct value *
598sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
599 struct dwarf2_per_cu_data *per_cu)
600{
601 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
602
603 if (die_type == NULL)
604 error (_("Bad DW_OP_GNU_variable_value DIE."));
605
606 /* Note: Things still work when the following test is removed. This
607 test and error is here to conform to the proposed specification. */
608 if (TYPE_CODE (die_type) != TYPE_CODE_INT
609 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
610 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
611
612 struct type *type = lookup_pointer_type (die_type);
613 struct frame_info *frame = get_selected_frame (_("No frame selected."));
e4a62c65 614 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
a6b786da
KB
615}
616
192ca6d8 617class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 618{
192ca6d8 619 public:
5c631832 620
192ca6d8
TT
621 struct frame_info *frame;
622 struct dwarf2_per_cu_data *per_cu;
623 CORE_ADDR obj_address;
5c631832 624
192ca6d8
TT
625 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
626 the frame in BATON. */
8a9b8146 627
632e107b 628 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
629 {
630 return dwarf2_frame_cfa (frame);
631 }
8a9b8146 632
192ca6d8
TT
633 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
634 the frame in BATON. */
635
632e107b 636 CORE_ADDR get_frame_pc () override
192ca6d8
TT
637 {
638 return get_frame_address_in_block (frame);
639 }
640
641 /* Using the objfile specified in BATON, find the address for the
642 current thread's thread-local storage with offset OFFSET. */
632e107b 643 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8 644 {
09ba997f 645 struct objfile *objfile = per_cu->objfile ();
192ca6d8
TT
646
647 return target_translate_tls_address (objfile, offset);
648 }
649
650 /* Helper interface of per_cu_dwarf_call for
651 dwarf2_evaluate_loc_desc. */
652
632e107b 653 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
654 {
655 per_cu_dwarf_call (this, die_offset, per_cu);
656 }
657
a6b786da
KB
658 /* Helper interface of sect_variable_value for
659 dwarf2_evaluate_loc_desc. */
660
661 struct value *dwarf_variable_value (sect_offset sect_off) override
662 {
663 return sect_variable_value (this, sect_off, per_cu);
664 }
665
632e107b 666 struct type *get_base_type (cu_offset die_offset, int size) override
192ca6d8 667 {
7d5697f9
TT
668 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
669 if (result == NULL)
216f72a1 670 error (_("Could not find type for DW_OP_const_type"));
7d5697f9 671 if (size != 0 && TYPE_LENGTH (result) != size)
216f72a1 672 error (_("DW_OP_const_type has different sizes for type and data"));
7d5697f9 673 return result;
192ca6d8
TT
674 }
675
676 /* Callback function for dwarf2_evaluate_loc_desc.
336d760d 677 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
192ca6d8 678
632e107b 679 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
680 {
681 return dwarf2_read_addr_index (per_cu, index);
682 }
683
684 /* Callback function for get_object_address. Return the address of the VLA
685 object. */
686
632e107b 687 CORE_ADDR get_object_address () override
192ca6d8
TT
688 {
689 if (obj_address == 0)
690 error (_("Location address is not set."));
691 return obj_address;
692 }
693
694 /* Execute DWARF block of call_site_parameter which matches KIND and
695 KIND_U. Choose DEREF_SIZE value of that parameter. Search
696 caller of this objects's frame.
697
698 The caller can be from a different CU - per_cu_dwarf_call
699 implementation can be more simple as it does not support cross-CU
700 DWARF executions. */
701
702 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
703 union call_site_parameter_u kind_u,
632e107b 704 int deref_size) override
192ca6d8
TT
705 {
706 struct frame_info *caller_frame;
707 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
708 struct call_site_parameter *parameter;
709 const gdb_byte *data_src;
710 size_t size;
711
712 caller_frame = get_prev_frame (frame);
713
714 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
715 &caller_per_cu);
716 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
717 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
718
719 /* DEREF_SIZE size is not verified here. */
720 if (data_src == NULL)
721 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 722 _("Cannot resolve DW_AT_call_data_value"));
192ca6d8 723
7d5697f9
TT
724 scoped_restore save_frame = make_scoped_restore (&this->frame,
725 caller_frame);
726 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
727 caller_per_cu);
728 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
729 (CORE_ADDR) 0);
192ca6d8
TT
730
731 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
09ba997f 732 this->gdbarch = get_objfile_arch (per_cu->objfile ());
192ca6d8 733 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
09ba997f 734 this->addr_size = per_cu->addr_size ();
192ca6d8 735 scoped_restore save_offset = make_scoped_restore (&this->offset);
09ba997f 736 this->offset = per_cu->text_offset ();
192ca6d8
TT
737
738 this->eval (data_src, size);
739 }
740
741 /* Using the frame specified in BATON, find the location expression
742 describing the frame base. Return a pointer to it in START and
743 its length in LENGTH. */
632e107b 744 void get_frame_base (const gdb_byte **start, size_t * length) override
192ca6d8
TT
745 {
746 /* FIXME: cagney/2003-03-26: This code should be using
747 get_frame_base_address(), and then implement a dwarf2 specific
748 this_base method. */
749 struct symbol *framefunc;
750 const struct block *bl = get_frame_block (frame, NULL);
751
752 if (bl == NULL)
753 error (_("frame address is not available."));
754
755 /* Use block_linkage_function, which returns a real (not inlined)
756 function, instead of get_frame_function, which may return an
757 inlined function. */
758 framefunc = block_linkage_function (bl);
759
760 /* If we found a frame-relative symbol then it was certainly within
761 some function associated with a frame. If we can't find the frame,
762 something has gone wrong. */
763 gdb_assert (framefunc != NULL);
764
765 func_get_frame_base_dwarf_block (framefunc,
766 get_frame_address_in_block (frame),
767 start, length);
768 }
769
770 /* Read memory at ADDR (length LEN) into BUF. */
771
632e107b 772 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
773 {
774 read_memory (addr, buf, len);
775 }
776
777 /* Using the frame specified in BATON, return the value of register
778 REGNUM, treated as a pointer. */
632e107b 779 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
192ca6d8
TT
780 {
781 struct gdbarch *gdbarch = get_frame_arch (frame);
782 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
783
784 return address_from_register (regnum, frame);
785 }
786
787 /* Implement "get_reg_value" callback. */
788
632e107b 789 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
192ca6d8
TT
790 {
791 struct gdbarch *gdbarch = get_frame_arch (frame);
792 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
793
794 return value_from_register (type, regnum, frame);
795 }
796};
8a9b8146 797
8e3b41a9
JK
798/* See dwarf2loc.h. */
799
ccce17b0 800unsigned int entry_values_debug = 0;
8e3b41a9
JK
801
802/* Helper to set entry_values_debug. */
803
804static void
805show_entry_values_debug (struct ui_file *file, int from_tty,
806 struct cmd_list_element *c, const char *value)
807{
808 fprintf_filtered (file,
809 _("Entry values and tail call frames debugging is %s.\n"),
810 value);
811}
812
216f72a1 813/* Find DW_TAG_call_site's DW_AT_call_target address.
8e3b41a9
JK
814 CALLER_FRAME (for registers) can be NULL if it is not known. This function
815 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
816
817static CORE_ADDR
818call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
819 struct call_site *call_site,
820 struct frame_info *caller_frame)
821{
822 switch (FIELD_LOC_KIND (call_site->target))
823 {
824 case FIELD_LOC_KIND_DWARF_BLOCK:
825 {
826 struct dwarf2_locexpr_baton *dwarf_block;
827 struct value *val;
828 struct type *caller_core_addr_type;
829 struct gdbarch *caller_arch;
830
831 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
832 if (dwarf_block == NULL)
833 {
7cbd4a93 834 struct bound_minimal_symbol msym;
8e3b41a9
JK
835
836 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
837 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 838 _("DW_AT_call_target is not specified at %s in %s"),
8e3b41a9 839 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 840 (msym.minsym == NULL ? "???"
c9d95fa3 841 : msym.minsym->print_name ()));
8e3b41a9
JK
842
843 }
844 if (caller_frame == NULL)
845 {
7cbd4a93 846 struct bound_minimal_symbol msym;
8e3b41a9
JK
847
848 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
849 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 850 _("DW_AT_call_target DWARF block resolving "
8e3b41a9
JK
851 "requires known frame which is currently not "
852 "available at %s in %s"),
853 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 854 (msym.minsym == NULL ? "???"
c9d95fa3 855 : msym.minsym->print_name ()));
8e3b41a9
JK
856
857 }
858 caller_arch = get_frame_arch (caller_frame);
859 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
860 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
861 dwarf_block->data, dwarf_block->size,
862 dwarf_block->per_cu);
216f72a1 863 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
8e3b41a9
JK
864 if (VALUE_LVAL (val) == lval_memory)
865 return value_address (val);
866 else
867 return value_as_address (val);
868 }
869
870 case FIELD_LOC_KIND_PHYSNAME:
871 {
872 const char *physname;
3b7344d5 873 struct bound_minimal_symbol msym;
8e3b41a9
JK
874
875 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
876
877 /* Handle both the mangled and demangled PHYSNAME. */
878 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 879 if (msym.minsym == NULL)
8e3b41a9 880 {
3b7344d5 881 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
882 throw_error (NO_ENTRY_VALUE_ERROR,
883 _("Cannot find function \"%s\" for a call site target "
884 "at %s in %s"),
885 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5 886 (msym.minsym == NULL ? "???"
c9d95fa3 887 : msym.minsym->print_name ()));
8e3b41a9
JK
888
889 }
77e371c0 890 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
891 }
892
893 case FIELD_LOC_KIND_PHYSADDR:
894 return FIELD_STATIC_PHYSADDR (call_site->target);
895
896 default:
897 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
898 }
899}
900
111c6489
JK
901/* Convert function entry point exact address ADDR to the function which is
902 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
903 NO_ENTRY_VALUE_ERROR otherwise. */
904
905static struct symbol *
906func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
907{
908 struct symbol *sym = find_pc_function (addr);
909 struct type *type;
910
2b1ffcfd 911 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
111c6489 912 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 913 _("DW_TAG_call_site resolving failed to find function "
111c6489
JK
914 "name for address %s"),
915 paddress (gdbarch, addr));
916
917 type = SYMBOL_TYPE (sym);
918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
919 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
920
921 return sym;
922}
923
2d6c5dc2
JK
924/* Verify function with entry point exact address ADDR can never call itself
925 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
926 can call itself via tail calls.
927
928 If a funtion can tail call itself its entry value based parameters are
929 unreliable. There is no verification whether the value of some/all
930 parameters is unchanged through the self tail call, we expect if there is
931 a self tail call all the parameters can be modified. */
932
933static void
934func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
935{
2d6c5dc2
JK
936 CORE_ADDR addr;
937
2d6c5dc2
JK
938 /* The verification is completely unordered. Track here function addresses
939 which still need to be iterated. */
fc4007c9 940 std::vector<CORE_ADDR> todo;
2d6c5dc2 941
fc4007c9
TT
942 /* Track here CORE_ADDRs which were already visited. */
943 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 944
fc4007c9
TT
945 todo.push_back (verify_addr);
946 while (!todo.empty ())
2d6c5dc2
JK
947 {
948 struct symbol *func_sym;
949 struct call_site *call_site;
950
fc4007c9
TT
951 addr = todo.back ();
952 todo.pop_back ();
2d6c5dc2
JK
953
954 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
955
956 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
957 call_site; call_site = call_site->tail_call_next)
958 {
959 CORE_ADDR target_addr;
2d6c5dc2
JK
960
961 /* CALLER_FRAME with registers is not available for tail-call jumped
962 frames. */
963 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
964
965 if (target_addr == verify_addr)
966 {
7cbd4a93 967 struct bound_minimal_symbol msym;
2d6c5dc2
JK
968
969 msym = lookup_minimal_symbol_by_pc (verify_addr);
970 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 971 _("DW_OP_entry_value resolving has found "
2d6c5dc2
JK
972 "function \"%s\" at %s can call itself via tail "
973 "calls"),
7cbd4a93 974 (msym.minsym == NULL ? "???"
c9d95fa3 975 : msym.minsym->print_name ()),
2d6c5dc2
JK
976 paddress (gdbarch, verify_addr));
977 }
978
fc4007c9
TT
979 if (addr_hash.insert (target_addr).second)
980 todo.push_back (target_addr);
2d6c5dc2
JK
981 }
982 }
2d6c5dc2
JK
983}
984
111c6489
JK
985/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
986 ENTRY_VALUES_DEBUG. */
987
988static void
989tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
990{
991 CORE_ADDR addr = call_site->pc;
7cbd4a93 992 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
993
994 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 995 (msym.minsym == NULL ? "???"
c9d95fa3 996 : msym.minsym->print_name ()));
111c6489
JK
997
998}
999
111c6489
JK
1000/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
1001 only top callers and bottom callees which are present in both. GDBARCH is
1002 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
1003 no remaining possibilities to provide unambiguous non-trivial result.
1004 RESULTP should point to NULL on the first (initialization) call. Caller is
1005 responsible for xfree of any RESULTP data. */
1006
1007static void
fc4007c9
TT
1008chain_candidate (struct gdbarch *gdbarch,
1009 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
1010 std::vector<struct call_site *> *chain)
111c6489 1011{
fc4007c9 1012 long length = chain->size ();
111c6489
JK
1013 int callers, callees, idx;
1014
fc4007c9 1015 if (*resultp == NULL)
111c6489
JK
1016 {
1017 /* Create the initial chain containing all the passed PCs. */
1018
fc4007c9
TT
1019 struct call_site_chain *result
1020 = ((struct call_site_chain *)
1021 xmalloc (sizeof (*result)
1022 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
1023 result->length = length;
1024 result->callers = result->callees = length;
fc4007c9
TT
1025 if (!chain->empty ())
1026 memcpy (result->call_site, chain->data (),
19a1b230 1027 sizeof (*result->call_site) * length);
fc4007c9 1028 resultp->reset (result);
111c6489
JK
1029
1030 if (entry_values_debug)
1031 {
1032 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
1033 for (idx = 0; idx < length; idx++)
1034 tailcall_dump (gdbarch, result->call_site[idx]);
1035 fputc_unfiltered ('\n', gdb_stdlog);
1036 }
1037
1038 return;
1039 }
1040
1041 if (entry_values_debug)
1042 {
1043 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1044 for (idx = 0; idx < length; idx++)
fc4007c9 1045 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
1046 fputc_unfiltered ('\n', gdb_stdlog);
1047 }
1048
1049 /* Intersect callers. */
1050
fc4007c9 1051 callers = std::min ((long) (*resultp)->callers, length);
111c6489 1052 for (idx = 0; idx < callers; idx++)
fc4007c9 1053 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 1054 {
fc4007c9 1055 (*resultp)->callers = idx;
111c6489
JK
1056 break;
1057 }
1058
1059 /* Intersect callees. */
1060
fc4007c9 1061 callees = std::min ((long) (*resultp)->callees, length);
111c6489 1062 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
1063 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1064 != chain->at (length - 1 - idx))
111c6489 1065 {
fc4007c9 1066 (*resultp)->callees = idx;
111c6489
JK
1067 break;
1068 }
1069
1070 if (entry_values_debug)
1071 {
1072 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
1073 for (idx = 0; idx < (*resultp)->callers; idx++)
1074 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 1075 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
1076 for (idx = 0; idx < (*resultp)->callees; idx++)
1077 tailcall_dump (gdbarch,
1078 (*resultp)->call_site[(*resultp)->length
1079 - (*resultp)->callees + idx]);
111c6489
JK
1080 fputc_unfiltered ('\n', gdb_stdlog);
1081 }
1082
fc4007c9 1083 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
1084 {
1085 /* There are no common callers or callees. It could be also a direct
1086 call (which has length 0) with ambiguous possibility of an indirect
1087 call - CALLERS == CALLEES == 0 is valid during the first allocation
1088 but any subsequence processing of such entry means ambiguity. */
fc4007c9 1089 resultp->reset (NULL);
111c6489
JK
1090 return;
1091 }
1092
1093 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1094 PC again. In such case there must be two different code paths to reach
e0619de6 1095 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 1096 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
1097}
1098
1099/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1100 assumed frames between them use GDBARCH. Use depth first search so we can
1101 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
8084e579
TT
1102 would have needless GDB stack overhead. Any unreliability results
1103 in thrown NO_ENTRY_VALUE_ERROR. */
111c6489 1104
8084e579 1105static gdb::unique_xmalloc_ptr<call_site_chain>
111c6489
JK
1106call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1107 CORE_ADDR callee_pc)
1108{
c4be5165 1109 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 1110 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
1111 struct call_site *call_site;
1112
111c6489
JK
1113 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1114 call_site nor any possible call_site at CALLEE_PC's function is there.
1115 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1116 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 1117 std::vector<struct call_site *> chain;
111c6489
JK
1118
1119 /* We are not interested in the specific PC inside the callee function. */
1120 callee_pc = get_pc_function_start (callee_pc);
1121 if (callee_pc == 0)
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1123 paddress (gdbarch, save_callee_pc));
111c6489 1124
fc4007c9
TT
1125 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1126 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
1127
1128 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1129 at the target's function. All the possible tail call sites in the
1130 target's function will get iterated as already pushed into CHAIN via their
1131 TAIL_CALL_NEXT. */
1132 call_site = call_site_for_pc (gdbarch, caller_pc);
1133
1134 while (call_site)
1135 {
1136 CORE_ADDR target_func_addr;
1137 struct call_site *target_call_site;
1138
1139 /* CALLER_FRAME with registers is not available for tail-call jumped
1140 frames. */
1141 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1142
1143 if (target_func_addr == callee_pc)
1144 {
fc4007c9 1145 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1146 if (retval == NULL)
1147 break;
1148
1149 /* There is no way to reach CALLEE_PC again as we would prevent
1150 entering it twice as being already marked in ADDR_HASH. */
1151 target_call_site = NULL;
1152 }
1153 else
1154 {
1155 struct symbol *target_func;
1156
1157 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1158 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1159 }
1160
1161 do
1162 {
1163 /* Attempt to visit TARGET_CALL_SITE. */
1164
1165 if (target_call_site)
1166 {
fc4007c9 1167 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1168 {
1169 /* Successfully entered TARGET_CALL_SITE. */
1170
fc4007c9 1171 chain.push_back (target_call_site);
111c6489
JK
1172 break;
1173 }
1174 }
1175
1176 /* Backtrack (without revisiting the originating call_site). Try the
1177 callers's sibling; if there isn't any try the callers's callers's
1178 sibling etc. */
1179
1180 target_call_site = NULL;
fc4007c9 1181 while (!chain.empty ())
111c6489 1182 {
fc4007c9
TT
1183 call_site = chain.back ();
1184 chain.pop_back ();
111c6489 1185
fc4007c9
TT
1186 size_t removed = addr_hash.erase (call_site->pc);
1187 gdb_assert (removed == 1);
111c6489
JK
1188
1189 target_call_site = call_site->tail_call_next;
1190 if (target_call_site)
1191 break;
1192 }
1193 }
1194 while (target_call_site);
1195
fc4007c9 1196 if (chain.empty ())
111c6489
JK
1197 call_site = NULL;
1198 else
fc4007c9 1199 call_site = chain.back ();
111c6489
JK
1200 }
1201
1202 if (retval == NULL)
1203 {
7cbd4a93 1204 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1205
1206 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1207 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1208 throw_error (NO_ENTRY_VALUE_ERROR,
1209 _("There are no unambiguously determinable intermediate "
1210 "callers or callees between caller function \"%s\" at %s "
1211 "and callee function \"%s\" at %s"),
7cbd4a93 1212 (msym_caller.minsym == NULL
c9d95fa3 1213 ? "???" : msym_caller.minsym->print_name ()),
111c6489 1214 paddress (gdbarch, caller_pc),
7cbd4a93 1215 (msym_callee.minsym == NULL
c9d95fa3 1216 ? "???" : msym_callee.minsym->print_name ()),
111c6489
JK
1217 paddress (gdbarch, callee_pc));
1218 }
1219
8084e579 1220 return retval;
111c6489
JK
1221}
1222
1223/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1224 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
8084e579 1225 constructed return NULL. */
111c6489 1226
8084e579 1227gdb::unique_xmalloc_ptr<call_site_chain>
111c6489
JK
1228call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1229 CORE_ADDR callee_pc)
1230{
8084e579 1231 gdb::unique_xmalloc_ptr<call_site_chain> retval;
111c6489 1232
a70b8144 1233 try
111c6489
JK
1234 {
1235 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1236 }
230d2906 1237 catch (const gdb_exception_error &e)
111c6489
JK
1238 {
1239 if (e.error == NO_ENTRY_VALUE_ERROR)
1240 {
1241 if (entry_values_debug)
1242 exception_print (gdb_stdout, e);
1243
1244 return NULL;
1245 }
1246 else
eedc3f4f 1247 throw;
111c6489 1248 }
492d29ea 1249
111c6489
JK
1250 return retval;
1251}
1252
24c5c679
JK
1253/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1254
1255static int
1256call_site_parameter_matches (struct call_site_parameter *parameter,
1257 enum call_site_parameter_kind kind,
1258 union call_site_parameter_u kind_u)
1259{
1260 if (kind == parameter->kind)
1261 switch (kind)
1262 {
1263 case CALL_SITE_PARAMETER_DWARF_REG:
1264 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1265 case CALL_SITE_PARAMETER_FB_OFFSET:
1266 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3 1267 case CALL_SITE_PARAMETER_PARAM_OFFSET:
9c541725 1268 return kind_u.param_cu_off == parameter->u.param_cu_off;
24c5c679
JK
1269 }
1270 return 0;
1271}
1272
1273/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1274 FRAME is for callee.
8e3b41a9
JK
1275
1276 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1277 otherwise. */
1278
1279static struct call_site_parameter *
24c5c679
JK
1280dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1281 enum call_site_parameter_kind kind,
1282 union call_site_parameter_u kind_u,
8e3b41a9
JK
1283 struct dwarf2_per_cu_data **per_cu_return)
1284{
9e3a7d65
JK
1285 CORE_ADDR func_addr, caller_pc;
1286 struct gdbarch *gdbarch;
1287 struct frame_info *caller_frame;
8e3b41a9
JK
1288 struct call_site *call_site;
1289 int iparams;
509f0fd9
JK
1290 /* Initialize it just to avoid a GCC false warning. */
1291 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1292 CORE_ADDR target_addr;
1293
9e3a7d65
JK
1294 while (get_frame_type (frame) == INLINE_FRAME)
1295 {
1296 frame = get_prev_frame (frame);
1297 gdb_assert (frame != NULL);
1298 }
1299
1300 func_addr = get_frame_func (frame);
1301 gdbarch = get_frame_arch (frame);
1302 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1303 if (gdbarch != frame_unwind_arch (frame))
1304 {
7cbd4a93
TT
1305 struct bound_minimal_symbol msym
1306 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1307 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1308
1309 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1310 _("DW_OP_entry_value resolving callee gdbarch %s "
8e3b41a9
JK
1311 "(of %s (%s)) does not match caller gdbarch %s"),
1312 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1313 paddress (gdbarch, func_addr),
7cbd4a93 1314 (msym.minsym == NULL ? "???"
c9d95fa3 1315 : msym.minsym->print_name ()),
8e3b41a9
JK
1316 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1317 }
1318
1319 if (caller_frame == NULL)
1320 {
7cbd4a93
TT
1321 struct bound_minimal_symbol msym
1322 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9 1323
216f72a1 1324 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
8e3b41a9
JK
1325 "requires caller of %s (%s)"),
1326 paddress (gdbarch, func_addr),
7cbd4a93 1327 (msym.minsym == NULL ? "???"
c9d95fa3 1328 : msym.minsym->print_name ()));
8e3b41a9
JK
1329 }
1330 caller_pc = get_frame_pc (caller_frame);
1331 call_site = call_site_for_pc (gdbarch, caller_pc);
1332
1333 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1334 if (target_addr != func_addr)
1335 {
1336 struct minimal_symbol *target_msym, *func_msym;
1337
7cbd4a93
TT
1338 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1339 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9 1340 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1341 _("DW_OP_entry_value resolving expects callee %s at %s "
8e3b41a9
JK
1342 "but the called frame is for %s at %s"),
1343 (target_msym == NULL ? "???"
c9d95fa3 1344 : target_msym->print_name ()),
8e3b41a9 1345 paddress (gdbarch, target_addr),
c9d95fa3 1346 func_msym == NULL ? "???" : func_msym->print_name (),
8e3b41a9
JK
1347 paddress (gdbarch, func_addr));
1348 }
1349
2d6c5dc2
JK
1350 /* No entry value based parameters would be reliable if this function can
1351 call itself via tail calls. */
1352 func_verify_no_selftailcall (gdbarch, func_addr);
1353
8e3b41a9
JK
1354 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1355 {
1356 parameter = &call_site->parameter[iparams];
24c5c679 1357 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1358 break;
1359 }
1360 if (iparams == call_site->parameter_count)
1361 {
7cbd4a93
TT
1362 struct minimal_symbol *msym
1363 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9 1364
216f72a1 1365 /* DW_TAG_call_site_parameter will be missing just if GCC could not
8e3b41a9
JK
1366 determine its value. */
1367 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
216f72a1 1368 "at DW_TAG_call_site %s at %s"),
8e3b41a9 1369 paddress (gdbarch, caller_pc),
c9d95fa3 1370 msym == NULL ? "???" : msym->print_name ());
8e3b41a9
JK
1371 }
1372
1373 *per_cu_return = call_site->per_cu;
1374 return parameter;
1375}
1376
a471c594 1377/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
216f72a1
JK
1378 the normal DW_AT_call_value block. Otherwise return the
1379 DW_AT_call_data_value (dereferenced) block.
e18b2753
JK
1380
1381 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1382 struct value.
1383
1384 Function always returns non-NULL, non-optimized out value. It throws
1385 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1386
1387static struct value *
1388dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1389 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1390 struct frame_info *caller_frame,
1391 struct dwarf2_per_cu_data *per_cu)
1392{
a471c594 1393 const gdb_byte *data_src;
e18b2753 1394 gdb_byte *data;
a471c594
JK
1395 size_t size;
1396
1397 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1398 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1399
1400 /* DEREF_SIZE size is not verified here. */
1401 if (data_src == NULL)
1402 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1403 _("Cannot resolve DW_AT_call_data_value"));
e18b2753 1404
216f72a1 1405 /* DW_AT_call_value is a DWARF expression, not a DWARF
e18b2753
JK
1406 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1407 DWARF block. */
224c3ddb 1408 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1409 memcpy (data, data_src, size);
1410 data[size] = DW_OP_stack_value;
e18b2753 1411
a471c594 1412 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1413}
1414
a471c594
JK
1415/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1416 the indirect method on it, that is use its stored target value, the sole
1417 purpose of entry_data_value_funcs.. */
1418
1419static struct value *
1420entry_data_value_coerce_ref (const struct value *value)
1421{
1422 struct type *checked_type = check_typedef (value_type (value));
1423 struct value *target_val;
1424
aa006118 1425 if (!TYPE_IS_REFERENCE (checked_type))
a471c594
JK
1426 return NULL;
1427
9a3c8263 1428 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1429 value_incref (target_val);
1430 return target_val;
1431}
1432
1433/* Implement copy_closure. */
1434
1435static void *
1436entry_data_value_copy_closure (const struct value *v)
1437{
9a3c8263 1438 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1439
1440 value_incref (target_val);
1441 return target_val;
1442}
1443
1444/* Implement free_closure. */
1445
1446static void
1447entry_data_value_free_closure (struct value *v)
1448{
9a3c8263 1449 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594 1450
22bc8444 1451 value_decref (target_val);
a471c594
JK
1452}
1453
1454/* Vector for methods for an entry value reference where the referenced value
1455 is stored in the caller. On the first dereference use
216f72a1 1456 DW_AT_call_data_value in the caller. */
a471c594
JK
1457
1458static const struct lval_funcs entry_data_value_funcs =
1459{
1460 NULL, /* read */
1461 NULL, /* write */
a471c594
JK
1462 NULL, /* indirect */
1463 entry_data_value_coerce_ref,
1464 NULL, /* check_synthetic_pointer */
1465 entry_data_value_copy_closure,
1466 entry_data_value_free_closure
1467};
1468
24c5c679
JK
1469/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1470 are used to match DW_AT_location at the caller's
216f72a1 1471 DW_TAG_call_site_parameter.
e18b2753
JK
1472
1473 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1474 cannot resolve the parameter for any reason. */
1475
1476static struct value *
1477value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1478 enum call_site_parameter_kind kind,
1479 union call_site_parameter_u kind_u)
e18b2753 1480{
a471c594
JK
1481 struct type *checked_type = check_typedef (type);
1482 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1483 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1484 struct value *outer_val, *target_val, *val;
e18b2753
JK
1485 struct call_site_parameter *parameter;
1486 struct dwarf2_per_cu_data *caller_per_cu;
1487
24c5c679 1488 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1489 &caller_per_cu);
1490
a471c594
JK
1491 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1492 type, caller_frame,
1493 caller_per_cu);
1494
216f72a1 1495 /* Check if DW_AT_call_data_value cannot be used. If it should be
a471c594
JK
1496 used and it is not available do not fall back to OUTER_VAL - dereferencing
1497 TYPE_CODE_REF with non-entry data value would give current value - not the
1498 entry value. */
1499
aa006118 1500 if (!TYPE_IS_REFERENCE (checked_type)
a471c594
JK
1501 || TYPE_TARGET_TYPE (checked_type) == NULL)
1502 return outer_val;
1503
1504 target_val = dwarf_entry_parameter_to_value (parameter,
1505 TYPE_LENGTH (target_type),
1506 target_type, caller_frame,
1507 caller_per_cu);
1508
a471c594 1509 val = allocate_computed_value (type, &entry_data_value_funcs,
895dafa6 1510 release_value (target_val).release ());
a471c594
JK
1511
1512 /* Copy the referencing pointer to the new computed value. */
1513 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1514 TYPE_LENGTH (checked_type));
1515 set_value_lazy (val, 0);
1516
1517 return val;
e18b2753
JK
1518}
1519
1520/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1521 SIZE are DWARF block used to match DW_AT_location at the caller's
216f72a1 1522 DW_TAG_call_site_parameter.
e18b2753
JK
1523
1524 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1525 cannot resolve the parameter for any reason. */
1526
1527static struct value *
1528value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1529 const gdb_byte *block, size_t block_len)
1530{
24c5c679 1531 union call_site_parameter_u kind_u;
e18b2753 1532
24c5c679
JK
1533 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1534 if (kind_u.dwarf_reg != -1)
1535 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1536 kind_u);
e18b2753 1537
24c5c679
JK
1538 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1539 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1540 kind_u);
e18b2753
JK
1541
1542 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1543 suppressed during normal operation. The expression can be arbitrary if
1544 there is no caller-callee entry value binding expected. */
1545 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1546 _("DWARF-2 expression error: DW_OP_entry_value is supported "
e18b2753
JK
1547 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1548}
1549
052b9502
NF
1550struct piece_closure
1551{
88bfdde4 1552 /* Reference count. */
1e467161 1553 int refc = 0;
88bfdde4 1554
8cf6f0b1 1555 /* The CU from which this closure's expression came. */
1e467161 1556 struct dwarf2_per_cu_data *per_cu = NULL;
052b9502 1557
1e467161
SM
1558 /* The pieces describing this variable. */
1559 std::vector<dwarf_expr_piece> pieces;
ee40d8d4
YQ
1560
1561 /* Frame ID of frame to which a register value is relative, used
1562 only by DWARF_VALUE_REGISTER. */
1563 struct frame_id frame_id;
052b9502
NF
1564};
1565
1566/* Allocate a closure for a value formed from separately-described
1567 PIECES. */
1568
1569static struct piece_closure *
8cf6f0b1 1570allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1e467161 1571 std::vector<dwarf_expr_piece> &&pieces,
ddd7882a 1572 struct frame_info *frame)
052b9502 1573{
1e467161 1574 struct piece_closure *c = new piece_closure;
052b9502 1575
88bfdde4 1576 c->refc = 1;
8cf6f0b1 1577 c->per_cu = per_cu;
1e467161 1578 c->pieces = std::move (pieces);
ee40d8d4
YQ
1579 if (frame == NULL)
1580 c->frame_id = null_frame_id;
1581 else
1582 c->frame_id = get_frame_id (frame);
052b9502 1583
1e467161
SM
1584 for (dwarf_expr_piece &piece : c->pieces)
1585 if (piece.location == DWARF_VALUE_STACK)
1586 value_incref (piece.v.value);
052b9502
NF
1587
1588 return c;
1589}
1590
03c8af18
AA
1591/* Return the number of bytes overlapping a contiguous chunk of N_BITS
1592 bits whose first bit is located at bit offset START. */
1593
1594static size_t
1595bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1596{
1597 return (start % 8 + n_bits + 7) / 8;
1598}
1599
55acdf22
AA
1600/* Read or write a pieced value V. If FROM != NULL, operate in "write
1601 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1602 operate in "read mode": fetch the contents of the (lazy) value V by
1603 composing it from its pieces. */
1604
052b9502 1605static void
55acdf22 1606rw_pieced_value (struct value *v, struct value *from)
052b9502
NF
1607{
1608 int i;
359b19bb 1609 LONGEST offset = 0, max_offset;
d3b1e874 1610 ULONGEST bits_to_skip;
55acdf22
AA
1611 gdb_byte *v_contents;
1612 const gdb_byte *from_contents;
3e43a32a
MS
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
d5722aa2 1615 gdb::byte_vector buffer;
d5a22e77 1616 bool bits_big_endian = type_byte_order (value_type (v)) == BFD_ENDIAN_BIG;
afd74c5f 1617
55acdf22
AA
1618 if (from != NULL)
1619 {
1620 from_contents = value_contents (from);
1621 v_contents = NULL;
1622 }
1623 else
1624 {
1625 if (value_type (v) != value_enclosing_type (v))
1626 internal_error (__FILE__, __LINE__,
1627 _("Should not be able to create a lazy value with "
1628 "an enclosing type"));
1629 v_contents = value_contents_raw (v);
1630 from_contents = NULL;
1631 }
052b9502 1632
d3b1e874 1633 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1634 if (value_bitsize (v))
1635 {
af547a96
AA
1636 bits_to_skip += (8 * value_offset (value_parent (v))
1637 + value_bitpos (v));
55acdf22 1638 if (from != NULL
34877895 1639 && (type_byte_order (value_type (from))
55acdf22
AA
1640 == BFD_ENDIAN_BIG))
1641 {
1642 /* Use the least significant bits of FROM. */
1643 max_offset = 8 * TYPE_LENGTH (value_type (from));
1644 offset = max_offset - value_bitsize (v);
1645 }
1646 else
1647 max_offset = value_bitsize (v);
0e03807e
TT
1648 }
1649 else
359b19bb 1650 max_offset = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1651
f236533e 1652 /* Advance to the first non-skipped piece. */
1e467161 1653 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
f236533e
AA
1654 bits_to_skip -= c->pieces[i].size;
1655
1e467161 1656 for (; i < c->pieces.size () && offset < max_offset; i++)
052b9502
NF
1657 {
1658 struct dwarf_expr_piece *p = &c->pieces[i];
55acdf22 1659 size_t this_size_bits, this_size;
359b19bb 1660
f236533e 1661 this_size_bits = p->size - bits_to_skip;
359b19bb
AA
1662 if (this_size_bits > max_offset - offset)
1663 this_size_bits = max_offset - offset;
9a619af0 1664
cec03d70 1665 switch (p->location)
052b9502 1666 {
cec03d70
TT
1667 case DWARF_VALUE_REGISTER:
1668 {
ee40d8d4 1669 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1670 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53 1671 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
03c8af18 1672 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
0fde2c53 1673 int optim, unavail;
dcbf108f 1674
0fde2c53 1675 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
65d84b76 1676 && p->offset + p->size < reg_bits)
63b4f126 1677 {
0fde2c53 1678 /* Big-endian, and we want less than full size. */
f236533e 1679 bits_to_skip += reg_bits - (p->offset + p->size);
63b4f126 1680 }
65d84b76 1681 else
f236533e 1682 bits_to_skip += p->offset;
65d84b76 1683
f236533e 1684 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1685 buffer.resize (this_size);
0fde2c53 1686
55acdf22 1687 if (from == NULL)
63b4f126 1688 {
55acdf22
AA
1689 /* Read mode. */
1690 if (!get_frame_register_bytes (frame, gdb_regnum,
1691 bits_to_skip / 8,
1692 this_size, buffer.data (),
1693 &optim, &unavail))
1694 {
1695 if (optim)
1696 mark_value_bits_optimized_out (v, offset,
1697 this_size_bits);
1698 if (unavail)
1699 mark_value_bits_unavailable (v, offset,
1700 this_size_bits);
1701 break;
1702 }
1703
1704 copy_bitwise (v_contents, offset,
1705 buffer.data (), bits_to_skip % 8,
1706 this_size_bits, bits_big_endian);
1707 }
1708 else
1709 {
1710 /* Write mode. */
1711 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1712 {
1713 /* Data is copied non-byte-aligned into the register.
1714 Need some bits from original register value. */
1715 get_frame_register_bytes (frame, gdb_regnum,
1716 bits_to_skip / 8,
1717 this_size, buffer.data (),
1718 &optim, &unavail);
1719 if (optim)
1720 throw_error (OPTIMIZED_OUT_ERROR,
1721 _("Can't do read-modify-write to "
1722 "update bitfield; containing word "
1723 "has been optimized out"));
1724 if (unavail)
1725 throw_error (NOT_AVAILABLE_ERROR,
1726 _("Can't do read-modify-write to "
1727 "update bitfield; containing word "
1728 "is unavailable"));
1729 }
1730
1731 copy_bitwise (buffer.data (), bits_to_skip % 8,
1732 from_contents, offset,
1733 this_size_bits, bits_big_endian);
1734 put_frame_register_bytes (frame, gdb_regnum,
1735 bits_to_skip / 8,
1736 this_size, buffer.data ());
63b4f126 1737 }
cec03d70
TT
1738 }
1739 break;
1740
1741 case DWARF_VALUE_MEMORY:
55acdf22
AA
1742 {
1743 bits_to_skip += p->offset;
1744
1745 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1746
1747 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1748 && offset % 8 == 0)
1749 {
1750 /* Everything is byte-aligned; no buffer needed. */
1751 if (from != NULL)
1752 write_memory_with_notification (start_addr,
1753 (from_contents
1754 + offset / 8),
1755 this_size_bits / 8);
1756 else
1757 read_value_memory (v, offset,
1758 p->v.mem.in_stack_memory,
1759 p->v.mem.addr + bits_to_skip / 8,
1760 v_contents + offset / 8,
1761 this_size_bits / 8);
1762 break;
1763 }
1764
1765 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1766 buffer.resize (this_size);
55acdf22
AA
1767
1768 if (from == NULL)
1769 {
1770 /* Read mode. */
1771 read_value_memory (v, offset,
1772 p->v.mem.in_stack_memory,
1773 p->v.mem.addr + bits_to_skip / 8,
1774 buffer.data (), this_size);
1775 copy_bitwise (v_contents, offset,
1776 buffer.data (), bits_to_skip % 8,
1777 this_size_bits, bits_big_endian);
1778 }
1779 else
1780 {
1781 /* Write mode. */
1782 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1783 {
1784 if (this_size <= 8)
1785 {
1786 /* Perform a single read for small sizes. */
1787 read_memory (start_addr, buffer.data (),
1788 this_size);
1789 }
1790 else
1791 {
1792 /* Only the first and last bytes can possibly have
1793 any bits reused. */
1794 read_memory (start_addr, buffer.data (), 1);
1795 read_memory (start_addr + this_size - 1,
1796 &buffer[this_size - 1], 1);
1797 }
1798 }
1799
1800 copy_bitwise (buffer.data (), bits_to_skip % 8,
1801 from_contents, offset,
1802 this_size_bits, bits_big_endian);
1803 write_memory_with_notification (start_addr,
1804 buffer.data (),
1805 this_size);
1806 }
1807 }
cec03d70
TT
1808 break;
1809
1810 case DWARF_VALUE_STACK:
1811 {
55acdf22
AA
1812 if (from != NULL)
1813 {
1814 mark_value_bits_optimized_out (v, offset, this_size_bits);
1815 break;
1816 }
1817
09ba997f 1818 struct objfile *objfile = c->per_cu->objfile ();
e9352324
AA
1819 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1820 ULONGEST stack_value_size_bits
1821 = 8 * TYPE_LENGTH (value_type (p->v.value));
1822
1823 /* Use zeroes if piece reaches beyond stack value. */
65d84b76 1824 if (p->offset + p->size > stack_value_size_bits)
e9352324
AA
1825 break;
1826
1827 /* Piece is anchored at least significant bit end. */
1828 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
f236533e 1829 bits_to_skip += stack_value_size_bits - p->offset - p->size;
65d84b76 1830 else
f236533e 1831 bits_to_skip += p->offset;
e9352324 1832
55acdf22 1833 copy_bitwise (v_contents, offset,
e9352324 1834 value_contents_all (p->v.value),
f236533e 1835 bits_to_skip,
e9352324 1836 this_size_bits, bits_big_endian);
cec03d70
TT
1837 }
1838 break;
1839
1840 case DWARF_VALUE_LITERAL:
1841 {
55acdf22
AA
1842 if (from != NULL)
1843 {
1844 mark_value_bits_optimized_out (v, offset, this_size_bits);
1845 break;
1846 }
1847
242d31ab
AA
1848 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1849 size_t n = this_size_bits;
afd74c5f 1850
242d31ab 1851 /* Cut off at the end of the implicit value. */
f236533e
AA
1852 bits_to_skip += p->offset;
1853 if (bits_to_skip >= literal_size_bits)
242d31ab 1854 break;
f236533e
AA
1855 if (n > literal_size_bits - bits_to_skip)
1856 n = literal_size_bits - bits_to_skip;
e9352324 1857
55acdf22 1858 copy_bitwise (v_contents, offset,
f236533e 1859 p->v.literal.data, bits_to_skip,
242d31ab 1860 n, bits_big_endian);
cec03d70
TT
1861 }
1862 break;
1863
8cf6f0b1 1864 case DWARF_VALUE_IMPLICIT_POINTER:
55acdf22
AA
1865 if (from != NULL)
1866 {
1867 mark_value_bits_optimized_out (v, offset, this_size_bits);
1868 break;
1869 }
1870
1871 /* These bits show up as zeros -- but do not cause the value to
1872 be considered optimized-out. */
8cf6f0b1
TT
1873 break;
1874
cb826367 1875 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1876 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1877 break;
1878
cec03d70
TT
1879 default:
1880 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1881 }
d3b1e874 1882
d3b1e874 1883 offset += this_size_bits;
f236533e 1884 bits_to_skip = 0;
052b9502
NF
1885 }
1886}
1887
55acdf22 1888
052b9502 1889static void
55acdf22 1890read_pieced_value (struct value *v)
052b9502 1891{
55acdf22
AA
1892 rw_pieced_value (v, NULL);
1893}
242d31ab 1894
55acdf22
AA
1895static void
1896write_pieced_value (struct value *to, struct value *from)
1897{
1898 rw_pieced_value (to, from);
052b9502
NF
1899}
1900
9a0dc9e3
PA
1901/* An implementation of an lval_funcs method to see whether a value is
1902 a synthetic pointer. */
8cf6f0b1 1903
0e03807e 1904static int
6b850546 1905check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 1906 int bit_length)
0e03807e
TT
1907{
1908 struct piece_closure *c
1909 = (struct piece_closure *) value_computed_closure (value);
1910 int i;
1911
1912 bit_offset += 8 * value_offset (value);
1913 if (value_bitsize (value))
1914 bit_offset += value_bitpos (value);
1915
1e467161 1916 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
0e03807e
TT
1917 {
1918 struct dwarf_expr_piece *p = &c->pieces[i];
1919 size_t this_size_bits = p->size;
1920
1921 if (bit_offset > 0)
1922 {
1923 if (bit_offset >= this_size_bits)
1924 {
1925 bit_offset -= this_size_bits;
1926 continue;
1927 }
1928
1929 bit_length -= this_size_bits - bit_offset;
1930 bit_offset = 0;
1931 }
1932 else
1933 bit_length -= this_size_bits;
1934
9a0dc9e3
PA
1935 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1936 return 0;
0e03807e
TT
1937 }
1938
9a0dc9e3 1939 return 1;
8cf6f0b1
TT
1940}
1941
1942/* A wrapper function for get_frame_address_in_block. */
1943
1944static CORE_ADDR
1945get_frame_address_in_block_wrapper (void *baton)
1946{
9a3c8263 1947 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
1948}
1949
3326303b
MG
1950/* Fetch a DW_AT_const_value through a synthetic pointer. */
1951
1952static struct value *
1953fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1954 struct dwarf2_per_cu_data *per_cu,
1955 struct type *type)
1956{
1957 struct value *result = NULL;
3326303b
MG
1958 const gdb_byte *bytes;
1959 LONGEST len;
1960
8268c778 1961 auto_obstack temp_obstack;
3326303b
MG
1962 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1963
1964 if (bytes != NULL)
1965 {
1966 if (byte_offset >= 0
1967 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1968 {
1969 bytes += byte_offset;
1970 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1971 }
1972 else
1973 invalid_synthetic_pointer ();
1974 }
1975 else
1976 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1977
3326303b
MG
1978 return result;
1979}
1980
1981/* Fetch the value pointed to by a synthetic pointer. */
1982
1983static struct value *
1984indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1985 struct dwarf2_per_cu_data *per_cu,
e4a62c65
TV
1986 struct frame_info *frame, struct type *type,
1987 bool resolve_abstract_p)
3326303b
MG
1988{
1989 /* Fetch the location expression of the DIE we're pointing to. */
1990 struct dwarf2_locexpr_baton baton
1991 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
e4a62c65
TV
1992 get_frame_address_in_block_wrapper, frame,
1993 resolve_abstract_p);
3326303b 1994
7942e96e
AA
1995 /* Get type of pointed-to DIE. */
1996 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1997 if (orig_type == NULL)
1998 invalid_synthetic_pointer ();
1999
3326303b
MG
2000 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2001 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2002 or it may've been optimized out. */
2003 if (baton.data != NULL)
7942e96e
AA
2004 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2005 baton.size, baton.per_cu,
2006 TYPE_TARGET_TYPE (type),
3326303b
MG
2007 byte_offset);
2008 else
2009 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2010 type);
2011}
2012
8cf6f0b1
TT
2013/* An implementation of an lval_funcs method to indirect through a
2014 pointer. This handles the synthetic pointer case when needed. */
2015
2016static struct value *
2017indirect_pieced_value (struct value *value)
2018{
2019 struct piece_closure *c
2020 = (struct piece_closure *) value_computed_closure (value);
2021 struct type *type;
2022 struct frame_info *frame;
6b850546
DT
2023 int i, bit_length;
2024 LONGEST bit_offset;
8cf6f0b1 2025 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2026 LONGEST byte_offset;
b597c318 2027 enum bfd_endian byte_order;
8cf6f0b1 2028
0e37a63c 2029 type = check_typedef (value_type (value));
8cf6f0b1
TT
2030 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2031 return NULL;
2032
2033 bit_length = 8 * TYPE_LENGTH (type);
2034 bit_offset = 8 * value_offset (value);
2035 if (value_bitsize (value))
2036 bit_offset += value_bitpos (value);
2037
1e467161 2038 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
8cf6f0b1
TT
2039 {
2040 struct dwarf_expr_piece *p = &c->pieces[i];
2041 size_t this_size_bits = p->size;
2042
2043 if (bit_offset > 0)
2044 {
2045 if (bit_offset >= this_size_bits)
2046 {
2047 bit_offset -= this_size_bits;
2048 continue;
2049 }
2050
2051 bit_length -= this_size_bits - bit_offset;
2052 bit_offset = 0;
2053 }
2054 else
2055 bit_length -= this_size_bits;
2056
2057 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2058 return NULL;
2059
2060 if (bit_length != 0)
216f72a1 2061 error (_("Invalid use of DW_OP_implicit_pointer"));
8cf6f0b1
TT
2062
2063 piece = p;
2064 break;
2065 }
2066
3326303b 2067 gdb_assert (piece != NULL);
8cf6f0b1 2068 frame = get_selected_frame (_("No frame selected."));
543305c9 2069
5bd1ef56
TT
2070 /* This is an offset requested by GDB, such as value subscripts.
2071 However, due to how synthetic pointers are implemented, this is
2072 always presented to us as a pointer type. This means we have to
b597c318
YQ
2073 sign-extend it manually as appropriate. Use raw
2074 extract_signed_integer directly rather than value_as_address and
2075 sign extend afterwards on architectures that would need it
2076 (mostly everywhere except MIPS, which has signed addresses) as
2077 the later would go through gdbarch_pointer_to_address and thus
2078 return a CORE_ADDR with high bits set on architectures that
2079 encode address spaces and other things in CORE_ADDR. */
2080 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2081 byte_offset = extract_signed_integer (value_contents (value),
2082 TYPE_LENGTH (type), byte_order);
5bd1ef56 2083 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2084
9c541725
PA
2085 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2086 byte_offset, c->per_cu,
3326303b
MG
2087 frame, type);
2088}
8cf6f0b1 2089
3326303b
MG
2090/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2091 references. */
b6807d98 2092
3326303b
MG
2093static struct value *
2094coerce_pieced_ref (const struct value *value)
2095{
2096 struct type *type = check_typedef (value_type (value));
b6807d98 2097
3326303b
MG
2098 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2099 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2100 {
2101 const struct piece_closure *closure
2102 = (struct piece_closure *) value_computed_closure (value);
2103 struct frame_info *frame
2104 = get_selected_frame (_("No frame selected."));
2105
2106 /* gdb represents synthetic pointers as pieced values with a single
2107 piece. */
2108 gdb_assert (closure != NULL);
1e467161 2109 gdb_assert (closure->pieces.size () == 1);
3326303b 2110
1e467161
SM
2111 return indirect_synthetic_pointer
2112 (closure->pieces[0].v.ptr.die_sect_off,
2113 closure->pieces[0].v.ptr.offset,
2114 closure->per_cu, frame, type);
3326303b
MG
2115 }
2116 else
2117 {
2118 /* Else: not a synthetic reference; do nothing. */
2119 return NULL;
2120 }
0e03807e
TT
2121}
2122
052b9502 2123static void *
0e03807e 2124copy_pieced_value_closure (const struct value *v)
052b9502 2125{
3e43a32a
MS
2126 struct piece_closure *c
2127 = (struct piece_closure *) value_computed_closure (v);
052b9502 2128
88bfdde4
TT
2129 ++c->refc;
2130 return c;
052b9502
NF
2131}
2132
2133static void
2134free_pieced_value_closure (struct value *v)
2135{
3e43a32a
MS
2136 struct piece_closure *c
2137 = (struct piece_closure *) value_computed_closure (v);
052b9502 2138
88bfdde4
TT
2139 --c->refc;
2140 if (c->refc == 0)
2141 {
1e467161
SM
2142 for (dwarf_expr_piece &p : c->pieces)
2143 if (p.location == DWARF_VALUE_STACK)
22bc8444 2144 value_decref (p.v.value);
8a9b8146 2145
1e467161 2146 delete c;
88bfdde4 2147 }
052b9502
NF
2148}
2149
2150/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2151static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2152 read_pieced_value,
2153 write_pieced_value,
8cf6f0b1 2154 indirect_pieced_value,
3326303b 2155 coerce_pieced_ref,
8cf6f0b1 2156 check_pieced_synthetic_pointer,
052b9502
NF
2157 copy_pieced_value_closure,
2158 free_pieced_value_closure
2159};
2160
4c2df51b 2161/* Evaluate a location description, starting at DATA and with length
8cf6f0b1 2162 SIZE, to find the current location of variable of TYPE in the
7942e96e
AA
2163 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2164 location of the subobject of type SUBOBJ_TYPE at byte offset
2165 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
a2d33775 2166
8cf6f0b1
TT
2167static struct value *
2168dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2169 const gdb_byte *data, size_t size,
8cf6f0b1 2170 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
2171 struct type *subobj_type,
2172 LONGEST subobj_byte_offset)
4c2df51b 2173{
4c2df51b 2174 struct value *retval;
09ba997f 2175 struct objfile *objfile = per_cu->objfile ();
4c2df51b 2176
7942e96e
AA
2177 if (subobj_type == NULL)
2178 {
2179 subobj_type = type;
2180 subobj_byte_offset = 0;
2181 }
2182 else if (subobj_byte_offset < 0)
8cf6f0b1
TT
2183 invalid_synthetic_pointer ();
2184
0d53c4c4 2185 if (size == 0)
7942e96e 2186 return allocate_optimized_out_value (subobj_type);
0d53c4c4 2187
192ca6d8
TT
2188 dwarf_evaluate_loc_desc ctx;
2189 ctx.frame = frame;
2190 ctx.per_cu = per_cu;
2191 ctx.obj_address = 0;
4c2df51b 2192
0cf08227 2193 scoped_value_mark free_values;
4a227398 2194
718b9626 2195 ctx.gdbarch = get_objfile_arch (objfile);
09ba997f
TT
2196 ctx.addr_size = per_cu->addr_size ();
2197 ctx.ref_addr_size = per_cu->ref_addr_size ();
2198 ctx.offset = per_cu->text_offset ();
4c2df51b 2199
a70b8144 2200 try
79e1a869 2201 {
595d2e30 2202 ctx.eval (data, size);
79e1a869 2203 }
230d2906 2204 catch (const gdb_exception_error &ex)
79e1a869
PA
2205 {
2206 if (ex.error == NOT_AVAILABLE_ERROR)
2207 {
0cf08227 2208 free_values.free_to_mark ();
7942e96e
AA
2209 retval = allocate_value (subobj_type);
2210 mark_value_bytes_unavailable (retval, 0,
2211 TYPE_LENGTH (subobj_type));
79e1a869
PA
2212 return retval;
2213 }
8e3b41a9
JK
2214 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2215 {
2216 if (entry_values_debug)
2217 exception_print (gdb_stdout, ex);
0cf08227 2218 free_values.free_to_mark ();
7942e96e 2219 return allocate_optimized_out_value (subobj_type);
8e3b41a9 2220 }
79e1a869 2221 else
eedc3f4f 2222 throw;
79e1a869
PA
2223 }
2224
1e467161 2225 if (ctx.pieces.size () > 0)
87808bd6 2226 {
052b9502 2227 struct piece_closure *c;
8cf6f0b1 2228 ULONGEST bit_size = 0;
052b9502 2229
1e467161
SM
2230 for (dwarf_expr_piece &piece : ctx.pieces)
2231 bit_size += piece.size;
03278692
TT
2232 /* Complain if the expression is larger than the size of the
2233 outer type. */
2234 if (bit_size > 8 * TYPE_LENGTH (type))
8cf6f0b1
TT
2235 invalid_synthetic_pointer ();
2236
1e467161 2237 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
72fc29ff
TT
2238 /* We must clean up the value chain after creating the piece
2239 closure but before allocating the result. */
0cf08227 2240 free_values.free_to_mark ();
7942e96e
AA
2241 retval = allocate_computed_value (subobj_type,
2242 &pieced_value_funcs, c);
2243 set_value_offset (retval, subobj_byte_offset);
87808bd6 2244 }
4c2df51b
DJ
2245 else
2246 {
718b9626 2247 switch (ctx.location)
cec03d70
TT
2248 {
2249 case DWARF_VALUE_REGISTER:
2250 {
2251 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2252 int dwarf_regnum
595d2e30 2253 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2254 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2255
7942e96e 2256 if (subobj_byte_offset != 0)
8cf6f0b1 2257 error (_("cannot use offset on synthetic pointer to register"));
0cf08227 2258 free_values.free_to_mark ();
7942e96e 2259 retval = value_from_register (subobj_type, gdb_regnum, frame);
0fde2c53
DE
2260 if (value_optimized_out (retval))
2261 {
2262 struct value *tmp;
2263
2264 /* This means the register has undefined value / was
2265 not saved. As we're computing the location of some
2266 variable etc. in the program, not a value for
2267 inspecting a register ($pc, $sp, etc.), return a
2268 generic optimized out value instead, so that we show
2269 <optimized out> instead of <not saved>. */
7942e96e
AA
2270 tmp = allocate_value (subobj_type);
2271 value_contents_copy (tmp, 0, retval, 0,
2272 TYPE_LENGTH (subobj_type));
0fde2c53
DE
2273 retval = tmp;
2274 }
cec03d70
TT
2275 }
2276 break;
2277
2278 case DWARF_VALUE_MEMORY:
2279 {
f56331b4 2280 struct type *ptr_type;
595d2e30 2281 CORE_ADDR address = ctx.fetch_address (0);
69009882 2282 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2283
f56331b4
KB
2284 /* DW_OP_deref_size (and possibly other operations too) may
2285 create a pointer instead of an address. Ideally, the
2286 pointer to address conversion would be performed as part
2287 of those operations, but the type of the object to
2288 which the address refers is not known at the time of
2289 the operation. Therefore, we do the conversion here
2290 since the type is readily available. */
2291
7942e96e 2292 switch (TYPE_CODE (subobj_type))
f56331b4
KB
2293 {
2294 case TYPE_CODE_FUNC:
2295 case TYPE_CODE_METHOD:
718b9626 2296 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2297 break;
2298 default:
718b9626 2299 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2300 break;
2301 }
2302 address = value_as_address (value_from_pointer (ptr_type, address));
2303
0cf08227 2304 free_values.free_to_mark ();
7942e96e
AA
2305 retval = value_at_lazy (subobj_type,
2306 address + subobj_byte_offset);
44353522
DE
2307 if (in_stack_memory)
2308 set_value_stack (retval, 1);
cec03d70
TT
2309 }
2310 break;
2311
2312 case DWARF_VALUE_STACK:
2313 {
595d2e30 2314 struct value *value = ctx.fetch (0);
8a9b8146 2315 size_t n = TYPE_LENGTH (value_type (value));
7942e96e
AA
2316 size_t len = TYPE_LENGTH (subobj_type);
2317 size_t max = TYPE_LENGTH (type);
2318 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
cec03d70 2319
7942e96e 2320 if (subobj_byte_offset + len > max)
8cf6f0b1
TT
2321 invalid_synthetic_pointer ();
2322
72fc29ff
TT
2323 /* Preserve VALUE because we are going to free values back
2324 to the mark, but we still need the value contents
2325 below. */
bbfa6f00 2326 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
0cf08227 2327 free_values.free_to_mark ();
72fc29ff 2328
7942e96e 2329 retval = allocate_value (subobj_type);
b6cede78 2330
7942e96e
AA
2331 /* The given offset is relative to the actual object. */
2332 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2333 subobj_byte_offset += n - max;
2334
2335 memcpy (value_contents_raw (retval),
2336 value_contents_all (value) + subobj_byte_offset, len);
cec03d70
TT
2337 }
2338 break;
2339
2340 case DWARF_VALUE_LITERAL:
2341 {
2342 bfd_byte *contents;
7942e96e 2343 size_t n = TYPE_LENGTH (subobj_type);
cec03d70 2344
7942e96e 2345 if (subobj_byte_offset + n > ctx.len)
8cf6f0b1
TT
2346 invalid_synthetic_pointer ();
2347
0cf08227 2348 free_values.free_to_mark ();
7942e96e 2349 retval = allocate_value (subobj_type);
cec03d70 2350 contents = value_contents_raw (retval);
7942e96e 2351 memcpy (contents, ctx.data + subobj_byte_offset, n);
cec03d70
TT
2352 }
2353 break;
2354
dd90784c 2355 case DWARF_VALUE_OPTIMIZED_OUT:
0cf08227 2356 free_values.free_to_mark ();
7942e96e 2357 retval = allocate_optimized_out_value (subobj_type);
dd90784c
JK
2358 break;
2359
8cf6f0b1
TT
2360 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2361 operation by execute_stack_op. */
2362 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2363 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2364 it can only be encountered when making a piece. */
cec03d70
TT
2365 default:
2366 internal_error (__FILE__, __LINE__, _("invalid location type"));
2367 }
4c2df51b
DJ
2368 }
2369
718b9626 2370 set_value_initialized (retval, ctx.initialized);
42be36b3 2371
4c2df51b
DJ
2372 return retval;
2373}
8cf6f0b1
TT
2374
2375/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2376 passes 0 as the byte_offset. */
2377
2378struct value *
2379dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2380 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2381 struct dwarf2_per_cu_data *per_cu)
2382{
7942e96e
AA
2383 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2384 NULL, 0);
8cf6f0b1
TT
2385}
2386
80180f79 2387/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2388 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2389 frame in which the expression is evaluated. ADDR is a context (location of
2390 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2391 Returns 1 on success, 0 otherwise. */
2392
2393static int
2394dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2395 struct frame_info *frame,
08412b07 2396 CORE_ADDR addr,
1cfdf534 2397 CORE_ADDR *valp)
80180f79 2398{
80180f79 2399 struct objfile *objfile;
80180f79
SA
2400
2401 if (dlbaton == NULL || dlbaton->size == 0)
2402 return 0;
2403
192ca6d8 2404 dwarf_evaluate_loc_desc ctx;
80180f79 2405
192ca6d8
TT
2406 ctx.frame = frame;
2407 ctx.per_cu = dlbaton->per_cu;
2408 ctx.obj_address = addr;
80180f79 2409
09ba997f 2410 objfile = dlbaton->per_cu->objfile ();
80180f79 2411
718b9626 2412 ctx.gdbarch = get_objfile_arch (objfile);
09ba997f
TT
2413 ctx.addr_size = dlbaton->per_cu->addr_size ();
2414 ctx.ref_addr_size = dlbaton->per_cu->ref_addr_size ();
2415 ctx.offset = dlbaton->per_cu->text_offset ();
80180f79 2416
a70b8144 2417 try
16f808ec
TV
2418 {
2419 ctx.eval (dlbaton->data, dlbaton->size);
2420 }
230d2906 2421 catch (const gdb_exception_error &ex)
16f808ec
TV
2422 {
2423 if (ex.error == NOT_AVAILABLE_ERROR)
2424 {
2425 return 0;
2426 }
2427 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2428 {
2429 if (entry_values_debug)
2430 exception_print (gdb_stdout, ex);
2431 return 0;
2432 }
2433 else
eedc3f4f 2434 throw;
16f808ec 2435 }
80180f79 2436
718b9626 2437 switch (ctx.location)
80180f79
SA
2438 {
2439 case DWARF_VALUE_REGISTER:
2440 case DWARF_VALUE_MEMORY:
2441 case DWARF_VALUE_STACK:
595d2e30 2442 *valp = ctx.fetch_address (0);
718b9626 2443 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2444 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2445 return 1;
2446 case DWARF_VALUE_LITERAL:
718b9626
TT
2447 *valp = extract_signed_integer (ctx.data, ctx.len,
2448 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2449 return 1;
2450 /* Unsupported dwarf values. */
2451 case DWARF_VALUE_OPTIMIZED_OUT:
2452 case DWARF_VALUE_IMPLICIT_POINTER:
2453 break;
2454 }
2455
80180f79
SA
2456 return 0;
2457}
2458
2459/* See dwarf2loc.h. */
2460
603490bf 2461bool
08412b07 2462dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2463 struct frame_info *frame,
fe26d3a3 2464 const struct property_addr_info *addr_stack,
df25ebbd 2465 CORE_ADDR *value)
80180f79
SA
2466{
2467 if (prop == NULL)
603490bf 2468 return false;
80180f79 2469
63e43d3a
PMR
2470 if (frame == NULL && has_stack_frames ())
2471 frame = get_selected_frame (NULL);
2472
80180f79
SA
2473 switch (prop->kind)
2474 {
2475 case PROP_LOCEXPR:
2476 {
9a3c8263
SM
2477 const struct dwarf2_property_baton *baton
2478 = (const struct dwarf2_property_baton *) prop->data.baton;
9a49df9d 2479 gdb_assert (baton->property_type != NULL);
80180f79 2480
63e43d3a
PMR
2481 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2482 addr_stack ? addr_stack->addr : 0,
df25ebbd 2483 value))
80180f79 2484 {
9a49df9d 2485 if (baton->locexpr.is_reference)
80180f79 2486 {
9a49df9d 2487 struct value *val = value_at (baton->property_type, *value);
80180f79
SA
2488 *value = value_as_address (val);
2489 }
0d4e84ed
AB
2490 else
2491 {
2492 gdb_assert (baton->property_type != NULL);
2493
2494 struct type *type = check_typedef (baton->property_type);
2495 if (TYPE_LENGTH (type) < sizeof (CORE_ADDR)
2496 && !TYPE_UNSIGNED (type))
2497 {
2498 /* If we have a valid return candidate and it's value
2499 is signed, we have to sign-extend the value because
2500 CORE_ADDR on 64bit machine has 8 bytes but address
2501 size of an 32bit application is bytes. */
2502 const int addr_size
09ba997f 2503 = (baton->locexpr.per_cu->addr_size ()
0d4e84ed
AB
2504 * TARGET_CHAR_BIT);
2505 const CORE_ADDR neg_mask
2506 = (~((CORE_ADDR) 0) << (addr_size - 1));
2507
2508 /* Check if signed bit is set and sign-extend values. */
2509 if (*value & neg_mask)
2510 *value |= neg_mask;
2511 }
2512 }
603490bf 2513 return true;
80180f79
SA
2514 }
2515 }
2516 break;
2517
2518 case PROP_LOCLIST:
2519 {
9a3c8263
SM
2520 struct dwarf2_property_baton *baton
2521 = (struct dwarf2_property_baton *) prop->data.baton;
1c33af77 2522 CORE_ADDR pc;
80180f79
SA
2523 const gdb_byte *data;
2524 struct value *val;
2525 size_t size;
2526
1c33af77
TV
2527 if (frame == NULL
2528 || !get_frame_address_in_block_if_available (frame, &pc))
2529 return false;
2530
80180f79
SA
2531 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2532 if (data != NULL)
2533 {
9a49df9d 2534 val = dwarf2_evaluate_loc_desc (baton->property_type, frame, data,
80180f79
SA
2535 size, baton->loclist.per_cu);
2536 if (!value_optimized_out (val))
2537 {
2538 *value = value_as_address (val);
603490bf 2539 return true;
80180f79
SA
2540 }
2541 }
2542 }
2543 break;
2544
2545 case PROP_CONST:
2546 *value = prop->data.const_val;
603490bf 2547 return true;
df25ebbd
JB
2548
2549 case PROP_ADDR_OFFSET:
2550 {
9a3c8263
SM
2551 struct dwarf2_property_baton *baton
2552 = (struct dwarf2_property_baton *) prop->data.baton;
fe26d3a3 2553 const struct property_addr_info *pinfo;
df25ebbd
JB
2554 struct value *val;
2555
2556 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
988915ee
TT
2557 {
2558 /* This approach lets us avoid checking the qualifiers. */
2559 if (TYPE_MAIN_TYPE (pinfo->type)
9a49df9d 2560 == TYPE_MAIN_TYPE (baton->property_type))
988915ee
TT
2561 break;
2562 }
df25ebbd 2563 if (pinfo == NULL)
2c811c0f 2564 error (_("cannot find reference address for offset property"));
c3345124
JB
2565 if (pinfo->valaddr != NULL)
2566 val = value_from_contents
2567 (baton->offset_info.type,
2568 pinfo->valaddr + baton->offset_info.offset);
2569 else
2570 val = value_at (baton->offset_info.type,
2571 pinfo->addr + baton->offset_info.offset);
df25ebbd 2572 *value = value_as_address (val);
603490bf 2573 return true;
df25ebbd 2574 }
80180f79
SA
2575 }
2576
603490bf 2577 return false;
80180f79
SA
2578}
2579
bb2ec1b3
TT
2580/* See dwarf2loc.h. */
2581
2582void
d82b3862 2583dwarf2_compile_property_to_c (string_file *stream,
bb2ec1b3
TT
2584 const char *result_name,
2585 struct gdbarch *gdbarch,
2586 unsigned char *registers_used,
2587 const struct dynamic_prop *prop,
2588 CORE_ADDR pc,
2589 struct symbol *sym)
2590{
9a3c8263
SM
2591 struct dwarf2_property_baton *baton
2592 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2593 const gdb_byte *data;
2594 size_t size;
2595 struct dwarf2_per_cu_data *per_cu;
2596
2597 if (prop->kind == PROP_LOCEXPR)
2598 {
2599 data = baton->locexpr.data;
2600 size = baton->locexpr.size;
2601 per_cu = baton->locexpr.per_cu;
2602 }
2603 else
2604 {
2605 gdb_assert (prop->kind == PROP_LOCLIST);
2606
2607 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2608 per_cu = baton->loclist.per_cu;
2609 }
2610
2611 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2612 gdbarch, registers_used,
09ba997f 2613 per_cu->addr_size (),
bb2ec1b3
TT
2614 data, data + size, per_cu);
2615}
2616
4c2df51b 2617\f
0b31a4bc 2618/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2619
192ca6d8 2620class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2621{
192ca6d8
TT
2622 public:
2623
0b31a4bc 2624 enum symbol_needs_kind needs;
17ea53c3 2625 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2626
192ca6d8 2627 /* Reads from registers do require a frame. */
632e107b 2628 CORE_ADDR read_addr_from_reg (int regnum) override
192ca6d8
TT
2629 {
2630 needs = SYMBOL_NEEDS_FRAME;
2631 return 1;
2632 }
2633
2634 /* "get_reg_value" callback: Reads from registers do require a
2635 frame. */
2636
632e107b 2637 struct value *get_reg_value (struct type *type, int regnum) override
192ca6d8
TT
2638 {
2639 needs = SYMBOL_NEEDS_FRAME;
2640 return value_zero (type, not_lval);
2641 }
2642
2643 /* Reads from memory do not require a frame. */
632e107b 2644 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
2645 {
2646 memset (buf, 0, len);
2647 }
2648
2649 /* Frame-relative accesses do require a frame. */
632e107b 2650 void get_frame_base (const gdb_byte **start, size_t *length) override
192ca6d8
TT
2651 {
2652 static gdb_byte lit0 = DW_OP_lit0;
2653
2654 *start = &lit0;
2655 *length = 1;
2656
2657 needs = SYMBOL_NEEDS_FRAME;
2658 }
2659
2660 /* CFA accesses require a frame. */
632e107b 2661 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
2662 {
2663 needs = SYMBOL_NEEDS_FRAME;
2664 return 1;
2665 }
2666
632e107b 2667 CORE_ADDR get_frame_pc () override
7d5697f9
TT
2668 {
2669 needs = SYMBOL_NEEDS_FRAME;
2670 return 1;
2671 }
2672
192ca6d8 2673 /* Thread-local accesses require registers, but not a frame. */
632e107b 2674 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
2675 {
2676 if (needs <= SYMBOL_NEEDS_REGISTERS)
2677 needs = SYMBOL_NEEDS_REGISTERS;
2678 return 1;
2679 }
2680
2681 /* Helper interface of per_cu_dwarf_call for
2682 dwarf2_loc_desc_get_symbol_read_needs. */
2683
632e107b 2684 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
2685 {
2686 per_cu_dwarf_call (this, die_offset, per_cu);
2687 }
2688
a6b786da
KB
2689 /* Helper interface of sect_variable_value for
2690 dwarf2_loc_desc_get_symbol_read_needs. */
2691
2692 struct value *dwarf_variable_value (sect_offset sect_off) override
2693 {
2694 return sect_variable_value (this, sect_off, per_cu);
2695 }
2696
216f72a1 2697 /* DW_OP_entry_value accesses require a caller, therefore a
192ca6d8
TT
2698 frame. */
2699
2700 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2701 union call_site_parameter_u kind_u,
632e107b 2702 int deref_size) override
192ca6d8
TT
2703 {
2704 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2705
192ca6d8
TT
2706 /* The expression may require some stub values on DWARF stack. */
2707 push_address (0, 0);
2708 }
3019eac3 2709
336d760d 2710 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2711
632e107b 2712 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
2713 {
2714 /* Nothing to do. */
2715 return 1;
2716 }
08412b07 2717
192ca6d8 2718 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2719
632e107b 2720 CORE_ADDR get_object_address () override
192ca6d8
TT
2721 {
2722 /* Nothing to do. */
2723 return 1;
2724 }
9e8b7a03
JK
2725};
2726
0b31a4bc
TT
2727/* Compute the correct symbol_needs_kind value for the location
2728 expression at DATA (length SIZE). */
4c2df51b 2729
0b31a4bc
TT
2730static enum symbol_needs_kind
2731dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2732 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2733{
f630a401 2734 int in_reg;
09ba997f 2735 struct objfile *objfile = per_cu->objfile ();
4c2df51b 2736
eb115069
TT
2737 scoped_value_mark free_values;
2738
192ca6d8
TT
2739 symbol_needs_eval_context ctx;
2740
2741 ctx.needs = SYMBOL_NEEDS_NONE;
2742 ctx.per_cu = per_cu;
718b9626 2743 ctx.gdbarch = get_objfile_arch (objfile);
09ba997f
TT
2744 ctx.addr_size = per_cu->addr_size ();
2745 ctx.ref_addr_size = per_cu->ref_addr_size ();
2746 ctx.offset = per_cu->text_offset ();
4c2df51b 2747
595d2e30 2748 ctx.eval (data, size);
4c2df51b 2749
718b9626 2750 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2751
1e467161
SM
2752 /* If the location has several pieces, and any of them are in
2753 registers, then we will need a frame to fetch them from. */
2754 for (dwarf_expr_piece &p : ctx.pieces)
2755 if (p.location == DWARF_VALUE_REGISTER)
2756 in_reg = 1;
87808bd6 2757
0b31a4bc 2758 if (in_reg)
192ca6d8
TT
2759 ctx.needs = SYMBOL_NEEDS_FRAME;
2760 return ctx.needs;
4c2df51b
DJ
2761}
2762
3cf03773
TT
2763/* A helper function that throws an unimplemented error mentioning a
2764 given DWARF operator. */
2765
621846f4 2766static void ATTRIBUTE_NORETURN
3cf03773 2767unimplemented (unsigned int op)
0d53c4c4 2768{
f39c6ffd 2769 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2770
2771 if (name)
2772 error (_("DWARF operator %s cannot be translated to an agent expression"),
2773 name);
2774 else
1ba1b353
TT
2775 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2776 "to an agent expression"),
b1bfef65 2777 op);
3cf03773 2778}
08922a10 2779
0fde2c53
DE
2780/* See dwarf2loc.h.
2781
2782 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2783 can issue a complaint, which is better than having every target's
2784 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2785
d064d1be 2786int
0fde2c53 2787dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2788{
2789 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2790
3cf03773 2791 if (reg == -1)
0fde2c53 2792 {
b98664d3 2793 complaint (_("bad DWARF register number %d"), dwarf_reg);
0fde2c53
DE
2794 }
2795 return reg;
2796}
2797
2798/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2799 Throw an error because DWARF_REG is bad. */
2800
2801static void
2802throw_bad_regnum_error (ULONGEST dwarf_reg)
2803{
2804 /* Still want to print -1 as "-1".
2805 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2806 but that's overkill for now. */
2807 if ((int) dwarf_reg == dwarf_reg)
2808 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2809 error (_("Unable to access DWARF register number %s"),
2810 pulongest (dwarf_reg));
2811}
2812
2813/* See dwarf2loc.h. */
2814
2815int
2816dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2817{
2818 int reg;
2819
2820 if (dwarf_reg > INT_MAX)
2821 throw_bad_regnum_error (dwarf_reg);
2822 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2823 bad, but that's ok. */
2824 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2825 if (reg == -1)
2826 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2827 return reg;
2828}
08922a10 2829
3cf03773
TT
2830/* A helper function that emits an access to memory. ARCH is the
2831 target architecture. EXPR is the expression which we are building.
2832 NBITS is the number of bits we want to read. This emits the
2833 opcodes needed to read the memory and then extract the desired
2834 bits. */
08922a10 2835
3cf03773
TT
2836static void
2837access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2838{
3cf03773
TT
2839 ULONGEST nbytes = (nbits + 7) / 8;
2840
9df7235c 2841 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2842
92bc6a20 2843 if (expr->tracing)
3cf03773
TT
2844 ax_trace_quick (expr, nbytes);
2845
2846 if (nbits <= 8)
2847 ax_simple (expr, aop_ref8);
2848 else if (nbits <= 16)
2849 ax_simple (expr, aop_ref16);
2850 else if (nbits <= 32)
2851 ax_simple (expr, aop_ref32);
2852 else
2853 ax_simple (expr, aop_ref64);
2854
2855 /* If we read exactly the number of bytes we wanted, we're done. */
2856 if (8 * nbytes == nbits)
2857 return;
2858
d5a22e77 2859 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
0d53c4c4 2860 {
3cf03773
TT
2861 /* On a bits-big-endian machine, we want the high-order
2862 NBITS. */
2863 ax_const_l (expr, 8 * nbytes - nbits);
2864 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2865 }
3cf03773 2866 else
0d53c4c4 2867 {
3cf03773
TT
2868 /* On a bits-little-endian box, we want the low-order NBITS. */
2869 ax_zero_ext (expr, nbits);
0d53c4c4 2870 }
3cf03773 2871}
0936ad1d 2872
8cf6f0b1
TT
2873/* A helper function to return the frame's PC. */
2874
2875static CORE_ADDR
2876get_ax_pc (void *baton)
2877{
9a3c8263 2878 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2879
2880 return expr->scope;
2881}
2882
3cf03773
TT
2883/* Compile a DWARF location expression to an agent expression.
2884
2885 EXPR is the agent expression we are building.
2886 LOC is the agent value we modify.
2887 ARCH is the architecture.
2888 ADDR_SIZE is the size of addresses, in bytes.
2889 OP_PTR is the start of the location expression.
2890 OP_END is one past the last byte of the location expression.
2891
2892 This will throw an exception for various kinds of errors -- for
2893 example, if the expression cannot be compiled, or if the expression
2894 is invalid. */
0936ad1d 2895
5707a07a 2896static void
9f6f94ff 2897dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
40f4af28
SM
2898 unsigned int addr_size, const gdb_byte *op_ptr,
2899 const gdb_byte *op_end,
9f6f94ff 2900 struct dwarf2_per_cu_data *per_cu)
3cf03773 2901{
40f4af28 2902 gdbarch *arch = expr->gdbarch;
58414334 2903 std::vector<int> dw_labels, patches;
3cf03773
TT
2904 const gdb_byte * const base = op_ptr;
2905 const gdb_byte *previous_piece = op_ptr;
2906 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2907 ULONGEST bits_collected = 0;
2908 unsigned int addr_size_bits = 8 * addr_size;
d5a22e77 2909 bool bits_big_endian = byte_order == BFD_ENDIAN_BIG;
0936ad1d 2910
58414334 2911 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2912
3cf03773
TT
2913 /* By default we are making an address. */
2914 loc->kind = axs_lvalue_memory;
0d45f56e 2915
3cf03773
TT
2916 while (op_ptr < op_end)
2917 {
aead7601 2918 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2919 uint64_t uoffset, reg;
2920 int64_t offset;
3cf03773
TT
2921 int i;
2922
2923 offsets[op_ptr - base] = expr->len;
2924 ++op_ptr;
2925
2926 /* Our basic approach to code generation is to map DWARF
2927 operations directly to AX operations. However, there are
2928 some differences.
2929
2930 First, DWARF works on address-sized units, but AX always uses
2931 LONGEST. For most operations we simply ignore this
2932 difference; instead we generate sign extensions as needed
2933 before division and comparison operations. It would be nice
2934 to omit the sign extensions, but there is no way to determine
2935 the size of the target's LONGEST. (This code uses the size
2936 of the host LONGEST in some cases -- that is a bug but it is
2937 difficult to fix.)
2938
2939 Second, some DWARF operations cannot be translated to AX.
2940 For these we simply fail. See
2941 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2942 switch (op)
0936ad1d 2943 {
3cf03773
TT
2944 case DW_OP_lit0:
2945 case DW_OP_lit1:
2946 case DW_OP_lit2:
2947 case DW_OP_lit3:
2948 case DW_OP_lit4:
2949 case DW_OP_lit5:
2950 case DW_OP_lit6:
2951 case DW_OP_lit7:
2952 case DW_OP_lit8:
2953 case DW_OP_lit9:
2954 case DW_OP_lit10:
2955 case DW_OP_lit11:
2956 case DW_OP_lit12:
2957 case DW_OP_lit13:
2958 case DW_OP_lit14:
2959 case DW_OP_lit15:
2960 case DW_OP_lit16:
2961 case DW_OP_lit17:
2962 case DW_OP_lit18:
2963 case DW_OP_lit19:
2964 case DW_OP_lit20:
2965 case DW_OP_lit21:
2966 case DW_OP_lit22:
2967 case DW_OP_lit23:
2968 case DW_OP_lit24:
2969 case DW_OP_lit25:
2970 case DW_OP_lit26:
2971 case DW_OP_lit27:
2972 case DW_OP_lit28:
2973 case DW_OP_lit29:
2974 case DW_OP_lit30:
2975 case DW_OP_lit31:
2976 ax_const_l (expr, op - DW_OP_lit0);
2977 break;
0d53c4c4 2978
3cf03773 2979 case DW_OP_addr:
ac56253d 2980 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2981 op_ptr += addr_size;
ac56253d
TT
2982 /* Some versions of GCC emit DW_OP_addr before
2983 DW_OP_GNU_push_tls_address. In this case the value is an
2984 index, not an address. We don't support things like
2985 branching between the address and the TLS op. */
2986 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
09ba997f 2987 uoffset += per_cu->text_offset ();
ac56253d 2988 ax_const_l (expr, uoffset);
3cf03773 2989 break;
4c2df51b 2990
3cf03773
TT
2991 case DW_OP_const1u:
2992 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2993 op_ptr += 1;
2994 break;
2995 case DW_OP_const1s:
2996 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2997 op_ptr += 1;
2998 break;
2999 case DW_OP_const2u:
3000 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3001 op_ptr += 2;
3002 break;
3003 case DW_OP_const2s:
3004 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3005 op_ptr += 2;
3006 break;
3007 case DW_OP_const4u:
3008 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3009 op_ptr += 4;
3010 break;
3011 case DW_OP_const4s:
3012 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3013 op_ptr += 4;
3014 break;
3015 case DW_OP_const8u:
3016 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3017 op_ptr += 8;
3018 break;
3019 case DW_OP_const8s:
3020 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3021 op_ptr += 8;
3022 break;
3023 case DW_OP_constu:
f664829e 3024 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
3025 ax_const_l (expr, uoffset);
3026 break;
3027 case DW_OP_consts:
f664829e 3028 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3029 ax_const_l (expr, offset);
3030 break;
9c238357 3031
3cf03773
TT
3032 case DW_OP_reg0:
3033 case DW_OP_reg1:
3034 case DW_OP_reg2:
3035 case DW_OP_reg3:
3036 case DW_OP_reg4:
3037 case DW_OP_reg5:
3038 case DW_OP_reg6:
3039 case DW_OP_reg7:
3040 case DW_OP_reg8:
3041 case DW_OP_reg9:
3042 case DW_OP_reg10:
3043 case DW_OP_reg11:
3044 case DW_OP_reg12:
3045 case DW_OP_reg13:
3046 case DW_OP_reg14:
3047 case DW_OP_reg15:
3048 case DW_OP_reg16:
3049 case DW_OP_reg17:
3050 case DW_OP_reg18:
3051 case DW_OP_reg19:
3052 case DW_OP_reg20:
3053 case DW_OP_reg21:
3054 case DW_OP_reg22:
3055 case DW_OP_reg23:
3056 case DW_OP_reg24:
3057 case DW_OP_reg25:
3058 case DW_OP_reg26:
3059 case DW_OP_reg27:
3060 case DW_OP_reg28:
3061 case DW_OP_reg29:
3062 case DW_OP_reg30:
3063 case DW_OP_reg31:
3064 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3065 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3066 loc->kind = axs_lvalue_register;
3067 break;
9c238357 3068
3cf03773 3069 case DW_OP_regx:
f664829e 3070 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3071 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3072 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3073 loc->kind = axs_lvalue_register;
3074 break;
08922a10 3075
3cf03773
TT
3076 case DW_OP_implicit_value:
3077 {
9fccedf7 3078 uint64_t len;
3cf03773 3079
f664829e 3080 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3081 if (op_ptr + len > op_end)
3082 error (_("DW_OP_implicit_value: too few bytes available."));
3083 if (len > sizeof (ULONGEST))
3084 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3085 (int) len);
3086
3087 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3088 byte_order));
3089 op_ptr += len;
3090 dwarf_expr_require_composition (op_ptr, op_end,
3091 "DW_OP_implicit_value");
3092
3093 loc->kind = axs_rvalue;
3094 }
3095 break;
08922a10 3096
3cf03773
TT
3097 case DW_OP_stack_value:
3098 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3099 loc->kind = axs_rvalue;
3100 break;
08922a10 3101
3cf03773
TT
3102 case DW_OP_breg0:
3103 case DW_OP_breg1:
3104 case DW_OP_breg2:
3105 case DW_OP_breg3:
3106 case DW_OP_breg4:
3107 case DW_OP_breg5:
3108 case DW_OP_breg6:
3109 case DW_OP_breg7:
3110 case DW_OP_breg8:
3111 case DW_OP_breg9:
3112 case DW_OP_breg10:
3113 case DW_OP_breg11:
3114 case DW_OP_breg12:
3115 case DW_OP_breg13:
3116 case DW_OP_breg14:
3117 case DW_OP_breg15:
3118 case DW_OP_breg16:
3119 case DW_OP_breg17:
3120 case DW_OP_breg18:
3121 case DW_OP_breg19:
3122 case DW_OP_breg20:
3123 case DW_OP_breg21:
3124 case DW_OP_breg22:
3125 case DW_OP_breg23:
3126 case DW_OP_breg24:
3127 case DW_OP_breg25:
3128 case DW_OP_breg26:
3129 case DW_OP_breg27:
3130 case DW_OP_breg28:
3131 case DW_OP_breg29:
3132 case DW_OP_breg30:
3133 case DW_OP_breg31:
f664829e 3134 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3135 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3136 ax_reg (expr, i);
3137 if (offset != 0)
3138 {
3139 ax_const_l (expr, offset);
3140 ax_simple (expr, aop_add);
3141 }
3142 break;
3143 case DW_OP_bregx:
3144 {
f664829e
DE
3145 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3146 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3147 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3148 ax_reg (expr, i);
3149 if (offset != 0)
3150 {
3151 ax_const_l (expr, offset);
3152 ax_simple (expr, aop_add);
3153 }
3154 }
3155 break;
3156 case DW_OP_fbreg:
3157 {
3158 const gdb_byte *datastart;
3159 size_t datalen;
3977b71f 3160 const struct block *b;
3cf03773 3161 struct symbol *framefunc;
08922a10 3162
3cf03773
TT
3163 b = block_for_pc (expr->scope);
3164
3165 if (!b)
3166 error (_("No block found for address"));
3167
3168 framefunc = block_linkage_function (b);
3169
3170 if (!framefunc)
3171 error (_("No function found for block"));
3172
af945b75
TT
3173 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3174 &datastart, &datalen);
3cf03773 3175
f664829e 3176 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
40f4af28 3177 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
9f6f94ff 3178 datastart + datalen, per_cu);
d84cf7eb
TT
3179 if (loc->kind == axs_lvalue_register)
3180 require_rvalue (expr, loc);
3cf03773
TT
3181
3182 if (offset != 0)
3183 {
3184 ax_const_l (expr, offset);
3185 ax_simple (expr, aop_add);
3186 }
3187
3188 loc->kind = axs_lvalue_memory;
3189 }
08922a10 3190 break;
08922a10 3191
3cf03773
TT
3192 case DW_OP_dup:
3193 ax_simple (expr, aop_dup);
3194 break;
08922a10 3195
3cf03773
TT
3196 case DW_OP_drop:
3197 ax_simple (expr, aop_pop);
3198 break;
08922a10 3199
3cf03773
TT
3200 case DW_OP_pick:
3201 offset = *op_ptr++;
c7f96d2b 3202 ax_pick (expr, offset);
3cf03773
TT
3203 break;
3204
3205 case DW_OP_swap:
3206 ax_simple (expr, aop_swap);
3207 break;
08922a10 3208
3cf03773 3209 case DW_OP_over:
c7f96d2b 3210 ax_pick (expr, 1);
3cf03773 3211 break;
08922a10 3212
3cf03773 3213 case DW_OP_rot:
c7f96d2b 3214 ax_simple (expr, aop_rot);
3cf03773 3215 break;
08922a10 3216
3cf03773
TT
3217 case DW_OP_deref:
3218 case DW_OP_deref_size:
3219 {
3220 int size;
08922a10 3221
3cf03773
TT
3222 if (op == DW_OP_deref_size)
3223 size = *op_ptr++;
3224 else
3225 size = addr_size;
3226
9df7235c 3227 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3228 error (_("Unsupported size %d in %s"),
3229 size, get_DW_OP_name (op));
9df7235c 3230 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3231 }
3232 break;
3233
3234 case DW_OP_abs:
3235 /* Sign extend the operand. */
3236 ax_ext (expr, addr_size_bits);
3237 ax_simple (expr, aop_dup);
3238 ax_const_l (expr, 0);
3239 ax_simple (expr, aop_less_signed);
3240 ax_simple (expr, aop_log_not);
3241 i = ax_goto (expr, aop_if_goto);
3242 /* We have to emit 0 - X. */
3243 ax_const_l (expr, 0);
3244 ax_simple (expr, aop_swap);
3245 ax_simple (expr, aop_sub);
3246 ax_label (expr, i, expr->len);
3247 break;
3248
3249 case DW_OP_neg:
3250 /* No need to sign extend here. */
3251 ax_const_l (expr, 0);
3252 ax_simple (expr, aop_swap);
3253 ax_simple (expr, aop_sub);
3254 break;
3255
3256 case DW_OP_not:
3257 /* Sign extend the operand. */
3258 ax_ext (expr, addr_size_bits);
3259 ax_simple (expr, aop_bit_not);
3260 break;
3261
3262 case DW_OP_plus_uconst:
f664829e 3263 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3264 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3265 but we micro-optimize anyhow. */
3266 if (reg != 0)
3267 {
3268 ax_const_l (expr, reg);
3269 ax_simple (expr, aop_add);
3270 }
3271 break;
3272
3273 case DW_OP_and:
3274 ax_simple (expr, aop_bit_and);
3275 break;
3276
3277 case DW_OP_div:
3278 /* Sign extend the operands. */
3279 ax_ext (expr, addr_size_bits);
3280 ax_simple (expr, aop_swap);
3281 ax_ext (expr, addr_size_bits);
3282 ax_simple (expr, aop_swap);
3283 ax_simple (expr, aop_div_signed);
08922a10
SS
3284 break;
3285
3cf03773
TT
3286 case DW_OP_minus:
3287 ax_simple (expr, aop_sub);
3288 break;
3289
3290 case DW_OP_mod:
3291 ax_simple (expr, aop_rem_unsigned);
3292 break;
3293
3294 case DW_OP_mul:
3295 ax_simple (expr, aop_mul);
3296 break;
3297
3298 case DW_OP_or:
3299 ax_simple (expr, aop_bit_or);
3300 break;
3301
3302 case DW_OP_plus:
3303 ax_simple (expr, aop_add);
3304 break;
3305
3306 case DW_OP_shl:
3307 ax_simple (expr, aop_lsh);
3308 break;
3309
3310 case DW_OP_shr:
3311 ax_simple (expr, aop_rsh_unsigned);
3312 break;
3313
3314 case DW_OP_shra:
3315 ax_simple (expr, aop_rsh_signed);
3316 break;
3317
3318 case DW_OP_xor:
3319 ax_simple (expr, aop_bit_xor);
3320 break;
3321
3322 case DW_OP_le:
3323 /* Sign extend the operands. */
3324 ax_ext (expr, addr_size_bits);
3325 ax_simple (expr, aop_swap);
3326 ax_ext (expr, addr_size_bits);
3327 /* Note no swap here: A <= B is !(B < A). */
3328 ax_simple (expr, aop_less_signed);
3329 ax_simple (expr, aop_log_not);
3330 break;
3331
3332 case DW_OP_ge:
3333 /* Sign extend the operands. */
3334 ax_ext (expr, addr_size_bits);
3335 ax_simple (expr, aop_swap);
3336 ax_ext (expr, addr_size_bits);
3337 ax_simple (expr, aop_swap);
3338 /* A >= B is !(A < B). */
3339 ax_simple (expr, aop_less_signed);
3340 ax_simple (expr, aop_log_not);
3341 break;
3342
3343 case DW_OP_eq:
3344 /* Sign extend the operands. */
3345 ax_ext (expr, addr_size_bits);
3346 ax_simple (expr, aop_swap);
3347 ax_ext (expr, addr_size_bits);
3348 /* No need for a second swap here. */
3349 ax_simple (expr, aop_equal);
3350 break;
3351
3352 case DW_OP_lt:
3353 /* Sign extend the operands. */
3354 ax_ext (expr, addr_size_bits);
3355 ax_simple (expr, aop_swap);
3356 ax_ext (expr, addr_size_bits);
3357 ax_simple (expr, aop_swap);
3358 ax_simple (expr, aop_less_signed);
3359 break;
3360
3361 case DW_OP_gt:
3362 /* Sign extend the operands. */
3363 ax_ext (expr, addr_size_bits);
3364 ax_simple (expr, aop_swap);
3365 ax_ext (expr, addr_size_bits);
3366 /* Note no swap here: A > B is B < A. */
3367 ax_simple (expr, aop_less_signed);
3368 break;
3369
3370 case DW_OP_ne:
3371 /* Sign extend the operands. */
3372 ax_ext (expr, addr_size_bits);
3373 ax_simple (expr, aop_swap);
3374 ax_ext (expr, addr_size_bits);
3375 /* No need for a swap here. */
3376 ax_simple (expr, aop_equal);
3377 ax_simple (expr, aop_log_not);
3378 break;
3379
3380 case DW_OP_call_frame_cfa:
a8fd5589
TT
3381 {
3382 int regnum;
3383 CORE_ADDR text_offset;
3384 LONGEST off;
3385 const gdb_byte *cfa_start, *cfa_end;
3386
3387 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3388 &regnum, &off,
3389 &text_offset, &cfa_start, &cfa_end))
3390 {
3391 /* Register. */
3392 ax_reg (expr, regnum);
3393 if (off != 0)
3394 {
3395 ax_const_l (expr, off);
3396 ax_simple (expr, aop_add);
3397 }
3398 }
3399 else
3400 {
3401 /* Another expression. */
3402 ax_const_l (expr, text_offset);
40f4af28
SM
3403 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3404 cfa_end, per_cu);
a8fd5589
TT
3405 }
3406
3407 loc->kind = axs_lvalue_memory;
3408 }
3cf03773
TT
3409 break;
3410
3411 case DW_OP_GNU_push_tls_address:
4aa4e28b 3412 case DW_OP_form_tls_address:
3cf03773
TT
3413 unimplemented (op);
3414 break;
3415
08412b07
JB
3416 case DW_OP_push_object_address:
3417 unimplemented (op);
3418 break;
3419
3cf03773
TT
3420 case DW_OP_skip:
3421 offset = extract_signed_integer (op_ptr, 2, byte_order);
3422 op_ptr += 2;
3423 i = ax_goto (expr, aop_goto);
58414334
TT
3424 dw_labels.push_back (op_ptr + offset - base);
3425 patches.push_back (i);
3cf03773
TT
3426 break;
3427
3428 case DW_OP_bra:
3429 offset = extract_signed_integer (op_ptr, 2, byte_order);
3430 op_ptr += 2;
3431 /* Zero extend the operand. */
3432 ax_zero_ext (expr, addr_size_bits);
3433 i = ax_goto (expr, aop_if_goto);
58414334
TT
3434 dw_labels.push_back (op_ptr + offset - base);
3435 patches.push_back (i);
3cf03773
TT
3436 break;
3437
3438 case DW_OP_nop:
3439 break;
3440
3441 case DW_OP_piece:
3442 case DW_OP_bit_piece:
08922a10 3443 {
b926417a 3444 uint64_t size;
3cf03773
TT
3445
3446 if (op_ptr - 1 == previous_piece)
3447 error (_("Cannot translate empty pieces to agent expressions"));
3448 previous_piece = op_ptr - 1;
3449
f664829e 3450 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3451 if (op == DW_OP_piece)
3452 {
3453 size *= 8;
b926417a 3454 uoffset = 0;
3cf03773
TT
3455 }
3456 else
b926417a 3457 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
08922a10 3458
3cf03773
TT
3459 if (bits_collected + size > 8 * sizeof (LONGEST))
3460 error (_("Expression pieces exceed word size"));
3461
3462 /* Access the bits. */
3463 switch (loc->kind)
3464 {
3465 case axs_lvalue_register:
3466 ax_reg (expr, loc->u.reg);
3467 break;
3468
3469 case axs_lvalue_memory:
3470 /* Offset the pointer, if needed. */
b926417a 3471 if (uoffset > 8)
3cf03773 3472 {
b926417a 3473 ax_const_l (expr, uoffset / 8);
3cf03773 3474 ax_simple (expr, aop_add);
b926417a 3475 uoffset %= 8;
3cf03773
TT
3476 }
3477 access_memory (arch, expr, size);
3478 break;
3479 }
3480
3481 /* For a bits-big-endian target, shift up what we already
3482 have. For a bits-little-endian target, shift up the
3483 new data. Note that there is a potential bug here if
3484 the DWARF expression leaves multiple values on the
3485 stack. */
3486 if (bits_collected > 0)
3487 {
3488 if (bits_big_endian)
3489 {
3490 ax_simple (expr, aop_swap);
3491 ax_const_l (expr, size);
3492 ax_simple (expr, aop_lsh);
3493 /* We don't need a second swap here, because
3494 aop_bit_or is symmetric. */
3495 }
3496 else
3497 {
3498 ax_const_l (expr, size);
3499 ax_simple (expr, aop_lsh);
3500 }
3501 ax_simple (expr, aop_bit_or);
3502 }
3503
3504 bits_collected += size;
3505 loc->kind = axs_rvalue;
08922a10
SS
3506 }
3507 break;
08922a10 3508
3cf03773
TT
3509 case DW_OP_GNU_uninit:
3510 unimplemented (op);
3511
3512 case DW_OP_call2:
3513 case DW_OP_call4:
3514 {
3515 struct dwarf2_locexpr_baton block;
3516 int size = (op == DW_OP_call2 ? 2 : 4);
3517
3518 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3519 op_ptr += size;
3520
b926417a
TT
3521 cu_offset cuoffset = (cu_offset) uoffset;
3522 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
8b9737bf 3523 get_ax_pc, expr);
3cf03773
TT
3524
3525 /* DW_OP_call_ref is currently not supported. */
3526 gdb_assert (block.per_cu == per_cu);
3527
40f4af28
SM
3528 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3529 block.data + block.size, per_cu);
3cf03773
TT
3530 }
3531 break;
3532
3533 case DW_OP_call_ref:
3534 unimplemented (op);
3535
a6b786da
KB
3536 case DW_OP_GNU_variable_value:
3537 unimplemented (op);
3538
3cf03773 3539 default:
b1bfef65 3540 unimplemented (op);
08922a10 3541 }
08922a10 3542 }
3cf03773
TT
3543
3544 /* Patch all the branches we emitted. */
b926417a 3545 for (int i = 0; i < patches.size (); ++i)
3cf03773 3546 {
58414334 3547 int targ = offsets[dw_labels[i]];
3cf03773
TT
3548 if (targ == -1)
3549 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3550 ax_label (expr, patches[i], targ);
3cf03773 3551 }
08922a10
SS
3552}
3553
4c2df51b
DJ
3554\f
3555/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3556 evaluator to calculate the location. */
3557static struct value *
3558locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3559{
9a3c8263
SM
3560 struct dwarf2_locexpr_baton *dlbaton
3561 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3562 struct value *val;
9a619af0 3563
a2d33775
JK
3564 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3565 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3566
3567 return val;
3568}
3569
e18b2753
JK
3570/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3571 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3572 will be thrown. */
3573
3574static struct value *
3575locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3576{
9a3c8263
SM
3577 struct dwarf2_locexpr_baton *dlbaton
3578 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3579
3580 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3581 dlbaton->size);
3582}
3583
0b31a4bc
TT
3584/* Implementation of get_symbol_read_needs from
3585 symbol_computed_ops. */
3586
3587static enum symbol_needs_kind
3588locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3589{
9a3c8263
SM
3590 struct dwarf2_locexpr_baton *dlbaton
3591 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3592
0b31a4bc
TT
3593 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3594 dlbaton->per_cu);
4c2df51b
DJ
3595}
3596
9eae7c52
TT
3597/* Return true if DATA points to the end of a piece. END is one past
3598 the last byte in the expression. */
3599
3600static int
3601piece_end_p (const gdb_byte *data, const gdb_byte *end)
3602{
3603 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3604}
3605
5e44ecb3
TT
3606/* Helper for locexpr_describe_location_piece that finds the name of a
3607 DWARF register. */
3608
3609static const char *
3610locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3611{
3612 int regnum;
3613
0fde2c53
DE
3614 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3615 We'd rather print *something* here than throw an error. */
3616 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3617 /* gdbarch_register_name may just return "", return something more
3618 descriptive for bad register numbers. */
3619 if (regnum == -1)
3620 {
3621 /* The text is output as "$bad_register_number".
3622 That is why we use the underscores. */
3623 return _("bad_register_number");
3624 }
5e44ecb3
TT
3625 return gdbarch_register_name (gdbarch, regnum);
3626}
3627
9eae7c52
TT
3628/* Nicely describe a single piece of a location, returning an updated
3629 position in the bytecode sequence. This function cannot recognize
3630 all locations; if a location is not recognized, it simply returns
f664829e
DE
3631 DATA. If there is an error during reading, e.g. we run off the end
3632 of the buffer, an error is thrown. */
08922a10 3633
0d45f56e 3634static const gdb_byte *
08922a10
SS
3635locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3636 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3637 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3638 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3639 unsigned int addr_size)
4c2df51b 3640{
08922a10 3641 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3642 size_t leb128_size;
08922a10
SS
3643
3644 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3645 {
08922a10 3646 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3647 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3648 data += 1;
3649 }
3650 else if (data[0] == DW_OP_regx)
3651 {
9fccedf7 3652 uint64_t reg;
4c2df51b 3653
f664829e 3654 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3655 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3656 locexpr_regname (gdbarch, reg));
08922a10
SS
3657 }
3658 else if (data[0] == DW_OP_fbreg)
4c2df51b 3659 {
3977b71f 3660 const struct block *b;
08922a10
SS
3661 struct symbol *framefunc;
3662 int frame_reg = 0;
9fccedf7 3663 int64_t frame_offset;
7155d578 3664 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3665 size_t base_size;
9fccedf7 3666 int64_t base_offset = 0;
08922a10 3667
f664829e 3668 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3669 if (!piece_end_p (new_data, end))
3670 return data;
3671 data = new_data;
3672
08922a10
SS
3673 b = block_for_pc (addr);
3674
3675 if (!b)
3676 error (_("No block found for address for symbol \"%s\"."),
987012b8 3677 symbol->print_name ());
08922a10
SS
3678
3679 framefunc = block_linkage_function (b);
3680
3681 if (!framefunc)
3682 error (_("No function found for block for symbol \"%s\"."),
987012b8 3683 symbol->print_name ());
08922a10 3684
af945b75 3685 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3686
3687 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3688 {
0d45f56e 3689 const gdb_byte *buf_end;
08922a10
SS
3690
3691 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3692 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3693 &base_offset);
08922a10 3694 if (buf_end != base_data + base_size)
3e43a32a
MS
3695 error (_("Unexpected opcode after "
3696 "DW_OP_breg%u for symbol \"%s\"."),
987012b8 3697 frame_reg, symbol->print_name ());
08922a10
SS
3698 }
3699 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3700 {
3701 /* The frame base is just the register, with no offset. */
3702 frame_reg = base_data[0] - DW_OP_reg0;
3703 base_offset = 0;
3704 }
3705 else
3706 {
3707 /* We don't know what to do with the frame base expression,
3708 so we can't trace this variable; give up. */
7155d578 3709 return save_data;
08922a10
SS
3710 }
3711
3e43a32a
MS
3712 fprintf_filtered (stream,
3713 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3714 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3715 plongest (base_offset), plongest (frame_offset));
3716 }
9eae7c52
TT
3717 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3718 && piece_end_p (data, end))
08922a10 3719 {
9fccedf7 3720 int64_t offset;
08922a10 3721
f664829e 3722 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3723
4c2df51b 3724 fprintf_filtered (stream,
08922a10
SS
3725 _("a variable at offset %s from base reg $%s"),
3726 plongest (offset),
5e44ecb3 3727 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3728 }
3729
c3228f12
EZ
3730 /* The location expression for a TLS variable looks like this (on a
3731 64-bit LE machine):
3732
3733 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3734 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3735
c3228f12
EZ
3736 0x3 is the encoding for DW_OP_addr, which has an operand as long
3737 as the size of an address on the target machine (here is 8
09d8bd00
TT
3738 bytes). Note that more recent version of GCC emit DW_OP_const4u
3739 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3740 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3741 The operand represents the offset at which the variable is within
3742 the thread local storage. */
c3228f12 3743
9eae7c52 3744 else if (data + 1 + addr_size < end
09d8bd00
TT
3745 && (data[0] == DW_OP_addr
3746 || (addr_size == 4 && data[0] == DW_OP_const4u)
3747 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3748 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3749 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3750 && piece_end_p (data + 2 + addr_size, end))
08922a10 3751 {
d4a087c7
UW
3752 ULONGEST offset;
3753 offset = extract_unsigned_integer (data + 1, addr_size,
3754 gdbarch_byte_order (gdbarch));
9a619af0 3755
08922a10 3756 fprintf_filtered (stream,
d4a087c7 3757 _("a thread-local variable at offset 0x%s "
08922a10 3758 "in the thread-local storage for `%s'"),
4262abfb 3759 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3760
3761 data += 1 + addr_size + 1;
3762 }
49f6c839
DE
3763
3764 /* With -gsplit-dwarf a TLS variable can also look like this:
3765 DW_AT_location : 3 byte block: fc 4 e0
3766 (DW_OP_GNU_const_index: 4;
3767 DW_OP_GNU_push_tls_address) */
3768 else if (data + 3 <= end
3769 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3770 && data[0] == DW_OP_GNU_const_index
3771 && leb128_size > 0
4aa4e28b
TT
3772 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3773 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3774 && piece_end_p (data + 2 + leb128_size, end))
3775 {
a55c1f32 3776 uint64_t offset;
49f6c839
DE
3777
3778 data = safe_read_uleb128 (data + 1, end, &offset);
3779 offset = dwarf2_read_addr_index (per_cu, offset);
3780 fprintf_filtered (stream,
3781 _("a thread-local variable at offset 0x%s "
3782 "in the thread-local storage for `%s'"),
4262abfb 3783 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3784 ++data;
3785 }
3786
9eae7c52
TT
3787 else if (data[0] >= DW_OP_lit0
3788 && data[0] <= DW_OP_lit31
3789 && data + 1 < end
3790 && data[1] == DW_OP_stack_value)
3791 {
3792 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3793 data += 2;
3794 }
3795
3796 return data;
3797}
3798
3799/* Disassemble an expression, stopping at the end of a piece or at the
3800 end of the expression. Returns a pointer to the next unread byte
3801 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3802 will keep going until it reaches the end of the expression.
3803 If there is an error during reading, e.g. we run off the end
3804 of the buffer, an error is thrown. */
9eae7c52
TT
3805
3806static const gdb_byte *
3807disassemble_dwarf_expression (struct ui_file *stream,
3808 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3809 int offset_size, const gdb_byte *start,
9eae7c52 3810 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3811 int indent, int all,
5e44ecb3 3812 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3813{
9eae7c52
TT
3814 while (data < end
3815 && (all
3816 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3817 {
aead7601 3818 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3819 uint64_t ul;
3820 int64_t l;
9eae7c52
TT
3821 const char *name;
3822
f39c6ffd 3823 name = get_DW_OP_name (op);
9eae7c52
TT
3824
3825 if (!name)
3826 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3827 op, (long) (data - 1 - start));
2bda9cc5
JK
3828 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3829 (long) (data - 1 - start), name);
9eae7c52
TT
3830
3831 switch (op)
3832 {
3833 case DW_OP_addr:
d4a087c7
UW
3834 ul = extract_unsigned_integer (data, addr_size,
3835 gdbarch_byte_order (arch));
9eae7c52 3836 data += addr_size;
d4a087c7 3837 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3838 break;
3839
3840 case DW_OP_const1u:
3841 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3842 data += 1;
3843 fprintf_filtered (stream, " %s", pulongest (ul));
3844 break;
3845 case DW_OP_const1s:
3846 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3847 data += 1;
3848 fprintf_filtered (stream, " %s", plongest (l));
3849 break;
3850 case DW_OP_const2u:
3851 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3852 data += 2;
3853 fprintf_filtered (stream, " %s", pulongest (ul));
3854 break;
3855 case DW_OP_const2s:
3856 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3857 data += 2;
3858 fprintf_filtered (stream, " %s", plongest (l));
3859 break;
3860 case DW_OP_const4u:
3861 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3862 data += 4;
3863 fprintf_filtered (stream, " %s", pulongest (ul));
3864 break;
3865 case DW_OP_const4s:
3866 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3867 data += 4;
3868 fprintf_filtered (stream, " %s", plongest (l));
3869 break;
3870 case DW_OP_const8u:
3871 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3872 data += 8;
3873 fprintf_filtered (stream, " %s", pulongest (ul));
3874 break;
3875 case DW_OP_const8s:
3876 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3877 data += 8;
3878 fprintf_filtered (stream, " %s", plongest (l));
3879 break;
3880 case DW_OP_constu:
f664829e 3881 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3882 fprintf_filtered (stream, " %s", pulongest (ul));
3883 break;
3884 case DW_OP_consts:
f664829e 3885 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3886 fprintf_filtered (stream, " %s", plongest (l));
3887 break;
3888
3889 case DW_OP_reg0:
3890 case DW_OP_reg1:
3891 case DW_OP_reg2:
3892 case DW_OP_reg3:
3893 case DW_OP_reg4:
3894 case DW_OP_reg5:
3895 case DW_OP_reg6:
3896 case DW_OP_reg7:
3897 case DW_OP_reg8:
3898 case DW_OP_reg9:
3899 case DW_OP_reg10:
3900 case DW_OP_reg11:
3901 case DW_OP_reg12:
3902 case DW_OP_reg13:
3903 case DW_OP_reg14:
3904 case DW_OP_reg15:
3905 case DW_OP_reg16:
3906 case DW_OP_reg17:
3907 case DW_OP_reg18:
3908 case DW_OP_reg19:
3909 case DW_OP_reg20:
3910 case DW_OP_reg21:
3911 case DW_OP_reg22:
3912 case DW_OP_reg23:
3913 case DW_OP_reg24:
3914 case DW_OP_reg25:
3915 case DW_OP_reg26:
3916 case DW_OP_reg27:
3917 case DW_OP_reg28:
3918 case DW_OP_reg29:
3919 case DW_OP_reg30:
3920 case DW_OP_reg31:
3921 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3922 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3923 break;
3924
3925 case DW_OP_regx:
f664829e 3926 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3927 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3928 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3929 break;
3930
3931 case DW_OP_implicit_value:
f664829e 3932 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3933 data += ul;
3934 fprintf_filtered (stream, " %s", pulongest (ul));
3935 break;
3936
3937 case DW_OP_breg0:
3938 case DW_OP_breg1:
3939 case DW_OP_breg2:
3940 case DW_OP_breg3:
3941 case DW_OP_breg4:
3942 case DW_OP_breg5:
3943 case DW_OP_breg6:
3944 case DW_OP_breg7:
3945 case DW_OP_breg8:
3946 case DW_OP_breg9:
3947 case DW_OP_breg10:
3948 case DW_OP_breg11:
3949 case DW_OP_breg12:
3950 case DW_OP_breg13:
3951 case DW_OP_breg14:
3952 case DW_OP_breg15:
3953 case DW_OP_breg16:
3954 case DW_OP_breg17:
3955 case DW_OP_breg18:
3956 case DW_OP_breg19:
3957 case DW_OP_breg20:
3958 case DW_OP_breg21:
3959 case DW_OP_breg22:
3960 case DW_OP_breg23:
3961 case DW_OP_breg24:
3962 case DW_OP_breg25:
3963 case DW_OP_breg26:
3964 case DW_OP_breg27:
3965 case DW_OP_breg28:
3966 case DW_OP_breg29:
3967 case DW_OP_breg30:
3968 case DW_OP_breg31:
f664829e 3969 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3970 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3971 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3972 break;
3973
3974 case DW_OP_bregx:
f664829e
DE
3975 data = safe_read_uleb128 (data, end, &ul);
3976 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3977 fprintf_filtered (stream, " register %s [$%s] offset %s",
3978 pulongest (ul),
5e44ecb3 3979 locexpr_regname (arch, (int) ul),
0502ed8c 3980 plongest (l));
9eae7c52
TT
3981 break;
3982
3983 case DW_OP_fbreg:
f664829e 3984 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3985 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3986 break;
3987
3988 case DW_OP_xderef_size:
3989 case DW_OP_deref_size:
3990 case DW_OP_pick:
3991 fprintf_filtered (stream, " %d", *data);
3992 ++data;
3993 break;
3994
3995 case DW_OP_plus_uconst:
f664829e 3996 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3997 fprintf_filtered (stream, " %s", pulongest (ul));
3998 break;
3999
4000 case DW_OP_skip:
4001 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4002 data += 2;
4003 fprintf_filtered (stream, " to %ld",
4004 (long) (data + l - start));
4005 break;
4006
4007 case DW_OP_bra:
4008 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4009 data += 2;
4010 fprintf_filtered (stream, " %ld",
4011 (long) (data + l - start));
4012 break;
4013
4014 case DW_OP_call2:
4015 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4016 data += 2;
4017 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4018 break;
4019
4020 case DW_OP_call4:
4021 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4022 data += 4;
4023 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4024 break;
4025
4026 case DW_OP_call_ref:
4027 ul = extract_unsigned_integer (data, offset_size,
4028 gdbarch_byte_order (arch));
4029 data += offset_size;
4030 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4031 break;
4032
4033 case DW_OP_piece:
f664829e 4034 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4035 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4036 break;
4037
4038 case DW_OP_bit_piece:
4039 {
9fccedf7 4040 uint64_t offset;
9eae7c52 4041
f664829e
DE
4042 data = safe_read_uleb128 (data, end, &ul);
4043 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4044 fprintf_filtered (stream, " size %s offset %s (bits)",
4045 pulongest (ul), pulongest (offset));
4046 }
4047 break;
8cf6f0b1 4048
216f72a1 4049 case DW_OP_implicit_pointer:
8cf6f0b1
TT
4050 case DW_OP_GNU_implicit_pointer:
4051 {
4052 ul = extract_unsigned_integer (data, offset_size,
4053 gdbarch_byte_order (arch));
4054 data += offset_size;
4055
f664829e 4056 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4057
4058 fprintf_filtered (stream, " DIE %s offset %s",
4059 phex_nz (ul, offset_size),
4060 plongest (l));
4061 }
4062 break;
5e44ecb3 4063
216f72a1 4064 case DW_OP_deref_type:
5e44ecb3
TT
4065 case DW_OP_GNU_deref_type:
4066 {
b926417a 4067 int deref_addr_size = *data++;
5e44ecb3
TT
4068 struct type *type;
4069
f664829e 4070 data = safe_read_uleb128 (data, end, &ul);
9c541725 4071 cu_offset offset = (cu_offset) ul;
5e44ecb3
TT
4072 type = dwarf2_get_die_type (offset, per_cu);
4073 fprintf_filtered (stream, "<");
4074 type_print (type, "", stream, -1);
9c541725
PA
4075 fprintf_filtered (stream, " [0x%s]> %d",
4076 phex_nz (to_underlying (offset), 0),
b926417a 4077 deref_addr_size);
5e44ecb3
TT
4078 }
4079 break;
4080
216f72a1 4081 case DW_OP_const_type:
5e44ecb3
TT
4082 case DW_OP_GNU_const_type:
4083 {
5e44ecb3
TT
4084 struct type *type;
4085
f664829e 4086 data = safe_read_uleb128 (data, end, &ul);
9c541725 4087 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4088 type = dwarf2_get_die_type (type_die, per_cu);
4089 fprintf_filtered (stream, "<");
4090 type_print (type, "", stream, -1);
9c541725
PA
4091 fprintf_filtered (stream, " [0x%s]>",
4092 phex_nz (to_underlying (type_die), 0));
d9e49b61
TT
4093
4094 int n = *data++;
4095 fprintf_filtered (stream, " %d byte block:", n);
4096 for (int i = 0; i < n; ++i)
4097 fprintf_filtered (stream, " %02x", data[i]);
4098 data += n;
5e44ecb3
TT
4099 }
4100 break;
4101
216f72a1 4102 case DW_OP_regval_type:
5e44ecb3
TT
4103 case DW_OP_GNU_regval_type:
4104 {
9fccedf7 4105 uint64_t reg;
5e44ecb3
TT
4106 struct type *type;
4107
f664829e
DE
4108 data = safe_read_uleb128 (data, end, &reg);
4109 data = safe_read_uleb128 (data, end, &ul);
9c541725 4110 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4111
4112 type = dwarf2_get_die_type (type_die, per_cu);
4113 fprintf_filtered (stream, "<");
4114 type_print (type, "", stream, -1);
b64f50a1 4115 fprintf_filtered (stream, " [0x%s]> [$%s]",
9c541725 4116 phex_nz (to_underlying (type_die), 0),
5e44ecb3
TT
4117 locexpr_regname (arch, reg));
4118 }
4119 break;
4120
216f72a1 4121 case DW_OP_convert:
5e44ecb3 4122 case DW_OP_GNU_convert:
216f72a1 4123 case DW_OP_reinterpret:
5e44ecb3
TT
4124 case DW_OP_GNU_reinterpret:
4125 {
f664829e 4126 data = safe_read_uleb128 (data, end, &ul);
9c541725 4127 cu_offset type_die = (cu_offset) ul;
5e44ecb3 4128
9c541725 4129 if (to_underlying (type_die) == 0)
5e44ecb3
TT
4130 fprintf_filtered (stream, "<0>");
4131 else
4132 {
4133 struct type *type;
4134
4135 type = dwarf2_get_die_type (type_die, per_cu);
4136 fprintf_filtered (stream, "<");
4137 type_print (type, "", stream, -1);
9c541725
PA
4138 fprintf_filtered (stream, " [0x%s]>",
4139 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4140 }
4141 }
4142 break;
2bda9cc5 4143
216f72a1 4144 case DW_OP_entry_value:
2bda9cc5 4145 case DW_OP_GNU_entry_value:
f664829e 4146 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4147 fputc_filtered ('\n', stream);
4148 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4149 start, data, data + ul, indent + 2,
4150 all, per_cu);
4151 data += ul;
4152 continue;
49f6c839 4153
a24f71ab
JK
4154 case DW_OP_GNU_parameter_ref:
4155 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4156 data += 4;
4157 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4158 break;
4159
336d760d 4160 case DW_OP_addrx:
49f6c839
DE
4161 case DW_OP_GNU_addr_index:
4162 data = safe_read_uleb128 (data, end, &ul);
4163 ul = dwarf2_read_addr_index (per_cu, ul);
4164 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4165 break;
4166 case DW_OP_GNU_const_index:
4167 data = safe_read_uleb128 (data, end, &ul);
4168 ul = dwarf2_read_addr_index (per_cu, ul);
4169 fprintf_filtered (stream, " %s", pulongest (ul));
4170 break;
a6b786da
KB
4171
4172 case DW_OP_GNU_variable_value:
4173 ul = extract_unsigned_integer (data, offset_size,
4174 gdbarch_byte_order (arch));
4175 data += offset_size;
4176 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4177 break;
9eae7c52
TT
4178 }
4179
4180 fprintf_filtered (stream, "\n");
4181 }
c3228f12 4182
08922a10 4183 return data;
4c2df51b
DJ
4184}
4185
009b64fc
TT
4186static bool dwarf_always_disassemble;
4187
4188static void
4189show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
4190 struct cmd_list_element *c, const char *value)
4191{
4192 fprintf_filtered (file,
4193 _("Whether to always disassemble "
4194 "DWARF expressions is %s.\n"),
4195 value);
4196}
4197
08922a10
SS
4198/* Describe a single location, which may in turn consist of multiple
4199 pieces. */
a55cc764 4200
08922a10
SS
4201static void
4202locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4203 struct ui_file *stream,
56eb65bd 4204 const gdb_byte *data, size_t size,
9eae7c52 4205 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4206 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4207{
0d45f56e 4208 const gdb_byte *end = data + size;
9eae7c52 4209 int first_piece = 1, bad = 0;
08922a10 4210
08922a10
SS
4211 while (data < end)
4212 {
9eae7c52
TT
4213 const gdb_byte *here = data;
4214 int disassemble = 1;
4215
4216 if (first_piece)
4217 first_piece = 0;
4218 else
4219 fprintf_filtered (stream, _(", and "));
08922a10 4220
b4f54984 4221 if (!dwarf_always_disassemble)
9eae7c52 4222 {
3e43a32a 4223 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4224 addr, objfile, per_cu,
9eae7c52
TT
4225 data, end, addr_size);
4226 /* If we printed anything, or if we have an empty piece,
4227 then don't disassemble. */
4228 if (data != here
4229 || data[0] == DW_OP_piece
4230 || data[0] == DW_OP_bit_piece)
4231 disassemble = 0;
08922a10 4232 }
9eae7c52 4233 if (disassemble)
2bda9cc5
JK
4234 {
4235 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4236 data = disassemble_dwarf_expression (stream,
4237 get_objfile_arch (objfile),
4238 addr_size, offset_size, data,
4239 data, end, 0,
b4f54984 4240 dwarf_always_disassemble,
2bda9cc5
JK
4241 per_cu);
4242 }
9eae7c52
TT
4243
4244 if (data < end)
08922a10 4245 {
9eae7c52 4246 int empty = data == here;
08922a10 4247
9eae7c52
TT
4248 if (disassemble)
4249 fprintf_filtered (stream, " ");
4250 if (data[0] == DW_OP_piece)
4251 {
9fccedf7 4252 uint64_t bytes;
08922a10 4253
f664829e 4254 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4255
9eae7c52
TT
4256 if (empty)
4257 fprintf_filtered (stream, _("an empty %s-byte piece"),
4258 pulongest (bytes));
4259 else
4260 fprintf_filtered (stream, _(" [%s-byte piece]"),
4261 pulongest (bytes));
4262 }
4263 else if (data[0] == DW_OP_bit_piece)
4264 {
9fccedf7 4265 uint64_t bits, offset;
9eae7c52 4266
f664829e
DE
4267 data = safe_read_uleb128 (data + 1, end, &bits);
4268 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4269
4270 if (empty)
4271 fprintf_filtered (stream,
4272 _("an empty %s-bit piece"),
4273 pulongest (bits));
4274 else
4275 fprintf_filtered (stream,
4276 _(" [%s-bit piece, offset %s bits]"),
4277 pulongest (bits), pulongest (offset));
4278 }
4279 else
4280 {
4281 bad = 1;
4282 break;
4283 }
08922a10
SS
4284 }
4285 }
4286
4287 if (bad || data > end)
4288 error (_("Corrupted DWARF2 expression for \"%s\"."),
987012b8 4289 symbol->print_name ());
08922a10
SS
4290}
4291
4292/* Print a natural-language description of SYMBOL to STREAM. This
4293 version is for a symbol with a single location. */
a55cc764 4294
08922a10
SS
4295static void
4296locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4297 struct ui_file *stream)
4298{
9a3c8263
SM
4299 struct dwarf2_locexpr_baton *dlbaton
4300 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
09ba997f
TT
4301 struct objfile *objfile = dlbaton->per_cu->objfile ();
4302 unsigned int addr_size = dlbaton->per_cu->addr_size ();
4303 int offset_size = dlbaton->per_cu->offset_size ();
08922a10 4304
3e43a32a
MS
4305 locexpr_describe_location_1 (symbol, addr, stream,
4306 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4307 objfile, addr_size, offset_size,
4308 dlbaton->per_cu);
08922a10
SS
4309}
4310
4311/* Describe the location of SYMBOL as an agent value in VALUE, generating
4312 any necessary bytecode in AX. */
a55cc764 4313
0d53c4c4 4314static void
40f4af28
SM
4315locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4316 struct axs_value *value)
a55cc764 4317{
9a3c8263
SM
4318 struct dwarf2_locexpr_baton *dlbaton
4319 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
09ba997f 4320 unsigned int addr_size = dlbaton->per_cu->addr_size ();
a55cc764 4321
1d6edc3c 4322 if (dlbaton->size == 0)
cabe9ab6
PA
4323 value->optimized_out = 1;
4324 else
40f4af28
SM
4325 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4326 dlbaton->data + dlbaton->size, dlbaton->per_cu);
a55cc764
DJ
4327}
4328
bb2ec1b3
TT
4329/* symbol_computed_ops 'generate_c_location' method. */
4330
4331static void
d82b3862 4332locexpr_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4333 struct gdbarch *gdbarch,
4334 unsigned char *registers_used,
4335 CORE_ADDR pc, const char *result_name)
4336{
9a3c8263
SM
4337 struct dwarf2_locexpr_baton *dlbaton
4338 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
09ba997f 4339 unsigned int addr_size = dlbaton->per_cu->addr_size ();
bb2ec1b3
TT
4340
4341 if (dlbaton->size == 0)
987012b8 4342 error (_("symbol \"%s\" is optimized out"), sym->natural_name ());
bb2ec1b3
TT
4343
4344 compile_dwarf_expr_to_c (stream, result_name,
4345 sym, pc, gdbarch, registers_used, addr_size,
4346 dlbaton->data, dlbaton->data + dlbaton->size,
4347 dlbaton->per_cu);
4348}
4349
4c2df51b
DJ
4350/* The set of location functions used with the DWARF-2 expression
4351 evaluator. */
768a979c 4352const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4353 locexpr_read_variable,
e18b2753 4354 locexpr_read_variable_at_entry,
0b31a4bc 4355 locexpr_get_symbol_read_needs,
4c2df51b 4356 locexpr_describe_location,
f1e6e072 4357 0, /* location_has_loclist */
bb2ec1b3
TT
4358 locexpr_tracepoint_var_ref,
4359 locexpr_generate_c_location
4c2df51b 4360};
0d53c4c4
DJ
4361
4362
4363/* Wrapper functions for location lists. These generally find
4364 the appropriate location expression and call something above. */
4365
4366/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4367 evaluator to calculate the location. */
4368static struct value *
4369loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4370{
9a3c8263
SM
4371 struct dwarf2_loclist_baton *dlbaton
4372 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4373 struct value *val;
947bb88f 4374 const gdb_byte *data;
b6b08ebf 4375 size_t size;
8cf6f0b1 4376 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4377
8cf6f0b1 4378 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4379 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4380 dlbaton->per_cu);
0d53c4c4
DJ
4381
4382 return val;
4383}
4384
e18b2753
JK
4385/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4386 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4387 will be thrown.
4388
4389 Function always returns non-NULL value, it may be marked optimized out if
4390 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4391 if it cannot resolve the parameter for any reason. */
4392
4393static struct value *
4394loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4395{
9a3c8263
SM
4396 struct dwarf2_loclist_baton *dlbaton
4397 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4398 const gdb_byte *data;
4399 size_t size;
4400 CORE_ADDR pc;
4401
4402 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4403 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4404
4405 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4406 if (data == NULL)
4407 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4408
4409 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4410}
4411
0b31a4bc
TT
4412/* Implementation of get_symbol_read_needs from
4413 symbol_computed_ops. */
4414
4415static enum symbol_needs_kind
4416loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4417{
4418 /* If there's a location list, then assume we need to have a frame
4419 to choose the appropriate location expression. With tracking of
4420 global variables this is not necessarily true, but such tracking
4421 is disabled in GCC at the moment until we figure out how to
4422 represent it. */
4423
0b31a4bc 4424 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4425}
4426
08922a10
SS
4427/* Print a natural-language description of SYMBOL to STREAM. This
4428 version applies when there is a list of different locations, each
4429 with a specified address range. */
4430
4431static void
4432loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4433 struct ui_file *stream)
0d53c4c4 4434{
9a3c8263
SM
4435 struct dwarf2_loclist_baton *dlbaton
4436 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4437 const gdb_byte *loc_ptr, *buf_end;
09ba997f 4438 struct objfile *objfile = dlbaton->per_cu->objfile ();
08922a10
SS
4439 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4440 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
09ba997f
TT
4441 unsigned int addr_size = dlbaton->per_cu->addr_size ();
4442 int offset_size = dlbaton->per_cu->offset_size ();
d4a087c7 4443 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4444 /* Adjust base_address for relocatable objects. */
09ba997f 4445 CORE_ADDR base_offset = dlbaton->per_cu->text_offset ();
08922a10 4446 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4447 int done = 0;
08922a10
SS
4448
4449 loc_ptr = dlbaton->data;
4450 buf_end = dlbaton->data + dlbaton->size;
4451
9eae7c52 4452 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4453
4454 /* Iterate through locations until we run out. */
f664829e 4455 while (!done)
08922a10 4456 {
f664829e
DE
4457 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4458 int length;
4459 enum debug_loc_kind kind;
4460 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4461
85a9510c 4462 if (dlbaton->per_cu->version () < 5 && dlbaton->from_dwo)
f664829e
DE
4463 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4464 loc_ptr, buf_end, &new_ptr,
3771a44c 4465 &low, &high, byte_order);
85a9510c 4466 else if (dlbaton->per_cu->version () < 5)
f664829e
DE
4467 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4468 &low, &high,
4469 byte_order, addr_size,
4470 signed_addr_p);
85a9510c 4471 else
4472 kind = decode_debug_loclists_addresses (dlbaton->per_cu,
4473 loc_ptr, buf_end, &new_ptr,
4474 &low, &high, byte_order,
4475 addr_size, signed_addr_p);
f664829e
DE
4476 loc_ptr = new_ptr;
4477 switch (kind)
08922a10 4478 {
f664829e
DE
4479 case DEBUG_LOC_END_OF_LIST:
4480 done = 1;
4481 continue;
4482 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4483 base_address = high + base_offset;
9eae7c52 4484 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4485 paddress (gdbarch, base_address));
08922a10 4486 continue;
3771a44c
DE
4487 case DEBUG_LOC_START_END:
4488 case DEBUG_LOC_START_LENGTH:
85a9510c 4489 case DEBUG_LOC_OFFSET_PAIR:
f664829e
DE
4490 break;
4491 case DEBUG_LOC_BUFFER_OVERFLOW:
4492 case DEBUG_LOC_INVALID_ENTRY:
4493 error (_("Corrupted DWARF expression for symbol \"%s\"."),
987012b8 4494 symbol->print_name ());
f664829e
DE
4495 default:
4496 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4497 }
4498
08922a10
SS
4499 /* Otherwise, a location expression entry. */
4500 low += base_address;
4501 high += base_address;
4502
3e29f34a
MR
4503 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4504 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4505
85a9510c 4506 if (dlbaton->per_cu->version () < 5)
4507 {
4508 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4509 loc_ptr += 2;
4510 }
4511 else
4512 {
4513 unsigned int bytes_read;
4514 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
4515 loc_ptr += bytes_read;
4516 }
08922a10 4517
08922a10
SS
4518 /* (It would improve readability to print only the minimum
4519 necessary digits of the second number of the range.) */
9eae7c52 4520 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4521 paddress (gdbarch, low), paddress (gdbarch, high));
4522
4523 /* Now describe this particular location. */
4524 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4525 objfile, addr_size, offset_size,
4526 dlbaton->per_cu);
9eae7c52
TT
4527
4528 fprintf_filtered (stream, "\n");
08922a10
SS
4529
4530 loc_ptr += length;
4531 }
0d53c4c4
DJ
4532}
4533
4534/* Describe the location of SYMBOL as an agent value in VALUE, generating
4535 any necessary bytecode in AX. */
4536static void
40f4af28
SM
4537loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4538 struct axs_value *value)
0d53c4c4 4539{
9a3c8263
SM
4540 struct dwarf2_loclist_baton *dlbaton
4541 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4542 const gdb_byte *data;
b6b08ebf 4543 size_t size;
09ba997f 4544 unsigned int addr_size = dlbaton->per_cu->addr_size ();
0d53c4c4 4545
8cf6f0b1 4546 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4547 if (size == 0)
cabe9ab6
PA
4548 value->optimized_out = 1;
4549 else
40f4af28 4550 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
9f6f94ff 4551 dlbaton->per_cu);
0d53c4c4
DJ
4552}
4553
bb2ec1b3
TT
4554/* symbol_computed_ops 'generate_c_location' method. */
4555
4556static void
d82b3862 4557loclist_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4558 struct gdbarch *gdbarch,
4559 unsigned char *registers_used,
4560 CORE_ADDR pc, const char *result_name)
4561{
9a3c8263
SM
4562 struct dwarf2_loclist_baton *dlbaton
4563 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
09ba997f 4564 unsigned int addr_size = dlbaton->per_cu->addr_size ();
bb2ec1b3
TT
4565 const gdb_byte *data;
4566 size_t size;
4567
4568 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4569 if (size == 0)
987012b8 4570 error (_("symbol \"%s\" is optimized out"), sym->natural_name ());
bb2ec1b3
TT
4571
4572 compile_dwarf_expr_to_c (stream, result_name,
4573 sym, pc, gdbarch, registers_used, addr_size,
4574 data, data + size,
4575 dlbaton->per_cu);
4576}
4577
0d53c4c4
DJ
4578/* The set of location functions used with the DWARF-2 expression
4579 evaluator and location lists. */
768a979c 4580const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4581 loclist_read_variable,
e18b2753 4582 loclist_read_variable_at_entry,
0b31a4bc 4583 loclist_symbol_needs,
0d53c4c4 4584 loclist_describe_location,
f1e6e072 4585 1, /* location_has_loclist */
bb2ec1b3
TT
4586 loclist_tracepoint_var_ref,
4587 loclist_generate_c_location
0d53c4c4 4588};
8e3b41a9 4589
6c265988 4590void _initialize_dwarf2loc ();
8e3b41a9 4591void
6c265988 4592_initialize_dwarf2loc ()
8e3b41a9 4593{
ccce17b0
YQ
4594 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4595 &entry_values_debug,
4596 _("Set entry values and tail call frames "
4597 "debugging."),
4598 _("Show entry values and tail call frames "
4599 "debugging."),
4600 _("When non-zero, the process of determining "
4601 "parameter values from function entry point "
4602 "and tail call frames will be printed."),
4603 NULL,
4604 show_entry_values_debug,
4605 &setdebuglist, &showdebuglist);
009b64fc
TT
4606
4607 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
4608 &dwarf_always_disassemble, _("\
4609Set whether `info address' always disassembles DWARF expressions."), _("\
4610Show whether `info address' always disassembles DWARF expressions."), _("\
4611When enabled, DWARF expressions are always printed in an assembly-like\n\
4612syntax. When disabled, expressions will be printed in a more\n\
4613conversational style, when possible."),
4614 NULL,
4615 show_dwarf_always_disassemble,
4616 &set_dwarf_cmdlist,
4617 &show_dwarf_cmdlist);
8e3b41a9 4618}
This page took 1.505191 seconds and 4 git commands to generate.