Add dwarf2_per_objfile parameter to dwarf2_read_addr_index
[deliverable/binutils-gdb.git] / gdb / dwarf2 / loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
b811d2c2 3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
4de283e4
TT
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
d55e5aa6 29#include "ax.h"
4de283e4
TT
30#include "ax-gdb.h"
31#include "regcache.h"
32#include "objfiles.h"
edb3359d 33#include "block.h"
4de283e4 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
82ca8957
TT
37#include "dwarf2/expr.h"
38#include "dwarf2/loc.h"
39#include "dwarf2/read.h"
40#include "dwarf2/frame.h"
f4382c45 41#include "dwarf2/leb.h"
4de283e4 42#include "compile/compile.h"
268a13a5 43#include "gdbsupport/selftest.h"
4de283e4
TT
44#include <algorithm>
45#include <vector>
46#include <unordered_set>
268a13a5
TT
47#include "gdbsupport/underlying.h"
48#include "gdbsupport/byte-vector.h"
4c2df51b 49
1632a688
JK
50static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
56eb65bd
SP
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
8cf6f0b1 57
192ca6d8
TT
58static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
a6b786da
KB
64static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
e4a62c65 68 struct type *type, bool resolve_abstract_p = false);
a6b786da 69
f664829e
DE
70/* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75enum debug_loc_kind
76{
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
3771a44c
DE
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
f664829e 94
9fc3eaae 95 /* This is followed by two unsigned LEB128 operands. The values of these
96 operands are the starting and ending offsets, respectively, relative to
97 the applicable base address. */
98 DEBUG_LOC_OFFSET_PAIR = 4,
99
f664829e
DE
100 /* An internal value indicating there is insufficient data. */
101 DEBUG_LOC_BUFFER_OVERFLOW = -1,
102
103 /* An internal value indicating an invalid kind of entry was found. */
104 DEBUG_LOC_INVALID_ENTRY = -2
105};
106
b6807d98
TT
107/* Helper function which throws an error if a synthetic pointer is
108 invalid. */
109
110static void
111invalid_synthetic_pointer (void)
112{
113 error (_("access outside bounds of object "
114 "referenced via synthetic pointer"));
115}
116
f664829e
DE
117/* Decode the addresses in a non-dwo .debug_loc entry.
118 A pointer to the next byte to examine is returned in *NEW_PTR.
119 The encoded low,high addresses are return in *LOW,*HIGH.
120 The result indicates the kind of entry found. */
121
122static enum debug_loc_kind
123decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
124 const gdb_byte **new_ptr,
125 CORE_ADDR *low, CORE_ADDR *high,
126 enum bfd_endian byte_order,
127 unsigned int addr_size,
128 int signed_addr_p)
129{
130 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
131
132 if (buf_end - loc_ptr < 2 * addr_size)
133 return DEBUG_LOC_BUFFER_OVERFLOW;
134
135 if (signed_addr_p)
136 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
137 else
138 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
139 loc_ptr += addr_size;
140
141 if (signed_addr_p)
142 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
143 else
144 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
145 loc_ptr += addr_size;
146
147 *new_ptr = loc_ptr;
148
149 /* A base-address-selection entry. */
150 if ((*low & base_mask) == base_mask)
151 return DEBUG_LOC_BASE_ADDRESS;
152
153 /* An end-of-list entry. */
154 if (*low == 0 && *high == 0)
155 return DEBUG_LOC_END_OF_LIST;
156
3771a44c 157 return DEBUG_LOC_START_END;
f664829e
DE
158}
159
43988095
JK
160/* Decode the addresses in .debug_loclists entry.
161 A pointer to the next byte to examine is returned in *NEW_PTR.
162 The encoded low,high addresses are return in *LOW,*HIGH.
163 The result indicates the kind of entry found. */
164
165static enum debug_loc_kind
82ca3f51
SM
166decode_debug_loclists_addresses (dwarf2_per_cu_data *per_cu,
167 dwarf2_per_objfile *per_objfile,
43988095
JK
168 const gdb_byte *loc_ptr,
169 const gdb_byte *buf_end,
170 const gdb_byte **new_ptr,
171 CORE_ADDR *low, CORE_ADDR *high,
172 enum bfd_endian byte_order,
173 unsigned int addr_size,
174 int signed_addr_p)
175{
176 uint64_t u64;
177
178 if (loc_ptr == buf_end)
179 return DEBUG_LOC_BUFFER_OVERFLOW;
180
181 switch (*loc_ptr++)
182 {
3112ed97
NA
183 case DW_LLE_base_addressx:
184 *low = 0;
185 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
186 if (loc_ptr == NULL)
187 return DEBUG_LOC_BUFFER_OVERFLOW;
82ca3f51 188 *high = dwarf2_read_addr_index (per_cu, per_objfile, u64);
3112ed97
NA
189 *new_ptr = loc_ptr;
190 return DEBUG_LOC_BASE_ADDRESS;
191 case DW_LLE_startx_length:
192 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
193 if (loc_ptr == NULL)
194 return DEBUG_LOC_BUFFER_OVERFLOW;
82ca3f51 195 *low = dwarf2_read_addr_index (per_cu, per_objfile, u64);
3112ed97
NA
196 *high = *low;
197 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
198 if (loc_ptr == NULL)
199 return DEBUG_LOC_BUFFER_OVERFLOW;
200 *high += u64;
201 *new_ptr = loc_ptr;
202 return DEBUG_LOC_START_LENGTH;
203 case DW_LLE_start_length:
204 if (buf_end - loc_ptr < addr_size)
205 return DEBUG_LOC_BUFFER_OVERFLOW;
206 if (signed_addr_p)
207 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
208 else
209 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
210 loc_ptr += addr_size;
211 *high = *low;
212 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
213 if (loc_ptr == NULL)
214 return DEBUG_LOC_BUFFER_OVERFLOW;
215 *high += u64;
216 *new_ptr = loc_ptr;
217 return DEBUG_LOC_START_LENGTH;
43988095
JK
218 case DW_LLE_end_of_list:
219 *new_ptr = loc_ptr;
220 return DEBUG_LOC_END_OF_LIST;
221 case DW_LLE_base_address:
222 if (loc_ptr + addr_size > buf_end)
223 return DEBUG_LOC_BUFFER_OVERFLOW;
224 if (signed_addr_p)
225 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
226 else
227 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
228 loc_ptr += addr_size;
229 *new_ptr = loc_ptr;
230 return DEBUG_LOC_BASE_ADDRESS;
231 case DW_LLE_offset_pair:
232 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
233 if (loc_ptr == NULL)
234 return DEBUG_LOC_BUFFER_OVERFLOW;
235 *low = u64;
236 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
237 if (loc_ptr == NULL)
238 return DEBUG_LOC_BUFFER_OVERFLOW;
239 *high = u64;
240 *new_ptr = loc_ptr;
9fc3eaae 241 return DEBUG_LOC_OFFSET_PAIR;
3112ed97
NA
242 /* Following cases are not supported yet. */
243 case DW_LLE_startx_endx:
244 case DW_LLE_start_end:
245 case DW_LLE_default_location:
43988095
JK
246 default:
247 return DEBUG_LOC_INVALID_ENTRY;
248 }
249}
250
f664829e
DE
251/* Decode the addresses in .debug_loc.dwo entry.
252 A pointer to the next byte to examine is returned in *NEW_PTR.
253 The encoded low,high addresses are return in *LOW,*HIGH.
254 The result indicates the kind of entry found. */
255
256static enum debug_loc_kind
82ca3f51
SM
257decode_debug_loc_dwo_addresses (dwarf2_per_cu_data *per_cu,
258 dwarf2_per_objfile *per_objfile,
f664829e
DE
259 const gdb_byte *loc_ptr,
260 const gdb_byte *buf_end,
261 const gdb_byte **new_ptr,
3771a44c
DE
262 CORE_ADDR *low, CORE_ADDR *high,
263 enum bfd_endian byte_order)
f664829e 264{
9fccedf7 265 uint64_t low_index, high_index;
f664829e
DE
266
267 if (loc_ptr == buf_end)
268 return DEBUG_LOC_BUFFER_OVERFLOW;
269
270 switch (*loc_ptr++)
271 {
43988095 272 case DW_LLE_GNU_end_of_list_entry:
f664829e
DE
273 *new_ptr = loc_ptr;
274 return DEBUG_LOC_END_OF_LIST;
43988095 275 case DW_LLE_GNU_base_address_selection_entry:
f664829e
DE
276 *low = 0;
277 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
278 if (loc_ptr == NULL)
279 return DEBUG_LOC_BUFFER_OVERFLOW;
82ca3f51 280 *high = dwarf2_read_addr_index (per_cu, per_objfile, high_index);
f664829e
DE
281 *new_ptr = loc_ptr;
282 return DEBUG_LOC_BASE_ADDRESS;
43988095 283 case DW_LLE_GNU_start_end_entry:
f664829e
DE
284 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
285 if (loc_ptr == NULL)
286 return DEBUG_LOC_BUFFER_OVERFLOW;
82ca3f51 287 *low = dwarf2_read_addr_index (per_cu, per_objfile, low_index);
f664829e
DE
288 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
289 if (loc_ptr == NULL)
290 return DEBUG_LOC_BUFFER_OVERFLOW;
82ca3f51 291 *high = dwarf2_read_addr_index (per_cu, per_objfile, high_index);
f664829e 292 *new_ptr = loc_ptr;
3771a44c 293 return DEBUG_LOC_START_END;
43988095 294 case DW_LLE_GNU_start_length_entry:
3771a44c
DE
295 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
296 if (loc_ptr == NULL)
297 return DEBUG_LOC_BUFFER_OVERFLOW;
82ca3f51 298 *low = dwarf2_read_addr_index (per_cu, per_objfile, low_index);
3771a44c
DE
299 if (loc_ptr + 4 > buf_end)
300 return DEBUG_LOC_BUFFER_OVERFLOW;
301 *high = *low;
302 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
303 *new_ptr = loc_ptr + 4;
304 return DEBUG_LOC_START_LENGTH;
f664829e
DE
305 default:
306 return DEBUG_LOC_INVALID_ENTRY;
307 }
308}
309
8cf6f0b1 310/* A function for dealing with location lists. Given a
0d53c4c4
DJ
311 symbol baton (BATON) and a pc value (PC), find the appropriate
312 location expression, set *LOCEXPR_LENGTH, and return a pointer
313 to the beginning of the expression. Returns NULL on failure.
314
315 For now, only return the first matching location expression; there
316 can be more than one in the list. */
317
8cf6f0b1
TT
318const gdb_byte *
319dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
320 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 321{
a50264ba
TT
322 dwarf2_per_objfile *per_objfile = baton->per_objfile;
323 struct objfile *objfile = per_objfile->objfile;
08feed99 324 struct gdbarch *gdbarch = objfile->arch ();
e17a4113 325 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
09ba997f 326 unsigned int addr_size = baton->per_cu->addr_size ();
d4a087c7 327 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 328 /* Adjust base_address for relocatable objects. */
4b167ea1 329 CORE_ADDR base_offset = baton->per_objfile->objfile->text_section_offset ();
8edfa926 330 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 331 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
332
333 loc_ptr = baton->data;
334 buf_end = baton->data + baton->size;
335
336 while (1)
337 {
f664829e
DE
338 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
339 int length;
340 enum debug_loc_kind kind;
341 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
342
9fc3eaae 343 if (baton->per_cu->version () < 5 && baton->from_dwo)
f664829e 344 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
82ca3f51 345 baton->per_objfile,
f664829e 346 loc_ptr, buf_end, &new_ptr,
3771a44c 347 &low, &high, byte_order);
09ba997f 348 else if (baton->per_cu->version () < 5)
f664829e
DE
349 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
350 &low, &high,
351 byte_order, addr_size,
352 signed_addr_p);
43988095
JK
353 else
354 kind = decode_debug_loclists_addresses (baton->per_cu,
82ca3f51 355 baton->per_objfile,
43988095
JK
356 loc_ptr, buf_end, &new_ptr,
357 &low, &high, byte_order,
358 addr_size, signed_addr_p);
359
f664829e
DE
360 loc_ptr = new_ptr;
361 switch (kind)
1d6edc3c 362 {
f664829e 363 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
364 *locexpr_length = 0;
365 return NULL;
f664829e
DE
366 case DEBUG_LOC_BASE_ADDRESS:
367 base_address = high + base_offset;
368 continue;
3771a44c
DE
369 case DEBUG_LOC_START_END:
370 case DEBUG_LOC_START_LENGTH:
9fc3eaae 371 case DEBUG_LOC_OFFSET_PAIR:
f664829e
DE
372 break;
373 case DEBUG_LOC_BUFFER_OVERFLOW:
374 case DEBUG_LOC_INVALID_ENTRY:
375 error (_("dwarf2_find_location_expression: "
376 "Corrupted DWARF expression."));
377 default:
378 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 379 }
b5758fe4 380
bed911e5 381 /* Otherwise, a location expression entry.
8ddd5a6c 382 If the entry is from a DWO, don't add base address: the entry is from
9fc3eaae 383 .debug_addr which already has the DWARF "base address". We still add
384 base_offset in case we're debugging a PIE executable. However, if the
385 entry is DW_LLE_offset_pair from a DWO, add the base address as the
386 operands are offsets relative to the applicable base address. */
387 if (baton->from_dwo && kind != DEBUG_LOC_OFFSET_PAIR)
8ddd5a6c
DE
388 {
389 low += base_offset;
390 high += base_offset;
391 }
392 else
bed911e5
DE
393 {
394 low += base_address;
395 high += base_address;
396 }
0d53c4c4 397
09ba997f 398 if (baton->per_cu->version () < 5)
43988095
JK
399 {
400 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
401 loc_ptr += 2;
402 }
403 else
404 {
405 unsigned int bytes_read;
406
407 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
408 loc_ptr += bytes_read;
409 }
0d53c4c4 410
e18b2753
JK
411 if (low == high && pc == low)
412 {
413 /* This is entry PC record present only at entry point
414 of a function. Verify it is really the function entry point. */
415
3977b71f 416 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
417 struct symbol *pc_func = NULL;
418
419 if (pc_block)
420 pc_func = block_linkage_function (pc_block);
421
2b1ffcfd 422 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
e18b2753
JK
423 {
424 *locexpr_length = length;
425 return loc_ptr;
426 }
427 }
428
0d53c4c4
DJ
429 if (pc >= low && pc < high)
430 {
431 *locexpr_length = length;
432 return loc_ptr;
433 }
434
435 loc_ptr += length;
436 }
437}
438
f1e6e072
TT
439/* Implement find_frame_base_location method for LOC_BLOCK functions using
440 DWARF expression for its DW_AT_frame_base. */
441
442static void
443locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
444 const gdb_byte **start, size_t *length)
445{
9a3c8263
SM
446 struct dwarf2_locexpr_baton *symbaton
447 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
448
449 *length = symbaton->size;
450 *start = symbaton->data;
451}
452
7d1c9c9b
JB
453/* Implement the struct symbol_block_ops::get_frame_base method for
454 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
455
456static CORE_ADDR
7d1c9c9b 457locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
458{
459 struct gdbarch *gdbarch;
460 struct type *type;
461 struct dwarf2_locexpr_baton *dlbaton;
462 const gdb_byte *start;
463 size_t length;
464 struct value *result;
465
466 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
467 Thus, it's supposed to provide the find_frame_base_location method as
468 well. */
469 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
470
471 gdbarch = get_frame_arch (frame);
472 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 473 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
474
475 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
476 (framefunc, get_frame_pc (frame), &start, &length);
477 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
478 dlbaton->per_cu);
479
480 /* The DW_AT_frame_base attribute contains a location description which
481 computes the base address itself. However, the call to
482 dwarf2_evaluate_loc_desc returns a value representing a variable at
483 that address. The frame base address is thus this variable's
484 address. */
485 return value_address (result);
486}
487
f1e6e072
TT
488/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
489 function uses DWARF expression for its DW_AT_frame_base. */
490
491const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
492{
63e43d3a 493 locexpr_find_frame_base_location,
7d1c9c9b 494 locexpr_get_frame_base
f1e6e072
TT
495};
496
497/* Implement find_frame_base_location method for LOC_BLOCK functions using
498 DWARF location list for its DW_AT_frame_base. */
499
500static void
501loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
502 const gdb_byte **start, size_t *length)
503{
9a3c8263
SM
504 struct dwarf2_loclist_baton *symbaton
505 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
506
507 *start = dwarf2_find_location_expression (symbaton, length, pc);
508}
509
7d1c9c9b
JB
510/* Implement the struct symbol_block_ops::get_frame_base method for
511 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
512
513static CORE_ADDR
514loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
515{
516 struct gdbarch *gdbarch;
517 struct type *type;
518 struct dwarf2_loclist_baton *dlbaton;
519 const gdb_byte *start;
520 size_t length;
521 struct value *result;
522
523 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
524 Thus, it's supposed to provide the find_frame_base_location method as
525 well. */
526 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
527
528 gdbarch = get_frame_arch (frame);
529 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 530 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
531
532 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
533 (framefunc, get_frame_pc (frame), &start, &length);
534 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
535 dlbaton->per_cu);
536
537 /* The DW_AT_frame_base attribute contains a location description which
538 computes the base address itself. However, the call to
539 dwarf2_evaluate_loc_desc returns a value representing a variable at
540 that address. The frame base address is thus this variable's
541 address. */
542 return value_address (result);
543}
544
f1e6e072
TT
545/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
546 function uses DWARF location list for its DW_AT_frame_base. */
547
548const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
549{
63e43d3a 550 loclist_find_frame_base_location,
7d1c9c9b 551 loclist_get_frame_base
f1e6e072
TT
552};
553
af945b75
TT
554/* See dwarf2loc.h. */
555
556void
557func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
558 const gdb_byte **start, size_t *length)
0936ad1d 559{
f1e6e072 560 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 561 {
f1e6e072 562 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 563
f1e6e072 564 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
565 }
566 else
f1e6e072 567 *length = 0;
0d53c4c4 568
1d6edc3c 569 if (*length == 0)
8a3fe4f8 570 error (_("Could not find the frame base for \"%s\"."),
987012b8 571 framefunc->natural_name ());
4c2df51b
DJ
572}
573
4c2df51b 574static CORE_ADDR
192ca6d8 575get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 576{
192ca6d8 577 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 578
192ca6d8 579 return ctx->get_frame_pc ();
4c2df51b
DJ
580}
581
5c631832 582static void
b64f50a1 583per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 584 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
585{
586 struct dwarf2_locexpr_baton block;
587
192ca6d8
TT
588 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
589 get_frame_pc_for_per_cu_dwarf_call,
590 ctx);
5c631832
JK
591
592 /* DW_OP_call_ref is currently not supported. */
593 gdb_assert (block.per_cu == per_cu);
594
595d2e30 595 ctx->eval (block.data, block.size);
5c631832
JK
596}
597
a6b786da
KB
598/* Given context CTX, section offset SECT_OFF, and compilation unit
599 data PER_CU, execute the "variable value" operation on the DIE
600 found at SECT_OFF. */
601
602static struct value *
603sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
604 struct dwarf2_per_cu_data *per_cu)
605{
606 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
607
608 if (die_type == NULL)
609 error (_("Bad DW_OP_GNU_variable_value DIE."));
610
611 /* Note: Things still work when the following test is removed. This
612 test and error is here to conform to the proposed specification. */
78134374
SM
613 if (die_type->code () != TYPE_CODE_INT
614 && die_type->code () != TYPE_CODE_PTR)
a6b786da
KB
615 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
616
617 struct type *type = lookup_pointer_type (die_type);
618 struct frame_info *frame = get_selected_frame (_("No frame selected."));
e4a62c65 619 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
a6b786da
KB
620}
621
192ca6d8 622class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 623{
89b07335
SM
624public:
625 dwarf_evaluate_loc_desc (dwarf2_per_objfile *per_objfile)
626 : dwarf_expr_context (per_objfile)
627 {}
5c631832 628
192ca6d8
TT
629 struct frame_info *frame;
630 struct dwarf2_per_cu_data *per_cu;
631 CORE_ADDR obj_address;
5c631832 632
192ca6d8
TT
633 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
634 the frame in BATON. */
8a9b8146 635
632e107b 636 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
637 {
638 return dwarf2_frame_cfa (frame);
639 }
8a9b8146 640
192ca6d8
TT
641 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
642 the frame in BATON. */
643
632e107b 644 CORE_ADDR get_frame_pc () override
192ca6d8
TT
645 {
646 return get_frame_address_in_block (frame);
647 }
648
649 /* Using the objfile specified in BATON, find the address for the
650 current thread's thread-local storage with offset OFFSET. */
632e107b 651 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8 652 {
09ba997f 653 struct objfile *objfile = per_cu->objfile ();
192ca6d8
TT
654
655 return target_translate_tls_address (objfile, offset);
656 }
657
658 /* Helper interface of per_cu_dwarf_call for
659 dwarf2_evaluate_loc_desc. */
660
632e107b 661 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
662 {
663 per_cu_dwarf_call (this, die_offset, per_cu);
664 }
665
a6b786da
KB
666 /* Helper interface of sect_variable_value for
667 dwarf2_evaluate_loc_desc. */
668
669 struct value *dwarf_variable_value (sect_offset sect_off) override
670 {
671 return sect_variable_value (this, sect_off, per_cu);
672 }
673
632e107b 674 struct type *get_base_type (cu_offset die_offset, int size) override
192ca6d8 675 {
7d5697f9
TT
676 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
677 if (result == NULL)
216f72a1 678 error (_("Could not find type for DW_OP_const_type"));
7d5697f9 679 if (size != 0 && TYPE_LENGTH (result) != size)
216f72a1 680 error (_("DW_OP_const_type has different sizes for type and data"));
7d5697f9 681 return result;
192ca6d8
TT
682 }
683
684 /* Callback function for dwarf2_evaluate_loc_desc.
336d760d 685 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
192ca6d8 686
632e107b 687 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8 688 {
82ca3f51 689 return dwarf2_read_addr_index (per_cu, per_objfile, index);
192ca6d8
TT
690 }
691
692 /* Callback function for get_object_address. Return the address of the VLA
693 object. */
694
632e107b 695 CORE_ADDR get_object_address () override
192ca6d8
TT
696 {
697 if (obj_address == 0)
698 error (_("Location address is not set."));
699 return obj_address;
700 }
701
702 /* Execute DWARF block of call_site_parameter which matches KIND and
703 KIND_U. Choose DEREF_SIZE value of that parameter. Search
704 caller of this objects's frame.
705
706 The caller can be from a different CU - per_cu_dwarf_call
707 implementation can be more simple as it does not support cross-CU
708 DWARF executions. */
709
710 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
711 union call_site_parameter_u kind_u,
632e107b 712 int deref_size) override
192ca6d8
TT
713 {
714 struct frame_info *caller_frame;
715 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
716 struct call_site_parameter *parameter;
717 const gdb_byte *data_src;
718 size_t size;
719
720 caller_frame = get_prev_frame (frame);
721
722 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
723 &caller_per_cu);
724 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
725 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
726
727 /* DEREF_SIZE size is not verified here. */
728 if (data_src == NULL)
729 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 730 _("Cannot resolve DW_AT_call_data_value"));
192ca6d8 731
7d5697f9
TT
732 scoped_restore save_frame = make_scoped_restore (&this->frame,
733 caller_frame);
734 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
735 caller_per_cu);
736 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
737 (CORE_ADDR) 0);
192ca6d8
TT
738
739 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
08feed99 740 this->gdbarch = per_cu->objfile ()->arch ();
192ca6d8 741 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
09ba997f 742 this->addr_size = per_cu->addr_size ();
192ca6d8
TT
743
744 this->eval (data_src, size);
745 }
746
747 /* Using the frame specified in BATON, find the location expression
748 describing the frame base. Return a pointer to it in START and
749 its length in LENGTH. */
632e107b 750 void get_frame_base (const gdb_byte **start, size_t * length) override
192ca6d8
TT
751 {
752 /* FIXME: cagney/2003-03-26: This code should be using
753 get_frame_base_address(), and then implement a dwarf2 specific
754 this_base method. */
755 struct symbol *framefunc;
756 const struct block *bl = get_frame_block (frame, NULL);
757
758 if (bl == NULL)
759 error (_("frame address is not available."));
760
761 /* Use block_linkage_function, which returns a real (not inlined)
762 function, instead of get_frame_function, which may return an
763 inlined function. */
764 framefunc = block_linkage_function (bl);
765
766 /* If we found a frame-relative symbol then it was certainly within
767 some function associated with a frame. If we can't find the frame,
768 something has gone wrong. */
769 gdb_assert (framefunc != NULL);
770
771 func_get_frame_base_dwarf_block (framefunc,
772 get_frame_address_in_block (frame),
773 start, length);
774 }
775
776 /* Read memory at ADDR (length LEN) into BUF. */
777
632e107b 778 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
779 {
780 read_memory (addr, buf, len);
781 }
782
783 /* Using the frame specified in BATON, return the value of register
784 REGNUM, treated as a pointer. */
632e107b 785 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
192ca6d8
TT
786 {
787 struct gdbarch *gdbarch = get_frame_arch (frame);
788 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
789
790 return address_from_register (regnum, frame);
791 }
792
793 /* Implement "get_reg_value" callback. */
794
632e107b 795 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
192ca6d8
TT
796 {
797 struct gdbarch *gdbarch = get_frame_arch (frame);
798 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
799
800 return value_from_register (type, regnum, frame);
801 }
802};
8a9b8146 803
8e3b41a9
JK
804/* See dwarf2loc.h. */
805
ccce17b0 806unsigned int entry_values_debug = 0;
8e3b41a9
JK
807
808/* Helper to set entry_values_debug. */
809
810static void
811show_entry_values_debug (struct ui_file *file, int from_tty,
812 struct cmd_list_element *c, const char *value)
813{
814 fprintf_filtered (file,
815 _("Entry values and tail call frames debugging is %s.\n"),
816 value);
817}
818
216f72a1 819/* Find DW_TAG_call_site's DW_AT_call_target address.
8e3b41a9
JK
820 CALLER_FRAME (for registers) can be NULL if it is not known. This function
821 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
822
823static CORE_ADDR
824call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
825 struct call_site *call_site,
826 struct frame_info *caller_frame)
827{
828 switch (FIELD_LOC_KIND (call_site->target))
829 {
830 case FIELD_LOC_KIND_DWARF_BLOCK:
831 {
832 struct dwarf2_locexpr_baton *dwarf_block;
833 struct value *val;
834 struct type *caller_core_addr_type;
835 struct gdbarch *caller_arch;
836
837 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
838 if (dwarf_block == NULL)
839 {
7cbd4a93 840 struct bound_minimal_symbol msym;
8e3b41a9
JK
841
842 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
843 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 844 _("DW_AT_call_target is not specified at %s in %s"),
8e3b41a9 845 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 846 (msym.minsym == NULL ? "???"
c9d95fa3 847 : msym.minsym->print_name ()));
8e3b41a9
JK
848
849 }
850 if (caller_frame == NULL)
851 {
7cbd4a93 852 struct bound_minimal_symbol msym;
8e3b41a9
JK
853
854 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
855 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 856 _("DW_AT_call_target DWARF block resolving "
8e3b41a9
JK
857 "requires known frame which is currently not "
858 "available at %s in %s"),
859 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 860 (msym.minsym == NULL ? "???"
c9d95fa3 861 : msym.minsym->print_name ()));
8e3b41a9
JK
862
863 }
864 caller_arch = get_frame_arch (caller_frame);
865 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
866 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
867 dwarf_block->data, dwarf_block->size,
868 dwarf_block->per_cu);
216f72a1 869 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
8e3b41a9
JK
870 if (VALUE_LVAL (val) == lval_memory)
871 return value_address (val);
872 else
873 return value_as_address (val);
874 }
875
876 case FIELD_LOC_KIND_PHYSNAME:
877 {
878 const char *physname;
3b7344d5 879 struct bound_minimal_symbol msym;
8e3b41a9
JK
880
881 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
882
883 /* Handle both the mangled and demangled PHYSNAME. */
884 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 885 if (msym.minsym == NULL)
8e3b41a9 886 {
3b7344d5 887 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
888 throw_error (NO_ENTRY_VALUE_ERROR,
889 _("Cannot find function \"%s\" for a call site target "
890 "at %s in %s"),
891 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5 892 (msym.minsym == NULL ? "???"
c9d95fa3 893 : msym.minsym->print_name ()));
8e3b41a9
JK
894
895 }
77e371c0 896 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
897 }
898
899 case FIELD_LOC_KIND_PHYSADDR:
900 return FIELD_STATIC_PHYSADDR (call_site->target);
901
902 default:
903 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
904 }
905}
906
111c6489
JK
907/* Convert function entry point exact address ADDR to the function which is
908 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
909 NO_ENTRY_VALUE_ERROR otherwise. */
910
911static struct symbol *
912func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
913{
914 struct symbol *sym = find_pc_function (addr);
915 struct type *type;
916
2b1ffcfd 917 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
111c6489 918 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 919 _("DW_TAG_call_site resolving failed to find function "
111c6489
JK
920 "name for address %s"),
921 paddress (gdbarch, addr));
922
923 type = SYMBOL_TYPE (sym);
78134374 924 gdb_assert (type->code () == TYPE_CODE_FUNC);
111c6489
JK
925 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
926
927 return sym;
928}
929
2d6c5dc2
JK
930/* Verify function with entry point exact address ADDR can never call itself
931 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
932 can call itself via tail calls.
933
934 If a funtion can tail call itself its entry value based parameters are
935 unreliable. There is no verification whether the value of some/all
936 parameters is unchanged through the self tail call, we expect if there is
937 a self tail call all the parameters can be modified. */
938
939static void
940func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
941{
2d6c5dc2
JK
942 CORE_ADDR addr;
943
2d6c5dc2
JK
944 /* The verification is completely unordered. Track here function addresses
945 which still need to be iterated. */
fc4007c9 946 std::vector<CORE_ADDR> todo;
2d6c5dc2 947
fc4007c9
TT
948 /* Track here CORE_ADDRs which were already visited. */
949 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 950
fc4007c9
TT
951 todo.push_back (verify_addr);
952 while (!todo.empty ())
2d6c5dc2
JK
953 {
954 struct symbol *func_sym;
955 struct call_site *call_site;
956
fc4007c9
TT
957 addr = todo.back ();
958 todo.pop_back ();
2d6c5dc2
JK
959
960 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
961
962 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
963 call_site; call_site = call_site->tail_call_next)
964 {
965 CORE_ADDR target_addr;
2d6c5dc2
JK
966
967 /* CALLER_FRAME with registers is not available for tail-call jumped
968 frames. */
969 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
970
971 if (target_addr == verify_addr)
972 {
7cbd4a93 973 struct bound_minimal_symbol msym;
2d6c5dc2
JK
974
975 msym = lookup_minimal_symbol_by_pc (verify_addr);
976 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 977 _("DW_OP_entry_value resolving has found "
2d6c5dc2
JK
978 "function \"%s\" at %s can call itself via tail "
979 "calls"),
7cbd4a93 980 (msym.minsym == NULL ? "???"
c9d95fa3 981 : msym.minsym->print_name ()),
2d6c5dc2
JK
982 paddress (gdbarch, verify_addr));
983 }
984
fc4007c9
TT
985 if (addr_hash.insert (target_addr).second)
986 todo.push_back (target_addr);
2d6c5dc2
JK
987 }
988 }
2d6c5dc2
JK
989}
990
111c6489
JK
991/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
992 ENTRY_VALUES_DEBUG. */
993
994static void
995tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
996{
997 CORE_ADDR addr = call_site->pc;
7cbd4a93 998 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
999
1000 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 1001 (msym.minsym == NULL ? "???"
c9d95fa3 1002 : msym.minsym->print_name ()));
111c6489
JK
1003
1004}
1005
111c6489
JK
1006/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
1007 only top callers and bottom callees which are present in both. GDBARCH is
1008 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
1009 no remaining possibilities to provide unambiguous non-trivial result.
1010 RESULTP should point to NULL on the first (initialization) call. Caller is
1011 responsible for xfree of any RESULTP data. */
1012
1013static void
fc4007c9
TT
1014chain_candidate (struct gdbarch *gdbarch,
1015 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
1016 std::vector<struct call_site *> *chain)
111c6489 1017{
fc4007c9 1018 long length = chain->size ();
111c6489
JK
1019 int callers, callees, idx;
1020
fc4007c9 1021 if (*resultp == NULL)
111c6489
JK
1022 {
1023 /* Create the initial chain containing all the passed PCs. */
1024
fc4007c9
TT
1025 struct call_site_chain *result
1026 = ((struct call_site_chain *)
1027 xmalloc (sizeof (*result)
1028 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
1029 result->length = length;
1030 result->callers = result->callees = length;
fc4007c9
TT
1031 if (!chain->empty ())
1032 memcpy (result->call_site, chain->data (),
19a1b230 1033 sizeof (*result->call_site) * length);
fc4007c9 1034 resultp->reset (result);
111c6489
JK
1035
1036 if (entry_values_debug)
1037 {
1038 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
1039 for (idx = 0; idx < length; idx++)
1040 tailcall_dump (gdbarch, result->call_site[idx]);
1041 fputc_unfiltered ('\n', gdb_stdlog);
1042 }
1043
1044 return;
1045 }
1046
1047 if (entry_values_debug)
1048 {
1049 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1050 for (idx = 0; idx < length; idx++)
fc4007c9 1051 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
1052 fputc_unfiltered ('\n', gdb_stdlog);
1053 }
1054
1055 /* Intersect callers. */
1056
fc4007c9 1057 callers = std::min ((long) (*resultp)->callers, length);
111c6489 1058 for (idx = 0; idx < callers; idx++)
fc4007c9 1059 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 1060 {
fc4007c9 1061 (*resultp)->callers = idx;
111c6489
JK
1062 break;
1063 }
1064
1065 /* Intersect callees. */
1066
fc4007c9 1067 callees = std::min ((long) (*resultp)->callees, length);
111c6489 1068 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
1069 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1070 != chain->at (length - 1 - idx))
111c6489 1071 {
fc4007c9 1072 (*resultp)->callees = idx;
111c6489
JK
1073 break;
1074 }
1075
1076 if (entry_values_debug)
1077 {
1078 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
1079 for (idx = 0; idx < (*resultp)->callers; idx++)
1080 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 1081 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
1082 for (idx = 0; idx < (*resultp)->callees; idx++)
1083 tailcall_dump (gdbarch,
1084 (*resultp)->call_site[(*resultp)->length
1085 - (*resultp)->callees + idx]);
111c6489
JK
1086 fputc_unfiltered ('\n', gdb_stdlog);
1087 }
1088
fc4007c9 1089 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
1090 {
1091 /* There are no common callers or callees. It could be also a direct
1092 call (which has length 0) with ambiguous possibility of an indirect
1093 call - CALLERS == CALLEES == 0 is valid during the first allocation
1094 but any subsequence processing of such entry means ambiguity. */
fc4007c9 1095 resultp->reset (NULL);
111c6489
JK
1096 return;
1097 }
1098
1099 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1100 PC again. In such case there must be two different code paths to reach
e0619de6 1101 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 1102 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
1103}
1104
1105/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1106 assumed frames between them use GDBARCH. Use depth first search so we can
1107 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
8084e579
TT
1108 would have needless GDB stack overhead. Any unreliability results
1109 in thrown NO_ENTRY_VALUE_ERROR. */
111c6489 1110
8084e579 1111static gdb::unique_xmalloc_ptr<call_site_chain>
111c6489
JK
1112call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1113 CORE_ADDR callee_pc)
1114{
c4be5165 1115 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 1116 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
1117 struct call_site *call_site;
1118
111c6489
JK
1119 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1120 call_site nor any possible call_site at CALLEE_PC's function is there.
1121 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1122 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 1123 std::vector<struct call_site *> chain;
111c6489
JK
1124
1125 /* We are not interested in the specific PC inside the callee function. */
1126 callee_pc = get_pc_function_start (callee_pc);
1127 if (callee_pc == 0)
1128 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1129 paddress (gdbarch, save_callee_pc));
111c6489 1130
fc4007c9
TT
1131 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1132 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
1133
1134 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1135 at the target's function. All the possible tail call sites in the
1136 target's function will get iterated as already pushed into CHAIN via their
1137 TAIL_CALL_NEXT. */
1138 call_site = call_site_for_pc (gdbarch, caller_pc);
1139
1140 while (call_site)
1141 {
1142 CORE_ADDR target_func_addr;
1143 struct call_site *target_call_site;
1144
1145 /* CALLER_FRAME with registers is not available for tail-call jumped
1146 frames. */
1147 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1148
1149 if (target_func_addr == callee_pc)
1150 {
fc4007c9 1151 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1152 if (retval == NULL)
1153 break;
1154
1155 /* There is no way to reach CALLEE_PC again as we would prevent
1156 entering it twice as being already marked in ADDR_HASH. */
1157 target_call_site = NULL;
1158 }
1159 else
1160 {
1161 struct symbol *target_func;
1162
1163 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1164 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1165 }
1166
1167 do
1168 {
1169 /* Attempt to visit TARGET_CALL_SITE. */
1170
1171 if (target_call_site)
1172 {
fc4007c9 1173 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1174 {
1175 /* Successfully entered TARGET_CALL_SITE. */
1176
fc4007c9 1177 chain.push_back (target_call_site);
111c6489
JK
1178 break;
1179 }
1180 }
1181
1182 /* Backtrack (without revisiting the originating call_site). Try the
1183 callers's sibling; if there isn't any try the callers's callers's
1184 sibling etc. */
1185
1186 target_call_site = NULL;
fc4007c9 1187 while (!chain.empty ())
111c6489 1188 {
fc4007c9
TT
1189 call_site = chain.back ();
1190 chain.pop_back ();
111c6489 1191
fc4007c9
TT
1192 size_t removed = addr_hash.erase (call_site->pc);
1193 gdb_assert (removed == 1);
111c6489
JK
1194
1195 target_call_site = call_site->tail_call_next;
1196 if (target_call_site)
1197 break;
1198 }
1199 }
1200 while (target_call_site);
1201
fc4007c9 1202 if (chain.empty ())
111c6489
JK
1203 call_site = NULL;
1204 else
fc4007c9 1205 call_site = chain.back ();
111c6489
JK
1206 }
1207
1208 if (retval == NULL)
1209 {
7cbd4a93 1210 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1211
1212 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1213 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1214 throw_error (NO_ENTRY_VALUE_ERROR,
1215 _("There are no unambiguously determinable intermediate "
1216 "callers or callees between caller function \"%s\" at %s "
1217 "and callee function \"%s\" at %s"),
7cbd4a93 1218 (msym_caller.minsym == NULL
c9d95fa3 1219 ? "???" : msym_caller.minsym->print_name ()),
111c6489 1220 paddress (gdbarch, caller_pc),
7cbd4a93 1221 (msym_callee.minsym == NULL
c9d95fa3 1222 ? "???" : msym_callee.minsym->print_name ()),
111c6489
JK
1223 paddress (gdbarch, callee_pc));
1224 }
1225
8084e579 1226 return retval;
111c6489
JK
1227}
1228
1229/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1230 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
8084e579 1231 constructed return NULL. */
111c6489 1232
8084e579 1233gdb::unique_xmalloc_ptr<call_site_chain>
111c6489
JK
1234call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1235 CORE_ADDR callee_pc)
1236{
8084e579 1237 gdb::unique_xmalloc_ptr<call_site_chain> retval;
111c6489 1238
a70b8144 1239 try
111c6489
JK
1240 {
1241 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1242 }
230d2906 1243 catch (const gdb_exception_error &e)
111c6489
JK
1244 {
1245 if (e.error == NO_ENTRY_VALUE_ERROR)
1246 {
1247 if (entry_values_debug)
1248 exception_print (gdb_stdout, e);
1249
1250 return NULL;
1251 }
1252 else
eedc3f4f 1253 throw;
111c6489 1254 }
492d29ea 1255
111c6489
JK
1256 return retval;
1257}
1258
24c5c679
JK
1259/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1260
1261static int
1262call_site_parameter_matches (struct call_site_parameter *parameter,
1263 enum call_site_parameter_kind kind,
1264 union call_site_parameter_u kind_u)
1265{
1266 if (kind == parameter->kind)
1267 switch (kind)
1268 {
1269 case CALL_SITE_PARAMETER_DWARF_REG:
1270 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1271 case CALL_SITE_PARAMETER_FB_OFFSET:
1272 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3 1273 case CALL_SITE_PARAMETER_PARAM_OFFSET:
9c541725 1274 return kind_u.param_cu_off == parameter->u.param_cu_off;
24c5c679
JK
1275 }
1276 return 0;
1277}
1278
1279/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1280 FRAME is for callee.
8e3b41a9
JK
1281
1282 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1283 otherwise. */
1284
1285static struct call_site_parameter *
24c5c679
JK
1286dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1287 enum call_site_parameter_kind kind,
1288 union call_site_parameter_u kind_u,
8e3b41a9
JK
1289 struct dwarf2_per_cu_data **per_cu_return)
1290{
9e3a7d65
JK
1291 CORE_ADDR func_addr, caller_pc;
1292 struct gdbarch *gdbarch;
1293 struct frame_info *caller_frame;
8e3b41a9
JK
1294 struct call_site *call_site;
1295 int iparams;
509f0fd9
JK
1296 /* Initialize it just to avoid a GCC false warning. */
1297 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1298 CORE_ADDR target_addr;
1299
9e3a7d65
JK
1300 while (get_frame_type (frame) == INLINE_FRAME)
1301 {
1302 frame = get_prev_frame (frame);
1303 gdb_assert (frame != NULL);
1304 }
1305
1306 func_addr = get_frame_func (frame);
1307 gdbarch = get_frame_arch (frame);
1308 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1309 if (gdbarch != frame_unwind_arch (frame))
1310 {
7cbd4a93
TT
1311 struct bound_minimal_symbol msym
1312 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1313 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1314
1315 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1316 _("DW_OP_entry_value resolving callee gdbarch %s "
8e3b41a9
JK
1317 "(of %s (%s)) does not match caller gdbarch %s"),
1318 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1319 paddress (gdbarch, func_addr),
7cbd4a93 1320 (msym.minsym == NULL ? "???"
c9d95fa3 1321 : msym.minsym->print_name ()),
8e3b41a9
JK
1322 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1323 }
1324
1325 if (caller_frame == NULL)
1326 {
7cbd4a93
TT
1327 struct bound_minimal_symbol msym
1328 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9 1329
216f72a1 1330 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
8e3b41a9
JK
1331 "requires caller of %s (%s)"),
1332 paddress (gdbarch, func_addr),
7cbd4a93 1333 (msym.minsym == NULL ? "???"
c9d95fa3 1334 : msym.minsym->print_name ()));
8e3b41a9
JK
1335 }
1336 caller_pc = get_frame_pc (caller_frame);
1337 call_site = call_site_for_pc (gdbarch, caller_pc);
1338
1339 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1340 if (target_addr != func_addr)
1341 {
1342 struct minimal_symbol *target_msym, *func_msym;
1343
7cbd4a93
TT
1344 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1345 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9 1346 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1347 _("DW_OP_entry_value resolving expects callee %s at %s "
8e3b41a9
JK
1348 "but the called frame is for %s at %s"),
1349 (target_msym == NULL ? "???"
c9d95fa3 1350 : target_msym->print_name ()),
8e3b41a9 1351 paddress (gdbarch, target_addr),
c9d95fa3 1352 func_msym == NULL ? "???" : func_msym->print_name (),
8e3b41a9
JK
1353 paddress (gdbarch, func_addr));
1354 }
1355
2d6c5dc2
JK
1356 /* No entry value based parameters would be reliable if this function can
1357 call itself via tail calls. */
1358 func_verify_no_selftailcall (gdbarch, func_addr);
1359
8e3b41a9
JK
1360 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1361 {
1362 parameter = &call_site->parameter[iparams];
24c5c679 1363 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1364 break;
1365 }
1366 if (iparams == call_site->parameter_count)
1367 {
7cbd4a93
TT
1368 struct minimal_symbol *msym
1369 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9 1370
216f72a1 1371 /* DW_TAG_call_site_parameter will be missing just if GCC could not
8e3b41a9
JK
1372 determine its value. */
1373 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
216f72a1 1374 "at DW_TAG_call_site %s at %s"),
8e3b41a9 1375 paddress (gdbarch, caller_pc),
c9d95fa3 1376 msym == NULL ? "???" : msym->print_name ());
8e3b41a9
JK
1377 }
1378
1379 *per_cu_return = call_site->per_cu;
1380 return parameter;
1381}
1382
a471c594 1383/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
216f72a1
JK
1384 the normal DW_AT_call_value block. Otherwise return the
1385 DW_AT_call_data_value (dereferenced) block.
e18b2753
JK
1386
1387 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1388 struct value.
1389
1390 Function always returns non-NULL, non-optimized out value. It throws
1391 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1392
1393static struct value *
1394dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1395 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1396 struct frame_info *caller_frame,
1397 struct dwarf2_per_cu_data *per_cu)
1398{
a471c594 1399 const gdb_byte *data_src;
e18b2753 1400 gdb_byte *data;
a471c594
JK
1401 size_t size;
1402
1403 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1404 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1405
1406 /* DEREF_SIZE size is not verified here. */
1407 if (data_src == NULL)
1408 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1409 _("Cannot resolve DW_AT_call_data_value"));
e18b2753 1410
216f72a1 1411 /* DW_AT_call_value is a DWARF expression, not a DWARF
e18b2753
JK
1412 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1413 DWARF block. */
224c3ddb 1414 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1415 memcpy (data, data_src, size);
1416 data[size] = DW_OP_stack_value;
e18b2753 1417
a471c594 1418 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1419}
1420
a471c594
JK
1421/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1422 the indirect method on it, that is use its stored target value, the sole
1423 purpose of entry_data_value_funcs.. */
1424
1425static struct value *
1426entry_data_value_coerce_ref (const struct value *value)
1427{
1428 struct type *checked_type = check_typedef (value_type (value));
1429 struct value *target_val;
1430
aa006118 1431 if (!TYPE_IS_REFERENCE (checked_type))
a471c594
JK
1432 return NULL;
1433
9a3c8263 1434 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1435 value_incref (target_val);
1436 return target_val;
1437}
1438
1439/* Implement copy_closure. */
1440
1441static void *
1442entry_data_value_copy_closure (const struct value *v)
1443{
9a3c8263 1444 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1445
1446 value_incref (target_val);
1447 return target_val;
1448}
1449
1450/* Implement free_closure. */
1451
1452static void
1453entry_data_value_free_closure (struct value *v)
1454{
9a3c8263 1455 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594 1456
22bc8444 1457 value_decref (target_val);
a471c594
JK
1458}
1459
1460/* Vector for methods for an entry value reference where the referenced value
1461 is stored in the caller. On the first dereference use
216f72a1 1462 DW_AT_call_data_value in the caller. */
a471c594
JK
1463
1464static const struct lval_funcs entry_data_value_funcs =
1465{
1466 NULL, /* read */
1467 NULL, /* write */
a471c594
JK
1468 NULL, /* indirect */
1469 entry_data_value_coerce_ref,
1470 NULL, /* check_synthetic_pointer */
1471 entry_data_value_copy_closure,
1472 entry_data_value_free_closure
1473};
1474
24c5c679
JK
1475/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1476 are used to match DW_AT_location at the caller's
216f72a1 1477 DW_TAG_call_site_parameter.
e18b2753
JK
1478
1479 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1480 cannot resolve the parameter for any reason. */
1481
1482static struct value *
1483value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1484 enum call_site_parameter_kind kind,
1485 union call_site_parameter_u kind_u)
e18b2753 1486{
a471c594
JK
1487 struct type *checked_type = check_typedef (type);
1488 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1489 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1490 struct value *outer_val, *target_val, *val;
e18b2753
JK
1491 struct call_site_parameter *parameter;
1492 struct dwarf2_per_cu_data *caller_per_cu;
1493
24c5c679 1494 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1495 &caller_per_cu);
1496
a471c594
JK
1497 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1498 type, caller_frame,
1499 caller_per_cu);
1500
216f72a1 1501 /* Check if DW_AT_call_data_value cannot be used. If it should be
a471c594
JK
1502 used and it is not available do not fall back to OUTER_VAL - dereferencing
1503 TYPE_CODE_REF with non-entry data value would give current value - not the
1504 entry value. */
1505
aa006118 1506 if (!TYPE_IS_REFERENCE (checked_type)
a471c594
JK
1507 || TYPE_TARGET_TYPE (checked_type) == NULL)
1508 return outer_val;
1509
1510 target_val = dwarf_entry_parameter_to_value (parameter,
1511 TYPE_LENGTH (target_type),
1512 target_type, caller_frame,
1513 caller_per_cu);
1514
a471c594 1515 val = allocate_computed_value (type, &entry_data_value_funcs,
895dafa6 1516 release_value (target_val).release ());
a471c594
JK
1517
1518 /* Copy the referencing pointer to the new computed value. */
1519 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1520 TYPE_LENGTH (checked_type));
1521 set_value_lazy (val, 0);
1522
1523 return val;
e18b2753
JK
1524}
1525
1526/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1527 SIZE are DWARF block used to match DW_AT_location at the caller's
216f72a1 1528 DW_TAG_call_site_parameter.
e18b2753
JK
1529
1530 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1531 cannot resolve the parameter for any reason. */
1532
1533static struct value *
1534value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1535 const gdb_byte *block, size_t block_len)
1536{
24c5c679 1537 union call_site_parameter_u kind_u;
e18b2753 1538
24c5c679
JK
1539 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1540 if (kind_u.dwarf_reg != -1)
1541 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1542 kind_u);
e18b2753 1543
24c5c679
JK
1544 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1545 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1546 kind_u);
e18b2753
JK
1547
1548 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1549 suppressed during normal operation. The expression can be arbitrary if
1550 there is no caller-callee entry value binding expected. */
1551 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1552 _("DWARF-2 expression error: DW_OP_entry_value is supported "
e18b2753
JK
1553 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1554}
1555
052b9502
NF
1556struct piece_closure
1557{
88bfdde4 1558 /* Reference count. */
1e467161 1559 int refc = 0;
88bfdde4 1560
a50264ba
TT
1561 /* The objfile from which this closure's expression came. */
1562 dwarf2_per_objfile *per_objfile = nullptr;
1563
8cf6f0b1 1564 /* The CU from which this closure's expression came. */
1e467161 1565 struct dwarf2_per_cu_data *per_cu = NULL;
052b9502 1566
1e467161
SM
1567 /* The pieces describing this variable. */
1568 std::vector<dwarf_expr_piece> pieces;
ee40d8d4
YQ
1569
1570 /* Frame ID of frame to which a register value is relative, used
1571 only by DWARF_VALUE_REGISTER. */
1572 struct frame_id frame_id;
052b9502
NF
1573};
1574
1575/* Allocate a closure for a value formed from separately-described
1576 PIECES. */
1577
1578static struct piece_closure *
8cf6f0b1 1579allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1e467161 1580 std::vector<dwarf_expr_piece> &&pieces,
ddd7882a 1581 struct frame_info *frame)
052b9502 1582{
1e467161 1583 struct piece_closure *c = new piece_closure;
052b9502 1584
88bfdde4 1585 c->refc = 1;
a50264ba
TT
1586 /* We must capture this here due to sharing of DWARF state. */
1587 c->per_objfile = per_cu->dwarf2_per_objfile;
8cf6f0b1 1588 c->per_cu = per_cu;
1e467161 1589 c->pieces = std::move (pieces);
ee40d8d4
YQ
1590 if (frame == NULL)
1591 c->frame_id = null_frame_id;
1592 else
1593 c->frame_id = get_frame_id (frame);
052b9502 1594
1e467161
SM
1595 for (dwarf_expr_piece &piece : c->pieces)
1596 if (piece.location == DWARF_VALUE_STACK)
1597 value_incref (piece.v.value);
052b9502
NF
1598
1599 return c;
1600}
1601
03c8af18
AA
1602/* Return the number of bytes overlapping a contiguous chunk of N_BITS
1603 bits whose first bit is located at bit offset START. */
1604
1605static size_t
1606bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1607{
1608 return (start % 8 + n_bits + 7) / 8;
1609}
1610
55acdf22
AA
1611/* Read or write a pieced value V. If FROM != NULL, operate in "write
1612 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1613 operate in "read mode": fetch the contents of the (lazy) value V by
1614 composing it from its pieces. */
1615
052b9502 1616static void
55acdf22 1617rw_pieced_value (struct value *v, struct value *from)
052b9502
NF
1618{
1619 int i;
359b19bb 1620 LONGEST offset = 0, max_offset;
d3b1e874 1621 ULONGEST bits_to_skip;
55acdf22
AA
1622 gdb_byte *v_contents;
1623 const gdb_byte *from_contents;
3e43a32a
MS
1624 struct piece_closure *c
1625 = (struct piece_closure *) value_computed_closure (v);
d5722aa2 1626 gdb::byte_vector buffer;
d5a22e77 1627 bool bits_big_endian = type_byte_order (value_type (v)) == BFD_ENDIAN_BIG;
afd74c5f 1628
55acdf22
AA
1629 if (from != NULL)
1630 {
1631 from_contents = value_contents (from);
1632 v_contents = NULL;
1633 }
1634 else
1635 {
1636 if (value_type (v) != value_enclosing_type (v))
1637 internal_error (__FILE__, __LINE__,
1638 _("Should not be able to create a lazy value with "
1639 "an enclosing type"));
1640 v_contents = value_contents_raw (v);
1641 from_contents = NULL;
1642 }
052b9502 1643
d3b1e874 1644 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1645 if (value_bitsize (v))
1646 {
af547a96
AA
1647 bits_to_skip += (8 * value_offset (value_parent (v))
1648 + value_bitpos (v));
55acdf22 1649 if (from != NULL
34877895 1650 && (type_byte_order (value_type (from))
55acdf22
AA
1651 == BFD_ENDIAN_BIG))
1652 {
1653 /* Use the least significant bits of FROM. */
1654 max_offset = 8 * TYPE_LENGTH (value_type (from));
1655 offset = max_offset - value_bitsize (v);
1656 }
1657 else
1658 max_offset = value_bitsize (v);
0e03807e
TT
1659 }
1660 else
359b19bb 1661 max_offset = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1662
f236533e 1663 /* Advance to the first non-skipped piece. */
1e467161 1664 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
f236533e
AA
1665 bits_to_skip -= c->pieces[i].size;
1666
1e467161 1667 for (; i < c->pieces.size () && offset < max_offset; i++)
052b9502
NF
1668 {
1669 struct dwarf_expr_piece *p = &c->pieces[i];
55acdf22 1670 size_t this_size_bits, this_size;
359b19bb 1671
f236533e 1672 this_size_bits = p->size - bits_to_skip;
359b19bb
AA
1673 if (this_size_bits > max_offset - offset)
1674 this_size_bits = max_offset - offset;
9a619af0 1675
cec03d70 1676 switch (p->location)
052b9502 1677 {
cec03d70
TT
1678 case DWARF_VALUE_REGISTER:
1679 {
ee40d8d4 1680 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1681 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53 1682 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
03c8af18 1683 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
0fde2c53 1684 int optim, unavail;
dcbf108f 1685
0fde2c53 1686 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
65d84b76 1687 && p->offset + p->size < reg_bits)
63b4f126 1688 {
0fde2c53 1689 /* Big-endian, and we want less than full size. */
f236533e 1690 bits_to_skip += reg_bits - (p->offset + p->size);
63b4f126 1691 }
65d84b76 1692 else
f236533e 1693 bits_to_skip += p->offset;
65d84b76 1694
f236533e 1695 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1696 buffer.resize (this_size);
0fde2c53 1697
55acdf22 1698 if (from == NULL)
63b4f126 1699 {
55acdf22
AA
1700 /* Read mode. */
1701 if (!get_frame_register_bytes (frame, gdb_regnum,
1702 bits_to_skip / 8,
1703 this_size, buffer.data (),
1704 &optim, &unavail))
1705 {
1706 if (optim)
1707 mark_value_bits_optimized_out (v, offset,
1708 this_size_bits);
1709 if (unavail)
1710 mark_value_bits_unavailable (v, offset,
1711 this_size_bits);
1712 break;
1713 }
1714
1715 copy_bitwise (v_contents, offset,
1716 buffer.data (), bits_to_skip % 8,
1717 this_size_bits, bits_big_endian);
1718 }
1719 else
1720 {
1721 /* Write mode. */
1722 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1723 {
1724 /* Data is copied non-byte-aligned into the register.
1725 Need some bits from original register value. */
1726 get_frame_register_bytes (frame, gdb_regnum,
1727 bits_to_skip / 8,
1728 this_size, buffer.data (),
1729 &optim, &unavail);
1730 if (optim)
1731 throw_error (OPTIMIZED_OUT_ERROR,
1732 _("Can't do read-modify-write to "
1733 "update bitfield; containing word "
1734 "has been optimized out"));
1735 if (unavail)
1736 throw_error (NOT_AVAILABLE_ERROR,
1737 _("Can't do read-modify-write to "
1738 "update bitfield; containing word "
1739 "is unavailable"));
1740 }
1741
1742 copy_bitwise (buffer.data (), bits_to_skip % 8,
1743 from_contents, offset,
1744 this_size_bits, bits_big_endian);
1745 put_frame_register_bytes (frame, gdb_regnum,
1746 bits_to_skip / 8,
1747 this_size, buffer.data ());
63b4f126 1748 }
cec03d70
TT
1749 }
1750 break;
1751
1752 case DWARF_VALUE_MEMORY:
55acdf22
AA
1753 {
1754 bits_to_skip += p->offset;
1755
1756 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1757
1758 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1759 && offset % 8 == 0)
1760 {
1761 /* Everything is byte-aligned; no buffer needed. */
1762 if (from != NULL)
1763 write_memory_with_notification (start_addr,
1764 (from_contents
1765 + offset / 8),
1766 this_size_bits / 8);
1767 else
1768 read_value_memory (v, offset,
1769 p->v.mem.in_stack_memory,
1770 p->v.mem.addr + bits_to_skip / 8,
1771 v_contents + offset / 8,
1772 this_size_bits / 8);
1773 break;
1774 }
1775
1776 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1777 buffer.resize (this_size);
55acdf22
AA
1778
1779 if (from == NULL)
1780 {
1781 /* Read mode. */
1782 read_value_memory (v, offset,
1783 p->v.mem.in_stack_memory,
1784 p->v.mem.addr + bits_to_skip / 8,
1785 buffer.data (), this_size);
1786 copy_bitwise (v_contents, offset,
1787 buffer.data (), bits_to_skip % 8,
1788 this_size_bits, bits_big_endian);
1789 }
1790 else
1791 {
1792 /* Write mode. */
1793 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1794 {
1795 if (this_size <= 8)
1796 {
1797 /* Perform a single read for small sizes. */
1798 read_memory (start_addr, buffer.data (),
1799 this_size);
1800 }
1801 else
1802 {
1803 /* Only the first and last bytes can possibly have
1804 any bits reused. */
1805 read_memory (start_addr, buffer.data (), 1);
1806 read_memory (start_addr + this_size - 1,
1807 &buffer[this_size - 1], 1);
1808 }
1809 }
1810
1811 copy_bitwise (buffer.data (), bits_to_skip % 8,
1812 from_contents, offset,
1813 this_size_bits, bits_big_endian);
1814 write_memory_with_notification (start_addr,
1815 buffer.data (),
1816 this_size);
1817 }
1818 }
cec03d70
TT
1819 break;
1820
1821 case DWARF_VALUE_STACK:
1822 {
55acdf22
AA
1823 if (from != NULL)
1824 {
1825 mark_value_bits_optimized_out (v, offset, this_size_bits);
1826 break;
1827 }
1828
09ba997f 1829 struct objfile *objfile = c->per_cu->objfile ();
08feed99 1830 struct gdbarch *objfile_gdbarch = objfile->arch ();
e9352324
AA
1831 ULONGEST stack_value_size_bits
1832 = 8 * TYPE_LENGTH (value_type (p->v.value));
1833
1834 /* Use zeroes if piece reaches beyond stack value. */
65d84b76 1835 if (p->offset + p->size > stack_value_size_bits)
e9352324
AA
1836 break;
1837
1838 /* Piece is anchored at least significant bit end. */
1839 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
f236533e 1840 bits_to_skip += stack_value_size_bits - p->offset - p->size;
65d84b76 1841 else
f236533e 1842 bits_to_skip += p->offset;
e9352324 1843
55acdf22 1844 copy_bitwise (v_contents, offset,
e9352324 1845 value_contents_all (p->v.value),
f236533e 1846 bits_to_skip,
e9352324 1847 this_size_bits, bits_big_endian);
cec03d70
TT
1848 }
1849 break;
1850
1851 case DWARF_VALUE_LITERAL:
1852 {
55acdf22
AA
1853 if (from != NULL)
1854 {
1855 mark_value_bits_optimized_out (v, offset, this_size_bits);
1856 break;
1857 }
1858
242d31ab
AA
1859 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1860 size_t n = this_size_bits;
afd74c5f 1861
242d31ab 1862 /* Cut off at the end of the implicit value. */
f236533e
AA
1863 bits_to_skip += p->offset;
1864 if (bits_to_skip >= literal_size_bits)
242d31ab 1865 break;
f236533e
AA
1866 if (n > literal_size_bits - bits_to_skip)
1867 n = literal_size_bits - bits_to_skip;
e9352324 1868
55acdf22 1869 copy_bitwise (v_contents, offset,
f236533e 1870 p->v.literal.data, bits_to_skip,
242d31ab 1871 n, bits_big_endian);
cec03d70
TT
1872 }
1873 break;
1874
8cf6f0b1 1875 case DWARF_VALUE_IMPLICIT_POINTER:
55acdf22
AA
1876 if (from != NULL)
1877 {
1878 mark_value_bits_optimized_out (v, offset, this_size_bits);
1879 break;
1880 }
1881
1882 /* These bits show up as zeros -- but do not cause the value to
1883 be considered optimized-out. */
8cf6f0b1
TT
1884 break;
1885
cb826367 1886 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1887 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1888 break;
1889
cec03d70
TT
1890 default:
1891 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1892 }
d3b1e874 1893
d3b1e874 1894 offset += this_size_bits;
f236533e 1895 bits_to_skip = 0;
052b9502
NF
1896 }
1897}
1898
55acdf22 1899
052b9502 1900static void
55acdf22 1901read_pieced_value (struct value *v)
052b9502 1902{
55acdf22
AA
1903 rw_pieced_value (v, NULL);
1904}
242d31ab 1905
55acdf22
AA
1906static void
1907write_pieced_value (struct value *to, struct value *from)
1908{
1909 rw_pieced_value (to, from);
052b9502
NF
1910}
1911
9a0dc9e3
PA
1912/* An implementation of an lval_funcs method to see whether a value is
1913 a synthetic pointer. */
8cf6f0b1 1914
0e03807e 1915static int
6b850546 1916check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 1917 int bit_length)
0e03807e
TT
1918{
1919 struct piece_closure *c
1920 = (struct piece_closure *) value_computed_closure (value);
1921 int i;
1922
1923 bit_offset += 8 * value_offset (value);
1924 if (value_bitsize (value))
1925 bit_offset += value_bitpos (value);
1926
1e467161 1927 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
0e03807e
TT
1928 {
1929 struct dwarf_expr_piece *p = &c->pieces[i];
1930 size_t this_size_bits = p->size;
1931
1932 if (bit_offset > 0)
1933 {
1934 if (bit_offset >= this_size_bits)
1935 {
1936 bit_offset -= this_size_bits;
1937 continue;
1938 }
1939
1940 bit_length -= this_size_bits - bit_offset;
1941 bit_offset = 0;
1942 }
1943 else
1944 bit_length -= this_size_bits;
1945
9a0dc9e3
PA
1946 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1947 return 0;
0e03807e
TT
1948 }
1949
9a0dc9e3 1950 return 1;
8cf6f0b1
TT
1951}
1952
1953/* A wrapper function for get_frame_address_in_block. */
1954
1955static CORE_ADDR
1956get_frame_address_in_block_wrapper (void *baton)
1957{
9a3c8263 1958 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
1959}
1960
3326303b
MG
1961/* Fetch a DW_AT_const_value through a synthetic pointer. */
1962
1963static struct value *
1964fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1965 struct dwarf2_per_cu_data *per_cu,
1966 struct type *type)
1967{
1968 struct value *result = NULL;
3326303b
MG
1969 const gdb_byte *bytes;
1970 LONGEST len;
1971
8268c778 1972 auto_obstack temp_obstack;
3326303b
MG
1973 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1974
1975 if (bytes != NULL)
1976 {
1977 if (byte_offset >= 0
1978 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1979 {
1980 bytes += byte_offset;
1981 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1982 }
1983 else
1984 invalid_synthetic_pointer ();
1985 }
1986 else
1987 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1988
3326303b
MG
1989 return result;
1990}
1991
1992/* Fetch the value pointed to by a synthetic pointer. */
1993
1994static struct value *
1995indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1996 struct dwarf2_per_cu_data *per_cu,
e4a62c65
TV
1997 struct frame_info *frame, struct type *type,
1998 bool resolve_abstract_p)
3326303b
MG
1999{
2000 /* Fetch the location expression of the DIE we're pointing to. */
2001 struct dwarf2_locexpr_baton baton
2002 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
e4a62c65
TV
2003 get_frame_address_in_block_wrapper, frame,
2004 resolve_abstract_p);
3326303b 2005
7942e96e
AA
2006 /* Get type of pointed-to DIE. */
2007 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2008 if (orig_type == NULL)
2009 invalid_synthetic_pointer ();
2010
3326303b
MG
2011 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2012 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2013 or it may've been optimized out. */
2014 if (baton.data != NULL)
7942e96e
AA
2015 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2016 baton.size, baton.per_cu,
2017 TYPE_TARGET_TYPE (type),
3326303b
MG
2018 byte_offset);
2019 else
2020 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2021 type);
2022}
2023
8cf6f0b1
TT
2024/* An implementation of an lval_funcs method to indirect through a
2025 pointer. This handles the synthetic pointer case when needed. */
2026
2027static struct value *
2028indirect_pieced_value (struct value *value)
2029{
2030 struct piece_closure *c
2031 = (struct piece_closure *) value_computed_closure (value);
2032 struct type *type;
2033 struct frame_info *frame;
6b850546
DT
2034 int i, bit_length;
2035 LONGEST bit_offset;
8cf6f0b1 2036 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2037 LONGEST byte_offset;
b597c318 2038 enum bfd_endian byte_order;
8cf6f0b1 2039
0e37a63c 2040 type = check_typedef (value_type (value));
78134374 2041 if (type->code () != TYPE_CODE_PTR)
8cf6f0b1
TT
2042 return NULL;
2043
2044 bit_length = 8 * TYPE_LENGTH (type);
2045 bit_offset = 8 * value_offset (value);
2046 if (value_bitsize (value))
2047 bit_offset += value_bitpos (value);
2048
1e467161 2049 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
8cf6f0b1
TT
2050 {
2051 struct dwarf_expr_piece *p = &c->pieces[i];
2052 size_t this_size_bits = p->size;
2053
2054 if (bit_offset > 0)
2055 {
2056 if (bit_offset >= this_size_bits)
2057 {
2058 bit_offset -= this_size_bits;
2059 continue;
2060 }
2061
2062 bit_length -= this_size_bits - bit_offset;
2063 bit_offset = 0;
2064 }
2065 else
2066 bit_length -= this_size_bits;
2067
2068 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2069 return NULL;
2070
2071 if (bit_length != 0)
216f72a1 2072 error (_("Invalid use of DW_OP_implicit_pointer"));
8cf6f0b1
TT
2073
2074 piece = p;
2075 break;
2076 }
2077
3326303b 2078 gdb_assert (piece != NULL);
8cf6f0b1 2079 frame = get_selected_frame (_("No frame selected."));
543305c9 2080
5bd1ef56
TT
2081 /* This is an offset requested by GDB, such as value subscripts.
2082 However, due to how synthetic pointers are implemented, this is
2083 always presented to us as a pointer type. This means we have to
b597c318
YQ
2084 sign-extend it manually as appropriate. Use raw
2085 extract_signed_integer directly rather than value_as_address and
2086 sign extend afterwards on architectures that would need it
2087 (mostly everywhere except MIPS, which has signed addresses) as
2088 the later would go through gdbarch_pointer_to_address and thus
2089 return a CORE_ADDR with high bits set on architectures that
2090 encode address spaces and other things in CORE_ADDR. */
2091 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2092 byte_offset = extract_signed_integer (value_contents (value),
2093 TYPE_LENGTH (type), byte_order);
5bd1ef56 2094 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2095
9c541725
PA
2096 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2097 byte_offset, c->per_cu,
3326303b
MG
2098 frame, type);
2099}
8cf6f0b1 2100
3326303b
MG
2101/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2102 references. */
b6807d98 2103
3326303b
MG
2104static struct value *
2105coerce_pieced_ref (const struct value *value)
2106{
2107 struct type *type = check_typedef (value_type (value));
b6807d98 2108
3326303b
MG
2109 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2110 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2111 {
2112 const struct piece_closure *closure
2113 = (struct piece_closure *) value_computed_closure (value);
2114 struct frame_info *frame
2115 = get_selected_frame (_("No frame selected."));
2116
2117 /* gdb represents synthetic pointers as pieced values with a single
2118 piece. */
2119 gdb_assert (closure != NULL);
1e467161 2120 gdb_assert (closure->pieces.size () == 1);
3326303b 2121
1e467161
SM
2122 return indirect_synthetic_pointer
2123 (closure->pieces[0].v.ptr.die_sect_off,
2124 closure->pieces[0].v.ptr.offset,
2125 closure->per_cu, frame, type);
3326303b
MG
2126 }
2127 else
2128 {
2129 /* Else: not a synthetic reference; do nothing. */
2130 return NULL;
2131 }
0e03807e
TT
2132}
2133
052b9502 2134static void *
0e03807e 2135copy_pieced_value_closure (const struct value *v)
052b9502 2136{
3e43a32a
MS
2137 struct piece_closure *c
2138 = (struct piece_closure *) value_computed_closure (v);
052b9502 2139
88bfdde4
TT
2140 ++c->refc;
2141 return c;
052b9502
NF
2142}
2143
2144static void
2145free_pieced_value_closure (struct value *v)
2146{
3e43a32a
MS
2147 struct piece_closure *c
2148 = (struct piece_closure *) value_computed_closure (v);
052b9502 2149
88bfdde4
TT
2150 --c->refc;
2151 if (c->refc == 0)
2152 {
1e467161
SM
2153 for (dwarf_expr_piece &p : c->pieces)
2154 if (p.location == DWARF_VALUE_STACK)
22bc8444 2155 value_decref (p.v.value);
8a9b8146 2156
1e467161 2157 delete c;
88bfdde4 2158 }
052b9502
NF
2159}
2160
2161/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2162static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2163 read_pieced_value,
2164 write_pieced_value,
8cf6f0b1 2165 indirect_pieced_value,
3326303b 2166 coerce_pieced_ref,
8cf6f0b1 2167 check_pieced_synthetic_pointer,
052b9502
NF
2168 copy_pieced_value_closure,
2169 free_pieced_value_closure
2170};
2171
4c2df51b 2172/* Evaluate a location description, starting at DATA and with length
8cf6f0b1 2173 SIZE, to find the current location of variable of TYPE in the
7942e96e
AA
2174 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2175 location of the subobject of type SUBOBJ_TYPE at byte offset
2176 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
a2d33775 2177
8cf6f0b1
TT
2178static struct value *
2179dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2180 const gdb_byte *data, size_t size,
8cf6f0b1 2181 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
2182 struct type *subobj_type,
2183 LONGEST subobj_byte_offset)
4c2df51b 2184{
4c2df51b 2185 struct value *retval;
09ba997f 2186 struct objfile *objfile = per_cu->objfile ();
4c2df51b 2187
7942e96e
AA
2188 if (subobj_type == NULL)
2189 {
2190 subobj_type = type;
2191 subobj_byte_offset = 0;
2192 }
2193 else if (subobj_byte_offset < 0)
8cf6f0b1
TT
2194 invalid_synthetic_pointer ();
2195
0d53c4c4 2196 if (size == 0)
7942e96e 2197 return allocate_optimized_out_value (subobj_type);
0d53c4c4 2198
89b07335
SM
2199 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2200 dwarf_evaluate_loc_desc ctx (per_objfile);
192ca6d8
TT
2201 ctx.frame = frame;
2202 ctx.per_cu = per_cu;
2203 ctx.obj_address = 0;
4c2df51b 2204
0cf08227 2205 scoped_value_mark free_values;
4a227398 2206
08feed99 2207 ctx.gdbarch = objfile->arch ();
09ba997f
TT
2208 ctx.addr_size = per_cu->addr_size ();
2209 ctx.ref_addr_size = per_cu->ref_addr_size ();
4c2df51b 2210
a70b8144 2211 try
79e1a869 2212 {
595d2e30 2213 ctx.eval (data, size);
79e1a869 2214 }
230d2906 2215 catch (const gdb_exception_error &ex)
79e1a869
PA
2216 {
2217 if (ex.error == NOT_AVAILABLE_ERROR)
2218 {
0cf08227 2219 free_values.free_to_mark ();
7942e96e
AA
2220 retval = allocate_value (subobj_type);
2221 mark_value_bytes_unavailable (retval, 0,
2222 TYPE_LENGTH (subobj_type));
79e1a869
PA
2223 return retval;
2224 }
8e3b41a9
JK
2225 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2226 {
2227 if (entry_values_debug)
2228 exception_print (gdb_stdout, ex);
0cf08227 2229 free_values.free_to_mark ();
7942e96e 2230 return allocate_optimized_out_value (subobj_type);
8e3b41a9 2231 }
79e1a869 2232 else
eedc3f4f 2233 throw;
79e1a869
PA
2234 }
2235
1e467161 2236 if (ctx.pieces.size () > 0)
87808bd6 2237 {
052b9502 2238 struct piece_closure *c;
8cf6f0b1 2239 ULONGEST bit_size = 0;
052b9502 2240
1e467161
SM
2241 for (dwarf_expr_piece &piece : ctx.pieces)
2242 bit_size += piece.size;
03278692
TT
2243 /* Complain if the expression is larger than the size of the
2244 outer type. */
2245 if (bit_size > 8 * TYPE_LENGTH (type))
8cf6f0b1
TT
2246 invalid_synthetic_pointer ();
2247
1e467161 2248 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
72fc29ff
TT
2249 /* We must clean up the value chain after creating the piece
2250 closure but before allocating the result. */
0cf08227 2251 free_values.free_to_mark ();
7942e96e
AA
2252 retval = allocate_computed_value (subobj_type,
2253 &pieced_value_funcs, c);
2254 set_value_offset (retval, subobj_byte_offset);
87808bd6 2255 }
4c2df51b
DJ
2256 else
2257 {
718b9626 2258 switch (ctx.location)
cec03d70
TT
2259 {
2260 case DWARF_VALUE_REGISTER:
2261 {
2262 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2263 int dwarf_regnum
595d2e30 2264 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2265 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2266
7942e96e 2267 if (subobj_byte_offset != 0)
8cf6f0b1 2268 error (_("cannot use offset on synthetic pointer to register"));
0cf08227 2269 free_values.free_to_mark ();
7942e96e 2270 retval = value_from_register (subobj_type, gdb_regnum, frame);
0fde2c53
DE
2271 if (value_optimized_out (retval))
2272 {
2273 struct value *tmp;
2274
2275 /* This means the register has undefined value / was
2276 not saved. As we're computing the location of some
2277 variable etc. in the program, not a value for
2278 inspecting a register ($pc, $sp, etc.), return a
2279 generic optimized out value instead, so that we show
2280 <optimized out> instead of <not saved>. */
7942e96e
AA
2281 tmp = allocate_value (subobj_type);
2282 value_contents_copy (tmp, 0, retval, 0,
2283 TYPE_LENGTH (subobj_type));
0fde2c53
DE
2284 retval = tmp;
2285 }
cec03d70
TT
2286 }
2287 break;
2288
2289 case DWARF_VALUE_MEMORY:
2290 {
f56331b4 2291 struct type *ptr_type;
595d2e30 2292 CORE_ADDR address = ctx.fetch_address (0);
69009882 2293 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2294
f56331b4
KB
2295 /* DW_OP_deref_size (and possibly other operations too) may
2296 create a pointer instead of an address. Ideally, the
2297 pointer to address conversion would be performed as part
2298 of those operations, but the type of the object to
2299 which the address refers is not known at the time of
2300 the operation. Therefore, we do the conversion here
2301 since the type is readily available. */
2302
78134374 2303 switch (subobj_type->code ())
f56331b4
KB
2304 {
2305 case TYPE_CODE_FUNC:
2306 case TYPE_CODE_METHOD:
718b9626 2307 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2308 break;
2309 default:
718b9626 2310 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2311 break;
2312 }
2313 address = value_as_address (value_from_pointer (ptr_type, address));
2314
0cf08227 2315 free_values.free_to_mark ();
7942e96e
AA
2316 retval = value_at_lazy (subobj_type,
2317 address + subobj_byte_offset);
44353522
DE
2318 if (in_stack_memory)
2319 set_value_stack (retval, 1);
cec03d70
TT
2320 }
2321 break;
2322
2323 case DWARF_VALUE_STACK:
2324 {
595d2e30 2325 struct value *value = ctx.fetch (0);
8a9b8146 2326 size_t n = TYPE_LENGTH (value_type (value));
7942e96e
AA
2327 size_t len = TYPE_LENGTH (subobj_type);
2328 size_t max = TYPE_LENGTH (type);
08feed99 2329 struct gdbarch *objfile_gdbarch = objfile->arch ();
cec03d70 2330
7942e96e 2331 if (subobj_byte_offset + len > max)
8cf6f0b1
TT
2332 invalid_synthetic_pointer ();
2333
72fc29ff
TT
2334 /* Preserve VALUE because we are going to free values back
2335 to the mark, but we still need the value contents
2336 below. */
bbfa6f00 2337 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
0cf08227 2338 free_values.free_to_mark ();
72fc29ff 2339
7942e96e 2340 retval = allocate_value (subobj_type);
b6cede78 2341
7942e96e
AA
2342 /* The given offset is relative to the actual object. */
2343 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2344 subobj_byte_offset += n - max;
2345
2346 memcpy (value_contents_raw (retval),
2347 value_contents_all (value) + subobj_byte_offset, len);
cec03d70
TT
2348 }
2349 break;
2350
2351 case DWARF_VALUE_LITERAL:
2352 {
2353 bfd_byte *contents;
7942e96e 2354 size_t n = TYPE_LENGTH (subobj_type);
cec03d70 2355
7942e96e 2356 if (subobj_byte_offset + n > ctx.len)
8cf6f0b1
TT
2357 invalid_synthetic_pointer ();
2358
0cf08227 2359 free_values.free_to_mark ();
7942e96e 2360 retval = allocate_value (subobj_type);
cec03d70 2361 contents = value_contents_raw (retval);
7942e96e 2362 memcpy (contents, ctx.data + subobj_byte_offset, n);
cec03d70
TT
2363 }
2364 break;
2365
dd90784c 2366 case DWARF_VALUE_OPTIMIZED_OUT:
0cf08227 2367 free_values.free_to_mark ();
7942e96e 2368 retval = allocate_optimized_out_value (subobj_type);
dd90784c
JK
2369 break;
2370
8cf6f0b1
TT
2371 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2372 operation by execute_stack_op. */
2373 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2374 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2375 it can only be encountered when making a piece. */
cec03d70
TT
2376 default:
2377 internal_error (__FILE__, __LINE__, _("invalid location type"));
2378 }
4c2df51b
DJ
2379 }
2380
718b9626 2381 set_value_initialized (retval, ctx.initialized);
42be36b3 2382
4c2df51b
DJ
2383 return retval;
2384}
8cf6f0b1
TT
2385
2386/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2387 passes 0 as the byte_offset. */
2388
2389struct value *
2390dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2391 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2392 struct dwarf2_per_cu_data *per_cu)
2393{
7942e96e
AA
2394 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2395 NULL, 0);
8cf6f0b1
TT
2396}
2397
b249d2c2
TT
2398/* A specialization of dwarf_evaluate_loc_desc that is used by
2399 dwarf2_locexpr_baton_eval. This subclass exists to handle the case
2400 where a caller of dwarf2_locexpr_baton_eval passes in some data,
2401 but with the address being 0. In this situation, we arrange for
2402 memory reads to come from the passed-in buffer. */
2403
2404struct evaluate_for_locexpr_baton : public dwarf_evaluate_loc_desc
2405{
89b07335
SM
2406 evaluate_for_locexpr_baton (dwarf2_per_objfile *per_objfile)
2407 : dwarf_evaluate_loc_desc (per_objfile)
2408 {}
2409
b249d2c2
TT
2410 /* The data that was passed in. */
2411 gdb::array_view<const gdb_byte> data_view;
2412
2413 CORE_ADDR get_object_address () override
2414 {
2415 if (data_view.data () == nullptr && obj_address == 0)
2416 error (_("Location address is not set."));
2417 return obj_address;
2418 }
2419
2420 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2421 {
2422 if (len == 0)
2423 return;
2424
2425 /* Prefer the passed-in memory, if it exists. */
2426 CORE_ADDR offset = addr - obj_address;
2427 if (offset < data_view.size () && offset + len <= data_view.size ())
2428 {
2429 memcpy (buf, data_view.data (), len);
2430 return;
2431 }
2432
2433 read_memory (addr, buf, len);
2434 }
2435};
2436
2437/* Evaluates a dwarf expression and stores the result in VAL,
2438 expecting that the dwarf expression only produces a single
2439 CORE_ADDR. FRAME is the frame in which the expression is
2440 evaluated. ADDR_STACK is a context (location of a variable) and
2441 might be needed to evaluate the location expression.
2442 PUSH_INITIAL_VALUE is true if the address (either from ADDR_STACK,
2443 or the default of 0) should be pushed on the DWARF expression
2444 evaluation stack before evaluating the expression; this is required
2445 by certain forms of DWARF expression. Returns 1 on success, 0
2446 otherwise. */
80180f79
SA
2447
2448static int
2449dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2450 struct frame_info *frame,
b249d2c2 2451 const struct property_addr_info *addr_stack,
61122aa9
TT
2452 CORE_ADDR *valp,
2453 bool push_initial_value)
80180f79 2454{
80180f79
SA
2455 if (dlbaton == NULL || dlbaton->size == 0)
2456 return 0;
2457
89b07335
SM
2458 dwarf2_per_objfile *per_objfile = dlbaton->per_objfile;
2459 evaluate_for_locexpr_baton ctx (per_objfile);
80180f79 2460
192ca6d8
TT
2461 ctx.frame = frame;
2462 ctx.per_cu = dlbaton->per_cu;
b249d2c2
TT
2463 if (addr_stack == nullptr)
2464 ctx.obj_address = 0;
2465 else
2466 {
2467 ctx.obj_address = addr_stack->addr;
2468 ctx.data_view = addr_stack->valaddr;
2469 }
80180f79 2470
89b07335 2471 ctx.gdbarch = per_objfile->objfile->arch ();
09ba997f
TT
2472 ctx.addr_size = dlbaton->per_cu->addr_size ();
2473 ctx.ref_addr_size = dlbaton->per_cu->ref_addr_size ();
80180f79 2474
61122aa9 2475 if (push_initial_value)
b249d2c2 2476 ctx.push_address (ctx.obj_address, false);
61122aa9 2477
a70b8144 2478 try
16f808ec
TV
2479 {
2480 ctx.eval (dlbaton->data, dlbaton->size);
2481 }
230d2906 2482 catch (const gdb_exception_error &ex)
16f808ec
TV
2483 {
2484 if (ex.error == NOT_AVAILABLE_ERROR)
2485 {
2486 return 0;
2487 }
2488 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2489 {
2490 if (entry_values_debug)
2491 exception_print (gdb_stdout, ex);
2492 return 0;
2493 }
2494 else
eedc3f4f 2495 throw;
16f808ec 2496 }
80180f79 2497
718b9626 2498 switch (ctx.location)
80180f79
SA
2499 {
2500 case DWARF_VALUE_REGISTER:
2501 case DWARF_VALUE_MEMORY:
2502 case DWARF_VALUE_STACK:
595d2e30 2503 *valp = ctx.fetch_address (0);
718b9626 2504 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2505 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2506 return 1;
2507 case DWARF_VALUE_LITERAL:
718b9626
TT
2508 *valp = extract_signed_integer (ctx.data, ctx.len,
2509 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2510 return 1;
2511 /* Unsupported dwarf values. */
2512 case DWARF_VALUE_OPTIMIZED_OUT:
2513 case DWARF_VALUE_IMPLICIT_POINTER:
2514 break;
2515 }
2516
80180f79
SA
2517 return 0;
2518}
2519
2520/* See dwarf2loc.h. */
2521
603490bf 2522bool
08412b07 2523dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2524 struct frame_info *frame,
fe26d3a3 2525 const struct property_addr_info *addr_stack,
61122aa9
TT
2526 CORE_ADDR *value,
2527 bool push_initial_value)
80180f79
SA
2528{
2529 if (prop == NULL)
603490bf 2530 return false;
80180f79 2531
63e43d3a
PMR
2532 if (frame == NULL && has_stack_frames ())
2533 frame = get_selected_frame (NULL);
2534
80180f79
SA
2535 switch (prop->kind)
2536 {
2537 case PROP_LOCEXPR:
2538 {
9a3c8263
SM
2539 const struct dwarf2_property_baton *baton
2540 = (const struct dwarf2_property_baton *) prop->data.baton;
9a49df9d 2541 gdb_assert (baton->property_type != NULL);
80180f79 2542
b249d2c2 2543 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame, addr_stack,
61122aa9 2544 value, push_initial_value))
80180f79 2545 {
9a49df9d 2546 if (baton->locexpr.is_reference)
80180f79 2547 {
9a49df9d 2548 struct value *val = value_at (baton->property_type, *value);
80180f79
SA
2549 *value = value_as_address (val);
2550 }
0d4e84ed
AB
2551 else
2552 {
2553 gdb_assert (baton->property_type != NULL);
2554
2555 struct type *type = check_typedef (baton->property_type);
2556 if (TYPE_LENGTH (type) < sizeof (CORE_ADDR)
2557 && !TYPE_UNSIGNED (type))
2558 {
2559 /* If we have a valid return candidate and it's value
2560 is signed, we have to sign-extend the value because
2561 CORE_ADDR on 64bit machine has 8 bytes but address
2562 size of an 32bit application is bytes. */
2563 const int addr_size
09ba997f 2564 = (baton->locexpr.per_cu->addr_size ()
0d4e84ed
AB
2565 * TARGET_CHAR_BIT);
2566 const CORE_ADDR neg_mask
2567 = (~((CORE_ADDR) 0) << (addr_size - 1));
2568
2569 /* Check if signed bit is set and sign-extend values. */
2570 if (*value & neg_mask)
2571 *value |= neg_mask;
2572 }
2573 }
603490bf 2574 return true;
80180f79
SA
2575 }
2576 }
2577 break;
2578
2579 case PROP_LOCLIST:
2580 {
9a3c8263
SM
2581 struct dwarf2_property_baton *baton
2582 = (struct dwarf2_property_baton *) prop->data.baton;
1c33af77 2583 CORE_ADDR pc;
80180f79
SA
2584 const gdb_byte *data;
2585 struct value *val;
2586 size_t size;
2587
1c33af77
TV
2588 if (frame == NULL
2589 || !get_frame_address_in_block_if_available (frame, &pc))
2590 return false;
2591
80180f79
SA
2592 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2593 if (data != NULL)
2594 {
9a49df9d 2595 val = dwarf2_evaluate_loc_desc (baton->property_type, frame, data,
80180f79
SA
2596 size, baton->loclist.per_cu);
2597 if (!value_optimized_out (val))
2598 {
2599 *value = value_as_address (val);
603490bf 2600 return true;
80180f79
SA
2601 }
2602 }
2603 }
2604 break;
2605
2606 case PROP_CONST:
2607 *value = prop->data.const_val;
603490bf 2608 return true;
df25ebbd
JB
2609
2610 case PROP_ADDR_OFFSET:
2611 {
9a3c8263
SM
2612 struct dwarf2_property_baton *baton
2613 = (struct dwarf2_property_baton *) prop->data.baton;
fe26d3a3 2614 const struct property_addr_info *pinfo;
df25ebbd
JB
2615 struct value *val;
2616
2617 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
988915ee
TT
2618 {
2619 /* This approach lets us avoid checking the qualifiers. */
2620 if (TYPE_MAIN_TYPE (pinfo->type)
9a49df9d 2621 == TYPE_MAIN_TYPE (baton->property_type))
988915ee
TT
2622 break;
2623 }
df25ebbd 2624 if (pinfo == NULL)
2c811c0f 2625 error (_("cannot find reference address for offset property"));
b249d2c2 2626 if (pinfo->valaddr.data () != NULL)
c3345124
JB
2627 val = value_from_contents
2628 (baton->offset_info.type,
b249d2c2 2629 pinfo->valaddr.data () + baton->offset_info.offset);
c3345124
JB
2630 else
2631 val = value_at (baton->offset_info.type,
2632 pinfo->addr + baton->offset_info.offset);
df25ebbd 2633 *value = value_as_address (val);
603490bf 2634 return true;
df25ebbd 2635 }
80180f79
SA
2636 }
2637
603490bf 2638 return false;
80180f79
SA
2639}
2640
bb2ec1b3
TT
2641/* See dwarf2loc.h. */
2642
2643void
d82b3862 2644dwarf2_compile_property_to_c (string_file *stream,
bb2ec1b3
TT
2645 const char *result_name,
2646 struct gdbarch *gdbarch,
2647 unsigned char *registers_used,
2648 const struct dynamic_prop *prop,
2649 CORE_ADDR pc,
2650 struct symbol *sym)
2651{
9a3c8263
SM
2652 struct dwarf2_property_baton *baton
2653 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2654 const gdb_byte *data;
2655 size_t size;
4b167ea1
SM
2656 dwarf2_per_cu_data *per_cu;
2657 dwarf2_per_objfile *per_objfile;
bb2ec1b3
TT
2658
2659 if (prop->kind == PROP_LOCEXPR)
2660 {
2661 data = baton->locexpr.data;
2662 size = baton->locexpr.size;
2663 per_cu = baton->locexpr.per_cu;
4b167ea1 2664 per_objfile = baton->locexpr.per_objfile;
bb2ec1b3
TT
2665 }
2666 else
2667 {
2668 gdb_assert (prop->kind == PROP_LOCLIST);
2669
2670 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2671 per_cu = baton->loclist.per_cu;
4b167ea1 2672 per_objfile = baton->loclist.per_objfile;
bb2ec1b3
TT
2673 }
2674
2675 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2676 gdbarch, registers_used,
09ba997f 2677 per_cu->addr_size (),
4b167ea1 2678 data, data + size, per_cu, per_objfile);
bb2ec1b3
TT
2679}
2680
4c2df51b 2681\f
0b31a4bc 2682/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2683
192ca6d8 2684class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2685{
89b07335
SM
2686public:
2687 symbol_needs_eval_context (dwarf2_per_objfile *per_objfile)
2688 : dwarf_expr_context (per_objfile)
2689 {}
192ca6d8 2690
0b31a4bc 2691 enum symbol_needs_kind needs;
17ea53c3 2692 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2693
192ca6d8 2694 /* Reads from registers do require a frame. */
632e107b 2695 CORE_ADDR read_addr_from_reg (int regnum) override
192ca6d8
TT
2696 {
2697 needs = SYMBOL_NEEDS_FRAME;
2698 return 1;
2699 }
2700
2701 /* "get_reg_value" callback: Reads from registers do require a
2702 frame. */
2703
632e107b 2704 struct value *get_reg_value (struct type *type, int regnum) override
192ca6d8
TT
2705 {
2706 needs = SYMBOL_NEEDS_FRAME;
2707 return value_zero (type, not_lval);
2708 }
2709
2710 /* Reads from memory do not require a frame. */
632e107b 2711 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
2712 {
2713 memset (buf, 0, len);
2714 }
2715
2716 /* Frame-relative accesses do require a frame. */
632e107b 2717 void get_frame_base (const gdb_byte **start, size_t *length) override
192ca6d8
TT
2718 {
2719 static gdb_byte lit0 = DW_OP_lit0;
2720
2721 *start = &lit0;
2722 *length = 1;
2723
2724 needs = SYMBOL_NEEDS_FRAME;
2725 }
2726
2727 /* CFA accesses require a frame. */
632e107b 2728 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
2729 {
2730 needs = SYMBOL_NEEDS_FRAME;
2731 return 1;
2732 }
2733
632e107b 2734 CORE_ADDR get_frame_pc () override
7d5697f9
TT
2735 {
2736 needs = SYMBOL_NEEDS_FRAME;
2737 return 1;
2738 }
2739
192ca6d8 2740 /* Thread-local accesses require registers, but not a frame. */
632e107b 2741 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
2742 {
2743 if (needs <= SYMBOL_NEEDS_REGISTERS)
2744 needs = SYMBOL_NEEDS_REGISTERS;
2745 return 1;
2746 }
2747
2748 /* Helper interface of per_cu_dwarf_call for
2749 dwarf2_loc_desc_get_symbol_read_needs. */
2750
632e107b 2751 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
2752 {
2753 per_cu_dwarf_call (this, die_offset, per_cu);
2754 }
2755
a6b786da
KB
2756 /* Helper interface of sect_variable_value for
2757 dwarf2_loc_desc_get_symbol_read_needs. */
2758
2759 struct value *dwarf_variable_value (sect_offset sect_off) override
2760 {
2761 return sect_variable_value (this, sect_off, per_cu);
2762 }
2763
216f72a1 2764 /* DW_OP_entry_value accesses require a caller, therefore a
192ca6d8
TT
2765 frame. */
2766
2767 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2768 union call_site_parameter_u kind_u,
632e107b 2769 int deref_size) override
192ca6d8
TT
2770 {
2771 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2772
192ca6d8
TT
2773 /* The expression may require some stub values on DWARF stack. */
2774 push_address (0, 0);
2775 }
3019eac3 2776
336d760d 2777 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2778
632e107b 2779 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
2780 {
2781 /* Nothing to do. */
2782 return 1;
2783 }
08412b07 2784
192ca6d8 2785 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2786
632e107b 2787 CORE_ADDR get_object_address () override
192ca6d8
TT
2788 {
2789 /* Nothing to do. */
2790 return 1;
2791 }
9e8b7a03
JK
2792};
2793
0b31a4bc
TT
2794/* Compute the correct symbol_needs_kind value for the location
2795 expression at DATA (length SIZE). */
4c2df51b 2796
0b31a4bc
TT
2797static enum symbol_needs_kind
2798dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2799 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2800{
f630a401 2801 int in_reg;
09ba997f 2802 struct objfile *objfile = per_cu->objfile ();
4c2df51b 2803
eb115069
TT
2804 scoped_value_mark free_values;
2805
89b07335 2806 symbol_needs_eval_context ctx (get_dwarf2_per_objfile (objfile));
192ca6d8
TT
2807
2808 ctx.needs = SYMBOL_NEEDS_NONE;
2809 ctx.per_cu = per_cu;
08feed99 2810 ctx.gdbarch = objfile->arch ();
09ba997f
TT
2811 ctx.addr_size = per_cu->addr_size ();
2812 ctx.ref_addr_size = per_cu->ref_addr_size ();
4c2df51b 2813
595d2e30 2814 ctx.eval (data, size);
4c2df51b 2815
718b9626 2816 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2817
1e467161
SM
2818 /* If the location has several pieces, and any of them are in
2819 registers, then we will need a frame to fetch them from. */
2820 for (dwarf_expr_piece &p : ctx.pieces)
2821 if (p.location == DWARF_VALUE_REGISTER)
2822 in_reg = 1;
87808bd6 2823
0b31a4bc 2824 if (in_reg)
192ca6d8
TT
2825 ctx.needs = SYMBOL_NEEDS_FRAME;
2826 return ctx.needs;
4c2df51b
DJ
2827}
2828
3cf03773
TT
2829/* A helper function that throws an unimplemented error mentioning a
2830 given DWARF operator. */
2831
621846f4 2832static void ATTRIBUTE_NORETURN
3cf03773 2833unimplemented (unsigned int op)
0d53c4c4 2834{
f39c6ffd 2835 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2836
2837 if (name)
2838 error (_("DWARF operator %s cannot be translated to an agent expression"),
2839 name);
2840 else
1ba1b353
TT
2841 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2842 "to an agent expression"),
b1bfef65 2843 op);
3cf03773 2844}
08922a10 2845
0fde2c53
DE
2846/* See dwarf2loc.h.
2847
2848 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2849 can issue a complaint, which is better than having every target's
2850 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2851
d064d1be 2852int
0fde2c53 2853dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2854{
2855 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2856
3cf03773 2857 if (reg == -1)
0fde2c53 2858 {
b98664d3 2859 complaint (_("bad DWARF register number %d"), dwarf_reg);
0fde2c53
DE
2860 }
2861 return reg;
2862}
2863
2864/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2865 Throw an error because DWARF_REG is bad. */
2866
2867static void
2868throw_bad_regnum_error (ULONGEST dwarf_reg)
2869{
2870 /* Still want to print -1 as "-1".
2871 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2872 but that's overkill for now. */
2873 if ((int) dwarf_reg == dwarf_reg)
2874 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2875 error (_("Unable to access DWARF register number %s"),
2876 pulongest (dwarf_reg));
2877}
2878
2879/* See dwarf2loc.h. */
2880
2881int
2882dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2883{
2884 int reg;
2885
2886 if (dwarf_reg > INT_MAX)
2887 throw_bad_regnum_error (dwarf_reg);
2888 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2889 bad, but that's ok. */
2890 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2891 if (reg == -1)
2892 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2893 return reg;
2894}
08922a10 2895
3cf03773
TT
2896/* A helper function that emits an access to memory. ARCH is the
2897 target architecture. EXPR is the expression which we are building.
2898 NBITS is the number of bits we want to read. This emits the
2899 opcodes needed to read the memory and then extract the desired
2900 bits. */
08922a10 2901
3cf03773
TT
2902static void
2903access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2904{
3cf03773
TT
2905 ULONGEST nbytes = (nbits + 7) / 8;
2906
9df7235c 2907 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2908
92bc6a20 2909 if (expr->tracing)
3cf03773
TT
2910 ax_trace_quick (expr, nbytes);
2911
2912 if (nbits <= 8)
2913 ax_simple (expr, aop_ref8);
2914 else if (nbits <= 16)
2915 ax_simple (expr, aop_ref16);
2916 else if (nbits <= 32)
2917 ax_simple (expr, aop_ref32);
2918 else
2919 ax_simple (expr, aop_ref64);
2920
2921 /* If we read exactly the number of bytes we wanted, we're done. */
2922 if (8 * nbytes == nbits)
2923 return;
2924
d5a22e77 2925 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
0d53c4c4 2926 {
3cf03773
TT
2927 /* On a bits-big-endian machine, we want the high-order
2928 NBITS. */
2929 ax_const_l (expr, 8 * nbytes - nbits);
2930 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2931 }
3cf03773 2932 else
0d53c4c4 2933 {
3cf03773
TT
2934 /* On a bits-little-endian box, we want the low-order NBITS. */
2935 ax_zero_ext (expr, nbits);
0d53c4c4 2936 }
3cf03773 2937}
0936ad1d 2938
8cf6f0b1
TT
2939/* A helper function to return the frame's PC. */
2940
2941static CORE_ADDR
2942get_ax_pc (void *baton)
2943{
9a3c8263 2944 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2945
2946 return expr->scope;
2947}
2948
3cf03773
TT
2949/* Compile a DWARF location expression to an agent expression.
2950
2951 EXPR is the agent expression we are building.
2952 LOC is the agent value we modify.
2953 ARCH is the architecture.
2954 ADDR_SIZE is the size of addresses, in bytes.
2955 OP_PTR is the start of the location expression.
2956 OP_END is one past the last byte of the location expression.
2957
2958 This will throw an exception for various kinds of errors -- for
2959 example, if the expression cannot be compiled, or if the expression
2960 is invalid. */
0936ad1d 2961
5707a07a 2962static void
9f6f94ff 2963dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
40f4af28
SM
2964 unsigned int addr_size, const gdb_byte *op_ptr,
2965 const gdb_byte *op_end,
4b167ea1
SM
2966 dwarf2_per_cu_data *per_cu,
2967 dwarf2_per_objfile *per_objfile)
3cf03773 2968{
40f4af28 2969 gdbarch *arch = expr->gdbarch;
58414334 2970 std::vector<int> dw_labels, patches;
3cf03773
TT
2971 const gdb_byte * const base = op_ptr;
2972 const gdb_byte *previous_piece = op_ptr;
2973 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2974 ULONGEST bits_collected = 0;
2975 unsigned int addr_size_bits = 8 * addr_size;
d5a22e77 2976 bool bits_big_endian = byte_order == BFD_ENDIAN_BIG;
0936ad1d 2977
58414334 2978 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2979
3cf03773
TT
2980 /* By default we are making an address. */
2981 loc->kind = axs_lvalue_memory;
0d45f56e 2982
3cf03773
TT
2983 while (op_ptr < op_end)
2984 {
aead7601 2985 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2986 uint64_t uoffset, reg;
2987 int64_t offset;
3cf03773
TT
2988 int i;
2989
2990 offsets[op_ptr - base] = expr->len;
2991 ++op_ptr;
2992
2993 /* Our basic approach to code generation is to map DWARF
2994 operations directly to AX operations. However, there are
2995 some differences.
2996
2997 First, DWARF works on address-sized units, but AX always uses
2998 LONGEST. For most operations we simply ignore this
2999 difference; instead we generate sign extensions as needed
3000 before division and comparison operations. It would be nice
3001 to omit the sign extensions, but there is no way to determine
3002 the size of the target's LONGEST. (This code uses the size
3003 of the host LONGEST in some cases -- that is a bug but it is
3004 difficult to fix.)
3005
3006 Second, some DWARF operations cannot be translated to AX.
3007 For these we simply fail. See
3008 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3009 switch (op)
0936ad1d 3010 {
3cf03773
TT
3011 case DW_OP_lit0:
3012 case DW_OP_lit1:
3013 case DW_OP_lit2:
3014 case DW_OP_lit3:
3015 case DW_OP_lit4:
3016 case DW_OP_lit5:
3017 case DW_OP_lit6:
3018 case DW_OP_lit7:
3019 case DW_OP_lit8:
3020 case DW_OP_lit9:
3021 case DW_OP_lit10:
3022 case DW_OP_lit11:
3023 case DW_OP_lit12:
3024 case DW_OP_lit13:
3025 case DW_OP_lit14:
3026 case DW_OP_lit15:
3027 case DW_OP_lit16:
3028 case DW_OP_lit17:
3029 case DW_OP_lit18:
3030 case DW_OP_lit19:
3031 case DW_OP_lit20:
3032 case DW_OP_lit21:
3033 case DW_OP_lit22:
3034 case DW_OP_lit23:
3035 case DW_OP_lit24:
3036 case DW_OP_lit25:
3037 case DW_OP_lit26:
3038 case DW_OP_lit27:
3039 case DW_OP_lit28:
3040 case DW_OP_lit29:
3041 case DW_OP_lit30:
3042 case DW_OP_lit31:
3043 ax_const_l (expr, op - DW_OP_lit0);
3044 break;
0d53c4c4 3045
3cf03773 3046 case DW_OP_addr:
ac56253d 3047 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 3048 op_ptr += addr_size;
ac56253d
TT
3049 /* Some versions of GCC emit DW_OP_addr before
3050 DW_OP_GNU_push_tls_address. In this case the value is an
3051 index, not an address. We don't support things like
3052 branching between the address and the TLS op. */
3053 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
4b167ea1 3054 uoffset += per_objfile->objfile->text_section_offset ();
ac56253d 3055 ax_const_l (expr, uoffset);
3cf03773 3056 break;
4c2df51b 3057
3cf03773
TT
3058 case DW_OP_const1u:
3059 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3060 op_ptr += 1;
3061 break;
3062 case DW_OP_const1s:
3063 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3064 op_ptr += 1;
3065 break;
3066 case DW_OP_const2u:
3067 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3068 op_ptr += 2;
3069 break;
3070 case DW_OP_const2s:
3071 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3072 op_ptr += 2;
3073 break;
3074 case DW_OP_const4u:
3075 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3076 op_ptr += 4;
3077 break;
3078 case DW_OP_const4s:
3079 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3080 op_ptr += 4;
3081 break;
3082 case DW_OP_const8u:
3083 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3084 op_ptr += 8;
3085 break;
3086 case DW_OP_const8s:
3087 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3088 op_ptr += 8;
3089 break;
3090 case DW_OP_constu:
f664829e 3091 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
3092 ax_const_l (expr, uoffset);
3093 break;
3094 case DW_OP_consts:
f664829e 3095 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3096 ax_const_l (expr, offset);
3097 break;
9c238357 3098
3cf03773
TT
3099 case DW_OP_reg0:
3100 case DW_OP_reg1:
3101 case DW_OP_reg2:
3102 case DW_OP_reg3:
3103 case DW_OP_reg4:
3104 case DW_OP_reg5:
3105 case DW_OP_reg6:
3106 case DW_OP_reg7:
3107 case DW_OP_reg8:
3108 case DW_OP_reg9:
3109 case DW_OP_reg10:
3110 case DW_OP_reg11:
3111 case DW_OP_reg12:
3112 case DW_OP_reg13:
3113 case DW_OP_reg14:
3114 case DW_OP_reg15:
3115 case DW_OP_reg16:
3116 case DW_OP_reg17:
3117 case DW_OP_reg18:
3118 case DW_OP_reg19:
3119 case DW_OP_reg20:
3120 case DW_OP_reg21:
3121 case DW_OP_reg22:
3122 case DW_OP_reg23:
3123 case DW_OP_reg24:
3124 case DW_OP_reg25:
3125 case DW_OP_reg26:
3126 case DW_OP_reg27:
3127 case DW_OP_reg28:
3128 case DW_OP_reg29:
3129 case DW_OP_reg30:
3130 case DW_OP_reg31:
3131 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3132 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3133 loc->kind = axs_lvalue_register;
3134 break;
9c238357 3135
3cf03773 3136 case DW_OP_regx:
f664829e 3137 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3138 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3139 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3140 loc->kind = axs_lvalue_register;
3141 break;
08922a10 3142
3cf03773
TT
3143 case DW_OP_implicit_value:
3144 {
9fccedf7 3145 uint64_t len;
3cf03773 3146
f664829e 3147 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3148 if (op_ptr + len > op_end)
3149 error (_("DW_OP_implicit_value: too few bytes available."));
3150 if (len > sizeof (ULONGEST))
3151 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3152 (int) len);
3153
3154 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3155 byte_order));
3156 op_ptr += len;
3157 dwarf_expr_require_composition (op_ptr, op_end,
3158 "DW_OP_implicit_value");
3159
3160 loc->kind = axs_rvalue;
3161 }
3162 break;
08922a10 3163
3cf03773
TT
3164 case DW_OP_stack_value:
3165 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3166 loc->kind = axs_rvalue;
3167 break;
08922a10 3168
3cf03773
TT
3169 case DW_OP_breg0:
3170 case DW_OP_breg1:
3171 case DW_OP_breg2:
3172 case DW_OP_breg3:
3173 case DW_OP_breg4:
3174 case DW_OP_breg5:
3175 case DW_OP_breg6:
3176 case DW_OP_breg7:
3177 case DW_OP_breg8:
3178 case DW_OP_breg9:
3179 case DW_OP_breg10:
3180 case DW_OP_breg11:
3181 case DW_OP_breg12:
3182 case DW_OP_breg13:
3183 case DW_OP_breg14:
3184 case DW_OP_breg15:
3185 case DW_OP_breg16:
3186 case DW_OP_breg17:
3187 case DW_OP_breg18:
3188 case DW_OP_breg19:
3189 case DW_OP_breg20:
3190 case DW_OP_breg21:
3191 case DW_OP_breg22:
3192 case DW_OP_breg23:
3193 case DW_OP_breg24:
3194 case DW_OP_breg25:
3195 case DW_OP_breg26:
3196 case DW_OP_breg27:
3197 case DW_OP_breg28:
3198 case DW_OP_breg29:
3199 case DW_OP_breg30:
3200 case DW_OP_breg31:
f664829e 3201 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3202 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3203 ax_reg (expr, i);
3204 if (offset != 0)
3205 {
3206 ax_const_l (expr, offset);
3207 ax_simple (expr, aop_add);
3208 }
3209 break;
3210 case DW_OP_bregx:
3211 {
f664829e
DE
3212 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3213 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3214 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3215 ax_reg (expr, i);
3216 if (offset != 0)
3217 {
3218 ax_const_l (expr, offset);
3219 ax_simple (expr, aop_add);
3220 }
3221 }
3222 break;
3223 case DW_OP_fbreg:
3224 {
3225 const gdb_byte *datastart;
3226 size_t datalen;
3977b71f 3227 const struct block *b;
3cf03773 3228 struct symbol *framefunc;
08922a10 3229
3cf03773
TT
3230 b = block_for_pc (expr->scope);
3231
3232 if (!b)
3233 error (_("No block found for address"));
3234
3235 framefunc = block_linkage_function (b);
3236
3237 if (!framefunc)
3238 error (_("No function found for block"));
3239
af945b75
TT
3240 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3241 &datastart, &datalen);
3cf03773 3242
f664829e 3243 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
40f4af28 3244 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
4b167ea1
SM
3245 datastart + datalen, per_cu,
3246 per_objfile);
d84cf7eb
TT
3247 if (loc->kind == axs_lvalue_register)
3248 require_rvalue (expr, loc);
3cf03773
TT
3249
3250 if (offset != 0)
3251 {
3252 ax_const_l (expr, offset);
3253 ax_simple (expr, aop_add);
3254 }
3255
3256 loc->kind = axs_lvalue_memory;
3257 }
08922a10 3258 break;
08922a10 3259
3cf03773
TT
3260 case DW_OP_dup:
3261 ax_simple (expr, aop_dup);
3262 break;
08922a10 3263
3cf03773
TT
3264 case DW_OP_drop:
3265 ax_simple (expr, aop_pop);
3266 break;
08922a10 3267
3cf03773
TT
3268 case DW_OP_pick:
3269 offset = *op_ptr++;
c7f96d2b 3270 ax_pick (expr, offset);
3cf03773
TT
3271 break;
3272
3273 case DW_OP_swap:
3274 ax_simple (expr, aop_swap);
3275 break;
08922a10 3276
3cf03773 3277 case DW_OP_over:
c7f96d2b 3278 ax_pick (expr, 1);
3cf03773 3279 break;
08922a10 3280
3cf03773 3281 case DW_OP_rot:
c7f96d2b 3282 ax_simple (expr, aop_rot);
3cf03773 3283 break;
08922a10 3284
3cf03773
TT
3285 case DW_OP_deref:
3286 case DW_OP_deref_size:
3287 {
3288 int size;
08922a10 3289
3cf03773
TT
3290 if (op == DW_OP_deref_size)
3291 size = *op_ptr++;
3292 else
3293 size = addr_size;
3294
9df7235c 3295 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3296 error (_("Unsupported size %d in %s"),
3297 size, get_DW_OP_name (op));
9df7235c 3298 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3299 }
3300 break;
3301
3302 case DW_OP_abs:
3303 /* Sign extend the operand. */
3304 ax_ext (expr, addr_size_bits);
3305 ax_simple (expr, aop_dup);
3306 ax_const_l (expr, 0);
3307 ax_simple (expr, aop_less_signed);
3308 ax_simple (expr, aop_log_not);
3309 i = ax_goto (expr, aop_if_goto);
3310 /* We have to emit 0 - X. */
3311 ax_const_l (expr, 0);
3312 ax_simple (expr, aop_swap);
3313 ax_simple (expr, aop_sub);
3314 ax_label (expr, i, expr->len);
3315 break;
3316
3317 case DW_OP_neg:
3318 /* No need to sign extend here. */
3319 ax_const_l (expr, 0);
3320 ax_simple (expr, aop_swap);
3321 ax_simple (expr, aop_sub);
3322 break;
3323
3324 case DW_OP_not:
3325 /* Sign extend the operand. */
3326 ax_ext (expr, addr_size_bits);
3327 ax_simple (expr, aop_bit_not);
3328 break;
3329
3330 case DW_OP_plus_uconst:
f664829e 3331 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3332 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3333 but we micro-optimize anyhow. */
3334 if (reg != 0)
3335 {
3336 ax_const_l (expr, reg);
3337 ax_simple (expr, aop_add);
3338 }
3339 break;
3340
3341 case DW_OP_and:
3342 ax_simple (expr, aop_bit_and);
3343 break;
3344
3345 case DW_OP_div:
3346 /* Sign extend the operands. */
3347 ax_ext (expr, addr_size_bits);
3348 ax_simple (expr, aop_swap);
3349 ax_ext (expr, addr_size_bits);
3350 ax_simple (expr, aop_swap);
3351 ax_simple (expr, aop_div_signed);
08922a10
SS
3352 break;
3353
3cf03773
TT
3354 case DW_OP_minus:
3355 ax_simple (expr, aop_sub);
3356 break;
3357
3358 case DW_OP_mod:
3359 ax_simple (expr, aop_rem_unsigned);
3360 break;
3361
3362 case DW_OP_mul:
3363 ax_simple (expr, aop_mul);
3364 break;
3365
3366 case DW_OP_or:
3367 ax_simple (expr, aop_bit_or);
3368 break;
3369
3370 case DW_OP_plus:
3371 ax_simple (expr, aop_add);
3372 break;
3373
3374 case DW_OP_shl:
3375 ax_simple (expr, aop_lsh);
3376 break;
3377
3378 case DW_OP_shr:
3379 ax_simple (expr, aop_rsh_unsigned);
3380 break;
3381
3382 case DW_OP_shra:
3383 ax_simple (expr, aop_rsh_signed);
3384 break;
3385
3386 case DW_OP_xor:
3387 ax_simple (expr, aop_bit_xor);
3388 break;
3389
3390 case DW_OP_le:
3391 /* Sign extend the operands. */
3392 ax_ext (expr, addr_size_bits);
3393 ax_simple (expr, aop_swap);
3394 ax_ext (expr, addr_size_bits);
3395 /* Note no swap here: A <= B is !(B < A). */
3396 ax_simple (expr, aop_less_signed);
3397 ax_simple (expr, aop_log_not);
3398 break;
3399
3400 case DW_OP_ge:
3401 /* Sign extend the operands. */
3402 ax_ext (expr, addr_size_bits);
3403 ax_simple (expr, aop_swap);
3404 ax_ext (expr, addr_size_bits);
3405 ax_simple (expr, aop_swap);
3406 /* A >= B is !(A < B). */
3407 ax_simple (expr, aop_less_signed);
3408 ax_simple (expr, aop_log_not);
3409 break;
3410
3411 case DW_OP_eq:
3412 /* Sign extend the operands. */
3413 ax_ext (expr, addr_size_bits);
3414 ax_simple (expr, aop_swap);
3415 ax_ext (expr, addr_size_bits);
3416 /* No need for a second swap here. */
3417 ax_simple (expr, aop_equal);
3418 break;
3419
3420 case DW_OP_lt:
3421 /* Sign extend the operands. */
3422 ax_ext (expr, addr_size_bits);
3423 ax_simple (expr, aop_swap);
3424 ax_ext (expr, addr_size_bits);
3425 ax_simple (expr, aop_swap);
3426 ax_simple (expr, aop_less_signed);
3427 break;
3428
3429 case DW_OP_gt:
3430 /* Sign extend the operands. */
3431 ax_ext (expr, addr_size_bits);
3432 ax_simple (expr, aop_swap);
3433 ax_ext (expr, addr_size_bits);
3434 /* Note no swap here: A > B is B < A. */
3435 ax_simple (expr, aop_less_signed);
3436 break;
3437
3438 case DW_OP_ne:
3439 /* Sign extend the operands. */
3440 ax_ext (expr, addr_size_bits);
3441 ax_simple (expr, aop_swap);
3442 ax_ext (expr, addr_size_bits);
3443 /* No need for a swap here. */
3444 ax_simple (expr, aop_equal);
3445 ax_simple (expr, aop_log_not);
3446 break;
3447
3448 case DW_OP_call_frame_cfa:
a8fd5589
TT
3449 {
3450 int regnum;
3451 CORE_ADDR text_offset;
3452 LONGEST off;
3453 const gdb_byte *cfa_start, *cfa_end;
3454
3455 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3456 &regnum, &off,
3457 &text_offset, &cfa_start, &cfa_end))
3458 {
3459 /* Register. */
3460 ax_reg (expr, regnum);
3461 if (off != 0)
3462 {
3463 ax_const_l (expr, off);
3464 ax_simple (expr, aop_add);
3465 }
3466 }
3467 else
3468 {
3469 /* Another expression. */
3470 ax_const_l (expr, text_offset);
40f4af28 3471 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
4b167ea1 3472 cfa_end, per_cu, per_objfile);
a8fd5589
TT
3473 }
3474
3475 loc->kind = axs_lvalue_memory;
3476 }
3cf03773
TT
3477 break;
3478
3479 case DW_OP_GNU_push_tls_address:
4aa4e28b 3480 case DW_OP_form_tls_address:
3cf03773
TT
3481 unimplemented (op);
3482 break;
3483
08412b07
JB
3484 case DW_OP_push_object_address:
3485 unimplemented (op);
3486 break;
3487
3cf03773
TT
3488 case DW_OP_skip:
3489 offset = extract_signed_integer (op_ptr, 2, byte_order);
3490 op_ptr += 2;
3491 i = ax_goto (expr, aop_goto);
58414334
TT
3492 dw_labels.push_back (op_ptr + offset - base);
3493 patches.push_back (i);
3cf03773
TT
3494 break;
3495
3496 case DW_OP_bra:
3497 offset = extract_signed_integer (op_ptr, 2, byte_order);
3498 op_ptr += 2;
3499 /* Zero extend the operand. */
3500 ax_zero_ext (expr, addr_size_bits);
3501 i = ax_goto (expr, aop_if_goto);
58414334
TT
3502 dw_labels.push_back (op_ptr + offset - base);
3503 patches.push_back (i);
3cf03773
TT
3504 break;
3505
3506 case DW_OP_nop:
3507 break;
3508
3509 case DW_OP_piece:
3510 case DW_OP_bit_piece:
08922a10 3511 {
b926417a 3512 uint64_t size;
3cf03773
TT
3513
3514 if (op_ptr - 1 == previous_piece)
3515 error (_("Cannot translate empty pieces to agent expressions"));
3516 previous_piece = op_ptr - 1;
3517
f664829e 3518 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3519 if (op == DW_OP_piece)
3520 {
3521 size *= 8;
b926417a 3522 uoffset = 0;
3cf03773
TT
3523 }
3524 else
b926417a 3525 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
08922a10 3526
3cf03773
TT
3527 if (bits_collected + size > 8 * sizeof (LONGEST))
3528 error (_("Expression pieces exceed word size"));
3529
3530 /* Access the bits. */
3531 switch (loc->kind)
3532 {
3533 case axs_lvalue_register:
3534 ax_reg (expr, loc->u.reg);
3535 break;
3536
3537 case axs_lvalue_memory:
3538 /* Offset the pointer, if needed. */
b926417a 3539 if (uoffset > 8)
3cf03773 3540 {
b926417a 3541 ax_const_l (expr, uoffset / 8);
3cf03773 3542 ax_simple (expr, aop_add);
b926417a 3543 uoffset %= 8;
3cf03773
TT
3544 }
3545 access_memory (arch, expr, size);
3546 break;
3547 }
3548
3549 /* For a bits-big-endian target, shift up what we already
3550 have. For a bits-little-endian target, shift up the
3551 new data. Note that there is a potential bug here if
3552 the DWARF expression leaves multiple values on the
3553 stack. */
3554 if (bits_collected > 0)
3555 {
3556 if (bits_big_endian)
3557 {
3558 ax_simple (expr, aop_swap);
3559 ax_const_l (expr, size);
3560 ax_simple (expr, aop_lsh);
3561 /* We don't need a second swap here, because
3562 aop_bit_or is symmetric. */
3563 }
3564 else
3565 {
3566 ax_const_l (expr, size);
3567 ax_simple (expr, aop_lsh);
3568 }
3569 ax_simple (expr, aop_bit_or);
3570 }
3571
3572 bits_collected += size;
3573 loc->kind = axs_rvalue;
08922a10
SS
3574 }
3575 break;
08922a10 3576
3cf03773
TT
3577 case DW_OP_GNU_uninit:
3578 unimplemented (op);
3579
3580 case DW_OP_call2:
3581 case DW_OP_call4:
3582 {
3583 struct dwarf2_locexpr_baton block;
3584 int size = (op == DW_OP_call2 ? 2 : 4);
3585
3586 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3587 op_ptr += size;
3588
b926417a
TT
3589 cu_offset cuoffset = (cu_offset) uoffset;
3590 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
8b9737bf 3591 get_ax_pc, expr);
3cf03773
TT
3592
3593 /* DW_OP_call_ref is currently not supported. */
3594 gdb_assert (block.per_cu == per_cu);
3595
40f4af28 3596 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
4b167ea1
SM
3597 block.data + block.size, per_cu,
3598 per_objfile);
3cf03773
TT
3599 }
3600 break;
3601
3602 case DW_OP_call_ref:
3603 unimplemented (op);
3604
a6b786da
KB
3605 case DW_OP_GNU_variable_value:
3606 unimplemented (op);
3607
3cf03773 3608 default:
b1bfef65 3609 unimplemented (op);
08922a10 3610 }
08922a10 3611 }
3cf03773
TT
3612
3613 /* Patch all the branches we emitted. */
b926417a 3614 for (int i = 0; i < patches.size (); ++i)
3cf03773 3615 {
58414334 3616 int targ = offsets[dw_labels[i]];
3cf03773
TT
3617 if (targ == -1)
3618 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3619 ax_label (expr, patches[i], targ);
3cf03773 3620 }
08922a10
SS
3621}
3622
4c2df51b
DJ
3623\f
3624/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3625 evaluator to calculate the location. */
3626static struct value *
3627locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3628{
9a3c8263
SM
3629 struct dwarf2_locexpr_baton *dlbaton
3630 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3631 struct value *val;
9a619af0 3632
a2d33775
JK
3633 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3634 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3635
3636 return val;
3637}
3638
e18b2753
JK
3639/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3640 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3641 will be thrown. */
3642
3643static struct value *
3644locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3645{
9a3c8263
SM
3646 struct dwarf2_locexpr_baton *dlbaton
3647 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3648
3649 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3650 dlbaton->size);
3651}
3652
0b31a4bc
TT
3653/* Implementation of get_symbol_read_needs from
3654 symbol_computed_ops. */
3655
3656static enum symbol_needs_kind
3657locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3658{
9a3c8263
SM
3659 struct dwarf2_locexpr_baton *dlbaton
3660 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3661
0b31a4bc
TT
3662 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3663 dlbaton->per_cu);
4c2df51b
DJ
3664}
3665
9eae7c52
TT
3666/* Return true if DATA points to the end of a piece. END is one past
3667 the last byte in the expression. */
3668
3669static int
3670piece_end_p (const gdb_byte *data, const gdb_byte *end)
3671{
3672 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3673}
3674
5e44ecb3
TT
3675/* Helper for locexpr_describe_location_piece that finds the name of a
3676 DWARF register. */
3677
3678static const char *
3679locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3680{
3681 int regnum;
3682
0fde2c53
DE
3683 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3684 We'd rather print *something* here than throw an error. */
3685 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3686 /* gdbarch_register_name may just return "", return something more
3687 descriptive for bad register numbers. */
3688 if (regnum == -1)
3689 {
3690 /* The text is output as "$bad_register_number".
3691 That is why we use the underscores. */
3692 return _("bad_register_number");
3693 }
5e44ecb3
TT
3694 return gdbarch_register_name (gdbarch, regnum);
3695}
3696
9eae7c52
TT
3697/* Nicely describe a single piece of a location, returning an updated
3698 position in the bytecode sequence. This function cannot recognize
3699 all locations; if a location is not recognized, it simply returns
f664829e
DE
3700 DATA. If there is an error during reading, e.g. we run off the end
3701 of the buffer, an error is thrown. */
08922a10 3702
0d45f56e 3703static const gdb_byte *
08922a10 3704locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
82ca3f51
SM
3705 CORE_ADDR addr, dwarf2_per_cu_data *per_cu,
3706 dwarf2_per_objfile *per_objfile,
9eae7c52 3707 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3708 unsigned int addr_size)
4c2df51b 3709{
82ca3f51 3710 objfile *objfile = per_objfile->objfile;
08feed99 3711 struct gdbarch *gdbarch = objfile->arch ();
49f6c839 3712 size_t leb128_size;
08922a10
SS
3713
3714 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3715 {
08922a10 3716 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3717 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3718 data += 1;
3719 }
3720 else if (data[0] == DW_OP_regx)
3721 {
9fccedf7 3722 uint64_t reg;
4c2df51b 3723
f664829e 3724 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3725 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3726 locexpr_regname (gdbarch, reg));
08922a10
SS
3727 }
3728 else if (data[0] == DW_OP_fbreg)
4c2df51b 3729 {
3977b71f 3730 const struct block *b;
08922a10
SS
3731 struct symbol *framefunc;
3732 int frame_reg = 0;
9fccedf7 3733 int64_t frame_offset;
7155d578 3734 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3735 size_t base_size;
9fccedf7 3736 int64_t base_offset = 0;
08922a10 3737
f664829e 3738 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3739 if (!piece_end_p (new_data, end))
3740 return data;
3741 data = new_data;
3742
08922a10
SS
3743 b = block_for_pc (addr);
3744
3745 if (!b)
3746 error (_("No block found for address for symbol \"%s\"."),
987012b8 3747 symbol->print_name ());
08922a10
SS
3748
3749 framefunc = block_linkage_function (b);
3750
3751 if (!framefunc)
3752 error (_("No function found for block for symbol \"%s\"."),
987012b8 3753 symbol->print_name ());
08922a10 3754
af945b75 3755 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3756
3757 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3758 {
0d45f56e 3759 const gdb_byte *buf_end;
08922a10
SS
3760
3761 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3762 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3763 &base_offset);
08922a10 3764 if (buf_end != base_data + base_size)
3e43a32a
MS
3765 error (_("Unexpected opcode after "
3766 "DW_OP_breg%u for symbol \"%s\"."),
987012b8 3767 frame_reg, symbol->print_name ());
08922a10
SS
3768 }
3769 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3770 {
3771 /* The frame base is just the register, with no offset. */
3772 frame_reg = base_data[0] - DW_OP_reg0;
3773 base_offset = 0;
3774 }
3775 else
3776 {
3777 /* We don't know what to do with the frame base expression,
3778 so we can't trace this variable; give up. */
7155d578 3779 return save_data;
08922a10
SS
3780 }
3781
3e43a32a
MS
3782 fprintf_filtered (stream,
3783 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3784 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3785 plongest (base_offset), plongest (frame_offset));
3786 }
9eae7c52
TT
3787 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3788 && piece_end_p (data, end))
08922a10 3789 {
9fccedf7 3790 int64_t offset;
08922a10 3791
f664829e 3792 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3793
4c2df51b 3794 fprintf_filtered (stream,
08922a10
SS
3795 _("a variable at offset %s from base reg $%s"),
3796 plongest (offset),
5e44ecb3 3797 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3798 }
3799
c3228f12
EZ
3800 /* The location expression for a TLS variable looks like this (on a
3801 64-bit LE machine):
3802
3803 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3804 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3805
c3228f12
EZ
3806 0x3 is the encoding for DW_OP_addr, which has an operand as long
3807 as the size of an address on the target machine (here is 8
09d8bd00
TT
3808 bytes). Note that more recent version of GCC emit DW_OP_const4u
3809 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3810 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3811 The operand represents the offset at which the variable is within
3812 the thread local storage. */
c3228f12 3813
9eae7c52 3814 else if (data + 1 + addr_size < end
09d8bd00
TT
3815 && (data[0] == DW_OP_addr
3816 || (addr_size == 4 && data[0] == DW_OP_const4u)
3817 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3818 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3819 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3820 && piece_end_p (data + 2 + addr_size, end))
08922a10 3821 {
d4a087c7
UW
3822 ULONGEST offset;
3823 offset = extract_unsigned_integer (data + 1, addr_size,
3824 gdbarch_byte_order (gdbarch));
9a619af0 3825
08922a10 3826 fprintf_filtered (stream,
d4a087c7 3827 _("a thread-local variable at offset 0x%s "
08922a10 3828 "in the thread-local storage for `%s'"),
4262abfb 3829 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3830
3831 data += 1 + addr_size + 1;
3832 }
49f6c839
DE
3833
3834 /* With -gsplit-dwarf a TLS variable can also look like this:
3835 DW_AT_location : 3 byte block: fc 4 e0
3836 (DW_OP_GNU_const_index: 4;
3837 DW_OP_GNU_push_tls_address) */
3838 else if (data + 3 <= end
3839 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3840 && data[0] == DW_OP_GNU_const_index
3841 && leb128_size > 0
4aa4e28b
TT
3842 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3843 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3844 && piece_end_p (data + 2 + leb128_size, end))
3845 {
a55c1f32 3846 uint64_t offset;
49f6c839
DE
3847
3848 data = safe_read_uleb128 (data + 1, end, &offset);
82ca3f51 3849 offset = dwarf2_read_addr_index (per_cu, per_objfile, offset);
49f6c839
DE
3850 fprintf_filtered (stream,
3851 _("a thread-local variable at offset 0x%s "
3852 "in the thread-local storage for `%s'"),
4262abfb 3853 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3854 ++data;
3855 }
3856
9eae7c52
TT
3857 else if (data[0] >= DW_OP_lit0
3858 && data[0] <= DW_OP_lit31
3859 && data + 1 < end
3860 && data[1] == DW_OP_stack_value)
3861 {
3862 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3863 data += 2;
3864 }
3865
3866 return data;
3867}
3868
3869/* Disassemble an expression, stopping at the end of a piece or at the
3870 end of the expression. Returns a pointer to the next unread byte
3871 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3872 will keep going until it reaches the end of the expression.
3873 If there is an error during reading, e.g. we run off the end
3874 of the buffer, an error is thrown. */
9eae7c52
TT
3875
3876static const gdb_byte *
3877disassemble_dwarf_expression (struct ui_file *stream,
3878 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3879 int offset_size, const gdb_byte *start,
9eae7c52 3880 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3881 int indent, int all,
82ca3f51
SM
3882 dwarf2_per_cu_data *per_cu,
3883 dwarf2_per_objfile *per_objfile)
9eae7c52 3884{
9eae7c52
TT
3885 while (data < end
3886 && (all
3887 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3888 {
aead7601 3889 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3890 uint64_t ul;
3891 int64_t l;
9eae7c52
TT
3892 const char *name;
3893
f39c6ffd 3894 name = get_DW_OP_name (op);
9eae7c52
TT
3895
3896 if (!name)
3897 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3898 op, (long) (data - 1 - start));
2bda9cc5
JK
3899 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3900 (long) (data - 1 - start), name);
9eae7c52
TT
3901
3902 switch (op)
3903 {
3904 case DW_OP_addr:
d4a087c7
UW
3905 ul = extract_unsigned_integer (data, addr_size,
3906 gdbarch_byte_order (arch));
9eae7c52 3907 data += addr_size;
d4a087c7 3908 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3909 break;
3910
3911 case DW_OP_const1u:
3912 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3913 data += 1;
3914 fprintf_filtered (stream, " %s", pulongest (ul));
3915 break;
3916 case DW_OP_const1s:
3917 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3918 data += 1;
3919 fprintf_filtered (stream, " %s", plongest (l));
3920 break;
3921 case DW_OP_const2u:
3922 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3923 data += 2;
3924 fprintf_filtered (stream, " %s", pulongest (ul));
3925 break;
3926 case DW_OP_const2s:
3927 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3928 data += 2;
3929 fprintf_filtered (stream, " %s", plongest (l));
3930 break;
3931 case DW_OP_const4u:
3932 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3933 data += 4;
3934 fprintf_filtered (stream, " %s", pulongest (ul));
3935 break;
3936 case DW_OP_const4s:
3937 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3938 data += 4;
3939 fprintf_filtered (stream, " %s", plongest (l));
3940 break;
3941 case DW_OP_const8u:
3942 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3943 data += 8;
3944 fprintf_filtered (stream, " %s", pulongest (ul));
3945 break;
3946 case DW_OP_const8s:
3947 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3948 data += 8;
3949 fprintf_filtered (stream, " %s", plongest (l));
3950 break;
3951 case DW_OP_constu:
f664829e 3952 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3953 fprintf_filtered (stream, " %s", pulongest (ul));
3954 break;
3955 case DW_OP_consts:
f664829e 3956 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3957 fprintf_filtered (stream, " %s", plongest (l));
3958 break;
3959
3960 case DW_OP_reg0:
3961 case DW_OP_reg1:
3962 case DW_OP_reg2:
3963 case DW_OP_reg3:
3964 case DW_OP_reg4:
3965 case DW_OP_reg5:
3966 case DW_OP_reg6:
3967 case DW_OP_reg7:
3968 case DW_OP_reg8:
3969 case DW_OP_reg9:
3970 case DW_OP_reg10:
3971 case DW_OP_reg11:
3972 case DW_OP_reg12:
3973 case DW_OP_reg13:
3974 case DW_OP_reg14:
3975 case DW_OP_reg15:
3976 case DW_OP_reg16:
3977 case DW_OP_reg17:
3978 case DW_OP_reg18:
3979 case DW_OP_reg19:
3980 case DW_OP_reg20:
3981 case DW_OP_reg21:
3982 case DW_OP_reg22:
3983 case DW_OP_reg23:
3984 case DW_OP_reg24:
3985 case DW_OP_reg25:
3986 case DW_OP_reg26:
3987 case DW_OP_reg27:
3988 case DW_OP_reg28:
3989 case DW_OP_reg29:
3990 case DW_OP_reg30:
3991 case DW_OP_reg31:
3992 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3993 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3994 break;
3995
3996 case DW_OP_regx:
f664829e 3997 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3998 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3999 locexpr_regname (arch, (int) ul));
9eae7c52
TT
4000 break;
4001
4002 case DW_OP_implicit_value:
f664829e 4003 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4004 data += ul;
4005 fprintf_filtered (stream, " %s", pulongest (ul));
4006 break;
4007
4008 case DW_OP_breg0:
4009 case DW_OP_breg1:
4010 case DW_OP_breg2:
4011 case DW_OP_breg3:
4012 case DW_OP_breg4:
4013 case DW_OP_breg5:
4014 case DW_OP_breg6:
4015 case DW_OP_breg7:
4016 case DW_OP_breg8:
4017 case DW_OP_breg9:
4018 case DW_OP_breg10:
4019 case DW_OP_breg11:
4020 case DW_OP_breg12:
4021 case DW_OP_breg13:
4022 case DW_OP_breg14:
4023 case DW_OP_breg15:
4024 case DW_OP_breg16:
4025 case DW_OP_breg17:
4026 case DW_OP_breg18:
4027 case DW_OP_breg19:
4028 case DW_OP_breg20:
4029 case DW_OP_breg21:
4030 case DW_OP_breg22:
4031 case DW_OP_breg23:
4032 case DW_OP_breg24:
4033 case DW_OP_breg25:
4034 case DW_OP_breg26:
4035 case DW_OP_breg27:
4036 case DW_OP_breg28:
4037 case DW_OP_breg29:
4038 case DW_OP_breg30:
4039 case DW_OP_breg31:
f664829e 4040 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4041 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 4042 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
4043 break;
4044
4045 case DW_OP_bregx:
f664829e
DE
4046 data = safe_read_uleb128 (data, end, &ul);
4047 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
4048 fprintf_filtered (stream, " register %s [$%s] offset %s",
4049 pulongest (ul),
5e44ecb3 4050 locexpr_regname (arch, (int) ul),
0502ed8c 4051 plongest (l));
9eae7c52
TT
4052 break;
4053
4054 case DW_OP_fbreg:
f664829e 4055 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4056 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
4057 break;
4058
4059 case DW_OP_xderef_size:
4060 case DW_OP_deref_size:
4061 case DW_OP_pick:
4062 fprintf_filtered (stream, " %d", *data);
4063 ++data;
4064 break;
4065
4066 case DW_OP_plus_uconst:
f664829e 4067 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4068 fprintf_filtered (stream, " %s", pulongest (ul));
4069 break;
4070
4071 case DW_OP_skip:
4072 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4073 data += 2;
4074 fprintf_filtered (stream, " to %ld",
4075 (long) (data + l - start));
4076 break;
4077
4078 case DW_OP_bra:
4079 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4080 data += 2;
4081 fprintf_filtered (stream, " %ld",
4082 (long) (data + l - start));
4083 break;
4084
4085 case DW_OP_call2:
4086 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4087 data += 2;
4088 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4089 break;
4090
4091 case DW_OP_call4:
4092 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4093 data += 4;
4094 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4095 break;
4096
4097 case DW_OP_call_ref:
4098 ul = extract_unsigned_integer (data, offset_size,
4099 gdbarch_byte_order (arch));
4100 data += offset_size;
4101 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4102 break;
4103
4104 case DW_OP_piece:
f664829e 4105 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4106 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4107 break;
4108
4109 case DW_OP_bit_piece:
4110 {
9fccedf7 4111 uint64_t offset;
9eae7c52 4112
f664829e
DE
4113 data = safe_read_uleb128 (data, end, &ul);
4114 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4115 fprintf_filtered (stream, " size %s offset %s (bits)",
4116 pulongest (ul), pulongest (offset));
4117 }
4118 break;
8cf6f0b1 4119
216f72a1 4120 case DW_OP_implicit_pointer:
8cf6f0b1
TT
4121 case DW_OP_GNU_implicit_pointer:
4122 {
4123 ul = extract_unsigned_integer (data, offset_size,
4124 gdbarch_byte_order (arch));
4125 data += offset_size;
4126
f664829e 4127 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4128
4129 fprintf_filtered (stream, " DIE %s offset %s",
4130 phex_nz (ul, offset_size),
4131 plongest (l));
4132 }
4133 break;
5e44ecb3 4134
216f72a1 4135 case DW_OP_deref_type:
5e44ecb3
TT
4136 case DW_OP_GNU_deref_type:
4137 {
b926417a 4138 int deref_addr_size = *data++;
5e44ecb3
TT
4139 struct type *type;
4140
f664829e 4141 data = safe_read_uleb128 (data, end, &ul);
9c541725 4142 cu_offset offset = (cu_offset) ul;
5e44ecb3
TT
4143 type = dwarf2_get_die_type (offset, per_cu);
4144 fprintf_filtered (stream, "<");
4145 type_print (type, "", stream, -1);
9c541725
PA
4146 fprintf_filtered (stream, " [0x%s]> %d",
4147 phex_nz (to_underlying (offset), 0),
b926417a 4148 deref_addr_size);
5e44ecb3
TT
4149 }
4150 break;
4151
216f72a1 4152 case DW_OP_const_type:
5e44ecb3
TT
4153 case DW_OP_GNU_const_type:
4154 {
5e44ecb3
TT
4155 struct type *type;
4156
f664829e 4157 data = safe_read_uleb128 (data, end, &ul);
9c541725 4158 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4159 type = dwarf2_get_die_type (type_die, per_cu);
4160 fprintf_filtered (stream, "<");
4161 type_print (type, "", stream, -1);
9c541725
PA
4162 fprintf_filtered (stream, " [0x%s]>",
4163 phex_nz (to_underlying (type_die), 0));
d9e49b61
TT
4164
4165 int n = *data++;
4166 fprintf_filtered (stream, " %d byte block:", n);
4167 for (int i = 0; i < n; ++i)
4168 fprintf_filtered (stream, " %02x", data[i]);
4169 data += n;
5e44ecb3
TT
4170 }
4171 break;
4172
216f72a1 4173 case DW_OP_regval_type:
5e44ecb3
TT
4174 case DW_OP_GNU_regval_type:
4175 {
9fccedf7 4176 uint64_t reg;
5e44ecb3
TT
4177 struct type *type;
4178
f664829e
DE
4179 data = safe_read_uleb128 (data, end, &reg);
4180 data = safe_read_uleb128 (data, end, &ul);
9c541725 4181 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4182
4183 type = dwarf2_get_die_type (type_die, per_cu);
4184 fprintf_filtered (stream, "<");
4185 type_print (type, "", stream, -1);
b64f50a1 4186 fprintf_filtered (stream, " [0x%s]> [$%s]",
9c541725 4187 phex_nz (to_underlying (type_die), 0),
5e44ecb3
TT
4188 locexpr_regname (arch, reg));
4189 }
4190 break;
4191
216f72a1 4192 case DW_OP_convert:
5e44ecb3 4193 case DW_OP_GNU_convert:
216f72a1 4194 case DW_OP_reinterpret:
5e44ecb3
TT
4195 case DW_OP_GNU_reinterpret:
4196 {
f664829e 4197 data = safe_read_uleb128 (data, end, &ul);
9c541725 4198 cu_offset type_die = (cu_offset) ul;
5e44ecb3 4199
9c541725 4200 if (to_underlying (type_die) == 0)
5e44ecb3
TT
4201 fprintf_filtered (stream, "<0>");
4202 else
4203 {
4204 struct type *type;
4205
4206 type = dwarf2_get_die_type (type_die, per_cu);
4207 fprintf_filtered (stream, "<");
4208 type_print (type, "", stream, -1);
9c541725
PA
4209 fprintf_filtered (stream, " [0x%s]>",
4210 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4211 }
4212 }
4213 break;
2bda9cc5 4214
216f72a1 4215 case DW_OP_entry_value:
2bda9cc5 4216 case DW_OP_GNU_entry_value:
f664829e 4217 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4218 fputc_filtered ('\n', stream);
4219 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4220 start, data, data + ul, indent + 2,
82ca3f51 4221 all, per_cu, per_objfile);
2bda9cc5
JK
4222 data += ul;
4223 continue;
49f6c839 4224
a24f71ab
JK
4225 case DW_OP_GNU_parameter_ref:
4226 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4227 data += 4;
4228 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4229 break;
4230
336d760d 4231 case DW_OP_addrx:
49f6c839
DE
4232 case DW_OP_GNU_addr_index:
4233 data = safe_read_uleb128 (data, end, &ul);
82ca3f51 4234 ul = dwarf2_read_addr_index (per_cu, per_objfile, ul);
49f6c839
DE
4235 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4236 break;
4237 case DW_OP_GNU_const_index:
4238 data = safe_read_uleb128 (data, end, &ul);
82ca3f51 4239 ul = dwarf2_read_addr_index (per_cu, per_objfile, ul);
49f6c839
DE
4240 fprintf_filtered (stream, " %s", pulongest (ul));
4241 break;
a6b786da
KB
4242
4243 case DW_OP_GNU_variable_value:
4244 ul = extract_unsigned_integer (data, offset_size,
4245 gdbarch_byte_order (arch));
4246 data += offset_size;
4247 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4248 break;
9eae7c52
TT
4249 }
4250
4251 fprintf_filtered (stream, "\n");
4252 }
c3228f12 4253
08922a10 4254 return data;
4c2df51b
DJ
4255}
4256
009b64fc
TT
4257static bool dwarf_always_disassemble;
4258
4259static void
4260show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
4261 struct cmd_list_element *c, const char *value)
4262{
4263 fprintf_filtered (file,
4264 _("Whether to always disassemble "
4265 "DWARF expressions is %s.\n"),
4266 value);
4267}
4268
08922a10
SS
4269/* Describe a single location, which may in turn consist of multiple
4270 pieces. */
a55cc764 4271
08922a10
SS
4272static void
4273locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4274 struct ui_file *stream,
56eb65bd 4275 const gdb_byte *data, size_t size,
82ca3f51
SM
4276 unsigned int addr_size,
4277 int offset_size, dwarf2_per_cu_data *per_cu,
4278 dwarf2_per_objfile *per_objfile)
08922a10 4279{
0d45f56e 4280 const gdb_byte *end = data + size;
9eae7c52 4281 int first_piece = 1, bad = 0;
82ca3f51 4282 objfile *objfile = per_objfile->objfile;
08922a10 4283
08922a10
SS
4284 while (data < end)
4285 {
9eae7c52
TT
4286 const gdb_byte *here = data;
4287 int disassemble = 1;
4288
4289 if (first_piece)
4290 first_piece = 0;
4291 else
4292 fprintf_filtered (stream, _(", and "));
08922a10 4293
b4f54984 4294 if (!dwarf_always_disassemble)
9eae7c52 4295 {
3e43a32a 4296 data = locexpr_describe_location_piece (symbol, stream,
82ca3f51 4297 addr, per_cu, per_objfile,
9eae7c52
TT
4298 data, end, addr_size);
4299 /* If we printed anything, or if we have an empty piece,
4300 then don't disassemble. */
4301 if (data != here
4302 || data[0] == DW_OP_piece
4303 || data[0] == DW_OP_bit_piece)
4304 disassemble = 0;
08922a10 4305 }
9eae7c52 4306 if (disassemble)
2bda9cc5
JK
4307 {
4308 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4309 data = disassemble_dwarf_expression (stream,
08feed99 4310 objfile->arch (),
2bda9cc5
JK
4311 addr_size, offset_size, data,
4312 data, end, 0,
b4f54984 4313 dwarf_always_disassemble,
82ca3f51 4314 per_cu, per_objfile);
2bda9cc5 4315 }
9eae7c52
TT
4316
4317 if (data < end)
08922a10 4318 {
9eae7c52 4319 int empty = data == here;
08922a10 4320
9eae7c52
TT
4321 if (disassemble)
4322 fprintf_filtered (stream, " ");
4323 if (data[0] == DW_OP_piece)
4324 {
9fccedf7 4325 uint64_t bytes;
08922a10 4326
f664829e 4327 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4328
9eae7c52
TT
4329 if (empty)
4330 fprintf_filtered (stream, _("an empty %s-byte piece"),
4331 pulongest (bytes));
4332 else
4333 fprintf_filtered (stream, _(" [%s-byte piece]"),
4334 pulongest (bytes));
4335 }
4336 else if (data[0] == DW_OP_bit_piece)
4337 {
9fccedf7 4338 uint64_t bits, offset;
9eae7c52 4339
f664829e
DE
4340 data = safe_read_uleb128 (data + 1, end, &bits);
4341 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4342
4343 if (empty)
4344 fprintf_filtered (stream,
4345 _("an empty %s-bit piece"),
4346 pulongest (bits));
4347 else
4348 fprintf_filtered (stream,
4349 _(" [%s-bit piece, offset %s bits]"),
4350 pulongest (bits), pulongest (offset));
4351 }
4352 else
4353 {
4354 bad = 1;
4355 break;
4356 }
08922a10
SS
4357 }
4358 }
4359
4360 if (bad || data > end)
4361 error (_("Corrupted DWARF2 expression for \"%s\"."),
987012b8 4362 symbol->print_name ());
08922a10
SS
4363}
4364
4365/* Print a natural-language description of SYMBOL to STREAM. This
4366 version is for a symbol with a single location. */
a55cc764 4367
08922a10
SS
4368static void
4369locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4370 struct ui_file *stream)
4371{
9a3c8263
SM
4372 struct dwarf2_locexpr_baton *dlbaton
4373 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
09ba997f
TT
4374 unsigned int addr_size = dlbaton->per_cu->addr_size ();
4375 int offset_size = dlbaton->per_cu->offset_size ();
08922a10 4376
3e43a32a
MS
4377 locexpr_describe_location_1 (symbol, addr, stream,
4378 dlbaton->data, dlbaton->size,
82ca3f51
SM
4379 addr_size, offset_size,
4380 dlbaton->per_cu, dlbaton->per_objfile);
08922a10
SS
4381}
4382
4383/* Describe the location of SYMBOL as an agent value in VALUE, generating
4384 any necessary bytecode in AX. */
a55cc764 4385
0d53c4c4 4386static void
40f4af28
SM
4387locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4388 struct axs_value *value)
a55cc764 4389{
9a3c8263
SM
4390 struct dwarf2_locexpr_baton *dlbaton
4391 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
09ba997f 4392 unsigned int addr_size = dlbaton->per_cu->addr_size ();
a55cc764 4393
1d6edc3c 4394 if (dlbaton->size == 0)
cabe9ab6
PA
4395 value->optimized_out = 1;
4396 else
40f4af28 4397 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4b167ea1
SM
4398 dlbaton->data + dlbaton->size, dlbaton->per_cu,
4399 dlbaton->per_objfile);
a55cc764
DJ
4400}
4401
bb2ec1b3
TT
4402/* symbol_computed_ops 'generate_c_location' method. */
4403
4404static void
d82b3862 4405locexpr_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4406 struct gdbarch *gdbarch,
4407 unsigned char *registers_used,
4408 CORE_ADDR pc, const char *result_name)
4409{
9a3c8263
SM
4410 struct dwarf2_locexpr_baton *dlbaton
4411 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
09ba997f 4412 unsigned int addr_size = dlbaton->per_cu->addr_size ();
bb2ec1b3
TT
4413
4414 if (dlbaton->size == 0)
987012b8 4415 error (_("symbol \"%s\" is optimized out"), sym->natural_name ());
bb2ec1b3
TT
4416
4417 compile_dwarf_expr_to_c (stream, result_name,
4418 sym, pc, gdbarch, registers_used, addr_size,
4419 dlbaton->data, dlbaton->data + dlbaton->size,
4b167ea1 4420 dlbaton->per_cu, dlbaton->per_objfile);
bb2ec1b3
TT
4421}
4422
4c2df51b
DJ
4423/* The set of location functions used with the DWARF-2 expression
4424 evaluator. */
768a979c 4425const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4426 locexpr_read_variable,
e18b2753 4427 locexpr_read_variable_at_entry,
0b31a4bc 4428 locexpr_get_symbol_read_needs,
4c2df51b 4429 locexpr_describe_location,
f1e6e072 4430 0, /* location_has_loclist */
bb2ec1b3
TT
4431 locexpr_tracepoint_var_ref,
4432 locexpr_generate_c_location
4c2df51b 4433};
0d53c4c4
DJ
4434
4435
4436/* Wrapper functions for location lists. These generally find
4437 the appropriate location expression and call something above. */
4438
4439/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4440 evaluator to calculate the location. */
4441static struct value *
4442loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4443{
9a3c8263
SM
4444 struct dwarf2_loclist_baton *dlbaton
4445 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4446 struct value *val;
947bb88f 4447 const gdb_byte *data;
b6b08ebf 4448 size_t size;
8cf6f0b1 4449 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4450
8cf6f0b1 4451 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4452 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4453 dlbaton->per_cu);
0d53c4c4
DJ
4454
4455 return val;
4456}
4457
e18b2753
JK
4458/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4459 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4460 will be thrown.
4461
4462 Function always returns non-NULL value, it may be marked optimized out if
4463 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4464 if it cannot resolve the parameter for any reason. */
4465
4466static struct value *
4467loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4468{
9a3c8263
SM
4469 struct dwarf2_loclist_baton *dlbaton
4470 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4471 const gdb_byte *data;
4472 size_t size;
4473 CORE_ADDR pc;
4474
4475 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4476 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4477
4478 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4479 if (data == NULL)
4480 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4481
4482 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4483}
4484
0b31a4bc
TT
4485/* Implementation of get_symbol_read_needs from
4486 symbol_computed_ops. */
4487
4488static enum symbol_needs_kind
4489loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4490{
4491 /* If there's a location list, then assume we need to have a frame
4492 to choose the appropriate location expression. With tracking of
4493 global variables this is not necessarily true, but such tracking
4494 is disabled in GCC at the moment until we figure out how to
4495 represent it. */
4496
0b31a4bc 4497 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4498}
4499
08922a10
SS
4500/* Print a natural-language description of SYMBOL to STREAM. This
4501 version applies when there is a list of different locations, each
4502 with a specified address range. */
4503
4504static void
4505loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4506 struct ui_file *stream)
0d53c4c4 4507{
9a3c8263
SM
4508 struct dwarf2_loclist_baton *dlbaton
4509 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4510 const gdb_byte *loc_ptr, *buf_end;
a50264ba
TT
4511 dwarf2_per_objfile *per_objfile = dlbaton->per_objfile;
4512 struct objfile *objfile = per_objfile->objfile;
08feed99 4513 struct gdbarch *gdbarch = objfile->arch ();
08922a10 4514 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
09ba997f
TT
4515 unsigned int addr_size = dlbaton->per_cu->addr_size ();
4516 int offset_size = dlbaton->per_cu->offset_size ();
d4a087c7 4517 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4518 /* Adjust base_address for relocatable objects. */
4b167ea1 4519 CORE_ADDR base_offset = objfile->text_section_offset ();
08922a10 4520 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4521 int done = 0;
08922a10
SS
4522
4523 loc_ptr = dlbaton->data;
4524 buf_end = dlbaton->data + dlbaton->size;
4525
9eae7c52 4526 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4527
4528 /* Iterate through locations until we run out. */
f664829e 4529 while (!done)
08922a10 4530 {
f664829e
DE
4531 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4532 int length;
4533 enum debug_loc_kind kind;
4534 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4535
85a9510c 4536 if (dlbaton->per_cu->version () < 5 && dlbaton->from_dwo)
f664829e 4537 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
82ca3f51 4538 dlbaton->per_objfile,
f664829e 4539 loc_ptr, buf_end, &new_ptr,
3771a44c 4540 &low, &high, byte_order);
85a9510c 4541 else if (dlbaton->per_cu->version () < 5)
f664829e
DE
4542 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4543 &low, &high,
4544 byte_order, addr_size,
4545 signed_addr_p);
85a9510c 4546 else
4547 kind = decode_debug_loclists_addresses (dlbaton->per_cu,
82ca3f51 4548 dlbaton->per_objfile,
85a9510c 4549 loc_ptr, buf_end, &new_ptr,
4550 &low, &high, byte_order,
4551 addr_size, signed_addr_p);
f664829e
DE
4552 loc_ptr = new_ptr;
4553 switch (kind)
08922a10 4554 {
f664829e
DE
4555 case DEBUG_LOC_END_OF_LIST:
4556 done = 1;
4557 continue;
4558 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4559 base_address = high + base_offset;
9eae7c52 4560 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4561 paddress (gdbarch, base_address));
08922a10 4562 continue;
3771a44c
DE
4563 case DEBUG_LOC_START_END:
4564 case DEBUG_LOC_START_LENGTH:
85a9510c 4565 case DEBUG_LOC_OFFSET_PAIR:
f664829e
DE
4566 break;
4567 case DEBUG_LOC_BUFFER_OVERFLOW:
4568 case DEBUG_LOC_INVALID_ENTRY:
4569 error (_("Corrupted DWARF expression for symbol \"%s\"."),
987012b8 4570 symbol->print_name ());
f664829e
DE
4571 default:
4572 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4573 }
4574
08922a10
SS
4575 /* Otherwise, a location expression entry. */
4576 low += base_address;
4577 high += base_address;
4578
3e29f34a
MR
4579 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4580 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4581
85a9510c 4582 if (dlbaton->per_cu->version () < 5)
4583 {
4584 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4585 loc_ptr += 2;
4586 }
4587 else
4588 {
4589 unsigned int bytes_read;
4590 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
4591 loc_ptr += bytes_read;
4592 }
08922a10 4593
08922a10
SS
4594 /* (It would improve readability to print only the minimum
4595 necessary digits of the second number of the range.) */
9eae7c52 4596 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4597 paddress (gdbarch, low), paddress (gdbarch, high));
4598
4599 /* Now describe this particular location. */
4600 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
82ca3f51
SM
4601 addr_size, offset_size,
4602 dlbaton->per_cu, dlbaton->per_objfile);
9eae7c52
TT
4603
4604 fprintf_filtered (stream, "\n");
08922a10
SS
4605
4606 loc_ptr += length;
4607 }
0d53c4c4
DJ
4608}
4609
4610/* Describe the location of SYMBOL as an agent value in VALUE, generating
4611 any necessary bytecode in AX. */
4612static void
40f4af28
SM
4613loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4614 struct axs_value *value)
0d53c4c4 4615{
9a3c8263
SM
4616 struct dwarf2_loclist_baton *dlbaton
4617 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4618 const gdb_byte *data;
b6b08ebf 4619 size_t size;
09ba997f 4620 unsigned int addr_size = dlbaton->per_cu->addr_size ();
0d53c4c4 4621
8cf6f0b1 4622 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4623 if (size == 0)
cabe9ab6
PA
4624 value->optimized_out = 1;
4625 else
40f4af28 4626 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4b167ea1 4627 dlbaton->per_cu, dlbaton->per_objfile);
0d53c4c4
DJ
4628}
4629
bb2ec1b3
TT
4630/* symbol_computed_ops 'generate_c_location' method. */
4631
4632static void
d82b3862 4633loclist_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4634 struct gdbarch *gdbarch,
4635 unsigned char *registers_used,
4636 CORE_ADDR pc, const char *result_name)
4637{
9a3c8263
SM
4638 struct dwarf2_loclist_baton *dlbaton
4639 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
09ba997f 4640 unsigned int addr_size = dlbaton->per_cu->addr_size ();
bb2ec1b3
TT
4641 const gdb_byte *data;
4642 size_t size;
4643
4644 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4645 if (size == 0)
987012b8 4646 error (_("symbol \"%s\" is optimized out"), sym->natural_name ());
bb2ec1b3
TT
4647
4648 compile_dwarf_expr_to_c (stream, result_name,
4649 sym, pc, gdbarch, registers_used, addr_size,
4650 data, data + size,
4b167ea1
SM
4651 dlbaton->per_cu,
4652 dlbaton->per_objfile);
bb2ec1b3
TT
4653}
4654
0d53c4c4
DJ
4655/* The set of location functions used with the DWARF-2 expression
4656 evaluator and location lists. */
768a979c 4657const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4658 loclist_read_variable,
e18b2753 4659 loclist_read_variable_at_entry,
0b31a4bc 4660 loclist_symbol_needs,
0d53c4c4 4661 loclist_describe_location,
f1e6e072 4662 1, /* location_has_loclist */
bb2ec1b3
TT
4663 loclist_tracepoint_var_ref,
4664 loclist_generate_c_location
0d53c4c4 4665};
8e3b41a9 4666
6c265988 4667void _initialize_dwarf2loc ();
8e3b41a9 4668void
6c265988 4669_initialize_dwarf2loc ()
8e3b41a9 4670{
ccce17b0
YQ
4671 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4672 &entry_values_debug,
4673 _("Set entry values and tail call frames "
4674 "debugging."),
4675 _("Show entry values and tail call frames "
4676 "debugging."),
4677 _("When non-zero, the process of determining "
4678 "parameter values from function entry point "
4679 "and tail call frames will be printed."),
4680 NULL,
4681 show_entry_values_debug,
4682 &setdebuglist, &showdebuglist);
009b64fc
TT
4683
4684 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
4685 &dwarf_always_disassemble, _("\
4686Set whether `info address' always disassembles DWARF expressions."), _("\
4687Show whether `info address' always disassembles DWARF expressions."), _("\
4688When enabled, DWARF expressions are always printed in an assembly-like\n\
4689syntax. When disabled, expressions will be printed in a more\n\
4690conversational style, when possible."),
4691 NULL,
4692 show_dwarf_always_disassemble,
4693 &set_dwarf_cmdlist,
4694 &show_dwarf_cmdlist);
8e3b41a9 4695}
This page took 1.600322 seconds and 4 git commands to generate.