Update ISA 3.0 / POWER9 gdb tests to match GAS test cases.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
52059ffd
TT
168enum cfa_how_kind
169{
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173};
174
175struct dwarf2_frame_state_reg_info
176{
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187};
188
cfc14b3a
MK
189/* Structure describing a frame state. */
190
191struct dwarf2_frame_state
192{
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
52059ffd 195 struct dwarf2_frame_state_reg_info regs;
cfc14b3a 196
cfc14b3a
MK
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
303b6f5d
DJ
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
218};
219
220/* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222#define cfa_exp_len cfa_reg
223
f57d151a 224/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
225 columns. If necessary, enlarge the register set. */
226
227static void
228dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230{
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
2473a4a9 240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
241 rs->num_regs = num_regs;
242}
243
244/* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247static struct dwarf2_frame_state_reg *
248dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249{
d10891d4 250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257}
258
259/* Release the memory allocated to register set RS. */
260
261static void
262dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263{
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271}
272
273/* Release the memory allocated to the frame state FS. */
274
275static void
276dwarf2_frame_state_free (void *p)
277{
9a3c8263 278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
cfc14b3a
MK
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285}
286\f
287
288/* Helper functions for execute_stack_op. */
289
290static CORE_ADDR
b1370418 291read_addr_from_reg (void *baton, int reg)
cfc14b3a 292{
4a4e5149
DJ
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 295 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 296
2ed3c037 297 return address_from_register (regnum, this_frame);
cfc14b3a
MK
298}
299
0acf8b65
JB
300/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302static struct value *
303get_reg_value (void *baton, struct type *type, int reg)
304{
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 307 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
0acf8b65
JB
308
309 return value_from_register (type, regnum, this_frame);
310}
311
cfc14b3a 312static void
852483bc 313read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
314{
315 read_memory (addr, buf, len);
316}
317
a6a5a945
LM
318/* Execute the required actions for both the DW_CFA_restore and
319DW_CFA_restore_extended instructions. */
320static void
321dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323{
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
339 {
340 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
341
342 complaint (&symfile_complaints, _("\
a6a5a945 343incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 344register %s (#%d) at %s"),
0fde2c53
DE
345 gdbarch_register_name (gdbarch, regnum), regnum,
346 paddress (gdbarch, fs->pc));
347 }
a6a5a945
LM
348}
349
9e8b7a03
JK
350/* Virtual method table for execute_stack_op below. */
351
352static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
353{
b1370418 354 read_addr_from_reg,
0acf8b65 355 get_reg_value,
9e8b7a03 356 read_mem,
523f3620
JK
357 ctx_no_get_frame_base,
358 ctx_no_get_frame_cfa,
359 ctx_no_get_frame_pc,
360 ctx_no_get_tls_address,
361 ctx_no_dwarf_call,
8e3b41a9 362 ctx_no_get_base_type,
3019eac3
DE
363 ctx_no_push_dwarf_reg_entry_value,
364 ctx_no_get_addr_index
9e8b7a03
JK
365};
366
cfc14b3a 367static CORE_ADDR
0d45f56e 368execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
369 CORE_ADDR offset, struct frame_info *this_frame,
370 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
371{
372 struct dwarf_expr_context *ctx;
373 CORE_ADDR result;
4a227398 374 struct cleanup *old_chain;
cfc14b3a
MK
375
376 ctx = new_dwarf_expr_context ();
4a227398 377 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 378 make_cleanup_value_free_to_mark (value_mark ());
4a227398 379
f7fd4728 380 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 381 ctx->addr_size = addr_size;
181cebd4 382 ctx->ref_addr_size = -1;
ac56253d 383 ctx->offset = offset;
4a4e5149 384 ctx->baton = this_frame;
9e8b7a03 385 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 386
8a9b8146 387 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 388 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 389
f2c7657e
UW
390 if (ctx->location == DWARF_VALUE_MEMORY)
391 result = dwarf_expr_fetch_address (ctx, 0);
392 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
393 result = read_addr_from_reg (this_frame,
394 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 395 else
cec03d70
TT
396 {
397 /* This is actually invalid DWARF, but if we ever do run across
398 it somehow, we might as well support it. So, instead, report
399 it as unimplemented. */
3e43a32a
MS
400 error (_("\
401Not implemented: computing unwound register using explicit value operator"));
cec03d70 402 }
cfc14b3a 403
4a227398 404 do_cleanups (old_chain);
cfc14b3a
MK
405
406 return result;
407}
408\f
409
111c6489
JK
410/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
411 PC. Modify FS state accordingly. Return current INSN_PTR where the
412 execution has stopped, one can resume it on the next call. */
413
414static const gdb_byte *
0d45f56e 415execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
416 const gdb_byte *insn_end, struct gdbarch *gdbarch,
417 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 418{
ae0d2f24 419 int eh_frame_p = fde->eh_frame_p;
507a579c 420 unsigned int bytes_read;
e17a4113 421 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
422
423 while (insn_ptr < insn_end && fs->pc <= pc)
424 {
852483bc 425 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
426 uint64_t utmp, reg;
427 int64_t offset;
cfc14b3a
MK
428
429 if ((insn & 0xc0) == DW_CFA_advance_loc)
430 fs->pc += (insn & 0x3f) * fs->code_align;
431 else if ((insn & 0xc0) == DW_CFA_offset)
432 {
433 reg = insn & 0x3f;
4fc771b8 434 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 435 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
436 offset = utmp * fs->data_align;
437 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 438 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
439 fs->regs.reg[reg].loc.offset = offset;
440 }
441 else if ((insn & 0xc0) == DW_CFA_restore)
442 {
cfc14b3a 443 reg = insn & 0x3f;
a6a5a945 444 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
445 }
446 else
447 {
448 switch (insn)
449 {
450 case DW_CFA_set_loc:
ae0d2f24 451 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 452 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
453 &bytes_read, fde->initial_location);
454 /* Apply the objfile offset for relocatable objects. */
455 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
456 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
457 insn_ptr += bytes_read;
458 break;
459
460 case DW_CFA_advance_loc1:
e17a4113 461 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
462 fs->pc += utmp * fs->code_align;
463 insn_ptr++;
464 break;
465 case DW_CFA_advance_loc2:
e17a4113 466 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
467 fs->pc += utmp * fs->code_align;
468 insn_ptr += 2;
469 break;
470 case DW_CFA_advance_loc4:
e17a4113 471 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
472 fs->pc += utmp * fs->code_align;
473 insn_ptr += 4;
474 break;
475
476 case DW_CFA_offset_extended:
f664829e 477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 478 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
480 offset = utmp * fs->data_align;
481 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 482 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
483 fs->regs.reg[reg].loc.offset = offset;
484 break;
485
486 case DW_CFA_restore_extended:
f664829e 487 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 488 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
489 break;
490
491 case DW_CFA_undefined:
f664829e 492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_same_value:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 501 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 502 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
503 break;
504
505 case DW_CFA_register:
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 507 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 509 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 510 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 511 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
512 fs->regs.reg[reg].loc.reg = utmp;
513 break;
514
515 case DW_CFA_remember_state:
516 {
517 struct dwarf2_frame_state_reg_info *new_rs;
518
70ba0933 519 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
520 *new_rs = fs->regs;
521 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
522 fs->regs.prev = new_rs;
523 }
524 break;
525
526 case DW_CFA_restore_state:
527 {
528 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
529
50ea7769
MK
530 if (old_rs == NULL)
531 {
e2e0b3e5 532 complaint (&symfile_complaints, _("\
5af949e3
UW
533bad CFI data; mismatched DW_CFA_restore_state at %s"),
534 paddress (gdbarch, fs->pc));
50ea7769
MK
535 }
536 else
537 {
538 xfree (fs->regs.reg);
539 fs->regs = *old_rs;
540 xfree (old_rs);
541 }
cfc14b3a
MK
542 }
543 break;
544
545 case DW_CFA_def_cfa:
f664829e
DE
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
547 fs->regs.cfa_reg = reg;
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
549
550 if (fs->armcc_cfa_offsets_sf)
551 utmp *= fs->data_align;
552
2fd481e1
PP
553 fs->regs.cfa_offset = utmp;
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_register:
f664829e
DE
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
559 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
560 eh_frame_p);
561 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
562 break;
563
564 case DW_CFA_def_cfa_offset:
f664829e 565 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
566
567 if (fs->armcc_cfa_offsets_sf)
568 utmp *= fs->data_align;
569
2fd481e1 570 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
571 /* cfa_how deliberately not set. */
572 break;
573
a8504492
MK
574 case DW_CFA_nop:
575 break;
576
cfc14b3a 577 case DW_CFA_def_cfa_expression:
f664829e
DE
578 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
579 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
580 fs->regs.cfa_exp = insn_ptr;
581 fs->regs.cfa_how = CFA_EXP;
582 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
583 break;
584
585 case DW_CFA_expression:
f664829e 586 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 587 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 588 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 589 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
590 fs->regs.reg[reg].loc.exp = insn_ptr;
591 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 592 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
593 insn_ptr += utmp;
594 break;
595
a8504492 596 case DW_CFA_offset_extended_sf:
f664829e 597 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 598 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 599 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 600 offset *= fs->data_align;
a8504492 601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 602 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
603 fs->regs.reg[reg].loc.offset = offset;
604 break;
605
46ea248b 606 case DW_CFA_val_offset:
f664829e 607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 608 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
610 offset = utmp * fs->data_align;
611 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
612 fs->regs.reg[reg].loc.offset = offset;
613 break;
614
615 case DW_CFA_val_offset_sf:
f664829e 616 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 617 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 618 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
619 offset *= fs->data_align;
620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
621 fs->regs.reg[reg].loc.offset = offset;
622 break;
623
624 case DW_CFA_val_expression:
f664829e 625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 626 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
628 fs->regs.reg[reg].loc.exp = insn_ptr;
629 fs->regs.reg[reg].exp_len = utmp;
630 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
631 insn_ptr += utmp;
632 break;
633
a8504492 634 case DW_CFA_def_cfa_sf:
f664829e
DE
635 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
636 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 637 eh_frame_p);
f664829e 638 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
639 fs->regs.cfa_offset = offset * fs->data_align;
640 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
641 break;
642
643 case DW_CFA_def_cfa_offset_sf:
f664829e 644 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 645 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 646 /* cfa_how deliberately not set. */
cfc14b3a
MK
647 break;
648
a77f4086
MK
649 case DW_CFA_GNU_window_save:
650 /* This is SPARC-specific code, and contains hard-coded
651 constants for the register numbering scheme used by
652 GCC. Rather than having a architecture-specific
653 operation that's only ever used by a single
654 architecture, we provide the implementation here.
655 Incidentally that's what GCC does too in its
656 unwinder. */
657 {
4a4e5149 658 int size = register_size (gdbarch, 0);
9a619af0 659
a77f4086
MK
660 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
661 for (reg = 8; reg < 16; reg++)
662 {
663 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
664 fs->regs.reg[reg].loc.reg = reg + 16;
665 }
666 for (reg = 16; reg < 32; reg++)
667 {
668 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
669 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
670 }
671 }
672 break;
673
cfc14b3a
MK
674 case DW_CFA_GNU_args_size:
675 /* Ignored. */
f664829e 676 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
677 break;
678
58894217 679 case DW_CFA_GNU_negative_offset_extended:
f664829e 680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 681 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
683 offset = utmp * fs->data_align;
58894217
JK
684 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
685 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
686 fs->regs.reg[reg].loc.offset = -offset;
687 break;
688
cfc14b3a 689 default:
3e43a32a
MS
690 internal_error (__FILE__, __LINE__,
691 _("Unknown CFI encountered."));
cfc14b3a
MK
692 }
693 }
694 }
695
111c6489
JK
696 if (fs->initial.reg == NULL)
697 {
698 /* Don't allow remember/restore between CIE and FDE programs. */
699 dwarf2_frame_state_free_regs (fs->regs.prev);
700 fs->regs.prev = NULL;
701 }
702
703 return insn_ptr;
cfc14b3a 704}
8f22cb90 705\f
cfc14b3a 706
8f22cb90 707/* Architecture-specific operations. */
cfc14b3a 708
8f22cb90
MK
709/* Per-architecture data key. */
710static struct gdbarch_data *dwarf2_frame_data;
711
712struct dwarf2_frame_ops
713{
714 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
715 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
716 struct frame_info *);
3ed09a32 717
4a4e5149 718 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 719 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 720
4fc771b8
DJ
721 /* Convert .eh_frame register number to DWARF register number, or
722 adjust .debug_frame register number. */
723 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
724};
725
8f22cb90
MK
726/* Default architecture-specific register state initialization
727 function. */
728
729static void
730dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 731 struct dwarf2_frame_state_reg *reg,
4a4e5149 732 struct frame_info *this_frame)
8f22cb90
MK
733{
734 /* If we have a register that acts as a program counter, mark it as
735 a destination for the return address. If we have a register that
736 serves as the stack pointer, arrange for it to be filled with the
737 call frame address (CFA). The other registers are marked as
738 unspecified.
739
740 We copy the return address to the program counter, since many
741 parts in GDB assume that it is possible to get the return address
742 by unwinding the program counter register. However, on ISA's
743 with a dedicated return address register, the CFI usually only
744 contains information to unwind that return address register.
745
746 The reason we're treating the stack pointer special here is
747 because in many cases GCC doesn't emit CFI for the stack pointer
748 and implicitly assumes that it is equal to the CFA. This makes
749 some sense since the DWARF specification (version 3, draft 8,
750 p. 102) says that:
751
752 "Typically, the CFA is defined to be the value of the stack
753 pointer at the call site in the previous frame (which may be
754 different from its value on entry to the current frame)."
755
756 However, this isn't true for all platforms supported by GCC
757 (e.g. IBM S/390 and zSeries). Those architectures should provide
758 their own architecture-specific initialization function. */
05cbe71a 759
ad010def 760 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 761 reg->how = DWARF2_FRAME_REG_RA;
ad010def 762 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
763 reg->how = DWARF2_FRAME_REG_CFA;
764}
05cbe71a 765
8f22cb90 766/* Return a default for the architecture-specific operations. */
05cbe71a 767
8f22cb90 768static void *
030f20e1 769dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
770{
771 struct dwarf2_frame_ops *ops;
772
030f20e1 773 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
774 ops->init_reg = dwarf2_frame_default_init_reg;
775 return ops;
776}
05cbe71a 777
8f22cb90
MK
778/* Set the architecture-specific register state initialization
779 function for GDBARCH to INIT_REG. */
780
781void
782dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
783 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
784 struct dwarf2_frame_state_reg *,
785 struct frame_info *))
8f22cb90 786{
9a3c8263
SM
787 struct dwarf2_frame_ops *ops
788 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 789
8f22cb90
MK
790 ops->init_reg = init_reg;
791}
792
793/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
794
795static void
796dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 797 struct dwarf2_frame_state_reg *reg,
4a4e5149 798 struct frame_info *this_frame)
05cbe71a 799{
9a3c8263
SM
800 struct dwarf2_frame_ops *ops
801 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 802
4a4e5149 803 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 804}
3ed09a32
DJ
805
806/* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809void
810dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813{
9a3c8263
SM
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
816
817 ops->signal_frame_p = signal_frame_p;
818}
819
820/* Query the architecture-specific signal frame recognizer for
4a4e5149 821 THIS_FRAME. */
3ed09a32
DJ
822
823static int
824dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 825 struct frame_info *this_frame)
3ed09a32 826{
9a3c8263
SM
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
829
830 if (ops->signal_frame_p == NULL)
831 return 0;
4a4e5149 832 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 833}
4bf8967c 834
4fc771b8
DJ
835/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
836 register numbers. */
4bf8967c
AS
837
838void
4fc771b8
DJ
839dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
840 int (*adjust_regnum) (struct gdbarch *,
841 int, int))
4bf8967c 842{
9a3c8263
SM
843 struct dwarf2_frame_ops *ops
844 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 845
4fc771b8 846 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
847}
848
4fc771b8
DJ
849/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
850 register. */
4bf8967c 851
4fc771b8 852static int
3e43a32a
MS
853dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
854 int regnum, int eh_frame_p)
4bf8967c 855{
9a3c8263
SM
856 struct dwarf2_frame_ops *ops
857 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 858
4fc771b8 859 if (ops->adjust_regnum == NULL)
4bf8967c 860 return regnum;
4fc771b8 861 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 862}
303b6f5d
DJ
863
864static void
865dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
866 struct dwarf2_fde *fde)
867{
43f3e411 868 struct compunit_symtab *cust;
303b6f5d 869
43f3e411
DE
870 cust = find_pc_compunit_symtab (fs->pc);
871 if (cust == NULL)
303b6f5d
DJ
872 return;
873
43f3e411 874 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
875 {
876 if (fde->cie->version == 1)
877 fs->armcc_cfa_offsets_sf = 1;
878
879 if (fde->cie->version == 1)
880 fs->armcc_cfa_offsets_reversed = 1;
881
882 /* The reversed offset problem is present in some compilers
883 using DWARF3, but it was eventually fixed. Check the ARM
884 defined augmentations, which are in the format "armcc" followed
885 by a list of one-character options. The "+" option means
886 this problem is fixed (no quirk needed). If the armcc
887 augmentation is missing, the quirk is needed. */
888 if (fde->cie->version == 3
61012eef 889 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
890 || strchr (fde->cie->augmentation + 5, '+') == NULL))
891 fs->armcc_cfa_offsets_reversed = 1;
892
893 return;
894 }
303b6f5d 895}
8f22cb90
MK
896\f
897
a8fd5589
TT
898/* See dwarf2-frame.h. */
899
900int
901dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
902 struct dwarf2_per_cu_data *data,
903 int *regnum_out, LONGEST *offset_out,
904 CORE_ADDR *text_offset_out,
905 const gdb_byte **cfa_start_out,
906 const gdb_byte **cfa_end_out)
9f6f94ff 907{
9f6f94ff 908 struct dwarf2_fde *fde;
22e048c9 909 CORE_ADDR text_offset;
9f6f94ff 910 struct dwarf2_frame_state fs;
9f6f94ff
TT
911
912 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
913
914 fs.pc = pc;
915
916 /* Find the correct FDE. */
917 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
918 if (fde == NULL)
919 error (_("Could not compute CFA; needed to translate this expression"));
920
921 /* Extract any interesting information from the CIE. */
922 fs.data_align = fde->cie->data_alignment_factor;
923 fs.code_align = fde->cie->code_alignment_factor;
924 fs.retaddr_column = fde->cie->return_address_register;
9f6f94ff
TT
925
926 /* Check for "quirks" - known bugs in producers. */
927 dwarf2_frame_find_quirks (&fs, fde);
928
929 /* First decode all the insns in the CIE. */
930 execute_cfa_program (fde, fde->cie->initial_instructions,
931 fde->cie->end, gdbarch, pc, &fs);
932
933 /* Save the initialized register set. */
934 fs.initial = fs.regs;
935 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
936
937 /* Then decode the insns in the FDE up to our target PC. */
938 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
939
940 /* Calculate the CFA. */
941 switch (fs.regs.cfa_how)
942 {
943 case CFA_REG_OFFSET:
944 {
0fde2c53 945 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
946
947 *regnum_out = regnum;
948 if (fs.armcc_cfa_offsets_reversed)
949 *offset_out = -fs.regs.cfa_offset;
950 else
951 *offset_out = fs.regs.cfa_offset;
952 return 1;
9f6f94ff 953 }
9f6f94ff
TT
954
955 case CFA_EXP:
a8fd5589
TT
956 *text_offset_out = text_offset;
957 *cfa_start_out = fs.regs.cfa_exp;
958 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
959 return 0;
9f6f94ff
TT
960
961 default:
962 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
963 }
964}
965
966\f
8f22cb90
MK
967struct dwarf2_frame_cache
968{
969 /* DWARF Call Frame Address. */
970 CORE_ADDR cfa;
971
8fbca658
PA
972 /* Set if the return address column was marked as unavailable
973 (required non-collected memory or registers to compute). */
974 int unavailable_retaddr;
975
0228dfb9
DJ
976 /* Set if the return address column was marked as undefined. */
977 int undefined_retaddr;
978
8f22cb90
MK
979 /* Saved registers, indexed by GDB register number, not by DWARF
980 register number. */
981 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
982
983 /* Return address register. */
984 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
985
986 /* Target address size in bytes. */
987 int addr_size;
ac56253d
TT
988
989 /* The .text offset. */
990 CORE_ADDR text_offset;
111c6489 991
1ec56e88
PA
992 /* True if we already checked whether this frame is the bottom frame
993 of a virtual tail call frame chain. */
994 int checked_tailcall_bottom;
995
111c6489
JK
996 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
997 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
998 involved. Non-bottom frames of a virtual tail call frames chain use
999 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1000 them. */
1001 void *tailcall_cache;
1ec56e88
PA
1002
1003 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1004 base to get the SP, to simulate the return address pushed on the
1005 stack. */
1006 LONGEST entry_cfa_sp_offset;
1007 int entry_cfa_sp_offset_p;
8f22cb90 1008};
05cbe71a 1009
78ac5f83
TT
1010/* A cleanup that sets a pointer to NULL. */
1011
1012static void
1013clear_pointer_cleanup (void *arg)
1014{
9a3c8263 1015 void **ptr = (void **) arg;
78ac5f83
TT
1016
1017 *ptr = NULL;
1018}
1019
b9362cc7 1020static struct dwarf2_frame_cache *
4a4e5149 1021dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1022{
78ac5f83 1023 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1024 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1025 const int num_regs = gdbarch_num_regs (gdbarch)
1026 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1027 struct dwarf2_frame_cache *cache;
1028 struct dwarf2_frame_state *fs;
1029 struct dwarf2_fde *fde;
111c6489 1030 CORE_ADDR entry_pc;
111c6489 1031 const gdb_byte *instr;
cfc14b3a
MK
1032
1033 if (*this_cache)
9a3c8263 1034 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
1035
1036 /* Allocate a new cache. */
1037 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1038 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1039 *this_cache = cache;
78ac5f83 1040 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1041
1042 /* Allocate and initialize the frame state. */
41bf6aca 1043 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1044 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1045
1046 /* Unwind the PC.
1047
4a4e5149 1048 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1049 to abort), the compiler might optimize away the instruction at
4a4e5149 1050 its return address. As a result the return address will
cfc14b3a 1051 point at some random instruction, and the CFI for that
e4e9607c 1052 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1053 this problem by substracting 1 from the return address to get an
1054 address in the middle of a presumed call instruction (or the
1055 instruction in the associated delay slot). This should only be
1056 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1057 handlers, sentinel frames, dummy frames). The function
ad1193e7 1058 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1059 reliable the method is though; there is the potential for the
1060 register state pre-call being different to that on return. */
4a4e5149 1061 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1062
1063 /* Find the correct FDE. */
ac56253d 1064 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1065 gdb_assert (fde != NULL);
1066
1067 /* Extract any interesting information from the CIE. */
1068 fs->data_align = fde->cie->data_alignment_factor;
1069 fs->code_align = fde->cie->code_alignment_factor;
1070 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1071 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1072
303b6f5d
DJ
1073 /* Check for "quirks" - known bugs in producers. */
1074 dwarf2_frame_find_quirks (fs, fde);
1075
cfc14b3a 1076 /* First decode all the insns in the CIE. */
ae0d2f24 1077 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1078 fde->cie->end, gdbarch,
1079 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1080
1081 /* Save the initialized register set. */
1082 fs->initial = fs->regs;
1083 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1084
111c6489
JK
1085 if (get_frame_func_if_available (this_frame, &entry_pc))
1086 {
1087 /* Decode the insns in the FDE up to the entry PC. */
1088 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1089 entry_pc, fs);
1090
1091 if (fs->regs.cfa_how == CFA_REG_OFFSET
0fde2c53 1092 && (dwarf_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
111c6489
JK
1093 == gdbarch_sp_regnum (gdbarch)))
1094 {
1ec56e88
PA
1095 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1096 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1097 }
1098 }
1099 else
1100 instr = fde->instructions;
1101
cfc14b3a 1102 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1103 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1104 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1105
492d29ea 1106 TRY
cfc14b3a 1107 {
8fbca658
PA
1108 /* Calculate the CFA. */
1109 switch (fs->regs.cfa_how)
1110 {
1111 case CFA_REG_OFFSET:
b1370418 1112 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1113 if (fs->armcc_cfa_offsets_reversed)
1114 cache->cfa -= fs->regs.cfa_offset;
1115 else
1116 cache->cfa += fs->regs.cfa_offset;
1117 break;
1118
1119 case CFA_EXP:
1120 cache->cfa =
1121 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1122 cache->addr_size, cache->text_offset,
1123 this_frame, 0, 0);
1124 break;
1125
1126 default:
1127 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1128 }
1129 }
492d29ea 1130 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1131 {
1132 if (ex.error == NOT_AVAILABLE_ERROR)
1133 {
1134 cache->unavailable_retaddr = 1;
5a1cf4d6 1135 do_cleanups (old_chain);
78ac5f83 1136 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1137 return cache;
1138 }
cfc14b3a 1139
8fbca658 1140 throw_exception (ex);
cfc14b3a 1141 }
492d29ea 1142 END_CATCH
cfc14b3a 1143
05cbe71a 1144 /* Initialize the register state. */
3e2c4033
AC
1145 {
1146 int regnum;
e4e9607c 1147
3e2c4033 1148 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1149 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1150 }
1151
1152 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1153 location information in the cache. Note that we don't skip the
1154 return address column; it's perfectly all right for it to
0fde2c53 1155 correspond to a real register. */
3e2c4033
AC
1156 {
1157 int column; /* CFI speak for "register number". */
e4e9607c 1158
3e2c4033
AC
1159 for (column = 0; column < fs->regs.num_regs; column++)
1160 {
3e2c4033 1161 /* Use the GDB register number as the destination index. */
0fde2c53 1162 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1163
0fde2c53 1164 /* Protect against a target returning a bad register. */
3e2c4033
AC
1165 if (regnum < 0 || regnum >= num_regs)
1166 continue;
1167
1168 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1169 of all debug info registers. If it doesn't, complain (but
1170 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1171 unspecified register implies "same value" when CFI (draft
1172 7) specifies nothing at all. Such a register could equally
1173 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1174 isn't sufficient; it only checks that all registers in the
1175 range [0 .. max column] are specified, and won't detect
3e2c4033 1176 problems when a debug info register falls outside of the
e4e9607c 1177 table. We need a way of iterating through all the valid
3e2c4033 1178 DWARF2 register numbers. */
05cbe71a 1179 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1180 {
1181 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1182 complaint (&symfile_complaints, _("\
5af949e3 1183incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1184 gdbarch_register_name (gdbarch, regnum),
5af949e3 1185 paddress (gdbarch, fs->pc));
f059bf6f 1186 }
35889917
MK
1187 else
1188 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1189 }
1190 }
cfc14b3a 1191
8d5a9abc
MK
1192 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1193 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1194 {
1195 int regnum;
1196
1197 for (regnum = 0; regnum < num_regs; regnum++)
1198 {
8d5a9abc
MK
1199 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1200 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1201 {
05cbe71a
MK
1202 struct dwarf2_frame_state_reg *retaddr_reg =
1203 &fs->regs.reg[fs->retaddr_column];
1204
d4f10bf2
MK
1205 /* It seems rather bizarre to specify an "empty" column as
1206 the return adress column. However, this is exactly
1207 what GCC does on some targets. It turns out that GCC
1208 assumes that the return address can be found in the
1209 register corresponding to the return address column.
8d5a9abc
MK
1210 Incidentally, that's how we should treat a return
1211 address column specifying "same value" too. */
d4f10bf2 1212 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1213 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1214 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1215 {
1216 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1217 cache->reg[regnum] = *retaddr_reg;
1218 else
1219 cache->retaddr_reg = *retaddr_reg;
1220 }
35889917
MK
1221 else
1222 {
8d5a9abc
MK
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 {
1225 cache->reg[regnum].loc.reg = fs->retaddr_column;
1226 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1227 }
1228 else
1229 {
1230 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1231 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1232 }
35889917
MK
1233 }
1234 }
1235 }
1236 }
cfc14b3a 1237
0228dfb9
DJ
1238 if (fs->retaddr_column < fs->regs.num_regs
1239 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1240 cache->undefined_retaddr = 1;
1241
cfc14b3a 1242 do_cleanups (old_chain);
78ac5f83 1243 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1244 return cache;
1245}
1246
8fbca658
PA
1247static enum unwind_stop_reason
1248dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1249 void **this_cache)
1250{
1251 struct dwarf2_frame_cache *cache
1252 = dwarf2_frame_cache (this_frame, this_cache);
1253
1254 if (cache->unavailable_retaddr)
1255 return UNWIND_UNAVAILABLE;
1256
1257 if (cache->undefined_retaddr)
1258 return UNWIND_OUTERMOST;
1259
1260 return UNWIND_NO_REASON;
1261}
1262
cfc14b3a 1263static void
4a4e5149 1264dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1265 struct frame_id *this_id)
1266{
1267 struct dwarf2_frame_cache *cache =
4a4e5149 1268 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1269
8fbca658 1270 if (cache->unavailable_retaddr)
5ce0145d
PA
1271 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1272 else if (cache->undefined_retaddr)
8fbca658 1273 return;
5ce0145d
PA
1274 else
1275 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1276}
1277
4a4e5149
DJ
1278static struct value *
1279dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1280 int regnum)
93d42b30 1281{
4a4e5149 1282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1283 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1284 dwarf2_frame_cache (this_frame, this_cache);
1285 CORE_ADDR addr;
1286 int realnum;
cfc14b3a 1287
1ec56e88
PA
1288 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1289 call frame chain. */
1290 if (!cache->checked_tailcall_bottom)
1291 {
1292 cache->checked_tailcall_bottom = 1;
1293 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1294 (cache->entry_cfa_sp_offset_p
1295 ? &cache->entry_cfa_sp_offset : NULL));
1296 }
1297
111c6489
JK
1298 /* Non-bottom frames of a virtual tail call frames chain use
1299 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1300 them. If dwarf2_tailcall_prev_register_first does not have specific value
1301 unwind the register, tail call frames are assumed to have the register set
1302 of the top caller. */
1303 if (cache->tailcall_cache)
1304 {
1305 struct value *val;
1306
1307 val = dwarf2_tailcall_prev_register_first (this_frame,
1308 &cache->tailcall_cache,
1309 regnum);
1310 if (val)
1311 return val;
1312 }
1313
cfc14b3a
MK
1314 switch (cache->reg[regnum].how)
1315 {
05cbe71a 1316 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1317 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1318 mark it as optimized away; the value isn't available. */
4a4e5149 1319 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1320
05cbe71a 1321 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1322 addr = cache->cfa + cache->reg[regnum].loc.offset;
1323 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1324
05cbe71a 1325 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1326 realnum = dwarf_reg_to_regnum_or_error
1327 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1328 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1329
05cbe71a 1330 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1331 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1332 cache->reg[regnum].exp_len,
ac56253d
TT
1333 cache->addr_size, cache->text_offset,
1334 this_frame, cache->cfa, 1);
4a4e5149 1335 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1336
46ea248b 1337 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1338 addr = cache->cfa + cache->reg[regnum].loc.offset;
1339 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1340
1341 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1342 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1343 cache->reg[regnum].exp_len,
ac56253d
TT
1344 cache->addr_size, cache->text_offset,
1345 this_frame, cache->cfa, 1);
4a4e5149 1346 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1347
05cbe71a 1348 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1349 /* GCC, in its infinite wisdom decided to not provide unwind
1350 information for registers that are "same value". Since
1351 DWARF2 (3 draft 7) doesn't define such behavior, said
1352 registers are actually undefined (which is different to CFI
1353 "undefined"). Code above issues a complaint about this.
1354 Here just fudge the books, assume GCC, and that the value is
1355 more inner on the stack. */
4a4e5149 1356 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1357
05cbe71a 1358 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1359 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1360
05cbe71a 1361 case DWARF2_FRAME_REG_CFA:
4a4e5149 1362 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1363
ea7963f0 1364 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1365 addr = cache->cfa + cache->reg[regnum].loc.offset;
1366 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1367
8d5a9abc 1368 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1369 addr = cache->reg[regnum].loc.offset;
0fde2c53 1370 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1371 (gdbarch, cache->retaddr_reg.loc.reg);
1372 addr += get_frame_register_unsigned (this_frame, regnum);
1373 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1374
b39cc962
DJ
1375 case DWARF2_FRAME_REG_FN:
1376 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1377
cfc14b3a 1378 default:
e2e0b3e5 1379 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1380 }
1381}
1382
111c6489
JK
1383/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1384 call frames chain. */
1385
1386static void
1387dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1388{
1389 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1390
1391 if (cache->tailcall_cache)
1392 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1393}
1394
4a4e5149
DJ
1395static int
1396dwarf2_frame_sniffer (const struct frame_unwind *self,
1397 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1398{
1ce5d6dd 1399 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1400 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1401 end up returning something past the end of this function's body.
1402 If the frame we're sniffing for is a signal frame whose start
1403 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1404 extend one byte before its start address or we could potentially
1405 select the FDE of the previous function. */
1406 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1407 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1408
56c987f6 1409 if (!fde)
4a4e5149 1410 return 0;
3ed09a32
DJ
1411
1412 /* On some targets, signal trampolines may have unwind information.
1413 We need to recognize them so that we set the frame type
1414 correctly. */
1415
56c987f6 1416 if (fde->cie->signal_frame
4a4e5149
DJ
1417 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1418 this_frame))
1419 return self->type == SIGTRAMP_FRAME;
1420
111c6489
JK
1421 if (self->type != NORMAL_FRAME)
1422 return 0;
1423
111c6489 1424 return 1;
4a4e5149
DJ
1425}
1426
1427static const struct frame_unwind dwarf2_frame_unwind =
1428{
1429 NORMAL_FRAME,
8fbca658 1430 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1431 dwarf2_frame_this_id,
1432 dwarf2_frame_prev_register,
1433 NULL,
111c6489
JK
1434 dwarf2_frame_sniffer,
1435 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1436};
1437
1438static const struct frame_unwind dwarf2_signal_frame_unwind =
1439{
1440 SIGTRAMP_FRAME,
8fbca658 1441 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1442 dwarf2_frame_this_id,
1443 dwarf2_frame_prev_register,
1444 NULL,
111c6489
JK
1445 dwarf2_frame_sniffer,
1446
1447 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1448 NULL
4a4e5149 1449};
cfc14b3a 1450
4a4e5149
DJ
1451/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1452
1453void
1454dwarf2_append_unwinders (struct gdbarch *gdbarch)
1455{
111c6489
JK
1456 /* TAILCALL_FRAME must be first to find the record by
1457 dwarf2_tailcall_sniffer_first. */
1458 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1459
4a4e5149
DJ
1460 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1462}
1463\f
1464
1465/* There is no explicitly defined relationship between the CFA and the
1466 location of frame's local variables and arguments/parameters.
1467 Therefore, frame base methods on this page should probably only be
1468 used as a last resort, just to avoid printing total garbage as a
1469 response to the "info frame" command. */
1470
1471static CORE_ADDR
4a4e5149 1472dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1473{
1474 struct dwarf2_frame_cache *cache =
4a4e5149 1475 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1476
1477 return cache->cfa;
1478}
1479
1480static const struct frame_base dwarf2_frame_base =
1481{
1482 &dwarf2_frame_unwind,
1483 dwarf2_frame_base_address,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address
1486};
1487
1488const struct frame_base *
4a4e5149 1489dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1490{
4a4e5149 1491 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1492
ac56253d 1493 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1494 return &dwarf2_frame_base;
1495
1496 return NULL;
1497}
e7802207
TT
1498
1499/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1500 the DWARF unwinder. This is used to implement
1501 DW_OP_call_frame_cfa. */
1502
1503CORE_ADDR
1504dwarf2_frame_cfa (struct frame_info *this_frame)
1505{
0b722aec
MM
1506 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1507 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1508 throw_error (NOT_AVAILABLE_ERROR,
1509 _("cfa not available for record btrace target"));
1510
e7802207
TT
1511 while (get_frame_type (this_frame) == INLINE_FRAME)
1512 this_frame = get_prev_frame (this_frame);
32261e52
MM
1513 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1514 throw_error (NOT_AVAILABLE_ERROR,
1515 _("can't compute CFA for this frame: "
1516 "required registers or memory are unavailable"));
14aba1ac
JB
1517
1518 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1519 throw_error (NOT_AVAILABLE_ERROR,
1520 _("can't compute CFA for this frame: "
1521 "frame base not available"));
1522
e7802207
TT
1523 return get_frame_base (this_frame);
1524}
cfc14b3a 1525\f
8f22cb90 1526const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1527
cfc14b3a 1528static unsigned int
f664829e 1529read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1530{
852483bc 1531 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1532}
1533
1534static unsigned int
f664829e 1535read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1536{
852483bc 1537 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1538}
1539
1540static ULONGEST
f664829e 1541read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1542{
852483bc 1543 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1544}
1545
1546static ULONGEST
f664829e
DE
1547read_initial_length (bfd *abfd, const gdb_byte *buf,
1548 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1549{
1550 LONGEST result;
1551
852483bc 1552 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1553 if (result == 0xffffffff)
1554 {
852483bc 1555 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1556 *bytes_read_ptr = 12;
1557 }
1558 else
1559 *bytes_read_ptr = 4;
1560
1561 return result;
1562}
1563\f
1564
1565/* Pointer encoding helper functions. */
1566
1567/* GCC supports exception handling based on DWARF2 CFI. However, for
1568 technical reasons, it encodes addresses in its FDE's in a different
1569 way. Several "pointer encodings" are supported. The encoding
1570 that's used for a particular FDE is determined by the 'R'
1571 augmentation in the associated CIE. The argument of this
1572 augmentation is a single byte.
1573
1574 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1575 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1576 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1577 address should be interpreted (absolute, relative to the current
1578 position in the FDE, ...). Bit 7, indicates that the address
1579 should be dereferenced. */
1580
852483bc 1581static gdb_byte
cfc14b3a
MK
1582encoding_for_size (unsigned int size)
1583{
1584 switch (size)
1585 {
1586 case 2:
1587 return DW_EH_PE_udata2;
1588 case 4:
1589 return DW_EH_PE_udata4;
1590 case 8:
1591 return DW_EH_PE_udata8;
1592 default:
e2e0b3e5 1593 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1594 }
1595}
1596
cfc14b3a 1597static CORE_ADDR
852483bc 1598read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1599 int ptr_len, const gdb_byte *buf,
1600 unsigned int *bytes_read_ptr,
ae0d2f24 1601 CORE_ADDR func_base)
cfc14b3a 1602{
68f6cf99 1603 ptrdiff_t offset;
cfc14b3a
MK
1604 CORE_ADDR base;
1605
1606 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1607 FDE's. */
1608 if (encoding & DW_EH_PE_indirect)
1609 internal_error (__FILE__, __LINE__,
e2e0b3e5 1610 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1611
68f6cf99
MK
1612 *bytes_read_ptr = 0;
1613
cfc14b3a
MK
1614 switch (encoding & 0x70)
1615 {
1616 case DW_EH_PE_absptr:
1617 base = 0;
1618 break;
1619 case DW_EH_PE_pcrel:
f2fec864 1620 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1621 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1622 break;
0912c7f2
MK
1623 case DW_EH_PE_datarel:
1624 base = unit->dbase;
1625 break;
0fd85043
CV
1626 case DW_EH_PE_textrel:
1627 base = unit->tbase;
1628 break;
03ac2a74 1629 case DW_EH_PE_funcrel:
ae0d2f24 1630 base = func_base;
03ac2a74 1631 break;
68f6cf99
MK
1632 case DW_EH_PE_aligned:
1633 base = 0;
852483bc 1634 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1635 if ((offset % ptr_len) != 0)
1636 {
1637 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1638 buf += *bytes_read_ptr;
1639 }
1640 break;
cfc14b3a 1641 default:
3e43a32a
MS
1642 internal_error (__FILE__, __LINE__,
1643 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1644 }
1645
b04de778 1646 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1647 {
1648 encoding |= encoding_for_size (ptr_len);
1649 if (bfd_get_sign_extend_vma (unit->abfd))
1650 encoding |= DW_EH_PE_signed;
1651 }
cfc14b3a
MK
1652
1653 switch (encoding & 0x0f)
1654 {
a81b10ae
MK
1655 case DW_EH_PE_uleb128:
1656 {
9fccedf7 1657 uint64_t value;
0d45f56e 1658 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1659
f664829e 1660 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1661 return base + value;
1662 }
cfc14b3a 1663 case DW_EH_PE_udata2:
68f6cf99 1664 *bytes_read_ptr += 2;
cfc14b3a
MK
1665 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1666 case DW_EH_PE_udata4:
68f6cf99 1667 *bytes_read_ptr += 4;
cfc14b3a
MK
1668 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1669 case DW_EH_PE_udata8:
68f6cf99 1670 *bytes_read_ptr += 8;
cfc14b3a 1671 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1672 case DW_EH_PE_sleb128:
1673 {
9fccedf7 1674 int64_t value;
0d45f56e 1675 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1676
f664829e 1677 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1678 return base + value;
1679 }
cfc14b3a 1680 case DW_EH_PE_sdata2:
68f6cf99 1681 *bytes_read_ptr += 2;
cfc14b3a
MK
1682 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1683 case DW_EH_PE_sdata4:
68f6cf99 1684 *bytes_read_ptr += 4;
cfc14b3a
MK
1685 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1686 case DW_EH_PE_sdata8:
68f6cf99 1687 *bytes_read_ptr += 8;
cfc14b3a
MK
1688 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1689 default:
3e43a32a
MS
1690 internal_error (__FILE__, __LINE__,
1691 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1692 }
1693}
1694\f
1695
b01c8410
PP
1696static int
1697bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1698{
b01c8410
PP
1699 ULONGEST cie_pointer = *(ULONGEST *) key;
1700 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1701
b01c8410
PP
1702 if (cie_pointer == cie->cie_pointer)
1703 return 0;
cfc14b3a 1704
b01c8410
PP
1705 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1706}
1707
1708/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1709static struct dwarf2_cie *
1710find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1711{
1712 struct dwarf2_cie **p_cie;
cfc14b3a 1713
65a97ab3
PP
1714 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1715 bsearch be non-NULL. */
1716 if (cie_table->entries == NULL)
1717 {
1718 gdb_assert (cie_table->num_entries == 0);
1719 return NULL;
1720 }
1721
9a3c8263
SM
1722 p_cie = ((struct dwarf2_cie **)
1723 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1725 if (p_cie != NULL)
1726 return *p_cie;
cfc14b3a
MK
1727 return NULL;
1728}
1729
b01c8410 1730/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1731static void
b01c8410 1732add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1733{
b01c8410
PP
1734 const int n = cie_table->num_entries;
1735
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1738
224c3ddb
SM
1739 cie_table->entries
1740 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1743}
1744
1745static int
1746bsearch_fde_cmp (const void *key, const void *element)
1747{
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1750
b01c8410
PP
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
cfc14b3a
MK
1756}
1757
1758/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1760
1761static struct dwarf2_fde *
ac56253d 1762dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1763{
1764 struct objfile *objfile;
1765
1766 ALL_OBJFILES (objfile)
1767 {
b01c8410
PP
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
cfc14b3a 1770 CORE_ADDR offset;
b01c8410 1771 CORE_ADDR seek_pc;
cfc14b3a 1772
9a3c8263
SM
1773 fde_table = ((struct dwarf2_fde_table *)
1774 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1775 if (fde_table == NULL)
be391dca
TT
1776 {
1777 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1778 fde_table = ((struct dwarf2_fde_table *)
1779 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1780 }
1781 gdb_assert (fde_table != NULL);
1782
1783 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1784 continue;
1785
1786 gdb_assert (objfile->section_offsets);
1787 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1788
b01c8410
PP
1789 gdb_assert (fde_table->num_entries > 0);
1790 if (*pc < offset + fde_table->entries[0]->initial_location)
1791 continue;
1792
1793 seek_pc = *pc - offset;
9a3c8263
SM
1794 p_fde = ((struct dwarf2_fde **)
1795 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1796 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1797 if (p_fde != NULL)
1798 {
1799 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1800 if (out_offset)
1801 *out_offset = offset;
b01c8410
PP
1802 return *p_fde;
1803 }
cfc14b3a 1804 }
cfc14b3a
MK
1805 return NULL;
1806}
1807
b01c8410 1808/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1809static void
b01c8410 1810add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1811{
b01c8410
PP
1812 if (fde->address_range == 0)
1813 /* Discard useless FDEs. */
1814 return;
1815
1816 fde_table->num_entries += 1;
224c3ddb
SM
1817 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1818 fde_table->num_entries);
b01c8410 1819 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1820}
1821
cfc14b3a 1822#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1823
8bd90839
FM
1824/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1825 or any of them. */
1826
1827enum eh_frame_type
1828{
1829 EH_CIE_TYPE_ID = 1 << 0,
1830 EH_FDE_TYPE_ID = 1 << 1,
1831 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1832};
1833
f664829e
DE
1834static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1835 const gdb_byte *start,
1836 int eh_frame_p,
1837 struct dwarf2_cie_table *cie_table,
1838 struct dwarf2_fde_table *fde_table,
1839 enum eh_frame_type entry_type);
8bd90839
FM
1840
1841/* Decode the next CIE or FDE, entry_type specifies the expected type.
1842 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1843
f664829e
DE
1844static const gdb_byte *
1845decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1846 int eh_frame_p,
b01c8410 1847 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1848 struct dwarf2_fde_table *fde_table,
1849 enum eh_frame_type entry_type)
cfc14b3a 1850{
5e2b427d 1851 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1852 const gdb_byte *buf, *end;
cfc14b3a
MK
1853 LONGEST length;
1854 unsigned int bytes_read;
6896c0c7
RH
1855 int dwarf64_p;
1856 ULONGEST cie_id;
cfc14b3a 1857 ULONGEST cie_pointer;
9fccedf7
DE
1858 int64_t sleb128;
1859 uint64_t uleb128;
cfc14b3a 1860
6896c0c7 1861 buf = start;
cfc14b3a
MK
1862 length = read_initial_length (unit->abfd, buf, &bytes_read);
1863 buf += bytes_read;
1864 end = buf + length;
1865
0963b4bd 1866 /* Are we still within the section? */
6896c0c7
RH
1867 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1868 return NULL;
1869
cfc14b3a
MK
1870 if (length == 0)
1871 return end;
1872
6896c0c7
RH
1873 /* Distinguish between 32 and 64-bit encoded frame info. */
1874 dwarf64_p = (bytes_read == 12);
cfc14b3a 1875
6896c0c7 1876 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1877 if (eh_frame_p)
1878 cie_id = 0;
1879 else if (dwarf64_p)
1880 cie_id = DW64_CIE_ID;
6896c0c7
RH
1881 else
1882 cie_id = DW_CIE_ID;
cfc14b3a
MK
1883
1884 if (dwarf64_p)
1885 {
1886 cie_pointer = read_8_bytes (unit->abfd, buf);
1887 buf += 8;
1888 }
1889 else
1890 {
1891 cie_pointer = read_4_bytes (unit->abfd, buf);
1892 buf += 4;
1893 }
1894
1895 if (cie_pointer == cie_id)
1896 {
1897 /* This is a CIE. */
1898 struct dwarf2_cie *cie;
1899 char *augmentation;
28ba0b33 1900 unsigned int cie_version;
cfc14b3a 1901
8bd90839
FM
1902 /* Check that a CIE was expected. */
1903 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1904 error (_("Found a CIE when not expecting it."));
1905
cfc14b3a
MK
1906 /* Record the offset into the .debug_frame section of this CIE. */
1907 cie_pointer = start - unit->dwarf_frame_buffer;
1908
1909 /* Check whether we've already read it. */
b01c8410 1910 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1911 return end;
1912
8d749320 1913 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1914 cie->initial_instructions = NULL;
1915 cie->cie_pointer = cie_pointer;
1916
1917 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1918 depends on the target address size. */
1919 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1920
56c987f6
AO
1921 /* We'll determine the final value later, but we need to
1922 initialize it conservatively. */
1923 cie->signal_frame = 0;
1924
cfc14b3a 1925 /* Check version number. */
28ba0b33 1926 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1927 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1928 return NULL;
303b6f5d 1929 cie->version = cie_version;
cfc14b3a
MK
1930 buf += 1;
1931
1932 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1933 cie->augmentation = augmentation = (char *) buf;
852483bc 1934 buf += (strlen (augmentation) + 1);
cfc14b3a 1935
303b6f5d
DJ
1936 /* Ignore armcc augmentations. We only use them for quirks,
1937 and that doesn't happen until later. */
61012eef 1938 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1939 augmentation += strlen (augmentation);
1940
cfc14b3a
MK
1941 /* The GCC 2.x "eh" augmentation has a pointer immediately
1942 following the augmentation string, so it must be handled
1943 first. */
1944 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1945 {
1946 /* Skip. */
5e2b427d 1947 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1948 augmentation += 2;
1949 }
1950
2dc7f7b3
TT
1951 if (cie->version >= 4)
1952 {
1953 /* FIXME: check that this is the same as from the CU header. */
1954 cie->addr_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 cie->segment_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 }
1959 else
1960 {
8da614df 1961 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1962 cie->segment_size = 0;
1963 }
8da614df
CV
1964 /* Address values in .eh_frame sections are defined to have the
1965 target's pointer size. Watchout: This breaks frame info for
1966 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1967 section exists as well. */
8da614df
CV
1968 if (eh_frame_p)
1969 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1970 else
1971 cie->ptr_size = cie->addr_size;
2dc7f7b3 1972
f664829e
DE
1973 buf = gdb_read_uleb128 (buf, end, &uleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->code_alignment_factor = uleb128;
cfc14b3a 1977
f664829e
DE
1978 buf = gdb_read_sleb128 (buf, end, &sleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->data_alignment_factor = sleb128;
cfc14b3a 1982
28ba0b33
PB
1983 if (cie_version == 1)
1984 {
1985 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1986 ++buf;
28ba0b33
PB
1987 }
1988 else
f664829e
DE
1989 {
1990 buf = gdb_read_uleb128 (buf, end, &uleb128);
1991 if (buf == NULL)
1992 return NULL;
1993 cie->return_address_register = uleb128;
1994 }
1995
4fc771b8 1996 cie->return_address_register
5e2b427d 1997 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1998 cie->return_address_register,
1999 eh_frame_p);
4bf8967c 2000
7131cb6e
RH
2001 cie->saw_z_augmentation = (*augmentation == 'z');
2002 if (cie->saw_z_augmentation)
cfc14b3a 2003 {
9fccedf7 2004 uint64_t length;
cfc14b3a 2005
f664829e
DE
2006 buf = gdb_read_uleb128 (buf, end, &length);
2007 if (buf == NULL)
6896c0c7 2008 return NULL;
cfc14b3a
MK
2009 cie->initial_instructions = buf + length;
2010 augmentation++;
2011 }
2012
2013 while (*augmentation)
2014 {
2015 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2016 if (*augmentation == 'L')
2017 {
2018 /* Skip. */
2019 buf++;
2020 augmentation++;
2021 }
2022
2023 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2024 else if (*augmentation == 'R')
2025 {
2026 cie->encoding = *buf++;
2027 augmentation++;
2028 }
2029
2030 /* "P" indicates a personality routine in the CIE augmentation. */
2031 else if (*augmentation == 'P')
2032 {
1234d960 2033 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2034 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2035 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2036 buf, &bytes_read, 0);
f724bf08 2037 buf += bytes_read;
cfc14b3a
MK
2038 augmentation++;
2039 }
2040
56c987f6
AO
2041 /* "S" indicates a signal frame, such that the return
2042 address must not be decremented to locate the call frame
2043 info for the previous frame; it might even be the first
2044 instruction of a function, so decrementing it would take
2045 us to a different function. */
2046 else if (*augmentation == 'S')
2047 {
2048 cie->signal_frame = 1;
2049 augmentation++;
2050 }
2051
3e9a2e52
DJ
2052 /* Otherwise we have an unknown augmentation. Assume that either
2053 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2054 else
2055 {
3e9a2e52
DJ
2056 if (cie->initial_instructions)
2057 buf = cie->initial_instructions;
cfc14b3a
MK
2058 break;
2059 }
2060 }
2061
2062 cie->initial_instructions = buf;
2063 cie->end = end;
b01c8410 2064 cie->unit = unit;
cfc14b3a 2065
b01c8410 2066 add_cie (cie_table, cie);
cfc14b3a
MK
2067 }
2068 else
2069 {
2070 /* This is a FDE. */
2071 struct dwarf2_fde *fde;
3e29f34a 2072 CORE_ADDR addr;
cfc14b3a 2073
8bd90839
FM
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2077
6896c0c7
RH
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2081 section. */
cfc14b3a
MK
2082 if (eh_frame_p)
2083 {
cfc14b3a
MK
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2086 }
2087
6896c0c7
RH
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2090 return NULL;
2091
8d749320 2092 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2093 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2094 if (fde->cie == NULL)
2095 {
2096 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2097 eh_frame_p, cie_table, fde_table,
2098 EH_CIE_TYPE_ID);
b01c8410 2099 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2100 }
2101
2102 gdb_assert (fde->cie != NULL);
2103
3e29f34a
MR
2104 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2105 buf, &bytes_read, 0);
2106 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2107 buf += bytes_read;
2108
2109 fde->address_range =
ae0d2f24 2110 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2111 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2112 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2113 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2114 buf += bytes_read;
2115
7131cb6e
RH
2116 /* A 'z' augmentation in the CIE implies the presence of an
2117 augmentation field in the FDE as well. The only thing known
2118 to be in here at present is the LSDA entry for EH. So we
2119 can skip the whole thing. */
2120 if (fde->cie->saw_z_augmentation)
2121 {
9fccedf7 2122 uint64_t length;
7131cb6e 2123
f664829e
DE
2124 buf = gdb_read_uleb128 (buf, end, &length);
2125 if (buf == NULL)
2126 return NULL;
2127 buf += length;
6896c0c7
RH
2128 if (buf > end)
2129 return NULL;
7131cb6e
RH
2130 }
2131
cfc14b3a
MK
2132 fde->instructions = buf;
2133 fde->end = end;
2134
4bf8967c
AS
2135 fde->eh_frame_p = eh_frame_p;
2136
b01c8410 2137 add_fde (fde_table, fde);
cfc14b3a
MK
2138 }
2139
2140 return end;
2141}
6896c0c7 2142
8bd90839
FM
2143/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2144 expect an FDE or a CIE. */
2145
f664829e
DE
2146static const gdb_byte *
2147decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2148 int eh_frame_p,
b01c8410 2149 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2150 struct dwarf2_fde_table *fde_table,
2151 enum eh_frame_type entry_type)
6896c0c7
RH
2152{
2153 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2154 const gdb_byte *ret;
6896c0c7
RH
2155 ptrdiff_t start_offset;
2156
2157 while (1)
2158 {
b01c8410 2159 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2160 cie_table, fde_table, entry_type);
6896c0c7
RH
2161 if (ret != NULL)
2162 break;
2163
2164 /* We have corrupt input data of some form. */
2165
2166 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2167 and mismatches wrt padding and alignment of debug sections. */
2168 /* Note that there is no requirement in the standard for any
2169 alignment at all in the frame unwind sections. Testing for
2170 alignment before trying to interpret data would be incorrect.
2171
2172 However, GCC traditionally arranged for frame sections to be
2173 sized such that the FDE length and CIE fields happen to be
2174 aligned (in theory, for performance). This, unfortunately,
2175 was done with .align directives, which had the side effect of
2176 forcing the section to be aligned by the linker.
2177
2178 This becomes a problem when you have some other producer that
2179 creates frame sections that are not as strictly aligned. That
2180 produces a hole in the frame info that gets filled by the
2181 linker with zeros.
2182
2183 The GCC behaviour is arguably a bug, but it's effectively now
2184 part of the ABI, so we're now stuck with it, at least at the
2185 object file level. A smart linker may decide, in the process
2186 of compressing duplicate CIE information, that it can rewrite
2187 the entire output section without this extra padding. */
2188
2189 start_offset = start - unit->dwarf_frame_buffer;
2190 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2191 {
2192 start += 4 - (start_offset & 3);
2193 workaround = ALIGN4;
2194 continue;
2195 }
2196 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2197 {
2198 start += 8 - (start_offset & 7);
2199 workaround = ALIGN8;
2200 continue;
2201 }
2202
2203 /* Nothing left to try. Arrange to return as if we've consumed
2204 the entire input section. Hopefully we'll get valid info from
2205 the other of .debug_frame/.eh_frame. */
2206 workaround = FAIL;
2207 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2208 break;
2209 }
2210
2211 switch (workaround)
2212 {
2213 case NONE:
2214 break;
2215
2216 case ALIGN4:
3e43a32a
MS
2217 complaint (&symfile_complaints, _("\
2218Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2219 unit->dwarf_frame_section->owner->filename,
2220 unit->dwarf_frame_section->name);
2221 break;
2222
2223 case ALIGN8:
3e43a32a
MS
2224 complaint (&symfile_complaints, _("\
2225Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2228 break;
2229
2230 default:
2231 complaint (&symfile_complaints,
e2e0b3e5 2232 _("Corrupt data in %s:%s"),
6896c0c7
RH
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2235 break;
2236 }
2237
2238 return ret;
2239}
cfc14b3a 2240\f
b01c8410
PP
2241static int
2242qsort_fde_cmp (const void *a, const void *b)
2243{
2244 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2245 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2246
b01c8410 2247 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2248 {
2249 if (aa->address_range != bb->address_range
2250 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2251 /* Linker bug, e.g. gold/10400.
2252 Work around it by keeping stable sort order. */
2253 return (a < b) ? -1 : 1;
2254 else
2255 /* Put eh_frame entries after debug_frame ones. */
2256 return aa->eh_frame_p - bb->eh_frame_p;
2257 }
b01c8410
PP
2258
2259 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2260}
2261
cfc14b3a
MK
2262void
2263dwarf2_build_frame_info (struct objfile *objfile)
2264{
ae0d2f24 2265 struct comp_unit *unit;
f664829e 2266 const gdb_byte *frame_ptr;
b01c8410
PP
2267 struct dwarf2_cie_table cie_table;
2268 struct dwarf2_fde_table fde_table;
be391dca 2269 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2270
2271 cie_table.num_entries = 0;
2272 cie_table.entries = NULL;
2273
2274 fde_table.num_entries = 0;
2275 fde_table.entries = NULL;
cfc14b3a
MK
2276
2277 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2278 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2279 sizeof (struct comp_unit));
2280 unit->abfd = objfile->obfd;
2281 unit->objfile = objfile;
2282 unit->dbase = 0;
2283 unit->tbase = 0;
cfc14b3a 2284
d40102a1 2285 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2286 {
d40102a1
JB
2287 /* Do not read .eh_frame from separate file as they must be also
2288 present in the main file. */
2289 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2290 &unit->dwarf_frame_section,
2291 &unit->dwarf_frame_buffer,
2292 &unit->dwarf_frame_size);
2293 if (unit->dwarf_frame_size)
b01c8410 2294 {
d40102a1
JB
2295 asection *got, *txt;
2296
2297 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2298 that is used for the i386/amd64 target, which currently is
2299 the only target in GCC that supports/uses the
2300 DW_EH_PE_datarel encoding. */
2301 got = bfd_get_section_by_name (unit->abfd, ".got");
2302 if (got)
2303 unit->dbase = got->vma;
2304
2305 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2306 so far. */
2307 txt = bfd_get_section_by_name (unit->abfd, ".text");
2308 if (txt)
2309 unit->tbase = txt->vma;
2310
492d29ea 2311 TRY
8bd90839
FM
2312 {
2313 frame_ptr = unit->dwarf_frame_buffer;
2314 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2315 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2316 &cie_table, &fde_table,
2317 EH_CIE_OR_FDE_TYPE_ID);
2318 }
2319
492d29ea 2320 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2321 {
2322 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2323 objfile_name (objfile), e.message);
8bd90839
FM
2324
2325 if (fde_table.num_entries != 0)
2326 {
2327 xfree (fde_table.entries);
2328 fde_table.entries = NULL;
2329 fde_table.num_entries = 0;
2330 }
2331 /* The cie_table is discarded by the next if. */
2332 }
492d29ea 2333 END_CATCH
d40102a1
JB
2334
2335 if (cie_table.num_entries != 0)
2336 {
2337 /* Reinit cie_table: debug_frame has different CIEs. */
2338 xfree (cie_table.entries);
2339 cie_table.num_entries = 0;
2340 cie_table.entries = NULL;
2341 }
b01c8410 2342 }
cfc14b3a
MK
2343 }
2344
3017a003 2345 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2346 &unit->dwarf_frame_section,
2347 &unit->dwarf_frame_buffer,
2348 &unit->dwarf_frame_size);
2349 if (unit->dwarf_frame_size)
cfc14b3a 2350 {
8bd90839
FM
2351 int num_old_fde_entries = fde_table.num_entries;
2352
492d29ea 2353 TRY
8bd90839
FM
2354 {
2355 frame_ptr = unit->dwarf_frame_buffer;
2356 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2357 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2358 &cie_table, &fde_table,
2359 EH_CIE_OR_FDE_TYPE_ID);
2360 }
492d29ea 2361 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2362 {
2363 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2364 objfile_name (objfile), e.message);
8bd90839
FM
2365
2366 if (fde_table.num_entries != 0)
2367 {
2368 fde_table.num_entries = num_old_fde_entries;
2369 if (num_old_fde_entries == 0)
2370 {
2371 xfree (fde_table.entries);
2372 fde_table.entries = NULL;
2373 }
2374 else
2375 {
224c3ddb
SM
2376 fde_table.entries
2377 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2378 fde_table.num_entries);
8bd90839
FM
2379 }
2380 }
2381 fde_table.num_entries = num_old_fde_entries;
2382 /* The cie_table is discarded by the next if. */
2383 }
492d29ea 2384 END_CATCH
b01c8410
PP
2385 }
2386
2387 /* Discard the cie_table, it is no longer needed. */
2388 if (cie_table.num_entries != 0)
2389 {
2390 xfree (cie_table.entries);
2391 cie_table.entries = NULL; /* Paranoia. */
2392 cie_table.num_entries = 0; /* Paranoia. */
2393 }
2394
be391dca 2395 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2396 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2397
2398 if (fde_table.num_entries == 0)
2399 {
2400 fde_table2->entries = NULL;
2401 fde_table2->num_entries = 0;
2402 }
2403 else
b01c8410 2404 {
875cdfbb
PA
2405 struct dwarf2_fde *fde_prev = NULL;
2406 struct dwarf2_fde *first_non_zero_fde = NULL;
2407 int i;
b01c8410
PP
2408
2409 /* Prepare FDE table for lookups. */
2410 qsort (fde_table.entries, fde_table.num_entries,
2411 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2412
875cdfbb
PA
2413 /* Check for leftovers from --gc-sections. The GNU linker sets
2414 the relevant symbols to zero, but doesn't zero the FDE *end*
2415 ranges because there's no relocation there. It's (offset,
2416 length), not (start, end). On targets where address zero is
2417 just another valid address this can be a problem, since the
2418 FDEs appear to be non-empty in the output --- we could pick
2419 out the wrong FDE. To work around this, when overlaps are
2420 detected, we prefer FDEs that do not start at zero.
2421
2422 Start by finding the first FDE with non-zero start. Below
2423 we'll discard all FDEs that start at zero and overlap this
2424 one. */
2425 for (i = 0; i < fde_table.num_entries; i++)
2426 {
2427 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2428
875cdfbb
PA
2429 if (fde->initial_location != 0)
2430 {
2431 first_non_zero_fde = fde;
2432 break;
2433 }
2434 }
2435
2436 /* Since we'll be doing bsearch, squeeze out identical (except
2437 for eh_frame_p) fde entries so bsearch result is predictable.
2438 Also discard leftovers from --gc-sections. */
be391dca 2439 fde_table2->num_entries = 0;
875cdfbb
PA
2440 for (i = 0; i < fde_table.num_entries; i++)
2441 {
2442 struct dwarf2_fde *fde = fde_table.entries[i];
2443
2444 if (fde->initial_location == 0
2445 && first_non_zero_fde != NULL
2446 && (first_non_zero_fde->initial_location
2447 < fde->initial_location + fde->address_range))
2448 continue;
2449
2450 if (fde_prev != NULL
2451 && fde_prev->initial_location == fde->initial_location)
2452 continue;
2453
2454 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2455 sizeof (fde_table.entries[0]));
2456 ++fde_table2->num_entries;
2457 fde_prev = fde;
2458 }
224c3ddb
SM
2459 fde_table2->entries
2460 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2461
2462 /* Discard the original fde_table. */
2463 xfree (fde_table.entries);
cfc14b3a 2464 }
be391dca
TT
2465
2466 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2467}
0d0e1a63
MK
2468
2469/* Provide a prototype to silence -Wmissing-prototypes. */
2470void _initialize_dwarf2_frame (void);
2471
2472void
2473_initialize_dwarf2_frame (void)
2474{
030f20e1 2475 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2476 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2477}
This page took 1.667624 seconds and 4 git commands to generate.