gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
0b302171 3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
36#include "gdb_string.h"
37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
f664829e
DE
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
f664829e
DE
119 const gdb_byte *instructions;
120 const gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24
UW
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
289read_reg (void *baton, int reg)
290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
309static void
852483bc 310read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
311{
312 read_memory (addr, buf, len);
313}
314
a6a5a945
LM
315/* Execute the required actions for both the DW_CFA_restore and
316DW_CFA_restore_extended instructions. */
317static void
318dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320{
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 338register %s (#%d) at %s"),
a6a5a945
LM
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 342 paddress (gdbarch, fs->pc));
a6a5a945
LM
343}
344
9e8b7a03
JK
345/* Virtual method table for execute_stack_op below. */
346
347static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348{
349 read_reg,
350 read_mem,
523f3620
JK
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
8e3b41a9 356 ctx_no_get_base_type,
3019eac3
DE
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
9e8b7a03
JK
359};
360
cfc14b3a 361static CORE_ADDR
0d45f56e 362execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
365{
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
4a227398 368 struct cleanup *old_chain;
cfc14b3a
MK
369
370 ctx = new_dwarf_expr_context ();
4a227398 371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 372 make_cleanup_value_free_to_mark (value_mark ());
4a227398 373
f7fd4728 374 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 375 ctx->addr_size = addr_size;
181cebd4 376 ctx->ref_addr_size = -1;
ac56253d 377 ctx->offset = offset;
4a4e5149 378 ctx->baton = this_frame;
9e8b7a03 379 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 380
8a9b8146 381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 382 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 383
f2c7657e
UW
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
8a9b8146 387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 388 else
cec03d70
TT
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
3e43a32a
MS
393 error (_("\
394Not implemented: computing unwound register using explicit value operator"));
cec03d70 395 }
cfc14b3a 396
4a227398 397 do_cleanups (old_chain);
cfc14b3a
MK
398
399 return result;
400}
401\f
402
111c6489
JK
403/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407static const gdb_byte *
0d45f56e 408execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 411{
ae0d2f24 412 int eh_frame_p = fde->eh_frame_p;
cfc14b3a 413 int bytes_read;
e17a4113 414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
852483bc 418 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
419 uint64_t utmp, reg;
420 int64_t offset;
cfc14b3a
MK
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
4fc771b8 427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
cfc14b3a 436 reg = insn & 0x3f;
a6a5a945 437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
ae0d2f24 444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 445 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
e17a4113 454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
f664829e 470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
f664829e 480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
482 break;
483
484 case DW_CFA_undefined:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
489 break;
490
491 case DW_CFA_same_value:
f664829e 492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_register:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
50ea7769
MK
523 if (old_rs == NULL)
524 {
e2e0b3e5 525 complaint (&symfile_complaints, _("\
5af949e3
UW
526bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
50ea7769
MK
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
cfc14b3a
MK
535 }
536 break;
537
538 case DW_CFA_def_cfa:
f664829e
DE
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
2fd481e1
PP
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
548 break;
549
550 case DW_CFA_def_cfa_register:
f664829e
DE
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_offset:
f664829e 558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
2fd481e1 563 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
564 /* cfa_how deliberately not set. */
565 break;
566
a8504492
MK
567 case DW_CFA_nop:
568 break;
569
cfc14b3a 570 case DW_CFA_def_cfa_expression:
f664829e
DE
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
576 break;
577
578 case DW_CFA_expression:
f664829e 579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
586 insn_ptr += utmp;
587 break;
588
a8504492 589 case DW_CFA_offset_extended_sf:
f664829e 590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 593 offset *= fs->data_align;
a8504492 594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
46ea248b 599 case DW_CFA_val_offset:
f664829e 600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
a8504492 627 case DW_CFA_def_cfa_sf:
f664829e
DE
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 630 eh_frame_p);
f664829e 631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
f664829e 637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 638 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 639 /* cfa_how deliberately not set. */
cfc14b3a
MK
640 break;
641
a77f4086
MK
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
4a4e5149 651 int size = register_size (gdbarch, 0);
9a619af0 652
a77f4086
MK
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
cfc14b3a
MK
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
f664829e 669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
670 break;
671
58894217 672 case DW_CFA_GNU_negative_offset_extended:
f664829e 673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
58894217
JK
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
cfc14b3a 682 default:
3e43a32a
MS
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
cfc14b3a
MK
685 }
686 }
687 }
688
111c6489
JK
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
cfc14b3a 697}
8f22cb90 698\f
cfc14b3a 699
8f22cb90 700/* Architecture-specific operations. */
cfc14b3a 701
8f22cb90
MK
702/* Per-architecture data key. */
703static struct gdbarch_data *dwarf2_frame_data;
704
705struct dwarf2_frame_ops
706{
707 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
3ed09a32 710
4a4e5149 711 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 713
4fc771b8
DJ
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
717};
718
8f22cb90
MK
719/* Default architecture-specific register state initialization
720 function. */
721
722static void
723dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 724 struct dwarf2_frame_state_reg *reg,
4a4e5149 725 struct frame_info *this_frame)
8f22cb90
MK
726{
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
05cbe71a 752
ad010def 753 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 754 reg->how = DWARF2_FRAME_REG_RA;
ad010def 755 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
756 reg->how = DWARF2_FRAME_REG_CFA;
757}
05cbe71a 758
8f22cb90 759/* Return a default for the architecture-specific operations. */
05cbe71a 760
8f22cb90 761static void *
030f20e1 762dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
763{
764 struct dwarf2_frame_ops *ops;
765
030f20e1 766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769}
05cbe71a 770
8f22cb90
MK
771/* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774void
775dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
8f22cb90 779{
030f20e1 780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 781
8f22cb90
MK
782 ops->init_reg = init_reg;
783}
784
785/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
786
787static void
788dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 789 struct dwarf2_frame_state_reg *reg,
4a4e5149 790 struct frame_info *this_frame)
05cbe71a 791{
030f20e1 792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 793
4a4e5149 794 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 795}
3ed09a32
DJ
796
797/* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800void
801dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804{
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808}
809
810/* Query the architecture-specific signal frame recognizer for
4a4e5149 811 THIS_FRAME. */
3ed09a32
DJ
812
813static int
814dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 815 struct frame_info *this_frame)
3ed09a32
DJ
816{
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
4a4e5149 821 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 822}
4bf8967c 823
4fc771b8
DJ
824/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
4bf8967c
AS
826
827void
4fc771b8
DJ
828dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
4bf8967c
AS
831{
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
4fc771b8 834 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
835}
836
4fc771b8
DJ
837/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
4bf8967c 839
4fc771b8 840static int
3e43a32a
MS
841dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
4bf8967c
AS
843{
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
4fc771b8 846 if (ops->adjust_regnum == NULL)
4bf8967c 847 return regnum;
4fc771b8 848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 849}
303b6f5d
DJ
850
851static void
852dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854{
303b6f5d
DJ
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
a6c727b2 858 if (s == NULL)
303b6f5d
DJ
859 return;
860
a6c727b2
DJ
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
303b6f5d 882}
8f22cb90
MK
883\f
884
9f6f94ff
TT
885void
886dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890{
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
22e048c9 894 CORE_ADDR text_offset;
9f6f94ff
TT
895 struct dwarf2_frame_state fs;
896 int addr_size;
897
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
899
900 fs.pc = pc;
901
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
904 if (fde == NULL)
905 error (_("Could not compute CFA; needed to translate this expression"));
906
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
912
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
915
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
919
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
923
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
926
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
929 {
930 case CFA_REG_OFFSET:
931 {
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
933
934 if (regnum == -1)
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
938
939 if (fs.regs.cfa_offset != 0)
940 {
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
943 else
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
946 }
947 }
948 break;
949
950 case CFA_EXP:
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
953 fs.regs.cfa_exp,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
955 data);
956 break;
957
958 default:
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
960 }
961}
962
963\f
8f22cb90
MK
964struct dwarf2_frame_cache
965{
966 /* DWARF Call Frame Address. */
967 CORE_ADDR cfa;
968
8fbca658
PA
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
972
0228dfb9
DJ
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
975
8f22cb90
MK
976 /* Saved registers, indexed by GDB register number, not by DWARF
977 register number. */
978 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
979
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
982
983 /* Target address size in bytes. */
984 int addr_size;
ac56253d
TT
985
986 /* The .text offset. */
987 CORE_ADDR text_offset;
111c6489
JK
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
8f22cb90 995};
05cbe71a 996
78ac5f83
TT
997/* A cleanup that sets a pointer to NULL. */
998
999static void
1000clear_pointer_cleanup (void *arg)
1001{
1002 void **ptr = arg;
1003
1004 *ptr = NULL;
1005}
1006
b9362cc7 1007static struct dwarf2_frame_cache *
4a4e5149 1008dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1009{
78ac5f83 1010 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1011 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1012 const int num_regs = gdbarch_num_regs (gdbarch)
1013 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1014 struct dwarf2_frame_cache *cache;
1015 struct dwarf2_frame_state *fs;
1016 struct dwarf2_fde *fde;
8fbca658 1017 volatile struct gdb_exception ex;
111c6489
JK
1018 CORE_ADDR entry_pc;
1019 LONGEST entry_cfa_sp_offset;
1020 int entry_cfa_sp_offset_p = 0;
1021 const gdb_byte *instr;
cfc14b3a
MK
1022
1023 if (*this_cache)
1024 return *this_cache;
1025
1026 /* Allocate a new cache. */
1027 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1028 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1029 *this_cache = cache;
78ac5f83 1030 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1031
1032 /* Allocate and initialize the frame state. */
8fbca658 1033 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1034 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1035
1036 /* Unwind the PC.
1037
4a4e5149 1038 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1039 to abort), the compiler might optimize away the instruction at
4a4e5149 1040 its return address. As a result the return address will
cfc14b3a 1041 point at some random instruction, and the CFI for that
e4e9607c 1042 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1043 this problem by substracting 1 from the return address to get an
1044 address in the middle of a presumed call instruction (or the
1045 instruction in the associated delay slot). This should only be
1046 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1047 handlers, sentinel frames, dummy frames). The function
ad1193e7 1048 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1049 reliable the method is though; there is the potential for the
1050 register state pre-call being different to that on return. */
4a4e5149 1051 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1052
1053 /* Find the correct FDE. */
ac56253d 1054 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1055 gdb_assert (fde != NULL);
1056
1057 /* Extract any interesting information from the CIE. */
1058 fs->data_align = fde->cie->data_alignment_factor;
1059 fs->code_align = fde->cie->code_alignment_factor;
1060 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1061 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1062
303b6f5d
DJ
1063 /* Check for "quirks" - known bugs in producers. */
1064 dwarf2_frame_find_quirks (fs, fde);
1065
cfc14b3a 1066 /* First decode all the insns in the CIE. */
ae0d2f24 1067 execute_cfa_program (fde, fde->cie->initial_instructions,
9f6f94ff 1068 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
cfc14b3a
MK
1069
1070 /* Save the initialized register set. */
1071 fs->initial = fs->regs;
1072 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1073
111c6489
JK
1074 if (get_frame_func_if_available (this_frame, &entry_pc))
1075 {
1076 /* Decode the insns in the FDE up to the entry PC. */
1077 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1078 entry_pc, fs);
1079
1080 if (fs->regs.cfa_how == CFA_REG_OFFSET
1081 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1082 == gdbarch_sp_regnum (gdbarch)))
1083 {
1084 entry_cfa_sp_offset = fs->regs.cfa_offset;
1085 entry_cfa_sp_offset_p = 1;
1086 }
1087 }
1088 else
1089 instr = fde->instructions;
1090
cfc14b3a 1091 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1092 execute_cfa_program (fde, instr, fde->end, gdbarch,
9f6f94ff 1093 get_frame_pc (this_frame), fs);
cfc14b3a 1094
8fbca658 1095 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1096 {
8fbca658
PA
1097 /* Calculate the CFA. */
1098 switch (fs->regs.cfa_how)
1099 {
1100 case CFA_REG_OFFSET:
1101 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1102 if (fs->armcc_cfa_offsets_reversed)
1103 cache->cfa -= fs->regs.cfa_offset;
1104 else
1105 cache->cfa += fs->regs.cfa_offset;
1106 break;
1107
1108 case CFA_EXP:
1109 cache->cfa =
1110 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1111 cache->addr_size, cache->text_offset,
1112 this_frame, 0, 0);
1113 break;
1114
1115 default:
1116 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1117 }
1118 }
1119 if (ex.reason < 0)
1120 {
1121 if (ex.error == NOT_AVAILABLE_ERROR)
1122 {
1123 cache->unavailable_retaddr = 1;
5a1cf4d6 1124 do_cleanups (old_chain);
78ac5f83 1125 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1126 return cache;
1127 }
cfc14b3a 1128
8fbca658 1129 throw_exception (ex);
cfc14b3a
MK
1130 }
1131
05cbe71a 1132 /* Initialize the register state. */
3e2c4033
AC
1133 {
1134 int regnum;
e4e9607c 1135
3e2c4033 1136 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1137 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1138 }
1139
1140 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1141 location information in the cache. Note that we don't skip the
1142 return address column; it's perfectly all right for it to
1143 correspond to a real register. If it doesn't correspond to a
1144 real register, or if we shouldn't treat it as such,
055d23b8 1145 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1146 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1147 {
1148 int column; /* CFI speak for "register number". */
e4e9607c 1149
3e2c4033
AC
1150 for (column = 0; column < fs->regs.num_regs; column++)
1151 {
3e2c4033 1152 /* Use the GDB register number as the destination index. */
ad010def 1153 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1154
1155 /* If there's no corresponding GDB register, ignore it. */
1156 if (regnum < 0 || regnum >= num_regs)
1157 continue;
1158
1159 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1160 of all debug info registers. If it doesn't, complain (but
1161 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1162 unspecified register implies "same value" when CFI (draft
1163 7) specifies nothing at all. Such a register could equally
1164 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1165 isn't sufficient; it only checks that all registers in the
1166 range [0 .. max column] are specified, and won't detect
3e2c4033 1167 problems when a debug info register falls outside of the
e4e9607c 1168 table. We need a way of iterating through all the valid
3e2c4033 1169 DWARF2 register numbers. */
05cbe71a 1170 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1171 {
1172 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1173 complaint (&symfile_complaints, _("\
5af949e3 1174incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1175 gdbarch_register_name (gdbarch, regnum),
5af949e3 1176 paddress (gdbarch, fs->pc));
f059bf6f 1177 }
35889917
MK
1178 else
1179 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1180 }
1181 }
cfc14b3a 1182
8d5a9abc
MK
1183 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1184 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1185 {
1186 int regnum;
1187
1188 for (regnum = 0; regnum < num_regs; regnum++)
1189 {
8d5a9abc
MK
1190 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1191 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1192 {
05cbe71a
MK
1193 struct dwarf2_frame_state_reg *retaddr_reg =
1194 &fs->regs.reg[fs->retaddr_column];
1195
d4f10bf2
MK
1196 /* It seems rather bizarre to specify an "empty" column as
1197 the return adress column. However, this is exactly
1198 what GCC does on some targets. It turns out that GCC
1199 assumes that the return address can be found in the
1200 register corresponding to the return address column.
8d5a9abc
MK
1201 Incidentally, that's how we should treat a return
1202 address column specifying "same value" too. */
d4f10bf2 1203 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1204 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1205 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1206 {
1207 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1208 cache->reg[regnum] = *retaddr_reg;
1209 else
1210 cache->retaddr_reg = *retaddr_reg;
1211 }
35889917
MK
1212 else
1213 {
8d5a9abc
MK
1214 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1215 {
1216 cache->reg[regnum].loc.reg = fs->retaddr_column;
1217 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1218 }
1219 else
1220 {
1221 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1222 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1223 }
35889917
MK
1224 }
1225 }
1226 }
1227 }
cfc14b3a 1228
0228dfb9
DJ
1229 if (fs->retaddr_column < fs->regs.num_regs
1230 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1231 cache->undefined_retaddr = 1;
1232
cfc14b3a
MK
1233 do_cleanups (old_chain);
1234
111c6489
JK
1235 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1236 starting at THIS_FRAME. */
1237 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1238 (entry_cfa_sp_offset_p
1239 ? &entry_cfa_sp_offset : NULL));
1240
78ac5f83 1241 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1242 return cache;
1243}
1244
8fbca658
PA
1245static enum unwind_stop_reason
1246dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1247 void **this_cache)
1248{
1249 struct dwarf2_frame_cache *cache
1250 = dwarf2_frame_cache (this_frame, this_cache);
1251
1252 if (cache->unavailable_retaddr)
1253 return UNWIND_UNAVAILABLE;
1254
1255 if (cache->undefined_retaddr)
1256 return UNWIND_OUTERMOST;
1257
1258 return UNWIND_NO_REASON;
1259}
1260
cfc14b3a 1261static void
4a4e5149 1262dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1263 struct frame_id *this_id)
1264{
1265 struct dwarf2_frame_cache *cache =
4a4e5149 1266 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1267
8fbca658
PA
1268 if (cache->unavailable_retaddr)
1269 return;
1270
0228dfb9
DJ
1271 if (cache->undefined_retaddr)
1272 return;
1273
4a4e5149 1274 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1275}
1276
4a4e5149
DJ
1277static struct value *
1278dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1279 int regnum)
93d42b30 1280{
4a4e5149 1281 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1282 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1283 dwarf2_frame_cache (this_frame, this_cache);
1284 CORE_ADDR addr;
1285 int realnum;
cfc14b3a 1286
111c6489
JK
1287 /* Non-bottom frames of a virtual tail call frames chain use
1288 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1289 them. If dwarf2_tailcall_prev_register_first does not have specific value
1290 unwind the register, tail call frames are assumed to have the register set
1291 of the top caller. */
1292 if (cache->tailcall_cache)
1293 {
1294 struct value *val;
1295
1296 val = dwarf2_tailcall_prev_register_first (this_frame,
1297 &cache->tailcall_cache,
1298 regnum);
1299 if (val)
1300 return val;
1301 }
1302
cfc14b3a
MK
1303 switch (cache->reg[regnum].how)
1304 {
05cbe71a 1305 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1306 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1307 mark it as optimized away; the value isn't available. */
4a4e5149 1308 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1309
05cbe71a 1310 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1311 addr = cache->cfa + cache->reg[regnum].loc.offset;
1312 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1313
05cbe71a 1314 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1315 realnum
1316 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1317 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1318
05cbe71a 1319 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1320 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1321 cache->reg[regnum].exp_len,
ac56253d
TT
1322 cache->addr_size, cache->text_offset,
1323 this_frame, cache->cfa, 1);
4a4e5149 1324 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1325
46ea248b 1326 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1327 addr = cache->cfa + cache->reg[regnum].loc.offset;
1328 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1329
1330 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1331 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1332 cache->reg[regnum].exp_len,
ac56253d
TT
1333 cache->addr_size, cache->text_offset,
1334 this_frame, cache->cfa, 1);
4a4e5149 1335 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1336
05cbe71a 1337 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1338 /* GCC, in its infinite wisdom decided to not provide unwind
1339 information for registers that are "same value". Since
1340 DWARF2 (3 draft 7) doesn't define such behavior, said
1341 registers are actually undefined (which is different to CFI
1342 "undefined"). Code above issues a complaint about this.
1343 Here just fudge the books, assume GCC, and that the value is
1344 more inner on the stack. */
4a4e5149 1345 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1346
05cbe71a 1347 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1348 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1349
05cbe71a 1350 case DWARF2_FRAME_REG_CFA:
4a4e5149 1351 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1352
ea7963f0 1353 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1354 addr = cache->cfa + cache->reg[regnum].loc.offset;
1355 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1356
8d5a9abc 1357 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1358 addr = cache->reg[regnum].loc.offset;
1359 regnum = gdbarch_dwarf2_reg_to_regnum
1360 (gdbarch, cache->retaddr_reg.loc.reg);
1361 addr += get_frame_register_unsigned (this_frame, regnum);
1362 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1363
b39cc962
DJ
1364 case DWARF2_FRAME_REG_FN:
1365 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1366
cfc14b3a 1367 default:
e2e0b3e5 1368 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1369 }
1370}
1371
111c6489
JK
1372/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1373 call frames chain. */
1374
1375static void
1376dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1377{
1378 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1379
1380 if (cache->tailcall_cache)
1381 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1382}
1383
4a4e5149
DJ
1384static int
1385dwarf2_frame_sniffer (const struct frame_unwind *self,
1386 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1387{
1ce5d6dd 1388 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1389 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1390 end up returning something past the end of this function's body.
1391 If the frame we're sniffing for is a signal frame whose start
1392 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1393 extend one byte before its start address or we could potentially
1394 select the FDE of the previous function. */
1395 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1396 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1397
56c987f6 1398 if (!fde)
4a4e5149 1399 return 0;
3ed09a32
DJ
1400
1401 /* On some targets, signal trampolines may have unwind information.
1402 We need to recognize them so that we set the frame type
1403 correctly. */
1404
56c987f6 1405 if (fde->cie->signal_frame
4a4e5149
DJ
1406 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1407 this_frame))
1408 return self->type == SIGTRAMP_FRAME;
1409
111c6489
JK
1410 if (self->type != NORMAL_FRAME)
1411 return 0;
1412
1413 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1414 dwarf2_tailcall_sniffer_first. */
1415 dwarf2_frame_cache (this_frame, this_cache);
1416
1417 return 1;
4a4e5149
DJ
1418}
1419
1420static const struct frame_unwind dwarf2_frame_unwind =
1421{
1422 NORMAL_FRAME,
8fbca658 1423 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1424 dwarf2_frame_this_id,
1425 dwarf2_frame_prev_register,
1426 NULL,
111c6489
JK
1427 dwarf2_frame_sniffer,
1428 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1429};
1430
1431static const struct frame_unwind dwarf2_signal_frame_unwind =
1432{
1433 SIGTRAMP_FRAME,
8fbca658 1434 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1435 dwarf2_frame_this_id,
1436 dwarf2_frame_prev_register,
1437 NULL,
111c6489
JK
1438 dwarf2_frame_sniffer,
1439
1440 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1441 NULL
4a4e5149 1442};
cfc14b3a 1443
4a4e5149
DJ
1444/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1445
1446void
1447dwarf2_append_unwinders (struct gdbarch *gdbarch)
1448{
111c6489
JK
1449 /* TAILCALL_FRAME must be first to find the record by
1450 dwarf2_tailcall_sniffer_first. */
1451 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1452
4a4e5149
DJ
1453 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1454 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1455}
1456\f
1457
1458/* There is no explicitly defined relationship between the CFA and the
1459 location of frame's local variables and arguments/parameters.
1460 Therefore, frame base methods on this page should probably only be
1461 used as a last resort, just to avoid printing total garbage as a
1462 response to the "info frame" command. */
1463
1464static CORE_ADDR
4a4e5149 1465dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1466{
1467 struct dwarf2_frame_cache *cache =
4a4e5149 1468 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1469
1470 return cache->cfa;
1471}
1472
1473static const struct frame_base dwarf2_frame_base =
1474{
1475 &dwarf2_frame_unwind,
1476 dwarf2_frame_base_address,
1477 dwarf2_frame_base_address,
1478 dwarf2_frame_base_address
1479};
1480
1481const struct frame_base *
4a4e5149 1482dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1483{
4a4e5149 1484 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1485
ac56253d 1486 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1487 return &dwarf2_frame_base;
1488
1489 return NULL;
1490}
e7802207
TT
1491
1492/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1493 the DWARF unwinder. This is used to implement
1494 DW_OP_call_frame_cfa. */
1495
1496CORE_ADDR
1497dwarf2_frame_cfa (struct frame_info *this_frame)
1498{
1499 while (get_frame_type (this_frame) == INLINE_FRAME)
1500 this_frame = get_prev_frame (this_frame);
1501 /* This restriction could be lifted if other unwinders are known to
1502 compute the frame base in a way compatible with the DWARF
1503 unwinder. */
111c6489
JK
1504 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1505 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207 1506 error (_("can't compute CFA for this frame"));
c0bf857d
PA
1507 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1508 throw_error (NOT_AVAILABLE_ERROR,
1509 _("can't compute CFA for this frame: "
1510 "required registers or memory are unavailable"));
e7802207
TT
1511 return get_frame_base (this_frame);
1512}
cfc14b3a 1513\f
8f22cb90 1514const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1515
cfc14b3a 1516static unsigned int
f664829e 1517read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1518{
852483bc 1519 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1520}
1521
1522static unsigned int
f664829e 1523read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1524{
852483bc 1525 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1526}
1527
1528static ULONGEST
f664829e 1529read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1530{
852483bc 1531 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1532}
1533
1534static ULONGEST
f664829e
DE
1535read_initial_length (bfd *abfd, const gdb_byte *buf,
1536 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1537{
1538 LONGEST result;
1539
852483bc 1540 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1541 if (result == 0xffffffff)
1542 {
852483bc 1543 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1544 *bytes_read_ptr = 12;
1545 }
1546 else
1547 *bytes_read_ptr = 4;
1548
1549 return result;
1550}
1551\f
1552
1553/* Pointer encoding helper functions. */
1554
1555/* GCC supports exception handling based on DWARF2 CFI. However, for
1556 technical reasons, it encodes addresses in its FDE's in a different
1557 way. Several "pointer encodings" are supported. The encoding
1558 that's used for a particular FDE is determined by the 'R'
1559 augmentation in the associated CIE. The argument of this
1560 augmentation is a single byte.
1561
1562 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1563 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1564 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1565 address should be interpreted (absolute, relative to the current
1566 position in the FDE, ...). Bit 7, indicates that the address
1567 should be dereferenced. */
1568
852483bc 1569static gdb_byte
cfc14b3a
MK
1570encoding_for_size (unsigned int size)
1571{
1572 switch (size)
1573 {
1574 case 2:
1575 return DW_EH_PE_udata2;
1576 case 4:
1577 return DW_EH_PE_udata4;
1578 case 8:
1579 return DW_EH_PE_udata8;
1580 default:
e2e0b3e5 1581 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1582 }
1583}
1584
cfc14b3a 1585static CORE_ADDR
852483bc 1586read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1587 int ptr_len, const gdb_byte *buf,
1588 unsigned int *bytes_read_ptr,
ae0d2f24 1589 CORE_ADDR func_base)
cfc14b3a 1590{
68f6cf99 1591 ptrdiff_t offset;
cfc14b3a
MK
1592 CORE_ADDR base;
1593
1594 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1595 FDE's. */
1596 if (encoding & DW_EH_PE_indirect)
1597 internal_error (__FILE__, __LINE__,
e2e0b3e5 1598 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1599
68f6cf99
MK
1600 *bytes_read_ptr = 0;
1601
cfc14b3a
MK
1602 switch (encoding & 0x70)
1603 {
1604 case DW_EH_PE_absptr:
1605 base = 0;
1606 break;
1607 case DW_EH_PE_pcrel:
f2fec864 1608 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1609 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1610 break;
0912c7f2
MK
1611 case DW_EH_PE_datarel:
1612 base = unit->dbase;
1613 break;
0fd85043
CV
1614 case DW_EH_PE_textrel:
1615 base = unit->tbase;
1616 break;
03ac2a74 1617 case DW_EH_PE_funcrel:
ae0d2f24 1618 base = func_base;
03ac2a74 1619 break;
68f6cf99
MK
1620 case DW_EH_PE_aligned:
1621 base = 0;
852483bc 1622 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1623 if ((offset % ptr_len) != 0)
1624 {
1625 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1626 buf += *bytes_read_ptr;
1627 }
1628 break;
cfc14b3a 1629 default:
3e43a32a
MS
1630 internal_error (__FILE__, __LINE__,
1631 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1632 }
1633
b04de778 1634 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1635 {
1636 encoding |= encoding_for_size (ptr_len);
1637 if (bfd_get_sign_extend_vma (unit->abfd))
1638 encoding |= DW_EH_PE_signed;
1639 }
cfc14b3a
MK
1640
1641 switch (encoding & 0x0f)
1642 {
a81b10ae
MK
1643 case DW_EH_PE_uleb128:
1644 {
9fccedf7 1645 uint64_t value;
0d45f56e 1646 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1647
f664829e 1648 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1649 return base + value;
1650 }
cfc14b3a 1651 case DW_EH_PE_udata2:
68f6cf99 1652 *bytes_read_ptr += 2;
cfc14b3a
MK
1653 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1654 case DW_EH_PE_udata4:
68f6cf99 1655 *bytes_read_ptr += 4;
cfc14b3a
MK
1656 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1657 case DW_EH_PE_udata8:
68f6cf99 1658 *bytes_read_ptr += 8;
cfc14b3a 1659 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1660 case DW_EH_PE_sleb128:
1661 {
9fccedf7 1662 int64_t value;
0d45f56e 1663 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1664
f664829e 1665 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1666 return base + value;
1667 }
cfc14b3a 1668 case DW_EH_PE_sdata2:
68f6cf99 1669 *bytes_read_ptr += 2;
cfc14b3a
MK
1670 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_sdata4:
68f6cf99 1672 *bytes_read_ptr += 4;
cfc14b3a
MK
1673 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_sdata8:
68f6cf99 1675 *bytes_read_ptr += 8;
cfc14b3a
MK
1676 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1677 default:
3e43a32a
MS
1678 internal_error (__FILE__, __LINE__,
1679 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1680 }
1681}
1682\f
1683
b01c8410
PP
1684static int
1685bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1686{
b01c8410
PP
1687 ULONGEST cie_pointer = *(ULONGEST *) key;
1688 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1689
b01c8410
PP
1690 if (cie_pointer == cie->cie_pointer)
1691 return 0;
cfc14b3a 1692
b01c8410
PP
1693 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1694}
1695
1696/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1697static struct dwarf2_cie *
1698find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1699{
1700 struct dwarf2_cie **p_cie;
cfc14b3a 1701
65a97ab3
PP
1702 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1703 bsearch be non-NULL. */
1704 if (cie_table->entries == NULL)
1705 {
1706 gdb_assert (cie_table->num_entries == 0);
1707 return NULL;
1708 }
1709
b01c8410
PP
1710 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1711 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1712 if (p_cie != NULL)
1713 return *p_cie;
cfc14b3a
MK
1714 return NULL;
1715}
1716
b01c8410 1717/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1718static void
b01c8410 1719add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1720{
b01c8410
PP
1721 const int n = cie_table->num_entries;
1722
1723 gdb_assert (n < 1
1724 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1725
1726 cie_table->entries =
1727 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1728 cie_table->entries[n] = cie;
1729 cie_table->num_entries = n + 1;
1730}
1731
1732static int
1733bsearch_fde_cmp (const void *key, const void *element)
1734{
1735 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1736 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1737
b01c8410
PP
1738 if (seek_pc < fde->initial_location)
1739 return -1;
1740 if (seek_pc < fde->initial_location + fde->address_range)
1741 return 0;
1742 return 1;
cfc14b3a
MK
1743}
1744
1745/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1746 inital location associated with it into *PC. */
1747
1748static struct dwarf2_fde *
ac56253d 1749dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1750{
1751 struct objfile *objfile;
1752
1753 ALL_OBJFILES (objfile)
1754 {
b01c8410
PP
1755 struct dwarf2_fde_table *fde_table;
1756 struct dwarf2_fde **p_fde;
cfc14b3a 1757 CORE_ADDR offset;
b01c8410 1758 CORE_ADDR seek_pc;
cfc14b3a 1759
b01c8410
PP
1760 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1761 if (fde_table == NULL)
be391dca
TT
1762 {
1763 dwarf2_build_frame_info (objfile);
1764 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1765 }
1766 gdb_assert (fde_table != NULL);
1767
1768 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1769 continue;
1770
1771 gdb_assert (objfile->section_offsets);
1772 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1773
b01c8410
PP
1774 gdb_assert (fde_table->num_entries > 0);
1775 if (*pc < offset + fde_table->entries[0]->initial_location)
1776 continue;
1777
1778 seek_pc = *pc - offset;
1779 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1780 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1781 if (p_fde != NULL)
1782 {
1783 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1784 if (out_offset)
1785 *out_offset = offset;
b01c8410
PP
1786 return *p_fde;
1787 }
cfc14b3a 1788 }
cfc14b3a
MK
1789 return NULL;
1790}
1791
b01c8410 1792/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1793static void
b01c8410 1794add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1795{
b01c8410
PP
1796 if (fde->address_range == 0)
1797 /* Discard useless FDEs. */
1798 return;
1799
1800 fde_table->num_entries += 1;
1801 fde_table->entries =
1802 xrealloc (fde_table->entries,
1803 fde_table->num_entries * sizeof (fde_table->entries[0]));
1804 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1805}
1806
1807#ifdef CC_HAS_LONG_LONG
1808#define DW64_CIE_ID 0xffffffffffffffffULL
1809#else
1810#define DW64_CIE_ID ~0
1811#endif
1812
8bd90839
FM
1813/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1814 or any of them. */
1815
1816enum eh_frame_type
1817{
1818 EH_CIE_TYPE_ID = 1 << 0,
1819 EH_FDE_TYPE_ID = 1 << 1,
1820 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1821};
1822
f664829e
DE
1823static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1824 const gdb_byte *start,
1825 int eh_frame_p,
1826 struct dwarf2_cie_table *cie_table,
1827 struct dwarf2_fde_table *fde_table,
1828 enum eh_frame_type entry_type);
8bd90839
FM
1829
1830/* Decode the next CIE or FDE, entry_type specifies the expected type.
1831 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1832
f664829e
DE
1833static const gdb_byte *
1834decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1835 int eh_frame_p,
b01c8410 1836 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1837 struct dwarf2_fde_table *fde_table,
1838 enum eh_frame_type entry_type)
cfc14b3a 1839{
5e2b427d 1840 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1841 const gdb_byte *buf, *end;
cfc14b3a
MK
1842 LONGEST length;
1843 unsigned int bytes_read;
6896c0c7
RH
1844 int dwarf64_p;
1845 ULONGEST cie_id;
cfc14b3a 1846 ULONGEST cie_pointer;
9fccedf7
DE
1847 int64_t sleb128;
1848 uint64_t uleb128;
cfc14b3a 1849
6896c0c7 1850 buf = start;
cfc14b3a
MK
1851 length = read_initial_length (unit->abfd, buf, &bytes_read);
1852 buf += bytes_read;
1853 end = buf + length;
1854
0963b4bd 1855 /* Are we still within the section? */
6896c0c7
RH
1856 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1857 return NULL;
1858
cfc14b3a
MK
1859 if (length == 0)
1860 return end;
1861
6896c0c7
RH
1862 /* Distinguish between 32 and 64-bit encoded frame info. */
1863 dwarf64_p = (bytes_read == 12);
cfc14b3a 1864
6896c0c7 1865 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1866 if (eh_frame_p)
1867 cie_id = 0;
1868 else if (dwarf64_p)
1869 cie_id = DW64_CIE_ID;
6896c0c7
RH
1870 else
1871 cie_id = DW_CIE_ID;
cfc14b3a
MK
1872
1873 if (dwarf64_p)
1874 {
1875 cie_pointer = read_8_bytes (unit->abfd, buf);
1876 buf += 8;
1877 }
1878 else
1879 {
1880 cie_pointer = read_4_bytes (unit->abfd, buf);
1881 buf += 4;
1882 }
1883
1884 if (cie_pointer == cie_id)
1885 {
1886 /* This is a CIE. */
1887 struct dwarf2_cie *cie;
1888 char *augmentation;
28ba0b33 1889 unsigned int cie_version;
cfc14b3a 1890
8bd90839
FM
1891 /* Check that a CIE was expected. */
1892 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1893 error (_("Found a CIE when not expecting it."));
1894
cfc14b3a
MK
1895 /* Record the offset into the .debug_frame section of this CIE. */
1896 cie_pointer = start - unit->dwarf_frame_buffer;
1897
1898 /* Check whether we've already read it. */
b01c8410 1899 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1900 return end;
1901
1902 cie = (struct dwarf2_cie *)
8b92e4d5 1903 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1904 sizeof (struct dwarf2_cie));
1905 cie->initial_instructions = NULL;
1906 cie->cie_pointer = cie_pointer;
1907
1908 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1909 depends on the target address size. */
1910 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1911
56c987f6
AO
1912 /* We'll determine the final value later, but we need to
1913 initialize it conservatively. */
1914 cie->signal_frame = 0;
1915
cfc14b3a 1916 /* Check version number. */
28ba0b33 1917 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1918 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1919 return NULL;
303b6f5d 1920 cie->version = cie_version;
cfc14b3a
MK
1921 buf += 1;
1922
1923 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1924 cie->augmentation = augmentation = (char *) buf;
852483bc 1925 buf += (strlen (augmentation) + 1);
cfc14b3a 1926
303b6f5d
DJ
1927 /* Ignore armcc augmentations. We only use them for quirks,
1928 and that doesn't happen until later. */
1929 if (strncmp (augmentation, "armcc", 5) == 0)
1930 augmentation += strlen (augmentation);
1931
cfc14b3a
MK
1932 /* The GCC 2.x "eh" augmentation has a pointer immediately
1933 following the augmentation string, so it must be handled
1934 first. */
1935 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1936 {
1937 /* Skip. */
5e2b427d 1938 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1939 augmentation += 2;
1940 }
1941
2dc7f7b3
TT
1942 if (cie->version >= 4)
1943 {
1944 /* FIXME: check that this is the same as from the CU header. */
1945 cie->addr_size = read_1_byte (unit->abfd, buf);
1946 ++buf;
1947 cie->segment_size = read_1_byte (unit->abfd, buf);
1948 ++buf;
1949 }
1950 else
1951 {
8da614df 1952 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1953 cie->segment_size = 0;
1954 }
8da614df
CV
1955 /* Address values in .eh_frame sections are defined to have the
1956 target's pointer size. Watchout: This breaks frame info for
1957 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1958 section exists as well. */
8da614df
CV
1959 if (eh_frame_p)
1960 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1961 else
1962 cie->ptr_size = cie->addr_size;
2dc7f7b3 1963
f664829e
DE
1964 buf = gdb_read_uleb128 (buf, end, &uleb128);
1965 if (buf == NULL)
1966 return NULL;
1967 cie->code_alignment_factor = uleb128;
cfc14b3a 1968
f664829e
DE
1969 buf = gdb_read_sleb128 (buf, end, &sleb128);
1970 if (buf == NULL)
1971 return NULL;
1972 cie->data_alignment_factor = sleb128;
cfc14b3a 1973
28ba0b33
PB
1974 if (cie_version == 1)
1975 {
1976 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1977 ++buf;
28ba0b33
PB
1978 }
1979 else
f664829e
DE
1980 {
1981 buf = gdb_read_uleb128 (buf, end, &uleb128);
1982 if (buf == NULL)
1983 return NULL;
1984 cie->return_address_register = uleb128;
1985 }
1986
4fc771b8 1987 cie->return_address_register
5e2b427d 1988 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1989 cie->return_address_register,
1990 eh_frame_p);
4bf8967c 1991
7131cb6e
RH
1992 cie->saw_z_augmentation = (*augmentation == 'z');
1993 if (cie->saw_z_augmentation)
cfc14b3a 1994 {
9fccedf7 1995 uint64_t length;
cfc14b3a 1996
f664829e
DE
1997 buf = gdb_read_uleb128 (buf, end, &length);
1998 if (buf == NULL)
6896c0c7 1999 return NULL;
cfc14b3a
MK
2000 cie->initial_instructions = buf + length;
2001 augmentation++;
2002 }
2003
2004 while (*augmentation)
2005 {
2006 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2007 if (*augmentation == 'L')
2008 {
2009 /* Skip. */
2010 buf++;
2011 augmentation++;
2012 }
2013
2014 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2015 else if (*augmentation == 'R')
2016 {
2017 cie->encoding = *buf++;
2018 augmentation++;
2019 }
2020
2021 /* "P" indicates a personality routine in the CIE augmentation. */
2022 else if (*augmentation == 'P')
2023 {
1234d960 2024 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2025 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2026 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2027 buf, &bytes_read, 0);
f724bf08 2028 buf += bytes_read;
cfc14b3a
MK
2029 augmentation++;
2030 }
2031
56c987f6
AO
2032 /* "S" indicates a signal frame, such that the return
2033 address must not be decremented to locate the call frame
2034 info for the previous frame; it might even be the first
2035 instruction of a function, so decrementing it would take
2036 us to a different function. */
2037 else if (*augmentation == 'S')
2038 {
2039 cie->signal_frame = 1;
2040 augmentation++;
2041 }
2042
3e9a2e52
DJ
2043 /* Otherwise we have an unknown augmentation. Assume that either
2044 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2045 else
2046 {
3e9a2e52
DJ
2047 if (cie->initial_instructions)
2048 buf = cie->initial_instructions;
cfc14b3a
MK
2049 break;
2050 }
2051 }
2052
2053 cie->initial_instructions = buf;
2054 cie->end = end;
b01c8410 2055 cie->unit = unit;
cfc14b3a 2056
b01c8410 2057 add_cie (cie_table, cie);
cfc14b3a
MK
2058 }
2059 else
2060 {
2061 /* This is a FDE. */
2062 struct dwarf2_fde *fde;
2063
8bd90839
FM
2064 /* Check that an FDE was expected. */
2065 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2066 error (_("Found an FDE when not expecting it."));
2067
6896c0c7
RH
2068 /* In an .eh_frame section, the CIE pointer is the delta between the
2069 address within the FDE where the CIE pointer is stored and the
2070 address of the CIE. Convert it to an offset into the .eh_frame
2071 section. */
cfc14b3a
MK
2072 if (eh_frame_p)
2073 {
cfc14b3a
MK
2074 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2075 cie_pointer -= (dwarf64_p ? 8 : 4);
2076 }
2077
6896c0c7
RH
2078 /* In either case, validate the result is still within the section. */
2079 if (cie_pointer >= unit->dwarf_frame_size)
2080 return NULL;
2081
cfc14b3a 2082 fde = (struct dwarf2_fde *)
8b92e4d5 2083 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2084 sizeof (struct dwarf2_fde));
b01c8410 2085 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2086 if (fde->cie == NULL)
2087 {
2088 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2089 eh_frame_p, cie_table, fde_table,
2090 EH_CIE_TYPE_ID);
b01c8410 2091 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2092 }
2093
2094 gdb_assert (fde->cie != NULL);
2095
2096 fde->initial_location =
8da614df 2097 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2098 buf, &bytes_read, 0);
cfc14b3a
MK
2099 buf += bytes_read;
2100
2101 fde->address_range =
ae0d2f24 2102 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2103 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2104 buf += bytes_read;
2105
7131cb6e
RH
2106 /* A 'z' augmentation in the CIE implies the presence of an
2107 augmentation field in the FDE as well. The only thing known
2108 to be in here at present is the LSDA entry for EH. So we
2109 can skip the whole thing. */
2110 if (fde->cie->saw_z_augmentation)
2111 {
9fccedf7 2112 uint64_t length;
7131cb6e 2113
f664829e
DE
2114 buf = gdb_read_uleb128 (buf, end, &length);
2115 if (buf == NULL)
2116 return NULL;
2117 buf += length;
6896c0c7
RH
2118 if (buf > end)
2119 return NULL;
7131cb6e
RH
2120 }
2121
cfc14b3a
MK
2122 fde->instructions = buf;
2123 fde->end = end;
2124
4bf8967c
AS
2125 fde->eh_frame_p = eh_frame_p;
2126
b01c8410 2127 add_fde (fde_table, fde);
cfc14b3a
MK
2128 }
2129
2130 return end;
2131}
6896c0c7 2132
8bd90839
FM
2133/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2134 expect an FDE or a CIE. */
2135
f664829e
DE
2136static const gdb_byte *
2137decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2138 int eh_frame_p,
b01c8410 2139 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2140 struct dwarf2_fde_table *fde_table,
2141 enum eh_frame_type entry_type)
6896c0c7
RH
2142{
2143 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2144 const gdb_byte *ret;
6896c0c7
RH
2145 ptrdiff_t start_offset;
2146
2147 while (1)
2148 {
b01c8410 2149 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2150 cie_table, fde_table, entry_type);
6896c0c7
RH
2151 if (ret != NULL)
2152 break;
2153
2154 /* We have corrupt input data of some form. */
2155
2156 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2157 and mismatches wrt padding and alignment of debug sections. */
2158 /* Note that there is no requirement in the standard for any
2159 alignment at all in the frame unwind sections. Testing for
2160 alignment before trying to interpret data would be incorrect.
2161
2162 However, GCC traditionally arranged for frame sections to be
2163 sized such that the FDE length and CIE fields happen to be
2164 aligned (in theory, for performance). This, unfortunately,
2165 was done with .align directives, which had the side effect of
2166 forcing the section to be aligned by the linker.
2167
2168 This becomes a problem when you have some other producer that
2169 creates frame sections that are not as strictly aligned. That
2170 produces a hole in the frame info that gets filled by the
2171 linker with zeros.
2172
2173 The GCC behaviour is arguably a bug, but it's effectively now
2174 part of the ABI, so we're now stuck with it, at least at the
2175 object file level. A smart linker may decide, in the process
2176 of compressing duplicate CIE information, that it can rewrite
2177 the entire output section without this extra padding. */
2178
2179 start_offset = start - unit->dwarf_frame_buffer;
2180 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2181 {
2182 start += 4 - (start_offset & 3);
2183 workaround = ALIGN4;
2184 continue;
2185 }
2186 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2187 {
2188 start += 8 - (start_offset & 7);
2189 workaround = ALIGN8;
2190 continue;
2191 }
2192
2193 /* Nothing left to try. Arrange to return as if we've consumed
2194 the entire input section. Hopefully we'll get valid info from
2195 the other of .debug_frame/.eh_frame. */
2196 workaround = FAIL;
2197 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2198 break;
2199 }
2200
2201 switch (workaround)
2202 {
2203 case NONE:
2204 break;
2205
2206 case ALIGN4:
3e43a32a
MS
2207 complaint (&symfile_complaints, _("\
2208Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2209 unit->dwarf_frame_section->owner->filename,
2210 unit->dwarf_frame_section->name);
2211 break;
2212
2213 case ALIGN8:
3e43a32a
MS
2214 complaint (&symfile_complaints, _("\
2215Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2216 unit->dwarf_frame_section->owner->filename,
2217 unit->dwarf_frame_section->name);
2218 break;
2219
2220 default:
2221 complaint (&symfile_complaints,
e2e0b3e5 2222 _("Corrupt data in %s:%s"),
6896c0c7
RH
2223 unit->dwarf_frame_section->owner->filename,
2224 unit->dwarf_frame_section->name);
2225 break;
2226 }
2227
2228 return ret;
2229}
cfc14b3a 2230\f
b01c8410
PP
2231static int
2232qsort_fde_cmp (const void *a, const void *b)
2233{
2234 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2235 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2236
b01c8410 2237 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2238 {
2239 if (aa->address_range != bb->address_range
2240 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2241 /* Linker bug, e.g. gold/10400.
2242 Work around it by keeping stable sort order. */
2243 return (a < b) ? -1 : 1;
2244 else
2245 /* Put eh_frame entries after debug_frame ones. */
2246 return aa->eh_frame_p - bb->eh_frame_p;
2247 }
b01c8410
PP
2248
2249 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2250}
2251
cfc14b3a
MK
2252void
2253dwarf2_build_frame_info (struct objfile *objfile)
2254{
ae0d2f24 2255 struct comp_unit *unit;
f664829e 2256 const gdb_byte *frame_ptr;
b01c8410
PP
2257 struct dwarf2_cie_table cie_table;
2258 struct dwarf2_fde_table fde_table;
be391dca 2259 struct dwarf2_fde_table *fde_table2;
8bd90839 2260 volatile struct gdb_exception e;
b01c8410
PP
2261
2262 cie_table.num_entries = 0;
2263 cie_table.entries = NULL;
2264
2265 fde_table.num_entries = 0;
2266 fde_table.entries = NULL;
cfc14b3a
MK
2267
2268 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2269 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2270 sizeof (struct comp_unit));
2271 unit->abfd = objfile->obfd;
2272 unit->objfile = objfile;
2273 unit->dbase = 0;
2274 unit->tbase = 0;
cfc14b3a 2275
d40102a1 2276 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2277 {
d40102a1
JB
2278 /* Do not read .eh_frame from separate file as they must be also
2279 present in the main file. */
2280 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2281 &unit->dwarf_frame_section,
2282 &unit->dwarf_frame_buffer,
2283 &unit->dwarf_frame_size);
2284 if (unit->dwarf_frame_size)
b01c8410 2285 {
d40102a1
JB
2286 asection *got, *txt;
2287
2288 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2289 that is used for the i386/amd64 target, which currently is
2290 the only target in GCC that supports/uses the
2291 DW_EH_PE_datarel encoding. */
2292 got = bfd_get_section_by_name (unit->abfd, ".got");
2293 if (got)
2294 unit->dbase = got->vma;
2295
2296 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2297 so far. */
2298 txt = bfd_get_section_by_name (unit->abfd, ".text");
2299 if (txt)
2300 unit->tbase = txt->vma;
2301
8bd90839
FM
2302 TRY_CATCH (e, RETURN_MASK_ERROR)
2303 {
2304 frame_ptr = unit->dwarf_frame_buffer;
2305 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2306 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2307 &cie_table, &fde_table,
2308 EH_CIE_OR_FDE_TYPE_ID);
2309 }
2310
2311 if (e.reason < 0)
2312 {
2313 warning (_("skipping .eh_frame info of %s: %s"),
2314 objfile->name, e.message);
2315
2316 if (fde_table.num_entries != 0)
2317 {
2318 xfree (fde_table.entries);
2319 fde_table.entries = NULL;
2320 fde_table.num_entries = 0;
2321 }
2322 /* The cie_table is discarded by the next if. */
2323 }
d40102a1
JB
2324
2325 if (cie_table.num_entries != 0)
2326 {
2327 /* Reinit cie_table: debug_frame has different CIEs. */
2328 xfree (cie_table.entries);
2329 cie_table.num_entries = 0;
2330 cie_table.entries = NULL;
2331 }
b01c8410 2332 }
cfc14b3a
MK
2333 }
2334
3017a003 2335 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2336 &unit->dwarf_frame_section,
2337 &unit->dwarf_frame_buffer,
2338 &unit->dwarf_frame_size);
2339 if (unit->dwarf_frame_size)
cfc14b3a 2340 {
8bd90839
FM
2341 int num_old_fde_entries = fde_table.num_entries;
2342
2343 TRY_CATCH (e, RETURN_MASK_ERROR)
2344 {
2345 frame_ptr = unit->dwarf_frame_buffer;
2346 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2347 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2348 &cie_table, &fde_table,
2349 EH_CIE_OR_FDE_TYPE_ID);
2350 }
2351 if (e.reason < 0)
2352 {
2353 warning (_("skipping .debug_frame info of %s: %s"),
2354 objfile->name, e.message);
2355
2356 if (fde_table.num_entries != 0)
2357 {
2358 fde_table.num_entries = num_old_fde_entries;
2359 if (num_old_fde_entries == 0)
2360 {
2361 xfree (fde_table.entries);
2362 fde_table.entries = NULL;
2363 }
2364 else
2365 {
2366 fde_table.entries = xrealloc (fde_table.entries,
2367 fde_table.num_entries *
2368 sizeof (fde_table.entries[0]));
2369 }
2370 }
2371 fde_table.num_entries = num_old_fde_entries;
2372 /* The cie_table is discarded by the next if. */
2373 }
b01c8410
PP
2374 }
2375
2376 /* Discard the cie_table, it is no longer needed. */
2377 if (cie_table.num_entries != 0)
2378 {
2379 xfree (cie_table.entries);
2380 cie_table.entries = NULL; /* Paranoia. */
2381 cie_table.num_entries = 0; /* Paranoia. */
2382 }
2383
be391dca
TT
2384 /* Copy fde_table to obstack: it is needed at runtime. */
2385 fde_table2 = (struct dwarf2_fde_table *)
2386 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2387
2388 if (fde_table.num_entries == 0)
2389 {
2390 fde_table2->entries = NULL;
2391 fde_table2->num_entries = 0;
2392 }
2393 else
b01c8410 2394 {
875cdfbb
PA
2395 struct dwarf2_fde *fde_prev = NULL;
2396 struct dwarf2_fde *first_non_zero_fde = NULL;
2397 int i;
b01c8410
PP
2398
2399 /* Prepare FDE table for lookups. */
2400 qsort (fde_table.entries, fde_table.num_entries,
2401 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2402
875cdfbb
PA
2403 /* Check for leftovers from --gc-sections. The GNU linker sets
2404 the relevant symbols to zero, but doesn't zero the FDE *end*
2405 ranges because there's no relocation there. It's (offset,
2406 length), not (start, end). On targets where address zero is
2407 just another valid address this can be a problem, since the
2408 FDEs appear to be non-empty in the output --- we could pick
2409 out the wrong FDE. To work around this, when overlaps are
2410 detected, we prefer FDEs that do not start at zero.
2411
2412 Start by finding the first FDE with non-zero start. Below
2413 we'll discard all FDEs that start at zero and overlap this
2414 one. */
2415 for (i = 0; i < fde_table.num_entries; i++)
2416 {
2417 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2418
875cdfbb
PA
2419 if (fde->initial_location != 0)
2420 {
2421 first_non_zero_fde = fde;
2422 break;
2423 }
2424 }
2425
2426 /* Since we'll be doing bsearch, squeeze out identical (except
2427 for eh_frame_p) fde entries so bsearch result is predictable.
2428 Also discard leftovers from --gc-sections. */
be391dca 2429 fde_table2->num_entries = 0;
875cdfbb
PA
2430 for (i = 0; i < fde_table.num_entries; i++)
2431 {
2432 struct dwarf2_fde *fde = fde_table.entries[i];
2433
2434 if (fde->initial_location == 0
2435 && first_non_zero_fde != NULL
2436 && (first_non_zero_fde->initial_location
2437 < fde->initial_location + fde->address_range))
2438 continue;
2439
2440 if (fde_prev != NULL
2441 && fde_prev->initial_location == fde->initial_location)
2442 continue;
2443
2444 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2445 sizeof (fde_table.entries[0]));
2446 ++fde_table2->num_entries;
2447 fde_prev = fde;
2448 }
b01c8410 2449 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2450
2451 /* Discard the original fde_table. */
2452 xfree (fde_table.entries);
cfc14b3a 2453 }
be391dca
TT
2454
2455 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2456}
0d0e1a63
MK
2457
2458/* Provide a prototype to silence -Wmissing-prototypes. */
2459void _initialize_dwarf2_frame (void);
2460
2461void
2462_initialize_dwarf2_frame (void)
2463{
030f20e1 2464 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2465 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2466}
This page took 0.776373 seconds and 4 git commands to generate.