daily update
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
0fb0cc75 4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
fa8f86ff 25#include "dwarf2.h"
cfc14b3a
MK
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a 40#include "dwarf2-frame.h"
9f6f94ff
TT
41#include "ax.h"
42#include "dwarf2loc.h"
8fbca658 43#include "exceptions.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
852483bc
MK
71 gdb_byte *initial_instructions;
72 gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
852483bc
MK
119 gdb_byte *instructions;
120 gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24
UW
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
289read_reg (void *baton, int reg)
290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
309static void
852483bc 310read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
311{
312 read_memory (addr, buf, len);
313}
314
315static void
0d45f56e 316no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
cfc14b3a
MK
317{
318 internal_error (__FILE__, __LINE__,
e2e0b3e5 319 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
320}
321
e7802207
TT
322/* Helper function for execute_stack_op. */
323
324static CORE_ADDR
325no_get_frame_cfa (void *baton)
326{
327 internal_error (__FILE__, __LINE__,
328 _("Support for DW_OP_call_frame_cfa is unimplemented"));
329}
330
8cf6f0b1
TT
331/* Helper function for execute_stack_op. */
332
333static CORE_ADDR
334no_get_frame_pc (void *baton)
335{
3e43a32a
MS
336 internal_error (__FILE__, __LINE__, _("\
337Support for DW_OP_GNU_implicit_pointer is unimplemented"));
8cf6f0b1
TT
338}
339
cfc14b3a
MK
340static CORE_ADDR
341no_get_tls_address (void *baton, CORE_ADDR offset)
342{
3e43a32a
MS
343 internal_error (__FILE__, __LINE__, _("\
344Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
345}
346
5c631832
JK
347/* Helper function for execute_stack_op. */
348
349static void
350no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
351{
352 internal_error (__FILE__, __LINE__,
353 _("Support for DW_OP_call* is invalid in CFI"));
354}
355
a6a5a945
LM
356/* Execute the required actions for both the DW_CFA_restore and
357DW_CFA_restore_extended instructions. */
358static void
359dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
360 struct dwarf2_frame_state *fs, int eh_frame_p)
361{
362 ULONGEST reg;
363
364 gdb_assert (fs->initial.reg);
365 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
366 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
367
368 /* Check if this register was explicitly initialized in the
369 CIE initial instructions. If not, default the rule to
370 UNSPECIFIED. */
371 if (reg < fs->initial.num_regs)
372 fs->regs.reg[reg] = fs->initial.reg[reg];
373 else
374 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
375
376 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
377 complaint (&symfile_complaints, _("\
378incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 379register %s (#%d) at %s"),
a6a5a945
LM
380 gdbarch_register_name
381 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
382 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 383 paddress (gdbarch, fs->pc));
a6a5a945
LM
384}
385
cfc14b3a 386static CORE_ADDR
0d45f56e 387execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
388 CORE_ADDR offset, struct frame_info *this_frame,
389 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
390{
391 struct dwarf_expr_context *ctx;
392 CORE_ADDR result;
4a227398 393 struct cleanup *old_chain;
cfc14b3a
MK
394
395 ctx = new_dwarf_expr_context ();
4a227398
TT
396 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
397
f7fd4728 398 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 399 ctx->addr_size = addr_size;
ac56253d 400 ctx->offset = offset;
4a4e5149 401 ctx->baton = this_frame;
cfc14b3a
MK
402 ctx->read_reg = read_reg;
403 ctx->read_mem = read_mem;
404 ctx->get_frame_base = no_get_frame_base;
e7802207 405 ctx->get_frame_cfa = no_get_frame_cfa;
8cf6f0b1 406 ctx->get_frame_pc = no_get_frame_pc;
cfc14b3a 407 ctx->get_tls_address = no_get_tls_address;
5c631832 408 ctx->dwarf_call = no_dwarf_call;
cfc14b3a 409
44353522 410 dwarf_expr_push (ctx, initial, initial_in_stack_memory);
cfc14b3a 411 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 412
f2c7657e
UW
413 if (ctx->location == DWARF_VALUE_MEMORY)
414 result = dwarf_expr_fetch_address (ctx, 0);
415 else if (ctx->location == DWARF_VALUE_REGISTER)
416 result = read_reg (this_frame, dwarf_expr_fetch (ctx, 0));
417 else
cec03d70
TT
418 {
419 /* This is actually invalid DWARF, but if we ever do run across
420 it somehow, we might as well support it. So, instead, report
421 it as unimplemented. */
3e43a32a
MS
422 error (_("\
423Not implemented: computing unwound register using explicit value operator"));
cec03d70 424 }
cfc14b3a 425
4a227398 426 do_cleanups (old_chain);
cfc14b3a
MK
427
428 return result;
429}
430\f
431
432static void
0d45f56e 433execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
434 const gdb_byte *insn_end, struct gdbarch *gdbarch,
435 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 436{
ae0d2f24 437 int eh_frame_p = fde->eh_frame_p;
cfc14b3a 438 int bytes_read;
e17a4113 439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
440
441 while (insn_ptr < insn_end && fs->pc <= pc)
442 {
852483bc 443 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
444 ULONGEST utmp, reg;
445 LONGEST offset;
446
447 if ((insn & 0xc0) == DW_CFA_advance_loc)
448 fs->pc += (insn & 0x3f) * fs->code_align;
449 else if ((insn & 0xc0) == DW_CFA_offset)
450 {
451 reg = insn & 0x3f;
4fc771b8 452 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
454 offset = utmp * fs->data_align;
455 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 456 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
457 fs->regs.reg[reg].loc.offset = offset;
458 }
459 else if ((insn & 0xc0) == DW_CFA_restore)
460 {
cfc14b3a 461 reg = insn & 0x3f;
a6a5a945 462 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
463 }
464 else
465 {
466 switch (insn)
467 {
468 case DW_CFA_set_loc:
ae0d2f24 469 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 470 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
471 &bytes_read, fde->initial_location);
472 /* Apply the objfile offset for relocatable objects. */
473 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
474 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
475 insn_ptr += bytes_read;
476 break;
477
478 case DW_CFA_advance_loc1:
e17a4113 479 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
480 fs->pc += utmp * fs->code_align;
481 insn_ptr++;
482 break;
483 case DW_CFA_advance_loc2:
e17a4113 484 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
485 fs->pc += utmp * fs->code_align;
486 insn_ptr += 2;
487 break;
488 case DW_CFA_advance_loc4:
e17a4113 489 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
490 fs->pc += utmp * fs->code_align;
491 insn_ptr += 4;
492 break;
493
494 case DW_CFA_offset_extended:
495 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 496 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
497 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
498 offset = utmp * fs->data_align;
499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
501 fs->regs.reg[reg].loc.offset = offset;
502 break;
503
504 case DW_CFA_restore_extended:
cfc14b3a 505 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 506 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
507 break;
508
509 case DW_CFA_undefined:
510 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 511 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
514 break;
515
516 case DW_CFA_same_value:
517 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 518 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 519 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 520 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
521 break;
522
523 case DW_CFA_register:
524 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 525 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 526 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 527 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 528 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 529 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
530 fs->regs.reg[reg].loc.reg = utmp;
531 break;
532
533 case DW_CFA_remember_state:
534 {
535 struct dwarf2_frame_state_reg_info *new_rs;
536
537 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
538 *new_rs = fs->regs;
539 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
540 fs->regs.prev = new_rs;
541 }
542 break;
543
544 case DW_CFA_restore_state:
545 {
546 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
547
50ea7769
MK
548 if (old_rs == NULL)
549 {
e2e0b3e5 550 complaint (&symfile_complaints, _("\
5af949e3
UW
551bad CFI data; mismatched DW_CFA_restore_state at %s"),
552 paddress (gdbarch, fs->pc));
50ea7769
MK
553 }
554 else
555 {
556 xfree (fs->regs.reg);
557 fs->regs = *old_rs;
558 xfree (old_rs);
559 }
cfc14b3a
MK
560 }
561 break;
562
563 case DW_CFA_def_cfa:
2fd481e1 564 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 565 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
566
567 if (fs->armcc_cfa_offsets_sf)
568 utmp *= fs->data_align;
569
2fd481e1
PP
570 fs->regs.cfa_offset = utmp;
571 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
572 break;
573
574 case DW_CFA_def_cfa_register:
2fd481e1
PP
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
576 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
577 fs->regs.cfa_reg,
578 eh_frame_p);
579 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
580 break;
581
582 case DW_CFA_def_cfa_offset:
852483bc 583 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
584
585 if (fs->armcc_cfa_offsets_sf)
586 utmp *= fs->data_align;
587
2fd481e1 588 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
589 /* cfa_how deliberately not set. */
590 break;
591
a8504492
MK
592 case DW_CFA_nop:
593 break;
594
cfc14b3a 595 case DW_CFA_def_cfa_expression:
2fd481e1
PP
596 insn_ptr = read_uleb128 (insn_ptr, insn_end,
597 &fs->regs.cfa_exp_len);
598 fs->regs.cfa_exp = insn_ptr;
599 fs->regs.cfa_how = CFA_EXP;
600 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
601 break;
602
603 case DW_CFA_expression:
604 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 605 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
607 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
608 fs->regs.reg[reg].loc.exp = insn_ptr;
609 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 610 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
611 insn_ptr += utmp;
612 break;
613
a8504492
MK
614 case DW_CFA_offset_extended_sf:
615 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 616 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 617 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 618 offset *= fs->data_align;
a8504492 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
621 fs->regs.reg[reg].loc.offset = offset;
622 break;
623
46ea248b
AO
624 case DW_CFA_val_offset:
625 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
626 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
627 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
628 offset = utmp * fs->data_align;
629 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
630 fs->regs.reg[reg].loc.offset = offset;
631 break;
632
633 case DW_CFA_val_offset_sf:
634 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
635 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
636 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
637 offset *= fs->data_align;
638 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
639 fs->regs.reg[reg].loc.offset = offset;
640 break;
641
642 case DW_CFA_val_expression:
643 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
644 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
645 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
646 fs->regs.reg[reg].loc.exp = insn_ptr;
647 fs->regs.reg[reg].exp_len = utmp;
648 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
649 insn_ptr += utmp;
650 break;
651
a8504492 652 case DW_CFA_def_cfa_sf:
2fd481e1
PP
653 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
654 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
655 fs->regs.cfa_reg,
656 eh_frame_p);
a8504492 657 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
658 fs->regs.cfa_offset = offset * fs->data_align;
659 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
660 break;
661
662 case DW_CFA_def_cfa_offset_sf:
663 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 664 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 665 /* cfa_how deliberately not set. */
cfc14b3a
MK
666 break;
667
a77f4086
MK
668 case DW_CFA_GNU_window_save:
669 /* This is SPARC-specific code, and contains hard-coded
670 constants for the register numbering scheme used by
671 GCC. Rather than having a architecture-specific
672 operation that's only ever used by a single
673 architecture, we provide the implementation here.
674 Incidentally that's what GCC does too in its
675 unwinder. */
676 {
4a4e5149 677 int size = register_size (gdbarch, 0);
9a619af0 678
a77f4086
MK
679 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
680 for (reg = 8; reg < 16; reg++)
681 {
682 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
683 fs->regs.reg[reg].loc.reg = reg + 16;
684 }
685 for (reg = 16; reg < 32; reg++)
686 {
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
689 }
690 }
691 break;
692
cfc14b3a
MK
693 case DW_CFA_GNU_args_size:
694 /* Ignored. */
695 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
696 break;
697
58894217
JK
698 case DW_CFA_GNU_negative_offset_extended:
699 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 700 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
701 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
702 offset *= fs->data_align;
703 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
704 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
705 fs->regs.reg[reg].loc.offset = -offset;
706 break;
707
cfc14b3a 708 default:
3e43a32a
MS
709 internal_error (__FILE__, __LINE__,
710 _("Unknown CFI encountered."));
cfc14b3a
MK
711 }
712 }
713 }
714
715 /* Don't allow remember/restore between CIE and FDE programs. */
716 dwarf2_frame_state_free_regs (fs->regs.prev);
717 fs->regs.prev = NULL;
718}
8f22cb90 719\f
cfc14b3a 720
8f22cb90 721/* Architecture-specific operations. */
cfc14b3a 722
8f22cb90
MK
723/* Per-architecture data key. */
724static struct gdbarch_data *dwarf2_frame_data;
725
726struct dwarf2_frame_ops
727{
728 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
729 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
730 struct frame_info *);
3ed09a32 731
4a4e5149 732 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 733 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 734
4fc771b8
DJ
735 /* Convert .eh_frame register number to DWARF register number, or
736 adjust .debug_frame register number. */
737 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
738};
739
8f22cb90
MK
740/* Default architecture-specific register state initialization
741 function. */
742
743static void
744dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 745 struct dwarf2_frame_state_reg *reg,
4a4e5149 746 struct frame_info *this_frame)
8f22cb90
MK
747{
748 /* If we have a register that acts as a program counter, mark it as
749 a destination for the return address. If we have a register that
750 serves as the stack pointer, arrange for it to be filled with the
751 call frame address (CFA). The other registers are marked as
752 unspecified.
753
754 We copy the return address to the program counter, since many
755 parts in GDB assume that it is possible to get the return address
756 by unwinding the program counter register. However, on ISA's
757 with a dedicated return address register, the CFI usually only
758 contains information to unwind that return address register.
759
760 The reason we're treating the stack pointer special here is
761 because in many cases GCC doesn't emit CFI for the stack pointer
762 and implicitly assumes that it is equal to the CFA. This makes
763 some sense since the DWARF specification (version 3, draft 8,
764 p. 102) says that:
765
766 "Typically, the CFA is defined to be the value of the stack
767 pointer at the call site in the previous frame (which may be
768 different from its value on entry to the current frame)."
769
770 However, this isn't true for all platforms supported by GCC
771 (e.g. IBM S/390 and zSeries). Those architectures should provide
772 their own architecture-specific initialization function. */
05cbe71a 773
ad010def 774 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 775 reg->how = DWARF2_FRAME_REG_RA;
ad010def 776 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
777 reg->how = DWARF2_FRAME_REG_CFA;
778}
05cbe71a 779
8f22cb90 780/* Return a default for the architecture-specific operations. */
05cbe71a 781
8f22cb90 782static void *
030f20e1 783dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
784{
785 struct dwarf2_frame_ops *ops;
786
030f20e1 787 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
788 ops->init_reg = dwarf2_frame_default_init_reg;
789 return ops;
790}
05cbe71a 791
8f22cb90
MK
792/* Set the architecture-specific register state initialization
793 function for GDBARCH to INIT_REG. */
794
795void
796dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
797 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
798 struct dwarf2_frame_state_reg *,
799 struct frame_info *))
8f22cb90 800{
030f20e1 801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 802
8f22cb90
MK
803 ops->init_reg = init_reg;
804}
805
806/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
807
808static void
809dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 810 struct dwarf2_frame_state_reg *reg,
4a4e5149 811 struct frame_info *this_frame)
05cbe71a 812{
030f20e1 813 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 814
4a4e5149 815 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 816}
3ed09a32
DJ
817
818/* Set the architecture-specific signal trampoline recognition
819 function for GDBARCH to SIGNAL_FRAME_P. */
820
821void
822dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
823 int (*signal_frame_p) (struct gdbarch *,
824 struct frame_info *))
825{
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 ops->signal_frame_p = signal_frame_p;
829}
830
831/* Query the architecture-specific signal frame recognizer for
4a4e5149 832 THIS_FRAME. */
3ed09a32
DJ
833
834static int
835dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 836 struct frame_info *this_frame)
3ed09a32
DJ
837{
838 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
839
840 if (ops->signal_frame_p == NULL)
841 return 0;
4a4e5149 842 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 843}
4bf8967c 844
4fc771b8
DJ
845/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
846 register numbers. */
4bf8967c
AS
847
848void
4fc771b8
DJ
849dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
850 int (*adjust_regnum) (struct gdbarch *,
851 int, int))
4bf8967c
AS
852{
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
4fc771b8 855 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
856}
857
4fc771b8
DJ
858/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
859 register. */
4bf8967c 860
4fc771b8 861static int
3e43a32a
MS
862dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
863 int regnum, int eh_frame_p)
4bf8967c
AS
864{
865 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
866
4fc771b8 867 if (ops->adjust_regnum == NULL)
4bf8967c 868 return regnum;
4fc771b8 869 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 870}
303b6f5d
DJ
871
872static void
873dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
874 struct dwarf2_fde *fde)
875{
303b6f5d
DJ
876 struct symtab *s;
877
878 s = find_pc_symtab (fs->pc);
a6c727b2 879 if (s == NULL)
303b6f5d
DJ
880 return;
881
a6c727b2
DJ
882 if (producer_is_realview (s->producer))
883 {
884 if (fde->cie->version == 1)
885 fs->armcc_cfa_offsets_sf = 1;
886
887 if (fde->cie->version == 1)
888 fs->armcc_cfa_offsets_reversed = 1;
889
890 /* The reversed offset problem is present in some compilers
891 using DWARF3, but it was eventually fixed. Check the ARM
892 defined augmentations, which are in the format "armcc" followed
893 by a list of one-character options. The "+" option means
894 this problem is fixed (no quirk needed). If the armcc
895 augmentation is missing, the quirk is needed. */
896 if (fde->cie->version == 3
897 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
898 || strchr (fde->cie->augmentation + 5, '+') == NULL))
899 fs->armcc_cfa_offsets_reversed = 1;
900
901 return;
902 }
303b6f5d 903}
8f22cb90
MK
904\f
905
9f6f94ff
TT
906void
907dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
908 struct gdbarch *gdbarch,
909 CORE_ADDR pc,
910 struct dwarf2_per_cu_data *data)
911{
912 const int num_regs = gdbarch_num_regs (gdbarch)
913 + gdbarch_num_pseudo_regs (gdbarch);
914 struct dwarf2_fde *fde;
915 CORE_ADDR text_offset, cfa;
916 struct dwarf2_frame_state fs;
917 int addr_size;
918
919 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
920
921 fs.pc = pc;
922
923 /* Find the correct FDE. */
924 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
925 if (fde == NULL)
926 error (_("Could not compute CFA; needed to translate this expression"));
927
928 /* Extract any interesting information from the CIE. */
929 fs.data_align = fde->cie->data_alignment_factor;
930 fs.code_align = fde->cie->code_alignment_factor;
931 fs.retaddr_column = fde->cie->return_address_register;
932 addr_size = fde->cie->addr_size;
933
934 /* Check for "quirks" - known bugs in producers. */
935 dwarf2_frame_find_quirks (&fs, fde);
936
937 /* First decode all the insns in the CIE. */
938 execute_cfa_program (fde, fde->cie->initial_instructions,
939 fde->cie->end, gdbarch, pc, &fs);
940
941 /* Save the initialized register set. */
942 fs.initial = fs.regs;
943 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
944
945 /* Then decode the insns in the FDE up to our target PC. */
946 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
947
948 /* Calculate the CFA. */
949 switch (fs.regs.cfa_how)
950 {
951 case CFA_REG_OFFSET:
952 {
953 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
954
955 if (regnum == -1)
956 error (_("Unable to access DWARF register number %d"),
957 (int) fs.regs.cfa_reg); /* FIXME */
958 ax_reg (expr, regnum);
959
960 if (fs.regs.cfa_offset != 0)
961 {
962 if (fs.armcc_cfa_offsets_reversed)
963 ax_const_l (expr, -fs.regs.cfa_offset);
964 else
965 ax_const_l (expr, fs.regs.cfa_offset);
966 ax_simple (expr, aop_add);
967 }
968 }
969 break;
970
971 case CFA_EXP:
972 ax_const_l (expr, text_offset);
973 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
974 fs.regs.cfa_exp,
975 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
976 data);
977 break;
978
979 default:
980 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
981 }
982}
983
984\f
8f22cb90
MK
985struct dwarf2_frame_cache
986{
987 /* DWARF Call Frame Address. */
988 CORE_ADDR cfa;
989
8fbca658
PA
990 /* Set if the return address column was marked as unavailable
991 (required non-collected memory or registers to compute). */
992 int unavailable_retaddr;
993
0228dfb9
DJ
994 /* Set if the return address column was marked as undefined. */
995 int undefined_retaddr;
996
8f22cb90
MK
997 /* Saved registers, indexed by GDB register number, not by DWARF
998 register number. */
999 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
1000
1001 /* Return address register. */
1002 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
1003
1004 /* Target address size in bytes. */
1005 int addr_size;
ac56253d
TT
1006
1007 /* The .text offset. */
1008 CORE_ADDR text_offset;
8f22cb90 1009};
05cbe71a 1010
b9362cc7 1011static struct dwarf2_frame_cache *
4a4e5149 1012dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1013{
1014 struct cleanup *old_chain;
4a4e5149 1015 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1016 const int num_regs = gdbarch_num_regs (gdbarch)
1017 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1018 struct dwarf2_frame_cache *cache;
1019 struct dwarf2_frame_state *fs;
1020 struct dwarf2_fde *fde;
8fbca658 1021 volatile struct gdb_exception ex;
cfc14b3a
MK
1022
1023 if (*this_cache)
1024 return *this_cache;
1025
1026 /* Allocate a new cache. */
1027 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1028 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1029 *this_cache = cache;
cfc14b3a
MK
1030
1031 /* Allocate and initialize the frame state. */
8fbca658 1032 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1033 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1034
1035 /* Unwind the PC.
1036
4a4e5149 1037 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1038 to abort), the compiler might optimize away the instruction at
4a4e5149 1039 its return address. As a result the return address will
cfc14b3a 1040 point at some random instruction, and the CFI for that
e4e9607c 1041 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1042 this problem by substracting 1 from the return address to get an
1043 address in the middle of a presumed call instruction (or the
1044 instruction in the associated delay slot). This should only be
1045 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1046 handlers, sentinel frames, dummy frames). The function
ad1193e7 1047 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1048 reliable the method is though; there is the potential for the
1049 register state pre-call being different to that on return. */
4a4e5149 1050 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1051
1052 /* Find the correct FDE. */
ac56253d 1053 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1054 gdb_assert (fde != NULL);
1055
1056 /* Extract any interesting information from the CIE. */
1057 fs->data_align = fde->cie->data_alignment_factor;
1058 fs->code_align = fde->cie->code_alignment_factor;
1059 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1060 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1061
303b6f5d
DJ
1062 /* Check for "quirks" - known bugs in producers. */
1063 dwarf2_frame_find_quirks (fs, fde);
1064
cfc14b3a 1065 /* First decode all the insns in the CIE. */
ae0d2f24 1066 execute_cfa_program (fde, fde->cie->initial_instructions,
9f6f94ff 1067 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
cfc14b3a
MK
1068
1069 /* Save the initialized register set. */
1070 fs->initial = fs->regs;
1071 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1072
1073 /* Then decode the insns in the FDE up to our target PC. */
9f6f94ff
TT
1074 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1075 get_frame_pc (this_frame), fs);
cfc14b3a 1076
8fbca658 1077 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1078 {
8fbca658
PA
1079 /* Calculate the CFA. */
1080 switch (fs->regs.cfa_how)
1081 {
1082 case CFA_REG_OFFSET:
1083 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1084 if (fs->armcc_cfa_offsets_reversed)
1085 cache->cfa -= fs->regs.cfa_offset;
1086 else
1087 cache->cfa += fs->regs.cfa_offset;
1088 break;
1089
1090 case CFA_EXP:
1091 cache->cfa =
1092 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1093 cache->addr_size, cache->text_offset,
1094 this_frame, 0, 0);
1095 break;
1096
1097 default:
1098 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1099 }
1100 }
1101 if (ex.reason < 0)
1102 {
1103 if (ex.error == NOT_AVAILABLE_ERROR)
1104 {
1105 cache->unavailable_retaddr = 1;
1106 return cache;
1107 }
cfc14b3a 1108
8fbca658 1109 throw_exception (ex);
cfc14b3a
MK
1110 }
1111
05cbe71a 1112 /* Initialize the register state. */
3e2c4033
AC
1113 {
1114 int regnum;
e4e9607c 1115
3e2c4033 1116 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1117 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1118 }
1119
1120 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1121 location information in the cache. Note that we don't skip the
1122 return address column; it's perfectly all right for it to
1123 correspond to a real register. If it doesn't correspond to a
1124 real register, or if we shouldn't treat it as such,
055d23b8 1125 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1126 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1127 {
1128 int column; /* CFI speak for "register number". */
e4e9607c 1129
3e2c4033
AC
1130 for (column = 0; column < fs->regs.num_regs; column++)
1131 {
3e2c4033 1132 /* Use the GDB register number as the destination index. */
ad010def 1133 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1134
1135 /* If there's no corresponding GDB register, ignore it. */
1136 if (regnum < 0 || regnum >= num_regs)
1137 continue;
1138
1139 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1140 of all debug info registers. If it doesn't, complain (but
1141 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1142 unspecified register implies "same value" when CFI (draft
1143 7) specifies nothing at all. Such a register could equally
1144 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1145 isn't sufficient; it only checks that all registers in the
1146 range [0 .. max column] are specified, and won't detect
3e2c4033 1147 problems when a debug info register falls outside of the
e4e9607c 1148 table. We need a way of iterating through all the valid
3e2c4033 1149 DWARF2 register numbers. */
05cbe71a 1150 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1151 {
1152 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1153 complaint (&symfile_complaints, _("\
5af949e3 1154incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1155 gdbarch_register_name (gdbarch, regnum),
5af949e3 1156 paddress (gdbarch, fs->pc));
f059bf6f 1157 }
35889917
MK
1158 else
1159 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1160 }
1161 }
cfc14b3a 1162
8d5a9abc
MK
1163 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1164 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1165 {
1166 int regnum;
1167
1168 for (regnum = 0; regnum < num_regs; regnum++)
1169 {
8d5a9abc
MK
1170 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1171 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1172 {
05cbe71a
MK
1173 struct dwarf2_frame_state_reg *retaddr_reg =
1174 &fs->regs.reg[fs->retaddr_column];
1175
d4f10bf2
MK
1176 /* It seems rather bizarre to specify an "empty" column as
1177 the return adress column. However, this is exactly
1178 what GCC does on some targets. It turns out that GCC
1179 assumes that the return address can be found in the
1180 register corresponding to the return address column.
8d5a9abc
MK
1181 Incidentally, that's how we should treat a return
1182 address column specifying "same value" too. */
d4f10bf2 1183 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1184 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1185 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1186 {
1187 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1188 cache->reg[regnum] = *retaddr_reg;
1189 else
1190 cache->retaddr_reg = *retaddr_reg;
1191 }
35889917
MK
1192 else
1193 {
8d5a9abc
MK
1194 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1195 {
1196 cache->reg[regnum].loc.reg = fs->retaddr_column;
1197 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1198 }
1199 else
1200 {
1201 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1202 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1203 }
35889917
MK
1204 }
1205 }
1206 }
1207 }
cfc14b3a 1208
0228dfb9
DJ
1209 if (fs->retaddr_column < fs->regs.num_regs
1210 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1211 cache->undefined_retaddr = 1;
1212
cfc14b3a
MK
1213 do_cleanups (old_chain);
1214
cfc14b3a
MK
1215 return cache;
1216}
1217
8fbca658
PA
1218static enum unwind_stop_reason
1219dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1220 void **this_cache)
1221{
1222 struct dwarf2_frame_cache *cache
1223 = dwarf2_frame_cache (this_frame, this_cache);
1224
1225 if (cache->unavailable_retaddr)
1226 return UNWIND_UNAVAILABLE;
1227
1228 if (cache->undefined_retaddr)
1229 return UNWIND_OUTERMOST;
1230
1231 return UNWIND_NO_REASON;
1232}
1233
cfc14b3a 1234static void
4a4e5149 1235dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1236 struct frame_id *this_id)
1237{
1238 struct dwarf2_frame_cache *cache =
4a4e5149 1239 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1240
8fbca658
PA
1241 if (cache->unavailable_retaddr)
1242 return;
1243
0228dfb9
DJ
1244 if (cache->undefined_retaddr)
1245 return;
1246
4a4e5149 1247 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1248}
1249
4a4e5149
DJ
1250static struct value *
1251dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1252 int regnum)
93d42b30 1253{
4a4e5149 1254 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1255 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1256 dwarf2_frame_cache (this_frame, this_cache);
1257 CORE_ADDR addr;
1258 int realnum;
cfc14b3a
MK
1259
1260 switch (cache->reg[regnum].how)
1261 {
05cbe71a 1262 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1263 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1264 mark it as optimized away; the value isn't available. */
4a4e5149 1265 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1266
05cbe71a 1267 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1268 addr = cache->cfa + cache->reg[regnum].loc.offset;
1269 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1270
05cbe71a 1271 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1272 realnum
1273 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1274 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1275
05cbe71a 1276 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1277 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1278 cache->reg[regnum].exp_len,
ac56253d
TT
1279 cache->addr_size, cache->text_offset,
1280 this_frame, cache->cfa, 1);
4a4e5149 1281 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1282
46ea248b 1283 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1284 addr = cache->cfa + cache->reg[regnum].loc.offset;
1285 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1286
1287 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1288 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1289 cache->reg[regnum].exp_len,
ac56253d
TT
1290 cache->addr_size, cache->text_offset,
1291 this_frame, cache->cfa, 1);
4a4e5149 1292 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1293
05cbe71a 1294 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1295 /* GCC, in its infinite wisdom decided to not provide unwind
1296 information for registers that are "same value". Since
1297 DWARF2 (3 draft 7) doesn't define such behavior, said
1298 registers are actually undefined (which is different to CFI
1299 "undefined"). Code above issues a complaint about this.
1300 Here just fudge the books, assume GCC, and that the value is
1301 more inner on the stack. */
4a4e5149 1302 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1303
05cbe71a 1304 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1305 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1306
05cbe71a 1307 case DWARF2_FRAME_REG_CFA:
4a4e5149 1308 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1309
ea7963f0 1310 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1311 addr = cache->cfa + cache->reg[regnum].loc.offset;
1312 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1313
8d5a9abc 1314 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1315 addr = cache->reg[regnum].loc.offset;
1316 regnum = gdbarch_dwarf2_reg_to_regnum
1317 (gdbarch, cache->retaddr_reg.loc.reg);
1318 addr += get_frame_register_unsigned (this_frame, regnum);
1319 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1320
b39cc962
DJ
1321 case DWARF2_FRAME_REG_FN:
1322 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1323
cfc14b3a 1324 default:
e2e0b3e5 1325 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1326 }
1327}
1328
4a4e5149
DJ
1329static int
1330dwarf2_frame_sniffer (const struct frame_unwind *self,
1331 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1332{
1ce5d6dd 1333 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1334 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1335 end up returning something past the end of this function's body.
1336 If the frame we're sniffing for is a signal frame whose start
1337 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1338 extend one byte before its start address or we could potentially
1339 select the FDE of the previous function. */
1340 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1341 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1342
56c987f6 1343 if (!fde)
4a4e5149 1344 return 0;
3ed09a32
DJ
1345
1346 /* On some targets, signal trampolines may have unwind information.
1347 We need to recognize them so that we set the frame type
1348 correctly. */
1349
56c987f6 1350 if (fde->cie->signal_frame
4a4e5149
DJ
1351 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1352 this_frame))
1353 return self->type == SIGTRAMP_FRAME;
1354
1355 return self->type != SIGTRAMP_FRAME;
1356}
1357
1358static const struct frame_unwind dwarf2_frame_unwind =
1359{
1360 NORMAL_FRAME,
8fbca658 1361 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1362 dwarf2_frame_this_id,
1363 dwarf2_frame_prev_register,
1364 NULL,
1365 dwarf2_frame_sniffer
1366};
1367
1368static const struct frame_unwind dwarf2_signal_frame_unwind =
1369{
1370 SIGTRAMP_FRAME,
8fbca658 1371 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1372 dwarf2_frame_this_id,
1373 dwarf2_frame_prev_register,
1374 NULL,
1375 dwarf2_frame_sniffer
1376};
cfc14b3a 1377
4a4e5149
DJ
1378/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1379
1380void
1381dwarf2_append_unwinders (struct gdbarch *gdbarch)
1382{
1383 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1384 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1385}
1386\f
1387
1388/* There is no explicitly defined relationship between the CFA and the
1389 location of frame's local variables and arguments/parameters.
1390 Therefore, frame base methods on this page should probably only be
1391 used as a last resort, just to avoid printing total garbage as a
1392 response to the "info frame" command. */
1393
1394static CORE_ADDR
4a4e5149 1395dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1396{
1397 struct dwarf2_frame_cache *cache =
4a4e5149 1398 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1399
1400 return cache->cfa;
1401}
1402
1403static const struct frame_base dwarf2_frame_base =
1404{
1405 &dwarf2_frame_unwind,
1406 dwarf2_frame_base_address,
1407 dwarf2_frame_base_address,
1408 dwarf2_frame_base_address
1409};
1410
1411const struct frame_base *
4a4e5149 1412dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1413{
4a4e5149 1414 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1415
ac56253d 1416 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1417 return &dwarf2_frame_base;
1418
1419 return NULL;
1420}
e7802207
TT
1421
1422/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1423 the DWARF unwinder. This is used to implement
1424 DW_OP_call_frame_cfa. */
1425
1426CORE_ADDR
1427dwarf2_frame_cfa (struct frame_info *this_frame)
1428{
1429 while (get_frame_type (this_frame) == INLINE_FRAME)
1430 this_frame = get_prev_frame (this_frame);
1431 /* This restriction could be lifted if other unwinders are known to
1432 compute the frame base in a way compatible with the DWARF
1433 unwinder. */
1434 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1435 error (_("can't compute CFA for this frame"));
1436 return get_frame_base (this_frame);
1437}
cfc14b3a 1438\f
8f22cb90 1439const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1440
cfc14b3a 1441static unsigned int
852483bc 1442read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1443{
852483bc 1444 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1445}
1446
1447static unsigned int
852483bc 1448read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1449{
852483bc 1450 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1451}
1452
1453static ULONGEST
852483bc 1454read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1455{
852483bc 1456 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1457}
1458
1459static ULONGEST
852483bc 1460read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1461{
1462 ULONGEST result;
1463 unsigned int num_read;
1464 int shift;
852483bc 1465 gdb_byte byte;
cfc14b3a
MK
1466
1467 result = 0;
1468 shift = 0;
1469 num_read = 0;
1470
1471 do
1472 {
1473 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1474 buf++;
1475 num_read++;
1476 result |= ((byte & 0x7f) << shift);
1477 shift += 7;
1478 }
1479 while (byte & 0x80);
1480
1481 *bytes_read_ptr = num_read;
1482
1483 return result;
1484}
1485
1486static LONGEST
852483bc 1487read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1488{
1489 LONGEST result;
1490 int shift;
1491 unsigned int num_read;
852483bc 1492 gdb_byte byte;
cfc14b3a
MK
1493
1494 result = 0;
1495 shift = 0;
1496 num_read = 0;
1497
1498 do
1499 {
1500 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1501 buf++;
1502 num_read++;
1503 result |= ((byte & 0x7f) << shift);
1504 shift += 7;
1505 }
1506 while (byte & 0x80);
1507
77e0b926
DJ
1508 if (shift < 8 * sizeof (result) && (byte & 0x40))
1509 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1510
1511 *bytes_read_ptr = num_read;
1512
1513 return result;
1514}
1515
1516static ULONGEST
852483bc 1517read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1518{
1519 LONGEST result;
1520
852483bc 1521 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1522 if (result == 0xffffffff)
1523 {
852483bc 1524 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1525 *bytes_read_ptr = 12;
1526 }
1527 else
1528 *bytes_read_ptr = 4;
1529
1530 return result;
1531}
1532\f
1533
1534/* Pointer encoding helper functions. */
1535
1536/* GCC supports exception handling based on DWARF2 CFI. However, for
1537 technical reasons, it encodes addresses in its FDE's in a different
1538 way. Several "pointer encodings" are supported. The encoding
1539 that's used for a particular FDE is determined by the 'R'
1540 augmentation in the associated CIE. The argument of this
1541 augmentation is a single byte.
1542
1543 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1544 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1545 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1546 address should be interpreted (absolute, relative to the current
1547 position in the FDE, ...). Bit 7, indicates that the address
1548 should be dereferenced. */
1549
852483bc 1550static gdb_byte
cfc14b3a
MK
1551encoding_for_size (unsigned int size)
1552{
1553 switch (size)
1554 {
1555 case 2:
1556 return DW_EH_PE_udata2;
1557 case 4:
1558 return DW_EH_PE_udata4;
1559 case 8:
1560 return DW_EH_PE_udata8;
1561 default:
e2e0b3e5 1562 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1563 }
1564}
1565
cfc14b3a 1566static CORE_ADDR
852483bc 1567read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1568 int ptr_len, const gdb_byte *buf,
1569 unsigned int *bytes_read_ptr,
ae0d2f24 1570 CORE_ADDR func_base)
cfc14b3a 1571{
68f6cf99 1572 ptrdiff_t offset;
cfc14b3a
MK
1573 CORE_ADDR base;
1574
1575 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1576 FDE's. */
1577 if (encoding & DW_EH_PE_indirect)
1578 internal_error (__FILE__, __LINE__,
e2e0b3e5 1579 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1580
68f6cf99
MK
1581 *bytes_read_ptr = 0;
1582
cfc14b3a
MK
1583 switch (encoding & 0x70)
1584 {
1585 case DW_EH_PE_absptr:
1586 base = 0;
1587 break;
1588 case DW_EH_PE_pcrel:
f2fec864 1589 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1590 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1591 break;
0912c7f2
MK
1592 case DW_EH_PE_datarel:
1593 base = unit->dbase;
1594 break;
0fd85043
CV
1595 case DW_EH_PE_textrel:
1596 base = unit->tbase;
1597 break;
03ac2a74 1598 case DW_EH_PE_funcrel:
ae0d2f24 1599 base = func_base;
03ac2a74 1600 break;
68f6cf99
MK
1601 case DW_EH_PE_aligned:
1602 base = 0;
852483bc 1603 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1604 if ((offset % ptr_len) != 0)
1605 {
1606 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1607 buf += *bytes_read_ptr;
1608 }
1609 break;
cfc14b3a 1610 default:
3e43a32a
MS
1611 internal_error (__FILE__, __LINE__,
1612 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1613 }
1614
b04de778 1615 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1616 {
1617 encoding |= encoding_for_size (ptr_len);
1618 if (bfd_get_sign_extend_vma (unit->abfd))
1619 encoding |= DW_EH_PE_signed;
1620 }
cfc14b3a
MK
1621
1622 switch (encoding & 0x0f)
1623 {
a81b10ae
MK
1624 case DW_EH_PE_uleb128:
1625 {
1626 ULONGEST value;
0d45f56e 1627 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1628
a7289609 1629 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1630 return base + value;
1631 }
cfc14b3a 1632 case DW_EH_PE_udata2:
68f6cf99 1633 *bytes_read_ptr += 2;
cfc14b3a
MK
1634 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1635 case DW_EH_PE_udata4:
68f6cf99 1636 *bytes_read_ptr += 4;
cfc14b3a
MK
1637 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1638 case DW_EH_PE_udata8:
68f6cf99 1639 *bytes_read_ptr += 8;
cfc14b3a 1640 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1641 case DW_EH_PE_sleb128:
1642 {
1643 LONGEST value;
0d45f56e 1644 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1645
a7289609 1646 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1647 return base + value;
1648 }
cfc14b3a 1649 case DW_EH_PE_sdata2:
68f6cf99 1650 *bytes_read_ptr += 2;
cfc14b3a
MK
1651 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1652 case DW_EH_PE_sdata4:
68f6cf99 1653 *bytes_read_ptr += 4;
cfc14b3a
MK
1654 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1655 case DW_EH_PE_sdata8:
68f6cf99 1656 *bytes_read_ptr += 8;
cfc14b3a
MK
1657 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1658 default:
3e43a32a
MS
1659 internal_error (__FILE__, __LINE__,
1660 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1661 }
1662}
1663\f
1664
b01c8410
PP
1665static int
1666bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1667{
b01c8410
PP
1668 ULONGEST cie_pointer = *(ULONGEST *) key;
1669 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1670
b01c8410
PP
1671 if (cie_pointer == cie->cie_pointer)
1672 return 0;
cfc14b3a 1673
b01c8410
PP
1674 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1675}
1676
1677/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1678static struct dwarf2_cie *
1679find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1680{
1681 struct dwarf2_cie **p_cie;
cfc14b3a 1682
65a97ab3
PP
1683 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1684 bsearch be non-NULL. */
1685 if (cie_table->entries == NULL)
1686 {
1687 gdb_assert (cie_table->num_entries == 0);
1688 return NULL;
1689 }
1690
b01c8410
PP
1691 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1692 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1693 if (p_cie != NULL)
1694 return *p_cie;
cfc14b3a
MK
1695 return NULL;
1696}
1697
b01c8410 1698/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1699static void
b01c8410 1700add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1701{
b01c8410
PP
1702 const int n = cie_table->num_entries;
1703
1704 gdb_assert (n < 1
1705 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1706
1707 cie_table->entries =
1708 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1709 cie_table->entries[n] = cie;
1710 cie_table->num_entries = n + 1;
1711}
1712
1713static int
1714bsearch_fde_cmp (const void *key, const void *element)
1715{
1716 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1717 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1718
b01c8410
PP
1719 if (seek_pc < fde->initial_location)
1720 return -1;
1721 if (seek_pc < fde->initial_location + fde->address_range)
1722 return 0;
1723 return 1;
cfc14b3a
MK
1724}
1725
1726/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1727 inital location associated with it into *PC. */
1728
1729static struct dwarf2_fde *
ac56253d 1730dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1731{
1732 struct objfile *objfile;
1733
1734 ALL_OBJFILES (objfile)
1735 {
b01c8410
PP
1736 struct dwarf2_fde_table *fde_table;
1737 struct dwarf2_fde **p_fde;
cfc14b3a 1738 CORE_ADDR offset;
b01c8410 1739 CORE_ADDR seek_pc;
cfc14b3a 1740
b01c8410
PP
1741 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1742 if (fde_table == NULL)
be391dca
TT
1743 {
1744 dwarf2_build_frame_info (objfile);
1745 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1746 }
1747 gdb_assert (fde_table != NULL);
1748
1749 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1750 continue;
1751
1752 gdb_assert (objfile->section_offsets);
1753 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1754
b01c8410
PP
1755 gdb_assert (fde_table->num_entries > 0);
1756 if (*pc < offset + fde_table->entries[0]->initial_location)
1757 continue;
1758
1759 seek_pc = *pc - offset;
1760 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1761 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1762 if (p_fde != NULL)
1763 {
1764 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1765 if (out_offset)
1766 *out_offset = offset;
b01c8410
PP
1767 return *p_fde;
1768 }
cfc14b3a 1769 }
cfc14b3a
MK
1770 return NULL;
1771}
1772
b01c8410 1773/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1774static void
b01c8410 1775add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1776{
b01c8410
PP
1777 if (fde->address_range == 0)
1778 /* Discard useless FDEs. */
1779 return;
1780
1781 fde_table->num_entries += 1;
1782 fde_table->entries =
1783 xrealloc (fde_table->entries,
1784 fde_table->num_entries * sizeof (fde_table->entries[0]));
1785 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1786}
1787
1788#ifdef CC_HAS_LONG_LONG
1789#define DW64_CIE_ID 0xffffffffffffffffULL
1790#else
1791#define DW64_CIE_ID ~0
1792#endif
1793
852483bc 1794static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1795 int eh_frame_p,
1796 struct dwarf2_cie_table *cie_table,
1797 struct dwarf2_fde_table *fde_table);
cfc14b3a 1798
6896c0c7
RH
1799/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1800 the next byte to be processed. */
852483bc 1801static gdb_byte *
b01c8410
PP
1802decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1803 struct dwarf2_cie_table *cie_table,
1804 struct dwarf2_fde_table *fde_table)
cfc14b3a 1805{
5e2b427d 1806 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1807 gdb_byte *buf, *end;
cfc14b3a
MK
1808 LONGEST length;
1809 unsigned int bytes_read;
6896c0c7
RH
1810 int dwarf64_p;
1811 ULONGEST cie_id;
cfc14b3a 1812 ULONGEST cie_pointer;
cfc14b3a 1813
6896c0c7 1814 buf = start;
cfc14b3a
MK
1815 length = read_initial_length (unit->abfd, buf, &bytes_read);
1816 buf += bytes_read;
1817 end = buf + length;
1818
0963b4bd 1819 /* Are we still within the section? */
6896c0c7
RH
1820 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1821 return NULL;
1822
cfc14b3a
MK
1823 if (length == 0)
1824 return end;
1825
6896c0c7
RH
1826 /* Distinguish between 32 and 64-bit encoded frame info. */
1827 dwarf64_p = (bytes_read == 12);
cfc14b3a 1828
6896c0c7 1829 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1830 if (eh_frame_p)
1831 cie_id = 0;
1832 else if (dwarf64_p)
1833 cie_id = DW64_CIE_ID;
6896c0c7
RH
1834 else
1835 cie_id = DW_CIE_ID;
cfc14b3a
MK
1836
1837 if (dwarf64_p)
1838 {
1839 cie_pointer = read_8_bytes (unit->abfd, buf);
1840 buf += 8;
1841 }
1842 else
1843 {
1844 cie_pointer = read_4_bytes (unit->abfd, buf);
1845 buf += 4;
1846 }
1847
1848 if (cie_pointer == cie_id)
1849 {
1850 /* This is a CIE. */
1851 struct dwarf2_cie *cie;
1852 char *augmentation;
28ba0b33 1853 unsigned int cie_version;
cfc14b3a
MK
1854
1855 /* Record the offset into the .debug_frame section of this CIE. */
1856 cie_pointer = start - unit->dwarf_frame_buffer;
1857
1858 /* Check whether we've already read it. */
b01c8410 1859 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1860 return end;
1861
1862 cie = (struct dwarf2_cie *)
8b92e4d5 1863 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1864 sizeof (struct dwarf2_cie));
1865 cie->initial_instructions = NULL;
1866 cie->cie_pointer = cie_pointer;
1867
1868 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1869 depends on the target address size. */
1870 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1871
56c987f6
AO
1872 /* We'll determine the final value later, but we need to
1873 initialize it conservatively. */
1874 cie->signal_frame = 0;
1875
cfc14b3a 1876 /* Check version number. */
28ba0b33 1877 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1878 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1879 return NULL;
303b6f5d 1880 cie->version = cie_version;
cfc14b3a
MK
1881 buf += 1;
1882
1883 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1884 cie->augmentation = augmentation = (char *) buf;
852483bc 1885 buf += (strlen (augmentation) + 1);
cfc14b3a 1886
303b6f5d
DJ
1887 /* Ignore armcc augmentations. We only use them for quirks,
1888 and that doesn't happen until later. */
1889 if (strncmp (augmentation, "armcc", 5) == 0)
1890 augmentation += strlen (augmentation);
1891
cfc14b3a
MK
1892 /* The GCC 2.x "eh" augmentation has a pointer immediately
1893 following the augmentation string, so it must be handled
1894 first. */
1895 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1896 {
1897 /* Skip. */
5e2b427d 1898 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1899 augmentation += 2;
1900 }
1901
2dc7f7b3
TT
1902 if (cie->version >= 4)
1903 {
1904 /* FIXME: check that this is the same as from the CU header. */
1905 cie->addr_size = read_1_byte (unit->abfd, buf);
1906 ++buf;
1907 cie->segment_size = read_1_byte (unit->abfd, buf);
1908 ++buf;
1909 }
1910 else
1911 {
8da614df 1912 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1913 cie->segment_size = 0;
1914 }
8da614df
CV
1915 /* Address values in .eh_frame sections are defined to have the
1916 target's pointer size. Watchout: This breaks frame info for
1917 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1918 section exists as well. */
8da614df
CV
1919 if (eh_frame_p)
1920 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1921 else
1922 cie->ptr_size = cie->addr_size;
2dc7f7b3 1923
cfc14b3a
MK
1924 cie->code_alignment_factor =
1925 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1926 buf += bytes_read;
1927
1928 cie->data_alignment_factor =
1929 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1930 buf += bytes_read;
1931
28ba0b33
PB
1932 if (cie_version == 1)
1933 {
1934 cie->return_address_register = read_1_byte (unit->abfd, buf);
1935 bytes_read = 1;
1936 }
1937 else
1938 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1939 &bytes_read);
4fc771b8 1940 cie->return_address_register
5e2b427d 1941 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1942 cie->return_address_register,
1943 eh_frame_p);
4bf8967c 1944
28ba0b33 1945 buf += bytes_read;
cfc14b3a 1946
7131cb6e
RH
1947 cie->saw_z_augmentation = (*augmentation == 'z');
1948 if (cie->saw_z_augmentation)
cfc14b3a
MK
1949 {
1950 ULONGEST length;
1951
1952 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1953 buf += bytes_read;
6896c0c7
RH
1954 if (buf > end)
1955 return NULL;
cfc14b3a
MK
1956 cie->initial_instructions = buf + length;
1957 augmentation++;
1958 }
1959
1960 while (*augmentation)
1961 {
1962 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1963 if (*augmentation == 'L')
1964 {
1965 /* Skip. */
1966 buf++;
1967 augmentation++;
1968 }
1969
1970 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1971 else if (*augmentation == 'R')
1972 {
1973 cie->encoding = *buf++;
1974 augmentation++;
1975 }
1976
1977 /* "P" indicates a personality routine in the CIE augmentation. */
1978 else if (*augmentation == 'P')
1979 {
1234d960 1980 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1981 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1982 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1983 buf, &bytes_read, 0);
f724bf08 1984 buf += bytes_read;
cfc14b3a
MK
1985 augmentation++;
1986 }
1987
56c987f6
AO
1988 /* "S" indicates a signal frame, such that the return
1989 address must not be decremented to locate the call frame
1990 info for the previous frame; it might even be the first
1991 instruction of a function, so decrementing it would take
1992 us to a different function. */
1993 else if (*augmentation == 'S')
1994 {
1995 cie->signal_frame = 1;
1996 augmentation++;
1997 }
1998
3e9a2e52
DJ
1999 /* Otherwise we have an unknown augmentation. Assume that either
2000 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2001 else
2002 {
3e9a2e52
DJ
2003 if (cie->initial_instructions)
2004 buf = cie->initial_instructions;
cfc14b3a
MK
2005 break;
2006 }
2007 }
2008
2009 cie->initial_instructions = buf;
2010 cie->end = end;
b01c8410 2011 cie->unit = unit;
cfc14b3a 2012
b01c8410 2013 add_cie (cie_table, cie);
cfc14b3a
MK
2014 }
2015 else
2016 {
2017 /* This is a FDE. */
2018 struct dwarf2_fde *fde;
2019
6896c0c7
RH
2020 /* In an .eh_frame section, the CIE pointer is the delta between the
2021 address within the FDE where the CIE pointer is stored and the
2022 address of the CIE. Convert it to an offset into the .eh_frame
2023 section. */
cfc14b3a
MK
2024 if (eh_frame_p)
2025 {
cfc14b3a
MK
2026 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2027 cie_pointer -= (dwarf64_p ? 8 : 4);
2028 }
2029
6896c0c7
RH
2030 /* In either case, validate the result is still within the section. */
2031 if (cie_pointer >= unit->dwarf_frame_size)
2032 return NULL;
2033
cfc14b3a 2034 fde = (struct dwarf2_fde *)
8b92e4d5 2035 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2036 sizeof (struct dwarf2_fde));
b01c8410 2037 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2038 if (fde->cie == NULL)
2039 {
2040 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
b01c8410
PP
2041 eh_frame_p, cie_table, fde_table);
2042 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2043 }
2044
2045 gdb_assert (fde->cie != NULL);
2046
2047 fde->initial_location =
8da614df 2048 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2049 buf, &bytes_read, 0);
cfc14b3a
MK
2050 buf += bytes_read;
2051
2052 fde->address_range =
ae0d2f24 2053 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2054 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2055 buf += bytes_read;
2056
7131cb6e
RH
2057 /* A 'z' augmentation in the CIE implies the presence of an
2058 augmentation field in the FDE as well. The only thing known
2059 to be in here at present is the LSDA entry for EH. So we
2060 can skip the whole thing. */
2061 if (fde->cie->saw_z_augmentation)
2062 {
2063 ULONGEST length;
2064
2065 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2066 buf += bytes_read + length;
6896c0c7
RH
2067 if (buf > end)
2068 return NULL;
7131cb6e
RH
2069 }
2070
cfc14b3a
MK
2071 fde->instructions = buf;
2072 fde->end = end;
2073
4bf8967c
AS
2074 fde->eh_frame_p = eh_frame_p;
2075
b01c8410 2076 add_fde (fde_table, fde);
cfc14b3a
MK
2077 }
2078
2079 return end;
2080}
6896c0c7
RH
2081
2082/* Read a CIE or FDE in BUF and decode it. */
852483bc 2083static gdb_byte *
b01c8410
PP
2084decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2085 struct dwarf2_cie_table *cie_table,
2086 struct dwarf2_fde_table *fde_table)
6896c0c7
RH
2087{
2088 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 2089 gdb_byte *ret;
6896c0c7
RH
2090 ptrdiff_t start_offset;
2091
2092 while (1)
2093 {
b01c8410
PP
2094 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2095 cie_table, fde_table);
6896c0c7
RH
2096 if (ret != NULL)
2097 break;
2098
2099 /* We have corrupt input data of some form. */
2100
2101 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2102 and mismatches wrt padding and alignment of debug sections. */
2103 /* Note that there is no requirement in the standard for any
2104 alignment at all in the frame unwind sections. Testing for
2105 alignment before trying to interpret data would be incorrect.
2106
2107 However, GCC traditionally arranged for frame sections to be
2108 sized such that the FDE length and CIE fields happen to be
2109 aligned (in theory, for performance). This, unfortunately,
2110 was done with .align directives, which had the side effect of
2111 forcing the section to be aligned by the linker.
2112
2113 This becomes a problem when you have some other producer that
2114 creates frame sections that are not as strictly aligned. That
2115 produces a hole in the frame info that gets filled by the
2116 linker with zeros.
2117
2118 The GCC behaviour is arguably a bug, but it's effectively now
2119 part of the ABI, so we're now stuck with it, at least at the
2120 object file level. A smart linker may decide, in the process
2121 of compressing duplicate CIE information, that it can rewrite
2122 the entire output section without this extra padding. */
2123
2124 start_offset = start - unit->dwarf_frame_buffer;
2125 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2126 {
2127 start += 4 - (start_offset & 3);
2128 workaround = ALIGN4;
2129 continue;
2130 }
2131 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2132 {
2133 start += 8 - (start_offset & 7);
2134 workaround = ALIGN8;
2135 continue;
2136 }
2137
2138 /* Nothing left to try. Arrange to return as if we've consumed
2139 the entire input section. Hopefully we'll get valid info from
2140 the other of .debug_frame/.eh_frame. */
2141 workaround = FAIL;
2142 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2143 break;
2144 }
2145
2146 switch (workaround)
2147 {
2148 case NONE:
2149 break;
2150
2151 case ALIGN4:
3e43a32a
MS
2152 complaint (&symfile_complaints, _("\
2153Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2154 unit->dwarf_frame_section->owner->filename,
2155 unit->dwarf_frame_section->name);
2156 break;
2157
2158 case ALIGN8:
3e43a32a
MS
2159 complaint (&symfile_complaints, _("\
2160Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2161 unit->dwarf_frame_section->owner->filename,
2162 unit->dwarf_frame_section->name);
2163 break;
2164
2165 default:
2166 complaint (&symfile_complaints,
e2e0b3e5 2167 _("Corrupt data in %s:%s"),
6896c0c7
RH
2168 unit->dwarf_frame_section->owner->filename,
2169 unit->dwarf_frame_section->name);
2170 break;
2171 }
2172
2173 return ret;
2174}
cfc14b3a
MK
2175\f
2176
cfc14b3a 2177/* Imported from dwarf2read.c. */
3e43a32a
MS
2178extern void dwarf2_get_section_info (struct objfile *, const char *,
2179 asection **, gdb_byte **,
2180 bfd_size_type *);
cfc14b3a 2181
b01c8410
PP
2182static int
2183qsort_fde_cmp (const void *a, const void *b)
2184{
2185 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2186 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2187
b01c8410 2188 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2189 {
2190 if (aa->address_range != bb->address_range
2191 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2192 /* Linker bug, e.g. gold/10400.
2193 Work around it by keeping stable sort order. */
2194 return (a < b) ? -1 : 1;
2195 else
2196 /* Put eh_frame entries after debug_frame ones. */
2197 return aa->eh_frame_p - bb->eh_frame_p;
2198 }
b01c8410
PP
2199
2200 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2201}
2202
cfc14b3a
MK
2203void
2204dwarf2_build_frame_info (struct objfile *objfile)
2205{
ae0d2f24 2206 struct comp_unit *unit;
852483bc 2207 gdb_byte *frame_ptr;
b01c8410
PP
2208 struct dwarf2_cie_table cie_table;
2209 struct dwarf2_fde_table fde_table;
be391dca 2210 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2211
2212 cie_table.num_entries = 0;
2213 cie_table.entries = NULL;
2214
2215 fde_table.num_entries = 0;
2216 fde_table.entries = NULL;
cfc14b3a
MK
2217
2218 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2219 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2220 sizeof (struct comp_unit));
2221 unit->abfd = objfile->obfd;
2222 unit->objfile = objfile;
2223 unit->dbase = 0;
2224 unit->tbase = 0;
cfc14b3a 2225
dce234bc
PP
2226 dwarf2_get_section_info (objfile, ".eh_frame",
2227 &unit->dwarf_frame_section,
2228 &unit->dwarf_frame_buffer,
2229 &unit->dwarf_frame_size);
2230 if (unit->dwarf_frame_size)
cfc14b3a 2231 {
0fd85043 2232 asection *got, *txt;
0912c7f2 2233
0912c7f2 2234 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
2235 that is used for the i386/amd64 target, which currently is
2236 the only target in GCC that supports/uses the
2237 DW_EH_PE_datarel encoding. */
ae0d2f24 2238 got = bfd_get_section_by_name (unit->abfd, ".got");
0912c7f2 2239 if (got)
ae0d2f24 2240 unit->dbase = got->vma;
0912c7f2 2241
22c7ba1a
MK
2242 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2243 so far. */
ae0d2f24 2244 txt = bfd_get_section_by_name (unit->abfd, ".text");
0fd85043 2245 if (txt)
ae0d2f24 2246 unit->tbase = txt->vma;
0fd85043 2247
ae0d2f24
UW
2248 frame_ptr = unit->dwarf_frame_buffer;
2249 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2250 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2251 &cie_table, &fde_table);
2252
2253 if (cie_table.num_entries != 0)
2254 {
2255 /* Reinit cie_table: debug_frame has different CIEs. */
2256 xfree (cie_table.entries);
2257 cie_table.num_entries = 0;
2258 cie_table.entries = NULL;
2259 }
cfc14b3a
MK
2260 }
2261
dce234bc
PP
2262 dwarf2_get_section_info (objfile, ".debug_frame",
2263 &unit->dwarf_frame_section,
2264 &unit->dwarf_frame_buffer,
2265 &unit->dwarf_frame_size);
2266 if (unit->dwarf_frame_size)
cfc14b3a 2267 {
ae0d2f24
UW
2268 frame_ptr = unit->dwarf_frame_buffer;
2269 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2270 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2271 &cie_table, &fde_table);
2272 }
2273
2274 /* Discard the cie_table, it is no longer needed. */
2275 if (cie_table.num_entries != 0)
2276 {
2277 xfree (cie_table.entries);
2278 cie_table.entries = NULL; /* Paranoia. */
2279 cie_table.num_entries = 0; /* Paranoia. */
2280 }
2281
be391dca
TT
2282 /* Copy fde_table to obstack: it is needed at runtime. */
2283 fde_table2 = (struct dwarf2_fde_table *)
2284 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2285
2286 if (fde_table.num_entries == 0)
2287 {
2288 fde_table2->entries = NULL;
2289 fde_table2->num_entries = 0;
2290 }
2291 else
b01c8410 2292 {
875cdfbb
PA
2293 struct dwarf2_fde *fde_prev = NULL;
2294 struct dwarf2_fde *first_non_zero_fde = NULL;
2295 int i;
b01c8410
PP
2296
2297 /* Prepare FDE table for lookups. */
2298 qsort (fde_table.entries, fde_table.num_entries,
2299 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2300
875cdfbb
PA
2301 /* Check for leftovers from --gc-sections. The GNU linker sets
2302 the relevant symbols to zero, but doesn't zero the FDE *end*
2303 ranges because there's no relocation there. It's (offset,
2304 length), not (start, end). On targets where address zero is
2305 just another valid address this can be a problem, since the
2306 FDEs appear to be non-empty in the output --- we could pick
2307 out the wrong FDE. To work around this, when overlaps are
2308 detected, we prefer FDEs that do not start at zero.
2309
2310 Start by finding the first FDE with non-zero start. Below
2311 we'll discard all FDEs that start at zero and overlap this
2312 one. */
2313 for (i = 0; i < fde_table.num_entries; i++)
2314 {
2315 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2316
875cdfbb
PA
2317 if (fde->initial_location != 0)
2318 {
2319 first_non_zero_fde = fde;
2320 break;
2321 }
2322 }
2323
2324 /* Since we'll be doing bsearch, squeeze out identical (except
2325 for eh_frame_p) fde entries so bsearch result is predictable.
2326 Also discard leftovers from --gc-sections. */
be391dca 2327 fde_table2->num_entries = 0;
875cdfbb
PA
2328 for (i = 0; i < fde_table.num_entries; i++)
2329 {
2330 struct dwarf2_fde *fde = fde_table.entries[i];
2331
2332 if (fde->initial_location == 0
2333 && first_non_zero_fde != NULL
2334 && (first_non_zero_fde->initial_location
2335 < fde->initial_location + fde->address_range))
2336 continue;
2337
2338 if (fde_prev != NULL
2339 && fde_prev->initial_location == fde->initial_location)
2340 continue;
2341
2342 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2343 sizeof (fde_table.entries[0]));
2344 ++fde_table2->num_entries;
2345 fde_prev = fde;
2346 }
b01c8410 2347 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2348
2349 /* Discard the original fde_table. */
2350 xfree (fde_table.entries);
cfc14b3a 2351 }
be391dca
TT
2352
2353 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2354}
0d0e1a63
MK
2355
2356/* Provide a prototype to silence -Wmissing-prototypes. */
2357void _initialize_dwarf2_frame (void);
2358
2359void
2360_initialize_dwarf2_frame (void)
2361{
030f20e1 2362 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2363 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2364}
This page took 0.679327 seconds and 4 git commands to generate.