Run --gc-sections tests only if supported.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
0fb0cc75 4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
fa8f86ff 25#include "dwarf2.h"
cfc14b3a
MK
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a 40#include "dwarf2-frame.h"
9f6f94ff
TT
41#include "ax.h"
42#include "dwarf2loc.h"
8fbca658 43#include "exceptions.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
852483bc
MK
71 gdb_byte *initial_instructions;
72 gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
852483bc
MK
119 gdb_byte *instructions;
120 gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24
UW
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
289read_reg (void *baton, int reg)
290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
309static void
852483bc 310read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
311{
312 read_memory (addr, buf, len);
313}
314
a6a5a945
LM
315/* Execute the required actions for both the DW_CFA_restore and
316DW_CFA_restore_extended instructions. */
317static void
318dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320{
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 338register %s (#%d) at %s"),
a6a5a945
LM
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 342 paddress (gdbarch, fs->pc));
a6a5a945
LM
343}
344
9e8b7a03
JK
345/* Virtual method table for execute_stack_op below. */
346
347static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348{
349 read_reg,
350 read_mem,
523f3620
JK
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type
9e8b7a03
JK
357};
358
cfc14b3a 359static CORE_ADDR
0d45f56e 360execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
361 CORE_ADDR offset, struct frame_info *this_frame,
362 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
363{
364 struct dwarf_expr_context *ctx;
365 CORE_ADDR result;
4a227398 366 struct cleanup *old_chain;
cfc14b3a
MK
367
368 ctx = new_dwarf_expr_context ();
4a227398 369 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 370 make_cleanup_value_free_to_mark (value_mark ());
4a227398 371
f7fd4728 372 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 373 ctx->addr_size = addr_size;
ac56253d 374 ctx->offset = offset;
4a4e5149 375 ctx->baton = this_frame;
9e8b7a03 376 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 377
8a9b8146 378 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 379 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 380
f2c7657e
UW
381 if (ctx->location == DWARF_VALUE_MEMORY)
382 result = dwarf_expr_fetch_address (ctx, 0);
383 else if (ctx->location == DWARF_VALUE_REGISTER)
8a9b8146 384 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 385 else
cec03d70
TT
386 {
387 /* This is actually invalid DWARF, but if we ever do run across
388 it somehow, we might as well support it. So, instead, report
389 it as unimplemented. */
3e43a32a
MS
390 error (_("\
391Not implemented: computing unwound register using explicit value operator"));
cec03d70 392 }
cfc14b3a 393
4a227398 394 do_cleanups (old_chain);
cfc14b3a
MK
395
396 return result;
397}
398\f
399
400static void
0d45f56e 401execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
402 const gdb_byte *insn_end, struct gdbarch *gdbarch,
403 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 404{
ae0d2f24 405 int eh_frame_p = fde->eh_frame_p;
cfc14b3a 406 int bytes_read;
e17a4113 407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
408
409 while (insn_ptr < insn_end && fs->pc <= pc)
410 {
852483bc 411 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
412 ULONGEST utmp, reg;
413 LONGEST offset;
414
415 if ((insn & 0xc0) == DW_CFA_advance_loc)
416 fs->pc += (insn & 0x3f) * fs->code_align;
417 else if ((insn & 0xc0) == DW_CFA_offset)
418 {
419 reg = insn & 0x3f;
4fc771b8 420 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
421 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
422 offset = utmp * fs->data_align;
423 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 424 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
425 fs->regs.reg[reg].loc.offset = offset;
426 }
427 else if ((insn & 0xc0) == DW_CFA_restore)
428 {
cfc14b3a 429 reg = insn & 0x3f;
a6a5a945 430 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
431 }
432 else
433 {
434 switch (insn)
435 {
436 case DW_CFA_set_loc:
ae0d2f24 437 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 438 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
439 &bytes_read, fde->initial_location);
440 /* Apply the objfile offset for relocatable objects. */
441 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
442 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
443 insn_ptr += bytes_read;
444 break;
445
446 case DW_CFA_advance_loc1:
e17a4113 447 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
448 fs->pc += utmp * fs->code_align;
449 insn_ptr++;
450 break;
451 case DW_CFA_advance_loc2:
e17a4113 452 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
453 fs->pc += utmp * fs->code_align;
454 insn_ptr += 2;
455 break;
456 case DW_CFA_advance_loc4:
e17a4113 457 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
458 fs->pc += utmp * fs->code_align;
459 insn_ptr += 4;
460 break;
461
462 case DW_CFA_offset_extended:
463 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 464 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
465 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
466 offset = utmp * fs->data_align;
467 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 468 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
469 fs->regs.reg[reg].loc.offset = offset;
470 break;
471
472 case DW_CFA_restore_extended:
cfc14b3a 473 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 474 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
475 break;
476
477 case DW_CFA_undefined:
478 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 479 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 480 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 481 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
482 break;
483
484 case DW_CFA_same_value:
485 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
489 break;
490
491 case DW_CFA_register:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 495 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
498 fs->regs.reg[reg].loc.reg = utmp;
499 break;
500
501 case DW_CFA_remember_state:
502 {
503 struct dwarf2_frame_state_reg_info *new_rs;
504
505 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
506 *new_rs = fs->regs;
507 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
508 fs->regs.prev = new_rs;
509 }
510 break;
511
512 case DW_CFA_restore_state:
513 {
514 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
515
50ea7769
MK
516 if (old_rs == NULL)
517 {
e2e0b3e5 518 complaint (&symfile_complaints, _("\
5af949e3
UW
519bad CFI data; mismatched DW_CFA_restore_state at %s"),
520 paddress (gdbarch, fs->pc));
50ea7769
MK
521 }
522 else
523 {
524 xfree (fs->regs.reg);
525 fs->regs = *old_rs;
526 xfree (old_rs);
527 }
cfc14b3a
MK
528 }
529 break;
530
531 case DW_CFA_def_cfa:
2fd481e1 532 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 533 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
534
535 if (fs->armcc_cfa_offsets_sf)
536 utmp *= fs->data_align;
537
2fd481e1
PP
538 fs->regs.cfa_offset = utmp;
539 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
540 break;
541
542 case DW_CFA_def_cfa_register:
2fd481e1
PP
543 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
544 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
545 fs->regs.cfa_reg,
546 eh_frame_p);
547 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
548 break;
549
550 case DW_CFA_def_cfa_offset:
852483bc 551 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
552
553 if (fs->armcc_cfa_offsets_sf)
554 utmp *= fs->data_align;
555
2fd481e1 556 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
557 /* cfa_how deliberately not set. */
558 break;
559
a8504492
MK
560 case DW_CFA_nop:
561 break;
562
cfc14b3a 563 case DW_CFA_def_cfa_expression:
2fd481e1
PP
564 insn_ptr = read_uleb128 (insn_ptr, insn_end,
565 &fs->regs.cfa_exp_len);
566 fs->regs.cfa_exp = insn_ptr;
567 fs->regs.cfa_how = CFA_EXP;
568 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
569 break;
570
571 case DW_CFA_expression:
572 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 573 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
574 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
576 fs->regs.reg[reg].loc.exp = insn_ptr;
577 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 578 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
579 insn_ptr += utmp;
580 break;
581
a8504492
MK
582 case DW_CFA_offset_extended_sf:
583 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 584 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 585 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 586 offset *= fs->data_align;
a8504492 587 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 588 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
589 fs->regs.reg[reg].loc.offset = offset;
590 break;
591
46ea248b
AO
592 case DW_CFA_val_offset:
593 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
596 offset = utmp * fs->data_align;
597 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
598 fs->regs.reg[reg].loc.offset = offset;
599 break;
600
601 case DW_CFA_val_offset_sf:
602 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
604 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
605 offset *= fs->data_align;
606 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
607 fs->regs.reg[reg].loc.offset = offset;
608 break;
609
610 case DW_CFA_val_expression:
611 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
612 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
613 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
614 fs->regs.reg[reg].loc.exp = insn_ptr;
615 fs->regs.reg[reg].exp_len = utmp;
616 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
617 insn_ptr += utmp;
618 break;
619
a8504492 620 case DW_CFA_def_cfa_sf:
2fd481e1
PP
621 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
622 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
623 fs->regs.cfa_reg,
624 eh_frame_p);
a8504492 625 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
626 fs->regs.cfa_offset = offset * fs->data_align;
627 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
628 break;
629
630 case DW_CFA_def_cfa_offset_sf:
631 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 632 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 633 /* cfa_how deliberately not set. */
cfc14b3a
MK
634 break;
635
a77f4086
MK
636 case DW_CFA_GNU_window_save:
637 /* This is SPARC-specific code, and contains hard-coded
638 constants for the register numbering scheme used by
639 GCC. Rather than having a architecture-specific
640 operation that's only ever used by a single
641 architecture, we provide the implementation here.
642 Incidentally that's what GCC does too in its
643 unwinder. */
644 {
4a4e5149 645 int size = register_size (gdbarch, 0);
9a619af0 646
a77f4086
MK
647 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
648 for (reg = 8; reg < 16; reg++)
649 {
650 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
651 fs->regs.reg[reg].loc.reg = reg + 16;
652 }
653 for (reg = 16; reg < 32; reg++)
654 {
655 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
656 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
657 }
658 }
659 break;
660
cfc14b3a
MK
661 case DW_CFA_GNU_args_size:
662 /* Ignored. */
663 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
664 break;
665
58894217
JK
666 case DW_CFA_GNU_negative_offset_extended:
667 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 668 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
669 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
670 offset *= fs->data_align;
671 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
672 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
673 fs->regs.reg[reg].loc.offset = -offset;
674 break;
675
cfc14b3a 676 default:
3e43a32a
MS
677 internal_error (__FILE__, __LINE__,
678 _("Unknown CFI encountered."));
cfc14b3a
MK
679 }
680 }
681 }
682
683 /* Don't allow remember/restore between CIE and FDE programs. */
684 dwarf2_frame_state_free_regs (fs->regs.prev);
685 fs->regs.prev = NULL;
686}
8f22cb90 687\f
cfc14b3a 688
8f22cb90 689/* Architecture-specific operations. */
cfc14b3a 690
8f22cb90
MK
691/* Per-architecture data key. */
692static struct gdbarch_data *dwarf2_frame_data;
693
694struct dwarf2_frame_ops
695{
696 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
697 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
698 struct frame_info *);
3ed09a32 699
4a4e5149 700 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 701 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 702
4fc771b8
DJ
703 /* Convert .eh_frame register number to DWARF register number, or
704 adjust .debug_frame register number. */
705 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
706};
707
8f22cb90
MK
708/* Default architecture-specific register state initialization
709 function. */
710
711static void
712dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 713 struct dwarf2_frame_state_reg *reg,
4a4e5149 714 struct frame_info *this_frame)
8f22cb90
MK
715{
716 /* If we have a register that acts as a program counter, mark it as
717 a destination for the return address. If we have a register that
718 serves as the stack pointer, arrange for it to be filled with the
719 call frame address (CFA). The other registers are marked as
720 unspecified.
721
722 We copy the return address to the program counter, since many
723 parts in GDB assume that it is possible to get the return address
724 by unwinding the program counter register. However, on ISA's
725 with a dedicated return address register, the CFI usually only
726 contains information to unwind that return address register.
727
728 The reason we're treating the stack pointer special here is
729 because in many cases GCC doesn't emit CFI for the stack pointer
730 and implicitly assumes that it is equal to the CFA. This makes
731 some sense since the DWARF specification (version 3, draft 8,
732 p. 102) says that:
733
734 "Typically, the CFA is defined to be the value of the stack
735 pointer at the call site in the previous frame (which may be
736 different from its value on entry to the current frame)."
737
738 However, this isn't true for all platforms supported by GCC
739 (e.g. IBM S/390 and zSeries). Those architectures should provide
740 their own architecture-specific initialization function. */
05cbe71a 741
ad010def 742 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 743 reg->how = DWARF2_FRAME_REG_RA;
ad010def 744 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
745 reg->how = DWARF2_FRAME_REG_CFA;
746}
05cbe71a 747
8f22cb90 748/* Return a default for the architecture-specific operations. */
05cbe71a 749
8f22cb90 750static void *
030f20e1 751dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
752{
753 struct dwarf2_frame_ops *ops;
754
030f20e1 755 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
756 ops->init_reg = dwarf2_frame_default_init_reg;
757 return ops;
758}
05cbe71a 759
8f22cb90
MK
760/* Set the architecture-specific register state initialization
761 function for GDBARCH to INIT_REG. */
762
763void
764dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
765 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
766 struct dwarf2_frame_state_reg *,
767 struct frame_info *))
8f22cb90 768{
030f20e1 769 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 770
8f22cb90
MK
771 ops->init_reg = init_reg;
772}
773
774/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
775
776static void
777dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 778 struct dwarf2_frame_state_reg *reg,
4a4e5149 779 struct frame_info *this_frame)
05cbe71a 780{
030f20e1 781 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 782
4a4e5149 783 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 784}
3ed09a32
DJ
785
786/* Set the architecture-specific signal trampoline recognition
787 function for GDBARCH to SIGNAL_FRAME_P. */
788
789void
790dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
791 int (*signal_frame_p) (struct gdbarch *,
792 struct frame_info *))
793{
794 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
795
796 ops->signal_frame_p = signal_frame_p;
797}
798
799/* Query the architecture-specific signal frame recognizer for
4a4e5149 800 THIS_FRAME. */
3ed09a32
DJ
801
802static int
803dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 804 struct frame_info *this_frame)
3ed09a32
DJ
805{
806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807
808 if (ops->signal_frame_p == NULL)
809 return 0;
4a4e5149 810 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 811}
4bf8967c 812
4fc771b8
DJ
813/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
814 register numbers. */
4bf8967c
AS
815
816void
4fc771b8
DJ
817dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
818 int (*adjust_regnum) (struct gdbarch *,
819 int, int))
4bf8967c
AS
820{
821 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
822
4fc771b8 823 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
824}
825
4fc771b8
DJ
826/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
827 register. */
4bf8967c 828
4fc771b8 829static int
3e43a32a
MS
830dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
831 int regnum, int eh_frame_p)
4bf8967c
AS
832{
833 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834
4fc771b8 835 if (ops->adjust_regnum == NULL)
4bf8967c 836 return regnum;
4fc771b8 837 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 838}
303b6f5d
DJ
839
840static void
841dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
842 struct dwarf2_fde *fde)
843{
303b6f5d
DJ
844 struct symtab *s;
845
846 s = find_pc_symtab (fs->pc);
a6c727b2 847 if (s == NULL)
303b6f5d
DJ
848 return;
849
a6c727b2
DJ
850 if (producer_is_realview (s->producer))
851 {
852 if (fde->cie->version == 1)
853 fs->armcc_cfa_offsets_sf = 1;
854
855 if (fde->cie->version == 1)
856 fs->armcc_cfa_offsets_reversed = 1;
857
858 /* The reversed offset problem is present in some compilers
859 using DWARF3, but it was eventually fixed. Check the ARM
860 defined augmentations, which are in the format "armcc" followed
861 by a list of one-character options. The "+" option means
862 this problem is fixed (no quirk needed). If the armcc
863 augmentation is missing, the quirk is needed. */
864 if (fde->cie->version == 3
865 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
866 || strchr (fde->cie->augmentation + 5, '+') == NULL))
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 return;
870 }
303b6f5d 871}
8f22cb90
MK
872\f
873
9f6f94ff
TT
874void
875dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
876 struct gdbarch *gdbarch,
877 CORE_ADDR pc,
878 struct dwarf2_per_cu_data *data)
879{
880 const int num_regs = gdbarch_num_regs (gdbarch)
881 + gdbarch_num_pseudo_regs (gdbarch);
882 struct dwarf2_fde *fde;
883 CORE_ADDR text_offset, cfa;
884 struct dwarf2_frame_state fs;
885 int addr_size;
886
887 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
888
889 fs.pc = pc;
890
891 /* Find the correct FDE. */
892 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
893 if (fde == NULL)
894 error (_("Could not compute CFA; needed to translate this expression"));
895
896 /* Extract any interesting information from the CIE. */
897 fs.data_align = fde->cie->data_alignment_factor;
898 fs.code_align = fde->cie->code_alignment_factor;
899 fs.retaddr_column = fde->cie->return_address_register;
900 addr_size = fde->cie->addr_size;
901
902 /* Check for "quirks" - known bugs in producers. */
903 dwarf2_frame_find_quirks (&fs, fde);
904
905 /* First decode all the insns in the CIE. */
906 execute_cfa_program (fde, fde->cie->initial_instructions,
907 fde->cie->end, gdbarch, pc, &fs);
908
909 /* Save the initialized register set. */
910 fs.initial = fs.regs;
911 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
912
913 /* Then decode the insns in the FDE up to our target PC. */
914 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
915
916 /* Calculate the CFA. */
917 switch (fs.regs.cfa_how)
918 {
919 case CFA_REG_OFFSET:
920 {
921 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
922
923 if (regnum == -1)
924 error (_("Unable to access DWARF register number %d"),
925 (int) fs.regs.cfa_reg); /* FIXME */
926 ax_reg (expr, regnum);
927
928 if (fs.regs.cfa_offset != 0)
929 {
930 if (fs.armcc_cfa_offsets_reversed)
931 ax_const_l (expr, -fs.regs.cfa_offset);
932 else
933 ax_const_l (expr, fs.regs.cfa_offset);
934 ax_simple (expr, aop_add);
935 }
936 }
937 break;
938
939 case CFA_EXP:
940 ax_const_l (expr, text_offset);
941 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
942 fs.regs.cfa_exp,
943 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
944 data);
945 break;
946
947 default:
948 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
949 }
950}
951
952\f
8f22cb90
MK
953struct dwarf2_frame_cache
954{
955 /* DWARF Call Frame Address. */
956 CORE_ADDR cfa;
957
8fbca658
PA
958 /* Set if the return address column was marked as unavailable
959 (required non-collected memory or registers to compute). */
960 int unavailable_retaddr;
961
0228dfb9
DJ
962 /* Set if the return address column was marked as undefined. */
963 int undefined_retaddr;
964
8f22cb90
MK
965 /* Saved registers, indexed by GDB register number, not by DWARF
966 register number. */
967 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
968
969 /* Return address register. */
970 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
971
972 /* Target address size in bytes. */
973 int addr_size;
ac56253d
TT
974
975 /* The .text offset. */
976 CORE_ADDR text_offset;
8f22cb90 977};
05cbe71a 978
b9362cc7 979static struct dwarf2_frame_cache *
4a4e5149 980dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
981{
982 struct cleanup *old_chain;
4a4e5149 983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
984 const int num_regs = gdbarch_num_regs (gdbarch)
985 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
986 struct dwarf2_frame_cache *cache;
987 struct dwarf2_frame_state *fs;
988 struct dwarf2_fde *fde;
8fbca658 989 volatile struct gdb_exception ex;
cfc14b3a
MK
990
991 if (*this_cache)
992 return *this_cache;
993
994 /* Allocate a new cache. */
995 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
996 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 997 *this_cache = cache;
cfc14b3a
MK
998
999 /* Allocate and initialize the frame state. */
8fbca658 1000 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1001 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1002
1003 /* Unwind the PC.
1004
4a4e5149 1005 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1006 to abort), the compiler might optimize away the instruction at
4a4e5149 1007 its return address. As a result the return address will
cfc14b3a 1008 point at some random instruction, and the CFI for that
e4e9607c 1009 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1010 this problem by substracting 1 from the return address to get an
1011 address in the middle of a presumed call instruction (or the
1012 instruction in the associated delay slot). This should only be
1013 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1014 handlers, sentinel frames, dummy frames). The function
ad1193e7 1015 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1016 reliable the method is though; there is the potential for the
1017 register state pre-call being different to that on return. */
4a4e5149 1018 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1019
1020 /* Find the correct FDE. */
ac56253d 1021 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1022 gdb_assert (fde != NULL);
1023
1024 /* Extract any interesting information from the CIE. */
1025 fs->data_align = fde->cie->data_alignment_factor;
1026 fs->code_align = fde->cie->code_alignment_factor;
1027 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1028 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1029
303b6f5d
DJ
1030 /* Check for "quirks" - known bugs in producers. */
1031 dwarf2_frame_find_quirks (fs, fde);
1032
cfc14b3a 1033 /* First decode all the insns in the CIE. */
ae0d2f24 1034 execute_cfa_program (fde, fde->cie->initial_instructions,
9f6f94ff 1035 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
cfc14b3a
MK
1036
1037 /* Save the initialized register set. */
1038 fs->initial = fs->regs;
1039 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1040
1041 /* Then decode the insns in the FDE up to our target PC. */
9f6f94ff
TT
1042 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1043 get_frame_pc (this_frame), fs);
cfc14b3a 1044
8fbca658 1045 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1046 {
8fbca658
PA
1047 /* Calculate the CFA. */
1048 switch (fs->regs.cfa_how)
1049 {
1050 case CFA_REG_OFFSET:
1051 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1052 if (fs->armcc_cfa_offsets_reversed)
1053 cache->cfa -= fs->regs.cfa_offset;
1054 else
1055 cache->cfa += fs->regs.cfa_offset;
1056 break;
1057
1058 case CFA_EXP:
1059 cache->cfa =
1060 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1061 cache->addr_size, cache->text_offset,
1062 this_frame, 0, 0);
1063 break;
1064
1065 default:
1066 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1067 }
1068 }
1069 if (ex.reason < 0)
1070 {
1071 if (ex.error == NOT_AVAILABLE_ERROR)
1072 {
1073 cache->unavailable_retaddr = 1;
1074 return cache;
1075 }
cfc14b3a 1076
8fbca658 1077 throw_exception (ex);
cfc14b3a
MK
1078 }
1079
05cbe71a 1080 /* Initialize the register state. */
3e2c4033
AC
1081 {
1082 int regnum;
e4e9607c 1083
3e2c4033 1084 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1085 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1086 }
1087
1088 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1089 location information in the cache. Note that we don't skip the
1090 return address column; it's perfectly all right for it to
1091 correspond to a real register. If it doesn't correspond to a
1092 real register, or if we shouldn't treat it as such,
055d23b8 1093 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1094 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1095 {
1096 int column; /* CFI speak for "register number". */
e4e9607c 1097
3e2c4033
AC
1098 for (column = 0; column < fs->regs.num_regs; column++)
1099 {
3e2c4033 1100 /* Use the GDB register number as the destination index. */
ad010def 1101 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1102
1103 /* If there's no corresponding GDB register, ignore it. */
1104 if (regnum < 0 || regnum >= num_regs)
1105 continue;
1106
1107 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1108 of all debug info registers. If it doesn't, complain (but
1109 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1110 unspecified register implies "same value" when CFI (draft
1111 7) specifies nothing at all. Such a register could equally
1112 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1113 isn't sufficient; it only checks that all registers in the
1114 range [0 .. max column] are specified, and won't detect
3e2c4033 1115 problems when a debug info register falls outside of the
e4e9607c 1116 table. We need a way of iterating through all the valid
3e2c4033 1117 DWARF2 register numbers. */
05cbe71a 1118 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1119 {
1120 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1121 complaint (&symfile_complaints, _("\
5af949e3 1122incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1123 gdbarch_register_name (gdbarch, regnum),
5af949e3 1124 paddress (gdbarch, fs->pc));
f059bf6f 1125 }
35889917
MK
1126 else
1127 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1128 }
1129 }
cfc14b3a 1130
8d5a9abc
MK
1131 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1132 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1133 {
1134 int regnum;
1135
1136 for (regnum = 0; regnum < num_regs; regnum++)
1137 {
8d5a9abc
MK
1138 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1139 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1140 {
05cbe71a
MK
1141 struct dwarf2_frame_state_reg *retaddr_reg =
1142 &fs->regs.reg[fs->retaddr_column];
1143
d4f10bf2
MK
1144 /* It seems rather bizarre to specify an "empty" column as
1145 the return adress column. However, this is exactly
1146 what GCC does on some targets. It turns out that GCC
1147 assumes that the return address can be found in the
1148 register corresponding to the return address column.
8d5a9abc
MK
1149 Incidentally, that's how we should treat a return
1150 address column specifying "same value" too. */
d4f10bf2 1151 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1152 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1153 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1154 {
1155 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1156 cache->reg[regnum] = *retaddr_reg;
1157 else
1158 cache->retaddr_reg = *retaddr_reg;
1159 }
35889917
MK
1160 else
1161 {
8d5a9abc
MK
1162 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1163 {
1164 cache->reg[regnum].loc.reg = fs->retaddr_column;
1165 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1166 }
1167 else
1168 {
1169 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1170 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1171 }
35889917
MK
1172 }
1173 }
1174 }
1175 }
cfc14b3a 1176
0228dfb9
DJ
1177 if (fs->retaddr_column < fs->regs.num_regs
1178 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1179 cache->undefined_retaddr = 1;
1180
cfc14b3a
MK
1181 do_cleanups (old_chain);
1182
cfc14b3a
MK
1183 return cache;
1184}
1185
8fbca658
PA
1186static enum unwind_stop_reason
1187dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1188 void **this_cache)
1189{
1190 struct dwarf2_frame_cache *cache
1191 = dwarf2_frame_cache (this_frame, this_cache);
1192
1193 if (cache->unavailable_retaddr)
1194 return UNWIND_UNAVAILABLE;
1195
1196 if (cache->undefined_retaddr)
1197 return UNWIND_OUTERMOST;
1198
1199 return UNWIND_NO_REASON;
1200}
1201
cfc14b3a 1202static void
4a4e5149 1203dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1204 struct frame_id *this_id)
1205{
1206 struct dwarf2_frame_cache *cache =
4a4e5149 1207 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1208
8fbca658
PA
1209 if (cache->unavailable_retaddr)
1210 return;
1211
0228dfb9
DJ
1212 if (cache->undefined_retaddr)
1213 return;
1214
4a4e5149 1215 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1216}
1217
4a4e5149
DJ
1218static struct value *
1219dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1220 int regnum)
93d42b30 1221{
4a4e5149 1222 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1223 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1224 dwarf2_frame_cache (this_frame, this_cache);
1225 CORE_ADDR addr;
1226 int realnum;
cfc14b3a
MK
1227
1228 switch (cache->reg[regnum].how)
1229 {
05cbe71a 1230 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1231 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1232 mark it as optimized away; the value isn't available. */
4a4e5149 1233 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1234
05cbe71a 1235 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1236 addr = cache->cfa + cache->reg[regnum].loc.offset;
1237 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1238
05cbe71a 1239 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1240 realnum
1241 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1242 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1243
05cbe71a 1244 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1245 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1246 cache->reg[regnum].exp_len,
ac56253d
TT
1247 cache->addr_size, cache->text_offset,
1248 this_frame, cache->cfa, 1);
4a4e5149 1249 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1250
46ea248b 1251 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1252 addr = cache->cfa + cache->reg[regnum].loc.offset;
1253 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1254
1255 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1256 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1257 cache->reg[regnum].exp_len,
ac56253d
TT
1258 cache->addr_size, cache->text_offset,
1259 this_frame, cache->cfa, 1);
4a4e5149 1260 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1261
05cbe71a 1262 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1263 /* GCC, in its infinite wisdom decided to not provide unwind
1264 information for registers that are "same value". Since
1265 DWARF2 (3 draft 7) doesn't define such behavior, said
1266 registers are actually undefined (which is different to CFI
1267 "undefined"). Code above issues a complaint about this.
1268 Here just fudge the books, assume GCC, and that the value is
1269 more inner on the stack. */
4a4e5149 1270 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1271
05cbe71a 1272 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1273 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1274
05cbe71a 1275 case DWARF2_FRAME_REG_CFA:
4a4e5149 1276 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1277
ea7963f0 1278 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1279 addr = cache->cfa + cache->reg[regnum].loc.offset;
1280 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1281
8d5a9abc 1282 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1283 addr = cache->reg[regnum].loc.offset;
1284 regnum = gdbarch_dwarf2_reg_to_regnum
1285 (gdbarch, cache->retaddr_reg.loc.reg);
1286 addr += get_frame_register_unsigned (this_frame, regnum);
1287 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1288
b39cc962
DJ
1289 case DWARF2_FRAME_REG_FN:
1290 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1291
cfc14b3a 1292 default:
e2e0b3e5 1293 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1294 }
1295}
1296
4a4e5149
DJ
1297static int
1298dwarf2_frame_sniffer (const struct frame_unwind *self,
1299 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1300{
1ce5d6dd 1301 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1302 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1303 end up returning something past the end of this function's body.
1304 If the frame we're sniffing for is a signal frame whose start
1305 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1306 extend one byte before its start address or we could potentially
1307 select the FDE of the previous function. */
1308 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1309 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1310
56c987f6 1311 if (!fde)
4a4e5149 1312 return 0;
3ed09a32
DJ
1313
1314 /* On some targets, signal trampolines may have unwind information.
1315 We need to recognize them so that we set the frame type
1316 correctly. */
1317
56c987f6 1318 if (fde->cie->signal_frame
4a4e5149
DJ
1319 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1320 this_frame))
1321 return self->type == SIGTRAMP_FRAME;
1322
1323 return self->type != SIGTRAMP_FRAME;
1324}
1325
1326static const struct frame_unwind dwarf2_frame_unwind =
1327{
1328 NORMAL_FRAME,
8fbca658 1329 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1330 dwarf2_frame_this_id,
1331 dwarf2_frame_prev_register,
1332 NULL,
1333 dwarf2_frame_sniffer
1334};
1335
1336static const struct frame_unwind dwarf2_signal_frame_unwind =
1337{
1338 SIGTRAMP_FRAME,
8fbca658 1339 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1340 dwarf2_frame_this_id,
1341 dwarf2_frame_prev_register,
1342 NULL,
1343 dwarf2_frame_sniffer
1344};
cfc14b3a 1345
4a4e5149
DJ
1346/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1347
1348void
1349dwarf2_append_unwinders (struct gdbarch *gdbarch)
1350{
1351 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1352 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1353}
1354\f
1355
1356/* There is no explicitly defined relationship between the CFA and the
1357 location of frame's local variables and arguments/parameters.
1358 Therefore, frame base methods on this page should probably only be
1359 used as a last resort, just to avoid printing total garbage as a
1360 response to the "info frame" command. */
1361
1362static CORE_ADDR
4a4e5149 1363dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1364{
1365 struct dwarf2_frame_cache *cache =
4a4e5149 1366 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1367
1368 return cache->cfa;
1369}
1370
1371static const struct frame_base dwarf2_frame_base =
1372{
1373 &dwarf2_frame_unwind,
1374 dwarf2_frame_base_address,
1375 dwarf2_frame_base_address,
1376 dwarf2_frame_base_address
1377};
1378
1379const struct frame_base *
4a4e5149 1380dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1381{
4a4e5149 1382 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1383
ac56253d 1384 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1385 return &dwarf2_frame_base;
1386
1387 return NULL;
1388}
e7802207
TT
1389
1390/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1391 the DWARF unwinder. This is used to implement
1392 DW_OP_call_frame_cfa. */
1393
1394CORE_ADDR
1395dwarf2_frame_cfa (struct frame_info *this_frame)
1396{
1397 while (get_frame_type (this_frame) == INLINE_FRAME)
1398 this_frame = get_prev_frame (this_frame);
1399 /* This restriction could be lifted if other unwinders are known to
1400 compute the frame base in a way compatible with the DWARF
1401 unwinder. */
1402 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1403 error (_("can't compute CFA for this frame"));
1404 return get_frame_base (this_frame);
1405}
cfc14b3a 1406\f
8f22cb90 1407const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1408
cfc14b3a 1409static unsigned int
852483bc 1410read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1411{
852483bc 1412 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1413}
1414
1415static unsigned int
852483bc 1416read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1417{
852483bc 1418 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1419}
1420
1421static ULONGEST
852483bc 1422read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1423{
852483bc 1424 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1425}
1426
1427static ULONGEST
852483bc 1428read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1429{
1430 ULONGEST result;
1431 unsigned int num_read;
1432 int shift;
852483bc 1433 gdb_byte byte;
cfc14b3a
MK
1434
1435 result = 0;
1436 shift = 0;
1437 num_read = 0;
1438
1439 do
1440 {
1441 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1442 buf++;
1443 num_read++;
1444 result |= ((byte & 0x7f) << shift);
1445 shift += 7;
1446 }
1447 while (byte & 0x80);
1448
1449 *bytes_read_ptr = num_read;
1450
1451 return result;
1452}
1453
1454static LONGEST
852483bc 1455read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1456{
1457 LONGEST result;
1458 int shift;
1459 unsigned int num_read;
852483bc 1460 gdb_byte byte;
cfc14b3a
MK
1461
1462 result = 0;
1463 shift = 0;
1464 num_read = 0;
1465
1466 do
1467 {
1468 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1469 buf++;
1470 num_read++;
1471 result |= ((byte & 0x7f) << shift);
1472 shift += 7;
1473 }
1474 while (byte & 0x80);
1475
77e0b926
DJ
1476 if (shift < 8 * sizeof (result) && (byte & 0x40))
1477 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1478
1479 *bytes_read_ptr = num_read;
1480
1481 return result;
1482}
1483
1484static ULONGEST
852483bc 1485read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1486{
1487 LONGEST result;
1488
852483bc 1489 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1490 if (result == 0xffffffff)
1491 {
852483bc 1492 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1493 *bytes_read_ptr = 12;
1494 }
1495 else
1496 *bytes_read_ptr = 4;
1497
1498 return result;
1499}
1500\f
1501
1502/* Pointer encoding helper functions. */
1503
1504/* GCC supports exception handling based on DWARF2 CFI. However, for
1505 technical reasons, it encodes addresses in its FDE's in a different
1506 way. Several "pointer encodings" are supported. The encoding
1507 that's used for a particular FDE is determined by the 'R'
1508 augmentation in the associated CIE. The argument of this
1509 augmentation is a single byte.
1510
1511 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1512 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1513 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1514 address should be interpreted (absolute, relative to the current
1515 position in the FDE, ...). Bit 7, indicates that the address
1516 should be dereferenced. */
1517
852483bc 1518static gdb_byte
cfc14b3a
MK
1519encoding_for_size (unsigned int size)
1520{
1521 switch (size)
1522 {
1523 case 2:
1524 return DW_EH_PE_udata2;
1525 case 4:
1526 return DW_EH_PE_udata4;
1527 case 8:
1528 return DW_EH_PE_udata8;
1529 default:
e2e0b3e5 1530 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1531 }
1532}
1533
cfc14b3a 1534static CORE_ADDR
852483bc 1535read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1536 int ptr_len, const gdb_byte *buf,
1537 unsigned int *bytes_read_ptr,
ae0d2f24 1538 CORE_ADDR func_base)
cfc14b3a 1539{
68f6cf99 1540 ptrdiff_t offset;
cfc14b3a
MK
1541 CORE_ADDR base;
1542
1543 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1544 FDE's. */
1545 if (encoding & DW_EH_PE_indirect)
1546 internal_error (__FILE__, __LINE__,
e2e0b3e5 1547 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1548
68f6cf99
MK
1549 *bytes_read_ptr = 0;
1550
cfc14b3a
MK
1551 switch (encoding & 0x70)
1552 {
1553 case DW_EH_PE_absptr:
1554 base = 0;
1555 break;
1556 case DW_EH_PE_pcrel:
f2fec864 1557 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1558 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1559 break;
0912c7f2
MK
1560 case DW_EH_PE_datarel:
1561 base = unit->dbase;
1562 break;
0fd85043
CV
1563 case DW_EH_PE_textrel:
1564 base = unit->tbase;
1565 break;
03ac2a74 1566 case DW_EH_PE_funcrel:
ae0d2f24 1567 base = func_base;
03ac2a74 1568 break;
68f6cf99
MK
1569 case DW_EH_PE_aligned:
1570 base = 0;
852483bc 1571 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1572 if ((offset % ptr_len) != 0)
1573 {
1574 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1575 buf += *bytes_read_ptr;
1576 }
1577 break;
cfc14b3a 1578 default:
3e43a32a
MS
1579 internal_error (__FILE__, __LINE__,
1580 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1581 }
1582
b04de778 1583 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1584 {
1585 encoding |= encoding_for_size (ptr_len);
1586 if (bfd_get_sign_extend_vma (unit->abfd))
1587 encoding |= DW_EH_PE_signed;
1588 }
cfc14b3a
MK
1589
1590 switch (encoding & 0x0f)
1591 {
a81b10ae
MK
1592 case DW_EH_PE_uleb128:
1593 {
1594 ULONGEST value;
0d45f56e 1595 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1596
a7289609 1597 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1598 return base + value;
1599 }
cfc14b3a 1600 case DW_EH_PE_udata2:
68f6cf99 1601 *bytes_read_ptr += 2;
cfc14b3a
MK
1602 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1603 case DW_EH_PE_udata4:
68f6cf99 1604 *bytes_read_ptr += 4;
cfc14b3a
MK
1605 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1606 case DW_EH_PE_udata8:
68f6cf99 1607 *bytes_read_ptr += 8;
cfc14b3a 1608 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1609 case DW_EH_PE_sleb128:
1610 {
1611 LONGEST value;
0d45f56e 1612 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1613
a7289609 1614 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1615 return base + value;
1616 }
cfc14b3a 1617 case DW_EH_PE_sdata2:
68f6cf99 1618 *bytes_read_ptr += 2;
cfc14b3a
MK
1619 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1620 case DW_EH_PE_sdata4:
68f6cf99 1621 *bytes_read_ptr += 4;
cfc14b3a
MK
1622 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1623 case DW_EH_PE_sdata8:
68f6cf99 1624 *bytes_read_ptr += 8;
cfc14b3a
MK
1625 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1626 default:
3e43a32a
MS
1627 internal_error (__FILE__, __LINE__,
1628 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1629 }
1630}
1631\f
1632
b01c8410
PP
1633static int
1634bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1635{
b01c8410
PP
1636 ULONGEST cie_pointer = *(ULONGEST *) key;
1637 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1638
b01c8410
PP
1639 if (cie_pointer == cie->cie_pointer)
1640 return 0;
cfc14b3a 1641
b01c8410
PP
1642 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1643}
1644
1645/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1646static struct dwarf2_cie *
1647find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1648{
1649 struct dwarf2_cie **p_cie;
cfc14b3a 1650
65a97ab3
PP
1651 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1652 bsearch be non-NULL. */
1653 if (cie_table->entries == NULL)
1654 {
1655 gdb_assert (cie_table->num_entries == 0);
1656 return NULL;
1657 }
1658
b01c8410
PP
1659 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1660 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1661 if (p_cie != NULL)
1662 return *p_cie;
cfc14b3a
MK
1663 return NULL;
1664}
1665
b01c8410 1666/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1667static void
b01c8410 1668add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1669{
b01c8410
PP
1670 const int n = cie_table->num_entries;
1671
1672 gdb_assert (n < 1
1673 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1674
1675 cie_table->entries =
1676 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1677 cie_table->entries[n] = cie;
1678 cie_table->num_entries = n + 1;
1679}
1680
1681static int
1682bsearch_fde_cmp (const void *key, const void *element)
1683{
1684 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1685 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1686
b01c8410
PP
1687 if (seek_pc < fde->initial_location)
1688 return -1;
1689 if (seek_pc < fde->initial_location + fde->address_range)
1690 return 0;
1691 return 1;
cfc14b3a
MK
1692}
1693
1694/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1695 inital location associated with it into *PC. */
1696
1697static struct dwarf2_fde *
ac56253d 1698dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1699{
1700 struct objfile *objfile;
1701
1702 ALL_OBJFILES (objfile)
1703 {
b01c8410
PP
1704 struct dwarf2_fde_table *fde_table;
1705 struct dwarf2_fde **p_fde;
cfc14b3a 1706 CORE_ADDR offset;
b01c8410 1707 CORE_ADDR seek_pc;
cfc14b3a 1708
b01c8410
PP
1709 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1710 if (fde_table == NULL)
be391dca
TT
1711 {
1712 dwarf2_build_frame_info (objfile);
1713 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1714 }
1715 gdb_assert (fde_table != NULL);
1716
1717 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1718 continue;
1719
1720 gdb_assert (objfile->section_offsets);
1721 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1722
b01c8410
PP
1723 gdb_assert (fde_table->num_entries > 0);
1724 if (*pc < offset + fde_table->entries[0]->initial_location)
1725 continue;
1726
1727 seek_pc = *pc - offset;
1728 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1729 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1730 if (p_fde != NULL)
1731 {
1732 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1733 if (out_offset)
1734 *out_offset = offset;
b01c8410
PP
1735 return *p_fde;
1736 }
cfc14b3a 1737 }
cfc14b3a
MK
1738 return NULL;
1739}
1740
b01c8410 1741/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1742static void
b01c8410 1743add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1744{
b01c8410
PP
1745 if (fde->address_range == 0)
1746 /* Discard useless FDEs. */
1747 return;
1748
1749 fde_table->num_entries += 1;
1750 fde_table->entries =
1751 xrealloc (fde_table->entries,
1752 fde_table->num_entries * sizeof (fde_table->entries[0]));
1753 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1754}
1755
1756#ifdef CC_HAS_LONG_LONG
1757#define DW64_CIE_ID 0xffffffffffffffffULL
1758#else
1759#define DW64_CIE_ID ~0
1760#endif
1761
8bd90839
FM
1762/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1763 or any of them. */
1764
1765enum eh_frame_type
1766{
1767 EH_CIE_TYPE_ID = 1 << 0,
1768 EH_FDE_TYPE_ID = 1 << 1,
1769 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1770};
1771
852483bc 1772static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1773 int eh_frame_p,
1774 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1775 struct dwarf2_fde_table *fde_table,
1776 enum eh_frame_type entry_type);
1777
1778/* Decode the next CIE or FDE, entry_type specifies the expected type.
1779 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1780
852483bc 1781static gdb_byte *
b01c8410
PP
1782decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1783 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1784 struct dwarf2_fde_table *fde_table,
1785 enum eh_frame_type entry_type)
cfc14b3a 1786{
5e2b427d 1787 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1788 gdb_byte *buf, *end;
cfc14b3a
MK
1789 LONGEST length;
1790 unsigned int bytes_read;
6896c0c7
RH
1791 int dwarf64_p;
1792 ULONGEST cie_id;
cfc14b3a 1793 ULONGEST cie_pointer;
cfc14b3a 1794
6896c0c7 1795 buf = start;
cfc14b3a
MK
1796 length = read_initial_length (unit->abfd, buf, &bytes_read);
1797 buf += bytes_read;
1798 end = buf + length;
1799
0963b4bd 1800 /* Are we still within the section? */
6896c0c7
RH
1801 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1802 return NULL;
1803
cfc14b3a
MK
1804 if (length == 0)
1805 return end;
1806
6896c0c7
RH
1807 /* Distinguish between 32 and 64-bit encoded frame info. */
1808 dwarf64_p = (bytes_read == 12);
cfc14b3a 1809
6896c0c7 1810 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1811 if (eh_frame_p)
1812 cie_id = 0;
1813 else if (dwarf64_p)
1814 cie_id = DW64_CIE_ID;
6896c0c7
RH
1815 else
1816 cie_id = DW_CIE_ID;
cfc14b3a
MK
1817
1818 if (dwarf64_p)
1819 {
1820 cie_pointer = read_8_bytes (unit->abfd, buf);
1821 buf += 8;
1822 }
1823 else
1824 {
1825 cie_pointer = read_4_bytes (unit->abfd, buf);
1826 buf += 4;
1827 }
1828
1829 if (cie_pointer == cie_id)
1830 {
1831 /* This is a CIE. */
1832 struct dwarf2_cie *cie;
1833 char *augmentation;
28ba0b33 1834 unsigned int cie_version;
cfc14b3a 1835
8bd90839
FM
1836 /* Check that a CIE was expected. */
1837 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1838 error (_("Found a CIE when not expecting it."));
1839
cfc14b3a
MK
1840 /* Record the offset into the .debug_frame section of this CIE. */
1841 cie_pointer = start - unit->dwarf_frame_buffer;
1842
1843 /* Check whether we've already read it. */
b01c8410 1844 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1845 return end;
1846
1847 cie = (struct dwarf2_cie *)
8b92e4d5 1848 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1849 sizeof (struct dwarf2_cie));
1850 cie->initial_instructions = NULL;
1851 cie->cie_pointer = cie_pointer;
1852
1853 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1854 depends on the target address size. */
1855 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1856
56c987f6
AO
1857 /* We'll determine the final value later, but we need to
1858 initialize it conservatively. */
1859 cie->signal_frame = 0;
1860
cfc14b3a 1861 /* Check version number. */
28ba0b33 1862 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1863 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1864 return NULL;
303b6f5d 1865 cie->version = cie_version;
cfc14b3a
MK
1866 buf += 1;
1867
1868 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1869 cie->augmentation = augmentation = (char *) buf;
852483bc 1870 buf += (strlen (augmentation) + 1);
cfc14b3a 1871
303b6f5d
DJ
1872 /* Ignore armcc augmentations. We only use them for quirks,
1873 and that doesn't happen until later. */
1874 if (strncmp (augmentation, "armcc", 5) == 0)
1875 augmentation += strlen (augmentation);
1876
cfc14b3a
MK
1877 /* The GCC 2.x "eh" augmentation has a pointer immediately
1878 following the augmentation string, so it must be handled
1879 first. */
1880 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1881 {
1882 /* Skip. */
5e2b427d 1883 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1884 augmentation += 2;
1885 }
1886
2dc7f7b3
TT
1887 if (cie->version >= 4)
1888 {
1889 /* FIXME: check that this is the same as from the CU header. */
1890 cie->addr_size = read_1_byte (unit->abfd, buf);
1891 ++buf;
1892 cie->segment_size = read_1_byte (unit->abfd, buf);
1893 ++buf;
1894 }
1895 else
1896 {
8da614df 1897 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1898 cie->segment_size = 0;
1899 }
8da614df
CV
1900 /* Address values in .eh_frame sections are defined to have the
1901 target's pointer size. Watchout: This breaks frame info for
1902 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1903 section exists as well. */
8da614df
CV
1904 if (eh_frame_p)
1905 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1906 else
1907 cie->ptr_size = cie->addr_size;
2dc7f7b3 1908
cfc14b3a
MK
1909 cie->code_alignment_factor =
1910 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1911 buf += bytes_read;
1912
1913 cie->data_alignment_factor =
1914 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1915 buf += bytes_read;
1916
28ba0b33
PB
1917 if (cie_version == 1)
1918 {
1919 cie->return_address_register = read_1_byte (unit->abfd, buf);
1920 bytes_read = 1;
1921 }
1922 else
1923 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1924 &bytes_read);
4fc771b8 1925 cie->return_address_register
5e2b427d 1926 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1927 cie->return_address_register,
1928 eh_frame_p);
4bf8967c 1929
28ba0b33 1930 buf += bytes_read;
cfc14b3a 1931
7131cb6e
RH
1932 cie->saw_z_augmentation = (*augmentation == 'z');
1933 if (cie->saw_z_augmentation)
cfc14b3a
MK
1934 {
1935 ULONGEST length;
1936
1937 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1938 buf += bytes_read;
6896c0c7
RH
1939 if (buf > end)
1940 return NULL;
cfc14b3a
MK
1941 cie->initial_instructions = buf + length;
1942 augmentation++;
1943 }
1944
1945 while (*augmentation)
1946 {
1947 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1948 if (*augmentation == 'L')
1949 {
1950 /* Skip. */
1951 buf++;
1952 augmentation++;
1953 }
1954
1955 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1956 else if (*augmentation == 'R')
1957 {
1958 cie->encoding = *buf++;
1959 augmentation++;
1960 }
1961
1962 /* "P" indicates a personality routine in the CIE augmentation. */
1963 else if (*augmentation == 'P')
1964 {
1234d960 1965 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1966 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1967 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1968 buf, &bytes_read, 0);
f724bf08 1969 buf += bytes_read;
cfc14b3a
MK
1970 augmentation++;
1971 }
1972
56c987f6
AO
1973 /* "S" indicates a signal frame, such that the return
1974 address must not be decremented to locate the call frame
1975 info for the previous frame; it might even be the first
1976 instruction of a function, so decrementing it would take
1977 us to a different function. */
1978 else if (*augmentation == 'S')
1979 {
1980 cie->signal_frame = 1;
1981 augmentation++;
1982 }
1983
3e9a2e52
DJ
1984 /* Otherwise we have an unknown augmentation. Assume that either
1985 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1986 else
1987 {
3e9a2e52
DJ
1988 if (cie->initial_instructions)
1989 buf = cie->initial_instructions;
cfc14b3a
MK
1990 break;
1991 }
1992 }
1993
1994 cie->initial_instructions = buf;
1995 cie->end = end;
b01c8410 1996 cie->unit = unit;
cfc14b3a 1997
b01c8410 1998 add_cie (cie_table, cie);
cfc14b3a
MK
1999 }
2000 else
2001 {
2002 /* This is a FDE. */
2003 struct dwarf2_fde *fde;
2004
8bd90839
FM
2005 /* Check that an FDE was expected. */
2006 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2007 error (_("Found an FDE when not expecting it."));
2008
6896c0c7
RH
2009 /* In an .eh_frame section, the CIE pointer is the delta between the
2010 address within the FDE where the CIE pointer is stored and the
2011 address of the CIE. Convert it to an offset into the .eh_frame
2012 section. */
cfc14b3a
MK
2013 if (eh_frame_p)
2014 {
cfc14b3a
MK
2015 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2016 cie_pointer -= (dwarf64_p ? 8 : 4);
2017 }
2018
6896c0c7
RH
2019 /* In either case, validate the result is still within the section. */
2020 if (cie_pointer >= unit->dwarf_frame_size)
2021 return NULL;
2022
cfc14b3a 2023 fde = (struct dwarf2_fde *)
8b92e4d5 2024 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2025 sizeof (struct dwarf2_fde));
b01c8410 2026 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2027 if (fde->cie == NULL)
2028 {
2029 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2030 eh_frame_p, cie_table, fde_table,
2031 EH_CIE_TYPE_ID);
b01c8410 2032 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2033 }
2034
2035 gdb_assert (fde->cie != NULL);
2036
2037 fde->initial_location =
8da614df 2038 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2039 buf, &bytes_read, 0);
cfc14b3a
MK
2040 buf += bytes_read;
2041
2042 fde->address_range =
ae0d2f24 2043 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2044 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2045 buf += bytes_read;
2046
7131cb6e
RH
2047 /* A 'z' augmentation in the CIE implies the presence of an
2048 augmentation field in the FDE as well. The only thing known
2049 to be in here at present is the LSDA entry for EH. So we
2050 can skip the whole thing. */
2051 if (fde->cie->saw_z_augmentation)
2052 {
2053 ULONGEST length;
2054
2055 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2056 buf += bytes_read + length;
6896c0c7
RH
2057 if (buf > end)
2058 return NULL;
7131cb6e
RH
2059 }
2060
cfc14b3a
MK
2061 fde->instructions = buf;
2062 fde->end = end;
2063
4bf8967c
AS
2064 fde->eh_frame_p = eh_frame_p;
2065
b01c8410 2066 add_fde (fde_table, fde);
cfc14b3a
MK
2067 }
2068
2069 return end;
2070}
6896c0c7 2071
8bd90839
FM
2072/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2073 expect an FDE or a CIE. */
2074
852483bc 2075static gdb_byte *
b01c8410
PP
2076decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2077 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2078 struct dwarf2_fde_table *fde_table,
2079 enum eh_frame_type entry_type)
6896c0c7
RH
2080{
2081 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 2082 gdb_byte *ret;
6896c0c7
RH
2083 ptrdiff_t start_offset;
2084
2085 while (1)
2086 {
b01c8410 2087 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2088 cie_table, fde_table, entry_type);
6896c0c7
RH
2089 if (ret != NULL)
2090 break;
2091
2092 /* We have corrupt input data of some form. */
2093
2094 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2095 and mismatches wrt padding and alignment of debug sections. */
2096 /* Note that there is no requirement in the standard for any
2097 alignment at all in the frame unwind sections. Testing for
2098 alignment before trying to interpret data would be incorrect.
2099
2100 However, GCC traditionally arranged for frame sections to be
2101 sized such that the FDE length and CIE fields happen to be
2102 aligned (in theory, for performance). This, unfortunately,
2103 was done with .align directives, which had the side effect of
2104 forcing the section to be aligned by the linker.
2105
2106 This becomes a problem when you have some other producer that
2107 creates frame sections that are not as strictly aligned. That
2108 produces a hole in the frame info that gets filled by the
2109 linker with zeros.
2110
2111 The GCC behaviour is arguably a bug, but it's effectively now
2112 part of the ABI, so we're now stuck with it, at least at the
2113 object file level. A smart linker may decide, in the process
2114 of compressing duplicate CIE information, that it can rewrite
2115 the entire output section without this extra padding. */
2116
2117 start_offset = start - unit->dwarf_frame_buffer;
2118 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2119 {
2120 start += 4 - (start_offset & 3);
2121 workaround = ALIGN4;
2122 continue;
2123 }
2124 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2125 {
2126 start += 8 - (start_offset & 7);
2127 workaround = ALIGN8;
2128 continue;
2129 }
2130
2131 /* Nothing left to try. Arrange to return as if we've consumed
2132 the entire input section. Hopefully we'll get valid info from
2133 the other of .debug_frame/.eh_frame. */
2134 workaround = FAIL;
2135 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2136 break;
2137 }
2138
2139 switch (workaround)
2140 {
2141 case NONE:
2142 break;
2143
2144 case ALIGN4:
3e43a32a
MS
2145 complaint (&symfile_complaints, _("\
2146Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2147 unit->dwarf_frame_section->owner->filename,
2148 unit->dwarf_frame_section->name);
2149 break;
2150
2151 case ALIGN8:
3e43a32a
MS
2152 complaint (&symfile_complaints, _("\
2153Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2154 unit->dwarf_frame_section->owner->filename,
2155 unit->dwarf_frame_section->name);
2156 break;
2157
2158 default:
2159 complaint (&symfile_complaints,
e2e0b3e5 2160 _("Corrupt data in %s:%s"),
6896c0c7
RH
2161 unit->dwarf_frame_section->owner->filename,
2162 unit->dwarf_frame_section->name);
2163 break;
2164 }
2165
2166 return ret;
2167}
cfc14b3a 2168\f
b01c8410
PP
2169static int
2170qsort_fde_cmp (const void *a, const void *b)
2171{
2172 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2173 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2174
b01c8410 2175 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2176 {
2177 if (aa->address_range != bb->address_range
2178 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2179 /* Linker bug, e.g. gold/10400.
2180 Work around it by keeping stable sort order. */
2181 return (a < b) ? -1 : 1;
2182 else
2183 /* Put eh_frame entries after debug_frame ones. */
2184 return aa->eh_frame_p - bb->eh_frame_p;
2185 }
b01c8410
PP
2186
2187 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2188}
2189
cfc14b3a
MK
2190void
2191dwarf2_build_frame_info (struct objfile *objfile)
2192{
ae0d2f24 2193 struct comp_unit *unit;
852483bc 2194 gdb_byte *frame_ptr;
b01c8410
PP
2195 struct dwarf2_cie_table cie_table;
2196 struct dwarf2_fde_table fde_table;
be391dca 2197 struct dwarf2_fde_table *fde_table2;
8bd90839 2198 volatile struct gdb_exception e;
b01c8410
PP
2199
2200 cie_table.num_entries = 0;
2201 cie_table.entries = NULL;
2202
2203 fde_table.num_entries = 0;
2204 fde_table.entries = NULL;
cfc14b3a
MK
2205
2206 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2207 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2208 sizeof (struct comp_unit));
2209 unit->abfd = objfile->obfd;
2210 unit->objfile = objfile;
2211 unit->dbase = 0;
2212 unit->tbase = 0;
cfc14b3a 2213
d40102a1 2214 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2215 {
d40102a1
JB
2216 /* Do not read .eh_frame from separate file as they must be also
2217 present in the main file. */
2218 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2219 &unit->dwarf_frame_section,
2220 &unit->dwarf_frame_buffer,
2221 &unit->dwarf_frame_size);
2222 if (unit->dwarf_frame_size)
b01c8410 2223 {
d40102a1
JB
2224 asection *got, *txt;
2225
2226 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2227 that is used for the i386/amd64 target, which currently is
2228 the only target in GCC that supports/uses the
2229 DW_EH_PE_datarel encoding. */
2230 got = bfd_get_section_by_name (unit->abfd, ".got");
2231 if (got)
2232 unit->dbase = got->vma;
2233
2234 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2235 so far. */
2236 txt = bfd_get_section_by_name (unit->abfd, ".text");
2237 if (txt)
2238 unit->tbase = txt->vma;
2239
8bd90839
FM
2240 TRY_CATCH (e, RETURN_MASK_ERROR)
2241 {
2242 frame_ptr = unit->dwarf_frame_buffer;
2243 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2244 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2245 &cie_table, &fde_table,
2246 EH_CIE_OR_FDE_TYPE_ID);
2247 }
2248
2249 if (e.reason < 0)
2250 {
2251 warning (_("skipping .eh_frame info of %s: %s"),
2252 objfile->name, e.message);
2253
2254 if (fde_table.num_entries != 0)
2255 {
2256 xfree (fde_table.entries);
2257 fde_table.entries = NULL;
2258 fde_table.num_entries = 0;
2259 }
2260 /* The cie_table is discarded by the next if. */
2261 }
d40102a1
JB
2262
2263 if (cie_table.num_entries != 0)
2264 {
2265 /* Reinit cie_table: debug_frame has different CIEs. */
2266 xfree (cie_table.entries);
2267 cie_table.num_entries = 0;
2268 cie_table.entries = NULL;
2269 }
b01c8410 2270 }
cfc14b3a
MK
2271 }
2272
3017a003 2273 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2274 &unit->dwarf_frame_section,
2275 &unit->dwarf_frame_buffer,
2276 &unit->dwarf_frame_size);
2277 if (unit->dwarf_frame_size)
cfc14b3a 2278 {
8bd90839
FM
2279 int num_old_fde_entries = fde_table.num_entries;
2280
2281 TRY_CATCH (e, RETURN_MASK_ERROR)
2282 {
2283 frame_ptr = unit->dwarf_frame_buffer;
2284 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2285 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2286 &cie_table, &fde_table,
2287 EH_CIE_OR_FDE_TYPE_ID);
2288 }
2289 if (e.reason < 0)
2290 {
2291 warning (_("skipping .debug_frame info of %s: %s"),
2292 objfile->name, e.message);
2293
2294 if (fde_table.num_entries != 0)
2295 {
2296 fde_table.num_entries = num_old_fde_entries;
2297 if (num_old_fde_entries == 0)
2298 {
2299 xfree (fde_table.entries);
2300 fde_table.entries = NULL;
2301 }
2302 else
2303 {
2304 fde_table.entries = xrealloc (fde_table.entries,
2305 fde_table.num_entries *
2306 sizeof (fde_table.entries[0]));
2307 }
2308 }
2309 fde_table.num_entries = num_old_fde_entries;
2310 /* The cie_table is discarded by the next if. */
2311 }
b01c8410
PP
2312 }
2313
2314 /* Discard the cie_table, it is no longer needed. */
2315 if (cie_table.num_entries != 0)
2316 {
2317 xfree (cie_table.entries);
2318 cie_table.entries = NULL; /* Paranoia. */
2319 cie_table.num_entries = 0; /* Paranoia. */
2320 }
2321
be391dca
TT
2322 /* Copy fde_table to obstack: it is needed at runtime. */
2323 fde_table2 = (struct dwarf2_fde_table *)
2324 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2325
2326 if (fde_table.num_entries == 0)
2327 {
2328 fde_table2->entries = NULL;
2329 fde_table2->num_entries = 0;
2330 }
2331 else
b01c8410 2332 {
875cdfbb
PA
2333 struct dwarf2_fde *fde_prev = NULL;
2334 struct dwarf2_fde *first_non_zero_fde = NULL;
2335 int i;
b01c8410
PP
2336
2337 /* Prepare FDE table for lookups. */
2338 qsort (fde_table.entries, fde_table.num_entries,
2339 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2340
875cdfbb
PA
2341 /* Check for leftovers from --gc-sections. The GNU linker sets
2342 the relevant symbols to zero, but doesn't zero the FDE *end*
2343 ranges because there's no relocation there. It's (offset,
2344 length), not (start, end). On targets where address zero is
2345 just another valid address this can be a problem, since the
2346 FDEs appear to be non-empty in the output --- we could pick
2347 out the wrong FDE. To work around this, when overlaps are
2348 detected, we prefer FDEs that do not start at zero.
2349
2350 Start by finding the first FDE with non-zero start. Below
2351 we'll discard all FDEs that start at zero and overlap this
2352 one. */
2353 for (i = 0; i < fde_table.num_entries; i++)
2354 {
2355 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2356
875cdfbb
PA
2357 if (fde->initial_location != 0)
2358 {
2359 first_non_zero_fde = fde;
2360 break;
2361 }
2362 }
2363
2364 /* Since we'll be doing bsearch, squeeze out identical (except
2365 for eh_frame_p) fde entries so bsearch result is predictable.
2366 Also discard leftovers from --gc-sections. */
be391dca 2367 fde_table2->num_entries = 0;
875cdfbb
PA
2368 for (i = 0; i < fde_table.num_entries; i++)
2369 {
2370 struct dwarf2_fde *fde = fde_table.entries[i];
2371
2372 if (fde->initial_location == 0
2373 && first_non_zero_fde != NULL
2374 && (first_non_zero_fde->initial_location
2375 < fde->initial_location + fde->address_range))
2376 continue;
2377
2378 if (fde_prev != NULL
2379 && fde_prev->initial_location == fde->initial_location)
2380 continue;
2381
2382 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2383 sizeof (fde_table.entries[0]));
2384 ++fde_table2->num_entries;
2385 fde_prev = fde;
2386 }
b01c8410 2387 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2388
2389 /* Discard the original fde_table. */
2390 xfree (fde_table.entries);
cfc14b3a 2391 }
be391dca
TT
2392
2393 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2394}
0d0e1a63
MK
2395
2396/* Provide a prototype to silence -Wmissing-prototypes. */
2397void _initialize_dwarf2_frame (void);
2398
2399void
2400_initialize_dwarf2_frame (void)
2401{
030f20e1 2402 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2403 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2404}
This page took 0.747018 seconds and 4 git commands to generate.