* gdb.python/py-symbol.exp: Add some comments. Make all test names unique.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
28e7fd62 3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
0e9f083f 36#include <string.h>
cfc14b3a 37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
f664829e
DE
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
f664829e
DE
119 const gdb_byte *instructions;
120 const gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24 143 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 144 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
b1370418 289read_addr_from_reg (void *baton, int reg)
cfc14b3a 290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a 300
4b4589ad 301 return unpack_pointer (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
302}
303
0acf8b65
JB
304/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
305
306static struct value *
307get_reg_value (void *baton, struct type *type, int reg)
308{
309 struct frame_info *this_frame = (struct frame_info *) baton;
310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
311 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
312
313 return value_from_register (type, regnum, this_frame);
314}
315
cfc14b3a 316static void
852483bc 317read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
318{
319 read_memory (addr, buf, len);
320}
321
a6a5a945
LM
322/* Execute the required actions for both the DW_CFA_restore and
323DW_CFA_restore_extended instructions. */
324static void
325dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
326 struct dwarf2_frame_state *fs, int eh_frame_p)
327{
328 ULONGEST reg;
329
330 gdb_assert (fs->initial.reg);
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333
334 /* Check if this register was explicitly initialized in the
335 CIE initial instructions. If not, default the rule to
336 UNSPECIFIED. */
337 if (reg < fs->initial.num_regs)
338 fs->regs.reg[reg] = fs->initial.reg[reg];
339 else
340 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
341
342 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
343 complaint (&symfile_complaints, _("\
344incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 345register %s (#%d) at %s"),
a6a5a945
LM
346 gdbarch_register_name
347 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
348 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 349 paddress (gdbarch, fs->pc));
a6a5a945
LM
350}
351
9e8b7a03
JK
352/* Virtual method table for execute_stack_op below. */
353
354static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
355{
b1370418 356 read_addr_from_reg,
0acf8b65 357 get_reg_value,
9e8b7a03 358 read_mem,
523f3620
JK
359 ctx_no_get_frame_base,
360 ctx_no_get_frame_cfa,
361 ctx_no_get_frame_pc,
362 ctx_no_get_tls_address,
363 ctx_no_dwarf_call,
8e3b41a9 364 ctx_no_get_base_type,
3019eac3
DE
365 ctx_no_push_dwarf_reg_entry_value,
366 ctx_no_get_addr_index
9e8b7a03
JK
367};
368
cfc14b3a 369static CORE_ADDR
0d45f56e 370execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
371 CORE_ADDR offset, struct frame_info *this_frame,
372 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
373{
374 struct dwarf_expr_context *ctx;
375 CORE_ADDR result;
4a227398 376 struct cleanup *old_chain;
cfc14b3a
MK
377
378 ctx = new_dwarf_expr_context ();
4a227398 379 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 380 make_cleanup_value_free_to_mark (value_mark ());
4a227398 381
f7fd4728 382 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 383 ctx->addr_size = addr_size;
181cebd4 384 ctx->ref_addr_size = -1;
ac56253d 385 ctx->offset = offset;
4a4e5149 386 ctx->baton = this_frame;
9e8b7a03 387 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 388
8a9b8146 389 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 390 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 391
f2c7657e
UW
392 if (ctx->location == DWARF_VALUE_MEMORY)
393 result = dwarf_expr_fetch_address (ctx, 0);
394 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
395 result = read_addr_from_reg (this_frame,
396 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 397 else
cec03d70
TT
398 {
399 /* This is actually invalid DWARF, but if we ever do run across
400 it somehow, we might as well support it. So, instead, report
401 it as unimplemented. */
3e43a32a
MS
402 error (_("\
403Not implemented: computing unwound register using explicit value operator"));
cec03d70 404 }
cfc14b3a 405
4a227398 406 do_cleanups (old_chain);
cfc14b3a
MK
407
408 return result;
409}
410\f
411
111c6489
JK
412/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
413 PC. Modify FS state accordingly. Return current INSN_PTR where the
414 execution has stopped, one can resume it on the next call. */
415
416static const gdb_byte *
0d45f56e 417execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
418 const gdb_byte *insn_end, struct gdbarch *gdbarch,
419 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 420{
ae0d2f24 421 int eh_frame_p = fde->eh_frame_p;
507a579c 422 unsigned int bytes_read;
e17a4113 423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
424
425 while (insn_ptr < insn_end && fs->pc <= pc)
426 {
852483bc 427 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
428 uint64_t utmp, reg;
429 int64_t offset;
cfc14b3a
MK
430
431 if ((insn & 0xc0) == DW_CFA_advance_loc)
432 fs->pc += (insn & 0x3f) * fs->code_align;
433 else if ((insn & 0xc0) == DW_CFA_offset)
434 {
435 reg = insn & 0x3f;
4fc771b8 436 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
438 offset = utmp * fs->data_align;
439 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
441 fs->regs.reg[reg].loc.offset = offset;
442 }
443 else if ((insn & 0xc0) == DW_CFA_restore)
444 {
cfc14b3a 445 reg = insn & 0x3f;
a6a5a945 446 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
447 }
448 else
449 {
450 switch (insn)
451 {
452 case DW_CFA_set_loc:
ae0d2f24 453 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 454 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
455 &bytes_read, fde->initial_location);
456 /* Apply the objfile offset for relocatable objects. */
457 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
458 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
459 insn_ptr += bytes_read;
460 break;
461
462 case DW_CFA_advance_loc1:
e17a4113 463 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
464 fs->pc += utmp * fs->code_align;
465 insn_ptr++;
466 break;
467 case DW_CFA_advance_loc2:
e17a4113 468 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 2;
471 break;
472 case DW_CFA_advance_loc4:
e17a4113 473 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 4;
476 break;
477
478 case DW_CFA_offset_extended:
f664829e 479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
482 offset = utmp * fs->data_align;
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 484 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
485 fs->regs.reg[reg].loc.offset = offset;
486 break;
487
488 case DW_CFA_restore_extended:
f664829e 489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 490 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
491 break;
492
493 case DW_CFA_undefined:
f664829e 494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
498 break;
499
500 case DW_CFA_same_value:
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 502 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
505 break;
506
507 case DW_CFA_register:
f664829e 508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 509 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 511 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
514 fs->regs.reg[reg].loc.reg = utmp;
515 break;
516
517 case DW_CFA_remember_state:
518 {
519 struct dwarf2_frame_state_reg_info *new_rs;
520
521 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
522 *new_rs = fs->regs;
523 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
524 fs->regs.prev = new_rs;
525 }
526 break;
527
528 case DW_CFA_restore_state:
529 {
530 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
531
50ea7769
MK
532 if (old_rs == NULL)
533 {
e2e0b3e5 534 complaint (&symfile_complaints, _("\
5af949e3
UW
535bad CFI data; mismatched DW_CFA_restore_state at %s"),
536 paddress (gdbarch, fs->pc));
50ea7769
MK
537 }
538 else
539 {
540 xfree (fs->regs.reg);
541 fs->regs = *old_rs;
542 xfree (old_rs);
543 }
cfc14b3a
MK
544 }
545 break;
546
547 case DW_CFA_def_cfa:
f664829e
DE
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.cfa_reg = reg;
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
2fd481e1
PP
555 fs->regs.cfa_offset = utmp;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
557 break;
558
559 case DW_CFA_def_cfa_register:
f664829e
DE
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
562 eh_frame_p);
563 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
564 break;
565
566 case DW_CFA_def_cfa_offset:
f664829e 567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
568
569 if (fs->armcc_cfa_offsets_sf)
570 utmp *= fs->data_align;
571
2fd481e1 572 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
573 /* cfa_how deliberately not set. */
574 break;
575
a8504492
MK
576 case DW_CFA_nop:
577 break;
578
cfc14b3a 579 case DW_CFA_def_cfa_expression:
f664829e
DE
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
581 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
582 fs->regs.cfa_exp = insn_ptr;
583 fs->regs.cfa_how = CFA_EXP;
584 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
585 break;
586
587 case DW_CFA_expression:
f664829e 588 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 589 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 590 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
592 fs->regs.reg[reg].loc.exp = insn_ptr;
593 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 594 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
595 insn_ptr += utmp;
596 break;
597
a8504492 598 case DW_CFA_offset_extended_sf:
f664829e 599 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 600 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 601 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 602 offset *= fs->data_align;
a8504492 603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
46ea248b 608 case DW_CFA_val_offset:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
612 offset = utmp * fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_offset_sf:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
621 offset *= fs->data_align;
622 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
623 fs->regs.reg[reg].loc.offset = offset;
624 break;
625
626 case DW_CFA_val_expression:
f664829e 627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 628 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
630 fs->regs.reg[reg].loc.exp = insn_ptr;
631 fs->regs.reg[reg].exp_len = utmp;
632 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
633 insn_ptr += utmp;
634 break;
635
a8504492 636 case DW_CFA_def_cfa_sf:
f664829e
DE
637 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
638 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 639 eh_frame_p);
f664829e 640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
f664829e 646 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 647 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 648 /* cfa_how deliberately not set. */
cfc14b3a
MK
649 break;
650
a77f4086
MK
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
4a4e5149 660 int size = register_size (gdbarch, 0);
9a619af0 661
a77f4086
MK
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
cfc14b3a
MK
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
f664829e 678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
679 break;
680
58894217 681 case DW_CFA_GNU_negative_offset_extended:
f664829e 682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
684 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
685 offset = utmp * fs->data_align;
58894217
JK
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
cfc14b3a 691 default:
3e43a32a
MS
692 internal_error (__FILE__, __LINE__,
693 _("Unknown CFI encountered."));
cfc14b3a
MK
694 }
695 }
696 }
697
111c6489
JK
698 if (fs->initial.reg == NULL)
699 {
700 /* Don't allow remember/restore between CIE and FDE programs. */
701 dwarf2_frame_state_free_regs (fs->regs.prev);
702 fs->regs.prev = NULL;
703 }
704
705 return insn_ptr;
cfc14b3a 706}
8f22cb90 707\f
cfc14b3a 708
8f22cb90 709/* Architecture-specific operations. */
cfc14b3a 710
8f22cb90
MK
711/* Per-architecture data key. */
712static struct gdbarch_data *dwarf2_frame_data;
713
714struct dwarf2_frame_ops
715{
716 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
717 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
718 struct frame_info *);
3ed09a32 719
4a4e5149 720 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 721 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 722
4fc771b8
DJ
723 /* Convert .eh_frame register number to DWARF register number, or
724 adjust .debug_frame register number. */
725 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
726};
727
8f22cb90
MK
728/* Default architecture-specific register state initialization
729 function. */
730
731static void
732dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 733 struct dwarf2_frame_state_reg *reg,
4a4e5149 734 struct frame_info *this_frame)
8f22cb90
MK
735{
736 /* If we have a register that acts as a program counter, mark it as
737 a destination for the return address. If we have a register that
738 serves as the stack pointer, arrange for it to be filled with the
739 call frame address (CFA). The other registers are marked as
740 unspecified.
741
742 We copy the return address to the program counter, since many
743 parts in GDB assume that it is possible to get the return address
744 by unwinding the program counter register. However, on ISA's
745 with a dedicated return address register, the CFI usually only
746 contains information to unwind that return address register.
747
748 The reason we're treating the stack pointer special here is
749 because in many cases GCC doesn't emit CFI for the stack pointer
750 and implicitly assumes that it is equal to the CFA. This makes
751 some sense since the DWARF specification (version 3, draft 8,
752 p. 102) says that:
753
754 "Typically, the CFA is defined to be the value of the stack
755 pointer at the call site in the previous frame (which may be
756 different from its value on entry to the current frame)."
757
758 However, this isn't true for all platforms supported by GCC
759 (e.g. IBM S/390 and zSeries). Those architectures should provide
760 their own architecture-specific initialization function. */
05cbe71a 761
ad010def 762 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 763 reg->how = DWARF2_FRAME_REG_RA;
ad010def 764 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
765 reg->how = DWARF2_FRAME_REG_CFA;
766}
05cbe71a 767
8f22cb90 768/* Return a default for the architecture-specific operations. */
05cbe71a 769
8f22cb90 770static void *
030f20e1 771dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
772{
773 struct dwarf2_frame_ops *ops;
774
030f20e1 775 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
776 ops->init_reg = dwarf2_frame_default_init_reg;
777 return ops;
778}
05cbe71a 779
8f22cb90
MK
780/* Set the architecture-specific register state initialization
781 function for GDBARCH to INIT_REG. */
782
783void
784dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
785 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
786 struct dwarf2_frame_state_reg *,
787 struct frame_info *))
8f22cb90 788{
030f20e1 789 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 790
8f22cb90
MK
791 ops->init_reg = init_reg;
792}
793
794/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
795
796static void
797dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 798 struct dwarf2_frame_state_reg *reg,
4a4e5149 799 struct frame_info *this_frame)
05cbe71a 800{
030f20e1 801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 802
4a4e5149 803 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 804}
3ed09a32
DJ
805
806/* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809void
810dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813{
814 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->signal_frame_p = signal_frame_p;
817}
818
819/* Query the architecture-specific signal frame recognizer for
4a4e5149 820 THIS_FRAME. */
3ed09a32
DJ
821
822static int
823dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 824 struct frame_info *this_frame)
3ed09a32
DJ
825{
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
4a4e5149 830 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 831}
4bf8967c 832
4fc771b8
DJ
833/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
4bf8967c
AS
835
836void
4fc771b8
DJ
837dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
4bf8967c
AS
840{
841 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
842
4fc771b8 843 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
844}
845
4fc771b8
DJ
846/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
847 register. */
4bf8967c 848
4fc771b8 849static int
3e43a32a
MS
850dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
851 int regnum, int eh_frame_p)
4bf8967c
AS
852{
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
4fc771b8 855 if (ops->adjust_regnum == NULL)
4bf8967c 856 return regnum;
4fc771b8 857 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 858}
303b6f5d
DJ
859
860static void
861dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
862 struct dwarf2_fde *fde)
863{
303b6f5d
DJ
864 struct symtab *s;
865
866 s = find_pc_symtab (fs->pc);
a6c727b2 867 if (s == NULL)
303b6f5d
DJ
868 return;
869
a6c727b2
DJ
870 if (producer_is_realview (s->producer))
871 {
872 if (fde->cie->version == 1)
873 fs->armcc_cfa_offsets_sf = 1;
874
875 if (fde->cie->version == 1)
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 /* The reversed offset problem is present in some compilers
879 using DWARF3, but it was eventually fixed. Check the ARM
880 defined augmentations, which are in the format "armcc" followed
881 by a list of one-character options. The "+" option means
882 this problem is fixed (no quirk needed). If the armcc
883 augmentation is missing, the quirk is needed. */
884 if (fde->cie->version == 3
885 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
886 || strchr (fde->cie->augmentation + 5, '+') == NULL))
887 fs->armcc_cfa_offsets_reversed = 1;
888
889 return;
890 }
303b6f5d 891}
8f22cb90
MK
892\f
893
9f6f94ff
TT
894void
895dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
896 struct gdbarch *gdbarch,
897 CORE_ADDR pc,
898 struct dwarf2_per_cu_data *data)
899{
9f6f94ff 900 struct dwarf2_fde *fde;
22e048c9 901 CORE_ADDR text_offset;
9f6f94ff
TT
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944 ax_reg (expr, regnum);
945
946 if (fs.regs.cfa_offset != 0)
947 {
948 if (fs.armcc_cfa_offsets_reversed)
949 ax_const_l (expr, -fs.regs.cfa_offset);
950 else
951 ax_const_l (expr, fs.regs.cfa_offset);
952 ax_simple (expr, aop_add);
953 }
954 }
955 break;
956
957 case CFA_EXP:
958 ax_const_l (expr, text_offset);
959 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
960 fs.regs.cfa_exp,
961 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
962 data);
963 break;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968}
969
970\f
8f22cb90
MK
971struct dwarf2_frame_cache
972{
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
8fbca658
PA
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
0228dfb9
DJ
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
8f22cb90
MK
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
989
990 /* Target address size in bytes. */
991 int addr_size;
ac56253d
TT
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
111c6489 995
1ec56e88
PA
996 /* True if we already checked whether this frame is the bottom frame
997 of a virtual tail call frame chain. */
998 int checked_tailcall_bottom;
999
111c6489
JK
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1ec56e88
PA
1006
1007 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1008 base to get the SP, to simulate the return address pushed on the
1009 stack. */
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p;
8f22cb90 1012};
05cbe71a 1013
78ac5f83
TT
1014/* A cleanup that sets a pointer to NULL. */
1015
1016static void
1017clear_pointer_cleanup (void *arg)
1018{
1019 void **ptr = arg;
1020
1021 *ptr = NULL;
1022}
1023
b9362cc7 1024static struct dwarf2_frame_cache *
4a4e5149 1025dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1026{
78ac5f83 1027 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1029 const int num_regs = gdbarch_num_regs (gdbarch)
1030 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1031 struct dwarf2_frame_cache *cache;
1032 struct dwarf2_frame_state *fs;
1033 struct dwarf2_fde *fde;
8fbca658 1034 volatile struct gdb_exception ex;
111c6489 1035 CORE_ADDR entry_pc;
111c6489 1036 const gdb_byte *instr;
cfc14b3a
MK
1037
1038 if (*this_cache)
1039 return *this_cache;
1040
1041 /* Allocate a new cache. */
1042 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1043 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1044 *this_cache = cache;
78ac5f83 1045 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1046
1047 /* Allocate and initialize the frame state. */
8fbca658 1048 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1049 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1050
1051 /* Unwind the PC.
1052
4a4e5149 1053 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1054 to abort), the compiler might optimize away the instruction at
4a4e5149 1055 its return address. As a result the return address will
cfc14b3a 1056 point at some random instruction, and the CFI for that
e4e9607c 1057 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1058 this problem by substracting 1 from the return address to get an
1059 address in the middle of a presumed call instruction (or the
1060 instruction in the associated delay slot). This should only be
1061 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1062 handlers, sentinel frames, dummy frames). The function
ad1193e7 1063 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1064 reliable the method is though; there is the potential for the
1065 register state pre-call being different to that on return. */
4a4e5149 1066 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1067
1068 /* Find the correct FDE. */
ac56253d 1069 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1070 gdb_assert (fde != NULL);
1071
1072 /* Extract any interesting information from the CIE. */
1073 fs->data_align = fde->cie->data_alignment_factor;
1074 fs->code_align = fde->cie->code_alignment_factor;
1075 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1076 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1077
303b6f5d
DJ
1078 /* Check for "quirks" - known bugs in producers. */
1079 dwarf2_frame_find_quirks (fs, fde);
1080
cfc14b3a 1081 /* First decode all the insns in the CIE. */
ae0d2f24 1082 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1083 fde->cie->end, gdbarch,
1084 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1085
1086 /* Save the initialized register set. */
1087 fs->initial = fs->regs;
1088 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1089
111c6489
JK
1090 if (get_frame_func_if_available (this_frame, &entry_pc))
1091 {
1092 /* Decode the insns in the FDE up to the entry PC. */
1093 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1094 entry_pc, fs);
1095
1096 if (fs->regs.cfa_how == CFA_REG_OFFSET
1097 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1098 == gdbarch_sp_regnum (gdbarch)))
1099 {
1ec56e88
PA
1100 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1101 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1102 }
1103 }
1104 else
1105 instr = fde->instructions;
1106
cfc14b3a 1107 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1108 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1109 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1110
8fbca658 1111 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1112 {
8fbca658
PA
1113 /* Calculate the CFA. */
1114 switch (fs->regs.cfa_how)
1115 {
1116 case CFA_REG_OFFSET:
b1370418 1117 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1118 if (fs->armcc_cfa_offsets_reversed)
1119 cache->cfa -= fs->regs.cfa_offset;
1120 else
1121 cache->cfa += fs->regs.cfa_offset;
1122 break;
1123
1124 case CFA_EXP:
1125 cache->cfa =
1126 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1127 cache->addr_size, cache->text_offset,
1128 this_frame, 0, 0);
1129 break;
1130
1131 default:
1132 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1133 }
1134 }
1135 if (ex.reason < 0)
1136 {
1137 if (ex.error == NOT_AVAILABLE_ERROR)
1138 {
1139 cache->unavailable_retaddr = 1;
5a1cf4d6 1140 do_cleanups (old_chain);
78ac5f83 1141 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1142 return cache;
1143 }
cfc14b3a 1144
8fbca658 1145 throw_exception (ex);
cfc14b3a
MK
1146 }
1147
05cbe71a 1148 /* Initialize the register state. */
3e2c4033
AC
1149 {
1150 int regnum;
e4e9607c 1151
3e2c4033 1152 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1153 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1154 }
1155
1156 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1157 location information in the cache. Note that we don't skip the
1158 return address column; it's perfectly all right for it to
1159 correspond to a real register. If it doesn't correspond to a
1160 real register, or if we shouldn't treat it as such,
055d23b8 1161 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1162 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1163 {
1164 int column; /* CFI speak for "register number". */
e4e9607c 1165
3e2c4033
AC
1166 for (column = 0; column < fs->regs.num_regs; column++)
1167 {
3e2c4033 1168 /* Use the GDB register number as the destination index. */
ad010def 1169 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1170
1171 /* If there's no corresponding GDB register, ignore it. */
1172 if (regnum < 0 || regnum >= num_regs)
1173 continue;
1174
1175 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1176 of all debug info registers. If it doesn't, complain (but
1177 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1178 unspecified register implies "same value" when CFI (draft
1179 7) specifies nothing at all. Such a register could equally
1180 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1181 isn't sufficient; it only checks that all registers in the
1182 range [0 .. max column] are specified, and won't detect
3e2c4033 1183 problems when a debug info register falls outside of the
e4e9607c 1184 table. We need a way of iterating through all the valid
3e2c4033 1185 DWARF2 register numbers. */
05cbe71a 1186 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1187 {
1188 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1189 complaint (&symfile_complaints, _("\
5af949e3 1190incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1191 gdbarch_register_name (gdbarch, regnum),
5af949e3 1192 paddress (gdbarch, fs->pc));
f059bf6f 1193 }
35889917
MK
1194 else
1195 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1196 }
1197 }
cfc14b3a 1198
8d5a9abc
MK
1199 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1200 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1201 {
1202 int regnum;
1203
1204 for (regnum = 0; regnum < num_regs; regnum++)
1205 {
8d5a9abc
MK
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1207 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1208 {
05cbe71a
MK
1209 struct dwarf2_frame_state_reg *retaddr_reg =
1210 &fs->regs.reg[fs->retaddr_column];
1211
d4f10bf2
MK
1212 /* It seems rather bizarre to specify an "empty" column as
1213 the return adress column. However, this is exactly
1214 what GCC does on some targets. It turns out that GCC
1215 assumes that the return address can be found in the
1216 register corresponding to the return address column.
8d5a9abc
MK
1217 Incidentally, that's how we should treat a return
1218 address column specifying "same value" too. */
d4f10bf2 1219 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1220 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1221 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1222 {
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 cache->reg[regnum] = *retaddr_reg;
1225 else
1226 cache->retaddr_reg = *retaddr_reg;
1227 }
35889917
MK
1228 else
1229 {
8d5a9abc
MK
1230 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1231 {
1232 cache->reg[regnum].loc.reg = fs->retaddr_column;
1233 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 else
1236 {
1237 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1238 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 }
35889917
MK
1240 }
1241 }
1242 }
1243 }
cfc14b3a 1244
0228dfb9
DJ
1245 if (fs->retaddr_column < fs->regs.num_regs
1246 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1247 cache->undefined_retaddr = 1;
da2b2fdf
TT
1248 else if (fs->retaddr_column >= fs->regs.num_regs
1249 || (fs->regs.reg[fs->retaddr_column].how
1250 == DWARF2_FRAME_REG_UNSPECIFIED))
1251 cache->undefined_retaddr = 1;
0228dfb9 1252
cfc14b3a 1253 do_cleanups (old_chain);
78ac5f83 1254 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1255 return cache;
1256}
1257
8fbca658
PA
1258static enum unwind_stop_reason
1259dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1260 void **this_cache)
1261{
1262 struct dwarf2_frame_cache *cache
1263 = dwarf2_frame_cache (this_frame, this_cache);
1264
1265 if (cache->unavailable_retaddr)
1266 return UNWIND_UNAVAILABLE;
1267
1268 if (cache->undefined_retaddr)
1269 return UNWIND_OUTERMOST;
1270
1271 return UNWIND_NO_REASON;
1272}
1273
cfc14b3a 1274static void
4a4e5149 1275dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1276 struct frame_id *this_id)
1277{
1278 struct dwarf2_frame_cache *cache =
4a4e5149 1279 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1280
8fbca658
PA
1281 if (cache->unavailable_retaddr)
1282 return;
1283
0228dfb9
DJ
1284 if (cache->undefined_retaddr)
1285 return;
1286
4a4e5149 1287 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1288}
1289
4a4e5149
DJ
1290static struct value *
1291dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1292 int regnum)
93d42b30 1293{
4a4e5149 1294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1295 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1296 dwarf2_frame_cache (this_frame, this_cache);
1297 CORE_ADDR addr;
1298 int realnum;
cfc14b3a 1299
1ec56e88
PA
1300 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1301 call frame chain. */
1302 if (!cache->checked_tailcall_bottom)
1303 {
1304 cache->checked_tailcall_bottom = 1;
1305 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1306 (cache->entry_cfa_sp_offset_p
1307 ? &cache->entry_cfa_sp_offset : NULL));
1308 }
1309
111c6489
JK
1310 /* Non-bottom frames of a virtual tail call frames chain use
1311 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1312 them. If dwarf2_tailcall_prev_register_first does not have specific value
1313 unwind the register, tail call frames are assumed to have the register set
1314 of the top caller. */
1315 if (cache->tailcall_cache)
1316 {
1317 struct value *val;
1318
1319 val = dwarf2_tailcall_prev_register_first (this_frame,
1320 &cache->tailcall_cache,
1321 regnum);
1322 if (val)
1323 return val;
1324 }
1325
cfc14b3a
MK
1326 switch (cache->reg[regnum].how)
1327 {
05cbe71a 1328 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1329 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1330 mark it as optimized away; the value isn't available. */
4a4e5149 1331 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1332
05cbe71a 1333 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1334 addr = cache->cfa + cache->reg[regnum].loc.offset;
1335 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1336
05cbe71a 1337 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1338 realnum
1339 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1340 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1341
05cbe71a 1342 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
ac56253d
TT
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
4a4e5149 1347 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1348
46ea248b 1349 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1350 addr = cache->cfa + cache->reg[regnum].loc.offset;
1351 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1352
1353 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1354 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1355 cache->reg[regnum].exp_len,
ac56253d
TT
1356 cache->addr_size, cache->text_offset,
1357 this_frame, cache->cfa, 1);
4a4e5149 1358 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1359
05cbe71a 1360 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1361 /* GCC, in its infinite wisdom decided to not provide unwind
1362 information for registers that are "same value". Since
1363 DWARF2 (3 draft 7) doesn't define such behavior, said
1364 registers are actually undefined (which is different to CFI
1365 "undefined"). Code above issues a complaint about this.
1366 Here just fudge the books, assume GCC, and that the value is
1367 more inner on the stack. */
4a4e5149 1368 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1369
05cbe71a 1370 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1371 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1372
05cbe71a 1373 case DWARF2_FRAME_REG_CFA:
4a4e5149 1374 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1375
ea7963f0 1376 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1377 addr = cache->cfa + cache->reg[regnum].loc.offset;
1378 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1379
8d5a9abc 1380 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1381 addr = cache->reg[regnum].loc.offset;
1382 regnum = gdbarch_dwarf2_reg_to_regnum
1383 (gdbarch, cache->retaddr_reg.loc.reg);
1384 addr += get_frame_register_unsigned (this_frame, regnum);
1385 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1386
b39cc962
DJ
1387 case DWARF2_FRAME_REG_FN:
1388 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1389
cfc14b3a 1390 default:
e2e0b3e5 1391 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1392 }
1393}
1394
111c6489
JK
1395/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1396 call frames chain. */
1397
1398static void
1399dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1400{
1401 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1402
1403 if (cache->tailcall_cache)
1404 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1405}
1406
4a4e5149
DJ
1407static int
1408dwarf2_frame_sniffer (const struct frame_unwind *self,
1409 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1410{
1ce5d6dd 1411 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1412 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1413 end up returning something past the end of this function's body.
1414 If the frame we're sniffing for is a signal frame whose start
1415 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1416 extend one byte before its start address or we could potentially
1417 select the FDE of the previous function. */
1418 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1419 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1420
56c987f6 1421 if (!fde)
4a4e5149 1422 return 0;
3ed09a32
DJ
1423
1424 /* On some targets, signal trampolines may have unwind information.
1425 We need to recognize them so that we set the frame type
1426 correctly. */
1427
56c987f6 1428 if (fde->cie->signal_frame
4a4e5149
DJ
1429 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1430 this_frame))
1431 return self->type == SIGTRAMP_FRAME;
1432
111c6489
JK
1433 if (self->type != NORMAL_FRAME)
1434 return 0;
1435
111c6489 1436 return 1;
4a4e5149
DJ
1437}
1438
1439static const struct frame_unwind dwarf2_frame_unwind =
1440{
1441 NORMAL_FRAME,
8fbca658 1442 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
111c6489
JK
1446 dwarf2_frame_sniffer,
1447 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1448};
1449
1450static const struct frame_unwind dwarf2_signal_frame_unwind =
1451{
1452 SIGTRAMP_FRAME,
8fbca658 1453 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1454 dwarf2_frame_this_id,
1455 dwarf2_frame_prev_register,
1456 NULL,
111c6489
JK
1457 dwarf2_frame_sniffer,
1458
1459 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1460 NULL
4a4e5149 1461};
cfc14b3a 1462
4a4e5149
DJ
1463/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1464
1465void
1466dwarf2_append_unwinders (struct gdbarch *gdbarch)
1467{
111c6489
JK
1468 /* TAILCALL_FRAME must be first to find the record by
1469 dwarf2_tailcall_sniffer_first. */
1470 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1471
4a4e5149
DJ
1472 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1473 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1474}
1475\f
1476
1477/* There is no explicitly defined relationship between the CFA and the
1478 location of frame's local variables and arguments/parameters.
1479 Therefore, frame base methods on this page should probably only be
1480 used as a last resort, just to avoid printing total garbage as a
1481 response to the "info frame" command. */
1482
1483static CORE_ADDR
4a4e5149 1484dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1485{
1486 struct dwarf2_frame_cache *cache =
4a4e5149 1487 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1488
1489 return cache->cfa;
1490}
1491
1492static const struct frame_base dwarf2_frame_base =
1493{
1494 &dwarf2_frame_unwind,
1495 dwarf2_frame_base_address,
1496 dwarf2_frame_base_address,
1497 dwarf2_frame_base_address
1498};
1499
1500const struct frame_base *
4a4e5149 1501dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1502{
4a4e5149 1503 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1504
ac56253d 1505 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1506 return &dwarf2_frame_base;
1507
1508 return NULL;
1509}
e7802207
TT
1510
1511/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1512 the DWARF unwinder. This is used to implement
1513 DW_OP_call_frame_cfa. */
1514
1515CORE_ADDR
1516dwarf2_frame_cfa (struct frame_info *this_frame)
1517{
1518 while (get_frame_type (this_frame) == INLINE_FRAME)
1519 this_frame = get_prev_frame (this_frame);
1520 /* This restriction could be lifted if other unwinders are known to
1521 compute the frame base in a way compatible with the DWARF
1522 unwinder. */
111c6489
JK
1523 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1524 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207 1525 error (_("can't compute CFA for this frame"));
c0bf857d
PA
1526 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1527 throw_error (NOT_AVAILABLE_ERROR,
1528 _("can't compute CFA for this frame: "
1529 "required registers or memory are unavailable"));
e7802207
TT
1530 return get_frame_base (this_frame);
1531}
cfc14b3a 1532\f
8f22cb90 1533const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1534
cfc14b3a 1535static unsigned int
f664829e 1536read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1537{
852483bc 1538 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1539}
1540
1541static unsigned int
f664829e 1542read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1543{
852483bc 1544 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1545}
1546
1547static ULONGEST
f664829e 1548read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1549{
852483bc 1550 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1551}
1552
1553static ULONGEST
f664829e
DE
1554read_initial_length (bfd *abfd, const gdb_byte *buf,
1555 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1556{
1557 LONGEST result;
1558
852483bc 1559 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1560 if (result == 0xffffffff)
1561 {
852483bc 1562 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1563 *bytes_read_ptr = 12;
1564 }
1565 else
1566 *bytes_read_ptr = 4;
1567
1568 return result;
1569}
1570\f
1571
1572/* Pointer encoding helper functions. */
1573
1574/* GCC supports exception handling based on DWARF2 CFI. However, for
1575 technical reasons, it encodes addresses in its FDE's in a different
1576 way. Several "pointer encodings" are supported. The encoding
1577 that's used for a particular FDE is determined by the 'R'
1578 augmentation in the associated CIE. The argument of this
1579 augmentation is a single byte.
1580
1581 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1582 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1583 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1584 address should be interpreted (absolute, relative to the current
1585 position in the FDE, ...). Bit 7, indicates that the address
1586 should be dereferenced. */
1587
852483bc 1588static gdb_byte
cfc14b3a
MK
1589encoding_for_size (unsigned int size)
1590{
1591 switch (size)
1592 {
1593 case 2:
1594 return DW_EH_PE_udata2;
1595 case 4:
1596 return DW_EH_PE_udata4;
1597 case 8:
1598 return DW_EH_PE_udata8;
1599 default:
e2e0b3e5 1600 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1601 }
1602}
1603
cfc14b3a 1604static CORE_ADDR
852483bc 1605read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1606 int ptr_len, const gdb_byte *buf,
1607 unsigned int *bytes_read_ptr,
ae0d2f24 1608 CORE_ADDR func_base)
cfc14b3a 1609{
68f6cf99 1610 ptrdiff_t offset;
cfc14b3a
MK
1611 CORE_ADDR base;
1612
1613 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1614 FDE's. */
1615 if (encoding & DW_EH_PE_indirect)
1616 internal_error (__FILE__, __LINE__,
e2e0b3e5 1617 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1618
68f6cf99
MK
1619 *bytes_read_ptr = 0;
1620
cfc14b3a
MK
1621 switch (encoding & 0x70)
1622 {
1623 case DW_EH_PE_absptr:
1624 base = 0;
1625 break;
1626 case DW_EH_PE_pcrel:
f2fec864 1627 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1628 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1629 break;
0912c7f2
MK
1630 case DW_EH_PE_datarel:
1631 base = unit->dbase;
1632 break;
0fd85043
CV
1633 case DW_EH_PE_textrel:
1634 base = unit->tbase;
1635 break;
03ac2a74 1636 case DW_EH_PE_funcrel:
ae0d2f24 1637 base = func_base;
03ac2a74 1638 break;
68f6cf99
MK
1639 case DW_EH_PE_aligned:
1640 base = 0;
852483bc 1641 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1642 if ((offset % ptr_len) != 0)
1643 {
1644 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1645 buf += *bytes_read_ptr;
1646 }
1647 break;
cfc14b3a 1648 default:
3e43a32a
MS
1649 internal_error (__FILE__, __LINE__,
1650 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1651 }
1652
b04de778 1653 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1654 {
1655 encoding |= encoding_for_size (ptr_len);
1656 if (bfd_get_sign_extend_vma (unit->abfd))
1657 encoding |= DW_EH_PE_signed;
1658 }
cfc14b3a
MK
1659
1660 switch (encoding & 0x0f)
1661 {
a81b10ae
MK
1662 case DW_EH_PE_uleb128:
1663 {
9fccedf7 1664 uint64_t value;
0d45f56e 1665 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1666
f664829e 1667 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1668 return base + value;
1669 }
cfc14b3a 1670 case DW_EH_PE_udata2:
68f6cf99 1671 *bytes_read_ptr += 2;
cfc14b3a
MK
1672 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_udata4:
68f6cf99 1674 *bytes_read_ptr += 4;
cfc14b3a
MK
1675 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1676 case DW_EH_PE_udata8:
68f6cf99 1677 *bytes_read_ptr += 8;
cfc14b3a 1678 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1679 case DW_EH_PE_sleb128:
1680 {
9fccedf7 1681 int64_t value;
0d45f56e 1682 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1683
f664829e 1684 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1685 return base + value;
1686 }
cfc14b3a 1687 case DW_EH_PE_sdata2:
68f6cf99 1688 *bytes_read_ptr += 2;
cfc14b3a
MK
1689 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1690 case DW_EH_PE_sdata4:
68f6cf99 1691 *bytes_read_ptr += 4;
cfc14b3a
MK
1692 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1693 case DW_EH_PE_sdata8:
68f6cf99 1694 *bytes_read_ptr += 8;
cfc14b3a
MK
1695 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1696 default:
3e43a32a
MS
1697 internal_error (__FILE__, __LINE__,
1698 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1699 }
1700}
1701\f
1702
b01c8410
PP
1703static int
1704bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1705{
b01c8410
PP
1706 ULONGEST cie_pointer = *(ULONGEST *) key;
1707 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1708
b01c8410
PP
1709 if (cie_pointer == cie->cie_pointer)
1710 return 0;
cfc14b3a 1711
b01c8410
PP
1712 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1713}
1714
1715/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1716static struct dwarf2_cie *
1717find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1718{
1719 struct dwarf2_cie **p_cie;
cfc14b3a 1720
65a97ab3
PP
1721 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1722 bsearch be non-NULL. */
1723 if (cie_table->entries == NULL)
1724 {
1725 gdb_assert (cie_table->num_entries == 0);
1726 return NULL;
1727 }
1728
b01c8410
PP
1729 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1730 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1731 if (p_cie != NULL)
1732 return *p_cie;
cfc14b3a
MK
1733 return NULL;
1734}
1735
b01c8410 1736/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1737static void
b01c8410 1738add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1739{
b01c8410
PP
1740 const int n = cie_table->num_entries;
1741
1742 gdb_assert (n < 1
1743 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1744
1745 cie_table->entries =
1746 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1747 cie_table->entries[n] = cie;
1748 cie_table->num_entries = n + 1;
1749}
1750
1751static int
1752bsearch_fde_cmp (const void *key, const void *element)
1753{
1754 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1755 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1756
b01c8410
PP
1757 if (seek_pc < fde->initial_location)
1758 return -1;
1759 if (seek_pc < fde->initial_location + fde->address_range)
1760 return 0;
1761 return 1;
cfc14b3a
MK
1762}
1763
1764/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1765 inital location associated with it into *PC. */
1766
1767static struct dwarf2_fde *
ac56253d 1768dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1769{
1770 struct objfile *objfile;
1771
1772 ALL_OBJFILES (objfile)
1773 {
b01c8410
PP
1774 struct dwarf2_fde_table *fde_table;
1775 struct dwarf2_fde **p_fde;
cfc14b3a 1776 CORE_ADDR offset;
b01c8410 1777 CORE_ADDR seek_pc;
cfc14b3a 1778
b01c8410
PP
1779 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1780 if (fde_table == NULL)
be391dca
TT
1781 {
1782 dwarf2_build_frame_info (objfile);
1783 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1784 }
1785 gdb_assert (fde_table != NULL);
1786
1787 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1788 continue;
1789
1790 gdb_assert (objfile->section_offsets);
1791 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1792
b01c8410
PP
1793 gdb_assert (fde_table->num_entries > 0);
1794 if (*pc < offset + fde_table->entries[0]->initial_location)
1795 continue;
1796
1797 seek_pc = *pc - offset;
1798 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1799 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1800 if (p_fde != NULL)
1801 {
1802 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1803 if (out_offset)
1804 *out_offset = offset;
b01c8410
PP
1805 return *p_fde;
1806 }
cfc14b3a 1807 }
cfc14b3a
MK
1808 return NULL;
1809}
1810
b01c8410 1811/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1812static void
b01c8410 1813add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1814{
b01c8410
PP
1815 if (fde->address_range == 0)
1816 /* Discard useless FDEs. */
1817 return;
1818
1819 fde_table->num_entries += 1;
1820 fde_table->entries =
1821 xrealloc (fde_table->entries,
1822 fde_table->num_entries * sizeof (fde_table->entries[0]));
1823 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1824}
1825
cfc14b3a 1826#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1827
8bd90839
FM
1828/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1829 or any of them. */
1830
1831enum eh_frame_type
1832{
1833 EH_CIE_TYPE_ID = 1 << 0,
1834 EH_FDE_TYPE_ID = 1 << 1,
1835 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1836};
1837
f664829e
DE
1838static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1839 const gdb_byte *start,
1840 int eh_frame_p,
1841 struct dwarf2_cie_table *cie_table,
1842 struct dwarf2_fde_table *fde_table,
1843 enum eh_frame_type entry_type);
8bd90839
FM
1844
1845/* Decode the next CIE or FDE, entry_type specifies the expected type.
1846 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1847
f664829e
DE
1848static const gdb_byte *
1849decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1850 int eh_frame_p,
b01c8410 1851 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1852 struct dwarf2_fde_table *fde_table,
1853 enum eh_frame_type entry_type)
cfc14b3a 1854{
5e2b427d 1855 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1856 const gdb_byte *buf, *end;
cfc14b3a
MK
1857 LONGEST length;
1858 unsigned int bytes_read;
6896c0c7
RH
1859 int dwarf64_p;
1860 ULONGEST cie_id;
cfc14b3a 1861 ULONGEST cie_pointer;
9fccedf7
DE
1862 int64_t sleb128;
1863 uint64_t uleb128;
cfc14b3a 1864
6896c0c7 1865 buf = start;
cfc14b3a
MK
1866 length = read_initial_length (unit->abfd, buf, &bytes_read);
1867 buf += bytes_read;
1868 end = buf + length;
1869
0963b4bd 1870 /* Are we still within the section? */
6896c0c7
RH
1871 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1872 return NULL;
1873
cfc14b3a
MK
1874 if (length == 0)
1875 return end;
1876
6896c0c7
RH
1877 /* Distinguish between 32 and 64-bit encoded frame info. */
1878 dwarf64_p = (bytes_read == 12);
cfc14b3a 1879
6896c0c7 1880 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1881 if (eh_frame_p)
1882 cie_id = 0;
1883 else if (dwarf64_p)
1884 cie_id = DW64_CIE_ID;
6896c0c7
RH
1885 else
1886 cie_id = DW_CIE_ID;
cfc14b3a
MK
1887
1888 if (dwarf64_p)
1889 {
1890 cie_pointer = read_8_bytes (unit->abfd, buf);
1891 buf += 8;
1892 }
1893 else
1894 {
1895 cie_pointer = read_4_bytes (unit->abfd, buf);
1896 buf += 4;
1897 }
1898
1899 if (cie_pointer == cie_id)
1900 {
1901 /* This is a CIE. */
1902 struct dwarf2_cie *cie;
1903 char *augmentation;
28ba0b33 1904 unsigned int cie_version;
cfc14b3a 1905
8bd90839
FM
1906 /* Check that a CIE was expected. */
1907 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1908 error (_("Found a CIE when not expecting it."));
1909
cfc14b3a
MK
1910 /* Record the offset into the .debug_frame section of this CIE. */
1911 cie_pointer = start - unit->dwarf_frame_buffer;
1912
1913 /* Check whether we've already read it. */
b01c8410 1914 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1915 return end;
1916
1917 cie = (struct dwarf2_cie *)
8b92e4d5 1918 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1919 sizeof (struct dwarf2_cie));
1920 cie->initial_instructions = NULL;
1921 cie->cie_pointer = cie_pointer;
1922
1923 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1924 depends on the target address size. */
1925 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1926
56c987f6
AO
1927 /* We'll determine the final value later, but we need to
1928 initialize it conservatively. */
1929 cie->signal_frame = 0;
1930
cfc14b3a 1931 /* Check version number. */
28ba0b33 1932 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1933 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1934 return NULL;
303b6f5d 1935 cie->version = cie_version;
cfc14b3a
MK
1936 buf += 1;
1937
1938 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1939 cie->augmentation = augmentation = (char *) buf;
852483bc 1940 buf += (strlen (augmentation) + 1);
cfc14b3a 1941
303b6f5d
DJ
1942 /* Ignore armcc augmentations. We only use them for quirks,
1943 and that doesn't happen until later. */
1944 if (strncmp (augmentation, "armcc", 5) == 0)
1945 augmentation += strlen (augmentation);
1946
cfc14b3a
MK
1947 /* The GCC 2.x "eh" augmentation has a pointer immediately
1948 following the augmentation string, so it must be handled
1949 first. */
1950 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1951 {
1952 /* Skip. */
5e2b427d 1953 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1954 augmentation += 2;
1955 }
1956
2dc7f7b3
TT
1957 if (cie->version >= 4)
1958 {
1959 /* FIXME: check that this is the same as from the CU header. */
1960 cie->addr_size = read_1_byte (unit->abfd, buf);
1961 ++buf;
1962 cie->segment_size = read_1_byte (unit->abfd, buf);
1963 ++buf;
1964 }
1965 else
1966 {
8da614df 1967 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1968 cie->segment_size = 0;
1969 }
8da614df
CV
1970 /* Address values in .eh_frame sections are defined to have the
1971 target's pointer size. Watchout: This breaks frame info for
1972 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1973 section exists as well. */
8da614df
CV
1974 if (eh_frame_p)
1975 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1976 else
1977 cie->ptr_size = cie->addr_size;
2dc7f7b3 1978
f664829e
DE
1979 buf = gdb_read_uleb128 (buf, end, &uleb128);
1980 if (buf == NULL)
1981 return NULL;
1982 cie->code_alignment_factor = uleb128;
cfc14b3a 1983
f664829e
DE
1984 buf = gdb_read_sleb128 (buf, end, &sleb128);
1985 if (buf == NULL)
1986 return NULL;
1987 cie->data_alignment_factor = sleb128;
cfc14b3a 1988
28ba0b33
PB
1989 if (cie_version == 1)
1990 {
1991 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1992 ++buf;
28ba0b33
PB
1993 }
1994 else
f664829e
DE
1995 {
1996 buf = gdb_read_uleb128 (buf, end, &uleb128);
1997 if (buf == NULL)
1998 return NULL;
1999 cie->return_address_register = uleb128;
2000 }
2001
4fc771b8 2002 cie->return_address_register
5e2b427d 2003 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
2004 cie->return_address_register,
2005 eh_frame_p);
4bf8967c 2006
7131cb6e
RH
2007 cie->saw_z_augmentation = (*augmentation == 'z');
2008 if (cie->saw_z_augmentation)
cfc14b3a 2009 {
9fccedf7 2010 uint64_t length;
cfc14b3a 2011
f664829e
DE
2012 buf = gdb_read_uleb128 (buf, end, &length);
2013 if (buf == NULL)
6896c0c7 2014 return NULL;
cfc14b3a
MK
2015 cie->initial_instructions = buf + length;
2016 augmentation++;
2017 }
2018
2019 while (*augmentation)
2020 {
2021 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2022 if (*augmentation == 'L')
2023 {
2024 /* Skip. */
2025 buf++;
2026 augmentation++;
2027 }
2028
2029 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2030 else if (*augmentation == 'R')
2031 {
2032 cie->encoding = *buf++;
2033 augmentation++;
2034 }
2035
2036 /* "P" indicates a personality routine in the CIE augmentation. */
2037 else if (*augmentation == 'P')
2038 {
1234d960 2039 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2040 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2041 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2042 buf, &bytes_read, 0);
f724bf08 2043 buf += bytes_read;
cfc14b3a
MK
2044 augmentation++;
2045 }
2046
56c987f6
AO
2047 /* "S" indicates a signal frame, such that the return
2048 address must not be decremented to locate the call frame
2049 info for the previous frame; it might even be the first
2050 instruction of a function, so decrementing it would take
2051 us to a different function. */
2052 else if (*augmentation == 'S')
2053 {
2054 cie->signal_frame = 1;
2055 augmentation++;
2056 }
2057
3e9a2e52
DJ
2058 /* Otherwise we have an unknown augmentation. Assume that either
2059 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2060 else
2061 {
3e9a2e52
DJ
2062 if (cie->initial_instructions)
2063 buf = cie->initial_instructions;
cfc14b3a
MK
2064 break;
2065 }
2066 }
2067
2068 cie->initial_instructions = buf;
2069 cie->end = end;
b01c8410 2070 cie->unit = unit;
cfc14b3a 2071
b01c8410 2072 add_cie (cie_table, cie);
cfc14b3a
MK
2073 }
2074 else
2075 {
2076 /* This is a FDE. */
2077 struct dwarf2_fde *fde;
2078
8bd90839
FM
2079 /* Check that an FDE was expected. */
2080 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2081 error (_("Found an FDE when not expecting it."));
2082
6896c0c7
RH
2083 /* In an .eh_frame section, the CIE pointer is the delta between the
2084 address within the FDE where the CIE pointer is stored and the
2085 address of the CIE. Convert it to an offset into the .eh_frame
2086 section. */
cfc14b3a
MK
2087 if (eh_frame_p)
2088 {
cfc14b3a
MK
2089 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2090 cie_pointer -= (dwarf64_p ? 8 : 4);
2091 }
2092
6896c0c7
RH
2093 /* In either case, validate the result is still within the section. */
2094 if (cie_pointer >= unit->dwarf_frame_size)
2095 return NULL;
2096
cfc14b3a 2097 fde = (struct dwarf2_fde *)
8b92e4d5 2098 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2099 sizeof (struct dwarf2_fde));
b01c8410 2100 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2101 if (fde->cie == NULL)
2102 {
2103 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2104 eh_frame_p, cie_table, fde_table,
2105 EH_CIE_TYPE_ID);
b01c8410 2106 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2107 }
2108
2109 gdb_assert (fde->cie != NULL);
2110
2111 fde->initial_location =
8da614df 2112 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2113 buf, &bytes_read, 0);
cfc14b3a
MK
2114 buf += bytes_read;
2115
2116 fde->address_range =
ae0d2f24 2117 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2118 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2119 buf += bytes_read;
2120
7131cb6e
RH
2121 /* A 'z' augmentation in the CIE implies the presence of an
2122 augmentation field in the FDE as well. The only thing known
2123 to be in here at present is the LSDA entry for EH. So we
2124 can skip the whole thing. */
2125 if (fde->cie->saw_z_augmentation)
2126 {
9fccedf7 2127 uint64_t length;
7131cb6e 2128
f664829e
DE
2129 buf = gdb_read_uleb128 (buf, end, &length);
2130 if (buf == NULL)
2131 return NULL;
2132 buf += length;
6896c0c7
RH
2133 if (buf > end)
2134 return NULL;
7131cb6e
RH
2135 }
2136
cfc14b3a
MK
2137 fde->instructions = buf;
2138 fde->end = end;
2139
4bf8967c
AS
2140 fde->eh_frame_p = eh_frame_p;
2141
b01c8410 2142 add_fde (fde_table, fde);
cfc14b3a
MK
2143 }
2144
2145 return end;
2146}
6896c0c7 2147
8bd90839
FM
2148/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2149 expect an FDE or a CIE. */
2150
f664829e
DE
2151static const gdb_byte *
2152decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2153 int eh_frame_p,
b01c8410 2154 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2155 struct dwarf2_fde_table *fde_table,
2156 enum eh_frame_type entry_type)
6896c0c7
RH
2157{
2158 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2159 const gdb_byte *ret;
6896c0c7
RH
2160 ptrdiff_t start_offset;
2161
2162 while (1)
2163 {
b01c8410 2164 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2165 cie_table, fde_table, entry_type);
6896c0c7
RH
2166 if (ret != NULL)
2167 break;
2168
2169 /* We have corrupt input data of some form. */
2170
2171 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2172 and mismatches wrt padding and alignment of debug sections. */
2173 /* Note that there is no requirement in the standard for any
2174 alignment at all in the frame unwind sections. Testing for
2175 alignment before trying to interpret data would be incorrect.
2176
2177 However, GCC traditionally arranged for frame sections to be
2178 sized such that the FDE length and CIE fields happen to be
2179 aligned (in theory, for performance). This, unfortunately,
2180 was done with .align directives, which had the side effect of
2181 forcing the section to be aligned by the linker.
2182
2183 This becomes a problem when you have some other producer that
2184 creates frame sections that are not as strictly aligned. That
2185 produces a hole in the frame info that gets filled by the
2186 linker with zeros.
2187
2188 The GCC behaviour is arguably a bug, but it's effectively now
2189 part of the ABI, so we're now stuck with it, at least at the
2190 object file level. A smart linker may decide, in the process
2191 of compressing duplicate CIE information, that it can rewrite
2192 the entire output section without this extra padding. */
2193
2194 start_offset = start - unit->dwarf_frame_buffer;
2195 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2196 {
2197 start += 4 - (start_offset & 3);
2198 workaround = ALIGN4;
2199 continue;
2200 }
2201 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2202 {
2203 start += 8 - (start_offset & 7);
2204 workaround = ALIGN8;
2205 continue;
2206 }
2207
2208 /* Nothing left to try. Arrange to return as if we've consumed
2209 the entire input section. Hopefully we'll get valid info from
2210 the other of .debug_frame/.eh_frame. */
2211 workaround = FAIL;
2212 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2213 break;
2214 }
2215
2216 switch (workaround)
2217 {
2218 case NONE:
2219 break;
2220
2221 case ALIGN4:
3e43a32a
MS
2222 complaint (&symfile_complaints, _("\
2223Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2224 unit->dwarf_frame_section->owner->filename,
2225 unit->dwarf_frame_section->name);
2226 break;
2227
2228 case ALIGN8:
3e43a32a
MS
2229 complaint (&symfile_complaints, _("\
2230Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2231 unit->dwarf_frame_section->owner->filename,
2232 unit->dwarf_frame_section->name);
2233 break;
2234
2235 default:
2236 complaint (&symfile_complaints,
e2e0b3e5 2237 _("Corrupt data in %s:%s"),
6896c0c7
RH
2238 unit->dwarf_frame_section->owner->filename,
2239 unit->dwarf_frame_section->name);
2240 break;
2241 }
2242
2243 return ret;
2244}
cfc14b3a 2245\f
b01c8410
PP
2246static int
2247qsort_fde_cmp (const void *a, const void *b)
2248{
2249 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2250 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2251
b01c8410 2252 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2253 {
2254 if (aa->address_range != bb->address_range
2255 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2256 /* Linker bug, e.g. gold/10400.
2257 Work around it by keeping stable sort order. */
2258 return (a < b) ? -1 : 1;
2259 else
2260 /* Put eh_frame entries after debug_frame ones. */
2261 return aa->eh_frame_p - bb->eh_frame_p;
2262 }
b01c8410
PP
2263
2264 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2265}
2266
cfc14b3a
MK
2267void
2268dwarf2_build_frame_info (struct objfile *objfile)
2269{
ae0d2f24 2270 struct comp_unit *unit;
f664829e 2271 const gdb_byte *frame_ptr;
b01c8410
PP
2272 struct dwarf2_cie_table cie_table;
2273 struct dwarf2_fde_table fde_table;
be391dca 2274 struct dwarf2_fde_table *fde_table2;
8bd90839 2275 volatile struct gdb_exception e;
b01c8410
PP
2276
2277 cie_table.num_entries = 0;
2278 cie_table.entries = NULL;
2279
2280 fde_table.num_entries = 0;
2281 fde_table.entries = NULL;
cfc14b3a
MK
2282
2283 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2284 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2285 sizeof (struct comp_unit));
2286 unit->abfd = objfile->obfd;
2287 unit->objfile = objfile;
2288 unit->dbase = 0;
2289 unit->tbase = 0;
cfc14b3a 2290
d40102a1 2291 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2292 {
d40102a1
JB
2293 /* Do not read .eh_frame from separate file as they must be also
2294 present in the main file. */
2295 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2296 &unit->dwarf_frame_section,
2297 &unit->dwarf_frame_buffer,
2298 &unit->dwarf_frame_size);
2299 if (unit->dwarf_frame_size)
b01c8410 2300 {
d40102a1
JB
2301 asection *got, *txt;
2302
2303 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2304 that is used for the i386/amd64 target, which currently is
2305 the only target in GCC that supports/uses the
2306 DW_EH_PE_datarel encoding. */
2307 got = bfd_get_section_by_name (unit->abfd, ".got");
2308 if (got)
2309 unit->dbase = got->vma;
2310
2311 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2312 so far. */
2313 txt = bfd_get_section_by_name (unit->abfd, ".text");
2314 if (txt)
2315 unit->tbase = txt->vma;
2316
8bd90839
FM
2317 TRY_CATCH (e, RETURN_MASK_ERROR)
2318 {
2319 frame_ptr = unit->dwarf_frame_buffer;
2320 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2321 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2322 &cie_table, &fde_table,
2323 EH_CIE_OR_FDE_TYPE_ID);
2324 }
2325
2326 if (e.reason < 0)
2327 {
2328 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2329 objfile_name (objfile), e.message);
8bd90839
FM
2330
2331 if (fde_table.num_entries != 0)
2332 {
2333 xfree (fde_table.entries);
2334 fde_table.entries = NULL;
2335 fde_table.num_entries = 0;
2336 }
2337 /* The cie_table is discarded by the next if. */
2338 }
d40102a1
JB
2339
2340 if (cie_table.num_entries != 0)
2341 {
2342 /* Reinit cie_table: debug_frame has different CIEs. */
2343 xfree (cie_table.entries);
2344 cie_table.num_entries = 0;
2345 cie_table.entries = NULL;
2346 }
b01c8410 2347 }
cfc14b3a
MK
2348 }
2349
3017a003 2350 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2351 &unit->dwarf_frame_section,
2352 &unit->dwarf_frame_buffer,
2353 &unit->dwarf_frame_size);
2354 if (unit->dwarf_frame_size)
cfc14b3a 2355 {
8bd90839
FM
2356 int num_old_fde_entries = fde_table.num_entries;
2357
2358 TRY_CATCH (e, RETURN_MASK_ERROR)
2359 {
2360 frame_ptr = unit->dwarf_frame_buffer;
2361 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2362 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2363 &cie_table, &fde_table,
2364 EH_CIE_OR_FDE_TYPE_ID);
2365 }
2366 if (e.reason < 0)
2367 {
2368 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2369 objfile_name (objfile), e.message);
8bd90839
FM
2370
2371 if (fde_table.num_entries != 0)
2372 {
2373 fde_table.num_entries = num_old_fde_entries;
2374 if (num_old_fde_entries == 0)
2375 {
2376 xfree (fde_table.entries);
2377 fde_table.entries = NULL;
2378 }
2379 else
2380 {
2381 fde_table.entries = xrealloc (fde_table.entries,
2382 fde_table.num_entries *
2383 sizeof (fde_table.entries[0]));
2384 }
2385 }
2386 fde_table.num_entries = num_old_fde_entries;
2387 /* The cie_table is discarded by the next if. */
2388 }
b01c8410
PP
2389 }
2390
2391 /* Discard the cie_table, it is no longer needed. */
2392 if (cie_table.num_entries != 0)
2393 {
2394 xfree (cie_table.entries);
2395 cie_table.entries = NULL; /* Paranoia. */
2396 cie_table.num_entries = 0; /* Paranoia. */
2397 }
2398
be391dca
TT
2399 /* Copy fde_table to obstack: it is needed at runtime. */
2400 fde_table2 = (struct dwarf2_fde_table *)
2401 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2402
2403 if (fde_table.num_entries == 0)
2404 {
2405 fde_table2->entries = NULL;
2406 fde_table2->num_entries = 0;
2407 }
2408 else
b01c8410 2409 {
875cdfbb
PA
2410 struct dwarf2_fde *fde_prev = NULL;
2411 struct dwarf2_fde *first_non_zero_fde = NULL;
2412 int i;
b01c8410
PP
2413
2414 /* Prepare FDE table for lookups. */
2415 qsort (fde_table.entries, fde_table.num_entries,
2416 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2417
875cdfbb
PA
2418 /* Check for leftovers from --gc-sections. The GNU linker sets
2419 the relevant symbols to zero, but doesn't zero the FDE *end*
2420 ranges because there's no relocation there. It's (offset,
2421 length), not (start, end). On targets where address zero is
2422 just another valid address this can be a problem, since the
2423 FDEs appear to be non-empty in the output --- we could pick
2424 out the wrong FDE. To work around this, when overlaps are
2425 detected, we prefer FDEs that do not start at zero.
2426
2427 Start by finding the first FDE with non-zero start. Below
2428 we'll discard all FDEs that start at zero and overlap this
2429 one. */
2430 for (i = 0; i < fde_table.num_entries; i++)
2431 {
2432 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2433
875cdfbb
PA
2434 if (fde->initial_location != 0)
2435 {
2436 first_non_zero_fde = fde;
2437 break;
2438 }
2439 }
2440
2441 /* Since we'll be doing bsearch, squeeze out identical (except
2442 for eh_frame_p) fde entries so bsearch result is predictable.
2443 Also discard leftovers from --gc-sections. */
be391dca 2444 fde_table2->num_entries = 0;
875cdfbb
PA
2445 for (i = 0; i < fde_table.num_entries; i++)
2446 {
2447 struct dwarf2_fde *fde = fde_table.entries[i];
2448
2449 if (fde->initial_location == 0
2450 && first_non_zero_fde != NULL
2451 && (first_non_zero_fde->initial_location
2452 < fde->initial_location + fde->address_range))
2453 continue;
2454
2455 if (fde_prev != NULL
2456 && fde_prev->initial_location == fde->initial_location)
2457 continue;
2458
2459 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2460 sizeof (fde_table.entries[0]));
2461 ++fde_table2->num_entries;
2462 fde_prev = fde;
2463 }
b01c8410 2464 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2465
2466 /* Discard the original fde_table. */
2467 xfree (fde_table.entries);
cfc14b3a 2468 }
be391dca
TT
2469
2470 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2471}
0d0e1a63
MK
2472
2473/* Provide a prototype to silence -Wmissing-prototypes. */
2474void _initialize_dwarf2_frame (void);
2475
2476void
2477_initialize_dwarf2_frame (void)
2478{
030f20e1 2479 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2480 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2481}
This page took 0.966639 seconds and 4 git commands to generate.