* dwarf2loc.c (dwarf_expr_frame_base): Constify.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
4c38e0a4 3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010
0fb0cc75 4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
fa8f86ff 25#include "dwarf2.h"
cfc14b3a
MK
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
852483bc
MK
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
7131cb6e
RH
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
56c987f6
AO
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
303b6f5d
DJ
86 /* The version recorded in the CIE. */
87 unsigned char version;
2dc7f7b3
TT
88
89 /* The segment size. */
90 unsigned char segment_size;
b01c8410 91};
303b6f5d 92
b01c8410
PP
93struct dwarf2_cie_table
94{
95 int num_entries;
96 struct dwarf2_cie **entries;
cfc14b3a
MK
97};
98
99/* Frame Description Entry (FDE). */
100
101struct dwarf2_fde
102{
103 /* CIE for this FDE. */
104 struct dwarf2_cie *cie;
105
106 /* First location associated with this FDE. */
107 CORE_ADDR initial_location;
108
109 /* Number of bytes of program instructions described by this FDE. */
110 CORE_ADDR address_range;
111
112 /* Instruction sequence. */
852483bc
MK
113 gdb_byte *instructions;
114 gdb_byte *end;
cfc14b3a 115
4bf8967c
AS
116 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
117 section. */
118 unsigned char eh_frame_p;
b01c8410 119};
4bf8967c 120
b01c8410
PP
121struct dwarf2_fde_table
122{
123 int num_entries;
124 struct dwarf2_fde **entries;
cfc14b3a
MK
125};
126
ae0d2f24
UW
127/* A minimal decoding of DWARF2 compilation units. We only decode
128 what's needed to get to the call frame information. */
129
130struct comp_unit
131{
132 /* Keep the bfd convenient. */
133 bfd *abfd;
134
135 struct objfile *objfile;
136
ae0d2f24
UW
137 /* Pointer to the .debug_frame section loaded into memory. */
138 gdb_byte *dwarf_frame_buffer;
139
140 /* Length of the loaded .debug_frame section. */
c098b58b 141 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
142
143 /* Pointer to the .debug_frame section. */
144 asection *dwarf_frame_section;
145
146 /* Base for DW_EH_PE_datarel encodings. */
147 bfd_vma dbase;
148
149 /* Base for DW_EH_PE_textrel encodings. */
150 bfd_vma tbase;
151};
152
cfc14b3a 153static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
4fc771b8
DJ
154
155static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
156 int eh_frame_p);
ae0d2f24
UW
157
158static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 159 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
160 unsigned int *bytes_read_ptr,
161 CORE_ADDR func_base);
cfc14b3a
MK
162\f
163
164/* Structure describing a frame state. */
165
166struct dwarf2_frame_state
167{
168 /* Each register save state can be described in terms of a CFA slot,
169 another register, or a location expression. */
170 struct dwarf2_frame_state_reg_info
171 {
05cbe71a 172 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
173 int num_regs;
174
2fd481e1
PP
175 LONGEST cfa_offset;
176 ULONGEST cfa_reg;
177 enum {
178 CFA_UNSET,
179 CFA_REG_OFFSET,
180 CFA_EXP
181 } cfa_how;
0d45f56e 182 const gdb_byte *cfa_exp;
2fd481e1 183
cfc14b3a
MK
184 /* Used to implement DW_CFA_remember_state. */
185 struct dwarf2_frame_state_reg_info *prev;
186 } regs;
187
cfc14b3a
MK
188 /* The PC described by the current frame state. */
189 CORE_ADDR pc;
190
191 /* Initial register set from the CIE.
192 Used to implement DW_CFA_restore. */
193 struct dwarf2_frame_state_reg_info initial;
194
195 /* The information we care about from the CIE. */
196 LONGEST data_align;
197 ULONGEST code_align;
198 ULONGEST retaddr_column;
303b6f5d
DJ
199
200 /* Flags for known producer quirks. */
201
202 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
203 and DW_CFA_def_cfa_offset takes a factored offset. */
204 int armcc_cfa_offsets_sf;
205
206 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
207 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
208 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
209};
210
211/* Store the length the expression for the CFA in the `cfa_reg' field,
212 which is unused in that case. */
213#define cfa_exp_len cfa_reg
214
f57d151a 215/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
216 columns. If necessary, enlarge the register set. */
217
218static void
219dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
220 int num_regs)
221{
222 size_t size = sizeof (struct dwarf2_frame_state_reg);
223
224 if (num_regs <= rs->num_regs)
225 return;
226
227 rs->reg = (struct dwarf2_frame_state_reg *)
228 xrealloc (rs->reg, num_regs * size);
229
230 /* Initialize newly allocated registers. */
2473a4a9 231 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
232 rs->num_regs = num_regs;
233}
234
235/* Copy the register columns in register set RS into newly allocated
236 memory and return a pointer to this newly created copy. */
237
238static struct dwarf2_frame_state_reg *
239dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
240{
d10891d4 241 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
242 struct dwarf2_frame_state_reg *reg;
243
244 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
245 memcpy (reg, rs->reg, size);
246
247 return reg;
248}
249
250/* Release the memory allocated to register set RS. */
251
252static void
253dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
254{
255 if (rs)
256 {
257 dwarf2_frame_state_free_regs (rs->prev);
258
259 xfree (rs->reg);
260 xfree (rs);
261 }
262}
263
264/* Release the memory allocated to the frame state FS. */
265
266static void
267dwarf2_frame_state_free (void *p)
268{
269 struct dwarf2_frame_state *fs = p;
270
271 dwarf2_frame_state_free_regs (fs->initial.prev);
272 dwarf2_frame_state_free_regs (fs->regs.prev);
273 xfree (fs->initial.reg);
274 xfree (fs->regs.reg);
275 xfree (fs);
276}
277\f
278
279/* Helper functions for execute_stack_op. */
280
281static CORE_ADDR
282read_reg (void *baton, int reg)
283{
4a4e5149
DJ
284 struct frame_info *this_frame = (struct frame_info *) baton;
285 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 286 int regnum;
852483bc 287 gdb_byte *buf;
cfc14b3a 288
ad010def 289 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 290
852483bc 291 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 292 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
293
294 /* Convert the register to an integer. This returns a LONGEST
295 rather than a CORE_ADDR, but unpack_pointer does the same thing
296 under the covers, and this makes more sense for non-pointer
297 registers. Maybe read_reg and the associated interfaces should
298 deal with "struct value" instead of CORE_ADDR. */
299 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
300}
301
302static void
852483bc 303read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
304{
305 read_memory (addr, buf, len);
306}
307
308static void
0d45f56e 309no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
cfc14b3a
MK
310{
311 internal_error (__FILE__, __LINE__,
e2e0b3e5 312 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
313}
314
e7802207
TT
315/* Helper function for execute_stack_op. */
316
317static CORE_ADDR
318no_get_frame_cfa (void *baton)
319{
320 internal_error (__FILE__, __LINE__,
321 _("Support for DW_OP_call_frame_cfa is unimplemented"));
322}
323
cfc14b3a
MK
324static CORE_ADDR
325no_get_tls_address (void *baton, CORE_ADDR offset)
326{
327 internal_error (__FILE__, __LINE__,
e2e0b3e5 328 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
329}
330
a6a5a945
LM
331/* Execute the required actions for both the DW_CFA_restore and
332DW_CFA_restore_extended instructions. */
333static void
334dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
335 struct dwarf2_frame_state *fs, int eh_frame_p)
336{
337 ULONGEST reg;
338
339 gdb_assert (fs->initial.reg);
340 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
341 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
342
343 /* Check if this register was explicitly initialized in the
344 CIE initial instructions. If not, default the rule to
345 UNSPECIFIED. */
346 if (reg < fs->initial.num_regs)
347 fs->regs.reg[reg] = fs->initial.reg[reg];
348 else
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
350
351 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
352 complaint (&symfile_complaints, _("\
353incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 354register %s (#%d) at %s"),
a6a5a945
LM
355 gdbarch_register_name
356 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
357 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 358 paddress (gdbarch, fs->pc));
a6a5a945
LM
359}
360
cfc14b3a 361static CORE_ADDR
0d45f56e 362execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
44353522
DE
363 struct frame_info *this_frame, CORE_ADDR initial,
364 int initial_in_stack_memory)
cfc14b3a
MK
365{
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
4a227398 368 struct cleanup *old_chain;
cfc14b3a
MK
369
370 ctx = new_dwarf_expr_context ();
4a227398
TT
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372
f7fd4728 373 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 374 ctx->addr_size = addr_size;
4a4e5149 375 ctx->baton = this_frame;
cfc14b3a
MK
376 ctx->read_reg = read_reg;
377 ctx->read_mem = read_mem;
378 ctx->get_frame_base = no_get_frame_base;
e7802207 379 ctx->get_frame_cfa = no_get_frame_cfa;
cfc14b3a
MK
380 ctx->get_tls_address = no_get_tls_address;
381
44353522 382 dwarf_expr_push (ctx, initial, initial_in_stack_memory);
cfc14b3a
MK
383 dwarf_expr_eval (ctx, exp, len);
384 result = dwarf_expr_fetch (ctx, 0);
385
cec03d70 386 if (ctx->location == DWARF_VALUE_REGISTER)
4a4e5149 387 result = read_reg (this_frame, result);
cec03d70
TT
388 else if (ctx->location != DWARF_VALUE_MEMORY)
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("Not implemented: computing unwound register using explicit value operator"));
394 }
cfc14b3a 395
4a227398 396 do_cleanups (old_chain);
cfc14b3a
MK
397
398 return result;
399}
400\f
401
402static void
0d45f56e
TT
403execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
404 const gdb_byte *insn_end, struct frame_info *this_frame,
ae0d2f24 405 struct dwarf2_frame_state *fs)
cfc14b3a 406{
ae0d2f24 407 int eh_frame_p = fde->eh_frame_p;
4a4e5149 408 CORE_ADDR pc = get_frame_pc (this_frame);
cfc14b3a 409 int bytes_read;
4a4e5149 410 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 411 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
412
413 while (insn_ptr < insn_end && fs->pc <= pc)
414 {
852483bc 415 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
416 ULONGEST utmp, reg;
417 LONGEST offset;
418
419 if ((insn & 0xc0) == DW_CFA_advance_loc)
420 fs->pc += (insn & 0x3f) * fs->code_align;
421 else if ((insn & 0xc0) == DW_CFA_offset)
422 {
423 reg = insn & 0x3f;
4fc771b8 424 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
425 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
426 offset = utmp * fs->data_align;
427 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 428 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
429 fs->regs.reg[reg].loc.offset = offset;
430 }
431 else if ((insn & 0xc0) == DW_CFA_restore)
432 {
cfc14b3a 433 reg = insn & 0x3f;
a6a5a945 434 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
435 }
436 else
437 {
438 switch (insn)
439 {
440 case DW_CFA_set_loc:
ae0d2f24
UW
441 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
442 fde->cie->addr_size, insn_ptr,
443 &bytes_read, fde->initial_location);
444 /* Apply the objfile offset for relocatable objects. */
445 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
446 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
447 insn_ptr += bytes_read;
448 break;
449
450 case DW_CFA_advance_loc1:
e17a4113 451 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
452 fs->pc += utmp * fs->code_align;
453 insn_ptr++;
454 break;
455 case DW_CFA_advance_loc2:
e17a4113 456 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
457 fs->pc += utmp * fs->code_align;
458 insn_ptr += 2;
459 break;
460 case DW_CFA_advance_loc4:
e17a4113 461 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
462 fs->pc += utmp * fs->code_align;
463 insn_ptr += 4;
464 break;
465
466 case DW_CFA_offset_extended:
467 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 468 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
469 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
470 offset = utmp * fs->data_align;
471 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 472 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
473 fs->regs.reg[reg].loc.offset = offset;
474 break;
475
476 case DW_CFA_restore_extended:
cfc14b3a 477 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 478 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
479 break;
480
481 case DW_CFA_undefined:
482 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 483 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 484 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 485 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
486 break;
487
488 case DW_CFA_same_value:
489 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 490 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 491 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 492 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
493 break;
494
495 case DW_CFA_register:
496 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 497 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 498 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 499 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 500 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 501 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
502 fs->regs.reg[reg].loc.reg = utmp;
503 break;
504
505 case DW_CFA_remember_state:
506 {
507 struct dwarf2_frame_state_reg_info *new_rs;
508
509 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
510 *new_rs = fs->regs;
511 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
512 fs->regs.prev = new_rs;
513 }
514 break;
515
516 case DW_CFA_restore_state:
517 {
518 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
519
50ea7769
MK
520 if (old_rs == NULL)
521 {
e2e0b3e5 522 complaint (&symfile_complaints, _("\
5af949e3
UW
523bad CFI data; mismatched DW_CFA_restore_state at %s"),
524 paddress (gdbarch, fs->pc));
50ea7769
MK
525 }
526 else
527 {
528 xfree (fs->regs.reg);
529 fs->regs = *old_rs;
530 xfree (old_rs);
531 }
cfc14b3a
MK
532 }
533 break;
534
535 case DW_CFA_def_cfa:
2fd481e1 536 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 537 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
538
539 if (fs->armcc_cfa_offsets_sf)
540 utmp *= fs->data_align;
541
2fd481e1
PP
542 fs->regs.cfa_offset = utmp;
543 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
544 break;
545
546 case DW_CFA_def_cfa_register:
2fd481e1
PP
547 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
548 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
549 fs->regs.cfa_reg,
550 eh_frame_p);
551 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
552 break;
553
554 case DW_CFA_def_cfa_offset:
852483bc 555 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
556
557 if (fs->armcc_cfa_offsets_sf)
558 utmp *= fs->data_align;
559
2fd481e1 560 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
561 /* cfa_how deliberately not set. */
562 break;
563
a8504492
MK
564 case DW_CFA_nop:
565 break;
566
cfc14b3a 567 case DW_CFA_def_cfa_expression:
2fd481e1
PP
568 insn_ptr = read_uleb128 (insn_ptr, insn_end,
569 &fs->regs.cfa_exp_len);
570 fs->regs.cfa_exp = insn_ptr;
571 fs->regs.cfa_how = CFA_EXP;
572 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
573 break;
574
575 case DW_CFA_expression:
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 577 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
578 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
579 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
580 fs->regs.reg[reg].loc.exp = insn_ptr;
581 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 582 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
583 insn_ptr += utmp;
584 break;
585
a8504492
MK
586 case DW_CFA_offset_extended_sf:
587 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 588 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 589 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 590 offset *= fs->data_align;
a8504492 591 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 592 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
593 fs->regs.reg[reg].loc.offset = offset;
594 break;
595
46ea248b
AO
596 case DW_CFA_val_offset:
597 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
598 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
599 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
600 offset = utmp * fs->data_align;
601 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
602 fs->regs.reg[reg].loc.offset = offset;
603 break;
604
605 case DW_CFA_val_offset_sf:
606 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
607 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
608 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
609 offset *= fs->data_align;
610 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
611 fs->regs.reg[reg].loc.offset = offset;
612 break;
613
614 case DW_CFA_val_expression:
615 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
616 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
617 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
618 fs->regs.reg[reg].loc.exp = insn_ptr;
619 fs->regs.reg[reg].exp_len = utmp;
620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
621 insn_ptr += utmp;
622 break;
623
a8504492 624 case DW_CFA_def_cfa_sf:
2fd481e1
PP
625 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
626 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
627 fs->regs.cfa_reg,
628 eh_frame_p);
a8504492 629 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
630 fs->regs.cfa_offset = offset * fs->data_align;
631 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
632 break;
633
634 case DW_CFA_def_cfa_offset_sf:
635 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 636 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 637 /* cfa_how deliberately not set. */
cfc14b3a
MK
638 break;
639
a77f4086
MK
640 case DW_CFA_GNU_window_save:
641 /* This is SPARC-specific code, and contains hard-coded
642 constants for the register numbering scheme used by
643 GCC. Rather than having a architecture-specific
644 operation that's only ever used by a single
645 architecture, we provide the implementation here.
646 Incidentally that's what GCC does too in its
647 unwinder. */
648 {
4a4e5149 649 int size = register_size (gdbarch, 0);
9a619af0 650
a77f4086
MK
651 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
652 for (reg = 8; reg < 16; reg++)
653 {
654 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
655 fs->regs.reg[reg].loc.reg = reg + 16;
656 }
657 for (reg = 16; reg < 32; reg++)
658 {
659 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
660 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
661 }
662 }
663 break;
664
cfc14b3a
MK
665 case DW_CFA_GNU_args_size:
666 /* Ignored. */
667 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
668 break;
669
58894217
JK
670 case DW_CFA_GNU_negative_offset_extended:
671 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 672 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
673 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
674 offset *= fs->data_align;
675 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
676 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
677 fs->regs.reg[reg].loc.offset = -offset;
678 break;
679
cfc14b3a 680 default:
e2e0b3e5 681 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
682 }
683 }
684 }
685
686 /* Don't allow remember/restore between CIE and FDE programs. */
687 dwarf2_frame_state_free_regs (fs->regs.prev);
688 fs->regs.prev = NULL;
689}
8f22cb90 690\f
cfc14b3a 691
8f22cb90 692/* Architecture-specific operations. */
cfc14b3a 693
8f22cb90
MK
694/* Per-architecture data key. */
695static struct gdbarch_data *dwarf2_frame_data;
696
697struct dwarf2_frame_ops
698{
699 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
700 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
701 struct frame_info *);
3ed09a32 702
4a4e5149 703 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 704 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 705
4fc771b8
DJ
706 /* Convert .eh_frame register number to DWARF register number, or
707 adjust .debug_frame register number. */
708 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
709};
710
8f22cb90
MK
711/* Default architecture-specific register state initialization
712 function. */
713
714static void
715dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 716 struct dwarf2_frame_state_reg *reg,
4a4e5149 717 struct frame_info *this_frame)
8f22cb90
MK
718{
719 /* If we have a register that acts as a program counter, mark it as
720 a destination for the return address. If we have a register that
721 serves as the stack pointer, arrange for it to be filled with the
722 call frame address (CFA). The other registers are marked as
723 unspecified.
724
725 We copy the return address to the program counter, since many
726 parts in GDB assume that it is possible to get the return address
727 by unwinding the program counter register. However, on ISA's
728 with a dedicated return address register, the CFI usually only
729 contains information to unwind that return address register.
730
731 The reason we're treating the stack pointer special here is
732 because in many cases GCC doesn't emit CFI for the stack pointer
733 and implicitly assumes that it is equal to the CFA. This makes
734 some sense since the DWARF specification (version 3, draft 8,
735 p. 102) says that:
736
737 "Typically, the CFA is defined to be the value of the stack
738 pointer at the call site in the previous frame (which may be
739 different from its value on entry to the current frame)."
740
741 However, this isn't true for all platforms supported by GCC
742 (e.g. IBM S/390 and zSeries). Those architectures should provide
743 their own architecture-specific initialization function. */
05cbe71a 744
ad010def 745 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 746 reg->how = DWARF2_FRAME_REG_RA;
ad010def 747 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
748 reg->how = DWARF2_FRAME_REG_CFA;
749}
05cbe71a 750
8f22cb90 751/* Return a default for the architecture-specific operations. */
05cbe71a 752
8f22cb90 753static void *
030f20e1 754dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
755{
756 struct dwarf2_frame_ops *ops;
757
030f20e1 758 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
759 ops->init_reg = dwarf2_frame_default_init_reg;
760 return ops;
761}
05cbe71a 762
8f22cb90
MK
763/* Set the architecture-specific register state initialization
764 function for GDBARCH to INIT_REG. */
765
766void
767dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
768 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
769 struct dwarf2_frame_state_reg *,
770 struct frame_info *))
8f22cb90 771{
030f20e1 772 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 773
8f22cb90
MK
774 ops->init_reg = init_reg;
775}
776
777/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
778
779static void
780dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 781 struct dwarf2_frame_state_reg *reg,
4a4e5149 782 struct frame_info *this_frame)
05cbe71a 783{
030f20e1 784 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 785
4a4e5149 786 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 787}
3ed09a32
DJ
788
789/* Set the architecture-specific signal trampoline recognition
790 function for GDBARCH to SIGNAL_FRAME_P. */
791
792void
793dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
794 int (*signal_frame_p) (struct gdbarch *,
795 struct frame_info *))
796{
797 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
798
799 ops->signal_frame_p = signal_frame_p;
800}
801
802/* Query the architecture-specific signal frame recognizer for
4a4e5149 803 THIS_FRAME. */
3ed09a32
DJ
804
805static int
806dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 807 struct frame_info *this_frame)
3ed09a32
DJ
808{
809 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
810
811 if (ops->signal_frame_p == NULL)
812 return 0;
4a4e5149 813 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 814}
4bf8967c 815
4fc771b8
DJ
816/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
817 register numbers. */
4bf8967c
AS
818
819void
4fc771b8
DJ
820dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
821 int (*adjust_regnum) (struct gdbarch *,
822 int, int))
4bf8967c
AS
823{
824 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
825
4fc771b8 826 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
827}
828
4fc771b8
DJ
829/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
830 register. */
4bf8967c 831
4fc771b8
DJ
832static int
833dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
4bf8967c
AS
834{
835 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
836
4fc771b8 837 if (ops->adjust_regnum == NULL)
4bf8967c 838 return regnum;
4fc771b8 839 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 840}
303b6f5d
DJ
841
842static void
843dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
844 struct dwarf2_fde *fde)
845{
303b6f5d
DJ
846 struct symtab *s;
847
848 s = find_pc_symtab (fs->pc);
a6c727b2 849 if (s == NULL)
303b6f5d
DJ
850 return;
851
a6c727b2
DJ
852 if (producer_is_realview (s->producer))
853 {
854 if (fde->cie->version == 1)
855 fs->armcc_cfa_offsets_sf = 1;
856
857 if (fde->cie->version == 1)
858 fs->armcc_cfa_offsets_reversed = 1;
859
860 /* The reversed offset problem is present in some compilers
861 using DWARF3, but it was eventually fixed. Check the ARM
862 defined augmentations, which are in the format "armcc" followed
863 by a list of one-character options. The "+" option means
864 this problem is fixed (no quirk needed). If the armcc
865 augmentation is missing, the quirk is needed. */
866 if (fde->cie->version == 3
867 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
868 || strchr (fde->cie->augmentation + 5, '+') == NULL))
869 fs->armcc_cfa_offsets_reversed = 1;
870
871 return;
872 }
303b6f5d 873}
8f22cb90
MK
874\f
875
876struct dwarf2_frame_cache
877{
878 /* DWARF Call Frame Address. */
879 CORE_ADDR cfa;
880
0228dfb9
DJ
881 /* Set if the return address column was marked as undefined. */
882 int undefined_retaddr;
883
8f22cb90
MK
884 /* Saved registers, indexed by GDB register number, not by DWARF
885 register number. */
886 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
887
888 /* Return address register. */
889 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
890
891 /* Target address size in bytes. */
892 int addr_size;
8f22cb90 893};
05cbe71a 894
b9362cc7 895static struct dwarf2_frame_cache *
4a4e5149 896dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
897{
898 struct cleanup *old_chain;
4a4e5149 899 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
900 const int num_regs = gdbarch_num_regs (gdbarch)
901 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
902 struct dwarf2_frame_cache *cache;
903 struct dwarf2_frame_state *fs;
904 struct dwarf2_fde *fde;
cfc14b3a
MK
905
906 if (*this_cache)
907 return *this_cache;
908
909 /* Allocate a new cache. */
910 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
911 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
912
913 /* Allocate and initialize the frame state. */
914 fs = XMALLOC (struct dwarf2_frame_state);
915 memset (fs, 0, sizeof (struct dwarf2_frame_state));
916 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
917
918 /* Unwind the PC.
919
4a4e5149 920 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 921 to abort), the compiler might optimize away the instruction at
4a4e5149 922 its return address. As a result the return address will
cfc14b3a 923 point at some random instruction, and the CFI for that
e4e9607c 924 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
925 this problem by substracting 1 from the return address to get an
926 address in the middle of a presumed call instruction (or the
927 instruction in the associated delay slot). This should only be
928 done for "normal" frames and not for resume-type frames (signal
e4e9607c 929 handlers, sentinel frames, dummy frames). The function
ad1193e7 930 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
931 reliable the method is though; there is the potential for the
932 register state pre-call being different to that on return. */
4a4e5149 933 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
934
935 /* Find the correct FDE. */
936 fde = dwarf2_frame_find_fde (&fs->pc);
937 gdb_assert (fde != NULL);
938
939 /* Extract any interesting information from the CIE. */
940 fs->data_align = fde->cie->data_alignment_factor;
941 fs->code_align = fde->cie->code_alignment_factor;
942 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 943 cache->addr_size = fde->cie->addr_size;
cfc14b3a 944
303b6f5d
DJ
945 /* Check for "quirks" - known bugs in producers. */
946 dwarf2_frame_find_quirks (fs, fde);
947
cfc14b3a 948 /* First decode all the insns in the CIE. */
ae0d2f24 949 execute_cfa_program (fde, fde->cie->initial_instructions,
4a4e5149 950 fde->cie->end, this_frame, fs);
cfc14b3a
MK
951
952 /* Save the initialized register set. */
953 fs->initial = fs->regs;
954 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
955
956 /* Then decode the insns in the FDE up to our target PC. */
4a4e5149 957 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
cfc14b3a 958
938f5214 959 /* Calculate the CFA. */
2fd481e1 960 switch (fs->regs.cfa_how)
cfc14b3a
MK
961 {
962 case CFA_REG_OFFSET:
2fd481e1 963 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
303b6f5d 964 if (fs->armcc_cfa_offsets_reversed)
2fd481e1 965 cache->cfa -= fs->regs.cfa_offset;
303b6f5d 966 else
2fd481e1 967 cache->cfa += fs->regs.cfa_offset;
cfc14b3a
MK
968 break;
969
970 case CFA_EXP:
971 cache->cfa =
2fd481e1 972 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
44353522 973 cache->addr_size, this_frame, 0, 0);
cfc14b3a
MK
974 break;
975
976 default:
e2e0b3e5 977 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
978 }
979
05cbe71a 980 /* Initialize the register state. */
3e2c4033
AC
981 {
982 int regnum;
e4e9607c 983
3e2c4033 984 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 985 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
986 }
987
988 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
989 location information in the cache. Note that we don't skip the
990 return address column; it's perfectly all right for it to
991 correspond to a real register. If it doesn't correspond to a
992 real register, or if we shouldn't treat it as such,
055d23b8 993 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 994 the range [0, gdbarch_num_regs). */
3e2c4033
AC
995 {
996 int column; /* CFI speak for "register number". */
e4e9607c 997
3e2c4033
AC
998 for (column = 0; column < fs->regs.num_regs; column++)
999 {
3e2c4033 1000 /* Use the GDB register number as the destination index. */
ad010def 1001 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1002
1003 /* If there's no corresponding GDB register, ignore it. */
1004 if (regnum < 0 || regnum >= num_regs)
1005 continue;
1006
1007 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1008 of all debug info registers. If it doesn't, complain (but
1009 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1010 unspecified register implies "same value" when CFI (draft
1011 7) specifies nothing at all. Such a register could equally
1012 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1013 isn't sufficient; it only checks that all registers in the
1014 range [0 .. max column] are specified, and won't detect
3e2c4033 1015 problems when a debug info register falls outside of the
e4e9607c 1016 table. We need a way of iterating through all the valid
3e2c4033 1017 DWARF2 register numbers. */
05cbe71a 1018 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1019 {
1020 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1021 complaint (&symfile_complaints, _("\
5af949e3 1022incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1023 gdbarch_register_name (gdbarch, regnum),
5af949e3 1024 paddress (gdbarch, fs->pc));
f059bf6f 1025 }
35889917
MK
1026 else
1027 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1028 }
1029 }
cfc14b3a 1030
8d5a9abc
MK
1031 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1032 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1033 {
1034 int regnum;
1035
1036 for (regnum = 0; regnum < num_regs; regnum++)
1037 {
8d5a9abc
MK
1038 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1039 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1040 {
05cbe71a
MK
1041 struct dwarf2_frame_state_reg *retaddr_reg =
1042 &fs->regs.reg[fs->retaddr_column];
1043
d4f10bf2
MK
1044 /* It seems rather bizarre to specify an "empty" column as
1045 the return adress column. However, this is exactly
1046 what GCC does on some targets. It turns out that GCC
1047 assumes that the return address can be found in the
1048 register corresponding to the return address column.
8d5a9abc
MK
1049 Incidentally, that's how we should treat a return
1050 address column specifying "same value" too. */
d4f10bf2 1051 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1052 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1053 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1054 {
1055 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1056 cache->reg[regnum] = *retaddr_reg;
1057 else
1058 cache->retaddr_reg = *retaddr_reg;
1059 }
35889917
MK
1060 else
1061 {
8d5a9abc
MK
1062 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1063 {
1064 cache->reg[regnum].loc.reg = fs->retaddr_column;
1065 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1066 }
1067 else
1068 {
1069 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1070 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1071 }
35889917
MK
1072 }
1073 }
1074 }
1075 }
cfc14b3a 1076
0228dfb9
DJ
1077 if (fs->retaddr_column < fs->regs.num_regs
1078 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1079 cache->undefined_retaddr = 1;
1080
cfc14b3a
MK
1081 do_cleanups (old_chain);
1082
1083 *this_cache = cache;
1084 return cache;
1085}
1086
1087static void
4a4e5149 1088dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1089 struct frame_id *this_id)
1090{
1091 struct dwarf2_frame_cache *cache =
4a4e5149 1092 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1093
0228dfb9
DJ
1094 if (cache->undefined_retaddr)
1095 return;
1096
4a4e5149 1097 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1098}
1099
4a4e5149
DJ
1100static struct value *
1101dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1102 int regnum)
93d42b30 1103{
4a4e5149 1104 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1105 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1106 dwarf2_frame_cache (this_frame, this_cache);
1107 CORE_ADDR addr;
1108 int realnum;
cfc14b3a
MK
1109
1110 switch (cache->reg[regnum].how)
1111 {
05cbe71a 1112 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1113 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1114 mark it as optimized away; the value isn't available. */
4a4e5149 1115 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1116
05cbe71a 1117 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1118 addr = cache->cfa + cache->reg[regnum].loc.offset;
1119 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1120
05cbe71a 1121 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1122 realnum
1123 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1124 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1125
05cbe71a 1126 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1127 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1128 cache->reg[regnum].exp_len,
44353522 1129 cache->addr_size, this_frame, cache->cfa, 1);
4a4e5149 1130 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1131
46ea248b 1132 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1133 addr = cache->cfa + cache->reg[regnum].loc.offset;
1134 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1135
1136 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1137 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1138 cache->reg[regnum].exp_len,
44353522 1139 cache->addr_size, this_frame, cache->cfa, 1);
4a4e5149 1140 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1141
05cbe71a 1142 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1143 /* GCC, in its infinite wisdom decided to not provide unwind
1144 information for registers that are "same value". Since
1145 DWARF2 (3 draft 7) doesn't define such behavior, said
1146 registers are actually undefined (which is different to CFI
1147 "undefined"). Code above issues a complaint about this.
1148 Here just fudge the books, assume GCC, and that the value is
1149 more inner on the stack. */
4a4e5149 1150 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1151
05cbe71a 1152 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1153 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1154
05cbe71a 1155 case DWARF2_FRAME_REG_CFA:
4a4e5149 1156 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1157
ea7963f0 1158 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1159 addr = cache->cfa + cache->reg[regnum].loc.offset;
1160 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1161
8d5a9abc 1162 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1163 addr = cache->reg[regnum].loc.offset;
1164 regnum = gdbarch_dwarf2_reg_to_regnum
1165 (gdbarch, cache->retaddr_reg.loc.reg);
1166 addr += get_frame_register_unsigned (this_frame, regnum);
1167 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1168
b39cc962
DJ
1169 case DWARF2_FRAME_REG_FN:
1170 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1171
cfc14b3a 1172 default:
e2e0b3e5 1173 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1174 }
1175}
1176
4a4e5149
DJ
1177static int
1178dwarf2_frame_sniffer (const struct frame_unwind *self,
1179 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1180{
1ce5d6dd 1181 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1182 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1183 end up returning something past the end of this function's body.
1184 If the frame we're sniffing for is a signal frame whose start
1185 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1186 extend one byte before its start address or we could potentially
1187 select the FDE of the previous function. */
1188 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
56c987f6 1189 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
9a619af0 1190
56c987f6 1191 if (!fde)
4a4e5149 1192 return 0;
3ed09a32
DJ
1193
1194 /* On some targets, signal trampolines may have unwind information.
1195 We need to recognize them so that we set the frame type
1196 correctly. */
1197
56c987f6 1198 if (fde->cie->signal_frame
4a4e5149
DJ
1199 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1200 this_frame))
1201 return self->type == SIGTRAMP_FRAME;
1202
1203 return self->type != SIGTRAMP_FRAME;
1204}
1205
1206static const struct frame_unwind dwarf2_frame_unwind =
1207{
1208 NORMAL_FRAME,
1209 dwarf2_frame_this_id,
1210 dwarf2_frame_prev_register,
1211 NULL,
1212 dwarf2_frame_sniffer
1213};
1214
1215static const struct frame_unwind dwarf2_signal_frame_unwind =
1216{
1217 SIGTRAMP_FRAME,
1218 dwarf2_frame_this_id,
1219 dwarf2_frame_prev_register,
1220 NULL,
1221 dwarf2_frame_sniffer
1222};
cfc14b3a 1223
4a4e5149
DJ
1224/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1225
1226void
1227dwarf2_append_unwinders (struct gdbarch *gdbarch)
1228{
1229 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1230 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1231}
1232\f
1233
1234/* There is no explicitly defined relationship between the CFA and the
1235 location of frame's local variables and arguments/parameters.
1236 Therefore, frame base methods on this page should probably only be
1237 used as a last resort, just to avoid printing total garbage as a
1238 response to the "info frame" command. */
1239
1240static CORE_ADDR
4a4e5149 1241dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1242{
1243 struct dwarf2_frame_cache *cache =
4a4e5149 1244 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1245
1246 return cache->cfa;
1247}
1248
1249static const struct frame_base dwarf2_frame_base =
1250{
1251 &dwarf2_frame_unwind,
1252 dwarf2_frame_base_address,
1253 dwarf2_frame_base_address,
1254 dwarf2_frame_base_address
1255};
1256
1257const struct frame_base *
4a4e5149 1258dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1259{
4a4e5149 1260 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1261
93d42b30 1262 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
1263 return &dwarf2_frame_base;
1264
1265 return NULL;
1266}
e7802207
TT
1267
1268/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1269 the DWARF unwinder. This is used to implement
1270 DW_OP_call_frame_cfa. */
1271
1272CORE_ADDR
1273dwarf2_frame_cfa (struct frame_info *this_frame)
1274{
1275 while (get_frame_type (this_frame) == INLINE_FRAME)
1276 this_frame = get_prev_frame (this_frame);
1277 /* This restriction could be lifted if other unwinders are known to
1278 compute the frame base in a way compatible with the DWARF
1279 unwinder. */
1280 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1281 error (_("can't compute CFA for this frame"));
1282 return get_frame_base (this_frame);
1283}
cfc14b3a 1284\f
8f22cb90 1285const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1286
cfc14b3a 1287static unsigned int
852483bc 1288read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1289{
852483bc 1290 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1291}
1292
1293static unsigned int
852483bc 1294read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1295{
852483bc 1296 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1297}
1298
1299static ULONGEST
852483bc 1300read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1301{
852483bc 1302 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1303}
1304
1305static ULONGEST
852483bc 1306read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1307{
1308 ULONGEST result;
1309 unsigned int num_read;
1310 int shift;
852483bc 1311 gdb_byte byte;
cfc14b3a
MK
1312
1313 result = 0;
1314 shift = 0;
1315 num_read = 0;
1316
1317 do
1318 {
1319 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1320 buf++;
1321 num_read++;
1322 result |= ((byte & 0x7f) << shift);
1323 shift += 7;
1324 }
1325 while (byte & 0x80);
1326
1327 *bytes_read_ptr = num_read;
1328
1329 return result;
1330}
1331
1332static LONGEST
852483bc 1333read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1334{
1335 LONGEST result;
1336 int shift;
1337 unsigned int num_read;
852483bc 1338 gdb_byte byte;
cfc14b3a
MK
1339
1340 result = 0;
1341 shift = 0;
1342 num_read = 0;
1343
1344 do
1345 {
1346 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1347 buf++;
1348 num_read++;
1349 result |= ((byte & 0x7f) << shift);
1350 shift += 7;
1351 }
1352 while (byte & 0x80);
1353
77e0b926
DJ
1354 if (shift < 8 * sizeof (result) && (byte & 0x40))
1355 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1356
1357 *bytes_read_ptr = num_read;
1358
1359 return result;
1360}
1361
1362static ULONGEST
852483bc 1363read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1364{
1365 LONGEST result;
1366
852483bc 1367 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1368 if (result == 0xffffffff)
1369 {
852483bc 1370 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1371 *bytes_read_ptr = 12;
1372 }
1373 else
1374 *bytes_read_ptr = 4;
1375
1376 return result;
1377}
1378\f
1379
1380/* Pointer encoding helper functions. */
1381
1382/* GCC supports exception handling based on DWARF2 CFI. However, for
1383 technical reasons, it encodes addresses in its FDE's in a different
1384 way. Several "pointer encodings" are supported. The encoding
1385 that's used for a particular FDE is determined by the 'R'
1386 augmentation in the associated CIE. The argument of this
1387 augmentation is a single byte.
1388
1389 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1390 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1391 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1392 address should be interpreted (absolute, relative to the current
1393 position in the FDE, ...). Bit 7, indicates that the address
1394 should be dereferenced. */
1395
852483bc 1396static gdb_byte
cfc14b3a
MK
1397encoding_for_size (unsigned int size)
1398{
1399 switch (size)
1400 {
1401 case 2:
1402 return DW_EH_PE_udata2;
1403 case 4:
1404 return DW_EH_PE_udata4;
1405 case 8:
1406 return DW_EH_PE_udata8;
1407 default:
e2e0b3e5 1408 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1409 }
1410}
1411
cfc14b3a 1412static CORE_ADDR
852483bc 1413read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1414 int ptr_len, const gdb_byte *buf,
1415 unsigned int *bytes_read_ptr,
ae0d2f24 1416 CORE_ADDR func_base)
cfc14b3a 1417{
68f6cf99 1418 ptrdiff_t offset;
cfc14b3a
MK
1419 CORE_ADDR base;
1420
1421 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1422 FDE's. */
1423 if (encoding & DW_EH_PE_indirect)
1424 internal_error (__FILE__, __LINE__,
e2e0b3e5 1425 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1426
68f6cf99
MK
1427 *bytes_read_ptr = 0;
1428
cfc14b3a
MK
1429 switch (encoding & 0x70)
1430 {
1431 case DW_EH_PE_absptr:
1432 base = 0;
1433 break;
1434 case DW_EH_PE_pcrel:
f2fec864 1435 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1436 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1437 break;
0912c7f2
MK
1438 case DW_EH_PE_datarel:
1439 base = unit->dbase;
1440 break;
0fd85043
CV
1441 case DW_EH_PE_textrel:
1442 base = unit->tbase;
1443 break;
03ac2a74 1444 case DW_EH_PE_funcrel:
ae0d2f24 1445 base = func_base;
03ac2a74 1446 break;
68f6cf99
MK
1447 case DW_EH_PE_aligned:
1448 base = 0;
852483bc 1449 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1450 if ((offset % ptr_len) != 0)
1451 {
1452 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1453 buf += *bytes_read_ptr;
1454 }
1455 break;
cfc14b3a 1456 default:
e2e0b3e5 1457 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1458 }
1459
b04de778 1460 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1461 {
1462 encoding |= encoding_for_size (ptr_len);
1463 if (bfd_get_sign_extend_vma (unit->abfd))
1464 encoding |= DW_EH_PE_signed;
1465 }
cfc14b3a
MK
1466
1467 switch (encoding & 0x0f)
1468 {
a81b10ae
MK
1469 case DW_EH_PE_uleb128:
1470 {
1471 ULONGEST value;
0d45f56e 1472 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1473
a7289609 1474 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1475 return base + value;
1476 }
cfc14b3a 1477 case DW_EH_PE_udata2:
68f6cf99 1478 *bytes_read_ptr += 2;
cfc14b3a
MK
1479 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1480 case DW_EH_PE_udata4:
68f6cf99 1481 *bytes_read_ptr += 4;
cfc14b3a
MK
1482 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1483 case DW_EH_PE_udata8:
68f6cf99 1484 *bytes_read_ptr += 8;
cfc14b3a 1485 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1486 case DW_EH_PE_sleb128:
1487 {
1488 LONGEST value;
0d45f56e 1489 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1490
a7289609 1491 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1492 return base + value;
1493 }
cfc14b3a 1494 case DW_EH_PE_sdata2:
68f6cf99 1495 *bytes_read_ptr += 2;
cfc14b3a
MK
1496 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1497 case DW_EH_PE_sdata4:
68f6cf99 1498 *bytes_read_ptr += 4;
cfc14b3a
MK
1499 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1500 case DW_EH_PE_sdata8:
68f6cf99 1501 *bytes_read_ptr += 8;
cfc14b3a
MK
1502 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1503 default:
e2e0b3e5 1504 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1505 }
1506}
1507\f
1508
b01c8410
PP
1509static int
1510bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1511{
b01c8410
PP
1512 ULONGEST cie_pointer = *(ULONGEST *) key;
1513 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1514
b01c8410
PP
1515 if (cie_pointer == cie->cie_pointer)
1516 return 0;
cfc14b3a 1517
b01c8410
PP
1518 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1519}
1520
1521/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1522static struct dwarf2_cie *
1523find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1524{
1525 struct dwarf2_cie **p_cie;
cfc14b3a 1526
65a97ab3
PP
1527 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1528 bsearch be non-NULL. */
1529 if (cie_table->entries == NULL)
1530 {
1531 gdb_assert (cie_table->num_entries == 0);
1532 return NULL;
1533 }
1534
b01c8410
PP
1535 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1536 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1537 if (p_cie != NULL)
1538 return *p_cie;
cfc14b3a
MK
1539 return NULL;
1540}
1541
b01c8410 1542/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1543static void
b01c8410 1544add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1545{
b01c8410
PP
1546 const int n = cie_table->num_entries;
1547
1548 gdb_assert (n < 1
1549 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1550
1551 cie_table->entries =
1552 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1553 cie_table->entries[n] = cie;
1554 cie_table->num_entries = n + 1;
1555}
1556
1557static int
1558bsearch_fde_cmp (const void *key, const void *element)
1559{
1560 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1561 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1562
b01c8410
PP
1563 if (seek_pc < fde->initial_location)
1564 return -1;
1565 if (seek_pc < fde->initial_location + fde->address_range)
1566 return 0;
1567 return 1;
cfc14b3a
MK
1568}
1569
1570/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1571 inital location associated with it into *PC. */
1572
1573static struct dwarf2_fde *
1574dwarf2_frame_find_fde (CORE_ADDR *pc)
1575{
1576 struct objfile *objfile;
1577
1578 ALL_OBJFILES (objfile)
1579 {
b01c8410
PP
1580 struct dwarf2_fde_table *fde_table;
1581 struct dwarf2_fde **p_fde;
cfc14b3a 1582 CORE_ADDR offset;
b01c8410 1583 CORE_ADDR seek_pc;
cfc14b3a 1584
b01c8410
PP
1585 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1586 if (fde_table == NULL)
be391dca
TT
1587 {
1588 dwarf2_build_frame_info (objfile);
1589 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1590 }
1591 gdb_assert (fde_table != NULL);
1592
1593 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1594 continue;
1595
1596 gdb_assert (objfile->section_offsets);
1597 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1598
b01c8410
PP
1599 gdb_assert (fde_table->num_entries > 0);
1600 if (*pc < offset + fde_table->entries[0]->initial_location)
1601 continue;
1602
1603 seek_pc = *pc - offset;
1604 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1605 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1606 if (p_fde != NULL)
1607 {
1608 *pc = (*p_fde)->initial_location + offset;
1609 return *p_fde;
1610 }
cfc14b3a 1611 }
cfc14b3a
MK
1612 return NULL;
1613}
1614
b01c8410 1615/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1616static void
b01c8410 1617add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1618{
b01c8410
PP
1619 if (fde->address_range == 0)
1620 /* Discard useless FDEs. */
1621 return;
1622
1623 fde_table->num_entries += 1;
1624 fde_table->entries =
1625 xrealloc (fde_table->entries,
1626 fde_table->num_entries * sizeof (fde_table->entries[0]));
1627 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1628}
1629
1630#ifdef CC_HAS_LONG_LONG
1631#define DW64_CIE_ID 0xffffffffffffffffULL
1632#else
1633#define DW64_CIE_ID ~0
1634#endif
1635
852483bc 1636static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1637 int eh_frame_p,
1638 struct dwarf2_cie_table *cie_table,
1639 struct dwarf2_fde_table *fde_table);
cfc14b3a 1640
6896c0c7
RH
1641/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1642 the next byte to be processed. */
852483bc 1643static gdb_byte *
b01c8410
PP
1644decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1645 struct dwarf2_cie_table *cie_table,
1646 struct dwarf2_fde_table *fde_table)
cfc14b3a 1647{
5e2b427d 1648 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1649 gdb_byte *buf, *end;
cfc14b3a
MK
1650 LONGEST length;
1651 unsigned int bytes_read;
6896c0c7
RH
1652 int dwarf64_p;
1653 ULONGEST cie_id;
cfc14b3a 1654 ULONGEST cie_pointer;
cfc14b3a 1655
6896c0c7 1656 buf = start;
cfc14b3a
MK
1657 length = read_initial_length (unit->abfd, buf, &bytes_read);
1658 buf += bytes_read;
1659 end = buf + length;
1660
6896c0c7
RH
1661 /* Are we still within the section? */
1662 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1663 return NULL;
1664
cfc14b3a
MK
1665 if (length == 0)
1666 return end;
1667
6896c0c7
RH
1668 /* Distinguish between 32 and 64-bit encoded frame info. */
1669 dwarf64_p = (bytes_read == 12);
cfc14b3a 1670
6896c0c7 1671 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1672 if (eh_frame_p)
1673 cie_id = 0;
1674 else if (dwarf64_p)
1675 cie_id = DW64_CIE_ID;
6896c0c7
RH
1676 else
1677 cie_id = DW_CIE_ID;
cfc14b3a
MK
1678
1679 if (dwarf64_p)
1680 {
1681 cie_pointer = read_8_bytes (unit->abfd, buf);
1682 buf += 8;
1683 }
1684 else
1685 {
1686 cie_pointer = read_4_bytes (unit->abfd, buf);
1687 buf += 4;
1688 }
1689
1690 if (cie_pointer == cie_id)
1691 {
1692 /* This is a CIE. */
1693 struct dwarf2_cie *cie;
1694 char *augmentation;
28ba0b33 1695 unsigned int cie_version;
cfc14b3a
MK
1696
1697 /* Record the offset into the .debug_frame section of this CIE. */
1698 cie_pointer = start - unit->dwarf_frame_buffer;
1699
1700 /* Check whether we've already read it. */
b01c8410 1701 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1702 return end;
1703
1704 cie = (struct dwarf2_cie *)
8b92e4d5 1705 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1706 sizeof (struct dwarf2_cie));
1707 cie->initial_instructions = NULL;
1708 cie->cie_pointer = cie_pointer;
1709
1710 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1711 depends on the target address size. */
1712 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1713
ae0d2f24
UW
1714 /* The target address size. For .eh_frame FDEs this is considered
1715 equal to the size of a target pointer. For .dwarf_frame FDEs,
1716 this is supposed to be the target address size from the associated
1717 CU header. FIXME: We do not have a good way to determine the
1718 latter. Always use the target pointer size for now. */
5e2b427d 1719 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
ae0d2f24 1720
56c987f6
AO
1721 /* We'll determine the final value later, but we need to
1722 initialize it conservatively. */
1723 cie->signal_frame = 0;
1724
cfc14b3a 1725 /* Check version number. */
28ba0b33 1726 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1727 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1728 return NULL;
303b6f5d 1729 cie->version = cie_version;
cfc14b3a
MK
1730 buf += 1;
1731
1732 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1733 cie->augmentation = augmentation = (char *) buf;
852483bc 1734 buf += (strlen (augmentation) + 1);
cfc14b3a 1735
303b6f5d
DJ
1736 /* Ignore armcc augmentations. We only use them for quirks,
1737 and that doesn't happen until later. */
1738 if (strncmp (augmentation, "armcc", 5) == 0)
1739 augmentation += strlen (augmentation);
1740
cfc14b3a
MK
1741 /* The GCC 2.x "eh" augmentation has a pointer immediately
1742 following the augmentation string, so it must be handled
1743 first. */
1744 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1745 {
1746 /* Skip. */
5e2b427d 1747 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1748 augmentation += 2;
1749 }
1750
2dc7f7b3
TT
1751 if (cie->version >= 4)
1752 {
1753 /* FIXME: check that this is the same as from the CU header. */
1754 cie->addr_size = read_1_byte (unit->abfd, buf);
1755 ++buf;
1756 cie->segment_size = read_1_byte (unit->abfd, buf);
1757 ++buf;
1758 }
1759 else
1760 {
1761 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1762 cie->segment_size = 0;
1763 }
1764
cfc14b3a
MK
1765 cie->code_alignment_factor =
1766 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1767 buf += bytes_read;
1768
1769 cie->data_alignment_factor =
1770 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1771 buf += bytes_read;
1772
28ba0b33
PB
1773 if (cie_version == 1)
1774 {
1775 cie->return_address_register = read_1_byte (unit->abfd, buf);
1776 bytes_read = 1;
1777 }
1778 else
1779 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1780 &bytes_read);
4fc771b8 1781 cie->return_address_register
5e2b427d 1782 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1783 cie->return_address_register,
1784 eh_frame_p);
4bf8967c 1785
28ba0b33 1786 buf += bytes_read;
cfc14b3a 1787
7131cb6e
RH
1788 cie->saw_z_augmentation = (*augmentation == 'z');
1789 if (cie->saw_z_augmentation)
cfc14b3a
MK
1790 {
1791 ULONGEST length;
1792
1793 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1794 buf += bytes_read;
6896c0c7
RH
1795 if (buf > end)
1796 return NULL;
cfc14b3a
MK
1797 cie->initial_instructions = buf + length;
1798 augmentation++;
1799 }
1800
1801 while (*augmentation)
1802 {
1803 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1804 if (*augmentation == 'L')
1805 {
1806 /* Skip. */
1807 buf++;
1808 augmentation++;
1809 }
1810
1811 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1812 else if (*augmentation == 'R')
1813 {
1814 cie->encoding = *buf++;
1815 augmentation++;
1816 }
1817
1818 /* "P" indicates a personality routine in the CIE augmentation. */
1819 else if (*augmentation == 'P')
1820 {
1234d960 1821 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1822 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
ae0d2f24
UW
1823 read_encoded_value (unit, encoding, cie->addr_size,
1824 buf, &bytes_read, 0);
f724bf08 1825 buf += bytes_read;
cfc14b3a
MK
1826 augmentation++;
1827 }
1828
56c987f6
AO
1829 /* "S" indicates a signal frame, such that the return
1830 address must not be decremented to locate the call frame
1831 info for the previous frame; it might even be the first
1832 instruction of a function, so decrementing it would take
1833 us to a different function. */
1834 else if (*augmentation == 'S')
1835 {
1836 cie->signal_frame = 1;
1837 augmentation++;
1838 }
1839
3e9a2e52
DJ
1840 /* Otherwise we have an unknown augmentation. Assume that either
1841 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1842 else
1843 {
3e9a2e52
DJ
1844 if (cie->initial_instructions)
1845 buf = cie->initial_instructions;
cfc14b3a
MK
1846 break;
1847 }
1848 }
1849
1850 cie->initial_instructions = buf;
1851 cie->end = end;
b01c8410 1852 cie->unit = unit;
cfc14b3a 1853
b01c8410 1854 add_cie (cie_table, cie);
cfc14b3a
MK
1855 }
1856 else
1857 {
1858 /* This is a FDE. */
1859 struct dwarf2_fde *fde;
1860
6896c0c7
RH
1861 /* In an .eh_frame section, the CIE pointer is the delta between the
1862 address within the FDE where the CIE pointer is stored and the
1863 address of the CIE. Convert it to an offset into the .eh_frame
1864 section. */
cfc14b3a
MK
1865 if (eh_frame_p)
1866 {
cfc14b3a
MK
1867 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1868 cie_pointer -= (dwarf64_p ? 8 : 4);
1869 }
1870
6896c0c7
RH
1871 /* In either case, validate the result is still within the section. */
1872 if (cie_pointer >= unit->dwarf_frame_size)
1873 return NULL;
1874
cfc14b3a 1875 fde = (struct dwarf2_fde *)
8b92e4d5 1876 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 1877 sizeof (struct dwarf2_fde));
b01c8410 1878 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1879 if (fde->cie == NULL)
1880 {
1881 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
b01c8410
PP
1882 eh_frame_p, cie_table, fde_table);
1883 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1884 }
1885
1886 gdb_assert (fde->cie != NULL);
1887
1888 fde->initial_location =
ae0d2f24
UW
1889 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1890 buf, &bytes_read, 0);
cfc14b3a
MK
1891 buf += bytes_read;
1892
1893 fde->address_range =
ae0d2f24
UW
1894 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1895 fde->cie->addr_size, buf, &bytes_read, 0);
cfc14b3a
MK
1896 buf += bytes_read;
1897
7131cb6e
RH
1898 /* A 'z' augmentation in the CIE implies the presence of an
1899 augmentation field in the FDE as well. The only thing known
1900 to be in here at present is the LSDA entry for EH. So we
1901 can skip the whole thing. */
1902 if (fde->cie->saw_z_augmentation)
1903 {
1904 ULONGEST length;
1905
1906 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1907 buf += bytes_read + length;
6896c0c7
RH
1908 if (buf > end)
1909 return NULL;
7131cb6e
RH
1910 }
1911
cfc14b3a
MK
1912 fde->instructions = buf;
1913 fde->end = end;
1914
4bf8967c
AS
1915 fde->eh_frame_p = eh_frame_p;
1916
b01c8410 1917 add_fde (fde_table, fde);
cfc14b3a
MK
1918 }
1919
1920 return end;
1921}
6896c0c7
RH
1922
1923/* Read a CIE or FDE in BUF and decode it. */
852483bc 1924static gdb_byte *
b01c8410
PP
1925decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1926 struct dwarf2_cie_table *cie_table,
1927 struct dwarf2_fde_table *fde_table)
6896c0c7
RH
1928{
1929 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 1930 gdb_byte *ret;
6896c0c7
RH
1931 ptrdiff_t start_offset;
1932
1933 while (1)
1934 {
b01c8410
PP
1935 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1936 cie_table, fde_table);
6896c0c7
RH
1937 if (ret != NULL)
1938 break;
1939
1940 /* We have corrupt input data of some form. */
1941
1942 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1943 and mismatches wrt padding and alignment of debug sections. */
1944 /* Note that there is no requirement in the standard for any
1945 alignment at all in the frame unwind sections. Testing for
1946 alignment before trying to interpret data would be incorrect.
1947
1948 However, GCC traditionally arranged for frame sections to be
1949 sized such that the FDE length and CIE fields happen to be
1950 aligned (in theory, for performance). This, unfortunately,
1951 was done with .align directives, which had the side effect of
1952 forcing the section to be aligned by the linker.
1953
1954 This becomes a problem when you have some other producer that
1955 creates frame sections that are not as strictly aligned. That
1956 produces a hole in the frame info that gets filled by the
1957 linker with zeros.
1958
1959 The GCC behaviour is arguably a bug, but it's effectively now
1960 part of the ABI, so we're now stuck with it, at least at the
1961 object file level. A smart linker may decide, in the process
1962 of compressing duplicate CIE information, that it can rewrite
1963 the entire output section without this extra padding. */
1964
1965 start_offset = start - unit->dwarf_frame_buffer;
1966 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1967 {
1968 start += 4 - (start_offset & 3);
1969 workaround = ALIGN4;
1970 continue;
1971 }
1972 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1973 {
1974 start += 8 - (start_offset & 7);
1975 workaround = ALIGN8;
1976 continue;
1977 }
1978
1979 /* Nothing left to try. Arrange to return as if we've consumed
1980 the entire input section. Hopefully we'll get valid info from
1981 the other of .debug_frame/.eh_frame. */
1982 workaround = FAIL;
1983 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1984 break;
1985 }
1986
1987 switch (workaround)
1988 {
1989 case NONE:
1990 break;
1991
1992 case ALIGN4:
1993 complaint (&symfile_complaints,
e2e0b3e5 1994 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1995 unit->dwarf_frame_section->owner->filename,
1996 unit->dwarf_frame_section->name);
1997 break;
1998
1999 case ALIGN8:
2000 complaint (&symfile_complaints,
e2e0b3e5 2001 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2002 unit->dwarf_frame_section->owner->filename,
2003 unit->dwarf_frame_section->name);
2004 break;
2005
2006 default:
2007 complaint (&symfile_complaints,
e2e0b3e5 2008 _("Corrupt data in %s:%s"),
6896c0c7
RH
2009 unit->dwarf_frame_section->owner->filename,
2010 unit->dwarf_frame_section->name);
2011 break;
2012 }
2013
2014 return ret;
2015}
cfc14b3a
MK
2016\f
2017
cfc14b3a 2018/* Imported from dwarf2read.c. */
dce234bc
PP
2019extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
2020 gdb_byte **, bfd_size_type *);
cfc14b3a 2021
b01c8410
PP
2022static int
2023qsort_fde_cmp (const void *a, const void *b)
2024{
2025 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2026 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2027
b01c8410 2028 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2029 {
2030 if (aa->address_range != bb->address_range
2031 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2032 /* Linker bug, e.g. gold/10400.
2033 Work around it by keeping stable sort order. */
2034 return (a < b) ? -1 : 1;
2035 else
2036 /* Put eh_frame entries after debug_frame ones. */
2037 return aa->eh_frame_p - bb->eh_frame_p;
2038 }
b01c8410
PP
2039
2040 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2041}
2042
cfc14b3a
MK
2043void
2044dwarf2_build_frame_info (struct objfile *objfile)
2045{
ae0d2f24 2046 struct comp_unit *unit;
852483bc 2047 gdb_byte *frame_ptr;
b01c8410
PP
2048 struct dwarf2_cie_table cie_table;
2049 struct dwarf2_fde_table fde_table;
be391dca 2050 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2051
2052 cie_table.num_entries = 0;
2053 cie_table.entries = NULL;
2054
2055 fde_table.num_entries = 0;
2056 fde_table.entries = NULL;
cfc14b3a
MK
2057
2058 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2059 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2060 sizeof (struct comp_unit));
2061 unit->abfd = objfile->obfd;
2062 unit->objfile = objfile;
2063 unit->dbase = 0;
2064 unit->tbase = 0;
cfc14b3a 2065
dce234bc
PP
2066 dwarf2_get_section_info (objfile, ".eh_frame",
2067 &unit->dwarf_frame_section,
2068 &unit->dwarf_frame_buffer,
2069 &unit->dwarf_frame_size);
2070 if (unit->dwarf_frame_size)
cfc14b3a 2071 {
0fd85043 2072 asection *got, *txt;
0912c7f2 2073
0912c7f2 2074 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
2075 that is used for the i386/amd64 target, which currently is
2076 the only target in GCC that supports/uses the
2077 DW_EH_PE_datarel encoding. */
ae0d2f24 2078 got = bfd_get_section_by_name (unit->abfd, ".got");
0912c7f2 2079 if (got)
ae0d2f24 2080 unit->dbase = got->vma;
0912c7f2 2081
22c7ba1a
MK
2082 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2083 so far. */
ae0d2f24 2084 txt = bfd_get_section_by_name (unit->abfd, ".text");
0fd85043 2085 if (txt)
ae0d2f24 2086 unit->tbase = txt->vma;
0fd85043 2087
ae0d2f24
UW
2088 frame_ptr = unit->dwarf_frame_buffer;
2089 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2090 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2091 &cie_table, &fde_table);
2092
2093 if (cie_table.num_entries != 0)
2094 {
2095 /* Reinit cie_table: debug_frame has different CIEs. */
2096 xfree (cie_table.entries);
2097 cie_table.num_entries = 0;
2098 cie_table.entries = NULL;
2099 }
cfc14b3a
MK
2100 }
2101
dce234bc
PP
2102 dwarf2_get_section_info (objfile, ".debug_frame",
2103 &unit->dwarf_frame_section,
2104 &unit->dwarf_frame_buffer,
2105 &unit->dwarf_frame_size);
2106 if (unit->dwarf_frame_size)
cfc14b3a 2107 {
ae0d2f24
UW
2108 frame_ptr = unit->dwarf_frame_buffer;
2109 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2110 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2111 &cie_table, &fde_table);
2112 }
2113
2114 /* Discard the cie_table, it is no longer needed. */
2115 if (cie_table.num_entries != 0)
2116 {
2117 xfree (cie_table.entries);
2118 cie_table.entries = NULL; /* Paranoia. */
2119 cie_table.num_entries = 0; /* Paranoia. */
2120 }
2121
be391dca
TT
2122 /* Copy fde_table to obstack: it is needed at runtime. */
2123 fde_table2 = (struct dwarf2_fde_table *)
2124 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2125
2126 if (fde_table.num_entries == 0)
2127 {
2128 fde_table2->entries = NULL;
2129 fde_table2->num_entries = 0;
2130 }
2131 else
b01c8410 2132 {
875cdfbb
PA
2133 struct dwarf2_fde *fde_prev = NULL;
2134 struct dwarf2_fde *first_non_zero_fde = NULL;
2135 int i;
b01c8410
PP
2136
2137 /* Prepare FDE table for lookups. */
2138 qsort (fde_table.entries, fde_table.num_entries,
2139 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2140
875cdfbb
PA
2141 /* Check for leftovers from --gc-sections. The GNU linker sets
2142 the relevant symbols to zero, but doesn't zero the FDE *end*
2143 ranges because there's no relocation there. It's (offset,
2144 length), not (start, end). On targets where address zero is
2145 just another valid address this can be a problem, since the
2146 FDEs appear to be non-empty in the output --- we could pick
2147 out the wrong FDE. To work around this, when overlaps are
2148 detected, we prefer FDEs that do not start at zero.
2149
2150 Start by finding the first FDE with non-zero start. Below
2151 we'll discard all FDEs that start at zero and overlap this
2152 one. */
2153 for (i = 0; i < fde_table.num_entries; i++)
2154 {
2155 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2156
875cdfbb
PA
2157 if (fde->initial_location != 0)
2158 {
2159 first_non_zero_fde = fde;
2160 break;
2161 }
2162 }
2163
2164 /* Since we'll be doing bsearch, squeeze out identical (except
2165 for eh_frame_p) fde entries so bsearch result is predictable.
2166 Also discard leftovers from --gc-sections. */
be391dca 2167 fde_table2->num_entries = 0;
875cdfbb
PA
2168 for (i = 0; i < fde_table.num_entries; i++)
2169 {
2170 struct dwarf2_fde *fde = fde_table.entries[i];
2171
2172 if (fde->initial_location == 0
2173 && first_non_zero_fde != NULL
2174 && (first_non_zero_fde->initial_location
2175 < fde->initial_location + fde->address_range))
2176 continue;
2177
2178 if (fde_prev != NULL
2179 && fde_prev->initial_location == fde->initial_location)
2180 continue;
2181
2182 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2183 sizeof (fde_table.entries[0]));
2184 ++fde_table2->num_entries;
2185 fde_prev = fde;
2186 }
b01c8410 2187 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2188
2189 /* Discard the original fde_table. */
2190 xfree (fde_table.entries);
cfc14b3a 2191 }
be391dca
TT
2192
2193 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2194}
0d0e1a63
MK
2195
2196/* Provide a prototype to silence -Wmissing-prototypes. */
2197void _initialize_dwarf2_frame (void);
2198
2199void
2200_initialize_dwarf2_frame (void)
2201{
030f20e1 2202 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2203 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2204}
This page took 0.587735 seconds and 4 git commands to generate.