Add the "set style source" command
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
42a4f53d 3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
edb3359d 33#include "block.h"
8e3b41a9 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
e7802207 39#include "dwarf2-frame.h"
bb2ec1b3 40#include "compile/compile.h"
0747795c 41#include "common/selftest.h"
325fac50 42#include <algorithm>
58414334 43#include <vector>
fc4007c9 44#include <unordered_set>
9c541725 45#include "common/underlying.h"
d5722aa2 46#include "common/byte-vector.h"
4c2df51b 47
b4f54984 48extern int dwarf_always_disassemble;
9eae7c52 49
1632a688
JK
50static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
56eb65bd
SP
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
8cf6f0b1 57
192ca6d8
TT
58static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
a6b786da
KB
64static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
e4a62c65 68 struct type *type, bool resolve_abstract_p = false);
a6b786da 69
f664829e
DE
70/* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75enum debug_loc_kind
76{
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
3771a44c
DE
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
94
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
97
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
100};
101
b6807d98
TT
102/* Helper function which throws an error if a synthetic pointer is
103 invalid. */
104
105static void
106invalid_synthetic_pointer (void)
107{
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
110}
111
f664829e
DE
112/* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
116
117static enum debug_loc_kind
118decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
123 int signed_addr_p)
124{
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
126
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
129
130 if (signed_addr_p)
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 if (signed_addr_p)
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
138 else
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
141
142 *new_ptr = loc_ptr;
143
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
147
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
151
3771a44c 152 return DEBUG_LOC_START_END;
f664829e
DE
153}
154
43988095
JK
155/* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
159
160static enum debug_loc_kind
161decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
168 int signed_addr_p)
169{
170 uint64_t u64;
171
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174
175 switch (*loc_ptr++)
176 {
177 case DW_LLE_end_of_list:
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_END_OF_LIST;
180 case DW_LLE_base_address:
181 if (loc_ptr + addr_size > buf_end)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 if (signed_addr_p)
184 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
185 else
186 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
187 loc_ptr += addr_size;
188 *new_ptr = loc_ptr;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_offset_pair:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *low = u64;
195 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
196 if (loc_ptr == NULL)
197 return DEBUG_LOC_BUFFER_OVERFLOW;
198 *high = u64;
199 *new_ptr = loc_ptr;
200 return DEBUG_LOC_START_END;
201 default:
202 return DEBUG_LOC_INVALID_ENTRY;
203 }
204}
205
f664829e
DE
206/* Decode the addresses in .debug_loc.dwo entry.
207 A pointer to the next byte to examine is returned in *NEW_PTR.
208 The encoded low,high addresses are return in *LOW,*HIGH.
209 The result indicates the kind of entry found. */
210
211static enum debug_loc_kind
212decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
213 const gdb_byte *loc_ptr,
214 const gdb_byte *buf_end,
215 const gdb_byte **new_ptr,
3771a44c
DE
216 CORE_ADDR *low, CORE_ADDR *high,
217 enum bfd_endian byte_order)
f664829e 218{
9fccedf7 219 uint64_t low_index, high_index;
f664829e
DE
220
221 if (loc_ptr == buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
223
224 switch (*loc_ptr++)
225 {
43988095 226 case DW_LLE_GNU_end_of_list_entry:
f664829e
DE
227 *new_ptr = loc_ptr;
228 return DEBUG_LOC_END_OF_LIST;
43988095 229 case DW_LLE_GNU_base_address_selection_entry:
f664829e
DE
230 *low = 0;
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *high = dwarf2_read_addr_index (per_cu, high_index);
235 *new_ptr = loc_ptr;
236 return DEBUG_LOC_BASE_ADDRESS;
43988095 237 case DW_LLE_GNU_start_end_entry:
f664829e
DE
238 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
239 if (loc_ptr == NULL)
240 return DEBUG_LOC_BUFFER_OVERFLOW;
241 *low = dwarf2_read_addr_index (per_cu, low_index);
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *high = dwarf2_read_addr_index (per_cu, high_index);
246 *new_ptr = loc_ptr;
3771a44c 247 return DEBUG_LOC_START_END;
43988095 248 case DW_LLE_GNU_start_length_entry:
3771a44c
DE
249 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
250 if (loc_ptr == NULL)
251 return DEBUG_LOC_BUFFER_OVERFLOW;
252 *low = dwarf2_read_addr_index (per_cu, low_index);
253 if (loc_ptr + 4 > buf_end)
254 return DEBUG_LOC_BUFFER_OVERFLOW;
255 *high = *low;
256 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
257 *new_ptr = loc_ptr + 4;
258 return DEBUG_LOC_START_LENGTH;
f664829e
DE
259 default:
260 return DEBUG_LOC_INVALID_ENTRY;
261 }
262}
263
8cf6f0b1 264/* A function for dealing with location lists. Given a
0d53c4c4
DJ
265 symbol baton (BATON) and a pc value (PC), find the appropriate
266 location expression, set *LOCEXPR_LENGTH, and return a pointer
267 to the beginning of the expression. Returns NULL on failure.
268
269 For now, only return the first matching location expression; there
270 can be more than one in the list. */
271
8cf6f0b1
TT
272const gdb_byte *
273dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
274 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 275{
ae0d2f24 276 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 279 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 280 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 281 /* Adjust base_address for relocatable objects. */
9aa1f1e3 282 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 283 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 284 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
285
286 loc_ptr = baton->data;
287 buf_end = baton->data + baton->size;
288
289 while (1)
290 {
f664829e
DE
291 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
292 int length;
293 enum debug_loc_kind kind;
294 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
295
296 if (baton->from_dwo)
297 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
298 loc_ptr, buf_end, &new_ptr,
3771a44c 299 &low, &high, byte_order);
43988095 300 else if (dwarf2_version (baton->per_cu) < 5)
f664829e
DE
301 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
302 &low, &high,
303 byte_order, addr_size,
304 signed_addr_p);
43988095
JK
305 else
306 kind = decode_debug_loclists_addresses (baton->per_cu,
307 loc_ptr, buf_end, &new_ptr,
308 &low, &high, byte_order,
309 addr_size, signed_addr_p);
310
f664829e
DE
311 loc_ptr = new_ptr;
312 switch (kind)
1d6edc3c 313 {
f664829e 314 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
315 *locexpr_length = 0;
316 return NULL;
f664829e
DE
317 case DEBUG_LOC_BASE_ADDRESS:
318 base_address = high + base_offset;
319 continue;
3771a44c
DE
320 case DEBUG_LOC_START_END:
321 case DEBUG_LOC_START_LENGTH:
f664829e
DE
322 break;
323 case DEBUG_LOC_BUFFER_OVERFLOW:
324 case DEBUG_LOC_INVALID_ENTRY:
325 error (_("dwarf2_find_location_expression: "
326 "Corrupted DWARF expression."));
327 default:
328 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 329 }
b5758fe4 330
bed911e5 331 /* Otherwise, a location expression entry.
8ddd5a6c
DE
332 If the entry is from a DWO, don't add base address: the entry is from
333 .debug_addr which already has the DWARF "base address". We still add
334 base_offset in case we're debugging a PIE executable. */
335 if (baton->from_dwo)
336 {
337 low += base_offset;
338 high += base_offset;
339 }
340 else
bed911e5
DE
341 {
342 low += base_address;
343 high += base_address;
344 }
0d53c4c4 345
43988095
JK
346 if (dwarf2_version (baton->per_cu) < 5)
347 {
348 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
349 loc_ptr += 2;
350 }
351 else
352 {
353 unsigned int bytes_read;
354
355 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
356 loc_ptr += bytes_read;
357 }
0d53c4c4 358
e18b2753
JK
359 if (low == high && pc == low)
360 {
361 /* This is entry PC record present only at entry point
362 of a function. Verify it is really the function entry point. */
363
3977b71f 364 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
365 struct symbol *pc_func = NULL;
366
367 if (pc_block)
368 pc_func = block_linkage_function (pc_block);
369
2b1ffcfd 370 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
e18b2753
JK
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375 }
376
0d53c4c4
DJ
377 if (pc >= low && pc < high)
378 {
379 *locexpr_length = length;
380 return loc_ptr;
381 }
382
383 loc_ptr += length;
384 }
385}
386
4c2df51b
DJ
387/* This is the baton used when performing dwarf2 expression
388 evaluation. */
389struct dwarf_expr_baton
390{
391 struct frame_info *frame;
17ea53c3 392 struct dwarf2_per_cu_data *per_cu;
08412b07 393 CORE_ADDR obj_address;
4c2df51b
DJ
394};
395
f1e6e072
TT
396/* Implement find_frame_base_location method for LOC_BLOCK functions using
397 DWARF expression for its DW_AT_frame_base. */
398
399static void
400locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
401 const gdb_byte **start, size_t *length)
402{
9a3c8263
SM
403 struct dwarf2_locexpr_baton *symbaton
404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
405
406 *length = symbaton->size;
407 *start = symbaton->data;
408}
409
7d1c9c9b
JB
410/* Implement the struct symbol_block_ops::get_frame_base method for
411 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
412
413static CORE_ADDR
7d1c9c9b 414locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
415{
416 struct gdbarch *gdbarch;
417 struct type *type;
418 struct dwarf2_locexpr_baton *dlbaton;
419 const gdb_byte *start;
420 size_t length;
421 struct value *result;
422
423 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
424 Thus, it's supposed to provide the find_frame_base_location method as
425 well. */
426 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
427
428 gdbarch = get_frame_arch (frame);
429 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 430 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
431
432 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
433 (framefunc, get_frame_pc (frame), &start, &length);
434 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
435 dlbaton->per_cu);
436
437 /* The DW_AT_frame_base attribute contains a location description which
438 computes the base address itself. However, the call to
439 dwarf2_evaluate_loc_desc returns a value representing a variable at
440 that address. The frame base address is thus this variable's
441 address. */
442 return value_address (result);
443}
444
f1e6e072
TT
445/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
446 function uses DWARF expression for its DW_AT_frame_base. */
447
448const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
449{
63e43d3a 450 locexpr_find_frame_base_location,
7d1c9c9b 451 locexpr_get_frame_base
f1e6e072
TT
452};
453
454/* Implement find_frame_base_location method for LOC_BLOCK functions using
455 DWARF location list for its DW_AT_frame_base. */
456
457static void
458loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
459 const gdb_byte **start, size_t *length)
460{
9a3c8263
SM
461 struct dwarf2_loclist_baton *symbaton
462 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
463
464 *start = dwarf2_find_location_expression (symbaton, length, pc);
465}
466
7d1c9c9b
JB
467/* Implement the struct symbol_block_ops::get_frame_base method for
468 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
469
470static CORE_ADDR
471loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
472{
473 struct gdbarch *gdbarch;
474 struct type *type;
475 struct dwarf2_loclist_baton *dlbaton;
476 const gdb_byte *start;
477 size_t length;
478 struct value *result;
479
480 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
481 Thus, it's supposed to provide the find_frame_base_location method as
482 well. */
483 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
484
485 gdbarch = get_frame_arch (frame);
486 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 487 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
488
489 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
490 (framefunc, get_frame_pc (frame), &start, &length);
491 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
492 dlbaton->per_cu);
493
494 /* The DW_AT_frame_base attribute contains a location description which
495 computes the base address itself. However, the call to
496 dwarf2_evaluate_loc_desc returns a value representing a variable at
497 that address. The frame base address is thus this variable's
498 address. */
499 return value_address (result);
500}
501
f1e6e072
TT
502/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
503 function uses DWARF location list for its DW_AT_frame_base. */
504
505const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
506{
63e43d3a 507 loclist_find_frame_base_location,
7d1c9c9b 508 loclist_get_frame_base
f1e6e072
TT
509};
510
af945b75
TT
511/* See dwarf2loc.h. */
512
513void
514func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
515 const gdb_byte **start, size_t *length)
0936ad1d 516{
f1e6e072 517 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 518 {
f1e6e072 519 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 520
f1e6e072 521 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
522 }
523 else
f1e6e072 524 *length = 0;
0d53c4c4 525
1d6edc3c 526 if (*length == 0)
8a3fe4f8 527 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 528 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
529}
530
4c2df51b 531static CORE_ADDR
192ca6d8 532get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 533{
192ca6d8 534 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 535
192ca6d8 536 return ctx->get_frame_pc ();
4c2df51b
DJ
537}
538
5c631832 539static void
b64f50a1 540per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 541 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
542{
543 struct dwarf2_locexpr_baton block;
544
192ca6d8
TT
545 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
546 get_frame_pc_for_per_cu_dwarf_call,
547 ctx);
5c631832
JK
548
549 /* DW_OP_call_ref is currently not supported. */
550 gdb_assert (block.per_cu == per_cu);
551
595d2e30 552 ctx->eval (block.data, block.size);
5c631832
JK
553}
554
a6b786da
KB
555/* Given context CTX, section offset SECT_OFF, and compilation unit
556 data PER_CU, execute the "variable value" operation on the DIE
557 found at SECT_OFF. */
558
559static struct value *
560sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
561 struct dwarf2_per_cu_data *per_cu)
562{
563 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
564
565 if (die_type == NULL)
566 error (_("Bad DW_OP_GNU_variable_value DIE."));
567
568 /* Note: Things still work when the following test is removed. This
569 test and error is here to conform to the proposed specification. */
570 if (TYPE_CODE (die_type) != TYPE_CODE_INT
571 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
572 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
573
574 struct type *type = lookup_pointer_type (die_type);
575 struct frame_info *frame = get_selected_frame (_("No frame selected."));
e4a62c65 576 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
a6b786da
KB
577}
578
192ca6d8 579class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 580{
192ca6d8 581 public:
5c631832 582
192ca6d8
TT
583 struct frame_info *frame;
584 struct dwarf2_per_cu_data *per_cu;
585 CORE_ADDR obj_address;
5c631832 586
192ca6d8
TT
587 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
588 the frame in BATON. */
8a9b8146 589
632e107b 590 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
591 {
592 return dwarf2_frame_cfa (frame);
593 }
8a9b8146 594
192ca6d8
TT
595 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
596 the frame in BATON. */
597
632e107b 598 CORE_ADDR get_frame_pc () override
192ca6d8
TT
599 {
600 return get_frame_address_in_block (frame);
601 }
602
603 /* Using the objfile specified in BATON, find the address for the
604 current thread's thread-local storage with offset OFFSET. */
632e107b 605 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
606 {
607 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
608
609 return target_translate_tls_address (objfile, offset);
610 }
611
612 /* Helper interface of per_cu_dwarf_call for
613 dwarf2_evaluate_loc_desc. */
614
632e107b 615 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
616 {
617 per_cu_dwarf_call (this, die_offset, per_cu);
618 }
619
a6b786da
KB
620 /* Helper interface of sect_variable_value for
621 dwarf2_evaluate_loc_desc. */
622
623 struct value *dwarf_variable_value (sect_offset sect_off) override
624 {
625 return sect_variable_value (this, sect_off, per_cu);
626 }
627
632e107b 628 struct type *get_base_type (cu_offset die_offset, int size) override
192ca6d8 629 {
7d5697f9
TT
630 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
631 if (result == NULL)
216f72a1 632 error (_("Could not find type for DW_OP_const_type"));
7d5697f9 633 if (size != 0 && TYPE_LENGTH (result) != size)
216f72a1 634 error (_("DW_OP_const_type has different sizes for type and data"));
7d5697f9 635 return result;
192ca6d8
TT
636 }
637
638 /* Callback function for dwarf2_evaluate_loc_desc.
639 Fetch the address indexed by DW_OP_GNU_addr_index. */
640
632e107b 641 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
642 {
643 return dwarf2_read_addr_index (per_cu, index);
644 }
645
646 /* Callback function for get_object_address. Return the address of the VLA
647 object. */
648
632e107b 649 CORE_ADDR get_object_address () override
192ca6d8
TT
650 {
651 if (obj_address == 0)
652 error (_("Location address is not set."));
653 return obj_address;
654 }
655
656 /* Execute DWARF block of call_site_parameter which matches KIND and
657 KIND_U. Choose DEREF_SIZE value of that parameter. Search
658 caller of this objects's frame.
659
660 The caller can be from a different CU - per_cu_dwarf_call
661 implementation can be more simple as it does not support cross-CU
662 DWARF executions. */
663
664 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
665 union call_site_parameter_u kind_u,
632e107b 666 int deref_size) override
192ca6d8
TT
667 {
668 struct frame_info *caller_frame;
669 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
670 struct call_site_parameter *parameter;
671 const gdb_byte *data_src;
672 size_t size;
673
674 caller_frame = get_prev_frame (frame);
675
676 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
677 &caller_per_cu);
678 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
679 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
680
681 /* DEREF_SIZE size is not verified here. */
682 if (data_src == NULL)
683 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 684 _("Cannot resolve DW_AT_call_data_value"));
192ca6d8 685
7d5697f9
TT
686 scoped_restore save_frame = make_scoped_restore (&this->frame,
687 caller_frame);
688 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
689 caller_per_cu);
690 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
691 (CORE_ADDR) 0);
192ca6d8
TT
692
693 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
694 this->gdbarch
7d5697f9 695 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
192ca6d8 696 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
7d5697f9 697 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
192ca6d8 698 scoped_restore save_offset = make_scoped_restore (&this->offset);
7d5697f9 699 this->offset = dwarf2_per_cu_text_offset (per_cu);
192ca6d8
TT
700
701 this->eval (data_src, size);
702 }
703
704 /* Using the frame specified in BATON, find the location expression
705 describing the frame base. Return a pointer to it in START and
706 its length in LENGTH. */
632e107b 707 void get_frame_base (const gdb_byte **start, size_t * length) override
192ca6d8
TT
708 {
709 /* FIXME: cagney/2003-03-26: This code should be using
710 get_frame_base_address(), and then implement a dwarf2 specific
711 this_base method. */
712 struct symbol *framefunc;
713 const struct block *bl = get_frame_block (frame, NULL);
714
715 if (bl == NULL)
716 error (_("frame address is not available."));
717
718 /* Use block_linkage_function, which returns a real (not inlined)
719 function, instead of get_frame_function, which may return an
720 inlined function. */
721 framefunc = block_linkage_function (bl);
722
723 /* If we found a frame-relative symbol then it was certainly within
724 some function associated with a frame. If we can't find the frame,
725 something has gone wrong. */
726 gdb_assert (framefunc != NULL);
727
728 func_get_frame_base_dwarf_block (framefunc,
729 get_frame_address_in_block (frame),
730 start, length);
731 }
732
733 /* Read memory at ADDR (length LEN) into BUF. */
734
632e107b 735 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
736 {
737 read_memory (addr, buf, len);
738 }
739
740 /* Using the frame specified in BATON, return the value of register
741 REGNUM, treated as a pointer. */
632e107b 742 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
192ca6d8
TT
743 {
744 struct gdbarch *gdbarch = get_frame_arch (frame);
745 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
746
747 return address_from_register (regnum, frame);
748 }
749
750 /* Implement "get_reg_value" callback. */
751
632e107b 752 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
192ca6d8
TT
753 {
754 struct gdbarch *gdbarch = get_frame_arch (frame);
755 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
756
757 return value_from_register (type, regnum, frame);
758 }
759};
8a9b8146 760
8e3b41a9
JK
761/* See dwarf2loc.h. */
762
ccce17b0 763unsigned int entry_values_debug = 0;
8e3b41a9
JK
764
765/* Helper to set entry_values_debug. */
766
767static void
768show_entry_values_debug (struct ui_file *file, int from_tty,
769 struct cmd_list_element *c, const char *value)
770{
771 fprintf_filtered (file,
772 _("Entry values and tail call frames debugging is %s.\n"),
773 value);
774}
775
216f72a1 776/* Find DW_TAG_call_site's DW_AT_call_target address.
8e3b41a9
JK
777 CALLER_FRAME (for registers) can be NULL if it is not known. This function
778 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
779
780static CORE_ADDR
781call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
782 struct call_site *call_site,
783 struct frame_info *caller_frame)
784{
785 switch (FIELD_LOC_KIND (call_site->target))
786 {
787 case FIELD_LOC_KIND_DWARF_BLOCK:
788 {
789 struct dwarf2_locexpr_baton *dwarf_block;
790 struct value *val;
791 struct type *caller_core_addr_type;
792 struct gdbarch *caller_arch;
793
794 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
795 if (dwarf_block == NULL)
796 {
7cbd4a93 797 struct bound_minimal_symbol msym;
8e3b41a9
JK
798
799 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
800 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 801 _("DW_AT_call_target is not specified at %s in %s"),
8e3b41a9 802 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 803 (msym.minsym == NULL ? "???"
efd66ac6 804 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
805
806 }
807 if (caller_frame == NULL)
808 {
7cbd4a93 809 struct bound_minimal_symbol msym;
8e3b41a9
JK
810
811 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
812 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 813 _("DW_AT_call_target DWARF block resolving "
8e3b41a9
JK
814 "requires known frame which is currently not "
815 "available at %s in %s"),
816 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 817 (msym.minsym == NULL ? "???"
efd66ac6 818 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
819
820 }
821 caller_arch = get_frame_arch (caller_frame);
822 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
823 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
824 dwarf_block->data, dwarf_block->size,
825 dwarf_block->per_cu);
216f72a1 826 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
8e3b41a9
JK
827 if (VALUE_LVAL (val) == lval_memory)
828 return value_address (val);
829 else
830 return value_as_address (val);
831 }
832
833 case FIELD_LOC_KIND_PHYSNAME:
834 {
835 const char *physname;
3b7344d5 836 struct bound_minimal_symbol msym;
8e3b41a9
JK
837
838 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
839
840 /* Handle both the mangled and demangled PHYSNAME. */
841 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 842 if (msym.minsym == NULL)
8e3b41a9 843 {
3b7344d5 844 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
845 throw_error (NO_ENTRY_VALUE_ERROR,
846 _("Cannot find function \"%s\" for a call site target "
847 "at %s in %s"),
848 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
849 (msym.minsym == NULL ? "???"
850 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
851
852 }
77e371c0 853 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
854 }
855
856 case FIELD_LOC_KIND_PHYSADDR:
857 return FIELD_STATIC_PHYSADDR (call_site->target);
858
859 default:
860 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
861 }
862}
863
111c6489
JK
864/* Convert function entry point exact address ADDR to the function which is
865 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
866 NO_ENTRY_VALUE_ERROR otherwise. */
867
868static struct symbol *
869func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
870{
871 struct symbol *sym = find_pc_function (addr);
872 struct type *type;
873
2b1ffcfd 874 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
111c6489 875 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 876 _("DW_TAG_call_site resolving failed to find function "
111c6489
JK
877 "name for address %s"),
878 paddress (gdbarch, addr));
879
880 type = SYMBOL_TYPE (sym);
881 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
882 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
883
884 return sym;
885}
886
2d6c5dc2
JK
887/* Verify function with entry point exact address ADDR can never call itself
888 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
889 can call itself via tail calls.
890
891 If a funtion can tail call itself its entry value based parameters are
892 unreliable. There is no verification whether the value of some/all
893 parameters is unchanged through the self tail call, we expect if there is
894 a self tail call all the parameters can be modified. */
895
896static void
897func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
898{
2d6c5dc2
JK
899 CORE_ADDR addr;
900
2d6c5dc2
JK
901 /* The verification is completely unordered. Track here function addresses
902 which still need to be iterated. */
fc4007c9 903 std::vector<CORE_ADDR> todo;
2d6c5dc2 904
fc4007c9
TT
905 /* Track here CORE_ADDRs which were already visited. */
906 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 907
fc4007c9
TT
908 todo.push_back (verify_addr);
909 while (!todo.empty ())
2d6c5dc2
JK
910 {
911 struct symbol *func_sym;
912 struct call_site *call_site;
913
fc4007c9
TT
914 addr = todo.back ();
915 todo.pop_back ();
2d6c5dc2
JK
916
917 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
918
919 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
920 call_site; call_site = call_site->tail_call_next)
921 {
922 CORE_ADDR target_addr;
2d6c5dc2
JK
923
924 /* CALLER_FRAME with registers is not available for tail-call jumped
925 frames. */
926 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
927
928 if (target_addr == verify_addr)
929 {
7cbd4a93 930 struct bound_minimal_symbol msym;
2d6c5dc2
JK
931
932 msym = lookup_minimal_symbol_by_pc (verify_addr);
933 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 934 _("DW_OP_entry_value resolving has found "
2d6c5dc2
JK
935 "function \"%s\" at %s can call itself via tail "
936 "calls"),
7cbd4a93 937 (msym.minsym == NULL ? "???"
efd66ac6 938 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
939 paddress (gdbarch, verify_addr));
940 }
941
fc4007c9
TT
942 if (addr_hash.insert (target_addr).second)
943 todo.push_back (target_addr);
2d6c5dc2
JK
944 }
945 }
2d6c5dc2
JK
946}
947
111c6489
JK
948/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
949 ENTRY_VALUES_DEBUG. */
950
951static void
952tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
953{
954 CORE_ADDR addr = call_site->pc;
7cbd4a93 955 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
956
957 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 958 (msym.minsym == NULL ? "???"
efd66ac6 959 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
960
961}
962
111c6489
JK
963/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
964 only top callers and bottom callees which are present in both. GDBARCH is
965 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
966 no remaining possibilities to provide unambiguous non-trivial result.
967 RESULTP should point to NULL on the first (initialization) call. Caller is
968 responsible for xfree of any RESULTP data. */
969
970static void
fc4007c9
TT
971chain_candidate (struct gdbarch *gdbarch,
972 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
973 std::vector<struct call_site *> *chain)
111c6489 974{
fc4007c9 975 long length = chain->size ();
111c6489
JK
976 int callers, callees, idx;
977
fc4007c9 978 if (*resultp == NULL)
111c6489
JK
979 {
980 /* Create the initial chain containing all the passed PCs. */
981
fc4007c9
TT
982 struct call_site_chain *result
983 = ((struct call_site_chain *)
984 xmalloc (sizeof (*result)
985 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
986 result->length = length;
987 result->callers = result->callees = length;
fc4007c9
TT
988 if (!chain->empty ())
989 memcpy (result->call_site, chain->data (),
19a1b230 990 sizeof (*result->call_site) * length);
fc4007c9 991 resultp->reset (result);
111c6489
JK
992
993 if (entry_values_debug)
994 {
995 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
996 for (idx = 0; idx < length; idx++)
997 tailcall_dump (gdbarch, result->call_site[idx]);
998 fputc_unfiltered ('\n', gdb_stdlog);
999 }
1000
1001 return;
1002 }
1003
1004 if (entry_values_debug)
1005 {
1006 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1007 for (idx = 0; idx < length; idx++)
fc4007c9 1008 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
1009 fputc_unfiltered ('\n', gdb_stdlog);
1010 }
1011
1012 /* Intersect callers. */
1013
fc4007c9 1014 callers = std::min ((long) (*resultp)->callers, length);
111c6489 1015 for (idx = 0; idx < callers; idx++)
fc4007c9 1016 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 1017 {
fc4007c9 1018 (*resultp)->callers = idx;
111c6489
JK
1019 break;
1020 }
1021
1022 /* Intersect callees. */
1023
fc4007c9 1024 callees = std::min ((long) (*resultp)->callees, length);
111c6489 1025 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
1026 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1027 != chain->at (length - 1 - idx))
111c6489 1028 {
fc4007c9 1029 (*resultp)->callees = idx;
111c6489
JK
1030 break;
1031 }
1032
1033 if (entry_values_debug)
1034 {
1035 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
1036 for (idx = 0; idx < (*resultp)->callers; idx++)
1037 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 1038 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
1039 for (idx = 0; idx < (*resultp)->callees; idx++)
1040 tailcall_dump (gdbarch,
1041 (*resultp)->call_site[(*resultp)->length
1042 - (*resultp)->callees + idx]);
111c6489
JK
1043 fputc_unfiltered ('\n', gdb_stdlog);
1044 }
1045
fc4007c9 1046 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
1047 {
1048 /* There are no common callers or callees. It could be also a direct
1049 call (which has length 0) with ambiguous possibility of an indirect
1050 call - CALLERS == CALLEES == 0 is valid during the first allocation
1051 but any subsequence processing of such entry means ambiguity. */
fc4007c9 1052 resultp->reset (NULL);
111c6489
JK
1053 return;
1054 }
1055
1056 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1057 PC again. In such case there must be two different code paths to reach
e0619de6 1058 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 1059 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
1060}
1061
1062/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1063 assumed frames between them use GDBARCH. Use depth first search so we can
1064 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1065 would have needless GDB stack overhead. Caller is responsible for xfree of
1066 the returned result. Any unreliability results in thrown
1067 NO_ENTRY_VALUE_ERROR. */
1068
1069static struct call_site_chain *
1070call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1071 CORE_ADDR callee_pc)
1072{
c4be5165 1073 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 1074 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
1075 struct call_site *call_site;
1076
111c6489
JK
1077 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1078 call_site nor any possible call_site at CALLEE_PC's function is there.
1079 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1080 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 1081 std::vector<struct call_site *> chain;
111c6489
JK
1082
1083 /* We are not interested in the specific PC inside the callee function. */
1084 callee_pc = get_pc_function_start (callee_pc);
1085 if (callee_pc == 0)
1086 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1087 paddress (gdbarch, save_callee_pc));
111c6489 1088
fc4007c9
TT
1089 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1090 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
1091
1092 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1093 at the target's function. All the possible tail call sites in the
1094 target's function will get iterated as already pushed into CHAIN via their
1095 TAIL_CALL_NEXT. */
1096 call_site = call_site_for_pc (gdbarch, caller_pc);
1097
1098 while (call_site)
1099 {
1100 CORE_ADDR target_func_addr;
1101 struct call_site *target_call_site;
1102
1103 /* CALLER_FRAME with registers is not available for tail-call jumped
1104 frames. */
1105 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1106
1107 if (target_func_addr == callee_pc)
1108 {
fc4007c9 1109 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1110 if (retval == NULL)
1111 break;
1112
1113 /* There is no way to reach CALLEE_PC again as we would prevent
1114 entering it twice as being already marked in ADDR_HASH. */
1115 target_call_site = NULL;
1116 }
1117 else
1118 {
1119 struct symbol *target_func;
1120
1121 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1122 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1123 }
1124
1125 do
1126 {
1127 /* Attempt to visit TARGET_CALL_SITE. */
1128
1129 if (target_call_site)
1130 {
fc4007c9 1131 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1132 {
1133 /* Successfully entered TARGET_CALL_SITE. */
1134
fc4007c9 1135 chain.push_back (target_call_site);
111c6489
JK
1136 break;
1137 }
1138 }
1139
1140 /* Backtrack (without revisiting the originating call_site). Try the
1141 callers's sibling; if there isn't any try the callers's callers's
1142 sibling etc. */
1143
1144 target_call_site = NULL;
fc4007c9 1145 while (!chain.empty ())
111c6489 1146 {
fc4007c9
TT
1147 call_site = chain.back ();
1148 chain.pop_back ();
111c6489 1149
fc4007c9
TT
1150 size_t removed = addr_hash.erase (call_site->pc);
1151 gdb_assert (removed == 1);
111c6489
JK
1152
1153 target_call_site = call_site->tail_call_next;
1154 if (target_call_site)
1155 break;
1156 }
1157 }
1158 while (target_call_site);
1159
fc4007c9 1160 if (chain.empty ())
111c6489
JK
1161 call_site = NULL;
1162 else
fc4007c9 1163 call_site = chain.back ();
111c6489
JK
1164 }
1165
1166 if (retval == NULL)
1167 {
7cbd4a93 1168 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1169
1170 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1171 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1172 throw_error (NO_ENTRY_VALUE_ERROR,
1173 _("There are no unambiguously determinable intermediate "
1174 "callers or callees between caller function \"%s\" at %s "
1175 "and callee function \"%s\" at %s"),
7cbd4a93 1176 (msym_caller.minsym == NULL
efd66ac6 1177 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 1178 paddress (gdbarch, caller_pc),
7cbd4a93 1179 (msym_callee.minsym == NULL
efd66ac6 1180 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
1181 paddress (gdbarch, callee_pc));
1182 }
1183
fc4007c9 1184 return retval.release ();
111c6489
JK
1185}
1186
1187/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1188 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1189 constructed return NULL. Caller is responsible for xfree of the returned
1190 result. */
1191
1192struct call_site_chain *
1193call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1194 CORE_ADDR callee_pc)
1195{
111c6489
JK
1196 struct call_site_chain *retval = NULL;
1197
492d29ea 1198 TRY
111c6489
JK
1199 {
1200 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1201 }
492d29ea 1202 CATCH (e, RETURN_MASK_ERROR)
111c6489
JK
1203 {
1204 if (e.error == NO_ENTRY_VALUE_ERROR)
1205 {
1206 if (entry_values_debug)
1207 exception_print (gdb_stdout, e);
1208
1209 return NULL;
1210 }
1211 else
1212 throw_exception (e);
1213 }
492d29ea
PA
1214 END_CATCH
1215
111c6489
JK
1216 return retval;
1217}
1218
24c5c679
JK
1219/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1220
1221static int
1222call_site_parameter_matches (struct call_site_parameter *parameter,
1223 enum call_site_parameter_kind kind,
1224 union call_site_parameter_u kind_u)
1225{
1226 if (kind == parameter->kind)
1227 switch (kind)
1228 {
1229 case CALL_SITE_PARAMETER_DWARF_REG:
1230 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1231 case CALL_SITE_PARAMETER_FB_OFFSET:
1232 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3 1233 case CALL_SITE_PARAMETER_PARAM_OFFSET:
9c541725 1234 return kind_u.param_cu_off == parameter->u.param_cu_off;
24c5c679
JK
1235 }
1236 return 0;
1237}
1238
1239/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1240 FRAME is for callee.
8e3b41a9
JK
1241
1242 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1243 otherwise. */
1244
1245static struct call_site_parameter *
24c5c679
JK
1246dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1247 enum call_site_parameter_kind kind,
1248 union call_site_parameter_u kind_u,
8e3b41a9
JK
1249 struct dwarf2_per_cu_data **per_cu_return)
1250{
9e3a7d65
JK
1251 CORE_ADDR func_addr, caller_pc;
1252 struct gdbarch *gdbarch;
1253 struct frame_info *caller_frame;
8e3b41a9
JK
1254 struct call_site *call_site;
1255 int iparams;
509f0fd9
JK
1256 /* Initialize it just to avoid a GCC false warning. */
1257 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1258 CORE_ADDR target_addr;
1259
9e3a7d65
JK
1260 while (get_frame_type (frame) == INLINE_FRAME)
1261 {
1262 frame = get_prev_frame (frame);
1263 gdb_assert (frame != NULL);
1264 }
1265
1266 func_addr = get_frame_func (frame);
1267 gdbarch = get_frame_arch (frame);
1268 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1269 if (gdbarch != frame_unwind_arch (frame))
1270 {
7cbd4a93
TT
1271 struct bound_minimal_symbol msym
1272 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1273 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1274
1275 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1276 _("DW_OP_entry_value resolving callee gdbarch %s "
8e3b41a9
JK
1277 "(of %s (%s)) does not match caller gdbarch %s"),
1278 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1279 paddress (gdbarch, func_addr),
7cbd4a93 1280 (msym.minsym == NULL ? "???"
efd66ac6 1281 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1282 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1283 }
1284
1285 if (caller_frame == NULL)
1286 {
7cbd4a93
TT
1287 struct bound_minimal_symbol msym
1288 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9 1289
216f72a1 1290 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
8e3b41a9
JK
1291 "requires caller of %s (%s)"),
1292 paddress (gdbarch, func_addr),
7cbd4a93 1293 (msym.minsym == NULL ? "???"
efd66ac6 1294 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1295 }
1296 caller_pc = get_frame_pc (caller_frame);
1297 call_site = call_site_for_pc (gdbarch, caller_pc);
1298
1299 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1300 if (target_addr != func_addr)
1301 {
1302 struct minimal_symbol *target_msym, *func_msym;
1303
7cbd4a93
TT
1304 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1305 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9 1306 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1307 _("DW_OP_entry_value resolving expects callee %s at %s "
8e3b41a9
JK
1308 "but the called frame is for %s at %s"),
1309 (target_msym == NULL ? "???"
efd66ac6 1310 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1311 paddress (gdbarch, target_addr),
efd66ac6 1312 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1313 paddress (gdbarch, func_addr));
1314 }
1315
2d6c5dc2
JK
1316 /* No entry value based parameters would be reliable if this function can
1317 call itself via tail calls. */
1318 func_verify_no_selftailcall (gdbarch, func_addr);
1319
8e3b41a9
JK
1320 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1321 {
1322 parameter = &call_site->parameter[iparams];
24c5c679 1323 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1324 break;
1325 }
1326 if (iparams == call_site->parameter_count)
1327 {
7cbd4a93
TT
1328 struct minimal_symbol *msym
1329 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9 1330
216f72a1 1331 /* DW_TAG_call_site_parameter will be missing just if GCC could not
8e3b41a9
JK
1332 determine its value. */
1333 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
216f72a1 1334 "at DW_TAG_call_site %s at %s"),
8e3b41a9 1335 paddress (gdbarch, caller_pc),
efd66ac6 1336 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1337 }
1338
1339 *per_cu_return = call_site->per_cu;
1340 return parameter;
1341}
1342
a471c594 1343/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
216f72a1
JK
1344 the normal DW_AT_call_value block. Otherwise return the
1345 DW_AT_call_data_value (dereferenced) block.
e18b2753
JK
1346
1347 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1348 struct value.
1349
1350 Function always returns non-NULL, non-optimized out value. It throws
1351 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1352
1353static struct value *
1354dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1355 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1356 struct frame_info *caller_frame,
1357 struct dwarf2_per_cu_data *per_cu)
1358{
a471c594 1359 const gdb_byte *data_src;
e18b2753 1360 gdb_byte *data;
a471c594
JK
1361 size_t size;
1362
1363 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1364 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1365
1366 /* DEREF_SIZE size is not verified here. */
1367 if (data_src == NULL)
1368 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1369 _("Cannot resolve DW_AT_call_data_value"));
e18b2753 1370
216f72a1 1371 /* DW_AT_call_value is a DWARF expression, not a DWARF
e18b2753
JK
1372 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1373 DWARF block. */
224c3ddb 1374 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1375 memcpy (data, data_src, size);
1376 data[size] = DW_OP_stack_value;
e18b2753 1377
a471c594 1378 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1379}
1380
a471c594
JK
1381/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1382 the indirect method on it, that is use its stored target value, the sole
1383 purpose of entry_data_value_funcs.. */
1384
1385static struct value *
1386entry_data_value_coerce_ref (const struct value *value)
1387{
1388 struct type *checked_type = check_typedef (value_type (value));
1389 struct value *target_val;
1390
aa006118 1391 if (!TYPE_IS_REFERENCE (checked_type))
a471c594
JK
1392 return NULL;
1393
9a3c8263 1394 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1395 value_incref (target_val);
1396 return target_val;
1397}
1398
1399/* Implement copy_closure. */
1400
1401static void *
1402entry_data_value_copy_closure (const struct value *v)
1403{
9a3c8263 1404 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1405
1406 value_incref (target_val);
1407 return target_val;
1408}
1409
1410/* Implement free_closure. */
1411
1412static void
1413entry_data_value_free_closure (struct value *v)
1414{
9a3c8263 1415 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594 1416
22bc8444 1417 value_decref (target_val);
a471c594
JK
1418}
1419
1420/* Vector for methods for an entry value reference where the referenced value
1421 is stored in the caller. On the first dereference use
216f72a1 1422 DW_AT_call_data_value in the caller. */
a471c594
JK
1423
1424static const struct lval_funcs entry_data_value_funcs =
1425{
1426 NULL, /* read */
1427 NULL, /* write */
a471c594
JK
1428 NULL, /* indirect */
1429 entry_data_value_coerce_ref,
1430 NULL, /* check_synthetic_pointer */
1431 entry_data_value_copy_closure,
1432 entry_data_value_free_closure
1433};
1434
24c5c679
JK
1435/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1436 are used to match DW_AT_location at the caller's
216f72a1 1437 DW_TAG_call_site_parameter.
e18b2753
JK
1438
1439 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1440 cannot resolve the parameter for any reason. */
1441
1442static struct value *
1443value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1444 enum call_site_parameter_kind kind,
1445 union call_site_parameter_u kind_u)
e18b2753 1446{
a471c594
JK
1447 struct type *checked_type = check_typedef (type);
1448 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1449 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1450 struct value *outer_val, *target_val, *val;
e18b2753
JK
1451 struct call_site_parameter *parameter;
1452 struct dwarf2_per_cu_data *caller_per_cu;
1453
24c5c679 1454 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1455 &caller_per_cu);
1456
a471c594
JK
1457 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1458 type, caller_frame,
1459 caller_per_cu);
1460
216f72a1 1461 /* Check if DW_AT_call_data_value cannot be used. If it should be
a471c594
JK
1462 used and it is not available do not fall back to OUTER_VAL - dereferencing
1463 TYPE_CODE_REF with non-entry data value would give current value - not the
1464 entry value. */
1465
aa006118 1466 if (!TYPE_IS_REFERENCE (checked_type)
a471c594
JK
1467 || TYPE_TARGET_TYPE (checked_type) == NULL)
1468 return outer_val;
1469
1470 target_val = dwarf_entry_parameter_to_value (parameter,
1471 TYPE_LENGTH (target_type),
1472 target_type, caller_frame,
1473 caller_per_cu);
1474
a471c594 1475 val = allocate_computed_value (type, &entry_data_value_funcs,
895dafa6 1476 release_value (target_val).release ());
a471c594
JK
1477
1478 /* Copy the referencing pointer to the new computed value. */
1479 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1480 TYPE_LENGTH (checked_type));
1481 set_value_lazy (val, 0);
1482
1483 return val;
e18b2753
JK
1484}
1485
1486/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1487 SIZE are DWARF block used to match DW_AT_location at the caller's
216f72a1 1488 DW_TAG_call_site_parameter.
e18b2753
JK
1489
1490 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1491 cannot resolve the parameter for any reason. */
1492
1493static struct value *
1494value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1495 const gdb_byte *block, size_t block_len)
1496{
24c5c679 1497 union call_site_parameter_u kind_u;
e18b2753 1498
24c5c679
JK
1499 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1500 if (kind_u.dwarf_reg != -1)
1501 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1502 kind_u);
e18b2753 1503
24c5c679
JK
1504 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1505 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1506 kind_u);
e18b2753
JK
1507
1508 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1509 suppressed during normal operation. The expression can be arbitrary if
1510 there is no caller-callee entry value binding expected. */
1511 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1512 _("DWARF-2 expression error: DW_OP_entry_value is supported "
e18b2753
JK
1513 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1514}
1515
052b9502
NF
1516struct piece_closure
1517{
88bfdde4 1518 /* Reference count. */
1e467161 1519 int refc = 0;
88bfdde4 1520
8cf6f0b1 1521 /* The CU from which this closure's expression came. */
1e467161 1522 struct dwarf2_per_cu_data *per_cu = NULL;
052b9502 1523
1e467161
SM
1524 /* The pieces describing this variable. */
1525 std::vector<dwarf_expr_piece> pieces;
ee40d8d4
YQ
1526
1527 /* Frame ID of frame to which a register value is relative, used
1528 only by DWARF_VALUE_REGISTER. */
1529 struct frame_id frame_id;
052b9502
NF
1530};
1531
1532/* Allocate a closure for a value formed from separately-described
1533 PIECES. */
1534
1535static struct piece_closure *
8cf6f0b1 1536allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1e467161 1537 std::vector<dwarf_expr_piece> &&pieces,
ddd7882a 1538 struct frame_info *frame)
052b9502 1539{
1e467161 1540 struct piece_closure *c = new piece_closure;
052b9502 1541
88bfdde4 1542 c->refc = 1;
8cf6f0b1 1543 c->per_cu = per_cu;
1e467161 1544 c->pieces = std::move (pieces);
ee40d8d4
YQ
1545 if (frame == NULL)
1546 c->frame_id = null_frame_id;
1547 else
1548 c->frame_id = get_frame_id (frame);
052b9502 1549
1e467161
SM
1550 for (dwarf_expr_piece &piece : c->pieces)
1551 if (piece.location == DWARF_VALUE_STACK)
1552 value_incref (piece.v.value);
052b9502
NF
1553
1554 return c;
1555}
1556
03c8af18
AA
1557/* Return the number of bytes overlapping a contiguous chunk of N_BITS
1558 bits whose first bit is located at bit offset START. */
1559
1560static size_t
1561bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1562{
1563 return (start % 8 + n_bits + 7) / 8;
1564}
1565
55acdf22
AA
1566/* Read or write a pieced value V. If FROM != NULL, operate in "write
1567 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1568 operate in "read mode": fetch the contents of the (lazy) value V by
1569 composing it from its pieces. */
1570
052b9502 1571static void
55acdf22 1572rw_pieced_value (struct value *v, struct value *from)
052b9502
NF
1573{
1574 int i;
359b19bb 1575 LONGEST offset = 0, max_offset;
d3b1e874 1576 ULONGEST bits_to_skip;
55acdf22
AA
1577 gdb_byte *v_contents;
1578 const gdb_byte *from_contents;
3e43a32a
MS
1579 struct piece_closure *c
1580 = (struct piece_closure *) value_computed_closure (v);
d5722aa2 1581 gdb::byte_vector buffer;
d3b1e874
TT
1582 int bits_big_endian
1583 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f 1584
55acdf22
AA
1585 if (from != NULL)
1586 {
1587 from_contents = value_contents (from);
1588 v_contents = NULL;
1589 }
1590 else
1591 {
1592 if (value_type (v) != value_enclosing_type (v))
1593 internal_error (__FILE__, __LINE__,
1594 _("Should not be able to create a lazy value with "
1595 "an enclosing type"));
1596 v_contents = value_contents_raw (v);
1597 from_contents = NULL;
1598 }
052b9502 1599
d3b1e874 1600 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1601 if (value_bitsize (v))
1602 {
af547a96
AA
1603 bits_to_skip += (8 * value_offset (value_parent (v))
1604 + value_bitpos (v));
55acdf22
AA
1605 if (from != NULL
1606 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1607 == BFD_ENDIAN_BIG))
1608 {
1609 /* Use the least significant bits of FROM. */
1610 max_offset = 8 * TYPE_LENGTH (value_type (from));
1611 offset = max_offset - value_bitsize (v);
1612 }
1613 else
1614 max_offset = value_bitsize (v);
0e03807e
TT
1615 }
1616 else
359b19bb 1617 max_offset = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1618
f236533e 1619 /* Advance to the first non-skipped piece. */
1e467161 1620 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
f236533e
AA
1621 bits_to_skip -= c->pieces[i].size;
1622
1e467161 1623 for (; i < c->pieces.size () && offset < max_offset; i++)
052b9502
NF
1624 {
1625 struct dwarf_expr_piece *p = &c->pieces[i];
55acdf22 1626 size_t this_size_bits, this_size;
359b19bb 1627
f236533e 1628 this_size_bits = p->size - bits_to_skip;
359b19bb
AA
1629 if (this_size_bits > max_offset - offset)
1630 this_size_bits = max_offset - offset;
9a619af0 1631
cec03d70 1632 switch (p->location)
052b9502 1633 {
cec03d70
TT
1634 case DWARF_VALUE_REGISTER:
1635 {
ee40d8d4 1636 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1637 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53 1638 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
03c8af18 1639 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
0fde2c53 1640 int optim, unavail;
dcbf108f 1641
0fde2c53 1642 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
65d84b76 1643 && p->offset + p->size < reg_bits)
63b4f126 1644 {
0fde2c53 1645 /* Big-endian, and we want less than full size. */
f236533e 1646 bits_to_skip += reg_bits - (p->offset + p->size);
63b4f126 1647 }
65d84b76 1648 else
f236533e 1649 bits_to_skip += p->offset;
65d84b76 1650
f236533e 1651 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1652 buffer.resize (this_size);
0fde2c53 1653
55acdf22 1654 if (from == NULL)
63b4f126 1655 {
55acdf22
AA
1656 /* Read mode. */
1657 if (!get_frame_register_bytes (frame, gdb_regnum,
1658 bits_to_skip / 8,
1659 this_size, buffer.data (),
1660 &optim, &unavail))
1661 {
1662 if (optim)
1663 mark_value_bits_optimized_out (v, offset,
1664 this_size_bits);
1665 if (unavail)
1666 mark_value_bits_unavailable (v, offset,
1667 this_size_bits);
1668 break;
1669 }
1670
1671 copy_bitwise (v_contents, offset,
1672 buffer.data (), bits_to_skip % 8,
1673 this_size_bits, bits_big_endian);
1674 }
1675 else
1676 {
1677 /* Write mode. */
1678 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1679 {
1680 /* Data is copied non-byte-aligned into the register.
1681 Need some bits from original register value. */
1682 get_frame_register_bytes (frame, gdb_regnum,
1683 bits_to_skip / 8,
1684 this_size, buffer.data (),
1685 &optim, &unavail);
1686 if (optim)
1687 throw_error (OPTIMIZED_OUT_ERROR,
1688 _("Can't do read-modify-write to "
1689 "update bitfield; containing word "
1690 "has been optimized out"));
1691 if (unavail)
1692 throw_error (NOT_AVAILABLE_ERROR,
1693 _("Can't do read-modify-write to "
1694 "update bitfield; containing word "
1695 "is unavailable"));
1696 }
1697
1698 copy_bitwise (buffer.data (), bits_to_skip % 8,
1699 from_contents, offset,
1700 this_size_bits, bits_big_endian);
1701 put_frame_register_bytes (frame, gdb_regnum,
1702 bits_to_skip / 8,
1703 this_size, buffer.data ());
63b4f126 1704 }
cec03d70
TT
1705 }
1706 break;
1707
1708 case DWARF_VALUE_MEMORY:
55acdf22
AA
1709 {
1710 bits_to_skip += p->offset;
1711
1712 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1713
1714 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1715 && offset % 8 == 0)
1716 {
1717 /* Everything is byte-aligned; no buffer needed. */
1718 if (from != NULL)
1719 write_memory_with_notification (start_addr,
1720 (from_contents
1721 + offset / 8),
1722 this_size_bits / 8);
1723 else
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + bits_to_skip / 8,
1727 v_contents + offset / 8,
1728 this_size_bits / 8);
1729 break;
1730 }
1731
1732 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1733 buffer.resize (this_size);
55acdf22
AA
1734
1735 if (from == NULL)
1736 {
1737 /* Read mode. */
1738 read_value_memory (v, offset,
1739 p->v.mem.in_stack_memory,
1740 p->v.mem.addr + bits_to_skip / 8,
1741 buffer.data (), this_size);
1742 copy_bitwise (v_contents, offset,
1743 buffer.data (), bits_to_skip % 8,
1744 this_size_bits, bits_big_endian);
1745 }
1746 else
1747 {
1748 /* Write mode. */
1749 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1750 {
1751 if (this_size <= 8)
1752 {
1753 /* Perform a single read for small sizes. */
1754 read_memory (start_addr, buffer.data (),
1755 this_size);
1756 }
1757 else
1758 {
1759 /* Only the first and last bytes can possibly have
1760 any bits reused. */
1761 read_memory (start_addr, buffer.data (), 1);
1762 read_memory (start_addr + this_size - 1,
1763 &buffer[this_size - 1], 1);
1764 }
1765 }
1766
1767 copy_bitwise (buffer.data (), bits_to_skip % 8,
1768 from_contents, offset,
1769 this_size_bits, bits_big_endian);
1770 write_memory_with_notification (start_addr,
1771 buffer.data (),
1772 this_size);
1773 }
1774 }
cec03d70
TT
1775 break;
1776
1777 case DWARF_VALUE_STACK:
1778 {
55acdf22
AA
1779 if (from != NULL)
1780 {
1781 mark_value_bits_optimized_out (v, offset, this_size_bits);
1782 break;
1783 }
1784
e9352324
AA
1785 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1786 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1787 ULONGEST stack_value_size_bits
1788 = 8 * TYPE_LENGTH (value_type (p->v.value));
1789
1790 /* Use zeroes if piece reaches beyond stack value. */
65d84b76 1791 if (p->offset + p->size > stack_value_size_bits)
e9352324
AA
1792 break;
1793
1794 /* Piece is anchored at least significant bit end. */
1795 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
f236533e 1796 bits_to_skip += stack_value_size_bits - p->offset - p->size;
65d84b76 1797 else
f236533e 1798 bits_to_skip += p->offset;
e9352324 1799
55acdf22 1800 copy_bitwise (v_contents, offset,
e9352324 1801 value_contents_all (p->v.value),
f236533e 1802 bits_to_skip,
e9352324 1803 this_size_bits, bits_big_endian);
cec03d70
TT
1804 }
1805 break;
1806
1807 case DWARF_VALUE_LITERAL:
1808 {
55acdf22
AA
1809 if (from != NULL)
1810 {
1811 mark_value_bits_optimized_out (v, offset, this_size_bits);
1812 break;
1813 }
1814
242d31ab
AA
1815 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1816 size_t n = this_size_bits;
afd74c5f 1817
242d31ab 1818 /* Cut off at the end of the implicit value. */
f236533e
AA
1819 bits_to_skip += p->offset;
1820 if (bits_to_skip >= literal_size_bits)
242d31ab 1821 break;
f236533e
AA
1822 if (n > literal_size_bits - bits_to_skip)
1823 n = literal_size_bits - bits_to_skip;
e9352324 1824
55acdf22 1825 copy_bitwise (v_contents, offset,
f236533e 1826 p->v.literal.data, bits_to_skip,
242d31ab 1827 n, bits_big_endian);
cec03d70
TT
1828 }
1829 break;
1830
8cf6f0b1 1831 case DWARF_VALUE_IMPLICIT_POINTER:
55acdf22
AA
1832 if (from != NULL)
1833 {
1834 mark_value_bits_optimized_out (v, offset, this_size_bits);
1835 break;
1836 }
1837
1838 /* These bits show up as zeros -- but do not cause the value to
1839 be considered optimized-out. */
8cf6f0b1
TT
1840 break;
1841
cb826367 1842 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1843 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1844 break;
1845
cec03d70
TT
1846 default:
1847 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1848 }
d3b1e874 1849
d3b1e874 1850 offset += this_size_bits;
f236533e 1851 bits_to_skip = 0;
052b9502
NF
1852 }
1853}
1854
55acdf22 1855
052b9502 1856static void
55acdf22 1857read_pieced_value (struct value *v)
052b9502 1858{
55acdf22
AA
1859 rw_pieced_value (v, NULL);
1860}
242d31ab 1861
55acdf22
AA
1862static void
1863write_pieced_value (struct value *to, struct value *from)
1864{
1865 rw_pieced_value (to, from);
052b9502
NF
1866}
1867
9a0dc9e3
PA
1868/* An implementation of an lval_funcs method to see whether a value is
1869 a synthetic pointer. */
8cf6f0b1 1870
0e03807e 1871static int
6b850546 1872check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 1873 int bit_length)
0e03807e
TT
1874{
1875 struct piece_closure *c
1876 = (struct piece_closure *) value_computed_closure (value);
1877 int i;
1878
1879 bit_offset += 8 * value_offset (value);
1880 if (value_bitsize (value))
1881 bit_offset += value_bitpos (value);
1882
1e467161 1883 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
0e03807e
TT
1884 {
1885 struct dwarf_expr_piece *p = &c->pieces[i];
1886 size_t this_size_bits = p->size;
1887
1888 if (bit_offset > 0)
1889 {
1890 if (bit_offset >= this_size_bits)
1891 {
1892 bit_offset -= this_size_bits;
1893 continue;
1894 }
1895
1896 bit_length -= this_size_bits - bit_offset;
1897 bit_offset = 0;
1898 }
1899 else
1900 bit_length -= this_size_bits;
1901
9a0dc9e3
PA
1902 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1903 return 0;
0e03807e
TT
1904 }
1905
9a0dc9e3 1906 return 1;
8cf6f0b1
TT
1907}
1908
1909/* A wrapper function for get_frame_address_in_block. */
1910
1911static CORE_ADDR
1912get_frame_address_in_block_wrapper (void *baton)
1913{
9a3c8263 1914 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
1915}
1916
3326303b
MG
1917/* Fetch a DW_AT_const_value through a synthetic pointer. */
1918
1919static struct value *
1920fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1921 struct dwarf2_per_cu_data *per_cu,
1922 struct type *type)
1923{
1924 struct value *result = NULL;
3326303b
MG
1925 const gdb_byte *bytes;
1926 LONGEST len;
1927
8268c778 1928 auto_obstack temp_obstack;
3326303b
MG
1929 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1930
1931 if (bytes != NULL)
1932 {
1933 if (byte_offset >= 0
1934 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1935 {
1936 bytes += byte_offset;
1937 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1938 }
1939 else
1940 invalid_synthetic_pointer ();
1941 }
1942 else
1943 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1944
3326303b
MG
1945 return result;
1946}
1947
1948/* Fetch the value pointed to by a synthetic pointer. */
1949
1950static struct value *
1951indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1952 struct dwarf2_per_cu_data *per_cu,
e4a62c65
TV
1953 struct frame_info *frame, struct type *type,
1954 bool resolve_abstract_p)
3326303b
MG
1955{
1956 /* Fetch the location expression of the DIE we're pointing to. */
1957 struct dwarf2_locexpr_baton baton
1958 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
e4a62c65
TV
1959 get_frame_address_in_block_wrapper, frame,
1960 resolve_abstract_p);
3326303b 1961
7942e96e
AA
1962 /* Get type of pointed-to DIE. */
1963 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1964 if (orig_type == NULL)
1965 invalid_synthetic_pointer ();
1966
3326303b
MG
1967 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1968 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1969 or it may've been optimized out. */
1970 if (baton.data != NULL)
7942e96e
AA
1971 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1972 baton.size, baton.per_cu,
1973 TYPE_TARGET_TYPE (type),
3326303b
MG
1974 byte_offset);
1975 else
1976 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1977 type);
1978}
1979
8cf6f0b1
TT
1980/* An implementation of an lval_funcs method to indirect through a
1981 pointer. This handles the synthetic pointer case when needed. */
1982
1983static struct value *
1984indirect_pieced_value (struct value *value)
1985{
1986 struct piece_closure *c
1987 = (struct piece_closure *) value_computed_closure (value);
1988 struct type *type;
1989 struct frame_info *frame;
6b850546
DT
1990 int i, bit_length;
1991 LONGEST bit_offset;
8cf6f0b1 1992 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 1993 LONGEST byte_offset;
b597c318 1994 enum bfd_endian byte_order;
8cf6f0b1 1995
0e37a63c 1996 type = check_typedef (value_type (value));
8cf6f0b1
TT
1997 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1998 return NULL;
1999
2000 bit_length = 8 * TYPE_LENGTH (type);
2001 bit_offset = 8 * value_offset (value);
2002 if (value_bitsize (value))
2003 bit_offset += value_bitpos (value);
2004
1e467161 2005 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
8cf6f0b1
TT
2006 {
2007 struct dwarf_expr_piece *p = &c->pieces[i];
2008 size_t this_size_bits = p->size;
2009
2010 if (bit_offset > 0)
2011 {
2012 if (bit_offset >= this_size_bits)
2013 {
2014 bit_offset -= this_size_bits;
2015 continue;
2016 }
2017
2018 bit_length -= this_size_bits - bit_offset;
2019 bit_offset = 0;
2020 }
2021 else
2022 bit_length -= this_size_bits;
2023
2024 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2025 return NULL;
2026
2027 if (bit_length != 0)
216f72a1 2028 error (_("Invalid use of DW_OP_implicit_pointer"));
8cf6f0b1
TT
2029
2030 piece = p;
2031 break;
2032 }
2033
3326303b 2034 gdb_assert (piece != NULL);
8cf6f0b1 2035 frame = get_selected_frame (_("No frame selected."));
543305c9 2036
5bd1ef56
TT
2037 /* This is an offset requested by GDB, such as value subscripts.
2038 However, due to how synthetic pointers are implemented, this is
2039 always presented to us as a pointer type. This means we have to
b597c318
YQ
2040 sign-extend it manually as appropriate. Use raw
2041 extract_signed_integer directly rather than value_as_address and
2042 sign extend afterwards on architectures that would need it
2043 (mostly everywhere except MIPS, which has signed addresses) as
2044 the later would go through gdbarch_pointer_to_address and thus
2045 return a CORE_ADDR with high bits set on architectures that
2046 encode address spaces and other things in CORE_ADDR. */
2047 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2048 byte_offset = extract_signed_integer (value_contents (value),
2049 TYPE_LENGTH (type), byte_order);
5bd1ef56 2050 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2051
9c541725
PA
2052 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2053 byte_offset, c->per_cu,
3326303b
MG
2054 frame, type);
2055}
8cf6f0b1 2056
3326303b
MG
2057/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2058 references. */
b6807d98 2059
3326303b
MG
2060static struct value *
2061coerce_pieced_ref (const struct value *value)
2062{
2063 struct type *type = check_typedef (value_type (value));
b6807d98 2064
3326303b
MG
2065 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2066 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2067 {
2068 const struct piece_closure *closure
2069 = (struct piece_closure *) value_computed_closure (value);
2070 struct frame_info *frame
2071 = get_selected_frame (_("No frame selected."));
2072
2073 /* gdb represents synthetic pointers as pieced values with a single
2074 piece. */
2075 gdb_assert (closure != NULL);
1e467161 2076 gdb_assert (closure->pieces.size () == 1);
3326303b 2077
1e467161
SM
2078 return indirect_synthetic_pointer
2079 (closure->pieces[0].v.ptr.die_sect_off,
2080 closure->pieces[0].v.ptr.offset,
2081 closure->per_cu, frame, type);
3326303b
MG
2082 }
2083 else
2084 {
2085 /* Else: not a synthetic reference; do nothing. */
2086 return NULL;
2087 }
0e03807e
TT
2088}
2089
052b9502 2090static void *
0e03807e 2091copy_pieced_value_closure (const struct value *v)
052b9502 2092{
3e43a32a
MS
2093 struct piece_closure *c
2094 = (struct piece_closure *) value_computed_closure (v);
052b9502 2095
88bfdde4
TT
2096 ++c->refc;
2097 return c;
052b9502
NF
2098}
2099
2100static void
2101free_pieced_value_closure (struct value *v)
2102{
3e43a32a
MS
2103 struct piece_closure *c
2104 = (struct piece_closure *) value_computed_closure (v);
052b9502 2105
88bfdde4
TT
2106 --c->refc;
2107 if (c->refc == 0)
2108 {
1e467161
SM
2109 for (dwarf_expr_piece &p : c->pieces)
2110 if (p.location == DWARF_VALUE_STACK)
22bc8444 2111 value_decref (p.v.value);
8a9b8146 2112
1e467161 2113 delete c;
88bfdde4 2114 }
052b9502
NF
2115}
2116
2117/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2118static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2119 read_pieced_value,
2120 write_pieced_value,
8cf6f0b1 2121 indirect_pieced_value,
3326303b 2122 coerce_pieced_ref,
8cf6f0b1 2123 check_pieced_synthetic_pointer,
052b9502
NF
2124 copy_pieced_value_closure,
2125 free_pieced_value_closure
2126};
2127
4c2df51b 2128/* Evaluate a location description, starting at DATA and with length
8cf6f0b1 2129 SIZE, to find the current location of variable of TYPE in the
7942e96e
AA
2130 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2131 location of the subobject of type SUBOBJ_TYPE at byte offset
2132 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
a2d33775 2133
8cf6f0b1
TT
2134static struct value *
2135dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2136 const gdb_byte *data, size_t size,
8cf6f0b1 2137 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
2138 struct type *subobj_type,
2139 LONGEST subobj_byte_offset)
4c2df51b 2140{
4c2df51b 2141 struct value *retval;
ac56253d 2142 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2143
7942e96e
AA
2144 if (subobj_type == NULL)
2145 {
2146 subobj_type = type;
2147 subobj_byte_offset = 0;
2148 }
2149 else if (subobj_byte_offset < 0)
8cf6f0b1
TT
2150 invalid_synthetic_pointer ();
2151
0d53c4c4 2152 if (size == 0)
7942e96e 2153 return allocate_optimized_out_value (subobj_type);
0d53c4c4 2154
192ca6d8
TT
2155 dwarf_evaluate_loc_desc ctx;
2156 ctx.frame = frame;
2157 ctx.per_cu = per_cu;
2158 ctx.obj_address = 0;
4c2df51b 2159
0cf08227 2160 scoped_value_mark free_values;
4a227398 2161
718b9626
TT
2162 ctx.gdbarch = get_objfile_arch (objfile);
2163 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2164 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2165 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2166
492d29ea 2167 TRY
79e1a869 2168 {
595d2e30 2169 ctx.eval (data, size);
79e1a869 2170 }
492d29ea 2171 CATCH (ex, RETURN_MASK_ERROR)
79e1a869
PA
2172 {
2173 if (ex.error == NOT_AVAILABLE_ERROR)
2174 {
0cf08227 2175 free_values.free_to_mark ();
7942e96e
AA
2176 retval = allocate_value (subobj_type);
2177 mark_value_bytes_unavailable (retval, 0,
2178 TYPE_LENGTH (subobj_type));
79e1a869
PA
2179 return retval;
2180 }
8e3b41a9
JK
2181 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2182 {
2183 if (entry_values_debug)
2184 exception_print (gdb_stdout, ex);
0cf08227 2185 free_values.free_to_mark ();
7942e96e 2186 return allocate_optimized_out_value (subobj_type);
8e3b41a9 2187 }
79e1a869
PA
2188 else
2189 throw_exception (ex);
2190 }
492d29ea 2191 END_CATCH
79e1a869 2192
1e467161 2193 if (ctx.pieces.size () > 0)
87808bd6 2194 {
052b9502 2195 struct piece_closure *c;
8cf6f0b1 2196 ULONGEST bit_size = 0;
052b9502 2197
1e467161
SM
2198 for (dwarf_expr_piece &piece : ctx.pieces)
2199 bit_size += piece.size;
03278692
TT
2200 /* Complain if the expression is larger than the size of the
2201 outer type. */
2202 if (bit_size > 8 * TYPE_LENGTH (type))
8cf6f0b1
TT
2203 invalid_synthetic_pointer ();
2204
1e467161 2205 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
72fc29ff
TT
2206 /* We must clean up the value chain after creating the piece
2207 closure but before allocating the result. */
0cf08227 2208 free_values.free_to_mark ();
7942e96e
AA
2209 retval = allocate_computed_value (subobj_type,
2210 &pieced_value_funcs, c);
2211 set_value_offset (retval, subobj_byte_offset);
87808bd6 2212 }
4c2df51b
DJ
2213 else
2214 {
718b9626 2215 switch (ctx.location)
cec03d70
TT
2216 {
2217 case DWARF_VALUE_REGISTER:
2218 {
2219 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2220 int dwarf_regnum
595d2e30 2221 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2222 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2223
7942e96e 2224 if (subobj_byte_offset != 0)
8cf6f0b1 2225 error (_("cannot use offset on synthetic pointer to register"));
0cf08227 2226 free_values.free_to_mark ();
7942e96e 2227 retval = value_from_register (subobj_type, gdb_regnum, frame);
0fde2c53
DE
2228 if (value_optimized_out (retval))
2229 {
2230 struct value *tmp;
2231
2232 /* This means the register has undefined value / was
2233 not saved. As we're computing the location of some
2234 variable etc. in the program, not a value for
2235 inspecting a register ($pc, $sp, etc.), return a
2236 generic optimized out value instead, so that we show
2237 <optimized out> instead of <not saved>. */
7942e96e
AA
2238 tmp = allocate_value (subobj_type);
2239 value_contents_copy (tmp, 0, retval, 0,
2240 TYPE_LENGTH (subobj_type));
0fde2c53
DE
2241 retval = tmp;
2242 }
cec03d70
TT
2243 }
2244 break;
2245
2246 case DWARF_VALUE_MEMORY:
2247 {
f56331b4 2248 struct type *ptr_type;
595d2e30 2249 CORE_ADDR address = ctx.fetch_address (0);
69009882 2250 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2251
f56331b4
KB
2252 /* DW_OP_deref_size (and possibly other operations too) may
2253 create a pointer instead of an address. Ideally, the
2254 pointer to address conversion would be performed as part
2255 of those operations, but the type of the object to
2256 which the address refers is not known at the time of
2257 the operation. Therefore, we do the conversion here
2258 since the type is readily available. */
2259
7942e96e 2260 switch (TYPE_CODE (subobj_type))
f56331b4
KB
2261 {
2262 case TYPE_CODE_FUNC:
2263 case TYPE_CODE_METHOD:
718b9626 2264 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2265 break;
2266 default:
718b9626 2267 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2268 break;
2269 }
2270 address = value_as_address (value_from_pointer (ptr_type, address));
2271
0cf08227 2272 free_values.free_to_mark ();
7942e96e
AA
2273 retval = value_at_lazy (subobj_type,
2274 address + subobj_byte_offset);
44353522
DE
2275 if (in_stack_memory)
2276 set_value_stack (retval, 1);
cec03d70
TT
2277 }
2278 break;
2279
2280 case DWARF_VALUE_STACK:
2281 {
595d2e30 2282 struct value *value = ctx.fetch (0);
8a9b8146 2283 size_t n = TYPE_LENGTH (value_type (value));
7942e96e
AA
2284 size_t len = TYPE_LENGTH (subobj_type);
2285 size_t max = TYPE_LENGTH (type);
2286 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
cec03d70 2287
7942e96e 2288 if (subobj_byte_offset + len > max)
8cf6f0b1
TT
2289 invalid_synthetic_pointer ();
2290
72fc29ff
TT
2291 /* Preserve VALUE because we are going to free values back
2292 to the mark, but we still need the value contents
2293 below. */
bbfa6f00 2294 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
0cf08227 2295 free_values.free_to_mark ();
72fc29ff 2296
7942e96e 2297 retval = allocate_value (subobj_type);
b6cede78 2298
7942e96e
AA
2299 /* The given offset is relative to the actual object. */
2300 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2301 subobj_byte_offset += n - max;
2302
2303 memcpy (value_contents_raw (retval),
2304 value_contents_all (value) + subobj_byte_offset, len);
cec03d70
TT
2305 }
2306 break;
2307
2308 case DWARF_VALUE_LITERAL:
2309 {
2310 bfd_byte *contents;
7942e96e 2311 size_t n = TYPE_LENGTH (subobj_type);
cec03d70 2312
7942e96e 2313 if (subobj_byte_offset + n > ctx.len)
8cf6f0b1
TT
2314 invalid_synthetic_pointer ();
2315
0cf08227 2316 free_values.free_to_mark ();
7942e96e 2317 retval = allocate_value (subobj_type);
cec03d70 2318 contents = value_contents_raw (retval);
7942e96e 2319 memcpy (contents, ctx.data + subobj_byte_offset, n);
cec03d70
TT
2320 }
2321 break;
2322
dd90784c 2323 case DWARF_VALUE_OPTIMIZED_OUT:
0cf08227 2324 free_values.free_to_mark ();
7942e96e 2325 retval = allocate_optimized_out_value (subobj_type);
dd90784c
JK
2326 break;
2327
8cf6f0b1
TT
2328 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2329 operation by execute_stack_op. */
2330 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2331 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2332 it can only be encountered when making a piece. */
cec03d70
TT
2333 default:
2334 internal_error (__FILE__, __LINE__, _("invalid location type"));
2335 }
4c2df51b
DJ
2336 }
2337
718b9626 2338 set_value_initialized (retval, ctx.initialized);
42be36b3 2339
4c2df51b
DJ
2340 return retval;
2341}
8cf6f0b1
TT
2342
2343/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2344 passes 0 as the byte_offset. */
2345
2346struct value *
2347dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2348 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2349 struct dwarf2_per_cu_data *per_cu)
2350{
7942e96e
AA
2351 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2352 NULL, 0);
8cf6f0b1
TT
2353}
2354
80180f79 2355/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2356 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2357 frame in which the expression is evaluated. ADDR is a context (location of
2358 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2359 Returns 1 on success, 0 otherwise. */
2360
2361static int
2362dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2363 struct frame_info *frame,
08412b07 2364 CORE_ADDR addr,
1cfdf534 2365 CORE_ADDR *valp)
80180f79 2366{
80180f79 2367 struct objfile *objfile;
80180f79
SA
2368
2369 if (dlbaton == NULL || dlbaton->size == 0)
2370 return 0;
2371
192ca6d8 2372 dwarf_evaluate_loc_desc ctx;
80180f79 2373
192ca6d8
TT
2374 ctx.frame = frame;
2375 ctx.per_cu = dlbaton->per_cu;
2376 ctx.obj_address = addr;
80180f79
SA
2377
2378 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2379
718b9626
TT
2380 ctx.gdbarch = get_objfile_arch (objfile);
2381 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2382 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2383 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
80180f79 2384
16f808ec
TV
2385 TRY
2386 {
2387 ctx.eval (dlbaton->data, dlbaton->size);
2388 }
2389 CATCH (ex, RETURN_MASK_ERROR)
2390 {
2391 if (ex.error == NOT_AVAILABLE_ERROR)
2392 {
2393 return 0;
2394 }
2395 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2396 {
2397 if (entry_values_debug)
2398 exception_print (gdb_stdout, ex);
2399 return 0;
2400 }
2401 else
2402 throw_exception (ex);
2403 }
2404 END_CATCH
80180f79 2405
718b9626 2406 switch (ctx.location)
80180f79
SA
2407 {
2408 case DWARF_VALUE_REGISTER:
2409 case DWARF_VALUE_MEMORY:
2410 case DWARF_VALUE_STACK:
595d2e30 2411 *valp = ctx.fetch_address (0);
718b9626 2412 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2413 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2414 return 1;
2415 case DWARF_VALUE_LITERAL:
718b9626
TT
2416 *valp = extract_signed_integer (ctx.data, ctx.len,
2417 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2418 return 1;
2419 /* Unsupported dwarf values. */
2420 case DWARF_VALUE_OPTIMIZED_OUT:
2421 case DWARF_VALUE_IMPLICIT_POINTER:
2422 break;
2423 }
2424
80180f79
SA
2425 return 0;
2426}
2427
2428/* See dwarf2loc.h. */
2429
2430int
08412b07 2431dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2432 struct frame_info *frame,
df25ebbd
JB
2433 struct property_addr_info *addr_stack,
2434 CORE_ADDR *value)
80180f79
SA
2435{
2436 if (prop == NULL)
2437 return 0;
2438
63e43d3a
PMR
2439 if (frame == NULL && has_stack_frames ())
2440 frame = get_selected_frame (NULL);
2441
80180f79
SA
2442 switch (prop->kind)
2443 {
2444 case PROP_LOCEXPR:
2445 {
9a3c8263
SM
2446 const struct dwarf2_property_baton *baton
2447 = (const struct dwarf2_property_baton *) prop->data.baton;
80180f79 2448
63e43d3a
PMR
2449 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2450 addr_stack ? addr_stack->addr : 0,
df25ebbd 2451 value))
80180f79
SA
2452 {
2453 if (baton->referenced_type)
2454 {
2455 struct value *val = value_at (baton->referenced_type, *value);
2456
2457 *value = value_as_address (val);
2458 }
2459 return 1;
2460 }
2461 }
2462 break;
2463
2464 case PROP_LOCLIST:
2465 {
9a3c8263
SM
2466 struct dwarf2_property_baton *baton
2467 = (struct dwarf2_property_baton *) prop->data.baton;
80180f79
SA
2468 CORE_ADDR pc = get_frame_address_in_block (frame);
2469 const gdb_byte *data;
2470 struct value *val;
2471 size_t size;
2472
2473 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2474 if (data != NULL)
2475 {
2476 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2477 size, baton->loclist.per_cu);
2478 if (!value_optimized_out (val))
2479 {
2480 *value = value_as_address (val);
2481 return 1;
2482 }
2483 }
2484 }
2485 break;
2486
2487 case PROP_CONST:
2488 *value = prop->data.const_val;
2489 return 1;
df25ebbd
JB
2490
2491 case PROP_ADDR_OFFSET:
2492 {
9a3c8263
SM
2493 struct dwarf2_property_baton *baton
2494 = (struct dwarf2_property_baton *) prop->data.baton;
df25ebbd
JB
2495 struct property_addr_info *pinfo;
2496 struct value *val;
2497
2498 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2499 if (pinfo->type == baton->referenced_type)
2500 break;
2501 if (pinfo == NULL)
2c811c0f 2502 error (_("cannot find reference address for offset property"));
c3345124
JB
2503 if (pinfo->valaddr != NULL)
2504 val = value_from_contents
2505 (baton->offset_info.type,
2506 pinfo->valaddr + baton->offset_info.offset);
2507 else
2508 val = value_at (baton->offset_info.type,
2509 pinfo->addr + baton->offset_info.offset);
df25ebbd
JB
2510 *value = value_as_address (val);
2511 return 1;
2512 }
80180f79
SA
2513 }
2514
2515 return 0;
2516}
2517
bb2ec1b3
TT
2518/* See dwarf2loc.h. */
2519
2520void
d82b3862 2521dwarf2_compile_property_to_c (string_file *stream,
bb2ec1b3
TT
2522 const char *result_name,
2523 struct gdbarch *gdbarch,
2524 unsigned char *registers_used,
2525 const struct dynamic_prop *prop,
2526 CORE_ADDR pc,
2527 struct symbol *sym)
2528{
9a3c8263
SM
2529 struct dwarf2_property_baton *baton
2530 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2531 const gdb_byte *data;
2532 size_t size;
2533 struct dwarf2_per_cu_data *per_cu;
2534
2535 if (prop->kind == PROP_LOCEXPR)
2536 {
2537 data = baton->locexpr.data;
2538 size = baton->locexpr.size;
2539 per_cu = baton->locexpr.per_cu;
2540 }
2541 else
2542 {
2543 gdb_assert (prop->kind == PROP_LOCLIST);
2544
2545 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2546 per_cu = baton->loclist.per_cu;
2547 }
2548
2549 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2550 gdbarch, registers_used,
2551 dwarf2_per_cu_addr_size (per_cu),
2552 data, data + size, per_cu);
2553}
2554
4c2df51b 2555\f
0b31a4bc 2556/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2557
192ca6d8 2558class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2559{
192ca6d8
TT
2560 public:
2561
0b31a4bc 2562 enum symbol_needs_kind needs;
17ea53c3 2563 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2564
192ca6d8 2565 /* Reads from registers do require a frame. */
632e107b 2566 CORE_ADDR read_addr_from_reg (int regnum) override
192ca6d8
TT
2567 {
2568 needs = SYMBOL_NEEDS_FRAME;
2569 return 1;
2570 }
2571
2572 /* "get_reg_value" callback: Reads from registers do require a
2573 frame. */
2574
632e107b 2575 struct value *get_reg_value (struct type *type, int regnum) override
192ca6d8
TT
2576 {
2577 needs = SYMBOL_NEEDS_FRAME;
2578 return value_zero (type, not_lval);
2579 }
2580
2581 /* Reads from memory do not require a frame. */
632e107b 2582 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
2583 {
2584 memset (buf, 0, len);
2585 }
2586
2587 /* Frame-relative accesses do require a frame. */
632e107b 2588 void get_frame_base (const gdb_byte **start, size_t *length) override
192ca6d8
TT
2589 {
2590 static gdb_byte lit0 = DW_OP_lit0;
2591
2592 *start = &lit0;
2593 *length = 1;
2594
2595 needs = SYMBOL_NEEDS_FRAME;
2596 }
2597
2598 /* CFA accesses require a frame. */
632e107b 2599 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
2600 {
2601 needs = SYMBOL_NEEDS_FRAME;
2602 return 1;
2603 }
2604
632e107b 2605 CORE_ADDR get_frame_pc () override
7d5697f9
TT
2606 {
2607 needs = SYMBOL_NEEDS_FRAME;
2608 return 1;
2609 }
2610
192ca6d8 2611 /* Thread-local accesses require registers, but not a frame. */
632e107b 2612 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
2613 {
2614 if (needs <= SYMBOL_NEEDS_REGISTERS)
2615 needs = SYMBOL_NEEDS_REGISTERS;
2616 return 1;
2617 }
2618
2619 /* Helper interface of per_cu_dwarf_call for
2620 dwarf2_loc_desc_get_symbol_read_needs. */
2621
632e107b 2622 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
2623 {
2624 per_cu_dwarf_call (this, die_offset, per_cu);
2625 }
2626
a6b786da
KB
2627 /* Helper interface of sect_variable_value for
2628 dwarf2_loc_desc_get_symbol_read_needs. */
2629
2630 struct value *dwarf_variable_value (sect_offset sect_off) override
2631 {
2632 return sect_variable_value (this, sect_off, per_cu);
2633 }
2634
216f72a1 2635 /* DW_OP_entry_value accesses require a caller, therefore a
192ca6d8
TT
2636 frame. */
2637
2638 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2639 union call_site_parameter_u kind_u,
632e107b 2640 int deref_size) override
192ca6d8
TT
2641 {
2642 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2643
192ca6d8
TT
2644 /* The expression may require some stub values on DWARF stack. */
2645 push_address (0, 0);
2646 }
3019eac3 2647
192ca6d8 2648 /* DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2649
632e107b 2650 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
2651 {
2652 /* Nothing to do. */
2653 return 1;
2654 }
08412b07 2655
192ca6d8 2656 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2657
632e107b 2658 CORE_ADDR get_object_address () override
192ca6d8
TT
2659 {
2660 /* Nothing to do. */
2661 return 1;
2662 }
9e8b7a03
JK
2663};
2664
0b31a4bc
TT
2665/* Compute the correct symbol_needs_kind value for the location
2666 expression at DATA (length SIZE). */
4c2df51b 2667
0b31a4bc
TT
2668static enum symbol_needs_kind
2669dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2670 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2671{
f630a401 2672 int in_reg;
ac56253d 2673 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2674
eb115069
TT
2675 scoped_value_mark free_values;
2676
192ca6d8
TT
2677 symbol_needs_eval_context ctx;
2678
2679 ctx.needs = SYMBOL_NEEDS_NONE;
2680 ctx.per_cu = per_cu;
718b9626
TT
2681 ctx.gdbarch = get_objfile_arch (objfile);
2682 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2683 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2684 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2685
595d2e30 2686 ctx.eval (data, size);
4c2df51b 2687
718b9626 2688 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2689
1e467161
SM
2690 /* If the location has several pieces, and any of them are in
2691 registers, then we will need a frame to fetch them from. */
2692 for (dwarf_expr_piece &p : ctx.pieces)
2693 if (p.location == DWARF_VALUE_REGISTER)
2694 in_reg = 1;
87808bd6 2695
0b31a4bc 2696 if (in_reg)
192ca6d8
TT
2697 ctx.needs = SYMBOL_NEEDS_FRAME;
2698 return ctx.needs;
4c2df51b
DJ
2699}
2700
3cf03773
TT
2701/* A helper function that throws an unimplemented error mentioning a
2702 given DWARF operator. */
2703
621846f4 2704static void ATTRIBUTE_NORETURN
3cf03773 2705unimplemented (unsigned int op)
0d53c4c4 2706{
f39c6ffd 2707 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2708
2709 if (name)
2710 error (_("DWARF operator %s cannot be translated to an agent expression"),
2711 name);
2712 else
1ba1b353
TT
2713 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2714 "to an agent expression"),
b1bfef65 2715 op);
3cf03773 2716}
08922a10 2717
0fde2c53
DE
2718/* See dwarf2loc.h.
2719
2720 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2721 can issue a complaint, which is better than having every target's
2722 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2723
d064d1be 2724int
0fde2c53 2725dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2726{
2727 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2728
3cf03773 2729 if (reg == -1)
0fde2c53 2730 {
b98664d3 2731 complaint (_("bad DWARF register number %d"), dwarf_reg);
0fde2c53
DE
2732 }
2733 return reg;
2734}
2735
2736/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2737 Throw an error because DWARF_REG is bad. */
2738
2739static void
2740throw_bad_regnum_error (ULONGEST dwarf_reg)
2741{
2742 /* Still want to print -1 as "-1".
2743 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2744 but that's overkill for now. */
2745 if ((int) dwarf_reg == dwarf_reg)
2746 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2747 error (_("Unable to access DWARF register number %s"),
2748 pulongest (dwarf_reg));
2749}
2750
2751/* See dwarf2loc.h. */
2752
2753int
2754dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2755{
2756 int reg;
2757
2758 if (dwarf_reg > INT_MAX)
2759 throw_bad_regnum_error (dwarf_reg);
2760 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2761 bad, but that's ok. */
2762 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2763 if (reg == -1)
2764 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2765 return reg;
2766}
08922a10 2767
3cf03773
TT
2768/* A helper function that emits an access to memory. ARCH is the
2769 target architecture. EXPR is the expression which we are building.
2770 NBITS is the number of bits we want to read. This emits the
2771 opcodes needed to read the memory and then extract the desired
2772 bits. */
08922a10 2773
3cf03773
TT
2774static void
2775access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2776{
3cf03773
TT
2777 ULONGEST nbytes = (nbits + 7) / 8;
2778
9df7235c 2779 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2780
92bc6a20 2781 if (expr->tracing)
3cf03773
TT
2782 ax_trace_quick (expr, nbytes);
2783
2784 if (nbits <= 8)
2785 ax_simple (expr, aop_ref8);
2786 else if (nbits <= 16)
2787 ax_simple (expr, aop_ref16);
2788 else if (nbits <= 32)
2789 ax_simple (expr, aop_ref32);
2790 else
2791 ax_simple (expr, aop_ref64);
2792
2793 /* If we read exactly the number of bytes we wanted, we're done. */
2794 if (8 * nbytes == nbits)
2795 return;
2796
2797 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2798 {
3cf03773
TT
2799 /* On a bits-big-endian machine, we want the high-order
2800 NBITS. */
2801 ax_const_l (expr, 8 * nbytes - nbits);
2802 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2803 }
3cf03773 2804 else
0d53c4c4 2805 {
3cf03773
TT
2806 /* On a bits-little-endian box, we want the low-order NBITS. */
2807 ax_zero_ext (expr, nbits);
0d53c4c4 2808 }
3cf03773 2809}
0936ad1d 2810
8cf6f0b1
TT
2811/* A helper function to return the frame's PC. */
2812
2813static CORE_ADDR
2814get_ax_pc (void *baton)
2815{
9a3c8263 2816 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2817
2818 return expr->scope;
2819}
2820
3cf03773
TT
2821/* Compile a DWARF location expression to an agent expression.
2822
2823 EXPR is the agent expression we are building.
2824 LOC is the agent value we modify.
2825 ARCH is the architecture.
2826 ADDR_SIZE is the size of addresses, in bytes.
2827 OP_PTR is the start of the location expression.
2828 OP_END is one past the last byte of the location expression.
2829
2830 This will throw an exception for various kinds of errors -- for
2831 example, if the expression cannot be compiled, or if the expression
2832 is invalid. */
0936ad1d 2833
9f6f94ff
TT
2834void
2835dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
40f4af28
SM
2836 unsigned int addr_size, const gdb_byte *op_ptr,
2837 const gdb_byte *op_end,
9f6f94ff 2838 struct dwarf2_per_cu_data *per_cu)
3cf03773 2839{
40f4af28 2840 gdbarch *arch = expr->gdbarch;
58414334 2841 std::vector<int> dw_labels, patches;
3cf03773
TT
2842 const gdb_byte * const base = op_ptr;
2843 const gdb_byte *previous_piece = op_ptr;
2844 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2845 ULONGEST bits_collected = 0;
2846 unsigned int addr_size_bits = 8 * addr_size;
2847 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2848
58414334 2849 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2850
3cf03773
TT
2851 /* By default we are making an address. */
2852 loc->kind = axs_lvalue_memory;
0d45f56e 2853
3cf03773
TT
2854 while (op_ptr < op_end)
2855 {
aead7601 2856 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2857 uint64_t uoffset, reg;
2858 int64_t offset;
3cf03773
TT
2859 int i;
2860
2861 offsets[op_ptr - base] = expr->len;
2862 ++op_ptr;
2863
2864 /* Our basic approach to code generation is to map DWARF
2865 operations directly to AX operations. However, there are
2866 some differences.
2867
2868 First, DWARF works on address-sized units, but AX always uses
2869 LONGEST. For most operations we simply ignore this
2870 difference; instead we generate sign extensions as needed
2871 before division and comparison operations. It would be nice
2872 to omit the sign extensions, but there is no way to determine
2873 the size of the target's LONGEST. (This code uses the size
2874 of the host LONGEST in some cases -- that is a bug but it is
2875 difficult to fix.)
2876
2877 Second, some DWARF operations cannot be translated to AX.
2878 For these we simply fail. See
2879 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2880 switch (op)
0936ad1d 2881 {
3cf03773
TT
2882 case DW_OP_lit0:
2883 case DW_OP_lit1:
2884 case DW_OP_lit2:
2885 case DW_OP_lit3:
2886 case DW_OP_lit4:
2887 case DW_OP_lit5:
2888 case DW_OP_lit6:
2889 case DW_OP_lit7:
2890 case DW_OP_lit8:
2891 case DW_OP_lit9:
2892 case DW_OP_lit10:
2893 case DW_OP_lit11:
2894 case DW_OP_lit12:
2895 case DW_OP_lit13:
2896 case DW_OP_lit14:
2897 case DW_OP_lit15:
2898 case DW_OP_lit16:
2899 case DW_OP_lit17:
2900 case DW_OP_lit18:
2901 case DW_OP_lit19:
2902 case DW_OP_lit20:
2903 case DW_OP_lit21:
2904 case DW_OP_lit22:
2905 case DW_OP_lit23:
2906 case DW_OP_lit24:
2907 case DW_OP_lit25:
2908 case DW_OP_lit26:
2909 case DW_OP_lit27:
2910 case DW_OP_lit28:
2911 case DW_OP_lit29:
2912 case DW_OP_lit30:
2913 case DW_OP_lit31:
2914 ax_const_l (expr, op - DW_OP_lit0);
2915 break;
0d53c4c4 2916
3cf03773 2917 case DW_OP_addr:
ac56253d 2918 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2919 op_ptr += addr_size;
ac56253d
TT
2920 /* Some versions of GCC emit DW_OP_addr before
2921 DW_OP_GNU_push_tls_address. In this case the value is an
2922 index, not an address. We don't support things like
2923 branching between the address and the TLS op. */
2924 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 2925 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 2926 ax_const_l (expr, uoffset);
3cf03773 2927 break;
4c2df51b 2928
3cf03773
TT
2929 case DW_OP_const1u:
2930 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2931 op_ptr += 1;
2932 break;
2933 case DW_OP_const1s:
2934 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2935 op_ptr += 1;
2936 break;
2937 case DW_OP_const2u:
2938 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2939 op_ptr += 2;
2940 break;
2941 case DW_OP_const2s:
2942 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2943 op_ptr += 2;
2944 break;
2945 case DW_OP_const4u:
2946 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2947 op_ptr += 4;
2948 break;
2949 case DW_OP_const4s:
2950 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2951 op_ptr += 4;
2952 break;
2953 case DW_OP_const8u:
2954 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2955 op_ptr += 8;
2956 break;
2957 case DW_OP_const8s:
2958 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2959 op_ptr += 8;
2960 break;
2961 case DW_OP_constu:
f664829e 2962 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
2963 ax_const_l (expr, uoffset);
2964 break;
2965 case DW_OP_consts:
f664829e 2966 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
2967 ax_const_l (expr, offset);
2968 break;
9c238357 2969
3cf03773
TT
2970 case DW_OP_reg0:
2971 case DW_OP_reg1:
2972 case DW_OP_reg2:
2973 case DW_OP_reg3:
2974 case DW_OP_reg4:
2975 case DW_OP_reg5:
2976 case DW_OP_reg6:
2977 case DW_OP_reg7:
2978 case DW_OP_reg8:
2979 case DW_OP_reg9:
2980 case DW_OP_reg10:
2981 case DW_OP_reg11:
2982 case DW_OP_reg12:
2983 case DW_OP_reg13:
2984 case DW_OP_reg14:
2985 case DW_OP_reg15:
2986 case DW_OP_reg16:
2987 case DW_OP_reg17:
2988 case DW_OP_reg18:
2989 case DW_OP_reg19:
2990 case DW_OP_reg20:
2991 case DW_OP_reg21:
2992 case DW_OP_reg22:
2993 case DW_OP_reg23:
2994 case DW_OP_reg24:
2995 case DW_OP_reg25:
2996 case DW_OP_reg26:
2997 case DW_OP_reg27:
2998 case DW_OP_reg28:
2999 case DW_OP_reg29:
3000 case DW_OP_reg30:
3001 case DW_OP_reg31:
3002 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3003 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3004 loc->kind = axs_lvalue_register;
3005 break;
9c238357 3006
3cf03773 3007 case DW_OP_regx:
f664829e 3008 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3009 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3010 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3011 loc->kind = axs_lvalue_register;
3012 break;
08922a10 3013
3cf03773
TT
3014 case DW_OP_implicit_value:
3015 {
9fccedf7 3016 uint64_t len;
3cf03773 3017
f664829e 3018 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3019 if (op_ptr + len > op_end)
3020 error (_("DW_OP_implicit_value: too few bytes available."));
3021 if (len > sizeof (ULONGEST))
3022 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3023 (int) len);
3024
3025 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3026 byte_order));
3027 op_ptr += len;
3028 dwarf_expr_require_composition (op_ptr, op_end,
3029 "DW_OP_implicit_value");
3030
3031 loc->kind = axs_rvalue;
3032 }
3033 break;
08922a10 3034
3cf03773
TT
3035 case DW_OP_stack_value:
3036 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3037 loc->kind = axs_rvalue;
3038 break;
08922a10 3039
3cf03773
TT
3040 case DW_OP_breg0:
3041 case DW_OP_breg1:
3042 case DW_OP_breg2:
3043 case DW_OP_breg3:
3044 case DW_OP_breg4:
3045 case DW_OP_breg5:
3046 case DW_OP_breg6:
3047 case DW_OP_breg7:
3048 case DW_OP_breg8:
3049 case DW_OP_breg9:
3050 case DW_OP_breg10:
3051 case DW_OP_breg11:
3052 case DW_OP_breg12:
3053 case DW_OP_breg13:
3054 case DW_OP_breg14:
3055 case DW_OP_breg15:
3056 case DW_OP_breg16:
3057 case DW_OP_breg17:
3058 case DW_OP_breg18:
3059 case DW_OP_breg19:
3060 case DW_OP_breg20:
3061 case DW_OP_breg21:
3062 case DW_OP_breg22:
3063 case DW_OP_breg23:
3064 case DW_OP_breg24:
3065 case DW_OP_breg25:
3066 case DW_OP_breg26:
3067 case DW_OP_breg27:
3068 case DW_OP_breg28:
3069 case DW_OP_breg29:
3070 case DW_OP_breg30:
3071 case DW_OP_breg31:
f664829e 3072 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3073 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3074 ax_reg (expr, i);
3075 if (offset != 0)
3076 {
3077 ax_const_l (expr, offset);
3078 ax_simple (expr, aop_add);
3079 }
3080 break;
3081 case DW_OP_bregx:
3082 {
f664829e
DE
3083 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3084 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3085 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3086 ax_reg (expr, i);
3087 if (offset != 0)
3088 {
3089 ax_const_l (expr, offset);
3090 ax_simple (expr, aop_add);
3091 }
3092 }
3093 break;
3094 case DW_OP_fbreg:
3095 {
3096 const gdb_byte *datastart;
3097 size_t datalen;
3977b71f 3098 const struct block *b;
3cf03773 3099 struct symbol *framefunc;
08922a10 3100
3cf03773
TT
3101 b = block_for_pc (expr->scope);
3102
3103 if (!b)
3104 error (_("No block found for address"));
3105
3106 framefunc = block_linkage_function (b);
3107
3108 if (!framefunc)
3109 error (_("No function found for block"));
3110
af945b75
TT
3111 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3112 &datastart, &datalen);
3cf03773 3113
f664829e 3114 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
40f4af28 3115 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
9f6f94ff 3116 datastart + datalen, per_cu);
d84cf7eb
TT
3117 if (loc->kind == axs_lvalue_register)
3118 require_rvalue (expr, loc);
3cf03773
TT
3119
3120 if (offset != 0)
3121 {
3122 ax_const_l (expr, offset);
3123 ax_simple (expr, aop_add);
3124 }
3125
3126 loc->kind = axs_lvalue_memory;
3127 }
08922a10 3128 break;
08922a10 3129
3cf03773
TT
3130 case DW_OP_dup:
3131 ax_simple (expr, aop_dup);
3132 break;
08922a10 3133
3cf03773
TT
3134 case DW_OP_drop:
3135 ax_simple (expr, aop_pop);
3136 break;
08922a10 3137
3cf03773
TT
3138 case DW_OP_pick:
3139 offset = *op_ptr++;
c7f96d2b 3140 ax_pick (expr, offset);
3cf03773
TT
3141 break;
3142
3143 case DW_OP_swap:
3144 ax_simple (expr, aop_swap);
3145 break;
08922a10 3146
3cf03773 3147 case DW_OP_over:
c7f96d2b 3148 ax_pick (expr, 1);
3cf03773 3149 break;
08922a10 3150
3cf03773 3151 case DW_OP_rot:
c7f96d2b 3152 ax_simple (expr, aop_rot);
3cf03773 3153 break;
08922a10 3154
3cf03773
TT
3155 case DW_OP_deref:
3156 case DW_OP_deref_size:
3157 {
3158 int size;
08922a10 3159
3cf03773
TT
3160 if (op == DW_OP_deref_size)
3161 size = *op_ptr++;
3162 else
3163 size = addr_size;
3164
9df7235c 3165 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3166 error (_("Unsupported size %d in %s"),
3167 size, get_DW_OP_name (op));
9df7235c 3168 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3169 }
3170 break;
3171
3172 case DW_OP_abs:
3173 /* Sign extend the operand. */
3174 ax_ext (expr, addr_size_bits);
3175 ax_simple (expr, aop_dup);
3176 ax_const_l (expr, 0);
3177 ax_simple (expr, aop_less_signed);
3178 ax_simple (expr, aop_log_not);
3179 i = ax_goto (expr, aop_if_goto);
3180 /* We have to emit 0 - X. */
3181 ax_const_l (expr, 0);
3182 ax_simple (expr, aop_swap);
3183 ax_simple (expr, aop_sub);
3184 ax_label (expr, i, expr->len);
3185 break;
3186
3187 case DW_OP_neg:
3188 /* No need to sign extend here. */
3189 ax_const_l (expr, 0);
3190 ax_simple (expr, aop_swap);
3191 ax_simple (expr, aop_sub);
3192 break;
3193
3194 case DW_OP_not:
3195 /* Sign extend the operand. */
3196 ax_ext (expr, addr_size_bits);
3197 ax_simple (expr, aop_bit_not);
3198 break;
3199
3200 case DW_OP_plus_uconst:
f664829e 3201 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3202 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3203 but we micro-optimize anyhow. */
3204 if (reg != 0)
3205 {
3206 ax_const_l (expr, reg);
3207 ax_simple (expr, aop_add);
3208 }
3209 break;
3210
3211 case DW_OP_and:
3212 ax_simple (expr, aop_bit_and);
3213 break;
3214
3215 case DW_OP_div:
3216 /* Sign extend the operands. */
3217 ax_ext (expr, addr_size_bits);
3218 ax_simple (expr, aop_swap);
3219 ax_ext (expr, addr_size_bits);
3220 ax_simple (expr, aop_swap);
3221 ax_simple (expr, aop_div_signed);
08922a10
SS
3222 break;
3223
3cf03773
TT
3224 case DW_OP_minus:
3225 ax_simple (expr, aop_sub);
3226 break;
3227
3228 case DW_OP_mod:
3229 ax_simple (expr, aop_rem_unsigned);
3230 break;
3231
3232 case DW_OP_mul:
3233 ax_simple (expr, aop_mul);
3234 break;
3235
3236 case DW_OP_or:
3237 ax_simple (expr, aop_bit_or);
3238 break;
3239
3240 case DW_OP_plus:
3241 ax_simple (expr, aop_add);
3242 break;
3243
3244 case DW_OP_shl:
3245 ax_simple (expr, aop_lsh);
3246 break;
3247
3248 case DW_OP_shr:
3249 ax_simple (expr, aop_rsh_unsigned);
3250 break;
3251
3252 case DW_OP_shra:
3253 ax_simple (expr, aop_rsh_signed);
3254 break;
3255
3256 case DW_OP_xor:
3257 ax_simple (expr, aop_bit_xor);
3258 break;
3259
3260 case DW_OP_le:
3261 /* Sign extend the operands. */
3262 ax_ext (expr, addr_size_bits);
3263 ax_simple (expr, aop_swap);
3264 ax_ext (expr, addr_size_bits);
3265 /* Note no swap here: A <= B is !(B < A). */
3266 ax_simple (expr, aop_less_signed);
3267 ax_simple (expr, aop_log_not);
3268 break;
3269
3270 case DW_OP_ge:
3271 /* Sign extend the operands. */
3272 ax_ext (expr, addr_size_bits);
3273 ax_simple (expr, aop_swap);
3274 ax_ext (expr, addr_size_bits);
3275 ax_simple (expr, aop_swap);
3276 /* A >= B is !(A < B). */
3277 ax_simple (expr, aop_less_signed);
3278 ax_simple (expr, aop_log_not);
3279 break;
3280
3281 case DW_OP_eq:
3282 /* Sign extend the operands. */
3283 ax_ext (expr, addr_size_bits);
3284 ax_simple (expr, aop_swap);
3285 ax_ext (expr, addr_size_bits);
3286 /* No need for a second swap here. */
3287 ax_simple (expr, aop_equal);
3288 break;
3289
3290 case DW_OP_lt:
3291 /* Sign extend the operands. */
3292 ax_ext (expr, addr_size_bits);
3293 ax_simple (expr, aop_swap);
3294 ax_ext (expr, addr_size_bits);
3295 ax_simple (expr, aop_swap);
3296 ax_simple (expr, aop_less_signed);
3297 break;
3298
3299 case DW_OP_gt:
3300 /* Sign extend the operands. */
3301 ax_ext (expr, addr_size_bits);
3302 ax_simple (expr, aop_swap);
3303 ax_ext (expr, addr_size_bits);
3304 /* Note no swap here: A > B is B < A. */
3305 ax_simple (expr, aop_less_signed);
3306 break;
3307
3308 case DW_OP_ne:
3309 /* Sign extend the operands. */
3310 ax_ext (expr, addr_size_bits);
3311 ax_simple (expr, aop_swap);
3312 ax_ext (expr, addr_size_bits);
3313 /* No need for a swap here. */
3314 ax_simple (expr, aop_equal);
3315 ax_simple (expr, aop_log_not);
3316 break;
3317
3318 case DW_OP_call_frame_cfa:
a8fd5589
TT
3319 {
3320 int regnum;
3321 CORE_ADDR text_offset;
3322 LONGEST off;
3323 const gdb_byte *cfa_start, *cfa_end;
3324
3325 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3326 &regnum, &off,
3327 &text_offset, &cfa_start, &cfa_end))
3328 {
3329 /* Register. */
3330 ax_reg (expr, regnum);
3331 if (off != 0)
3332 {
3333 ax_const_l (expr, off);
3334 ax_simple (expr, aop_add);
3335 }
3336 }
3337 else
3338 {
3339 /* Another expression. */
3340 ax_const_l (expr, text_offset);
40f4af28
SM
3341 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3342 cfa_end, per_cu);
a8fd5589
TT
3343 }
3344
3345 loc->kind = axs_lvalue_memory;
3346 }
3cf03773
TT
3347 break;
3348
3349 case DW_OP_GNU_push_tls_address:
4aa4e28b 3350 case DW_OP_form_tls_address:
3cf03773
TT
3351 unimplemented (op);
3352 break;
3353
08412b07
JB
3354 case DW_OP_push_object_address:
3355 unimplemented (op);
3356 break;
3357
3cf03773
TT
3358 case DW_OP_skip:
3359 offset = extract_signed_integer (op_ptr, 2, byte_order);
3360 op_ptr += 2;
3361 i = ax_goto (expr, aop_goto);
58414334
TT
3362 dw_labels.push_back (op_ptr + offset - base);
3363 patches.push_back (i);
3cf03773
TT
3364 break;
3365
3366 case DW_OP_bra:
3367 offset = extract_signed_integer (op_ptr, 2, byte_order);
3368 op_ptr += 2;
3369 /* Zero extend the operand. */
3370 ax_zero_ext (expr, addr_size_bits);
3371 i = ax_goto (expr, aop_if_goto);
58414334
TT
3372 dw_labels.push_back (op_ptr + offset - base);
3373 patches.push_back (i);
3cf03773
TT
3374 break;
3375
3376 case DW_OP_nop:
3377 break;
3378
3379 case DW_OP_piece:
3380 case DW_OP_bit_piece:
08922a10 3381 {
b926417a 3382 uint64_t size;
3cf03773
TT
3383
3384 if (op_ptr - 1 == previous_piece)
3385 error (_("Cannot translate empty pieces to agent expressions"));
3386 previous_piece = op_ptr - 1;
3387
f664829e 3388 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3389 if (op == DW_OP_piece)
3390 {
3391 size *= 8;
b926417a 3392 uoffset = 0;
3cf03773
TT
3393 }
3394 else
b926417a 3395 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
08922a10 3396
3cf03773
TT
3397 if (bits_collected + size > 8 * sizeof (LONGEST))
3398 error (_("Expression pieces exceed word size"));
3399
3400 /* Access the bits. */
3401 switch (loc->kind)
3402 {
3403 case axs_lvalue_register:
3404 ax_reg (expr, loc->u.reg);
3405 break;
3406
3407 case axs_lvalue_memory:
3408 /* Offset the pointer, if needed. */
b926417a 3409 if (uoffset > 8)
3cf03773 3410 {
b926417a 3411 ax_const_l (expr, uoffset / 8);
3cf03773 3412 ax_simple (expr, aop_add);
b926417a 3413 uoffset %= 8;
3cf03773
TT
3414 }
3415 access_memory (arch, expr, size);
3416 break;
3417 }
3418
3419 /* For a bits-big-endian target, shift up what we already
3420 have. For a bits-little-endian target, shift up the
3421 new data. Note that there is a potential bug here if
3422 the DWARF expression leaves multiple values on the
3423 stack. */
3424 if (bits_collected > 0)
3425 {
3426 if (bits_big_endian)
3427 {
3428 ax_simple (expr, aop_swap);
3429 ax_const_l (expr, size);
3430 ax_simple (expr, aop_lsh);
3431 /* We don't need a second swap here, because
3432 aop_bit_or is symmetric. */
3433 }
3434 else
3435 {
3436 ax_const_l (expr, size);
3437 ax_simple (expr, aop_lsh);
3438 }
3439 ax_simple (expr, aop_bit_or);
3440 }
3441
3442 bits_collected += size;
3443 loc->kind = axs_rvalue;
08922a10
SS
3444 }
3445 break;
08922a10 3446
3cf03773
TT
3447 case DW_OP_GNU_uninit:
3448 unimplemented (op);
3449
3450 case DW_OP_call2:
3451 case DW_OP_call4:
3452 {
3453 struct dwarf2_locexpr_baton block;
3454 int size = (op == DW_OP_call2 ? 2 : 4);
3455
3456 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3457 op_ptr += size;
3458
b926417a
TT
3459 cu_offset cuoffset = (cu_offset) uoffset;
3460 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
8b9737bf 3461 get_ax_pc, expr);
3cf03773
TT
3462
3463 /* DW_OP_call_ref is currently not supported. */
3464 gdb_assert (block.per_cu == per_cu);
3465
40f4af28
SM
3466 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3467 block.data + block.size, per_cu);
3cf03773
TT
3468 }
3469 break;
3470
3471 case DW_OP_call_ref:
3472 unimplemented (op);
3473
a6b786da
KB
3474 case DW_OP_GNU_variable_value:
3475 unimplemented (op);
3476
3cf03773 3477 default:
b1bfef65 3478 unimplemented (op);
08922a10 3479 }
08922a10 3480 }
3cf03773
TT
3481
3482 /* Patch all the branches we emitted. */
b926417a 3483 for (int i = 0; i < patches.size (); ++i)
3cf03773 3484 {
58414334 3485 int targ = offsets[dw_labels[i]];
3cf03773
TT
3486 if (targ == -1)
3487 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3488 ax_label (expr, patches[i], targ);
3cf03773 3489 }
08922a10
SS
3490}
3491
4c2df51b
DJ
3492\f
3493/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3494 evaluator to calculate the location. */
3495static struct value *
3496locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3497{
9a3c8263
SM
3498 struct dwarf2_locexpr_baton *dlbaton
3499 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3500 struct value *val;
9a619af0 3501
a2d33775
JK
3502 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3503 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3504
3505 return val;
3506}
3507
e18b2753
JK
3508/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3509 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3510 will be thrown. */
3511
3512static struct value *
3513locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3514{
9a3c8263
SM
3515 struct dwarf2_locexpr_baton *dlbaton
3516 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3517
3518 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3519 dlbaton->size);
3520}
3521
0b31a4bc
TT
3522/* Implementation of get_symbol_read_needs from
3523 symbol_computed_ops. */
3524
3525static enum symbol_needs_kind
3526locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3527{
9a3c8263
SM
3528 struct dwarf2_locexpr_baton *dlbaton
3529 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3530
0b31a4bc
TT
3531 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3532 dlbaton->per_cu);
4c2df51b
DJ
3533}
3534
9eae7c52
TT
3535/* Return true if DATA points to the end of a piece. END is one past
3536 the last byte in the expression. */
3537
3538static int
3539piece_end_p (const gdb_byte *data, const gdb_byte *end)
3540{
3541 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3542}
3543
5e44ecb3
TT
3544/* Helper for locexpr_describe_location_piece that finds the name of a
3545 DWARF register. */
3546
3547static const char *
3548locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3549{
3550 int regnum;
3551
0fde2c53
DE
3552 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3553 We'd rather print *something* here than throw an error. */
3554 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3555 /* gdbarch_register_name may just return "", return something more
3556 descriptive for bad register numbers. */
3557 if (regnum == -1)
3558 {
3559 /* The text is output as "$bad_register_number".
3560 That is why we use the underscores. */
3561 return _("bad_register_number");
3562 }
5e44ecb3
TT
3563 return gdbarch_register_name (gdbarch, regnum);
3564}
3565
9eae7c52
TT
3566/* Nicely describe a single piece of a location, returning an updated
3567 position in the bytecode sequence. This function cannot recognize
3568 all locations; if a location is not recognized, it simply returns
f664829e
DE
3569 DATA. If there is an error during reading, e.g. we run off the end
3570 of the buffer, an error is thrown. */
08922a10 3571
0d45f56e 3572static const gdb_byte *
08922a10
SS
3573locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3574 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3575 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3576 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3577 unsigned int addr_size)
4c2df51b 3578{
08922a10 3579 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3580 size_t leb128_size;
08922a10
SS
3581
3582 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3583 {
08922a10 3584 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3585 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3586 data += 1;
3587 }
3588 else if (data[0] == DW_OP_regx)
3589 {
9fccedf7 3590 uint64_t reg;
4c2df51b 3591
f664829e 3592 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3593 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3594 locexpr_regname (gdbarch, reg));
08922a10
SS
3595 }
3596 else if (data[0] == DW_OP_fbreg)
4c2df51b 3597 {
3977b71f 3598 const struct block *b;
08922a10
SS
3599 struct symbol *framefunc;
3600 int frame_reg = 0;
9fccedf7 3601 int64_t frame_offset;
7155d578 3602 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3603 size_t base_size;
9fccedf7 3604 int64_t base_offset = 0;
08922a10 3605
f664829e 3606 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3607 if (!piece_end_p (new_data, end))
3608 return data;
3609 data = new_data;
3610
08922a10
SS
3611 b = block_for_pc (addr);
3612
3613 if (!b)
3614 error (_("No block found for address for symbol \"%s\"."),
3615 SYMBOL_PRINT_NAME (symbol));
3616
3617 framefunc = block_linkage_function (b);
3618
3619 if (!framefunc)
3620 error (_("No function found for block for symbol \"%s\"."),
3621 SYMBOL_PRINT_NAME (symbol));
3622
af945b75 3623 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3624
3625 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3626 {
0d45f56e 3627 const gdb_byte *buf_end;
08922a10
SS
3628
3629 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3630 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3631 &base_offset);
08922a10 3632 if (buf_end != base_data + base_size)
3e43a32a
MS
3633 error (_("Unexpected opcode after "
3634 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3635 frame_reg, SYMBOL_PRINT_NAME (symbol));
3636 }
3637 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3638 {
3639 /* The frame base is just the register, with no offset. */
3640 frame_reg = base_data[0] - DW_OP_reg0;
3641 base_offset = 0;
3642 }
3643 else
3644 {
3645 /* We don't know what to do with the frame base expression,
3646 so we can't trace this variable; give up. */
7155d578 3647 return save_data;
08922a10
SS
3648 }
3649
3e43a32a
MS
3650 fprintf_filtered (stream,
3651 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3652 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3653 plongest (base_offset), plongest (frame_offset));
3654 }
9eae7c52
TT
3655 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3656 && piece_end_p (data, end))
08922a10 3657 {
9fccedf7 3658 int64_t offset;
08922a10 3659
f664829e 3660 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3661
4c2df51b 3662 fprintf_filtered (stream,
08922a10
SS
3663 _("a variable at offset %s from base reg $%s"),
3664 plongest (offset),
5e44ecb3 3665 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3666 }
3667
c3228f12
EZ
3668 /* The location expression for a TLS variable looks like this (on a
3669 64-bit LE machine):
3670
3671 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3672 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3673
c3228f12
EZ
3674 0x3 is the encoding for DW_OP_addr, which has an operand as long
3675 as the size of an address on the target machine (here is 8
09d8bd00
TT
3676 bytes). Note that more recent version of GCC emit DW_OP_const4u
3677 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3678 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3679 The operand represents the offset at which the variable is within
3680 the thread local storage. */
c3228f12 3681
9eae7c52 3682 else if (data + 1 + addr_size < end
09d8bd00
TT
3683 && (data[0] == DW_OP_addr
3684 || (addr_size == 4 && data[0] == DW_OP_const4u)
3685 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3686 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3687 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3688 && piece_end_p (data + 2 + addr_size, end))
08922a10 3689 {
d4a087c7
UW
3690 ULONGEST offset;
3691 offset = extract_unsigned_integer (data + 1, addr_size,
3692 gdbarch_byte_order (gdbarch));
9a619af0 3693
08922a10 3694 fprintf_filtered (stream,
d4a087c7 3695 _("a thread-local variable at offset 0x%s "
08922a10 3696 "in the thread-local storage for `%s'"),
4262abfb 3697 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3698
3699 data += 1 + addr_size + 1;
3700 }
49f6c839
DE
3701
3702 /* With -gsplit-dwarf a TLS variable can also look like this:
3703 DW_AT_location : 3 byte block: fc 4 e0
3704 (DW_OP_GNU_const_index: 4;
3705 DW_OP_GNU_push_tls_address) */
3706 else if (data + 3 <= end
3707 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3708 && data[0] == DW_OP_GNU_const_index
3709 && leb128_size > 0
4aa4e28b
TT
3710 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3711 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3712 && piece_end_p (data + 2 + leb128_size, end))
3713 {
a55c1f32 3714 uint64_t offset;
49f6c839
DE
3715
3716 data = safe_read_uleb128 (data + 1, end, &offset);
3717 offset = dwarf2_read_addr_index (per_cu, offset);
3718 fprintf_filtered (stream,
3719 _("a thread-local variable at offset 0x%s "
3720 "in the thread-local storage for `%s'"),
4262abfb 3721 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3722 ++data;
3723 }
3724
9eae7c52
TT
3725 else if (data[0] >= DW_OP_lit0
3726 && data[0] <= DW_OP_lit31
3727 && data + 1 < end
3728 && data[1] == DW_OP_stack_value)
3729 {
3730 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3731 data += 2;
3732 }
3733
3734 return data;
3735}
3736
3737/* Disassemble an expression, stopping at the end of a piece or at the
3738 end of the expression. Returns a pointer to the next unread byte
3739 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3740 will keep going until it reaches the end of the expression.
3741 If there is an error during reading, e.g. we run off the end
3742 of the buffer, an error is thrown. */
9eae7c52
TT
3743
3744static const gdb_byte *
3745disassemble_dwarf_expression (struct ui_file *stream,
3746 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3747 int offset_size, const gdb_byte *start,
9eae7c52 3748 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3749 int indent, int all,
5e44ecb3 3750 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3751{
9eae7c52
TT
3752 while (data < end
3753 && (all
3754 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3755 {
aead7601 3756 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3757 uint64_t ul;
3758 int64_t l;
9eae7c52
TT
3759 const char *name;
3760
f39c6ffd 3761 name = get_DW_OP_name (op);
9eae7c52
TT
3762
3763 if (!name)
3764 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3765 op, (long) (data - 1 - start));
2bda9cc5
JK
3766 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3767 (long) (data - 1 - start), name);
9eae7c52
TT
3768
3769 switch (op)
3770 {
3771 case DW_OP_addr:
d4a087c7
UW
3772 ul = extract_unsigned_integer (data, addr_size,
3773 gdbarch_byte_order (arch));
9eae7c52 3774 data += addr_size;
d4a087c7 3775 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3776 break;
3777
3778 case DW_OP_const1u:
3779 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3780 data += 1;
3781 fprintf_filtered (stream, " %s", pulongest (ul));
3782 break;
3783 case DW_OP_const1s:
3784 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3785 data += 1;
3786 fprintf_filtered (stream, " %s", plongest (l));
3787 break;
3788 case DW_OP_const2u:
3789 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3790 data += 2;
3791 fprintf_filtered (stream, " %s", pulongest (ul));
3792 break;
3793 case DW_OP_const2s:
3794 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3795 data += 2;
3796 fprintf_filtered (stream, " %s", plongest (l));
3797 break;
3798 case DW_OP_const4u:
3799 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3800 data += 4;
3801 fprintf_filtered (stream, " %s", pulongest (ul));
3802 break;
3803 case DW_OP_const4s:
3804 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3805 data += 4;
3806 fprintf_filtered (stream, " %s", plongest (l));
3807 break;
3808 case DW_OP_const8u:
3809 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3810 data += 8;
3811 fprintf_filtered (stream, " %s", pulongest (ul));
3812 break;
3813 case DW_OP_const8s:
3814 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3815 data += 8;
3816 fprintf_filtered (stream, " %s", plongest (l));
3817 break;
3818 case DW_OP_constu:
f664829e 3819 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3820 fprintf_filtered (stream, " %s", pulongest (ul));
3821 break;
3822 case DW_OP_consts:
f664829e 3823 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3824 fprintf_filtered (stream, " %s", plongest (l));
3825 break;
3826
3827 case DW_OP_reg0:
3828 case DW_OP_reg1:
3829 case DW_OP_reg2:
3830 case DW_OP_reg3:
3831 case DW_OP_reg4:
3832 case DW_OP_reg5:
3833 case DW_OP_reg6:
3834 case DW_OP_reg7:
3835 case DW_OP_reg8:
3836 case DW_OP_reg9:
3837 case DW_OP_reg10:
3838 case DW_OP_reg11:
3839 case DW_OP_reg12:
3840 case DW_OP_reg13:
3841 case DW_OP_reg14:
3842 case DW_OP_reg15:
3843 case DW_OP_reg16:
3844 case DW_OP_reg17:
3845 case DW_OP_reg18:
3846 case DW_OP_reg19:
3847 case DW_OP_reg20:
3848 case DW_OP_reg21:
3849 case DW_OP_reg22:
3850 case DW_OP_reg23:
3851 case DW_OP_reg24:
3852 case DW_OP_reg25:
3853 case DW_OP_reg26:
3854 case DW_OP_reg27:
3855 case DW_OP_reg28:
3856 case DW_OP_reg29:
3857 case DW_OP_reg30:
3858 case DW_OP_reg31:
3859 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3860 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3861 break;
3862
3863 case DW_OP_regx:
f664829e 3864 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3865 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3866 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3867 break;
3868
3869 case DW_OP_implicit_value:
f664829e 3870 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3871 data += ul;
3872 fprintf_filtered (stream, " %s", pulongest (ul));
3873 break;
3874
3875 case DW_OP_breg0:
3876 case DW_OP_breg1:
3877 case DW_OP_breg2:
3878 case DW_OP_breg3:
3879 case DW_OP_breg4:
3880 case DW_OP_breg5:
3881 case DW_OP_breg6:
3882 case DW_OP_breg7:
3883 case DW_OP_breg8:
3884 case DW_OP_breg9:
3885 case DW_OP_breg10:
3886 case DW_OP_breg11:
3887 case DW_OP_breg12:
3888 case DW_OP_breg13:
3889 case DW_OP_breg14:
3890 case DW_OP_breg15:
3891 case DW_OP_breg16:
3892 case DW_OP_breg17:
3893 case DW_OP_breg18:
3894 case DW_OP_breg19:
3895 case DW_OP_breg20:
3896 case DW_OP_breg21:
3897 case DW_OP_breg22:
3898 case DW_OP_breg23:
3899 case DW_OP_breg24:
3900 case DW_OP_breg25:
3901 case DW_OP_breg26:
3902 case DW_OP_breg27:
3903 case DW_OP_breg28:
3904 case DW_OP_breg29:
3905 case DW_OP_breg30:
3906 case DW_OP_breg31:
f664829e 3907 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3908 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3909 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3910 break;
3911
3912 case DW_OP_bregx:
f664829e
DE
3913 data = safe_read_uleb128 (data, end, &ul);
3914 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3915 fprintf_filtered (stream, " register %s [$%s] offset %s",
3916 pulongest (ul),
5e44ecb3 3917 locexpr_regname (arch, (int) ul),
0502ed8c 3918 plongest (l));
9eae7c52
TT
3919 break;
3920
3921 case DW_OP_fbreg:
f664829e 3922 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3923 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3924 break;
3925
3926 case DW_OP_xderef_size:
3927 case DW_OP_deref_size:
3928 case DW_OP_pick:
3929 fprintf_filtered (stream, " %d", *data);
3930 ++data;
3931 break;
3932
3933 case DW_OP_plus_uconst:
f664829e 3934 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3935 fprintf_filtered (stream, " %s", pulongest (ul));
3936 break;
3937
3938 case DW_OP_skip:
3939 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3940 data += 2;
3941 fprintf_filtered (stream, " to %ld",
3942 (long) (data + l - start));
3943 break;
3944
3945 case DW_OP_bra:
3946 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3947 data += 2;
3948 fprintf_filtered (stream, " %ld",
3949 (long) (data + l - start));
3950 break;
3951
3952 case DW_OP_call2:
3953 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3954 data += 2;
3955 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3956 break;
3957
3958 case DW_OP_call4:
3959 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3960 data += 4;
3961 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3962 break;
3963
3964 case DW_OP_call_ref:
3965 ul = extract_unsigned_integer (data, offset_size,
3966 gdbarch_byte_order (arch));
3967 data += offset_size;
3968 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3969 break;
3970
3971 case DW_OP_piece:
f664829e 3972 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3973 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3974 break;
3975
3976 case DW_OP_bit_piece:
3977 {
9fccedf7 3978 uint64_t offset;
9eae7c52 3979
f664829e
DE
3980 data = safe_read_uleb128 (data, end, &ul);
3981 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
3982 fprintf_filtered (stream, " size %s offset %s (bits)",
3983 pulongest (ul), pulongest (offset));
3984 }
3985 break;
8cf6f0b1 3986
216f72a1 3987 case DW_OP_implicit_pointer:
8cf6f0b1
TT
3988 case DW_OP_GNU_implicit_pointer:
3989 {
3990 ul = extract_unsigned_integer (data, offset_size,
3991 gdbarch_byte_order (arch));
3992 data += offset_size;
3993
f664829e 3994 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
3995
3996 fprintf_filtered (stream, " DIE %s offset %s",
3997 phex_nz (ul, offset_size),
3998 plongest (l));
3999 }
4000 break;
5e44ecb3 4001
216f72a1 4002 case DW_OP_deref_type:
5e44ecb3
TT
4003 case DW_OP_GNU_deref_type:
4004 {
b926417a 4005 int deref_addr_size = *data++;
5e44ecb3
TT
4006 struct type *type;
4007
f664829e 4008 data = safe_read_uleb128 (data, end, &ul);
9c541725 4009 cu_offset offset = (cu_offset) ul;
5e44ecb3
TT
4010 type = dwarf2_get_die_type (offset, per_cu);
4011 fprintf_filtered (stream, "<");
4012 type_print (type, "", stream, -1);
9c541725
PA
4013 fprintf_filtered (stream, " [0x%s]> %d",
4014 phex_nz (to_underlying (offset), 0),
b926417a 4015 deref_addr_size);
5e44ecb3
TT
4016 }
4017 break;
4018
216f72a1 4019 case DW_OP_const_type:
5e44ecb3
TT
4020 case DW_OP_GNU_const_type:
4021 {
5e44ecb3
TT
4022 struct type *type;
4023
f664829e 4024 data = safe_read_uleb128 (data, end, &ul);
9c541725 4025 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4026 type = dwarf2_get_die_type (type_die, per_cu);
4027 fprintf_filtered (stream, "<");
4028 type_print (type, "", stream, -1);
9c541725
PA
4029 fprintf_filtered (stream, " [0x%s]>",
4030 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4031 }
4032 break;
4033
216f72a1 4034 case DW_OP_regval_type:
5e44ecb3
TT
4035 case DW_OP_GNU_regval_type:
4036 {
9fccedf7 4037 uint64_t reg;
5e44ecb3
TT
4038 struct type *type;
4039
f664829e
DE
4040 data = safe_read_uleb128 (data, end, &reg);
4041 data = safe_read_uleb128 (data, end, &ul);
9c541725 4042 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4043
4044 type = dwarf2_get_die_type (type_die, per_cu);
4045 fprintf_filtered (stream, "<");
4046 type_print (type, "", stream, -1);
b64f50a1 4047 fprintf_filtered (stream, " [0x%s]> [$%s]",
9c541725 4048 phex_nz (to_underlying (type_die), 0),
5e44ecb3
TT
4049 locexpr_regname (arch, reg));
4050 }
4051 break;
4052
216f72a1 4053 case DW_OP_convert:
5e44ecb3 4054 case DW_OP_GNU_convert:
216f72a1 4055 case DW_OP_reinterpret:
5e44ecb3
TT
4056 case DW_OP_GNU_reinterpret:
4057 {
f664829e 4058 data = safe_read_uleb128 (data, end, &ul);
9c541725 4059 cu_offset type_die = (cu_offset) ul;
5e44ecb3 4060
9c541725 4061 if (to_underlying (type_die) == 0)
5e44ecb3
TT
4062 fprintf_filtered (stream, "<0>");
4063 else
4064 {
4065 struct type *type;
4066
4067 type = dwarf2_get_die_type (type_die, per_cu);
4068 fprintf_filtered (stream, "<");
4069 type_print (type, "", stream, -1);
9c541725
PA
4070 fprintf_filtered (stream, " [0x%s]>",
4071 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4072 }
4073 }
4074 break;
2bda9cc5 4075
216f72a1 4076 case DW_OP_entry_value:
2bda9cc5 4077 case DW_OP_GNU_entry_value:
f664829e 4078 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4079 fputc_filtered ('\n', stream);
4080 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4081 start, data, data + ul, indent + 2,
4082 all, per_cu);
4083 data += ul;
4084 continue;
49f6c839 4085
a24f71ab
JK
4086 case DW_OP_GNU_parameter_ref:
4087 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4088 data += 4;
4089 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4090 break;
4091
49f6c839
DE
4092 case DW_OP_GNU_addr_index:
4093 data = safe_read_uleb128 (data, end, &ul);
4094 ul = dwarf2_read_addr_index (per_cu, ul);
4095 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4096 break;
4097 case DW_OP_GNU_const_index:
4098 data = safe_read_uleb128 (data, end, &ul);
4099 ul = dwarf2_read_addr_index (per_cu, ul);
4100 fprintf_filtered (stream, " %s", pulongest (ul));
4101 break;
a6b786da
KB
4102
4103 case DW_OP_GNU_variable_value:
4104 ul = extract_unsigned_integer (data, offset_size,
4105 gdbarch_byte_order (arch));
4106 data += offset_size;
4107 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4108 break;
9eae7c52
TT
4109 }
4110
4111 fprintf_filtered (stream, "\n");
4112 }
c3228f12 4113
08922a10 4114 return data;
4c2df51b
DJ
4115}
4116
08922a10
SS
4117/* Describe a single location, which may in turn consist of multiple
4118 pieces. */
a55cc764 4119
08922a10
SS
4120static void
4121locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4122 struct ui_file *stream,
56eb65bd 4123 const gdb_byte *data, size_t size,
9eae7c52 4124 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4125 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4126{
0d45f56e 4127 const gdb_byte *end = data + size;
9eae7c52 4128 int first_piece = 1, bad = 0;
08922a10 4129
08922a10
SS
4130 while (data < end)
4131 {
9eae7c52
TT
4132 const gdb_byte *here = data;
4133 int disassemble = 1;
4134
4135 if (first_piece)
4136 first_piece = 0;
4137 else
4138 fprintf_filtered (stream, _(", and "));
08922a10 4139
b4f54984 4140 if (!dwarf_always_disassemble)
9eae7c52 4141 {
3e43a32a 4142 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4143 addr, objfile, per_cu,
9eae7c52
TT
4144 data, end, addr_size);
4145 /* If we printed anything, or if we have an empty piece,
4146 then don't disassemble. */
4147 if (data != here
4148 || data[0] == DW_OP_piece
4149 || data[0] == DW_OP_bit_piece)
4150 disassemble = 0;
08922a10 4151 }
9eae7c52 4152 if (disassemble)
2bda9cc5
JK
4153 {
4154 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4155 data = disassemble_dwarf_expression (stream,
4156 get_objfile_arch (objfile),
4157 addr_size, offset_size, data,
4158 data, end, 0,
b4f54984 4159 dwarf_always_disassemble,
2bda9cc5
JK
4160 per_cu);
4161 }
9eae7c52
TT
4162
4163 if (data < end)
08922a10 4164 {
9eae7c52 4165 int empty = data == here;
08922a10 4166
9eae7c52
TT
4167 if (disassemble)
4168 fprintf_filtered (stream, " ");
4169 if (data[0] == DW_OP_piece)
4170 {
9fccedf7 4171 uint64_t bytes;
08922a10 4172
f664829e 4173 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4174
9eae7c52
TT
4175 if (empty)
4176 fprintf_filtered (stream, _("an empty %s-byte piece"),
4177 pulongest (bytes));
4178 else
4179 fprintf_filtered (stream, _(" [%s-byte piece]"),
4180 pulongest (bytes));
4181 }
4182 else if (data[0] == DW_OP_bit_piece)
4183 {
9fccedf7 4184 uint64_t bits, offset;
9eae7c52 4185
f664829e
DE
4186 data = safe_read_uleb128 (data + 1, end, &bits);
4187 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4188
4189 if (empty)
4190 fprintf_filtered (stream,
4191 _("an empty %s-bit piece"),
4192 pulongest (bits));
4193 else
4194 fprintf_filtered (stream,
4195 _(" [%s-bit piece, offset %s bits]"),
4196 pulongest (bits), pulongest (offset));
4197 }
4198 else
4199 {
4200 bad = 1;
4201 break;
4202 }
08922a10
SS
4203 }
4204 }
4205
4206 if (bad || data > end)
4207 error (_("Corrupted DWARF2 expression for \"%s\"."),
4208 SYMBOL_PRINT_NAME (symbol));
4209}
4210
4211/* Print a natural-language description of SYMBOL to STREAM. This
4212 version is for a symbol with a single location. */
a55cc764 4213
08922a10
SS
4214static void
4215locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4216 struct ui_file *stream)
4217{
9a3c8263
SM
4218 struct dwarf2_locexpr_baton *dlbaton
4219 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
08922a10
SS
4220 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4221 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4222 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4223
3e43a32a
MS
4224 locexpr_describe_location_1 (symbol, addr, stream,
4225 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4226 objfile, addr_size, offset_size,
4227 dlbaton->per_cu);
08922a10
SS
4228}
4229
4230/* Describe the location of SYMBOL as an agent value in VALUE, generating
4231 any necessary bytecode in AX. */
a55cc764 4232
0d53c4c4 4233static void
40f4af28
SM
4234locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4235 struct axs_value *value)
a55cc764 4236{
9a3c8263
SM
4237 struct dwarf2_locexpr_baton *dlbaton
4238 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3cf03773 4239 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4240
1d6edc3c 4241 if (dlbaton->size == 0)
cabe9ab6
PA
4242 value->optimized_out = 1;
4243 else
40f4af28
SM
4244 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4245 dlbaton->data + dlbaton->size, dlbaton->per_cu);
a55cc764
DJ
4246}
4247
bb2ec1b3
TT
4248/* symbol_computed_ops 'generate_c_location' method. */
4249
4250static void
d82b3862 4251locexpr_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4252 struct gdbarch *gdbarch,
4253 unsigned char *registers_used,
4254 CORE_ADDR pc, const char *result_name)
4255{
9a3c8263
SM
4256 struct dwarf2_locexpr_baton *dlbaton
4257 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4258 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4259
4260 if (dlbaton->size == 0)
4261 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4262
4263 compile_dwarf_expr_to_c (stream, result_name,
4264 sym, pc, gdbarch, registers_used, addr_size,
4265 dlbaton->data, dlbaton->data + dlbaton->size,
4266 dlbaton->per_cu);
4267}
4268
4c2df51b
DJ
4269/* The set of location functions used with the DWARF-2 expression
4270 evaluator. */
768a979c 4271const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4272 locexpr_read_variable,
e18b2753 4273 locexpr_read_variable_at_entry,
0b31a4bc 4274 locexpr_get_symbol_read_needs,
4c2df51b 4275 locexpr_describe_location,
f1e6e072 4276 0, /* location_has_loclist */
bb2ec1b3
TT
4277 locexpr_tracepoint_var_ref,
4278 locexpr_generate_c_location
4c2df51b 4279};
0d53c4c4
DJ
4280
4281
4282/* Wrapper functions for location lists. These generally find
4283 the appropriate location expression and call something above. */
4284
4285/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4286 evaluator to calculate the location. */
4287static struct value *
4288loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4289{
9a3c8263
SM
4290 struct dwarf2_loclist_baton *dlbaton
4291 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4292 struct value *val;
947bb88f 4293 const gdb_byte *data;
b6b08ebf 4294 size_t size;
8cf6f0b1 4295 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4296
8cf6f0b1 4297 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4298 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4299 dlbaton->per_cu);
0d53c4c4
DJ
4300
4301 return val;
4302}
4303
e18b2753
JK
4304/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4305 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4306 will be thrown.
4307
4308 Function always returns non-NULL value, it may be marked optimized out if
4309 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4310 if it cannot resolve the parameter for any reason. */
4311
4312static struct value *
4313loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4314{
9a3c8263
SM
4315 struct dwarf2_loclist_baton *dlbaton
4316 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4317 const gdb_byte *data;
4318 size_t size;
4319 CORE_ADDR pc;
4320
4321 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4322 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4323
4324 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4325 if (data == NULL)
4326 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4327
4328 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4329}
4330
0b31a4bc
TT
4331/* Implementation of get_symbol_read_needs from
4332 symbol_computed_ops. */
4333
4334static enum symbol_needs_kind
4335loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4336{
4337 /* If there's a location list, then assume we need to have a frame
4338 to choose the appropriate location expression. With tracking of
4339 global variables this is not necessarily true, but such tracking
4340 is disabled in GCC at the moment until we figure out how to
4341 represent it. */
4342
0b31a4bc 4343 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4344}
4345
08922a10
SS
4346/* Print a natural-language description of SYMBOL to STREAM. This
4347 version applies when there is a list of different locations, each
4348 with a specified address range. */
4349
4350static void
4351loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4352 struct ui_file *stream)
0d53c4c4 4353{
9a3c8263
SM
4354 struct dwarf2_loclist_baton *dlbaton
4355 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4356 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4357 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4358 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4360 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4361 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4362 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4363 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4364 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4365 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4366 int done = 0;
08922a10
SS
4367
4368 loc_ptr = dlbaton->data;
4369 buf_end = dlbaton->data + dlbaton->size;
4370
9eae7c52 4371 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4372
4373 /* Iterate through locations until we run out. */
f664829e 4374 while (!done)
08922a10 4375 {
f664829e
DE
4376 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4377 int length;
4378 enum debug_loc_kind kind;
4379 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4380
4381 if (dlbaton->from_dwo)
4382 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4383 loc_ptr, buf_end, &new_ptr,
3771a44c 4384 &low, &high, byte_order);
d4a087c7 4385 else
f664829e
DE
4386 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4387 &low, &high,
4388 byte_order, addr_size,
4389 signed_addr_p);
4390 loc_ptr = new_ptr;
4391 switch (kind)
08922a10 4392 {
f664829e
DE
4393 case DEBUG_LOC_END_OF_LIST:
4394 done = 1;
4395 continue;
4396 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4397 base_address = high + base_offset;
9eae7c52 4398 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4399 paddress (gdbarch, base_address));
08922a10 4400 continue;
3771a44c
DE
4401 case DEBUG_LOC_START_END:
4402 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4403 break;
4404 case DEBUG_LOC_BUFFER_OVERFLOW:
4405 case DEBUG_LOC_INVALID_ENTRY:
4406 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4407 SYMBOL_PRINT_NAME (symbol));
4408 default:
4409 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4410 }
4411
08922a10
SS
4412 /* Otherwise, a location expression entry. */
4413 low += base_address;
4414 high += base_address;
4415
3e29f34a
MR
4416 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4417 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4418
08922a10
SS
4419 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4420 loc_ptr += 2;
4421
08922a10
SS
4422 /* (It would improve readability to print only the minimum
4423 necessary digits of the second number of the range.) */
9eae7c52 4424 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4425 paddress (gdbarch, low), paddress (gdbarch, high));
4426
4427 /* Now describe this particular location. */
4428 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4429 objfile, addr_size, offset_size,
4430 dlbaton->per_cu);
9eae7c52
TT
4431
4432 fprintf_filtered (stream, "\n");
08922a10
SS
4433
4434 loc_ptr += length;
4435 }
0d53c4c4
DJ
4436}
4437
4438/* Describe the location of SYMBOL as an agent value in VALUE, generating
4439 any necessary bytecode in AX. */
4440static void
40f4af28
SM
4441loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4442 struct axs_value *value)
0d53c4c4 4443{
9a3c8263
SM
4444 struct dwarf2_loclist_baton *dlbaton
4445 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4446 const gdb_byte *data;
b6b08ebf 4447 size_t size;
3cf03773 4448 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4449
8cf6f0b1 4450 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4451 if (size == 0)
cabe9ab6
PA
4452 value->optimized_out = 1;
4453 else
40f4af28 4454 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
9f6f94ff 4455 dlbaton->per_cu);
0d53c4c4
DJ
4456}
4457
bb2ec1b3
TT
4458/* symbol_computed_ops 'generate_c_location' method. */
4459
4460static void
d82b3862 4461loclist_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4462 struct gdbarch *gdbarch,
4463 unsigned char *registers_used,
4464 CORE_ADDR pc, const char *result_name)
4465{
9a3c8263
SM
4466 struct dwarf2_loclist_baton *dlbaton
4467 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4468 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4469 const gdb_byte *data;
4470 size_t size;
4471
4472 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4473 if (size == 0)
4474 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4475
4476 compile_dwarf_expr_to_c (stream, result_name,
4477 sym, pc, gdbarch, registers_used, addr_size,
4478 data, data + size,
4479 dlbaton->per_cu);
4480}
4481
0d53c4c4
DJ
4482/* The set of location functions used with the DWARF-2 expression
4483 evaluator and location lists. */
768a979c 4484const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4485 loclist_read_variable,
e18b2753 4486 loclist_read_variable_at_entry,
0b31a4bc 4487 loclist_symbol_needs,
0d53c4c4 4488 loclist_describe_location,
f1e6e072 4489 1, /* location_has_loclist */
bb2ec1b3
TT
4490 loclist_tracepoint_var_ref,
4491 loclist_generate_c_location
0d53c4c4 4492};
8e3b41a9
JK
4493
4494void
4495_initialize_dwarf2loc (void)
4496{
ccce17b0
YQ
4497 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4498 &entry_values_debug,
4499 _("Set entry values and tail call frames "
4500 "debugging."),
4501 _("Show entry values and tail call frames "
4502 "debugging."),
4503 _("When non-zero, the process of determining "
4504 "parameter values from function entry point "
4505 "and tail call frames will be printed."),
4506 NULL,
4507 show_entry_values_debug,
4508 &setdebuglist, &showdebuglist);
8e3b41a9 4509}
This page took 1.516346 seconds and 4 git commands to generate.