Add missing POSTCOMPILE step to mi/ file generation rules
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
edb3359d 33#include "block.h"
8e3b41a9 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
e7802207 39#include "dwarf2-frame.h"
bb2ec1b3 40#include "compile/compile.h"
325fac50 41#include <algorithm>
58414334 42#include <vector>
4c2df51b 43
b4f54984 44extern int dwarf_always_disassemble;
9eae7c52 45
1632a688
JK
46static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
56eb65bd
SP
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
1632a688 51 LONGEST byte_offset);
8cf6f0b1 52
192ca6d8
TT
53static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
54 (struct frame_info *frame,
55 enum call_site_parameter_kind kind,
56 union call_site_parameter_u kind_u,
57 struct dwarf2_per_cu_data **per_cu_return);
58
f664829e
DE
59/* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
63
64enum debug_loc_kind
65{
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
68
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
72
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
3771a44c
DE
76 DEBUG_LOC_START_END = 2,
77
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
81 as in .debug_loc. */
82 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
83
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
86
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
89};
90
b6807d98
TT
91/* Helper function which throws an error if a synthetic pointer is
92 invalid. */
93
94static void
95invalid_synthetic_pointer (void)
96{
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
99}
100
f664829e
DE
101/* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
105
106static enum debug_loc_kind
107decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
112 int signed_addr_p)
113{
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
115
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
118
119 if (signed_addr_p)
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 if (signed_addr_p)
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
127 else
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
130
131 *new_ptr = loc_ptr;
132
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
136
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
140
3771a44c 141 return DEBUG_LOC_START_END;
f664829e
DE
142}
143
144/* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
148
149static enum debug_loc_kind
150decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
3771a44c
DE
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
f664829e 156{
9fccedf7 157 uint64_t low_index, high_index;
f664829e
DE
158
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
161
162 switch (*loc_ptr++)
163 {
164 case DEBUG_LOC_END_OF_LIST:
165 *new_ptr = loc_ptr;
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
168 *low = 0;
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
170 if (loc_ptr == NULL)
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
173 *new_ptr = loc_ptr;
174 return DEBUG_LOC_BASE_ADDRESS;
3771a44c 175 case DEBUG_LOC_START_END:
f664829e
DE
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
181 if (loc_ptr == NULL)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
184 *new_ptr = loc_ptr;
3771a44c
DE
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
188 if (loc_ptr == NULL)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
193 *high = *low;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
f664829e
DE
197 default:
198 return DEBUG_LOC_INVALID_ENTRY;
199 }
200}
201
8cf6f0b1 202/* A function for dealing with location lists. Given a
0d53c4c4
DJ
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
206
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
209
8cf6f0b1
TT
210const gdb_byte *
211dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 213{
ae0d2f24 214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 219 /* Adjust base_address for relocatable objects. */
9aa1f1e3 220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 221 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 222 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
223
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
226
227 while (1)
228 {
f664829e
DE
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
230 int length;
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
233
234 if (baton->from_dwo)
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
3771a44c 237 &low, &high, byte_order);
d4a087c7 238 else
f664829e
DE
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
240 &low, &high,
241 byte_order, addr_size,
242 signed_addr_p);
243 loc_ptr = new_ptr;
244 switch (kind)
1d6edc3c 245 {
f664829e 246 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
247 *locexpr_length = 0;
248 return NULL;
f664829e
DE
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
251 continue;
3771a44c
DE
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
f664829e
DE
254 break;
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
259 default:
260 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 261 }
b5758fe4 262
bed911e5 263 /* Otherwise, a location expression entry.
8ddd5a6c
DE
264 If the entry is from a DWO, don't add base address: the entry is from
265 .debug_addr which already has the DWARF "base address". We still add
266 base_offset in case we're debugging a PIE executable. */
267 if (baton->from_dwo)
268 {
269 low += base_offset;
270 high += base_offset;
271 }
272 else
bed911e5
DE
273 {
274 low += base_address;
275 high += base_address;
276 }
0d53c4c4 277
e17a4113 278 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
0d53c4c4
DJ
279 loc_ptr += 2;
280
e18b2753
JK
281 if (low == high && pc == low)
282 {
283 /* This is entry PC record present only at entry point
284 of a function. Verify it is really the function entry point. */
285
3977b71f 286 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
287 struct symbol *pc_func = NULL;
288
289 if (pc_block)
290 pc_func = block_linkage_function (pc_block);
291
292 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
293 {
294 *locexpr_length = length;
295 return loc_ptr;
296 }
297 }
298
0d53c4c4
DJ
299 if (pc >= low && pc < high)
300 {
301 *locexpr_length = length;
302 return loc_ptr;
303 }
304
305 loc_ptr += length;
306 }
307}
308
4c2df51b
DJ
309/* This is the baton used when performing dwarf2 expression
310 evaluation. */
311struct dwarf_expr_baton
312{
313 struct frame_info *frame;
17ea53c3 314 struct dwarf2_per_cu_data *per_cu;
08412b07 315 CORE_ADDR obj_address;
4c2df51b
DJ
316};
317
f1e6e072
TT
318/* Implement find_frame_base_location method for LOC_BLOCK functions using
319 DWARF expression for its DW_AT_frame_base. */
320
321static void
322locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
323 const gdb_byte **start, size_t *length)
324{
9a3c8263
SM
325 struct dwarf2_locexpr_baton *symbaton
326 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
327
328 *length = symbaton->size;
329 *start = symbaton->data;
330}
331
7d1c9c9b
JB
332/* Implement the struct symbol_block_ops::get_frame_base method for
333 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
334
335static CORE_ADDR
7d1c9c9b 336locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
337{
338 struct gdbarch *gdbarch;
339 struct type *type;
340 struct dwarf2_locexpr_baton *dlbaton;
341 const gdb_byte *start;
342 size_t length;
343 struct value *result;
344
345 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
346 Thus, it's supposed to provide the find_frame_base_location method as
347 well. */
348 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
349
350 gdbarch = get_frame_arch (frame);
351 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 352 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
353
354 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
355 (framefunc, get_frame_pc (frame), &start, &length);
356 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
357 dlbaton->per_cu);
358
359 /* The DW_AT_frame_base attribute contains a location description which
360 computes the base address itself. However, the call to
361 dwarf2_evaluate_loc_desc returns a value representing a variable at
362 that address. The frame base address is thus this variable's
363 address. */
364 return value_address (result);
365}
366
f1e6e072
TT
367/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
368 function uses DWARF expression for its DW_AT_frame_base. */
369
370const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
371{
63e43d3a 372 locexpr_find_frame_base_location,
7d1c9c9b 373 locexpr_get_frame_base
f1e6e072
TT
374};
375
376/* Implement find_frame_base_location method for LOC_BLOCK functions using
377 DWARF location list for its DW_AT_frame_base. */
378
379static void
380loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
381 const gdb_byte **start, size_t *length)
382{
9a3c8263
SM
383 struct dwarf2_loclist_baton *symbaton
384 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
385
386 *start = dwarf2_find_location_expression (symbaton, length, pc);
387}
388
7d1c9c9b
JB
389/* Implement the struct symbol_block_ops::get_frame_base method for
390 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
391
392static CORE_ADDR
393loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
394{
395 struct gdbarch *gdbarch;
396 struct type *type;
397 struct dwarf2_loclist_baton *dlbaton;
398 const gdb_byte *start;
399 size_t length;
400 struct value *result;
401
402 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
403 Thus, it's supposed to provide the find_frame_base_location method as
404 well. */
405 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
406
407 gdbarch = get_frame_arch (frame);
408 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 409 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
410
411 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
412 (framefunc, get_frame_pc (frame), &start, &length);
413 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
414 dlbaton->per_cu);
415
416 /* The DW_AT_frame_base attribute contains a location description which
417 computes the base address itself. However, the call to
418 dwarf2_evaluate_loc_desc returns a value representing a variable at
419 that address. The frame base address is thus this variable's
420 address. */
421 return value_address (result);
422}
423
f1e6e072
TT
424/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
425 function uses DWARF location list for its DW_AT_frame_base. */
426
427const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
428{
63e43d3a 429 loclist_find_frame_base_location,
7d1c9c9b 430 loclist_get_frame_base
f1e6e072
TT
431};
432
af945b75
TT
433/* See dwarf2loc.h. */
434
435void
436func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
437 const gdb_byte **start, size_t *length)
0936ad1d 438{
f1e6e072 439 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 440 {
f1e6e072 441 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 442
f1e6e072 443 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
444 }
445 else
f1e6e072 446 *length = 0;
0d53c4c4 447
1d6edc3c 448 if (*length == 0)
8a3fe4f8 449 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 450 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
451}
452
4c2df51b 453static CORE_ADDR
192ca6d8 454get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 455{
192ca6d8 456 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 457
192ca6d8 458 return ctx->get_frame_pc ();
4c2df51b
DJ
459}
460
5c631832 461static void
b64f50a1 462per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 463 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
464{
465 struct dwarf2_locexpr_baton block;
466
192ca6d8
TT
467 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
468 get_frame_pc_for_per_cu_dwarf_call,
469 ctx);
5c631832
JK
470
471 /* DW_OP_call_ref is currently not supported. */
472 gdb_assert (block.per_cu == per_cu);
473
595d2e30 474 ctx->eval (block.data, block.size);
5c631832
JK
475}
476
192ca6d8 477class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 478{
192ca6d8 479 public:
5c631832 480
192ca6d8
TT
481 struct frame_info *frame;
482 struct dwarf2_per_cu_data *per_cu;
483 CORE_ADDR obj_address;
5c631832 484
192ca6d8
TT
485 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
486 the frame in BATON. */
8a9b8146 487
192ca6d8
TT
488 CORE_ADDR get_frame_cfa () OVERRIDE
489 {
490 return dwarf2_frame_cfa (frame);
491 }
8a9b8146 492
192ca6d8
TT
493 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
494 the frame in BATON. */
495
496 CORE_ADDR get_frame_pc () OVERRIDE
497 {
498 return get_frame_address_in_block (frame);
499 }
500
501 /* Using the objfile specified in BATON, find the address for the
502 current thread's thread-local storage with offset OFFSET. */
503 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
504 {
505 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
506
507 return target_translate_tls_address (objfile, offset);
508 }
509
510 /* Helper interface of per_cu_dwarf_call for
511 dwarf2_evaluate_loc_desc. */
512
513 void dwarf_call (cu_offset die_offset) OVERRIDE
514 {
515 per_cu_dwarf_call (this, die_offset, per_cu);
516 }
517
7d5697f9 518 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
192ca6d8 519 {
7d5697f9
TT
520 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
521 if (result == NULL)
522 error (_("Could not find type for DW_OP_GNU_const_type"));
523 if (size != 0 && TYPE_LENGTH (result) != size)
524 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
525 return result;
192ca6d8
TT
526 }
527
528 /* Callback function for dwarf2_evaluate_loc_desc.
529 Fetch the address indexed by DW_OP_GNU_addr_index. */
530
531 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
532 {
533 return dwarf2_read_addr_index (per_cu, index);
534 }
535
536 /* Callback function for get_object_address. Return the address of the VLA
537 object. */
538
539 CORE_ADDR get_object_address () OVERRIDE
540 {
541 if (obj_address == 0)
542 error (_("Location address is not set."));
543 return obj_address;
544 }
545
546 /* Execute DWARF block of call_site_parameter which matches KIND and
547 KIND_U. Choose DEREF_SIZE value of that parameter. Search
548 caller of this objects's frame.
549
550 The caller can be from a different CU - per_cu_dwarf_call
551 implementation can be more simple as it does not support cross-CU
552 DWARF executions. */
553
554 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
555 union call_site_parameter_u kind_u,
556 int deref_size) OVERRIDE
557 {
558 struct frame_info *caller_frame;
559 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
560 struct call_site_parameter *parameter;
561 const gdb_byte *data_src;
562 size_t size;
563
564 caller_frame = get_prev_frame (frame);
565
566 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
567 &caller_per_cu);
568 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
569 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
570
571 /* DEREF_SIZE size is not verified here. */
572 if (data_src == NULL)
573 throw_error (NO_ENTRY_VALUE_ERROR,
574 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
575
7d5697f9
TT
576 scoped_restore save_frame = make_scoped_restore (&this->frame,
577 caller_frame);
578 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
579 caller_per_cu);
580 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
581 (CORE_ADDR) 0);
192ca6d8
TT
582
583 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
584 this->gdbarch
7d5697f9 585 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
192ca6d8 586 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
7d5697f9 587 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
192ca6d8 588 scoped_restore save_offset = make_scoped_restore (&this->offset);
7d5697f9 589 this->offset = dwarf2_per_cu_text_offset (per_cu);
192ca6d8
TT
590
591 this->eval (data_src, size);
592 }
593
594 /* Using the frame specified in BATON, find the location expression
595 describing the frame base. Return a pointer to it in START and
596 its length in LENGTH. */
597 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
598 {
599 /* FIXME: cagney/2003-03-26: This code should be using
600 get_frame_base_address(), and then implement a dwarf2 specific
601 this_base method. */
602 struct symbol *framefunc;
603 const struct block *bl = get_frame_block (frame, NULL);
604
605 if (bl == NULL)
606 error (_("frame address is not available."));
607
608 /* Use block_linkage_function, which returns a real (not inlined)
609 function, instead of get_frame_function, which may return an
610 inlined function. */
611 framefunc = block_linkage_function (bl);
612
613 /* If we found a frame-relative symbol then it was certainly within
614 some function associated with a frame. If we can't find the frame,
615 something has gone wrong. */
616 gdb_assert (framefunc != NULL);
617
618 func_get_frame_base_dwarf_block (framefunc,
619 get_frame_address_in_block (frame),
620 start, length);
621 }
622
623 /* Read memory at ADDR (length LEN) into BUF. */
624
625 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
626 {
627 read_memory (addr, buf, len);
628 }
629
630 /* Using the frame specified in BATON, return the value of register
631 REGNUM, treated as a pointer. */
632 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
633 {
634 struct gdbarch *gdbarch = get_frame_arch (frame);
635 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
636
637 return address_from_register (regnum, frame);
638 }
639
640 /* Implement "get_reg_value" callback. */
641
642 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
643 {
644 struct gdbarch *gdbarch = get_frame_arch (frame);
645 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
646
647 return value_from_register (type, regnum, frame);
648 }
649};
8a9b8146 650
8e3b41a9
JK
651/* See dwarf2loc.h. */
652
ccce17b0 653unsigned int entry_values_debug = 0;
8e3b41a9
JK
654
655/* Helper to set entry_values_debug. */
656
657static void
658show_entry_values_debug (struct ui_file *file, int from_tty,
659 struct cmd_list_element *c, const char *value)
660{
661 fprintf_filtered (file,
662 _("Entry values and tail call frames debugging is %s.\n"),
663 value);
664}
665
666/* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
667 CALLER_FRAME (for registers) can be NULL if it is not known. This function
668 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
669
670static CORE_ADDR
671call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
672 struct call_site *call_site,
673 struct frame_info *caller_frame)
674{
675 switch (FIELD_LOC_KIND (call_site->target))
676 {
677 case FIELD_LOC_KIND_DWARF_BLOCK:
678 {
679 struct dwarf2_locexpr_baton *dwarf_block;
680 struct value *val;
681 struct type *caller_core_addr_type;
682 struct gdbarch *caller_arch;
683
684 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
685 if (dwarf_block == NULL)
686 {
7cbd4a93 687 struct bound_minimal_symbol msym;
8e3b41a9
JK
688
689 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
690 throw_error (NO_ENTRY_VALUE_ERROR,
691 _("DW_AT_GNU_call_site_target is not specified "
692 "at %s in %s"),
693 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 694 (msym.minsym == NULL ? "???"
efd66ac6 695 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
696
697 }
698 if (caller_frame == NULL)
699 {
7cbd4a93 700 struct bound_minimal_symbol msym;
8e3b41a9
JK
701
702 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
703 throw_error (NO_ENTRY_VALUE_ERROR,
704 _("DW_AT_GNU_call_site_target DWARF block resolving "
705 "requires known frame which is currently not "
706 "available at %s in %s"),
707 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 708 (msym.minsym == NULL ? "???"
efd66ac6 709 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
710
711 }
712 caller_arch = get_frame_arch (caller_frame);
713 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
714 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
715 dwarf_block->data, dwarf_block->size,
716 dwarf_block->per_cu);
717 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
718 location. */
719 if (VALUE_LVAL (val) == lval_memory)
720 return value_address (val);
721 else
722 return value_as_address (val);
723 }
724
725 case FIELD_LOC_KIND_PHYSNAME:
726 {
727 const char *physname;
3b7344d5 728 struct bound_minimal_symbol msym;
8e3b41a9
JK
729
730 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
731
732 /* Handle both the mangled and demangled PHYSNAME. */
733 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 734 if (msym.minsym == NULL)
8e3b41a9 735 {
3b7344d5 736 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
737 throw_error (NO_ENTRY_VALUE_ERROR,
738 _("Cannot find function \"%s\" for a call site target "
739 "at %s in %s"),
740 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
741 (msym.minsym == NULL ? "???"
742 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
743
744 }
77e371c0 745 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
746 }
747
748 case FIELD_LOC_KIND_PHYSADDR:
749 return FIELD_STATIC_PHYSADDR (call_site->target);
750
751 default:
752 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
753 }
754}
755
111c6489
JK
756/* Convert function entry point exact address ADDR to the function which is
757 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
758 NO_ENTRY_VALUE_ERROR otherwise. */
759
760static struct symbol *
761func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
762{
763 struct symbol *sym = find_pc_function (addr);
764 struct type *type;
765
766 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
767 throw_error (NO_ENTRY_VALUE_ERROR,
768 _("DW_TAG_GNU_call_site resolving failed to find function "
769 "name for address %s"),
770 paddress (gdbarch, addr));
771
772 type = SYMBOL_TYPE (sym);
773 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
774 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
775
776 return sym;
777}
778
2d6c5dc2
JK
779/* Verify function with entry point exact address ADDR can never call itself
780 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
781 can call itself via tail calls.
782
783 If a funtion can tail call itself its entry value based parameters are
784 unreliable. There is no verification whether the value of some/all
785 parameters is unchanged through the self tail call, we expect if there is
786 a self tail call all the parameters can be modified. */
787
788static void
789func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
790{
791 struct obstack addr_obstack;
792 struct cleanup *old_chain;
793 CORE_ADDR addr;
794
795 /* Track here CORE_ADDRs which were already visited. */
796 htab_t addr_hash;
797
798 /* The verification is completely unordered. Track here function addresses
799 which still need to be iterated. */
800 VEC (CORE_ADDR) *todo = NULL;
801
802 obstack_init (&addr_obstack);
803 old_chain = make_cleanup_obstack_free (&addr_obstack);
804 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
805 &addr_obstack, hashtab_obstack_allocate,
806 NULL);
807 make_cleanup_htab_delete (addr_hash);
808
809 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
810
811 VEC_safe_push (CORE_ADDR, todo, verify_addr);
812 while (!VEC_empty (CORE_ADDR, todo))
813 {
814 struct symbol *func_sym;
815 struct call_site *call_site;
816
817 addr = VEC_pop (CORE_ADDR, todo);
818
819 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
820
821 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
822 call_site; call_site = call_site->tail_call_next)
823 {
824 CORE_ADDR target_addr;
825 void **slot;
826
827 /* CALLER_FRAME with registers is not available for tail-call jumped
828 frames. */
829 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
830
831 if (target_addr == verify_addr)
832 {
7cbd4a93 833 struct bound_minimal_symbol msym;
2d6c5dc2
JK
834
835 msym = lookup_minimal_symbol_by_pc (verify_addr);
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_OP_GNU_entry_value resolving has found "
838 "function \"%s\" at %s can call itself via tail "
839 "calls"),
7cbd4a93 840 (msym.minsym == NULL ? "???"
efd66ac6 841 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
842 paddress (gdbarch, verify_addr));
843 }
844
845 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
846 if (*slot == NULL)
847 {
848 *slot = obstack_copy (&addr_obstack, &target_addr,
849 sizeof (target_addr));
850 VEC_safe_push (CORE_ADDR, todo, target_addr);
851 }
852 }
853 }
854
855 do_cleanups (old_chain);
856}
857
111c6489
JK
858/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
859 ENTRY_VALUES_DEBUG. */
860
861static void
862tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
863{
864 CORE_ADDR addr = call_site->pc;
7cbd4a93 865 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
866
867 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 868 (msym.minsym == NULL ? "???"
efd66ac6 869 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
870
871}
872
873/* vec.h needs single word type name, typedef it. */
874typedef struct call_site *call_sitep;
875
876/* Define VEC (call_sitep) functions. */
877DEF_VEC_P (call_sitep);
878
879/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
880 only top callers and bottom callees which are present in both. GDBARCH is
881 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
882 no remaining possibilities to provide unambiguous non-trivial result.
883 RESULTP should point to NULL on the first (initialization) call. Caller is
884 responsible for xfree of any RESULTP data. */
885
886static void
887chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
888 VEC (call_sitep) *chain)
889{
890 struct call_site_chain *result = *resultp;
891 long length = VEC_length (call_sitep, chain);
892 int callers, callees, idx;
893
894 if (result == NULL)
895 {
896 /* Create the initial chain containing all the passed PCs. */
897
224c3ddb
SM
898 result = ((struct call_site_chain *)
899 xmalloc (sizeof (*result)
900 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
901 result->length = length;
902 result->callers = result->callees = length;
19a1b230
AA
903 if (!VEC_empty (call_sitep, chain))
904 memcpy (result->call_site, VEC_address (call_sitep, chain),
905 sizeof (*result->call_site) * length);
111c6489
JK
906 *resultp = result;
907
908 if (entry_values_debug)
909 {
910 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
911 for (idx = 0; idx < length; idx++)
912 tailcall_dump (gdbarch, result->call_site[idx]);
913 fputc_unfiltered ('\n', gdb_stdlog);
914 }
915
916 return;
917 }
918
919 if (entry_values_debug)
920 {
921 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
922 for (idx = 0; idx < length; idx++)
923 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
924 fputc_unfiltered ('\n', gdb_stdlog);
925 }
926
927 /* Intersect callers. */
928
325fac50 929 callers = std::min ((long) result->callers, length);
111c6489
JK
930 for (idx = 0; idx < callers; idx++)
931 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
932 {
933 result->callers = idx;
934 break;
935 }
936
937 /* Intersect callees. */
938
325fac50 939 callees = std::min ((long) result->callees, length);
111c6489
JK
940 for (idx = 0; idx < callees; idx++)
941 if (result->call_site[result->length - 1 - idx]
942 != VEC_index (call_sitep, chain, length - 1 - idx))
943 {
944 result->callees = idx;
945 break;
946 }
947
948 if (entry_values_debug)
949 {
950 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
951 for (idx = 0; idx < result->callers; idx++)
952 tailcall_dump (gdbarch, result->call_site[idx]);
953 fputs_unfiltered (" |", gdb_stdlog);
954 for (idx = 0; idx < result->callees; idx++)
955 tailcall_dump (gdbarch, result->call_site[result->length
956 - result->callees + idx]);
957 fputc_unfiltered ('\n', gdb_stdlog);
958 }
959
960 if (result->callers == 0 && result->callees == 0)
961 {
962 /* There are no common callers or callees. It could be also a direct
963 call (which has length 0) with ambiguous possibility of an indirect
964 call - CALLERS == CALLEES == 0 is valid during the first allocation
965 but any subsequence processing of such entry means ambiguity. */
966 xfree (result);
967 *resultp = NULL;
968 return;
969 }
970
971 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
972 PC again. In such case there must be two different code paths to reach
e0619de6
JK
973 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
974 gdb_assert (result->callers + result->callees <= result->length);
111c6489
JK
975}
976
977/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. Use depth first search so we can
979 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
980 would have needless GDB stack overhead. Caller is responsible for xfree of
981 the returned result. Any unreliability results in thrown
982 NO_ENTRY_VALUE_ERROR. */
983
984static struct call_site_chain *
985call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
986 CORE_ADDR callee_pc)
987{
c4be5165 988 CORE_ADDR save_callee_pc = callee_pc;
111c6489
JK
989 struct obstack addr_obstack;
990 struct cleanup *back_to_retval, *back_to_workdata;
991 struct call_site_chain *retval = NULL;
992 struct call_site *call_site;
993
994 /* Mark CALL_SITEs so we do not visit the same ones twice. */
995 htab_t addr_hash;
996
997 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
998 call_site nor any possible call_site at CALLEE_PC's function is there.
999 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1000 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1001 VEC (call_sitep) *chain = NULL;
1002
1003 /* We are not interested in the specific PC inside the callee function. */
1004 callee_pc = get_pc_function_start (callee_pc);
1005 if (callee_pc == 0)
1006 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1007 paddress (gdbarch, save_callee_pc));
111c6489
JK
1008
1009 back_to_retval = make_cleanup (free_current_contents, &retval);
1010
1011 obstack_init (&addr_obstack);
1012 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
1013 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
1014 &addr_obstack, hashtab_obstack_allocate,
1015 NULL);
1016 make_cleanup_htab_delete (addr_hash);
1017
1018 make_cleanup (VEC_cleanup (call_sitep), &chain);
1019
1020 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1021 at the target's function. All the possible tail call sites in the
1022 target's function will get iterated as already pushed into CHAIN via their
1023 TAIL_CALL_NEXT. */
1024 call_site = call_site_for_pc (gdbarch, caller_pc);
1025
1026 while (call_site)
1027 {
1028 CORE_ADDR target_func_addr;
1029 struct call_site *target_call_site;
1030
1031 /* CALLER_FRAME with registers is not available for tail-call jumped
1032 frames. */
1033 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1034
1035 if (target_func_addr == callee_pc)
1036 {
1037 chain_candidate (gdbarch, &retval, chain);
1038 if (retval == NULL)
1039 break;
1040
1041 /* There is no way to reach CALLEE_PC again as we would prevent
1042 entering it twice as being already marked in ADDR_HASH. */
1043 target_call_site = NULL;
1044 }
1045 else
1046 {
1047 struct symbol *target_func;
1048
1049 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1050 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1051 }
1052
1053 do
1054 {
1055 /* Attempt to visit TARGET_CALL_SITE. */
1056
1057 if (target_call_site)
1058 {
1059 void **slot;
1060
1061 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
1062 if (*slot == NULL)
1063 {
1064 /* Successfully entered TARGET_CALL_SITE. */
1065
1066 *slot = &target_call_site->pc;
1067 VEC_safe_push (call_sitep, chain, target_call_site);
1068 break;
1069 }
1070 }
1071
1072 /* Backtrack (without revisiting the originating call_site). Try the
1073 callers's sibling; if there isn't any try the callers's callers's
1074 sibling etc. */
1075
1076 target_call_site = NULL;
1077 while (!VEC_empty (call_sitep, chain))
1078 {
1079 call_site = VEC_pop (call_sitep, chain);
1080
1081 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
1082 NO_INSERT) != NULL);
1083 htab_remove_elt (addr_hash, &call_site->pc);
1084
1085 target_call_site = call_site->tail_call_next;
1086 if (target_call_site)
1087 break;
1088 }
1089 }
1090 while (target_call_site);
1091
1092 if (VEC_empty (call_sitep, chain))
1093 call_site = NULL;
1094 else
1095 call_site = VEC_last (call_sitep, chain);
1096 }
1097
1098 if (retval == NULL)
1099 {
7cbd4a93 1100 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1101
1102 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1103 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1104 throw_error (NO_ENTRY_VALUE_ERROR,
1105 _("There are no unambiguously determinable intermediate "
1106 "callers or callees between caller function \"%s\" at %s "
1107 "and callee function \"%s\" at %s"),
7cbd4a93 1108 (msym_caller.minsym == NULL
efd66ac6 1109 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 1110 paddress (gdbarch, caller_pc),
7cbd4a93 1111 (msym_callee.minsym == NULL
efd66ac6 1112 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
1113 paddress (gdbarch, callee_pc));
1114 }
1115
1116 do_cleanups (back_to_workdata);
1117 discard_cleanups (back_to_retval);
1118 return retval;
1119}
1120
1121/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1122 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1123 constructed return NULL. Caller is responsible for xfree of the returned
1124 result. */
1125
1126struct call_site_chain *
1127call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1128 CORE_ADDR callee_pc)
1129{
111c6489
JK
1130 struct call_site_chain *retval = NULL;
1131
492d29ea 1132 TRY
111c6489
JK
1133 {
1134 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1135 }
492d29ea 1136 CATCH (e, RETURN_MASK_ERROR)
111c6489
JK
1137 {
1138 if (e.error == NO_ENTRY_VALUE_ERROR)
1139 {
1140 if (entry_values_debug)
1141 exception_print (gdb_stdout, e);
1142
1143 return NULL;
1144 }
1145 else
1146 throw_exception (e);
1147 }
492d29ea
PA
1148 END_CATCH
1149
111c6489
JK
1150 return retval;
1151}
1152
24c5c679
JK
1153/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1154
1155static int
1156call_site_parameter_matches (struct call_site_parameter *parameter,
1157 enum call_site_parameter_kind kind,
1158 union call_site_parameter_u kind_u)
1159{
1160 if (kind == parameter->kind)
1161 switch (kind)
1162 {
1163 case CALL_SITE_PARAMETER_DWARF_REG:
1164 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1165 case CALL_SITE_PARAMETER_FB_OFFSET:
1166 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3
JK
1167 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1168 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
24c5c679
JK
1169 }
1170 return 0;
1171}
1172
1173/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1174 FRAME is for callee.
8e3b41a9
JK
1175
1176 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1177 otherwise. */
1178
1179static struct call_site_parameter *
24c5c679
JK
1180dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1181 enum call_site_parameter_kind kind,
1182 union call_site_parameter_u kind_u,
8e3b41a9
JK
1183 struct dwarf2_per_cu_data **per_cu_return)
1184{
9e3a7d65
JK
1185 CORE_ADDR func_addr, caller_pc;
1186 struct gdbarch *gdbarch;
1187 struct frame_info *caller_frame;
8e3b41a9
JK
1188 struct call_site *call_site;
1189 int iparams;
509f0fd9
JK
1190 /* Initialize it just to avoid a GCC false warning. */
1191 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1192 CORE_ADDR target_addr;
1193
9e3a7d65
JK
1194 while (get_frame_type (frame) == INLINE_FRAME)
1195 {
1196 frame = get_prev_frame (frame);
1197 gdb_assert (frame != NULL);
1198 }
1199
1200 func_addr = get_frame_func (frame);
1201 gdbarch = get_frame_arch (frame);
1202 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1203 if (gdbarch != frame_unwind_arch (frame))
1204 {
7cbd4a93
TT
1205 struct bound_minimal_symbol msym
1206 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1207 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1208
1209 throw_error (NO_ENTRY_VALUE_ERROR,
1210 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1211 "(of %s (%s)) does not match caller gdbarch %s"),
1212 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1213 paddress (gdbarch, func_addr),
7cbd4a93 1214 (msym.minsym == NULL ? "???"
efd66ac6 1215 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1216 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1217 }
1218
1219 if (caller_frame == NULL)
1220 {
7cbd4a93
TT
1221 struct bound_minimal_symbol msym
1222 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1223
1224 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1225 "requires caller of %s (%s)"),
1226 paddress (gdbarch, func_addr),
7cbd4a93 1227 (msym.minsym == NULL ? "???"
efd66ac6 1228 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1229 }
1230 caller_pc = get_frame_pc (caller_frame);
1231 call_site = call_site_for_pc (gdbarch, caller_pc);
1232
1233 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1234 if (target_addr != func_addr)
1235 {
1236 struct minimal_symbol *target_msym, *func_msym;
1237
7cbd4a93
TT
1238 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1239 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9
JK
1240 throw_error (NO_ENTRY_VALUE_ERROR,
1241 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1242 "but the called frame is for %s at %s"),
1243 (target_msym == NULL ? "???"
efd66ac6 1244 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1245 paddress (gdbarch, target_addr),
efd66ac6 1246 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1247 paddress (gdbarch, func_addr));
1248 }
1249
2d6c5dc2
JK
1250 /* No entry value based parameters would be reliable if this function can
1251 call itself via tail calls. */
1252 func_verify_no_selftailcall (gdbarch, func_addr);
1253
8e3b41a9
JK
1254 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1255 {
1256 parameter = &call_site->parameter[iparams];
24c5c679 1257 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1258 break;
1259 }
1260 if (iparams == call_site->parameter_count)
1261 {
7cbd4a93
TT
1262 struct minimal_symbol *msym
1263 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9
JK
1264
1265 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1266 determine its value. */
1267 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1268 "at DW_TAG_GNU_call_site %s at %s"),
1269 paddress (gdbarch, caller_pc),
efd66ac6 1270 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1271 }
1272
1273 *per_cu_return = call_site->per_cu;
1274 return parameter;
1275}
1276
a471c594
JK
1277/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1278 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1279 DW_AT_GNU_call_site_data_value (dereferenced) block.
e18b2753
JK
1280
1281 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1282 struct value.
1283
1284 Function always returns non-NULL, non-optimized out value. It throws
1285 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1286
1287static struct value *
1288dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1289 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1290 struct frame_info *caller_frame,
1291 struct dwarf2_per_cu_data *per_cu)
1292{
a471c594 1293 const gdb_byte *data_src;
e18b2753 1294 gdb_byte *data;
a471c594
JK
1295 size_t size;
1296
1297 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1298 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1299
1300 /* DEREF_SIZE size is not verified here. */
1301 if (data_src == NULL)
1302 throw_error (NO_ENTRY_VALUE_ERROR,
1303 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
e18b2753
JK
1304
1305 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1306 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1307 DWARF block. */
224c3ddb 1308 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1309 memcpy (data, data_src, size);
1310 data[size] = DW_OP_stack_value;
e18b2753 1311
a471c594 1312 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1313}
1314
a471c594
JK
1315/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1316 the indirect method on it, that is use its stored target value, the sole
1317 purpose of entry_data_value_funcs.. */
1318
1319static struct value *
1320entry_data_value_coerce_ref (const struct value *value)
1321{
1322 struct type *checked_type = check_typedef (value_type (value));
1323 struct value *target_val;
1324
1325 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1326 return NULL;
1327
9a3c8263 1328 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1329 value_incref (target_val);
1330 return target_val;
1331}
1332
1333/* Implement copy_closure. */
1334
1335static void *
1336entry_data_value_copy_closure (const struct value *v)
1337{
9a3c8263 1338 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1339
1340 value_incref (target_val);
1341 return target_val;
1342}
1343
1344/* Implement free_closure. */
1345
1346static void
1347entry_data_value_free_closure (struct value *v)
1348{
9a3c8263 1349 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1350
1351 value_free (target_val);
1352}
1353
1354/* Vector for methods for an entry value reference where the referenced value
1355 is stored in the caller. On the first dereference use
1356 DW_AT_GNU_call_site_data_value in the caller. */
1357
1358static const struct lval_funcs entry_data_value_funcs =
1359{
1360 NULL, /* read */
1361 NULL, /* write */
a471c594
JK
1362 NULL, /* indirect */
1363 entry_data_value_coerce_ref,
1364 NULL, /* check_synthetic_pointer */
1365 entry_data_value_copy_closure,
1366 entry_data_value_free_closure
1367};
1368
24c5c679
JK
1369/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1370 are used to match DW_AT_location at the caller's
1371 DW_TAG_GNU_call_site_parameter.
e18b2753
JK
1372
1373 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1374 cannot resolve the parameter for any reason. */
1375
1376static struct value *
1377value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1378 enum call_site_parameter_kind kind,
1379 union call_site_parameter_u kind_u)
e18b2753 1380{
a471c594
JK
1381 struct type *checked_type = check_typedef (type);
1382 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1383 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1384 struct value *outer_val, *target_val, *val;
e18b2753
JK
1385 struct call_site_parameter *parameter;
1386 struct dwarf2_per_cu_data *caller_per_cu;
1387
24c5c679 1388 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1389 &caller_per_cu);
1390
a471c594
JK
1391 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1392 type, caller_frame,
1393 caller_per_cu);
1394
1395 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1396 used and it is not available do not fall back to OUTER_VAL - dereferencing
1397 TYPE_CODE_REF with non-entry data value would give current value - not the
1398 entry value. */
1399
1400 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1401 || TYPE_TARGET_TYPE (checked_type) == NULL)
1402 return outer_val;
1403
1404 target_val = dwarf_entry_parameter_to_value (parameter,
1405 TYPE_LENGTH (target_type),
1406 target_type, caller_frame,
1407 caller_per_cu);
1408
a471c594
JK
1409 release_value (target_val);
1410 val = allocate_computed_value (type, &entry_data_value_funcs,
1411 target_val /* closure */);
1412
1413 /* Copy the referencing pointer to the new computed value. */
1414 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1415 TYPE_LENGTH (checked_type));
1416 set_value_lazy (val, 0);
1417
1418 return val;
e18b2753
JK
1419}
1420
1421/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1422 SIZE are DWARF block used to match DW_AT_location at the caller's
1423 DW_TAG_GNU_call_site_parameter.
1424
1425 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1426 cannot resolve the parameter for any reason. */
1427
1428static struct value *
1429value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1430 const gdb_byte *block, size_t block_len)
1431{
24c5c679 1432 union call_site_parameter_u kind_u;
e18b2753 1433
24c5c679
JK
1434 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1435 if (kind_u.dwarf_reg != -1)
1436 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1437 kind_u);
e18b2753 1438
24c5c679
JK
1439 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1440 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1441 kind_u);
e18b2753
JK
1442
1443 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1444 suppressed during normal operation. The expression can be arbitrary if
1445 there is no caller-callee entry value binding expected. */
1446 throw_error (NO_ENTRY_VALUE_ERROR,
1447 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1448 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1449}
1450
052b9502
NF
1451struct piece_closure
1452{
88bfdde4
TT
1453 /* Reference count. */
1454 int refc;
1455
8cf6f0b1
TT
1456 /* The CU from which this closure's expression came. */
1457 struct dwarf2_per_cu_data *per_cu;
1458
052b9502
NF
1459 /* The number of pieces used to describe this variable. */
1460 int n_pieces;
1461
6063c216
UW
1462 /* The target address size, used only for DWARF_VALUE_STACK. */
1463 int addr_size;
cec03d70 1464
052b9502
NF
1465 /* The pieces themselves. */
1466 struct dwarf_expr_piece *pieces;
1467};
1468
1469/* Allocate a closure for a value formed from separately-described
1470 PIECES. */
1471
1472static struct piece_closure *
8cf6f0b1
TT
1473allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1474 int n_pieces, struct dwarf_expr_piece *pieces,
6063c216 1475 int addr_size)
052b9502 1476{
41bf6aca 1477 struct piece_closure *c = XCNEW (struct piece_closure);
8a9b8146 1478 int i;
052b9502 1479
88bfdde4 1480 c->refc = 1;
8cf6f0b1 1481 c->per_cu = per_cu;
052b9502 1482 c->n_pieces = n_pieces;
6063c216 1483 c->addr_size = addr_size;
fc270c35 1484 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
052b9502
NF
1485
1486 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
8a9b8146
TT
1487 for (i = 0; i < n_pieces; ++i)
1488 if (c->pieces[i].location == DWARF_VALUE_STACK)
1489 value_incref (c->pieces[i].v.value);
052b9502
NF
1490
1491 return c;
1492}
1493
d3b1e874
TT
1494/* The lowest-level function to extract bits from a byte buffer.
1495 SOURCE is the buffer. It is updated if we read to the end of a
1496 byte.
1497 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1498 updated to reflect the number of bits actually read.
1499 NBITS is the number of bits we want to read. It is updated to
1500 reflect the number of bits actually read. This function may read
1501 fewer bits.
1502 BITS_BIG_ENDIAN is taken directly from gdbarch.
1503 This function returns the extracted bits. */
1504
1505static unsigned int
1506extract_bits_primitive (const gdb_byte **source,
1507 unsigned int *source_offset_bits,
1508 int *nbits, int bits_big_endian)
1509{
1510 unsigned int avail, mask, datum;
1511
1512 gdb_assert (*source_offset_bits < 8);
1513
1514 avail = 8 - *source_offset_bits;
1515 if (avail > *nbits)
1516 avail = *nbits;
1517
1518 mask = (1 << avail) - 1;
1519 datum = **source;
1520 if (bits_big_endian)
1521 datum >>= 8 - (*source_offset_bits + *nbits);
1522 else
1523 datum >>= *source_offset_bits;
1524 datum &= mask;
1525
1526 *nbits -= avail;
1527 *source_offset_bits += avail;
1528 if (*source_offset_bits >= 8)
1529 {
1530 *source_offset_bits -= 8;
1531 ++*source;
1532 }
1533
1534 return datum;
1535}
1536
1537/* Extract some bits from a source buffer and move forward in the
1538 buffer.
1539
1540 SOURCE is the source buffer. It is updated as bytes are read.
1541 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1542 bits are read.
1543 NBITS is the number of bits to read.
1544 BITS_BIG_ENDIAN is taken directly from gdbarch.
1545
1546 This function returns the bits that were read. */
1547
1548static unsigned int
1549extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1550 int nbits, int bits_big_endian)
1551{
1552 unsigned int datum;
1553
1554 gdb_assert (nbits > 0 && nbits <= 8);
1555
1556 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1557 bits_big_endian);
1558 if (nbits > 0)
1559 {
1560 unsigned int more;
1561
1562 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1563 bits_big_endian);
1564 if (bits_big_endian)
1565 datum <<= nbits;
1566 else
1567 more <<= nbits;
1568 datum |= more;
1569 }
1570
1571 return datum;
1572}
1573
1574/* Write some bits into a buffer and move forward in the buffer.
1575
1576 DATUM is the bits to write. The low-order bits of DATUM are used.
1577 DEST is the destination buffer. It is updated as bytes are
1578 written.
1579 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1580 done.
1581 NBITS is the number of valid bits in DATUM.
1582 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1583
1584static void
1585insert_bits (unsigned int datum,
1586 gdb_byte *dest, unsigned int dest_offset_bits,
1587 int nbits, int bits_big_endian)
1588{
1589 unsigned int mask;
1590
8c814cdd 1591 gdb_assert (dest_offset_bits + nbits <= 8);
d3b1e874
TT
1592
1593 mask = (1 << nbits) - 1;
1594 if (bits_big_endian)
1595 {
1596 datum <<= 8 - (dest_offset_bits + nbits);
1597 mask <<= 8 - (dest_offset_bits + nbits);
1598 }
1599 else
1600 {
1601 datum <<= dest_offset_bits;
1602 mask <<= dest_offset_bits;
1603 }
1604
1605 gdb_assert ((datum & ~mask) == 0);
1606
1607 *dest = (*dest & ~mask) | datum;
1608}
1609
1610/* Copy bits from a source to a destination.
1611
1612 DEST is where the bits should be written.
1613 DEST_OFFSET_BITS is the bit offset into DEST.
1614 SOURCE is the source of bits.
1615 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1616 BIT_COUNT is the number of bits to copy.
1617 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1618
1619static void
1620copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1621 const gdb_byte *source, unsigned int source_offset_bits,
1622 unsigned int bit_count,
1623 int bits_big_endian)
1624{
1625 unsigned int dest_avail;
1626 int datum;
1627
1628 /* Reduce everything to byte-size pieces. */
1629 dest += dest_offset_bits / 8;
1630 dest_offset_bits %= 8;
1631 source += source_offset_bits / 8;
1632 source_offset_bits %= 8;
1633
1634 dest_avail = 8 - dest_offset_bits % 8;
1635
1636 /* See if we can fill the first destination byte. */
1637 if (dest_avail < bit_count)
1638 {
1639 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1640 bits_big_endian);
1641 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1642 ++dest;
1643 dest_offset_bits = 0;
1644 bit_count -= dest_avail;
1645 }
1646
1647 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1648 than 8 bits remaining. */
1649 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1650 for (; bit_count >= 8; bit_count -= 8)
1651 {
1652 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1653 *dest++ = (gdb_byte) datum;
1654 }
1655
1656 /* Finally, we may have a few leftover bits. */
1657 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1658 if (bit_count > 0)
1659 {
1660 datum = extract_bits (&source, &source_offset_bits, bit_count,
1661 bits_big_endian);
1662 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1663 }
1664}
1665
052b9502
NF
1666static void
1667read_pieced_value (struct value *v)
1668{
1669 int i;
1670 long offset = 0;
d3b1e874 1671 ULONGEST bits_to_skip;
052b9502 1672 gdb_byte *contents;
3e43a32a
MS
1673 struct piece_closure *c
1674 = (struct piece_closure *) value_computed_closure (v);
41b56feb 1675 struct frame_info *frame;
afd74c5f 1676 size_t type_len;
d3b1e874 1677 size_t buffer_size = 0;
58414334 1678 std::vector<gdb_byte> buffer;
d3b1e874
TT
1679 int bits_big_endian
1680 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f 1681
41b56feb
KB
1682 /* VALUE_FRAME_ID is used instead of VALUE_NEXT_FRAME_ID here
1683 because FRAME is passed to get_frame_register_bytes(), which
1684 does its own "->next" operation. */
1685 frame = frame_find_by_id (VALUE_FRAME_ID (v));
1686
afd74c5f
TT
1687 if (value_type (v) != value_enclosing_type (v))
1688 internal_error (__FILE__, __LINE__,
1689 _("Should not be able to create a lazy value with "
1690 "an enclosing type"));
052b9502
NF
1691
1692 contents = value_contents_raw (v);
d3b1e874 1693 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1694 if (value_bitsize (v))
1695 {
1696 bits_to_skip += value_bitpos (v);
1697 type_len = value_bitsize (v);
1698 }
1699 else
1700 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1701
afd74c5f 1702 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1703 {
1704 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1705 size_t this_size, this_size_bits;
1706 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 1707 const gdb_byte *intermediate_buffer;
d3b1e874
TT
1708
1709 /* Compute size, source, and destination offsets for copying, in
1710 bits. */
1711 this_size_bits = p->size;
1712 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1713 {
d3b1e874 1714 bits_to_skip -= this_size_bits;
afd74c5f
TT
1715 continue;
1716 }
d3b1e874 1717 if (bits_to_skip > 0)
afd74c5f 1718 {
d3b1e874
TT
1719 dest_offset_bits = 0;
1720 source_offset_bits = bits_to_skip;
1721 this_size_bits -= bits_to_skip;
1722 bits_to_skip = 0;
afd74c5f
TT
1723 }
1724 else
1725 {
d3b1e874
TT
1726 dest_offset_bits = offset;
1727 source_offset_bits = 0;
afd74c5f 1728 }
5bd1ef56
TT
1729 if (this_size_bits > type_len - offset)
1730 this_size_bits = type_len - offset;
9a619af0 1731
d3b1e874
TT
1732 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1733 source_offset = source_offset_bits / 8;
1734 if (buffer_size < this_size)
1735 {
1736 buffer_size = this_size;
58414334 1737 buffer.reserve (buffer_size);
d3b1e874 1738 }
58414334 1739 intermediate_buffer = buffer.data ();
d3b1e874
TT
1740
1741 /* Copy from the source to DEST_BUFFER. */
cec03d70 1742 switch (p->location)
052b9502 1743 {
cec03d70
TT
1744 case DWARF_VALUE_REGISTER:
1745 {
1746 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53
DE
1747 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1748 int optim, unavail;
6b850546 1749 LONGEST reg_offset = source_offset;
dcbf108f 1750
0fde2c53
DE
1751 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1752 && this_size < register_size (arch, gdb_regnum))
63b4f126 1753 {
0fde2c53
DE
1754 /* Big-endian, and we want less than full size. */
1755 reg_offset = register_size (arch, gdb_regnum) - this_size;
1756 /* We want the lower-order THIS_SIZE_BITS of the bytes
1757 we extract from the register. */
1758 source_offset_bits += 8 * this_size - this_size_bits;
63b4f126 1759 }
0fde2c53
DE
1760
1761 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
58414334 1762 this_size, buffer.data (),
0fde2c53 1763 &optim, &unavail))
63b4f126 1764 {
0fde2c53 1765 /* Just so garbage doesn't ever shine through. */
58414334 1766 memset (buffer.data (), 0, this_size);
0fde2c53
DE
1767
1768 if (optim)
1769 mark_value_bits_optimized_out (v, offset, this_size_bits);
1770 if (unavail)
1771 mark_value_bits_unavailable (v, offset, this_size_bits);
63b4f126 1772 }
cec03d70
TT
1773 }
1774 break;
1775
1776 case DWARF_VALUE_MEMORY:
e6ca34fc
PA
1777 read_value_memory (v, offset,
1778 p->v.mem.in_stack_memory,
1779 p->v.mem.addr + source_offset,
58414334 1780 buffer.data (), this_size);
cec03d70
TT
1781 break;
1782
1783 case DWARF_VALUE_STACK:
1784 {
afd74c5f 1785 size_t n = this_size;
9a619af0 1786
afd74c5f
TT
1787 if (n > c->addr_size - source_offset)
1788 n = (c->addr_size >= source_offset
1789 ? c->addr_size - source_offset
1790 : 0);
1791 if (n == 0)
1792 {
1793 /* Nothing. */
1794 }
afd74c5f
TT
1795 else
1796 {
8a9b8146 1797 const gdb_byte *val_bytes = value_contents_all (p->v.value);
afd74c5f 1798
8a9b8146 1799 intermediate_buffer = val_bytes + source_offset;
afd74c5f 1800 }
cec03d70
TT
1801 }
1802 break;
1803
1804 case DWARF_VALUE_LITERAL:
1805 {
afd74c5f
TT
1806 size_t n = this_size;
1807
1808 if (n > p->v.literal.length - source_offset)
1809 n = (p->v.literal.length >= source_offset
1810 ? p->v.literal.length - source_offset
1811 : 0);
1812 if (n != 0)
d3b1e874 1813 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
1814 }
1815 break;
1816
8cf6f0b1
TT
1817 /* These bits show up as zeros -- but do not cause the value
1818 to be considered optimized-out. */
1819 case DWARF_VALUE_IMPLICIT_POINTER:
1820 break;
1821
cb826367 1822 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1823 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1824 break;
1825
cec03d70
TT
1826 default:
1827 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1828 }
d3b1e874 1829
8cf6f0b1
TT
1830 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1831 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
1832 copy_bitwise (contents, dest_offset_bits,
1833 intermediate_buffer, source_offset_bits % 8,
1834 this_size_bits, bits_big_endian);
1835
1836 offset += this_size_bits;
052b9502
NF
1837 }
1838}
1839
1840static void
1841write_pieced_value (struct value *to, struct value *from)
1842{
1843 int i;
1844 long offset = 0;
d3b1e874 1845 ULONGEST bits_to_skip;
afd74c5f 1846 const gdb_byte *contents;
3e43a32a
MS
1847 struct piece_closure *c
1848 = (struct piece_closure *) value_computed_closure (to);
41b56feb 1849 struct frame_info *frame;
afd74c5f 1850 size_t type_len;
d3b1e874 1851 size_t buffer_size = 0;
58414334 1852 std::vector<gdb_byte> buffer;
d3b1e874
TT
1853 int bits_big_endian
1854 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502 1855
41b56feb
KB
1856 /* VALUE_FRAME_ID is used instead of VALUE_NEXT_FRAME_ID here
1857 because FRAME is passed to get_frame_register_bytes() and
1858 put_frame_register_bytes(), both of which do their own "->next"
1859 operations. */
1860 frame = frame_find_by_id (VALUE_FRAME_ID (to));
052b9502
NF
1861 if (frame == NULL)
1862 {
9a0dc9e3 1863 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
052b9502
NF
1864 return;
1865 }
1866
afd74c5f 1867 contents = value_contents (from);
d3b1e874 1868 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
1869 if (value_bitsize (to))
1870 {
1871 bits_to_skip += value_bitpos (to);
1872 type_len = value_bitsize (to);
1873 }
1874 else
1875 type_len = 8 * TYPE_LENGTH (value_type (to));
1876
afd74c5f 1877 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1878 {
1879 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1880 size_t this_size_bits, this_size;
1881 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1882 int need_bitwise;
1883 const gdb_byte *source_buffer;
afd74c5f 1884
d3b1e874
TT
1885 this_size_bits = p->size;
1886 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1887 {
d3b1e874 1888 bits_to_skip -= this_size_bits;
afd74c5f
TT
1889 continue;
1890 }
d3b1e874
TT
1891 if (this_size_bits > type_len - offset)
1892 this_size_bits = type_len - offset;
1893 if (bits_to_skip > 0)
afd74c5f 1894 {
d3b1e874
TT
1895 dest_offset_bits = bits_to_skip;
1896 source_offset_bits = 0;
1897 this_size_bits -= bits_to_skip;
1898 bits_to_skip = 0;
afd74c5f
TT
1899 }
1900 else
1901 {
d3b1e874
TT
1902 dest_offset_bits = 0;
1903 source_offset_bits = offset;
1904 }
1905
1906 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1907 source_offset = source_offset_bits / 8;
1908 dest_offset = dest_offset_bits / 8;
1909 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1910 {
1911 source_buffer = contents + source_offset;
1912 need_bitwise = 0;
1913 }
1914 else
1915 {
1916 if (buffer_size < this_size)
1917 {
1918 buffer_size = this_size;
58414334 1919 buffer.reserve (buffer_size);
d3b1e874 1920 }
58414334 1921 source_buffer = buffer.data ();
d3b1e874 1922 need_bitwise = 1;
afd74c5f 1923 }
9a619af0 1924
cec03d70 1925 switch (p->location)
052b9502 1926 {
cec03d70
TT
1927 case DWARF_VALUE_REGISTER:
1928 {
1929 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53
DE
1930 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1931 int reg_offset = dest_offset;
dcbf108f 1932
0fde2c53
DE
1933 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1934 && this_size <= register_size (arch, gdb_regnum))
63b4f126 1935 {
0fde2c53
DE
1936 /* Big-endian, and we want less than full size. */
1937 reg_offset = register_size (arch, gdb_regnum) - this_size;
1938 }
ca45ab26 1939
0fde2c53
DE
1940 if (need_bitwise)
1941 {
1942 int optim, unavail;
ca45ab26 1943
0fde2c53 1944 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
58414334 1945 this_size, buffer.data (),
0fde2c53 1946 &optim, &unavail))
d3b1e874 1947 {
0fde2c53
DE
1948 if (optim)
1949 throw_error (OPTIMIZED_OUT_ERROR,
1950 _("Can't do read-modify-write to "
1951 "update bitfield; containing word "
1952 "has been optimized out"));
1953 if (unavail)
1954 throw_error (NOT_AVAILABLE_ERROR,
1955 _("Can't do read-modify-write to update "
1956 "bitfield; containing word "
1957 "is unavailable"));
d3b1e874 1958 }
58414334 1959 copy_bitwise (buffer.data (), dest_offset_bits,
0fde2c53
DE
1960 contents, source_offset_bits,
1961 this_size_bits,
1962 bits_big_endian);
63b4f126 1963 }
0fde2c53
DE
1964
1965 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1966 this_size, source_buffer);
cec03d70
TT
1967 }
1968 break;
1969 case DWARF_VALUE_MEMORY:
d3b1e874
TT
1970 if (need_bitwise)
1971 {
1972 /* Only the first and last bytes can possibly have any
1973 bits reused. */
58414334 1974 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
f2c7657e 1975 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
58414334
TT
1976 &buffer[this_size - 1], 1);
1977 copy_bitwise (buffer.data (), dest_offset_bits,
d3b1e874
TT
1978 contents, source_offset_bits,
1979 this_size_bits,
1980 bits_big_endian);
1981 }
1982
f2c7657e 1983 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 1984 source_buffer, this_size);
cec03d70
TT
1985 break;
1986 default:
9a0dc9e3 1987 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
0e03807e 1988 break;
052b9502 1989 }
d3b1e874 1990 offset += this_size_bits;
052b9502
NF
1991 }
1992}
1993
9a0dc9e3
PA
1994/* An implementation of an lval_funcs method to see whether a value is
1995 a synthetic pointer. */
8cf6f0b1 1996
0e03807e 1997static int
6b850546 1998check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 1999 int bit_length)
0e03807e
TT
2000{
2001 struct piece_closure *c
2002 = (struct piece_closure *) value_computed_closure (value);
2003 int i;
2004
2005 bit_offset += 8 * value_offset (value);
2006 if (value_bitsize (value))
2007 bit_offset += value_bitpos (value);
2008
2009 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2010 {
2011 struct dwarf_expr_piece *p = &c->pieces[i];
2012 size_t this_size_bits = p->size;
2013
2014 if (bit_offset > 0)
2015 {
2016 if (bit_offset >= this_size_bits)
2017 {
2018 bit_offset -= this_size_bits;
2019 continue;
2020 }
2021
2022 bit_length -= this_size_bits - bit_offset;
2023 bit_offset = 0;
2024 }
2025 else
2026 bit_length -= this_size_bits;
2027
9a0dc9e3
PA
2028 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2029 return 0;
0e03807e
TT
2030 }
2031
9a0dc9e3 2032 return 1;
8cf6f0b1
TT
2033}
2034
2035/* A wrapper function for get_frame_address_in_block. */
2036
2037static CORE_ADDR
2038get_frame_address_in_block_wrapper (void *baton)
2039{
9a3c8263 2040 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
2041}
2042
3326303b
MG
2043/* Fetch a DW_AT_const_value through a synthetic pointer. */
2044
2045static struct value *
2046fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2047 struct dwarf2_per_cu_data *per_cu,
2048 struct type *type)
2049{
2050 struct value *result = NULL;
2051 struct obstack temp_obstack;
2052 struct cleanup *cleanup;
2053 const gdb_byte *bytes;
2054 LONGEST len;
2055
2056 obstack_init (&temp_obstack);
2057 cleanup = make_cleanup_obstack_free (&temp_obstack);
2058 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2059
2060 if (bytes != NULL)
2061 {
2062 if (byte_offset >= 0
2063 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2064 {
2065 bytes += byte_offset;
2066 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2067 }
2068 else
2069 invalid_synthetic_pointer ();
2070 }
2071 else
2072 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2073
2074 do_cleanups (cleanup);
2075
2076 return result;
2077}
2078
2079/* Fetch the value pointed to by a synthetic pointer. */
2080
2081static struct value *
2082indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2083 struct dwarf2_per_cu_data *per_cu,
2084 struct frame_info *frame, struct type *type)
2085{
2086 /* Fetch the location expression of the DIE we're pointing to. */
2087 struct dwarf2_locexpr_baton baton
2088 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2089 get_frame_address_in_block_wrapper, frame);
2090
2091 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2092 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2093 or it may've been optimized out. */
2094 if (baton.data != NULL)
2095 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2096 baton.data, baton.size, baton.per_cu,
2097 byte_offset);
2098 else
2099 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2100 type);
2101}
2102
8cf6f0b1
TT
2103/* An implementation of an lval_funcs method to indirect through a
2104 pointer. This handles the synthetic pointer case when needed. */
2105
2106static struct value *
2107indirect_pieced_value (struct value *value)
2108{
2109 struct piece_closure *c
2110 = (struct piece_closure *) value_computed_closure (value);
2111 struct type *type;
2112 struct frame_info *frame;
2113 struct dwarf2_locexpr_baton baton;
6b850546
DT
2114 int i, bit_length;
2115 LONGEST bit_offset;
8cf6f0b1 2116 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2117 LONGEST byte_offset;
b597c318 2118 enum bfd_endian byte_order;
8cf6f0b1 2119
0e37a63c 2120 type = check_typedef (value_type (value));
8cf6f0b1
TT
2121 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2122 return NULL;
2123
2124 bit_length = 8 * TYPE_LENGTH (type);
2125 bit_offset = 8 * value_offset (value);
2126 if (value_bitsize (value))
2127 bit_offset += value_bitpos (value);
2128
2129 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2130 {
2131 struct dwarf_expr_piece *p = &c->pieces[i];
2132 size_t this_size_bits = p->size;
2133
2134 if (bit_offset > 0)
2135 {
2136 if (bit_offset >= this_size_bits)
2137 {
2138 bit_offset -= this_size_bits;
2139 continue;
2140 }
2141
2142 bit_length -= this_size_bits - bit_offset;
2143 bit_offset = 0;
2144 }
2145 else
2146 bit_length -= this_size_bits;
2147
2148 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2149 return NULL;
2150
2151 if (bit_length != 0)
2152 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2153
2154 piece = p;
2155 break;
2156 }
2157
3326303b 2158 gdb_assert (piece != NULL);
8cf6f0b1 2159 frame = get_selected_frame (_("No frame selected."));
543305c9 2160
5bd1ef56
TT
2161 /* This is an offset requested by GDB, such as value subscripts.
2162 However, due to how synthetic pointers are implemented, this is
2163 always presented to us as a pointer type. This means we have to
b597c318
YQ
2164 sign-extend it manually as appropriate. Use raw
2165 extract_signed_integer directly rather than value_as_address and
2166 sign extend afterwards on architectures that would need it
2167 (mostly everywhere except MIPS, which has signed addresses) as
2168 the later would go through gdbarch_pointer_to_address and thus
2169 return a CORE_ADDR with high bits set on architectures that
2170 encode address spaces and other things in CORE_ADDR. */
2171 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2172 byte_offset = extract_signed_integer (value_contents (value),
2173 TYPE_LENGTH (type), byte_order);
5bd1ef56 2174 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2175
3326303b
MG
2176 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2177 frame, type);
2178}
8cf6f0b1 2179
3326303b
MG
2180/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2181 references. */
b6807d98 2182
3326303b
MG
2183static struct value *
2184coerce_pieced_ref (const struct value *value)
2185{
2186 struct type *type = check_typedef (value_type (value));
b6807d98 2187
3326303b
MG
2188 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2189 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2190 {
2191 const struct piece_closure *closure
2192 = (struct piece_closure *) value_computed_closure (value);
2193 struct frame_info *frame
2194 = get_selected_frame (_("No frame selected."));
2195
2196 /* gdb represents synthetic pointers as pieced values with a single
2197 piece. */
2198 gdb_assert (closure != NULL);
2199 gdb_assert (closure->n_pieces == 1);
2200
2201 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2202 closure->pieces->v.ptr.offset,
2203 closure->per_cu, frame, type);
2204 }
2205 else
2206 {
2207 /* Else: not a synthetic reference; do nothing. */
2208 return NULL;
2209 }
0e03807e
TT
2210}
2211
052b9502 2212static void *
0e03807e 2213copy_pieced_value_closure (const struct value *v)
052b9502 2214{
3e43a32a
MS
2215 struct piece_closure *c
2216 = (struct piece_closure *) value_computed_closure (v);
052b9502 2217
88bfdde4
TT
2218 ++c->refc;
2219 return c;
052b9502
NF
2220}
2221
2222static void
2223free_pieced_value_closure (struct value *v)
2224{
3e43a32a
MS
2225 struct piece_closure *c
2226 = (struct piece_closure *) value_computed_closure (v);
052b9502 2227
88bfdde4
TT
2228 --c->refc;
2229 if (c->refc == 0)
2230 {
8a9b8146
TT
2231 int i;
2232
2233 for (i = 0; i < c->n_pieces; ++i)
2234 if (c->pieces[i].location == DWARF_VALUE_STACK)
2235 value_free (c->pieces[i].v.value);
2236
88bfdde4
TT
2237 xfree (c->pieces);
2238 xfree (c);
2239 }
052b9502
NF
2240}
2241
2242/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2243static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2244 read_pieced_value,
2245 write_pieced_value,
8cf6f0b1 2246 indirect_pieced_value,
3326303b 2247 coerce_pieced_ref,
8cf6f0b1 2248 check_pieced_synthetic_pointer,
052b9502
NF
2249 copy_pieced_value_closure,
2250 free_pieced_value_closure
2251};
2252
4c2df51b 2253/* Evaluate a location description, starting at DATA and with length
8cf6f0b1
TT
2254 SIZE, to find the current location of variable of TYPE in the
2255 context of FRAME. BYTE_OFFSET is applied after the contents are
2256 computed. */
a2d33775 2257
8cf6f0b1
TT
2258static struct value *
2259dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2260 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2261 struct dwarf2_per_cu_data *per_cu,
2262 LONGEST byte_offset)
4c2df51b 2263{
4c2df51b 2264 struct value *retval;
718b9626 2265 struct cleanup *value_chain;
ac56253d 2266 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2267
8cf6f0b1
TT
2268 if (byte_offset < 0)
2269 invalid_synthetic_pointer ();
2270
0d53c4c4 2271 if (size == 0)
a7035dbb 2272 return allocate_optimized_out_value (type);
0d53c4c4 2273
192ca6d8
TT
2274 dwarf_evaluate_loc_desc ctx;
2275 ctx.frame = frame;
2276 ctx.per_cu = per_cu;
2277 ctx.obj_address = 0;
4c2df51b 2278
72fc29ff 2279 value_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 2280
718b9626
TT
2281 ctx.gdbarch = get_objfile_arch (objfile);
2282 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2283 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2284 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2285
492d29ea 2286 TRY
79e1a869 2287 {
595d2e30 2288 ctx.eval (data, size);
79e1a869 2289 }
492d29ea 2290 CATCH (ex, RETURN_MASK_ERROR)
79e1a869
PA
2291 {
2292 if (ex.error == NOT_AVAILABLE_ERROR)
2293 {
718b9626 2294 do_cleanups (value_chain);
79e1a869
PA
2295 retval = allocate_value (type);
2296 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2297 return retval;
2298 }
8e3b41a9
JK
2299 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2300 {
2301 if (entry_values_debug)
2302 exception_print (gdb_stdout, ex);
718b9626 2303 do_cleanups (value_chain);
8e3b41a9
JK
2304 return allocate_optimized_out_value (type);
2305 }
79e1a869
PA
2306 else
2307 throw_exception (ex);
2308 }
492d29ea 2309 END_CATCH
79e1a869 2310
718b9626 2311 if (ctx.num_pieces > 0)
87808bd6 2312 {
052b9502 2313 struct piece_closure *c;
41b56feb
KB
2314 struct frame_id frame_id
2315 = frame == NULL
2316 ? null_frame_id
2317 : get_frame_id (get_next_frame_sentinel_okay (frame));
8cf6f0b1
TT
2318 ULONGEST bit_size = 0;
2319 int i;
052b9502 2320
718b9626
TT
2321 for (i = 0; i < ctx.num_pieces; ++i)
2322 bit_size += ctx.pieces[i].size;
8cf6f0b1
TT
2323 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2324 invalid_synthetic_pointer ();
2325
718b9626
TT
2326 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2327 ctx.addr_size);
72fc29ff
TT
2328 /* We must clean up the value chain after creating the piece
2329 closure but before allocating the result. */
2330 do_cleanups (value_chain);
a2d33775 2331 retval = allocate_computed_value (type, &pieced_value_funcs, c);
41b56feb 2332 VALUE_NEXT_FRAME_ID (retval) = frame_id;
8cf6f0b1 2333 set_value_offset (retval, byte_offset);
87808bd6 2334 }
4c2df51b
DJ
2335 else
2336 {
718b9626 2337 switch (ctx.location)
cec03d70
TT
2338 {
2339 case DWARF_VALUE_REGISTER:
2340 {
2341 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2342 int dwarf_regnum
595d2e30 2343 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2344 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2345
8cf6f0b1
TT
2346 if (byte_offset != 0)
2347 error (_("cannot use offset on synthetic pointer to register"));
72fc29ff 2348 do_cleanups (value_chain);
0fde2c53
DE
2349 retval = value_from_register (type, gdb_regnum, frame);
2350 if (value_optimized_out (retval))
2351 {
2352 struct value *tmp;
2353
2354 /* This means the register has undefined value / was
2355 not saved. As we're computing the location of some
2356 variable etc. in the program, not a value for
2357 inspecting a register ($pc, $sp, etc.), return a
2358 generic optimized out value instead, so that we show
2359 <optimized out> instead of <not saved>. */
2360 do_cleanups (value_chain);
2361 tmp = allocate_value (type);
2362 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2363 retval = tmp;
2364 }
cec03d70
TT
2365 }
2366 break;
2367
2368 case DWARF_VALUE_MEMORY:
2369 {
f56331b4 2370 struct type *ptr_type;
595d2e30
TT
2371 CORE_ADDR address = ctx.fetch_address (0);
2372 int in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2373
f56331b4
KB
2374 /* DW_OP_deref_size (and possibly other operations too) may
2375 create a pointer instead of an address. Ideally, the
2376 pointer to address conversion would be performed as part
2377 of those operations, but the type of the object to
2378 which the address refers is not known at the time of
2379 the operation. Therefore, we do the conversion here
2380 since the type is readily available. */
2381
2382 switch (TYPE_CODE (type))
2383 {
2384 case TYPE_CODE_FUNC:
2385 case TYPE_CODE_METHOD:
718b9626 2386 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2387 break;
2388 default:
718b9626 2389 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2390 break;
2391 }
2392 address = value_as_address (value_from_pointer (ptr_type, address));
2393
72fc29ff 2394 do_cleanups (value_chain);
08039c9e 2395 retval = value_at_lazy (type, address + byte_offset);
44353522
DE
2396 if (in_stack_memory)
2397 set_value_stack (retval, 1);
cec03d70
TT
2398 }
2399 break;
2400
2401 case DWARF_VALUE_STACK:
2402 {
595d2e30 2403 struct value *value = ctx.fetch (0);
8a9b8146
TT
2404 gdb_byte *contents;
2405 const gdb_byte *val_bytes;
2406 size_t n = TYPE_LENGTH (value_type (value));
cec03d70 2407
8cf6f0b1
TT
2408 if (byte_offset + TYPE_LENGTH (type) > n)
2409 invalid_synthetic_pointer ();
2410
8a9b8146
TT
2411 val_bytes = value_contents_all (value);
2412 val_bytes += byte_offset;
8cf6f0b1
TT
2413 n -= byte_offset;
2414
72fc29ff
TT
2415 /* Preserve VALUE because we are going to free values back
2416 to the mark, but we still need the value contents
2417 below. */
2418 value_incref (value);
2419 do_cleanups (value_chain);
2420 make_cleanup_value_free (value);
2421
a2d33775 2422 retval = allocate_value (type);
cec03d70 2423 contents = value_contents_raw (retval);
a2d33775 2424 if (n > TYPE_LENGTH (type))
b6cede78
JK
2425 {
2426 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2427
2428 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2429 val_bytes += n - TYPE_LENGTH (type);
2430 n = TYPE_LENGTH (type);
2431 }
8a9b8146 2432 memcpy (contents, val_bytes, n);
cec03d70
TT
2433 }
2434 break;
2435
2436 case DWARF_VALUE_LITERAL:
2437 {
2438 bfd_byte *contents;
8c814cdd 2439 const bfd_byte *ldata;
718b9626 2440 size_t n = ctx.len;
cec03d70 2441
8cf6f0b1
TT
2442 if (byte_offset + TYPE_LENGTH (type) > n)
2443 invalid_synthetic_pointer ();
2444
72fc29ff 2445 do_cleanups (value_chain);
a2d33775 2446 retval = allocate_value (type);
cec03d70 2447 contents = value_contents_raw (retval);
8cf6f0b1 2448
718b9626 2449 ldata = ctx.data + byte_offset;
8cf6f0b1
TT
2450 n -= byte_offset;
2451
a2d33775 2452 if (n > TYPE_LENGTH (type))
b6cede78
JK
2453 {
2454 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2455
2456 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2457 ldata += n - TYPE_LENGTH (type);
2458 n = TYPE_LENGTH (type);
2459 }
8c814cdd 2460 memcpy (contents, ldata, n);
cec03d70
TT
2461 }
2462 break;
2463
dd90784c 2464 case DWARF_VALUE_OPTIMIZED_OUT:
72fc29ff 2465 do_cleanups (value_chain);
a7035dbb 2466 retval = allocate_optimized_out_value (type);
dd90784c
JK
2467 break;
2468
8cf6f0b1
TT
2469 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2470 operation by execute_stack_op. */
2471 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2472 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2473 it can only be encountered when making a piece. */
cec03d70
TT
2474 default:
2475 internal_error (__FILE__, __LINE__, _("invalid location type"));
2476 }
4c2df51b
DJ
2477 }
2478
718b9626 2479 set_value_initialized (retval, ctx.initialized);
42be36b3 2480
718b9626 2481 do_cleanups (value_chain);
4c2df51b
DJ
2482
2483 return retval;
2484}
8cf6f0b1
TT
2485
2486/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2487 passes 0 as the byte_offset. */
2488
2489struct value *
2490dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2491 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2492 struct dwarf2_per_cu_data *per_cu)
2493{
2494 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2495}
2496
80180f79 2497/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2498 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2499 frame in which the expression is evaluated. ADDR is a context (location of
2500 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2501 Returns 1 on success, 0 otherwise. */
2502
2503static int
2504dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2505 struct frame_info *frame,
08412b07 2506 CORE_ADDR addr,
1cfdf534 2507 CORE_ADDR *valp)
80180f79 2508{
80180f79
SA
2509 struct objfile *objfile;
2510 struct cleanup *cleanup;
2511
2512 if (dlbaton == NULL || dlbaton->size == 0)
2513 return 0;
2514
192ca6d8 2515 dwarf_evaluate_loc_desc ctx;
80180f79 2516
192ca6d8
TT
2517 ctx.frame = frame;
2518 ctx.per_cu = dlbaton->per_cu;
2519 ctx.obj_address = addr;
80180f79
SA
2520
2521 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2522
718b9626
TT
2523 ctx.gdbarch = get_objfile_arch (objfile);
2524 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2525 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2526 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
80180f79 2527
595d2e30 2528 ctx.eval (dlbaton->data, dlbaton->size);
80180f79 2529
718b9626 2530 switch (ctx.location)
80180f79
SA
2531 {
2532 case DWARF_VALUE_REGISTER:
2533 case DWARF_VALUE_MEMORY:
2534 case DWARF_VALUE_STACK:
595d2e30 2535 *valp = ctx.fetch_address (0);
718b9626 2536 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2537 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2538 return 1;
2539 case DWARF_VALUE_LITERAL:
718b9626
TT
2540 *valp = extract_signed_integer (ctx.data, ctx.len,
2541 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2542 return 1;
2543 /* Unsupported dwarf values. */
2544 case DWARF_VALUE_OPTIMIZED_OUT:
2545 case DWARF_VALUE_IMPLICIT_POINTER:
2546 break;
2547 }
2548
80180f79
SA
2549 return 0;
2550}
2551
2552/* See dwarf2loc.h. */
2553
2554int
08412b07 2555dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2556 struct frame_info *frame,
df25ebbd
JB
2557 struct property_addr_info *addr_stack,
2558 CORE_ADDR *value)
80180f79
SA
2559{
2560 if (prop == NULL)
2561 return 0;
2562
63e43d3a
PMR
2563 if (frame == NULL && has_stack_frames ())
2564 frame = get_selected_frame (NULL);
2565
80180f79
SA
2566 switch (prop->kind)
2567 {
2568 case PROP_LOCEXPR:
2569 {
9a3c8263
SM
2570 const struct dwarf2_property_baton *baton
2571 = (const struct dwarf2_property_baton *) prop->data.baton;
80180f79 2572
63e43d3a
PMR
2573 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2574 addr_stack ? addr_stack->addr : 0,
df25ebbd 2575 value))
80180f79
SA
2576 {
2577 if (baton->referenced_type)
2578 {
2579 struct value *val = value_at (baton->referenced_type, *value);
2580
2581 *value = value_as_address (val);
2582 }
2583 return 1;
2584 }
2585 }
2586 break;
2587
2588 case PROP_LOCLIST:
2589 {
9a3c8263
SM
2590 struct dwarf2_property_baton *baton
2591 = (struct dwarf2_property_baton *) prop->data.baton;
80180f79
SA
2592 CORE_ADDR pc = get_frame_address_in_block (frame);
2593 const gdb_byte *data;
2594 struct value *val;
2595 size_t size;
2596
2597 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2598 if (data != NULL)
2599 {
2600 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2601 size, baton->loclist.per_cu);
2602 if (!value_optimized_out (val))
2603 {
2604 *value = value_as_address (val);
2605 return 1;
2606 }
2607 }
2608 }
2609 break;
2610
2611 case PROP_CONST:
2612 *value = prop->data.const_val;
2613 return 1;
df25ebbd
JB
2614
2615 case PROP_ADDR_OFFSET:
2616 {
9a3c8263
SM
2617 struct dwarf2_property_baton *baton
2618 = (struct dwarf2_property_baton *) prop->data.baton;
df25ebbd
JB
2619 struct property_addr_info *pinfo;
2620 struct value *val;
2621
2622 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2623 if (pinfo->type == baton->referenced_type)
2624 break;
2625 if (pinfo == NULL)
2c811c0f 2626 error (_("cannot find reference address for offset property"));
c3345124
JB
2627 if (pinfo->valaddr != NULL)
2628 val = value_from_contents
2629 (baton->offset_info.type,
2630 pinfo->valaddr + baton->offset_info.offset);
2631 else
2632 val = value_at (baton->offset_info.type,
2633 pinfo->addr + baton->offset_info.offset);
df25ebbd
JB
2634 *value = value_as_address (val);
2635 return 1;
2636 }
80180f79
SA
2637 }
2638
2639 return 0;
2640}
2641
bb2ec1b3
TT
2642/* See dwarf2loc.h. */
2643
2644void
2645dwarf2_compile_property_to_c (struct ui_file *stream,
2646 const char *result_name,
2647 struct gdbarch *gdbarch,
2648 unsigned char *registers_used,
2649 const struct dynamic_prop *prop,
2650 CORE_ADDR pc,
2651 struct symbol *sym)
2652{
9a3c8263
SM
2653 struct dwarf2_property_baton *baton
2654 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2655 const gdb_byte *data;
2656 size_t size;
2657 struct dwarf2_per_cu_data *per_cu;
2658
2659 if (prop->kind == PROP_LOCEXPR)
2660 {
2661 data = baton->locexpr.data;
2662 size = baton->locexpr.size;
2663 per_cu = baton->locexpr.per_cu;
2664 }
2665 else
2666 {
2667 gdb_assert (prop->kind == PROP_LOCLIST);
2668
2669 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2670 per_cu = baton->loclist.per_cu;
2671 }
2672
2673 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2674 gdbarch, registers_used,
2675 dwarf2_per_cu_addr_size (per_cu),
2676 data, data + size, per_cu);
2677}
2678
4c2df51b 2679\f
0b31a4bc 2680/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2681
192ca6d8 2682class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2683{
192ca6d8
TT
2684 public:
2685
0b31a4bc 2686 enum symbol_needs_kind needs;
17ea53c3 2687 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2688
192ca6d8
TT
2689 /* Reads from registers do require a frame. */
2690 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2691 {
2692 needs = SYMBOL_NEEDS_FRAME;
2693 return 1;
2694 }
2695
2696 /* "get_reg_value" callback: Reads from registers do require a
2697 frame. */
2698
2699 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2700 {
2701 needs = SYMBOL_NEEDS_FRAME;
2702 return value_zero (type, not_lval);
2703 }
2704
2705 /* Reads from memory do not require a frame. */
2706 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2707 {
2708 memset (buf, 0, len);
2709 }
2710
2711 /* Frame-relative accesses do require a frame. */
2712 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2713 {
2714 static gdb_byte lit0 = DW_OP_lit0;
2715
2716 *start = &lit0;
2717 *length = 1;
2718
2719 needs = SYMBOL_NEEDS_FRAME;
2720 }
2721
2722 /* CFA accesses require a frame. */
2723 CORE_ADDR get_frame_cfa () OVERRIDE
2724 {
2725 needs = SYMBOL_NEEDS_FRAME;
2726 return 1;
2727 }
2728
7d5697f9
TT
2729 CORE_ADDR get_frame_pc () OVERRIDE
2730 {
2731 needs = SYMBOL_NEEDS_FRAME;
2732 return 1;
2733 }
2734
192ca6d8
TT
2735 /* Thread-local accesses require registers, but not a frame. */
2736 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2737 {
2738 if (needs <= SYMBOL_NEEDS_REGISTERS)
2739 needs = SYMBOL_NEEDS_REGISTERS;
2740 return 1;
2741 }
2742
2743 /* Helper interface of per_cu_dwarf_call for
2744 dwarf2_loc_desc_get_symbol_read_needs. */
2745
2746 void dwarf_call (cu_offset die_offset) OVERRIDE
2747 {
2748 per_cu_dwarf_call (this, die_offset, per_cu);
2749 }
2750
2751 /* DW_OP_GNU_entry_value accesses require a caller, therefore a
2752 frame. */
2753
2754 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2755 union call_site_parameter_u kind_u,
2756 int deref_size) OVERRIDE
2757 {
2758 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2759
192ca6d8
TT
2760 /* The expression may require some stub values on DWARF stack. */
2761 push_address (0, 0);
2762 }
3019eac3 2763
192ca6d8 2764 /* DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2765
192ca6d8
TT
2766 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2767 {
2768 /* Nothing to do. */
2769 return 1;
2770 }
08412b07 2771
192ca6d8 2772 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2773
192ca6d8
TT
2774 CORE_ADDR get_object_address () OVERRIDE
2775 {
2776 /* Nothing to do. */
2777 return 1;
2778 }
9e8b7a03
JK
2779};
2780
0b31a4bc
TT
2781/* Compute the correct symbol_needs_kind value for the location
2782 expression at DATA (length SIZE). */
4c2df51b 2783
0b31a4bc
TT
2784static enum symbol_needs_kind
2785dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2786 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2787{
f630a401 2788 int in_reg;
4a227398 2789 struct cleanup *old_chain;
ac56253d 2790 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2791
192ca6d8
TT
2792 symbol_needs_eval_context ctx;
2793
2794 ctx.needs = SYMBOL_NEEDS_NONE;
2795 ctx.per_cu = per_cu;
4c2df51b 2796
718b9626 2797 old_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 2798
718b9626
TT
2799 ctx.gdbarch = get_objfile_arch (objfile);
2800 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2801 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2802 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2803
595d2e30 2804 ctx.eval (data, size);
4c2df51b 2805
718b9626 2806 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2807
718b9626 2808 if (ctx.num_pieces > 0)
87808bd6
JB
2809 {
2810 int i;
2811
2812 /* If the location has several pieces, and any of them are in
2813 registers, then we will need a frame to fetch them from. */
718b9626
TT
2814 for (i = 0; i < ctx.num_pieces; i++)
2815 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
2816 in_reg = 1;
2817 }
2818
4a227398 2819 do_cleanups (old_chain);
4c2df51b 2820
0b31a4bc 2821 if (in_reg)
192ca6d8
TT
2822 ctx.needs = SYMBOL_NEEDS_FRAME;
2823 return ctx.needs;
4c2df51b
DJ
2824}
2825
3cf03773
TT
2826/* A helper function that throws an unimplemented error mentioning a
2827 given DWARF operator. */
2828
2829static void
2830unimplemented (unsigned int op)
0d53c4c4 2831{
f39c6ffd 2832 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2833
2834 if (name)
2835 error (_("DWARF operator %s cannot be translated to an agent expression"),
2836 name);
2837 else
1ba1b353
TT
2838 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2839 "to an agent expression"),
b1bfef65 2840 op);
3cf03773 2841}
08922a10 2842
0fde2c53
DE
2843/* See dwarf2loc.h.
2844
2845 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2846 can issue a complaint, which is better than having every target's
2847 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2848
d064d1be 2849int
0fde2c53 2850dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2851{
2852 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2853
3cf03773 2854 if (reg == -1)
0fde2c53
DE
2855 {
2856 complaint (&symfile_complaints,
2857 _("bad DWARF register number %d"), dwarf_reg);
2858 }
2859 return reg;
2860}
2861
2862/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2863 Throw an error because DWARF_REG is bad. */
2864
2865static void
2866throw_bad_regnum_error (ULONGEST dwarf_reg)
2867{
2868 /* Still want to print -1 as "-1".
2869 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2870 but that's overkill for now. */
2871 if ((int) dwarf_reg == dwarf_reg)
2872 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2873 error (_("Unable to access DWARF register number %s"),
2874 pulongest (dwarf_reg));
2875}
2876
2877/* See dwarf2loc.h. */
2878
2879int
2880dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2881{
2882 int reg;
2883
2884 if (dwarf_reg > INT_MAX)
2885 throw_bad_regnum_error (dwarf_reg);
2886 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2887 bad, but that's ok. */
2888 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2889 if (reg == -1)
2890 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2891 return reg;
2892}
08922a10 2893
3cf03773
TT
2894/* A helper function that emits an access to memory. ARCH is the
2895 target architecture. EXPR is the expression which we are building.
2896 NBITS is the number of bits we want to read. This emits the
2897 opcodes needed to read the memory and then extract the desired
2898 bits. */
08922a10 2899
3cf03773
TT
2900static void
2901access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2902{
3cf03773
TT
2903 ULONGEST nbytes = (nbits + 7) / 8;
2904
9df7235c 2905 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2906
92bc6a20 2907 if (expr->tracing)
3cf03773
TT
2908 ax_trace_quick (expr, nbytes);
2909
2910 if (nbits <= 8)
2911 ax_simple (expr, aop_ref8);
2912 else if (nbits <= 16)
2913 ax_simple (expr, aop_ref16);
2914 else if (nbits <= 32)
2915 ax_simple (expr, aop_ref32);
2916 else
2917 ax_simple (expr, aop_ref64);
2918
2919 /* If we read exactly the number of bytes we wanted, we're done. */
2920 if (8 * nbytes == nbits)
2921 return;
2922
2923 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2924 {
3cf03773
TT
2925 /* On a bits-big-endian machine, we want the high-order
2926 NBITS. */
2927 ax_const_l (expr, 8 * nbytes - nbits);
2928 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2929 }
3cf03773 2930 else
0d53c4c4 2931 {
3cf03773
TT
2932 /* On a bits-little-endian box, we want the low-order NBITS. */
2933 ax_zero_ext (expr, nbits);
0d53c4c4 2934 }
3cf03773 2935}
0936ad1d 2936
8cf6f0b1
TT
2937/* A helper function to return the frame's PC. */
2938
2939static CORE_ADDR
2940get_ax_pc (void *baton)
2941{
9a3c8263 2942 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2943
2944 return expr->scope;
2945}
2946
3cf03773
TT
2947/* Compile a DWARF location expression to an agent expression.
2948
2949 EXPR is the agent expression we are building.
2950 LOC is the agent value we modify.
2951 ARCH is the architecture.
2952 ADDR_SIZE is the size of addresses, in bytes.
2953 OP_PTR is the start of the location expression.
2954 OP_END is one past the last byte of the location expression.
2955
2956 This will throw an exception for various kinds of errors -- for
2957 example, if the expression cannot be compiled, or if the expression
2958 is invalid. */
0936ad1d 2959
9f6f94ff
TT
2960void
2961dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2962 struct gdbarch *arch, unsigned int addr_size,
2963 const gdb_byte *op_ptr, const gdb_byte *op_end,
2964 struct dwarf2_per_cu_data *per_cu)
3cf03773 2965{
58414334
TT
2966 int i;
2967 std::vector<int> dw_labels, patches;
3cf03773
TT
2968 const gdb_byte * const base = op_ptr;
2969 const gdb_byte *previous_piece = op_ptr;
2970 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2971 ULONGEST bits_collected = 0;
2972 unsigned int addr_size_bits = 8 * addr_size;
2973 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2974
58414334 2975 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2976
3cf03773
TT
2977 /* By default we are making an address. */
2978 loc->kind = axs_lvalue_memory;
0d45f56e 2979
3cf03773
TT
2980 while (op_ptr < op_end)
2981 {
aead7601 2982 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2983 uint64_t uoffset, reg;
2984 int64_t offset;
3cf03773
TT
2985 int i;
2986
2987 offsets[op_ptr - base] = expr->len;
2988 ++op_ptr;
2989
2990 /* Our basic approach to code generation is to map DWARF
2991 operations directly to AX operations. However, there are
2992 some differences.
2993
2994 First, DWARF works on address-sized units, but AX always uses
2995 LONGEST. For most operations we simply ignore this
2996 difference; instead we generate sign extensions as needed
2997 before division and comparison operations. It would be nice
2998 to omit the sign extensions, but there is no way to determine
2999 the size of the target's LONGEST. (This code uses the size
3000 of the host LONGEST in some cases -- that is a bug but it is
3001 difficult to fix.)
3002
3003 Second, some DWARF operations cannot be translated to AX.
3004 For these we simply fail. See
3005 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3006 switch (op)
0936ad1d 3007 {
3cf03773
TT
3008 case DW_OP_lit0:
3009 case DW_OP_lit1:
3010 case DW_OP_lit2:
3011 case DW_OP_lit3:
3012 case DW_OP_lit4:
3013 case DW_OP_lit5:
3014 case DW_OP_lit6:
3015 case DW_OP_lit7:
3016 case DW_OP_lit8:
3017 case DW_OP_lit9:
3018 case DW_OP_lit10:
3019 case DW_OP_lit11:
3020 case DW_OP_lit12:
3021 case DW_OP_lit13:
3022 case DW_OP_lit14:
3023 case DW_OP_lit15:
3024 case DW_OP_lit16:
3025 case DW_OP_lit17:
3026 case DW_OP_lit18:
3027 case DW_OP_lit19:
3028 case DW_OP_lit20:
3029 case DW_OP_lit21:
3030 case DW_OP_lit22:
3031 case DW_OP_lit23:
3032 case DW_OP_lit24:
3033 case DW_OP_lit25:
3034 case DW_OP_lit26:
3035 case DW_OP_lit27:
3036 case DW_OP_lit28:
3037 case DW_OP_lit29:
3038 case DW_OP_lit30:
3039 case DW_OP_lit31:
3040 ax_const_l (expr, op - DW_OP_lit0);
3041 break;
0d53c4c4 3042
3cf03773 3043 case DW_OP_addr:
ac56253d 3044 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 3045 op_ptr += addr_size;
ac56253d
TT
3046 /* Some versions of GCC emit DW_OP_addr before
3047 DW_OP_GNU_push_tls_address. In this case the value is an
3048 index, not an address. We don't support things like
3049 branching between the address and the TLS op. */
3050 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 3051 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 3052 ax_const_l (expr, uoffset);
3cf03773 3053 break;
4c2df51b 3054
3cf03773
TT
3055 case DW_OP_const1u:
3056 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3057 op_ptr += 1;
3058 break;
3059 case DW_OP_const1s:
3060 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3061 op_ptr += 1;
3062 break;
3063 case DW_OP_const2u:
3064 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3065 op_ptr += 2;
3066 break;
3067 case DW_OP_const2s:
3068 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3069 op_ptr += 2;
3070 break;
3071 case DW_OP_const4u:
3072 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3073 op_ptr += 4;
3074 break;
3075 case DW_OP_const4s:
3076 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3077 op_ptr += 4;
3078 break;
3079 case DW_OP_const8u:
3080 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3081 op_ptr += 8;
3082 break;
3083 case DW_OP_const8s:
3084 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3085 op_ptr += 8;
3086 break;
3087 case DW_OP_constu:
f664829e 3088 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
3089 ax_const_l (expr, uoffset);
3090 break;
3091 case DW_OP_consts:
f664829e 3092 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3093 ax_const_l (expr, offset);
3094 break;
9c238357 3095
3cf03773
TT
3096 case DW_OP_reg0:
3097 case DW_OP_reg1:
3098 case DW_OP_reg2:
3099 case DW_OP_reg3:
3100 case DW_OP_reg4:
3101 case DW_OP_reg5:
3102 case DW_OP_reg6:
3103 case DW_OP_reg7:
3104 case DW_OP_reg8:
3105 case DW_OP_reg9:
3106 case DW_OP_reg10:
3107 case DW_OP_reg11:
3108 case DW_OP_reg12:
3109 case DW_OP_reg13:
3110 case DW_OP_reg14:
3111 case DW_OP_reg15:
3112 case DW_OP_reg16:
3113 case DW_OP_reg17:
3114 case DW_OP_reg18:
3115 case DW_OP_reg19:
3116 case DW_OP_reg20:
3117 case DW_OP_reg21:
3118 case DW_OP_reg22:
3119 case DW_OP_reg23:
3120 case DW_OP_reg24:
3121 case DW_OP_reg25:
3122 case DW_OP_reg26:
3123 case DW_OP_reg27:
3124 case DW_OP_reg28:
3125 case DW_OP_reg29:
3126 case DW_OP_reg30:
3127 case DW_OP_reg31:
3128 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3129 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3130 loc->kind = axs_lvalue_register;
3131 break;
9c238357 3132
3cf03773 3133 case DW_OP_regx:
f664829e 3134 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3135 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3136 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3137 loc->kind = axs_lvalue_register;
3138 break;
08922a10 3139
3cf03773
TT
3140 case DW_OP_implicit_value:
3141 {
9fccedf7 3142 uint64_t len;
3cf03773 3143
f664829e 3144 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3145 if (op_ptr + len > op_end)
3146 error (_("DW_OP_implicit_value: too few bytes available."));
3147 if (len > sizeof (ULONGEST))
3148 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3149 (int) len);
3150
3151 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3152 byte_order));
3153 op_ptr += len;
3154 dwarf_expr_require_composition (op_ptr, op_end,
3155 "DW_OP_implicit_value");
3156
3157 loc->kind = axs_rvalue;
3158 }
3159 break;
08922a10 3160
3cf03773
TT
3161 case DW_OP_stack_value:
3162 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3163 loc->kind = axs_rvalue;
3164 break;
08922a10 3165
3cf03773
TT
3166 case DW_OP_breg0:
3167 case DW_OP_breg1:
3168 case DW_OP_breg2:
3169 case DW_OP_breg3:
3170 case DW_OP_breg4:
3171 case DW_OP_breg5:
3172 case DW_OP_breg6:
3173 case DW_OP_breg7:
3174 case DW_OP_breg8:
3175 case DW_OP_breg9:
3176 case DW_OP_breg10:
3177 case DW_OP_breg11:
3178 case DW_OP_breg12:
3179 case DW_OP_breg13:
3180 case DW_OP_breg14:
3181 case DW_OP_breg15:
3182 case DW_OP_breg16:
3183 case DW_OP_breg17:
3184 case DW_OP_breg18:
3185 case DW_OP_breg19:
3186 case DW_OP_breg20:
3187 case DW_OP_breg21:
3188 case DW_OP_breg22:
3189 case DW_OP_breg23:
3190 case DW_OP_breg24:
3191 case DW_OP_breg25:
3192 case DW_OP_breg26:
3193 case DW_OP_breg27:
3194 case DW_OP_breg28:
3195 case DW_OP_breg29:
3196 case DW_OP_breg30:
3197 case DW_OP_breg31:
f664829e 3198 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3199 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3200 ax_reg (expr, i);
3201 if (offset != 0)
3202 {
3203 ax_const_l (expr, offset);
3204 ax_simple (expr, aop_add);
3205 }
3206 break;
3207 case DW_OP_bregx:
3208 {
f664829e
DE
3209 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3210 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3211 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3212 ax_reg (expr, i);
3213 if (offset != 0)
3214 {
3215 ax_const_l (expr, offset);
3216 ax_simple (expr, aop_add);
3217 }
3218 }
3219 break;
3220 case DW_OP_fbreg:
3221 {
3222 const gdb_byte *datastart;
3223 size_t datalen;
3977b71f 3224 const struct block *b;
3cf03773 3225 struct symbol *framefunc;
08922a10 3226
3cf03773
TT
3227 b = block_for_pc (expr->scope);
3228
3229 if (!b)
3230 error (_("No block found for address"));
3231
3232 framefunc = block_linkage_function (b);
3233
3234 if (!framefunc)
3235 error (_("No function found for block"));
3236
af945b75
TT
3237 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3238 &datastart, &datalen);
3cf03773 3239
f664829e 3240 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
9f6f94ff
TT
3241 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3242 datastart + datalen, per_cu);
d84cf7eb
TT
3243 if (loc->kind == axs_lvalue_register)
3244 require_rvalue (expr, loc);
3cf03773
TT
3245
3246 if (offset != 0)
3247 {
3248 ax_const_l (expr, offset);
3249 ax_simple (expr, aop_add);
3250 }
3251
3252 loc->kind = axs_lvalue_memory;
3253 }
08922a10 3254 break;
08922a10 3255
3cf03773
TT
3256 case DW_OP_dup:
3257 ax_simple (expr, aop_dup);
3258 break;
08922a10 3259
3cf03773
TT
3260 case DW_OP_drop:
3261 ax_simple (expr, aop_pop);
3262 break;
08922a10 3263
3cf03773
TT
3264 case DW_OP_pick:
3265 offset = *op_ptr++;
c7f96d2b 3266 ax_pick (expr, offset);
3cf03773
TT
3267 break;
3268
3269 case DW_OP_swap:
3270 ax_simple (expr, aop_swap);
3271 break;
08922a10 3272
3cf03773 3273 case DW_OP_over:
c7f96d2b 3274 ax_pick (expr, 1);
3cf03773 3275 break;
08922a10 3276
3cf03773 3277 case DW_OP_rot:
c7f96d2b 3278 ax_simple (expr, aop_rot);
3cf03773 3279 break;
08922a10 3280
3cf03773
TT
3281 case DW_OP_deref:
3282 case DW_OP_deref_size:
3283 {
3284 int size;
08922a10 3285
3cf03773
TT
3286 if (op == DW_OP_deref_size)
3287 size = *op_ptr++;
3288 else
3289 size = addr_size;
3290
9df7235c 3291 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3292 error (_("Unsupported size %d in %s"),
3293 size, get_DW_OP_name (op));
9df7235c 3294 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3295 }
3296 break;
3297
3298 case DW_OP_abs:
3299 /* Sign extend the operand. */
3300 ax_ext (expr, addr_size_bits);
3301 ax_simple (expr, aop_dup);
3302 ax_const_l (expr, 0);
3303 ax_simple (expr, aop_less_signed);
3304 ax_simple (expr, aop_log_not);
3305 i = ax_goto (expr, aop_if_goto);
3306 /* We have to emit 0 - X. */
3307 ax_const_l (expr, 0);
3308 ax_simple (expr, aop_swap);
3309 ax_simple (expr, aop_sub);
3310 ax_label (expr, i, expr->len);
3311 break;
3312
3313 case DW_OP_neg:
3314 /* No need to sign extend here. */
3315 ax_const_l (expr, 0);
3316 ax_simple (expr, aop_swap);
3317 ax_simple (expr, aop_sub);
3318 break;
3319
3320 case DW_OP_not:
3321 /* Sign extend the operand. */
3322 ax_ext (expr, addr_size_bits);
3323 ax_simple (expr, aop_bit_not);
3324 break;
3325
3326 case DW_OP_plus_uconst:
f664829e 3327 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3328 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3329 but we micro-optimize anyhow. */
3330 if (reg != 0)
3331 {
3332 ax_const_l (expr, reg);
3333 ax_simple (expr, aop_add);
3334 }
3335 break;
3336
3337 case DW_OP_and:
3338 ax_simple (expr, aop_bit_and);
3339 break;
3340
3341 case DW_OP_div:
3342 /* Sign extend the operands. */
3343 ax_ext (expr, addr_size_bits);
3344 ax_simple (expr, aop_swap);
3345 ax_ext (expr, addr_size_bits);
3346 ax_simple (expr, aop_swap);
3347 ax_simple (expr, aop_div_signed);
08922a10
SS
3348 break;
3349
3cf03773
TT
3350 case DW_OP_minus:
3351 ax_simple (expr, aop_sub);
3352 break;
3353
3354 case DW_OP_mod:
3355 ax_simple (expr, aop_rem_unsigned);
3356 break;
3357
3358 case DW_OP_mul:
3359 ax_simple (expr, aop_mul);
3360 break;
3361
3362 case DW_OP_or:
3363 ax_simple (expr, aop_bit_or);
3364 break;
3365
3366 case DW_OP_plus:
3367 ax_simple (expr, aop_add);
3368 break;
3369
3370 case DW_OP_shl:
3371 ax_simple (expr, aop_lsh);
3372 break;
3373
3374 case DW_OP_shr:
3375 ax_simple (expr, aop_rsh_unsigned);
3376 break;
3377
3378 case DW_OP_shra:
3379 ax_simple (expr, aop_rsh_signed);
3380 break;
3381
3382 case DW_OP_xor:
3383 ax_simple (expr, aop_bit_xor);
3384 break;
3385
3386 case DW_OP_le:
3387 /* Sign extend the operands. */
3388 ax_ext (expr, addr_size_bits);
3389 ax_simple (expr, aop_swap);
3390 ax_ext (expr, addr_size_bits);
3391 /* Note no swap here: A <= B is !(B < A). */
3392 ax_simple (expr, aop_less_signed);
3393 ax_simple (expr, aop_log_not);
3394 break;
3395
3396 case DW_OP_ge:
3397 /* Sign extend the operands. */
3398 ax_ext (expr, addr_size_bits);
3399 ax_simple (expr, aop_swap);
3400 ax_ext (expr, addr_size_bits);
3401 ax_simple (expr, aop_swap);
3402 /* A >= B is !(A < B). */
3403 ax_simple (expr, aop_less_signed);
3404 ax_simple (expr, aop_log_not);
3405 break;
3406
3407 case DW_OP_eq:
3408 /* Sign extend the operands. */
3409 ax_ext (expr, addr_size_bits);
3410 ax_simple (expr, aop_swap);
3411 ax_ext (expr, addr_size_bits);
3412 /* No need for a second swap here. */
3413 ax_simple (expr, aop_equal);
3414 break;
3415
3416 case DW_OP_lt:
3417 /* Sign extend the operands. */
3418 ax_ext (expr, addr_size_bits);
3419 ax_simple (expr, aop_swap);
3420 ax_ext (expr, addr_size_bits);
3421 ax_simple (expr, aop_swap);
3422 ax_simple (expr, aop_less_signed);
3423 break;
3424
3425 case DW_OP_gt:
3426 /* Sign extend the operands. */
3427 ax_ext (expr, addr_size_bits);
3428 ax_simple (expr, aop_swap);
3429 ax_ext (expr, addr_size_bits);
3430 /* Note no swap here: A > B is B < A. */
3431 ax_simple (expr, aop_less_signed);
3432 break;
3433
3434 case DW_OP_ne:
3435 /* Sign extend the operands. */
3436 ax_ext (expr, addr_size_bits);
3437 ax_simple (expr, aop_swap);
3438 ax_ext (expr, addr_size_bits);
3439 /* No need for a swap here. */
3440 ax_simple (expr, aop_equal);
3441 ax_simple (expr, aop_log_not);
3442 break;
3443
3444 case DW_OP_call_frame_cfa:
a8fd5589
TT
3445 {
3446 int regnum;
3447 CORE_ADDR text_offset;
3448 LONGEST off;
3449 const gdb_byte *cfa_start, *cfa_end;
3450
3451 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3452 &regnum, &off,
3453 &text_offset, &cfa_start, &cfa_end))
3454 {
3455 /* Register. */
3456 ax_reg (expr, regnum);
3457 if (off != 0)
3458 {
3459 ax_const_l (expr, off);
3460 ax_simple (expr, aop_add);
3461 }
3462 }
3463 else
3464 {
3465 /* Another expression. */
3466 ax_const_l (expr, text_offset);
3467 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3468 cfa_start, cfa_end, per_cu);
3469 }
3470
3471 loc->kind = axs_lvalue_memory;
3472 }
3cf03773
TT
3473 break;
3474
3475 case DW_OP_GNU_push_tls_address:
4aa4e28b 3476 case DW_OP_form_tls_address:
3cf03773
TT
3477 unimplemented (op);
3478 break;
3479
08412b07
JB
3480 case DW_OP_push_object_address:
3481 unimplemented (op);
3482 break;
3483
3cf03773
TT
3484 case DW_OP_skip:
3485 offset = extract_signed_integer (op_ptr, 2, byte_order);
3486 op_ptr += 2;
3487 i = ax_goto (expr, aop_goto);
58414334
TT
3488 dw_labels.push_back (op_ptr + offset - base);
3489 patches.push_back (i);
3cf03773
TT
3490 break;
3491
3492 case DW_OP_bra:
3493 offset = extract_signed_integer (op_ptr, 2, byte_order);
3494 op_ptr += 2;
3495 /* Zero extend the operand. */
3496 ax_zero_ext (expr, addr_size_bits);
3497 i = ax_goto (expr, aop_if_goto);
58414334
TT
3498 dw_labels.push_back (op_ptr + offset - base);
3499 patches.push_back (i);
3cf03773
TT
3500 break;
3501
3502 case DW_OP_nop:
3503 break;
3504
3505 case DW_OP_piece:
3506 case DW_OP_bit_piece:
08922a10 3507 {
9fccedf7 3508 uint64_t size, offset;
3cf03773
TT
3509
3510 if (op_ptr - 1 == previous_piece)
3511 error (_("Cannot translate empty pieces to agent expressions"));
3512 previous_piece = op_ptr - 1;
3513
f664829e 3514 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3515 if (op == DW_OP_piece)
3516 {
3517 size *= 8;
3518 offset = 0;
3519 }
3520 else
f664829e 3521 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
08922a10 3522
3cf03773
TT
3523 if (bits_collected + size > 8 * sizeof (LONGEST))
3524 error (_("Expression pieces exceed word size"));
3525
3526 /* Access the bits. */
3527 switch (loc->kind)
3528 {
3529 case axs_lvalue_register:
3530 ax_reg (expr, loc->u.reg);
3531 break;
3532
3533 case axs_lvalue_memory:
3534 /* Offset the pointer, if needed. */
3535 if (offset > 8)
3536 {
3537 ax_const_l (expr, offset / 8);
3538 ax_simple (expr, aop_add);
3539 offset %= 8;
3540 }
3541 access_memory (arch, expr, size);
3542 break;
3543 }
3544
3545 /* For a bits-big-endian target, shift up what we already
3546 have. For a bits-little-endian target, shift up the
3547 new data. Note that there is a potential bug here if
3548 the DWARF expression leaves multiple values on the
3549 stack. */
3550 if (bits_collected > 0)
3551 {
3552 if (bits_big_endian)
3553 {
3554 ax_simple (expr, aop_swap);
3555 ax_const_l (expr, size);
3556 ax_simple (expr, aop_lsh);
3557 /* We don't need a second swap here, because
3558 aop_bit_or is symmetric. */
3559 }
3560 else
3561 {
3562 ax_const_l (expr, size);
3563 ax_simple (expr, aop_lsh);
3564 }
3565 ax_simple (expr, aop_bit_or);
3566 }
3567
3568 bits_collected += size;
3569 loc->kind = axs_rvalue;
08922a10
SS
3570 }
3571 break;
08922a10 3572
3cf03773
TT
3573 case DW_OP_GNU_uninit:
3574 unimplemented (op);
3575
3576 case DW_OP_call2:
3577 case DW_OP_call4:
3578 {
3579 struct dwarf2_locexpr_baton block;
3580 int size = (op == DW_OP_call2 ? 2 : 4);
b64f50a1 3581 cu_offset offset;
3cf03773
TT
3582
3583 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3584 op_ptr += size;
3585
b64f50a1 3586 offset.cu_off = uoffset;
8b9737bf
TT
3587 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3588 get_ax_pc, expr);
3cf03773
TT
3589
3590 /* DW_OP_call_ref is currently not supported. */
3591 gdb_assert (block.per_cu == per_cu);
3592
9f6f94ff
TT
3593 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3594 block.data, block.data + block.size,
3595 per_cu);
3cf03773
TT
3596 }
3597 break;
3598
3599 case DW_OP_call_ref:
3600 unimplemented (op);
3601
3602 default:
b1bfef65 3603 unimplemented (op);
08922a10 3604 }
08922a10 3605 }
3cf03773
TT
3606
3607 /* Patch all the branches we emitted. */
58414334 3608 for (i = 0; i < patches.size (); ++i)
3cf03773 3609 {
58414334 3610 int targ = offsets[dw_labels[i]];
3cf03773
TT
3611 if (targ == -1)
3612 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3613 ax_label (expr, patches[i], targ);
3cf03773 3614 }
08922a10
SS
3615}
3616
4c2df51b
DJ
3617\f
3618/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3619 evaluator to calculate the location. */
3620static struct value *
3621locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3622{
9a3c8263
SM
3623 struct dwarf2_locexpr_baton *dlbaton
3624 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3625 struct value *val;
9a619af0 3626
a2d33775
JK
3627 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3628 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3629
3630 return val;
3631}
3632
e18b2753
JK
3633/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3634 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3635 will be thrown. */
3636
3637static struct value *
3638locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3639{
9a3c8263
SM
3640 struct dwarf2_locexpr_baton *dlbaton
3641 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3642
3643 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3644 dlbaton->size);
3645}
3646
0b31a4bc
TT
3647/* Implementation of get_symbol_read_needs from
3648 symbol_computed_ops. */
3649
3650static enum symbol_needs_kind
3651locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3652{
9a3c8263
SM
3653 struct dwarf2_locexpr_baton *dlbaton
3654 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3655
0b31a4bc
TT
3656 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3657 dlbaton->per_cu);
4c2df51b
DJ
3658}
3659
9eae7c52
TT
3660/* Return true if DATA points to the end of a piece. END is one past
3661 the last byte in the expression. */
3662
3663static int
3664piece_end_p (const gdb_byte *data, const gdb_byte *end)
3665{
3666 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3667}
3668
5e44ecb3
TT
3669/* Helper for locexpr_describe_location_piece that finds the name of a
3670 DWARF register. */
3671
3672static const char *
3673locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3674{
3675 int regnum;
3676
0fde2c53
DE
3677 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3678 We'd rather print *something* here than throw an error. */
3679 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3680 /* gdbarch_register_name may just return "", return something more
3681 descriptive for bad register numbers. */
3682 if (regnum == -1)
3683 {
3684 /* The text is output as "$bad_register_number".
3685 That is why we use the underscores. */
3686 return _("bad_register_number");
3687 }
5e44ecb3
TT
3688 return gdbarch_register_name (gdbarch, regnum);
3689}
3690
9eae7c52
TT
3691/* Nicely describe a single piece of a location, returning an updated
3692 position in the bytecode sequence. This function cannot recognize
3693 all locations; if a location is not recognized, it simply returns
f664829e
DE
3694 DATA. If there is an error during reading, e.g. we run off the end
3695 of the buffer, an error is thrown. */
08922a10 3696
0d45f56e 3697static const gdb_byte *
08922a10
SS
3698locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3699 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3700 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3701 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3702 unsigned int addr_size)
4c2df51b 3703{
08922a10 3704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3705 size_t leb128_size;
08922a10
SS
3706
3707 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3708 {
08922a10 3709 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3710 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3711 data += 1;
3712 }
3713 else if (data[0] == DW_OP_regx)
3714 {
9fccedf7 3715 uint64_t reg;
4c2df51b 3716
f664829e 3717 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3718 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3719 locexpr_regname (gdbarch, reg));
08922a10
SS
3720 }
3721 else if (data[0] == DW_OP_fbreg)
4c2df51b 3722 {
3977b71f 3723 const struct block *b;
08922a10
SS
3724 struct symbol *framefunc;
3725 int frame_reg = 0;
9fccedf7 3726 int64_t frame_offset;
7155d578 3727 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3728 size_t base_size;
9fccedf7 3729 int64_t base_offset = 0;
08922a10 3730
f664829e 3731 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3732 if (!piece_end_p (new_data, end))
3733 return data;
3734 data = new_data;
3735
08922a10
SS
3736 b = block_for_pc (addr);
3737
3738 if (!b)
3739 error (_("No block found for address for symbol \"%s\"."),
3740 SYMBOL_PRINT_NAME (symbol));
3741
3742 framefunc = block_linkage_function (b);
3743
3744 if (!framefunc)
3745 error (_("No function found for block for symbol \"%s\"."),
3746 SYMBOL_PRINT_NAME (symbol));
3747
af945b75 3748 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3749
3750 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3751 {
0d45f56e 3752 const gdb_byte *buf_end;
08922a10
SS
3753
3754 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3755 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3756 &base_offset);
08922a10 3757 if (buf_end != base_data + base_size)
3e43a32a
MS
3758 error (_("Unexpected opcode after "
3759 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3760 frame_reg, SYMBOL_PRINT_NAME (symbol));
3761 }
3762 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3763 {
3764 /* The frame base is just the register, with no offset. */
3765 frame_reg = base_data[0] - DW_OP_reg0;
3766 base_offset = 0;
3767 }
3768 else
3769 {
3770 /* We don't know what to do with the frame base expression,
3771 so we can't trace this variable; give up. */
7155d578 3772 return save_data;
08922a10
SS
3773 }
3774
3e43a32a
MS
3775 fprintf_filtered (stream,
3776 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3777 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3778 plongest (base_offset), plongest (frame_offset));
3779 }
9eae7c52
TT
3780 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3781 && piece_end_p (data, end))
08922a10 3782 {
9fccedf7 3783 int64_t offset;
08922a10 3784
f664829e 3785 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3786
4c2df51b 3787 fprintf_filtered (stream,
08922a10
SS
3788 _("a variable at offset %s from base reg $%s"),
3789 plongest (offset),
5e44ecb3 3790 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3791 }
3792
c3228f12
EZ
3793 /* The location expression for a TLS variable looks like this (on a
3794 64-bit LE machine):
3795
3796 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3797 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3798
c3228f12
EZ
3799 0x3 is the encoding for DW_OP_addr, which has an operand as long
3800 as the size of an address on the target machine (here is 8
09d8bd00
TT
3801 bytes). Note that more recent version of GCC emit DW_OP_const4u
3802 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3803 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3804 The operand represents the offset at which the variable is within
3805 the thread local storage. */
c3228f12 3806
9eae7c52 3807 else if (data + 1 + addr_size < end
09d8bd00
TT
3808 && (data[0] == DW_OP_addr
3809 || (addr_size == 4 && data[0] == DW_OP_const4u)
3810 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3811 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3812 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3813 && piece_end_p (data + 2 + addr_size, end))
08922a10 3814 {
d4a087c7
UW
3815 ULONGEST offset;
3816 offset = extract_unsigned_integer (data + 1, addr_size,
3817 gdbarch_byte_order (gdbarch));
9a619af0 3818
08922a10 3819 fprintf_filtered (stream,
d4a087c7 3820 _("a thread-local variable at offset 0x%s "
08922a10 3821 "in the thread-local storage for `%s'"),
4262abfb 3822 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3823
3824 data += 1 + addr_size + 1;
3825 }
49f6c839
DE
3826
3827 /* With -gsplit-dwarf a TLS variable can also look like this:
3828 DW_AT_location : 3 byte block: fc 4 e0
3829 (DW_OP_GNU_const_index: 4;
3830 DW_OP_GNU_push_tls_address) */
3831 else if (data + 3 <= end
3832 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3833 && data[0] == DW_OP_GNU_const_index
3834 && leb128_size > 0
4aa4e28b
TT
3835 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3836 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3837 && piece_end_p (data + 2 + leb128_size, end))
3838 {
a55c1f32 3839 uint64_t offset;
49f6c839
DE
3840
3841 data = safe_read_uleb128 (data + 1, end, &offset);
3842 offset = dwarf2_read_addr_index (per_cu, offset);
3843 fprintf_filtered (stream,
3844 _("a thread-local variable at offset 0x%s "
3845 "in the thread-local storage for `%s'"),
4262abfb 3846 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3847 ++data;
3848 }
3849
9eae7c52
TT
3850 else if (data[0] >= DW_OP_lit0
3851 && data[0] <= DW_OP_lit31
3852 && data + 1 < end
3853 && data[1] == DW_OP_stack_value)
3854 {
3855 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3856 data += 2;
3857 }
3858
3859 return data;
3860}
3861
3862/* Disassemble an expression, stopping at the end of a piece or at the
3863 end of the expression. Returns a pointer to the next unread byte
3864 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3865 will keep going until it reaches the end of the expression.
3866 If there is an error during reading, e.g. we run off the end
3867 of the buffer, an error is thrown. */
9eae7c52
TT
3868
3869static const gdb_byte *
3870disassemble_dwarf_expression (struct ui_file *stream,
3871 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3872 int offset_size, const gdb_byte *start,
9eae7c52 3873 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3874 int indent, int all,
5e44ecb3 3875 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3876{
9eae7c52
TT
3877 while (data < end
3878 && (all
3879 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3880 {
aead7601 3881 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3882 uint64_t ul;
3883 int64_t l;
9eae7c52
TT
3884 const char *name;
3885
f39c6ffd 3886 name = get_DW_OP_name (op);
9eae7c52
TT
3887
3888 if (!name)
3889 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3890 op, (long) (data - 1 - start));
2bda9cc5
JK
3891 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3892 (long) (data - 1 - start), name);
9eae7c52
TT
3893
3894 switch (op)
3895 {
3896 case DW_OP_addr:
d4a087c7
UW
3897 ul = extract_unsigned_integer (data, addr_size,
3898 gdbarch_byte_order (arch));
9eae7c52 3899 data += addr_size;
d4a087c7 3900 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3901 break;
3902
3903 case DW_OP_const1u:
3904 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3905 data += 1;
3906 fprintf_filtered (stream, " %s", pulongest (ul));
3907 break;
3908 case DW_OP_const1s:
3909 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3910 data += 1;
3911 fprintf_filtered (stream, " %s", plongest (l));
3912 break;
3913 case DW_OP_const2u:
3914 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3915 data += 2;
3916 fprintf_filtered (stream, " %s", pulongest (ul));
3917 break;
3918 case DW_OP_const2s:
3919 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3920 data += 2;
3921 fprintf_filtered (stream, " %s", plongest (l));
3922 break;
3923 case DW_OP_const4u:
3924 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3925 data += 4;
3926 fprintf_filtered (stream, " %s", pulongest (ul));
3927 break;
3928 case DW_OP_const4s:
3929 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3930 data += 4;
3931 fprintf_filtered (stream, " %s", plongest (l));
3932 break;
3933 case DW_OP_const8u:
3934 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3935 data += 8;
3936 fprintf_filtered (stream, " %s", pulongest (ul));
3937 break;
3938 case DW_OP_const8s:
3939 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3940 data += 8;
3941 fprintf_filtered (stream, " %s", plongest (l));
3942 break;
3943 case DW_OP_constu:
f664829e 3944 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3945 fprintf_filtered (stream, " %s", pulongest (ul));
3946 break;
3947 case DW_OP_consts:
f664829e 3948 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3949 fprintf_filtered (stream, " %s", plongest (l));
3950 break;
3951
3952 case DW_OP_reg0:
3953 case DW_OP_reg1:
3954 case DW_OP_reg2:
3955 case DW_OP_reg3:
3956 case DW_OP_reg4:
3957 case DW_OP_reg5:
3958 case DW_OP_reg6:
3959 case DW_OP_reg7:
3960 case DW_OP_reg8:
3961 case DW_OP_reg9:
3962 case DW_OP_reg10:
3963 case DW_OP_reg11:
3964 case DW_OP_reg12:
3965 case DW_OP_reg13:
3966 case DW_OP_reg14:
3967 case DW_OP_reg15:
3968 case DW_OP_reg16:
3969 case DW_OP_reg17:
3970 case DW_OP_reg18:
3971 case DW_OP_reg19:
3972 case DW_OP_reg20:
3973 case DW_OP_reg21:
3974 case DW_OP_reg22:
3975 case DW_OP_reg23:
3976 case DW_OP_reg24:
3977 case DW_OP_reg25:
3978 case DW_OP_reg26:
3979 case DW_OP_reg27:
3980 case DW_OP_reg28:
3981 case DW_OP_reg29:
3982 case DW_OP_reg30:
3983 case DW_OP_reg31:
3984 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3985 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3986 break;
3987
3988 case DW_OP_regx:
f664829e 3989 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3990 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3991 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3992 break;
3993
3994 case DW_OP_implicit_value:
f664829e 3995 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3996 data += ul;
3997 fprintf_filtered (stream, " %s", pulongest (ul));
3998 break;
3999
4000 case DW_OP_breg0:
4001 case DW_OP_breg1:
4002 case DW_OP_breg2:
4003 case DW_OP_breg3:
4004 case DW_OP_breg4:
4005 case DW_OP_breg5:
4006 case DW_OP_breg6:
4007 case DW_OP_breg7:
4008 case DW_OP_breg8:
4009 case DW_OP_breg9:
4010 case DW_OP_breg10:
4011 case DW_OP_breg11:
4012 case DW_OP_breg12:
4013 case DW_OP_breg13:
4014 case DW_OP_breg14:
4015 case DW_OP_breg15:
4016 case DW_OP_breg16:
4017 case DW_OP_breg17:
4018 case DW_OP_breg18:
4019 case DW_OP_breg19:
4020 case DW_OP_breg20:
4021 case DW_OP_breg21:
4022 case DW_OP_breg22:
4023 case DW_OP_breg23:
4024 case DW_OP_breg24:
4025 case DW_OP_breg25:
4026 case DW_OP_breg26:
4027 case DW_OP_breg27:
4028 case DW_OP_breg28:
4029 case DW_OP_breg29:
4030 case DW_OP_breg30:
4031 case DW_OP_breg31:
f664829e 4032 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4033 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 4034 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
4035 break;
4036
4037 case DW_OP_bregx:
f664829e
DE
4038 data = safe_read_uleb128 (data, end, &ul);
4039 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
4040 fprintf_filtered (stream, " register %s [$%s] offset %s",
4041 pulongest (ul),
5e44ecb3 4042 locexpr_regname (arch, (int) ul),
0502ed8c 4043 plongest (l));
9eae7c52
TT
4044 break;
4045
4046 case DW_OP_fbreg:
f664829e 4047 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4048 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
4049 break;
4050
4051 case DW_OP_xderef_size:
4052 case DW_OP_deref_size:
4053 case DW_OP_pick:
4054 fprintf_filtered (stream, " %d", *data);
4055 ++data;
4056 break;
4057
4058 case DW_OP_plus_uconst:
f664829e 4059 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4060 fprintf_filtered (stream, " %s", pulongest (ul));
4061 break;
4062
4063 case DW_OP_skip:
4064 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4065 data += 2;
4066 fprintf_filtered (stream, " to %ld",
4067 (long) (data + l - start));
4068 break;
4069
4070 case DW_OP_bra:
4071 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4072 data += 2;
4073 fprintf_filtered (stream, " %ld",
4074 (long) (data + l - start));
4075 break;
4076
4077 case DW_OP_call2:
4078 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4079 data += 2;
4080 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4081 break;
4082
4083 case DW_OP_call4:
4084 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4085 data += 4;
4086 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4087 break;
4088
4089 case DW_OP_call_ref:
4090 ul = extract_unsigned_integer (data, offset_size,
4091 gdbarch_byte_order (arch));
4092 data += offset_size;
4093 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4094 break;
4095
4096 case DW_OP_piece:
f664829e 4097 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4098 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4099 break;
4100
4101 case DW_OP_bit_piece:
4102 {
9fccedf7 4103 uint64_t offset;
9eae7c52 4104
f664829e
DE
4105 data = safe_read_uleb128 (data, end, &ul);
4106 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4107 fprintf_filtered (stream, " size %s offset %s (bits)",
4108 pulongest (ul), pulongest (offset));
4109 }
4110 break;
8cf6f0b1
TT
4111
4112 case DW_OP_GNU_implicit_pointer:
4113 {
4114 ul = extract_unsigned_integer (data, offset_size,
4115 gdbarch_byte_order (arch));
4116 data += offset_size;
4117
f664829e 4118 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4119
4120 fprintf_filtered (stream, " DIE %s offset %s",
4121 phex_nz (ul, offset_size),
4122 plongest (l));
4123 }
4124 break;
5e44ecb3
TT
4125
4126 case DW_OP_GNU_deref_type:
4127 {
4128 int addr_size = *data++;
b64f50a1 4129 cu_offset offset;
5e44ecb3
TT
4130 struct type *type;
4131
f664829e 4132 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4133 offset.cu_off = ul;
5e44ecb3
TT
4134 type = dwarf2_get_die_type (offset, per_cu);
4135 fprintf_filtered (stream, "<");
4136 type_print (type, "", stream, -1);
b64f50a1 4137 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
5e44ecb3
TT
4138 addr_size);
4139 }
4140 break;
4141
4142 case DW_OP_GNU_const_type:
4143 {
b64f50a1 4144 cu_offset type_die;
5e44ecb3
TT
4145 struct type *type;
4146
f664829e 4147 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4148 type_die.cu_off = ul;
5e44ecb3
TT
4149 type = dwarf2_get_die_type (type_die, per_cu);
4150 fprintf_filtered (stream, "<");
4151 type_print (type, "", stream, -1);
b64f50a1 4152 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4153 }
4154 break;
4155
4156 case DW_OP_GNU_regval_type:
4157 {
9fccedf7 4158 uint64_t reg;
b64f50a1 4159 cu_offset type_die;
5e44ecb3
TT
4160 struct type *type;
4161
f664829e
DE
4162 data = safe_read_uleb128 (data, end, &reg);
4163 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4164 type_die.cu_off = ul;
5e44ecb3
TT
4165
4166 type = dwarf2_get_die_type (type_die, per_cu);
4167 fprintf_filtered (stream, "<");
4168 type_print (type, "", stream, -1);
b64f50a1
JK
4169 fprintf_filtered (stream, " [0x%s]> [$%s]",
4170 phex_nz (type_die.cu_off, 0),
5e44ecb3
TT
4171 locexpr_regname (arch, reg));
4172 }
4173 break;
4174
4175 case DW_OP_GNU_convert:
4176 case DW_OP_GNU_reinterpret:
4177 {
b64f50a1 4178 cu_offset type_die;
5e44ecb3 4179
f664829e 4180 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4181 type_die.cu_off = ul;
5e44ecb3 4182
b64f50a1 4183 if (type_die.cu_off == 0)
5e44ecb3
TT
4184 fprintf_filtered (stream, "<0>");
4185 else
4186 {
4187 struct type *type;
4188
4189 type = dwarf2_get_die_type (type_die, per_cu);
4190 fprintf_filtered (stream, "<");
4191 type_print (type, "", stream, -1);
b64f50a1 4192 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4193 }
4194 }
4195 break;
2bda9cc5
JK
4196
4197 case DW_OP_GNU_entry_value:
f664829e 4198 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4199 fputc_filtered ('\n', stream);
4200 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4201 start, data, data + ul, indent + 2,
4202 all, per_cu);
4203 data += ul;
4204 continue;
49f6c839 4205
a24f71ab
JK
4206 case DW_OP_GNU_parameter_ref:
4207 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4208 data += 4;
4209 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4210 break;
4211
49f6c839
DE
4212 case DW_OP_GNU_addr_index:
4213 data = safe_read_uleb128 (data, end, &ul);
4214 ul = dwarf2_read_addr_index (per_cu, ul);
4215 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4216 break;
4217 case DW_OP_GNU_const_index:
4218 data = safe_read_uleb128 (data, end, &ul);
4219 ul = dwarf2_read_addr_index (per_cu, ul);
4220 fprintf_filtered (stream, " %s", pulongest (ul));
4221 break;
9eae7c52
TT
4222 }
4223
4224 fprintf_filtered (stream, "\n");
4225 }
c3228f12 4226
08922a10 4227 return data;
4c2df51b
DJ
4228}
4229
08922a10
SS
4230/* Describe a single location, which may in turn consist of multiple
4231 pieces. */
a55cc764 4232
08922a10
SS
4233static void
4234locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4235 struct ui_file *stream,
56eb65bd 4236 const gdb_byte *data, size_t size,
9eae7c52 4237 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4238 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4239{
0d45f56e 4240 const gdb_byte *end = data + size;
9eae7c52 4241 int first_piece = 1, bad = 0;
08922a10 4242
08922a10
SS
4243 while (data < end)
4244 {
9eae7c52
TT
4245 const gdb_byte *here = data;
4246 int disassemble = 1;
4247
4248 if (first_piece)
4249 first_piece = 0;
4250 else
4251 fprintf_filtered (stream, _(", and "));
08922a10 4252
b4f54984 4253 if (!dwarf_always_disassemble)
9eae7c52 4254 {
3e43a32a 4255 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4256 addr, objfile, per_cu,
9eae7c52
TT
4257 data, end, addr_size);
4258 /* If we printed anything, or if we have an empty piece,
4259 then don't disassemble. */
4260 if (data != here
4261 || data[0] == DW_OP_piece
4262 || data[0] == DW_OP_bit_piece)
4263 disassemble = 0;
08922a10 4264 }
9eae7c52 4265 if (disassemble)
2bda9cc5
JK
4266 {
4267 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4268 data = disassemble_dwarf_expression (stream,
4269 get_objfile_arch (objfile),
4270 addr_size, offset_size, data,
4271 data, end, 0,
b4f54984 4272 dwarf_always_disassemble,
2bda9cc5
JK
4273 per_cu);
4274 }
9eae7c52
TT
4275
4276 if (data < end)
08922a10 4277 {
9eae7c52 4278 int empty = data == here;
08922a10 4279
9eae7c52
TT
4280 if (disassemble)
4281 fprintf_filtered (stream, " ");
4282 if (data[0] == DW_OP_piece)
4283 {
9fccedf7 4284 uint64_t bytes;
08922a10 4285
f664829e 4286 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4287
9eae7c52
TT
4288 if (empty)
4289 fprintf_filtered (stream, _("an empty %s-byte piece"),
4290 pulongest (bytes));
4291 else
4292 fprintf_filtered (stream, _(" [%s-byte piece]"),
4293 pulongest (bytes));
4294 }
4295 else if (data[0] == DW_OP_bit_piece)
4296 {
9fccedf7 4297 uint64_t bits, offset;
9eae7c52 4298
f664829e
DE
4299 data = safe_read_uleb128 (data + 1, end, &bits);
4300 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4301
4302 if (empty)
4303 fprintf_filtered (stream,
4304 _("an empty %s-bit piece"),
4305 pulongest (bits));
4306 else
4307 fprintf_filtered (stream,
4308 _(" [%s-bit piece, offset %s bits]"),
4309 pulongest (bits), pulongest (offset));
4310 }
4311 else
4312 {
4313 bad = 1;
4314 break;
4315 }
08922a10
SS
4316 }
4317 }
4318
4319 if (bad || data > end)
4320 error (_("Corrupted DWARF2 expression for \"%s\"."),
4321 SYMBOL_PRINT_NAME (symbol));
4322}
4323
4324/* Print a natural-language description of SYMBOL to STREAM. This
4325 version is for a symbol with a single location. */
a55cc764 4326
08922a10
SS
4327static void
4328locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4329 struct ui_file *stream)
4330{
9a3c8263
SM
4331 struct dwarf2_locexpr_baton *dlbaton
4332 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
08922a10
SS
4333 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4334 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4335 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4336
3e43a32a
MS
4337 locexpr_describe_location_1 (symbol, addr, stream,
4338 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4339 objfile, addr_size, offset_size,
4340 dlbaton->per_cu);
08922a10
SS
4341}
4342
4343/* Describe the location of SYMBOL as an agent value in VALUE, generating
4344 any necessary bytecode in AX. */
a55cc764 4345
0d53c4c4 4346static void
505e835d
UW
4347locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4348 struct agent_expr *ax, struct axs_value *value)
a55cc764 4349{
9a3c8263
SM
4350 struct dwarf2_locexpr_baton *dlbaton
4351 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3cf03773 4352 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4353
1d6edc3c 4354 if (dlbaton->size == 0)
cabe9ab6
PA
4355 value->optimized_out = 1;
4356 else
9f6f94ff
TT
4357 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4358 dlbaton->data, dlbaton->data + dlbaton->size,
4359 dlbaton->per_cu);
a55cc764
DJ
4360}
4361
bb2ec1b3
TT
4362/* symbol_computed_ops 'generate_c_location' method. */
4363
4364static void
4365locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4366 struct gdbarch *gdbarch,
4367 unsigned char *registers_used,
4368 CORE_ADDR pc, const char *result_name)
4369{
9a3c8263
SM
4370 struct dwarf2_locexpr_baton *dlbaton
4371 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4372 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4373
4374 if (dlbaton->size == 0)
4375 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4376
4377 compile_dwarf_expr_to_c (stream, result_name,
4378 sym, pc, gdbarch, registers_used, addr_size,
4379 dlbaton->data, dlbaton->data + dlbaton->size,
4380 dlbaton->per_cu);
4381}
4382
4c2df51b
DJ
4383/* The set of location functions used with the DWARF-2 expression
4384 evaluator. */
768a979c 4385const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4386 locexpr_read_variable,
e18b2753 4387 locexpr_read_variable_at_entry,
0b31a4bc 4388 locexpr_get_symbol_read_needs,
4c2df51b 4389 locexpr_describe_location,
f1e6e072 4390 0, /* location_has_loclist */
bb2ec1b3
TT
4391 locexpr_tracepoint_var_ref,
4392 locexpr_generate_c_location
4c2df51b 4393};
0d53c4c4
DJ
4394
4395
4396/* Wrapper functions for location lists. These generally find
4397 the appropriate location expression and call something above. */
4398
4399/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4400 evaluator to calculate the location. */
4401static struct value *
4402loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4403{
9a3c8263
SM
4404 struct dwarf2_loclist_baton *dlbaton
4405 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4406 struct value *val;
947bb88f 4407 const gdb_byte *data;
b6b08ebf 4408 size_t size;
8cf6f0b1 4409 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4410
8cf6f0b1 4411 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4412 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4413 dlbaton->per_cu);
0d53c4c4
DJ
4414
4415 return val;
4416}
4417
e18b2753
JK
4418/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4419 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4420 will be thrown.
4421
4422 Function always returns non-NULL value, it may be marked optimized out if
4423 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4424 if it cannot resolve the parameter for any reason. */
4425
4426static struct value *
4427loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4428{
9a3c8263
SM
4429 struct dwarf2_loclist_baton *dlbaton
4430 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4431 const gdb_byte *data;
4432 size_t size;
4433 CORE_ADDR pc;
4434
4435 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4436 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4437
4438 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4439 if (data == NULL)
4440 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4441
4442 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4443}
4444
0b31a4bc
TT
4445/* Implementation of get_symbol_read_needs from
4446 symbol_computed_ops. */
4447
4448static enum symbol_needs_kind
4449loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4450{
4451 /* If there's a location list, then assume we need to have a frame
4452 to choose the appropriate location expression. With tracking of
4453 global variables this is not necessarily true, but such tracking
4454 is disabled in GCC at the moment until we figure out how to
4455 represent it. */
4456
0b31a4bc 4457 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4458}
4459
08922a10
SS
4460/* Print a natural-language description of SYMBOL to STREAM. This
4461 version applies when there is a list of different locations, each
4462 with a specified address range. */
4463
4464static void
4465loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4466 struct ui_file *stream)
0d53c4c4 4467{
9a3c8263
SM
4468 struct dwarf2_loclist_baton *dlbaton
4469 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4470 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4471 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4473 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4474 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4475 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4476 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4477 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4478 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4479 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4480 int done = 0;
08922a10
SS
4481
4482 loc_ptr = dlbaton->data;
4483 buf_end = dlbaton->data + dlbaton->size;
4484
9eae7c52 4485 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4486
4487 /* Iterate through locations until we run out. */
f664829e 4488 while (!done)
08922a10 4489 {
f664829e
DE
4490 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4491 int length;
4492 enum debug_loc_kind kind;
4493 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4494
4495 if (dlbaton->from_dwo)
4496 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4497 loc_ptr, buf_end, &new_ptr,
3771a44c 4498 &low, &high, byte_order);
d4a087c7 4499 else
f664829e
DE
4500 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4501 &low, &high,
4502 byte_order, addr_size,
4503 signed_addr_p);
4504 loc_ptr = new_ptr;
4505 switch (kind)
08922a10 4506 {
f664829e
DE
4507 case DEBUG_LOC_END_OF_LIST:
4508 done = 1;
4509 continue;
4510 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4511 base_address = high + base_offset;
9eae7c52 4512 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4513 paddress (gdbarch, base_address));
08922a10 4514 continue;
3771a44c
DE
4515 case DEBUG_LOC_START_END:
4516 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4517 break;
4518 case DEBUG_LOC_BUFFER_OVERFLOW:
4519 case DEBUG_LOC_INVALID_ENTRY:
4520 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4521 SYMBOL_PRINT_NAME (symbol));
4522 default:
4523 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4524 }
4525
08922a10
SS
4526 /* Otherwise, a location expression entry. */
4527 low += base_address;
4528 high += base_address;
4529
3e29f34a
MR
4530 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4531 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4532
08922a10
SS
4533 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4534 loc_ptr += 2;
4535
08922a10
SS
4536 /* (It would improve readability to print only the minimum
4537 necessary digits of the second number of the range.) */
9eae7c52 4538 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4539 paddress (gdbarch, low), paddress (gdbarch, high));
4540
4541 /* Now describe this particular location. */
4542 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4543 objfile, addr_size, offset_size,
4544 dlbaton->per_cu);
9eae7c52
TT
4545
4546 fprintf_filtered (stream, "\n");
08922a10
SS
4547
4548 loc_ptr += length;
4549 }
0d53c4c4
DJ
4550}
4551
4552/* Describe the location of SYMBOL as an agent value in VALUE, generating
4553 any necessary bytecode in AX. */
4554static void
505e835d
UW
4555loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4556 struct agent_expr *ax, struct axs_value *value)
0d53c4c4 4557{
9a3c8263
SM
4558 struct dwarf2_loclist_baton *dlbaton
4559 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4560 const gdb_byte *data;
b6b08ebf 4561 size_t size;
3cf03773 4562 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4563
8cf6f0b1 4564 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4565 if (size == 0)
cabe9ab6
PA
4566 value->optimized_out = 1;
4567 else
9f6f94ff
TT
4568 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4569 dlbaton->per_cu);
0d53c4c4
DJ
4570}
4571
bb2ec1b3
TT
4572/* symbol_computed_ops 'generate_c_location' method. */
4573
4574static void
4575loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4576 struct gdbarch *gdbarch,
4577 unsigned char *registers_used,
4578 CORE_ADDR pc, const char *result_name)
4579{
9a3c8263
SM
4580 struct dwarf2_loclist_baton *dlbaton
4581 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4582 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4583 const gdb_byte *data;
4584 size_t size;
4585
4586 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4587 if (size == 0)
4588 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4589
4590 compile_dwarf_expr_to_c (stream, result_name,
4591 sym, pc, gdbarch, registers_used, addr_size,
4592 data, data + size,
4593 dlbaton->per_cu);
4594}
4595
0d53c4c4
DJ
4596/* The set of location functions used with the DWARF-2 expression
4597 evaluator and location lists. */
768a979c 4598const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4599 loclist_read_variable,
e18b2753 4600 loclist_read_variable_at_entry,
0b31a4bc 4601 loclist_symbol_needs,
0d53c4c4 4602 loclist_describe_location,
f1e6e072 4603 1, /* location_has_loclist */
bb2ec1b3
TT
4604 loclist_tracepoint_var_ref,
4605 loclist_generate_c_location
0d53c4c4 4606};
8e3b41a9 4607
70221824
PA
4608/* Provide a prototype to silence -Wmissing-prototypes. */
4609extern initialize_file_ftype _initialize_dwarf2loc;
4610
8e3b41a9
JK
4611void
4612_initialize_dwarf2loc (void)
4613{
ccce17b0
YQ
4614 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4615 &entry_values_debug,
4616 _("Set entry values and tail call frames "
4617 "debugging."),
4618 _("Show entry values and tail call frames "
4619 "debugging."),
4620 _("When non-zero, the process of determining "
4621 "parameter values from function entry point "
4622 "and tail call frames will be printed."),
4623 NULL,
4624 show_entry_values_debug,
4625 &setdebuglist, &showdebuglist);
8e3b41a9 4626}
This page took 1.234917 seconds and 4 git commands to generate.