vla: introduce new bound type abstraction adapt uses
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
0e9f083f 75#include <string.h>
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
a2ce51a0
DE
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
b4dd5633 240 struct signatured_type **all_type_units;
1fd400ff 241
f4dc4d17
DE
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
72dca2f5 252
348e048f
DE
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
f4dc4d17
DE
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
3019eac3
DE
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
80626a55
DE
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
36586728
TT
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
72dca2f5
FR
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
9291a0cd 288
ae2de4f8
DE
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
291 unsigned char using_index;
292
ae2de4f8 293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 294 struct mapped_index *index_table;
98bfdba5 295
7b9f3c50 296 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
7b9f3c50
DE
303 htab_t quick_file_names_table;
304
98bfdba5
PA
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
673bfd45 308
dee91e82 309 /* Table mapping type DIEs to their struct type *.
673bfd45 310 This is NULL if not allocated yet.
02142a6c 311 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 312 htab_t die_type_hash;
95554aad
TT
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
1dbab08b 521 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
722
723 /* The primary symtab.
094b34ac
DE
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
726 struct symtab *primary_symtab;
727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
debd256d
JB
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
2dc7f7b3 1036 unsigned char maximum_ops_per_instruction;
debd256d
JB
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1053 const char **include_dirs;
debd256d
JB
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
c906108c 1060 {
d521ce57 1061 const char *name;
debd256d
JB
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
aaa75496 1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1066 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
6502dd73 1070 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1071 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1072};
c906108c
SS
1073
1074/* When we construct a partial symbol table entry we only
0963b4bd 1075 need this much information. */
c906108c
SS
1076struct partial_die_info
1077 {
72bf9492 1078 /* Offset of this DIE. */
b64f50a1 1079 sect_offset offset;
72bf9492
DJ
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
72bf9492
DJ
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
481860b3 1091 unsigned int may_be_inlined : 1;
72bf9492
DJ
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
fa4028e9
JB
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
98bfdba5
PA
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
abc72ce4
DE
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
36586728
TT
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
72bf9492 1112 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1113 sometimes a default name for unnamed DIEs. */
15d034d0 1114 const char *name;
72bf9492 1115
abc72ce4
DE
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
72bf9492
DJ
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
15d034d0 1122 const char *scope;
72bf9492 1123
95554aad
TT
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
72bf9492
DJ
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
72bf9492 1137
93311388 1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1139 DW_AT_sibling, if any. */
abc72ce4
DE
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1142 const gdb_byte *sibling;
72bf9492
DJ
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
b64f50a1 1147 sect_offset spec_offset;
72bf9492
DJ
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1152 };
1153
0963b4bd 1154/* This data structure holds the information of an abbrev. */
c906108c
SS
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
9d25dd43
DE
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1169 };
1170
433df2d4
DE
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
f4dc4d17
DE
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
433df2d4
DE
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
0963b4bd 1192/* Attributes have a name and a value. */
b60c80d6
DJ
1193struct attribute
1194 {
9d25dd43 1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
b60c80d6
DJ
1203 union
1204 {
15d034d0 1205 const char *str;
b60c80d6 1206 struct dwarf_block *blk;
43bbcdc2
PH
1207 ULONGEST unsnd;
1208 LONGEST snd;
b60c80d6 1209 CORE_ADDR addr;
ac9ec31b 1210 ULONGEST signature;
b60c80d6
DJ
1211 }
1212 u;
1213 };
1214
0963b4bd 1215/* This data structure holds a complete die structure. */
c906108c
SS
1216struct die_info
1217 {
76815b17
DE
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
98bfdba5
PA
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
76815b17 1227
adde2bff
DE
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
76815b17
DE
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
93311388 1234 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1235 sect_offset offset;
78ba4af6
JB
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
4950bc1c 1240 together via their SIBLING fields. */
639d11d3
DC
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
c906108c 1244
b60c80d6
DJ
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
c906108c
SS
1249 };
1250
0963b4bd 1251/* Get at parts of an attribute structure. */
c906108c
SS
1252
1253#define DW_STRING(attr) ((attr)->u.str)
8285870a 1254#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1255#define DW_UNSND(attr) ((attr)->u.unsnd)
1256#define DW_BLOCK(attr) ((attr)->u.blk)
1257#define DW_SND(attr) ((attr)->u.snd)
1258#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1259#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1260
0963b4bd 1261/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1262struct dwarf_block
1263 {
56eb65bd 1264 size_t size;
1d6edc3c
JK
1265
1266 /* Valid only if SIZE is not zero. */
d521ce57 1267 const gdb_byte *data;
c906108c
SS
1268 };
1269
c906108c
SS
1270#ifndef ATTR_ALLOC_CHUNK
1271#define ATTR_ALLOC_CHUNK 4
1272#endif
1273
c906108c
SS
1274/* Allocate fields for structs, unions and enums in this size. */
1275#ifndef DW_FIELD_ALLOC_CHUNK
1276#define DW_FIELD_ALLOC_CHUNK 4
1277#endif
1278
c906108c
SS
1279/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282static int bits_per_byte = 8;
1283
1284/* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287struct field_info
c5aa993b 1288 {
0963b4bd 1289 /* List of data member and baseclasses fields. */
c5aa993b
JM
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
7d0ccb61 1297 *fields, *baseclasses;
c906108c 1298
7d0ccb61 1299 /* Number of fields (including baseclasses). */
c5aa993b 1300 int nfields;
c906108c 1301
c5aa993b
JM
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
c906108c 1304
c5aa993b
JM
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
c906108c 1307
c5aa993b
JM
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
c906108c 1316
c5aa993b
JM
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
15d034d0 1322 const char *name;
c5aa993b
JM
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
c906108c 1327
c5aa993b
JM
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
98751a41
JK
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
c5aa993b 1340 };
c906108c 1341
10b3939b
DJ
1342/* One item on the queue of compilation units to read in full symbols
1343 for. */
1344struct dwarf2_queue_item
1345{
1346 struct dwarf2_per_cu_data *per_cu;
95554aad 1347 enum language pretend_language;
10b3939b
DJ
1348 struct dwarf2_queue_item *next;
1349};
1350
1351/* The current queue. */
1352static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
ae038cb0
DJ
1354/* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359static int dwarf2_max_cache_age = 5;
920d2a44
AC
1360static void
1361show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363{
3e43a32a
MS
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1366 value);
1367}
4390d890 1368\f
c906108c
SS
1369/* local function prototypes */
1370
a32a8923
DE
1371static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
4efb68b1 1375static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1376
918dd910
JK
1377static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
0018ea6f
DE
1380static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
c67a9c90 1383static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1384
72bf9492
DJ
1385static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1387 int, struct dwarf2_cu *);
c906108c 1388
72bf9492
DJ
1389static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
63d06c5c 1391
72bf9492
DJ
1392static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1394 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1395
5d7cb8df
JK
1396static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
72bf9492
DJ
1400static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
91c24f0a 1402
bc30ff58
JB
1403static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1405 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1406
257e7a09
YQ
1407static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
c906108c 1409
a14ed312 1410static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1411
433df2d4
DE
1412static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418static void abbrev_table_free (struct abbrev_table *);
1419
f4dc4d17
DE
1420static void abbrev_table_free_cleanup (void *);
1421
dee91e82
DE
1422static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
c906108c 1424
f3dd6933 1425static void dwarf2_free_abbrev_table (void *);
c906108c 1426
d521ce57 1427static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1428
dee91e82 1429static struct partial_die_info *load_partial_dies
d521ce57 1430 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1431
d521ce57
TT
1432static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
c906108c 1437
36586728 1438static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1439 struct dwarf2_cu *);
72bf9492
DJ
1440
1441static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
d521ce57
TT
1444static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
a8329558 1447
a1855c1d 1448static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1449
a1855c1d 1450static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1451
a1855c1d 1452static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1453
a1855c1d 1454static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1455
a1855c1d 1456static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1457
d521ce57 1458static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1459 unsigned int *);
c906108c 1460
d521ce57 1461static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1462
1463static LONGEST read_checked_initial_length_and_offset
d521ce57 1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1465 unsigned int *, unsigned int *);
613e1657 1466
d521ce57
TT
1467static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
c764a876
DE
1469 unsigned int *);
1470
d521ce57 1471static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1472
f4dc4d17
DE
1473static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
d521ce57 1476static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1477
d521ce57 1478static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1479
d521ce57
TT
1480static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
4bdf3d34 1483
d521ce57 1484static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1485
d521ce57 1486static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1487
d521ce57 1488static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1489
d521ce57
TT
1490static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
3019eac3
DE
1492 unsigned int *);
1493
d521ce57 1494static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1495 ULONGEST str_index);
3019eac3 1496
e142c38c 1497static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1498
e142c38c
DJ
1499static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
c906108c 1501
348e048f 1502static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1503 unsigned int);
348e048f 1504
05cf31d1
JB
1505static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
e142c38c 1508static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1509
e142c38c 1510static struct die_info *die_specification (struct die_info *die,
f2f0e013 1511 struct dwarf2_cu **);
63d06c5c 1512
debd256d
JB
1513static void free_line_header (struct line_header *lh);
1514
3019eac3
DE
1515static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
debd256d 1517
f3f5162e
DE
1518static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
c906108c 1521
d521ce57 1522static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1523
f4dc4d17 1524static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1525 const char *, const char *, CORE_ADDR);
f4dc4d17 1526
a14ed312 1527static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1528 struct dwarf2_cu *);
c906108c 1529
34eaf542
TT
1530static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
ff39bb5e 1533static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1534 struct dwarf2_cu *);
c906108c 1535
ff39bb5e 1536static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
12df843f 1540 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1541 const gdb_byte **bytes,
98bfdba5 1542 struct dwarf2_locexpr_baton **baton);
2df3850c 1543
e7c27a73 1544static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1545
b4ba55a1
JB
1546static int need_gnat_info (struct dwarf2_cu *);
1547
3e43a32a
MS
1548static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
b4ba55a1
JB
1550
1551static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
e7c27a73
DJ
1554static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
c906108c 1556
ff39bb5e 1557static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1558 struct dwarf2_cu *);
c906108c 1559
f792889a 1560static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1561
673bfd45
DE
1562static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
0d5cff50 1564static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1565
6e70227d 1566static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
63d06c5c 1569
e7c27a73 1570static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
348e048f
DE
1572static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
e7c27a73 1574static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1575
e7c27a73 1576static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1577
96408a79
SA
1578static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
ff013f42
JK
1580static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
a14ed312 1583static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
c906108c 1586
fae299cd
DC
1587static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
801e3a5b
JB
1591static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
a14ed312 1594static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1595 struct dwarf2_cu *);
c906108c 1596
a14ed312 1597static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1598 struct type *, struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1601 struct die_info *, struct type *,
e7c27a73 1602 struct dwarf2_cu *);
c906108c 1603
a14ed312 1604static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1605 struct type *,
1606 struct dwarf2_cu *);
c906108c 1607
134d01f1 1608static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1609
e7c27a73 1610static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1611
e7c27a73 1612static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1613
5d7cb8df
JK
1614static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
27aa8d6a
SW
1616static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
74921315
KS
1618static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
f55ee35c
JK
1620static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
38d518c9 1623static const char *namespace_name (struct die_info *die,
e142c38c 1624 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1625
134d01f1 1626static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1627
e7c27a73 1628static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1629
6e70227d 1630static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1631 struct dwarf2_cu *);
1632
bf6af496 1633static struct die_info *read_die_and_siblings_1
d521ce57 1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1635 struct die_info *);
639d11d3 1636
dee91e82 1637static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
639d11d3
DC
1640 struct die_info *parent);
1641
d521ce57
TT
1642static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
3019eac3 1645
d521ce57
TT
1646static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
93311388 1649
e7c27a73 1650static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1651
15d034d0
TT
1652static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
71c25dea 1654
15d034d0 1655static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1656
15d034d0 1657static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
ca69b9e6
DE
1661static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
e142c38c 1664static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1665 struct dwarf2_cu **);
9219021c 1666
f39c6ffd 1667static const char *dwarf_tag_name (unsigned int);
c906108c 1668
f39c6ffd 1669static const char *dwarf_attr_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_form_name (unsigned int);
c906108c 1672
a14ed312 1673static char *dwarf_bool_name (unsigned int);
c906108c 1674
f39c6ffd 1675static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1676
f9aca02d 1677static struct die_info *sibling_die (struct die_info *);
c906108c 1678
d97bc12b
DE
1679static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681static void dump_die_for_error (struct die_info *);
1682
1683static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
c906108c 1685
d97bc12b 1686/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1687
51545339 1688static void store_in_ref_table (struct die_info *,
10b3939b 1689 struct dwarf2_cu *);
c906108c 1690
ff39bb5e 1691static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1692
ff39bb5e 1693static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1694
348e048f 1695static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1696 const struct attribute *,
348e048f
DE
1697 struct dwarf2_cu **);
1698
10b3939b 1699static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1700 const struct attribute *,
f2f0e013 1701 struct dwarf2_cu **);
c906108c 1702
348e048f 1703static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1704 const struct attribute *,
348e048f
DE
1705 struct dwarf2_cu **);
1706
ac9ec31b
DE
1707static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1711 const struct attribute *,
ac9ec31b
DE
1712 struct dwarf2_cu *);
1713
e5fe5e75 1714static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1715
52dc124a 1716static void read_signatured_type (struct signatured_type *);
348e048f 1717
f4dc4d17 1718static struct type_unit_group *get_type_unit_group
ff39bb5e 1719 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1720
1721static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
c906108c
SS
1723/* memory allocation interface */
1724
7b5a2f43 1725static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1726
b60c80d6 1727static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1728
09262596 1729static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1730 const char *, int);
2e276125 1731
6e5a29e1 1732static int attr_form_is_block (const struct attribute *);
8e19ed76 1733
6e5a29e1 1734static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1735
6e5a29e1 1736static int attr_form_is_constant (const struct attribute *);
3690dd37 1737
6e5a29e1 1738static int attr_form_is_ref (const struct attribute *);
7771576e 1739
8cf6f0b1
TT
1740static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
ff39bb5e 1742 const struct attribute *attr);
8cf6f0b1 1743
ff39bb5e 1744static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1745 struct symbol *sym,
f1e6e072
TT
1746 struct dwarf2_cu *cu,
1747 int is_block);
4c2df51b 1748
d521ce57
TT
1749static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
4bb7a0a7 1752
72bf9492
DJ
1753static void free_stack_comp_unit (void *);
1754
72bf9492
DJ
1755static hashval_t partial_die_hash (const void *item);
1756
1757static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
ae038cb0 1759static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1761
9816fde3 1762static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1763 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1764
1765static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
93311388 1768
68dc6402 1769static void free_heap_comp_unit (void *);
ae038cb0
DJ
1770
1771static void free_cached_comp_units (void *);
1772
1773static void age_cached_comp_units (void);
1774
dee91e82 1775static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1776
f792889a
DJ
1777static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1c379e20 1779
ae038cb0
DJ
1780static void create_all_comp_units (struct objfile *);
1781
0e50663e 1782static int create_all_type_units (struct objfile *);
1fd400ff 1783
95554aad
TT
1784static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
10b3939b 1786
95554aad
TT
1787static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
10b3939b 1789
f4dc4d17
DE
1790static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
10b3939b
DJ
1793static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
ae038cb0
DJ
1796static void dwarf2_mark (struct dwarf2_cu *);
1797
1798static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
b64f50a1 1800static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1801 struct dwarf2_per_cu_data *);
673bfd45 1802
f792889a 1803static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1804
9291a0cd
TT
1805static void dwarf2_release_queue (void *dummy);
1806
95554aad
TT
1807static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
a0f42c21 1810static void process_queue (void);
9291a0cd
TT
1811
1812static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
15d034d0 1814 const char **name, const char **comp_dir);
9291a0cd
TT
1815
1816static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
d521ce57 1819static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
d521ce57 1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1823 int is_debug_types_section);
1824
fd820528 1825static void init_cutu_and_read_dies
f4dc4d17
DE
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
3019eac3
DE
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
dee91e82
DE
1830static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1833
673bfd45 1834static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1835
3019eac3
DE
1836static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
57d63ce2
DE
1838static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1841
1842static struct dwp_file *get_dwp_file (void);
1843
3019eac3 1844static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1846
1847static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1848 (struct signatured_type *, const char *, const char *);
3019eac3 1849
89e63ee4
DE
1850static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
3019eac3
DE
1852static void free_dwo_file_cleanup (void *);
1853
95554aad
TT
1854static void process_cu_includes (void);
1855
1b80a9fa 1856static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1857\f
1858/* Various complaints about symbol reading that don't abort the process. */
1859
1860static void
1861dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862{
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865}
1866
1867static void
1868dwarf2_debug_line_missing_file_complaint (void)
1869{
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872}
1873
1874static void
1875dwarf2_debug_line_missing_end_sequence_complaint (void)
1876{
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880}
1881
1882static void
1883dwarf2_complex_location_expr_complaint (void)
1884{
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886}
1887
1888static void
1889dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891{
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895}
1896
1897static void
1898dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899{
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
a32a8923
DE
1903 get_section_name (section),
1904 get_section_file_name (section));
4390d890 1905}
1b80a9fa 1906
4390d890
DE
1907static void
1908dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909{
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914}
1915
1916static void
1917dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918{
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922}
1923\f
9291a0cd
TT
1924#if WORDS_BIGENDIAN
1925
1926/* Convert VALUE between big- and little-endian. */
1927static offset_type
1928byte_swap (offset_type value)
1929{
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937}
1938
1939#define MAYBE_SWAP(V) byte_swap (V)
1940
1941#else
1942#define MAYBE_SWAP(V) (V)
1943#endif /* WORDS_BIGENDIAN */
1944
31aa7e4e
JB
1945/* Read the given attribute value as an address, taking the attribute's
1946 form into account. */
1947
1948static CORE_ADDR
1949attr_value_as_address (struct attribute *attr)
1950{
1951 CORE_ADDR addr;
1952
1953 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1954 {
1955 /* Aside from a few clearly defined exceptions, attributes that
1956 contain an address must always be in DW_FORM_addr form.
1957 Unfortunately, some compilers happen to be violating this
1958 requirement by encoding addresses using other forms, such
1959 as DW_FORM_data4 for example. For those broken compilers,
1960 we try to do our best, without any guarantee of success,
1961 to interpret the address correctly. It would also be nice
1962 to generate a complaint, but that would require us to maintain
1963 a list of legitimate cases where a non-address form is allowed,
1964 as well as update callers to pass in at least the CU's DWARF
1965 version. This is more overhead than what we're willing to
1966 expand for a pretty rare case. */
1967 addr = DW_UNSND (attr);
1968 }
1969 else
1970 addr = DW_ADDR (attr);
1971
1972 return addr;
1973}
1974
9291a0cd
TT
1975/* The suffix for an index file. */
1976#define INDEX_SUFFIX ".gdb-index"
1977
c906108c 1978/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1979 information and return true if we have enough to do something.
1980 NAMES points to the dwarf2 section names, or is NULL if the standard
1981 ELF names are used. */
c906108c
SS
1982
1983int
251d32d9
TG
1984dwarf2_has_info (struct objfile *objfile,
1985 const struct dwarf2_debug_sections *names)
c906108c 1986{
be391dca
TT
1987 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1988 if (!dwarf2_per_objfile)
1989 {
1990 /* Initialize per-objfile state. */
1991 struct dwarf2_per_objfile *data
1992 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1993
be391dca
TT
1994 memset (data, 0, sizeof (*data));
1995 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1996 dwarf2_per_objfile = data;
6502dd73 1997
251d32d9
TG
1998 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1999 (void *) names);
be391dca
TT
2000 dwarf2_per_objfile->objfile = objfile;
2001 }
73869dc2
DE
2002 return (!dwarf2_per_objfile->info.is_virtual
2003 && dwarf2_per_objfile->info.s.asection != NULL
2004 && !dwarf2_per_objfile->abbrev.is_virtual
2005 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2006}
2007
2008/* Return the containing section of virtual section SECTION. */
2009
2010static struct dwarf2_section_info *
2011get_containing_section (const struct dwarf2_section_info *section)
2012{
2013 gdb_assert (section->is_virtual);
2014 return section->s.containing_section;
c906108c
SS
2015}
2016
a32a8923
DE
2017/* Return the bfd owner of SECTION. */
2018
2019static struct bfd *
2020get_section_bfd_owner (const struct dwarf2_section_info *section)
2021{
73869dc2
DE
2022 if (section->is_virtual)
2023 {
2024 section = get_containing_section (section);
2025 gdb_assert (!section->is_virtual);
2026 }
2027 return section->s.asection->owner;
a32a8923
DE
2028}
2029
2030/* Return the bfd section of SECTION.
2031 Returns NULL if the section is not present. */
2032
2033static asection *
2034get_section_bfd_section (const struct dwarf2_section_info *section)
2035{
73869dc2
DE
2036 if (section->is_virtual)
2037 {
2038 section = get_containing_section (section);
2039 gdb_assert (!section->is_virtual);
2040 }
2041 return section->s.asection;
a32a8923
DE
2042}
2043
2044/* Return the name of SECTION. */
2045
2046static const char *
2047get_section_name (const struct dwarf2_section_info *section)
2048{
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_section_name (get_section_bfd_owner (section), sectp);
2053}
2054
2055/* Return the name of the file SECTION is in. */
2056
2057static const char *
2058get_section_file_name (const struct dwarf2_section_info *section)
2059{
2060 bfd *abfd = get_section_bfd_owner (section);
2061
2062 return bfd_get_filename (abfd);
2063}
2064
2065/* Return the id of SECTION.
2066 Returns 0 if SECTION doesn't exist. */
2067
2068static int
2069get_section_id (const struct dwarf2_section_info *section)
2070{
2071 asection *sectp = get_section_bfd_section (section);
2072
2073 if (sectp == NULL)
2074 return 0;
2075 return sectp->id;
2076}
2077
2078/* Return the flags of SECTION.
73869dc2 2079 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2080
2081static int
2082get_section_flags (const struct dwarf2_section_info *section)
2083{
2084 asection *sectp = get_section_bfd_section (section);
2085
2086 gdb_assert (sectp != NULL);
2087 return bfd_get_section_flags (sectp->owner, sectp);
2088}
2089
251d32d9
TG
2090/* When loading sections, we look either for uncompressed section or for
2091 compressed section names. */
233a11ab
CS
2092
2093static int
251d32d9
TG
2094section_is_p (const char *section_name,
2095 const struct dwarf2_section_names *names)
233a11ab 2096{
251d32d9
TG
2097 if (names->normal != NULL
2098 && strcmp (section_name, names->normal) == 0)
2099 return 1;
2100 if (names->compressed != NULL
2101 && strcmp (section_name, names->compressed) == 0)
2102 return 1;
2103 return 0;
233a11ab
CS
2104}
2105
c906108c
SS
2106/* This function is mapped across the sections and remembers the
2107 offset and size of each of the debugging sections we are interested
2108 in. */
2109
2110static void
251d32d9 2111dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2112{
251d32d9 2113 const struct dwarf2_debug_sections *names;
dc7650b8 2114 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2115
2116 if (vnames == NULL)
2117 names = &dwarf2_elf_names;
2118 else
2119 names = (const struct dwarf2_debug_sections *) vnames;
2120
dc7650b8
JK
2121 if ((aflag & SEC_HAS_CONTENTS) == 0)
2122 {
2123 }
2124 else if (section_is_p (sectp->name, &names->info))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->line))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2138 }
251d32d9 2139 else if (section_is_p (sectp->name, &names->loc))
c906108c 2140 {
73869dc2 2141 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2142 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2148 }
cf2c3c16
TT
2149 else if (section_is_p (sectp->name, &names->macro))
2150 {
73869dc2 2151 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2152 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->str))
c906108c 2155 {
73869dc2 2156 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2158 }
3019eac3
DE
2159 else if (section_is_p (sectp->name, &names->addr))
2160 {
73869dc2 2161 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2162 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2165 {
73869dc2 2166 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2170 {
73869dc2 2171 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2172 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2173 }
251d32d9 2174 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2175 {
73869dc2 2176 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2177 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2178 }
251d32d9 2179 else if (section_is_p (sectp->name, &names->types))
348e048f 2180 {
8b70b953
TT
2181 struct dwarf2_section_info type_section;
2182
2183 memset (&type_section, 0, sizeof (type_section));
73869dc2 2184 type_section.s.asection = sectp;
8b70b953
TT
2185 type_section.size = bfd_get_section_size (sectp);
2186
2187 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2188 &type_section);
348e048f 2189 }
251d32d9 2190 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2191 {
73869dc2 2192 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2193 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2194 }
dce234bc 2195
72dca2f5
FR
2196 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2197 && bfd_section_vma (abfd, sectp) == 0)
2198 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2199}
2200
fceca515
DE
2201/* A helper function that decides whether a section is empty,
2202 or not present. */
9e0ac564
TT
2203
2204static int
19ac8c2e 2205dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2206{
73869dc2
DE
2207 if (section->is_virtual)
2208 return section->size == 0;
2209 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2210}
2211
3019eac3
DE
2212/* Read the contents of the section INFO.
2213 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2214 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2215 of the DWO file.
dce234bc 2216 If the section is compressed, uncompress it before returning. */
c906108c 2217
dce234bc
PP
2218static void
2219dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2220{
a32a8923 2221 asection *sectp;
3019eac3 2222 bfd *abfd;
dce234bc 2223 gdb_byte *buf, *retbuf;
c906108c 2224
be391dca
TT
2225 if (info->readin)
2226 return;
dce234bc 2227 info->buffer = NULL;
be391dca 2228 info->readin = 1;
188dd5d6 2229
9e0ac564 2230 if (dwarf2_section_empty_p (info))
dce234bc 2231 return;
c906108c 2232
a32a8923 2233 sectp = get_section_bfd_section (info);
3019eac3 2234
73869dc2
DE
2235 /* If this is a virtual section we need to read in the real one first. */
2236 if (info->is_virtual)
2237 {
2238 struct dwarf2_section_info *containing_section =
2239 get_containing_section (info);
2240
2241 gdb_assert (sectp != NULL);
2242 if ((sectp->flags & SEC_RELOC) != 0)
2243 {
2244 error (_("Dwarf Error: DWP format V2 with relocations is not"
2245 " supported in section %s [in module %s]"),
2246 get_section_name (info), get_section_file_name (info));
2247 }
2248 dwarf2_read_section (objfile, containing_section);
2249 /* Other code should have already caught virtual sections that don't
2250 fit. */
2251 gdb_assert (info->virtual_offset + info->size
2252 <= containing_section->size);
2253 /* If the real section is empty or there was a problem reading the
2254 section we shouldn't get here. */
2255 gdb_assert (containing_section->buffer != NULL);
2256 info->buffer = containing_section->buffer + info->virtual_offset;
2257 return;
2258 }
2259
4bf44c1c
TT
2260 /* If the section has relocations, we must read it ourselves.
2261 Otherwise we attach it to the BFD. */
2262 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2263 {
d521ce57 2264 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2265 return;
dce234bc 2266 }
dce234bc 2267
4bf44c1c
TT
2268 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2269 info->buffer = buf;
dce234bc
PP
2270
2271 /* When debugging .o files, we may need to apply relocations; see
2272 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2273 We never compress sections in .o files, so we only need to
2274 try this when the section is not compressed. */
ac8035ab 2275 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2276 if (retbuf != NULL)
2277 {
2278 info->buffer = retbuf;
2279 return;
2280 }
2281
a32a8923
DE
2282 abfd = get_section_bfd_owner (info);
2283 gdb_assert (abfd != NULL);
2284
dce234bc
PP
2285 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2286 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2287 {
2288 error (_("Dwarf Error: Can't read DWARF data"
2289 " in section %s [in module %s]"),
2290 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2291 }
dce234bc
PP
2292}
2293
9e0ac564
TT
2294/* A helper function that returns the size of a section in a safe way.
2295 If you are positive that the section has been read before using the
2296 size, then it is safe to refer to the dwarf2_section_info object's
2297 "size" field directly. In other cases, you must call this
2298 function, because for compressed sections the size field is not set
2299 correctly until the section has been read. */
2300
2301static bfd_size_type
2302dwarf2_section_size (struct objfile *objfile,
2303 struct dwarf2_section_info *info)
2304{
2305 if (!info->readin)
2306 dwarf2_read_section (objfile, info);
2307 return info->size;
2308}
2309
dce234bc 2310/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2311 SECTION_NAME. */
af34e669 2312
dce234bc 2313void
3017a003
TG
2314dwarf2_get_section_info (struct objfile *objfile,
2315 enum dwarf2_section_enum sect,
d521ce57 2316 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2317 bfd_size_type *sizep)
2318{
2319 struct dwarf2_per_objfile *data
2320 = objfile_data (objfile, dwarf2_objfile_data_key);
2321 struct dwarf2_section_info *info;
a3b2a86b
TT
2322
2323 /* We may see an objfile without any DWARF, in which case we just
2324 return nothing. */
2325 if (data == NULL)
2326 {
2327 *sectp = NULL;
2328 *bufp = NULL;
2329 *sizep = 0;
2330 return;
2331 }
3017a003
TG
2332 switch (sect)
2333 {
2334 case DWARF2_DEBUG_FRAME:
2335 info = &data->frame;
2336 break;
2337 case DWARF2_EH_FRAME:
2338 info = &data->eh_frame;
2339 break;
2340 default:
2341 gdb_assert_not_reached ("unexpected section");
2342 }
dce234bc 2343
9e0ac564 2344 dwarf2_read_section (objfile, info);
dce234bc 2345
a32a8923 2346 *sectp = get_section_bfd_section (info);
dce234bc
PP
2347 *bufp = info->buffer;
2348 *sizep = info->size;
2349}
2350
36586728
TT
2351/* A helper function to find the sections for a .dwz file. */
2352
2353static void
2354locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2355{
2356 struct dwz_file *dwz_file = arg;
2357
2358 /* Note that we only support the standard ELF names, because .dwz
2359 is ELF-only (at the time of writing). */
2360 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2361 {
73869dc2 2362 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2363 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2366 {
73869dc2 2367 dwz_file->info.s.asection = sectp;
36586728
TT
2368 dwz_file->info.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2371 {
73869dc2 2372 dwz_file->str.s.asection = sectp;
36586728
TT
2373 dwz_file->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2376 {
73869dc2 2377 dwz_file->line.s.asection = sectp;
36586728
TT
2378 dwz_file->line.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2381 {
73869dc2 2382 dwz_file->macro.s.asection = sectp;
36586728
TT
2383 dwz_file->macro.size = bfd_get_section_size (sectp);
2384 }
2ec9a5e0
TT
2385 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2386 {
73869dc2 2387 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2388 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2389 }
36586728
TT
2390}
2391
4db1a1dc
TT
2392/* Open the separate '.dwz' debug file, if needed. Return NULL if
2393 there is no .gnu_debugaltlink section in the file. Error if there
2394 is such a section but the file cannot be found. */
36586728
TT
2395
2396static struct dwz_file *
2397dwarf2_get_dwz_file (void)
2398{
4db1a1dc
TT
2399 bfd *dwz_bfd;
2400 char *data;
36586728
TT
2401 struct cleanup *cleanup;
2402 const char *filename;
2403 struct dwz_file *result;
acd13123 2404 bfd_size_type buildid_len_arg;
dc294be5
TT
2405 size_t buildid_len;
2406 bfd_byte *buildid;
36586728
TT
2407
2408 if (dwarf2_per_objfile->dwz_file != NULL)
2409 return dwarf2_per_objfile->dwz_file;
2410
4db1a1dc
TT
2411 bfd_set_error (bfd_error_no_error);
2412 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2413 &buildid_len_arg, &buildid);
4db1a1dc
TT
2414 if (data == NULL)
2415 {
2416 if (bfd_get_error () == bfd_error_no_error)
2417 return NULL;
2418 error (_("could not read '.gnu_debugaltlink' section: %s"),
2419 bfd_errmsg (bfd_get_error ()));
2420 }
36586728 2421 cleanup = make_cleanup (xfree, data);
dc294be5 2422 make_cleanup (xfree, buildid);
36586728 2423
acd13123
TT
2424 buildid_len = (size_t) buildid_len_arg;
2425
f9d83a0b 2426 filename = (const char *) data;
36586728
TT
2427 if (!IS_ABSOLUTE_PATH (filename))
2428 {
4262abfb 2429 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2430 char *rel;
2431
2432 make_cleanup (xfree, abs);
2433 abs = ldirname (abs);
2434 make_cleanup (xfree, abs);
2435
2436 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2437 make_cleanup (xfree, rel);
2438 filename = rel;
2439 }
2440
dc294be5
TT
2441 /* First try the file name given in the section. If that doesn't
2442 work, try to use the build-id instead. */
36586728 2443 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2444 if (dwz_bfd != NULL)
36586728 2445 {
dc294be5
TT
2446 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2447 {
2448 gdb_bfd_unref (dwz_bfd);
2449 dwz_bfd = NULL;
2450 }
36586728
TT
2451 }
2452
dc294be5
TT
2453 if (dwz_bfd == NULL)
2454 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2455
2456 if (dwz_bfd == NULL)
2457 error (_("could not find '.gnu_debugaltlink' file for %s"),
2458 objfile_name (dwarf2_per_objfile->objfile));
2459
36586728
TT
2460 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2461 struct dwz_file);
2462 result->dwz_bfd = dwz_bfd;
2463
2464 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2465
2466 do_cleanups (cleanup);
2467
13aaf454 2468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2469 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2470 return result;
2471}
9291a0cd 2472\f
7b9f3c50
DE
2473/* DWARF quick_symbols_functions support. */
2474
2475/* TUs can share .debug_line entries, and there can be a lot more TUs than
2476 unique line tables, so we maintain a separate table of all .debug_line
2477 derived entries to support the sharing.
2478 All the quick functions need is the list of file names. We discard the
2479 line_header when we're done and don't need to record it here. */
2480struct quick_file_names
2481{
094b34ac
DE
2482 /* The data used to construct the hash key. */
2483 struct stmt_list_hash hash;
7b9f3c50
DE
2484
2485 /* The number of entries in file_names, real_names. */
2486 unsigned int num_file_names;
2487
2488 /* The file names from the line table, after being run through
2489 file_full_name. */
2490 const char **file_names;
2491
2492 /* The file names from the line table after being run through
2493 gdb_realpath. These are computed lazily. */
2494 const char **real_names;
2495};
2496
2497/* When using the index (and thus not using psymtabs), each CU has an
2498 object of this type. This is used to hold information needed by
2499 the various "quick" methods. */
2500struct dwarf2_per_cu_quick_data
2501{
2502 /* The file table. This can be NULL if there was no file table
2503 or it's currently not read in.
2504 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2505 struct quick_file_names *file_names;
2506
2507 /* The corresponding symbol table. This is NULL if symbols for this
2508 CU have not yet been read. */
2509 struct symtab *symtab;
2510
2511 /* A temporary mark bit used when iterating over all CUs in
2512 expand_symtabs_matching. */
2513 unsigned int mark : 1;
2514
2515 /* True if we've tried to read the file table and found there isn't one.
2516 There will be no point in trying to read it again next time. */
2517 unsigned int no_file_data : 1;
2518};
2519
094b34ac
DE
2520/* Utility hash function for a stmt_list_hash. */
2521
2522static hashval_t
2523hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2524{
2525 hashval_t v = 0;
2526
2527 if (stmt_list_hash->dwo_unit != NULL)
2528 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2529 v += stmt_list_hash->line_offset.sect_off;
2530 return v;
2531}
2532
2533/* Utility equality function for a stmt_list_hash. */
2534
2535static int
2536eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2537 const struct stmt_list_hash *rhs)
2538{
2539 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2540 return 0;
2541 if (lhs->dwo_unit != NULL
2542 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2543 return 0;
2544
2545 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2546}
2547
7b9f3c50
DE
2548/* Hash function for a quick_file_names. */
2549
2550static hashval_t
2551hash_file_name_entry (const void *e)
2552{
2553 const struct quick_file_names *file_data = e;
2554
094b34ac 2555 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2556}
2557
2558/* Equality function for a quick_file_names. */
2559
2560static int
2561eq_file_name_entry (const void *a, const void *b)
2562{
2563 const struct quick_file_names *ea = a;
2564 const struct quick_file_names *eb = b;
2565
094b34ac 2566 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2567}
2568
2569/* Delete function for a quick_file_names. */
2570
2571static void
2572delete_file_name_entry (void *e)
2573{
2574 struct quick_file_names *file_data = e;
2575 int i;
2576
2577 for (i = 0; i < file_data->num_file_names; ++i)
2578 {
2579 xfree ((void*) file_data->file_names[i]);
2580 if (file_data->real_names)
2581 xfree ((void*) file_data->real_names[i]);
2582 }
2583
2584 /* The space for the struct itself lives on objfile_obstack,
2585 so we don't free it here. */
2586}
2587
2588/* Create a quick_file_names hash table. */
2589
2590static htab_t
2591create_quick_file_names_table (unsigned int nr_initial_entries)
2592{
2593 return htab_create_alloc (nr_initial_entries,
2594 hash_file_name_entry, eq_file_name_entry,
2595 delete_file_name_entry, xcalloc, xfree);
2596}
9291a0cd 2597
918dd910
JK
2598/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2599 have to be created afterwards. You should call age_cached_comp_units after
2600 processing PER_CU->CU. dw2_setup must have been already called. */
2601
2602static void
2603load_cu (struct dwarf2_per_cu_data *per_cu)
2604{
3019eac3 2605 if (per_cu->is_debug_types)
e5fe5e75 2606 load_full_type_unit (per_cu);
918dd910 2607 else
95554aad 2608 load_full_comp_unit (per_cu, language_minimal);
918dd910 2609
918dd910 2610 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2611
2612 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2613}
2614
a0f42c21 2615/* Read in the symbols for PER_CU. */
2fdf6df6 2616
9291a0cd 2617static void
a0f42c21 2618dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2619{
2620 struct cleanup *back_to;
2621
f4dc4d17
DE
2622 /* Skip type_unit_groups, reading the type units they contain
2623 is handled elsewhere. */
2624 if (IS_TYPE_UNIT_GROUP (per_cu))
2625 return;
2626
9291a0cd
TT
2627 back_to = make_cleanup (dwarf2_release_queue, NULL);
2628
95554aad
TT
2629 if (dwarf2_per_objfile->using_index
2630 ? per_cu->v.quick->symtab == NULL
2631 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2632 {
2633 queue_comp_unit (per_cu, language_minimal);
2634 load_cu (per_cu);
89e63ee4
DE
2635
2636 /* If we just loaded a CU from a DWO, and we're working with an index
2637 that may badly handle TUs, load all the TUs in that DWO as well.
2638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2639 if (!per_cu->is_debug_types
2640 && per_cu->cu->dwo_unit != NULL
2641 && dwarf2_per_objfile->index_table != NULL
2642 && dwarf2_per_objfile->index_table->version <= 7
2643 /* DWP files aren't supported yet. */
2644 && get_dwp_file () == NULL)
2645 queue_and_load_all_dwo_tus (per_cu);
95554aad 2646 }
9291a0cd 2647
a0f42c21 2648 process_queue ();
9291a0cd
TT
2649
2650 /* Age the cache, releasing compilation units that have not
2651 been used recently. */
2652 age_cached_comp_units ();
2653
2654 do_cleanups (back_to);
2655}
2656
2657/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2658 the objfile from which this CU came. Returns the resulting symbol
2659 table. */
2fdf6df6 2660
9291a0cd 2661static struct symtab *
a0f42c21 2662dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2663{
95554aad 2664 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2665 if (!per_cu->v.quick->symtab)
2666 {
2667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2668 increment_reading_symtab ();
a0f42c21 2669 dw2_do_instantiate_symtab (per_cu);
95554aad 2670 process_cu_includes ();
9291a0cd
TT
2671 do_cleanups (back_to);
2672 }
2673 return per_cu->v.quick->symtab;
2674}
2675
f4dc4d17
DE
2676/* Return the CU given its index.
2677
2678 This is intended for loops like:
2679
2680 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2681 + dwarf2_per_objfile->n_type_units); ++i)
2682 {
2683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2684
2685 ...;
2686 }
2687*/
2fdf6df6 2688
1fd400ff
TT
2689static struct dwarf2_per_cu_data *
2690dw2_get_cu (int index)
2691{
2692 if (index >= dwarf2_per_objfile->n_comp_units)
2693 {
f4dc4d17 2694 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2695 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2696 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2697 }
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700}
2701
2702/* Return the primary CU given its index.
2703 The difference between this function and dw2_get_cu is in the handling
2704 of type units (TUs). Here we return the type_unit_group object.
2705
2706 This is intended for loops like:
2707
2708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2709 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2710 {
2711 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2712
2713 ...;
2714 }
2715*/
2716
2717static struct dwarf2_per_cu_data *
2718dw2_get_primary_cu (int index)
2719{
2720 if (index >= dwarf2_per_objfile->n_comp_units)
2721 {
1fd400ff 2722 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2723 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2724 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2725 }
f4dc4d17 2726
1fd400ff
TT
2727 return dwarf2_per_objfile->all_comp_units[index];
2728}
2729
2ec9a5e0
TT
2730/* A helper for create_cus_from_index that handles a given list of
2731 CUs. */
2fdf6df6 2732
74a0d9f6 2733static void
2ec9a5e0
TT
2734create_cus_from_index_list (struct objfile *objfile,
2735 const gdb_byte *cu_list, offset_type n_elements,
2736 struct dwarf2_section_info *section,
2737 int is_dwz,
2738 int base_offset)
9291a0cd
TT
2739{
2740 offset_type i;
9291a0cd 2741
2ec9a5e0 2742 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2743 {
2744 struct dwarf2_per_cu_data *the_cu;
2745 ULONGEST offset, length;
2746
74a0d9f6
JK
2747 gdb_static_assert (sizeof (ULONGEST) >= 8);
2748 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2749 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2750 cu_list += 2 * 8;
2751
2752 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2753 struct dwarf2_per_cu_data);
b64f50a1 2754 the_cu->offset.sect_off = offset;
9291a0cd
TT
2755 the_cu->length = length;
2756 the_cu->objfile = objfile;
8a0459fd 2757 the_cu->section = section;
9291a0cd
TT
2758 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2759 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2760 the_cu->is_dwz = is_dwz;
2761 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2762 }
9291a0cd
TT
2763}
2764
2ec9a5e0 2765/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2766 the CU objects for this objfile. */
2ec9a5e0 2767
74a0d9f6 2768static void
2ec9a5e0
TT
2769create_cus_from_index (struct objfile *objfile,
2770 const gdb_byte *cu_list, offset_type cu_list_elements,
2771 const gdb_byte *dwz_list, offset_type dwz_elements)
2772{
2773 struct dwz_file *dwz;
2774
2775 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2776 dwarf2_per_objfile->all_comp_units
2777 = obstack_alloc (&objfile->objfile_obstack,
2778 dwarf2_per_objfile->n_comp_units
2779 * sizeof (struct dwarf2_per_cu_data *));
2780
74a0d9f6
JK
2781 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2782 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2783
2784 if (dwz_elements == 0)
74a0d9f6 2785 return;
2ec9a5e0
TT
2786
2787 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2788 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2789 cu_list_elements / 2);
2ec9a5e0
TT
2790}
2791
1fd400ff 2792/* Create the signatured type hash table from the index. */
673bfd45 2793
74a0d9f6 2794static void
673bfd45 2795create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2796 struct dwarf2_section_info *section,
673bfd45
DE
2797 const gdb_byte *bytes,
2798 offset_type elements)
1fd400ff
TT
2799{
2800 offset_type i;
673bfd45 2801 htab_t sig_types_hash;
1fd400ff 2802
d467dd73
DE
2803 dwarf2_per_objfile->n_type_units = elements / 3;
2804 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2805 = xmalloc (dwarf2_per_objfile->n_type_units
2806 * sizeof (struct signatured_type *));
1fd400ff 2807
673bfd45 2808 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2809
2810 for (i = 0; i < elements; i += 3)
2811 {
52dc124a
DE
2812 struct signatured_type *sig_type;
2813 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2814 void **slot;
2815
74a0d9f6
JK
2816 gdb_static_assert (sizeof (ULONGEST) >= 8);
2817 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2818 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2819 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2820 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2821 bytes += 3 * 8;
2822
52dc124a 2823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2824 struct signatured_type);
52dc124a 2825 sig_type->signature = signature;
3019eac3
DE
2826 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2827 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2828 sig_type->per_cu.section = section;
52dc124a
DE
2829 sig_type->per_cu.offset.sect_off = offset;
2830 sig_type->per_cu.objfile = objfile;
2831 sig_type->per_cu.v.quick
1fd400ff
TT
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct dwarf2_per_cu_quick_data);
2834
52dc124a
DE
2835 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2836 *slot = sig_type;
1fd400ff 2837
b4dd5633 2838 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2839 }
2840
673bfd45 2841 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2842}
2843
9291a0cd
TT
2844/* Read the address map data from the mapped index, and use it to
2845 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2846
9291a0cd
TT
2847static void
2848create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2849{
2850 const gdb_byte *iter, *end;
2851 struct obstack temp_obstack;
2852 struct addrmap *mutable_map;
2853 struct cleanup *cleanup;
2854 CORE_ADDR baseaddr;
2855
2856 obstack_init (&temp_obstack);
2857 cleanup = make_cleanup_obstack_free (&temp_obstack);
2858 mutable_map = addrmap_create_mutable (&temp_obstack);
2859
2860 iter = index->address_table;
2861 end = iter + index->address_table_size;
2862
2863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2864
2865 while (iter < end)
2866 {
2867 ULONGEST hi, lo, cu_index;
2868 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2869 iter += 8;
2870 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2871 iter += 8;
2872 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2873 iter += 4;
f652bce2 2874
24a55014 2875 if (lo > hi)
f652bce2 2876 {
24a55014
DE
2877 complaint (&symfile_complaints,
2878 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2879 hex_string (lo), hex_string (hi));
24a55014 2880 continue;
f652bce2 2881 }
24a55014
DE
2882
2883 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2884 {
2885 complaint (&symfile_complaints,
2886 _(".gdb_index address table has invalid CU number %u"),
2887 (unsigned) cu_index);
24a55014 2888 continue;
f652bce2 2889 }
24a55014
DE
2890
2891 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2892 dw2_get_cu (cu_index));
9291a0cd
TT
2893 }
2894
2895 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2896 &objfile->objfile_obstack);
2897 do_cleanups (cleanup);
2898}
2899
59d7bcaf
JK
2900/* The hash function for strings in the mapped index. This is the same as
2901 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2902 implementation. This is necessary because the hash function is tied to the
2903 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2904 SYMBOL_HASH_NEXT.
2905
2906 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2907
9291a0cd 2908static hashval_t
559a7a62 2909mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2910{
2911 const unsigned char *str = (const unsigned char *) p;
2912 hashval_t r = 0;
2913 unsigned char c;
2914
2915 while ((c = *str++) != 0)
559a7a62
JK
2916 {
2917 if (index_version >= 5)
2918 c = tolower (c);
2919 r = r * 67 + c - 113;
2920 }
9291a0cd
TT
2921
2922 return r;
2923}
2924
2925/* Find a slot in the mapped index INDEX for the object named NAME.
2926 If NAME is found, set *VEC_OUT to point to the CU vector in the
2927 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2928
9291a0cd
TT
2929static int
2930find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2931 offset_type **vec_out)
2932{
0cf03b49
JK
2933 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2934 offset_type hash;
9291a0cd 2935 offset_type slot, step;
559a7a62 2936 int (*cmp) (const char *, const char *);
9291a0cd 2937
0cf03b49
JK
2938 if (current_language->la_language == language_cplus
2939 || current_language->la_language == language_java
2940 || current_language->la_language == language_fortran)
2941 {
2942 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2943 not contain any. */
2944 const char *paren = strchr (name, '(');
2945
2946 if (paren)
2947 {
2948 char *dup;
2949
2950 dup = xmalloc (paren - name + 1);
2951 memcpy (dup, name, paren - name);
2952 dup[paren - name] = 0;
2953
2954 make_cleanup (xfree, dup);
2955 name = dup;
2956 }
2957 }
2958
559a7a62 2959 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2960 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2961 simulate our NAME being searched is also lowercased. */
2962 hash = mapped_index_string_hash ((index->version == 4
2963 && case_sensitivity == case_sensitive_off
2964 ? 5 : index->version),
2965 name);
2966
3876f04e
DE
2967 slot = hash & (index->symbol_table_slots - 1);
2968 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2969 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2970
2971 for (;;)
2972 {
2973 /* Convert a slot number to an offset into the table. */
2974 offset_type i = 2 * slot;
2975 const char *str;
3876f04e 2976 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2977 {
2978 do_cleanups (back_to);
2979 return 0;
2980 }
9291a0cd 2981
3876f04e 2982 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2983 if (!cmp (name, str))
9291a0cd
TT
2984 {
2985 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2986 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2987 do_cleanups (back_to);
9291a0cd
TT
2988 return 1;
2989 }
2990
3876f04e 2991 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2992 }
2993}
2994
2ec9a5e0
TT
2995/* A helper function that reads the .gdb_index from SECTION and fills
2996 in MAP. FILENAME is the name of the file containing the section;
2997 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2998 ok to use deprecated sections.
2999
3000 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3001 out parameters that are filled in with information about the CU and
3002 TU lists in the section.
3003
3004 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3005
9291a0cd 3006static int
2ec9a5e0
TT
3007read_index_from_section (struct objfile *objfile,
3008 const char *filename,
3009 int deprecated_ok,
3010 struct dwarf2_section_info *section,
3011 struct mapped_index *map,
3012 const gdb_byte **cu_list,
3013 offset_type *cu_list_elements,
3014 const gdb_byte **types_list,
3015 offset_type *types_list_elements)
9291a0cd 3016{
948f8e3d 3017 const gdb_byte *addr;
2ec9a5e0 3018 offset_type version;
b3b272e1 3019 offset_type *metadata;
1fd400ff 3020 int i;
9291a0cd 3021
2ec9a5e0 3022 if (dwarf2_section_empty_p (section))
9291a0cd 3023 return 0;
82430852
JK
3024
3025 /* Older elfutils strip versions could keep the section in the main
3026 executable while splitting it for the separate debug info file. */
a32a8923 3027 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3028 return 0;
3029
2ec9a5e0 3030 dwarf2_read_section (objfile, section);
9291a0cd 3031
2ec9a5e0 3032 addr = section->buffer;
9291a0cd 3033 /* Version check. */
1fd400ff 3034 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3035 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3036 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3037 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3038 indices. */
831adc1f 3039 if (version < 4)
481860b3
GB
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3045 filename);
481860b3
GB
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Index version 4 uses a different hash function than index version
3051 5 and later.
3052
3053 Versions earlier than 6 did not emit psymbols for inlined
3054 functions. Using these files will cause GDB not to be able to
3055 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3056 indices unless the user has done
3057 "set use-deprecated-index-sections on". */
2ec9a5e0 3058 if (version < 6 && !deprecated_ok)
481860b3
GB
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
e615022a
DE
3063 warning (_("\
3064Skipping deprecated .gdb_index section in %s.\n\
3065Do \"set use-deprecated-index-sections on\" before the file is read\n\
3066to use the section anyway."),
2ec9a5e0 3067 filename);
481860b3
GB
3068 warning_printed = 1;
3069 }
3070 return 0;
3071 }
796a7ff8 3072 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3073 of the TU (for symbols coming from TUs),
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3075 Plus gold-generated indices can have duplicate entries for global symbols,
3076 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3077 These are just performance bugs, and we can't distinguish gdb-generated
3078 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3079
481860b3 3080 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3081 longer backward compatible. */
796a7ff8 3082 if (version > 8)
594e8718 3083 return 0;
9291a0cd 3084
559a7a62 3085 map->version = version;
2ec9a5e0 3086 map->total_size = section->size;
9291a0cd
TT
3087
3088 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3089
3090 i = 0;
2ec9a5e0
TT
3091 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3092 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3093 / 8);
1fd400ff
TT
3094 ++i;
3095
2ec9a5e0
TT
3096 *types_list = addr + MAYBE_SWAP (metadata[i]);
3097 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3098 - MAYBE_SWAP (metadata[i]))
3099 / 8);
987d643c 3100 ++i;
1fd400ff
TT
3101
3102 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3103 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3104 - MAYBE_SWAP (metadata[i]));
3105 ++i;
3106
3876f04e
DE
3107 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3108 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3109 - MAYBE_SWAP (metadata[i]))
3110 / (2 * sizeof (offset_type)));
1fd400ff 3111 ++i;
9291a0cd 3112
f9d83a0b 3113 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3114
2ec9a5e0
TT
3115 return 1;
3116}
3117
3118
3119/* Read the index file. If everything went ok, initialize the "quick"
3120 elements of all the CUs and return 1. Otherwise, return 0. */
3121
3122static int
3123dwarf2_read_index (struct objfile *objfile)
3124{
3125 struct mapped_index local_map, *map;
3126 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3127 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3128 struct dwz_file *dwz;
2ec9a5e0 3129
4262abfb 3130 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3131 use_deprecated_index_sections,
3132 &dwarf2_per_objfile->gdb_index, &local_map,
3133 &cu_list, &cu_list_elements,
3134 &types_list, &types_list_elements))
3135 return 0;
3136
0fefef59 3137 /* Don't use the index if it's empty. */
2ec9a5e0 3138 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3139 return 0;
3140
2ec9a5e0
TT
3141 /* If there is a .dwz file, read it so we can get its CU list as
3142 well. */
4db1a1dc
TT
3143 dwz = dwarf2_get_dwz_file ();
3144 if (dwz != NULL)
2ec9a5e0 3145 {
2ec9a5e0
TT
3146 struct mapped_index dwz_map;
3147 const gdb_byte *dwz_types_ignore;
3148 offset_type dwz_types_elements_ignore;
3149
3150 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3151 1,
3152 &dwz->gdb_index, &dwz_map,
3153 &dwz_list, &dwz_list_elements,
3154 &dwz_types_ignore,
3155 &dwz_types_elements_ignore))
3156 {
3157 warning (_("could not read '.gdb_index' section from %s; skipping"),
3158 bfd_get_filename (dwz->dwz_bfd));
3159 return 0;
3160 }
3161 }
3162
74a0d9f6
JK
3163 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3164 dwz_list_elements);
1fd400ff 3165
8b70b953
TT
3166 if (types_list_elements)
3167 {
3168 struct dwarf2_section_info *section;
3169
3170 /* We can only handle a single .debug_types when we have an
3171 index. */
3172 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3173 return 0;
3174
3175 section = VEC_index (dwarf2_section_info_def,
3176 dwarf2_per_objfile->types, 0);
3177
74a0d9f6
JK
3178 create_signatured_type_table_from_index (objfile, section, types_list,
3179 types_list_elements);
8b70b953 3180 }
9291a0cd 3181
2ec9a5e0
TT
3182 create_addrmap_from_index (objfile, &local_map);
3183
3184 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3185 *map = local_map;
9291a0cd
TT
3186
3187 dwarf2_per_objfile->index_table = map;
3188 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3189 dwarf2_per_objfile->quick_file_names_table =
3190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3191
3192 return 1;
3193}
3194
3195/* A helper for the "quick" functions which sets the global
3196 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3197
9291a0cd
TT
3198static void
3199dw2_setup (struct objfile *objfile)
3200{
3201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3202 gdb_assert (dwarf2_per_objfile);
3203}
3204
dee91e82 3205/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3206
dee91e82
DE
3207static void
3208dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3209 const gdb_byte *info_ptr,
dee91e82
DE
3210 struct die_info *comp_unit_die,
3211 int has_children,
3212 void *data)
9291a0cd 3213{
dee91e82
DE
3214 struct dwarf2_cu *cu = reader->cu;
3215 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3216 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3217 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3218 struct line_header *lh;
9291a0cd 3219 struct attribute *attr;
dee91e82 3220 int i;
15d034d0 3221 const char *name, *comp_dir;
7b9f3c50
DE
3222 void **slot;
3223 struct quick_file_names *qfn;
3224 unsigned int line_offset;
9291a0cd 3225
0186c6a7
DE
3226 gdb_assert (! this_cu->is_debug_types);
3227
07261596
TT
3228 /* Our callers never want to match partial units -- instead they
3229 will match the enclosing full CU. */
3230 if (comp_unit_die->tag == DW_TAG_partial_unit)
3231 {
3232 this_cu->v.quick->no_file_data = 1;
3233 return;
3234 }
3235
0186c6a7 3236 lh_cu = this_cu;
7b9f3c50
DE
3237 lh = NULL;
3238 slot = NULL;
3239 line_offset = 0;
dee91e82
DE
3240
3241 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3242 if (attr)
3243 {
7b9f3c50
DE
3244 struct quick_file_names find_entry;
3245
3246 line_offset = DW_UNSND (attr);
3247
3248 /* We may have already read in this line header (TU line header sharing).
3249 If we have we're done. */
094b34ac
DE
3250 find_entry.hash.dwo_unit = cu->dwo_unit;
3251 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3252 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3253 &find_entry, INSERT);
3254 if (*slot != NULL)
3255 {
094b34ac 3256 lh_cu->v.quick->file_names = *slot;
dee91e82 3257 return;
7b9f3c50
DE
3258 }
3259
3019eac3 3260 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3261 }
3262 if (lh == NULL)
3263 {
094b34ac 3264 lh_cu->v.quick->no_file_data = 1;
dee91e82 3265 return;
9291a0cd
TT
3266 }
3267
7b9f3c50 3268 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3269 qfn->hash.dwo_unit = cu->dwo_unit;
3270 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3271 gdb_assert (slot != NULL);
3272 *slot = qfn;
9291a0cd 3273
dee91e82 3274 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3275
7b9f3c50
DE
3276 qfn->num_file_names = lh->num_file_names;
3277 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3278 lh->num_file_names * sizeof (char *));
9291a0cd 3279 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3280 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3281 qfn->real_names = NULL;
9291a0cd 3282
7b9f3c50 3283 free_line_header (lh);
7b9f3c50 3284
094b34ac 3285 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3286}
3287
3288/* A helper for the "quick" functions which attempts to read the line
3289 table for THIS_CU. */
3290
3291static struct quick_file_names *
e4a48d9d 3292dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3293{
0186c6a7
DE
3294 /* This should never be called for TUs. */
3295 gdb_assert (! this_cu->is_debug_types);
3296 /* Nor type unit groups. */
3297 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3298
dee91e82
DE
3299 if (this_cu->v.quick->file_names != NULL)
3300 return this_cu->v.quick->file_names;
3301 /* If we know there is no line data, no point in looking again. */
3302 if (this_cu->v.quick->no_file_data)
3303 return NULL;
3304
0186c6a7 3305 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3306
3307 if (this_cu->v.quick->no_file_data)
3308 return NULL;
3309 return this_cu->v.quick->file_names;
9291a0cd
TT
3310}
3311
3312/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3313 real path for a given file name from the line table. */
2fdf6df6 3314
9291a0cd 3315static const char *
7b9f3c50
DE
3316dw2_get_real_path (struct objfile *objfile,
3317 struct quick_file_names *qfn, int index)
9291a0cd 3318{
7b9f3c50
DE
3319 if (qfn->real_names == NULL)
3320 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
fd0a4d76 3321 qfn->num_file_names, char *);
9291a0cd 3322
7b9f3c50
DE
3323 if (qfn->real_names[index] == NULL)
3324 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3325
7b9f3c50 3326 return qfn->real_names[index];
9291a0cd
TT
3327}
3328
3329static struct symtab *
3330dw2_find_last_source_symtab (struct objfile *objfile)
3331{
3332 int index;
ae2de4f8 3333
9291a0cd
TT
3334 dw2_setup (objfile);
3335 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3336 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3337}
3338
7b9f3c50
DE
3339/* Traversal function for dw2_forget_cached_source_info. */
3340
3341static int
3342dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3343{
7b9f3c50 3344 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3345
7b9f3c50 3346 if (file_data->real_names)
9291a0cd 3347 {
7b9f3c50 3348 int i;
9291a0cd 3349
7b9f3c50 3350 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3351 {
7b9f3c50
DE
3352 xfree ((void*) file_data->real_names[i]);
3353 file_data->real_names[i] = NULL;
9291a0cd
TT
3354 }
3355 }
7b9f3c50
DE
3356
3357 return 1;
3358}
3359
3360static void
3361dw2_forget_cached_source_info (struct objfile *objfile)
3362{
3363 dw2_setup (objfile);
3364
3365 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3366 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3367}
3368
f8eba3c6
TT
3369/* Helper function for dw2_map_symtabs_matching_filename that expands
3370 the symtabs and calls the iterator. */
3371
3372static int
3373dw2_map_expand_apply (struct objfile *objfile,
3374 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3375 const char *name, const char *real_path,
f8eba3c6
TT
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378{
3379 struct symtab *last_made = objfile->symtabs;
3380
3381 /* Don't visit already-expanded CUs. */
3382 if (per_cu->v.quick->symtab)
3383 return 0;
3384
3385 /* This may expand more than one symtab, and we want to iterate over
3386 all of them. */
a0f42c21 3387 dw2_instantiate_symtab (per_cu);
f8eba3c6 3388
f5b95b50 3389 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3390 objfile->symtabs, last_made);
3391}
3392
3393/* Implementation of the map_symtabs_matching_filename method. */
3394
9291a0cd 3395static int
f8eba3c6 3396dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3397 const char *real_path,
f8eba3c6
TT
3398 int (*callback) (struct symtab *, void *),
3399 void *data)
9291a0cd
TT
3400{
3401 int i;
c011a4f4 3402 const char *name_basename = lbasename (name);
9291a0cd
TT
3403
3404 dw2_setup (objfile);
ae2de4f8 3405
848e3e78
DE
3406 /* The rule is CUs specify all the files, including those used by
3407 any TU, so there's no need to scan TUs here. */
f4dc4d17 3408
848e3e78 3409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3410 {
3411 int j;
f4dc4d17 3412 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3413 struct quick_file_names *file_data;
9291a0cd 3414
3d7bb9d9 3415 /* We only need to look at symtabs not already expanded. */
e254ef6a 3416 if (per_cu->v.quick->symtab)
9291a0cd
TT
3417 continue;
3418
e4a48d9d 3419 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3420 if (file_data == NULL)
9291a0cd
TT
3421 continue;
3422
7b9f3c50 3423 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3424 {
7b9f3c50 3425 const char *this_name = file_data->file_names[j];
da235a7c 3426 const char *this_real_name;
9291a0cd 3427
af529f8f 3428 if (compare_filenames_for_search (this_name, name))
9291a0cd 3429 {
f5b95b50 3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3431 callback, data))
3432 return 1;
288e77a7 3433 continue;
4aac40c8 3434 }
9291a0cd 3435
c011a4f4
DE
3436 /* Before we invoke realpath, which can get expensive when many
3437 files are involved, do a quick comparison of the basenames. */
3438 if (! basenames_may_differ
3439 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3440 continue;
3441
da235a7c
JK
3442 this_real_name = dw2_get_real_path (objfile, file_data, j);
3443 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3444 {
da235a7c
JK
3445 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 callback, data))
3447 return 1;
288e77a7 3448 continue;
da235a7c 3449 }
9291a0cd 3450
da235a7c
JK
3451 if (real_path != NULL)
3452 {
af529f8f
JK
3453 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3454 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3455 if (this_real_name != NULL
af529f8f 3456 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3457 {
f5b95b50 3458 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3459 callback, data))
3460 return 1;
288e77a7 3461 continue;
9291a0cd
TT
3462 }
3463 }
3464 }
3465 }
3466
9291a0cd
TT
3467 return 0;
3468}
3469
da51c347
DE
3470/* Struct used to manage iterating over all CUs looking for a symbol. */
3471
3472struct dw2_symtab_iterator
9291a0cd 3473{
da51c347
DE
3474 /* The internalized form of .gdb_index. */
3475 struct mapped_index *index;
3476 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3477 int want_specific_block;
3478 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3479 Unused if !WANT_SPECIFIC_BLOCK. */
3480 int block_index;
3481 /* The kind of symbol we're looking for. */
3482 domain_enum domain;
3483 /* The list of CUs from the index entry of the symbol,
3484 or NULL if not found. */
3485 offset_type *vec;
3486 /* The next element in VEC to look at. */
3487 int next;
3488 /* The number of elements in VEC, or zero if there is no match. */
3489 int length;
8943b874
DE
3490 /* Have we seen a global version of the symbol?
3491 If so we can ignore all further global instances.
3492 This is to work around gold/15646, inefficient gold-generated
3493 indices. */
3494 int global_seen;
da51c347 3495};
9291a0cd 3496
da51c347
DE
3497/* Initialize the index symtab iterator ITER.
3498 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3499 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3500
9291a0cd 3501static void
da51c347
DE
3502dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3503 struct mapped_index *index,
3504 int want_specific_block,
3505 int block_index,
3506 domain_enum domain,
3507 const char *name)
3508{
3509 iter->index = index;
3510 iter->want_specific_block = want_specific_block;
3511 iter->block_index = block_index;
3512 iter->domain = domain;
3513 iter->next = 0;
8943b874 3514 iter->global_seen = 0;
da51c347
DE
3515
3516 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3517 iter->length = MAYBE_SWAP (*iter->vec);
3518 else
3519 {
3520 iter->vec = NULL;
3521 iter->length = 0;
3522 }
3523}
3524
3525/* Return the next matching CU or NULL if there are no more. */
3526
3527static struct dwarf2_per_cu_data *
3528dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3529{
3530 for ( ; iter->next < iter->length; ++iter->next)
3531 {
3532 offset_type cu_index_and_attrs =
3533 MAYBE_SWAP (iter->vec[iter->next + 1]);
3534 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3535 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3536 int want_static = iter->block_index != GLOBAL_BLOCK;
3537 /* This value is only valid for index versions >= 7. */
3538 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3539 gdb_index_symbol_kind symbol_kind =
3540 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3541 /* Only check the symbol attributes if they're present.
3542 Indices prior to version 7 don't record them,
3543 and indices >= 7 may elide them for certain symbols
3544 (gold does this). */
3545 int attrs_valid =
3546 (iter->index->version >= 7
3547 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3548
3190f0c6
DE
3549 /* Don't crash on bad data. */
3550 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3551 + dwarf2_per_objfile->n_type_units))
3552 {
3553 complaint (&symfile_complaints,
3554 _(".gdb_index entry has bad CU index"
4262abfb
JK
3555 " [in module %s]"),
3556 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3557 continue;
3558 }
3559
3560 per_cu = dw2_get_cu (cu_index);
3561
da51c347
DE
3562 /* Skip if already read in. */
3563 if (per_cu->v.quick->symtab)
3564 continue;
3565
8943b874
DE
3566 /* Check static vs global. */
3567 if (attrs_valid)
3568 {
3569 if (iter->want_specific_block
3570 && want_static != is_static)
3571 continue;
3572 /* Work around gold/15646. */
3573 if (!is_static && iter->global_seen)
3574 continue;
3575 if (!is_static)
3576 iter->global_seen = 1;
3577 }
da51c347
DE
3578
3579 /* Only check the symbol's kind if it has one. */
3580 if (attrs_valid)
3581 {
3582 switch (iter->domain)
3583 {
3584 case VAR_DOMAIN:
3585 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3587 /* Some types are also in VAR_DOMAIN. */
3588 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3589 continue;
3590 break;
3591 case STRUCT_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3593 continue;
3594 break;
3595 case LABEL_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3597 continue;
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 ++iter->next;
3605 return per_cu;
3606 }
3607
3608 return NULL;
3609}
3610
3611static struct symtab *
3612dw2_lookup_symbol (struct objfile *objfile, int block_index,
3613 const char *name, domain_enum domain)
9291a0cd 3614{
da51c347 3615 struct symtab *stab_best = NULL;
156942c7
DE
3616 struct mapped_index *index;
3617
9291a0cd
TT
3618 dw2_setup (objfile);
3619
156942c7
DE
3620 index = dwarf2_per_objfile->index_table;
3621
da51c347 3622 /* index is NULL if OBJF_READNOW. */
156942c7 3623 if (index)
9291a0cd 3624 {
da51c347
DE
3625 struct dw2_symtab_iterator iter;
3626 struct dwarf2_per_cu_data *per_cu;
3627
3628 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3629
da51c347 3630 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3631 {
da51c347
DE
3632 struct symbol *sym = NULL;
3633 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3634
3635 /* Some caution must be observed with overloaded functions
3636 and methods, since the index will not contain any overload
3637 information (but NAME might contain it). */
3638 if (stab->primary)
9291a0cd 3639 {
da51c347
DE
3640 struct blockvector *bv = BLOCKVECTOR (stab);
3641 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3642
da51c347
DE
3643 sym = lookup_block_symbol (block, name, domain);
3644 }
1fd400ff 3645
da51c347
DE
3646 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3647 {
3648 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3649 return stab;
3650
3651 stab_best = stab;
9291a0cd 3652 }
da51c347
DE
3653
3654 /* Keep looking through other CUs. */
9291a0cd
TT
3655 }
3656 }
9291a0cd 3657
da51c347 3658 return stab_best;
9291a0cd
TT
3659}
3660
3661static void
3662dw2_print_stats (struct objfile *objfile)
3663{
e4a48d9d 3664 int i, total, count;
9291a0cd
TT
3665
3666 dw2_setup (objfile);
e4a48d9d 3667 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3668 count = 0;
e4a48d9d 3669 for (i = 0; i < total; ++i)
9291a0cd 3670 {
e254ef6a 3671 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3672
e254ef6a 3673 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3674 ++count;
3675 }
e4a48d9d 3676 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3677 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3678}
3679
779bd270
DE
3680/* This dumps minimal information about the index.
3681 It is called via "mt print objfiles".
3682 One use is to verify .gdb_index has been loaded by the
3683 gdb.dwarf2/gdb-index.exp testcase. */
3684
9291a0cd
TT
3685static void
3686dw2_dump (struct objfile *objfile)
3687{
779bd270
DE
3688 dw2_setup (objfile);
3689 gdb_assert (dwarf2_per_objfile->using_index);
3690 printf_filtered (".gdb_index:");
3691 if (dwarf2_per_objfile->index_table != NULL)
3692 {
3693 printf_filtered (" version %d\n",
3694 dwarf2_per_objfile->index_table->version);
3695 }
3696 else
3697 printf_filtered (" faked for \"readnow\"\n");
3698 printf_filtered ("\n");
9291a0cd
TT
3699}
3700
3701static void
3189cb12
DE
3702dw2_relocate (struct objfile *objfile,
3703 const struct section_offsets *new_offsets,
3704 const struct section_offsets *delta)
9291a0cd
TT
3705{
3706 /* There's nothing to relocate here. */
3707}
3708
3709static void
3710dw2_expand_symtabs_for_function (struct objfile *objfile,
3711 const char *func_name)
3712{
da51c347
DE
3713 struct mapped_index *index;
3714
3715 dw2_setup (objfile);
3716
3717 index = dwarf2_per_objfile->index_table;
3718
3719 /* index is NULL if OBJF_READNOW. */
3720 if (index)
3721 {
3722 struct dw2_symtab_iterator iter;
3723 struct dwarf2_per_cu_data *per_cu;
3724
3725 /* Note: It doesn't matter what we pass for block_index here. */
3726 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3727 func_name);
3728
3729 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3730 dw2_instantiate_symtab (per_cu);
3731 }
9291a0cd
TT
3732}
3733
3734static void
3735dw2_expand_all_symtabs (struct objfile *objfile)
3736{
3737 int i;
3738
3739 dw2_setup (objfile);
1fd400ff
TT
3740
3741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3742 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3743 {
e254ef6a 3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3745
a0f42c21 3746 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3747 }
3748}
3749
3750static void
652a8996
JK
3751dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
9291a0cd
TT
3753{
3754 int i;
3755
3756 dw2_setup (objfile);
d4637a04
DE
3757
3758 /* We don't need to consider type units here.
3759 This is only called for examining code, e.g. expand_line_sal.
3760 There can be an order of magnitude (or more) more type units
3761 than comp units, and we avoid them if we can. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3764 {
3765 int j;
e254ef6a 3766 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3767 struct quick_file_names *file_data;
9291a0cd 3768
3d7bb9d9 3769 /* We only need to look at symtabs not already expanded. */
e254ef6a 3770 if (per_cu->v.quick->symtab)
9291a0cd
TT
3771 continue;
3772
e4a48d9d 3773 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3774 if (file_data == NULL)
9291a0cd
TT
3775 continue;
3776
7b9f3c50 3777 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3778 {
652a8996
JK
3779 const char *this_fullname = file_data->file_names[j];
3780
3781 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3782 {
a0f42c21 3783 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3784 break;
3785 }
3786 }
3787 }
3788}
3789
9291a0cd 3790static void
ade7ed9e
DE
3791dw2_map_matching_symbols (struct objfile *objfile,
3792 const char * name, domain_enum namespace,
3793 int global,
40658b94
PH
3794 int (*callback) (struct block *,
3795 struct symbol *, void *),
2edb89d3
JK
3796 void *data, symbol_compare_ftype *match,
3797 symbol_compare_ftype *ordered_compare)
9291a0cd 3798{
40658b94 3799 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3800 current language is Ada for a non-Ada objfile using GNU index. As Ada
3801 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3802}
3803
3804static void
f8eba3c6
TT
3805dw2_expand_symtabs_matching
3806 (struct objfile *objfile,
206f2a57
DE
3807 expand_symtabs_file_matcher_ftype *file_matcher,
3808 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3809 enum search_domain kind,
3810 void *data)
9291a0cd
TT
3811{
3812 int i;
3813 offset_type iter;
4b5246aa 3814 struct mapped_index *index;
9291a0cd
TT
3815
3816 dw2_setup (objfile);
ae2de4f8
DE
3817
3818 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3819 if (!dwarf2_per_objfile->index_table)
3820 return;
4b5246aa 3821 index = dwarf2_per_objfile->index_table;
9291a0cd 3822
7b08b9eb 3823 if (file_matcher != NULL)
24c79950
TT
3824 {
3825 struct cleanup *cleanup;
3826 htab_t visited_found, visited_not_found;
3827
3828 visited_found = htab_create_alloc (10,
3829 htab_hash_pointer, htab_eq_pointer,
3830 NULL, xcalloc, xfree);
3831 cleanup = make_cleanup_htab_delete (visited_found);
3832 visited_not_found = htab_create_alloc (10,
3833 htab_hash_pointer, htab_eq_pointer,
3834 NULL, xcalloc, xfree);
3835 make_cleanup_htab_delete (visited_not_found);
3836
848e3e78
DE
3837 /* The rule is CUs specify all the files, including those used by
3838 any TU, so there's no need to scan TUs here. */
3839
3840 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3841 {
3842 int j;
f4dc4d17 3843 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3844 struct quick_file_names *file_data;
3845 void **slot;
7b08b9eb 3846
24c79950 3847 per_cu->v.quick->mark = 0;
3d7bb9d9 3848
24c79950
TT
3849 /* We only need to look at symtabs not already expanded. */
3850 if (per_cu->v.quick->symtab)
3851 continue;
7b08b9eb 3852
e4a48d9d 3853 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3854 if (file_data == NULL)
3855 continue;
7b08b9eb 3856
24c79950
TT
3857 if (htab_find (visited_not_found, file_data) != NULL)
3858 continue;
3859 else if (htab_find (visited_found, file_data) != NULL)
3860 {
3861 per_cu->v.quick->mark = 1;
3862 continue;
3863 }
3864
3865 for (j = 0; j < file_data->num_file_names; ++j)
3866 {
da235a7c
JK
3867 const char *this_real_name;
3868
fbd9ab74 3869 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3870 {
3871 per_cu->v.quick->mark = 1;
3872 break;
3873 }
da235a7c
JK
3874
3875 /* Before we invoke realpath, which can get expensive when many
3876 files are involved, do a quick comparison of the basenames. */
3877 if (!basenames_may_differ
3878 && !file_matcher (lbasename (file_data->file_names[j]),
3879 data, 1))
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (file_matcher (this_real_name, data, 0))
3884 {
3885 per_cu->v.quick->mark = 1;
3886 break;
3887 }
24c79950
TT
3888 }
3889
3890 slot = htab_find_slot (per_cu->v.quick->mark
3891 ? visited_found
3892 : visited_not_found,
3893 file_data, INSERT);
3894 *slot = file_data;
3895 }
3896
3897 do_cleanups (cleanup);
3898 }
9291a0cd 3899
3876f04e 3900 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3901 {
3902 offset_type idx = 2 * iter;
3903 const char *name;
3904 offset_type *vec, vec_len, vec_idx;
8943b874 3905 int global_seen = 0;
9291a0cd 3906
3876f04e 3907 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3908 continue;
3909
3876f04e 3910 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3911
206f2a57 3912 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3913 continue;
3914
3915 /* The name was matched, now expand corresponding CUs that were
3916 marked. */
4b5246aa 3917 vec = (offset_type *) (index->constant_pool
3876f04e 3918 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3919 vec_len = MAYBE_SWAP (vec[0]);
3920 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3921 {
e254ef6a 3922 struct dwarf2_per_cu_data *per_cu;
156942c7 3923 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3924 /* This value is only valid for index versions >= 7. */
3925 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3926 gdb_index_symbol_kind symbol_kind =
3927 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3928 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3929 /* Only check the symbol attributes if they're present.
3930 Indices prior to version 7 don't record them,
3931 and indices >= 7 may elide them for certain symbols
3932 (gold does this). */
3933 int attrs_valid =
3934 (index->version >= 7
3935 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3936
8943b874
DE
3937 /* Work around gold/15646. */
3938 if (attrs_valid)
3939 {
3940 if (!is_static && global_seen)
3941 continue;
3942 if (!is_static)
3943 global_seen = 1;
3944 }
3945
3190f0c6
DE
3946 /* Only check the symbol's kind if it has one. */
3947 if (attrs_valid)
156942c7
DE
3948 {
3949 switch (kind)
3950 {
3951 case VARIABLES_DOMAIN:
3952 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3953 continue;
3954 break;
3955 case FUNCTIONS_DOMAIN:
3956 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3957 continue;
3958 break;
3959 case TYPES_DOMAIN:
3960 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3961 continue;
3962 break;
3963 default:
3964 break;
3965 }
3966 }
3967
3190f0c6
DE
3968 /* Don't crash on bad data. */
3969 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3970 + dwarf2_per_objfile->n_type_units))
3971 {
3972 complaint (&symfile_complaints,
3973 _(".gdb_index entry has bad CU index"
4262abfb 3974 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3975 continue;
3976 }
3977
156942c7 3978 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3979 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3980 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3981 }
3982 }
3983}
3984
9703b513
TT
3985/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3986 symtab. */
3987
3988static struct symtab *
3989recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3990{
3991 int i;
3992
3993 if (BLOCKVECTOR (symtab) != NULL
3994 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3995 return symtab;
3996
a3ec0bb1
DE
3997 if (symtab->includes == NULL)
3998 return NULL;
3999
9703b513
TT
4000 for (i = 0; symtab->includes[i]; ++i)
4001 {
a3ec0bb1 4002 struct symtab *s = symtab->includes[i];
9703b513
TT
4003
4004 s = recursively_find_pc_sect_symtab (s, pc);
4005 if (s != NULL)
4006 return s;
4007 }
4008
4009 return NULL;
4010}
4011
9291a0cd
TT
4012static struct symtab *
4013dw2_find_pc_sect_symtab (struct objfile *objfile,
77e371c0 4014 struct bound_minimal_symbol msymbol,
9291a0cd
TT
4015 CORE_ADDR pc,
4016 struct obj_section *section,
4017 int warn_if_readin)
4018{
4019 struct dwarf2_per_cu_data *data;
9703b513 4020 struct symtab *result;
9291a0cd
TT
4021
4022 dw2_setup (objfile);
4023
4024 if (!objfile->psymtabs_addrmap)
4025 return NULL;
4026
4027 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4028 if (!data)
4029 return NULL;
4030
4031 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 4032 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4033 paddress (get_objfile_arch (objfile), pc));
4034
9703b513
TT
4035 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4036 gdb_assert (result != NULL);
4037 return result;
9291a0cd
TT
4038}
4039
9291a0cd 4040static void
44b13c5a 4041dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4042 void *data, int need_fullname)
9291a0cd
TT
4043{
4044 int i;
24c79950
TT
4045 struct cleanup *cleanup;
4046 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4047 NULL, xcalloc, xfree);
9291a0cd 4048
24c79950 4049 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4050 dw2_setup (objfile);
ae2de4f8 4051
848e3e78
DE
4052 /* The rule is CUs specify all the files, including those used by
4053 any TU, so there's no need to scan TUs here.
4054 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4055
848e3e78 4056 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4057 {
4058 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4059
4060 if (per_cu->v.quick->symtab)
4061 {
4062 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4063 INSERT);
4064
4065 *slot = per_cu->v.quick->file_names;
4066 }
4067 }
4068
848e3e78 4069 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4070 {
4071 int j;
f4dc4d17 4072 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 4073 struct quick_file_names *file_data;
24c79950 4074 void **slot;
9291a0cd 4075
3d7bb9d9 4076 /* We only need to look at symtabs not already expanded. */
e254ef6a 4077 if (per_cu->v.quick->symtab)
9291a0cd
TT
4078 continue;
4079
e4a48d9d 4080 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4081 if (file_data == NULL)
9291a0cd
TT
4082 continue;
4083
24c79950
TT
4084 slot = htab_find_slot (visited, file_data, INSERT);
4085 if (*slot)
4086 {
4087 /* Already visited. */
4088 continue;
4089 }
4090 *slot = file_data;
4091
7b9f3c50 4092 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4093 {
74e2f255
DE
4094 const char *this_real_name;
4095
4096 if (need_fullname)
4097 this_real_name = dw2_get_real_path (objfile, file_data, j);
4098 else
4099 this_real_name = NULL;
7b9f3c50 4100 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4101 }
4102 }
24c79950
TT
4103
4104 do_cleanups (cleanup);
9291a0cd
TT
4105}
4106
4107static int
4108dw2_has_symbols (struct objfile *objfile)
4109{
4110 return 1;
4111}
4112
4113const struct quick_symbol_functions dwarf2_gdb_index_functions =
4114{
4115 dw2_has_symbols,
4116 dw2_find_last_source_symtab,
4117 dw2_forget_cached_source_info,
f8eba3c6 4118 dw2_map_symtabs_matching_filename,
9291a0cd 4119 dw2_lookup_symbol,
9291a0cd
TT
4120 dw2_print_stats,
4121 dw2_dump,
4122 dw2_relocate,
4123 dw2_expand_symtabs_for_function,
4124 dw2_expand_all_symtabs,
652a8996 4125 dw2_expand_symtabs_with_fullname,
40658b94 4126 dw2_map_matching_symbols,
9291a0cd
TT
4127 dw2_expand_symtabs_matching,
4128 dw2_find_pc_sect_symtab,
9291a0cd
TT
4129 dw2_map_symbol_filenames
4130};
4131
4132/* Initialize for reading DWARF for this objfile. Return 0 if this
4133 file will use psymtabs, or 1 if using the GNU index. */
4134
4135int
4136dwarf2_initialize_objfile (struct objfile *objfile)
4137{
4138 /* If we're about to read full symbols, don't bother with the
4139 indices. In this case we also don't care if some other debug
4140 format is making psymtabs, because they are all about to be
4141 expanded anyway. */
4142 if ((objfile->flags & OBJF_READNOW))
4143 {
4144 int i;
4145
4146 dwarf2_per_objfile->using_index = 1;
4147 create_all_comp_units (objfile);
0e50663e 4148 create_all_type_units (objfile);
7b9f3c50
DE
4149 dwarf2_per_objfile->quick_file_names_table =
4150 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4151
1fd400ff 4152 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4153 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4154 {
e254ef6a 4155 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 4156
e254ef6a
DE
4157 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4158 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4159 }
4160
4161 /* Return 1 so that gdb sees the "quick" functions. However,
4162 these functions will be no-ops because we will have expanded
4163 all symtabs. */
4164 return 1;
4165 }
4166
4167 if (dwarf2_read_index (objfile))
4168 return 1;
4169
9291a0cd
TT
4170 return 0;
4171}
4172
4173\f
4174
dce234bc
PP
4175/* Build a partial symbol table. */
4176
4177void
f29dff0a 4178dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4179{
c9bf0622
TT
4180 volatile struct gdb_exception except;
4181
f29dff0a 4182 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4183 {
4184 init_psymbol_list (objfile, 1024);
4185 }
4186
c9bf0622
TT
4187 TRY_CATCH (except, RETURN_MASK_ERROR)
4188 {
4189 /* This isn't really ideal: all the data we allocate on the
4190 objfile's obstack is still uselessly kept around. However,
4191 freeing it seems unsafe. */
4192 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4193
4194 dwarf2_build_psymtabs_hard (objfile);
4195 discard_cleanups (cleanups);
4196 }
4197 if (except.reason < 0)
4198 exception_print (gdb_stderr, except);
c906108c 4199}
c906108c 4200
1ce1cefd
DE
4201/* Return the total length of the CU described by HEADER. */
4202
4203static unsigned int
4204get_cu_length (const struct comp_unit_head *header)
4205{
4206 return header->initial_length_size + header->length;
4207}
4208
45452591
DE
4209/* Return TRUE if OFFSET is within CU_HEADER. */
4210
4211static inline int
b64f50a1 4212offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4213{
b64f50a1 4214 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4215 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4216
b64f50a1 4217 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4218}
4219
3b80fe9b
DE
4220/* Find the base address of the compilation unit for range lists and
4221 location lists. It will normally be specified by DW_AT_low_pc.
4222 In DWARF-3 draft 4, the base address could be overridden by
4223 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4224 compilation units with discontinuous ranges. */
4225
4226static void
4227dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4228{
4229 struct attribute *attr;
4230
4231 cu->base_known = 0;
4232 cu->base_address = 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4235 if (attr)
4236 {
31aa7e4e 4237 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4238 cu->base_known = 1;
4239 }
4240 else
4241 {
4242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4243 if (attr)
4244 {
31aa7e4e 4245 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4246 cu->base_known = 1;
4247 }
4248 }
4249}
4250
93311388
DE
4251/* Read in the comp unit header information from the debug_info at info_ptr.
4252 NOTE: This leaves members offset, first_die_offset to be filled in
4253 by the caller. */
107d2387 4254
d521ce57 4255static const gdb_byte *
107d2387 4256read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4257 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4258{
4259 int signed_addr;
891d2f0b 4260 unsigned int bytes_read;
c764a876
DE
4261
4262 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4263 cu_header->initial_length_size = bytes_read;
4264 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4265 info_ptr += bytes_read;
107d2387
AC
4266 cu_header->version = read_2_bytes (abfd, info_ptr);
4267 info_ptr += 2;
b64f50a1
JK
4268 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4269 &bytes_read);
613e1657 4270 info_ptr += bytes_read;
107d2387
AC
4271 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4272 info_ptr += 1;
4273 signed_addr = bfd_get_sign_extend_vma (abfd);
4274 if (signed_addr < 0)
8e65ff28 4275 internal_error (__FILE__, __LINE__,
e2e0b3e5 4276 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4277 cu_header->signed_addr_p = signed_addr;
c764a876 4278
107d2387
AC
4279 return info_ptr;
4280}
4281
36586728
TT
4282/* Helper function that returns the proper abbrev section for
4283 THIS_CU. */
4284
4285static struct dwarf2_section_info *
4286get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4287{
4288 struct dwarf2_section_info *abbrev;
4289
4290 if (this_cu->is_dwz)
4291 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4292 else
4293 abbrev = &dwarf2_per_objfile->abbrev;
4294
4295 return abbrev;
4296}
4297
9ff913ba
DE
4298/* Subroutine of read_and_check_comp_unit_head and
4299 read_and_check_type_unit_head to simplify them.
4300 Perform various error checking on the header. */
4301
4302static void
4303error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section)
9ff913ba 4306{
a32a8923
DE
4307 bfd *abfd = get_section_bfd_owner (section);
4308 const char *filename = get_section_file_name (section);
9ff913ba
DE
4309
4310 if (header->version != 2 && header->version != 3 && header->version != 4)
4311 error (_("Dwarf Error: wrong version in compilation unit header "
4312 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4313 filename);
4314
b64f50a1 4315 if (header->abbrev_offset.sect_off
36586728 4316 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4317 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4318 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4319 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4320 filename);
4321
4322 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4323 avoid potential 32-bit overflow. */
1ce1cefd 4324 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4325 > section->size)
4326 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4327 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4328 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4329 filename);
4330}
4331
4332/* Read in a CU/TU header and perform some basic error checking.
4333 The contents of the header are stored in HEADER.
4334 The result is a pointer to the start of the first DIE. */
adabb602 4335
d521ce57 4336static const gdb_byte *
9ff913ba
DE
4337read_and_check_comp_unit_head (struct comp_unit_head *header,
4338 struct dwarf2_section_info *section,
4bdcc0c1 4339 struct dwarf2_section_info *abbrev_section,
d521ce57 4340 const gdb_byte *info_ptr,
9ff913ba 4341 int is_debug_types_section)
72bf9492 4342{
d521ce57 4343 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4344 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4345
b64f50a1 4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4347
72bf9492
DJ
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
460c1c54
CC
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
b0df02fd 4352 if (is_debug_types_section)
460c1c54
CC
4353 info_ptr += 8 /*signature*/ + header->offset_size;
4354
b64f50a1 4355 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4356
4bdcc0c1 4357 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4358
4359 return info_ptr;
4360}
4361
348e048f
DE
4362/* Read in the types comp unit header information from .debug_types entry at
4363 types_ptr. The result is a pointer to one past the end of the header. */
4364
d521ce57 4365static const gdb_byte *
9ff913ba
DE
4366read_and_check_type_unit_head (struct comp_unit_head *header,
4367 struct dwarf2_section_info *section,
4bdcc0c1 4368 struct dwarf2_section_info *abbrev_section,
d521ce57 4369 const gdb_byte *info_ptr,
dee91e82
DE
4370 ULONGEST *signature,
4371 cu_offset *type_offset_in_tu)
348e048f 4372{
d521ce57 4373 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4374 bfd *abfd = get_section_bfd_owner (section);
348e048f 4375
b64f50a1 4376 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4377
9ff913ba 4378 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4379
9ff913ba
DE
4380 /* If we're reading a type unit, skip over the signature and
4381 type_offset fields. */
4382 if (signature != NULL)
4383 *signature = read_8_bytes (abfd, info_ptr);
4384 info_ptr += 8;
dee91e82
DE
4385 if (type_offset_in_tu != NULL)
4386 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4387 header->offset_size);
9ff913ba
DE
4388 info_ptr += header->offset_size;
4389
b64f50a1 4390 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4391
4bdcc0c1 4392 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4393
4394 return info_ptr;
348e048f
DE
4395}
4396
f4dc4d17
DE
4397/* Fetch the abbreviation table offset from a comp or type unit header. */
4398
4399static sect_offset
4400read_abbrev_offset (struct dwarf2_section_info *section,
4401 sect_offset offset)
4402{
a32a8923 4403 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4404 const gdb_byte *info_ptr;
f4dc4d17
DE
4405 unsigned int length, initial_length_size, offset_size;
4406 sect_offset abbrev_offset;
4407
4408 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4409 info_ptr = section->buffer + offset.sect_off;
4410 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4411 offset_size = initial_length_size == 4 ? 4 : 8;
4412 info_ptr += initial_length_size + 2 /*version*/;
4413 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4414 return abbrev_offset;
4415}
4416
aaa75496
JB
4417/* Allocate a new partial symtab for file named NAME and mark this new
4418 partial symtab as being an include of PST. */
4419
4420static void
d521ce57 4421dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4422 struct objfile *objfile)
4423{
4424 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4425
fbd9ab74
JK
4426 if (!IS_ABSOLUTE_PATH (subpst->filename))
4427 {
4428 /* It shares objfile->objfile_obstack. */
4429 subpst->dirname = pst->dirname;
4430 }
4431
aaa75496
JB
4432 subpst->section_offsets = pst->section_offsets;
4433 subpst->textlow = 0;
4434 subpst->texthigh = 0;
4435
4436 subpst->dependencies = (struct partial_symtab **)
4437 obstack_alloc (&objfile->objfile_obstack,
4438 sizeof (struct partial_symtab *));
4439 subpst->dependencies[0] = pst;
4440 subpst->number_of_dependencies = 1;
4441
4442 subpst->globals_offset = 0;
4443 subpst->n_global_syms = 0;
4444 subpst->statics_offset = 0;
4445 subpst->n_static_syms = 0;
4446 subpst->symtab = NULL;
4447 subpst->read_symtab = pst->read_symtab;
4448 subpst->readin = 0;
4449
4450 /* No private part is necessary for include psymtabs. This property
4451 can be used to differentiate between such include psymtabs and
10b3939b 4452 the regular ones. */
58a9656e 4453 subpst->read_symtab_private = NULL;
aaa75496
JB
4454}
4455
4456/* Read the Line Number Program data and extract the list of files
4457 included by the source file represented by PST. Build an include
d85a05f0 4458 partial symtab for each of these included files. */
aaa75496
JB
4459
4460static void
4461dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4462 struct die_info *die,
4463 struct partial_symtab *pst)
aaa75496 4464{
d85a05f0
DJ
4465 struct line_header *lh = NULL;
4466 struct attribute *attr;
aaa75496 4467
d85a05f0
DJ
4468 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4469 if (attr)
3019eac3 4470 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4471 if (lh == NULL)
4472 return; /* No linetable, so no includes. */
4473
c6da4cef 4474 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4475 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4476
4477 free_line_header (lh);
4478}
4479
348e048f 4480static hashval_t
52dc124a 4481hash_signatured_type (const void *item)
348e048f 4482{
52dc124a 4483 const struct signatured_type *sig_type = item;
9a619af0 4484
348e048f 4485 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4486 return sig_type->signature;
348e048f
DE
4487}
4488
4489static int
52dc124a 4490eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4491{
4492 const struct signatured_type *lhs = item_lhs;
4493 const struct signatured_type *rhs = item_rhs;
9a619af0 4494
348e048f
DE
4495 return lhs->signature == rhs->signature;
4496}
4497
1fd400ff
TT
4498/* Allocate a hash table for signatured types. */
4499
4500static htab_t
673bfd45 4501allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4502{
4503 return htab_create_alloc_ex (41,
52dc124a
DE
4504 hash_signatured_type,
4505 eq_signatured_type,
1fd400ff
TT
4506 NULL,
4507 &objfile->objfile_obstack,
4508 hashtab_obstack_allocate,
4509 dummy_obstack_deallocate);
4510}
4511
d467dd73 4512/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4513
4514static int
d467dd73 4515add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4516{
4517 struct signatured_type *sigt = *slot;
b4dd5633 4518 struct signatured_type ***datap = datum;
1fd400ff 4519
b4dd5633 4520 **datap = sigt;
1fd400ff
TT
4521 ++*datap;
4522
4523 return 1;
4524}
4525
c88ee1f0
DE
4526/* Create the hash table of all entries in the .debug_types
4527 (or .debug_types.dwo) section(s).
4528 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4529 otherwise it is NULL.
4530
4531 The result is a pointer to the hash table or NULL if there are no types.
4532
4533 Note: This function processes DWO files only, not DWP files. */
348e048f 4534
3019eac3
DE
4535static htab_t
4536create_debug_types_hash_table (struct dwo_file *dwo_file,
4537 VEC (dwarf2_section_info_def) *types)
348e048f 4538{
3019eac3 4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4540 htab_t types_htab = NULL;
8b70b953
TT
4541 int ix;
4542 struct dwarf2_section_info *section;
4bdcc0c1 4543 struct dwarf2_section_info *abbrev_section;
348e048f 4544
3019eac3
DE
4545 if (VEC_empty (dwarf2_section_info_def, types))
4546 return NULL;
348e048f 4547
4bdcc0c1
DE
4548 abbrev_section = (dwo_file != NULL
4549 ? &dwo_file->sections.abbrev
4550 : &dwarf2_per_objfile->abbrev);
4551
09406207
DE
4552 if (dwarf2_read_debug)
4553 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4554 dwo_file ? ".dwo" : "",
a32a8923 4555 get_section_file_name (abbrev_section));
09406207 4556
8b70b953 4557 for (ix = 0;
3019eac3 4558 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4559 ++ix)
4560 {
3019eac3 4561 bfd *abfd;
d521ce57 4562 const gdb_byte *info_ptr, *end_ptr;
348e048f 4563
8b70b953
TT
4564 dwarf2_read_section (objfile, section);
4565 info_ptr = section->buffer;
348e048f 4566
8b70b953
TT
4567 if (info_ptr == NULL)
4568 continue;
348e048f 4569
3019eac3 4570 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4571 not present, in which case the bfd is unknown. */
4572 abfd = get_section_bfd_owner (section);
3019eac3 4573
dee91e82
DE
4574 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4575 because we don't need to read any dies: the signature is in the
4576 header. */
8b70b953
TT
4577
4578 end_ptr = info_ptr + section->size;
4579 while (info_ptr < end_ptr)
4580 {
b64f50a1 4581 sect_offset offset;
3019eac3 4582 cu_offset type_offset_in_tu;
8b70b953 4583 ULONGEST signature;
52dc124a 4584 struct signatured_type *sig_type;
3019eac3 4585 struct dwo_unit *dwo_tu;
8b70b953 4586 void **slot;
d521ce57 4587 const gdb_byte *ptr = info_ptr;
9ff913ba 4588 struct comp_unit_head header;
dee91e82 4589 unsigned int length;
348e048f 4590
b64f50a1 4591 offset.sect_off = ptr - section->buffer;
348e048f 4592
8b70b953 4593 /* We need to read the type's signature in order to build the hash
9ff913ba 4594 table, but we don't need anything else just yet. */
348e048f 4595
4bdcc0c1
DE
4596 ptr = read_and_check_type_unit_head (&header, section,
4597 abbrev_section, ptr,
3019eac3 4598 &signature, &type_offset_in_tu);
6caca83c 4599
1ce1cefd 4600 length = get_cu_length (&header);
dee91e82 4601
6caca83c 4602 /* Skip dummy type units. */
dee91e82
DE
4603 if (ptr >= info_ptr + length
4604 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4605 {
1ce1cefd 4606 info_ptr += length;
6caca83c
CC
4607 continue;
4608 }
8b70b953 4609
0349ea22
DE
4610 if (types_htab == NULL)
4611 {
4612 if (dwo_file)
4613 types_htab = allocate_dwo_unit_table (objfile);
4614 else
4615 types_htab = allocate_signatured_type_table (objfile);
4616 }
4617
3019eac3
DE
4618 if (dwo_file)
4619 {
4620 sig_type = NULL;
4621 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4622 struct dwo_unit);
4623 dwo_tu->dwo_file = dwo_file;
4624 dwo_tu->signature = signature;
4625 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4626 dwo_tu->section = section;
3019eac3
DE
4627 dwo_tu->offset = offset;
4628 dwo_tu->length = length;
4629 }
4630 else
4631 {
4632 /* N.B.: type_offset is not usable if this type uses a DWO file.
4633 The real type_offset is in the DWO file. */
4634 dwo_tu = NULL;
4635 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4636 struct signatured_type);
4637 sig_type->signature = signature;
4638 sig_type->type_offset_in_tu = type_offset_in_tu;
4639 sig_type->per_cu.objfile = objfile;
4640 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4641 sig_type->per_cu.section = section;
3019eac3
DE
4642 sig_type->per_cu.offset = offset;
4643 sig_type->per_cu.length = length;
4644 }
8b70b953 4645
3019eac3
DE
4646 slot = htab_find_slot (types_htab,
4647 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4648 INSERT);
8b70b953
TT
4649 gdb_assert (slot != NULL);
4650 if (*slot != NULL)
4651 {
3019eac3
DE
4652 sect_offset dup_offset;
4653
4654 if (dwo_file)
4655 {
4656 const struct dwo_unit *dup_tu = *slot;
4657
4658 dup_offset = dup_tu->offset;
4659 }
4660 else
4661 {
4662 const struct signatured_type *dup_tu = *slot;
4663
4664 dup_offset = dup_tu->per_cu.offset;
4665 }
b3c8eb43 4666
8b70b953 4667 complaint (&symfile_complaints,
c88ee1f0 4668 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4669 " the entry at offset 0x%x, signature %s"),
3019eac3 4670 offset.sect_off, dup_offset.sect_off,
4031ecc5 4671 hex_string (signature));
8b70b953 4672 }
3019eac3 4673 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4674
73be47f5 4675 if (dwarf2_read_debug > 1)
4031ecc5 4676 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4677 offset.sect_off,
4031ecc5 4678 hex_string (signature));
348e048f 4679
dee91e82 4680 info_ptr += length;
8b70b953 4681 }
348e048f
DE
4682 }
4683
3019eac3
DE
4684 return types_htab;
4685}
4686
4687/* Create the hash table of all entries in the .debug_types section,
4688 and initialize all_type_units.
4689 The result is zero if there is an error (e.g. missing .debug_types section),
4690 otherwise non-zero. */
4691
4692static int
4693create_all_type_units (struct objfile *objfile)
4694{
4695 htab_t types_htab;
b4dd5633 4696 struct signatured_type **iter;
3019eac3
DE
4697
4698 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4699 if (types_htab == NULL)
4700 {
4701 dwarf2_per_objfile->signatured_types = NULL;
4702 return 0;
4703 }
4704
348e048f
DE
4705 dwarf2_per_objfile->signatured_types = types_htab;
4706
d467dd73
DE
4707 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4708 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4709 = xmalloc (dwarf2_per_objfile->n_type_units
4710 * sizeof (struct signatured_type *));
d467dd73
DE
4711 iter = &dwarf2_per_objfile->all_type_units[0];
4712 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4713 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4714 == dwarf2_per_objfile->n_type_units);
1fd400ff 4715
348e048f
DE
4716 return 1;
4717}
4718
a2ce51a0
DE
4719/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4720 Fill in SIG_ENTRY with DWO_ENTRY. */
4721
4722static void
4723fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4724 struct signatured_type *sig_entry,
4725 struct dwo_unit *dwo_entry)
4726{
7ee85ab1 4727 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4728 gdb_assert (! sig_entry->per_cu.queued);
4729 gdb_assert (sig_entry->per_cu.cu == NULL);
4730 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4731 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4732 gdb_assert (sig_entry->signature == dwo_entry->signature);
4733 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4734 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4735 gdb_assert (sig_entry->dwo_unit == NULL);
4736
4737 sig_entry->per_cu.section = dwo_entry->section;
4738 sig_entry->per_cu.offset = dwo_entry->offset;
4739 sig_entry->per_cu.length = dwo_entry->length;
4740 sig_entry->per_cu.reading_dwo_directly = 1;
4741 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4742 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4743 sig_entry->dwo_unit = dwo_entry;
4744}
4745
4746/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4747 If we haven't read the TU yet, create the signatured_type data structure
4748 for a TU to be read in directly from a DWO file, bypassing the stub.
4749 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4750 using .gdb_index, then when reading a CU we want to stay in the DWO file
4751 containing that CU. Otherwise we could end up reading several other DWO
4752 files (due to comdat folding) to process the transitive closure of all the
4753 mentioned TUs, and that can be slow. The current DWO file will have every
4754 type signature that it needs.
a2ce51a0
DE
4755 We only do this for .gdb_index because in the psymtab case we already have
4756 to read all the DWOs to build the type unit groups. */
4757
4758static struct signatured_type *
4759lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4760{
4761 struct objfile *objfile = dwarf2_per_objfile->objfile;
4762 struct dwo_file *dwo_file;
4763 struct dwo_unit find_dwo_entry, *dwo_entry;
4764 struct signatured_type find_sig_entry, *sig_entry;
4765
4766 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4767
4768 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4769 dwo_unit of the TU itself. */
4770 dwo_file = cu->dwo_unit->dwo_file;
4771
4772 /* We only ever need to read in one copy of a signatured type.
4773 Just use the global signatured_types array. If this is the first time
4774 we're reading this type, replace the recorded data from .gdb_index with
4775 this TU. */
4776
4777 if (dwarf2_per_objfile->signatured_types == NULL)
4778 return NULL;
4779 find_sig_entry.signature = sig;
4780 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4781 if (sig_entry == NULL)
4782 return NULL;
7ee85ab1
DE
4783
4784 /* We can get here with the TU already read, *or* in the process of being
4785 read. Don't reassign it if that's the case. Also note that if the TU is
4786 already being read, it may not have come from a DWO, the program may be
4787 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4788 /* Have we already tried to read this TU? */
7ee85ab1 4789 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4790 return sig_entry;
4791
4792 /* Ok, this is the first time we're reading this TU. */
4793 if (dwo_file->tus == NULL)
4794 return NULL;
4795 find_dwo_entry.signature = sig;
4796 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4797 if (dwo_entry == NULL)
4798 return NULL;
4799
4800 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4801 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4802 return sig_entry;
4803}
4804
4805/* Subroutine of lookup_dwp_signatured_type.
4806 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4807
4808static struct signatured_type *
4809add_type_unit (ULONGEST sig)
4810{
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814 void **slot;
4815
4816 ++n_type_units;
4817 dwarf2_per_objfile->all_type_units =
4818 xrealloc (dwarf2_per_objfile->all_type_units,
4819 n_type_units * sizeof (struct signatured_type *));
4820 dwarf2_per_objfile->n_type_units = n_type_units;
4821 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct signatured_type);
4823 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4824 sig_type->signature = sig;
4825 sig_type->per_cu.is_debug_types = 1;
4826 sig_type->per_cu.v.quick =
4827 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4828 struct dwarf2_per_cu_quick_data);
4829 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4830 sig_type, INSERT);
4831 gdb_assert (*slot == NULL);
4832 *slot = sig_type;
4833 /* The rest of sig_type must be filled in by the caller. */
4834 return sig_type;
4835}
4836
4837/* Subroutine of lookup_signatured_type.
4838 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4839 then try the DWP file.
4840 Normally this "can't happen", but if there's a bug in signature
4841 generation and/or the DWP file is built incorrectly, it can happen.
4842 Using the type directly from the DWP file means we don't have the stub
4843 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4844 not critical. [Eventually the stub may go away for type units anyway.] */
4845
4846static struct signatured_type *
4847lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4848{
4849 struct objfile *objfile = dwarf2_per_objfile->objfile;
4850 struct dwp_file *dwp_file = get_dwp_file ();
4851 struct dwo_unit *dwo_entry;
4852 struct signatured_type find_sig_entry, *sig_entry;
4853
4854 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4855 gdb_assert (dwp_file != NULL);
4856
4857 if (dwarf2_per_objfile->signatured_types != NULL)
4858 {
4859 find_sig_entry.signature = sig;
4860 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4861 &find_sig_entry);
4862 if (sig_entry != NULL)
4863 return sig_entry;
4864 }
4865
4866 /* This is the "shouldn't happen" case.
4867 Try the DWP file and hope for the best. */
4868 if (dwp_file->tus == NULL)
4869 return NULL;
57d63ce2
DE
4870 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4871 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4872 if (dwo_entry == NULL)
4873 return NULL;
4874
4875 sig_entry = add_type_unit (sig);
4876 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4877
4878 /* The caller will signal a complaint if we return NULL.
4879 Here we don't return NULL but we still want to complain. */
4880 complaint (&symfile_complaints,
4881 _("Bad type signature %s referenced by %s at 0x%x,"
4882 " coping by using copy in DWP [in module %s]"),
4883 hex_string (sig),
4884 cu->per_cu->is_debug_types ? "TU" : "CU",
4885 cu->per_cu->offset.sect_off,
4262abfb 4886 objfile_name (objfile));
a2ce51a0
DE
4887
4888 return sig_entry;
4889}
4890
380bca97 4891/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4892 Returns NULL if signature SIG is not present in the table.
4893 It is up to the caller to complain about this. */
348e048f
DE
4894
4895static struct signatured_type *
a2ce51a0 4896lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4897{
a2ce51a0
DE
4898 if (cu->dwo_unit
4899 && dwarf2_per_objfile->using_index)
4900 {
4901 /* We're in a DWO/DWP file, and we're using .gdb_index.
4902 These cases require special processing. */
4903 if (get_dwp_file () == NULL)
4904 return lookup_dwo_signatured_type (cu, sig);
4905 else
4906 return lookup_dwp_signatured_type (cu, sig);
4907 }
4908 else
4909 {
4910 struct signatured_type find_entry, *entry;
348e048f 4911
a2ce51a0
DE
4912 if (dwarf2_per_objfile->signatured_types == NULL)
4913 return NULL;
4914 find_entry.signature = sig;
4915 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4916 return entry;
4917 }
348e048f 4918}
42e7ad6c
DE
4919\f
4920/* Low level DIE reading support. */
348e048f 4921
d85a05f0
DJ
4922/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4923
4924static void
4925init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4926 struct dwarf2_cu *cu,
3019eac3
DE
4927 struct dwarf2_section_info *section,
4928 struct dwo_file *dwo_file)
d85a05f0 4929{
fceca515 4930 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4931 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4932 reader->cu = cu;
3019eac3 4933 reader->dwo_file = dwo_file;
dee91e82
DE
4934 reader->die_section = section;
4935 reader->buffer = section->buffer;
f664829e 4936 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4937 reader->comp_dir = NULL;
d85a05f0
DJ
4938}
4939
b0c7bfa9
DE
4940/* Subroutine of init_cutu_and_read_dies to simplify it.
4941 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4942 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4943 already.
4944
4945 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4946 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4947 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4948 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4949 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4950 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4951 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4952 are filled in with the info of the DIE from the DWO file.
4953 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4954 provided an abbrev table to use.
4955 The result is non-zero if a valid (non-dummy) DIE was found. */
4956
4957static int
4958read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4959 struct dwo_unit *dwo_unit,
4960 int abbrev_table_provided,
4961 struct die_info *stub_comp_unit_die,
a2ce51a0 4962 const char *stub_comp_dir,
b0c7bfa9 4963 struct die_reader_specs *result_reader,
d521ce57 4964 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4965 struct die_info **result_comp_unit_die,
4966 int *result_has_children)
4967{
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwarf2_cu *cu = this_cu->cu;
4970 struct dwarf2_section_info *section;
4971 bfd *abfd;
d521ce57 4972 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4973 ULONGEST signature; /* Or dwo_id. */
4974 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4975 int i,num_extra_attrs;
4976 struct dwarf2_section_info *dwo_abbrev_section;
4977 struct attribute *attr;
4978 struct die_info *comp_unit_die;
4979
b0aeadb3
DE
4980 /* At most one of these may be provided. */
4981 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4982
b0c7bfa9
DE
4983 /* These attributes aren't processed until later:
4984 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
4985 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4986 referenced later. However, these attributes are found in the stub
4987 which we won't have later. In order to not impose this complication
4988 on the rest of the code, we read them here and copy them to the
4989 DWO CU/TU die. */
b0c7bfa9
DE
4990
4991 stmt_list = NULL;
4992 low_pc = NULL;
4993 high_pc = NULL;
4994 ranges = NULL;
4995 comp_dir = NULL;
4996
4997 if (stub_comp_unit_die != NULL)
4998 {
4999 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5000 DWO file. */
5001 if (! this_cu->is_debug_types)
5002 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5003 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5004 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5005 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5006 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5007
5008 /* There should be a DW_AT_addr_base attribute here (if needed).
5009 We need the value before we can process DW_FORM_GNU_addr_index. */
5010 cu->addr_base = 0;
5011 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5012 if (attr)
5013 cu->addr_base = DW_UNSND (attr);
5014
5015 /* There should be a DW_AT_ranges_base attribute here (if needed).
5016 We need the value before we can process DW_AT_ranges. */
5017 cu->ranges_base = 0;
5018 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5019 if (attr)
5020 cu->ranges_base = DW_UNSND (attr);
5021 }
a2ce51a0
DE
5022 else if (stub_comp_dir != NULL)
5023 {
5024 /* Reconstruct the comp_dir attribute to simplify the code below. */
5025 comp_dir = (struct attribute *)
5026 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5027 comp_dir->name = DW_AT_comp_dir;
5028 comp_dir->form = DW_FORM_string;
5029 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5030 DW_STRING (comp_dir) = stub_comp_dir;
5031 }
b0c7bfa9
DE
5032
5033 /* Set up for reading the DWO CU/TU. */
5034 cu->dwo_unit = dwo_unit;
5035 section = dwo_unit->section;
5036 dwarf2_read_section (objfile, section);
a32a8923 5037 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5038 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5039 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5040 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5041
5042 if (this_cu->is_debug_types)
5043 {
5044 ULONGEST header_signature;
5045 cu_offset type_offset_in_tu;
5046 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5047
5048 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5049 dwo_abbrev_section,
5050 info_ptr,
5051 &header_signature,
5052 &type_offset_in_tu);
a2ce51a0
DE
5053 /* This is not an assert because it can be caused by bad debug info. */
5054 if (sig_type->signature != header_signature)
5055 {
5056 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5057 " TU at offset 0x%x [in module %s]"),
5058 hex_string (sig_type->signature),
5059 hex_string (header_signature),
5060 dwo_unit->offset.sect_off,
5061 bfd_get_filename (abfd));
5062 }
b0c7bfa9
DE
5063 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5064 /* For DWOs coming from DWP files, we don't know the CU length
5065 nor the type's offset in the TU until now. */
5066 dwo_unit->length = get_cu_length (&cu->header);
5067 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5068
5069 /* Establish the type offset that can be used to lookup the type.
5070 For DWO files, we don't know it until now. */
5071 sig_type->type_offset_in_section.sect_off =
5072 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5073 }
5074 else
5075 {
5076 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5077 dwo_abbrev_section,
5078 info_ptr, 0);
5079 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5080 /* For DWOs coming from DWP files, we don't know the CU length
5081 until now. */
5082 dwo_unit->length = get_cu_length (&cu->header);
5083 }
5084
02142a6c
DE
5085 /* Replace the CU's original abbrev table with the DWO's.
5086 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5087 if (abbrev_table_provided)
5088 {
5089 /* Don't free the provided abbrev table, the caller of
5090 init_cutu_and_read_dies owns it. */
5091 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5092 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5093 make_cleanup (dwarf2_free_abbrev_table, cu);
5094 }
5095 else
5096 {
5097 dwarf2_free_abbrev_table (cu);
5098 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5099 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5100 }
5101
5102 /* Read in the die, but leave space to copy over the attributes
5103 from the stub. This has the benefit of simplifying the rest of
5104 the code - all the work to maintain the illusion of a single
5105 DW_TAG_{compile,type}_unit DIE is done here. */
5106 num_extra_attrs = ((stmt_list != NULL)
5107 + (low_pc != NULL)
5108 + (high_pc != NULL)
5109 + (ranges != NULL)
5110 + (comp_dir != NULL));
5111 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5112 result_has_children, num_extra_attrs);
5113
5114 /* Copy over the attributes from the stub to the DIE we just read in. */
5115 comp_unit_die = *result_comp_unit_die;
5116 i = comp_unit_die->num_attrs;
5117 if (stmt_list != NULL)
5118 comp_unit_die->attrs[i++] = *stmt_list;
5119 if (low_pc != NULL)
5120 comp_unit_die->attrs[i++] = *low_pc;
5121 if (high_pc != NULL)
5122 comp_unit_die->attrs[i++] = *high_pc;
5123 if (ranges != NULL)
5124 comp_unit_die->attrs[i++] = *ranges;
5125 if (comp_dir != NULL)
5126 comp_unit_die->attrs[i++] = *comp_dir;
5127 comp_unit_die->num_attrs += num_extra_attrs;
5128
bf6af496
DE
5129 if (dwarf2_die_debug)
5130 {
5131 fprintf_unfiltered (gdb_stdlog,
5132 "Read die from %s@0x%x of %s:\n",
a32a8923 5133 get_section_name (section),
bf6af496
DE
5134 (unsigned) (begin_info_ptr - section->buffer),
5135 bfd_get_filename (abfd));
5136 dump_die (comp_unit_die, dwarf2_die_debug);
5137 }
5138
a2ce51a0
DE
5139 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5140 TUs by skipping the stub and going directly to the entry in the DWO file.
5141 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5142 to get it via circuitous means. Blech. */
5143 if (comp_dir != NULL)
5144 result_reader->comp_dir = DW_STRING (comp_dir);
5145
b0c7bfa9
DE
5146 /* Skip dummy compilation units. */
5147 if (info_ptr >= begin_info_ptr + dwo_unit->length
5148 || peek_abbrev_code (abfd, info_ptr) == 0)
5149 return 0;
5150
5151 *result_info_ptr = info_ptr;
5152 return 1;
5153}
5154
5155/* Subroutine of init_cutu_and_read_dies to simplify it.
5156 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5157 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5158
5159static struct dwo_unit *
5160lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5161 struct die_info *comp_unit_die)
5162{
5163 struct dwarf2_cu *cu = this_cu->cu;
5164 struct attribute *attr;
5165 ULONGEST signature;
5166 struct dwo_unit *dwo_unit;
5167 const char *comp_dir, *dwo_name;
5168
a2ce51a0
DE
5169 gdb_assert (cu != NULL);
5170
b0c7bfa9
DE
5171 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5172 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5173 gdb_assert (attr != NULL);
5174 dwo_name = DW_STRING (attr);
5175 comp_dir = NULL;
5176 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5177 if (attr)
5178 comp_dir = DW_STRING (attr);
5179
5180 if (this_cu->is_debug_types)
5181 {
5182 struct signatured_type *sig_type;
5183
5184 /* Since this_cu is the first member of struct signatured_type,
5185 we can go from a pointer to one to a pointer to the other. */
5186 sig_type = (struct signatured_type *) this_cu;
5187 signature = sig_type->signature;
5188 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5189 }
5190 else
5191 {
5192 struct attribute *attr;
5193
5194 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5195 if (! attr)
5196 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5197 " [in module %s]"),
4262abfb 5198 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5199 signature = DW_UNSND (attr);
5200 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5201 signature);
5202 }
5203
b0c7bfa9
DE
5204 return dwo_unit;
5205}
5206
a2ce51a0
DE
5207/* Subroutine of init_cutu_and_read_dies to simplify it.
5208 Read a TU directly from a DWO file, bypassing the stub. */
5209
5210static void
5211init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5212 die_reader_func_ftype *die_reader_func,
5213 void *data)
5214{
5215 struct dwarf2_cu *cu;
5216 struct signatured_type *sig_type;
5217 struct cleanup *cleanups, *free_cu_cleanup;
5218 struct die_reader_specs reader;
5219 const gdb_byte *info_ptr;
5220 struct die_info *comp_unit_die;
5221 int has_children;
5222
5223 /* Verify we can do the following downcast, and that we have the
5224 data we need. */
5225 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5226 sig_type = (struct signatured_type *) this_cu;
5227 gdb_assert (sig_type->dwo_unit != NULL);
5228
5229 cleanups = make_cleanup (null_cleanup, NULL);
5230
5231 gdb_assert (this_cu->cu == NULL);
5232 cu = xmalloc (sizeof (*cu));
5233 init_one_comp_unit (cu, this_cu);
5234 /* If an error occurs while loading, release our storage. */
5235 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5236
5237 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5238 0 /* abbrev_table_provided */,
5239 NULL /* stub_comp_unit_die */,
5240 sig_type->dwo_unit->dwo_file->comp_dir,
5241 &reader, &info_ptr,
5242 &comp_unit_die, &has_children) == 0)
5243 {
5244 /* Dummy die. */
5245 do_cleanups (cleanups);
5246 return;
5247 }
5248
5249 /* All the "real" work is done here. */
5250 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5251
5252 /* This duplicates some code in init_cutu_and_read_dies,
5253 but the alternative is making the latter more complex.
5254 This function is only for the special case of using DWO files directly:
5255 no point in overly complicating the general case just to handle this. */
5256 if (keep)
5257 {
5258 /* We've successfully allocated this compilation unit. Let our
5259 caller clean it up when finished with it. */
5260 discard_cleanups (free_cu_cleanup);
5261
5262 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5263 So we have to manually free the abbrev table. */
5264 dwarf2_free_abbrev_table (cu);
5265
5266 /* Link this CU into read_in_chain. */
5267 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5268 dwarf2_per_objfile->read_in_chain = this_cu;
5269 }
5270 else
5271 do_cleanups (free_cu_cleanup);
5272
5273 do_cleanups (cleanups);
5274}
5275
fd820528 5276/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5277 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5278
f4dc4d17
DE
5279 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5280 Otherwise the table specified in the comp unit header is read in and used.
5281 This is an optimization for when we already have the abbrev table.
5282
dee91e82
DE
5283 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5284 Otherwise, a new CU is allocated with xmalloc.
5285
5286 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5287 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5288
5289 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5290 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5291
70221824 5292static void
fd820528 5293init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5294 struct abbrev_table *abbrev_table,
fd820528
DE
5295 int use_existing_cu, int keep,
5296 die_reader_func_ftype *die_reader_func,
5297 void *data)
c906108c 5298{
dee91e82 5299 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5300 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5301 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5302 struct dwarf2_cu *cu;
d521ce57 5303 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5304 struct die_reader_specs reader;
d85a05f0 5305 struct die_info *comp_unit_die;
dee91e82 5306 int has_children;
d85a05f0 5307 struct attribute *attr;
365156ad 5308 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5309 struct signatured_type *sig_type = NULL;
4bdcc0c1 5310 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5311 /* Non-zero if CU currently points to a DWO file and we need to
5312 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5313 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5314 int rereading_dwo_cu = 0;
c906108c 5315
09406207
DE
5316 if (dwarf2_die_debug)
5317 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5318 this_cu->is_debug_types ? "type" : "comp",
5319 this_cu->offset.sect_off);
5320
dee91e82
DE
5321 if (use_existing_cu)
5322 gdb_assert (keep);
23745b47 5323
a2ce51a0
DE
5324 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5325 file (instead of going through the stub), short-circuit all of this. */
5326 if (this_cu->reading_dwo_directly)
5327 {
5328 /* Narrow down the scope of possibilities to have to understand. */
5329 gdb_assert (this_cu->is_debug_types);
5330 gdb_assert (abbrev_table == NULL);
5331 gdb_assert (!use_existing_cu);
5332 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5333 return;
5334 }
5335
dee91e82
DE
5336 cleanups = make_cleanup (null_cleanup, NULL);
5337
5338 /* This is cheap if the section is already read in. */
5339 dwarf2_read_section (objfile, section);
5340
5341 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5342
5343 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 cu = this_cu->cu;
42e7ad6c
DE
5348
5349 /* If this CU is from a DWO file we need to start over, we need to
5350 refetch the attributes from the skeleton CU.
5351 This could be optimized by retrieving those attributes from when we
5352 were here the first time: the previous comp_unit_die was stored in
5353 comp_unit_obstack. But there's no data yet that we need this
5354 optimization. */
5355 if (cu->dwo_unit != NULL)
5356 rereading_dwo_cu = 1;
dee91e82
DE
5357 }
5358 else
5359 {
5360 /* If !use_existing_cu, this_cu->cu must be NULL. */
5361 gdb_assert (this_cu->cu == NULL);
5362
5363 cu = xmalloc (sizeof (*cu));
5364 init_one_comp_unit (cu, this_cu);
5365
5366 /* If an error occurs while loading, release our storage. */
365156ad 5367 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5368 }
dee91e82 5369
b0c7bfa9 5370 /* Get the header. */
42e7ad6c
DE
5371 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5372 {
5373 /* We already have the header, there's no need to read it in again. */
5374 info_ptr += cu->header.first_die_offset.cu_off;
5375 }
5376 else
5377 {
3019eac3 5378 if (this_cu->is_debug_types)
dee91e82
DE
5379 {
5380 ULONGEST signature;
42e7ad6c 5381 cu_offset type_offset_in_tu;
dee91e82 5382
4bdcc0c1
DE
5383 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5384 abbrev_section, info_ptr,
42e7ad6c
DE
5385 &signature,
5386 &type_offset_in_tu);
dee91e82 5387
42e7ad6c
DE
5388 /* Since per_cu is the first member of struct signatured_type,
5389 we can go from a pointer to one to a pointer to the other. */
5390 sig_type = (struct signatured_type *) this_cu;
5391 gdb_assert (sig_type->signature == signature);
5392 gdb_assert (sig_type->type_offset_in_tu.cu_off
5393 == type_offset_in_tu.cu_off);
dee91e82
DE
5394 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5395
42e7ad6c
DE
5396 /* LENGTH has not been set yet for type units if we're
5397 using .gdb_index. */
1ce1cefd 5398 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5399
5400 /* Establish the type offset that can be used to lookup the type. */
5401 sig_type->type_offset_in_section.sect_off =
5402 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5403 }
5404 else
5405 {
4bdcc0c1
DE
5406 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5407 abbrev_section,
5408 info_ptr, 0);
dee91e82
DE
5409
5410 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5411 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5412 }
5413 }
10b3939b 5414
6caca83c 5415 /* Skip dummy compilation units. */
dee91e82 5416 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5417 || peek_abbrev_code (abfd, info_ptr) == 0)
5418 {
dee91e82 5419 do_cleanups (cleanups);
21b2bd31 5420 return;
6caca83c
CC
5421 }
5422
433df2d4
DE
5423 /* If we don't have them yet, read the abbrevs for this compilation unit.
5424 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5425 done. Note that it's important that if the CU had an abbrev table
5426 on entry we don't free it when we're done: Somewhere up the call stack
5427 it may be in use. */
f4dc4d17
DE
5428 if (abbrev_table != NULL)
5429 {
5430 gdb_assert (cu->abbrev_table == NULL);
5431 gdb_assert (cu->header.abbrev_offset.sect_off
5432 == abbrev_table->offset.sect_off);
5433 cu->abbrev_table = abbrev_table;
5434 }
5435 else if (cu->abbrev_table == NULL)
dee91e82 5436 {
4bdcc0c1 5437 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5438 make_cleanup (dwarf2_free_abbrev_table, cu);
5439 }
42e7ad6c
DE
5440 else if (rereading_dwo_cu)
5441 {
5442 dwarf2_free_abbrev_table (cu);
5443 dwarf2_read_abbrevs (cu, abbrev_section);
5444 }
af703f96 5445
dee91e82 5446 /* Read the top level CU/TU die. */
3019eac3 5447 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5448 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5449
b0c7bfa9
DE
5450 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5451 from the DWO file.
5452 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5453 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5454 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5455 if (attr)
5456 {
3019eac3 5457 struct dwo_unit *dwo_unit;
b0c7bfa9 5458 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5459
5460 if (has_children)
6a506a2d
DE
5461 {
5462 complaint (&symfile_complaints,
5463 _("compilation unit with DW_AT_GNU_dwo_name"
5464 " has children (offset 0x%x) [in module %s]"),
5465 this_cu->offset.sect_off, bfd_get_filename (abfd));
5466 }
b0c7bfa9 5467 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5468 if (dwo_unit != NULL)
3019eac3 5469 {
6a506a2d
DE
5470 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5471 abbrev_table != NULL,
a2ce51a0 5472 comp_unit_die, NULL,
6a506a2d
DE
5473 &reader, &info_ptr,
5474 &dwo_comp_unit_die, &has_children) == 0)
5475 {
5476 /* Dummy die. */
5477 do_cleanups (cleanups);
5478 return;
5479 }
5480 comp_unit_die = dwo_comp_unit_die;
5481 }
5482 else
5483 {
5484 /* Yikes, we couldn't find the rest of the DIE, we only have
5485 the stub. A complaint has already been logged. There's
5486 not much more we can do except pass on the stub DIE to
5487 die_reader_func. We don't want to throw an error on bad
5488 debug info. */
3019eac3
DE
5489 }
5490 }
5491
b0c7bfa9 5492 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5493 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5494
b0c7bfa9 5495 /* Done, clean up. */
365156ad 5496 if (free_cu_cleanup != NULL)
348e048f 5497 {
365156ad
TT
5498 if (keep)
5499 {
5500 /* We've successfully allocated this compilation unit. Let our
5501 caller clean it up when finished with it. */
5502 discard_cleanups (free_cu_cleanup);
dee91e82 5503
365156ad
TT
5504 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5505 So we have to manually free the abbrev table. */
5506 dwarf2_free_abbrev_table (cu);
dee91e82 5507
365156ad
TT
5508 /* Link this CU into read_in_chain. */
5509 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5510 dwarf2_per_objfile->read_in_chain = this_cu;
5511 }
5512 else
5513 do_cleanups (free_cu_cleanup);
348e048f 5514 }
365156ad
TT
5515
5516 do_cleanups (cleanups);
dee91e82
DE
5517}
5518
33e80786
DE
5519/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5520 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5521 to have already done the lookup to find the DWO file).
dee91e82
DE
5522
5523 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5524 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5525
5526 We fill in THIS_CU->length.
5527
5528 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5529 linker) then DIE_READER_FUNC will not get called.
5530
5531 THIS_CU->cu is always freed when done.
3019eac3
DE
5532 This is done in order to not leave THIS_CU->cu in a state where we have
5533 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5534
5535static void
5536init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5537 struct dwo_file *dwo_file,
dee91e82
DE
5538 die_reader_func_ftype *die_reader_func,
5539 void *data)
5540{
5541 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5542 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5543 bfd *abfd = get_section_bfd_owner (section);
33e80786 5544 struct dwarf2_section_info *abbrev_section;
dee91e82 5545 struct dwarf2_cu cu;
d521ce57 5546 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5547 struct die_reader_specs reader;
5548 struct cleanup *cleanups;
5549 struct die_info *comp_unit_die;
5550 int has_children;
5551
09406207
DE
5552 if (dwarf2_die_debug)
5553 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5554 this_cu->is_debug_types ? "type" : "comp",
5555 this_cu->offset.sect_off);
5556
dee91e82
DE
5557 gdb_assert (this_cu->cu == NULL);
5558
33e80786
DE
5559 abbrev_section = (dwo_file != NULL
5560 ? &dwo_file->sections.abbrev
5561 : get_abbrev_section_for_cu (this_cu));
5562
dee91e82
DE
5563 /* This is cheap if the section is already read in. */
5564 dwarf2_read_section (objfile, section);
5565
5566 init_one_comp_unit (&cu, this_cu);
5567
5568 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5569
5570 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5571 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5572 abbrev_section, info_ptr,
3019eac3 5573 this_cu->is_debug_types);
dee91e82 5574
1ce1cefd 5575 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5576
5577 /* Skip dummy compilation units. */
5578 if (info_ptr >= begin_info_ptr + this_cu->length
5579 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5580 {
dee91e82 5581 do_cleanups (cleanups);
21b2bd31 5582 return;
93311388 5583 }
72bf9492 5584
dee91e82
DE
5585 dwarf2_read_abbrevs (&cu, abbrev_section);
5586 make_cleanup (dwarf2_free_abbrev_table, &cu);
5587
3019eac3 5588 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5589 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5590
5591 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5592
5593 do_cleanups (cleanups);
5594}
5595
3019eac3
DE
5596/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5597 does not lookup the specified DWO file.
5598 This cannot be used to read DWO files.
dee91e82
DE
5599
5600 THIS_CU->cu is always freed when done.
3019eac3
DE
5601 This is done in order to not leave THIS_CU->cu in a state where we have
5602 to care whether it refers to the "main" CU or the DWO CU.
5603 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5604
5605static void
5606init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5607 die_reader_func_ftype *die_reader_func,
5608 void *data)
5609{
33e80786 5610 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5611}
0018ea6f
DE
5612\f
5613/* Type Unit Groups.
dee91e82 5614
0018ea6f
DE
5615 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5616 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5617 so that all types coming from the same compilation (.o file) are grouped
5618 together. A future step could be to put the types in the same symtab as
5619 the CU the types ultimately came from. */
ff013f42 5620
f4dc4d17
DE
5621static hashval_t
5622hash_type_unit_group (const void *item)
5623{
094b34ac 5624 const struct type_unit_group *tu_group = item;
f4dc4d17 5625
094b34ac 5626 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5627}
348e048f
DE
5628
5629static int
f4dc4d17 5630eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5631{
f4dc4d17
DE
5632 const struct type_unit_group *lhs = item_lhs;
5633 const struct type_unit_group *rhs = item_rhs;
348e048f 5634
094b34ac 5635 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5636}
348e048f 5637
f4dc4d17
DE
5638/* Allocate a hash table for type unit groups. */
5639
5640static htab_t
5641allocate_type_unit_groups_table (void)
5642{
5643 return htab_create_alloc_ex (3,
5644 hash_type_unit_group,
5645 eq_type_unit_group,
5646 NULL,
5647 &dwarf2_per_objfile->objfile->objfile_obstack,
5648 hashtab_obstack_allocate,
5649 dummy_obstack_deallocate);
5650}
dee91e82 5651
f4dc4d17
DE
5652/* Type units that don't have DW_AT_stmt_list are grouped into their own
5653 partial symtabs. We combine several TUs per psymtab to not let the size
5654 of any one psymtab grow too big. */
5655#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5656#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5657
094b34ac 5658/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5659 Create the type_unit_group object used to hold one or more TUs. */
5660
5661static struct type_unit_group *
094b34ac 5662create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5663{
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5665 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5666 struct type_unit_group *tu_group;
f4dc4d17
DE
5667
5668 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5669 struct type_unit_group);
094b34ac 5670 per_cu = &tu_group->per_cu;
f4dc4d17 5671 per_cu->objfile = objfile;
f4dc4d17 5672
094b34ac
DE
5673 if (dwarf2_per_objfile->using_index)
5674 {
5675 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5676 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5677 }
5678 else
5679 {
5680 unsigned int line_offset = line_offset_struct.sect_off;
5681 struct partial_symtab *pst;
5682 char *name;
5683
5684 /* Give the symtab a useful name for debug purposes. */
5685 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5686 name = xstrprintf ("<type_units_%d>",
5687 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5688 else
5689 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5690
5691 pst = create_partial_symtab (per_cu, name);
5692 pst->anonymous = 1;
f4dc4d17 5693
094b34ac
DE
5694 xfree (name);
5695 }
f4dc4d17 5696
094b34ac
DE
5697 tu_group->hash.dwo_unit = cu->dwo_unit;
5698 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5699
5700 return tu_group;
5701}
5702
094b34ac
DE
5703/* Look up the type_unit_group for type unit CU, and create it if necessary.
5704 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5705
5706static struct type_unit_group *
ff39bb5e 5707get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5708{
5709 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5710 struct type_unit_group *tu_group;
5711 void **slot;
5712 unsigned int line_offset;
5713 struct type_unit_group type_unit_group_for_lookup;
5714
5715 if (dwarf2_per_objfile->type_unit_groups == NULL)
5716 {
5717 dwarf2_per_objfile->type_unit_groups =
5718 allocate_type_unit_groups_table ();
5719 }
5720
5721 /* Do we need to create a new group, or can we use an existing one? */
5722
5723 if (stmt_list)
5724 {
5725 line_offset = DW_UNSND (stmt_list);
5726 ++tu_stats->nr_symtab_sharers;
5727 }
5728 else
5729 {
5730 /* Ugh, no stmt_list. Rare, but we have to handle it.
5731 We can do various things here like create one group per TU or
5732 spread them over multiple groups to split up the expansion work.
5733 To avoid worst case scenarios (too many groups or too large groups)
5734 we, umm, group them in bunches. */
5735 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5736 | (tu_stats->nr_stmt_less_type_units
5737 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5738 ++tu_stats->nr_stmt_less_type_units;
5739 }
5740
094b34ac
DE
5741 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5742 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5743 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5744 &type_unit_group_for_lookup, INSERT);
5745 if (*slot != NULL)
5746 {
5747 tu_group = *slot;
5748 gdb_assert (tu_group != NULL);
5749 }
5750 else
5751 {
5752 sect_offset line_offset_struct;
5753
5754 line_offset_struct.sect_off = line_offset;
094b34ac 5755 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5756 *slot = tu_group;
5757 ++tu_stats->nr_symtabs;
5758 }
5759
5760 return tu_group;
5761}
5762
5763/* Struct used to sort TUs by their abbreviation table offset. */
5764
5765struct tu_abbrev_offset
5766{
5767 struct signatured_type *sig_type;
5768 sect_offset abbrev_offset;
5769};
5770
5771/* Helper routine for build_type_unit_groups, passed to qsort. */
5772
5773static int
5774sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5775{
5776 const struct tu_abbrev_offset * const *a = ap;
5777 const struct tu_abbrev_offset * const *b = bp;
5778 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5779 unsigned int boff = (*b)->abbrev_offset.sect_off;
5780
5781 return (aoff > boff) - (aoff < boff);
5782}
5783
5784/* A helper function to add a type_unit_group to a table. */
5785
5786static int
5787add_type_unit_group_to_table (void **slot, void *datum)
5788{
5789 struct type_unit_group *tu_group = *slot;
5790 struct type_unit_group ***datap = datum;
5791
5792 **datap = tu_group;
5793 ++*datap;
5794
5795 return 1;
5796}
5797
5798/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5799 each one passing FUNC,DATA.
5800
5801 The efficiency is because we sort TUs by the abbrev table they use and
5802 only read each abbrev table once. In one program there are 200K TUs
5803 sharing 8K abbrev tables.
5804
5805 The main purpose of this function is to support building the
5806 dwarf2_per_objfile->type_unit_groups table.
5807 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5808 can collapse the search space by grouping them by stmt_list.
5809 The savings can be significant, in the same program from above the 200K TUs
5810 share 8K stmt_list tables.
5811
5812 FUNC is expected to call get_type_unit_group, which will create the
5813 struct type_unit_group if necessary and add it to
5814 dwarf2_per_objfile->type_unit_groups. */
5815
5816static void
5817build_type_unit_groups (die_reader_func_ftype *func, void *data)
5818{
5819 struct objfile *objfile = dwarf2_per_objfile->objfile;
5820 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5821 struct cleanup *cleanups;
5822 struct abbrev_table *abbrev_table;
5823 sect_offset abbrev_offset;
5824 struct tu_abbrev_offset *sorted_by_abbrev;
5825 struct type_unit_group **iter;
5826 int i;
5827
5828 /* It's up to the caller to not call us multiple times. */
5829 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5830
5831 if (dwarf2_per_objfile->n_type_units == 0)
5832 return;
5833
5834 /* TUs typically share abbrev tables, and there can be way more TUs than
5835 abbrev tables. Sort by abbrev table to reduce the number of times we
5836 read each abbrev table in.
5837 Alternatives are to punt or to maintain a cache of abbrev tables.
5838 This is simpler and efficient enough for now.
5839
5840 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5841 symtab to use). Typically TUs with the same abbrev offset have the same
5842 stmt_list value too so in practice this should work well.
5843
5844 The basic algorithm here is:
5845
5846 sort TUs by abbrev table
5847 for each TU with same abbrev table:
5848 read abbrev table if first user
5849 read TU top level DIE
5850 [IWBN if DWO skeletons had DW_AT_stmt_list]
5851 call FUNC */
5852
5853 if (dwarf2_read_debug)
5854 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5855
5856 /* Sort in a separate table to maintain the order of all_type_units
5857 for .gdb_index: TU indices directly index all_type_units. */
5858 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5859 dwarf2_per_objfile->n_type_units);
5860 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5861 {
5862 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5863
5864 sorted_by_abbrev[i].sig_type = sig_type;
5865 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5866 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5867 sig_type->per_cu.offset);
5868 }
5869 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5870 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5871 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5872
094b34ac
DE
5873 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5874 called any number of times, so we don't reset tu_stats here. */
5875
f4dc4d17
DE
5876 abbrev_offset.sect_off = ~(unsigned) 0;
5877 abbrev_table = NULL;
5878 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5879
5880 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5881 {
5882 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5883
5884 /* Switch to the next abbrev table if necessary. */
5885 if (abbrev_table == NULL
5886 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5887 {
5888 if (abbrev_table != NULL)
5889 {
5890 abbrev_table_free (abbrev_table);
5891 /* Reset to NULL in case abbrev_table_read_table throws
5892 an error: abbrev_table_free_cleanup will get called. */
5893 abbrev_table = NULL;
5894 }
5895 abbrev_offset = tu->abbrev_offset;
5896 abbrev_table =
5897 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5898 abbrev_offset);
5899 ++tu_stats->nr_uniq_abbrev_tables;
5900 }
5901
5902 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5903 func, data);
5904 }
5905
a2ce51a0
DE
5906 /* type_unit_groups can be NULL if there is an error in the debug info.
5907 Just create an empty table so the rest of gdb doesn't have to watch
5908 for this error case. */
5909 if (dwarf2_per_objfile->type_unit_groups == NULL)
5910 {
5911 dwarf2_per_objfile->type_unit_groups =
5912 allocate_type_unit_groups_table ();
5913 dwarf2_per_objfile->n_type_unit_groups = 0;
5914 }
5915
f4dc4d17
DE
5916 /* Create a vector of pointers to primary type units to make it easy to
5917 iterate over them and CUs. See dw2_get_primary_cu. */
5918 dwarf2_per_objfile->n_type_unit_groups =
5919 htab_elements (dwarf2_per_objfile->type_unit_groups);
5920 dwarf2_per_objfile->all_type_unit_groups =
5921 obstack_alloc (&objfile->objfile_obstack,
5922 dwarf2_per_objfile->n_type_unit_groups
5923 * sizeof (struct type_unit_group *));
5924 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5925 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5926 add_type_unit_group_to_table, &iter);
5927 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5928 == dwarf2_per_objfile->n_type_unit_groups);
5929
5930 do_cleanups (cleanups);
5931
5932 if (dwarf2_read_debug)
5933 {
5934 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5935 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5936 dwarf2_per_objfile->n_type_units);
5937 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5938 tu_stats->nr_uniq_abbrev_tables);
5939 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5940 tu_stats->nr_symtabs);
5941 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5942 tu_stats->nr_symtab_sharers);
5943 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5944 tu_stats->nr_stmt_less_type_units);
5945 }
5946}
0018ea6f
DE
5947\f
5948/* Partial symbol tables. */
5949
5950/* Create a psymtab named NAME and assign it to PER_CU.
5951
5952 The caller must fill in the following details:
5953 dirname, textlow, texthigh. */
5954
5955static struct partial_symtab *
5956create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5957{
5958 struct objfile *objfile = per_cu->objfile;
5959 struct partial_symtab *pst;
5960
5961 pst = start_psymtab_common (objfile, objfile->section_offsets,
5962 name, 0,
5963 objfile->global_psymbols.next,
5964 objfile->static_psymbols.next);
5965
5966 pst->psymtabs_addrmap_supported = 1;
5967
5968 /* This is the glue that links PST into GDB's symbol API. */
5969 pst->read_symtab_private = per_cu;
5970 pst->read_symtab = dwarf2_read_symtab;
5971 per_cu->v.psymtab = pst;
5972
5973 return pst;
5974}
5975
b93601f3
TT
5976/* The DATA object passed to process_psymtab_comp_unit_reader has this
5977 type. */
5978
5979struct process_psymtab_comp_unit_data
5980{
5981 /* True if we are reading a DW_TAG_partial_unit. */
5982
5983 int want_partial_unit;
5984
5985 /* The "pretend" language that is used if the CU doesn't declare a
5986 language. */
5987
5988 enum language pretend_language;
5989};
5990
0018ea6f
DE
5991/* die_reader_func for process_psymtab_comp_unit. */
5992
5993static void
5994process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5995 const gdb_byte *info_ptr,
0018ea6f
DE
5996 struct die_info *comp_unit_die,
5997 int has_children,
5998 void *data)
5999{
6000 struct dwarf2_cu *cu = reader->cu;
6001 struct objfile *objfile = cu->objfile;
6002 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6003 struct attribute *attr;
6004 CORE_ADDR baseaddr;
6005 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6006 struct partial_symtab *pst;
6007 int has_pc_info;
6008 const char *filename;
b93601f3 6009 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 6010
b93601f3 6011 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6012 return;
6013
6014 gdb_assert (! per_cu->is_debug_types);
6015
b93601f3 6016 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6017
6018 cu->list_in_scope = &file_symbols;
6019
6020 /* Allocate a new partial symbol table structure. */
6021 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
6022 if (attr == NULL || !DW_STRING (attr))
6023 filename = "";
6024 else
6025 filename = DW_STRING (attr);
6026
6027 pst = create_partial_symtab (per_cu, filename);
6028
6029 /* This must be done before calling dwarf2_build_include_psymtabs. */
6030 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6031 if (attr != NULL)
6032 pst->dirname = DW_STRING (attr);
6033
6034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6035
6036 dwarf2_find_base_address (comp_unit_die, cu);
6037
6038 /* Possibly set the default values of LOWPC and HIGHPC from
6039 `DW_AT_ranges'. */
6040 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6041 &best_highpc, cu, pst);
6042 if (has_pc_info == 1 && best_lowpc < best_highpc)
6043 /* Store the contiguous range if it is not empty; it can be empty for
6044 CUs with no code. */
6045 addrmap_set_empty (objfile->psymtabs_addrmap,
6046 best_lowpc + baseaddr,
6047 best_highpc + baseaddr - 1, pst);
6048
6049 /* Check if comp unit has_children.
6050 If so, read the rest of the partial symbols from this comp unit.
6051 If not, there's no more debug_info for this comp unit. */
6052 if (has_children)
6053 {
6054 struct partial_die_info *first_die;
6055 CORE_ADDR lowpc, highpc;
6056
6057 lowpc = ((CORE_ADDR) -1);
6058 highpc = ((CORE_ADDR) 0);
6059
6060 first_die = load_partial_dies (reader, info_ptr, 1);
6061
6062 scan_partial_symbols (first_die, &lowpc, &highpc,
6063 ! has_pc_info, cu);
6064
6065 /* If we didn't find a lowpc, set it to highpc to avoid
6066 complaints from `maint check'. */
6067 if (lowpc == ((CORE_ADDR) -1))
6068 lowpc = highpc;
6069
6070 /* If the compilation unit didn't have an explicit address range,
6071 then use the information extracted from its child dies. */
6072 if (! has_pc_info)
6073 {
6074 best_lowpc = lowpc;
6075 best_highpc = highpc;
6076 }
6077 }
6078 pst->textlow = best_lowpc + baseaddr;
6079 pst->texthigh = best_highpc + baseaddr;
6080
6081 pst->n_global_syms = objfile->global_psymbols.next -
6082 (objfile->global_psymbols.list + pst->globals_offset);
6083 pst->n_static_syms = objfile->static_psymbols.next -
6084 (objfile->static_psymbols.list + pst->statics_offset);
6085 sort_pst_symbols (objfile, pst);
6086
6087 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6088 {
6089 int i;
6090 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6091 struct dwarf2_per_cu_data *iter;
6092
6093 /* Fill in 'dependencies' here; we fill in 'users' in a
6094 post-pass. */
6095 pst->number_of_dependencies = len;
6096 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6097 len * sizeof (struct symtab *));
6098 for (i = 0;
6099 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6100 i, iter);
6101 ++i)
6102 pst->dependencies[i] = iter->v.psymtab;
6103
6104 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6105 }
6106
6107 /* Get the list of files included in the current compilation unit,
6108 and build a psymtab for each of them. */
6109 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6110
6111 if (dwarf2_read_debug)
6112 {
6113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6114
6115 fprintf_unfiltered (gdb_stdlog,
6116 "Psymtab for %s unit @0x%x: %s - %s"
6117 ", %d global, %d static syms\n",
6118 per_cu->is_debug_types ? "type" : "comp",
6119 per_cu->offset.sect_off,
6120 paddress (gdbarch, pst->textlow),
6121 paddress (gdbarch, pst->texthigh),
6122 pst->n_global_syms, pst->n_static_syms);
6123 }
6124}
6125
6126/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6127 Process compilation unit THIS_CU for a psymtab. */
6128
6129static void
6130process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6131 int want_partial_unit,
6132 enum language pretend_language)
0018ea6f 6133{
b93601f3
TT
6134 struct process_psymtab_comp_unit_data info;
6135
0018ea6f
DE
6136 /* If this compilation unit was already read in, free the
6137 cached copy in order to read it in again. This is
6138 necessary because we skipped some symbols when we first
6139 read in the compilation unit (see load_partial_dies).
6140 This problem could be avoided, but the benefit is unclear. */
6141 if (this_cu->cu != NULL)
6142 free_one_cached_comp_unit (this_cu);
6143
6144 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6145 info.want_partial_unit = want_partial_unit;
6146 info.pretend_language = pretend_language;
0018ea6f
DE
6147 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6148 process_psymtab_comp_unit_reader,
b93601f3 6149 &info);
0018ea6f
DE
6150
6151 /* Age out any secondary CUs. */
6152 age_cached_comp_units ();
6153}
f4dc4d17
DE
6154
6155/* Reader function for build_type_psymtabs. */
6156
6157static void
6158build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6159 const gdb_byte *info_ptr,
f4dc4d17
DE
6160 struct die_info *type_unit_die,
6161 int has_children,
6162 void *data)
6163{
6164 struct objfile *objfile = dwarf2_per_objfile->objfile;
6165 struct dwarf2_cu *cu = reader->cu;
6166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6167 struct signatured_type *sig_type;
f4dc4d17
DE
6168 struct type_unit_group *tu_group;
6169 struct attribute *attr;
6170 struct partial_die_info *first_die;
6171 CORE_ADDR lowpc, highpc;
6172 struct partial_symtab *pst;
6173
6174 gdb_assert (data == NULL);
0186c6a7
DE
6175 gdb_assert (per_cu->is_debug_types);
6176 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6177
6178 if (! has_children)
6179 return;
6180
6181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6182 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6183
0186c6a7 6184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6185
6186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6187 cu->list_in_scope = &file_symbols;
6188 pst = create_partial_symtab (per_cu, "");
6189 pst->anonymous = 1;
6190
6191 first_die = load_partial_dies (reader, info_ptr, 1);
6192
6193 lowpc = (CORE_ADDR) -1;
6194 highpc = (CORE_ADDR) 0;
6195 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6196
6197 pst->n_global_syms = objfile->global_psymbols.next -
6198 (objfile->global_psymbols.list + pst->globals_offset);
6199 pst->n_static_syms = objfile->static_psymbols.next -
6200 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6201 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6202}
6203
6204/* Traversal function for build_type_psymtabs. */
6205
6206static int
6207build_type_psymtab_dependencies (void **slot, void *info)
6208{
6209 struct objfile *objfile = dwarf2_per_objfile->objfile;
6210 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6211 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6212 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6213 int len = VEC_length (sig_type_ptr, tu_group->tus);
6214 struct signatured_type *iter;
f4dc4d17
DE
6215 int i;
6216
6217 gdb_assert (len > 0);
0186c6a7 6218 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6219
6220 pst->number_of_dependencies = len;
6221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6222 len * sizeof (struct psymtab *));
6223 for (i = 0;
0186c6a7 6224 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6225 ++i)
6226 {
0186c6a7
DE
6227 gdb_assert (iter->per_cu.is_debug_types);
6228 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6229 iter->type_unit_group = tu_group;
f4dc4d17
DE
6230 }
6231
0186c6a7 6232 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6233
6234 return 1;
6235}
6236
6237/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6238 Build partial symbol tables for the .debug_types comp-units. */
6239
6240static void
6241build_type_psymtabs (struct objfile *objfile)
6242{
0e50663e 6243 if (! create_all_type_units (objfile))
348e048f
DE
6244 return;
6245
f4dc4d17
DE
6246 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6247
6248 /* Now that all TUs have been processed we can fill in the dependencies. */
6249 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6250 build_type_psymtab_dependencies, NULL);
348e048f
DE
6251}
6252
60606b2c
TT
6253/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6254
6255static void
6256psymtabs_addrmap_cleanup (void *o)
6257{
6258 struct objfile *objfile = o;
ec61707d 6259
60606b2c
TT
6260 objfile->psymtabs_addrmap = NULL;
6261}
6262
95554aad
TT
6263/* Compute the 'user' field for each psymtab in OBJFILE. */
6264
6265static void
6266set_partial_user (struct objfile *objfile)
6267{
6268 int i;
6269
6270 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6271 {
6272 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6273 struct partial_symtab *pst = per_cu->v.psymtab;
6274 int j;
6275
36586728
TT
6276 if (pst == NULL)
6277 continue;
6278
95554aad
TT
6279 for (j = 0; j < pst->number_of_dependencies; ++j)
6280 {
6281 /* Set the 'user' field only if it is not already set. */
6282 if (pst->dependencies[j]->user == NULL)
6283 pst->dependencies[j]->user = pst;
6284 }
6285 }
6286}
6287
93311388
DE
6288/* Build the partial symbol table by doing a quick pass through the
6289 .debug_info and .debug_abbrev sections. */
72bf9492 6290
93311388 6291static void
c67a9c90 6292dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6293{
60606b2c
TT
6294 struct cleanup *back_to, *addrmap_cleanup;
6295 struct obstack temp_obstack;
21b2bd31 6296 int i;
93311388 6297
45cfd468
DE
6298 if (dwarf2_read_debug)
6299 {
6300 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6301 objfile_name (objfile));
45cfd468
DE
6302 }
6303
98bfdba5
PA
6304 dwarf2_per_objfile->reading_partial_symbols = 1;
6305
be391dca 6306 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6307
93311388
DE
6308 /* Any cached compilation units will be linked by the per-objfile
6309 read_in_chain. Make sure to free them when we're done. */
6310 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6311
348e048f
DE
6312 build_type_psymtabs (objfile);
6313
93311388 6314 create_all_comp_units (objfile);
c906108c 6315
60606b2c
TT
6316 /* Create a temporary address map on a temporary obstack. We later
6317 copy this to the final obstack. */
6318 obstack_init (&temp_obstack);
6319 make_cleanup_obstack_free (&temp_obstack);
6320 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6321 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6322
21b2bd31 6323 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6324 {
21b2bd31 6325 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6326
b93601f3 6327 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6328 }
ff013f42 6329
95554aad
TT
6330 set_partial_user (objfile);
6331
ff013f42
JK
6332 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6333 &objfile->objfile_obstack);
60606b2c 6334 discard_cleanups (addrmap_cleanup);
ff013f42 6335
ae038cb0 6336 do_cleanups (back_to);
45cfd468
DE
6337
6338 if (dwarf2_read_debug)
6339 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6340 objfile_name (objfile));
ae038cb0
DJ
6341}
6342
3019eac3 6343/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6344
6345static void
dee91e82 6346load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6347 const gdb_byte *info_ptr,
dee91e82
DE
6348 struct die_info *comp_unit_die,
6349 int has_children,
6350 void *data)
ae038cb0 6351{
dee91e82 6352 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6353
95554aad 6354 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6355
ae038cb0
DJ
6356 /* Check if comp unit has_children.
6357 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6358 If not, there's no more debug_info for this comp unit. */
d85a05f0 6359 if (has_children)
dee91e82
DE
6360 load_partial_dies (reader, info_ptr, 0);
6361}
98bfdba5 6362
dee91e82
DE
6363/* Load the partial DIEs for a secondary CU into memory.
6364 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6365
dee91e82
DE
6366static void
6367load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6368{
f4dc4d17
DE
6369 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6370 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6371}
6372
ae038cb0 6373static void
36586728
TT
6374read_comp_units_from_section (struct objfile *objfile,
6375 struct dwarf2_section_info *section,
6376 unsigned int is_dwz,
6377 int *n_allocated,
6378 int *n_comp_units,
6379 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6380{
d521ce57 6381 const gdb_byte *info_ptr;
a32a8923 6382 bfd *abfd = get_section_bfd_owner (section);
be391dca 6383
bf6af496
DE
6384 if (dwarf2_read_debug)
6385 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6386 get_section_name (section),
6387 get_section_file_name (section));
bf6af496 6388
36586728 6389 dwarf2_read_section (objfile, section);
ae038cb0 6390
36586728 6391 info_ptr = section->buffer;
6e70227d 6392
36586728 6393 while (info_ptr < section->buffer + section->size)
ae038cb0 6394 {
c764a876 6395 unsigned int length, initial_length_size;
ae038cb0 6396 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6397 sect_offset offset;
ae038cb0 6398
36586728 6399 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6400
6401 /* Read just enough information to find out where the next
6402 compilation unit is. */
36586728 6403 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6404
6405 /* Save the compilation unit for later lookup. */
6406 this_cu = obstack_alloc (&objfile->objfile_obstack,
6407 sizeof (struct dwarf2_per_cu_data));
6408 memset (this_cu, 0, sizeof (*this_cu));
6409 this_cu->offset = offset;
c764a876 6410 this_cu->length = length + initial_length_size;
36586728 6411 this_cu->is_dwz = is_dwz;
9291a0cd 6412 this_cu->objfile = objfile;
8a0459fd 6413 this_cu->section = section;
ae038cb0 6414
36586728 6415 if (*n_comp_units == *n_allocated)
ae038cb0 6416 {
36586728
TT
6417 *n_allocated *= 2;
6418 *all_comp_units = xrealloc (*all_comp_units,
6419 *n_allocated
6420 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6421 }
36586728
TT
6422 (*all_comp_units)[*n_comp_units] = this_cu;
6423 ++*n_comp_units;
ae038cb0
DJ
6424
6425 info_ptr = info_ptr + this_cu->length;
6426 }
36586728
TT
6427}
6428
6429/* Create a list of all compilation units in OBJFILE.
6430 This is only done for -readnow and building partial symtabs. */
6431
6432static void
6433create_all_comp_units (struct objfile *objfile)
6434{
6435 int n_allocated;
6436 int n_comp_units;
6437 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6438 struct dwz_file *dwz;
36586728
TT
6439
6440 n_comp_units = 0;
6441 n_allocated = 10;
6442 all_comp_units = xmalloc (n_allocated
6443 * sizeof (struct dwarf2_per_cu_data *));
6444
6445 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6446 &n_allocated, &n_comp_units, &all_comp_units);
6447
4db1a1dc
TT
6448 dwz = dwarf2_get_dwz_file ();
6449 if (dwz != NULL)
6450 read_comp_units_from_section (objfile, &dwz->info, 1,
6451 &n_allocated, &n_comp_units,
6452 &all_comp_units);
ae038cb0
DJ
6453
6454 dwarf2_per_objfile->all_comp_units
6455 = obstack_alloc (&objfile->objfile_obstack,
6456 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6457 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6458 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6459 xfree (all_comp_units);
6460 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6461}
6462
5734ee8b
DJ
6463/* Process all loaded DIEs for compilation unit CU, starting at
6464 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6465 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6466 DW_AT_ranges). If NEED_PC is set, then this function will set
6467 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6468 and record the covered ranges in the addrmap. */
c906108c 6469
72bf9492
DJ
6470static void
6471scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6472 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6473{
72bf9492 6474 struct partial_die_info *pdi;
c906108c 6475
91c24f0a
DC
6476 /* Now, march along the PDI's, descending into ones which have
6477 interesting children but skipping the children of the other ones,
6478 until we reach the end of the compilation unit. */
c906108c 6479
72bf9492 6480 pdi = first_die;
91c24f0a 6481
72bf9492
DJ
6482 while (pdi != NULL)
6483 {
6484 fixup_partial_die (pdi, cu);
c906108c 6485
f55ee35c 6486 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6487 children, so we need to look at them. Ditto for anonymous
6488 enums. */
933c6fe4 6489
72bf9492 6490 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6491 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6492 || pdi->tag == DW_TAG_imported_unit)
c906108c 6493 {
72bf9492 6494 switch (pdi->tag)
c906108c
SS
6495 {
6496 case DW_TAG_subprogram:
5734ee8b 6497 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6498 break;
72929c62 6499 case DW_TAG_constant:
c906108c
SS
6500 case DW_TAG_variable:
6501 case DW_TAG_typedef:
91c24f0a 6502 case DW_TAG_union_type:
72bf9492 6503 if (!pdi->is_declaration)
63d06c5c 6504 {
72bf9492 6505 add_partial_symbol (pdi, cu);
63d06c5c
DC
6506 }
6507 break;
c906108c 6508 case DW_TAG_class_type:
680b30c7 6509 case DW_TAG_interface_type:
c906108c 6510 case DW_TAG_structure_type:
72bf9492 6511 if (!pdi->is_declaration)
c906108c 6512 {
72bf9492 6513 add_partial_symbol (pdi, cu);
c906108c
SS
6514 }
6515 break;
91c24f0a 6516 case DW_TAG_enumeration_type:
72bf9492
DJ
6517 if (!pdi->is_declaration)
6518 add_partial_enumeration (pdi, cu);
c906108c
SS
6519 break;
6520 case DW_TAG_base_type:
a02abb62 6521 case DW_TAG_subrange_type:
c906108c 6522 /* File scope base type definitions are added to the partial
c5aa993b 6523 symbol table. */
72bf9492 6524 add_partial_symbol (pdi, cu);
c906108c 6525 break;
d9fa45fe 6526 case DW_TAG_namespace:
5734ee8b 6527 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6528 break;
5d7cb8df
JK
6529 case DW_TAG_module:
6530 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6531 break;
95554aad
TT
6532 case DW_TAG_imported_unit:
6533 {
6534 struct dwarf2_per_cu_data *per_cu;
6535
f4dc4d17
DE
6536 /* For now we don't handle imported units in type units. */
6537 if (cu->per_cu->is_debug_types)
6538 {
6539 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6540 " supported in type units [in module %s]"),
4262abfb 6541 objfile_name (cu->objfile));
f4dc4d17
DE
6542 }
6543
95554aad 6544 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6545 pdi->is_dwz,
95554aad
TT
6546 cu->objfile);
6547
6548 /* Go read the partial unit, if needed. */
6549 if (per_cu->v.psymtab == NULL)
b93601f3 6550 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6551
f4dc4d17 6552 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6553 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6554 }
6555 break;
74921315
KS
6556 case DW_TAG_imported_declaration:
6557 add_partial_symbol (pdi, cu);
6558 break;
c906108c
SS
6559 default:
6560 break;
6561 }
6562 }
6563
72bf9492
DJ
6564 /* If the die has a sibling, skip to the sibling. */
6565
6566 pdi = pdi->die_sibling;
6567 }
6568}
6569
6570/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6571
72bf9492 6572 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6573 name is concatenated with "::" and the partial DIE's name. For
6574 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6575 Enumerators are an exception; they use the scope of their parent
6576 enumeration type, i.e. the name of the enumeration type is not
6577 prepended to the enumerator.
91c24f0a 6578
72bf9492
DJ
6579 There are two complexities. One is DW_AT_specification; in this
6580 case "parent" means the parent of the target of the specification,
6581 instead of the direct parent of the DIE. The other is compilers
6582 which do not emit DW_TAG_namespace; in this case we try to guess
6583 the fully qualified name of structure types from their members'
6584 linkage names. This must be done using the DIE's children rather
6585 than the children of any DW_AT_specification target. We only need
6586 to do this for structures at the top level, i.e. if the target of
6587 any DW_AT_specification (if any; otherwise the DIE itself) does not
6588 have a parent. */
6589
6590/* Compute the scope prefix associated with PDI's parent, in
6591 compilation unit CU. The result will be allocated on CU's
6592 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6593 field. NULL is returned if no prefix is necessary. */
15d034d0 6594static const char *
72bf9492
DJ
6595partial_die_parent_scope (struct partial_die_info *pdi,
6596 struct dwarf2_cu *cu)
6597{
15d034d0 6598 const char *grandparent_scope;
72bf9492 6599 struct partial_die_info *parent, *real_pdi;
91c24f0a 6600
72bf9492
DJ
6601 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6602 then this means the parent of the specification DIE. */
6603
6604 real_pdi = pdi;
72bf9492 6605 while (real_pdi->has_specification)
36586728
TT
6606 real_pdi = find_partial_die (real_pdi->spec_offset,
6607 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6608
6609 parent = real_pdi->die_parent;
6610 if (parent == NULL)
6611 return NULL;
6612
6613 if (parent->scope_set)
6614 return parent->scope;
6615
6616 fixup_partial_die (parent, cu);
6617
10b3939b 6618 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6619
acebe513
UW
6620 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6621 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6622 Work around this problem here. */
6623 if (cu->language == language_cplus
6e70227d 6624 && parent->tag == DW_TAG_namespace
acebe513
UW
6625 && strcmp (parent->name, "::") == 0
6626 && grandparent_scope == NULL)
6627 {
6628 parent->scope = NULL;
6629 parent->scope_set = 1;
6630 return NULL;
6631 }
6632
9c6c53f7
SA
6633 if (pdi->tag == DW_TAG_enumerator)
6634 /* Enumerators should not get the name of the enumeration as a prefix. */
6635 parent->scope = grandparent_scope;
6636 else if (parent->tag == DW_TAG_namespace
f55ee35c 6637 || parent->tag == DW_TAG_module
72bf9492
DJ
6638 || parent->tag == DW_TAG_structure_type
6639 || parent->tag == DW_TAG_class_type
680b30c7 6640 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6641 || parent->tag == DW_TAG_union_type
6642 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6643 {
6644 if (grandparent_scope == NULL)
6645 parent->scope = parent->name;
6646 else
3e43a32a
MS
6647 parent->scope = typename_concat (&cu->comp_unit_obstack,
6648 grandparent_scope,
f55ee35c 6649 parent->name, 0, cu);
72bf9492 6650 }
72bf9492
DJ
6651 else
6652 {
6653 /* FIXME drow/2004-04-01: What should we be doing with
6654 function-local names? For partial symbols, we should probably be
6655 ignoring them. */
6656 complaint (&symfile_complaints,
e2e0b3e5 6657 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6658 parent->tag, pdi->offset.sect_off);
72bf9492 6659 parent->scope = grandparent_scope;
c906108c
SS
6660 }
6661
72bf9492
DJ
6662 parent->scope_set = 1;
6663 return parent->scope;
6664}
6665
6666/* Return the fully scoped name associated with PDI, from compilation unit
6667 CU. The result will be allocated with malloc. */
4568ecf9 6668
72bf9492
DJ
6669static char *
6670partial_die_full_name (struct partial_die_info *pdi,
6671 struct dwarf2_cu *cu)
6672{
15d034d0 6673 const char *parent_scope;
72bf9492 6674
98bfdba5
PA
6675 /* If this is a template instantiation, we can not work out the
6676 template arguments from partial DIEs. So, unfortunately, we have
6677 to go through the full DIEs. At least any work we do building
6678 types here will be reused if full symbols are loaded later. */
6679 if (pdi->has_template_arguments)
6680 {
6681 fixup_partial_die (pdi, cu);
6682
6683 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6684 {
6685 struct die_info *die;
6686 struct attribute attr;
6687 struct dwarf2_cu *ref_cu = cu;
6688
b64f50a1 6689 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6690 attr.name = 0;
6691 attr.form = DW_FORM_ref_addr;
4568ecf9 6692 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6693 die = follow_die_ref (NULL, &attr, &ref_cu);
6694
6695 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6696 }
6697 }
6698
72bf9492
DJ
6699 parent_scope = partial_die_parent_scope (pdi, cu);
6700 if (parent_scope == NULL)
6701 return NULL;
6702 else
f55ee35c 6703 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6704}
6705
6706static void
72bf9492 6707add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6708{
e7c27a73 6709 struct objfile *objfile = cu->objfile;
c906108c 6710 CORE_ADDR addr = 0;
15d034d0 6711 const char *actual_name = NULL;
e142c38c 6712 CORE_ADDR baseaddr;
15d034d0 6713 char *built_actual_name;
e142c38c
DJ
6714
6715 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6716
15d034d0
TT
6717 built_actual_name = partial_die_full_name (pdi, cu);
6718 if (built_actual_name != NULL)
6719 actual_name = built_actual_name;
63d06c5c 6720
72bf9492
DJ
6721 if (actual_name == NULL)
6722 actual_name = pdi->name;
6723
c906108c
SS
6724 switch (pdi->tag)
6725 {
6726 case DW_TAG_subprogram:
2cfa0c8d 6727 if (pdi->is_external || cu->language == language_ada)
c906108c 6728 {
2cfa0c8d
JB
6729 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6730 of the global scope. But in Ada, we want to be able to access
6731 nested procedures globally. So all Ada subprograms are stored
6732 in the global scope. */
f47fb265 6733 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6734 mst_text, objfile); */
f47fb265 6735 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6736 built_actual_name != NULL,
f47fb265
MS
6737 VAR_DOMAIN, LOC_BLOCK,
6738 &objfile->global_psymbols,
6739 0, pdi->lowpc + baseaddr,
6740 cu->language, objfile);
c906108c
SS
6741 }
6742 else
6743 {
f47fb265 6744 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6745 mst_file_text, objfile); */
f47fb265 6746 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6747 built_actual_name != NULL,
f47fb265
MS
6748 VAR_DOMAIN, LOC_BLOCK,
6749 &objfile->static_psymbols,
6750 0, pdi->lowpc + baseaddr,
6751 cu->language, objfile);
c906108c
SS
6752 }
6753 break;
72929c62
JB
6754 case DW_TAG_constant:
6755 {
6756 struct psymbol_allocation_list *list;
6757
6758 if (pdi->is_external)
6759 list = &objfile->global_psymbols;
6760 else
6761 list = &objfile->static_psymbols;
f47fb265 6762 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6763 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6764 list, 0, 0, cu->language, objfile);
72929c62
JB
6765 }
6766 break;
c906108c 6767 case DW_TAG_variable:
95554aad
TT
6768 if (pdi->d.locdesc)
6769 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6770
95554aad 6771 if (pdi->d.locdesc
caac4577
JG
6772 && addr == 0
6773 && !dwarf2_per_objfile->has_section_at_zero)
6774 {
6775 /* A global or static variable may also have been stripped
6776 out by the linker if unused, in which case its address
6777 will be nullified; do not add such variables into partial
6778 symbol table then. */
6779 }
6780 else if (pdi->is_external)
c906108c
SS
6781 {
6782 /* Global Variable.
6783 Don't enter into the minimal symbol tables as there is
6784 a minimal symbol table entry from the ELF symbols already.
6785 Enter into partial symbol table if it has a location
6786 descriptor or a type.
6787 If the location descriptor is missing, new_symbol will create
6788 a LOC_UNRESOLVED symbol, the address of the variable will then
6789 be determined from the minimal symbol table whenever the variable
6790 is referenced.
6791 The address for the partial symbol table entry is not
6792 used by GDB, but it comes in handy for debugging partial symbol
6793 table building. */
6794
95554aad 6795 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6796 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6797 built_actual_name != NULL,
f47fb265
MS
6798 VAR_DOMAIN, LOC_STATIC,
6799 &objfile->global_psymbols,
6800 0, addr + baseaddr,
6801 cu->language, objfile);
c906108c
SS
6802 }
6803 else
6804 {
0963b4bd 6805 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6806 if (pdi->d.locdesc == NULL)
decbce07 6807 {
15d034d0 6808 xfree (built_actual_name);
decbce07
MS
6809 return;
6810 }
f47fb265 6811 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6812 mst_file_data, objfile); */
f47fb265 6813 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6814 built_actual_name != NULL,
f47fb265
MS
6815 VAR_DOMAIN, LOC_STATIC,
6816 &objfile->static_psymbols,
6817 0, addr + baseaddr,
6818 cu->language, objfile);
c906108c
SS
6819 }
6820 break;
6821 case DW_TAG_typedef:
6822 case DW_TAG_base_type:
a02abb62 6823 case DW_TAG_subrange_type:
38d518c9 6824 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6825 built_actual_name != NULL,
176620f1 6826 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6827 &objfile->static_psymbols,
e142c38c 6828 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6829 break;
74921315 6830 case DW_TAG_imported_declaration:
72bf9492
DJ
6831 case DW_TAG_namespace:
6832 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6833 built_actual_name != NULL,
72bf9492
DJ
6834 VAR_DOMAIN, LOC_TYPEDEF,
6835 &objfile->global_psymbols,
6836 0, (CORE_ADDR) 0, cu->language, objfile);
6837 break;
530e8392
KB
6838 case DW_TAG_module:
6839 add_psymbol_to_list (actual_name, strlen (actual_name),
6840 built_actual_name != NULL,
6841 MODULE_DOMAIN, LOC_TYPEDEF,
6842 &objfile->global_psymbols,
6843 0, (CORE_ADDR) 0, cu->language, objfile);
6844 break;
c906108c 6845 case DW_TAG_class_type:
680b30c7 6846 case DW_TAG_interface_type:
c906108c
SS
6847 case DW_TAG_structure_type:
6848 case DW_TAG_union_type:
6849 case DW_TAG_enumeration_type:
fa4028e9
JB
6850 /* Skip external references. The DWARF standard says in the section
6851 about "Structure, Union, and Class Type Entries": "An incomplete
6852 structure, union or class type is represented by a structure,
6853 union or class entry that does not have a byte size attribute
6854 and that has a DW_AT_declaration attribute." */
6855 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6856 {
15d034d0 6857 xfree (built_actual_name);
decbce07
MS
6858 return;
6859 }
fa4028e9 6860
63d06c5c
DC
6861 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6862 static vs. global. */
38d518c9 6863 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6864 built_actual_name != NULL,
176620f1 6865 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6866 (cu->language == language_cplus
6867 || cu->language == language_java)
63d06c5c
DC
6868 ? &objfile->global_psymbols
6869 : &objfile->static_psymbols,
e142c38c 6870 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6871
c906108c
SS
6872 break;
6873 case DW_TAG_enumerator:
38d518c9 6874 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6875 built_actual_name != NULL,
176620f1 6876 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6877 (cu->language == language_cplus
6878 || cu->language == language_java)
f6fe98ef
DJ
6879 ? &objfile->global_psymbols
6880 : &objfile->static_psymbols,
e142c38c 6881 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6882 break;
6883 default:
6884 break;
6885 }
5c4e30ca 6886
15d034d0 6887 xfree (built_actual_name);
c906108c
SS
6888}
6889
5c4e30ca
DC
6890/* Read a partial die corresponding to a namespace; also, add a symbol
6891 corresponding to that namespace to the symbol table. NAMESPACE is
6892 the name of the enclosing namespace. */
91c24f0a 6893
72bf9492
DJ
6894static void
6895add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6896 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6897 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6898{
72bf9492 6899 /* Add a symbol for the namespace. */
e7c27a73 6900
72bf9492 6901 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6902
6903 /* Now scan partial symbols in that namespace. */
6904
91c24f0a 6905 if (pdi->has_children)
5734ee8b 6906 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6907}
6908
5d7cb8df
JK
6909/* Read a partial die corresponding to a Fortran module. */
6910
6911static void
6912add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6913 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6914{
530e8392
KB
6915 /* Add a symbol for the namespace. */
6916
6917 add_partial_symbol (pdi, cu);
6918
f55ee35c 6919 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6920
6921 if (pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6923}
6924
bc30ff58
JB
6925/* Read a partial die corresponding to a subprogram and create a partial
6926 symbol for that subprogram. When the CU language allows it, this
6927 routine also defines a partial symbol for each nested subprogram
6928 that this subprogram contains.
6e70227d 6929
bc30ff58
JB
6930 DIE my also be a lexical block, in which case we simply search
6931 recursively for suprograms defined inside that lexical block.
6932 Again, this is only performed when the CU language allows this
6933 type of definitions. */
6934
6935static void
6936add_partial_subprogram (struct partial_die_info *pdi,
6937 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6938 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6939{
6940 if (pdi->tag == DW_TAG_subprogram)
6941 {
6942 if (pdi->has_pc_info)
6943 {
6944 if (pdi->lowpc < *lowpc)
6945 *lowpc = pdi->lowpc;
6946 if (pdi->highpc > *highpc)
6947 *highpc = pdi->highpc;
5734ee8b
DJ
6948 if (need_pc)
6949 {
6950 CORE_ADDR baseaddr;
6951 struct objfile *objfile = cu->objfile;
6952
6953 baseaddr = ANOFFSET (objfile->section_offsets,
6954 SECT_OFF_TEXT (objfile));
6955 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6956 pdi->lowpc + baseaddr,
6957 pdi->highpc - 1 + baseaddr,
9291a0cd 6958 cu->per_cu->v.psymtab);
5734ee8b 6959 }
481860b3
GB
6960 }
6961
6962 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6963 {
bc30ff58 6964 if (!pdi->is_declaration)
e8d05480
JB
6965 /* Ignore subprogram DIEs that do not have a name, they are
6966 illegal. Do not emit a complaint at this point, we will
6967 do so when we convert this psymtab into a symtab. */
6968 if (pdi->name)
6969 add_partial_symbol (pdi, cu);
bc30ff58
JB
6970 }
6971 }
6e70227d 6972
bc30ff58
JB
6973 if (! pdi->has_children)
6974 return;
6975
6976 if (cu->language == language_ada)
6977 {
6978 pdi = pdi->die_child;
6979 while (pdi != NULL)
6980 {
6981 fixup_partial_die (pdi, cu);
6982 if (pdi->tag == DW_TAG_subprogram
6983 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6984 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6985 pdi = pdi->die_sibling;
6986 }
6987 }
6988}
6989
91c24f0a
DC
6990/* Read a partial die corresponding to an enumeration type. */
6991
72bf9492
DJ
6992static void
6993add_partial_enumeration (struct partial_die_info *enum_pdi,
6994 struct dwarf2_cu *cu)
91c24f0a 6995{
72bf9492 6996 struct partial_die_info *pdi;
91c24f0a
DC
6997
6998 if (enum_pdi->name != NULL)
72bf9492
DJ
6999 add_partial_symbol (enum_pdi, cu);
7000
7001 pdi = enum_pdi->die_child;
7002 while (pdi)
91c24f0a 7003 {
72bf9492 7004 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7005 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7006 else
72bf9492
DJ
7007 add_partial_symbol (pdi, cu);
7008 pdi = pdi->die_sibling;
91c24f0a 7009 }
91c24f0a
DC
7010}
7011
6caca83c
CC
7012/* Return the initial uleb128 in the die at INFO_PTR. */
7013
7014static unsigned int
d521ce57 7015peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7016{
7017 unsigned int bytes_read;
7018
7019 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7020}
7021
4bb7a0a7
DJ
7022/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7023 Return the corresponding abbrev, or NULL if the number is zero (indicating
7024 an empty DIE). In either case *BYTES_READ will be set to the length of
7025 the initial number. */
7026
7027static struct abbrev_info *
d521ce57 7028peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7029 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7030{
7031 bfd *abfd = cu->objfile->obfd;
7032 unsigned int abbrev_number;
7033 struct abbrev_info *abbrev;
7034
7035 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7036
7037 if (abbrev_number == 0)
7038 return NULL;
7039
433df2d4 7040 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7041 if (!abbrev)
7042 {
3e43a32a
MS
7043 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7044 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7045 }
7046
7047 return abbrev;
7048}
7049
93311388
DE
7050/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7051 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7052 DIE. Any children of the skipped DIEs will also be skipped. */
7053
d521ce57
TT
7054static const gdb_byte *
7055skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7056{
dee91e82 7057 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7058 struct abbrev_info *abbrev;
7059 unsigned int bytes_read;
7060
7061 while (1)
7062 {
7063 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7064 if (abbrev == NULL)
7065 return info_ptr + bytes_read;
7066 else
dee91e82 7067 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7068 }
7069}
7070
93311388
DE
7071/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7072 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7073 abbrev corresponding to that skipped uleb128 should be passed in
7074 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7075 children. */
7076
d521ce57
TT
7077static const gdb_byte *
7078skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7079 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7080{
7081 unsigned int bytes_read;
7082 struct attribute attr;
dee91e82
DE
7083 bfd *abfd = reader->abfd;
7084 struct dwarf2_cu *cu = reader->cu;
d521ce57 7085 const gdb_byte *buffer = reader->buffer;
f664829e 7086 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7087 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7088 unsigned int form, i;
7089
7090 for (i = 0; i < abbrev->num_attrs; i++)
7091 {
7092 /* The only abbrev we care about is DW_AT_sibling. */
7093 if (abbrev->attrs[i].name == DW_AT_sibling)
7094 {
dee91e82 7095 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7096 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7097 complaint (&symfile_complaints,
7098 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7099 else
b9502d3f
WN
7100 {
7101 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7102 const gdb_byte *sibling_ptr = buffer + off;
7103
7104 if (sibling_ptr < info_ptr)
7105 complaint (&symfile_complaints,
7106 _("DW_AT_sibling points backwards"));
7107 else
7108 return sibling_ptr;
7109 }
4bb7a0a7
DJ
7110 }
7111
7112 /* If it isn't DW_AT_sibling, skip this attribute. */
7113 form = abbrev->attrs[i].form;
7114 skip_attribute:
7115 switch (form)
7116 {
4bb7a0a7 7117 case DW_FORM_ref_addr:
ae411497
TT
7118 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7119 and later it is offset sized. */
7120 if (cu->header.version == 2)
7121 info_ptr += cu->header.addr_size;
7122 else
7123 info_ptr += cu->header.offset_size;
7124 break;
36586728
TT
7125 case DW_FORM_GNU_ref_alt:
7126 info_ptr += cu->header.offset_size;
7127 break;
ae411497 7128 case DW_FORM_addr:
4bb7a0a7
DJ
7129 info_ptr += cu->header.addr_size;
7130 break;
7131 case DW_FORM_data1:
7132 case DW_FORM_ref1:
7133 case DW_FORM_flag:
7134 info_ptr += 1;
7135 break;
2dc7f7b3
TT
7136 case DW_FORM_flag_present:
7137 break;
4bb7a0a7
DJ
7138 case DW_FORM_data2:
7139 case DW_FORM_ref2:
7140 info_ptr += 2;
7141 break;
7142 case DW_FORM_data4:
7143 case DW_FORM_ref4:
7144 info_ptr += 4;
7145 break;
7146 case DW_FORM_data8:
7147 case DW_FORM_ref8:
55f1336d 7148 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7149 info_ptr += 8;
7150 break;
7151 case DW_FORM_string:
9b1c24c8 7152 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7153 info_ptr += bytes_read;
7154 break;
2dc7f7b3 7155 case DW_FORM_sec_offset:
4bb7a0a7 7156 case DW_FORM_strp:
36586728 7157 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7158 info_ptr += cu->header.offset_size;
7159 break;
2dc7f7b3 7160 case DW_FORM_exprloc:
4bb7a0a7
DJ
7161 case DW_FORM_block:
7162 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7163 info_ptr += bytes_read;
7164 break;
7165 case DW_FORM_block1:
7166 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7167 break;
7168 case DW_FORM_block2:
7169 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7170 break;
7171 case DW_FORM_block4:
7172 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7173 break;
7174 case DW_FORM_sdata:
7175 case DW_FORM_udata:
7176 case DW_FORM_ref_udata:
3019eac3
DE
7177 case DW_FORM_GNU_addr_index:
7178 case DW_FORM_GNU_str_index:
d521ce57 7179 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7180 break;
7181 case DW_FORM_indirect:
7182 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7183 info_ptr += bytes_read;
7184 /* We need to continue parsing from here, so just go back to
7185 the top. */
7186 goto skip_attribute;
7187
7188 default:
3e43a32a
MS
7189 error (_("Dwarf Error: Cannot handle %s "
7190 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7191 dwarf_form_name (form),
7192 bfd_get_filename (abfd));
7193 }
7194 }
7195
7196 if (abbrev->has_children)
dee91e82 7197 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7198 else
7199 return info_ptr;
7200}
7201
93311388 7202/* Locate ORIG_PDI's sibling.
dee91e82 7203 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7204
d521ce57 7205static const gdb_byte *
dee91e82
DE
7206locate_pdi_sibling (const struct die_reader_specs *reader,
7207 struct partial_die_info *orig_pdi,
d521ce57 7208 const gdb_byte *info_ptr)
91c24f0a
DC
7209{
7210 /* Do we know the sibling already? */
72bf9492 7211
91c24f0a
DC
7212 if (orig_pdi->sibling)
7213 return orig_pdi->sibling;
7214
7215 /* Are there any children to deal with? */
7216
7217 if (!orig_pdi->has_children)
7218 return info_ptr;
7219
4bb7a0a7 7220 /* Skip the children the long way. */
91c24f0a 7221
dee91e82 7222 return skip_children (reader, info_ptr);
91c24f0a
DC
7223}
7224
257e7a09 7225/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7226 not NULL. */
c906108c
SS
7227
7228static void
257e7a09
YQ
7229dwarf2_read_symtab (struct partial_symtab *self,
7230 struct objfile *objfile)
c906108c 7231{
257e7a09 7232 if (self->readin)
c906108c 7233 {
442e4d9c 7234 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7235 self->filename);
442e4d9c
YQ
7236 }
7237 else
7238 {
7239 if (info_verbose)
c906108c 7240 {
442e4d9c 7241 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7242 self->filename);
442e4d9c 7243 gdb_flush (gdb_stdout);
c906108c 7244 }
c906108c 7245
442e4d9c
YQ
7246 /* Restore our global data. */
7247 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7248
442e4d9c
YQ
7249 /* If this psymtab is constructed from a debug-only objfile, the
7250 has_section_at_zero flag will not necessarily be correct. We
7251 can get the correct value for this flag by looking at the data
7252 associated with the (presumably stripped) associated objfile. */
7253 if (objfile->separate_debug_objfile_backlink)
7254 {
7255 struct dwarf2_per_objfile *dpo_backlink
7256 = objfile_data (objfile->separate_debug_objfile_backlink,
7257 dwarf2_objfile_data_key);
9a619af0 7258
442e4d9c
YQ
7259 dwarf2_per_objfile->has_section_at_zero
7260 = dpo_backlink->has_section_at_zero;
7261 }
b2ab525c 7262
442e4d9c 7263 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7264
257e7a09 7265 psymtab_to_symtab_1 (self);
c906108c 7266
442e4d9c
YQ
7267 /* Finish up the debug error message. */
7268 if (info_verbose)
7269 printf_filtered (_("done.\n"));
c906108c 7270 }
95554aad
TT
7271
7272 process_cu_includes ();
c906108c 7273}
9cdd5dbd
DE
7274\f
7275/* Reading in full CUs. */
c906108c 7276
10b3939b
DJ
7277/* Add PER_CU to the queue. */
7278
7279static void
95554aad
TT
7280queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7281 enum language pretend_language)
10b3939b
DJ
7282{
7283 struct dwarf2_queue_item *item;
7284
7285 per_cu->queued = 1;
7286 item = xmalloc (sizeof (*item));
7287 item->per_cu = per_cu;
95554aad 7288 item->pretend_language = pretend_language;
10b3939b
DJ
7289 item->next = NULL;
7290
7291 if (dwarf2_queue == NULL)
7292 dwarf2_queue = item;
7293 else
7294 dwarf2_queue_tail->next = item;
7295
7296 dwarf2_queue_tail = item;
7297}
7298
89e63ee4
DE
7299/* If PER_CU is not yet queued, add it to the queue.
7300 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7301 dependency.
0907af0c 7302 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7303 meaning either PER_CU is already queued or it is already loaded.
7304
7305 N.B. There is an invariant here that if a CU is queued then it is loaded.
7306 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7307
7308static int
89e63ee4 7309maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7310 struct dwarf2_per_cu_data *per_cu,
7311 enum language pretend_language)
7312{
7313 /* We may arrive here during partial symbol reading, if we need full
7314 DIEs to process an unusual case (e.g. template arguments). Do
7315 not queue PER_CU, just tell our caller to load its DIEs. */
7316 if (dwarf2_per_objfile->reading_partial_symbols)
7317 {
7318 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7319 return 1;
7320 return 0;
7321 }
7322
7323 /* Mark the dependence relation so that we don't flush PER_CU
7324 too early. */
89e63ee4
DE
7325 if (dependent_cu != NULL)
7326 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7327
7328 /* If it's already on the queue, we have nothing to do. */
7329 if (per_cu->queued)
7330 return 0;
7331
7332 /* If the compilation unit is already loaded, just mark it as
7333 used. */
7334 if (per_cu->cu != NULL)
7335 {
7336 per_cu->cu->last_used = 0;
7337 return 0;
7338 }
7339
7340 /* Add it to the queue. */
7341 queue_comp_unit (per_cu, pretend_language);
7342
7343 return 1;
7344}
7345
10b3939b
DJ
7346/* Process the queue. */
7347
7348static void
a0f42c21 7349process_queue (void)
10b3939b
DJ
7350{
7351 struct dwarf2_queue_item *item, *next_item;
7352
45cfd468
DE
7353 if (dwarf2_read_debug)
7354 {
7355 fprintf_unfiltered (gdb_stdlog,
7356 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7357 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7358 }
7359
03dd20cc
DJ
7360 /* The queue starts out with one item, but following a DIE reference
7361 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7362 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7363 {
9291a0cd
TT
7364 if (dwarf2_per_objfile->using_index
7365 ? !item->per_cu->v.quick->symtab
7366 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7367 {
7368 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7369 unsigned int debug_print_threshold;
247f5c4f 7370 char buf[100];
f4dc4d17 7371
247f5c4f 7372 if (per_cu->is_debug_types)
f4dc4d17 7373 {
247f5c4f
DE
7374 struct signatured_type *sig_type =
7375 (struct signatured_type *) per_cu;
7376
7377 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7378 hex_string (sig_type->signature),
7379 per_cu->offset.sect_off);
7380 /* There can be 100s of TUs.
7381 Only print them in verbose mode. */
7382 debug_print_threshold = 2;
f4dc4d17 7383 }
247f5c4f 7384 else
73be47f5
DE
7385 {
7386 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7387 debug_print_threshold = 1;
7388 }
247f5c4f 7389
73be47f5 7390 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7391 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7392
7393 if (per_cu->is_debug_types)
7394 process_full_type_unit (per_cu, item->pretend_language);
7395 else
7396 process_full_comp_unit (per_cu, item->pretend_language);
7397
73be47f5 7398 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7399 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7400 }
10b3939b
DJ
7401
7402 item->per_cu->queued = 0;
7403 next_item = item->next;
7404 xfree (item);
7405 }
7406
7407 dwarf2_queue_tail = NULL;
45cfd468
DE
7408
7409 if (dwarf2_read_debug)
7410 {
7411 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7412 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7413 }
10b3939b
DJ
7414}
7415
7416/* Free all allocated queue entries. This function only releases anything if
7417 an error was thrown; if the queue was processed then it would have been
7418 freed as we went along. */
7419
7420static void
7421dwarf2_release_queue (void *dummy)
7422{
7423 struct dwarf2_queue_item *item, *last;
7424
7425 item = dwarf2_queue;
7426 while (item)
7427 {
7428 /* Anything still marked queued is likely to be in an
7429 inconsistent state, so discard it. */
7430 if (item->per_cu->queued)
7431 {
7432 if (item->per_cu->cu != NULL)
dee91e82 7433 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7434 item->per_cu->queued = 0;
7435 }
7436
7437 last = item;
7438 item = item->next;
7439 xfree (last);
7440 }
7441
7442 dwarf2_queue = dwarf2_queue_tail = NULL;
7443}
7444
7445/* Read in full symbols for PST, and anything it depends on. */
7446
c906108c 7447static void
fba45db2 7448psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7449{
10b3939b 7450 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7451 int i;
7452
95554aad
TT
7453 if (pst->readin)
7454 return;
7455
aaa75496 7456 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7457 if (!pst->dependencies[i]->readin
7458 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7459 {
7460 /* Inform about additional files that need to be read in. */
7461 if (info_verbose)
7462 {
a3f17187 7463 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7464 fputs_filtered (" ", gdb_stdout);
7465 wrap_here ("");
7466 fputs_filtered ("and ", gdb_stdout);
7467 wrap_here ("");
7468 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7469 wrap_here (""); /* Flush output. */
aaa75496
JB
7470 gdb_flush (gdb_stdout);
7471 }
7472 psymtab_to_symtab_1 (pst->dependencies[i]);
7473 }
7474
e38df1d0 7475 per_cu = pst->read_symtab_private;
10b3939b
DJ
7476
7477 if (per_cu == NULL)
aaa75496
JB
7478 {
7479 /* It's an include file, no symbols to read for it.
7480 Everything is in the parent symtab. */
7481 pst->readin = 1;
7482 return;
7483 }
c906108c 7484
a0f42c21 7485 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7486}
7487
dee91e82
DE
7488/* Trivial hash function for die_info: the hash value of a DIE
7489 is its offset in .debug_info for this objfile. */
10b3939b 7490
dee91e82
DE
7491static hashval_t
7492die_hash (const void *item)
10b3939b 7493{
dee91e82 7494 const struct die_info *die = item;
6502dd73 7495
dee91e82
DE
7496 return die->offset.sect_off;
7497}
63d06c5c 7498
dee91e82
DE
7499/* Trivial comparison function for die_info structures: two DIEs
7500 are equal if they have the same offset. */
98bfdba5 7501
dee91e82
DE
7502static int
7503die_eq (const void *item_lhs, const void *item_rhs)
7504{
7505 const struct die_info *die_lhs = item_lhs;
7506 const struct die_info *die_rhs = item_rhs;
c906108c 7507
dee91e82
DE
7508 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7509}
c906108c 7510
dee91e82
DE
7511/* die_reader_func for load_full_comp_unit.
7512 This is identical to read_signatured_type_reader,
7513 but is kept separate for now. */
c906108c 7514
dee91e82
DE
7515static void
7516load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7517 const gdb_byte *info_ptr,
dee91e82
DE
7518 struct die_info *comp_unit_die,
7519 int has_children,
7520 void *data)
7521{
7522 struct dwarf2_cu *cu = reader->cu;
95554aad 7523 enum language *language_ptr = data;
6caca83c 7524
dee91e82
DE
7525 gdb_assert (cu->die_hash == NULL);
7526 cu->die_hash =
7527 htab_create_alloc_ex (cu->header.length / 12,
7528 die_hash,
7529 die_eq,
7530 NULL,
7531 &cu->comp_unit_obstack,
7532 hashtab_obstack_allocate,
7533 dummy_obstack_deallocate);
e142c38c 7534
dee91e82
DE
7535 if (has_children)
7536 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7537 &info_ptr, comp_unit_die);
7538 cu->dies = comp_unit_die;
7539 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7540
7541 /* We try not to read any attributes in this function, because not
9cdd5dbd 7542 all CUs needed for references have been loaded yet, and symbol
10b3939b 7543 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7544 or we won't be able to build types correctly.
7545 Similarly, if we do not read the producer, we can not apply
7546 producer-specific interpretation. */
95554aad 7547 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7548}
10b3939b 7549
dee91e82 7550/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7551
dee91e82 7552static void
95554aad
TT
7553load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7554 enum language pretend_language)
dee91e82 7555{
3019eac3 7556 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7557
f4dc4d17
DE
7558 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7559 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7560}
7561
3da10d80
KS
7562/* Add a DIE to the delayed physname list. */
7563
7564static void
7565add_to_method_list (struct type *type, int fnfield_index, int index,
7566 const char *name, struct die_info *die,
7567 struct dwarf2_cu *cu)
7568{
7569 struct delayed_method_info mi;
7570 mi.type = type;
7571 mi.fnfield_index = fnfield_index;
7572 mi.index = index;
7573 mi.name = name;
7574 mi.die = die;
7575 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7576}
7577
7578/* A cleanup for freeing the delayed method list. */
7579
7580static void
7581free_delayed_list (void *ptr)
7582{
7583 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7584 if (cu->method_list != NULL)
7585 {
7586 VEC_free (delayed_method_info, cu->method_list);
7587 cu->method_list = NULL;
7588 }
7589}
7590
7591/* Compute the physnames of any methods on the CU's method list.
7592
7593 The computation of method physnames is delayed in order to avoid the
7594 (bad) condition that one of the method's formal parameters is of an as yet
7595 incomplete type. */
7596
7597static void
7598compute_delayed_physnames (struct dwarf2_cu *cu)
7599{
7600 int i;
7601 struct delayed_method_info *mi;
7602 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7603 {
1d06ead6 7604 const char *physname;
3da10d80
KS
7605 struct fn_fieldlist *fn_flp
7606 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7607 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7608 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7609 }
7610}
7611
a766d390
DE
7612/* Go objects should be embedded in a DW_TAG_module DIE,
7613 and it's not clear if/how imported objects will appear.
7614 To keep Go support simple until that's worked out,
7615 go back through what we've read and create something usable.
7616 We could do this while processing each DIE, and feels kinda cleaner,
7617 but that way is more invasive.
7618 This is to, for example, allow the user to type "p var" or "b main"
7619 without having to specify the package name, and allow lookups
7620 of module.object to work in contexts that use the expression
7621 parser. */
7622
7623static void
7624fixup_go_packaging (struct dwarf2_cu *cu)
7625{
7626 char *package_name = NULL;
7627 struct pending *list;
7628 int i;
7629
7630 for (list = global_symbols; list != NULL; list = list->next)
7631 {
7632 for (i = 0; i < list->nsyms; ++i)
7633 {
7634 struct symbol *sym = list->symbol[i];
7635
7636 if (SYMBOL_LANGUAGE (sym) == language_go
7637 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7638 {
7639 char *this_package_name = go_symbol_package_name (sym);
7640
7641 if (this_package_name == NULL)
7642 continue;
7643 if (package_name == NULL)
7644 package_name = this_package_name;
7645 else
7646 {
7647 if (strcmp (package_name, this_package_name) != 0)
7648 complaint (&symfile_complaints,
7649 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7650 (SYMBOL_SYMTAB (sym)
05cba821 7651 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7652 : objfile_name (cu->objfile)),
a766d390
DE
7653 this_package_name, package_name);
7654 xfree (this_package_name);
7655 }
7656 }
7657 }
7658 }
7659
7660 if (package_name != NULL)
7661 {
7662 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7663 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7664 package_name,
7665 strlen (package_name));
a766d390 7666 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7667 saved_package_name, objfile);
a766d390
DE
7668 struct symbol *sym;
7669
7670 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7671
e623cf5d 7672 sym = allocate_symbol (objfile);
f85f34ed 7673 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7674 SYMBOL_SET_NAMES (sym, saved_package_name,
7675 strlen (saved_package_name), 0, objfile);
a766d390
DE
7676 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7677 e.g., "main" finds the "main" module and not C's main(). */
7678 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7679 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7680 SYMBOL_TYPE (sym) = type;
7681
7682 add_symbol_to_list (sym, &global_symbols);
7683
7684 xfree (package_name);
7685 }
7686}
7687
95554aad
TT
7688/* Return the symtab for PER_CU. This works properly regardless of
7689 whether we're using the index or psymtabs. */
7690
7691static struct symtab *
7692get_symtab (struct dwarf2_per_cu_data *per_cu)
7693{
7694 return (dwarf2_per_objfile->using_index
7695 ? per_cu->v.quick->symtab
7696 : per_cu->v.psymtab->symtab);
7697}
7698
7699/* A helper function for computing the list of all symbol tables
7700 included by PER_CU. */
7701
7702static void
ec94af83
DE
7703recursively_compute_inclusions (VEC (symtab_ptr) **result,
7704 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7705 struct dwarf2_per_cu_data *per_cu,
7706 struct symtab *immediate_parent)
95554aad
TT
7707{
7708 void **slot;
7709 int ix;
ec94af83 7710 struct symtab *symtab;
95554aad
TT
7711 struct dwarf2_per_cu_data *iter;
7712
7713 slot = htab_find_slot (all_children, per_cu, INSERT);
7714 if (*slot != NULL)
7715 {
7716 /* This inclusion and its children have been processed. */
7717 return;
7718 }
7719
7720 *slot = per_cu;
7721 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7722 symtab = get_symtab (per_cu);
7723 if (symtab != NULL)
7724 {
7725 /* If this is a type unit only add its symbol table if we haven't
7726 seen it yet (type unit per_cu's can share symtabs). */
7727 if (per_cu->is_debug_types)
7728 {
7729 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7730 if (*slot == NULL)
7731 {
7732 *slot = symtab;
7733 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7734 if (symtab->user == NULL)
7735 symtab->user = immediate_parent;
ec94af83
DE
7736 }
7737 }
7738 else
f9125b6c
TT
7739 {
7740 VEC_safe_push (symtab_ptr, *result, symtab);
7741 if (symtab->user == NULL)
7742 symtab->user = immediate_parent;
7743 }
ec94af83 7744 }
95554aad
TT
7745
7746 for (ix = 0;
796a7ff8 7747 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7748 ++ix)
ec94af83
DE
7749 {
7750 recursively_compute_inclusions (result, all_children,
f9125b6c 7751 all_type_symtabs, iter, symtab);
ec94af83 7752 }
95554aad
TT
7753}
7754
7755/* Compute the symtab 'includes' fields for the symtab related to
7756 PER_CU. */
7757
7758static void
7759compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7760{
f4dc4d17
DE
7761 gdb_assert (! per_cu->is_debug_types);
7762
796a7ff8 7763 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7764 {
7765 int ix, len;
ec94af83
DE
7766 struct dwarf2_per_cu_data *per_cu_iter;
7767 struct symtab *symtab_iter;
7768 VEC (symtab_ptr) *result_symtabs = NULL;
7769 htab_t all_children, all_type_symtabs;
95554aad
TT
7770 struct symtab *symtab = get_symtab (per_cu);
7771
7772 /* If we don't have a symtab, we can just skip this case. */
7773 if (symtab == NULL)
7774 return;
7775
7776 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7777 NULL, xcalloc, xfree);
ec94af83
DE
7778 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7779 NULL, xcalloc, xfree);
95554aad
TT
7780
7781 for (ix = 0;
796a7ff8 7782 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7783 ix, per_cu_iter);
95554aad 7784 ++ix)
ec94af83
DE
7785 {
7786 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7787 all_type_symtabs, per_cu_iter,
7788 symtab);
ec94af83 7789 }
95554aad 7790
ec94af83
DE
7791 /* Now we have a transitive closure of all the included symtabs. */
7792 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7793 symtab->includes
7794 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7795 (len + 1) * sizeof (struct symtab *));
7796 for (ix = 0;
ec94af83 7797 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7798 ++ix)
ec94af83 7799 symtab->includes[ix] = symtab_iter;
95554aad
TT
7800 symtab->includes[len] = NULL;
7801
ec94af83 7802 VEC_free (symtab_ptr, result_symtabs);
95554aad 7803 htab_delete (all_children);
ec94af83 7804 htab_delete (all_type_symtabs);
95554aad
TT
7805 }
7806}
7807
7808/* Compute the 'includes' field for the symtabs of all the CUs we just
7809 read. */
7810
7811static void
7812process_cu_includes (void)
7813{
7814 int ix;
7815 struct dwarf2_per_cu_data *iter;
7816
7817 for (ix = 0;
7818 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7819 ix, iter);
7820 ++ix)
f4dc4d17
DE
7821 {
7822 if (! iter->is_debug_types)
7823 compute_symtab_includes (iter);
7824 }
95554aad
TT
7825
7826 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7827}
7828
9cdd5dbd 7829/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7830 already been loaded into memory. */
7831
7832static void
95554aad
TT
7833process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7834 enum language pretend_language)
10b3939b 7835{
10b3939b 7836 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7837 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7838 CORE_ADDR lowpc, highpc;
7839 struct symtab *symtab;
3da10d80 7840 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7841 CORE_ADDR baseaddr;
4359dff1 7842 struct block *static_block;
10b3939b
DJ
7843
7844 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7845
10b3939b
DJ
7846 buildsym_init ();
7847 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7848 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7849
7850 cu->list_in_scope = &file_symbols;
c906108c 7851
95554aad
TT
7852 cu->language = pretend_language;
7853 cu->language_defn = language_def (cu->language);
7854
c906108c 7855 /* Do line number decoding in read_file_scope () */
10b3939b 7856 process_die (cu->dies, cu);
c906108c 7857
a766d390
DE
7858 /* For now fudge the Go package. */
7859 if (cu->language == language_go)
7860 fixup_go_packaging (cu);
7861
3da10d80
KS
7862 /* Now that we have processed all the DIEs in the CU, all the types
7863 should be complete, and it should now be safe to compute all of the
7864 physnames. */
7865 compute_delayed_physnames (cu);
7866 do_cleanups (delayed_list_cleanup);
7867
fae299cd
DC
7868 /* Some compilers don't define a DW_AT_high_pc attribute for the
7869 compilation unit. If the DW_AT_high_pc is missing, synthesize
7870 it, by scanning the DIE's below the compilation unit. */
10b3939b 7871 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7872
36586728 7873 static_block
ff546935 7874 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7875
7876 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7877 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7878 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7879 addrmap to help ensure it has an accurate map of pc values belonging to
7880 this comp unit. */
7881 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7882
7883 symtab = end_symtab_from_static_block (static_block, objfile,
7884 SECT_OFF_TEXT (objfile), 0);
c906108c 7885
8be455d7 7886 if (symtab != NULL)
c906108c 7887 {
df15bd07 7888 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7889
8be455d7
JK
7890 /* Set symtab language to language from DW_AT_language. If the
7891 compilation is from a C file generated by language preprocessors, do
7892 not set the language if it was already deduced by start_subfile. */
7893 if (!(cu->language == language_c && symtab->language != language_c))
7894 symtab->language = cu->language;
7895
7896 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7897 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7898 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7899 there were bugs in prologue debug info, fixed later in GCC-4.5
7900 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7901
7902 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7903 needed, it would be wrong due to missing DW_AT_producer there.
7904
7905 Still one can confuse GDB by using non-standard GCC compilation
7906 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7907 */
ab260dad 7908 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7909 symtab->locations_valid = 1;
e0d00bc7
JK
7910
7911 if (gcc_4_minor >= 5)
7912 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7913
7914 symtab->call_site_htab = cu->call_site_htab;
c906108c 7915 }
9291a0cd
TT
7916
7917 if (dwarf2_per_objfile->using_index)
7918 per_cu->v.quick->symtab = symtab;
7919 else
7920 {
7921 struct partial_symtab *pst = per_cu->v.psymtab;
7922 pst->symtab = symtab;
7923 pst->readin = 1;
7924 }
c906108c 7925
95554aad
TT
7926 /* Push it for inclusion processing later. */
7927 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7928
c906108c 7929 do_cleanups (back_to);
f4dc4d17 7930}
45cfd468 7931
f4dc4d17
DE
7932/* Generate full symbol information for type unit PER_CU, whose DIEs have
7933 already been loaded into memory. */
7934
7935static void
7936process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7937 enum language pretend_language)
7938{
7939 struct dwarf2_cu *cu = per_cu->cu;
7940 struct objfile *objfile = per_cu->objfile;
7941 struct symtab *symtab;
7942 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7943 struct signatured_type *sig_type;
7944
7945 gdb_assert (per_cu->is_debug_types);
7946 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7947
7948 buildsym_init ();
7949 back_to = make_cleanup (really_free_pendings, NULL);
7950 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7951
7952 cu->list_in_scope = &file_symbols;
7953
7954 cu->language = pretend_language;
7955 cu->language_defn = language_def (cu->language);
7956
7957 /* The symbol tables are set up in read_type_unit_scope. */
7958 process_die (cu->dies, cu);
7959
7960 /* For now fudge the Go package. */
7961 if (cu->language == language_go)
7962 fixup_go_packaging (cu);
7963
7964 /* Now that we have processed all the DIEs in the CU, all the types
7965 should be complete, and it should now be safe to compute all of the
7966 physnames. */
7967 compute_delayed_physnames (cu);
7968 do_cleanups (delayed_list_cleanup);
7969
7970 /* TUs share symbol tables.
7971 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7972 of it with end_expandable_symtab. Otherwise, complete the addition of
7973 this TU's symbols to the existing symtab. */
0186c6a7 7974 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7975 {
f4dc4d17 7976 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7977 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7978
7979 if (symtab != NULL)
7980 {
7981 /* Set symtab language to language from DW_AT_language. If the
7982 compilation is from a C file generated by language preprocessors,
7983 do not set the language if it was already deduced by
7984 start_subfile. */
7985 if (!(cu->language == language_c && symtab->language != language_c))
7986 symtab->language = cu->language;
7987 }
7988 }
7989 else
7990 {
7991 augment_type_symtab (objfile,
0186c6a7
DE
7992 sig_type->type_unit_group->primary_symtab);
7993 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7994 }
7995
7996 if (dwarf2_per_objfile->using_index)
7997 per_cu->v.quick->symtab = symtab;
7998 else
7999 {
8000 struct partial_symtab *pst = per_cu->v.psymtab;
8001 pst->symtab = symtab;
8002 pst->readin = 1;
45cfd468 8003 }
f4dc4d17
DE
8004
8005 do_cleanups (back_to);
c906108c
SS
8006}
8007
95554aad
TT
8008/* Process an imported unit DIE. */
8009
8010static void
8011process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8012{
8013 struct attribute *attr;
8014
f4dc4d17
DE
8015 /* For now we don't handle imported units in type units. */
8016 if (cu->per_cu->is_debug_types)
8017 {
8018 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8019 " supported in type units [in module %s]"),
4262abfb 8020 objfile_name (cu->objfile));
f4dc4d17
DE
8021 }
8022
95554aad
TT
8023 attr = dwarf2_attr (die, DW_AT_import, cu);
8024 if (attr != NULL)
8025 {
8026 struct dwarf2_per_cu_data *per_cu;
8027 struct symtab *imported_symtab;
8028 sect_offset offset;
36586728 8029 int is_dwz;
95554aad
TT
8030
8031 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8032 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8033 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8034
69d751e3 8035 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8036 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8037 load_full_comp_unit (per_cu, cu->language);
8038
796a7ff8 8039 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8040 per_cu);
8041 }
8042}
8043
adde2bff
DE
8044/* Reset the in_process bit of a die. */
8045
8046static void
8047reset_die_in_process (void *arg)
8048{
8049 struct die_info *die = arg;
8c3cb9fa 8050
adde2bff
DE
8051 die->in_process = 0;
8052}
8053
c906108c
SS
8054/* Process a die and its children. */
8055
8056static void
e7c27a73 8057process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8058{
adde2bff
DE
8059 struct cleanup *in_process;
8060
8061 /* We should only be processing those not already in process. */
8062 gdb_assert (!die->in_process);
8063
8064 die->in_process = 1;
8065 in_process = make_cleanup (reset_die_in_process,die);
8066
c906108c
SS
8067 switch (die->tag)
8068 {
8069 case DW_TAG_padding:
8070 break;
8071 case DW_TAG_compile_unit:
95554aad 8072 case DW_TAG_partial_unit:
e7c27a73 8073 read_file_scope (die, cu);
c906108c 8074 break;
348e048f
DE
8075 case DW_TAG_type_unit:
8076 read_type_unit_scope (die, cu);
8077 break;
c906108c 8078 case DW_TAG_subprogram:
c906108c 8079 case DW_TAG_inlined_subroutine:
edb3359d 8080 read_func_scope (die, cu);
c906108c
SS
8081 break;
8082 case DW_TAG_lexical_block:
14898363
L
8083 case DW_TAG_try_block:
8084 case DW_TAG_catch_block:
e7c27a73 8085 read_lexical_block_scope (die, cu);
c906108c 8086 break;
96408a79
SA
8087 case DW_TAG_GNU_call_site:
8088 read_call_site_scope (die, cu);
8089 break;
c906108c 8090 case DW_TAG_class_type:
680b30c7 8091 case DW_TAG_interface_type:
c906108c
SS
8092 case DW_TAG_structure_type:
8093 case DW_TAG_union_type:
134d01f1 8094 process_structure_scope (die, cu);
c906108c
SS
8095 break;
8096 case DW_TAG_enumeration_type:
134d01f1 8097 process_enumeration_scope (die, cu);
c906108c 8098 break;
134d01f1 8099
f792889a
DJ
8100 /* These dies have a type, but processing them does not create
8101 a symbol or recurse to process the children. Therefore we can
8102 read them on-demand through read_type_die. */
c906108c 8103 case DW_TAG_subroutine_type:
72019c9c 8104 case DW_TAG_set_type:
c906108c 8105 case DW_TAG_array_type:
c906108c 8106 case DW_TAG_pointer_type:
c906108c 8107 case DW_TAG_ptr_to_member_type:
c906108c 8108 case DW_TAG_reference_type:
c906108c 8109 case DW_TAG_string_type:
c906108c 8110 break;
134d01f1 8111
c906108c 8112 case DW_TAG_base_type:
a02abb62 8113 case DW_TAG_subrange_type:
cb249c71 8114 case DW_TAG_typedef:
134d01f1
DJ
8115 /* Add a typedef symbol for the type definition, if it has a
8116 DW_AT_name. */
f792889a 8117 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8118 break;
c906108c 8119 case DW_TAG_common_block:
e7c27a73 8120 read_common_block (die, cu);
c906108c
SS
8121 break;
8122 case DW_TAG_common_inclusion:
8123 break;
d9fa45fe 8124 case DW_TAG_namespace:
4d4ec4e5 8125 cu->processing_has_namespace_info = 1;
e7c27a73 8126 read_namespace (die, cu);
d9fa45fe 8127 break;
5d7cb8df 8128 case DW_TAG_module:
4d4ec4e5 8129 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8130 read_module (die, cu);
8131 break;
d9fa45fe 8132 case DW_TAG_imported_declaration:
74921315
KS
8133 cu->processing_has_namespace_info = 1;
8134 if (read_namespace_alias (die, cu))
8135 break;
8136 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8137 case DW_TAG_imported_module:
4d4ec4e5 8138 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8139 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8140 || cu->language != language_fortran))
8141 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8142 dwarf_tag_name (die->tag));
8143 read_import_statement (die, cu);
d9fa45fe 8144 break;
95554aad
TT
8145
8146 case DW_TAG_imported_unit:
8147 process_imported_unit_die (die, cu);
8148 break;
8149
c906108c 8150 default:
e7c27a73 8151 new_symbol (die, NULL, cu);
c906108c
SS
8152 break;
8153 }
adde2bff
DE
8154
8155 do_cleanups (in_process);
c906108c 8156}
ca69b9e6
DE
8157\f
8158/* DWARF name computation. */
c906108c 8159
94af9270
KS
8160/* A helper function for dwarf2_compute_name which determines whether DIE
8161 needs to have the name of the scope prepended to the name listed in the
8162 die. */
8163
8164static int
8165die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8166{
1c809c68
TT
8167 struct attribute *attr;
8168
94af9270
KS
8169 switch (die->tag)
8170 {
8171 case DW_TAG_namespace:
8172 case DW_TAG_typedef:
8173 case DW_TAG_class_type:
8174 case DW_TAG_interface_type:
8175 case DW_TAG_structure_type:
8176 case DW_TAG_union_type:
8177 case DW_TAG_enumeration_type:
8178 case DW_TAG_enumerator:
8179 case DW_TAG_subprogram:
8180 case DW_TAG_member:
74921315 8181 case DW_TAG_imported_declaration:
94af9270
KS
8182 return 1;
8183
8184 case DW_TAG_variable:
c2b0a229 8185 case DW_TAG_constant:
94af9270
KS
8186 /* We only need to prefix "globally" visible variables. These include
8187 any variable marked with DW_AT_external or any variable that
8188 lives in a namespace. [Variables in anonymous namespaces
8189 require prefixing, but they are not DW_AT_external.] */
8190
8191 if (dwarf2_attr (die, DW_AT_specification, cu))
8192 {
8193 struct dwarf2_cu *spec_cu = cu;
9a619af0 8194
94af9270
KS
8195 return die_needs_namespace (die_specification (die, &spec_cu),
8196 spec_cu);
8197 }
8198
1c809c68 8199 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8200 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8201 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8202 return 0;
8203 /* A variable in a lexical block of some kind does not need a
8204 namespace, even though in C++ such variables may be external
8205 and have a mangled name. */
8206 if (die->parent->tag == DW_TAG_lexical_block
8207 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8208 || die->parent->tag == DW_TAG_catch_block
8209 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8210 return 0;
8211 return 1;
94af9270
KS
8212
8213 default:
8214 return 0;
8215 }
8216}
8217
98bfdba5
PA
8218/* Retrieve the last character from a mem_file. */
8219
8220static void
8221do_ui_file_peek_last (void *object, const char *buffer, long length)
8222{
8223 char *last_char_p = (char *) object;
8224
8225 if (length > 0)
8226 *last_char_p = buffer[length - 1];
8227}
8228
94af9270 8229/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8230 compute the physname for the object, which include a method's:
8231 - formal parameters (C++/Java),
8232 - receiver type (Go),
8233 - return type (Java).
8234
8235 The term "physname" is a bit confusing.
8236 For C++, for example, it is the demangled name.
8237 For Go, for example, it's the mangled name.
94af9270 8238
af6b7be1
JB
8239 For Ada, return the DIE's linkage name rather than the fully qualified
8240 name. PHYSNAME is ignored..
8241
94af9270
KS
8242 The result is allocated on the objfile_obstack and canonicalized. */
8243
8244static const char *
15d034d0
TT
8245dwarf2_compute_name (const char *name,
8246 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8247 int physname)
8248{
bb5ed363
DE
8249 struct objfile *objfile = cu->objfile;
8250
94af9270
KS
8251 if (name == NULL)
8252 name = dwarf2_name (die, cu);
8253
f55ee35c
JK
8254 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8255 compute it by typename_concat inside GDB. */
8256 if (cu->language == language_ada
8257 || (cu->language == language_fortran && physname))
8258 {
8259 /* For Ada unit, we prefer the linkage name over the name, as
8260 the former contains the exported name, which the user expects
8261 to be able to reference. Ideally, we want the user to be able
8262 to reference this entity using either natural or linkage name,
8263 but we haven't started looking at this enhancement yet. */
8264 struct attribute *attr;
8265
8266 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8267 if (attr == NULL)
8268 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8269 if (attr && DW_STRING (attr))
8270 return DW_STRING (attr);
8271 }
8272
94af9270
KS
8273 /* These are the only languages we know how to qualify names in. */
8274 if (name != NULL
f55ee35c
JK
8275 && (cu->language == language_cplus || cu->language == language_java
8276 || cu->language == language_fortran))
94af9270
KS
8277 {
8278 if (die_needs_namespace (die, cu))
8279 {
8280 long length;
0d5cff50 8281 const char *prefix;
94af9270
KS
8282 struct ui_file *buf;
8283
8284 prefix = determine_prefix (die, cu);
8285 buf = mem_fileopen ();
8286 if (*prefix != '\0')
8287 {
f55ee35c
JK
8288 char *prefixed_name = typename_concat (NULL, prefix, name,
8289 physname, cu);
9a619af0 8290
94af9270
KS
8291 fputs_unfiltered (prefixed_name, buf);
8292 xfree (prefixed_name);
8293 }
8294 else
62d5b8da 8295 fputs_unfiltered (name, buf);
94af9270 8296
98bfdba5
PA
8297 /* Template parameters may be specified in the DIE's DW_AT_name, or
8298 as children with DW_TAG_template_type_param or
8299 DW_TAG_value_type_param. If the latter, add them to the name
8300 here. If the name already has template parameters, then
8301 skip this step; some versions of GCC emit both, and
8302 it is more efficient to use the pre-computed name.
8303
8304 Something to keep in mind about this process: it is very
8305 unlikely, or in some cases downright impossible, to produce
8306 something that will match the mangled name of a function.
8307 If the definition of the function has the same debug info,
8308 we should be able to match up with it anyway. But fallbacks
8309 using the minimal symbol, for instance to find a method
8310 implemented in a stripped copy of libstdc++, will not work.
8311 If we do not have debug info for the definition, we will have to
8312 match them up some other way.
8313
8314 When we do name matching there is a related problem with function
8315 templates; two instantiated function templates are allowed to
8316 differ only by their return types, which we do not add here. */
8317
8318 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8319 {
8320 struct attribute *attr;
8321 struct die_info *child;
8322 int first = 1;
8323
8324 die->building_fullname = 1;
8325
8326 for (child = die->child; child != NULL; child = child->sibling)
8327 {
8328 struct type *type;
12df843f 8329 LONGEST value;
d521ce57 8330 const gdb_byte *bytes;
98bfdba5
PA
8331 struct dwarf2_locexpr_baton *baton;
8332 struct value *v;
8333
8334 if (child->tag != DW_TAG_template_type_param
8335 && child->tag != DW_TAG_template_value_param)
8336 continue;
8337
8338 if (first)
8339 {
8340 fputs_unfiltered ("<", buf);
8341 first = 0;
8342 }
8343 else
8344 fputs_unfiltered (", ", buf);
8345
8346 attr = dwarf2_attr (child, DW_AT_type, cu);
8347 if (attr == NULL)
8348 {
8349 complaint (&symfile_complaints,
8350 _("template parameter missing DW_AT_type"));
8351 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8352 continue;
8353 }
8354 type = die_type (child, cu);
8355
8356 if (child->tag == DW_TAG_template_type_param)
8357 {
79d43c61 8358 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8359 continue;
8360 }
8361
8362 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8363 if (attr == NULL)
8364 {
8365 complaint (&symfile_complaints,
3e43a32a
MS
8366 _("template parameter missing "
8367 "DW_AT_const_value"));
98bfdba5
PA
8368 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8369 continue;
8370 }
8371
8372 dwarf2_const_value_attr (attr, type, name,
8373 &cu->comp_unit_obstack, cu,
8374 &value, &bytes, &baton);
8375
8376 if (TYPE_NOSIGN (type))
8377 /* GDB prints characters as NUMBER 'CHAR'. If that's
8378 changed, this can use value_print instead. */
8379 c_printchar (value, type, buf);
8380 else
8381 {
8382 struct value_print_options opts;
8383
8384 if (baton != NULL)
8385 v = dwarf2_evaluate_loc_desc (type, NULL,
8386 baton->data,
8387 baton->size,
8388 baton->per_cu);
8389 else if (bytes != NULL)
8390 {
8391 v = allocate_value (type);
8392 memcpy (value_contents_writeable (v), bytes,
8393 TYPE_LENGTH (type));
8394 }
8395 else
8396 v = value_from_longest (type, value);
8397
3e43a32a
MS
8398 /* Specify decimal so that we do not depend on
8399 the radix. */
98bfdba5
PA
8400 get_formatted_print_options (&opts, 'd');
8401 opts.raw = 1;
8402 value_print (v, buf, &opts);
8403 release_value (v);
8404 value_free (v);
8405 }
8406 }
8407
8408 die->building_fullname = 0;
8409
8410 if (!first)
8411 {
8412 /* Close the argument list, with a space if necessary
8413 (nested templates). */
8414 char last_char = '\0';
8415 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8416 if (last_char == '>')
8417 fputs_unfiltered (" >", buf);
8418 else
8419 fputs_unfiltered (">", buf);
8420 }
8421 }
8422
94af9270
KS
8423 /* For Java and C++ methods, append formal parameter type
8424 information, if PHYSNAME. */
6e70227d 8425
94af9270
KS
8426 if (physname && die->tag == DW_TAG_subprogram
8427 && (cu->language == language_cplus
8428 || cu->language == language_java))
8429 {
8430 struct type *type = read_type_die (die, cu);
8431
79d43c61
TT
8432 c_type_print_args (type, buf, 1, cu->language,
8433 &type_print_raw_options);
94af9270
KS
8434
8435 if (cu->language == language_java)
8436 {
8437 /* For java, we must append the return type to method
0963b4bd 8438 names. */
94af9270
KS
8439 if (die->tag == DW_TAG_subprogram)
8440 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8441 0, 0, &type_print_raw_options);
94af9270
KS
8442 }
8443 else if (cu->language == language_cplus)
8444 {
60430eff
DJ
8445 /* Assume that an artificial first parameter is
8446 "this", but do not crash if it is not. RealView
8447 marks unnamed (and thus unused) parameters as
8448 artificial; there is no way to differentiate
8449 the two cases. */
94af9270
KS
8450 if (TYPE_NFIELDS (type) > 0
8451 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8452 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8453 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8454 0))))
94af9270
KS
8455 fputs_unfiltered (" const", buf);
8456 }
8457 }
8458
bb5ed363 8459 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8460 &length);
8461 ui_file_delete (buf);
8462
8463 if (cu->language == language_cplus)
8464 {
15d034d0 8465 const char *cname
94af9270 8466 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8467 &objfile->objfile_obstack);
9a619af0 8468
94af9270
KS
8469 if (cname != NULL)
8470 name = cname;
8471 }
8472 }
8473 }
8474
8475 return name;
8476}
8477
0114d602
DJ
8478/* Return the fully qualified name of DIE, based on its DW_AT_name.
8479 If scope qualifiers are appropriate they will be added. The result
8480 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8481 not have a name. NAME may either be from a previous call to
8482 dwarf2_name or NULL.
8483
0963b4bd 8484 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8485
8486static const char *
15d034d0 8487dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8488{
94af9270
KS
8489 return dwarf2_compute_name (name, die, cu, 0);
8490}
0114d602 8491
94af9270
KS
8492/* Construct a physname for the given DIE in CU. NAME may either be
8493 from a previous call to dwarf2_name or NULL. The result will be
8494 allocated on the objfile_objstack or NULL if the DIE does not have a
8495 name.
0114d602 8496
94af9270 8497 The output string will be canonicalized (if C++/Java). */
0114d602 8498
94af9270 8499static const char *
15d034d0 8500dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8501{
bb5ed363 8502 struct objfile *objfile = cu->objfile;
900e11f9
JK
8503 struct attribute *attr;
8504 const char *retval, *mangled = NULL, *canon = NULL;
8505 struct cleanup *back_to;
8506 int need_copy = 1;
8507
8508 /* In this case dwarf2_compute_name is just a shortcut not building anything
8509 on its own. */
8510 if (!die_needs_namespace (die, cu))
8511 return dwarf2_compute_name (name, die, cu, 1);
8512
8513 back_to = make_cleanup (null_cleanup, NULL);
8514
8515 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8516 if (!attr)
8517 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8518
8519 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8520 has computed. */
8521 if (attr && DW_STRING (attr))
8522 {
8523 char *demangled;
8524
8525 mangled = DW_STRING (attr);
8526
8527 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8528 type. It is easier for GDB users to search for such functions as
8529 `name(params)' than `long name(params)'. In such case the minimal
8530 symbol names do not match the full symbol names but for template
8531 functions there is never a need to look up their definition from their
8532 declaration so the only disadvantage remains the minimal symbol
8533 variant `long name(params)' does not have the proper inferior type.
8534 */
8535
a766d390
DE
8536 if (cu->language == language_go)
8537 {
8538 /* This is a lie, but we already lie to the caller new_symbol_full.
8539 new_symbol_full assumes we return the mangled name.
8540 This just undoes that lie until things are cleaned up. */
8541 demangled = NULL;
8542 }
8543 else
8544 {
8de20a37
TT
8545 demangled = gdb_demangle (mangled,
8546 (DMGL_PARAMS | DMGL_ANSI
8547 | (cu->language == language_java
8548 ? DMGL_JAVA | DMGL_RET_POSTFIX
8549 : DMGL_RET_DROP)));
a766d390 8550 }
900e11f9
JK
8551 if (demangled)
8552 {
8553 make_cleanup (xfree, demangled);
8554 canon = demangled;
8555 }
8556 else
8557 {
8558 canon = mangled;
8559 need_copy = 0;
8560 }
8561 }
8562
8563 if (canon == NULL || check_physname)
8564 {
8565 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8566
8567 if (canon != NULL && strcmp (physname, canon) != 0)
8568 {
8569 /* It may not mean a bug in GDB. The compiler could also
8570 compute DW_AT_linkage_name incorrectly. But in such case
8571 GDB would need to be bug-to-bug compatible. */
8572
8573 complaint (&symfile_complaints,
8574 _("Computed physname <%s> does not match demangled <%s> "
8575 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8576 physname, canon, mangled, die->offset.sect_off,
8577 objfile_name (objfile));
900e11f9
JK
8578
8579 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8580 is available here - over computed PHYSNAME. It is safer
8581 against both buggy GDB and buggy compilers. */
8582
8583 retval = canon;
8584 }
8585 else
8586 {
8587 retval = physname;
8588 need_copy = 0;
8589 }
8590 }
8591 else
8592 retval = canon;
8593
8594 if (need_copy)
10f0c4bb 8595 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8596
8597 do_cleanups (back_to);
8598 return retval;
0114d602
DJ
8599}
8600
74921315
KS
8601/* Inspect DIE in CU for a namespace alias. If one exists, record
8602 a new symbol for it.
8603
8604 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8605
8606static int
8607read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8608{
8609 struct attribute *attr;
8610
8611 /* If the die does not have a name, this is not a namespace
8612 alias. */
8613 attr = dwarf2_attr (die, DW_AT_name, cu);
8614 if (attr != NULL)
8615 {
8616 int num;
8617 struct die_info *d = die;
8618 struct dwarf2_cu *imported_cu = cu;
8619
8620 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8621 keep inspecting DIEs until we hit the underlying import. */
8622#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8623 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8624 {
8625 attr = dwarf2_attr (d, DW_AT_import, cu);
8626 if (attr == NULL)
8627 break;
8628
8629 d = follow_die_ref (d, attr, &imported_cu);
8630 if (d->tag != DW_TAG_imported_declaration)
8631 break;
8632 }
8633
8634 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8635 {
8636 complaint (&symfile_complaints,
8637 _("DIE at 0x%x has too many recursively imported "
8638 "declarations"), d->offset.sect_off);
8639 return 0;
8640 }
8641
8642 if (attr != NULL)
8643 {
8644 struct type *type;
8645 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8646
8647 type = get_die_type_at_offset (offset, cu->per_cu);
8648 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8649 {
8650 /* This declaration is a global namespace alias. Add
8651 a symbol for it whose type is the aliased namespace. */
8652 new_symbol (die, type, cu);
8653 return 1;
8654 }
8655 }
8656 }
8657
8658 return 0;
8659}
8660
27aa8d6a
SW
8661/* Read the import statement specified by the given die and record it. */
8662
8663static void
8664read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8665{
bb5ed363 8666 struct objfile *objfile = cu->objfile;
27aa8d6a 8667 struct attribute *import_attr;
32019081 8668 struct die_info *imported_die, *child_die;
de4affc9 8669 struct dwarf2_cu *imported_cu;
27aa8d6a 8670 const char *imported_name;
794684b6 8671 const char *imported_name_prefix;
13387711
SW
8672 const char *canonical_name;
8673 const char *import_alias;
8674 const char *imported_declaration = NULL;
794684b6 8675 const char *import_prefix;
32019081
JK
8676 VEC (const_char_ptr) *excludes = NULL;
8677 struct cleanup *cleanups;
13387711 8678
27aa8d6a
SW
8679 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8680 if (import_attr == NULL)
8681 {
8682 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8683 dwarf_tag_name (die->tag));
8684 return;
8685 }
8686
de4affc9
CC
8687 imported_cu = cu;
8688 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8689 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8690 if (imported_name == NULL)
8691 {
8692 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8693
8694 The import in the following code:
8695 namespace A
8696 {
8697 typedef int B;
8698 }
8699
8700 int main ()
8701 {
8702 using A::B;
8703 B b;
8704 return b;
8705 }
8706
8707 ...
8708 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8709 <52> DW_AT_decl_file : 1
8710 <53> DW_AT_decl_line : 6
8711 <54> DW_AT_import : <0x75>
8712 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8713 <59> DW_AT_name : B
8714 <5b> DW_AT_decl_file : 1
8715 <5c> DW_AT_decl_line : 2
8716 <5d> DW_AT_type : <0x6e>
8717 ...
8718 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8719 <76> DW_AT_byte_size : 4
8720 <77> DW_AT_encoding : 5 (signed)
8721
8722 imports the wrong die ( 0x75 instead of 0x58 ).
8723 This case will be ignored until the gcc bug is fixed. */
8724 return;
8725 }
8726
82856980
SW
8727 /* Figure out the local name after import. */
8728 import_alias = dwarf2_name (die, cu);
27aa8d6a 8729
794684b6
SW
8730 /* Figure out where the statement is being imported to. */
8731 import_prefix = determine_prefix (die, cu);
8732
8733 /* Figure out what the scope of the imported die is and prepend it
8734 to the name of the imported die. */
de4affc9 8735 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8736
f55ee35c
JK
8737 if (imported_die->tag != DW_TAG_namespace
8738 && imported_die->tag != DW_TAG_module)
794684b6 8739 {
13387711
SW
8740 imported_declaration = imported_name;
8741 canonical_name = imported_name_prefix;
794684b6 8742 }
13387711 8743 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8744 canonical_name = obconcat (&objfile->objfile_obstack,
8745 imported_name_prefix, "::", imported_name,
8746 (char *) NULL);
13387711
SW
8747 else
8748 canonical_name = imported_name;
794684b6 8749
32019081
JK
8750 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8751
8752 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8753 for (child_die = die->child; child_die && child_die->tag;
8754 child_die = sibling_die (child_die))
8755 {
8756 /* DWARF-4: A Fortran use statement with a “rename list” may be
8757 represented by an imported module entry with an import attribute
8758 referring to the module and owned entries corresponding to those
8759 entities that are renamed as part of being imported. */
8760
8761 if (child_die->tag != DW_TAG_imported_declaration)
8762 {
8763 complaint (&symfile_complaints,
8764 _("child DW_TAG_imported_declaration expected "
8765 "- DIE at 0x%x [in module %s]"),
4262abfb 8766 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8767 continue;
8768 }
8769
8770 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8771 if (import_attr == NULL)
8772 {
8773 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8774 dwarf_tag_name (child_die->tag));
8775 continue;
8776 }
8777
8778 imported_cu = cu;
8779 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8780 &imported_cu);
8781 imported_name = dwarf2_name (imported_die, imported_cu);
8782 if (imported_name == NULL)
8783 {
8784 complaint (&symfile_complaints,
8785 _("child DW_TAG_imported_declaration has unknown "
8786 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8787 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8788 continue;
8789 }
8790
8791 VEC_safe_push (const_char_ptr, excludes, imported_name);
8792
8793 process_die (child_die, cu);
8794 }
8795
c0cc3a76
SW
8796 cp_add_using_directive (import_prefix,
8797 canonical_name,
8798 import_alias,
13387711 8799 imported_declaration,
32019081 8800 excludes,
12aaed36 8801 0,
bb5ed363 8802 &objfile->objfile_obstack);
32019081
JK
8803
8804 do_cleanups (cleanups);
27aa8d6a
SW
8805}
8806
f4dc4d17 8807/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8808
cb1df416
DJ
8809static void
8810free_cu_line_header (void *arg)
8811{
8812 struct dwarf2_cu *cu = arg;
8813
8814 free_line_header (cu->line_header);
8815 cu->line_header = NULL;
8816}
8817
1b80a9fa
JK
8818/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8819 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8820 this, it was first present in GCC release 4.3.0. */
8821
8822static int
8823producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8824{
8825 if (!cu->checked_producer)
8826 check_producer (cu);
8827
8828 return cu->producer_is_gcc_lt_4_3;
8829}
8830
9291a0cd
TT
8831static void
8832find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8833 const char **name, const char **comp_dir)
9291a0cd
TT
8834{
8835 struct attribute *attr;
8836
8837 *name = NULL;
8838 *comp_dir = NULL;
8839
8840 /* Find the filename. Do not use dwarf2_name here, since the filename
8841 is not a source language identifier. */
8842 attr = dwarf2_attr (die, DW_AT_name, cu);
8843 if (attr)
8844 {
8845 *name = DW_STRING (attr);
8846 }
8847
8848 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8849 if (attr)
8850 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8851 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8852 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8853 {
15d034d0
TT
8854 char *d = ldirname (*name);
8855
8856 *comp_dir = d;
8857 if (d != NULL)
8858 make_cleanup (xfree, d);
9291a0cd
TT
8859 }
8860 if (*comp_dir != NULL)
8861 {
8862 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8863 directory, get rid of it. */
8864 char *cp = strchr (*comp_dir, ':');
8865
8866 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8867 *comp_dir = cp + 1;
8868 }
8869
8870 if (*name == NULL)
8871 *name = "<unknown>";
8872}
8873
f4dc4d17
DE
8874/* Handle DW_AT_stmt_list for a compilation unit.
8875 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8876 COMP_DIR is the compilation directory.
8877 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8878
8879static void
8880handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8881 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8882{
8883 struct attribute *attr;
2ab95328 8884
f4dc4d17
DE
8885 gdb_assert (! cu->per_cu->is_debug_types);
8886
2ab95328
TT
8887 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8888 if (attr)
8889 {
8890 unsigned int line_offset = DW_UNSND (attr);
8891 struct line_header *line_header
3019eac3 8892 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8893
8894 if (line_header)
dee91e82
DE
8895 {
8896 cu->line_header = line_header;
8897 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8898 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8899 }
2ab95328
TT
8900 }
8901}
8902
95554aad 8903/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8904
c906108c 8905static void
e7c27a73 8906read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8907{
dee91e82 8908 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8910 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8911 CORE_ADDR highpc = ((CORE_ADDR) 0);
8912 struct attribute *attr;
15d034d0
TT
8913 const char *name = NULL;
8914 const char *comp_dir = NULL;
c906108c
SS
8915 struct die_info *child_die;
8916 bfd *abfd = objfile->obfd;
e142c38c 8917 CORE_ADDR baseaddr;
6e70227d 8918
e142c38c 8919 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8920
fae299cd 8921 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8922
8923 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8924 from finish_block. */
2acceee2 8925 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8926 lowpc = highpc;
8927 lowpc += baseaddr;
8928 highpc += baseaddr;
8929
9291a0cd 8930 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8931
95554aad 8932 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8933
f4b8a18d
KW
8934 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8935 standardised yet. As a workaround for the language detection we fall
8936 back to the DW_AT_producer string. */
8937 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8938 cu->language = language_opencl;
8939
3019eac3
DE
8940 /* Similar hack for Go. */
8941 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8942 set_cu_language (DW_LANG_Go, cu);
8943
f4dc4d17 8944 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8945
8946 /* Decode line number information if present. We do this before
8947 processing child DIEs, so that the line header table is available
8948 for DW_AT_decl_file. */
f4dc4d17 8949 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8950
8951 /* Process all dies in compilation unit. */
8952 if (die->child != NULL)
8953 {
8954 child_die = die->child;
8955 while (child_die && child_die->tag)
8956 {
8957 process_die (child_die, cu);
8958 child_die = sibling_die (child_die);
8959 }
8960 }
8961
8962 /* Decode macro information, if present. Dwarf 2 macro information
8963 refers to information in the line number info statement program
8964 header, so we can only read it if we've read the header
8965 successfully. */
8966 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8967 if (attr && cu->line_header)
8968 {
8969 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8970 complaint (&symfile_complaints,
8971 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8972
09262596 8973 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8974 }
8975 else
8976 {
8977 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8978 if (attr && cu->line_header)
8979 {
8980 unsigned int macro_offset = DW_UNSND (attr);
8981
09262596 8982 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8983 }
8984 }
8985
8986 do_cleanups (back_to);
8987}
8988
f4dc4d17
DE
8989/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8990 Create the set of symtabs used by this TU, or if this TU is sharing
8991 symtabs with another TU and the symtabs have already been created
8992 then restore those symtabs in the line header.
8993 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8994
8995static void
f4dc4d17 8996setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8997{
f4dc4d17
DE
8998 struct objfile *objfile = dwarf2_per_objfile->objfile;
8999 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9000 struct type_unit_group *tu_group;
9001 int first_time;
9002 struct line_header *lh;
3019eac3 9003 struct attribute *attr;
f4dc4d17 9004 unsigned int i, line_offset;
0186c6a7 9005 struct signatured_type *sig_type;
3019eac3 9006
f4dc4d17 9007 gdb_assert (per_cu->is_debug_types);
0186c6a7 9008 sig_type = (struct signatured_type *) per_cu;
3019eac3 9009
f4dc4d17 9010 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9011
f4dc4d17 9012 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9013 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9014 if (sig_type->type_unit_group == NULL)
9015 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9016 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9017
9018 /* If we've already processed this stmt_list there's no real need to
9019 do it again, we could fake it and just recreate the part we need
9020 (file name,index -> symtab mapping). If data shows this optimization
9021 is useful we can do it then. */
9022 first_time = tu_group->primary_symtab == NULL;
9023
9024 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9025 debug info. */
9026 lh = NULL;
9027 if (attr != NULL)
3019eac3 9028 {
f4dc4d17
DE
9029 line_offset = DW_UNSND (attr);
9030 lh = dwarf_decode_line_header (line_offset, cu);
9031 }
9032 if (lh == NULL)
9033 {
9034 if (first_time)
9035 dwarf2_start_symtab (cu, "", NULL, 0);
9036 else
9037 {
9038 gdb_assert (tu_group->symtabs == NULL);
9039 restart_symtab (0);
9040 }
9041 /* Note: The primary symtab will get allocated at the end. */
9042 return;
3019eac3
DE
9043 }
9044
f4dc4d17
DE
9045 cu->line_header = lh;
9046 make_cleanup (free_cu_line_header, cu);
3019eac3 9047
f4dc4d17
DE
9048 if (first_time)
9049 {
9050 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9051
f4dc4d17
DE
9052 tu_group->num_symtabs = lh->num_file_names;
9053 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9054
f4dc4d17
DE
9055 for (i = 0; i < lh->num_file_names; ++i)
9056 {
d521ce57 9057 const char *dir = NULL;
f4dc4d17 9058 struct file_entry *fe = &lh->file_names[i];
3019eac3 9059
f4dc4d17
DE
9060 if (fe->dir_index)
9061 dir = lh->include_dirs[fe->dir_index - 1];
9062 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9063
f4dc4d17
DE
9064 /* Note: We don't have to watch for the main subfile here, type units
9065 don't have DW_AT_name. */
3019eac3 9066
f4dc4d17
DE
9067 if (current_subfile->symtab == NULL)
9068 {
9069 /* NOTE: start_subfile will recognize when it's been passed
9070 a file it has already seen. So we can't assume there's a
9071 simple mapping from lh->file_names to subfiles,
9072 lh->file_names may contain dups. */
9073 current_subfile->symtab = allocate_symtab (current_subfile->name,
9074 objfile);
9075 }
9076
9077 fe->symtab = current_subfile->symtab;
9078 tu_group->symtabs[i] = fe->symtab;
9079 }
9080 }
9081 else
3019eac3 9082 {
f4dc4d17
DE
9083 restart_symtab (0);
9084
9085 for (i = 0; i < lh->num_file_names; ++i)
9086 {
9087 struct file_entry *fe = &lh->file_names[i];
9088
9089 fe->symtab = tu_group->symtabs[i];
9090 }
3019eac3
DE
9091 }
9092
f4dc4d17
DE
9093 /* The main symtab is allocated last. Type units don't have DW_AT_name
9094 so they don't have a "real" (so to speak) symtab anyway.
9095 There is later code that will assign the main symtab to all symbols
9096 that don't have one. We need to handle the case of a symbol with a
9097 missing symtab (DW_AT_decl_file) anyway. */
9098}
3019eac3 9099
f4dc4d17
DE
9100/* Process DW_TAG_type_unit.
9101 For TUs we want to skip the first top level sibling if it's not the
9102 actual type being defined by this TU. In this case the first top
9103 level sibling is there to provide context only. */
3019eac3 9104
f4dc4d17
DE
9105static void
9106read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9107{
9108 struct die_info *child_die;
3019eac3 9109
f4dc4d17
DE
9110 prepare_one_comp_unit (cu, die, language_minimal);
9111
9112 /* Initialize (or reinitialize) the machinery for building symtabs.
9113 We do this before processing child DIEs, so that the line header table
9114 is available for DW_AT_decl_file. */
9115 setup_type_unit_groups (die, cu);
9116
9117 if (die->child != NULL)
9118 {
9119 child_die = die->child;
9120 while (child_die && child_die->tag)
9121 {
9122 process_die (child_die, cu);
9123 child_die = sibling_die (child_die);
9124 }
9125 }
3019eac3
DE
9126}
9127\f
80626a55
DE
9128/* DWO/DWP files.
9129
9130 http://gcc.gnu.org/wiki/DebugFission
9131 http://gcc.gnu.org/wiki/DebugFissionDWP
9132
9133 To simplify handling of both DWO files ("object" files with the DWARF info)
9134 and DWP files (a file with the DWOs packaged up into one file), we treat
9135 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9136
9137static hashval_t
9138hash_dwo_file (const void *item)
9139{
9140 const struct dwo_file *dwo_file = item;
a2ce51a0 9141 hashval_t hash;
3019eac3 9142
a2ce51a0
DE
9143 hash = htab_hash_string (dwo_file->dwo_name);
9144 if (dwo_file->comp_dir != NULL)
9145 hash += htab_hash_string (dwo_file->comp_dir);
9146 return hash;
3019eac3
DE
9147}
9148
9149static int
9150eq_dwo_file (const void *item_lhs, const void *item_rhs)
9151{
9152 const struct dwo_file *lhs = item_lhs;
9153 const struct dwo_file *rhs = item_rhs;
9154
a2ce51a0
DE
9155 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9156 return 0;
9157 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9158 return lhs->comp_dir == rhs->comp_dir;
9159 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9160}
9161
9162/* Allocate a hash table for DWO files. */
9163
9164static htab_t
9165allocate_dwo_file_hash_table (void)
9166{
9167 struct objfile *objfile = dwarf2_per_objfile->objfile;
9168
9169 return htab_create_alloc_ex (41,
9170 hash_dwo_file,
9171 eq_dwo_file,
9172 NULL,
9173 &objfile->objfile_obstack,
9174 hashtab_obstack_allocate,
9175 dummy_obstack_deallocate);
9176}
9177
80626a55
DE
9178/* Lookup DWO file DWO_NAME. */
9179
9180static void **
0ac5b59e 9181lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9182{
9183 struct dwo_file find_entry;
9184 void **slot;
9185
9186 if (dwarf2_per_objfile->dwo_files == NULL)
9187 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9188
9189 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9190 find_entry.dwo_name = dwo_name;
9191 find_entry.comp_dir = comp_dir;
80626a55
DE
9192 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9193
9194 return slot;
9195}
9196
3019eac3
DE
9197static hashval_t
9198hash_dwo_unit (const void *item)
9199{
9200 const struct dwo_unit *dwo_unit = item;
9201
9202 /* This drops the top 32 bits of the id, but is ok for a hash. */
9203 return dwo_unit->signature;
9204}
9205
9206static int
9207eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9208{
9209 const struct dwo_unit *lhs = item_lhs;
9210 const struct dwo_unit *rhs = item_rhs;
9211
9212 /* The signature is assumed to be unique within the DWO file.
9213 So while object file CU dwo_id's always have the value zero,
9214 that's OK, assuming each object file DWO file has only one CU,
9215 and that's the rule for now. */
9216 return lhs->signature == rhs->signature;
9217}
9218
9219/* Allocate a hash table for DWO CUs,TUs.
9220 There is one of these tables for each of CUs,TUs for each DWO file. */
9221
9222static htab_t
9223allocate_dwo_unit_table (struct objfile *objfile)
9224{
9225 /* Start out with a pretty small number.
9226 Generally DWO files contain only one CU and maybe some TUs. */
9227 return htab_create_alloc_ex (3,
9228 hash_dwo_unit,
9229 eq_dwo_unit,
9230 NULL,
9231 &objfile->objfile_obstack,
9232 hashtab_obstack_allocate,
9233 dummy_obstack_deallocate);
9234}
9235
80626a55 9236/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9237
19c3d4c9 9238struct create_dwo_cu_data
3019eac3
DE
9239{
9240 struct dwo_file *dwo_file;
19c3d4c9 9241 struct dwo_unit dwo_unit;
3019eac3
DE
9242};
9243
19c3d4c9 9244/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9245
9246static void
19c3d4c9
DE
9247create_dwo_cu_reader (const struct die_reader_specs *reader,
9248 const gdb_byte *info_ptr,
9249 struct die_info *comp_unit_die,
9250 int has_children,
9251 void *datap)
3019eac3
DE
9252{
9253 struct dwarf2_cu *cu = reader->cu;
9254 struct objfile *objfile = dwarf2_per_objfile->objfile;
9255 sect_offset offset = cu->per_cu->offset;
8a0459fd 9256 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9257 struct create_dwo_cu_data *data = datap;
3019eac3 9258 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9259 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9260 struct attribute *attr;
3019eac3
DE
9261
9262 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9263 if (attr == NULL)
9264 {
19c3d4c9
DE
9265 complaint (&symfile_complaints,
9266 _("Dwarf Error: debug entry at offset 0x%x is missing"
9267 " its dwo_id [in module %s]"),
9268 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9269 return;
9270 }
9271
3019eac3
DE
9272 dwo_unit->dwo_file = dwo_file;
9273 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9274 dwo_unit->section = section;
3019eac3
DE
9275 dwo_unit->offset = offset;
9276 dwo_unit->length = cu->per_cu->length;
9277
09406207 9278 if (dwarf2_read_debug)
4031ecc5
DE
9279 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9280 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9281}
9282
19c3d4c9
DE
9283/* Create the dwo_unit for the lone CU in DWO_FILE.
9284 Note: This function processes DWO files only, not DWP files. */
3019eac3 9285
19c3d4c9
DE
9286static struct dwo_unit *
9287create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9288{
9289 struct objfile *objfile = dwarf2_per_objfile->objfile;
9290 struct dwarf2_section_info *section = &dwo_file->sections.info;
9291 bfd *abfd;
9292 htab_t cu_htab;
d521ce57 9293 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9294 struct create_dwo_cu_data create_dwo_cu_data;
9295 struct dwo_unit *dwo_unit;
3019eac3
DE
9296
9297 dwarf2_read_section (objfile, section);
9298 info_ptr = section->buffer;
9299
9300 if (info_ptr == NULL)
9301 return NULL;
9302
9303 /* We can't set abfd until now because the section may be empty or
9304 not present, in which case section->asection will be NULL. */
a32a8923 9305 abfd = get_section_bfd_owner (section);
3019eac3 9306
09406207 9307 if (dwarf2_read_debug)
19c3d4c9
DE
9308 {
9309 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9310 get_section_name (section),
9311 get_section_file_name (section));
19c3d4c9 9312 }
3019eac3 9313
19c3d4c9
DE
9314 create_dwo_cu_data.dwo_file = dwo_file;
9315 dwo_unit = NULL;
3019eac3
DE
9316
9317 end_ptr = info_ptr + section->size;
9318 while (info_ptr < end_ptr)
9319 {
9320 struct dwarf2_per_cu_data per_cu;
9321
19c3d4c9
DE
9322 memset (&create_dwo_cu_data.dwo_unit, 0,
9323 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9324 memset (&per_cu, 0, sizeof (per_cu));
9325 per_cu.objfile = objfile;
9326 per_cu.is_debug_types = 0;
9327 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9328 per_cu.section = section;
3019eac3 9329
33e80786 9330 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9331 create_dwo_cu_reader,
9332 &create_dwo_cu_data);
9333
9334 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9335 {
9336 /* If we've already found one, complain. We only support one
9337 because having more than one requires hacking the dwo_name of
9338 each to match, which is highly unlikely to happen. */
9339 if (dwo_unit != NULL)
9340 {
9341 complaint (&symfile_complaints,
9342 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9343 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9344 break;
9345 }
9346
9347 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9348 *dwo_unit = create_dwo_cu_data.dwo_unit;
9349 }
3019eac3
DE
9350
9351 info_ptr += per_cu.length;
9352 }
9353
19c3d4c9 9354 return dwo_unit;
3019eac3
DE
9355}
9356
80626a55
DE
9357/* DWP file .debug_{cu,tu}_index section format:
9358 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9359
d2415c6c
DE
9360 DWP Version 1:
9361
80626a55
DE
9362 Both index sections have the same format, and serve to map a 64-bit
9363 signature to a set of section numbers. Each section begins with a header,
9364 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9365 indexes, and a pool of 32-bit section numbers. The index sections will be
9366 aligned at 8-byte boundaries in the file.
9367
d2415c6c
DE
9368 The index section header consists of:
9369
9370 V, 32 bit version number
9371 -, 32 bits unused
9372 N, 32 bit number of compilation units or type units in the index
9373 M, 32 bit number of slots in the hash table
80626a55 9374
d2415c6c 9375 Numbers are recorded using the byte order of the application binary.
80626a55 9376
d2415c6c
DE
9377 The hash table begins at offset 16 in the section, and consists of an array
9378 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9379 order of the application binary). Unused slots in the hash table are 0.
9380 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9381
d2415c6c
DE
9382 The parallel table begins immediately after the hash table
9383 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9384 array of 32-bit indexes (using the byte order of the application binary),
9385 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9386 table contains a 32-bit index into the pool of section numbers. For unused
9387 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9388
73869dc2
DE
9389 The pool of section numbers begins immediately following the hash table
9390 (at offset 16 + 12 * M from the beginning of the section). The pool of
9391 section numbers consists of an array of 32-bit words (using the byte order
9392 of the application binary). Each item in the array is indexed starting
9393 from 0. The hash table entry provides the index of the first section
9394 number in the set. Additional section numbers in the set follow, and the
9395 set is terminated by a 0 entry (section number 0 is not used in ELF).
9396
9397 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9398 section must be the first entry in the set, and the .debug_abbrev.dwo must
9399 be the second entry. Other members of the set may follow in any order.
9400
9401 ---
9402
9403 DWP Version 2:
9404
9405 DWP Version 2 combines all the .debug_info, etc. sections into one,
9406 and the entries in the index tables are now offsets into these sections.
9407 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9408 section.
9409
9410 Index Section Contents:
9411 Header
9412 Hash Table of Signatures dwp_hash_table.hash_table
9413 Parallel Table of Indices dwp_hash_table.unit_table
9414 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9415 Table of Section Sizes dwp_hash_table.v2.sizes
9416
9417 The index section header consists of:
9418
9419 V, 32 bit version number
9420 L, 32 bit number of columns in the table of section offsets
9421 N, 32 bit number of compilation units or type units in the index
9422 M, 32 bit number of slots in the hash table
9423
9424 Numbers are recorded using the byte order of the application binary.
9425
9426 The hash table has the same format as version 1.
9427 The parallel table of indices has the same format as version 1,
9428 except that the entries are origin-1 indices into the table of sections
9429 offsets and the table of section sizes.
9430
9431 The table of offsets begins immediately following the parallel table
9432 (at offset 16 + 12 * M from the beginning of the section). The table is
9433 a two-dimensional array of 32-bit words (using the byte order of the
9434 application binary), with L columns and N+1 rows, in row-major order.
9435 Each row in the array is indexed starting from 0. The first row provides
9436 a key to the remaining rows: each column in this row provides an identifier
9437 for a debug section, and the offsets in the same column of subsequent rows
9438 refer to that section. The section identifiers are:
9439
9440 DW_SECT_INFO 1 .debug_info.dwo
9441 DW_SECT_TYPES 2 .debug_types.dwo
9442 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9443 DW_SECT_LINE 4 .debug_line.dwo
9444 DW_SECT_LOC 5 .debug_loc.dwo
9445 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9446 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9447 DW_SECT_MACRO 8 .debug_macro.dwo
9448
9449 The offsets provided by the CU and TU index sections are the base offsets
9450 for the contributions made by each CU or TU to the corresponding section
9451 in the package file. Each CU and TU header contains an abbrev_offset
9452 field, used to find the abbreviations table for that CU or TU within the
9453 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9454 be interpreted as relative to the base offset given in the index section.
9455 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9456 should be interpreted as relative to the base offset for .debug_line.dwo,
9457 and offsets into other debug sections obtained from DWARF attributes should
9458 also be interpreted as relative to the corresponding base offset.
9459
9460 The table of sizes begins immediately following the table of offsets.
9461 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9462 with L columns and N rows, in row-major order. Each row in the array is
9463 indexed starting from 1 (row 0 is shared by the two tables).
9464
9465 ---
9466
9467 Hash table lookup is handled the same in version 1 and 2:
9468
9469 We assume that N and M will not exceed 2^32 - 1.
9470 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9471
d2415c6c
DE
9472 Given a 64-bit compilation unit signature or a type signature S, an entry
9473 in the hash table is located as follows:
80626a55 9474
d2415c6c
DE
9475 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9476 the low-order k bits all set to 1.
80626a55 9477
d2415c6c 9478 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9479
d2415c6c
DE
9480 3) If the hash table entry at index H matches the signature, use that
9481 entry. If the hash table entry at index H is unused (all zeroes),
9482 terminate the search: the signature is not present in the table.
80626a55 9483
d2415c6c 9484 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9485
d2415c6c 9486 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9487 to stop at an unused slot or find the match. */
80626a55
DE
9488
9489/* Create a hash table to map DWO IDs to their CU/TU entry in
9490 .debug_{info,types}.dwo in DWP_FILE.
9491 Returns NULL if there isn't one.
9492 Note: This function processes DWP files only, not DWO files. */
9493
9494static struct dwp_hash_table *
9495create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9496{
9497 struct objfile *objfile = dwarf2_per_objfile->objfile;
9498 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9499 const gdb_byte *index_ptr, *index_end;
80626a55 9500 struct dwarf2_section_info *index;
73869dc2 9501 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9502 struct dwp_hash_table *htab;
9503
9504 if (is_debug_types)
9505 index = &dwp_file->sections.tu_index;
9506 else
9507 index = &dwp_file->sections.cu_index;
9508
9509 if (dwarf2_section_empty_p (index))
9510 return NULL;
9511 dwarf2_read_section (objfile, index);
9512
9513 index_ptr = index->buffer;
9514 index_end = index_ptr + index->size;
9515
9516 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9517 index_ptr += 4;
9518 if (version == 2)
9519 nr_columns = read_4_bytes (dbfd, index_ptr);
9520 else
9521 nr_columns = 0;
9522 index_ptr += 4;
80626a55
DE
9523 nr_units = read_4_bytes (dbfd, index_ptr);
9524 index_ptr += 4;
9525 nr_slots = read_4_bytes (dbfd, index_ptr);
9526 index_ptr += 4;
9527
73869dc2 9528 if (version != 1 && version != 2)
80626a55 9529 {
21aa081e 9530 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9531 " [in module %s]"),
21aa081e 9532 pulongest (version), dwp_file->name);
80626a55
DE
9533 }
9534 if (nr_slots != (nr_slots & -nr_slots))
9535 {
21aa081e 9536 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9537 " is not power of 2 [in module %s]"),
21aa081e 9538 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9539 }
9540
9541 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9542 htab->version = version;
9543 htab->nr_columns = nr_columns;
80626a55
DE
9544 htab->nr_units = nr_units;
9545 htab->nr_slots = nr_slots;
9546 htab->hash_table = index_ptr;
9547 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9548
9549 /* Exit early if the table is empty. */
9550 if (nr_slots == 0 || nr_units == 0
9551 || (version == 2 && nr_columns == 0))
9552 {
9553 /* All must be zero. */
9554 if (nr_slots != 0 || nr_units != 0
9555 || (version == 2 && nr_columns != 0))
9556 {
9557 complaint (&symfile_complaints,
9558 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9559 " all zero [in modules %s]"),
9560 dwp_file->name);
9561 }
9562 return htab;
9563 }
9564
9565 if (version == 1)
9566 {
9567 htab->section_pool.v1.indices =
9568 htab->unit_table + sizeof (uint32_t) * nr_slots;
9569 /* It's harder to decide whether the section is too small in v1.
9570 V1 is deprecated anyway so we punt. */
9571 }
9572 else
9573 {
9574 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9575 int *ids = htab->section_pool.v2.section_ids;
9576 /* Reverse map for error checking. */
9577 int ids_seen[DW_SECT_MAX + 1];
9578 int i;
9579
9580 if (nr_columns < 2)
9581 {
9582 error (_("Dwarf Error: bad DWP hash table, too few columns"
9583 " in section table [in module %s]"),
9584 dwp_file->name);
9585 }
9586 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9587 {
9588 error (_("Dwarf Error: bad DWP hash table, too many columns"
9589 " in section table [in module %s]"),
9590 dwp_file->name);
9591 }
9592 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9593 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9594 for (i = 0; i < nr_columns; ++i)
9595 {
9596 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9597
9598 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9599 {
9600 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9601 " in section table [in module %s]"),
9602 id, dwp_file->name);
9603 }
9604 if (ids_seen[id] != -1)
9605 {
9606 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9607 " id %d in section table [in module %s]"),
9608 id, dwp_file->name);
9609 }
9610 ids_seen[id] = i;
9611 ids[i] = id;
9612 }
9613 /* Must have exactly one info or types section. */
9614 if (((ids_seen[DW_SECT_INFO] != -1)
9615 + (ids_seen[DW_SECT_TYPES] != -1))
9616 != 1)
9617 {
9618 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9619 " DWO info/types section [in module %s]"),
9620 dwp_file->name);
9621 }
9622 /* Must have an abbrev section. */
9623 if (ids_seen[DW_SECT_ABBREV] == -1)
9624 {
9625 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9626 " section [in module %s]"),
9627 dwp_file->name);
9628 }
9629 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9630 htab->section_pool.v2.sizes =
9631 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9632 * nr_units * nr_columns);
9633 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9634 * nr_units * nr_columns))
9635 > index_end)
9636 {
9637 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9638 " [in module %s]"),
9639 dwp_file->name);
9640 }
9641 }
80626a55
DE
9642
9643 return htab;
9644}
9645
9646/* Update SECTIONS with the data from SECTP.
9647
9648 This function is like the other "locate" section routines that are
9649 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9650 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9651
9652 The result is non-zero for success, or zero if an error was found. */
9653
9654static int
73869dc2
DE
9655locate_v1_virtual_dwo_sections (asection *sectp,
9656 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9657{
9658 const struct dwop_section_names *names = &dwop_section_names;
9659
9660 if (section_is_p (sectp->name, &names->abbrev_dwo))
9661 {
9662 /* There can be only one. */
73869dc2 9663 if (sections->abbrev.s.asection != NULL)
80626a55 9664 return 0;
73869dc2 9665 sections->abbrev.s.asection = sectp;
80626a55
DE
9666 sections->abbrev.size = bfd_get_section_size (sectp);
9667 }
9668 else if (section_is_p (sectp->name, &names->info_dwo)
9669 || section_is_p (sectp->name, &names->types_dwo))
9670 {
9671 /* There can be only one. */
73869dc2 9672 if (sections->info_or_types.s.asection != NULL)
80626a55 9673 return 0;
73869dc2 9674 sections->info_or_types.s.asection = sectp;
80626a55
DE
9675 sections->info_or_types.size = bfd_get_section_size (sectp);
9676 }
9677 else if (section_is_p (sectp->name, &names->line_dwo))
9678 {
9679 /* There can be only one. */
73869dc2 9680 if (sections->line.s.asection != NULL)
80626a55 9681 return 0;
73869dc2 9682 sections->line.s.asection = sectp;
80626a55
DE
9683 sections->line.size = bfd_get_section_size (sectp);
9684 }
9685 else if (section_is_p (sectp->name, &names->loc_dwo))
9686 {
9687 /* There can be only one. */
73869dc2 9688 if (sections->loc.s.asection != NULL)
80626a55 9689 return 0;
73869dc2 9690 sections->loc.s.asection = sectp;
80626a55
DE
9691 sections->loc.size = bfd_get_section_size (sectp);
9692 }
9693 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9694 {
9695 /* There can be only one. */
73869dc2 9696 if (sections->macinfo.s.asection != NULL)
80626a55 9697 return 0;
73869dc2 9698 sections->macinfo.s.asection = sectp;
80626a55
DE
9699 sections->macinfo.size = bfd_get_section_size (sectp);
9700 }
9701 else if (section_is_p (sectp->name, &names->macro_dwo))
9702 {
9703 /* There can be only one. */
73869dc2 9704 if (sections->macro.s.asection != NULL)
80626a55 9705 return 0;
73869dc2 9706 sections->macro.s.asection = sectp;
80626a55
DE
9707 sections->macro.size = bfd_get_section_size (sectp);
9708 }
9709 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9710 {
9711 /* There can be only one. */
73869dc2 9712 if (sections->str_offsets.s.asection != NULL)
80626a55 9713 return 0;
73869dc2 9714 sections->str_offsets.s.asection = sectp;
80626a55
DE
9715 sections->str_offsets.size = bfd_get_section_size (sectp);
9716 }
9717 else
9718 {
9719 /* No other kind of section is valid. */
9720 return 0;
9721 }
9722
9723 return 1;
9724}
9725
73869dc2
DE
9726/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9727 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9728 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9729 This is for DWP version 1 files. */
80626a55
DE
9730
9731static struct dwo_unit *
73869dc2
DE
9732create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9733 uint32_t unit_index,
9734 const char *comp_dir,
9735 ULONGEST signature, int is_debug_types)
80626a55
DE
9736{
9737 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9738 const struct dwp_hash_table *dwp_htab =
9739 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9740 bfd *dbfd = dwp_file->dbfd;
9741 const char *kind = is_debug_types ? "TU" : "CU";
9742 struct dwo_file *dwo_file;
9743 struct dwo_unit *dwo_unit;
73869dc2 9744 struct virtual_v1_dwo_sections sections;
80626a55
DE
9745 void **dwo_file_slot;
9746 char *virtual_dwo_name;
9747 struct dwarf2_section_info *cutu;
9748 struct cleanup *cleanups;
9749 int i;
9750
73869dc2
DE
9751 gdb_assert (dwp_file->version == 1);
9752
80626a55
DE
9753 if (dwarf2_read_debug)
9754 {
73869dc2 9755 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9756 kind,
73869dc2 9757 pulongest (unit_index), hex_string (signature),
80626a55
DE
9758 dwp_file->name);
9759 }
9760
19ac8c2e 9761 /* Fetch the sections of this DWO unit.
80626a55
DE
9762 Put a limit on the number of sections we look for so that bad data
9763 doesn't cause us to loop forever. */
9764
73869dc2 9765#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9766 (1 /* .debug_info or .debug_types */ \
9767 + 1 /* .debug_abbrev */ \
9768 + 1 /* .debug_line */ \
9769 + 1 /* .debug_loc */ \
9770 + 1 /* .debug_str_offsets */ \
19ac8c2e 9771 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9772 + 1 /* trailing zero */)
9773
9774 memset (&sections, 0, sizeof (sections));
9775 cleanups = make_cleanup (null_cleanup, 0);
9776
73869dc2 9777 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9778 {
9779 asection *sectp;
9780 uint32_t section_nr =
9781 read_4_bytes (dbfd,
73869dc2
DE
9782 dwp_htab->section_pool.v1.indices
9783 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9784
9785 if (section_nr == 0)
9786 break;
9787 if (section_nr >= dwp_file->num_sections)
9788 {
9789 error (_("Dwarf Error: bad DWP hash table, section number too large"
9790 " [in module %s]"),
9791 dwp_file->name);
9792 }
9793
9794 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9795 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9796 {
9797 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9798 " [in module %s]"),
9799 dwp_file->name);
9800 }
9801 }
9802
9803 if (i < 2
a32a8923
DE
9804 || dwarf2_section_empty_p (&sections.info_or_types)
9805 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9806 {
9807 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9808 " [in module %s]"),
9809 dwp_file->name);
9810 }
73869dc2 9811 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9812 {
9813 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9814 " [in module %s]"),
9815 dwp_file->name);
9816 }
9817
9818 /* It's easier for the rest of the code if we fake a struct dwo_file and
9819 have dwo_unit "live" in that. At least for now.
9820
9821 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9822 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9823 file, we can combine them back into a virtual DWO file to save space
9824 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9825 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9826
2792b94d
PM
9827 virtual_dwo_name =
9828 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9829 get_section_id (&sections.abbrev),
9830 get_section_id (&sections.line),
9831 get_section_id (&sections.loc),
9832 get_section_id (&sections.str_offsets));
80626a55
DE
9833 make_cleanup (xfree, virtual_dwo_name);
9834 /* Can we use an existing virtual DWO file? */
0ac5b59e 9835 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9836 /* Create one if necessary. */
9837 if (*dwo_file_slot == NULL)
9838 {
9839 if (dwarf2_read_debug)
9840 {
9841 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9842 virtual_dwo_name);
9843 }
9844 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9845 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9846 virtual_dwo_name,
9847 strlen (virtual_dwo_name));
9848 dwo_file->comp_dir = comp_dir;
80626a55
DE
9849 dwo_file->sections.abbrev = sections.abbrev;
9850 dwo_file->sections.line = sections.line;
9851 dwo_file->sections.loc = sections.loc;
9852 dwo_file->sections.macinfo = sections.macinfo;
9853 dwo_file->sections.macro = sections.macro;
9854 dwo_file->sections.str_offsets = sections.str_offsets;
9855 /* The "str" section is global to the entire DWP file. */
9856 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9857 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9858 there's no need to record it in dwo_file.
9859 Also, we can't simply record type sections in dwo_file because
9860 we record a pointer into the vector in dwo_unit. As we collect more
9861 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9862 for it, invalidating all copies of pointers into the previous
9863 contents. */
80626a55
DE
9864 *dwo_file_slot = dwo_file;
9865 }
9866 else
9867 {
9868 if (dwarf2_read_debug)
9869 {
9870 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9871 virtual_dwo_name);
9872 }
9873 dwo_file = *dwo_file_slot;
9874 }
9875 do_cleanups (cleanups);
9876
9877 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9878 dwo_unit->dwo_file = dwo_file;
9879 dwo_unit->signature = signature;
8a0459fd
DE
9880 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9881 sizeof (struct dwarf2_section_info));
9882 *dwo_unit->section = sections.info_or_types;
57d63ce2 9883 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9884
9885 return dwo_unit;
9886}
9887
73869dc2
DE
9888/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9889 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9890 piece within that section used by a TU/CU, return a virtual section
9891 of just that piece. */
9892
9893static struct dwarf2_section_info
9894create_dwp_v2_section (struct dwarf2_section_info *section,
9895 bfd_size_type offset, bfd_size_type size)
9896{
9897 struct dwarf2_section_info result;
9898 asection *sectp;
9899
9900 gdb_assert (section != NULL);
9901 gdb_assert (!section->is_virtual);
9902
9903 memset (&result, 0, sizeof (result));
9904 result.s.containing_section = section;
9905 result.is_virtual = 1;
9906
9907 if (size == 0)
9908 return result;
9909
9910 sectp = get_section_bfd_section (section);
9911
9912 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9913 bounds of the real section. This is a pretty-rare event, so just
9914 flag an error (easier) instead of a warning and trying to cope. */
9915 if (sectp == NULL
9916 || offset + size > bfd_get_section_size (sectp))
9917 {
9918 bfd *abfd = sectp->owner;
9919
9920 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9921 " in section %s [in module %s]"),
9922 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9923 objfile_name (dwarf2_per_objfile->objfile));
9924 }
9925
9926 result.virtual_offset = offset;
9927 result.size = size;
9928 return result;
9929}
9930
9931/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9932 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9933 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9934 This is for DWP version 2 files. */
9935
9936static struct dwo_unit *
9937create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9938 uint32_t unit_index,
9939 const char *comp_dir,
9940 ULONGEST signature, int is_debug_types)
9941{
9942 struct objfile *objfile = dwarf2_per_objfile->objfile;
9943 const struct dwp_hash_table *dwp_htab =
9944 is_debug_types ? dwp_file->tus : dwp_file->cus;
9945 bfd *dbfd = dwp_file->dbfd;
9946 const char *kind = is_debug_types ? "TU" : "CU";
9947 struct dwo_file *dwo_file;
9948 struct dwo_unit *dwo_unit;
9949 struct virtual_v2_dwo_sections sections;
9950 void **dwo_file_slot;
9951 char *virtual_dwo_name;
9952 struct dwarf2_section_info *cutu;
9953 struct cleanup *cleanups;
9954 int i;
9955
9956 gdb_assert (dwp_file->version == 2);
9957
9958 if (dwarf2_read_debug)
9959 {
9960 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9961 kind,
9962 pulongest (unit_index), hex_string (signature),
9963 dwp_file->name);
9964 }
9965
9966 /* Fetch the section offsets of this DWO unit. */
9967
9968 memset (&sections, 0, sizeof (sections));
9969 cleanups = make_cleanup (null_cleanup, 0);
9970
9971 for (i = 0; i < dwp_htab->nr_columns; ++i)
9972 {
9973 uint32_t offset = read_4_bytes (dbfd,
9974 dwp_htab->section_pool.v2.offsets
9975 + (((unit_index - 1) * dwp_htab->nr_columns
9976 + i)
9977 * sizeof (uint32_t)));
9978 uint32_t size = read_4_bytes (dbfd,
9979 dwp_htab->section_pool.v2.sizes
9980 + (((unit_index - 1) * dwp_htab->nr_columns
9981 + i)
9982 * sizeof (uint32_t)));
9983
9984 switch (dwp_htab->section_pool.v2.section_ids[i])
9985 {
9986 case DW_SECT_INFO:
9987 case DW_SECT_TYPES:
9988 sections.info_or_types_offset = offset;
9989 sections.info_or_types_size = size;
9990 break;
9991 case DW_SECT_ABBREV:
9992 sections.abbrev_offset = offset;
9993 sections.abbrev_size = size;
9994 break;
9995 case DW_SECT_LINE:
9996 sections.line_offset = offset;
9997 sections.line_size = size;
9998 break;
9999 case DW_SECT_LOC:
10000 sections.loc_offset = offset;
10001 sections.loc_size = size;
10002 break;
10003 case DW_SECT_STR_OFFSETS:
10004 sections.str_offsets_offset = offset;
10005 sections.str_offsets_size = size;
10006 break;
10007 case DW_SECT_MACINFO:
10008 sections.macinfo_offset = offset;
10009 sections.macinfo_size = size;
10010 break;
10011 case DW_SECT_MACRO:
10012 sections.macro_offset = offset;
10013 sections.macro_size = size;
10014 break;
10015 }
10016 }
10017
10018 /* It's easier for the rest of the code if we fake a struct dwo_file and
10019 have dwo_unit "live" in that. At least for now.
10020
10021 The DWP file can be made up of a random collection of CUs and TUs.
10022 However, for each CU + set of TUs that came from the same original DWO
10023 file, we can combine them back into a virtual DWO file to save space
10024 (fewer struct dwo_file objects to allocate). Remember that for really
10025 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10026
10027 virtual_dwo_name =
10028 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10029 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10030 (long) (sections.line_size ? sections.line_offset : 0),
10031 (long) (sections.loc_size ? sections.loc_offset : 0),
10032 (long) (sections.str_offsets_size
10033 ? sections.str_offsets_offset : 0));
10034 make_cleanup (xfree, virtual_dwo_name);
10035 /* Can we use an existing virtual DWO file? */
10036 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10037 /* Create one if necessary. */
10038 if (*dwo_file_slot == NULL)
10039 {
10040 if (dwarf2_read_debug)
10041 {
10042 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10043 virtual_dwo_name);
10044 }
10045 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10046 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10047 virtual_dwo_name,
10048 strlen (virtual_dwo_name));
10049 dwo_file->comp_dir = comp_dir;
10050 dwo_file->sections.abbrev =
10051 create_dwp_v2_section (&dwp_file->sections.abbrev,
10052 sections.abbrev_offset, sections.abbrev_size);
10053 dwo_file->sections.line =
10054 create_dwp_v2_section (&dwp_file->sections.line,
10055 sections.line_offset, sections.line_size);
10056 dwo_file->sections.loc =
10057 create_dwp_v2_section (&dwp_file->sections.loc,
10058 sections.loc_offset, sections.loc_size);
10059 dwo_file->sections.macinfo =
10060 create_dwp_v2_section (&dwp_file->sections.macinfo,
10061 sections.macinfo_offset, sections.macinfo_size);
10062 dwo_file->sections.macro =
10063 create_dwp_v2_section (&dwp_file->sections.macro,
10064 sections.macro_offset, sections.macro_size);
10065 dwo_file->sections.str_offsets =
10066 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10067 sections.str_offsets_offset,
10068 sections.str_offsets_size);
10069 /* The "str" section is global to the entire DWP file. */
10070 dwo_file->sections.str = dwp_file->sections.str;
10071 /* The info or types section is assigned below to dwo_unit,
10072 there's no need to record it in dwo_file.
10073 Also, we can't simply record type sections in dwo_file because
10074 we record a pointer into the vector in dwo_unit. As we collect more
10075 types we'll grow the vector and eventually have to reallocate space
10076 for it, invalidating all copies of pointers into the previous
10077 contents. */
10078 *dwo_file_slot = dwo_file;
10079 }
10080 else
10081 {
10082 if (dwarf2_read_debug)
10083 {
10084 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10085 virtual_dwo_name);
10086 }
10087 dwo_file = *dwo_file_slot;
10088 }
10089 do_cleanups (cleanups);
10090
10091 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10092 dwo_unit->dwo_file = dwo_file;
10093 dwo_unit->signature = signature;
10094 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10095 sizeof (struct dwarf2_section_info));
10096 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10097 ? &dwp_file->sections.types
10098 : &dwp_file->sections.info,
10099 sections.info_or_types_offset,
10100 sections.info_or_types_size);
10101 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10102
10103 return dwo_unit;
10104}
10105
57d63ce2
DE
10106/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10107 Returns NULL if the signature isn't found. */
80626a55
DE
10108
10109static struct dwo_unit *
57d63ce2
DE
10110lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10111 ULONGEST signature, int is_debug_types)
80626a55 10112{
57d63ce2
DE
10113 const struct dwp_hash_table *dwp_htab =
10114 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10115 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10116 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10117 uint32_t hash = signature & mask;
10118 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10119 unsigned int i;
10120 void **slot;
10121 struct dwo_unit find_dwo_cu, *dwo_cu;
10122
10123 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10124 find_dwo_cu.signature = signature;
19ac8c2e
DE
10125 slot = htab_find_slot (is_debug_types
10126 ? dwp_file->loaded_tus
10127 : dwp_file->loaded_cus,
10128 &find_dwo_cu, INSERT);
80626a55
DE
10129
10130 if (*slot != NULL)
10131 return *slot;
10132
10133 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10134 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10135 {
10136 ULONGEST signature_in_table;
10137
10138 signature_in_table =
57d63ce2 10139 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10140 if (signature_in_table == signature)
10141 {
57d63ce2
DE
10142 uint32_t unit_index =
10143 read_4_bytes (dbfd,
10144 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10145
73869dc2
DE
10146 if (dwp_file->version == 1)
10147 {
10148 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10149 comp_dir, signature,
10150 is_debug_types);
10151 }
10152 else
10153 {
10154 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10155 comp_dir, signature,
10156 is_debug_types);
10157 }
80626a55
DE
10158 return *slot;
10159 }
10160 if (signature_in_table == 0)
10161 return NULL;
10162 hash = (hash + hash2) & mask;
10163 }
10164
10165 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10166 " [in module %s]"),
10167 dwp_file->name);
10168}
10169
ab5088bf 10170/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10171 Open the file specified by FILE_NAME and hand it off to BFD for
10172 preliminary analysis. Return a newly initialized bfd *, which
10173 includes a canonicalized copy of FILE_NAME.
80626a55 10174 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10175 SEARCH_CWD is true if the current directory is to be searched.
10176 It will be searched before debug-file-directory.
13aaf454
DE
10177 If successful, the file is added to the bfd include table of the
10178 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10179 If unable to find/open the file, return NULL.
3019eac3
DE
10180 NOTE: This function is derived from symfile_bfd_open. */
10181
10182static bfd *
6ac97d4c 10183try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10184{
10185 bfd *sym_bfd;
80626a55 10186 int desc, flags;
3019eac3 10187 char *absolute_name;
9c02c129
DE
10188 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10189 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10190 to debug_file_directory. */
10191 char *search_path;
10192 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10193
6ac97d4c
DE
10194 if (search_cwd)
10195 {
10196 if (*debug_file_directory != '\0')
10197 search_path = concat (".", dirname_separator_string,
10198 debug_file_directory, NULL);
10199 else
10200 search_path = xstrdup (".");
10201 }
9c02c129 10202 else
6ac97d4c 10203 search_path = xstrdup (debug_file_directory);
3019eac3 10204
492c0ab7 10205 flags = OPF_RETURN_REALPATH;
80626a55
DE
10206 if (is_dwp)
10207 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10208 desc = openp (search_path, flags, file_name,
3019eac3 10209 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10210 xfree (search_path);
3019eac3
DE
10211 if (desc < 0)
10212 return NULL;
10213
bb397797 10214 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10215 xfree (absolute_name);
9c02c129
DE
10216 if (sym_bfd == NULL)
10217 return NULL;
3019eac3
DE
10218 bfd_set_cacheable (sym_bfd, 1);
10219
10220 if (!bfd_check_format (sym_bfd, bfd_object))
10221 {
cbb099e8 10222 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10223 return NULL;
10224 }
10225
13aaf454
DE
10226 /* Success. Record the bfd as having been included by the objfile's bfd.
10227 This is important because things like demangled_names_hash lives in the
10228 objfile's per_bfd space and may have references to things like symbol
10229 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10230 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10231
3019eac3
DE
10232 return sym_bfd;
10233}
10234
ab5088bf 10235/* Try to open DWO file FILE_NAME.
3019eac3
DE
10236 COMP_DIR is the DW_AT_comp_dir attribute.
10237 The result is the bfd handle of the file.
10238 If there is a problem finding or opening the file, return NULL.
10239 Upon success, the canonicalized path of the file is stored in the bfd,
10240 same as symfile_bfd_open. */
10241
10242static bfd *
ab5088bf 10243open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10244{
10245 bfd *abfd;
3019eac3 10246
80626a55 10247 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10248 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10249
10250 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10251
10252 if (comp_dir != NULL)
10253 {
80626a55 10254 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10255
10256 /* NOTE: If comp_dir is a relative path, this will also try the
10257 search path, which seems useful. */
6ac97d4c 10258 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10259 xfree (path_to_try);
10260 if (abfd != NULL)
10261 return abfd;
10262 }
10263
10264 /* That didn't work, try debug-file-directory, which, despite its name,
10265 is a list of paths. */
10266
10267 if (*debug_file_directory == '\0')
10268 return NULL;
10269
6ac97d4c 10270 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10271}
10272
80626a55
DE
10273/* This function is mapped across the sections and remembers the offset and
10274 size of each of the DWO debugging sections we are interested in. */
10275
10276static void
10277dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10278{
10279 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10280 const struct dwop_section_names *names = &dwop_section_names;
10281
10282 if (section_is_p (sectp->name, &names->abbrev_dwo))
10283 {
73869dc2 10284 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10285 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10286 }
10287 else if (section_is_p (sectp->name, &names->info_dwo))
10288 {
73869dc2 10289 dwo_sections->info.s.asection = sectp;
80626a55
DE
10290 dwo_sections->info.size = bfd_get_section_size (sectp);
10291 }
10292 else if (section_is_p (sectp->name, &names->line_dwo))
10293 {
73869dc2 10294 dwo_sections->line.s.asection = sectp;
80626a55
DE
10295 dwo_sections->line.size = bfd_get_section_size (sectp);
10296 }
10297 else if (section_is_p (sectp->name, &names->loc_dwo))
10298 {
73869dc2 10299 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10300 dwo_sections->loc.size = bfd_get_section_size (sectp);
10301 }
10302 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10303 {
73869dc2 10304 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10305 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10306 }
10307 else if (section_is_p (sectp->name, &names->macro_dwo))
10308 {
73869dc2 10309 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10310 dwo_sections->macro.size = bfd_get_section_size (sectp);
10311 }
10312 else if (section_is_p (sectp->name, &names->str_dwo))
10313 {
73869dc2 10314 dwo_sections->str.s.asection = sectp;
80626a55
DE
10315 dwo_sections->str.size = bfd_get_section_size (sectp);
10316 }
10317 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10318 {
73869dc2 10319 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10320 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10321 }
10322 else if (section_is_p (sectp->name, &names->types_dwo))
10323 {
10324 struct dwarf2_section_info type_section;
10325
10326 memset (&type_section, 0, sizeof (type_section));
73869dc2 10327 type_section.s.asection = sectp;
80626a55
DE
10328 type_section.size = bfd_get_section_size (sectp);
10329 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10330 &type_section);
10331 }
10332}
10333
ab5088bf 10334/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10335 by PER_CU. This is for the non-DWP case.
80626a55 10336 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10337
10338static struct dwo_file *
0ac5b59e
DE
10339open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10340 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10341{
10342 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10343 struct dwo_file *dwo_file;
10344 bfd *dbfd;
3019eac3
DE
10345 struct cleanup *cleanups;
10346
ab5088bf 10347 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10348 if (dbfd == NULL)
10349 {
10350 if (dwarf2_read_debug)
10351 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10352 return NULL;
10353 }
10354 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10355 dwo_file->dwo_name = dwo_name;
10356 dwo_file->comp_dir = comp_dir;
80626a55 10357 dwo_file->dbfd = dbfd;
3019eac3
DE
10358
10359 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10360
80626a55 10361 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10362
19c3d4c9 10363 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10364
10365 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10366 dwo_file->sections.types);
10367
10368 discard_cleanups (cleanups);
10369
80626a55
DE
10370 if (dwarf2_read_debug)
10371 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10372
3019eac3
DE
10373 return dwo_file;
10374}
10375
80626a55 10376/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10377 size of each of the DWP debugging sections common to version 1 and 2 that
10378 we are interested in. */
3019eac3 10379
80626a55 10380static void
73869dc2
DE
10381dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10382 void *dwp_file_ptr)
3019eac3 10383{
80626a55
DE
10384 struct dwp_file *dwp_file = dwp_file_ptr;
10385 const struct dwop_section_names *names = &dwop_section_names;
10386 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10387
80626a55 10388 /* Record the ELF section number for later lookup: this is what the
73869dc2 10389 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10390 gdb_assert (elf_section_nr < dwp_file->num_sections);
10391 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10392
80626a55
DE
10393 /* Look for specific sections that we need. */
10394 if (section_is_p (sectp->name, &names->str_dwo))
10395 {
73869dc2 10396 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10397 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10398 }
10399 else if (section_is_p (sectp->name, &names->cu_index))
10400 {
73869dc2 10401 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10402 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10403 }
10404 else if (section_is_p (sectp->name, &names->tu_index))
10405 {
73869dc2 10406 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10407 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10408 }
10409}
3019eac3 10410
73869dc2
DE
10411/* This function is mapped across the sections and remembers the offset and
10412 size of each of the DWP version 2 debugging sections that we are interested
10413 in. This is split into a separate function because we don't know if we
10414 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10415
10416static void
10417dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10418{
10419 struct dwp_file *dwp_file = dwp_file_ptr;
10420 const struct dwop_section_names *names = &dwop_section_names;
10421 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10422
10423 /* Record the ELF section number for later lookup: this is what the
10424 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10425 gdb_assert (elf_section_nr < dwp_file->num_sections);
10426 dwp_file->elf_sections[elf_section_nr] = sectp;
10427
10428 /* Look for specific sections that we need. */
10429 if (section_is_p (sectp->name, &names->abbrev_dwo))
10430 {
10431 dwp_file->sections.abbrev.s.asection = sectp;
10432 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10433 }
10434 else if (section_is_p (sectp->name, &names->info_dwo))
10435 {
10436 dwp_file->sections.info.s.asection = sectp;
10437 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10438 }
10439 else if (section_is_p (sectp->name, &names->line_dwo))
10440 {
10441 dwp_file->sections.line.s.asection = sectp;
10442 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10443 }
10444 else if (section_is_p (sectp->name, &names->loc_dwo))
10445 {
10446 dwp_file->sections.loc.s.asection = sectp;
10447 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10448 }
10449 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10450 {
10451 dwp_file->sections.macinfo.s.asection = sectp;
10452 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10453 }
10454 else if (section_is_p (sectp->name, &names->macro_dwo))
10455 {
10456 dwp_file->sections.macro.s.asection = sectp;
10457 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10458 }
10459 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10460 {
10461 dwp_file->sections.str_offsets.s.asection = sectp;
10462 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10463 }
10464 else if (section_is_p (sectp->name, &names->types_dwo))
10465 {
10466 dwp_file->sections.types.s.asection = sectp;
10467 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10468 }
10469}
10470
80626a55 10471/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10472
80626a55
DE
10473static hashval_t
10474hash_dwp_loaded_cutus (const void *item)
10475{
10476 const struct dwo_unit *dwo_unit = item;
3019eac3 10477
80626a55
DE
10478 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10479 return dwo_unit->signature;
3019eac3
DE
10480}
10481
80626a55 10482/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10483
80626a55
DE
10484static int
10485eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10486{
80626a55
DE
10487 const struct dwo_unit *dua = a;
10488 const struct dwo_unit *dub = b;
3019eac3 10489
80626a55
DE
10490 return dua->signature == dub->signature;
10491}
3019eac3 10492
80626a55 10493/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10494
80626a55
DE
10495static htab_t
10496allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10497{
10498 return htab_create_alloc_ex (3,
10499 hash_dwp_loaded_cutus,
10500 eq_dwp_loaded_cutus,
10501 NULL,
10502 &objfile->objfile_obstack,
10503 hashtab_obstack_allocate,
10504 dummy_obstack_deallocate);
10505}
3019eac3 10506
ab5088bf
DE
10507/* Try to open DWP file FILE_NAME.
10508 The result is the bfd handle of the file.
10509 If there is a problem finding or opening the file, return NULL.
10510 Upon success, the canonicalized path of the file is stored in the bfd,
10511 same as symfile_bfd_open. */
10512
10513static bfd *
10514open_dwp_file (const char *file_name)
10515{
6ac97d4c
DE
10516 bfd *abfd;
10517
10518 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10519 if (abfd != NULL)
10520 return abfd;
10521
10522 /* Work around upstream bug 15652.
10523 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10524 [Whether that's a "bug" is debatable, but it is getting in our way.]
10525 We have no real idea where the dwp file is, because gdb's realpath-ing
10526 of the executable's path may have discarded the needed info.
10527 [IWBN if the dwp file name was recorded in the executable, akin to
10528 .gnu_debuglink, but that doesn't exist yet.]
10529 Strip the directory from FILE_NAME and search again. */
10530 if (*debug_file_directory != '\0')
10531 {
10532 /* Don't implicitly search the current directory here.
10533 If the user wants to search "." to handle this case,
10534 it must be added to debug-file-directory. */
10535 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10536 0 /*search_cwd*/);
10537 }
10538
10539 return NULL;
ab5088bf
DE
10540}
10541
80626a55
DE
10542/* Initialize the use of the DWP file for the current objfile.
10543 By convention the name of the DWP file is ${objfile}.dwp.
10544 The result is NULL if it can't be found. */
a766d390 10545
80626a55 10546static struct dwp_file *
ab5088bf 10547open_and_init_dwp_file (void)
80626a55
DE
10548{
10549 struct objfile *objfile = dwarf2_per_objfile->objfile;
10550 struct dwp_file *dwp_file;
10551 char *dwp_name;
10552 bfd *dbfd;
10553 struct cleanup *cleanups;
10554
82bf32bc
JK
10555 /* Try to find first .dwp for the binary file before any symbolic links
10556 resolving. */
10557 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10558 cleanups = make_cleanup (xfree, dwp_name);
10559
ab5088bf 10560 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10561 if (dbfd == NULL
10562 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10563 {
10564 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10565 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10566 make_cleanup (xfree, dwp_name);
10567 dbfd = open_dwp_file (dwp_name);
10568 }
10569
80626a55
DE
10570 if (dbfd == NULL)
10571 {
10572 if (dwarf2_read_debug)
10573 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10574 do_cleanups (cleanups);
10575 return NULL;
3019eac3 10576 }
80626a55 10577 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10578 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10579 dwp_file->dbfd = dbfd;
10580 do_cleanups (cleanups);
c906108c 10581
80626a55
DE
10582 /* +1: section 0 is unused */
10583 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10584 dwp_file->elf_sections =
10585 OBSTACK_CALLOC (&objfile->objfile_obstack,
10586 dwp_file->num_sections, asection *);
10587
73869dc2 10588 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10589
10590 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10591
10592 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10593
73869dc2
DE
10594 /* The DWP file version is stored in the hash table. Oh well. */
10595 if (dwp_file->cus->version != dwp_file->tus->version)
10596 {
10597 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10598 pretty bizarre. We use pulongest here because that's the established
4d65956b 10599 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10600 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10601 " TU version %s [in DWP file %s]"),
10602 pulongest (dwp_file->cus->version),
10603 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10604 }
10605 dwp_file->version = dwp_file->cus->version;
10606
10607 if (dwp_file->version == 2)
10608 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10609
19ac8c2e
DE
10610 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10611 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10612
80626a55
DE
10613 if (dwarf2_read_debug)
10614 {
10615 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10616 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10617 " %s CUs, %s TUs\n",
10618 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10619 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10620 }
10621
10622 return dwp_file;
3019eac3 10623}
c906108c 10624
ab5088bf
DE
10625/* Wrapper around open_and_init_dwp_file, only open it once. */
10626
10627static struct dwp_file *
10628get_dwp_file (void)
10629{
10630 if (! dwarf2_per_objfile->dwp_checked)
10631 {
10632 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10633 dwarf2_per_objfile->dwp_checked = 1;
10634 }
10635 return dwarf2_per_objfile->dwp_file;
10636}
10637
80626a55
DE
10638/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10639 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10640 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10641 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10642 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10643
10644 This is called, for example, when wanting to read a variable with a
10645 complex location. Therefore we don't want to do file i/o for every call.
10646 Therefore we don't want to look for a DWO file on every call.
10647 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10648 then we check if we've already seen DWO_NAME, and only THEN do we check
10649 for a DWO file.
10650
1c658ad5 10651 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10652 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10653
3019eac3 10654static struct dwo_unit *
80626a55
DE
10655lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10656 const char *dwo_name, const char *comp_dir,
10657 ULONGEST signature, int is_debug_types)
3019eac3
DE
10658{
10659 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10660 const char *kind = is_debug_types ? "TU" : "CU";
10661 void **dwo_file_slot;
3019eac3 10662 struct dwo_file *dwo_file;
80626a55 10663 struct dwp_file *dwp_file;
cb1df416 10664
6a506a2d
DE
10665 /* First see if there's a DWP file.
10666 If we have a DWP file but didn't find the DWO inside it, don't
10667 look for the original DWO file. It makes gdb behave differently
10668 depending on whether one is debugging in the build tree. */
cf2c3c16 10669
ab5088bf 10670 dwp_file = get_dwp_file ();
80626a55 10671 if (dwp_file != NULL)
cf2c3c16 10672 {
80626a55
DE
10673 const struct dwp_hash_table *dwp_htab =
10674 is_debug_types ? dwp_file->tus : dwp_file->cus;
10675
10676 if (dwp_htab != NULL)
10677 {
10678 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10679 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10680 signature, is_debug_types);
80626a55
DE
10681
10682 if (dwo_cutu != NULL)
10683 {
10684 if (dwarf2_read_debug)
10685 {
10686 fprintf_unfiltered (gdb_stdlog,
10687 "Virtual DWO %s %s found: @%s\n",
10688 kind, hex_string (signature),
10689 host_address_to_string (dwo_cutu));
10690 }
10691 return dwo_cutu;
10692 }
10693 }
10694 }
6a506a2d 10695 else
80626a55 10696 {
6a506a2d 10697 /* No DWP file, look for the DWO file. */
80626a55 10698
6a506a2d
DE
10699 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10700 if (*dwo_file_slot == NULL)
80626a55 10701 {
6a506a2d
DE
10702 /* Read in the file and build a table of the CUs/TUs it contains. */
10703 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10704 }
6a506a2d
DE
10705 /* NOTE: This will be NULL if unable to open the file. */
10706 dwo_file = *dwo_file_slot;
3019eac3 10707
6a506a2d 10708 if (dwo_file != NULL)
19c3d4c9 10709 {
6a506a2d
DE
10710 struct dwo_unit *dwo_cutu = NULL;
10711
10712 if (is_debug_types && dwo_file->tus)
10713 {
10714 struct dwo_unit find_dwo_cutu;
10715
10716 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10717 find_dwo_cutu.signature = signature;
10718 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10719 }
10720 else if (!is_debug_types && dwo_file->cu)
80626a55 10721 {
6a506a2d
DE
10722 if (signature == dwo_file->cu->signature)
10723 dwo_cutu = dwo_file->cu;
10724 }
10725
10726 if (dwo_cutu != NULL)
10727 {
10728 if (dwarf2_read_debug)
10729 {
10730 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10731 kind, dwo_name, hex_string (signature),
10732 host_address_to_string (dwo_cutu));
10733 }
10734 return dwo_cutu;
80626a55
DE
10735 }
10736 }
2e276125 10737 }
9cdd5dbd 10738
80626a55
DE
10739 /* We didn't find it. This could mean a dwo_id mismatch, or
10740 someone deleted the DWO/DWP file, or the search path isn't set up
10741 correctly to find the file. */
10742
10743 if (dwarf2_read_debug)
10744 {
10745 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10746 kind, dwo_name, hex_string (signature));
10747 }
3019eac3 10748
6656a72d
DE
10749 /* This is a warning and not a complaint because it can be caused by
10750 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10751 {
10752 /* Print the name of the DWP file if we looked there, helps the user
10753 better diagnose the problem. */
10754 char *dwp_text = NULL;
10755 struct cleanup *cleanups;
10756
10757 if (dwp_file != NULL)
10758 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10759 cleanups = make_cleanup (xfree, dwp_text);
10760
10761 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10762 " [in module %s]"),
10763 kind, dwo_name, hex_string (signature),
10764 dwp_text != NULL ? dwp_text : "",
10765 this_unit->is_debug_types ? "TU" : "CU",
10766 this_unit->offset.sect_off, objfile_name (objfile));
10767
10768 do_cleanups (cleanups);
10769 }
3019eac3 10770 return NULL;
5fb290d7
DJ
10771}
10772
80626a55
DE
10773/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10774 See lookup_dwo_cutu_unit for details. */
10775
10776static struct dwo_unit *
10777lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10778 const char *dwo_name, const char *comp_dir,
10779 ULONGEST signature)
10780{
10781 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10782}
10783
10784/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10785 See lookup_dwo_cutu_unit for details. */
10786
10787static struct dwo_unit *
10788lookup_dwo_type_unit (struct signatured_type *this_tu,
10789 const char *dwo_name, const char *comp_dir)
10790{
10791 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10792}
10793
89e63ee4
DE
10794/* Traversal function for queue_and_load_all_dwo_tus. */
10795
10796static int
10797queue_and_load_dwo_tu (void **slot, void *info)
10798{
10799 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10800 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10801 ULONGEST signature = dwo_unit->signature;
10802 struct signatured_type *sig_type =
10803 lookup_dwo_signatured_type (per_cu->cu, signature);
10804
10805 if (sig_type != NULL)
10806 {
10807 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10808
10809 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10810 a real dependency of PER_CU on SIG_TYPE. That is detected later
10811 while processing PER_CU. */
10812 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10813 load_full_type_unit (sig_cu);
10814 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10815 }
10816
10817 return 1;
10818}
10819
10820/* Queue all TUs contained in the DWO of PER_CU to be read in.
10821 The DWO may have the only definition of the type, though it may not be
10822 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10823 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10824
10825static void
10826queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10827{
10828 struct dwo_unit *dwo_unit;
10829 struct dwo_file *dwo_file;
10830
10831 gdb_assert (!per_cu->is_debug_types);
10832 gdb_assert (get_dwp_file () == NULL);
10833 gdb_assert (per_cu->cu != NULL);
10834
10835 dwo_unit = per_cu->cu->dwo_unit;
10836 gdb_assert (dwo_unit != NULL);
10837
10838 dwo_file = dwo_unit->dwo_file;
10839 if (dwo_file->tus != NULL)
10840 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10841}
10842
3019eac3
DE
10843/* Free all resources associated with DWO_FILE.
10844 Close the DWO file and munmap the sections.
10845 All memory should be on the objfile obstack. */
348e048f
DE
10846
10847static void
3019eac3 10848free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10849{
3019eac3
DE
10850 int ix;
10851 struct dwarf2_section_info *section;
348e048f 10852
5c6fa7ab 10853 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10854 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10855
3019eac3
DE
10856 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10857}
348e048f 10858
3019eac3 10859/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10860
3019eac3
DE
10861static void
10862free_dwo_file_cleanup (void *arg)
10863{
10864 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10865 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10866
3019eac3
DE
10867 free_dwo_file (dwo_file, objfile);
10868}
348e048f 10869
3019eac3 10870/* Traversal function for free_dwo_files. */
2ab95328 10871
3019eac3
DE
10872static int
10873free_dwo_file_from_slot (void **slot, void *info)
10874{
10875 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10876 struct objfile *objfile = (struct objfile *) info;
348e048f 10877
3019eac3 10878 free_dwo_file (dwo_file, objfile);
348e048f 10879
3019eac3
DE
10880 return 1;
10881}
348e048f 10882
3019eac3 10883/* Free all resources associated with DWO_FILES. */
348e048f 10884
3019eac3
DE
10885static void
10886free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10887{
10888 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10889}
3019eac3
DE
10890\f
10891/* Read in various DIEs. */
348e048f 10892
d389af10
JK
10893/* qsort helper for inherit_abstract_dies. */
10894
10895static int
10896unsigned_int_compar (const void *ap, const void *bp)
10897{
10898 unsigned int a = *(unsigned int *) ap;
10899 unsigned int b = *(unsigned int *) bp;
10900
10901 return (a > b) - (b > a);
10902}
10903
10904/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10905 Inherit only the children of the DW_AT_abstract_origin DIE not being
10906 already referenced by DW_AT_abstract_origin from the children of the
10907 current DIE. */
d389af10
JK
10908
10909static void
10910inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10911{
10912 struct die_info *child_die;
10913 unsigned die_children_count;
10914 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
10915 sect_offset *offsets;
10916 sect_offset *offsets_end, *offsetp;
d389af10
JK
10917 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10918 struct die_info *origin_die;
10919 /* Iterator of the ORIGIN_DIE children. */
10920 struct die_info *origin_child_die;
10921 struct cleanup *cleanups;
10922 struct attribute *attr;
cd02d79d
PA
10923 struct dwarf2_cu *origin_cu;
10924 struct pending **origin_previous_list_in_scope;
d389af10
JK
10925
10926 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10927 if (!attr)
10928 return;
10929
cd02d79d
PA
10930 /* Note that following die references may follow to a die in a
10931 different cu. */
10932
10933 origin_cu = cu;
10934 origin_die = follow_die_ref (die, attr, &origin_cu);
10935
10936 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10937 symbols in. */
10938 origin_previous_list_in_scope = origin_cu->list_in_scope;
10939 origin_cu->list_in_scope = cu->list_in_scope;
10940
edb3359d
DJ
10941 if (die->tag != origin_die->tag
10942 && !(die->tag == DW_TAG_inlined_subroutine
10943 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10944 complaint (&symfile_complaints,
10945 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 10946 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
10947
10948 child_die = die->child;
10949 die_children_count = 0;
10950 while (child_die && child_die->tag)
10951 {
10952 child_die = sibling_die (child_die);
10953 die_children_count++;
10954 }
10955 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10956 cleanups = make_cleanup (xfree, offsets);
10957
10958 offsets_end = offsets;
10959 child_die = die->child;
10960 while (child_die && child_die->tag)
10961 {
c38f313d
DJ
10962 /* For each CHILD_DIE, find the corresponding child of
10963 ORIGIN_DIE. If there is more than one layer of
10964 DW_AT_abstract_origin, follow them all; there shouldn't be,
10965 but GCC versions at least through 4.4 generate this (GCC PR
10966 40573). */
10967 struct die_info *child_origin_die = child_die;
cd02d79d 10968 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 10969
c38f313d
DJ
10970 while (1)
10971 {
cd02d79d
PA
10972 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10973 child_origin_cu);
c38f313d
DJ
10974 if (attr == NULL)
10975 break;
cd02d79d
PA
10976 child_origin_die = follow_die_ref (child_origin_die, attr,
10977 &child_origin_cu);
c38f313d
DJ
10978 }
10979
d389af10
JK
10980 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10981 counterpart may exist. */
c38f313d 10982 if (child_origin_die != child_die)
d389af10 10983 {
edb3359d
DJ
10984 if (child_die->tag != child_origin_die->tag
10985 && !(child_die->tag == DW_TAG_inlined_subroutine
10986 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10987 complaint (&symfile_complaints,
10988 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10989 "different tags"), child_die->offset.sect_off,
10990 child_origin_die->offset.sect_off);
c38f313d
DJ
10991 if (child_origin_die->parent != origin_die)
10992 complaint (&symfile_complaints,
10993 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10994 "different parents"), child_die->offset.sect_off,
10995 child_origin_die->offset.sect_off);
c38f313d
DJ
10996 else
10997 *offsets_end++ = child_origin_die->offset;
d389af10
JK
10998 }
10999 child_die = sibling_die (child_die);
11000 }
11001 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11002 unsigned_int_compar);
11003 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11004 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11005 complaint (&symfile_complaints,
11006 _("Multiple children of DIE 0x%x refer "
11007 "to DIE 0x%x as their abstract origin"),
b64f50a1 11008 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11009
11010 offsetp = offsets;
11011 origin_child_die = origin_die->child;
11012 while (origin_child_die && origin_child_die->tag)
11013 {
11014 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11015 while (offsetp < offsets_end
11016 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11017 offsetp++;
b64f50a1
JK
11018 if (offsetp >= offsets_end
11019 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11020 {
adde2bff
DE
11021 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11022 Check whether we're already processing ORIGIN_CHILD_DIE.
11023 This can happen with mutually referenced abstract_origins.
11024 PR 16581. */
11025 if (!origin_child_die->in_process)
11026 process_die (origin_child_die, origin_cu);
d389af10
JK
11027 }
11028 origin_child_die = sibling_die (origin_child_die);
11029 }
cd02d79d 11030 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11031
11032 do_cleanups (cleanups);
11033}
11034
c906108c 11035static void
e7c27a73 11036read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11037{
e7c27a73 11038 struct objfile *objfile = cu->objfile;
52f0bd74 11039 struct context_stack *new;
c906108c
SS
11040 CORE_ADDR lowpc;
11041 CORE_ADDR highpc;
11042 struct die_info *child_die;
edb3359d 11043 struct attribute *attr, *call_line, *call_file;
15d034d0 11044 const char *name;
e142c38c 11045 CORE_ADDR baseaddr;
801e3a5b 11046 struct block *block;
edb3359d 11047 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11048 VEC (symbolp) *template_args = NULL;
11049 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11050
11051 if (inlined_func)
11052 {
11053 /* If we do not have call site information, we can't show the
11054 caller of this inlined function. That's too confusing, so
11055 only use the scope for local variables. */
11056 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11057 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11058 if (call_line == NULL || call_file == NULL)
11059 {
11060 read_lexical_block_scope (die, cu);
11061 return;
11062 }
11063 }
c906108c 11064
e142c38c
DJ
11065 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11066
94af9270 11067 name = dwarf2_name (die, cu);
c906108c 11068
e8d05480
JB
11069 /* Ignore functions with missing or empty names. These are actually
11070 illegal according to the DWARF standard. */
11071 if (name == NULL)
11072 {
11073 complaint (&symfile_complaints,
b64f50a1
JK
11074 _("missing name for subprogram DIE at %d"),
11075 die->offset.sect_off);
e8d05480
JB
11076 return;
11077 }
11078
11079 /* Ignore functions with missing or invalid low and high pc attributes. */
11080 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11081 {
ae4d0c03
PM
11082 attr = dwarf2_attr (die, DW_AT_external, cu);
11083 if (!attr || !DW_UNSND (attr))
11084 complaint (&symfile_complaints,
3e43a32a
MS
11085 _("cannot get low and high bounds "
11086 "for subprogram DIE at %d"),
b64f50a1 11087 die->offset.sect_off);
e8d05480
JB
11088 return;
11089 }
c906108c
SS
11090
11091 lowpc += baseaddr;
11092 highpc += baseaddr;
11093
34eaf542
TT
11094 /* If we have any template arguments, then we must allocate a
11095 different sort of symbol. */
11096 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11097 {
11098 if (child_die->tag == DW_TAG_template_type_param
11099 || child_die->tag == DW_TAG_template_value_param)
11100 {
e623cf5d 11101 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11102 templ_func->base.is_cplus_template_function = 1;
11103 break;
11104 }
11105 }
11106
c906108c 11107 new = push_context (0, lowpc);
34eaf542
TT
11108 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11109 (struct symbol *) templ_func);
4c2df51b 11110
4cecd739
DJ
11111 /* If there is a location expression for DW_AT_frame_base, record
11112 it. */
e142c38c 11113 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11114 if (attr)
f1e6e072 11115 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11116
e142c38c 11117 cu->list_in_scope = &local_symbols;
c906108c 11118
639d11d3 11119 if (die->child != NULL)
c906108c 11120 {
639d11d3 11121 child_die = die->child;
c906108c
SS
11122 while (child_die && child_die->tag)
11123 {
34eaf542
TT
11124 if (child_die->tag == DW_TAG_template_type_param
11125 || child_die->tag == DW_TAG_template_value_param)
11126 {
11127 struct symbol *arg = new_symbol (child_die, NULL, cu);
11128
f1078f66
DJ
11129 if (arg != NULL)
11130 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11131 }
11132 else
11133 process_die (child_die, cu);
c906108c
SS
11134 child_die = sibling_die (child_die);
11135 }
11136 }
11137
d389af10
JK
11138 inherit_abstract_dies (die, cu);
11139
4a811a97
UW
11140 /* If we have a DW_AT_specification, we might need to import using
11141 directives from the context of the specification DIE. See the
11142 comment in determine_prefix. */
11143 if (cu->language == language_cplus
11144 && dwarf2_attr (die, DW_AT_specification, cu))
11145 {
11146 struct dwarf2_cu *spec_cu = cu;
11147 struct die_info *spec_die = die_specification (die, &spec_cu);
11148
11149 while (spec_die)
11150 {
11151 child_die = spec_die->child;
11152 while (child_die && child_die->tag)
11153 {
11154 if (child_die->tag == DW_TAG_imported_module)
11155 process_die (child_die, spec_cu);
11156 child_die = sibling_die (child_die);
11157 }
11158
11159 /* In some cases, GCC generates specification DIEs that
11160 themselves contain DW_AT_specification attributes. */
11161 spec_die = die_specification (spec_die, &spec_cu);
11162 }
11163 }
11164
c906108c
SS
11165 new = pop_context ();
11166 /* Make a block for the local symbols within. */
801e3a5b
JB
11167 block = finish_block (new->name, &local_symbols, new->old_blocks,
11168 lowpc, highpc, objfile);
11169
df8a16a1 11170 /* For C++, set the block's scope. */
195a3f6c 11171 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11172 && cu->processing_has_namespace_info)
195a3f6c
TT
11173 block_set_scope (block, determine_prefix (die, cu),
11174 &objfile->objfile_obstack);
df8a16a1 11175
801e3a5b
JB
11176 /* If we have address ranges, record them. */
11177 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11178
34eaf542
TT
11179 /* Attach template arguments to function. */
11180 if (! VEC_empty (symbolp, template_args))
11181 {
11182 gdb_assert (templ_func != NULL);
11183
11184 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11185 templ_func->template_arguments
11186 = obstack_alloc (&objfile->objfile_obstack,
11187 (templ_func->n_template_arguments
11188 * sizeof (struct symbol *)));
11189 memcpy (templ_func->template_arguments,
11190 VEC_address (symbolp, template_args),
11191 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11192 VEC_free (symbolp, template_args);
11193 }
11194
208d8187
JB
11195 /* In C++, we can have functions nested inside functions (e.g., when
11196 a function declares a class that has methods). This means that
11197 when we finish processing a function scope, we may need to go
11198 back to building a containing block's symbol lists. */
11199 local_symbols = new->locals;
27aa8d6a 11200 using_directives = new->using_directives;
208d8187 11201
921e78cf
JB
11202 /* If we've finished processing a top-level function, subsequent
11203 symbols go in the file symbol list. */
11204 if (outermost_context_p ())
e142c38c 11205 cu->list_in_scope = &file_symbols;
c906108c
SS
11206}
11207
11208/* Process all the DIES contained within a lexical block scope. Start
11209 a new scope, process the dies, and then close the scope. */
11210
11211static void
e7c27a73 11212read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11213{
e7c27a73 11214 struct objfile *objfile = cu->objfile;
52f0bd74 11215 struct context_stack *new;
c906108c
SS
11216 CORE_ADDR lowpc, highpc;
11217 struct die_info *child_die;
e142c38c
DJ
11218 CORE_ADDR baseaddr;
11219
11220 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11221
11222 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11223 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11224 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11225 be nasty. Might be easier to properly extend generic blocks to
af34e669 11226 describe ranges. */
d85a05f0 11227 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11228 return;
11229 lowpc += baseaddr;
11230 highpc += baseaddr;
11231
11232 push_context (0, lowpc);
639d11d3 11233 if (die->child != NULL)
c906108c 11234 {
639d11d3 11235 child_die = die->child;
c906108c
SS
11236 while (child_die && child_die->tag)
11237 {
e7c27a73 11238 process_die (child_die, cu);
c906108c
SS
11239 child_die = sibling_die (child_die);
11240 }
11241 }
11242 new = pop_context ();
11243
8540c487 11244 if (local_symbols != NULL || using_directives != NULL)
c906108c 11245 {
801e3a5b
JB
11246 struct block *block
11247 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11248 highpc, objfile);
11249
11250 /* Note that recording ranges after traversing children, as we
11251 do here, means that recording a parent's ranges entails
11252 walking across all its children's ranges as they appear in
11253 the address map, which is quadratic behavior.
11254
11255 It would be nicer to record the parent's ranges before
11256 traversing its children, simply overriding whatever you find
11257 there. But since we don't even decide whether to create a
11258 block until after we've traversed its children, that's hard
11259 to do. */
11260 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11261 }
11262 local_symbols = new->locals;
27aa8d6a 11263 using_directives = new->using_directives;
c906108c
SS
11264}
11265
96408a79
SA
11266/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11267
11268static void
11269read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11270{
11271 struct objfile *objfile = cu->objfile;
11272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11273 CORE_ADDR pc, baseaddr;
11274 struct attribute *attr;
11275 struct call_site *call_site, call_site_local;
11276 void **slot;
11277 int nparams;
11278 struct die_info *child_die;
11279
11280 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11281
11282 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11283 if (!attr)
11284 {
11285 complaint (&symfile_complaints,
11286 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11287 "DIE 0x%x [in module %s]"),
4262abfb 11288 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11289 return;
11290 }
31aa7e4e 11291 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11292
11293 if (cu->call_site_htab == NULL)
11294 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11295 NULL, &objfile->objfile_obstack,
11296 hashtab_obstack_allocate, NULL);
11297 call_site_local.pc = pc;
11298 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11299 if (*slot != NULL)
11300 {
11301 complaint (&symfile_complaints,
11302 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11303 "DIE 0x%x [in module %s]"),
4262abfb
JK
11304 paddress (gdbarch, pc), die->offset.sect_off,
11305 objfile_name (objfile));
96408a79
SA
11306 return;
11307 }
11308
11309 /* Count parameters at the caller. */
11310
11311 nparams = 0;
11312 for (child_die = die->child; child_die && child_die->tag;
11313 child_die = sibling_die (child_die))
11314 {
11315 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11316 {
11317 complaint (&symfile_complaints,
11318 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11319 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11320 child_die->tag, child_die->offset.sect_off,
11321 objfile_name (objfile));
96408a79
SA
11322 continue;
11323 }
11324
11325 nparams++;
11326 }
11327
11328 call_site = obstack_alloc (&objfile->objfile_obstack,
11329 (sizeof (*call_site)
11330 + (sizeof (*call_site->parameter)
11331 * (nparams - 1))));
11332 *slot = call_site;
11333 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11334 call_site->pc = pc;
11335
11336 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11337 {
11338 struct die_info *func_die;
11339
11340 /* Skip also over DW_TAG_inlined_subroutine. */
11341 for (func_die = die->parent;
11342 func_die && func_die->tag != DW_TAG_subprogram
11343 && func_die->tag != DW_TAG_subroutine_type;
11344 func_die = func_die->parent);
11345
11346 /* DW_AT_GNU_all_call_sites is a superset
11347 of DW_AT_GNU_all_tail_call_sites. */
11348 if (func_die
11349 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11350 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11351 {
11352 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11353 not complete. But keep CALL_SITE for look ups via call_site_htab,
11354 both the initial caller containing the real return address PC and
11355 the final callee containing the current PC of a chain of tail
11356 calls do not need to have the tail call list complete. But any
11357 function candidate for a virtual tail call frame searched via
11358 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11359 determined unambiguously. */
11360 }
11361 else
11362 {
11363 struct type *func_type = NULL;
11364
11365 if (func_die)
11366 func_type = get_die_type (func_die, cu);
11367 if (func_type != NULL)
11368 {
11369 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11370
11371 /* Enlist this call site to the function. */
11372 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11373 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11374 }
11375 else
11376 complaint (&symfile_complaints,
11377 _("Cannot find function owning DW_TAG_GNU_call_site "
11378 "DIE 0x%x [in module %s]"),
4262abfb 11379 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11380 }
11381 }
11382
11383 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11384 if (attr == NULL)
11385 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11386 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11387 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11388 /* Keep NULL DWARF_BLOCK. */;
11389 else if (attr_form_is_block (attr))
11390 {
11391 struct dwarf2_locexpr_baton *dlbaton;
11392
11393 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11394 dlbaton->data = DW_BLOCK (attr)->data;
11395 dlbaton->size = DW_BLOCK (attr)->size;
11396 dlbaton->per_cu = cu->per_cu;
11397
11398 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11399 }
7771576e 11400 else if (attr_form_is_ref (attr))
96408a79 11401 {
96408a79
SA
11402 struct dwarf2_cu *target_cu = cu;
11403 struct die_info *target_die;
11404
ac9ec31b 11405 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11406 gdb_assert (target_cu->objfile == objfile);
11407 if (die_is_declaration (target_die, target_cu))
11408 {
9112db09
JK
11409 const char *target_physname = NULL;
11410 struct attribute *target_attr;
11411
11412 /* Prefer the mangled name; otherwise compute the demangled one. */
11413 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11414 if (target_attr == NULL)
11415 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11416 target_cu);
11417 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11418 target_physname = DW_STRING (target_attr);
11419 else
11420 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11421 if (target_physname == NULL)
11422 complaint (&symfile_complaints,
11423 _("DW_AT_GNU_call_site_target target DIE has invalid "
11424 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11425 die->offset.sect_off, objfile_name (objfile));
96408a79 11426 else
7d455152 11427 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11428 }
11429 else
11430 {
11431 CORE_ADDR lowpc;
11432
11433 /* DW_AT_entry_pc should be preferred. */
11434 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11435 complaint (&symfile_complaints,
11436 _("DW_AT_GNU_call_site_target target DIE has invalid "
11437 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11438 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11439 else
11440 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11441 }
11442 }
11443 else
11444 complaint (&symfile_complaints,
11445 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11446 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11447 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11448
11449 call_site->per_cu = cu->per_cu;
11450
11451 for (child_die = die->child;
11452 child_die && child_die->tag;
11453 child_die = sibling_die (child_die))
11454 {
96408a79 11455 struct call_site_parameter *parameter;
1788b2d3 11456 struct attribute *loc, *origin;
96408a79
SA
11457
11458 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11459 {
11460 /* Already printed the complaint above. */
11461 continue;
11462 }
11463
11464 gdb_assert (call_site->parameter_count < nparams);
11465 parameter = &call_site->parameter[call_site->parameter_count];
11466
1788b2d3
JK
11467 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11468 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11469 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11470
24c5c679 11471 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11472 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11473 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11474 {
11475 sect_offset offset;
11476
11477 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11478 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11479 if (!offset_in_cu_p (&cu->header, offset))
11480 {
11481 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11482 binding can be done only inside one CU. Such referenced DIE
11483 therefore cannot be even moved to DW_TAG_partial_unit. */
11484 complaint (&symfile_complaints,
11485 _("DW_AT_abstract_origin offset is not in CU for "
11486 "DW_TAG_GNU_call_site child DIE 0x%x "
11487 "[in module %s]"),
4262abfb 11488 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11489 continue;
11490 }
1788b2d3
JK
11491 parameter->u.param_offset.cu_off = (offset.sect_off
11492 - cu->header.offset.sect_off);
11493 }
11494 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11495 {
11496 complaint (&symfile_complaints,
11497 _("No DW_FORM_block* DW_AT_location for "
11498 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11499 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11500 continue;
11501 }
24c5c679 11502 else
96408a79 11503 {
24c5c679
JK
11504 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11505 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11506 if (parameter->u.dwarf_reg != -1)
11507 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11508 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11509 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11510 &parameter->u.fb_offset))
11511 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11512 else
11513 {
11514 complaint (&symfile_complaints,
11515 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11516 "for DW_FORM_block* DW_AT_location is supported for "
11517 "DW_TAG_GNU_call_site child DIE 0x%x "
11518 "[in module %s]"),
4262abfb 11519 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11520 continue;
11521 }
96408a79
SA
11522 }
11523
11524 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11525 if (!attr_form_is_block (attr))
11526 {
11527 complaint (&symfile_complaints,
11528 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11529 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11530 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11531 continue;
11532 }
11533 parameter->value = DW_BLOCK (attr)->data;
11534 parameter->value_size = DW_BLOCK (attr)->size;
11535
11536 /* Parameters are not pre-cleared by memset above. */
11537 parameter->data_value = NULL;
11538 parameter->data_value_size = 0;
11539 call_site->parameter_count++;
11540
11541 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11542 if (attr)
11543 {
11544 if (!attr_form_is_block (attr))
11545 complaint (&symfile_complaints,
11546 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11547 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11548 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11549 else
11550 {
11551 parameter->data_value = DW_BLOCK (attr)->data;
11552 parameter->data_value_size = DW_BLOCK (attr)->size;
11553 }
11554 }
11555 }
11556}
11557
43039443 11558/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11559 Return 1 if the attributes are present and valid, otherwise, return 0.
11560 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11561
11562static int
11563dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11564 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11565 struct partial_symtab *ranges_pst)
43039443
JK
11566{
11567 struct objfile *objfile = cu->objfile;
11568 struct comp_unit_head *cu_header = &cu->header;
11569 bfd *obfd = objfile->obfd;
11570 unsigned int addr_size = cu_header->addr_size;
11571 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11572 /* Base address selection entry. */
11573 CORE_ADDR base;
11574 int found_base;
11575 unsigned int dummy;
d521ce57 11576 const gdb_byte *buffer;
43039443
JK
11577 CORE_ADDR marker;
11578 int low_set;
11579 CORE_ADDR low = 0;
11580 CORE_ADDR high = 0;
ff013f42 11581 CORE_ADDR baseaddr;
43039443 11582
d00adf39
DE
11583 found_base = cu->base_known;
11584 base = cu->base_address;
43039443 11585
be391dca 11586 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11587 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11588 {
11589 complaint (&symfile_complaints,
11590 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11591 offset);
11592 return 0;
11593 }
dce234bc 11594 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11595
11596 /* Read in the largest possible address. */
11597 marker = read_address (obfd, buffer, cu, &dummy);
11598 if ((marker & mask) == mask)
11599 {
11600 /* If we found the largest possible address, then
11601 read the base address. */
11602 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11603 buffer += 2 * addr_size;
11604 offset += 2 * addr_size;
11605 found_base = 1;
11606 }
11607
11608 low_set = 0;
11609
e7030f15 11610 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11611
43039443
JK
11612 while (1)
11613 {
11614 CORE_ADDR range_beginning, range_end;
11615
11616 range_beginning = read_address (obfd, buffer, cu, &dummy);
11617 buffer += addr_size;
11618 range_end = read_address (obfd, buffer, cu, &dummy);
11619 buffer += addr_size;
11620 offset += 2 * addr_size;
11621
11622 /* An end of list marker is a pair of zero addresses. */
11623 if (range_beginning == 0 && range_end == 0)
11624 /* Found the end of list entry. */
11625 break;
11626
11627 /* Each base address selection entry is a pair of 2 values.
11628 The first is the largest possible address, the second is
11629 the base address. Check for a base address here. */
11630 if ((range_beginning & mask) == mask)
11631 {
11632 /* If we found the largest possible address, then
11633 read the base address. */
11634 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11635 found_base = 1;
11636 continue;
11637 }
11638
11639 if (!found_base)
11640 {
11641 /* We have no valid base address for the ranges
11642 data. */
11643 complaint (&symfile_complaints,
11644 _("Invalid .debug_ranges data (no base address)"));
11645 return 0;
11646 }
11647
9277c30c
UW
11648 if (range_beginning > range_end)
11649 {
11650 /* Inverted range entries are invalid. */
11651 complaint (&symfile_complaints,
11652 _("Invalid .debug_ranges data (inverted range)"));
11653 return 0;
11654 }
11655
11656 /* Empty range entries have no effect. */
11657 if (range_beginning == range_end)
11658 continue;
11659
43039443
JK
11660 range_beginning += base;
11661 range_end += base;
11662
01093045
DE
11663 /* A not-uncommon case of bad debug info.
11664 Don't pollute the addrmap with bad data. */
11665 if (range_beginning + baseaddr == 0
11666 && !dwarf2_per_objfile->has_section_at_zero)
11667 {
11668 complaint (&symfile_complaints,
11669 _(".debug_ranges entry has start address of zero"
4262abfb 11670 " [in module %s]"), objfile_name (objfile));
01093045
DE
11671 continue;
11672 }
11673
9277c30c 11674 if (ranges_pst != NULL)
ff013f42 11675 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11676 range_beginning + baseaddr,
11677 range_end - 1 + baseaddr,
ff013f42
JK
11678 ranges_pst);
11679
43039443
JK
11680 /* FIXME: This is recording everything as a low-high
11681 segment of consecutive addresses. We should have a
11682 data structure for discontiguous block ranges
11683 instead. */
11684 if (! low_set)
11685 {
11686 low = range_beginning;
11687 high = range_end;
11688 low_set = 1;
11689 }
11690 else
11691 {
11692 if (range_beginning < low)
11693 low = range_beginning;
11694 if (range_end > high)
11695 high = range_end;
11696 }
11697 }
11698
11699 if (! low_set)
11700 /* If the first entry is an end-of-list marker, the range
11701 describes an empty scope, i.e. no instructions. */
11702 return 0;
11703
11704 if (low_return)
11705 *low_return = low;
11706 if (high_return)
11707 *high_return = high;
11708 return 1;
11709}
11710
af34e669
DJ
11711/* Get low and high pc attributes from a die. Return 1 if the attributes
11712 are present and valid, otherwise, return 0. Return -1 if the range is
11713 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11714
c906108c 11715static int
af34e669 11716dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11717 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11718 struct partial_symtab *pst)
c906108c
SS
11719{
11720 struct attribute *attr;
91da1414 11721 struct attribute *attr_high;
af34e669
DJ
11722 CORE_ADDR low = 0;
11723 CORE_ADDR high = 0;
11724 int ret = 0;
c906108c 11725
91da1414
MW
11726 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11727 if (attr_high)
af34e669 11728 {
e142c38c 11729 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11730 if (attr)
91da1414 11731 {
31aa7e4e
JB
11732 low = attr_value_as_address (attr);
11733 high = attr_value_as_address (attr_high);
11734 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11735 high += low;
91da1414 11736 }
af34e669
DJ
11737 else
11738 /* Found high w/o low attribute. */
11739 return 0;
11740
11741 /* Found consecutive range of addresses. */
11742 ret = 1;
11743 }
c906108c 11744 else
af34e669 11745 {
e142c38c 11746 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11747 if (attr != NULL)
11748 {
ab435259
DE
11749 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11750 We take advantage of the fact that DW_AT_ranges does not appear
11751 in DW_TAG_compile_unit of DWO files. */
11752 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11753 unsigned int ranges_offset = (DW_UNSND (attr)
11754 + (need_ranges_base
11755 ? cu->ranges_base
11756 : 0));
2e3cf129 11757
af34e669 11758 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11759 .debug_ranges section. */
2e3cf129 11760 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11761 return 0;
43039443 11762 /* Found discontinuous range of addresses. */
af34e669
DJ
11763 ret = -1;
11764 }
11765 }
c906108c 11766
9373cf26
JK
11767 /* read_partial_die has also the strict LOW < HIGH requirement. */
11768 if (high <= low)
c906108c
SS
11769 return 0;
11770
11771 /* When using the GNU linker, .gnu.linkonce. sections are used to
11772 eliminate duplicate copies of functions and vtables and such.
11773 The linker will arbitrarily choose one and discard the others.
11774 The AT_*_pc values for such functions refer to local labels in
11775 these sections. If the section from that file was discarded, the
11776 labels are not in the output, so the relocs get a value of 0.
11777 If this is a discarded function, mark the pc bounds as invalid,
11778 so that GDB will ignore it. */
72dca2f5 11779 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11780 return 0;
11781
11782 *lowpc = low;
96408a79
SA
11783 if (highpc)
11784 *highpc = high;
af34e669 11785 return ret;
c906108c
SS
11786}
11787
b084d499
JB
11788/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11789 its low and high PC addresses. Do nothing if these addresses could not
11790 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11791 and HIGHPC to the high address if greater than HIGHPC. */
11792
11793static void
11794dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11795 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11796 struct dwarf2_cu *cu)
11797{
11798 CORE_ADDR low, high;
11799 struct die_info *child = die->child;
11800
d85a05f0 11801 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11802 {
11803 *lowpc = min (*lowpc, low);
11804 *highpc = max (*highpc, high);
11805 }
11806
11807 /* If the language does not allow nested subprograms (either inside
11808 subprograms or lexical blocks), we're done. */
11809 if (cu->language != language_ada)
11810 return;
6e70227d 11811
b084d499
JB
11812 /* Check all the children of the given DIE. If it contains nested
11813 subprograms, then check their pc bounds. Likewise, we need to
11814 check lexical blocks as well, as they may also contain subprogram
11815 definitions. */
11816 while (child && child->tag)
11817 {
11818 if (child->tag == DW_TAG_subprogram
11819 || child->tag == DW_TAG_lexical_block)
11820 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11821 child = sibling_die (child);
11822 }
11823}
11824
fae299cd
DC
11825/* Get the low and high pc's represented by the scope DIE, and store
11826 them in *LOWPC and *HIGHPC. If the correct values can't be
11827 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11828
11829static void
11830get_scope_pc_bounds (struct die_info *die,
11831 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11832 struct dwarf2_cu *cu)
11833{
11834 CORE_ADDR best_low = (CORE_ADDR) -1;
11835 CORE_ADDR best_high = (CORE_ADDR) 0;
11836 CORE_ADDR current_low, current_high;
11837
d85a05f0 11838 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11839 {
11840 best_low = current_low;
11841 best_high = current_high;
11842 }
11843 else
11844 {
11845 struct die_info *child = die->child;
11846
11847 while (child && child->tag)
11848 {
11849 switch (child->tag) {
11850 case DW_TAG_subprogram:
b084d499 11851 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11852 break;
11853 case DW_TAG_namespace:
f55ee35c 11854 case DW_TAG_module:
fae299cd
DC
11855 /* FIXME: carlton/2004-01-16: Should we do this for
11856 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11857 that current GCC's always emit the DIEs corresponding
11858 to definitions of methods of classes as children of a
11859 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11860 the DIEs giving the declarations, which could be
11861 anywhere). But I don't see any reason why the
11862 standards says that they have to be there. */
11863 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11864
11865 if (current_low != ((CORE_ADDR) -1))
11866 {
11867 best_low = min (best_low, current_low);
11868 best_high = max (best_high, current_high);
11869 }
11870 break;
11871 default:
0963b4bd 11872 /* Ignore. */
fae299cd
DC
11873 break;
11874 }
11875
11876 child = sibling_die (child);
11877 }
11878 }
11879
11880 *lowpc = best_low;
11881 *highpc = best_high;
11882}
11883
801e3a5b
JB
11884/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11885 in DIE. */
380bca97 11886
801e3a5b
JB
11887static void
11888dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11889 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11890{
bb5ed363 11891 struct objfile *objfile = cu->objfile;
801e3a5b 11892 struct attribute *attr;
91da1414 11893 struct attribute *attr_high;
801e3a5b 11894
91da1414
MW
11895 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11896 if (attr_high)
801e3a5b 11897 {
801e3a5b
JB
11898 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11899 if (attr)
11900 {
31aa7e4e
JB
11901 CORE_ADDR low = attr_value_as_address (attr);
11902 CORE_ADDR high = attr_value_as_address (attr_high);
11903
11904 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11905 high += low;
9a619af0 11906
801e3a5b
JB
11907 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11908 }
11909 }
11910
11911 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11912 if (attr)
11913 {
bb5ed363 11914 bfd *obfd = objfile->obfd;
ab435259
DE
11915 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11916 We take advantage of the fact that DW_AT_ranges does not appear
11917 in DW_TAG_compile_unit of DWO files. */
11918 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
11919
11920 /* The value of the DW_AT_ranges attribute is the offset of the
11921 address range list in the .debug_ranges section. */
ab435259
DE
11922 unsigned long offset = (DW_UNSND (attr)
11923 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 11924 const gdb_byte *buffer;
801e3a5b
JB
11925
11926 /* For some target architectures, but not others, the
11927 read_address function sign-extends the addresses it returns.
11928 To recognize base address selection entries, we need a
11929 mask. */
11930 unsigned int addr_size = cu->header.addr_size;
11931 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11932
11933 /* The base address, to which the next pair is relative. Note
11934 that this 'base' is a DWARF concept: most entries in a range
11935 list are relative, to reduce the number of relocs against the
11936 debugging information. This is separate from this function's
11937 'baseaddr' argument, which GDB uses to relocate debugging
11938 information from a shared library based on the address at
11939 which the library was loaded. */
d00adf39
DE
11940 CORE_ADDR base = cu->base_address;
11941 int base_known = cu->base_known;
801e3a5b 11942
d62bfeaf 11943 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11944 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
11945 {
11946 complaint (&symfile_complaints,
11947 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11948 offset);
11949 return;
11950 }
d62bfeaf 11951 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
11952
11953 for (;;)
11954 {
11955 unsigned int bytes_read;
11956 CORE_ADDR start, end;
11957
11958 start = read_address (obfd, buffer, cu, &bytes_read);
11959 buffer += bytes_read;
11960 end = read_address (obfd, buffer, cu, &bytes_read);
11961 buffer += bytes_read;
11962
11963 /* Did we find the end of the range list? */
11964 if (start == 0 && end == 0)
11965 break;
11966
11967 /* Did we find a base address selection entry? */
11968 else if ((start & base_select_mask) == base_select_mask)
11969 {
11970 base = end;
11971 base_known = 1;
11972 }
11973
11974 /* We found an ordinary address range. */
11975 else
11976 {
11977 if (!base_known)
11978 {
11979 complaint (&symfile_complaints,
3e43a32a
MS
11980 _("Invalid .debug_ranges data "
11981 "(no base address)"));
801e3a5b
JB
11982 return;
11983 }
11984
9277c30c
UW
11985 if (start > end)
11986 {
11987 /* Inverted range entries are invalid. */
11988 complaint (&symfile_complaints,
11989 _("Invalid .debug_ranges data "
11990 "(inverted range)"));
11991 return;
11992 }
11993
11994 /* Empty range entries have no effect. */
11995 if (start == end)
11996 continue;
11997
01093045
DE
11998 start += base + baseaddr;
11999 end += base + baseaddr;
12000
12001 /* A not-uncommon case of bad debug info.
12002 Don't pollute the addrmap with bad data. */
12003 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12004 {
12005 complaint (&symfile_complaints,
12006 _(".debug_ranges entry has start address of zero"
4262abfb 12007 " [in module %s]"), objfile_name (objfile));
01093045
DE
12008 continue;
12009 }
12010
12011 record_block_range (block, start, end - 1);
801e3a5b
JB
12012 }
12013 }
12014 }
12015}
12016
685b1105
JK
12017/* Check whether the producer field indicates either of GCC < 4.6, or the
12018 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12019
685b1105
JK
12020static void
12021check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12022{
12023 const char *cs;
12024 int major, minor, release;
12025
12026 if (cu->producer == NULL)
12027 {
12028 /* For unknown compilers expect their behavior is DWARF version
12029 compliant.
12030
12031 GCC started to support .debug_types sections by -gdwarf-4 since
12032 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12033 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12034 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12035 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12036 }
685b1105 12037 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12038 {
685b1105
JK
12039 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12040
ba919b58
TT
12041 cs = &cu->producer[strlen ("GNU ")];
12042 while (*cs && !isdigit (*cs))
12043 cs++;
12044 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12045 {
12046 /* Not recognized as GCC. */
12047 }
12048 else
1b80a9fa
JK
12049 {
12050 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12051 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12052 }
685b1105
JK
12053 }
12054 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12055 cu->producer_is_icc = 1;
12056 else
12057 {
12058 /* For other non-GCC compilers, expect their behavior is DWARF version
12059 compliant. */
60d5a603
JK
12060 }
12061
ba919b58 12062 cu->checked_producer = 1;
685b1105 12063}
ba919b58 12064
685b1105
JK
12065/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12066 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12067 during 4.6.0 experimental. */
12068
12069static int
12070producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12071{
12072 if (!cu->checked_producer)
12073 check_producer (cu);
12074
12075 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12076}
12077
12078/* Return the default accessibility type if it is not overriden by
12079 DW_AT_accessibility. */
12080
12081static enum dwarf_access_attribute
12082dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12083{
12084 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12085 {
12086 /* The default DWARF 2 accessibility for members is public, the default
12087 accessibility for inheritance is private. */
12088
12089 if (die->tag != DW_TAG_inheritance)
12090 return DW_ACCESS_public;
12091 else
12092 return DW_ACCESS_private;
12093 }
12094 else
12095 {
12096 /* DWARF 3+ defines the default accessibility a different way. The same
12097 rules apply now for DW_TAG_inheritance as for the members and it only
12098 depends on the container kind. */
12099
12100 if (die->parent->tag == DW_TAG_class_type)
12101 return DW_ACCESS_private;
12102 else
12103 return DW_ACCESS_public;
12104 }
12105}
12106
74ac6d43
TT
12107/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12108 offset. If the attribute was not found return 0, otherwise return
12109 1. If it was found but could not properly be handled, set *OFFSET
12110 to 0. */
12111
12112static int
12113handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12114 LONGEST *offset)
12115{
12116 struct attribute *attr;
12117
12118 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12119 if (attr != NULL)
12120 {
12121 *offset = 0;
12122
12123 /* Note that we do not check for a section offset first here.
12124 This is because DW_AT_data_member_location is new in DWARF 4,
12125 so if we see it, we can assume that a constant form is really
12126 a constant and not a section offset. */
12127 if (attr_form_is_constant (attr))
12128 *offset = dwarf2_get_attr_constant_value (attr, 0);
12129 else if (attr_form_is_section_offset (attr))
12130 dwarf2_complex_location_expr_complaint ();
12131 else if (attr_form_is_block (attr))
12132 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12133 else
12134 dwarf2_complex_location_expr_complaint ();
12135
12136 return 1;
12137 }
12138
12139 return 0;
12140}
12141
c906108c
SS
12142/* Add an aggregate field to the field list. */
12143
12144static void
107d2387 12145dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12146 struct dwarf2_cu *cu)
6e70227d 12147{
e7c27a73 12148 struct objfile *objfile = cu->objfile;
5e2b427d 12149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12150 struct nextfield *new_field;
12151 struct attribute *attr;
12152 struct field *fp;
15d034d0 12153 const char *fieldname = "";
c906108c
SS
12154
12155 /* Allocate a new field list entry and link it in. */
12156 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12157 make_cleanup (xfree, new_field);
c906108c 12158 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12159
12160 if (die->tag == DW_TAG_inheritance)
12161 {
12162 new_field->next = fip->baseclasses;
12163 fip->baseclasses = new_field;
12164 }
12165 else
12166 {
12167 new_field->next = fip->fields;
12168 fip->fields = new_field;
12169 }
c906108c
SS
12170 fip->nfields++;
12171
e142c38c 12172 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12173 if (attr)
12174 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12175 else
12176 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12177 if (new_field->accessibility != DW_ACCESS_public)
12178 fip->non_public_fields = 1;
60d5a603 12179
e142c38c 12180 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12181 if (attr)
12182 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12183 else
12184 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12185
12186 fp = &new_field->field;
a9a9bd0f 12187
e142c38c 12188 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12189 {
74ac6d43
TT
12190 LONGEST offset;
12191
a9a9bd0f 12192 /* Data member other than a C++ static data member. */
6e70227d 12193
c906108c 12194 /* Get type of field. */
e7c27a73 12195 fp->type = die_type (die, cu);
c906108c 12196
d6a843b5 12197 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12198
c906108c 12199 /* Get bit size of field (zero if none). */
e142c38c 12200 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12201 if (attr)
12202 {
12203 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12204 }
12205 else
12206 {
12207 FIELD_BITSIZE (*fp) = 0;
12208 }
12209
12210 /* Get bit offset of field. */
74ac6d43
TT
12211 if (handle_data_member_location (die, cu, &offset))
12212 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12213 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12214 if (attr)
12215 {
5e2b427d 12216 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12217 {
12218 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12219 additional bit offset from the MSB of the containing
12220 anonymous object to the MSB of the field. We don't
12221 have to do anything special since we don't need to
12222 know the size of the anonymous object. */
f41f5e61 12223 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12224 }
12225 else
12226 {
12227 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12228 MSB of the anonymous object, subtract off the number of
12229 bits from the MSB of the field to the MSB of the
12230 object, and then subtract off the number of bits of
12231 the field itself. The result is the bit offset of
12232 the LSB of the field. */
c906108c
SS
12233 int anonymous_size;
12234 int bit_offset = DW_UNSND (attr);
12235
e142c38c 12236 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12237 if (attr)
12238 {
12239 /* The size of the anonymous object containing
12240 the bit field is explicit, so use the
12241 indicated size (in bytes). */
12242 anonymous_size = DW_UNSND (attr);
12243 }
12244 else
12245 {
12246 /* The size of the anonymous object containing
12247 the bit field must be inferred from the type
12248 attribute of the data member containing the
12249 bit field. */
12250 anonymous_size = TYPE_LENGTH (fp->type);
12251 }
f41f5e61
PA
12252 SET_FIELD_BITPOS (*fp,
12253 (FIELD_BITPOS (*fp)
12254 + anonymous_size * bits_per_byte
12255 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12256 }
12257 }
12258
12259 /* Get name of field. */
39cbfefa
DJ
12260 fieldname = dwarf2_name (die, cu);
12261 if (fieldname == NULL)
12262 fieldname = "";
d8151005
DJ
12263
12264 /* The name is already allocated along with this objfile, so we don't
12265 need to duplicate it for the type. */
12266 fp->name = fieldname;
c906108c
SS
12267
12268 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12269 pointer or virtual base class pointer) to private. */
e142c38c 12270 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12271 {
d48cc9dd 12272 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12273 new_field->accessibility = DW_ACCESS_private;
12274 fip->non_public_fields = 1;
12275 }
12276 }
a9a9bd0f 12277 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12278 {
a9a9bd0f
DC
12279 /* C++ static member. */
12280
12281 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12282 is a declaration, but all versions of G++ as of this writing
12283 (so through at least 3.2.1) incorrectly generate
12284 DW_TAG_variable tags. */
6e70227d 12285
ff355380 12286 const char *physname;
c906108c 12287
a9a9bd0f 12288 /* Get name of field. */
39cbfefa
DJ
12289 fieldname = dwarf2_name (die, cu);
12290 if (fieldname == NULL)
c906108c
SS
12291 return;
12292
254e6b9e 12293 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12294 if (attr
12295 /* Only create a symbol if this is an external value.
12296 new_symbol checks this and puts the value in the global symbol
12297 table, which we want. If it is not external, new_symbol
12298 will try to put the value in cu->list_in_scope which is wrong. */
12299 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12300 {
12301 /* A static const member, not much different than an enum as far as
12302 we're concerned, except that we can support more types. */
12303 new_symbol (die, NULL, cu);
12304 }
12305
2df3850c 12306 /* Get physical name. */
ff355380 12307 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12308
d8151005
DJ
12309 /* The name is already allocated along with this objfile, so we don't
12310 need to duplicate it for the type. */
12311 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12312 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12313 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12314 }
12315 else if (die->tag == DW_TAG_inheritance)
12316 {
74ac6d43 12317 LONGEST offset;
d4b96c9a 12318
74ac6d43
TT
12319 /* C++ base class field. */
12320 if (handle_data_member_location (die, cu, &offset))
12321 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12322 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12323 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12324 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12325 fip->nbaseclasses++;
12326 }
12327}
12328
98751a41
JK
12329/* Add a typedef defined in the scope of the FIP's class. */
12330
12331static void
12332dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12333 struct dwarf2_cu *cu)
6e70227d 12334{
98751a41 12335 struct objfile *objfile = cu->objfile;
98751a41
JK
12336 struct typedef_field_list *new_field;
12337 struct attribute *attr;
12338 struct typedef_field *fp;
12339 char *fieldname = "";
12340
12341 /* Allocate a new field list entry and link it in. */
12342 new_field = xzalloc (sizeof (*new_field));
12343 make_cleanup (xfree, new_field);
12344
12345 gdb_assert (die->tag == DW_TAG_typedef);
12346
12347 fp = &new_field->field;
12348
12349 /* Get name of field. */
12350 fp->name = dwarf2_name (die, cu);
12351 if (fp->name == NULL)
12352 return;
12353
12354 fp->type = read_type_die (die, cu);
12355
12356 new_field->next = fip->typedef_field_list;
12357 fip->typedef_field_list = new_field;
12358 fip->typedef_field_list_count++;
12359}
12360
c906108c
SS
12361/* Create the vector of fields, and attach it to the type. */
12362
12363static void
fba45db2 12364dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12365 struct dwarf2_cu *cu)
c906108c
SS
12366{
12367 int nfields = fip->nfields;
12368
12369 /* Record the field count, allocate space for the array of fields,
12370 and create blank accessibility bitfields if necessary. */
12371 TYPE_NFIELDS (type) = nfields;
12372 TYPE_FIELDS (type) = (struct field *)
12373 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12374 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12375
b4ba55a1 12376 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12377 {
12378 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12379
12380 TYPE_FIELD_PRIVATE_BITS (type) =
12381 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12382 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12383
12384 TYPE_FIELD_PROTECTED_BITS (type) =
12385 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12386 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12387
774b6a14
TT
12388 TYPE_FIELD_IGNORE_BITS (type) =
12389 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12390 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12391 }
12392
12393 /* If the type has baseclasses, allocate and clear a bit vector for
12394 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12395 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12396 {
12397 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12398 unsigned char *pointer;
c906108c
SS
12399
12400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12401 pointer = TYPE_ALLOC (type, num_bytes);
12402 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12403 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12404 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12405 }
12406
3e43a32a
MS
12407 /* Copy the saved-up fields into the field vector. Start from the head of
12408 the list, adding to the tail of the field array, so that they end up in
12409 the same order in the array in which they were added to the list. */
c906108c
SS
12410 while (nfields-- > 0)
12411 {
7d0ccb61
DJ
12412 struct nextfield *fieldp;
12413
12414 if (fip->fields)
12415 {
12416 fieldp = fip->fields;
12417 fip->fields = fieldp->next;
12418 }
12419 else
12420 {
12421 fieldp = fip->baseclasses;
12422 fip->baseclasses = fieldp->next;
12423 }
12424
12425 TYPE_FIELD (type, nfields) = fieldp->field;
12426 switch (fieldp->accessibility)
c906108c 12427 {
c5aa993b 12428 case DW_ACCESS_private:
b4ba55a1
JB
12429 if (cu->language != language_ada)
12430 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12431 break;
c906108c 12432
c5aa993b 12433 case DW_ACCESS_protected:
b4ba55a1
JB
12434 if (cu->language != language_ada)
12435 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12436 break;
c906108c 12437
c5aa993b
JM
12438 case DW_ACCESS_public:
12439 break;
c906108c 12440
c5aa993b
JM
12441 default:
12442 /* Unknown accessibility. Complain and treat it as public. */
12443 {
e2e0b3e5 12444 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12445 fieldp->accessibility);
c5aa993b
JM
12446 }
12447 break;
c906108c
SS
12448 }
12449 if (nfields < fip->nbaseclasses)
12450 {
7d0ccb61 12451 switch (fieldp->virtuality)
c906108c 12452 {
c5aa993b
JM
12453 case DW_VIRTUALITY_virtual:
12454 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12455 if (cu->language == language_ada)
a73c6dcd 12456 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12457 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12458 break;
c906108c
SS
12459 }
12460 }
c906108c
SS
12461 }
12462}
12463
7d27a96d
TT
12464/* Return true if this member function is a constructor, false
12465 otherwise. */
12466
12467static int
12468dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12469{
12470 const char *fieldname;
12471 const char *typename;
12472 int len;
12473
12474 if (die->parent == NULL)
12475 return 0;
12476
12477 if (die->parent->tag != DW_TAG_structure_type
12478 && die->parent->tag != DW_TAG_union_type
12479 && die->parent->tag != DW_TAG_class_type)
12480 return 0;
12481
12482 fieldname = dwarf2_name (die, cu);
12483 typename = dwarf2_name (die->parent, cu);
12484 if (fieldname == NULL || typename == NULL)
12485 return 0;
12486
12487 len = strlen (fieldname);
12488 return (strncmp (fieldname, typename, len) == 0
12489 && (typename[len] == '\0' || typename[len] == '<'));
12490}
12491
c906108c
SS
12492/* Add a member function to the proper fieldlist. */
12493
12494static void
107d2387 12495dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12496 struct type *type, struct dwarf2_cu *cu)
c906108c 12497{
e7c27a73 12498 struct objfile *objfile = cu->objfile;
c906108c
SS
12499 struct attribute *attr;
12500 struct fnfieldlist *flp;
12501 int i;
12502 struct fn_field *fnp;
15d034d0 12503 const char *fieldname;
c906108c 12504 struct nextfnfield *new_fnfield;
f792889a 12505 struct type *this_type;
60d5a603 12506 enum dwarf_access_attribute accessibility;
c906108c 12507
b4ba55a1 12508 if (cu->language == language_ada)
a73c6dcd 12509 error (_("unexpected member function in Ada type"));
b4ba55a1 12510
2df3850c 12511 /* Get name of member function. */
39cbfefa
DJ
12512 fieldname = dwarf2_name (die, cu);
12513 if (fieldname == NULL)
2df3850c 12514 return;
c906108c 12515
c906108c
SS
12516 /* Look up member function name in fieldlist. */
12517 for (i = 0; i < fip->nfnfields; i++)
12518 {
27bfe10e 12519 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12520 break;
12521 }
12522
12523 /* Create new list element if necessary. */
12524 if (i < fip->nfnfields)
12525 flp = &fip->fnfieldlists[i];
12526 else
12527 {
12528 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12529 {
12530 fip->fnfieldlists = (struct fnfieldlist *)
12531 xrealloc (fip->fnfieldlists,
12532 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12533 * sizeof (struct fnfieldlist));
c906108c 12534 if (fip->nfnfields == 0)
c13c43fd 12535 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12536 }
12537 flp = &fip->fnfieldlists[fip->nfnfields];
12538 flp->name = fieldname;
12539 flp->length = 0;
12540 flp->head = NULL;
3da10d80 12541 i = fip->nfnfields++;
c906108c
SS
12542 }
12543
12544 /* Create a new member function field and chain it to the field list
0963b4bd 12545 entry. */
c906108c 12546 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12547 make_cleanup (xfree, new_fnfield);
c906108c
SS
12548 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12549 new_fnfield->next = flp->head;
12550 flp->head = new_fnfield;
12551 flp->length++;
12552
12553 /* Fill in the member function field info. */
12554 fnp = &new_fnfield->fnfield;
3da10d80
KS
12555
12556 /* Delay processing of the physname until later. */
12557 if (cu->language == language_cplus || cu->language == language_java)
12558 {
12559 add_to_method_list (type, i, flp->length - 1, fieldname,
12560 die, cu);
12561 }
12562 else
12563 {
1d06ead6 12564 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12565 fnp->physname = physname ? physname : "";
12566 }
12567
c906108c 12568 fnp->type = alloc_type (objfile);
f792889a
DJ
12569 this_type = read_type_die (die, cu);
12570 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12571 {
f792889a 12572 int nparams = TYPE_NFIELDS (this_type);
c906108c 12573
f792889a 12574 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12575 of the method itself (TYPE_CODE_METHOD). */
12576 smash_to_method_type (fnp->type, type,
f792889a
DJ
12577 TYPE_TARGET_TYPE (this_type),
12578 TYPE_FIELDS (this_type),
12579 TYPE_NFIELDS (this_type),
12580 TYPE_VARARGS (this_type));
c906108c
SS
12581
12582 /* Handle static member functions.
c5aa993b 12583 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12584 member functions. G++ helps GDB by marking the first
12585 parameter for non-static member functions (which is the this
12586 pointer) as artificial. We obtain this information from
12587 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12588 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12589 fnp->voffset = VOFFSET_STATIC;
12590 }
12591 else
e2e0b3e5 12592 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12593 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12594
12595 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12596 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12597 fnp->fcontext = die_containing_type (die, cu);
c906108c 12598
3e43a32a
MS
12599 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12600 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12601
12602 /* Get accessibility. */
e142c38c 12603 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12604 if (attr)
60d5a603
JK
12605 accessibility = DW_UNSND (attr);
12606 else
12607 accessibility = dwarf2_default_access_attribute (die, cu);
12608 switch (accessibility)
c906108c 12609 {
60d5a603
JK
12610 case DW_ACCESS_private:
12611 fnp->is_private = 1;
12612 break;
12613 case DW_ACCESS_protected:
12614 fnp->is_protected = 1;
12615 break;
c906108c
SS
12616 }
12617
b02dede2 12618 /* Check for artificial methods. */
e142c38c 12619 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12620 if (attr && DW_UNSND (attr) != 0)
12621 fnp->is_artificial = 1;
12622
7d27a96d
TT
12623 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12624
0d564a31 12625 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12626 function. For older versions of GCC, this is an offset in the
12627 appropriate virtual table, as specified by DW_AT_containing_type.
12628 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12629 to the object address. */
12630
e142c38c 12631 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12632 if (attr)
8e19ed76 12633 {
aec5aa8b 12634 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12635 {
aec5aa8b
TT
12636 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12637 {
12638 /* Old-style GCC. */
12639 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12640 }
12641 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12642 || (DW_BLOCK (attr)->size > 1
12643 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12644 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12645 {
12646 struct dwarf_block blk;
12647 int offset;
12648
12649 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12650 ? 1 : 2);
12651 blk.size = DW_BLOCK (attr)->size - offset;
12652 blk.data = DW_BLOCK (attr)->data + offset;
12653 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12654 if ((fnp->voffset % cu->header.addr_size) != 0)
12655 dwarf2_complex_location_expr_complaint ();
12656 else
12657 fnp->voffset /= cu->header.addr_size;
12658 fnp->voffset += 2;
12659 }
12660 else
12661 dwarf2_complex_location_expr_complaint ();
12662
12663 if (!fnp->fcontext)
12664 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12665 }
3690dd37 12666 else if (attr_form_is_section_offset (attr))
8e19ed76 12667 {
4d3c2250 12668 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12669 }
12670 else
12671 {
4d3c2250
KB
12672 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12673 fieldname);
8e19ed76 12674 }
0d564a31 12675 }
d48cc9dd
DJ
12676 else
12677 {
12678 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12679 if (attr && DW_UNSND (attr))
12680 {
12681 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12682 complaint (&symfile_complaints,
3e43a32a
MS
12683 _("Member function \"%s\" (offset %d) is virtual "
12684 "but the vtable offset is not specified"),
b64f50a1 12685 fieldname, die->offset.sect_off);
9655fd1a 12686 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12687 TYPE_CPLUS_DYNAMIC (type) = 1;
12688 }
12689 }
c906108c
SS
12690}
12691
12692/* Create the vector of member function fields, and attach it to the type. */
12693
12694static void
fba45db2 12695dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12696 struct dwarf2_cu *cu)
c906108c
SS
12697{
12698 struct fnfieldlist *flp;
c906108c
SS
12699 int i;
12700
b4ba55a1 12701 if (cu->language == language_ada)
a73c6dcd 12702 error (_("unexpected member functions in Ada type"));
b4ba55a1 12703
c906108c
SS
12704 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12705 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12706 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12707
12708 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12709 {
12710 struct nextfnfield *nfp = flp->head;
12711 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12712 int k;
12713
12714 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12715 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12716 fn_flp->fn_fields = (struct fn_field *)
12717 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12718 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12719 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12720 }
12721
12722 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12723}
12724
1168df01
JB
12725/* Returns non-zero if NAME is the name of a vtable member in CU's
12726 language, zero otherwise. */
12727static int
12728is_vtable_name (const char *name, struct dwarf2_cu *cu)
12729{
12730 static const char vptr[] = "_vptr";
987504bb 12731 static const char vtable[] = "vtable";
1168df01 12732
987504bb
JJ
12733 /* Look for the C++ and Java forms of the vtable. */
12734 if ((cu->language == language_java
12735 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12736 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12737 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12738 return 1;
12739
12740 return 0;
12741}
12742
c0dd20ea 12743/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12744 functions, with the ABI-specified layout. If TYPE describes
12745 such a structure, smash it into a member function type.
61049d3b
DJ
12746
12747 GCC shouldn't do this; it should just output pointer to member DIEs.
12748 This is GCC PR debug/28767. */
c0dd20ea 12749
0b92b5bb
TT
12750static void
12751quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12752{
0b92b5bb 12753 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12754
12755 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12756 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12757 return;
c0dd20ea
DJ
12758
12759 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12760 if (TYPE_FIELD_NAME (type, 0) == NULL
12761 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12762 || TYPE_FIELD_NAME (type, 1) == NULL
12763 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12764 return;
c0dd20ea
DJ
12765
12766 /* Find the type of the method. */
0b92b5bb 12767 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12768 if (pfn_type == NULL
12769 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12770 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12771 return;
c0dd20ea
DJ
12772
12773 /* Look for the "this" argument. */
12774 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12775 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12776 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12777 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12778 return;
c0dd20ea
DJ
12779
12780 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12781 new_type = alloc_type (objfile);
12782 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12783 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12784 TYPE_VARARGS (pfn_type));
0b92b5bb 12785 smash_to_methodptr_type (type, new_type);
c0dd20ea 12786}
1168df01 12787
685b1105
JK
12788/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12789 (icc). */
12790
12791static int
12792producer_is_icc (struct dwarf2_cu *cu)
12793{
12794 if (!cu->checked_producer)
12795 check_producer (cu);
12796
12797 return cu->producer_is_icc;
12798}
12799
c906108c 12800/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12801 (definition) to create a type for the structure or union. Fill in
12802 the type's name and general properties; the members will not be
3d1d5ea3 12803 processed until process_structure_scope.
c906108c 12804
c767944b
DJ
12805 NOTE: we need to call these functions regardless of whether or not the
12806 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
12807 structure or union. This gets the type entered into our set of
12808 user defined types.
12809
12810 However, if the structure is incomplete (an opaque struct/union)
12811 then suppress creating a symbol table entry for it since gdb only
12812 wants to find the one with the complete definition. Note that if
12813 it is complete, we just call new_symbol, which does it's own
12814 checking about whether the struct/union is anonymous or not (and
12815 suppresses creating a symbol table entry itself). */
12816
f792889a 12817static struct type *
134d01f1 12818read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12819{
e7c27a73 12820 struct objfile *objfile = cu->objfile;
c906108c
SS
12821 struct type *type;
12822 struct attribute *attr;
15d034d0 12823 const char *name;
c906108c 12824
348e048f
DE
12825 /* If the definition of this type lives in .debug_types, read that type.
12826 Don't follow DW_AT_specification though, that will take us back up
12827 the chain and we want to go down. */
45e58e77 12828 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12829 if (attr)
12830 {
ac9ec31b 12831 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12832
ac9ec31b 12833 /* The type's CU may not be the same as CU.
02142a6c 12834 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12835 return set_die_type (die, type, cu);
12836 }
12837
c0dd20ea 12838 type = alloc_type (objfile);
c906108c 12839 INIT_CPLUS_SPECIFIC (type);
93311388 12840
39cbfefa
DJ
12841 name = dwarf2_name (die, cu);
12842 if (name != NULL)
c906108c 12843 {
987504bb
JJ
12844 if (cu->language == language_cplus
12845 || cu->language == language_java)
63d06c5c 12846 {
15d034d0 12847 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12848
12849 /* dwarf2_full_name might have already finished building the DIE's
12850 type. If so, there is no need to continue. */
12851 if (get_die_type (die, cu) != NULL)
12852 return get_die_type (die, cu);
12853
12854 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12855 if (die->tag == DW_TAG_structure_type
12856 || die->tag == DW_TAG_class_type)
12857 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12858 }
12859 else
12860 {
d8151005
DJ
12861 /* The name is already allocated along with this objfile, so
12862 we don't need to duplicate it for the type. */
7d455152 12863 TYPE_TAG_NAME (type) = name;
94af9270
KS
12864 if (die->tag == DW_TAG_class_type)
12865 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12866 }
c906108c
SS
12867 }
12868
12869 if (die->tag == DW_TAG_structure_type)
12870 {
12871 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12872 }
12873 else if (die->tag == DW_TAG_union_type)
12874 {
12875 TYPE_CODE (type) = TYPE_CODE_UNION;
12876 }
12877 else
12878 {
c906108c
SS
12879 TYPE_CODE (type) = TYPE_CODE_CLASS;
12880 }
12881
0cc2414c
TT
12882 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12883 TYPE_DECLARED_CLASS (type) = 1;
12884
e142c38c 12885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12886 if (attr)
12887 {
12888 TYPE_LENGTH (type) = DW_UNSND (attr);
12889 }
12890 else
12891 {
12892 TYPE_LENGTH (type) = 0;
12893 }
12894
685b1105
JK
12895 if (producer_is_icc (cu))
12896 {
12897 /* ICC does not output the required DW_AT_declaration
12898 on incomplete types, but gives them a size of zero. */
12899 }
12900 else
12901 TYPE_STUB_SUPPORTED (type) = 1;
12902
dc718098 12903 if (die_is_declaration (die, cu))
876cecd0 12904 TYPE_STUB (type) = 1;
a6c727b2
DJ
12905 else if (attr == NULL && die->child == NULL
12906 && producer_is_realview (cu->producer))
12907 /* RealView does not output the required DW_AT_declaration
12908 on incomplete types. */
12909 TYPE_STUB (type) = 1;
dc718098 12910
c906108c
SS
12911 /* We need to add the type field to the die immediately so we don't
12912 infinitely recurse when dealing with pointers to the structure
0963b4bd 12913 type within the structure itself. */
1c379e20 12914 set_die_type (die, type, cu);
c906108c 12915
7e314c57
JK
12916 /* set_die_type should be already done. */
12917 set_descriptive_type (type, die, cu);
12918
c767944b
DJ
12919 return type;
12920}
12921
12922/* Finish creating a structure or union type, including filling in
12923 its members and creating a symbol for it. */
12924
12925static void
12926process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12927{
12928 struct objfile *objfile = cu->objfile;
12929 struct die_info *child_die = die->child;
12930 struct type *type;
12931
12932 type = get_die_type (die, cu);
12933 if (type == NULL)
12934 type = read_structure_type (die, cu);
12935
e142c38c 12936 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
12937 {
12938 struct field_info fi;
12939 struct die_info *child_die;
34eaf542 12940 VEC (symbolp) *template_args = NULL;
c767944b 12941 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
12942
12943 memset (&fi, 0, sizeof (struct field_info));
12944
639d11d3 12945 child_die = die->child;
c906108c
SS
12946
12947 while (child_die && child_die->tag)
12948 {
a9a9bd0f
DC
12949 if (child_die->tag == DW_TAG_member
12950 || child_die->tag == DW_TAG_variable)
c906108c 12951 {
a9a9bd0f
DC
12952 /* NOTE: carlton/2002-11-05: A C++ static data member
12953 should be a DW_TAG_member that is a declaration, but
12954 all versions of G++ as of this writing (so through at
12955 least 3.2.1) incorrectly generate DW_TAG_variable
12956 tags for them instead. */
e7c27a73 12957 dwarf2_add_field (&fi, child_die, cu);
c906108c 12958 }
8713b1b1 12959 else if (child_die->tag == DW_TAG_subprogram)
c906108c 12960 {
0963b4bd 12961 /* C++ member function. */
e7c27a73 12962 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
12963 }
12964 else if (child_die->tag == DW_TAG_inheritance)
12965 {
12966 /* C++ base class field. */
e7c27a73 12967 dwarf2_add_field (&fi, child_die, cu);
c906108c 12968 }
98751a41
JK
12969 else if (child_die->tag == DW_TAG_typedef)
12970 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
12971 else if (child_die->tag == DW_TAG_template_type_param
12972 || child_die->tag == DW_TAG_template_value_param)
12973 {
12974 struct symbol *arg = new_symbol (child_die, NULL, cu);
12975
f1078f66
DJ
12976 if (arg != NULL)
12977 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
12978 }
12979
c906108c
SS
12980 child_die = sibling_die (child_die);
12981 }
12982
34eaf542
TT
12983 /* Attach template arguments to type. */
12984 if (! VEC_empty (symbolp, template_args))
12985 {
12986 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12987 TYPE_N_TEMPLATE_ARGUMENTS (type)
12988 = VEC_length (symbolp, template_args);
12989 TYPE_TEMPLATE_ARGUMENTS (type)
12990 = obstack_alloc (&objfile->objfile_obstack,
12991 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12992 * sizeof (struct symbol *)));
12993 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12994 VEC_address (symbolp, template_args),
12995 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12996 * sizeof (struct symbol *)));
12997 VEC_free (symbolp, template_args);
12998 }
12999
c906108c
SS
13000 /* Attach fields and member functions to the type. */
13001 if (fi.nfields)
e7c27a73 13002 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13003 if (fi.nfnfields)
13004 {
e7c27a73 13005 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13006
c5aa993b 13007 /* Get the type which refers to the base class (possibly this
c906108c 13008 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13009 class from the DW_AT_containing_type attribute. This use of
13010 DW_AT_containing_type is a GNU extension. */
c906108c 13011
e142c38c 13012 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13013 {
e7c27a73 13014 struct type *t = die_containing_type (die, cu);
c906108c
SS
13015
13016 TYPE_VPTR_BASETYPE (type) = t;
13017 if (type == t)
13018 {
c906108c
SS
13019 int i;
13020
13021 /* Our own class provides vtbl ptr. */
13022 for (i = TYPE_NFIELDS (t) - 1;
13023 i >= TYPE_N_BASECLASSES (t);
13024 --i)
13025 {
0d5cff50 13026 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13027
1168df01 13028 if (is_vtable_name (fieldname, cu))
c906108c
SS
13029 {
13030 TYPE_VPTR_FIELDNO (type) = i;
13031 break;
13032 }
13033 }
13034
13035 /* Complain if virtual function table field not found. */
13036 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13037 complaint (&symfile_complaints,
3e43a32a
MS
13038 _("virtual function table pointer "
13039 "not found when defining class '%s'"),
4d3c2250
KB
13040 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13041 "");
c906108c
SS
13042 }
13043 else
13044 {
13045 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13046 }
13047 }
f6235d4c
EZ
13048 else if (cu->producer
13049 && strncmp (cu->producer,
13050 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13051 {
13052 /* The IBM XLC compiler does not provide direct indication
13053 of the containing type, but the vtable pointer is
13054 always named __vfp. */
13055
13056 int i;
13057
13058 for (i = TYPE_NFIELDS (type) - 1;
13059 i >= TYPE_N_BASECLASSES (type);
13060 --i)
13061 {
13062 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13063 {
13064 TYPE_VPTR_FIELDNO (type) = i;
13065 TYPE_VPTR_BASETYPE (type) = type;
13066 break;
13067 }
13068 }
13069 }
c906108c 13070 }
98751a41
JK
13071
13072 /* Copy fi.typedef_field_list linked list elements content into the
13073 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13074 if (fi.typedef_field_list)
13075 {
13076 int i = fi.typedef_field_list_count;
13077
a0d7a4ff 13078 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13079 TYPE_TYPEDEF_FIELD_ARRAY (type)
13080 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13081 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13082
13083 /* Reverse the list order to keep the debug info elements order. */
13084 while (--i >= 0)
13085 {
13086 struct typedef_field *dest, *src;
6e70227d 13087
98751a41
JK
13088 dest = &TYPE_TYPEDEF_FIELD (type, i);
13089 src = &fi.typedef_field_list->field;
13090 fi.typedef_field_list = fi.typedef_field_list->next;
13091 *dest = *src;
13092 }
13093 }
c767944b
DJ
13094
13095 do_cleanups (back_to);
eb2a6f42
TT
13096
13097 if (HAVE_CPLUS_STRUCT (type))
13098 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13099 }
63d06c5c 13100
bb5ed363 13101 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13102
90aeadfc
DC
13103 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13104 snapshots) has been known to create a die giving a declaration
13105 for a class that has, as a child, a die giving a definition for a
13106 nested class. So we have to process our children even if the
13107 current die is a declaration. Normally, of course, a declaration
13108 won't have any children at all. */
134d01f1 13109
90aeadfc
DC
13110 while (child_die != NULL && child_die->tag)
13111 {
13112 if (child_die->tag == DW_TAG_member
13113 || child_die->tag == DW_TAG_variable
34eaf542
TT
13114 || child_die->tag == DW_TAG_inheritance
13115 || child_die->tag == DW_TAG_template_value_param
13116 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13117 {
90aeadfc 13118 /* Do nothing. */
134d01f1 13119 }
90aeadfc
DC
13120 else
13121 process_die (child_die, cu);
134d01f1 13122
90aeadfc 13123 child_die = sibling_die (child_die);
134d01f1
DJ
13124 }
13125
fa4028e9
JB
13126 /* Do not consider external references. According to the DWARF standard,
13127 these DIEs are identified by the fact that they have no byte_size
13128 attribute, and a declaration attribute. */
13129 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13130 || !die_is_declaration (die, cu))
c767944b 13131 new_symbol (die, type, cu);
134d01f1
DJ
13132}
13133
55426c9d
JB
13134/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13135 update TYPE using some information only available in DIE's children. */
13136
13137static void
13138update_enumeration_type_from_children (struct die_info *die,
13139 struct type *type,
13140 struct dwarf2_cu *cu)
13141{
13142 struct obstack obstack;
13143 struct die_info *child_die = die->child;
13144 int unsigned_enum = 1;
13145 int flag_enum = 1;
13146 ULONGEST mask = 0;
13147 struct cleanup *old_chain;
13148
13149 obstack_init (&obstack);
13150 old_chain = make_cleanup_obstack_free (&obstack);
13151
13152 while (child_die != NULL && child_die->tag)
13153 {
13154 struct attribute *attr;
13155 LONGEST value;
13156 const gdb_byte *bytes;
13157 struct dwarf2_locexpr_baton *baton;
13158 const char *name;
13159 if (child_die->tag != DW_TAG_enumerator)
13160 continue;
13161
13162 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13163 if (attr == NULL)
13164 continue;
13165
13166 name = dwarf2_name (child_die, cu);
13167 if (name == NULL)
13168 name = "<anonymous enumerator>";
13169
13170 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13171 &value, &bytes, &baton);
13172 if (value < 0)
13173 {
13174 unsigned_enum = 0;
13175 flag_enum = 0;
13176 }
13177 else if ((mask & value) != 0)
13178 flag_enum = 0;
13179 else
13180 mask |= value;
13181
13182 /* If we already know that the enum type is neither unsigned, nor
13183 a flag type, no need to look at the rest of the enumerates. */
13184 if (!unsigned_enum && !flag_enum)
13185 break;
13186 child_die = sibling_die (child_die);
13187 }
13188
13189 if (unsigned_enum)
13190 TYPE_UNSIGNED (type) = 1;
13191 if (flag_enum)
13192 TYPE_FLAG_ENUM (type) = 1;
13193
13194 do_cleanups (old_chain);
13195}
13196
134d01f1
DJ
13197/* Given a DW_AT_enumeration_type die, set its type. We do not
13198 complete the type's fields yet, or create any symbols. */
c906108c 13199
f792889a 13200static struct type *
134d01f1 13201read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13202{
e7c27a73 13203 struct objfile *objfile = cu->objfile;
c906108c 13204 struct type *type;
c906108c 13205 struct attribute *attr;
0114d602 13206 const char *name;
134d01f1 13207
348e048f
DE
13208 /* If the definition of this type lives in .debug_types, read that type.
13209 Don't follow DW_AT_specification though, that will take us back up
13210 the chain and we want to go down. */
45e58e77 13211 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13212 if (attr)
13213 {
ac9ec31b 13214 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13215
ac9ec31b 13216 /* The type's CU may not be the same as CU.
02142a6c 13217 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13218 return set_die_type (die, type, cu);
13219 }
13220
c906108c
SS
13221 type = alloc_type (objfile);
13222
13223 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13224 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13225 if (name != NULL)
7d455152 13226 TYPE_TAG_NAME (type) = name;
c906108c 13227
e142c38c 13228 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13229 if (attr)
13230 {
13231 TYPE_LENGTH (type) = DW_UNSND (attr);
13232 }
13233 else
13234 {
13235 TYPE_LENGTH (type) = 0;
13236 }
13237
137033e9
JB
13238 /* The enumeration DIE can be incomplete. In Ada, any type can be
13239 declared as private in the package spec, and then defined only
13240 inside the package body. Such types are known as Taft Amendment
13241 Types. When another package uses such a type, an incomplete DIE
13242 may be generated by the compiler. */
02eb380e 13243 if (die_is_declaration (die, cu))
876cecd0 13244 TYPE_STUB (type) = 1;
02eb380e 13245
55426c9d
JB
13246 /* Finish the creation of this type by using the enum's children. */
13247 update_enumeration_type_from_children (die, type, cu);
13248
f792889a 13249 return set_die_type (die, type, cu);
134d01f1
DJ
13250}
13251
13252/* Given a pointer to a die which begins an enumeration, process all
13253 the dies that define the members of the enumeration, and create the
13254 symbol for the enumeration type.
13255
13256 NOTE: We reverse the order of the element list. */
13257
13258static void
13259process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13260{
f792889a 13261 struct type *this_type;
134d01f1 13262
f792889a
DJ
13263 this_type = get_die_type (die, cu);
13264 if (this_type == NULL)
13265 this_type = read_enumeration_type (die, cu);
9dc481d3 13266
639d11d3 13267 if (die->child != NULL)
c906108c 13268 {
9dc481d3
DE
13269 struct die_info *child_die;
13270 struct symbol *sym;
13271 struct field *fields = NULL;
13272 int num_fields = 0;
15d034d0 13273 const char *name;
9dc481d3 13274
639d11d3 13275 child_die = die->child;
c906108c
SS
13276 while (child_die && child_die->tag)
13277 {
13278 if (child_die->tag != DW_TAG_enumerator)
13279 {
e7c27a73 13280 process_die (child_die, cu);
c906108c
SS
13281 }
13282 else
13283 {
39cbfefa
DJ
13284 name = dwarf2_name (child_die, cu);
13285 if (name)
c906108c 13286 {
f792889a 13287 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13288
13289 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13290 {
13291 fields = (struct field *)
13292 xrealloc (fields,
13293 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13294 * sizeof (struct field));
c906108c
SS
13295 }
13296
3567439c 13297 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13298 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13299 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13300 FIELD_BITSIZE (fields[num_fields]) = 0;
13301
13302 num_fields++;
13303 }
13304 }
13305
13306 child_die = sibling_die (child_die);
13307 }
13308
13309 if (num_fields)
13310 {
f792889a
DJ
13311 TYPE_NFIELDS (this_type) = num_fields;
13312 TYPE_FIELDS (this_type) = (struct field *)
13313 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13314 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13315 sizeof (struct field) * num_fields);
b8c9b27d 13316 xfree (fields);
c906108c 13317 }
c906108c 13318 }
134d01f1 13319
6c83ed52
TT
13320 /* If we are reading an enum from a .debug_types unit, and the enum
13321 is a declaration, and the enum is not the signatured type in the
13322 unit, then we do not want to add a symbol for it. Adding a
13323 symbol would in some cases obscure the true definition of the
13324 enum, giving users an incomplete type when the definition is
13325 actually available. Note that we do not want to do this for all
13326 enums which are just declarations, because C++0x allows forward
13327 enum declarations. */
3019eac3 13328 if (cu->per_cu->is_debug_types
6c83ed52
TT
13329 && die_is_declaration (die, cu))
13330 {
52dc124a 13331 struct signatured_type *sig_type;
6c83ed52 13332
c0f78cd4 13333 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13334 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13335 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13336 return;
13337 }
13338
f792889a 13339 new_symbol (die, this_type, cu);
c906108c
SS
13340}
13341
13342/* Extract all information from a DW_TAG_array_type DIE and put it in
13343 the DIE's type field. For now, this only handles one dimensional
13344 arrays. */
13345
f792889a 13346static struct type *
e7c27a73 13347read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13348{
e7c27a73 13349 struct objfile *objfile = cu->objfile;
c906108c 13350 struct die_info *child_die;
7e314c57 13351 struct type *type;
c906108c
SS
13352 struct type *element_type, *range_type, *index_type;
13353 struct type **range_types = NULL;
13354 struct attribute *attr;
13355 int ndim = 0;
13356 struct cleanup *back_to;
15d034d0 13357 const char *name;
dc53a7ad 13358 unsigned int bit_stride = 0;
c906108c 13359
e7c27a73 13360 element_type = die_type (die, cu);
c906108c 13361
7e314c57
JK
13362 /* The die_type call above may have already set the type for this DIE. */
13363 type = get_die_type (die, cu);
13364 if (type)
13365 return type;
13366
dc53a7ad
JB
13367 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13368 if (attr != NULL)
13369 bit_stride = DW_UNSND (attr) * 8;
13370
13371 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13372 if (attr != NULL)
13373 bit_stride = DW_UNSND (attr);
13374
c906108c
SS
13375 /* Irix 6.2 native cc creates array types without children for
13376 arrays with unspecified length. */
639d11d3 13377 if (die->child == NULL)
c906108c 13378 {
46bf5051 13379 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13380 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13381 type = create_array_type_with_stride (NULL, element_type, range_type,
13382 bit_stride);
f792889a 13383 return set_die_type (die, type, cu);
c906108c
SS
13384 }
13385
13386 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13387 child_die = die->child;
c906108c
SS
13388 while (child_die && child_die->tag)
13389 {
13390 if (child_die->tag == DW_TAG_subrange_type)
13391 {
f792889a 13392 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13393
f792889a 13394 if (child_type != NULL)
a02abb62 13395 {
0963b4bd
MS
13396 /* The range type was succesfully read. Save it for the
13397 array type creation. */
a02abb62
JB
13398 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13399 {
13400 range_types = (struct type **)
13401 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13402 * sizeof (struct type *));
13403 if (ndim == 0)
13404 make_cleanup (free_current_contents, &range_types);
13405 }
f792889a 13406 range_types[ndim++] = child_type;
a02abb62 13407 }
c906108c
SS
13408 }
13409 child_die = sibling_die (child_die);
13410 }
13411
13412 /* Dwarf2 dimensions are output from left to right, create the
13413 necessary array types in backwards order. */
7ca2d3a3 13414
c906108c 13415 type = element_type;
7ca2d3a3
DL
13416
13417 if (read_array_order (die, cu) == DW_ORD_col_major)
13418 {
13419 int i = 0;
9a619af0 13420
7ca2d3a3 13421 while (i < ndim)
dc53a7ad
JB
13422 type = create_array_type_with_stride (NULL, type, range_types[i++],
13423 bit_stride);
7ca2d3a3
DL
13424 }
13425 else
13426 {
13427 while (ndim-- > 0)
dc53a7ad
JB
13428 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13429 bit_stride);
7ca2d3a3 13430 }
c906108c 13431
f5f8a009
EZ
13432 /* Understand Dwarf2 support for vector types (like they occur on
13433 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13434 array type. This is not part of the Dwarf2/3 standard yet, but a
13435 custom vendor extension. The main difference between a regular
13436 array and the vector variant is that vectors are passed by value
13437 to functions. */
e142c38c 13438 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13439 if (attr)
ea37ba09 13440 make_vector_type (type);
f5f8a009 13441
dbc98a8b
KW
13442 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13443 implementation may choose to implement triple vectors using this
13444 attribute. */
13445 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13446 if (attr)
13447 {
13448 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13449 TYPE_LENGTH (type) = DW_UNSND (attr);
13450 else
3e43a32a
MS
13451 complaint (&symfile_complaints,
13452 _("DW_AT_byte_size for array type smaller "
13453 "than the total size of elements"));
dbc98a8b
KW
13454 }
13455
39cbfefa
DJ
13456 name = dwarf2_name (die, cu);
13457 if (name)
13458 TYPE_NAME (type) = name;
6e70227d 13459
0963b4bd 13460 /* Install the type in the die. */
7e314c57
JK
13461 set_die_type (die, type, cu);
13462
13463 /* set_die_type should be already done. */
b4ba55a1
JB
13464 set_descriptive_type (type, die, cu);
13465
c906108c
SS
13466 do_cleanups (back_to);
13467
7e314c57 13468 return type;
c906108c
SS
13469}
13470
7ca2d3a3 13471static enum dwarf_array_dim_ordering
6e70227d 13472read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13473{
13474 struct attribute *attr;
13475
13476 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13477
13478 if (attr) return DW_SND (attr);
13479
0963b4bd
MS
13480 /* GNU F77 is a special case, as at 08/2004 array type info is the
13481 opposite order to the dwarf2 specification, but data is still
13482 laid out as per normal fortran.
7ca2d3a3 13483
0963b4bd
MS
13484 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13485 version checking. */
7ca2d3a3 13486
905e0470
PM
13487 if (cu->language == language_fortran
13488 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13489 {
13490 return DW_ORD_row_major;
13491 }
13492
6e70227d 13493 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13494 {
13495 case array_column_major:
13496 return DW_ORD_col_major;
13497 case array_row_major:
13498 default:
13499 return DW_ORD_row_major;
13500 };
13501}
13502
72019c9c 13503/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13504 the DIE's type field. */
72019c9c 13505
f792889a 13506static struct type *
72019c9c
GM
13507read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13508{
7e314c57
JK
13509 struct type *domain_type, *set_type;
13510 struct attribute *attr;
f792889a 13511
7e314c57
JK
13512 domain_type = die_type (die, cu);
13513
13514 /* The die_type call above may have already set the type for this DIE. */
13515 set_type = get_die_type (die, cu);
13516 if (set_type)
13517 return set_type;
13518
13519 set_type = create_set_type (NULL, domain_type);
13520
13521 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13522 if (attr)
13523 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13524
f792889a 13525 return set_die_type (die, set_type, cu);
72019c9c 13526}
7ca2d3a3 13527
0971de02
TT
13528/* A helper for read_common_block that creates a locexpr baton.
13529 SYM is the symbol which we are marking as computed.
13530 COMMON_DIE is the DIE for the common block.
13531 COMMON_LOC is the location expression attribute for the common
13532 block itself.
13533 MEMBER_LOC is the location expression attribute for the particular
13534 member of the common block that we are processing.
13535 CU is the CU from which the above come. */
13536
13537static void
13538mark_common_block_symbol_computed (struct symbol *sym,
13539 struct die_info *common_die,
13540 struct attribute *common_loc,
13541 struct attribute *member_loc,
13542 struct dwarf2_cu *cu)
13543{
13544 struct objfile *objfile = dwarf2_per_objfile->objfile;
13545 struct dwarf2_locexpr_baton *baton;
13546 gdb_byte *ptr;
13547 unsigned int cu_off;
13548 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13549 LONGEST offset = 0;
13550
13551 gdb_assert (common_loc && member_loc);
13552 gdb_assert (attr_form_is_block (common_loc));
13553 gdb_assert (attr_form_is_block (member_loc)
13554 || attr_form_is_constant (member_loc));
13555
13556 baton = obstack_alloc (&objfile->objfile_obstack,
13557 sizeof (struct dwarf2_locexpr_baton));
13558 baton->per_cu = cu->per_cu;
13559 gdb_assert (baton->per_cu);
13560
13561 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13562
13563 if (attr_form_is_constant (member_loc))
13564 {
13565 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13566 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13567 }
13568 else
13569 baton->size += DW_BLOCK (member_loc)->size;
13570
13571 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13572 baton->data = ptr;
13573
13574 *ptr++ = DW_OP_call4;
13575 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13576 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13577 ptr += 4;
13578
13579 if (attr_form_is_constant (member_loc))
13580 {
13581 *ptr++ = DW_OP_addr;
13582 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13583 ptr += cu->header.addr_size;
13584 }
13585 else
13586 {
13587 /* We have to copy the data here, because DW_OP_call4 will only
13588 use a DW_AT_location attribute. */
13589 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13590 ptr += DW_BLOCK (member_loc)->size;
13591 }
13592
13593 *ptr++ = DW_OP_plus;
13594 gdb_assert (ptr - baton->data == baton->size);
13595
0971de02 13596 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13597 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13598}
13599
4357ac6c
TT
13600/* Create appropriate locally-scoped variables for all the
13601 DW_TAG_common_block entries. Also create a struct common_block
13602 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13603 is used to sepate the common blocks name namespace from regular
13604 variable names. */
c906108c
SS
13605
13606static void
e7c27a73 13607read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13608{
0971de02
TT
13609 struct attribute *attr;
13610
13611 attr = dwarf2_attr (die, DW_AT_location, cu);
13612 if (attr)
13613 {
13614 /* Support the .debug_loc offsets. */
13615 if (attr_form_is_block (attr))
13616 {
13617 /* Ok. */
13618 }
13619 else if (attr_form_is_section_offset (attr))
13620 {
13621 dwarf2_complex_location_expr_complaint ();
13622 attr = NULL;
13623 }
13624 else
13625 {
13626 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13627 "common block member");
13628 attr = NULL;
13629 }
13630 }
13631
639d11d3 13632 if (die->child != NULL)
c906108c 13633 {
4357ac6c
TT
13634 struct objfile *objfile = cu->objfile;
13635 struct die_info *child_die;
13636 size_t n_entries = 0, size;
13637 struct common_block *common_block;
13638 struct symbol *sym;
74ac6d43 13639
4357ac6c
TT
13640 for (child_die = die->child;
13641 child_die && child_die->tag;
13642 child_die = sibling_die (child_die))
13643 ++n_entries;
13644
13645 size = (sizeof (struct common_block)
13646 + (n_entries - 1) * sizeof (struct symbol *));
13647 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13648 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13649 common_block->n_entries = 0;
13650
13651 for (child_die = die->child;
13652 child_die && child_die->tag;
13653 child_die = sibling_die (child_die))
13654 {
13655 /* Create the symbol in the DW_TAG_common_block block in the current
13656 symbol scope. */
e7c27a73 13657 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13658 if (sym != NULL)
13659 {
13660 struct attribute *member_loc;
13661
13662 common_block->contents[common_block->n_entries++] = sym;
13663
13664 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13665 cu);
13666 if (member_loc)
13667 {
13668 /* GDB has handled this for a long time, but it is
13669 not specified by DWARF. It seems to have been
13670 emitted by gfortran at least as recently as:
13671 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13672 complaint (&symfile_complaints,
13673 _("Variable in common block has "
13674 "DW_AT_data_member_location "
13675 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13676 child_die->offset.sect_off,
13677 objfile_name (cu->objfile));
0971de02
TT
13678
13679 if (attr_form_is_section_offset (member_loc))
13680 dwarf2_complex_location_expr_complaint ();
13681 else if (attr_form_is_constant (member_loc)
13682 || attr_form_is_block (member_loc))
13683 {
13684 if (attr)
13685 mark_common_block_symbol_computed (sym, die, attr,
13686 member_loc, cu);
13687 }
13688 else
13689 dwarf2_complex_location_expr_complaint ();
13690 }
13691 }
c906108c 13692 }
4357ac6c
TT
13693
13694 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13695 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13696 }
13697}
13698
0114d602 13699/* Create a type for a C++ namespace. */
d9fa45fe 13700
0114d602
DJ
13701static struct type *
13702read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13703{
e7c27a73 13704 struct objfile *objfile = cu->objfile;
0114d602 13705 const char *previous_prefix, *name;
9219021c 13706 int is_anonymous;
0114d602
DJ
13707 struct type *type;
13708
13709 /* For extensions, reuse the type of the original namespace. */
13710 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13711 {
13712 struct die_info *ext_die;
13713 struct dwarf2_cu *ext_cu = cu;
9a619af0 13714
0114d602
DJ
13715 ext_die = dwarf2_extension (die, &ext_cu);
13716 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13717
13718 /* EXT_CU may not be the same as CU.
02142a6c 13719 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13720 return set_die_type (die, type, cu);
13721 }
9219021c 13722
e142c38c 13723 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13724
13725 /* Now build the name of the current namespace. */
13726
0114d602
DJ
13727 previous_prefix = determine_prefix (die, cu);
13728 if (previous_prefix[0] != '\0')
13729 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13730 previous_prefix, name, 0, cu);
0114d602
DJ
13731
13732 /* Create the type. */
13733 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13734 objfile);
abee88f2 13735 TYPE_NAME (type) = name;
0114d602
DJ
13736 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13737
60531b24 13738 return set_die_type (die, type, cu);
0114d602
DJ
13739}
13740
13741/* Read a C++ namespace. */
13742
13743static void
13744read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13745{
13746 struct objfile *objfile = cu->objfile;
0114d602 13747 int is_anonymous;
9219021c 13748
5c4e30ca
DC
13749 /* Add a symbol associated to this if we haven't seen the namespace
13750 before. Also, add a using directive if it's an anonymous
13751 namespace. */
9219021c 13752
f2f0e013 13753 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13754 {
13755 struct type *type;
13756
0114d602 13757 type = read_type_die (die, cu);
e7c27a73 13758 new_symbol (die, type, cu);
5c4e30ca 13759
e8e80198 13760 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13761 if (is_anonymous)
0114d602
DJ
13762 {
13763 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13764
c0cc3a76 13765 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13766 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13767 }
5c4e30ca 13768 }
9219021c 13769
639d11d3 13770 if (die->child != NULL)
d9fa45fe 13771 {
639d11d3 13772 struct die_info *child_die = die->child;
6e70227d 13773
d9fa45fe
DC
13774 while (child_die && child_die->tag)
13775 {
e7c27a73 13776 process_die (child_die, cu);
d9fa45fe
DC
13777 child_die = sibling_die (child_die);
13778 }
13779 }
38d518c9
EZ
13780}
13781
f55ee35c
JK
13782/* Read a Fortran module as type. This DIE can be only a declaration used for
13783 imported module. Still we need that type as local Fortran "use ... only"
13784 declaration imports depend on the created type in determine_prefix. */
13785
13786static struct type *
13787read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13788{
13789 struct objfile *objfile = cu->objfile;
15d034d0 13790 const char *module_name;
f55ee35c
JK
13791 struct type *type;
13792
13793 module_name = dwarf2_name (die, cu);
13794 if (!module_name)
3e43a32a
MS
13795 complaint (&symfile_complaints,
13796 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13797 die->offset.sect_off);
f55ee35c
JK
13798 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13799
13800 /* determine_prefix uses TYPE_TAG_NAME. */
13801 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13802
13803 return set_die_type (die, type, cu);
13804}
13805
5d7cb8df
JK
13806/* Read a Fortran module. */
13807
13808static void
13809read_module (struct die_info *die, struct dwarf2_cu *cu)
13810{
13811 struct die_info *child_die = die->child;
530e8392
KB
13812 struct type *type;
13813
13814 type = read_type_die (die, cu);
13815 new_symbol (die, type, cu);
5d7cb8df 13816
5d7cb8df
JK
13817 while (child_die && child_die->tag)
13818 {
13819 process_die (child_die, cu);
13820 child_die = sibling_die (child_die);
13821 }
13822}
13823
38d518c9
EZ
13824/* Return the name of the namespace represented by DIE. Set
13825 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13826 namespace. */
13827
13828static const char *
e142c38c 13829namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13830{
13831 struct die_info *current_die;
13832 const char *name = NULL;
13833
13834 /* Loop through the extensions until we find a name. */
13835
13836 for (current_die = die;
13837 current_die != NULL;
f2f0e013 13838 current_die = dwarf2_extension (die, &cu))
38d518c9 13839 {
e142c38c 13840 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13841 if (name != NULL)
13842 break;
13843 }
13844
13845 /* Is it an anonymous namespace? */
13846
13847 *is_anonymous = (name == NULL);
13848 if (*is_anonymous)
2b1dbab0 13849 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13850
13851 return name;
d9fa45fe
DC
13852}
13853
c906108c
SS
13854/* Extract all information from a DW_TAG_pointer_type DIE and add to
13855 the user defined type vector. */
13856
f792889a 13857static struct type *
e7c27a73 13858read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13859{
5e2b427d 13860 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13861 struct comp_unit_head *cu_header = &cu->header;
c906108c 13862 struct type *type;
8b2dbe47
KB
13863 struct attribute *attr_byte_size;
13864 struct attribute *attr_address_class;
13865 int byte_size, addr_class;
7e314c57
JK
13866 struct type *target_type;
13867
13868 target_type = die_type (die, cu);
c906108c 13869
7e314c57
JK
13870 /* The die_type call above may have already set the type for this DIE. */
13871 type = get_die_type (die, cu);
13872 if (type)
13873 return type;
13874
13875 type = lookup_pointer_type (target_type);
8b2dbe47 13876
e142c38c 13877 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13878 if (attr_byte_size)
13879 byte_size = DW_UNSND (attr_byte_size);
c906108c 13880 else
8b2dbe47
KB
13881 byte_size = cu_header->addr_size;
13882
e142c38c 13883 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13884 if (attr_address_class)
13885 addr_class = DW_UNSND (attr_address_class);
13886 else
13887 addr_class = DW_ADDR_none;
13888
13889 /* If the pointer size or address class is different than the
13890 default, create a type variant marked as such and set the
13891 length accordingly. */
13892 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 13893 {
5e2b427d 13894 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
13895 {
13896 int type_flags;
13897
849957d9 13898 type_flags = gdbarch_address_class_type_flags
5e2b427d 13899 (gdbarch, byte_size, addr_class);
876cecd0
TT
13900 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13901 == 0);
8b2dbe47
KB
13902 type = make_type_with_address_space (type, type_flags);
13903 }
13904 else if (TYPE_LENGTH (type) != byte_size)
13905 {
3e43a32a
MS
13906 complaint (&symfile_complaints,
13907 _("invalid pointer size %d"), byte_size);
8b2dbe47 13908 }
6e70227d 13909 else
9a619af0
MS
13910 {
13911 /* Should we also complain about unhandled address classes? */
13912 }
c906108c 13913 }
8b2dbe47
KB
13914
13915 TYPE_LENGTH (type) = byte_size;
f792889a 13916 return set_die_type (die, type, cu);
c906108c
SS
13917}
13918
13919/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13920 the user defined type vector. */
13921
f792889a 13922static struct type *
e7c27a73 13923read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
13924{
13925 struct type *type;
13926 struct type *to_type;
13927 struct type *domain;
13928
e7c27a73
DJ
13929 to_type = die_type (die, cu);
13930 domain = die_containing_type (die, cu);
0d5de010 13931
7e314c57
JK
13932 /* The calls above may have already set the type for this DIE. */
13933 type = get_die_type (die, cu);
13934 if (type)
13935 return type;
13936
0d5de010
DJ
13937 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13938 type = lookup_methodptr_type (to_type);
7078baeb
TT
13939 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13940 {
13941 struct type *new_type = alloc_type (cu->objfile);
13942
13943 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13944 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13945 TYPE_VARARGS (to_type));
13946 type = lookup_methodptr_type (new_type);
13947 }
0d5de010
DJ
13948 else
13949 type = lookup_memberptr_type (to_type, domain);
c906108c 13950
f792889a 13951 return set_die_type (die, type, cu);
c906108c
SS
13952}
13953
13954/* Extract all information from a DW_TAG_reference_type DIE and add to
13955 the user defined type vector. */
13956
f792889a 13957static struct type *
e7c27a73 13958read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13959{
e7c27a73 13960 struct comp_unit_head *cu_header = &cu->header;
7e314c57 13961 struct type *type, *target_type;
c906108c
SS
13962 struct attribute *attr;
13963
7e314c57
JK
13964 target_type = die_type (die, cu);
13965
13966 /* The die_type call above may have already set the type for this DIE. */
13967 type = get_die_type (die, cu);
13968 if (type)
13969 return type;
13970
13971 type = lookup_reference_type (target_type);
e142c38c 13972 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13973 if (attr)
13974 {
13975 TYPE_LENGTH (type) = DW_UNSND (attr);
13976 }
13977 else
13978 {
107d2387 13979 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 13980 }
f792889a 13981 return set_die_type (die, type, cu);
c906108c
SS
13982}
13983
f792889a 13984static struct type *
e7c27a73 13985read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13986{
f792889a 13987 struct type *base_type, *cv_type;
c906108c 13988
e7c27a73 13989 base_type = die_type (die, cu);
7e314c57
JK
13990
13991 /* The die_type call above may have already set the type for this DIE. */
13992 cv_type = get_die_type (die, cu);
13993 if (cv_type)
13994 return cv_type;
13995
2f608a3a
KW
13996 /* In case the const qualifier is applied to an array type, the element type
13997 is so qualified, not the array type (section 6.7.3 of C99). */
13998 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13999 {
14000 struct type *el_type, *inner_array;
14001
14002 base_type = copy_type (base_type);
14003 inner_array = base_type;
14004
14005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14006 {
14007 TYPE_TARGET_TYPE (inner_array) =
14008 copy_type (TYPE_TARGET_TYPE (inner_array));
14009 inner_array = TYPE_TARGET_TYPE (inner_array);
14010 }
14011
14012 el_type = TYPE_TARGET_TYPE (inner_array);
14013 TYPE_TARGET_TYPE (inner_array) =
14014 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14015
14016 return set_die_type (die, base_type, cu);
14017 }
14018
f792889a
DJ
14019 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14020 return set_die_type (die, cv_type, cu);
c906108c
SS
14021}
14022
f792889a 14023static struct type *
e7c27a73 14024read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14025{
f792889a 14026 struct type *base_type, *cv_type;
c906108c 14027
e7c27a73 14028 base_type = die_type (die, cu);
7e314c57
JK
14029
14030 /* The die_type call above may have already set the type for this DIE. */
14031 cv_type = get_die_type (die, cu);
14032 if (cv_type)
14033 return cv_type;
14034
f792889a
DJ
14035 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14036 return set_die_type (die, cv_type, cu);
c906108c
SS
14037}
14038
06d66ee9
TT
14039/* Handle DW_TAG_restrict_type. */
14040
14041static struct type *
14042read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14043{
14044 struct type *base_type, *cv_type;
14045
14046 base_type = die_type (die, cu);
14047
14048 /* The die_type call above may have already set the type for this DIE. */
14049 cv_type = get_die_type (die, cu);
14050 if (cv_type)
14051 return cv_type;
14052
14053 cv_type = make_restrict_type (base_type);
14054 return set_die_type (die, cv_type, cu);
14055}
14056
c906108c
SS
14057/* Extract all information from a DW_TAG_string_type DIE and add to
14058 the user defined type vector. It isn't really a user defined type,
14059 but it behaves like one, with other DIE's using an AT_user_def_type
14060 attribute to reference it. */
14061
f792889a 14062static struct type *
e7c27a73 14063read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14064{
e7c27a73 14065 struct objfile *objfile = cu->objfile;
3b7538c0 14066 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14067 struct type *type, *range_type, *index_type, *char_type;
14068 struct attribute *attr;
14069 unsigned int length;
14070
e142c38c 14071 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14072 if (attr)
14073 {
14074 length = DW_UNSND (attr);
14075 }
14076 else
14077 {
0963b4bd 14078 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14079 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14080 if (attr)
14081 {
14082 length = DW_UNSND (attr);
14083 }
14084 else
14085 {
14086 length = 1;
14087 }
c906108c 14088 }
6ccb9162 14089
46bf5051 14090 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14091 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14092 char_type = language_string_char_type (cu->language_defn, gdbarch);
14093 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14094
f792889a 14095 return set_die_type (die, type, cu);
c906108c
SS
14096}
14097
4d804846
JB
14098/* Assuming that DIE corresponds to a function, returns nonzero
14099 if the function is prototyped. */
14100
14101static int
14102prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14103{
14104 struct attribute *attr;
14105
14106 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14107 if (attr && (DW_UNSND (attr) != 0))
14108 return 1;
14109
14110 /* The DWARF standard implies that the DW_AT_prototyped attribute
14111 is only meaninful for C, but the concept also extends to other
14112 languages that allow unprototyped functions (Eg: Objective C).
14113 For all other languages, assume that functions are always
14114 prototyped. */
14115 if (cu->language != language_c
14116 && cu->language != language_objc
14117 && cu->language != language_opencl)
14118 return 1;
14119
14120 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14121 prototyped and unprototyped functions; default to prototyped,
14122 since that is more common in modern code (and RealView warns
14123 about unprototyped functions). */
14124 if (producer_is_realview (cu->producer))
14125 return 1;
14126
14127 return 0;
14128}
14129
c906108c
SS
14130/* Handle DIES due to C code like:
14131
14132 struct foo
c5aa993b
JM
14133 {
14134 int (*funcp)(int a, long l);
14135 int b;
14136 };
c906108c 14137
0963b4bd 14138 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14139
f792889a 14140static struct type *
e7c27a73 14141read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14142{
bb5ed363 14143 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14144 struct type *type; /* Type that this function returns. */
14145 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14146 struct attribute *attr;
14147
e7c27a73 14148 type = die_type (die, cu);
7e314c57
JK
14149
14150 /* The die_type call above may have already set the type for this DIE. */
14151 ftype = get_die_type (die, cu);
14152 if (ftype)
14153 return ftype;
14154
0c8b41f1 14155 ftype = lookup_function_type (type);
c906108c 14156
4d804846 14157 if (prototyped_function_p (die, cu))
a6c727b2 14158 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14159
c055b101
CV
14160 /* Store the calling convention in the type if it's available in
14161 the subroutine die. Otherwise set the calling convention to
14162 the default value DW_CC_normal. */
14163 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14164 if (attr)
14165 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14166 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14167 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14168 else
14169 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14170
14171 /* We need to add the subroutine type to the die immediately so
14172 we don't infinitely recurse when dealing with parameters
0963b4bd 14173 declared as the same subroutine type. */
76c10ea2 14174 set_die_type (die, ftype, cu);
6e70227d 14175
639d11d3 14176 if (die->child != NULL)
c906108c 14177 {
bb5ed363 14178 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14179 struct die_info *child_die;
8072405b 14180 int nparams, iparams;
c906108c
SS
14181
14182 /* Count the number of parameters.
14183 FIXME: GDB currently ignores vararg functions, but knows about
14184 vararg member functions. */
8072405b 14185 nparams = 0;
639d11d3 14186 child_die = die->child;
c906108c
SS
14187 while (child_die && child_die->tag)
14188 {
14189 if (child_die->tag == DW_TAG_formal_parameter)
14190 nparams++;
14191 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14192 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14193 child_die = sibling_die (child_die);
14194 }
14195
14196 /* Allocate storage for parameters and fill them in. */
14197 TYPE_NFIELDS (ftype) = nparams;
14198 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14199 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14200
8072405b
JK
14201 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14202 even if we error out during the parameters reading below. */
14203 for (iparams = 0; iparams < nparams; iparams++)
14204 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14205
14206 iparams = 0;
639d11d3 14207 child_die = die->child;
c906108c
SS
14208 while (child_die && child_die->tag)
14209 {
14210 if (child_die->tag == DW_TAG_formal_parameter)
14211 {
3ce3b1ba
PA
14212 struct type *arg_type;
14213
14214 /* DWARF version 2 has no clean way to discern C++
14215 static and non-static member functions. G++ helps
14216 GDB by marking the first parameter for non-static
14217 member functions (which is the this pointer) as
14218 artificial. We pass this information to
14219 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14220
14221 DWARF version 3 added DW_AT_object_pointer, which GCC
14222 4.5 does not yet generate. */
e142c38c 14223 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14224 if (attr)
14225 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14226 else
418835cc
KS
14227 {
14228 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14229
14230 /* GCC/43521: In java, the formal parameter
14231 "this" is sometimes not marked with DW_AT_artificial. */
14232 if (cu->language == language_java)
14233 {
14234 const char *name = dwarf2_name (child_die, cu);
9a619af0 14235
418835cc
KS
14236 if (name && !strcmp (name, "this"))
14237 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14238 }
14239 }
3ce3b1ba
PA
14240 arg_type = die_type (child_die, cu);
14241
14242 /* RealView does not mark THIS as const, which the testsuite
14243 expects. GCC marks THIS as const in method definitions,
14244 but not in the class specifications (GCC PR 43053). */
14245 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14246 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14247 {
14248 int is_this = 0;
14249 struct dwarf2_cu *arg_cu = cu;
14250 const char *name = dwarf2_name (child_die, cu);
14251
14252 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14253 if (attr)
14254 {
14255 /* If the compiler emits this, use it. */
14256 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14257 is_this = 1;
14258 }
14259 else if (name && strcmp (name, "this") == 0)
14260 /* Function definitions will have the argument names. */
14261 is_this = 1;
14262 else if (name == NULL && iparams == 0)
14263 /* Declarations may not have the names, so like
14264 elsewhere in GDB, assume an artificial first
14265 argument is "this". */
14266 is_this = 1;
14267
14268 if (is_this)
14269 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14270 arg_type, 0);
14271 }
14272
14273 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14274 iparams++;
14275 }
14276 child_die = sibling_die (child_die);
14277 }
14278 }
14279
76c10ea2 14280 return ftype;
c906108c
SS
14281}
14282
f792889a 14283static struct type *
e7c27a73 14284read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14285{
e7c27a73 14286 struct objfile *objfile = cu->objfile;
0114d602 14287 const char *name = NULL;
3c8e0968 14288 struct type *this_type, *target_type;
c906108c 14289
94af9270 14290 name = dwarf2_full_name (NULL, die, cu);
f792889a 14291 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14292 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14293 TYPE_NAME (this_type) = name;
f792889a 14294 set_die_type (die, this_type, cu);
3c8e0968
DE
14295 target_type = die_type (die, cu);
14296 if (target_type != this_type)
14297 TYPE_TARGET_TYPE (this_type) = target_type;
14298 else
14299 {
14300 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14301 spec and cause infinite loops in GDB. */
14302 complaint (&symfile_complaints,
14303 _("Self-referential DW_TAG_typedef "
14304 "- DIE at 0x%x [in module %s]"),
4262abfb 14305 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14306 TYPE_TARGET_TYPE (this_type) = NULL;
14307 }
f792889a 14308 return this_type;
c906108c
SS
14309}
14310
14311/* Find a representation of a given base type and install
14312 it in the TYPE field of the die. */
14313
f792889a 14314static struct type *
e7c27a73 14315read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14316{
e7c27a73 14317 struct objfile *objfile = cu->objfile;
c906108c
SS
14318 struct type *type;
14319 struct attribute *attr;
14320 int encoding = 0, size = 0;
15d034d0 14321 const char *name;
6ccb9162
UW
14322 enum type_code code = TYPE_CODE_INT;
14323 int type_flags = 0;
14324 struct type *target_type = NULL;
c906108c 14325
e142c38c 14326 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14327 if (attr)
14328 {
14329 encoding = DW_UNSND (attr);
14330 }
e142c38c 14331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14332 if (attr)
14333 {
14334 size = DW_UNSND (attr);
14335 }
39cbfefa 14336 name = dwarf2_name (die, cu);
6ccb9162 14337 if (!name)
c906108c 14338 {
6ccb9162
UW
14339 complaint (&symfile_complaints,
14340 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14341 }
6ccb9162
UW
14342
14343 switch (encoding)
c906108c 14344 {
6ccb9162
UW
14345 case DW_ATE_address:
14346 /* Turn DW_ATE_address into a void * pointer. */
14347 code = TYPE_CODE_PTR;
14348 type_flags |= TYPE_FLAG_UNSIGNED;
14349 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14350 break;
14351 case DW_ATE_boolean:
14352 code = TYPE_CODE_BOOL;
14353 type_flags |= TYPE_FLAG_UNSIGNED;
14354 break;
14355 case DW_ATE_complex_float:
14356 code = TYPE_CODE_COMPLEX;
14357 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14358 break;
14359 case DW_ATE_decimal_float:
14360 code = TYPE_CODE_DECFLOAT;
14361 break;
14362 case DW_ATE_float:
14363 code = TYPE_CODE_FLT;
14364 break;
14365 case DW_ATE_signed:
14366 break;
14367 case DW_ATE_unsigned:
14368 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14369 if (cu->language == language_fortran
14370 && name
14371 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14372 code = TYPE_CODE_CHAR;
6ccb9162
UW
14373 break;
14374 case DW_ATE_signed_char:
6e70227d 14375 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14376 || cu->language == language_pascal
14377 || cu->language == language_fortran)
6ccb9162
UW
14378 code = TYPE_CODE_CHAR;
14379 break;
14380 case DW_ATE_unsigned_char:
868a0084 14381 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14382 || cu->language == language_pascal
14383 || cu->language == language_fortran)
6ccb9162
UW
14384 code = TYPE_CODE_CHAR;
14385 type_flags |= TYPE_FLAG_UNSIGNED;
14386 break;
75079b2b
TT
14387 case DW_ATE_UTF:
14388 /* We just treat this as an integer and then recognize the
14389 type by name elsewhere. */
14390 break;
14391
6ccb9162
UW
14392 default:
14393 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14394 dwarf_type_encoding_name (encoding));
14395 break;
c906108c 14396 }
6ccb9162 14397
0114d602
DJ
14398 type = init_type (code, size, type_flags, NULL, objfile);
14399 TYPE_NAME (type) = name;
6ccb9162
UW
14400 TYPE_TARGET_TYPE (type) = target_type;
14401
0114d602 14402 if (name && strcmp (name, "char") == 0)
876cecd0 14403 TYPE_NOSIGN (type) = 1;
0114d602 14404
f792889a 14405 return set_die_type (die, type, cu);
c906108c
SS
14406}
14407
a02abb62
JB
14408/* Read the given DW_AT_subrange DIE. */
14409
f792889a 14410static struct type *
a02abb62
JB
14411read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14412{
4c9ad8c2 14413 struct type *base_type, *orig_base_type;
a02abb62
JB
14414 struct type *range_type;
14415 struct attribute *attr;
729efb13 14416 struct dynamic_prop low, high;
4fae6e18 14417 int low_default_is_valid;
15d034d0 14418 const char *name;
43bbcdc2 14419 LONGEST negative_mask;
e77813c8 14420
4c9ad8c2
TT
14421 orig_base_type = die_type (die, cu);
14422 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14423 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14424 creating the range type, but we use the result of check_typedef
14425 when examining properties of the type. */
14426 base_type = check_typedef (orig_base_type);
a02abb62 14427
7e314c57
JK
14428 /* The die_type call above may have already set the type for this DIE. */
14429 range_type = get_die_type (die, cu);
14430 if (range_type)
14431 return range_type;
14432
729efb13
SA
14433 low.kind = PROP_CONST;
14434 high.kind = PROP_CONST;
14435 high.data.const_val = 0;
14436
4fae6e18
JK
14437 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14438 omitting DW_AT_lower_bound. */
14439 switch (cu->language)
6e70227d 14440 {
4fae6e18
JK
14441 case language_c:
14442 case language_cplus:
729efb13 14443 low.data.const_val = 0;
4fae6e18
JK
14444 low_default_is_valid = 1;
14445 break;
14446 case language_fortran:
729efb13 14447 low.data.const_val = 1;
4fae6e18
JK
14448 low_default_is_valid = 1;
14449 break;
14450 case language_d:
14451 case language_java:
14452 case language_objc:
729efb13 14453 low.data.const_val = 0;
4fae6e18
JK
14454 low_default_is_valid = (cu->header.version >= 4);
14455 break;
14456 case language_ada:
14457 case language_m2:
14458 case language_pascal:
729efb13 14459 low.data.const_val = 1;
4fae6e18
JK
14460 low_default_is_valid = (cu->header.version >= 4);
14461 break;
14462 default:
729efb13 14463 low.data.const_val = 0;
4fae6e18
JK
14464 low_default_is_valid = 0;
14465 break;
a02abb62
JB
14466 }
14467
dd5e6932
DJ
14468 /* FIXME: For variable sized arrays either of these could be
14469 a variable rather than a constant value. We'll allow it,
14470 but we don't know how to handle it. */
e142c38c 14471 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14472 if (attr)
729efb13
SA
14473 low.data.const_val
14474 = dwarf2_get_attr_constant_value (attr, low.data.const_val);
4fae6e18
JK
14475 else if (!low_default_is_valid)
14476 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14477 "- DIE at 0x%x [in module %s]"),
4262abfb 14478 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14479
e142c38c 14480 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 14481 if (attr)
6e70227d 14482 {
7771576e 14483 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
14484 {
14485 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 14486 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
14487 FIXME: GDB does not yet know how to handle dynamic
14488 arrays properly, treat them as arrays with unspecified
14489 length for now.
14490
14491 FIXME: jimb/2003-09-22: GDB does not really know
14492 how to handle arrays of unspecified length
14493 either; we just represent them as zero-length
14494 arrays. Choose an appropriate upper bound given
14495 the lower bound we've computed above. */
729efb13 14496 high.data.const_val = low.data.const_val - 1;
a02abb62
JB
14497 }
14498 else
729efb13 14499 high.data.const_val = dwarf2_get_attr_constant_value (attr, 1);
a02abb62 14500 }
e77813c8
PM
14501 else
14502 {
14503 attr = dwarf2_attr (die, DW_AT_count, cu);
14504 if (attr)
14505 {
14506 int count = dwarf2_get_attr_constant_value (attr, 1);
729efb13 14507 high.data.const_val = low.data.const_val + count - 1;
e77813c8 14508 }
c2ff108b
JK
14509 else
14510 {
14511 /* Unspecified array length. */
729efb13 14512 high.data.const_val = low.data.const_val - 1;
c2ff108b 14513 }
e77813c8
PM
14514 }
14515
14516 /* Dwarf-2 specifications explicitly allows to create subrange types
14517 without specifying a base type.
14518 In that case, the base type must be set to the type of
14519 the lower bound, upper bound or count, in that order, if any of these
14520 three attributes references an object that has a type.
14521 If no base type is found, the Dwarf-2 specifications say that
14522 a signed integer type of size equal to the size of an address should
14523 be used.
14524 For the following C code: `extern char gdb_int [];'
14525 GCC produces an empty range DIE.
14526 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14527 high bound or count are not yet handled by this code. */
e77813c8
PM
14528 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14529 {
14530 struct objfile *objfile = cu->objfile;
14531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14532 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14533 struct type *int_type = objfile_type (objfile)->builtin_int;
14534
14535 /* Test "int", "long int", and "long long int" objfile types,
14536 and select the first one having a size above or equal to the
14537 architecture address size. */
14538 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14539 base_type = int_type;
14540 else
14541 {
14542 int_type = objfile_type (objfile)->builtin_long;
14543 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14544 base_type = int_type;
14545 else
14546 {
14547 int_type = objfile_type (objfile)->builtin_long_long;
14548 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14549 base_type = int_type;
14550 }
14551 }
14552 }
a02abb62 14553
dbb9c2b1
JB
14554 /* Normally, the DWARF producers are expected to use a signed
14555 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14556 But this is unfortunately not always the case, as witnessed
14557 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14558 is used instead. To work around that ambiguity, we treat
14559 the bounds as signed, and thus sign-extend their values, when
14560 the base type is signed. */
6e70227d 14561 negative_mask =
43bbcdc2 14562 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14563 if (low.kind == PROP_CONST
14564 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14565 low.data.const_val |= negative_mask;
14566 if (high.kind == PROP_CONST
14567 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14568 high.data.const_val |= negative_mask;
43bbcdc2 14569
729efb13 14570 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14571
bbb0eef6
JK
14572 /* Mark arrays with dynamic length at least as an array of unspecified
14573 length. GDB could check the boundary but before it gets implemented at
14574 least allow accessing the array elements. */
d48323d8 14575 if (attr && attr_form_is_block (attr))
729efb13 14576 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
bbb0eef6 14577
c2ff108b
JK
14578 /* Ada expects an empty array on no boundary attributes. */
14579 if (attr == NULL && cu->language != language_ada)
729efb13 14580 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14581
39cbfefa
DJ
14582 name = dwarf2_name (die, cu);
14583 if (name)
14584 TYPE_NAME (range_type) = name;
6e70227d 14585
e142c38c 14586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14587 if (attr)
14588 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14589
7e314c57
JK
14590 set_die_type (die, range_type, cu);
14591
14592 /* set_die_type should be already done. */
b4ba55a1
JB
14593 set_descriptive_type (range_type, die, cu);
14594
7e314c57 14595 return range_type;
a02abb62 14596}
6e70227d 14597
f792889a 14598static struct type *
81a17f79
JB
14599read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14600{
14601 struct type *type;
81a17f79 14602
81a17f79
JB
14603 /* For now, we only support the C meaning of an unspecified type: void. */
14604
0114d602
DJ
14605 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14606 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14607
f792889a 14608 return set_die_type (die, type, cu);
81a17f79 14609}
a02abb62 14610
639d11d3
DC
14611/* Read a single die and all its descendents. Set the die's sibling
14612 field to NULL; set other fields in the die correctly, and set all
14613 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14614 location of the info_ptr after reading all of those dies. PARENT
14615 is the parent of the die in question. */
14616
14617static struct die_info *
dee91e82 14618read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14619 const gdb_byte *info_ptr,
14620 const gdb_byte **new_info_ptr,
dee91e82 14621 struct die_info *parent)
639d11d3
DC
14622{
14623 struct die_info *die;
d521ce57 14624 const gdb_byte *cur_ptr;
639d11d3
DC
14625 int has_children;
14626
bf6af496 14627 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14628 if (die == NULL)
14629 {
14630 *new_info_ptr = cur_ptr;
14631 return NULL;
14632 }
93311388 14633 store_in_ref_table (die, reader->cu);
639d11d3
DC
14634
14635 if (has_children)
bf6af496 14636 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14637 else
14638 {
14639 die->child = NULL;
14640 *new_info_ptr = cur_ptr;
14641 }
14642
14643 die->sibling = NULL;
14644 die->parent = parent;
14645 return die;
14646}
14647
14648/* Read a die, all of its descendents, and all of its siblings; set
14649 all of the fields of all of the dies correctly. Arguments are as
14650 in read_die_and_children. */
14651
14652static struct die_info *
bf6af496 14653read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14654 const gdb_byte *info_ptr,
14655 const gdb_byte **new_info_ptr,
bf6af496 14656 struct die_info *parent)
639d11d3
DC
14657{
14658 struct die_info *first_die, *last_sibling;
d521ce57 14659 const gdb_byte *cur_ptr;
639d11d3 14660
c906108c 14661 cur_ptr = info_ptr;
639d11d3
DC
14662 first_die = last_sibling = NULL;
14663
14664 while (1)
c906108c 14665 {
639d11d3 14666 struct die_info *die
dee91e82 14667 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14668
1d325ec1 14669 if (die == NULL)
c906108c 14670 {
639d11d3
DC
14671 *new_info_ptr = cur_ptr;
14672 return first_die;
c906108c 14673 }
1d325ec1
DJ
14674
14675 if (!first_die)
14676 first_die = die;
c906108c 14677 else
1d325ec1
DJ
14678 last_sibling->sibling = die;
14679
14680 last_sibling = die;
c906108c 14681 }
c906108c
SS
14682}
14683
bf6af496
DE
14684/* Read a die, all of its descendents, and all of its siblings; set
14685 all of the fields of all of the dies correctly. Arguments are as
14686 in read_die_and_children.
14687 This the main entry point for reading a DIE and all its children. */
14688
14689static struct die_info *
14690read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14691 const gdb_byte *info_ptr,
14692 const gdb_byte **new_info_ptr,
bf6af496
DE
14693 struct die_info *parent)
14694{
14695 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14696 new_info_ptr, parent);
14697
14698 if (dwarf2_die_debug)
14699 {
14700 fprintf_unfiltered (gdb_stdlog,
14701 "Read die from %s@0x%x of %s:\n",
a32a8923 14702 get_section_name (reader->die_section),
bf6af496
DE
14703 (unsigned) (info_ptr - reader->die_section->buffer),
14704 bfd_get_filename (reader->abfd));
14705 dump_die (die, dwarf2_die_debug);
14706 }
14707
14708 return die;
14709}
14710
3019eac3
DE
14711/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14712 attributes.
14713 The caller is responsible for filling in the extra attributes
14714 and updating (*DIEP)->num_attrs.
14715 Set DIEP to point to a newly allocated die with its information,
14716 except for its child, sibling, and parent fields.
14717 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14718
d521ce57 14719static const gdb_byte *
3019eac3 14720read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14721 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14722 int *has_children, int num_extra_attrs)
93311388 14723{
b64f50a1
JK
14724 unsigned int abbrev_number, bytes_read, i;
14725 sect_offset offset;
93311388
DE
14726 struct abbrev_info *abbrev;
14727 struct die_info *die;
14728 struct dwarf2_cu *cu = reader->cu;
14729 bfd *abfd = reader->abfd;
14730
b64f50a1 14731 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14732 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14733 info_ptr += bytes_read;
14734 if (!abbrev_number)
14735 {
14736 *diep = NULL;
14737 *has_children = 0;
14738 return info_ptr;
14739 }
14740
433df2d4 14741 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14742 if (!abbrev)
348e048f
DE
14743 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14744 abbrev_number,
14745 bfd_get_filename (abfd));
14746
3019eac3 14747 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14748 die->offset = offset;
14749 die->tag = abbrev->tag;
14750 die->abbrev = abbrev_number;
14751
3019eac3
DE
14752 /* Make the result usable.
14753 The caller needs to update num_attrs after adding the extra
14754 attributes. */
93311388
DE
14755 die->num_attrs = abbrev->num_attrs;
14756
14757 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14758 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14759 info_ptr);
93311388
DE
14760
14761 *diep = die;
14762 *has_children = abbrev->has_children;
14763 return info_ptr;
14764}
14765
3019eac3
DE
14766/* Read a die and all its attributes.
14767 Set DIEP to point to a newly allocated die with its information,
14768 except for its child, sibling, and parent fields.
14769 Set HAS_CHILDREN to tell whether the die has children or not. */
14770
d521ce57 14771static const gdb_byte *
3019eac3 14772read_full_die (const struct die_reader_specs *reader,
d521ce57 14773 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14774 int *has_children)
14775{
d521ce57 14776 const gdb_byte *result;
bf6af496
DE
14777
14778 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14779
14780 if (dwarf2_die_debug)
14781 {
14782 fprintf_unfiltered (gdb_stdlog,
14783 "Read die from %s@0x%x of %s:\n",
a32a8923 14784 get_section_name (reader->die_section),
bf6af496
DE
14785 (unsigned) (info_ptr - reader->die_section->buffer),
14786 bfd_get_filename (reader->abfd));
14787 dump_die (*diep, dwarf2_die_debug);
14788 }
14789
14790 return result;
3019eac3 14791}
433df2d4
DE
14792\f
14793/* Abbreviation tables.
3019eac3 14794
433df2d4 14795 In DWARF version 2, the description of the debugging information is
c906108c
SS
14796 stored in a separate .debug_abbrev section. Before we read any
14797 dies from a section we read in all abbreviations and install them
433df2d4
DE
14798 in a hash table. */
14799
14800/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14801
14802static struct abbrev_info *
14803abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14804{
14805 struct abbrev_info *abbrev;
14806
14807 abbrev = (struct abbrev_info *)
14808 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14809 memset (abbrev, 0, sizeof (struct abbrev_info));
14810 return abbrev;
14811}
14812
14813/* Add an abbreviation to the table. */
c906108c
SS
14814
14815static void
433df2d4
DE
14816abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14817 unsigned int abbrev_number,
14818 struct abbrev_info *abbrev)
14819{
14820 unsigned int hash_number;
14821
14822 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14823 abbrev->next = abbrev_table->abbrevs[hash_number];
14824 abbrev_table->abbrevs[hash_number] = abbrev;
14825}
dee91e82 14826
433df2d4
DE
14827/* Look up an abbrev in the table.
14828 Returns NULL if the abbrev is not found. */
14829
14830static struct abbrev_info *
14831abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14832 unsigned int abbrev_number)
c906108c 14833{
433df2d4
DE
14834 unsigned int hash_number;
14835 struct abbrev_info *abbrev;
14836
14837 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14838 abbrev = abbrev_table->abbrevs[hash_number];
14839
14840 while (abbrev)
14841 {
14842 if (abbrev->number == abbrev_number)
14843 return abbrev;
14844 abbrev = abbrev->next;
14845 }
14846 return NULL;
14847}
14848
14849/* Read in an abbrev table. */
14850
14851static struct abbrev_table *
14852abbrev_table_read_table (struct dwarf2_section_info *section,
14853 sect_offset offset)
14854{
14855 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 14856 bfd *abfd = get_section_bfd_owner (section);
433df2d4 14857 struct abbrev_table *abbrev_table;
d521ce57 14858 const gdb_byte *abbrev_ptr;
c906108c
SS
14859 struct abbrev_info *cur_abbrev;
14860 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 14861 unsigned int abbrev_form;
f3dd6933
DJ
14862 struct attr_abbrev *cur_attrs;
14863 unsigned int allocated_attrs;
c906108c 14864
70ba0933 14865 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 14866 abbrev_table->offset = offset;
433df2d4
DE
14867 obstack_init (&abbrev_table->abbrev_obstack);
14868 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14869 (ABBREV_HASH_SIZE
14870 * sizeof (struct abbrev_info *)));
14871 memset (abbrev_table->abbrevs, 0,
14872 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 14873
433df2d4
DE
14874 dwarf2_read_section (objfile, section);
14875 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
14876 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14877 abbrev_ptr += bytes_read;
14878
f3dd6933
DJ
14879 allocated_attrs = ATTR_ALLOC_CHUNK;
14880 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 14881
0963b4bd 14882 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
14883 while (abbrev_number)
14884 {
433df2d4 14885 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
14886
14887 /* read in abbrev header */
14888 cur_abbrev->number = abbrev_number;
14889 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14890 abbrev_ptr += bytes_read;
14891 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14892 abbrev_ptr += 1;
14893
14894 /* now read in declarations */
14895 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14896 abbrev_ptr += bytes_read;
14897 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14898 abbrev_ptr += bytes_read;
14899 while (abbrev_name)
14900 {
f3dd6933 14901 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 14902 {
f3dd6933
DJ
14903 allocated_attrs += ATTR_ALLOC_CHUNK;
14904 cur_attrs
14905 = xrealloc (cur_attrs, (allocated_attrs
14906 * sizeof (struct attr_abbrev)));
c906108c 14907 }
ae038cb0 14908
f3dd6933
DJ
14909 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14910 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
14911 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14912 abbrev_ptr += bytes_read;
14913 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14914 abbrev_ptr += bytes_read;
14915 }
14916
433df2d4 14917 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
14918 (cur_abbrev->num_attrs
14919 * sizeof (struct attr_abbrev)));
14920 memcpy (cur_abbrev->attrs, cur_attrs,
14921 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14922
433df2d4 14923 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
14924
14925 /* Get next abbreviation.
14926 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
14927 always properly terminated with an abbrev number of 0.
14928 Exit loop if we encounter an abbreviation which we have
14929 already read (which means we are about to read the abbreviations
14930 for the next compile unit) or if the end of the abbreviation
14931 table is reached. */
433df2d4 14932 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
14933 break;
14934 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14935 abbrev_ptr += bytes_read;
433df2d4 14936 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
14937 break;
14938 }
f3dd6933
DJ
14939
14940 xfree (cur_attrs);
433df2d4 14941 return abbrev_table;
c906108c
SS
14942}
14943
433df2d4 14944/* Free the resources held by ABBREV_TABLE. */
c906108c 14945
c906108c 14946static void
433df2d4 14947abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 14948{
433df2d4
DE
14949 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14950 xfree (abbrev_table);
c906108c
SS
14951}
14952
f4dc4d17
DE
14953/* Same as abbrev_table_free but as a cleanup.
14954 We pass in a pointer to the pointer to the table so that we can
14955 set the pointer to NULL when we're done. It also simplifies
14956 build_type_unit_groups. */
14957
14958static void
14959abbrev_table_free_cleanup (void *table_ptr)
14960{
14961 struct abbrev_table **abbrev_table_ptr = table_ptr;
14962
14963 if (*abbrev_table_ptr != NULL)
14964 abbrev_table_free (*abbrev_table_ptr);
14965 *abbrev_table_ptr = NULL;
14966}
14967
433df2d4
DE
14968/* Read the abbrev table for CU from ABBREV_SECTION. */
14969
14970static void
14971dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14972 struct dwarf2_section_info *abbrev_section)
c906108c 14973{
433df2d4
DE
14974 cu->abbrev_table =
14975 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14976}
c906108c 14977
433df2d4 14978/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 14979
433df2d4
DE
14980static void
14981dwarf2_free_abbrev_table (void *ptr_to_cu)
14982{
14983 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 14984
a2ce51a0
DE
14985 if (cu->abbrev_table != NULL)
14986 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
14987 /* Set this to NULL so that we SEGV if we try to read it later,
14988 and also because free_comp_unit verifies this is NULL. */
14989 cu->abbrev_table = NULL;
14990}
14991\f
72bf9492
DJ
14992/* Returns nonzero if TAG represents a type that we might generate a partial
14993 symbol for. */
14994
14995static int
14996is_type_tag_for_partial (int tag)
14997{
14998 switch (tag)
14999 {
15000#if 0
15001 /* Some types that would be reasonable to generate partial symbols for,
15002 that we don't at present. */
15003 case DW_TAG_array_type:
15004 case DW_TAG_file_type:
15005 case DW_TAG_ptr_to_member_type:
15006 case DW_TAG_set_type:
15007 case DW_TAG_string_type:
15008 case DW_TAG_subroutine_type:
15009#endif
15010 case DW_TAG_base_type:
15011 case DW_TAG_class_type:
680b30c7 15012 case DW_TAG_interface_type:
72bf9492
DJ
15013 case DW_TAG_enumeration_type:
15014 case DW_TAG_structure_type:
15015 case DW_TAG_subrange_type:
15016 case DW_TAG_typedef:
15017 case DW_TAG_union_type:
15018 return 1;
15019 default:
15020 return 0;
15021 }
15022}
15023
15024/* Load all DIEs that are interesting for partial symbols into memory. */
15025
15026static struct partial_die_info *
dee91e82 15027load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15028 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15029{
dee91e82 15030 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15031 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15032 struct partial_die_info *part_die;
15033 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15034 struct abbrev_info *abbrev;
15035 unsigned int bytes_read;
5afb4e99 15036 unsigned int load_all = 0;
72bf9492
DJ
15037 int nesting_level = 1;
15038
15039 parent_die = NULL;
15040 last_die = NULL;
15041
7adf1e79
DE
15042 gdb_assert (cu->per_cu != NULL);
15043 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15044 load_all = 1;
15045
72bf9492
DJ
15046 cu->partial_dies
15047 = htab_create_alloc_ex (cu->header.length / 12,
15048 partial_die_hash,
15049 partial_die_eq,
15050 NULL,
15051 &cu->comp_unit_obstack,
15052 hashtab_obstack_allocate,
15053 dummy_obstack_deallocate);
15054
15055 part_die = obstack_alloc (&cu->comp_unit_obstack,
15056 sizeof (struct partial_die_info));
15057
15058 while (1)
15059 {
15060 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15061
15062 /* A NULL abbrev means the end of a series of children. */
15063 if (abbrev == NULL)
15064 {
15065 if (--nesting_level == 0)
15066 {
15067 /* PART_DIE was probably the last thing allocated on the
15068 comp_unit_obstack, so we could call obstack_free
15069 here. We don't do that because the waste is small,
15070 and will be cleaned up when we're done with this
15071 compilation unit. This way, we're also more robust
15072 against other users of the comp_unit_obstack. */
15073 return first_die;
15074 }
15075 info_ptr += bytes_read;
15076 last_die = parent_die;
15077 parent_die = parent_die->die_parent;
15078 continue;
15079 }
15080
98bfdba5
PA
15081 /* Check for template arguments. We never save these; if
15082 they're seen, we just mark the parent, and go on our way. */
15083 if (parent_die != NULL
15084 && cu->language == language_cplus
15085 && (abbrev->tag == DW_TAG_template_type_param
15086 || abbrev->tag == DW_TAG_template_value_param))
15087 {
15088 parent_die->has_template_arguments = 1;
15089
15090 if (!load_all)
15091 {
15092 /* We don't need a partial DIE for the template argument. */
dee91e82 15093 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15094 continue;
15095 }
15096 }
15097
0d99eb77 15098 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15099 Skip their other children. */
15100 if (!load_all
15101 && cu->language == language_cplus
15102 && parent_die != NULL
15103 && parent_die->tag == DW_TAG_subprogram)
15104 {
dee91e82 15105 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15106 continue;
15107 }
15108
5afb4e99
DJ
15109 /* Check whether this DIE is interesting enough to save. Normally
15110 we would not be interested in members here, but there may be
15111 later variables referencing them via DW_AT_specification (for
15112 static members). */
15113 if (!load_all
15114 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15115 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15116 && abbrev->tag != DW_TAG_enumerator
15117 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15118 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15119 && abbrev->tag != DW_TAG_variable
5afb4e99 15120 && abbrev->tag != DW_TAG_namespace
f55ee35c 15121 && abbrev->tag != DW_TAG_module
95554aad 15122 && abbrev->tag != DW_TAG_member
74921315
KS
15123 && abbrev->tag != DW_TAG_imported_unit
15124 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15125 {
15126 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15127 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15128 continue;
15129 }
15130
dee91e82
DE
15131 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15132 info_ptr);
72bf9492
DJ
15133
15134 /* This two-pass algorithm for processing partial symbols has a
15135 high cost in cache pressure. Thus, handle some simple cases
15136 here which cover the majority of C partial symbols. DIEs
15137 which neither have specification tags in them, nor could have
15138 specification tags elsewhere pointing at them, can simply be
15139 processed and discarded.
15140
15141 This segment is also optional; scan_partial_symbols and
15142 add_partial_symbol will handle these DIEs if we chain
15143 them in normally. When compilers which do not emit large
15144 quantities of duplicate debug information are more common,
15145 this code can probably be removed. */
15146
15147 /* Any complete simple types at the top level (pretty much all
15148 of them, for a language without namespaces), can be processed
15149 directly. */
15150 if (parent_die == NULL
15151 && part_die->has_specification == 0
15152 && part_die->is_declaration == 0
d8228535 15153 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15154 || part_die->tag == DW_TAG_base_type
15155 || part_die->tag == DW_TAG_subrange_type))
15156 {
15157 if (building_psymtab && part_die->name != NULL)
04a679b8 15158 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15159 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15160 &objfile->static_psymbols,
15161 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15162 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15163 continue;
15164 }
15165
d8228535
JK
15166 /* The exception for DW_TAG_typedef with has_children above is
15167 a workaround of GCC PR debug/47510. In the case of this complaint
15168 type_name_no_tag_or_error will error on such types later.
15169
15170 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15171 it could not find the child DIEs referenced later, this is checked
15172 above. In correct DWARF DW_TAG_typedef should have no children. */
15173
15174 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15175 complaint (&symfile_complaints,
15176 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15177 "- DIE at 0x%x [in module %s]"),
4262abfb 15178 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15179
72bf9492
DJ
15180 /* If we're at the second level, and we're an enumerator, and
15181 our parent has no specification (meaning possibly lives in a
15182 namespace elsewhere), then we can add the partial symbol now
15183 instead of queueing it. */
15184 if (part_die->tag == DW_TAG_enumerator
15185 && parent_die != NULL
15186 && parent_die->die_parent == NULL
15187 && parent_die->tag == DW_TAG_enumeration_type
15188 && parent_die->has_specification == 0)
15189 {
15190 if (part_die->name == NULL)
3e43a32a
MS
15191 complaint (&symfile_complaints,
15192 _("malformed enumerator DIE ignored"));
72bf9492 15193 else if (building_psymtab)
04a679b8 15194 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15195 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15196 (cu->language == language_cplus
15197 || cu->language == language_java)
bb5ed363
DE
15198 ? &objfile->global_psymbols
15199 : &objfile->static_psymbols,
15200 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15201
dee91e82 15202 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15203 continue;
15204 }
15205
15206 /* We'll save this DIE so link it in. */
15207 part_die->die_parent = parent_die;
15208 part_die->die_sibling = NULL;
15209 part_die->die_child = NULL;
15210
15211 if (last_die && last_die == parent_die)
15212 last_die->die_child = part_die;
15213 else if (last_die)
15214 last_die->die_sibling = part_die;
15215
15216 last_die = part_die;
15217
15218 if (first_die == NULL)
15219 first_die = part_die;
15220
15221 /* Maybe add the DIE to the hash table. Not all DIEs that we
15222 find interesting need to be in the hash table, because we
15223 also have the parent/sibling/child chains; only those that we
15224 might refer to by offset later during partial symbol reading.
15225
15226 For now this means things that might have be the target of a
15227 DW_AT_specification, DW_AT_abstract_origin, or
15228 DW_AT_extension. DW_AT_extension will refer only to
15229 namespaces; DW_AT_abstract_origin refers to functions (and
15230 many things under the function DIE, but we do not recurse
15231 into function DIEs during partial symbol reading) and
15232 possibly variables as well; DW_AT_specification refers to
15233 declarations. Declarations ought to have the DW_AT_declaration
15234 flag. It happens that GCC forgets to put it in sometimes, but
15235 only for functions, not for types.
15236
15237 Adding more things than necessary to the hash table is harmless
15238 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15239 wasted time in find_partial_die, when we reread the compilation
15240 unit with load_all_dies set. */
72bf9492 15241
5afb4e99 15242 if (load_all
72929c62 15243 || abbrev->tag == DW_TAG_constant
5afb4e99 15244 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15245 || abbrev->tag == DW_TAG_variable
15246 || abbrev->tag == DW_TAG_namespace
15247 || part_die->is_declaration)
15248 {
15249 void **slot;
15250
15251 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15252 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15253 *slot = part_die;
15254 }
15255
15256 part_die = obstack_alloc (&cu->comp_unit_obstack,
15257 sizeof (struct partial_die_info));
15258
15259 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15260 we have no reason to follow the children of structures; for other
98bfdba5
PA
15261 languages we have to, so that we can get at method physnames
15262 to infer fully qualified class names, for DW_AT_specification,
15263 and for C++ template arguments. For C++, we also look one level
15264 inside functions to find template arguments (if the name of the
15265 function does not already contain the template arguments).
bc30ff58
JB
15266
15267 For Ada, we need to scan the children of subprograms and lexical
15268 blocks as well because Ada allows the definition of nested
15269 entities that could be interesting for the debugger, such as
15270 nested subprograms for instance. */
72bf9492 15271 if (last_die->has_children
5afb4e99
DJ
15272 && (load_all
15273 || last_die->tag == DW_TAG_namespace
f55ee35c 15274 || last_die->tag == DW_TAG_module
72bf9492 15275 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15276 || (cu->language == language_cplus
15277 && last_die->tag == DW_TAG_subprogram
15278 && (last_die->name == NULL
15279 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15280 || (cu->language != language_c
15281 && (last_die->tag == DW_TAG_class_type
680b30c7 15282 || last_die->tag == DW_TAG_interface_type
72bf9492 15283 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15284 || last_die->tag == DW_TAG_union_type))
15285 || (cu->language == language_ada
15286 && (last_die->tag == DW_TAG_subprogram
15287 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15288 {
15289 nesting_level++;
15290 parent_die = last_die;
15291 continue;
15292 }
15293
15294 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15295 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15296
15297 /* Back to the top, do it again. */
15298 }
15299}
15300
c906108c
SS
15301/* Read a minimal amount of information into the minimal die structure. */
15302
d521ce57 15303static const gdb_byte *
dee91e82
DE
15304read_partial_die (const struct die_reader_specs *reader,
15305 struct partial_die_info *part_die,
15306 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15307 const gdb_byte *info_ptr)
c906108c 15308{
dee91e82 15309 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15310 struct objfile *objfile = cu->objfile;
d521ce57 15311 const gdb_byte *buffer = reader->buffer;
fa238c03 15312 unsigned int i;
c906108c 15313 struct attribute attr;
c5aa993b 15314 int has_low_pc_attr = 0;
c906108c 15315 int has_high_pc_attr = 0;
91da1414 15316 int high_pc_relative = 0;
c906108c 15317
72bf9492 15318 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15319
b64f50a1 15320 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15321
15322 info_ptr += abbrev_len;
15323
15324 if (abbrev == NULL)
15325 return info_ptr;
15326
c906108c
SS
15327 part_die->tag = abbrev->tag;
15328 part_die->has_children = abbrev->has_children;
c906108c
SS
15329
15330 for (i = 0; i < abbrev->num_attrs; ++i)
15331 {
dee91e82 15332 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15333
15334 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15335 partial symbol table. */
c906108c
SS
15336 switch (attr.name)
15337 {
15338 case DW_AT_name:
71c25dea
TT
15339 switch (part_die->tag)
15340 {
15341 case DW_TAG_compile_unit:
95554aad 15342 case DW_TAG_partial_unit:
348e048f 15343 case DW_TAG_type_unit:
71c25dea
TT
15344 /* Compilation units have a DW_AT_name that is a filename, not
15345 a source language identifier. */
15346 case DW_TAG_enumeration_type:
15347 case DW_TAG_enumerator:
15348 /* These tags always have simple identifiers already; no need
15349 to canonicalize them. */
15350 part_die->name = DW_STRING (&attr);
15351 break;
15352 default:
15353 part_die->name
15354 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 15355 &objfile->objfile_obstack);
71c25dea
TT
15356 break;
15357 }
c906108c 15358 break;
31ef98ae 15359 case DW_AT_linkage_name:
c906108c 15360 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15361 /* Note that both forms of linkage name might appear. We
15362 assume they will be the same, and we only store the last
15363 one we see. */
94af9270
KS
15364 if (cu->language == language_ada)
15365 part_die->name = DW_STRING (&attr);
abc72ce4 15366 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15367 break;
15368 case DW_AT_low_pc:
15369 has_low_pc_attr = 1;
31aa7e4e 15370 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15371 break;
15372 case DW_AT_high_pc:
15373 has_high_pc_attr = 1;
31aa7e4e
JB
15374 part_die->highpc = attr_value_as_address (&attr);
15375 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15376 high_pc_relative = 1;
c906108c
SS
15377 break;
15378 case DW_AT_location:
0963b4bd 15379 /* Support the .debug_loc offsets. */
8e19ed76
PS
15380 if (attr_form_is_block (&attr))
15381 {
95554aad 15382 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15383 }
3690dd37 15384 else if (attr_form_is_section_offset (&attr))
8e19ed76 15385 {
4d3c2250 15386 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15387 }
15388 else
15389 {
4d3c2250
KB
15390 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15391 "partial symbol information");
8e19ed76 15392 }
c906108c 15393 break;
c906108c
SS
15394 case DW_AT_external:
15395 part_die->is_external = DW_UNSND (&attr);
15396 break;
15397 case DW_AT_declaration:
15398 part_die->is_declaration = DW_UNSND (&attr);
15399 break;
15400 case DW_AT_type:
15401 part_die->has_type = 1;
15402 break;
15403 case DW_AT_abstract_origin:
15404 case DW_AT_specification:
72bf9492
DJ
15405 case DW_AT_extension:
15406 part_die->has_specification = 1;
c764a876 15407 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15408 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15409 || cu->per_cu->is_dwz);
c906108c
SS
15410 break;
15411 case DW_AT_sibling:
15412 /* Ignore absolute siblings, they might point outside of
15413 the current compile unit. */
15414 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15415 complaint (&symfile_complaints,
15416 _("ignoring absolute DW_AT_sibling"));
c906108c 15417 else
b9502d3f
WN
15418 {
15419 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15420 const gdb_byte *sibling_ptr = buffer + off;
15421
15422 if (sibling_ptr < info_ptr)
15423 complaint (&symfile_complaints,
15424 _("DW_AT_sibling points backwards"));
15425 else
15426 part_die->sibling = sibling_ptr;
15427 }
c906108c 15428 break;
fa4028e9
JB
15429 case DW_AT_byte_size:
15430 part_die->has_byte_size = 1;
15431 break;
68511cec
CES
15432 case DW_AT_calling_convention:
15433 /* DWARF doesn't provide a way to identify a program's source-level
15434 entry point. DW_AT_calling_convention attributes are only meant
15435 to describe functions' calling conventions.
15436
15437 However, because it's a necessary piece of information in
15438 Fortran, and because DW_CC_program is the only piece of debugging
15439 information whose definition refers to a 'main program' at all,
15440 several compilers have begun marking Fortran main programs with
15441 DW_CC_program --- even when those functions use the standard
15442 calling conventions.
15443
15444 So until DWARF specifies a way to provide this information and
15445 compilers pick up the new representation, we'll support this
15446 practice. */
15447 if (DW_UNSND (&attr) == DW_CC_program
15448 && cu->language == language_fortran)
3d548a53 15449 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15450 break;
481860b3
GB
15451 case DW_AT_inline:
15452 if (DW_UNSND (&attr) == DW_INL_inlined
15453 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15454 part_die->may_be_inlined = 1;
15455 break;
95554aad
TT
15456
15457 case DW_AT_import:
15458 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15459 {
15460 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15461 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15462 || cu->per_cu->is_dwz);
15463 }
95554aad
TT
15464 break;
15465
c906108c
SS
15466 default:
15467 break;
15468 }
15469 }
15470
91da1414
MW
15471 if (high_pc_relative)
15472 part_die->highpc += part_die->lowpc;
15473
9373cf26
JK
15474 if (has_low_pc_attr && has_high_pc_attr)
15475 {
15476 /* When using the GNU linker, .gnu.linkonce. sections are used to
15477 eliminate duplicate copies of functions and vtables and such.
15478 The linker will arbitrarily choose one and discard the others.
15479 The AT_*_pc values for such functions refer to local labels in
15480 these sections. If the section from that file was discarded, the
15481 labels are not in the output, so the relocs get a value of 0.
15482 If this is a discarded function, mark the pc bounds as invalid,
15483 so that GDB will ignore it. */
15484 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15485 {
bb5ed363 15486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15487
15488 complaint (&symfile_complaints,
15489 _("DW_AT_low_pc %s is zero "
15490 "for DIE at 0x%x [in module %s]"),
15491 paddress (gdbarch, part_die->lowpc),
4262abfb 15492 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15493 }
15494 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15495 else if (part_die->lowpc >= part_die->highpc)
15496 {
bb5ed363 15497 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15498
15499 complaint (&symfile_complaints,
15500 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15501 "for DIE at 0x%x [in module %s]"),
15502 paddress (gdbarch, part_die->lowpc),
15503 paddress (gdbarch, part_die->highpc),
4262abfb 15504 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15505 }
15506 else
15507 part_die->has_pc_info = 1;
15508 }
85cbf3d3 15509
c906108c
SS
15510 return info_ptr;
15511}
15512
72bf9492
DJ
15513/* Find a cached partial DIE at OFFSET in CU. */
15514
15515static struct partial_die_info *
b64f50a1 15516find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15517{
15518 struct partial_die_info *lookup_die = NULL;
15519 struct partial_die_info part_die;
15520
15521 part_die.offset = offset;
b64f50a1
JK
15522 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15523 offset.sect_off);
72bf9492 15524
72bf9492
DJ
15525 return lookup_die;
15526}
15527
348e048f
DE
15528/* Find a partial DIE at OFFSET, which may or may not be in CU,
15529 except in the case of .debug_types DIEs which do not reference
15530 outside their CU (they do however referencing other types via
55f1336d 15531 DW_FORM_ref_sig8). */
72bf9492
DJ
15532
15533static struct partial_die_info *
36586728 15534find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15535{
bb5ed363 15536 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15537 struct dwarf2_per_cu_data *per_cu = NULL;
15538 struct partial_die_info *pd = NULL;
72bf9492 15539
36586728
TT
15540 if (offset_in_dwz == cu->per_cu->is_dwz
15541 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15542 {
15543 pd = find_partial_die_in_comp_unit (offset, cu);
15544 if (pd != NULL)
15545 return pd;
0d99eb77
DE
15546 /* We missed recording what we needed.
15547 Load all dies and try again. */
15548 per_cu = cu->per_cu;
5afb4e99 15549 }
0d99eb77
DE
15550 else
15551 {
15552 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15553 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15554 {
15555 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15556 " external reference to offset 0x%lx [in module %s].\n"),
15557 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15558 bfd_get_filename (objfile->obfd));
15559 }
36586728
TT
15560 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15561 objfile);
72bf9492 15562
0d99eb77
DE
15563 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15564 load_partial_comp_unit (per_cu);
ae038cb0 15565
0d99eb77
DE
15566 per_cu->cu->last_used = 0;
15567 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15568 }
5afb4e99 15569
dee91e82
DE
15570 /* If we didn't find it, and not all dies have been loaded,
15571 load them all and try again. */
15572
5afb4e99
DJ
15573 if (pd == NULL && per_cu->load_all_dies == 0)
15574 {
5afb4e99 15575 per_cu->load_all_dies = 1;
fd820528
DE
15576
15577 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15578 THIS_CU->cu may already be in use. So we can't just free it and
15579 replace its DIEs with the ones we read in. Instead, we leave those
15580 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15581 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15582 set. */
dee91e82 15583 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15584
15585 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15586 }
15587
15588 if (pd == NULL)
15589 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15590 _("could not find partial DIE 0x%x "
15591 "in cache [from module %s]\n"),
b64f50a1 15592 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15593 return pd;
72bf9492
DJ
15594}
15595
abc72ce4
DE
15596/* See if we can figure out if the class lives in a namespace. We do
15597 this by looking for a member function; its demangled name will
15598 contain namespace info, if there is any. */
15599
15600static void
15601guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15602 struct dwarf2_cu *cu)
15603{
15604 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15605 what template types look like, because the demangler
15606 frequently doesn't give the same name as the debug info. We
15607 could fix this by only using the demangled name to get the
15608 prefix (but see comment in read_structure_type). */
15609
15610 struct partial_die_info *real_pdi;
15611 struct partial_die_info *child_pdi;
15612
15613 /* If this DIE (this DIE's specification, if any) has a parent, then
15614 we should not do this. We'll prepend the parent's fully qualified
15615 name when we create the partial symbol. */
15616
15617 real_pdi = struct_pdi;
15618 while (real_pdi->has_specification)
36586728
TT
15619 real_pdi = find_partial_die (real_pdi->spec_offset,
15620 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15621
15622 if (real_pdi->die_parent != NULL)
15623 return;
15624
15625 for (child_pdi = struct_pdi->die_child;
15626 child_pdi != NULL;
15627 child_pdi = child_pdi->die_sibling)
15628 {
15629 if (child_pdi->tag == DW_TAG_subprogram
15630 && child_pdi->linkage_name != NULL)
15631 {
15632 char *actual_class_name
15633 = language_class_name_from_physname (cu->language_defn,
15634 child_pdi->linkage_name);
15635 if (actual_class_name != NULL)
15636 {
15637 struct_pdi->name
10f0c4bb
TT
15638 = obstack_copy0 (&cu->objfile->objfile_obstack,
15639 actual_class_name,
15640 strlen (actual_class_name));
abc72ce4
DE
15641 xfree (actual_class_name);
15642 }
15643 break;
15644 }
15645 }
15646}
15647
72bf9492
DJ
15648/* Adjust PART_DIE before generating a symbol for it. This function
15649 may set the is_external flag or change the DIE's name. */
15650
15651static void
15652fixup_partial_die (struct partial_die_info *part_die,
15653 struct dwarf2_cu *cu)
15654{
abc72ce4
DE
15655 /* Once we've fixed up a die, there's no point in doing so again.
15656 This also avoids a memory leak if we were to call
15657 guess_partial_die_structure_name multiple times. */
15658 if (part_die->fixup_called)
15659 return;
15660
72bf9492
DJ
15661 /* If we found a reference attribute and the DIE has no name, try
15662 to find a name in the referred to DIE. */
15663
15664 if (part_die->name == NULL && part_die->has_specification)
15665 {
15666 struct partial_die_info *spec_die;
72bf9492 15667
36586728
TT
15668 spec_die = find_partial_die (part_die->spec_offset,
15669 part_die->spec_is_dwz, cu);
72bf9492 15670
10b3939b 15671 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15672
15673 if (spec_die->name)
15674 {
15675 part_die->name = spec_die->name;
15676
15677 /* Copy DW_AT_external attribute if it is set. */
15678 if (spec_die->is_external)
15679 part_die->is_external = spec_die->is_external;
15680 }
15681 }
15682
15683 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15684
15685 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15686 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15687
abc72ce4
DE
15688 /* If there is no parent die to provide a namespace, and there are
15689 children, see if we can determine the namespace from their linkage
122d1940 15690 name. */
abc72ce4 15691 if (cu->language == language_cplus
8b70b953 15692 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15693 && part_die->die_parent == NULL
15694 && part_die->has_children
15695 && (part_die->tag == DW_TAG_class_type
15696 || part_die->tag == DW_TAG_structure_type
15697 || part_die->tag == DW_TAG_union_type))
15698 guess_partial_die_structure_name (part_die, cu);
15699
53832f31
TT
15700 /* GCC might emit a nameless struct or union that has a linkage
15701 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15702 if (part_die->name == NULL
96408a79
SA
15703 && (part_die->tag == DW_TAG_class_type
15704 || part_die->tag == DW_TAG_interface_type
15705 || part_die->tag == DW_TAG_structure_type
15706 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15707 && part_die->linkage_name != NULL)
15708 {
15709 char *demangled;
15710
8de20a37 15711 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15712 if (demangled)
15713 {
96408a79
SA
15714 const char *base;
15715
15716 /* Strip any leading namespaces/classes, keep only the base name.
15717 DW_AT_name for named DIEs does not contain the prefixes. */
15718 base = strrchr (demangled, ':');
15719 if (base && base > demangled && base[-1] == ':')
15720 base++;
15721 else
15722 base = demangled;
15723
10f0c4bb
TT
15724 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15725 base, strlen (base));
53832f31
TT
15726 xfree (demangled);
15727 }
15728 }
15729
abc72ce4 15730 part_die->fixup_called = 1;
72bf9492
DJ
15731}
15732
a8329558 15733/* Read an attribute value described by an attribute form. */
c906108c 15734
d521ce57 15735static const gdb_byte *
dee91e82
DE
15736read_attribute_value (const struct die_reader_specs *reader,
15737 struct attribute *attr, unsigned form,
d521ce57 15738 const gdb_byte *info_ptr)
c906108c 15739{
dee91e82
DE
15740 struct dwarf2_cu *cu = reader->cu;
15741 bfd *abfd = reader->abfd;
e7c27a73 15742 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15743 unsigned int bytes_read;
15744 struct dwarf_block *blk;
15745
a8329558
KW
15746 attr->form = form;
15747 switch (form)
c906108c 15748 {
c906108c 15749 case DW_FORM_ref_addr:
ae411497 15750 if (cu->header.version == 2)
4568ecf9 15751 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15752 else
4568ecf9
DE
15753 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15754 &cu->header, &bytes_read);
ae411497
TT
15755 info_ptr += bytes_read;
15756 break;
36586728
TT
15757 case DW_FORM_GNU_ref_alt:
15758 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15759 info_ptr += bytes_read;
15760 break;
ae411497 15761 case DW_FORM_addr:
e7c27a73 15762 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15763 info_ptr += bytes_read;
c906108c
SS
15764 break;
15765 case DW_FORM_block2:
7b5a2f43 15766 blk = dwarf_alloc_block (cu);
c906108c
SS
15767 blk->size = read_2_bytes (abfd, info_ptr);
15768 info_ptr += 2;
15769 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15770 info_ptr += blk->size;
15771 DW_BLOCK (attr) = blk;
15772 break;
15773 case DW_FORM_block4:
7b5a2f43 15774 blk = dwarf_alloc_block (cu);
c906108c
SS
15775 blk->size = read_4_bytes (abfd, info_ptr);
15776 info_ptr += 4;
15777 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15778 info_ptr += blk->size;
15779 DW_BLOCK (attr) = blk;
15780 break;
15781 case DW_FORM_data2:
15782 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15783 info_ptr += 2;
15784 break;
15785 case DW_FORM_data4:
15786 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15787 info_ptr += 4;
15788 break;
15789 case DW_FORM_data8:
15790 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15791 info_ptr += 8;
15792 break;
2dc7f7b3
TT
15793 case DW_FORM_sec_offset:
15794 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15795 info_ptr += bytes_read;
15796 break;
c906108c 15797 case DW_FORM_string:
9b1c24c8 15798 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15799 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15800 info_ptr += bytes_read;
15801 break;
4bdf3d34 15802 case DW_FORM_strp:
36586728
TT
15803 if (!cu->per_cu->is_dwz)
15804 {
15805 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15806 &bytes_read);
15807 DW_STRING_IS_CANONICAL (attr) = 0;
15808 info_ptr += bytes_read;
15809 break;
15810 }
15811 /* FALLTHROUGH */
15812 case DW_FORM_GNU_strp_alt:
15813 {
15814 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15815 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15816 &bytes_read);
15817
15818 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15819 DW_STRING_IS_CANONICAL (attr) = 0;
15820 info_ptr += bytes_read;
15821 }
4bdf3d34 15822 break;
2dc7f7b3 15823 case DW_FORM_exprloc:
c906108c 15824 case DW_FORM_block:
7b5a2f43 15825 blk = dwarf_alloc_block (cu);
c906108c
SS
15826 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15827 info_ptr += bytes_read;
15828 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15829 info_ptr += blk->size;
15830 DW_BLOCK (attr) = blk;
15831 break;
15832 case DW_FORM_block1:
7b5a2f43 15833 blk = dwarf_alloc_block (cu);
c906108c
SS
15834 blk->size = read_1_byte (abfd, info_ptr);
15835 info_ptr += 1;
15836 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15837 info_ptr += blk->size;
15838 DW_BLOCK (attr) = blk;
15839 break;
15840 case DW_FORM_data1:
15841 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15842 info_ptr += 1;
15843 break;
15844 case DW_FORM_flag:
15845 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15846 info_ptr += 1;
15847 break;
2dc7f7b3
TT
15848 case DW_FORM_flag_present:
15849 DW_UNSND (attr) = 1;
15850 break;
c906108c
SS
15851 case DW_FORM_sdata:
15852 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15853 info_ptr += bytes_read;
15854 break;
15855 case DW_FORM_udata:
15856 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15857 info_ptr += bytes_read;
15858 break;
15859 case DW_FORM_ref1:
4568ecf9
DE
15860 DW_UNSND (attr) = (cu->header.offset.sect_off
15861 + read_1_byte (abfd, info_ptr));
c906108c
SS
15862 info_ptr += 1;
15863 break;
15864 case DW_FORM_ref2:
4568ecf9
DE
15865 DW_UNSND (attr) = (cu->header.offset.sect_off
15866 + read_2_bytes (abfd, info_ptr));
c906108c
SS
15867 info_ptr += 2;
15868 break;
15869 case DW_FORM_ref4:
4568ecf9
DE
15870 DW_UNSND (attr) = (cu->header.offset.sect_off
15871 + read_4_bytes (abfd, info_ptr));
c906108c
SS
15872 info_ptr += 4;
15873 break;
613e1657 15874 case DW_FORM_ref8:
4568ecf9
DE
15875 DW_UNSND (attr) = (cu->header.offset.sect_off
15876 + read_8_bytes (abfd, info_ptr));
613e1657
KB
15877 info_ptr += 8;
15878 break;
55f1336d 15879 case DW_FORM_ref_sig8:
ac9ec31b 15880 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
15881 info_ptr += 8;
15882 break;
c906108c 15883 case DW_FORM_ref_udata:
4568ecf9
DE
15884 DW_UNSND (attr) = (cu->header.offset.sect_off
15885 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
15886 info_ptr += bytes_read;
15887 break;
c906108c 15888 case DW_FORM_indirect:
a8329558
KW
15889 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15890 info_ptr += bytes_read;
dee91e82 15891 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 15892 break;
3019eac3
DE
15893 case DW_FORM_GNU_addr_index:
15894 if (reader->dwo_file == NULL)
15895 {
15896 /* For now flag a hard error.
15897 Later we can turn this into a complaint. */
15898 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15899 dwarf_form_name (form),
15900 bfd_get_filename (abfd));
15901 }
15902 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15903 info_ptr += bytes_read;
15904 break;
15905 case DW_FORM_GNU_str_index:
15906 if (reader->dwo_file == NULL)
15907 {
15908 /* For now flag a hard error.
15909 Later we can turn this into a complaint if warranted. */
15910 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15911 dwarf_form_name (form),
15912 bfd_get_filename (abfd));
15913 }
15914 {
15915 ULONGEST str_index =
15916 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15917
342587c4 15918 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
15919 DW_STRING_IS_CANONICAL (attr) = 0;
15920 info_ptr += bytes_read;
15921 }
15922 break;
c906108c 15923 default:
8a3fe4f8 15924 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
15925 dwarf_form_name (form),
15926 bfd_get_filename (abfd));
c906108c 15927 }
28e94949 15928
36586728 15929 /* Super hack. */
7771576e 15930 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
15931 attr->form = DW_FORM_GNU_ref_alt;
15932
28e94949
JB
15933 /* We have seen instances where the compiler tried to emit a byte
15934 size attribute of -1 which ended up being encoded as an unsigned
15935 0xffffffff. Although 0xffffffff is technically a valid size value,
15936 an object of this size seems pretty unlikely so we can relatively
15937 safely treat these cases as if the size attribute was invalid and
15938 treat them as zero by default. */
15939 if (attr->name == DW_AT_byte_size
15940 && form == DW_FORM_data4
15941 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
15942 {
15943 complaint
15944 (&symfile_complaints,
43bbcdc2
PH
15945 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15946 hex_string (DW_UNSND (attr)));
01c66ae6
JB
15947 DW_UNSND (attr) = 0;
15948 }
28e94949 15949
c906108c
SS
15950 return info_ptr;
15951}
15952
a8329558
KW
15953/* Read an attribute described by an abbreviated attribute. */
15954
d521ce57 15955static const gdb_byte *
dee91e82
DE
15956read_attribute (const struct die_reader_specs *reader,
15957 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 15958 const gdb_byte *info_ptr)
a8329558
KW
15959{
15960 attr->name = abbrev->name;
dee91e82 15961 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
15962}
15963
0963b4bd 15964/* Read dwarf information from a buffer. */
c906108c
SS
15965
15966static unsigned int
a1855c1d 15967read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15968{
fe1b8b76 15969 return bfd_get_8 (abfd, buf);
c906108c
SS
15970}
15971
15972static int
a1855c1d 15973read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15974{
fe1b8b76 15975 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
15976}
15977
15978static unsigned int
a1855c1d 15979read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15980{
fe1b8b76 15981 return bfd_get_16 (abfd, buf);
c906108c
SS
15982}
15983
21ae7a4d 15984static int
a1855c1d 15985read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15986{
15987 return bfd_get_signed_16 (abfd, buf);
15988}
15989
c906108c 15990static unsigned int
a1855c1d 15991read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15992{
fe1b8b76 15993 return bfd_get_32 (abfd, buf);
c906108c
SS
15994}
15995
21ae7a4d 15996static int
a1855c1d 15997read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15998{
15999 return bfd_get_signed_32 (abfd, buf);
16000}
16001
93311388 16002static ULONGEST
a1855c1d 16003read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16004{
fe1b8b76 16005 return bfd_get_64 (abfd, buf);
c906108c
SS
16006}
16007
16008static CORE_ADDR
d521ce57 16009read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16010 unsigned int *bytes_read)
c906108c 16011{
e7c27a73 16012 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16013 CORE_ADDR retval = 0;
16014
107d2387 16015 if (cu_header->signed_addr_p)
c906108c 16016 {
107d2387
AC
16017 switch (cu_header->addr_size)
16018 {
16019 case 2:
fe1b8b76 16020 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16021 break;
16022 case 4:
fe1b8b76 16023 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16024 break;
16025 case 8:
fe1b8b76 16026 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16027 break;
16028 default:
8e65ff28 16029 internal_error (__FILE__, __LINE__,
e2e0b3e5 16030 _("read_address: bad switch, signed [in module %s]"),
659b0389 16031 bfd_get_filename (abfd));
107d2387
AC
16032 }
16033 }
16034 else
16035 {
16036 switch (cu_header->addr_size)
16037 {
16038 case 2:
fe1b8b76 16039 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16040 break;
16041 case 4:
fe1b8b76 16042 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16043 break;
16044 case 8:
fe1b8b76 16045 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16046 break;
16047 default:
8e65ff28 16048 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16049 _("read_address: bad switch, "
16050 "unsigned [in module %s]"),
659b0389 16051 bfd_get_filename (abfd));
107d2387 16052 }
c906108c 16053 }
64367e0a 16054
107d2387
AC
16055 *bytes_read = cu_header->addr_size;
16056 return retval;
c906108c
SS
16057}
16058
f7ef9339 16059/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16060 specification allows the initial length to take up either 4 bytes
16061 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16062 bytes describe the length and all offsets will be 8 bytes in length
16063 instead of 4.
16064
f7ef9339
KB
16065 An older, non-standard 64-bit format is also handled by this
16066 function. The older format in question stores the initial length
16067 as an 8-byte quantity without an escape value. Lengths greater
16068 than 2^32 aren't very common which means that the initial 4 bytes
16069 is almost always zero. Since a length value of zero doesn't make
16070 sense for the 32-bit format, this initial zero can be considered to
16071 be an escape value which indicates the presence of the older 64-bit
16072 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16073 greater than 4GB. If it becomes necessary to handle lengths
16074 somewhat larger than 4GB, we could allow other small values (such
16075 as the non-sensical values of 1, 2, and 3) to also be used as
16076 escape values indicating the presence of the old format.
f7ef9339 16077
917c78fc
MK
16078 The value returned via bytes_read should be used to increment the
16079 relevant pointer after calling read_initial_length().
c764a876 16080
613e1657
KB
16081 [ Note: read_initial_length() and read_offset() are based on the
16082 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16083 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16084 from:
16085
f7ef9339 16086 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16087
613e1657
KB
16088 This document is only a draft and is subject to change. (So beware.)
16089
f7ef9339 16090 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16091 determined empirically by examining 64-bit ELF files produced by
16092 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16093
16094 - Kevin, July 16, 2002
613e1657
KB
16095 ] */
16096
16097static LONGEST
d521ce57 16098read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16099{
fe1b8b76 16100 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16101
dd373385 16102 if (length == 0xffffffff)
613e1657 16103 {
fe1b8b76 16104 length = bfd_get_64 (abfd, buf + 4);
613e1657 16105 *bytes_read = 12;
613e1657 16106 }
dd373385 16107 else if (length == 0)
f7ef9339 16108 {
dd373385 16109 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16110 length = bfd_get_64 (abfd, buf);
f7ef9339 16111 *bytes_read = 8;
f7ef9339 16112 }
613e1657
KB
16113 else
16114 {
16115 *bytes_read = 4;
613e1657
KB
16116 }
16117
c764a876
DE
16118 return length;
16119}
dd373385 16120
c764a876
DE
16121/* Cover function for read_initial_length.
16122 Returns the length of the object at BUF, and stores the size of the
16123 initial length in *BYTES_READ and stores the size that offsets will be in
16124 *OFFSET_SIZE.
16125 If the initial length size is not equivalent to that specified in
16126 CU_HEADER then issue a complaint.
16127 This is useful when reading non-comp-unit headers. */
dd373385 16128
c764a876 16129static LONGEST
d521ce57 16130read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16131 const struct comp_unit_head *cu_header,
16132 unsigned int *bytes_read,
16133 unsigned int *offset_size)
16134{
16135 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16136
16137 gdb_assert (cu_header->initial_length_size == 4
16138 || cu_header->initial_length_size == 8
16139 || cu_header->initial_length_size == 12);
16140
16141 if (cu_header->initial_length_size != *bytes_read)
16142 complaint (&symfile_complaints,
16143 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16144
c764a876 16145 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16146 return length;
613e1657
KB
16147}
16148
16149/* Read an offset from the data stream. The size of the offset is
917c78fc 16150 given by cu_header->offset_size. */
613e1657
KB
16151
16152static LONGEST
d521ce57
TT
16153read_offset (bfd *abfd, const gdb_byte *buf,
16154 const struct comp_unit_head *cu_header,
891d2f0b 16155 unsigned int *bytes_read)
c764a876
DE
16156{
16157 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16158
c764a876
DE
16159 *bytes_read = cu_header->offset_size;
16160 return offset;
16161}
16162
16163/* Read an offset from the data stream. */
16164
16165static LONGEST
d521ce57 16166read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16167{
16168 LONGEST retval = 0;
16169
c764a876 16170 switch (offset_size)
613e1657
KB
16171 {
16172 case 4:
fe1b8b76 16173 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16174 break;
16175 case 8:
fe1b8b76 16176 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16177 break;
16178 default:
8e65ff28 16179 internal_error (__FILE__, __LINE__,
c764a876 16180 _("read_offset_1: bad switch [in module %s]"),
659b0389 16181 bfd_get_filename (abfd));
613e1657
KB
16182 }
16183
917c78fc 16184 return retval;
613e1657
KB
16185}
16186
d521ce57
TT
16187static const gdb_byte *
16188read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16189{
16190 /* If the size of a host char is 8 bits, we can return a pointer
16191 to the buffer, otherwise we have to copy the data to a buffer
16192 allocated on the temporary obstack. */
4bdf3d34 16193 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16194 return buf;
c906108c
SS
16195}
16196
d521ce57
TT
16197static const char *
16198read_direct_string (bfd *abfd, const gdb_byte *buf,
16199 unsigned int *bytes_read_ptr)
c906108c
SS
16200{
16201 /* If the size of a host char is 8 bits, we can return a pointer
16202 to the string, otherwise we have to copy the string to a buffer
16203 allocated on the temporary obstack. */
4bdf3d34 16204 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16205 if (*buf == '\0')
16206 {
16207 *bytes_read_ptr = 1;
16208 return NULL;
16209 }
d521ce57
TT
16210 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16211 return (const char *) buf;
4bdf3d34
JJ
16212}
16213
d521ce57 16214static const char *
cf2c3c16 16215read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16216{
be391dca 16217 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16218 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16219 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16220 bfd_get_filename (abfd));
dce234bc 16221 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16222 error (_("DW_FORM_strp pointing outside of "
16223 ".debug_str section [in module %s]"),
16224 bfd_get_filename (abfd));
4bdf3d34 16225 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16226 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16227 return NULL;
d521ce57 16228 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16229}
16230
36586728
TT
16231/* Read a string at offset STR_OFFSET in the .debug_str section from
16232 the .dwz file DWZ. Throw an error if the offset is too large. If
16233 the string consists of a single NUL byte, return NULL; otherwise
16234 return a pointer to the string. */
16235
d521ce57 16236static const char *
36586728
TT
16237read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16238{
16239 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16240
16241 if (dwz->str.buffer == NULL)
16242 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16243 "section [in module %s]"),
16244 bfd_get_filename (dwz->dwz_bfd));
16245 if (str_offset >= dwz->str.size)
16246 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16247 ".debug_str section [in module %s]"),
16248 bfd_get_filename (dwz->dwz_bfd));
16249 gdb_assert (HOST_CHAR_BIT == 8);
16250 if (dwz->str.buffer[str_offset] == '\0')
16251 return NULL;
d521ce57 16252 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16253}
16254
d521ce57
TT
16255static const char *
16256read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16257 const struct comp_unit_head *cu_header,
16258 unsigned int *bytes_read_ptr)
16259{
16260 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16261
16262 return read_indirect_string_at_offset (abfd, str_offset);
16263}
16264
12df843f 16265static ULONGEST
d521ce57
TT
16266read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16267 unsigned int *bytes_read_ptr)
c906108c 16268{
12df843f 16269 ULONGEST result;
ce5d95e1 16270 unsigned int num_read;
c906108c
SS
16271 int i, shift;
16272 unsigned char byte;
16273
16274 result = 0;
16275 shift = 0;
16276 num_read = 0;
16277 i = 0;
16278 while (1)
16279 {
fe1b8b76 16280 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16281 buf++;
16282 num_read++;
12df843f 16283 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16284 if ((byte & 128) == 0)
16285 {
16286 break;
16287 }
16288 shift += 7;
16289 }
16290 *bytes_read_ptr = num_read;
16291 return result;
16292}
16293
12df843f 16294static LONGEST
d521ce57
TT
16295read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16296 unsigned int *bytes_read_ptr)
c906108c 16297{
12df843f 16298 LONGEST result;
77e0b926 16299 int i, shift, num_read;
c906108c
SS
16300 unsigned char byte;
16301
16302 result = 0;
16303 shift = 0;
c906108c
SS
16304 num_read = 0;
16305 i = 0;
16306 while (1)
16307 {
fe1b8b76 16308 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16309 buf++;
16310 num_read++;
12df843f 16311 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16312 shift += 7;
16313 if ((byte & 128) == 0)
16314 {
16315 break;
16316 }
16317 }
77e0b926 16318 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16319 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16320 *bytes_read_ptr = num_read;
16321 return result;
16322}
16323
3019eac3
DE
16324/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16325 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16326 ADDR_SIZE is the size of addresses from the CU header. */
16327
16328static CORE_ADDR
16329read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16330{
16331 struct objfile *objfile = dwarf2_per_objfile->objfile;
16332 bfd *abfd = objfile->obfd;
16333 const gdb_byte *info_ptr;
16334
16335 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16336 if (dwarf2_per_objfile->addr.buffer == NULL)
16337 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16338 objfile_name (objfile));
3019eac3
DE
16339 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16340 error (_("DW_FORM_addr_index pointing outside of "
16341 ".debug_addr section [in module %s]"),
4262abfb 16342 objfile_name (objfile));
3019eac3
DE
16343 info_ptr = (dwarf2_per_objfile->addr.buffer
16344 + addr_base + addr_index * addr_size);
16345 if (addr_size == 4)
16346 return bfd_get_32 (abfd, info_ptr);
16347 else
16348 return bfd_get_64 (abfd, info_ptr);
16349}
16350
16351/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16352
16353static CORE_ADDR
16354read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16355{
16356 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16357}
16358
16359/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16360
16361static CORE_ADDR
d521ce57 16362read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16363 unsigned int *bytes_read)
16364{
16365 bfd *abfd = cu->objfile->obfd;
16366 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16367
16368 return read_addr_index (cu, addr_index);
16369}
16370
16371/* Data structure to pass results from dwarf2_read_addr_index_reader
16372 back to dwarf2_read_addr_index. */
16373
16374struct dwarf2_read_addr_index_data
16375{
16376 ULONGEST addr_base;
16377 int addr_size;
16378};
16379
16380/* die_reader_func for dwarf2_read_addr_index. */
16381
16382static void
16383dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16384 const gdb_byte *info_ptr,
3019eac3
DE
16385 struct die_info *comp_unit_die,
16386 int has_children,
16387 void *data)
16388{
16389 struct dwarf2_cu *cu = reader->cu;
16390 struct dwarf2_read_addr_index_data *aidata =
16391 (struct dwarf2_read_addr_index_data *) data;
16392
16393 aidata->addr_base = cu->addr_base;
16394 aidata->addr_size = cu->header.addr_size;
16395}
16396
16397/* Given an index in .debug_addr, fetch the value.
16398 NOTE: This can be called during dwarf expression evaluation,
16399 long after the debug information has been read, and thus per_cu->cu
16400 may no longer exist. */
16401
16402CORE_ADDR
16403dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16404 unsigned int addr_index)
16405{
16406 struct objfile *objfile = per_cu->objfile;
16407 struct dwarf2_cu *cu = per_cu->cu;
16408 ULONGEST addr_base;
16409 int addr_size;
16410
16411 /* This is intended to be called from outside this file. */
16412 dw2_setup (objfile);
16413
16414 /* We need addr_base and addr_size.
16415 If we don't have PER_CU->cu, we have to get it.
16416 Nasty, but the alternative is storing the needed info in PER_CU,
16417 which at this point doesn't seem justified: it's not clear how frequently
16418 it would get used and it would increase the size of every PER_CU.
16419 Entry points like dwarf2_per_cu_addr_size do a similar thing
16420 so we're not in uncharted territory here.
16421 Alas we need to be a bit more complicated as addr_base is contained
16422 in the DIE.
16423
16424 We don't need to read the entire CU(/TU).
16425 We just need the header and top level die.
a1b64ce1 16426
3019eac3 16427 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16428 For now we skip this optimization. */
3019eac3
DE
16429
16430 if (cu != NULL)
16431 {
16432 addr_base = cu->addr_base;
16433 addr_size = cu->header.addr_size;
16434 }
16435 else
16436 {
16437 struct dwarf2_read_addr_index_data aidata;
16438
a1b64ce1
DE
16439 /* Note: We can't use init_cutu_and_read_dies_simple here,
16440 we need addr_base. */
16441 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16442 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16443 addr_base = aidata.addr_base;
16444 addr_size = aidata.addr_size;
16445 }
16446
16447 return read_addr_index_1 (addr_index, addr_base, addr_size);
16448}
16449
57d63ce2
DE
16450/* Given a DW_FORM_GNU_str_index, fetch the string.
16451 This is only used by the Fission support. */
3019eac3 16452
d521ce57 16453static const char *
342587c4 16454read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16455{
16456 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16457 const char *objf_name = objfile_name (objfile);
3019eac3 16458 bfd *abfd = objfile->obfd;
342587c4 16459 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16460 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16461 struct dwarf2_section_info *str_offsets_section =
16462 &reader->dwo_file->sections.str_offsets;
d521ce57 16463 const gdb_byte *info_ptr;
3019eac3 16464 ULONGEST str_offset;
57d63ce2 16465 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16466
73869dc2
DE
16467 dwarf2_read_section (objfile, str_section);
16468 dwarf2_read_section (objfile, str_offsets_section);
16469 if (str_section->buffer == NULL)
57d63ce2 16470 error (_("%s used without .debug_str.dwo section"
3019eac3 16471 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16472 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16473 if (str_offsets_section->buffer == NULL)
57d63ce2 16474 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16475 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16476 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16477 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16478 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16479 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16480 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16481 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16482 + str_index * cu->header.offset_size);
16483 if (cu->header.offset_size == 4)
16484 str_offset = bfd_get_32 (abfd, info_ptr);
16485 else
16486 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16487 if (str_offset >= str_section->size)
57d63ce2 16488 error (_("Offset from %s pointing outside of"
3019eac3 16489 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16490 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16491 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16492}
16493
3019eac3
DE
16494/* Return the length of an LEB128 number in BUF. */
16495
16496static int
16497leb128_size (const gdb_byte *buf)
16498{
16499 const gdb_byte *begin = buf;
16500 gdb_byte byte;
16501
16502 while (1)
16503 {
16504 byte = *buf++;
16505 if ((byte & 128) == 0)
16506 return buf - begin;
16507 }
16508}
16509
c906108c 16510static void
e142c38c 16511set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16512{
16513 switch (lang)
16514 {
16515 case DW_LANG_C89:
76bee0cc 16516 case DW_LANG_C99:
c906108c 16517 case DW_LANG_C:
d1be3247 16518 case DW_LANG_UPC:
e142c38c 16519 cu->language = language_c;
c906108c
SS
16520 break;
16521 case DW_LANG_C_plus_plus:
e142c38c 16522 cu->language = language_cplus;
c906108c 16523 break;
6aecb9c2
JB
16524 case DW_LANG_D:
16525 cu->language = language_d;
16526 break;
c906108c
SS
16527 case DW_LANG_Fortran77:
16528 case DW_LANG_Fortran90:
b21b22e0 16529 case DW_LANG_Fortran95:
e142c38c 16530 cu->language = language_fortran;
c906108c 16531 break;
a766d390
DE
16532 case DW_LANG_Go:
16533 cu->language = language_go;
16534 break;
c906108c 16535 case DW_LANG_Mips_Assembler:
e142c38c 16536 cu->language = language_asm;
c906108c 16537 break;
bebd888e 16538 case DW_LANG_Java:
e142c38c 16539 cu->language = language_java;
bebd888e 16540 break;
c906108c 16541 case DW_LANG_Ada83:
8aaf0b47 16542 case DW_LANG_Ada95:
bc5f45f8
JB
16543 cu->language = language_ada;
16544 break;
72019c9c
GM
16545 case DW_LANG_Modula2:
16546 cu->language = language_m2;
16547 break;
fe8e67fd
PM
16548 case DW_LANG_Pascal83:
16549 cu->language = language_pascal;
16550 break;
22566fbd
DJ
16551 case DW_LANG_ObjC:
16552 cu->language = language_objc;
16553 break;
c906108c
SS
16554 case DW_LANG_Cobol74:
16555 case DW_LANG_Cobol85:
c906108c 16556 default:
e142c38c 16557 cu->language = language_minimal;
c906108c
SS
16558 break;
16559 }
e142c38c 16560 cu->language_defn = language_def (cu->language);
c906108c
SS
16561}
16562
16563/* Return the named attribute or NULL if not there. */
16564
16565static struct attribute *
e142c38c 16566dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16567{
a48e046c 16568 for (;;)
c906108c 16569 {
a48e046c
TT
16570 unsigned int i;
16571 struct attribute *spec = NULL;
16572
16573 for (i = 0; i < die->num_attrs; ++i)
16574 {
16575 if (die->attrs[i].name == name)
16576 return &die->attrs[i];
16577 if (die->attrs[i].name == DW_AT_specification
16578 || die->attrs[i].name == DW_AT_abstract_origin)
16579 spec = &die->attrs[i];
16580 }
16581
16582 if (!spec)
16583 break;
c906108c 16584
f2f0e013 16585 die = follow_die_ref (die, spec, &cu);
f2f0e013 16586 }
c5aa993b 16587
c906108c
SS
16588 return NULL;
16589}
16590
348e048f
DE
16591/* Return the named attribute or NULL if not there,
16592 but do not follow DW_AT_specification, etc.
16593 This is for use in contexts where we're reading .debug_types dies.
16594 Following DW_AT_specification, DW_AT_abstract_origin will take us
16595 back up the chain, and we want to go down. */
16596
16597static struct attribute *
45e58e77 16598dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16599{
16600 unsigned int i;
16601
16602 for (i = 0; i < die->num_attrs; ++i)
16603 if (die->attrs[i].name == name)
16604 return &die->attrs[i];
16605
16606 return NULL;
16607}
16608
05cf31d1
JB
16609/* Return non-zero iff the attribute NAME is defined for the given DIE,
16610 and holds a non-zero value. This function should only be used for
2dc7f7b3 16611 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16612
16613static int
16614dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16615{
16616 struct attribute *attr = dwarf2_attr (die, name, cu);
16617
16618 return (attr && DW_UNSND (attr));
16619}
16620
3ca72b44 16621static int
e142c38c 16622die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16623{
05cf31d1
JB
16624 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16625 which value is non-zero. However, we have to be careful with
16626 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16627 (via dwarf2_flag_true_p) follows this attribute. So we may
16628 end up accidently finding a declaration attribute that belongs
16629 to a different DIE referenced by the specification attribute,
16630 even though the given DIE does not have a declaration attribute. */
16631 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16632 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16633}
16634
63d06c5c 16635/* Return the die giving the specification for DIE, if there is
f2f0e013 16636 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16637 containing the return value on output. If there is no
16638 specification, but there is an abstract origin, that is
16639 returned. */
63d06c5c
DC
16640
16641static struct die_info *
f2f0e013 16642die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16643{
f2f0e013
DJ
16644 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16645 *spec_cu);
63d06c5c 16646
edb3359d
DJ
16647 if (spec_attr == NULL)
16648 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16649
63d06c5c
DC
16650 if (spec_attr == NULL)
16651 return NULL;
16652 else
f2f0e013 16653 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16654}
c906108c 16655
debd256d 16656/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16657 refers to.
16658 NOTE: This is also used as a "cleanup" function. */
16659
debd256d
JB
16660static void
16661free_line_header (struct line_header *lh)
16662{
16663 if (lh->standard_opcode_lengths)
a8bc7b56 16664 xfree (lh->standard_opcode_lengths);
debd256d
JB
16665
16666 /* Remember that all the lh->file_names[i].name pointers are
16667 pointers into debug_line_buffer, and don't need to be freed. */
16668 if (lh->file_names)
a8bc7b56 16669 xfree (lh->file_names);
debd256d
JB
16670
16671 /* Similarly for the include directory names. */
16672 if (lh->include_dirs)
a8bc7b56 16673 xfree (lh->include_dirs);
debd256d 16674
a8bc7b56 16675 xfree (lh);
debd256d
JB
16676}
16677
debd256d 16678/* Add an entry to LH's include directory table. */
ae2de4f8 16679
debd256d 16680static void
d521ce57 16681add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16682{
debd256d
JB
16683 /* Grow the array if necessary. */
16684 if (lh->include_dirs_size == 0)
c5aa993b 16685 {
debd256d
JB
16686 lh->include_dirs_size = 1; /* for testing */
16687 lh->include_dirs = xmalloc (lh->include_dirs_size
16688 * sizeof (*lh->include_dirs));
16689 }
16690 else if (lh->num_include_dirs >= lh->include_dirs_size)
16691 {
16692 lh->include_dirs_size *= 2;
16693 lh->include_dirs = xrealloc (lh->include_dirs,
16694 (lh->include_dirs_size
16695 * sizeof (*lh->include_dirs)));
c5aa993b 16696 }
c906108c 16697
debd256d
JB
16698 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16699}
6e70227d 16700
debd256d 16701/* Add an entry to LH's file name table. */
ae2de4f8 16702
debd256d
JB
16703static void
16704add_file_name (struct line_header *lh,
d521ce57 16705 const char *name,
debd256d
JB
16706 unsigned int dir_index,
16707 unsigned int mod_time,
16708 unsigned int length)
16709{
16710 struct file_entry *fe;
16711
16712 /* Grow the array if necessary. */
16713 if (lh->file_names_size == 0)
16714 {
16715 lh->file_names_size = 1; /* for testing */
16716 lh->file_names = xmalloc (lh->file_names_size
16717 * sizeof (*lh->file_names));
16718 }
16719 else if (lh->num_file_names >= lh->file_names_size)
16720 {
16721 lh->file_names_size *= 2;
16722 lh->file_names = xrealloc (lh->file_names,
16723 (lh->file_names_size
16724 * sizeof (*lh->file_names)));
16725 }
16726
16727 fe = &lh->file_names[lh->num_file_names++];
16728 fe->name = name;
16729 fe->dir_index = dir_index;
16730 fe->mod_time = mod_time;
16731 fe->length = length;
aaa75496 16732 fe->included_p = 0;
cb1df416 16733 fe->symtab = NULL;
debd256d 16734}
6e70227d 16735
36586728
TT
16736/* A convenience function to find the proper .debug_line section for a
16737 CU. */
16738
16739static struct dwarf2_section_info *
16740get_debug_line_section (struct dwarf2_cu *cu)
16741{
16742 struct dwarf2_section_info *section;
16743
16744 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16745 DWO file. */
16746 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16747 section = &cu->dwo_unit->dwo_file->sections.line;
16748 else if (cu->per_cu->is_dwz)
16749 {
16750 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16751
16752 section = &dwz->line;
16753 }
16754 else
16755 section = &dwarf2_per_objfile->line;
16756
16757 return section;
16758}
16759
debd256d 16760/* Read the statement program header starting at OFFSET in
3019eac3 16761 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16762 to a struct line_header, allocated using xmalloc.
debd256d
JB
16763
16764 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16765 the returned object point into the dwarf line section buffer,
16766 and must not be freed. */
ae2de4f8 16767
debd256d 16768static struct line_header *
3019eac3 16769dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16770{
16771 struct cleanup *back_to;
16772 struct line_header *lh;
d521ce57 16773 const gdb_byte *line_ptr;
c764a876 16774 unsigned int bytes_read, offset_size;
debd256d 16775 int i;
d521ce57 16776 const char *cur_dir, *cur_file;
3019eac3
DE
16777 struct dwarf2_section_info *section;
16778 bfd *abfd;
16779
36586728 16780 section = get_debug_line_section (cu);
3019eac3
DE
16781 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16782 if (section->buffer == NULL)
debd256d 16783 {
3019eac3
DE
16784 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16785 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16786 else
16787 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16788 return 0;
16789 }
16790
fceca515
DE
16791 /* We can't do this until we know the section is non-empty.
16792 Only then do we know we have such a section. */
a32a8923 16793 abfd = get_section_bfd_owner (section);
fceca515 16794
a738430d
MK
16795 /* Make sure that at least there's room for the total_length field.
16796 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16797 if (offset + 4 >= section->size)
debd256d 16798 {
4d3c2250 16799 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16800 return 0;
16801 }
16802
16803 lh = xmalloc (sizeof (*lh));
16804 memset (lh, 0, sizeof (*lh));
16805 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16806 (void *) lh);
16807
3019eac3 16808 line_ptr = section->buffer + offset;
debd256d 16809
a738430d 16810 /* Read in the header. */
6e70227d 16811 lh->total_length =
c764a876
DE
16812 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16813 &bytes_read, &offset_size);
debd256d 16814 line_ptr += bytes_read;
3019eac3 16815 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 16816 {
4d3c2250 16817 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 16818 do_cleanups (back_to);
debd256d
JB
16819 return 0;
16820 }
16821 lh->statement_program_end = line_ptr + lh->total_length;
16822 lh->version = read_2_bytes (abfd, line_ptr);
16823 line_ptr += 2;
c764a876
DE
16824 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16825 line_ptr += offset_size;
debd256d
JB
16826 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16827 line_ptr += 1;
2dc7f7b3
TT
16828 if (lh->version >= 4)
16829 {
16830 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16831 line_ptr += 1;
16832 }
16833 else
16834 lh->maximum_ops_per_instruction = 1;
16835
16836 if (lh->maximum_ops_per_instruction == 0)
16837 {
16838 lh->maximum_ops_per_instruction = 1;
16839 complaint (&symfile_complaints,
3e43a32a
MS
16840 _("invalid maximum_ops_per_instruction "
16841 "in `.debug_line' section"));
2dc7f7b3
TT
16842 }
16843
debd256d
JB
16844 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16845 line_ptr += 1;
16846 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16847 line_ptr += 1;
16848 lh->line_range = read_1_byte (abfd, line_ptr);
16849 line_ptr += 1;
16850 lh->opcode_base = read_1_byte (abfd, line_ptr);
16851 line_ptr += 1;
16852 lh->standard_opcode_lengths
fe1b8b76 16853 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
16854
16855 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16856 for (i = 1; i < lh->opcode_base; ++i)
16857 {
16858 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16859 line_ptr += 1;
16860 }
16861
a738430d 16862 /* Read directory table. */
9b1c24c8 16863 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16864 {
16865 line_ptr += bytes_read;
16866 add_include_dir (lh, cur_dir);
16867 }
16868 line_ptr += bytes_read;
16869
a738430d 16870 /* Read file name table. */
9b1c24c8 16871 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16872 {
16873 unsigned int dir_index, mod_time, length;
16874
16875 line_ptr += bytes_read;
16876 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16877 line_ptr += bytes_read;
16878 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16879 line_ptr += bytes_read;
16880 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16881 line_ptr += bytes_read;
16882
16883 add_file_name (lh, cur_file, dir_index, mod_time, length);
16884 }
16885 line_ptr += bytes_read;
6e70227d 16886 lh->statement_program_start = line_ptr;
debd256d 16887
3019eac3 16888 if (line_ptr > (section->buffer + section->size))
4d3c2250 16889 complaint (&symfile_complaints,
3e43a32a
MS
16890 _("line number info header doesn't "
16891 "fit in `.debug_line' section"));
debd256d
JB
16892
16893 discard_cleanups (back_to);
16894 return lh;
16895}
c906108c 16896
c6da4cef
DE
16897/* Subroutine of dwarf_decode_lines to simplify it.
16898 Return the file name of the psymtab for included file FILE_INDEX
16899 in line header LH of PST.
16900 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16901 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
16902 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16903
16904 The function creates dangling cleanup registration. */
c6da4cef 16905
d521ce57 16906static const char *
c6da4cef
DE
16907psymtab_include_file_name (const struct line_header *lh, int file_index,
16908 const struct partial_symtab *pst,
16909 const char *comp_dir)
16910{
16911 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
16912 const char *include_name = fe.name;
16913 const char *include_name_to_compare = include_name;
16914 const char *dir_name = NULL;
72b9f47f
TT
16915 const char *pst_filename;
16916 char *copied_name = NULL;
c6da4cef
DE
16917 int file_is_pst;
16918
16919 if (fe.dir_index)
16920 dir_name = lh->include_dirs[fe.dir_index - 1];
16921
16922 if (!IS_ABSOLUTE_PATH (include_name)
16923 && (dir_name != NULL || comp_dir != NULL))
16924 {
16925 /* Avoid creating a duplicate psymtab for PST.
16926 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16927 Before we do the comparison, however, we need to account
16928 for DIR_NAME and COMP_DIR.
16929 First prepend dir_name (if non-NULL). If we still don't
16930 have an absolute path prepend comp_dir (if non-NULL).
16931 However, the directory we record in the include-file's
16932 psymtab does not contain COMP_DIR (to match the
16933 corresponding symtab(s)).
16934
16935 Example:
16936
16937 bash$ cd /tmp
16938 bash$ gcc -g ./hello.c
16939 include_name = "hello.c"
16940 dir_name = "."
16941 DW_AT_comp_dir = comp_dir = "/tmp"
16942 DW_AT_name = "./hello.c" */
16943
16944 if (dir_name != NULL)
16945 {
d521ce57
TT
16946 char *tem = concat (dir_name, SLASH_STRING,
16947 include_name, (char *)NULL);
16948
16949 make_cleanup (xfree, tem);
16950 include_name = tem;
c6da4cef 16951 include_name_to_compare = include_name;
c6da4cef
DE
16952 }
16953 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16954 {
d521ce57
TT
16955 char *tem = concat (comp_dir, SLASH_STRING,
16956 include_name, (char *)NULL);
16957
16958 make_cleanup (xfree, tem);
16959 include_name_to_compare = tem;
c6da4cef
DE
16960 }
16961 }
16962
16963 pst_filename = pst->filename;
16964 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16965 {
72b9f47f
TT
16966 copied_name = concat (pst->dirname, SLASH_STRING,
16967 pst_filename, (char *)NULL);
16968 pst_filename = copied_name;
c6da4cef
DE
16969 }
16970
1e3fad37 16971 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 16972
72b9f47f
TT
16973 if (copied_name != NULL)
16974 xfree (copied_name);
c6da4cef
DE
16975
16976 if (file_is_pst)
16977 return NULL;
16978 return include_name;
16979}
16980
c91513d8
PP
16981/* Ignore this record_line request. */
16982
16983static void
16984noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16985{
16986 return;
16987}
16988
f3f5162e
DE
16989/* Subroutine of dwarf_decode_lines to simplify it.
16990 Process the line number information in LH. */
debd256d 16991
c906108c 16992static void
f3f5162e
DE
16993dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16994 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 16995{
d521ce57
TT
16996 const gdb_byte *line_ptr, *extended_end;
16997 const gdb_byte *line_end;
a8c50c1f 16998 unsigned int bytes_read, extended_len;
c906108c 16999 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
17000 CORE_ADDR baseaddr;
17001 struct objfile *objfile = cu->objfile;
f3f5162e 17002 bfd *abfd = objfile->obfd;
fbf65064 17003 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 17004 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17005 struct subfile *last_subfile = NULL;
c91513d8
PP
17006 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17007 = record_line;
e142c38c
DJ
17008
17009 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17010
debd256d
JB
17011 line_ptr = lh->statement_program_start;
17012 line_end = lh->statement_program_end;
c906108c
SS
17013
17014 /* Read the statement sequences until there's nothing left. */
17015 while (line_ptr < line_end)
17016 {
17017 /* state machine registers */
17018 CORE_ADDR address = 0;
17019 unsigned int file = 1;
17020 unsigned int line = 1;
17021 unsigned int column = 0;
debd256d 17022 int is_stmt = lh->default_is_stmt;
c906108c
SS
17023 int basic_block = 0;
17024 int end_sequence = 0;
fbf65064 17025 CORE_ADDR addr;
2dc7f7b3 17026 unsigned char op_index = 0;
c906108c 17027
aaa75496 17028 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17029 {
aaa75496 17030 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17031 /* lh->include_dirs and lh->file_names are 0-based, but the
17032 directory and file name numbers in the statement program
17033 are 1-based. */
17034 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17035 const char *dir = NULL;
a738430d 17036
debd256d
JB
17037 if (fe->dir_index)
17038 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
17039
17040 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
17041 }
17042
a738430d 17043 /* Decode the table. */
c5aa993b 17044 while (!end_sequence)
c906108c
SS
17045 {
17046 op_code = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
59205f5a
JB
17048 if (line_ptr > line_end)
17049 {
17050 dwarf2_debug_line_missing_end_sequence_complaint ();
17051 break;
17052 }
9aa1fe7e 17053
debd256d 17054 if (op_code >= lh->opcode_base)
6e70227d 17055 {
a738430d 17056 /* Special operand. */
debd256d 17057 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17058 address += (((op_index + (adj_opcode / lh->line_range))
17059 / lh->maximum_ops_per_instruction)
17060 * lh->minimum_instruction_length);
17061 op_index = ((op_index + (adj_opcode / lh->line_range))
17062 % lh->maximum_ops_per_instruction);
debd256d 17063 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 17064 if (lh->num_file_names < file || file == 0)
25e43795 17065 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17066 /* For now we ignore lines not starting on an
17067 instruction boundary. */
17068 else if (op_index == 0)
25e43795
DJ
17069 {
17070 lh->file_names[file - 1].included_p = 1;
ca5f395d 17071 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17072 {
17073 if (last_subfile != current_subfile)
17074 {
17075 addr = gdbarch_addr_bits_remove (gdbarch, address);
17076 if (last_subfile)
c91513d8 17077 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17078 last_subfile = current_subfile;
17079 }
25e43795 17080 /* Append row to matrix using current values. */
7019d805 17081 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17082 (*p_record_line) (current_subfile, line, addr);
366da635 17083 }
25e43795 17084 }
ca5f395d 17085 basic_block = 0;
9aa1fe7e
GK
17086 }
17087 else switch (op_code)
c906108c
SS
17088 {
17089 case DW_LNS_extended_op:
3e43a32a
MS
17090 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17091 &bytes_read);
473b7be6 17092 line_ptr += bytes_read;
a8c50c1f 17093 extended_end = line_ptr + extended_len;
c906108c
SS
17094 extended_op = read_1_byte (abfd, line_ptr);
17095 line_ptr += 1;
17096 switch (extended_op)
17097 {
17098 case DW_LNE_end_sequence:
c91513d8 17099 p_record_line = record_line;
c906108c 17100 end_sequence = 1;
c906108c
SS
17101 break;
17102 case DW_LNE_set_address:
e7c27a73 17103 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
17104
17105 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17106 {
17107 /* This line table is for a function which has been
17108 GCd by the linker. Ignore it. PR gdb/12528 */
17109
17110 long line_offset
36586728 17111 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17112
17113 complaint (&symfile_complaints,
17114 _(".debug_line address at offset 0x%lx is 0 "
17115 "[in module %s]"),
4262abfb 17116 line_offset, objfile_name (objfile));
c91513d8
PP
17117 p_record_line = noop_record_line;
17118 }
17119
2dc7f7b3 17120 op_index = 0;
107d2387
AC
17121 line_ptr += bytes_read;
17122 address += baseaddr;
c906108c
SS
17123 break;
17124 case DW_LNE_define_file:
debd256d 17125 {
d521ce57 17126 const char *cur_file;
debd256d 17127 unsigned int dir_index, mod_time, length;
6e70227d 17128
3e43a32a
MS
17129 cur_file = read_direct_string (abfd, line_ptr,
17130 &bytes_read);
debd256d
JB
17131 line_ptr += bytes_read;
17132 dir_index =
17133 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17134 line_ptr += bytes_read;
17135 mod_time =
17136 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17137 line_ptr += bytes_read;
17138 length =
17139 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17140 line_ptr += bytes_read;
17141 add_file_name (lh, cur_file, dir_index, mod_time, length);
17142 }
c906108c 17143 break;
d0c6ba3d
CC
17144 case DW_LNE_set_discriminator:
17145 /* The discriminator is not interesting to the debugger;
17146 just ignore it. */
17147 line_ptr = extended_end;
17148 break;
c906108c 17149 default:
4d3c2250 17150 complaint (&symfile_complaints,
e2e0b3e5 17151 _("mangled .debug_line section"));
debd256d 17152 return;
c906108c 17153 }
a8c50c1f
DJ
17154 /* Make sure that we parsed the extended op correctly. If e.g.
17155 we expected a different address size than the producer used,
17156 we may have read the wrong number of bytes. */
17157 if (line_ptr != extended_end)
17158 {
17159 complaint (&symfile_complaints,
17160 _("mangled .debug_line section"));
17161 return;
17162 }
c906108c
SS
17163 break;
17164 case DW_LNS_copy:
59205f5a 17165 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17166 dwarf2_debug_line_missing_file_complaint ();
17167 else
366da635 17168 {
25e43795 17169 lh->file_names[file - 1].included_p = 1;
ca5f395d 17170 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17171 {
17172 if (last_subfile != current_subfile)
17173 {
17174 addr = gdbarch_addr_bits_remove (gdbarch, address);
17175 if (last_subfile)
c91513d8 17176 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17177 last_subfile = current_subfile;
17178 }
7019d805 17179 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17180 (*p_record_line) (current_subfile, line, addr);
fbf65064 17181 }
366da635 17182 }
c906108c
SS
17183 basic_block = 0;
17184 break;
17185 case DW_LNS_advance_pc:
2dc7f7b3
TT
17186 {
17187 CORE_ADDR adjust
17188 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17189
17190 address += (((op_index + adjust)
17191 / lh->maximum_ops_per_instruction)
17192 * lh->minimum_instruction_length);
17193 op_index = ((op_index + adjust)
17194 % lh->maximum_ops_per_instruction);
17195 line_ptr += bytes_read;
17196 }
c906108c
SS
17197 break;
17198 case DW_LNS_advance_line:
17199 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17200 line_ptr += bytes_read;
17201 break;
17202 case DW_LNS_set_file:
debd256d 17203 {
a738430d
MK
17204 /* The arrays lh->include_dirs and lh->file_names are
17205 0-based, but the directory and file name numbers in
17206 the statement program are 1-based. */
debd256d 17207 struct file_entry *fe;
d521ce57 17208 const char *dir = NULL;
a738430d 17209
debd256d
JB
17210 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17211 line_ptr += bytes_read;
59205f5a 17212 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17213 dwarf2_debug_line_missing_file_complaint ();
17214 else
17215 {
17216 fe = &lh->file_names[file - 1];
17217 if (fe->dir_index)
17218 dir = lh->include_dirs[fe->dir_index - 1];
17219 if (!decode_for_pst_p)
17220 {
17221 last_subfile = current_subfile;
17222 dwarf2_start_subfile (fe->name, dir, comp_dir);
17223 }
17224 }
debd256d 17225 }
c906108c
SS
17226 break;
17227 case DW_LNS_set_column:
17228 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17229 line_ptr += bytes_read;
17230 break;
17231 case DW_LNS_negate_stmt:
17232 is_stmt = (!is_stmt);
17233 break;
17234 case DW_LNS_set_basic_block:
17235 basic_block = 1;
17236 break;
c2c6d25f
JM
17237 /* Add to the address register of the state machine the
17238 address increment value corresponding to special opcode
a738430d
MK
17239 255. I.e., this value is scaled by the minimum
17240 instruction length since special opcode 255 would have
b021a221 17241 scaled the increment. */
c906108c 17242 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17243 {
17244 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17245
17246 address += (((op_index + adjust)
17247 / lh->maximum_ops_per_instruction)
17248 * lh->minimum_instruction_length);
17249 op_index = ((op_index + adjust)
17250 % lh->maximum_ops_per_instruction);
17251 }
c906108c
SS
17252 break;
17253 case DW_LNS_fixed_advance_pc:
17254 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17255 op_index = 0;
c906108c
SS
17256 line_ptr += 2;
17257 break;
9aa1fe7e 17258 default:
a738430d
MK
17259 {
17260 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17261 int i;
a738430d 17262
debd256d 17263 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17264 {
17265 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17266 line_ptr += bytes_read;
17267 }
17268 }
c906108c
SS
17269 }
17270 }
59205f5a
JB
17271 if (lh->num_file_names < file || file == 0)
17272 dwarf2_debug_line_missing_file_complaint ();
17273 else
17274 {
17275 lh->file_names[file - 1].included_p = 1;
17276 if (!decode_for_pst_p)
fbf65064
UW
17277 {
17278 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17279 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17280 }
59205f5a 17281 }
c906108c 17282 }
f3f5162e
DE
17283}
17284
17285/* Decode the Line Number Program (LNP) for the given line_header
17286 structure and CU. The actual information extracted and the type
17287 of structures created from the LNP depends on the value of PST.
17288
17289 1. If PST is NULL, then this procedure uses the data from the program
17290 to create all necessary symbol tables, and their linetables.
17291
17292 2. If PST is not NULL, this procedure reads the program to determine
17293 the list of files included by the unit represented by PST, and
17294 builds all the associated partial symbol tables.
17295
17296 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17297 It is used for relative paths in the line table.
17298 NOTE: When processing partial symtabs (pst != NULL),
17299 comp_dir == pst->dirname.
17300
17301 NOTE: It is important that psymtabs have the same file name (via strcmp)
17302 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17303 symtab we don't use it in the name of the psymtabs we create.
17304 E.g. expand_line_sal requires this when finding psymtabs to expand.
17305 A good testcase for this is mb-inline.exp. */
17306
17307static void
17308dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17309 struct dwarf2_cu *cu, struct partial_symtab *pst,
17310 int want_line_info)
17311{
17312 struct objfile *objfile = cu->objfile;
17313 const int decode_for_pst_p = (pst != NULL);
17314 struct subfile *first_subfile = current_subfile;
17315
17316 if (want_line_info)
17317 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17318
17319 if (decode_for_pst_p)
17320 {
17321 int file_index;
17322
17323 /* Now that we're done scanning the Line Header Program, we can
17324 create the psymtab of each included file. */
17325 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17326 if (lh->file_names[file_index].included_p == 1)
17327 {
d521ce57 17328 const char *include_name =
c6da4cef
DE
17329 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17330 if (include_name != NULL)
aaa75496
JB
17331 dwarf2_create_include_psymtab (include_name, pst, objfile);
17332 }
17333 }
cb1df416
DJ
17334 else
17335 {
17336 /* Make sure a symtab is created for every file, even files
17337 which contain only variables (i.e. no code with associated
17338 line numbers). */
cb1df416 17339 int i;
cb1df416
DJ
17340
17341 for (i = 0; i < lh->num_file_names; i++)
17342 {
d521ce57 17343 const char *dir = NULL;
f3f5162e 17344 struct file_entry *fe;
9a619af0 17345
cb1df416
DJ
17346 fe = &lh->file_names[i];
17347 if (fe->dir_index)
17348 dir = lh->include_dirs[fe->dir_index - 1];
17349 dwarf2_start_subfile (fe->name, dir, comp_dir);
17350
17351 /* Skip the main file; we don't need it, and it must be
17352 allocated last, so that it will show up before the
17353 non-primary symtabs in the objfile's symtab list. */
17354 if (current_subfile == first_subfile)
17355 continue;
17356
17357 if (current_subfile->symtab == NULL)
17358 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17359 objfile);
cb1df416
DJ
17360 fe->symtab = current_subfile->symtab;
17361 }
17362 }
c906108c
SS
17363}
17364
17365/* Start a subfile for DWARF. FILENAME is the name of the file and
17366 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17367 or NULL if not known. COMP_DIR is the compilation directory for the
17368 linetable's compilation unit or NULL if not known.
c906108c
SS
17369 This routine tries to keep line numbers from identical absolute and
17370 relative file names in a common subfile.
17371
17372 Using the `list' example from the GDB testsuite, which resides in
17373 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17374 of /srcdir/list0.c yields the following debugging information for list0.c:
17375
c5aa993b
JM
17376 DW_AT_name: /srcdir/list0.c
17377 DW_AT_comp_dir: /compdir
357e46e7 17378 files.files[0].name: list0.h
c5aa993b 17379 files.files[0].dir: /srcdir
357e46e7 17380 files.files[1].name: list0.c
c5aa993b 17381 files.files[1].dir: /srcdir
c906108c
SS
17382
17383 The line number information for list0.c has to end up in a single
4f1520fb
FR
17384 subfile, so that `break /srcdir/list0.c:1' works as expected.
17385 start_subfile will ensure that this happens provided that we pass the
17386 concatenation of files.files[1].dir and files.files[1].name as the
17387 subfile's name. */
c906108c
SS
17388
17389static void
d521ce57 17390dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17391 const char *comp_dir)
c906108c 17392{
d521ce57 17393 char *copy = NULL;
4f1520fb
FR
17394
17395 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17396 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17397 second argument to start_subfile. To be consistent, we do the
17398 same here. In order not to lose the line information directory,
17399 we concatenate it to the filename when it makes sense.
17400 Note that the Dwarf3 standard says (speaking of filenames in line
17401 information): ``The directory index is ignored for file names
17402 that represent full path names''. Thus ignoring dirname in the
17403 `else' branch below isn't an issue. */
c906108c 17404
d5166ae1 17405 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17406 {
17407 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17408 filename = copy;
17409 }
c906108c 17410
d521ce57 17411 start_subfile (filename, comp_dir);
4f1520fb 17412
d521ce57
TT
17413 if (copy != NULL)
17414 xfree (copy);
c906108c
SS
17415}
17416
f4dc4d17
DE
17417/* Start a symtab for DWARF.
17418 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17419
17420static void
17421dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17422 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17423{
17424 start_symtab (name, comp_dir, low_pc);
17425 record_debugformat ("DWARF 2");
17426 record_producer (cu->producer);
17427
17428 /* We assume that we're processing GCC output. */
17429 processing_gcc_compilation = 2;
17430
4d4ec4e5 17431 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17432}
17433
4c2df51b
DJ
17434static void
17435var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17436 struct dwarf2_cu *cu)
4c2df51b 17437{
e7c27a73
DJ
17438 struct objfile *objfile = cu->objfile;
17439 struct comp_unit_head *cu_header = &cu->header;
17440
4c2df51b
DJ
17441 /* NOTE drow/2003-01-30: There used to be a comment and some special
17442 code here to turn a symbol with DW_AT_external and a
17443 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17444 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17445 with some versions of binutils) where shared libraries could have
17446 relocations against symbols in their debug information - the
17447 minimal symbol would have the right address, but the debug info
17448 would not. It's no longer necessary, because we will explicitly
17449 apply relocations when we read in the debug information now. */
17450
17451 /* A DW_AT_location attribute with no contents indicates that a
17452 variable has been optimized away. */
17453 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17454 {
f1e6e072 17455 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17456 return;
17457 }
17458
17459 /* Handle one degenerate form of location expression specially, to
17460 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17461 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17462 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17463
17464 if (attr_form_is_block (attr)
3019eac3
DE
17465 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17466 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17467 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17468 && (DW_BLOCK (attr)->size
17469 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17470 {
891d2f0b 17471 unsigned int dummy;
4c2df51b 17472
3019eac3
DE
17473 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17474 SYMBOL_VALUE_ADDRESS (sym) =
17475 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17476 else
17477 SYMBOL_VALUE_ADDRESS (sym) =
17478 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17479 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17480 fixup_symbol_section (sym, objfile);
17481 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17482 SYMBOL_SECTION (sym));
4c2df51b
DJ
17483 return;
17484 }
17485
17486 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17487 expression evaluator, and use LOC_COMPUTED only when necessary
17488 (i.e. when the value of a register or memory location is
17489 referenced, or a thread-local block, etc.). Then again, it might
17490 not be worthwhile. I'm assuming that it isn't unless performance
17491 or memory numbers show me otherwise. */
17492
f1e6e072 17493 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17494
f1e6e072 17495 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17496 cu->has_loclist = 1;
4c2df51b
DJ
17497}
17498
c906108c
SS
17499/* Given a pointer to a DWARF information entry, figure out if we need
17500 to make a symbol table entry for it, and if so, create a new entry
17501 and return a pointer to it.
17502 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17503 used the passed type.
17504 If SPACE is not NULL, use it to hold the new symbol. If it is
17505 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17506
17507static struct symbol *
34eaf542
TT
17508new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17509 struct symbol *space)
c906108c 17510{
e7c27a73 17511 struct objfile *objfile = cu->objfile;
c906108c 17512 struct symbol *sym = NULL;
15d034d0 17513 const char *name;
c906108c
SS
17514 struct attribute *attr = NULL;
17515 struct attribute *attr2 = NULL;
e142c38c 17516 CORE_ADDR baseaddr;
e37fd15a
SW
17517 struct pending **list_to_add = NULL;
17518
edb3359d 17519 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17520
17521 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17522
94af9270 17523 name = dwarf2_name (die, cu);
c906108c
SS
17524 if (name)
17525 {
94af9270 17526 const char *linkagename;
34eaf542 17527 int suppress_add = 0;
94af9270 17528
34eaf542
TT
17529 if (space)
17530 sym = space;
17531 else
e623cf5d 17532 sym = allocate_symbol (objfile);
c906108c 17533 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17534
17535 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17536 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17537 linkagename = dwarf2_physname (name, die, cu);
17538 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17539
f55ee35c
JK
17540 /* Fortran does not have mangling standard and the mangling does differ
17541 between gfortran, iFort etc. */
17542 if (cu->language == language_fortran
b250c185 17543 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17544 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17545 dwarf2_full_name (name, die, cu),
29df156d 17546 NULL);
f55ee35c 17547
c906108c 17548 /* Default assumptions.
c5aa993b 17549 Use the passed type or decode it from the die. */
176620f1 17550 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17551 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17552 if (type != NULL)
17553 SYMBOL_TYPE (sym) = type;
17554 else
e7c27a73 17555 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17556 attr = dwarf2_attr (die,
17557 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17558 cu);
c906108c
SS
17559 if (attr)
17560 {
17561 SYMBOL_LINE (sym) = DW_UNSND (attr);
17562 }
cb1df416 17563
edb3359d
DJ
17564 attr = dwarf2_attr (die,
17565 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17566 cu);
cb1df416
DJ
17567 if (attr)
17568 {
17569 int file_index = DW_UNSND (attr);
9a619af0 17570
cb1df416
DJ
17571 if (cu->line_header == NULL
17572 || file_index > cu->line_header->num_file_names)
17573 complaint (&symfile_complaints,
17574 _("file index out of range"));
1c3d648d 17575 else if (file_index > 0)
cb1df416
DJ
17576 {
17577 struct file_entry *fe;
9a619af0 17578
cb1df416
DJ
17579 fe = &cu->line_header->file_names[file_index - 1];
17580 SYMBOL_SYMTAB (sym) = fe->symtab;
17581 }
17582 }
17583
c906108c
SS
17584 switch (die->tag)
17585 {
17586 case DW_TAG_label:
e142c38c 17587 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17588 if (attr)
31aa7e4e
JB
17589 SYMBOL_VALUE_ADDRESS (sym)
17590 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17591 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17592 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17593 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17594 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17595 break;
17596 case DW_TAG_subprogram:
17597 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17598 finish_block. */
f1e6e072 17599 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17600 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17601 if ((attr2 && (DW_UNSND (attr2) != 0))
17602 || cu->language == language_ada)
c906108c 17603 {
2cfa0c8d
JB
17604 /* Subprograms marked external are stored as a global symbol.
17605 Ada subprograms, whether marked external or not, are always
17606 stored as a global symbol, because we want to be able to
17607 access them globally. For instance, we want to be able
17608 to break on a nested subprogram without having to
17609 specify the context. */
e37fd15a 17610 list_to_add = &global_symbols;
c906108c
SS
17611 }
17612 else
17613 {
e37fd15a 17614 list_to_add = cu->list_in_scope;
c906108c
SS
17615 }
17616 break;
edb3359d
DJ
17617 case DW_TAG_inlined_subroutine:
17618 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17619 finish_block. */
f1e6e072 17620 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17621 SYMBOL_INLINED (sym) = 1;
481860b3 17622 list_to_add = cu->list_in_scope;
edb3359d 17623 break;
34eaf542
TT
17624 case DW_TAG_template_value_param:
17625 suppress_add = 1;
17626 /* Fall through. */
72929c62 17627 case DW_TAG_constant:
c906108c 17628 case DW_TAG_variable:
254e6b9e 17629 case DW_TAG_member:
0963b4bd
MS
17630 /* Compilation with minimal debug info may result in
17631 variables with missing type entries. Change the
17632 misleading `void' type to something sensible. */
c906108c 17633 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17634 SYMBOL_TYPE (sym)
46bf5051 17635 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17636
e142c38c 17637 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17638 /* In the case of DW_TAG_member, we should only be called for
17639 static const members. */
17640 if (die->tag == DW_TAG_member)
17641 {
3863f96c
DE
17642 /* dwarf2_add_field uses die_is_declaration,
17643 so we do the same. */
254e6b9e
DE
17644 gdb_assert (die_is_declaration (die, cu));
17645 gdb_assert (attr);
17646 }
c906108c
SS
17647 if (attr)
17648 {
e7c27a73 17649 dwarf2_const_value (attr, sym, cu);
e142c38c 17650 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17651 if (!suppress_add)
34eaf542
TT
17652 {
17653 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17654 list_to_add = &global_symbols;
34eaf542 17655 else
e37fd15a 17656 list_to_add = cu->list_in_scope;
34eaf542 17657 }
c906108c
SS
17658 break;
17659 }
e142c38c 17660 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17661 if (attr)
17662 {
e7c27a73 17663 var_decode_location (attr, sym, cu);
e142c38c 17664 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17665
17666 /* Fortran explicitly imports any global symbols to the local
17667 scope by DW_TAG_common_block. */
17668 if (cu->language == language_fortran && die->parent
17669 && die->parent->tag == DW_TAG_common_block)
17670 attr2 = NULL;
17671
caac4577
JG
17672 if (SYMBOL_CLASS (sym) == LOC_STATIC
17673 && SYMBOL_VALUE_ADDRESS (sym) == 0
17674 && !dwarf2_per_objfile->has_section_at_zero)
17675 {
17676 /* When a static variable is eliminated by the linker,
17677 the corresponding debug information is not stripped
17678 out, but the variable address is set to null;
17679 do not add such variables into symbol table. */
17680 }
17681 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17682 {
f55ee35c
JK
17683 /* Workaround gfortran PR debug/40040 - it uses
17684 DW_AT_location for variables in -fPIC libraries which may
17685 get overriden by other libraries/executable and get
17686 a different address. Resolve it by the minimal symbol
17687 which may come from inferior's executable using copy
17688 relocation. Make this workaround only for gfortran as for
17689 other compilers GDB cannot guess the minimal symbol
17690 Fortran mangling kind. */
17691 if (cu->language == language_fortran && die->parent
17692 && die->parent->tag == DW_TAG_module
17693 && cu->producer
17694 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17695 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17696
1c809c68
TT
17697 /* A variable with DW_AT_external is never static,
17698 but it may be block-scoped. */
17699 list_to_add = (cu->list_in_scope == &file_symbols
17700 ? &global_symbols : cu->list_in_scope);
1c809c68 17701 }
c906108c 17702 else
e37fd15a 17703 list_to_add = cu->list_in_scope;
c906108c
SS
17704 }
17705 else
17706 {
17707 /* We do not know the address of this symbol.
c5aa993b
JM
17708 If it is an external symbol and we have type information
17709 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17710 The address of the variable will then be determined from
17711 the minimal symbol table whenever the variable is
17712 referenced. */
e142c38c 17713 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17714
17715 /* Fortran explicitly imports any global symbols to the local
17716 scope by DW_TAG_common_block. */
17717 if (cu->language == language_fortran && die->parent
17718 && die->parent->tag == DW_TAG_common_block)
17719 {
17720 /* SYMBOL_CLASS doesn't matter here because
17721 read_common_block is going to reset it. */
17722 if (!suppress_add)
17723 list_to_add = cu->list_in_scope;
17724 }
17725 else if (attr2 && (DW_UNSND (attr2) != 0)
17726 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17727 {
0fe7935b
DJ
17728 /* A variable with DW_AT_external is never static, but it
17729 may be block-scoped. */
17730 list_to_add = (cu->list_in_scope == &file_symbols
17731 ? &global_symbols : cu->list_in_scope);
17732
f1e6e072 17733 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17734 }
442ddf59
JK
17735 else if (!die_is_declaration (die, cu))
17736 {
17737 /* Use the default LOC_OPTIMIZED_OUT class. */
17738 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17739 if (!suppress_add)
17740 list_to_add = cu->list_in_scope;
442ddf59 17741 }
c906108c
SS
17742 }
17743 break;
17744 case DW_TAG_formal_parameter:
edb3359d
DJ
17745 /* If we are inside a function, mark this as an argument. If
17746 not, we might be looking at an argument to an inlined function
17747 when we do not have enough information to show inlined frames;
17748 pretend it's a local variable in that case so that the user can
17749 still see it. */
17750 if (context_stack_depth > 0
17751 && context_stack[context_stack_depth - 1].name != NULL)
17752 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17753 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17754 if (attr)
17755 {
e7c27a73 17756 var_decode_location (attr, sym, cu);
c906108c 17757 }
e142c38c 17758 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17759 if (attr)
17760 {
e7c27a73 17761 dwarf2_const_value (attr, sym, cu);
c906108c 17762 }
f346a30d 17763
e37fd15a 17764 list_to_add = cu->list_in_scope;
c906108c
SS
17765 break;
17766 case DW_TAG_unspecified_parameters:
17767 /* From varargs functions; gdb doesn't seem to have any
17768 interest in this information, so just ignore it for now.
17769 (FIXME?) */
17770 break;
34eaf542
TT
17771 case DW_TAG_template_type_param:
17772 suppress_add = 1;
17773 /* Fall through. */
c906108c 17774 case DW_TAG_class_type:
680b30c7 17775 case DW_TAG_interface_type:
c906108c
SS
17776 case DW_TAG_structure_type:
17777 case DW_TAG_union_type:
72019c9c 17778 case DW_TAG_set_type:
c906108c 17779 case DW_TAG_enumeration_type:
f1e6e072 17780 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17781 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17782
63d06c5c 17783 {
987504bb 17784 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17785 really ever be static objects: otherwise, if you try
17786 to, say, break of a class's method and you're in a file
17787 which doesn't mention that class, it won't work unless
17788 the check for all static symbols in lookup_symbol_aux
17789 saves you. See the OtherFileClass tests in
17790 gdb.c++/namespace.exp. */
17791
e37fd15a 17792 if (!suppress_add)
34eaf542 17793 {
34eaf542
TT
17794 list_to_add = (cu->list_in_scope == &file_symbols
17795 && (cu->language == language_cplus
17796 || cu->language == language_java)
17797 ? &global_symbols : cu->list_in_scope);
63d06c5c 17798
64382290
TT
17799 /* The semantics of C++ state that "struct foo {
17800 ... }" also defines a typedef for "foo". A Java
17801 class declaration also defines a typedef for the
17802 class. */
17803 if (cu->language == language_cplus
17804 || cu->language == language_java
17805 || cu->language == language_ada)
17806 {
17807 /* The symbol's name is already allocated along
17808 with this objfile, so we don't need to
17809 duplicate it for the type. */
17810 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17811 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17812 }
63d06c5c
DC
17813 }
17814 }
c906108c
SS
17815 break;
17816 case DW_TAG_typedef:
f1e6e072 17817 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 17818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17819 list_to_add = cu->list_in_scope;
63d06c5c 17820 break;
c906108c 17821 case DW_TAG_base_type:
a02abb62 17822 case DW_TAG_subrange_type:
f1e6e072 17823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17825 list_to_add = cu->list_in_scope;
c906108c
SS
17826 break;
17827 case DW_TAG_enumerator:
e142c38c 17828 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17829 if (attr)
17830 {
e7c27a73 17831 dwarf2_const_value (attr, sym, cu);
c906108c 17832 }
63d06c5c
DC
17833 {
17834 /* NOTE: carlton/2003-11-10: See comment above in the
17835 DW_TAG_class_type, etc. block. */
17836
e142c38c 17837 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
17838 && (cu->language == language_cplus
17839 || cu->language == language_java)
e142c38c 17840 ? &global_symbols : cu->list_in_scope);
63d06c5c 17841 }
c906108c 17842 break;
74921315 17843 case DW_TAG_imported_declaration:
5c4e30ca 17844 case DW_TAG_namespace:
f1e6e072 17845 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 17846 list_to_add = &global_symbols;
5c4e30ca 17847 break;
530e8392
KB
17848 case DW_TAG_module:
17849 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17850 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17851 list_to_add = &global_symbols;
17852 break;
4357ac6c 17853 case DW_TAG_common_block:
f1e6e072 17854 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
17855 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17856 add_symbol_to_list (sym, cu->list_in_scope);
17857 break;
c906108c
SS
17858 default:
17859 /* Not a tag we recognize. Hopefully we aren't processing
17860 trash data, but since we must specifically ignore things
17861 we don't recognize, there is nothing else we should do at
0963b4bd 17862 this point. */
e2e0b3e5 17863 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 17864 dwarf_tag_name (die->tag));
c906108c
SS
17865 break;
17866 }
df8a16a1 17867
e37fd15a
SW
17868 if (suppress_add)
17869 {
17870 sym->hash_next = objfile->template_symbols;
17871 objfile->template_symbols = sym;
17872 list_to_add = NULL;
17873 }
17874
17875 if (list_to_add != NULL)
17876 add_symbol_to_list (sym, list_to_add);
17877
df8a16a1
DJ
17878 /* For the benefit of old versions of GCC, check for anonymous
17879 namespaces based on the demangled name. */
4d4ec4e5 17880 if (!cu->processing_has_namespace_info
94af9270 17881 && cu->language == language_cplus)
a10964d1 17882 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
17883 }
17884 return (sym);
17885}
17886
34eaf542
TT
17887/* A wrapper for new_symbol_full that always allocates a new symbol. */
17888
17889static struct symbol *
17890new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17891{
17892 return new_symbol_full (die, type, cu, NULL);
17893}
17894
98bfdba5
PA
17895/* Given an attr with a DW_FORM_dataN value in host byte order,
17896 zero-extend it as appropriate for the symbol's type. The DWARF
17897 standard (v4) is not entirely clear about the meaning of using
17898 DW_FORM_dataN for a constant with a signed type, where the type is
17899 wider than the data. The conclusion of a discussion on the DWARF
17900 list was that this is unspecified. We choose to always zero-extend
17901 because that is the interpretation long in use by GCC. */
c906108c 17902
98bfdba5 17903static gdb_byte *
ff39bb5e 17904dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 17905 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 17906{
e7c27a73 17907 struct objfile *objfile = cu->objfile;
e17a4113
UW
17908 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17909 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
17910 LONGEST l = DW_UNSND (attr);
17911
17912 if (bits < sizeof (*value) * 8)
17913 {
17914 l &= ((LONGEST) 1 << bits) - 1;
17915 *value = l;
17916 }
17917 else if (bits == sizeof (*value) * 8)
17918 *value = l;
17919 else
17920 {
17921 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17922 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17923 return bytes;
17924 }
17925
17926 return NULL;
17927}
17928
17929/* Read a constant value from an attribute. Either set *VALUE, or if
17930 the value does not fit in *VALUE, set *BYTES - either already
17931 allocated on the objfile obstack, or newly allocated on OBSTACK,
17932 or, set *BATON, if we translated the constant to a location
17933 expression. */
17934
17935static void
ff39bb5e 17936dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
17937 const char *name, struct obstack *obstack,
17938 struct dwarf2_cu *cu,
d521ce57 17939 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
17940 struct dwarf2_locexpr_baton **baton)
17941{
17942 struct objfile *objfile = cu->objfile;
17943 struct comp_unit_head *cu_header = &cu->header;
c906108c 17944 struct dwarf_block *blk;
98bfdba5
PA
17945 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17946 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17947
17948 *value = 0;
17949 *bytes = NULL;
17950 *baton = NULL;
c906108c
SS
17951
17952 switch (attr->form)
17953 {
17954 case DW_FORM_addr:
3019eac3 17955 case DW_FORM_GNU_addr_index:
ac56253d 17956 {
ac56253d
TT
17957 gdb_byte *data;
17958
98bfdba5
PA
17959 if (TYPE_LENGTH (type) != cu_header->addr_size)
17960 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 17961 cu_header->addr_size,
98bfdba5 17962 TYPE_LENGTH (type));
ac56253d
TT
17963 /* Symbols of this form are reasonably rare, so we just
17964 piggyback on the existing location code rather than writing
17965 a new implementation of symbol_computed_ops. */
7919a973 17966 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
17967 (*baton)->per_cu = cu->per_cu;
17968 gdb_assert ((*baton)->per_cu);
ac56253d 17969
98bfdba5 17970 (*baton)->size = 2 + cu_header->addr_size;
7919a973 17971 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 17972 (*baton)->data = data;
ac56253d
TT
17973
17974 data[0] = DW_OP_addr;
17975 store_unsigned_integer (&data[1], cu_header->addr_size,
17976 byte_order, DW_ADDR (attr));
17977 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 17978 }
c906108c 17979 break;
4ac36638 17980 case DW_FORM_string:
93b5768b 17981 case DW_FORM_strp:
3019eac3 17982 case DW_FORM_GNU_str_index:
36586728 17983 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
17984 /* DW_STRING is already allocated on the objfile obstack, point
17985 directly to it. */
d521ce57 17986 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 17987 break;
c906108c
SS
17988 case DW_FORM_block1:
17989 case DW_FORM_block2:
17990 case DW_FORM_block4:
17991 case DW_FORM_block:
2dc7f7b3 17992 case DW_FORM_exprloc:
c906108c 17993 blk = DW_BLOCK (attr);
98bfdba5
PA
17994 if (TYPE_LENGTH (type) != blk->size)
17995 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17996 TYPE_LENGTH (type));
17997 *bytes = blk->data;
c906108c 17998 break;
2df3850c
JM
17999
18000 /* The DW_AT_const_value attributes are supposed to carry the
18001 symbol's value "represented as it would be on the target
18002 architecture." By the time we get here, it's already been
18003 converted to host endianness, so we just need to sign- or
18004 zero-extend it as appropriate. */
18005 case DW_FORM_data1:
3aef2284 18006 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18007 break;
c906108c 18008 case DW_FORM_data2:
3aef2284 18009 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18010 break;
c906108c 18011 case DW_FORM_data4:
3aef2284 18012 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18013 break;
c906108c 18014 case DW_FORM_data8:
3aef2284 18015 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18016 break;
18017
c906108c 18018 case DW_FORM_sdata:
98bfdba5 18019 *value = DW_SND (attr);
2df3850c
JM
18020 break;
18021
c906108c 18022 case DW_FORM_udata:
98bfdba5 18023 *value = DW_UNSND (attr);
c906108c 18024 break;
2df3850c 18025
c906108c 18026 default:
4d3c2250 18027 complaint (&symfile_complaints,
e2e0b3e5 18028 _("unsupported const value attribute form: '%s'"),
4d3c2250 18029 dwarf_form_name (attr->form));
98bfdba5 18030 *value = 0;
c906108c
SS
18031 break;
18032 }
18033}
18034
2df3850c 18035
98bfdba5
PA
18036/* Copy constant value from an attribute to a symbol. */
18037
2df3850c 18038static void
ff39bb5e 18039dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18040 struct dwarf2_cu *cu)
2df3850c 18041{
98bfdba5
PA
18042 struct objfile *objfile = cu->objfile;
18043 struct comp_unit_head *cu_header = &cu->header;
12df843f 18044 LONGEST value;
d521ce57 18045 const gdb_byte *bytes;
98bfdba5 18046 struct dwarf2_locexpr_baton *baton;
2df3850c 18047
98bfdba5
PA
18048 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18049 SYMBOL_PRINT_NAME (sym),
18050 &objfile->objfile_obstack, cu,
18051 &value, &bytes, &baton);
2df3850c 18052
98bfdba5
PA
18053 if (baton != NULL)
18054 {
98bfdba5 18055 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18056 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18057 }
18058 else if (bytes != NULL)
18059 {
18060 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18061 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18062 }
18063 else
18064 {
18065 SYMBOL_VALUE (sym) = value;
f1e6e072 18066 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18067 }
2df3850c
JM
18068}
18069
c906108c
SS
18070/* Return the type of the die in question using its DW_AT_type attribute. */
18071
18072static struct type *
e7c27a73 18073die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18074{
c906108c 18075 struct attribute *type_attr;
c906108c 18076
e142c38c 18077 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18078 if (!type_attr)
18079 {
18080 /* A missing DW_AT_type represents a void type. */
46bf5051 18081 return objfile_type (cu->objfile)->builtin_void;
c906108c 18082 }
348e048f 18083
673bfd45 18084 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18085}
18086
b4ba55a1
JB
18087/* True iff CU's producer generates GNAT Ada auxiliary information
18088 that allows to find parallel types through that information instead
18089 of having to do expensive parallel lookups by type name. */
18090
18091static int
18092need_gnat_info (struct dwarf2_cu *cu)
18093{
18094 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18095 of GNAT produces this auxiliary information, without any indication
18096 that it is produced. Part of enhancing the FSF version of GNAT
18097 to produce that information will be to put in place an indicator
18098 that we can use in order to determine whether the descriptive type
18099 info is available or not. One suggestion that has been made is
18100 to use a new attribute, attached to the CU die. For now, assume
18101 that the descriptive type info is not available. */
18102 return 0;
18103}
18104
b4ba55a1
JB
18105/* Return the auxiliary type of the die in question using its
18106 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18107 attribute is not present. */
18108
18109static struct type *
18110die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18111{
b4ba55a1 18112 struct attribute *type_attr;
b4ba55a1
JB
18113
18114 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18115 if (!type_attr)
18116 return NULL;
18117
673bfd45 18118 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18119}
18120
18121/* If DIE has a descriptive_type attribute, then set the TYPE's
18122 descriptive type accordingly. */
18123
18124static void
18125set_descriptive_type (struct type *type, struct die_info *die,
18126 struct dwarf2_cu *cu)
18127{
18128 struct type *descriptive_type = die_descriptive_type (die, cu);
18129
18130 if (descriptive_type)
18131 {
18132 ALLOCATE_GNAT_AUX_TYPE (type);
18133 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18134 }
18135}
18136
c906108c
SS
18137/* Return the containing type of the die in question using its
18138 DW_AT_containing_type attribute. */
18139
18140static struct type *
e7c27a73 18141die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18142{
c906108c 18143 struct attribute *type_attr;
c906108c 18144
e142c38c 18145 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18146 if (!type_attr)
18147 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18148 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18149
673bfd45 18150 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18151}
18152
ac9ec31b
DE
18153/* Return an error marker type to use for the ill formed type in DIE/CU. */
18154
18155static struct type *
18156build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18157{
18158 struct objfile *objfile = dwarf2_per_objfile->objfile;
18159 char *message, *saved;
18160
18161 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18162 objfile_name (objfile),
ac9ec31b
DE
18163 cu->header.offset.sect_off,
18164 die->offset.sect_off);
18165 saved = obstack_copy0 (&objfile->objfile_obstack,
18166 message, strlen (message));
18167 xfree (message);
18168
18169 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18170}
18171
673bfd45 18172/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18173 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18174 DW_AT_containing_type.
673bfd45
DE
18175 If there is no type substitute an error marker. */
18176
c906108c 18177static struct type *
ff39bb5e 18178lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18179 struct dwarf2_cu *cu)
c906108c 18180{
bb5ed363 18181 struct objfile *objfile = cu->objfile;
f792889a
DJ
18182 struct type *this_type;
18183
ac9ec31b
DE
18184 gdb_assert (attr->name == DW_AT_type
18185 || attr->name == DW_AT_GNAT_descriptive_type
18186 || attr->name == DW_AT_containing_type);
18187
673bfd45
DE
18188 /* First see if we have it cached. */
18189
36586728
TT
18190 if (attr->form == DW_FORM_GNU_ref_alt)
18191 {
18192 struct dwarf2_per_cu_data *per_cu;
18193 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18194
18195 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18196 this_type = get_die_type_at_offset (offset, per_cu);
18197 }
7771576e 18198 else if (attr_form_is_ref (attr))
673bfd45 18199 {
b64f50a1 18200 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18201
18202 this_type = get_die_type_at_offset (offset, cu->per_cu);
18203 }
55f1336d 18204 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18205 {
ac9ec31b 18206 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18207
ac9ec31b 18208 return get_signatured_type (die, signature, cu);
673bfd45
DE
18209 }
18210 else
18211 {
ac9ec31b
DE
18212 complaint (&symfile_complaints,
18213 _("Dwarf Error: Bad type attribute %s in DIE"
18214 " at 0x%x [in module %s]"),
18215 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18216 objfile_name (objfile));
ac9ec31b 18217 return build_error_marker_type (cu, die);
673bfd45
DE
18218 }
18219
18220 /* If not cached we need to read it in. */
18221
18222 if (this_type == NULL)
18223 {
ac9ec31b 18224 struct die_info *type_die = NULL;
673bfd45
DE
18225 struct dwarf2_cu *type_cu = cu;
18226
7771576e 18227 if (attr_form_is_ref (attr))
ac9ec31b
DE
18228 type_die = follow_die_ref (die, attr, &type_cu);
18229 if (type_die == NULL)
18230 return build_error_marker_type (cu, die);
18231 /* If we find the type now, it's probably because the type came
3019eac3
DE
18232 from an inter-CU reference and the type's CU got expanded before
18233 ours. */
ac9ec31b 18234 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18235 }
18236
18237 /* If we still don't have a type use an error marker. */
18238
18239 if (this_type == NULL)
ac9ec31b 18240 return build_error_marker_type (cu, die);
673bfd45 18241
f792889a 18242 return this_type;
c906108c
SS
18243}
18244
673bfd45
DE
18245/* Return the type in DIE, CU.
18246 Returns NULL for invalid types.
18247
02142a6c 18248 This first does a lookup in die_type_hash,
673bfd45
DE
18249 and only reads the die in if necessary.
18250
18251 NOTE: This can be called when reading in partial or full symbols. */
18252
f792889a 18253static struct type *
e7c27a73 18254read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18255{
f792889a
DJ
18256 struct type *this_type;
18257
18258 this_type = get_die_type (die, cu);
18259 if (this_type)
18260 return this_type;
18261
673bfd45
DE
18262 return read_type_die_1 (die, cu);
18263}
18264
18265/* Read the type in DIE, CU.
18266 Returns NULL for invalid types. */
18267
18268static struct type *
18269read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18270{
18271 struct type *this_type = NULL;
18272
c906108c
SS
18273 switch (die->tag)
18274 {
18275 case DW_TAG_class_type:
680b30c7 18276 case DW_TAG_interface_type:
c906108c
SS
18277 case DW_TAG_structure_type:
18278 case DW_TAG_union_type:
f792889a 18279 this_type = read_structure_type (die, cu);
c906108c
SS
18280 break;
18281 case DW_TAG_enumeration_type:
f792889a 18282 this_type = read_enumeration_type (die, cu);
c906108c
SS
18283 break;
18284 case DW_TAG_subprogram:
18285 case DW_TAG_subroutine_type:
edb3359d 18286 case DW_TAG_inlined_subroutine:
f792889a 18287 this_type = read_subroutine_type (die, cu);
c906108c
SS
18288 break;
18289 case DW_TAG_array_type:
f792889a 18290 this_type = read_array_type (die, cu);
c906108c 18291 break;
72019c9c 18292 case DW_TAG_set_type:
f792889a 18293 this_type = read_set_type (die, cu);
72019c9c 18294 break;
c906108c 18295 case DW_TAG_pointer_type:
f792889a 18296 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18297 break;
18298 case DW_TAG_ptr_to_member_type:
f792889a 18299 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18300 break;
18301 case DW_TAG_reference_type:
f792889a 18302 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18303 break;
18304 case DW_TAG_const_type:
f792889a 18305 this_type = read_tag_const_type (die, cu);
c906108c
SS
18306 break;
18307 case DW_TAG_volatile_type:
f792889a 18308 this_type = read_tag_volatile_type (die, cu);
c906108c 18309 break;
06d66ee9
TT
18310 case DW_TAG_restrict_type:
18311 this_type = read_tag_restrict_type (die, cu);
18312 break;
c906108c 18313 case DW_TAG_string_type:
f792889a 18314 this_type = read_tag_string_type (die, cu);
c906108c
SS
18315 break;
18316 case DW_TAG_typedef:
f792889a 18317 this_type = read_typedef (die, cu);
c906108c 18318 break;
a02abb62 18319 case DW_TAG_subrange_type:
f792889a 18320 this_type = read_subrange_type (die, cu);
a02abb62 18321 break;
c906108c 18322 case DW_TAG_base_type:
f792889a 18323 this_type = read_base_type (die, cu);
c906108c 18324 break;
81a17f79 18325 case DW_TAG_unspecified_type:
f792889a 18326 this_type = read_unspecified_type (die, cu);
81a17f79 18327 break;
0114d602
DJ
18328 case DW_TAG_namespace:
18329 this_type = read_namespace_type (die, cu);
18330 break;
f55ee35c
JK
18331 case DW_TAG_module:
18332 this_type = read_module_type (die, cu);
18333 break;
c906108c 18334 default:
3e43a32a
MS
18335 complaint (&symfile_complaints,
18336 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18337 dwarf_tag_name (die->tag));
c906108c
SS
18338 break;
18339 }
63d06c5c 18340
f792889a 18341 return this_type;
63d06c5c
DC
18342}
18343
abc72ce4
DE
18344/* See if we can figure out if the class lives in a namespace. We do
18345 this by looking for a member function; its demangled name will
18346 contain namespace info, if there is any.
18347 Return the computed name or NULL.
18348 Space for the result is allocated on the objfile's obstack.
18349 This is the full-die version of guess_partial_die_structure_name.
18350 In this case we know DIE has no useful parent. */
18351
18352static char *
18353guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18354{
18355 struct die_info *spec_die;
18356 struct dwarf2_cu *spec_cu;
18357 struct die_info *child;
18358
18359 spec_cu = cu;
18360 spec_die = die_specification (die, &spec_cu);
18361 if (spec_die != NULL)
18362 {
18363 die = spec_die;
18364 cu = spec_cu;
18365 }
18366
18367 for (child = die->child;
18368 child != NULL;
18369 child = child->sibling)
18370 {
18371 if (child->tag == DW_TAG_subprogram)
18372 {
18373 struct attribute *attr;
18374
18375 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18376 if (attr == NULL)
18377 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18378 if (attr != NULL)
18379 {
18380 char *actual_name
18381 = language_class_name_from_physname (cu->language_defn,
18382 DW_STRING (attr));
18383 char *name = NULL;
18384
18385 if (actual_name != NULL)
18386 {
15d034d0 18387 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18388
18389 if (die_name != NULL
18390 && strcmp (die_name, actual_name) != 0)
18391 {
18392 /* Strip off the class name from the full name.
18393 We want the prefix. */
18394 int die_name_len = strlen (die_name);
18395 int actual_name_len = strlen (actual_name);
18396
18397 /* Test for '::' as a sanity check. */
18398 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18399 && actual_name[actual_name_len
18400 - die_name_len - 1] == ':')
abc72ce4 18401 name =
10f0c4bb
TT
18402 obstack_copy0 (&cu->objfile->objfile_obstack,
18403 actual_name,
18404 actual_name_len - die_name_len - 2);
abc72ce4
DE
18405 }
18406 }
18407 xfree (actual_name);
18408 return name;
18409 }
18410 }
18411 }
18412
18413 return NULL;
18414}
18415
96408a79
SA
18416/* GCC might emit a nameless typedef that has a linkage name. Determine the
18417 prefix part in such case. See
18418 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18419
18420static char *
18421anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18422{
18423 struct attribute *attr;
18424 char *base;
18425
18426 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18427 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18428 return NULL;
18429
18430 attr = dwarf2_attr (die, DW_AT_name, cu);
18431 if (attr != NULL && DW_STRING (attr) != NULL)
18432 return NULL;
18433
18434 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18435 if (attr == NULL)
18436 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18437 if (attr == NULL || DW_STRING (attr) == NULL)
18438 return NULL;
18439
18440 /* dwarf2_name had to be already called. */
18441 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18442
18443 /* Strip the base name, keep any leading namespaces/classes. */
18444 base = strrchr (DW_STRING (attr), ':');
18445 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18446 return "";
18447
10f0c4bb
TT
18448 return obstack_copy0 (&cu->objfile->objfile_obstack,
18449 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18450}
18451
fdde2d81 18452/* Return the name of the namespace/class that DIE is defined within,
0114d602 18453 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18454
0114d602
DJ
18455 For example, if we're within the method foo() in the following
18456 code:
18457
18458 namespace N {
18459 class C {
18460 void foo () {
18461 }
18462 };
18463 }
18464
18465 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18466
0d5cff50 18467static const char *
e142c38c 18468determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18469{
0114d602
DJ
18470 struct die_info *parent, *spec_die;
18471 struct dwarf2_cu *spec_cu;
18472 struct type *parent_type;
96408a79 18473 char *retval;
63d06c5c 18474
f55ee35c
JK
18475 if (cu->language != language_cplus && cu->language != language_java
18476 && cu->language != language_fortran)
0114d602
DJ
18477 return "";
18478
96408a79
SA
18479 retval = anonymous_struct_prefix (die, cu);
18480 if (retval)
18481 return retval;
18482
0114d602
DJ
18483 /* We have to be careful in the presence of DW_AT_specification.
18484 For example, with GCC 3.4, given the code
18485
18486 namespace N {
18487 void foo() {
18488 // Definition of N::foo.
18489 }
18490 }
18491
18492 then we'll have a tree of DIEs like this:
18493
18494 1: DW_TAG_compile_unit
18495 2: DW_TAG_namespace // N
18496 3: DW_TAG_subprogram // declaration of N::foo
18497 4: DW_TAG_subprogram // definition of N::foo
18498 DW_AT_specification // refers to die #3
18499
18500 Thus, when processing die #4, we have to pretend that we're in
18501 the context of its DW_AT_specification, namely the contex of die
18502 #3. */
18503 spec_cu = cu;
18504 spec_die = die_specification (die, &spec_cu);
18505 if (spec_die == NULL)
18506 parent = die->parent;
18507 else
63d06c5c 18508 {
0114d602
DJ
18509 parent = spec_die->parent;
18510 cu = spec_cu;
63d06c5c 18511 }
0114d602
DJ
18512
18513 if (parent == NULL)
18514 return "";
98bfdba5
PA
18515 else if (parent->building_fullname)
18516 {
18517 const char *name;
18518 const char *parent_name;
18519
18520 /* It has been seen on RealView 2.2 built binaries,
18521 DW_TAG_template_type_param types actually _defined_ as
18522 children of the parent class:
18523
18524 enum E {};
18525 template class <class Enum> Class{};
18526 Class<enum E> class_e;
18527
18528 1: DW_TAG_class_type (Class)
18529 2: DW_TAG_enumeration_type (E)
18530 3: DW_TAG_enumerator (enum1:0)
18531 3: DW_TAG_enumerator (enum2:1)
18532 ...
18533 2: DW_TAG_template_type_param
18534 DW_AT_type DW_FORM_ref_udata (E)
18535
18536 Besides being broken debug info, it can put GDB into an
18537 infinite loop. Consider:
18538
18539 When we're building the full name for Class<E>, we'll start
18540 at Class, and go look over its template type parameters,
18541 finding E. We'll then try to build the full name of E, and
18542 reach here. We're now trying to build the full name of E,
18543 and look over the parent DIE for containing scope. In the
18544 broken case, if we followed the parent DIE of E, we'd again
18545 find Class, and once again go look at its template type
18546 arguments, etc., etc. Simply don't consider such parent die
18547 as source-level parent of this die (it can't be, the language
18548 doesn't allow it), and break the loop here. */
18549 name = dwarf2_name (die, cu);
18550 parent_name = dwarf2_name (parent, cu);
18551 complaint (&symfile_complaints,
18552 _("template param type '%s' defined within parent '%s'"),
18553 name ? name : "<unknown>",
18554 parent_name ? parent_name : "<unknown>");
18555 return "";
18556 }
63d06c5c 18557 else
0114d602
DJ
18558 switch (parent->tag)
18559 {
63d06c5c 18560 case DW_TAG_namespace:
0114d602 18561 parent_type = read_type_die (parent, cu);
acebe513
UW
18562 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18563 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18564 Work around this problem here. */
18565 if (cu->language == language_cplus
18566 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18567 return "";
0114d602
DJ
18568 /* We give a name to even anonymous namespaces. */
18569 return TYPE_TAG_NAME (parent_type);
63d06c5c 18570 case DW_TAG_class_type:
680b30c7 18571 case DW_TAG_interface_type:
63d06c5c 18572 case DW_TAG_structure_type:
0114d602 18573 case DW_TAG_union_type:
f55ee35c 18574 case DW_TAG_module:
0114d602
DJ
18575 parent_type = read_type_die (parent, cu);
18576 if (TYPE_TAG_NAME (parent_type) != NULL)
18577 return TYPE_TAG_NAME (parent_type);
18578 else
18579 /* An anonymous structure is only allowed non-static data
18580 members; no typedefs, no member functions, et cetera.
18581 So it does not need a prefix. */
18582 return "";
abc72ce4 18583 case DW_TAG_compile_unit:
95554aad 18584 case DW_TAG_partial_unit:
abc72ce4
DE
18585 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18586 if (cu->language == language_cplus
8b70b953 18587 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18588 && die->child != NULL
18589 && (die->tag == DW_TAG_class_type
18590 || die->tag == DW_TAG_structure_type
18591 || die->tag == DW_TAG_union_type))
18592 {
18593 char *name = guess_full_die_structure_name (die, cu);
18594 if (name != NULL)
18595 return name;
18596 }
18597 return "";
63d06c5c 18598 default:
8176b9b8 18599 return determine_prefix (parent, cu);
63d06c5c 18600 }
63d06c5c
DC
18601}
18602
3e43a32a
MS
18603/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18604 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18605 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18606 an obconcat, otherwise allocate storage for the result. The CU argument is
18607 used to determine the language and hence, the appropriate separator. */
987504bb 18608
f55ee35c 18609#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18610
18611static char *
f55ee35c
JK
18612typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18613 int physname, struct dwarf2_cu *cu)
63d06c5c 18614{
f55ee35c 18615 const char *lead = "";
5c315b68 18616 const char *sep;
63d06c5c 18617
3e43a32a
MS
18618 if (suffix == NULL || suffix[0] == '\0'
18619 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18620 sep = "";
18621 else if (cu->language == language_java)
18622 sep = ".";
f55ee35c
JK
18623 else if (cu->language == language_fortran && physname)
18624 {
18625 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18626 DW_AT_MIPS_linkage_name is preferred and used instead. */
18627
18628 lead = "__";
18629 sep = "_MOD_";
18630 }
987504bb
JJ
18631 else
18632 sep = "::";
63d06c5c 18633
6dd47d34
DE
18634 if (prefix == NULL)
18635 prefix = "";
18636 if (suffix == NULL)
18637 suffix = "";
18638
987504bb
JJ
18639 if (obs == NULL)
18640 {
3e43a32a
MS
18641 char *retval
18642 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18643
f55ee35c
JK
18644 strcpy (retval, lead);
18645 strcat (retval, prefix);
6dd47d34
DE
18646 strcat (retval, sep);
18647 strcat (retval, suffix);
63d06c5c
DC
18648 return retval;
18649 }
987504bb
JJ
18650 else
18651 {
18652 /* We have an obstack. */
f55ee35c 18653 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18654 }
63d06c5c
DC
18655}
18656
c906108c
SS
18657/* Return sibling of die, NULL if no sibling. */
18658
f9aca02d 18659static struct die_info *
fba45db2 18660sibling_die (struct die_info *die)
c906108c 18661{
639d11d3 18662 return die->sibling;
c906108c
SS
18663}
18664
71c25dea
TT
18665/* Get name of a die, return NULL if not found. */
18666
15d034d0
TT
18667static const char *
18668dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18669 struct obstack *obstack)
18670{
18671 if (name && cu->language == language_cplus)
18672 {
18673 char *canon_name = cp_canonicalize_string (name);
18674
18675 if (canon_name != NULL)
18676 {
18677 if (strcmp (canon_name, name) != 0)
10f0c4bb 18678 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18679 xfree (canon_name);
18680 }
18681 }
18682
18683 return name;
c906108c
SS
18684}
18685
9219021c
DC
18686/* Get name of a die, return NULL if not found. */
18687
15d034d0 18688static const char *
e142c38c 18689dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18690{
18691 struct attribute *attr;
18692
e142c38c 18693 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18694 if ((!attr || !DW_STRING (attr))
18695 && die->tag != DW_TAG_class_type
18696 && die->tag != DW_TAG_interface_type
18697 && die->tag != DW_TAG_structure_type
18698 && die->tag != DW_TAG_union_type)
71c25dea
TT
18699 return NULL;
18700
18701 switch (die->tag)
18702 {
18703 case DW_TAG_compile_unit:
95554aad 18704 case DW_TAG_partial_unit:
71c25dea
TT
18705 /* Compilation units have a DW_AT_name that is a filename, not
18706 a source language identifier. */
18707 case DW_TAG_enumeration_type:
18708 case DW_TAG_enumerator:
18709 /* These tags always have simple identifiers already; no need
18710 to canonicalize them. */
18711 return DW_STRING (attr);
907af001 18712
418835cc
KS
18713 case DW_TAG_subprogram:
18714 /* Java constructors will all be named "<init>", so return
18715 the class name when we see this special case. */
18716 if (cu->language == language_java
18717 && DW_STRING (attr) != NULL
18718 && strcmp (DW_STRING (attr), "<init>") == 0)
18719 {
18720 struct dwarf2_cu *spec_cu = cu;
18721 struct die_info *spec_die;
18722
18723 /* GCJ will output '<init>' for Java constructor names.
18724 For this special case, return the name of the parent class. */
18725
18726 /* GCJ may output suprogram DIEs with AT_specification set.
18727 If so, use the name of the specified DIE. */
18728 spec_die = die_specification (die, &spec_cu);
18729 if (spec_die != NULL)
18730 return dwarf2_name (spec_die, spec_cu);
18731
18732 do
18733 {
18734 die = die->parent;
18735 if (die->tag == DW_TAG_class_type)
18736 return dwarf2_name (die, cu);
18737 }
95554aad
TT
18738 while (die->tag != DW_TAG_compile_unit
18739 && die->tag != DW_TAG_partial_unit);
418835cc 18740 }
907af001
UW
18741 break;
18742
18743 case DW_TAG_class_type:
18744 case DW_TAG_interface_type:
18745 case DW_TAG_structure_type:
18746 case DW_TAG_union_type:
18747 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18748 structures or unions. These were of the form "._%d" in GCC 4.1,
18749 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18750 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18751 if (attr && DW_STRING (attr)
18752 && (strncmp (DW_STRING (attr), "._", 2) == 0
18753 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18754 return NULL;
53832f31
TT
18755
18756 /* GCC might emit a nameless typedef that has a linkage name. See
18757 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18758 if (!attr || DW_STRING (attr) == NULL)
18759 {
df5c6c50 18760 char *demangled = NULL;
53832f31
TT
18761
18762 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18763 if (attr == NULL)
18764 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18765
18766 if (attr == NULL || DW_STRING (attr) == NULL)
18767 return NULL;
18768
df5c6c50
JK
18769 /* Avoid demangling DW_STRING (attr) the second time on a second
18770 call for the same DIE. */
18771 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18772 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18773
18774 if (demangled)
18775 {
96408a79
SA
18776 char *base;
18777
53832f31 18778 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
18779 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18780 demangled, strlen (demangled));
53832f31
TT
18781 DW_STRING_IS_CANONICAL (attr) = 1;
18782 xfree (demangled);
96408a79
SA
18783
18784 /* Strip any leading namespaces/classes, keep only the base name.
18785 DW_AT_name for named DIEs does not contain the prefixes. */
18786 base = strrchr (DW_STRING (attr), ':');
18787 if (base && base > DW_STRING (attr) && base[-1] == ':')
18788 return &base[1];
18789 else
18790 return DW_STRING (attr);
53832f31
TT
18791 }
18792 }
907af001
UW
18793 break;
18794
71c25dea 18795 default:
907af001
UW
18796 break;
18797 }
18798
18799 if (!DW_STRING_IS_CANONICAL (attr))
18800 {
18801 DW_STRING (attr)
18802 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18803 &cu->objfile->objfile_obstack);
18804 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 18805 }
907af001 18806 return DW_STRING (attr);
9219021c
DC
18807}
18808
18809/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
18810 is none. *EXT_CU is the CU containing DIE on input, and the CU
18811 containing the return value on output. */
9219021c
DC
18812
18813static struct die_info *
f2f0e013 18814dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
18815{
18816 struct attribute *attr;
9219021c 18817
f2f0e013 18818 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
18819 if (attr == NULL)
18820 return NULL;
18821
f2f0e013 18822 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
18823}
18824
c906108c
SS
18825/* Convert a DIE tag into its string name. */
18826
f39c6ffd 18827static const char *
aa1ee363 18828dwarf_tag_name (unsigned tag)
c906108c 18829{
f39c6ffd
TT
18830 const char *name = get_DW_TAG_name (tag);
18831
18832 if (name == NULL)
18833 return "DW_TAG_<unknown>";
18834
18835 return name;
c906108c
SS
18836}
18837
18838/* Convert a DWARF attribute code into its string name. */
18839
f39c6ffd 18840static const char *
aa1ee363 18841dwarf_attr_name (unsigned attr)
c906108c 18842{
f39c6ffd
TT
18843 const char *name;
18844
c764a876 18845#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
18846 if (attr == DW_AT_MIPS_fde)
18847 return "DW_AT_MIPS_fde";
18848#else
18849 if (attr == DW_AT_HP_block_index)
18850 return "DW_AT_HP_block_index";
c764a876 18851#endif
f39c6ffd
TT
18852
18853 name = get_DW_AT_name (attr);
18854
18855 if (name == NULL)
18856 return "DW_AT_<unknown>";
18857
18858 return name;
c906108c
SS
18859}
18860
18861/* Convert a DWARF value form code into its string name. */
18862
f39c6ffd 18863static const char *
aa1ee363 18864dwarf_form_name (unsigned form)
c906108c 18865{
f39c6ffd
TT
18866 const char *name = get_DW_FORM_name (form);
18867
18868 if (name == NULL)
18869 return "DW_FORM_<unknown>";
18870
18871 return name;
c906108c
SS
18872}
18873
18874static char *
fba45db2 18875dwarf_bool_name (unsigned mybool)
c906108c
SS
18876{
18877 if (mybool)
18878 return "TRUE";
18879 else
18880 return "FALSE";
18881}
18882
18883/* Convert a DWARF type code into its string name. */
18884
f39c6ffd 18885static const char *
aa1ee363 18886dwarf_type_encoding_name (unsigned enc)
c906108c 18887{
f39c6ffd 18888 const char *name = get_DW_ATE_name (enc);
c906108c 18889
f39c6ffd
TT
18890 if (name == NULL)
18891 return "DW_ATE_<unknown>";
c906108c 18892
f39c6ffd 18893 return name;
c906108c 18894}
c906108c 18895
f9aca02d 18896static void
d97bc12b 18897dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
18898{
18899 unsigned int i;
18900
d97bc12b
DE
18901 print_spaces (indent, f);
18902 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 18903 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
18904
18905 if (die->parent != NULL)
18906 {
18907 print_spaces (indent, f);
18908 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 18909 die->parent->offset.sect_off);
d97bc12b
DE
18910 }
18911
18912 print_spaces (indent, f);
18913 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 18914 dwarf_bool_name (die->child != NULL));
c906108c 18915
d97bc12b
DE
18916 print_spaces (indent, f);
18917 fprintf_unfiltered (f, " attributes:\n");
18918
c906108c
SS
18919 for (i = 0; i < die->num_attrs; ++i)
18920 {
d97bc12b
DE
18921 print_spaces (indent, f);
18922 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
18923 dwarf_attr_name (die->attrs[i].name),
18924 dwarf_form_name (die->attrs[i].form));
d97bc12b 18925
c906108c
SS
18926 switch (die->attrs[i].form)
18927 {
c906108c 18928 case DW_FORM_addr:
3019eac3 18929 case DW_FORM_GNU_addr_index:
d97bc12b 18930 fprintf_unfiltered (f, "address: ");
5af949e3 18931 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
18932 break;
18933 case DW_FORM_block2:
18934 case DW_FORM_block4:
18935 case DW_FORM_block:
18936 case DW_FORM_block1:
56eb65bd
SP
18937 fprintf_unfiltered (f, "block: size %s",
18938 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 18939 break;
2dc7f7b3 18940 case DW_FORM_exprloc:
56eb65bd
SP
18941 fprintf_unfiltered (f, "expression: size %s",
18942 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 18943 break;
4568ecf9
DE
18944 case DW_FORM_ref_addr:
18945 fprintf_unfiltered (f, "ref address: ");
18946 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18947 break;
36586728
TT
18948 case DW_FORM_GNU_ref_alt:
18949 fprintf_unfiltered (f, "alt ref address: ");
18950 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18951 break;
10b3939b
DJ
18952 case DW_FORM_ref1:
18953 case DW_FORM_ref2:
18954 case DW_FORM_ref4:
4568ecf9
DE
18955 case DW_FORM_ref8:
18956 case DW_FORM_ref_udata:
d97bc12b 18957 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 18958 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 18959 break;
c906108c
SS
18960 case DW_FORM_data1:
18961 case DW_FORM_data2:
18962 case DW_FORM_data4:
ce5d95e1 18963 case DW_FORM_data8:
c906108c
SS
18964 case DW_FORM_udata:
18965 case DW_FORM_sdata:
43bbcdc2
PH
18966 fprintf_unfiltered (f, "constant: %s",
18967 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 18968 break;
2dc7f7b3
TT
18969 case DW_FORM_sec_offset:
18970 fprintf_unfiltered (f, "section offset: %s",
18971 pulongest (DW_UNSND (&die->attrs[i])));
18972 break;
55f1336d 18973 case DW_FORM_ref_sig8:
ac9ec31b
DE
18974 fprintf_unfiltered (f, "signature: %s",
18975 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 18976 break;
c906108c 18977 case DW_FORM_string:
4bdf3d34 18978 case DW_FORM_strp:
3019eac3 18979 case DW_FORM_GNU_str_index:
36586728 18980 case DW_FORM_GNU_strp_alt:
8285870a 18981 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 18982 DW_STRING (&die->attrs[i])
8285870a
JK
18983 ? DW_STRING (&die->attrs[i]) : "",
18984 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
18985 break;
18986 case DW_FORM_flag:
18987 if (DW_UNSND (&die->attrs[i]))
d97bc12b 18988 fprintf_unfiltered (f, "flag: TRUE");
c906108c 18989 else
d97bc12b 18990 fprintf_unfiltered (f, "flag: FALSE");
c906108c 18991 break;
2dc7f7b3
TT
18992 case DW_FORM_flag_present:
18993 fprintf_unfiltered (f, "flag: TRUE");
18994 break;
a8329558 18995 case DW_FORM_indirect:
0963b4bd
MS
18996 /* The reader will have reduced the indirect form to
18997 the "base form" so this form should not occur. */
3e43a32a
MS
18998 fprintf_unfiltered (f,
18999 "unexpected attribute form: DW_FORM_indirect");
a8329558 19000 break;
c906108c 19001 default:
d97bc12b 19002 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19003 die->attrs[i].form);
d97bc12b 19004 break;
c906108c 19005 }
d97bc12b 19006 fprintf_unfiltered (f, "\n");
c906108c
SS
19007 }
19008}
19009
f9aca02d 19010static void
d97bc12b 19011dump_die_for_error (struct die_info *die)
c906108c 19012{
d97bc12b
DE
19013 dump_die_shallow (gdb_stderr, 0, die);
19014}
19015
19016static void
19017dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19018{
19019 int indent = level * 4;
19020
19021 gdb_assert (die != NULL);
19022
19023 if (level >= max_level)
19024 return;
19025
19026 dump_die_shallow (f, indent, die);
19027
19028 if (die->child != NULL)
c906108c 19029 {
d97bc12b
DE
19030 print_spaces (indent, f);
19031 fprintf_unfiltered (f, " Children:");
19032 if (level + 1 < max_level)
19033 {
19034 fprintf_unfiltered (f, "\n");
19035 dump_die_1 (f, level + 1, max_level, die->child);
19036 }
19037 else
19038 {
3e43a32a
MS
19039 fprintf_unfiltered (f,
19040 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19041 }
19042 }
19043
19044 if (die->sibling != NULL && level > 0)
19045 {
19046 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19047 }
19048}
19049
d97bc12b
DE
19050/* This is called from the pdie macro in gdbinit.in.
19051 It's not static so gcc will keep a copy callable from gdb. */
19052
19053void
19054dump_die (struct die_info *die, int max_level)
19055{
19056 dump_die_1 (gdb_stdlog, 0, max_level, die);
19057}
19058
f9aca02d 19059static void
51545339 19060store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19061{
51545339 19062 void **slot;
c906108c 19063
b64f50a1
JK
19064 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19065 INSERT);
51545339
DJ
19066
19067 *slot = die;
c906108c
SS
19068}
19069
b64f50a1
JK
19070/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19071 required kind. */
19072
19073static sect_offset
ff39bb5e 19074dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19075{
4568ecf9 19076 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19077
7771576e 19078 if (attr_form_is_ref (attr))
b64f50a1 19079 return retval;
93311388 19080
b64f50a1 19081 retval.sect_off = 0;
93311388
DE
19082 complaint (&symfile_complaints,
19083 _("unsupported die ref attribute form: '%s'"),
19084 dwarf_form_name (attr->form));
b64f50a1 19085 return retval;
c906108c
SS
19086}
19087
43bbcdc2
PH
19088/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19089 * the value held by the attribute is not constant. */
a02abb62 19090
43bbcdc2 19091static LONGEST
ff39bb5e 19092dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19093{
19094 if (attr->form == DW_FORM_sdata)
19095 return DW_SND (attr);
19096 else if (attr->form == DW_FORM_udata
19097 || attr->form == DW_FORM_data1
19098 || attr->form == DW_FORM_data2
19099 || attr->form == DW_FORM_data4
19100 || attr->form == DW_FORM_data8)
19101 return DW_UNSND (attr);
19102 else
19103 {
3e43a32a
MS
19104 complaint (&symfile_complaints,
19105 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19106 dwarf_form_name (attr->form));
19107 return default_value;
19108 }
19109}
19110
348e048f
DE
19111/* Follow reference or signature attribute ATTR of SRC_DIE.
19112 On entry *REF_CU is the CU of SRC_DIE.
19113 On exit *REF_CU is the CU of the result. */
19114
19115static struct die_info *
ff39bb5e 19116follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19117 struct dwarf2_cu **ref_cu)
19118{
19119 struct die_info *die;
19120
7771576e 19121 if (attr_form_is_ref (attr))
348e048f 19122 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19123 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19124 die = follow_die_sig (src_die, attr, ref_cu);
19125 else
19126 {
19127 dump_die_for_error (src_die);
19128 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19129 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19130 }
19131
19132 return die;
03dd20cc
DJ
19133}
19134
5c631832 19135/* Follow reference OFFSET.
673bfd45
DE
19136 On entry *REF_CU is the CU of the source die referencing OFFSET.
19137 On exit *REF_CU is the CU of the result.
19138 Returns NULL if OFFSET is invalid. */
f504f079 19139
f9aca02d 19140static struct die_info *
36586728
TT
19141follow_die_offset (sect_offset offset, int offset_in_dwz,
19142 struct dwarf2_cu **ref_cu)
c906108c 19143{
10b3939b 19144 struct die_info temp_die;
f2f0e013 19145 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19146
348e048f
DE
19147 gdb_assert (cu->per_cu != NULL);
19148
98bfdba5
PA
19149 target_cu = cu;
19150
3019eac3 19151 if (cu->per_cu->is_debug_types)
348e048f
DE
19152 {
19153 /* .debug_types CUs cannot reference anything outside their CU.
19154 If they need to, they have to reference a signatured type via
55f1336d 19155 DW_FORM_ref_sig8. */
348e048f 19156 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19157 return NULL;
348e048f 19158 }
36586728
TT
19159 else if (offset_in_dwz != cu->per_cu->is_dwz
19160 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19161 {
19162 struct dwarf2_per_cu_data *per_cu;
9a619af0 19163
36586728
TT
19164 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19165 cu->objfile);
03dd20cc
DJ
19166
19167 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19168 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19169 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19170
10b3939b
DJ
19171 target_cu = per_cu->cu;
19172 }
98bfdba5
PA
19173 else if (cu->dies == NULL)
19174 {
19175 /* We're loading full DIEs during partial symbol reading. */
19176 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19177 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19178 }
c906108c 19179
f2f0e013 19180 *ref_cu = target_cu;
51545339 19181 temp_die.offset = offset;
b64f50a1 19182 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19183}
10b3939b 19184
5c631832
JK
19185/* Follow reference attribute ATTR of SRC_DIE.
19186 On entry *REF_CU is the CU of SRC_DIE.
19187 On exit *REF_CU is the CU of the result. */
19188
19189static struct die_info *
ff39bb5e 19190follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19191 struct dwarf2_cu **ref_cu)
19192{
b64f50a1 19193 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19194 struct dwarf2_cu *cu = *ref_cu;
19195 struct die_info *die;
19196
36586728
TT
19197 die = follow_die_offset (offset,
19198 (attr->form == DW_FORM_GNU_ref_alt
19199 || cu->per_cu->is_dwz),
19200 ref_cu);
5c631832
JK
19201 if (!die)
19202 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19203 "at 0x%x [in module %s]"),
4262abfb
JK
19204 offset.sect_off, src_die->offset.sect_off,
19205 objfile_name (cu->objfile));
348e048f 19206
5c631832
JK
19207 return die;
19208}
19209
d83e736b
JK
19210/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19211 Returned value is intended for DW_OP_call*. Returned
19212 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19213
19214struct dwarf2_locexpr_baton
8b9737bf
TT
19215dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19216 struct dwarf2_per_cu_data *per_cu,
19217 CORE_ADDR (*get_frame_pc) (void *baton),
19218 void *baton)
5c631832 19219{
918dd910 19220 struct dwarf2_cu *cu;
5c631832
JK
19221 struct die_info *die;
19222 struct attribute *attr;
19223 struct dwarf2_locexpr_baton retval;
19224
8cf6f0b1
TT
19225 dw2_setup (per_cu->objfile);
19226
918dd910
JK
19227 if (per_cu->cu == NULL)
19228 load_cu (per_cu);
19229 cu = per_cu->cu;
19230
36586728 19231 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19232 if (!die)
19233 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19234 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19235
19236 attr = dwarf2_attr (die, DW_AT_location, cu);
19237 if (!attr)
19238 {
e103e986
JK
19239 /* DWARF: "If there is no such attribute, then there is no effect.".
19240 DATA is ignored if SIZE is 0. */
5c631832 19241
e103e986 19242 retval.data = NULL;
5c631832
JK
19243 retval.size = 0;
19244 }
8cf6f0b1
TT
19245 else if (attr_form_is_section_offset (attr))
19246 {
19247 struct dwarf2_loclist_baton loclist_baton;
19248 CORE_ADDR pc = (*get_frame_pc) (baton);
19249 size_t size;
19250
19251 fill_in_loclist_baton (cu, &loclist_baton, attr);
19252
19253 retval.data = dwarf2_find_location_expression (&loclist_baton,
19254 &size, pc);
19255 retval.size = size;
19256 }
5c631832
JK
19257 else
19258 {
19259 if (!attr_form_is_block (attr))
19260 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19261 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19262 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19263
19264 retval.data = DW_BLOCK (attr)->data;
19265 retval.size = DW_BLOCK (attr)->size;
19266 }
19267 retval.per_cu = cu->per_cu;
918dd910 19268
918dd910
JK
19269 age_cached_comp_units ();
19270
5c631832 19271 return retval;
348e048f
DE
19272}
19273
8b9737bf
TT
19274/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19275 offset. */
19276
19277struct dwarf2_locexpr_baton
19278dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19279 struct dwarf2_per_cu_data *per_cu,
19280 CORE_ADDR (*get_frame_pc) (void *baton),
19281 void *baton)
19282{
19283 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19284
19285 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19286}
19287
b6807d98
TT
19288/* Write a constant of a given type as target-ordered bytes into
19289 OBSTACK. */
19290
19291static const gdb_byte *
19292write_constant_as_bytes (struct obstack *obstack,
19293 enum bfd_endian byte_order,
19294 struct type *type,
19295 ULONGEST value,
19296 LONGEST *len)
19297{
19298 gdb_byte *result;
19299
19300 *len = TYPE_LENGTH (type);
19301 result = obstack_alloc (obstack, *len);
19302 store_unsigned_integer (result, *len, byte_order, value);
19303
19304 return result;
19305}
19306
19307/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19308 pointer to the constant bytes and set LEN to the length of the
19309 data. If memory is needed, allocate it on OBSTACK. If the DIE
19310 does not have a DW_AT_const_value, return NULL. */
19311
19312const gdb_byte *
19313dwarf2_fetch_constant_bytes (sect_offset offset,
19314 struct dwarf2_per_cu_data *per_cu,
19315 struct obstack *obstack,
19316 LONGEST *len)
19317{
19318 struct dwarf2_cu *cu;
19319 struct die_info *die;
19320 struct attribute *attr;
19321 const gdb_byte *result = NULL;
19322 struct type *type;
19323 LONGEST value;
19324 enum bfd_endian byte_order;
19325
19326 dw2_setup (per_cu->objfile);
19327
19328 if (per_cu->cu == NULL)
19329 load_cu (per_cu);
19330 cu = per_cu->cu;
19331
19332 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19333 if (!die)
19334 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19335 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19336
19337
19338 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19339 if (attr == NULL)
19340 return NULL;
19341
19342 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19343 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19344
19345 switch (attr->form)
19346 {
19347 case DW_FORM_addr:
19348 case DW_FORM_GNU_addr_index:
19349 {
19350 gdb_byte *tem;
19351
19352 *len = cu->header.addr_size;
19353 tem = obstack_alloc (obstack, *len);
19354 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19355 result = tem;
19356 }
19357 break;
19358 case DW_FORM_string:
19359 case DW_FORM_strp:
19360 case DW_FORM_GNU_str_index:
19361 case DW_FORM_GNU_strp_alt:
19362 /* DW_STRING is already allocated on the objfile obstack, point
19363 directly to it. */
19364 result = (const gdb_byte *) DW_STRING (attr);
19365 *len = strlen (DW_STRING (attr));
19366 break;
19367 case DW_FORM_block1:
19368 case DW_FORM_block2:
19369 case DW_FORM_block4:
19370 case DW_FORM_block:
19371 case DW_FORM_exprloc:
19372 result = DW_BLOCK (attr)->data;
19373 *len = DW_BLOCK (attr)->size;
19374 break;
19375
19376 /* The DW_AT_const_value attributes are supposed to carry the
19377 symbol's value "represented as it would be on the target
19378 architecture." By the time we get here, it's already been
19379 converted to host endianness, so we just need to sign- or
19380 zero-extend it as appropriate. */
19381 case DW_FORM_data1:
19382 type = die_type (die, cu);
19383 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19384 if (result == NULL)
19385 result = write_constant_as_bytes (obstack, byte_order,
19386 type, value, len);
19387 break;
19388 case DW_FORM_data2:
19389 type = die_type (die, cu);
19390 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19391 if (result == NULL)
19392 result = write_constant_as_bytes (obstack, byte_order,
19393 type, value, len);
19394 break;
19395 case DW_FORM_data4:
19396 type = die_type (die, cu);
19397 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19398 if (result == NULL)
19399 result = write_constant_as_bytes (obstack, byte_order,
19400 type, value, len);
19401 break;
19402 case DW_FORM_data8:
19403 type = die_type (die, cu);
19404 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19405 if (result == NULL)
19406 result = write_constant_as_bytes (obstack, byte_order,
19407 type, value, len);
19408 break;
19409
19410 case DW_FORM_sdata:
19411 type = die_type (die, cu);
19412 result = write_constant_as_bytes (obstack, byte_order,
19413 type, DW_SND (attr), len);
19414 break;
19415
19416 case DW_FORM_udata:
19417 type = die_type (die, cu);
19418 result = write_constant_as_bytes (obstack, byte_order,
19419 type, DW_UNSND (attr), len);
19420 break;
19421
19422 default:
19423 complaint (&symfile_complaints,
19424 _("unsupported const value attribute form: '%s'"),
19425 dwarf_form_name (attr->form));
19426 break;
19427 }
19428
19429 return result;
19430}
19431
8a9b8146
TT
19432/* Return the type of the DIE at DIE_OFFSET in the CU named by
19433 PER_CU. */
19434
19435struct type *
b64f50a1 19436dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19437 struct dwarf2_per_cu_data *per_cu)
19438{
b64f50a1
JK
19439 sect_offset die_offset_sect;
19440
8a9b8146 19441 dw2_setup (per_cu->objfile);
b64f50a1
JK
19442
19443 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19444 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19445}
19446
ac9ec31b 19447/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19448 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19449 On exit *REF_CU is the CU of the result.
19450 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19451
19452static struct die_info *
ac9ec31b
DE
19453follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19454 struct dwarf2_cu **ref_cu)
348e048f
DE
19455{
19456 struct objfile *objfile = (*ref_cu)->objfile;
19457 struct die_info temp_die;
348e048f
DE
19458 struct dwarf2_cu *sig_cu;
19459 struct die_info *die;
19460
ac9ec31b
DE
19461 /* While it might be nice to assert sig_type->type == NULL here,
19462 we can get here for DW_AT_imported_declaration where we need
19463 the DIE not the type. */
348e048f
DE
19464
19465 /* If necessary, add it to the queue and load its DIEs. */
19466
95554aad 19467 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19468 read_signatured_type (sig_type);
348e048f 19469
348e048f 19470 sig_cu = sig_type->per_cu.cu;
69d751e3 19471 gdb_assert (sig_cu != NULL);
3019eac3
DE
19472 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19473 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19474 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19475 temp_die.offset.sect_off);
348e048f
DE
19476 if (die)
19477 {
796a7ff8
DE
19478 /* For .gdb_index version 7 keep track of included TUs.
19479 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19480 if (dwarf2_per_objfile->index_table != NULL
19481 && dwarf2_per_objfile->index_table->version <= 7)
19482 {
19483 VEC_safe_push (dwarf2_per_cu_ptr,
19484 (*ref_cu)->per_cu->imported_symtabs,
19485 sig_cu->per_cu);
19486 }
19487
348e048f
DE
19488 *ref_cu = sig_cu;
19489 return die;
19490 }
19491
ac9ec31b
DE
19492 return NULL;
19493}
19494
19495/* Follow signatured type referenced by ATTR in SRC_DIE.
19496 On entry *REF_CU is the CU of SRC_DIE.
19497 On exit *REF_CU is the CU of the result.
19498 The result is the DIE of the type.
19499 If the referenced type cannot be found an error is thrown. */
19500
19501static struct die_info *
ff39bb5e 19502follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19503 struct dwarf2_cu **ref_cu)
19504{
19505 ULONGEST signature = DW_SIGNATURE (attr);
19506 struct signatured_type *sig_type;
19507 struct die_info *die;
19508
19509 gdb_assert (attr->form == DW_FORM_ref_sig8);
19510
a2ce51a0 19511 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19512 /* sig_type will be NULL if the signatured type is missing from
19513 the debug info. */
19514 if (sig_type == NULL)
19515 {
19516 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19517 " from DIE at 0x%x [in module %s]"),
19518 hex_string (signature), src_die->offset.sect_off,
4262abfb 19519 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19520 }
19521
19522 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19523 if (die == NULL)
19524 {
19525 dump_die_for_error (src_die);
19526 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19527 " from DIE at 0x%x [in module %s]"),
19528 hex_string (signature), src_die->offset.sect_off,
4262abfb 19529 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19530 }
19531
19532 return die;
19533}
19534
19535/* Get the type specified by SIGNATURE referenced in DIE/CU,
19536 reading in and processing the type unit if necessary. */
19537
19538static struct type *
19539get_signatured_type (struct die_info *die, ULONGEST signature,
19540 struct dwarf2_cu *cu)
19541{
19542 struct signatured_type *sig_type;
19543 struct dwarf2_cu *type_cu;
19544 struct die_info *type_die;
19545 struct type *type;
19546
a2ce51a0 19547 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19548 /* sig_type will be NULL if the signatured type is missing from
19549 the debug info. */
19550 if (sig_type == NULL)
19551 {
19552 complaint (&symfile_complaints,
19553 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19554 " from DIE at 0x%x [in module %s]"),
19555 hex_string (signature), die->offset.sect_off,
4262abfb 19556 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19557 return build_error_marker_type (cu, die);
19558 }
19559
19560 /* If we already know the type we're done. */
19561 if (sig_type->type != NULL)
19562 return sig_type->type;
19563
19564 type_cu = cu;
19565 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19566 if (type_die != NULL)
19567 {
19568 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19569 is created. This is important, for example, because for c++ classes
19570 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19571 type = read_type_die (type_die, type_cu);
19572 if (type == NULL)
19573 {
19574 complaint (&symfile_complaints,
19575 _("Dwarf Error: Cannot build signatured type %s"
19576 " referenced from DIE at 0x%x [in module %s]"),
19577 hex_string (signature), die->offset.sect_off,
4262abfb 19578 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19579 type = build_error_marker_type (cu, die);
19580 }
19581 }
19582 else
19583 {
19584 complaint (&symfile_complaints,
19585 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19586 " from DIE at 0x%x [in module %s]"),
19587 hex_string (signature), die->offset.sect_off,
4262abfb 19588 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19589 type = build_error_marker_type (cu, die);
19590 }
19591 sig_type->type = type;
19592
19593 return type;
19594}
19595
19596/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19597 reading in and processing the type unit if necessary. */
19598
19599static struct type *
ff39bb5e 19600get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19601 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19602{
19603 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19604 if (attr_form_is_ref (attr))
ac9ec31b
DE
19605 {
19606 struct dwarf2_cu *type_cu = cu;
19607 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19608
19609 return read_type_die (type_die, type_cu);
19610 }
19611 else if (attr->form == DW_FORM_ref_sig8)
19612 {
19613 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19614 }
19615 else
19616 {
19617 complaint (&symfile_complaints,
19618 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19619 " at 0x%x [in module %s]"),
19620 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19621 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19622 return build_error_marker_type (cu, die);
19623 }
348e048f
DE
19624}
19625
e5fe5e75 19626/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19627
19628static void
e5fe5e75 19629load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19630{
52dc124a 19631 struct signatured_type *sig_type;
348e048f 19632
f4dc4d17
DE
19633 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19634 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19635
6721b2ec
DE
19636 /* We have the per_cu, but we need the signatured_type.
19637 Fortunately this is an easy translation. */
19638 gdb_assert (per_cu->is_debug_types);
19639 sig_type = (struct signatured_type *) per_cu;
348e048f 19640
6721b2ec 19641 gdb_assert (per_cu->cu == NULL);
348e048f 19642
52dc124a 19643 read_signatured_type (sig_type);
348e048f 19644
6721b2ec 19645 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19646}
19647
dee91e82
DE
19648/* die_reader_func for read_signatured_type.
19649 This is identical to load_full_comp_unit_reader,
19650 but is kept separate for now. */
348e048f
DE
19651
19652static void
dee91e82 19653read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19654 const gdb_byte *info_ptr,
dee91e82
DE
19655 struct die_info *comp_unit_die,
19656 int has_children,
19657 void *data)
348e048f 19658{
dee91e82 19659 struct dwarf2_cu *cu = reader->cu;
348e048f 19660
dee91e82
DE
19661 gdb_assert (cu->die_hash == NULL);
19662 cu->die_hash =
19663 htab_create_alloc_ex (cu->header.length / 12,
19664 die_hash,
19665 die_eq,
19666 NULL,
19667 &cu->comp_unit_obstack,
19668 hashtab_obstack_allocate,
19669 dummy_obstack_deallocate);
348e048f 19670
dee91e82
DE
19671 if (has_children)
19672 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19673 &info_ptr, comp_unit_die);
19674 cu->dies = comp_unit_die;
19675 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19676
19677 /* We try not to read any attributes in this function, because not
9cdd5dbd 19678 all CUs needed for references have been loaded yet, and symbol
348e048f 19679 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19680 or we won't be able to build types correctly.
19681 Similarly, if we do not read the producer, we can not apply
19682 producer-specific interpretation. */
95554aad 19683 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19684}
348e048f 19685
3019eac3
DE
19686/* Read in a signatured type and build its CU and DIEs.
19687 If the type is a stub for the real type in a DWO file,
19688 read in the real type from the DWO file as well. */
dee91e82
DE
19689
19690static void
19691read_signatured_type (struct signatured_type *sig_type)
19692{
19693 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19694
3019eac3 19695 gdb_assert (per_cu->is_debug_types);
dee91e82 19696 gdb_assert (per_cu->cu == NULL);
348e048f 19697
f4dc4d17
DE
19698 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19699 read_signatured_type_reader, NULL);
7ee85ab1 19700 sig_type->per_cu.tu_read = 1;
c906108c
SS
19701}
19702
c906108c
SS
19703/* Decode simple location descriptions.
19704 Given a pointer to a dwarf block that defines a location, compute
19705 the location and return the value.
19706
4cecd739
DJ
19707 NOTE drow/2003-11-18: This function is called in two situations
19708 now: for the address of static or global variables (partial symbols
19709 only) and for offsets into structures which are expected to be
19710 (more or less) constant. The partial symbol case should go away,
19711 and only the constant case should remain. That will let this
19712 function complain more accurately. A few special modes are allowed
19713 without complaint for global variables (for instance, global
19714 register values and thread-local values).
c906108c
SS
19715
19716 A location description containing no operations indicates that the
4cecd739 19717 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19718 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19719 callers will only want a very basic result and this can become a
21ae7a4d
JK
19720 complaint.
19721
19722 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19723
19724static CORE_ADDR
e7c27a73 19725decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19726{
e7c27a73 19727 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19728 size_t i;
19729 size_t size = blk->size;
d521ce57 19730 const gdb_byte *data = blk->data;
21ae7a4d
JK
19731 CORE_ADDR stack[64];
19732 int stacki;
19733 unsigned int bytes_read, unsnd;
19734 gdb_byte op;
c906108c 19735
21ae7a4d
JK
19736 i = 0;
19737 stacki = 0;
19738 stack[stacki] = 0;
19739 stack[++stacki] = 0;
19740
19741 while (i < size)
19742 {
19743 op = data[i++];
19744 switch (op)
19745 {
19746 case DW_OP_lit0:
19747 case DW_OP_lit1:
19748 case DW_OP_lit2:
19749 case DW_OP_lit3:
19750 case DW_OP_lit4:
19751 case DW_OP_lit5:
19752 case DW_OP_lit6:
19753 case DW_OP_lit7:
19754 case DW_OP_lit8:
19755 case DW_OP_lit9:
19756 case DW_OP_lit10:
19757 case DW_OP_lit11:
19758 case DW_OP_lit12:
19759 case DW_OP_lit13:
19760 case DW_OP_lit14:
19761 case DW_OP_lit15:
19762 case DW_OP_lit16:
19763 case DW_OP_lit17:
19764 case DW_OP_lit18:
19765 case DW_OP_lit19:
19766 case DW_OP_lit20:
19767 case DW_OP_lit21:
19768 case DW_OP_lit22:
19769 case DW_OP_lit23:
19770 case DW_OP_lit24:
19771 case DW_OP_lit25:
19772 case DW_OP_lit26:
19773 case DW_OP_lit27:
19774 case DW_OP_lit28:
19775 case DW_OP_lit29:
19776 case DW_OP_lit30:
19777 case DW_OP_lit31:
19778 stack[++stacki] = op - DW_OP_lit0;
19779 break;
f1bea926 19780
21ae7a4d
JK
19781 case DW_OP_reg0:
19782 case DW_OP_reg1:
19783 case DW_OP_reg2:
19784 case DW_OP_reg3:
19785 case DW_OP_reg4:
19786 case DW_OP_reg5:
19787 case DW_OP_reg6:
19788 case DW_OP_reg7:
19789 case DW_OP_reg8:
19790 case DW_OP_reg9:
19791 case DW_OP_reg10:
19792 case DW_OP_reg11:
19793 case DW_OP_reg12:
19794 case DW_OP_reg13:
19795 case DW_OP_reg14:
19796 case DW_OP_reg15:
19797 case DW_OP_reg16:
19798 case DW_OP_reg17:
19799 case DW_OP_reg18:
19800 case DW_OP_reg19:
19801 case DW_OP_reg20:
19802 case DW_OP_reg21:
19803 case DW_OP_reg22:
19804 case DW_OP_reg23:
19805 case DW_OP_reg24:
19806 case DW_OP_reg25:
19807 case DW_OP_reg26:
19808 case DW_OP_reg27:
19809 case DW_OP_reg28:
19810 case DW_OP_reg29:
19811 case DW_OP_reg30:
19812 case DW_OP_reg31:
19813 stack[++stacki] = op - DW_OP_reg0;
19814 if (i < size)
19815 dwarf2_complex_location_expr_complaint ();
19816 break;
c906108c 19817
21ae7a4d
JK
19818 case DW_OP_regx:
19819 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19820 i += bytes_read;
19821 stack[++stacki] = unsnd;
19822 if (i < size)
19823 dwarf2_complex_location_expr_complaint ();
19824 break;
c906108c 19825
21ae7a4d
JK
19826 case DW_OP_addr:
19827 stack[++stacki] = read_address (objfile->obfd, &data[i],
19828 cu, &bytes_read);
19829 i += bytes_read;
19830 break;
d53d4ac5 19831
21ae7a4d
JK
19832 case DW_OP_const1u:
19833 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19834 i += 1;
19835 break;
19836
19837 case DW_OP_const1s:
19838 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19839 i += 1;
19840 break;
19841
19842 case DW_OP_const2u:
19843 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19844 i += 2;
19845 break;
19846
19847 case DW_OP_const2s:
19848 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19849 i += 2;
19850 break;
d53d4ac5 19851
21ae7a4d
JK
19852 case DW_OP_const4u:
19853 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19854 i += 4;
19855 break;
19856
19857 case DW_OP_const4s:
19858 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19859 i += 4;
19860 break;
19861
585861ea
JK
19862 case DW_OP_const8u:
19863 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19864 i += 8;
19865 break;
19866
21ae7a4d
JK
19867 case DW_OP_constu:
19868 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19869 &bytes_read);
19870 i += bytes_read;
19871 break;
19872
19873 case DW_OP_consts:
19874 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19875 i += bytes_read;
19876 break;
19877
19878 case DW_OP_dup:
19879 stack[stacki + 1] = stack[stacki];
19880 stacki++;
19881 break;
19882
19883 case DW_OP_plus:
19884 stack[stacki - 1] += stack[stacki];
19885 stacki--;
19886 break;
19887
19888 case DW_OP_plus_uconst:
19889 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19890 &bytes_read);
19891 i += bytes_read;
19892 break;
19893
19894 case DW_OP_minus:
19895 stack[stacki - 1] -= stack[stacki];
19896 stacki--;
19897 break;
19898
19899 case DW_OP_deref:
19900 /* If we're not the last op, then we definitely can't encode
19901 this using GDB's address_class enum. This is valid for partial
19902 global symbols, although the variable's address will be bogus
19903 in the psymtab. */
19904 if (i < size)
19905 dwarf2_complex_location_expr_complaint ();
19906 break;
19907
19908 case DW_OP_GNU_push_tls_address:
19909 /* The top of the stack has the offset from the beginning
19910 of the thread control block at which the variable is located. */
19911 /* Nothing should follow this operator, so the top of stack would
19912 be returned. */
19913 /* This is valid for partial global symbols, but the variable's
585861ea
JK
19914 address will be bogus in the psymtab. Make it always at least
19915 non-zero to not look as a variable garbage collected by linker
19916 which have DW_OP_addr 0. */
21ae7a4d
JK
19917 if (i < size)
19918 dwarf2_complex_location_expr_complaint ();
585861ea 19919 stack[stacki]++;
21ae7a4d
JK
19920 break;
19921
19922 case DW_OP_GNU_uninit:
19923 break;
19924
3019eac3 19925 case DW_OP_GNU_addr_index:
49f6c839 19926 case DW_OP_GNU_const_index:
3019eac3
DE
19927 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19928 &bytes_read);
19929 i += bytes_read;
19930 break;
19931
21ae7a4d
JK
19932 default:
19933 {
f39c6ffd 19934 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
19935
19936 if (name)
19937 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19938 name);
19939 else
19940 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19941 op);
19942 }
19943
19944 return (stack[stacki]);
d53d4ac5 19945 }
3c6e0cb3 19946
21ae7a4d
JK
19947 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19948 outside of the allocated space. Also enforce minimum>0. */
19949 if (stacki >= ARRAY_SIZE (stack) - 1)
19950 {
19951 complaint (&symfile_complaints,
19952 _("location description stack overflow"));
19953 return 0;
19954 }
19955
19956 if (stacki <= 0)
19957 {
19958 complaint (&symfile_complaints,
19959 _("location description stack underflow"));
19960 return 0;
19961 }
19962 }
19963 return (stack[stacki]);
c906108c
SS
19964}
19965
19966/* memory allocation interface */
19967
c906108c 19968static struct dwarf_block *
7b5a2f43 19969dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
19970{
19971 struct dwarf_block *blk;
19972
19973 blk = (struct dwarf_block *)
7b5a2f43 19974 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
19975 return (blk);
19976}
19977
c906108c 19978static struct die_info *
b60c80d6 19979dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
19980{
19981 struct die_info *die;
b60c80d6
DJ
19982 size_t size = sizeof (struct die_info);
19983
19984 if (num_attrs > 1)
19985 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 19986
b60c80d6 19987 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
19988 memset (die, 0, sizeof (struct die_info));
19989 return (die);
19990}
2e276125
JB
19991
19992\f
19993/* Macro support. */
19994
233d95b5
JK
19995/* Return file name relative to the compilation directory of file number I in
19996 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 19997 responsible for freeing it. */
233d95b5 19998
2e276125 19999static char *
233d95b5 20000file_file_name (int file, struct line_header *lh)
2e276125 20001{
6a83a1e6
EZ
20002 /* Is the file number a valid index into the line header's file name
20003 table? Remember that file numbers start with one, not zero. */
20004 if (1 <= file && file <= lh->num_file_names)
20005 {
20006 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20007
233d95b5 20008 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20009 return xstrdup (fe->name);
233d95b5
JK
20010 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20011 fe->name, NULL);
6a83a1e6 20012 }
2e276125
JB
20013 else
20014 {
6a83a1e6
EZ
20015 /* The compiler produced a bogus file number. We can at least
20016 record the macro definitions made in the file, even if we
20017 won't be able to find the file by name. */
20018 char fake_name[80];
9a619af0 20019
8c042590
PM
20020 xsnprintf (fake_name, sizeof (fake_name),
20021 "<bad macro file number %d>", file);
2e276125 20022
6e70227d 20023 complaint (&symfile_complaints,
6a83a1e6
EZ
20024 _("bad file number in macro information (%d)"),
20025 file);
2e276125 20026
6a83a1e6 20027 return xstrdup (fake_name);
2e276125
JB
20028 }
20029}
20030
233d95b5
JK
20031/* Return the full name of file number I in *LH's file name table.
20032 Use COMP_DIR as the name of the current directory of the
20033 compilation. The result is allocated using xmalloc; the caller is
20034 responsible for freeing it. */
20035static char *
20036file_full_name (int file, struct line_header *lh, const char *comp_dir)
20037{
20038 /* Is the file number a valid index into the line header's file name
20039 table? Remember that file numbers start with one, not zero. */
20040 if (1 <= file && file <= lh->num_file_names)
20041 {
20042 char *relative = file_file_name (file, lh);
20043
20044 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20045 return relative;
20046 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20047 }
20048 else
20049 return file_file_name (file, lh);
20050}
20051
2e276125
JB
20052
20053static struct macro_source_file *
20054macro_start_file (int file, int line,
20055 struct macro_source_file *current_file,
20056 const char *comp_dir,
20057 struct line_header *lh, struct objfile *objfile)
20058{
233d95b5
JK
20059 /* File name relative to the compilation directory of this source file. */
20060 char *file_name = file_file_name (file, lh);
2e276125 20061
2e276125 20062 if (! current_file)
abc9d0dc 20063 {
fc474241
DE
20064 /* Note: We don't create a macro table for this compilation unit
20065 at all until we actually get a filename. */
20066 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20067
abc9d0dc
TT
20068 /* If we have no current file, then this must be the start_file
20069 directive for the compilation unit's main source file. */
fc474241
DE
20070 current_file = macro_set_main (macro_table, file_name);
20071 macro_define_special (macro_table);
abc9d0dc 20072 }
2e276125 20073 else
233d95b5 20074 current_file = macro_include (current_file, line, file_name);
2e276125 20075
233d95b5 20076 xfree (file_name);
6e70227d 20077
2e276125
JB
20078 return current_file;
20079}
20080
20081
20082/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20083 followed by a null byte. */
20084static char *
20085copy_string (const char *buf, int len)
20086{
20087 char *s = xmalloc (len + 1);
9a619af0 20088
2e276125
JB
20089 memcpy (s, buf, len);
20090 s[len] = '\0';
2e276125
JB
20091 return s;
20092}
20093
20094
20095static const char *
20096consume_improper_spaces (const char *p, const char *body)
20097{
20098 if (*p == ' ')
20099 {
4d3c2250 20100 complaint (&symfile_complaints,
3e43a32a
MS
20101 _("macro definition contains spaces "
20102 "in formal argument list:\n`%s'"),
4d3c2250 20103 body);
2e276125
JB
20104
20105 while (*p == ' ')
20106 p++;
20107 }
20108
20109 return p;
20110}
20111
20112
20113static void
20114parse_macro_definition (struct macro_source_file *file, int line,
20115 const char *body)
20116{
20117 const char *p;
20118
20119 /* The body string takes one of two forms. For object-like macro
20120 definitions, it should be:
20121
20122 <macro name> " " <definition>
20123
20124 For function-like macro definitions, it should be:
20125
20126 <macro name> "() " <definition>
20127 or
20128 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20129
20130 Spaces may appear only where explicitly indicated, and in the
20131 <definition>.
20132
20133 The Dwarf 2 spec says that an object-like macro's name is always
20134 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20135 the space when the macro's definition is the empty string.
2e276125
JB
20136
20137 The Dwarf 2 spec says that there should be no spaces between the
20138 formal arguments in a function-like macro's formal argument list,
20139 but versions of GCC around March 2002 include spaces after the
20140 commas. */
20141
20142
20143 /* Find the extent of the macro name. The macro name is terminated
20144 by either a space or null character (for an object-like macro) or
20145 an opening paren (for a function-like macro). */
20146 for (p = body; *p; p++)
20147 if (*p == ' ' || *p == '(')
20148 break;
20149
20150 if (*p == ' ' || *p == '\0')
20151 {
20152 /* It's an object-like macro. */
20153 int name_len = p - body;
20154 char *name = copy_string (body, name_len);
20155 const char *replacement;
20156
20157 if (*p == ' ')
20158 replacement = body + name_len + 1;
20159 else
20160 {
4d3c2250 20161 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20162 replacement = body + name_len;
20163 }
6e70227d 20164
2e276125
JB
20165 macro_define_object (file, line, name, replacement);
20166
20167 xfree (name);
20168 }
20169 else if (*p == '(')
20170 {
20171 /* It's a function-like macro. */
20172 char *name = copy_string (body, p - body);
20173 int argc = 0;
20174 int argv_size = 1;
20175 char **argv = xmalloc (argv_size * sizeof (*argv));
20176
20177 p++;
20178
20179 p = consume_improper_spaces (p, body);
20180
20181 /* Parse the formal argument list. */
20182 while (*p && *p != ')')
20183 {
20184 /* Find the extent of the current argument name. */
20185 const char *arg_start = p;
20186
20187 while (*p && *p != ',' && *p != ')' && *p != ' ')
20188 p++;
20189
20190 if (! *p || p == arg_start)
4d3c2250 20191 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20192 else
20193 {
20194 /* Make sure argv has room for the new argument. */
20195 if (argc >= argv_size)
20196 {
20197 argv_size *= 2;
20198 argv = xrealloc (argv, argv_size * sizeof (*argv));
20199 }
20200
20201 argv[argc++] = copy_string (arg_start, p - arg_start);
20202 }
20203
20204 p = consume_improper_spaces (p, body);
20205
20206 /* Consume the comma, if present. */
20207 if (*p == ',')
20208 {
20209 p++;
20210
20211 p = consume_improper_spaces (p, body);
20212 }
20213 }
20214
20215 if (*p == ')')
20216 {
20217 p++;
20218
20219 if (*p == ' ')
20220 /* Perfectly formed definition, no complaints. */
20221 macro_define_function (file, line, name,
6e70227d 20222 argc, (const char **) argv,
2e276125
JB
20223 p + 1);
20224 else if (*p == '\0')
20225 {
20226 /* Complain, but do define it. */
4d3c2250 20227 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20228 macro_define_function (file, line, name,
6e70227d 20229 argc, (const char **) argv,
2e276125
JB
20230 p);
20231 }
20232 else
20233 /* Just complain. */
4d3c2250 20234 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20235 }
20236 else
20237 /* Just complain. */
4d3c2250 20238 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20239
20240 xfree (name);
20241 {
20242 int i;
20243
20244 for (i = 0; i < argc; i++)
20245 xfree (argv[i]);
20246 }
20247 xfree (argv);
20248 }
20249 else
4d3c2250 20250 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20251}
20252
cf2c3c16
TT
20253/* Skip some bytes from BYTES according to the form given in FORM.
20254 Returns the new pointer. */
2e276125 20255
d521ce57
TT
20256static const gdb_byte *
20257skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20258 enum dwarf_form form,
20259 unsigned int offset_size,
20260 struct dwarf2_section_info *section)
2e276125 20261{
cf2c3c16 20262 unsigned int bytes_read;
2e276125 20263
cf2c3c16 20264 switch (form)
2e276125 20265 {
cf2c3c16
TT
20266 case DW_FORM_data1:
20267 case DW_FORM_flag:
20268 ++bytes;
20269 break;
20270
20271 case DW_FORM_data2:
20272 bytes += 2;
20273 break;
20274
20275 case DW_FORM_data4:
20276 bytes += 4;
20277 break;
20278
20279 case DW_FORM_data8:
20280 bytes += 8;
20281 break;
20282
20283 case DW_FORM_string:
20284 read_direct_string (abfd, bytes, &bytes_read);
20285 bytes += bytes_read;
20286 break;
20287
20288 case DW_FORM_sec_offset:
20289 case DW_FORM_strp:
36586728 20290 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20291 bytes += offset_size;
20292 break;
20293
20294 case DW_FORM_block:
20295 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20296 bytes += bytes_read;
20297 break;
20298
20299 case DW_FORM_block1:
20300 bytes += 1 + read_1_byte (abfd, bytes);
20301 break;
20302 case DW_FORM_block2:
20303 bytes += 2 + read_2_bytes (abfd, bytes);
20304 break;
20305 case DW_FORM_block4:
20306 bytes += 4 + read_4_bytes (abfd, bytes);
20307 break;
20308
20309 case DW_FORM_sdata:
20310 case DW_FORM_udata:
3019eac3
DE
20311 case DW_FORM_GNU_addr_index:
20312 case DW_FORM_GNU_str_index:
d521ce57 20313 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20314 if (bytes == NULL)
20315 {
20316 dwarf2_section_buffer_overflow_complaint (section);
20317 return NULL;
20318 }
cf2c3c16
TT
20319 break;
20320
20321 default:
20322 {
20323 complain:
20324 complaint (&symfile_complaints,
20325 _("invalid form 0x%x in `%s'"),
a32a8923 20326 form, get_section_name (section));
cf2c3c16
TT
20327 return NULL;
20328 }
2e276125
JB
20329 }
20330
cf2c3c16
TT
20331 return bytes;
20332}
757a13d0 20333
cf2c3c16
TT
20334/* A helper for dwarf_decode_macros that handles skipping an unknown
20335 opcode. Returns an updated pointer to the macro data buffer; or,
20336 on error, issues a complaint and returns NULL. */
757a13d0 20337
d521ce57 20338static const gdb_byte *
cf2c3c16 20339skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20340 const gdb_byte **opcode_definitions,
20341 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20342 bfd *abfd,
20343 unsigned int offset_size,
20344 struct dwarf2_section_info *section)
20345{
20346 unsigned int bytes_read, i;
20347 unsigned long arg;
d521ce57 20348 const gdb_byte *defn;
2e276125 20349
cf2c3c16 20350 if (opcode_definitions[opcode] == NULL)
2e276125 20351 {
cf2c3c16
TT
20352 complaint (&symfile_complaints,
20353 _("unrecognized DW_MACFINO opcode 0x%x"),
20354 opcode);
20355 return NULL;
20356 }
2e276125 20357
cf2c3c16
TT
20358 defn = opcode_definitions[opcode];
20359 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20360 defn += bytes_read;
2e276125 20361
cf2c3c16
TT
20362 for (i = 0; i < arg; ++i)
20363 {
f664829e
DE
20364 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20365 section);
cf2c3c16
TT
20366 if (mac_ptr == NULL)
20367 {
20368 /* skip_form_bytes already issued the complaint. */
20369 return NULL;
20370 }
20371 }
757a13d0 20372
cf2c3c16
TT
20373 return mac_ptr;
20374}
757a13d0 20375
cf2c3c16
TT
20376/* A helper function which parses the header of a macro section.
20377 If the macro section is the extended (for now called "GNU") type,
20378 then this updates *OFFSET_SIZE. Returns a pointer to just after
20379 the header, or issues a complaint and returns NULL on error. */
757a13d0 20380
d521ce57
TT
20381static const gdb_byte *
20382dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20383 bfd *abfd,
d521ce57 20384 const gdb_byte *mac_ptr,
cf2c3c16
TT
20385 unsigned int *offset_size,
20386 int section_is_gnu)
20387{
20388 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20389
cf2c3c16
TT
20390 if (section_is_gnu)
20391 {
20392 unsigned int version, flags;
757a13d0 20393
cf2c3c16
TT
20394 version = read_2_bytes (abfd, mac_ptr);
20395 if (version != 4)
20396 {
20397 complaint (&symfile_complaints,
20398 _("unrecognized version `%d' in .debug_macro section"),
20399 version);
20400 return NULL;
20401 }
20402 mac_ptr += 2;
757a13d0 20403
cf2c3c16
TT
20404 flags = read_1_byte (abfd, mac_ptr);
20405 ++mac_ptr;
20406 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20407
cf2c3c16
TT
20408 if ((flags & 2) != 0)
20409 /* We don't need the line table offset. */
20410 mac_ptr += *offset_size;
757a13d0 20411
cf2c3c16
TT
20412 /* Vendor opcode descriptions. */
20413 if ((flags & 4) != 0)
20414 {
20415 unsigned int i, count;
757a13d0 20416
cf2c3c16
TT
20417 count = read_1_byte (abfd, mac_ptr);
20418 ++mac_ptr;
20419 for (i = 0; i < count; ++i)
20420 {
20421 unsigned int opcode, bytes_read;
20422 unsigned long arg;
20423
20424 opcode = read_1_byte (abfd, mac_ptr);
20425 ++mac_ptr;
20426 opcode_definitions[opcode] = mac_ptr;
20427 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20428 mac_ptr += bytes_read;
20429 mac_ptr += arg;
20430 }
757a13d0 20431 }
cf2c3c16 20432 }
757a13d0 20433
cf2c3c16
TT
20434 return mac_ptr;
20435}
757a13d0 20436
cf2c3c16 20437/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20438 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20439
20440static void
d521ce57
TT
20441dwarf_decode_macro_bytes (bfd *abfd,
20442 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20443 struct macro_source_file *current_file,
15d034d0 20444 struct line_header *lh, const char *comp_dir,
cf2c3c16 20445 struct dwarf2_section_info *section,
36586728 20446 int section_is_gnu, int section_is_dwz,
cf2c3c16 20447 unsigned int offset_size,
8fc3fc34
TT
20448 struct objfile *objfile,
20449 htab_t include_hash)
cf2c3c16
TT
20450{
20451 enum dwarf_macro_record_type macinfo_type;
20452 int at_commandline;
d521ce57 20453 const gdb_byte *opcode_definitions[256];
757a13d0 20454
cf2c3c16
TT
20455 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20456 &offset_size, section_is_gnu);
20457 if (mac_ptr == NULL)
20458 {
20459 /* We already issued a complaint. */
20460 return;
20461 }
757a13d0
JK
20462
20463 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20464 GDB is still reading the definitions from command line. First
20465 DW_MACINFO_start_file will need to be ignored as it was already executed
20466 to create CURRENT_FILE for the main source holding also the command line
20467 definitions. On first met DW_MACINFO_start_file this flag is reset to
20468 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20469
20470 at_commandline = 1;
20471
20472 do
20473 {
20474 /* Do we at least have room for a macinfo type byte? */
20475 if (mac_ptr >= mac_end)
20476 {
f664829e 20477 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20478 break;
20479 }
20480
20481 macinfo_type = read_1_byte (abfd, mac_ptr);
20482 mac_ptr++;
20483
cf2c3c16
TT
20484 /* Note that we rely on the fact that the corresponding GNU and
20485 DWARF constants are the same. */
757a13d0
JK
20486 switch (macinfo_type)
20487 {
20488 /* A zero macinfo type indicates the end of the macro
20489 information. */
20490 case 0:
20491 break;
2e276125 20492
cf2c3c16
TT
20493 case DW_MACRO_GNU_define:
20494 case DW_MACRO_GNU_undef:
20495 case DW_MACRO_GNU_define_indirect:
20496 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20497 case DW_MACRO_GNU_define_indirect_alt:
20498 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20499 {
891d2f0b 20500 unsigned int bytes_read;
2e276125 20501 int line;
d521ce57 20502 const char *body;
cf2c3c16 20503 int is_define;
2e276125 20504
cf2c3c16
TT
20505 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20506 mac_ptr += bytes_read;
20507
20508 if (macinfo_type == DW_MACRO_GNU_define
20509 || macinfo_type == DW_MACRO_GNU_undef)
20510 {
20511 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20512 mac_ptr += bytes_read;
20513 }
20514 else
20515 {
20516 LONGEST str_offset;
20517
20518 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20519 mac_ptr += offset_size;
2e276125 20520
36586728 20521 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20522 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20523 || section_is_dwz)
36586728
TT
20524 {
20525 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20526
20527 body = read_indirect_string_from_dwz (dwz, str_offset);
20528 }
20529 else
20530 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20531 }
20532
20533 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20534 || macinfo_type == DW_MACRO_GNU_define_indirect
20535 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20536 if (! current_file)
757a13d0
JK
20537 {
20538 /* DWARF violation as no main source is present. */
20539 complaint (&symfile_complaints,
20540 _("debug info with no main source gives macro %s "
20541 "on line %d: %s"),
cf2c3c16
TT
20542 is_define ? _("definition") : _("undefinition"),
20543 line, body);
757a13d0
JK
20544 break;
20545 }
3e43a32a
MS
20546 if ((line == 0 && !at_commandline)
20547 || (line != 0 && at_commandline))
4d3c2250 20548 complaint (&symfile_complaints,
757a13d0
JK
20549 _("debug info gives %s macro %s with %s line %d: %s"),
20550 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20551 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20552 line == 0 ? _("zero") : _("non-zero"), line, body);
20553
cf2c3c16 20554 if (is_define)
757a13d0 20555 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20556 else
20557 {
20558 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20559 || macinfo_type == DW_MACRO_GNU_undef_indirect
20560 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20561 macro_undef (current_file, line, body);
20562 }
2e276125
JB
20563 }
20564 break;
20565
cf2c3c16 20566 case DW_MACRO_GNU_start_file:
2e276125 20567 {
891d2f0b 20568 unsigned int bytes_read;
2e276125
JB
20569 int line, file;
20570
20571 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20572 mac_ptr += bytes_read;
20573 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20574 mac_ptr += bytes_read;
20575
3e43a32a
MS
20576 if ((line == 0 && !at_commandline)
20577 || (line != 0 && at_commandline))
757a13d0
JK
20578 complaint (&symfile_complaints,
20579 _("debug info gives source %d included "
20580 "from %s at %s line %d"),
20581 file, at_commandline ? _("command-line") : _("file"),
20582 line == 0 ? _("zero") : _("non-zero"), line);
20583
20584 if (at_commandline)
20585 {
cf2c3c16
TT
20586 /* This DW_MACRO_GNU_start_file was executed in the
20587 pass one. */
757a13d0
JK
20588 at_commandline = 0;
20589 }
20590 else
20591 current_file = macro_start_file (file, line,
20592 current_file, comp_dir,
cf2c3c16 20593 lh, objfile);
2e276125
JB
20594 }
20595 break;
20596
cf2c3c16 20597 case DW_MACRO_GNU_end_file:
2e276125 20598 if (! current_file)
4d3c2250 20599 complaint (&symfile_complaints,
3e43a32a
MS
20600 _("macro debug info has an unmatched "
20601 "`close_file' directive"));
2e276125
JB
20602 else
20603 {
20604 current_file = current_file->included_by;
20605 if (! current_file)
20606 {
cf2c3c16 20607 enum dwarf_macro_record_type next_type;
2e276125
JB
20608
20609 /* GCC circa March 2002 doesn't produce the zero
20610 type byte marking the end of the compilation
20611 unit. Complain if it's not there, but exit no
20612 matter what. */
20613
20614 /* Do we at least have room for a macinfo type byte? */
20615 if (mac_ptr >= mac_end)
20616 {
f664829e 20617 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20618 return;
20619 }
20620
20621 /* We don't increment mac_ptr here, so this is just
20622 a look-ahead. */
20623 next_type = read_1_byte (abfd, mac_ptr);
20624 if (next_type != 0)
4d3c2250 20625 complaint (&symfile_complaints,
3e43a32a
MS
20626 _("no terminating 0-type entry for "
20627 "macros in `.debug_macinfo' section"));
2e276125
JB
20628
20629 return;
20630 }
20631 }
20632 break;
20633
cf2c3c16 20634 case DW_MACRO_GNU_transparent_include:
36586728 20635 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20636 {
20637 LONGEST offset;
8fc3fc34 20638 void **slot;
a036ba48
TT
20639 bfd *include_bfd = abfd;
20640 struct dwarf2_section_info *include_section = section;
20641 struct dwarf2_section_info alt_section;
d521ce57 20642 const gdb_byte *include_mac_end = mac_end;
a036ba48 20643 int is_dwz = section_is_dwz;
d521ce57 20644 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20645
20646 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20647 mac_ptr += offset_size;
20648
a036ba48
TT
20649 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20650 {
20651 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20652
20653 dwarf2_read_section (dwarf2_per_objfile->objfile,
20654 &dwz->macro);
20655
a036ba48 20656 include_section = &dwz->macro;
a32a8923 20657 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20658 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20659 is_dwz = 1;
20660 }
20661
20662 new_mac_ptr = include_section->buffer + offset;
20663 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20664
8fc3fc34
TT
20665 if (*slot != NULL)
20666 {
20667 /* This has actually happened; see
20668 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20669 complaint (&symfile_complaints,
20670 _("recursive DW_MACRO_GNU_transparent_include in "
20671 ".debug_macro section"));
20672 }
20673 else
20674 {
d521ce57 20675 *slot = (void *) new_mac_ptr;
36586728 20676
a036ba48 20677 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20678 include_mac_end, current_file,
8fc3fc34 20679 lh, comp_dir,
36586728 20680 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20681 offset_size, objfile, include_hash);
20682
d521ce57 20683 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20684 }
cf2c3c16
TT
20685 }
20686 break;
20687
2e276125 20688 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20689 if (!section_is_gnu)
20690 {
20691 unsigned int bytes_read;
20692 int constant;
2e276125 20693
cf2c3c16
TT
20694 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20695 mac_ptr += bytes_read;
20696 read_direct_string (abfd, mac_ptr, &bytes_read);
20697 mac_ptr += bytes_read;
2e276125 20698
cf2c3c16
TT
20699 /* We don't recognize any vendor extensions. */
20700 break;
20701 }
20702 /* FALLTHROUGH */
20703
20704 default:
20705 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20706 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20707 section);
20708 if (mac_ptr == NULL)
20709 return;
20710 break;
2e276125 20711 }
757a13d0 20712 } while (macinfo_type != 0);
2e276125 20713}
8e19ed76 20714
cf2c3c16 20715static void
09262596 20716dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20717 const char *comp_dir, int section_is_gnu)
cf2c3c16 20718{
bb5ed363 20719 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20720 struct line_header *lh = cu->line_header;
20721 bfd *abfd;
d521ce57 20722 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20723 struct macro_source_file *current_file = 0;
20724 enum dwarf_macro_record_type macinfo_type;
20725 unsigned int offset_size = cu->header.offset_size;
d521ce57 20726 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20727 struct cleanup *cleanup;
20728 htab_t include_hash;
20729 void **slot;
09262596
DE
20730 struct dwarf2_section_info *section;
20731 const char *section_name;
20732
20733 if (cu->dwo_unit != NULL)
20734 {
20735 if (section_is_gnu)
20736 {
20737 section = &cu->dwo_unit->dwo_file->sections.macro;
20738 section_name = ".debug_macro.dwo";
20739 }
20740 else
20741 {
20742 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20743 section_name = ".debug_macinfo.dwo";
20744 }
20745 }
20746 else
20747 {
20748 if (section_is_gnu)
20749 {
20750 section = &dwarf2_per_objfile->macro;
20751 section_name = ".debug_macro";
20752 }
20753 else
20754 {
20755 section = &dwarf2_per_objfile->macinfo;
20756 section_name = ".debug_macinfo";
20757 }
20758 }
cf2c3c16 20759
bb5ed363 20760 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20761 if (section->buffer == NULL)
20762 {
fceca515 20763 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20764 return;
20765 }
a32a8923 20766 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20767
20768 /* First pass: Find the name of the base filename.
20769 This filename is needed in order to process all macros whose definition
20770 (or undefinition) comes from the command line. These macros are defined
20771 before the first DW_MACINFO_start_file entry, and yet still need to be
20772 associated to the base file.
20773
20774 To determine the base file name, we scan the macro definitions until we
20775 reach the first DW_MACINFO_start_file entry. We then initialize
20776 CURRENT_FILE accordingly so that any macro definition found before the
20777 first DW_MACINFO_start_file can still be associated to the base file. */
20778
20779 mac_ptr = section->buffer + offset;
20780 mac_end = section->buffer + section->size;
20781
20782 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20783 &offset_size, section_is_gnu);
20784 if (mac_ptr == NULL)
20785 {
20786 /* We already issued a complaint. */
20787 return;
20788 }
20789
20790 do
20791 {
20792 /* Do we at least have room for a macinfo type byte? */
20793 if (mac_ptr >= mac_end)
20794 {
20795 /* Complaint is printed during the second pass as GDB will probably
20796 stop the first pass earlier upon finding
20797 DW_MACINFO_start_file. */
20798 break;
20799 }
20800
20801 macinfo_type = read_1_byte (abfd, mac_ptr);
20802 mac_ptr++;
20803
20804 /* Note that we rely on the fact that the corresponding GNU and
20805 DWARF constants are the same. */
20806 switch (macinfo_type)
20807 {
20808 /* A zero macinfo type indicates the end of the macro
20809 information. */
20810 case 0:
20811 break;
20812
20813 case DW_MACRO_GNU_define:
20814 case DW_MACRO_GNU_undef:
20815 /* Only skip the data by MAC_PTR. */
20816 {
20817 unsigned int bytes_read;
20818
20819 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20820 mac_ptr += bytes_read;
20821 read_direct_string (abfd, mac_ptr, &bytes_read);
20822 mac_ptr += bytes_read;
20823 }
20824 break;
20825
20826 case DW_MACRO_GNU_start_file:
20827 {
20828 unsigned int bytes_read;
20829 int line, file;
20830
20831 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20832 mac_ptr += bytes_read;
20833 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20834 mac_ptr += bytes_read;
20835
20836 current_file = macro_start_file (file, line, current_file,
bb5ed363 20837 comp_dir, lh, objfile);
cf2c3c16
TT
20838 }
20839 break;
20840
20841 case DW_MACRO_GNU_end_file:
20842 /* No data to skip by MAC_PTR. */
20843 break;
20844
20845 case DW_MACRO_GNU_define_indirect:
20846 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
20847 case DW_MACRO_GNU_define_indirect_alt:
20848 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
20849 {
20850 unsigned int bytes_read;
20851
20852 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20853 mac_ptr += bytes_read;
20854 mac_ptr += offset_size;
20855 }
20856 break;
20857
20858 case DW_MACRO_GNU_transparent_include:
f7a35f02 20859 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20860 /* Note that, according to the spec, a transparent include
20861 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20862 skip this opcode. */
20863 mac_ptr += offset_size;
20864 break;
20865
20866 case DW_MACINFO_vendor_ext:
20867 /* Only skip the data by MAC_PTR. */
20868 if (!section_is_gnu)
20869 {
20870 unsigned int bytes_read;
20871
20872 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20873 mac_ptr += bytes_read;
20874 read_direct_string (abfd, mac_ptr, &bytes_read);
20875 mac_ptr += bytes_read;
20876 }
20877 /* FALLTHROUGH */
20878
20879 default:
20880 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20881 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20882 section);
20883 if (mac_ptr == NULL)
20884 return;
20885 break;
20886 }
20887 } while (macinfo_type != 0 && current_file == NULL);
20888
20889 /* Second pass: Process all entries.
20890
20891 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20892 command-line macro definitions/undefinitions. This flag is unset when we
20893 reach the first DW_MACINFO_start_file entry. */
20894
8fc3fc34
TT
20895 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20896 NULL, xcalloc, xfree);
20897 cleanup = make_cleanup_htab_delete (include_hash);
20898 mac_ptr = section->buffer + offset;
20899 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 20900 *slot = (void *) mac_ptr;
8fc3fc34 20901 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
20902 current_file, lh, comp_dir, section,
20903 section_is_gnu, 0,
8fc3fc34
TT
20904 offset_size, objfile, include_hash);
20905 do_cleanups (cleanup);
cf2c3c16
TT
20906}
20907
8e19ed76 20908/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 20909 if so return true else false. */
380bca97 20910
8e19ed76 20911static int
6e5a29e1 20912attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
20913{
20914 return (attr == NULL ? 0 :
20915 attr->form == DW_FORM_block1
20916 || attr->form == DW_FORM_block2
20917 || attr->form == DW_FORM_block4
2dc7f7b3
TT
20918 || attr->form == DW_FORM_block
20919 || attr->form == DW_FORM_exprloc);
8e19ed76 20920}
4c2df51b 20921
c6a0999f
JB
20922/* Return non-zero if ATTR's value is a section offset --- classes
20923 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20924 You may use DW_UNSND (attr) to retrieve such offsets.
20925
20926 Section 7.5.4, "Attribute Encodings", explains that no attribute
20927 may have a value that belongs to more than one of these classes; it
20928 would be ambiguous if we did, because we use the same forms for all
20929 of them. */
380bca97 20930
3690dd37 20931static int
6e5a29e1 20932attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
20933{
20934 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
20935 || attr->form == DW_FORM_data8
20936 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
20937}
20938
3690dd37
JB
20939/* Return non-zero if ATTR's value falls in the 'constant' class, or
20940 zero otherwise. When this function returns true, you can apply
20941 dwarf2_get_attr_constant_value to it.
20942
20943 However, note that for some attributes you must check
20944 attr_form_is_section_offset before using this test. DW_FORM_data4
20945 and DW_FORM_data8 are members of both the constant class, and of
20946 the classes that contain offsets into other debug sections
20947 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20948 that, if an attribute's can be either a constant or one of the
20949 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20950 taken as section offsets, not constants. */
380bca97 20951
3690dd37 20952static int
6e5a29e1 20953attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
20954{
20955 switch (attr->form)
20956 {
20957 case DW_FORM_sdata:
20958 case DW_FORM_udata:
20959 case DW_FORM_data1:
20960 case DW_FORM_data2:
20961 case DW_FORM_data4:
20962 case DW_FORM_data8:
20963 return 1;
20964 default:
20965 return 0;
20966 }
20967}
20968
7771576e
SA
20969
20970/* DW_ADDR is always stored already as sect_offset; despite for the forms
20971 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20972
20973static int
6e5a29e1 20974attr_form_is_ref (const struct attribute *attr)
7771576e
SA
20975{
20976 switch (attr->form)
20977 {
20978 case DW_FORM_ref_addr:
20979 case DW_FORM_ref1:
20980 case DW_FORM_ref2:
20981 case DW_FORM_ref4:
20982 case DW_FORM_ref8:
20983 case DW_FORM_ref_udata:
20984 case DW_FORM_GNU_ref_alt:
20985 return 1;
20986 default:
20987 return 0;
20988 }
20989}
20990
3019eac3
DE
20991/* Return the .debug_loc section to use for CU.
20992 For DWO files use .debug_loc.dwo. */
20993
20994static struct dwarf2_section_info *
20995cu_debug_loc_section (struct dwarf2_cu *cu)
20996{
20997 if (cu->dwo_unit)
20998 return &cu->dwo_unit->dwo_file->sections.loc;
20999 return &dwarf2_per_objfile->loc;
21000}
21001
8cf6f0b1
TT
21002/* A helper function that fills in a dwarf2_loclist_baton. */
21003
21004static void
21005fill_in_loclist_baton (struct dwarf2_cu *cu,
21006 struct dwarf2_loclist_baton *baton,
ff39bb5e 21007 const struct attribute *attr)
8cf6f0b1 21008{
3019eac3
DE
21009 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21010
21011 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21012
21013 baton->per_cu = cu->per_cu;
21014 gdb_assert (baton->per_cu);
21015 /* We don't know how long the location list is, but make sure we
21016 don't run off the edge of the section. */
3019eac3
DE
21017 baton->size = section->size - DW_UNSND (attr);
21018 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21019 baton->base_address = cu->base_address;
f664829e 21020 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21021}
21022
4c2df51b 21023static void
ff39bb5e 21024dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21025 struct dwarf2_cu *cu, int is_block)
4c2df51b 21026{
bb5ed363 21027 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21028 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21029
3690dd37 21030 if (attr_form_is_section_offset (attr)
3019eac3 21031 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21032 the section. If so, fall through to the complaint in the
21033 other branch. */
3019eac3 21034 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21035 {
0d53c4c4 21036 struct dwarf2_loclist_baton *baton;
4c2df51b 21037
bb5ed363 21038 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21039 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21040
8cf6f0b1 21041 fill_in_loclist_baton (cu, baton, attr);
be391dca 21042
d00adf39 21043 if (cu->base_known == 0)
0d53c4c4 21044 complaint (&symfile_complaints,
3e43a32a
MS
21045 _("Location list used without "
21046 "specifying the CU base address."));
4c2df51b 21047
f1e6e072
TT
21048 SYMBOL_ACLASS_INDEX (sym) = (is_block
21049 ? dwarf2_loclist_block_index
21050 : dwarf2_loclist_index);
0d53c4c4
DJ
21051 SYMBOL_LOCATION_BATON (sym) = baton;
21052 }
21053 else
21054 {
21055 struct dwarf2_locexpr_baton *baton;
21056
bb5ed363 21057 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21058 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21059 baton->per_cu = cu->per_cu;
21060 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21061
21062 if (attr_form_is_block (attr))
21063 {
21064 /* Note that we're just copying the block's data pointer
21065 here, not the actual data. We're still pointing into the
6502dd73
DJ
21066 info_buffer for SYM's objfile; right now we never release
21067 that buffer, but when we do clean up properly this may
21068 need to change. */
0d53c4c4
DJ
21069 baton->size = DW_BLOCK (attr)->size;
21070 baton->data = DW_BLOCK (attr)->data;
21071 }
21072 else
21073 {
21074 dwarf2_invalid_attrib_class_complaint ("location description",
21075 SYMBOL_NATURAL_NAME (sym));
21076 baton->size = 0;
0d53c4c4 21077 }
6e70227d 21078
f1e6e072
TT
21079 SYMBOL_ACLASS_INDEX (sym) = (is_block
21080 ? dwarf2_locexpr_block_index
21081 : dwarf2_locexpr_index);
0d53c4c4
DJ
21082 SYMBOL_LOCATION_BATON (sym) = baton;
21083 }
4c2df51b 21084}
6502dd73 21085
9aa1f1e3
TT
21086/* Return the OBJFILE associated with the compilation unit CU. If CU
21087 came from a separate debuginfo file, then the master objfile is
21088 returned. */
ae0d2f24
UW
21089
21090struct objfile *
21091dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21092{
9291a0cd 21093 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21094
21095 /* Return the master objfile, so that we can report and look up the
21096 correct file containing this variable. */
21097 if (objfile->separate_debug_objfile_backlink)
21098 objfile = objfile->separate_debug_objfile_backlink;
21099
21100 return objfile;
21101}
21102
96408a79
SA
21103/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21104 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21105 CU_HEADERP first. */
21106
21107static const struct comp_unit_head *
21108per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21109 struct dwarf2_per_cu_data *per_cu)
21110{
d521ce57 21111 const gdb_byte *info_ptr;
96408a79
SA
21112
21113 if (per_cu->cu)
21114 return &per_cu->cu->header;
21115
8a0459fd 21116 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21117
21118 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21119 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21120
21121 return cu_headerp;
21122}
21123
ae0d2f24
UW
21124/* Return the address size given in the compilation unit header for CU. */
21125
98714339 21126int
ae0d2f24
UW
21127dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21128{
96408a79
SA
21129 struct comp_unit_head cu_header_local;
21130 const struct comp_unit_head *cu_headerp;
c471e790 21131
96408a79
SA
21132 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21133
21134 return cu_headerp->addr_size;
ae0d2f24
UW
21135}
21136
9eae7c52
TT
21137/* Return the offset size given in the compilation unit header for CU. */
21138
21139int
21140dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21141{
96408a79
SA
21142 struct comp_unit_head cu_header_local;
21143 const struct comp_unit_head *cu_headerp;
9c6c53f7 21144
96408a79
SA
21145 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21146
21147 return cu_headerp->offset_size;
21148}
21149
21150/* See its dwarf2loc.h declaration. */
21151
21152int
21153dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21154{
21155 struct comp_unit_head cu_header_local;
21156 const struct comp_unit_head *cu_headerp;
21157
21158 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21159
21160 if (cu_headerp->version == 2)
21161 return cu_headerp->addr_size;
21162 else
21163 return cu_headerp->offset_size;
181cebd4
JK
21164}
21165
9aa1f1e3
TT
21166/* Return the text offset of the CU. The returned offset comes from
21167 this CU's objfile. If this objfile came from a separate debuginfo
21168 file, then the offset may be different from the corresponding
21169 offset in the parent objfile. */
21170
21171CORE_ADDR
21172dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21173{
bb3fa9d0 21174 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21175
21176 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21177}
21178
348e048f
DE
21179/* Locate the .debug_info compilation unit from CU's objfile which contains
21180 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21181
21182static struct dwarf2_per_cu_data *
b64f50a1 21183dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21184 unsigned int offset_in_dwz,
ae038cb0
DJ
21185 struct objfile *objfile)
21186{
21187 struct dwarf2_per_cu_data *this_cu;
21188 int low, high;
36586728 21189 const sect_offset *cu_off;
ae038cb0 21190
ae038cb0
DJ
21191 low = 0;
21192 high = dwarf2_per_objfile->n_comp_units - 1;
21193 while (high > low)
21194 {
36586728 21195 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21196 int mid = low + (high - low) / 2;
9a619af0 21197
36586728
TT
21198 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21199 cu_off = &mid_cu->offset;
21200 if (mid_cu->is_dwz > offset_in_dwz
21201 || (mid_cu->is_dwz == offset_in_dwz
21202 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21203 high = mid;
21204 else
21205 low = mid + 1;
21206 }
21207 gdb_assert (low == high);
36586728
TT
21208 this_cu = dwarf2_per_objfile->all_comp_units[low];
21209 cu_off = &this_cu->offset;
21210 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21211 {
36586728 21212 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21213 error (_("Dwarf Error: could not find partial DIE containing "
21214 "offset 0x%lx [in module %s]"),
b64f50a1 21215 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21216
b64f50a1
JK
21217 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21218 <= offset.sect_off);
ae038cb0
DJ
21219 return dwarf2_per_objfile->all_comp_units[low-1];
21220 }
21221 else
21222 {
21223 this_cu = dwarf2_per_objfile->all_comp_units[low];
21224 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21225 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21226 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21227 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21228 return this_cu;
21229 }
21230}
21231
23745b47 21232/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21233
9816fde3 21234static void
23745b47 21235init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21236{
9816fde3 21237 memset (cu, 0, sizeof (*cu));
23745b47
DE
21238 per_cu->cu = cu;
21239 cu->per_cu = per_cu;
21240 cu->objfile = per_cu->objfile;
93311388 21241 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21242}
21243
21244/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21245
21246static void
95554aad
TT
21247prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21248 enum language pretend_language)
9816fde3
JK
21249{
21250 struct attribute *attr;
21251
21252 /* Set the language we're debugging. */
21253 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21254 if (attr)
21255 set_cu_language (DW_UNSND (attr), cu);
21256 else
9cded63f 21257 {
95554aad 21258 cu->language = pretend_language;
9cded63f
TT
21259 cu->language_defn = language_def (cu->language);
21260 }
dee91e82
DE
21261
21262 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21263 if (attr)
21264 cu->producer = DW_STRING (attr);
93311388
DE
21265}
21266
ae038cb0
DJ
21267/* Release one cached compilation unit, CU. We unlink it from the tree
21268 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21269 the caller is responsible for that.
21270 NOTE: DATA is a void * because this function is also used as a
21271 cleanup routine. */
ae038cb0
DJ
21272
21273static void
68dc6402 21274free_heap_comp_unit (void *data)
ae038cb0
DJ
21275{
21276 struct dwarf2_cu *cu = data;
21277
23745b47
DE
21278 gdb_assert (cu->per_cu != NULL);
21279 cu->per_cu->cu = NULL;
ae038cb0
DJ
21280 cu->per_cu = NULL;
21281
21282 obstack_free (&cu->comp_unit_obstack, NULL);
21283
21284 xfree (cu);
21285}
21286
72bf9492 21287/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21288 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21289 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21290
21291static void
21292free_stack_comp_unit (void *data)
21293{
21294 struct dwarf2_cu *cu = data;
21295
23745b47
DE
21296 gdb_assert (cu->per_cu != NULL);
21297 cu->per_cu->cu = NULL;
21298 cu->per_cu = NULL;
21299
72bf9492
DJ
21300 obstack_free (&cu->comp_unit_obstack, NULL);
21301 cu->partial_dies = NULL;
ae038cb0
DJ
21302}
21303
21304/* Free all cached compilation units. */
21305
21306static void
21307free_cached_comp_units (void *data)
21308{
21309 struct dwarf2_per_cu_data *per_cu, **last_chain;
21310
21311 per_cu = dwarf2_per_objfile->read_in_chain;
21312 last_chain = &dwarf2_per_objfile->read_in_chain;
21313 while (per_cu != NULL)
21314 {
21315 struct dwarf2_per_cu_data *next_cu;
21316
21317 next_cu = per_cu->cu->read_in_chain;
21318
68dc6402 21319 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21320 *last_chain = next_cu;
21321
21322 per_cu = next_cu;
21323 }
21324}
21325
21326/* Increase the age counter on each cached compilation unit, and free
21327 any that are too old. */
21328
21329static void
21330age_cached_comp_units (void)
21331{
21332 struct dwarf2_per_cu_data *per_cu, **last_chain;
21333
21334 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21335 per_cu = dwarf2_per_objfile->read_in_chain;
21336 while (per_cu != NULL)
21337 {
21338 per_cu->cu->last_used ++;
21339 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21340 dwarf2_mark (per_cu->cu);
21341 per_cu = per_cu->cu->read_in_chain;
21342 }
21343
21344 per_cu = dwarf2_per_objfile->read_in_chain;
21345 last_chain = &dwarf2_per_objfile->read_in_chain;
21346 while (per_cu != NULL)
21347 {
21348 struct dwarf2_per_cu_data *next_cu;
21349
21350 next_cu = per_cu->cu->read_in_chain;
21351
21352 if (!per_cu->cu->mark)
21353 {
68dc6402 21354 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21355 *last_chain = next_cu;
21356 }
21357 else
21358 last_chain = &per_cu->cu->read_in_chain;
21359
21360 per_cu = next_cu;
21361 }
21362}
21363
21364/* Remove a single compilation unit from the cache. */
21365
21366static void
dee91e82 21367free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21368{
21369 struct dwarf2_per_cu_data *per_cu, **last_chain;
21370
21371 per_cu = dwarf2_per_objfile->read_in_chain;
21372 last_chain = &dwarf2_per_objfile->read_in_chain;
21373 while (per_cu != NULL)
21374 {
21375 struct dwarf2_per_cu_data *next_cu;
21376
21377 next_cu = per_cu->cu->read_in_chain;
21378
dee91e82 21379 if (per_cu == target_per_cu)
ae038cb0 21380 {
68dc6402 21381 free_heap_comp_unit (per_cu->cu);
dee91e82 21382 per_cu->cu = NULL;
ae038cb0
DJ
21383 *last_chain = next_cu;
21384 break;
21385 }
21386 else
21387 last_chain = &per_cu->cu->read_in_chain;
21388
21389 per_cu = next_cu;
21390 }
21391}
21392
fe3e1990
DJ
21393/* Release all extra memory associated with OBJFILE. */
21394
21395void
21396dwarf2_free_objfile (struct objfile *objfile)
21397{
21398 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21399
21400 if (dwarf2_per_objfile == NULL)
21401 return;
21402
21403 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21404 free_cached_comp_units (NULL);
21405
7b9f3c50
DE
21406 if (dwarf2_per_objfile->quick_file_names_table)
21407 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21408
fe3e1990
DJ
21409 /* Everything else should be on the objfile obstack. */
21410}
21411
dee91e82
DE
21412/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21413 We store these in a hash table separate from the DIEs, and preserve them
21414 when the DIEs are flushed out of cache.
21415
21416 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21417 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21418 or the type may come from a DWO file. Furthermore, while it's more logical
21419 to use per_cu->section+offset, with Fission the section with the data is in
21420 the DWO file but we don't know that section at the point we need it.
21421 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21422 because we can enter the lookup routine, get_die_type_at_offset, from
21423 outside this file, and thus won't necessarily have PER_CU->cu.
21424 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21425
dee91e82 21426struct dwarf2_per_cu_offset_and_type
1c379e20 21427{
dee91e82 21428 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21429 sect_offset offset;
1c379e20
DJ
21430 struct type *type;
21431};
21432
dee91e82 21433/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21434
21435static hashval_t
dee91e82 21436per_cu_offset_and_type_hash (const void *item)
1c379e20 21437{
dee91e82 21438 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21439
dee91e82 21440 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21441}
21442
dee91e82 21443/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21444
21445static int
dee91e82 21446per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21447{
dee91e82
DE
21448 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21449 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21450
dee91e82
DE
21451 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21452 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21453}
21454
21455/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21456 table if necessary. For convenience, return TYPE.
21457
21458 The DIEs reading must have careful ordering to:
21459 * Not cause infite loops trying to read in DIEs as a prerequisite for
21460 reading current DIE.
21461 * Not trying to dereference contents of still incompletely read in types
21462 while reading in other DIEs.
21463 * Enable referencing still incompletely read in types just by a pointer to
21464 the type without accessing its fields.
21465
21466 Therefore caller should follow these rules:
21467 * Try to fetch any prerequisite types we may need to build this DIE type
21468 before building the type and calling set_die_type.
e71ec853 21469 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21470 possible before fetching more types to complete the current type.
21471 * Make the type as complete as possible before fetching more types. */
1c379e20 21472
f792889a 21473static struct type *
1c379e20
DJ
21474set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21475{
dee91e82 21476 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21477 struct objfile *objfile = cu->objfile;
1c379e20 21478
b4ba55a1
JB
21479 /* For Ada types, make sure that the gnat-specific data is always
21480 initialized (if not already set). There are a few types where
21481 we should not be doing so, because the type-specific area is
21482 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21483 where the type-specific area is used to store the floatformat).
21484 But this is not a problem, because the gnat-specific information
21485 is actually not needed for these types. */
21486 if (need_gnat_info (cu)
21487 && TYPE_CODE (type) != TYPE_CODE_FUNC
21488 && TYPE_CODE (type) != TYPE_CODE_FLT
21489 && !HAVE_GNAT_AUX_INFO (type))
21490 INIT_GNAT_SPECIFIC (type);
21491
dee91e82 21492 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21493 {
dee91e82
DE
21494 dwarf2_per_objfile->die_type_hash =
21495 htab_create_alloc_ex (127,
21496 per_cu_offset_and_type_hash,
21497 per_cu_offset_and_type_eq,
21498 NULL,
21499 &objfile->objfile_obstack,
21500 hashtab_obstack_allocate,
21501 dummy_obstack_deallocate);
f792889a 21502 }
1c379e20 21503
dee91e82 21504 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21505 ofs.offset = die->offset;
21506 ofs.type = type;
dee91e82
DE
21507 slot = (struct dwarf2_per_cu_offset_and_type **)
21508 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21509 if (*slot)
21510 complaint (&symfile_complaints,
21511 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21512 die->offset.sect_off);
673bfd45 21513 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21514 **slot = ofs;
f792889a 21515 return type;
1c379e20
DJ
21516}
21517
02142a6c
DE
21518/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21519 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21520
21521static struct type *
b64f50a1 21522get_die_type_at_offset (sect_offset offset,
673bfd45 21523 struct dwarf2_per_cu_data *per_cu)
1c379e20 21524{
dee91e82 21525 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21526
dee91e82 21527 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21528 return NULL;
1c379e20 21529
dee91e82 21530 ofs.per_cu = per_cu;
673bfd45 21531 ofs.offset = offset;
dee91e82 21532 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21533 if (slot)
21534 return slot->type;
21535 else
21536 return NULL;
21537}
21538
02142a6c 21539/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21540 or return NULL if DIE does not have a saved type. */
21541
21542static struct type *
21543get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21544{
21545 return get_die_type_at_offset (die->offset, cu->per_cu);
21546}
21547
10b3939b
DJ
21548/* Add a dependence relationship from CU to REF_PER_CU. */
21549
21550static void
21551dwarf2_add_dependence (struct dwarf2_cu *cu,
21552 struct dwarf2_per_cu_data *ref_per_cu)
21553{
21554 void **slot;
21555
21556 if (cu->dependencies == NULL)
21557 cu->dependencies
21558 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21559 NULL, &cu->comp_unit_obstack,
21560 hashtab_obstack_allocate,
21561 dummy_obstack_deallocate);
21562
21563 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21564 if (*slot == NULL)
21565 *slot = ref_per_cu;
21566}
1c379e20 21567
f504f079
DE
21568/* Subroutine of dwarf2_mark to pass to htab_traverse.
21569 Set the mark field in every compilation unit in the
ae038cb0
DJ
21570 cache that we must keep because we are keeping CU. */
21571
10b3939b
DJ
21572static int
21573dwarf2_mark_helper (void **slot, void *data)
21574{
21575 struct dwarf2_per_cu_data *per_cu;
21576
21577 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21578
21579 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21580 reading of the chain. As such dependencies remain valid it is not much
21581 useful to track and undo them during QUIT cleanups. */
21582 if (per_cu->cu == NULL)
21583 return 1;
21584
10b3939b
DJ
21585 if (per_cu->cu->mark)
21586 return 1;
21587 per_cu->cu->mark = 1;
21588
21589 if (per_cu->cu->dependencies != NULL)
21590 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21591
21592 return 1;
21593}
21594
f504f079
DE
21595/* Set the mark field in CU and in every other compilation unit in the
21596 cache that we must keep because we are keeping CU. */
21597
ae038cb0
DJ
21598static void
21599dwarf2_mark (struct dwarf2_cu *cu)
21600{
21601 if (cu->mark)
21602 return;
21603 cu->mark = 1;
10b3939b
DJ
21604 if (cu->dependencies != NULL)
21605 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21606}
21607
21608static void
21609dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21610{
21611 while (per_cu)
21612 {
21613 per_cu->cu->mark = 0;
21614 per_cu = per_cu->cu->read_in_chain;
21615 }
72bf9492
DJ
21616}
21617
72bf9492
DJ
21618/* Trivial hash function for partial_die_info: the hash value of a DIE
21619 is its offset in .debug_info for this objfile. */
21620
21621static hashval_t
21622partial_die_hash (const void *item)
21623{
21624 const struct partial_die_info *part_die = item;
9a619af0 21625
b64f50a1 21626 return part_die->offset.sect_off;
72bf9492
DJ
21627}
21628
21629/* Trivial comparison function for partial_die_info structures: two DIEs
21630 are equal if they have the same offset. */
21631
21632static int
21633partial_die_eq (const void *item_lhs, const void *item_rhs)
21634{
21635 const struct partial_die_info *part_die_lhs = item_lhs;
21636 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21637
b64f50a1 21638 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21639}
21640
ae038cb0
DJ
21641static struct cmd_list_element *set_dwarf2_cmdlist;
21642static struct cmd_list_element *show_dwarf2_cmdlist;
21643
21644static void
21645set_dwarf2_cmd (char *args, int from_tty)
21646{
21647 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21648}
21649
21650static void
21651show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21652{
ae038cb0
DJ
21653 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21654}
21655
4bf44c1c 21656/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21657
21658static void
c1bd65d0 21659dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21660{
21661 struct dwarf2_per_objfile *data = d;
8b70b953 21662 int ix;
8b70b953 21663
626f2d1c
TT
21664 /* Make sure we don't accidentally use dwarf2_per_objfile while
21665 cleaning up. */
21666 dwarf2_per_objfile = NULL;
21667
59b0c7c1
JB
21668 for (ix = 0; ix < data->n_comp_units; ++ix)
21669 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21670
59b0c7c1 21671 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21672 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21673 data->all_type_units[ix]->per_cu.imported_symtabs);
21674 xfree (data->all_type_units);
95554aad 21675
8b70b953 21676 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21677
21678 if (data->dwo_files)
21679 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21680 if (data->dwp_file)
21681 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21682
21683 if (data->dwz_file && data->dwz_file->dwz_bfd)
21684 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21685}
21686
21687\f
ae2de4f8 21688/* The "save gdb-index" command. */
9291a0cd
TT
21689
21690/* The contents of the hash table we create when building the string
21691 table. */
21692struct strtab_entry
21693{
21694 offset_type offset;
21695 const char *str;
21696};
21697
559a7a62
JK
21698/* Hash function for a strtab_entry.
21699
21700 Function is used only during write_hash_table so no index format backward
21701 compatibility is needed. */
b89be57b 21702
9291a0cd
TT
21703static hashval_t
21704hash_strtab_entry (const void *e)
21705{
21706 const struct strtab_entry *entry = e;
559a7a62 21707 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21708}
21709
21710/* Equality function for a strtab_entry. */
b89be57b 21711
9291a0cd
TT
21712static int
21713eq_strtab_entry (const void *a, const void *b)
21714{
21715 const struct strtab_entry *ea = a;
21716 const struct strtab_entry *eb = b;
21717 return !strcmp (ea->str, eb->str);
21718}
21719
21720/* Create a strtab_entry hash table. */
b89be57b 21721
9291a0cd
TT
21722static htab_t
21723create_strtab (void)
21724{
21725 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21726 xfree, xcalloc, xfree);
21727}
21728
21729/* Add a string to the constant pool. Return the string's offset in
21730 host order. */
b89be57b 21731
9291a0cd
TT
21732static offset_type
21733add_string (htab_t table, struct obstack *cpool, const char *str)
21734{
21735 void **slot;
21736 struct strtab_entry entry;
21737 struct strtab_entry *result;
21738
21739 entry.str = str;
21740 slot = htab_find_slot (table, &entry, INSERT);
21741 if (*slot)
21742 result = *slot;
21743 else
21744 {
21745 result = XNEW (struct strtab_entry);
21746 result->offset = obstack_object_size (cpool);
21747 result->str = str;
21748 obstack_grow_str0 (cpool, str);
21749 *slot = result;
21750 }
21751 return result->offset;
21752}
21753
21754/* An entry in the symbol table. */
21755struct symtab_index_entry
21756{
21757 /* The name of the symbol. */
21758 const char *name;
21759 /* The offset of the name in the constant pool. */
21760 offset_type index_offset;
21761 /* A sorted vector of the indices of all the CUs that hold an object
21762 of this name. */
21763 VEC (offset_type) *cu_indices;
21764};
21765
21766/* The symbol table. This is a power-of-2-sized hash table. */
21767struct mapped_symtab
21768{
21769 offset_type n_elements;
21770 offset_type size;
21771 struct symtab_index_entry **data;
21772};
21773
21774/* Hash function for a symtab_index_entry. */
b89be57b 21775
9291a0cd
TT
21776static hashval_t
21777hash_symtab_entry (const void *e)
21778{
21779 const struct symtab_index_entry *entry = e;
21780 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21781 sizeof (offset_type) * VEC_length (offset_type,
21782 entry->cu_indices),
21783 0);
21784}
21785
21786/* Equality function for a symtab_index_entry. */
b89be57b 21787
9291a0cd
TT
21788static int
21789eq_symtab_entry (const void *a, const void *b)
21790{
21791 const struct symtab_index_entry *ea = a;
21792 const struct symtab_index_entry *eb = b;
21793 int len = VEC_length (offset_type, ea->cu_indices);
21794 if (len != VEC_length (offset_type, eb->cu_indices))
21795 return 0;
21796 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21797 VEC_address (offset_type, eb->cu_indices),
21798 sizeof (offset_type) * len);
21799}
21800
21801/* Destroy a symtab_index_entry. */
b89be57b 21802
9291a0cd
TT
21803static void
21804delete_symtab_entry (void *p)
21805{
21806 struct symtab_index_entry *entry = p;
21807 VEC_free (offset_type, entry->cu_indices);
21808 xfree (entry);
21809}
21810
21811/* Create a hash table holding symtab_index_entry objects. */
b89be57b 21812
9291a0cd 21813static htab_t
3876f04e 21814create_symbol_hash_table (void)
9291a0cd
TT
21815{
21816 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21817 delete_symtab_entry, xcalloc, xfree);
21818}
21819
21820/* Create a new mapped symtab object. */
b89be57b 21821
9291a0cd
TT
21822static struct mapped_symtab *
21823create_mapped_symtab (void)
21824{
21825 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21826 symtab->n_elements = 0;
21827 symtab->size = 1024;
21828 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21829 return symtab;
21830}
21831
21832/* Destroy a mapped_symtab. */
b89be57b 21833
9291a0cd
TT
21834static void
21835cleanup_mapped_symtab (void *p)
21836{
21837 struct mapped_symtab *symtab = p;
21838 /* The contents of the array are freed when the other hash table is
21839 destroyed. */
21840 xfree (symtab->data);
21841 xfree (symtab);
21842}
21843
21844/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
21845 the slot.
21846
21847 Function is used only during write_hash_table so no index format backward
21848 compatibility is needed. */
b89be57b 21849
9291a0cd
TT
21850static struct symtab_index_entry **
21851find_slot (struct mapped_symtab *symtab, const char *name)
21852{
559a7a62 21853 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
21854
21855 index = hash & (symtab->size - 1);
21856 step = ((hash * 17) & (symtab->size - 1)) | 1;
21857
21858 for (;;)
21859 {
21860 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21861 return &symtab->data[index];
21862 index = (index + step) & (symtab->size - 1);
21863 }
21864}
21865
21866/* Expand SYMTAB's hash table. */
b89be57b 21867
9291a0cd
TT
21868static void
21869hash_expand (struct mapped_symtab *symtab)
21870{
21871 offset_type old_size = symtab->size;
21872 offset_type i;
21873 struct symtab_index_entry **old_entries = symtab->data;
21874
21875 symtab->size *= 2;
21876 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21877
21878 for (i = 0; i < old_size; ++i)
21879 {
21880 if (old_entries[i])
21881 {
21882 struct symtab_index_entry **slot = find_slot (symtab,
21883 old_entries[i]->name);
21884 *slot = old_entries[i];
21885 }
21886 }
21887
21888 xfree (old_entries);
21889}
21890
156942c7
DE
21891/* Add an entry to SYMTAB. NAME is the name of the symbol.
21892 CU_INDEX is the index of the CU in which the symbol appears.
21893 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 21894
9291a0cd
TT
21895static void
21896add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 21897 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
21898 offset_type cu_index)
21899{
21900 struct symtab_index_entry **slot;
156942c7 21901 offset_type cu_index_and_attrs;
9291a0cd
TT
21902
21903 ++symtab->n_elements;
21904 if (4 * symtab->n_elements / 3 >= symtab->size)
21905 hash_expand (symtab);
21906
21907 slot = find_slot (symtab, name);
21908 if (!*slot)
21909 {
21910 *slot = XNEW (struct symtab_index_entry);
21911 (*slot)->name = name;
156942c7 21912 /* index_offset is set later. */
9291a0cd
TT
21913 (*slot)->cu_indices = NULL;
21914 }
156942c7
DE
21915
21916 cu_index_and_attrs = 0;
21917 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21918 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21919 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21920
21921 /* We don't want to record an index value twice as we want to avoid the
21922 duplication.
21923 We process all global symbols and then all static symbols
21924 (which would allow us to avoid the duplication by only having to check
21925 the last entry pushed), but a symbol could have multiple kinds in one CU.
21926 To keep things simple we don't worry about the duplication here and
21927 sort and uniqufy the list after we've processed all symbols. */
21928 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21929}
21930
21931/* qsort helper routine for uniquify_cu_indices. */
21932
21933static int
21934offset_type_compare (const void *ap, const void *bp)
21935{
21936 offset_type a = *(offset_type *) ap;
21937 offset_type b = *(offset_type *) bp;
21938
21939 return (a > b) - (b > a);
21940}
21941
21942/* Sort and remove duplicates of all symbols' cu_indices lists. */
21943
21944static void
21945uniquify_cu_indices (struct mapped_symtab *symtab)
21946{
21947 int i;
21948
21949 for (i = 0; i < symtab->size; ++i)
21950 {
21951 struct symtab_index_entry *entry = symtab->data[i];
21952
21953 if (entry
21954 && entry->cu_indices != NULL)
21955 {
21956 unsigned int next_to_insert, next_to_check;
21957 offset_type last_value;
21958
21959 qsort (VEC_address (offset_type, entry->cu_indices),
21960 VEC_length (offset_type, entry->cu_indices),
21961 sizeof (offset_type), offset_type_compare);
21962
21963 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21964 next_to_insert = 1;
21965 for (next_to_check = 1;
21966 next_to_check < VEC_length (offset_type, entry->cu_indices);
21967 ++next_to_check)
21968 {
21969 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21970 != last_value)
21971 {
21972 last_value = VEC_index (offset_type, entry->cu_indices,
21973 next_to_check);
21974 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21975 last_value);
21976 ++next_to_insert;
21977 }
21978 }
21979 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21980 }
21981 }
9291a0cd
TT
21982}
21983
21984/* Add a vector of indices to the constant pool. */
b89be57b 21985
9291a0cd 21986static offset_type
3876f04e 21987add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
21988 struct symtab_index_entry *entry)
21989{
21990 void **slot;
21991
3876f04e 21992 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
21993 if (!*slot)
21994 {
21995 offset_type len = VEC_length (offset_type, entry->cu_indices);
21996 offset_type val = MAYBE_SWAP (len);
21997 offset_type iter;
21998 int i;
21999
22000 *slot = entry;
22001 entry->index_offset = obstack_object_size (cpool);
22002
22003 obstack_grow (cpool, &val, sizeof (val));
22004 for (i = 0;
22005 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22006 ++i)
22007 {
22008 val = MAYBE_SWAP (iter);
22009 obstack_grow (cpool, &val, sizeof (val));
22010 }
22011 }
22012 else
22013 {
22014 struct symtab_index_entry *old_entry = *slot;
22015 entry->index_offset = old_entry->index_offset;
22016 entry = old_entry;
22017 }
22018 return entry->index_offset;
22019}
22020
22021/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22022 constant pool entries going into the obstack CPOOL. */
b89be57b 22023
9291a0cd
TT
22024static void
22025write_hash_table (struct mapped_symtab *symtab,
22026 struct obstack *output, struct obstack *cpool)
22027{
22028 offset_type i;
3876f04e 22029 htab_t symbol_hash_table;
9291a0cd
TT
22030 htab_t str_table;
22031
3876f04e 22032 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22033 str_table = create_strtab ();
3876f04e 22034
9291a0cd
TT
22035 /* We add all the index vectors to the constant pool first, to
22036 ensure alignment is ok. */
22037 for (i = 0; i < symtab->size; ++i)
22038 {
22039 if (symtab->data[i])
3876f04e 22040 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22041 }
22042
22043 /* Now write out the hash table. */
22044 for (i = 0; i < symtab->size; ++i)
22045 {
22046 offset_type str_off, vec_off;
22047
22048 if (symtab->data[i])
22049 {
22050 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22051 vec_off = symtab->data[i]->index_offset;
22052 }
22053 else
22054 {
22055 /* While 0 is a valid constant pool index, it is not valid
22056 to have 0 for both offsets. */
22057 str_off = 0;
22058 vec_off = 0;
22059 }
22060
22061 str_off = MAYBE_SWAP (str_off);
22062 vec_off = MAYBE_SWAP (vec_off);
22063
22064 obstack_grow (output, &str_off, sizeof (str_off));
22065 obstack_grow (output, &vec_off, sizeof (vec_off));
22066 }
22067
22068 htab_delete (str_table);
3876f04e 22069 htab_delete (symbol_hash_table);
9291a0cd
TT
22070}
22071
0a5429f6
DE
22072/* Struct to map psymtab to CU index in the index file. */
22073struct psymtab_cu_index_map
22074{
22075 struct partial_symtab *psymtab;
22076 unsigned int cu_index;
22077};
22078
22079static hashval_t
22080hash_psymtab_cu_index (const void *item)
22081{
22082 const struct psymtab_cu_index_map *map = item;
22083
22084 return htab_hash_pointer (map->psymtab);
22085}
22086
22087static int
22088eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22089{
22090 const struct psymtab_cu_index_map *lhs = item_lhs;
22091 const struct psymtab_cu_index_map *rhs = item_rhs;
22092
22093 return lhs->psymtab == rhs->psymtab;
22094}
22095
22096/* Helper struct for building the address table. */
22097struct addrmap_index_data
22098{
22099 struct objfile *objfile;
22100 struct obstack *addr_obstack;
22101 htab_t cu_index_htab;
22102
22103 /* Non-zero if the previous_* fields are valid.
22104 We can't write an entry until we see the next entry (since it is only then
22105 that we know the end of the entry). */
22106 int previous_valid;
22107 /* Index of the CU in the table of all CUs in the index file. */
22108 unsigned int previous_cu_index;
0963b4bd 22109 /* Start address of the CU. */
0a5429f6
DE
22110 CORE_ADDR previous_cu_start;
22111};
22112
22113/* Write an address entry to OBSTACK. */
b89be57b 22114
9291a0cd 22115static void
0a5429f6
DE
22116add_address_entry (struct objfile *objfile, struct obstack *obstack,
22117 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22118{
0a5429f6 22119 offset_type cu_index_to_write;
948f8e3d 22120 gdb_byte addr[8];
9291a0cd
TT
22121 CORE_ADDR baseaddr;
22122
22123 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22124
0a5429f6
DE
22125 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22126 obstack_grow (obstack, addr, 8);
22127 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22128 obstack_grow (obstack, addr, 8);
22129 cu_index_to_write = MAYBE_SWAP (cu_index);
22130 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22131}
22132
22133/* Worker function for traversing an addrmap to build the address table. */
22134
22135static int
22136add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22137{
22138 struct addrmap_index_data *data = datap;
22139 struct partial_symtab *pst = obj;
0a5429f6
DE
22140
22141 if (data->previous_valid)
22142 add_address_entry (data->objfile, data->addr_obstack,
22143 data->previous_cu_start, start_addr,
22144 data->previous_cu_index);
22145
22146 data->previous_cu_start = start_addr;
22147 if (pst != NULL)
22148 {
22149 struct psymtab_cu_index_map find_map, *map;
22150 find_map.psymtab = pst;
22151 map = htab_find (data->cu_index_htab, &find_map);
22152 gdb_assert (map != NULL);
22153 data->previous_cu_index = map->cu_index;
22154 data->previous_valid = 1;
22155 }
22156 else
22157 data->previous_valid = 0;
22158
22159 return 0;
22160}
22161
22162/* Write OBJFILE's address map to OBSTACK.
22163 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22164 in the index file. */
22165
22166static void
22167write_address_map (struct objfile *objfile, struct obstack *obstack,
22168 htab_t cu_index_htab)
22169{
22170 struct addrmap_index_data addrmap_index_data;
22171
22172 /* When writing the address table, we have to cope with the fact that
22173 the addrmap iterator only provides the start of a region; we have to
22174 wait until the next invocation to get the start of the next region. */
22175
22176 addrmap_index_data.objfile = objfile;
22177 addrmap_index_data.addr_obstack = obstack;
22178 addrmap_index_data.cu_index_htab = cu_index_htab;
22179 addrmap_index_data.previous_valid = 0;
22180
22181 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22182 &addrmap_index_data);
22183
22184 /* It's highly unlikely the last entry (end address = 0xff...ff)
22185 is valid, but we should still handle it.
22186 The end address is recorded as the start of the next region, but that
22187 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22188 anyway. */
22189 if (addrmap_index_data.previous_valid)
22190 add_address_entry (objfile, obstack,
22191 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22192 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22193}
22194
156942c7
DE
22195/* Return the symbol kind of PSYM. */
22196
22197static gdb_index_symbol_kind
22198symbol_kind (struct partial_symbol *psym)
22199{
22200 domain_enum domain = PSYMBOL_DOMAIN (psym);
22201 enum address_class aclass = PSYMBOL_CLASS (psym);
22202
22203 switch (domain)
22204 {
22205 case VAR_DOMAIN:
22206 switch (aclass)
22207 {
22208 case LOC_BLOCK:
22209 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22210 case LOC_TYPEDEF:
22211 return GDB_INDEX_SYMBOL_KIND_TYPE;
22212 case LOC_COMPUTED:
22213 case LOC_CONST_BYTES:
22214 case LOC_OPTIMIZED_OUT:
22215 case LOC_STATIC:
22216 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22217 case LOC_CONST:
22218 /* Note: It's currently impossible to recognize psyms as enum values
22219 short of reading the type info. For now punt. */
22220 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22221 default:
22222 /* There are other LOC_FOO values that one might want to classify
22223 as variables, but dwarf2read.c doesn't currently use them. */
22224 return GDB_INDEX_SYMBOL_KIND_OTHER;
22225 }
22226 case STRUCT_DOMAIN:
22227 return GDB_INDEX_SYMBOL_KIND_TYPE;
22228 default:
22229 return GDB_INDEX_SYMBOL_KIND_OTHER;
22230 }
22231}
22232
9291a0cd 22233/* Add a list of partial symbols to SYMTAB. */
b89be57b 22234
9291a0cd
TT
22235static void
22236write_psymbols (struct mapped_symtab *symtab,
987d643c 22237 htab_t psyms_seen,
9291a0cd
TT
22238 struct partial_symbol **psymp,
22239 int count,
987d643c
TT
22240 offset_type cu_index,
22241 int is_static)
9291a0cd
TT
22242{
22243 for (; count-- > 0; ++psymp)
22244 {
156942c7
DE
22245 struct partial_symbol *psym = *psymp;
22246 void **slot;
987d643c 22247
156942c7 22248 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22249 error (_("Ada is not currently supported by the index"));
987d643c 22250
987d643c 22251 /* Only add a given psymbol once. */
156942c7 22252 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22253 if (!*slot)
22254 {
156942c7
DE
22255 gdb_index_symbol_kind kind = symbol_kind (psym);
22256
22257 *slot = psym;
22258 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22259 is_static, kind, cu_index);
987d643c 22260 }
9291a0cd
TT
22261 }
22262}
22263
22264/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22265 exception if there is an error. */
b89be57b 22266
9291a0cd
TT
22267static void
22268write_obstack (FILE *file, struct obstack *obstack)
22269{
22270 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22271 file)
22272 != obstack_object_size (obstack))
22273 error (_("couldn't data write to file"));
22274}
22275
22276/* Unlink a file if the argument is not NULL. */
b89be57b 22277
9291a0cd
TT
22278static void
22279unlink_if_set (void *p)
22280{
22281 char **filename = p;
22282 if (*filename)
22283 unlink (*filename);
22284}
22285
1fd400ff
TT
22286/* A helper struct used when iterating over debug_types. */
22287struct signatured_type_index_data
22288{
22289 struct objfile *objfile;
22290 struct mapped_symtab *symtab;
22291 struct obstack *types_list;
987d643c 22292 htab_t psyms_seen;
1fd400ff
TT
22293 int cu_index;
22294};
22295
22296/* A helper function that writes a single signatured_type to an
22297 obstack. */
b89be57b 22298
1fd400ff
TT
22299static int
22300write_one_signatured_type (void **slot, void *d)
22301{
22302 struct signatured_type_index_data *info = d;
22303 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22304 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22305 gdb_byte val[8];
22306
22307 write_psymbols (info->symtab,
987d643c 22308 info->psyms_seen,
3e43a32a
MS
22309 info->objfile->global_psymbols.list
22310 + psymtab->globals_offset,
987d643c
TT
22311 psymtab->n_global_syms, info->cu_index,
22312 0);
1fd400ff 22313 write_psymbols (info->symtab,
987d643c 22314 info->psyms_seen,
3e43a32a
MS
22315 info->objfile->static_psymbols.list
22316 + psymtab->statics_offset,
987d643c
TT
22317 psymtab->n_static_syms, info->cu_index,
22318 1);
1fd400ff 22319
b64f50a1
JK
22320 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22321 entry->per_cu.offset.sect_off);
1fd400ff 22322 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22323 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22324 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22325 obstack_grow (info->types_list, val, 8);
22326 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22327 obstack_grow (info->types_list, val, 8);
22328
22329 ++info->cu_index;
22330
22331 return 1;
22332}
22333
95554aad
TT
22334/* Recurse into all "included" dependencies and write their symbols as
22335 if they appeared in this psymtab. */
22336
22337static void
22338recursively_write_psymbols (struct objfile *objfile,
22339 struct partial_symtab *psymtab,
22340 struct mapped_symtab *symtab,
22341 htab_t psyms_seen,
22342 offset_type cu_index)
22343{
22344 int i;
22345
22346 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22347 if (psymtab->dependencies[i]->user != NULL)
22348 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22349 symtab, psyms_seen, cu_index);
22350
22351 write_psymbols (symtab,
22352 psyms_seen,
22353 objfile->global_psymbols.list + psymtab->globals_offset,
22354 psymtab->n_global_syms, cu_index,
22355 0);
22356 write_psymbols (symtab,
22357 psyms_seen,
22358 objfile->static_psymbols.list + psymtab->statics_offset,
22359 psymtab->n_static_syms, cu_index,
22360 1);
22361}
22362
9291a0cd 22363/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22364
9291a0cd
TT
22365static void
22366write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22367{
22368 struct cleanup *cleanup;
22369 char *filename, *cleanup_filename;
1fd400ff
TT
22370 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22371 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22372 int i;
22373 FILE *out_file;
22374 struct mapped_symtab *symtab;
22375 offset_type val, size_of_contents, total_len;
22376 struct stat st;
987d643c 22377 htab_t psyms_seen;
0a5429f6
DE
22378 htab_t cu_index_htab;
22379 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22380
9291a0cd
TT
22381 if (dwarf2_per_objfile->using_index)
22382 error (_("Cannot use an index to create the index"));
22383
8b70b953
TT
22384 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22385 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22386
260b681b
DE
22387 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22388 return;
22389
4262abfb
JK
22390 if (stat (objfile_name (objfile), &st) < 0)
22391 perror_with_name (objfile_name (objfile));
9291a0cd 22392
4262abfb 22393 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22394 INDEX_SUFFIX, (char *) NULL);
22395 cleanup = make_cleanup (xfree, filename);
22396
614c279d 22397 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22398 if (!out_file)
22399 error (_("Can't open `%s' for writing"), filename);
22400
22401 cleanup_filename = filename;
22402 make_cleanup (unlink_if_set, &cleanup_filename);
22403
22404 symtab = create_mapped_symtab ();
22405 make_cleanup (cleanup_mapped_symtab, symtab);
22406
22407 obstack_init (&addr_obstack);
22408 make_cleanup_obstack_free (&addr_obstack);
22409
22410 obstack_init (&cu_list);
22411 make_cleanup_obstack_free (&cu_list);
22412
1fd400ff
TT
22413 obstack_init (&types_cu_list);
22414 make_cleanup_obstack_free (&types_cu_list);
22415
987d643c
TT
22416 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22417 NULL, xcalloc, xfree);
96408a79 22418 make_cleanup_htab_delete (psyms_seen);
987d643c 22419
0a5429f6
DE
22420 /* While we're scanning CU's create a table that maps a psymtab pointer
22421 (which is what addrmap records) to its index (which is what is recorded
22422 in the index file). This will later be needed to write the address
22423 table. */
22424 cu_index_htab = htab_create_alloc (100,
22425 hash_psymtab_cu_index,
22426 eq_psymtab_cu_index,
22427 NULL, xcalloc, xfree);
96408a79 22428 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22429 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22430 xmalloc (sizeof (struct psymtab_cu_index_map)
22431 * dwarf2_per_objfile->n_comp_units);
22432 make_cleanup (xfree, psymtab_cu_index_map);
22433
22434 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22435 work here. Also, the debug_types entries do not appear in
22436 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22437 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22438 {
3e43a32a
MS
22439 struct dwarf2_per_cu_data *per_cu
22440 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22441 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22442 gdb_byte val[8];
0a5429f6
DE
22443 struct psymtab_cu_index_map *map;
22444 void **slot;
9291a0cd 22445
92fac807
JK
22446 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22447 It may be referenced from a local scope but in such case it does not
22448 need to be present in .gdb_index. */
22449 if (psymtab == NULL)
22450 continue;
22451
95554aad
TT
22452 if (psymtab->user == NULL)
22453 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22454
0a5429f6
DE
22455 map = &psymtab_cu_index_map[i];
22456 map->psymtab = psymtab;
22457 map->cu_index = i;
22458 slot = htab_find_slot (cu_index_htab, map, INSERT);
22459 gdb_assert (slot != NULL);
22460 gdb_assert (*slot == NULL);
22461 *slot = map;
9291a0cd 22462
b64f50a1
JK
22463 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22464 per_cu->offset.sect_off);
9291a0cd 22465 obstack_grow (&cu_list, val, 8);
e254ef6a 22466 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22467 obstack_grow (&cu_list, val, 8);
22468 }
22469
0a5429f6
DE
22470 /* Dump the address map. */
22471 write_address_map (objfile, &addr_obstack, cu_index_htab);
22472
1fd400ff
TT
22473 /* Write out the .debug_type entries, if any. */
22474 if (dwarf2_per_objfile->signatured_types)
22475 {
22476 struct signatured_type_index_data sig_data;
22477
22478 sig_data.objfile = objfile;
22479 sig_data.symtab = symtab;
22480 sig_data.types_list = &types_cu_list;
987d643c 22481 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22482 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22483 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22484 write_one_signatured_type, &sig_data);
22485 }
22486
156942c7
DE
22487 /* Now that we've processed all symbols we can shrink their cu_indices
22488 lists. */
22489 uniquify_cu_indices (symtab);
22490
9291a0cd
TT
22491 obstack_init (&constant_pool);
22492 make_cleanup_obstack_free (&constant_pool);
22493 obstack_init (&symtab_obstack);
22494 make_cleanup_obstack_free (&symtab_obstack);
22495 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22496
22497 obstack_init (&contents);
22498 make_cleanup_obstack_free (&contents);
1fd400ff 22499 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22500 total_len = size_of_contents;
22501
22502 /* The version number. */
796a7ff8 22503 val = MAYBE_SWAP (8);
9291a0cd
TT
22504 obstack_grow (&contents, &val, sizeof (val));
22505
22506 /* The offset of the CU list from the start of the file. */
22507 val = MAYBE_SWAP (total_len);
22508 obstack_grow (&contents, &val, sizeof (val));
22509 total_len += obstack_object_size (&cu_list);
22510
1fd400ff
TT
22511 /* The offset of the types CU list from the start of the file. */
22512 val = MAYBE_SWAP (total_len);
22513 obstack_grow (&contents, &val, sizeof (val));
22514 total_len += obstack_object_size (&types_cu_list);
22515
9291a0cd
TT
22516 /* The offset of the address table from the start of the file. */
22517 val = MAYBE_SWAP (total_len);
22518 obstack_grow (&contents, &val, sizeof (val));
22519 total_len += obstack_object_size (&addr_obstack);
22520
22521 /* The offset of the symbol table from the start of the file. */
22522 val = MAYBE_SWAP (total_len);
22523 obstack_grow (&contents, &val, sizeof (val));
22524 total_len += obstack_object_size (&symtab_obstack);
22525
22526 /* The offset of the constant pool from the start of the file. */
22527 val = MAYBE_SWAP (total_len);
22528 obstack_grow (&contents, &val, sizeof (val));
22529 total_len += obstack_object_size (&constant_pool);
22530
22531 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22532
22533 write_obstack (out_file, &contents);
22534 write_obstack (out_file, &cu_list);
1fd400ff 22535 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22536 write_obstack (out_file, &addr_obstack);
22537 write_obstack (out_file, &symtab_obstack);
22538 write_obstack (out_file, &constant_pool);
22539
22540 fclose (out_file);
22541
22542 /* We want to keep the file, so we set cleanup_filename to NULL
22543 here. See unlink_if_set. */
22544 cleanup_filename = NULL;
22545
22546 do_cleanups (cleanup);
22547}
22548
90476074
TT
22549/* Implementation of the `save gdb-index' command.
22550
22551 Note that the file format used by this command is documented in the
22552 GDB manual. Any changes here must be documented there. */
11570e71 22553
9291a0cd
TT
22554static void
22555save_gdb_index_command (char *arg, int from_tty)
22556{
22557 struct objfile *objfile;
22558
22559 if (!arg || !*arg)
96d19272 22560 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22561
22562 ALL_OBJFILES (objfile)
22563 {
22564 struct stat st;
22565
22566 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22567 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22568 continue;
22569
22570 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22571 if (dwarf2_per_objfile)
22572 {
22573 volatile struct gdb_exception except;
22574
22575 TRY_CATCH (except, RETURN_MASK_ERROR)
22576 {
22577 write_psymtabs_to_index (objfile, arg);
22578 }
22579 if (except.reason < 0)
22580 exception_fprintf (gdb_stderr, except,
22581 _("Error while writing index for `%s': "),
4262abfb 22582 objfile_name (objfile));
9291a0cd
TT
22583 }
22584 }
dce234bc
PP
22585}
22586
9291a0cd
TT
22587\f
22588
9eae7c52
TT
22589int dwarf2_always_disassemble;
22590
22591static void
22592show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22593 struct cmd_list_element *c, const char *value)
22594{
3e43a32a
MS
22595 fprintf_filtered (file,
22596 _("Whether to always disassemble "
22597 "DWARF expressions is %s.\n"),
9eae7c52
TT
22598 value);
22599}
22600
900e11f9
JK
22601static void
22602show_check_physname (struct ui_file *file, int from_tty,
22603 struct cmd_list_element *c, const char *value)
22604{
22605 fprintf_filtered (file,
22606 _("Whether to check \"physname\" is %s.\n"),
22607 value);
22608}
22609
6502dd73
DJ
22610void _initialize_dwarf2_read (void);
22611
22612void
22613_initialize_dwarf2_read (void)
22614{
96d19272
JK
22615 struct cmd_list_element *c;
22616
dce234bc 22617 dwarf2_objfile_data_key
c1bd65d0 22618 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22619
1bedd215
AC
22620 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22621Set DWARF 2 specific variables.\n\
22622Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22623 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22624 0/*allow-unknown*/, &maintenance_set_cmdlist);
22625
1bedd215
AC
22626 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22627Show DWARF 2 specific variables\n\
22628Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22629 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22630 0/*allow-unknown*/, &maintenance_show_cmdlist);
22631
22632 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22633 &dwarf2_max_cache_age, _("\
22634Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22635Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22636A higher limit means that cached compilation units will be stored\n\
22637in memory longer, and more total memory will be used. Zero disables\n\
22638caching, which can slow down startup."),
2c5b56ce 22639 NULL,
920d2a44 22640 show_dwarf2_max_cache_age,
2c5b56ce 22641 &set_dwarf2_cmdlist,
ae038cb0 22642 &show_dwarf2_cmdlist);
d97bc12b 22643
9eae7c52
TT
22644 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22645 &dwarf2_always_disassemble, _("\
22646Set whether `info address' always disassembles DWARF expressions."), _("\
22647Show whether `info address' always disassembles DWARF expressions."), _("\
22648When enabled, DWARF expressions are always printed in an assembly-like\n\
22649syntax. When disabled, expressions will be printed in a more\n\
22650conversational style, when possible."),
22651 NULL,
22652 show_dwarf2_always_disassemble,
22653 &set_dwarf2_cmdlist,
22654 &show_dwarf2_cmdlist);
22655
73be47f5 22656 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22657Set debugging of the dwarf2 reader."), _("\
22658Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22659When enabled (non-zero), debugging messages are printed during dwarf2\n\
22660reading and symtab expansion. A value of 1 (one) provides basic\n\
22661information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22662 NULL,
22663 NULL,
22664 &setdebuglist, &showdebuglist);
22665
ccce17b0 22666 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22667Set debugging of the dwarf2 DIE reader."), _("\
22668Show debugging of the dwarf2 DIE reader."), _("\
22669When enabled (non-zero), DIEs are dumped after they are read in.\n\
22670The value is the maximum depth to print."),
ccce17b0
YQ
22671 NULL,
22672 NULL,
22673 &setdebuglist, &showdebuglist);
9291a0cd 22674
900e11f9
JK
22675 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22676Set cross-checking of \"physname\" code against demangler."), _("\
22677Show cross-checking of \"physname\" code against demangler."), _("\
22678When enabled, GDB's internal \"physname\" code is checked against\n\
22679the demangler."),
22680 NULL, show_check_physname,
22681 &setdebuglist, &showdebuglist);
22682
e615022a
DE
22683 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22684 no_class, &use_deprecated_index_sections, _("\
22685Set whether to use deprecated gdb_index sections."), _("\
22686Show whether to use deprecated gdb_index sections."), _("\
22687When enabled, deprecated .gdb_index sections are used anyway.\n\
22688Normally they are ignored either because of a missing feature or\n\
22689performance issue.\n\
22690Warning: This option must be enabled before gdb reads the file."),
22691 NULL,
22692 NULL,
22693 &setlist, &showlist);
22694
96d19272 22695 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22696 _("\
fc1a9d6e 22697Save a gdb-index file.\n\
11570e71 22698Usage: save gdb-index DIRECTORY"),
96d19272
JK
22699 &save_cmdlist);
22700 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22701
22702 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22703 &dwarf2_locexpr_funcs);
22704 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22705 &dwarf2_loclist_funcs);
22706
22707 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22708 &dwarf2_block_frame_base_locexpr_funcs);
22709 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22710 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22711}
This page took 3.477352 seconds and 4 git commands to generate.