Assume termios is available, remove support for termio and sgtty
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
b32b108a 78#include "producer.h"
c906108c 79#include <fcntl.h>
c906108c 80#include <sys/types.h>
325fac50 81#include <algorithm>
bc8f2430
JK
82#include <unordered_set>
83#include <unordered_map>
d8151005 84
34eaf542
TT
85typedef struct symbol *symbolp;
86DEF_VEC_P (symbolp);
87
73be47f5
DE
88/* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
b4f54984
DE
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91static unsigned int dwarf_read_debug = 0;
45cfd468 92
d97bc12b 93/* When non-zero, dump DIEs after they are read in. */
b4f54984 94static unsigned int dwarf_die_debug = 0;
d97bc12b 95
27e0867f
DE
96/* When non-zero, dump line number entries as they are read in. */
97static unsigned int dwarf_line_debug = 0;
98
900e11f9
JK
99/* When non-zero, cross-check physname against demangler. */
100static int check_physname = 0;
101
481860b3 102/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 103static int use_deprecated_index_sections = 0;
481860b3 104
6502dd73
DJ
105static const struct objfile_data *dwarf2_objfile_data_key;
106
f1e6e072
TT
107/* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109static int dwarf2_locexpr_index;
110static int dwarf2_loclist_index;
111static int dwarf2_locexpr_block_index;
112static int dwarf2_loclist_block_index;
113
73869dc2
DE
114/* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
dce234bc
PP
130struct dwarf2_section_info
131{
73869dc2
DE
132 union
133 {
e5aa3347 134 /* If this is a real section, the bfd section. */
049412e3 135 asection *section;
73869dc2 136 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 137 section. */
73869dc2
DE
138 struct dwarf2_section_info *containing_section;
139 } s;
19ac8c2e 140 /* Pointer to section data, only valid if readin. */
d521ce57 141 const gdb_byte *buffer;
73869dc2 142 /* The size of the section, real or virtual. */
dce234bc 143 bfd_size_type size;
73869dc2
DE
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
be391dca 147 /* True if we have tried to read this section. */
73869dc2
DE
148 char readin;
149 /* True if this is a virtual section, False otherwise.
049412e3 150 This specifies which of s.section and s.containing_section to use. */
73869dc2 151 char is_virtual;
dce234bc
PP
152};
153
8b70b953
TT
154typedef struct dwarf2_section_info dwarf2_section_info_def;
155DEF_VEC_O (dwarf2_section_info_def);
156
9291a0cd
TT
157/* All offsets in the index are of this type. It must be
158 architecture-independent. */
159typedef uint32_t offset_type;
160
161DEF_VEC_I (offset_type);
162
156942c7
DE
163/* Ensure only legit values are used. */
164#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure only legit values are used. */
171#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178/* Ensure we don't use more than the alloted nuber of bits for the CU. */
179#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
9291a0cd
TT
185/* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187struct mapped_index
188{
559a7a62
JK
189 /* Index data format version. */
190 int version;
191
9291a0cd
TT
192 /* The total length of the buffer. */
193 off_t total_size;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
b11b1f88 197
9291a0cd
TT
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
b11b1f88 200
3876f04e
DE
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
b11b1f88 203
9291a0cd 204 /* Size in slots, each slot is 2 offset_types. */
3876f04e 205 offset_type symbol_table_slots;
b11b1f88 206
9291a0cd
TT
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209};
210
95554aad
TT
211typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212DEF_VEC_P (dwarf2_per_cu_ptr);
213
52059ffd
TT
214struct tu_stats
215{
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221};
222
9cdd5dbd
DE
223/* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
6502dd73
DJ
226struct dwarf2_per_objfile
227{
330cdd98
PA
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
ae038cb0 233
330cdd98
PA
234 ~dwarf2_per_objfile ();
235
d6541620 236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
330cdd98
PA
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 265
be391dca 266 /* Back link. */
330cdd98 267 struct objfile *objfile = NULL;
be391dca 268
d467dd73 269 /* Table of all the compilation units. This is used to locate
10b3939b 270 the target compilation unit of a particular reference. */
330cdd98 271 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 274 int n_comp_units = 0;
ae038cb0 275
1fd400ff 276 /* The number of .debug_types-related CUs. */
330cdd98 277 int n_type_units = 0;
1fd400ff 278
6aa5f3a6
DE
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 281 int n_allocated_type_units = 0;
6aa5f3a6 282
a2ce51a0
DE
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
330cdd98 285 struct signatured_type **all_type_units = NULL;
1fd400ff 286
f4dc4d17
DE
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
330cdd98 289 htab_t type_unit_groups {};
72dca2f5 290
348e048f
DE
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 293 htab_t signatured_types {};
348e048f 294
f4dc4d17
DE
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
330cdd98 297 struct tu_stats tu_stats {};
f4dc4d17
DE
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
330cdd98 301 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 302
3019eac3
DE
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
330cdd98 305 htab_t dwo_files {};
3019eac3 306
330cdd98
PA
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
80626a55
DE
309
310 /* The DWP file if there is one, or NULL. */
330cdd98 311 struct dwp_file *dwp_file = NULL;
80626a55 312
36586728
TT
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
330cdd98 315 struct dwz_file *dwz_file = NULL;
36586728 316
330cdd98 317 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 318 VMA of 0. */
330cdd98 319 bool has_section_at_zero = false;
9291a0cd 320
ae2de4f8
DE
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
330cdd98 323 bool using_index = false;
9291a0cd 324
ae2de4f8 325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 326 mapped_index *index_table = NULL;
98bfdba5 327
7b9f3c50 328 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
330cdd98 335 htab_t quick_file_names_table {};
7b9f3c50 336
98bfdba5
PA
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
330cdd98 339 bool reading_partial_symbols = false;
673bfd45 340
dee91e82 341 /* Table mapping type DIEs to their struct type *.
673bfd45 342 This is NULL if not allocated yet.
02142a6c 343 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 344 htab_t die_type_hash {};
95554aad
TT
345
346 /* The CUs we recently read. */
330cdd98 347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 350 htab_t line_header_hash {};
bbf2f4df
PA
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
355};
356
357static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 358
251d32d9 359/* Default names of the debugging sections. */
c906108c 360
233a11ab
CS
361/* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
9cdd5dbd
DE
364static const struct dwarf2_debug_sections dwarf2_elf_names =
365{
251d32d9
TG
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
43988095 370 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 371 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 372 { ".debug_macro", ".zdebug_macro" },
251d32d9 373 { ".debug_str", ".zdebug_str" },
43988095 374 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 375 { ".debug_ranges", ".zdebug_ranges" },
43988095 376 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 377 { ".debug_types", ".zdebug_types" },
3019eac3 378 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
24d3216f
TT
381 { ".gdb_index", ".zgdb_index" },
382 23
251d32d9 383};
c906108c 384
80626a55 385/* List of DWO/DWP sections. */
3019eac3 386
80626a55 387static const struct dwop_section_names
3019eac3
DE
388{
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
43988095 393 struct dwarf2_section_names loclists_dwo;
09262596
DE
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
3019eac3
DE
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
80626a55
DE
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
3019eac3 401}
80626a55 402dwop_section_names =
3019eac3
DE
403{
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
416};
417
c906108c
SS
418/* local data types */
419
107d2387
AC
420/* The data in a compilation unit header, after target2host
421 translation, looks like this. */
c906108c 422struct comp_unit_head
a738430d 423{
c764a876 424 unsigned int length;
a738430d 425 short version;
a738430d
MK
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
9c541725 428 sect_offset abbrev_sect_off;
57349743 429
a738430d
MK
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
57349743 432
a738430d
MK
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
57349743 435
43988095
JK
436 enum dwarf_unit_type unit_type;
437
a738430d
MK
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
9c541725 440 sect_offset sect_off;
57349743 441
d00adf39
DE
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
9c541725 444 cu_offset first_die_cu_offset;
43988095
JK
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 451 cu_offset type_cu_offset_in_tu;
a738430d 452};
c906108c 453
3da10d80
KS
454/* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456struct delayed_method_info
457{
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472};
473
474typedef struct delayed_method_info delayed_method_info;
475DEF_VEC_O (delayed_method_info);
476
e7c27a73
DJ
477/* Internal state when decoding a particular compilation unit. */
478struct dwarf2_cu
479{
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
d00adf39 483 /* The header of the compilation unit. */
e7c27a73 484 struct comp_unit_head header;
e142c38c 485
d00adf39
DE
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
e142c38c
DJ
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
b0f35d58
DL
496 const char *producer;
497
e142c38c
DJ
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
433df2d4
DE
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
72bf9492 513
b64f50a1
JK
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
ae038cb0
DJ
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
69d751e3 528 /* Backlink to our per_cu entry. */
ae038cb0
DJ
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
b64f50a1
JK
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
51545339 536 htab_t die_hash;
10b3939b
DJ
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
cb1df416
DJ
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
4c8aa72d
PA
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
cb1df416 554
3da10d80
KS
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
96408a79
SA
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
034e5797
DE
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
3019eac3
DE
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
1dbab08b 575 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
576 ULONGEST addr_base;
577
2e3cf129
DE
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
1dbab08b 580 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 581 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
588 ULONGEST ranges_base;
589
ae038cb0
DJ
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
8be455d7
JK
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 597 unsigned int has_loclist : 1;
ba919b58 598
1b80a9fa
JK
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
ba919b58
TT
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 605 unsigned int producer_is_gcc_lt_4_3 : 1;
5230b05a 606 unsigned int producer_is_icc_lt_14 : 1;
4d4ec4e5
TT
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
613};
614
10b3939b
DJ
615/* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
28dee7f5 617 read_symtab_private field of the psymtab. */
10b3939b 618
ae038cb0
DJ
619struct dwarf2_per_cu_data
620{
36586728 621 /* The start offset and length of this compilation unit.
45452591 622 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
9c541725 626 sect_offset sect_off;
36586728 627 unsigned int length;
ae038cb0 628
43988095
JK
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
ae038cb0
DJ
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
c764a876 634 unsigned int queued : 1;
ae038cb0 635
0d99eb77
DE
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
0186c6a7
DE
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
3019eac3
DE
645 unsigned int is_debug_types : 1;
646
36586728
TT
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
a2ce51a0
DE
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
7ee85ab1
DE
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
3019eac3
DE
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
8a0459fd 669 struct dwarf2_section_info *section;
348e048f 670
17ea53c3 671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
ae038cb0 674 struct dwarf2_cu *cu;
1c379e20 675
9cdd5dbd
DE
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
679 struct objfile *objfile;
680
fffbe6a8
YQ
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
95554aad 686 or NULL for unread partial units. */
9291a0cd
TT
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
95554aad 692
796a7ff8
DE
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
712};
713
348e048f
DE
714/* Entry in the signatured_types hash table. */
715
716struct signatured_type
717{
42e7ad6c 718 /* The "per_cu" object of this type.
ac9ec31b 719 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
3019eac3 724 /* The type's signature. */
348e048f
DE
725 ULONGEST signature;
726
3019eac3 727 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
0186c6a7
DE
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
ac9ec31b
DE
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
a2ce51a0
DE
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
348e048f
DE
751};
752
0186c6a7
DE
753typedef struct signatured_type *sig_type_ptr;
754DEF_VEC_P (sig_type_ptr);
755
094b34ac
DE
756/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759struct stmt_list_hash
760{
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 765 sect_offset line_sect_off;
094b34ac
DE
766};
767
f4dc4d17
DE
768/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771struct type_unit_group
772{
0186c6a7 773 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
8a0459fd 778#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
779 struct dwarf2_per_cu_data per_cu;
780
0186c6a7
DE
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
f4dc4d17 785
43f3e411 786 /* The compunit symtab.
094b34ac 787 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
f4dc4d17 790
094b34ac
DE
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
f4dc4d17
DE
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807};
808
73869dc2 809/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
810
811struct dwo_sections
812{
813 struct dwarf2_section_info abbrev;
3019eac3
DE
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
43988095 816 struct dwarf2_section_info loclists;
09262596
DE
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
3019eac3
DE
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
80626a55
DE
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
3019eac3
DE
823 VEC (dwarf2_section_info_def) *types;
824};
825
c88ee1f0 826/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
827
828struct dwo_unit
829{
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 839 struct dwarf2_section_info *section;
3019eac3 840
9c541725
PA
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
3019eac3
DE
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847};
848
73869dc2
DE
849/* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853enum dwp_v2_section_ids
854{
855 DW_SECT_MIN = 1
856};
857
80626a55 858/* Data for one DWO file.
57d63ce2
DE
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
3019eac3
DE
868
869struct dwo_file
870{
0ac5b59e 871 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
0ac5b59e
DE
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
3019eac3 879
80626a55
DE
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
3019eac3 883
73869dc2
DE
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
3019eac3
DE
887 struct dwo_sections sections;
888
33c5cd75
DB
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
3019eac3
DE
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898};
899
80626a55
DE
900/* These sections are what may appear in a DWP file. */
901
902struct dwp_sections
903{
73869dc2 904 /* These are used by both DWP version 1 and 2. */
80626a55
DE
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
73869dc2
DE
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
80626a55
DE
925};
926
73869dc2
DE
927/* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 929
73869dc2 930struct virtual_v1_dwo_sections
80626a55
DE
931{
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 939 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
940 struct dwarf2_section_info info_or_types;
941};
942
73869dc2
DE
943/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948struct virtual_v2_dwo_sections
949{
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972};
973
80626a55
DE
974/* Contents of DWP hash tables. */
975
976struct dwp_hash_table
977{
73869dc2 978 uint32_t version, nr_columns;
80626a55 979 uint32_t nr_units, nr_slots;
73869dc2
DE
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991#define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
80626a55
DE
1003};
1004
1005/* Data for one DWP file. */
1006
1007struct dwp_file
1008{
1009 /* Name of the file. */
1010 const char *name;
1011
73869dc2
DE
1012 /* File format version. */
1013 int version;
1014
93417882 1015 /* The bfd. */
80626a55
DE
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
57d63ce2 1021 /* Table of CUs in the file. */
80626a55
DE
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
19ac8c2e
DE
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
80626a55 1030
73869dc2
DE
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
80626a55
DE
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035};
1036
36586728
TT
1037/* This represents a '.dwz' file. */
1038
1039struct dwz_file
1040{
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
2ec9a5e0 1047 struct dwarf2_section_info gdb_index;
36586728
TT
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051};
1052
0963b4bd
MS
1053/* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
dee91e82 1056 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1057
1058struct die_reader_specs
1059{
a32a8923 1060 /* The bfd of die_section. */
93311388
DE
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
80626a55 1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1067 struct dwo_file *dwo_file;
1068
dee91e82 1069 /* The section the die comes from.
3019eac3 1070 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
d521ce57 1074 const gdb_byte *buffer;
f664829e
DE
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
a2ce51a0
DE
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
93311388
DE
1081};
1082
fd820528 1083/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1084typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1085 const gdb_byte *info_ptr,
dee91e82
DE
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
ecfb656c
PA
1090/* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093enum class dir_index : unsigned int {};
1094
1095/* Likewise, a 1-based file name index. */
1096enum class file_name_index : unsigned int {};
1097
52059ffd
TT
1098struct file_entry
1099{
fff8551c
PA
1100 file_entry () = default;
1101
ecfb656c 1102 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
ecfb656c 1105 d_index (d_index_),
fff8551c
PA
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
ecfb656c
PA
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1112 const char *include_dir (const line_header *lh) const;
1113
fff8551c
PA
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
8c43009f 1118 /* The directory index (1-based). */
ecfb656c 1119 dir_index d_index {};
fff8551c
PA
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
83769d0b 1128 /* The associated symbol table, if any. */
fff8551c 1129 struct symtab *symtab {};
52059ffd
TT
1130};
1131
debd256d
JB
1132/* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135struct line_header
1136{
fff8551c
PA
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
ecfb656c 1145 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1146 unsigned int mod_time, unsigned int length);
1147
ecfb656c 1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1149 is out of bounds. */
ecfb656c 1150 const char *include_dir_at (dir_index index) const
8c43009f 1151 {
ecfb656c
PA
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
8c43009f 1157 return NULL;
ecfb656c 1158 return include_dirs[vec_index];
8c43009f
PA
1159 }
1160
ecfb656c 1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1162 is out of bounds. */
ecfb656c 1163 file_entry *file_name_at (file_name_index index)
8c43009f 1164 {
ecfb656c
PA
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
fff8551c 1170 return NULL;
ecfb656c 1171 return &file_names[vec_index];
fff8551c
PA
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
8c43009f
PA
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
527f3840 1182 /* Offset of line number information in .debug_line section. */
9c541725 1183 sect_offset sect_off {};
527f3840
JK
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
debd256d
JB
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1203
fff8551c
PA
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
debd256d 1207
fff8551c
PA
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
debd256d
JB
1210
1211 /* The start and end of the statement program following this
6502dd73 1212 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1214};
c906108c 1215
fff8551c
PA
1216typedef std::unique_ptr<line_header> line_header_up;
1217
8c43009f
PA
1218const char *
1219file_entry::include_dir (const line_header *lh) const
1220{
ecfb656c 1221 return lh->include_dir_at (d_index);
8c43009f
PA
1222}
1223
c906108c 1224/* When we construct a partial symbol table entry we only
0963b4bd 1225 need this much information. */
c906108c
SS
1226struct partial_die_info
1227 {
72bf9492 1228 /* Offset of this DIE. */
9c541725 1229 sect_offset sect_off;
72bf9492
DJ
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
72bf9492
DJ
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
481860b3 1241 unsigned int may_be_inlined : 1;
72bf9492 1242
0c1b455e
TT
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
72bf9492
DJ
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
fa4028e9
JB
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
ff908ebf
AW
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
98bfdba5
PA
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
abc72ce4
DE
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
36586728
TT
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
72bf9492 1268 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1269 sometimes a default name for unnamed DIEs. */
15d034d0 1270 const char *name;
72bf9492 1271
abc72ce4
DE
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
72bf9492
DJ
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
15d034d0 1278 const char *scope;
72bf9492 1279
95554aad
TT
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1287 sect_offset sect_off;
95554aad 1288 } d;
72bf9492
DJ
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
72bf9492 1293
93311388 1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1295 DW_AT_sibling, if any. */
abc72ce4
DE
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1298 const gdb_byte *sibling;
72bf9492
DJ
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
b64f50a1 1303 sect_offset spec_offset;
72bf9492
DJ
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1308 };
1309
0963b4bd 1310/* This data structure holds the information of an abbrev. */
c906108c
SS
1311struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321struct attr_abbrev
1322 {
9d25dd43
DE
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
c906108c
SS
1328 };
1329
433df2d4
DE
1330/* Size of abbrev_table.abbrev_hash_table. */
1331#define ABBREV_HASH_SIZE 121
1332
1333/* Top level data structure to contain an abbreviation table. */
1334
1335struct abbrev_table
1336{
f4dc4d17
DE
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
9c541725 1339 sect_offset sect_off;
433df2d4
DE
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349};
1350
0963b4bd 1351/* Attributes have a name and a value. */
b60c80d6
DJ
1352struct attribute
1353 {
9d25dd43 1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
b60c80d6
DJ
1362 union
1363 {
15d034d0 1364 const char *str;
b60c80d6 1365 struct dwarf_block *blk;
43bbcdc2
PH
1366 ULONGEST unsnd;
1367 LONGEST snd;
b60c80d6 1368 CORE_ADDR addr;
ac9ec31b 1369 ULONGEST signature;
b60c80d6
DJ
1370 }
1371 u;
1372 };
1373
0963b4bd 1374/* This data structure holds a complete die structure. */
c906108c
SS
1375struct die_info
1376 {
76815b17
DE
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
98bfdba5
PA
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
76815b17 1386
adde2bff
DE
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
76815b17
DE
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
93311388 1393 /* Offset in .debug_info or .debug_types section. */
9c541725 1394 sect_offset sect_off;
78ba4af6
JB
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
4950bc1c 1399 together via their SIBLING fields. */
639d11d3
DC
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
c906108c 1403
b60c80d6
DJ
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
c906108c
SS
1408 };
1409
0963b4bd 1410/* Get at parts of an attribute structure. */
c906108c
SS
1411
1412#define DW_STRING(attr) ((attr)->u.str)
8285870a 1413#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1414#define DW_UNSND(attr) ((attr)->u.unsnd)
1415#define DW_BLOCK(attr) ((attr)->u.blk)
1416#define DW_SND(attr) ((attr)->u.snd)
1417#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1418#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1419
0963b4bd 1420/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1421struct dwarf_block
1422 {
56eb65bd 1423 size_t size;
1d6edc3c
JK
1424
1425 /* Valid only if SIZE is not zero. */
d521ce57 1426 const gdb_byte *data;
c906108c
SS
1427 };
1428
c906108c
SS
1429#ifndef ATTR_ALLOC_CHUNK
1430#define ATTR_ALLOC_CHUNK 4
1431#endif
1432
c906108c
SS
1433/* Allocate fields for structs, unions and enums in this size. */
1434#ifndef DW_FIELD_ALLOC_CHUNK
1435#define DW_FIELD_ALLOC_CHUNK 4
1436#endif
1437
c906108c
SS
1438/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441static int bits_per_byte = 8;
1442
52059ffd
TT
1443struct nextfield
1444{
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449};
1450
1451struct nextfnfield
1452{
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455};
1456
1457struct fnfieldlist
1458{
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462};
1463
1464struct typedef_field_list
1465{
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468};
1469
c906108c
SS
1470/* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473struct field_info
c5aa993b 1474 {
0963b4bd 1475 /* List of data member and baseclasses fields. */
52059ffd 1476 struct nextfield *fields, *baseclasses;
c906108c 1477
7d0ccb61 1478 /* Number of fields (including baseclasses). */
c5aa993b 1479 int nfields;
c906108c 1480
c5aa993b
JM
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
c906108c 1483
c5aa993b
JM
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
c906108c 1486
c5aa993b
JM
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
52059ffd 1490 struct fnfieldlist *fnfieldlists;
c906108c 1491
c5aa993b
JM
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
98751a41
JK
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1497 struct typedef_field_list *typedef_field_list;
98751a41 1498 unsigned typedef_field_list_count;
c5aa993b 1499 };
c906108c 1500
10b3939b
DJ
1501/* One item on the queue of compilation units to read in full symbols
1502 for. */
1503struct dwarf2_queue_item
1504{
1505 struct dwarf2_per_cu_data *per_cu;
95554aad 1506 enum language pretend_language;
10b3939b
DJ
1507 struct dwarf2_queue_item *next;
1508};
1509
1510/* The current queue. */
1511static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
ae038cb0
DJ
1513/* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1518static int dwarf_max_cache_age = 5;
920d2a44 1519static void
b4f54984
DE
1520show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
920d2a44 1522{
3e43a32a 1523 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1524 "DWARF compilation units is %s.\n"),
920d2a44
AC
1525 value);
1526}
4390d890 1527\f
c906108c
SS
1528/* local function prototypes */
1529
a32a8923
DE
1530static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
918dd910
JK
1534static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
0018ea6f
DE
1537static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
f1902523
JK
1540static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
c67a9c90 1545static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1546
72bf9492
DJ
1547static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1549 int, struct dwarf2_cu *);
c906108c 1550
72bf9492
DJ
1551static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
63d06c5c 1553
72bf9492
DJ
1554static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1556 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1557
5d7cb8df 1558static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1559 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1560 struct dwarf2_cu *cu);
1561
72bf9492
DJ
1562static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
91c24f0a 1564
bc30ff58
JB
1565static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1567 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1568
257e7a09
YQ
1569static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
c906108c 1571
a14ed312 1572static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1573
433df2d4
DE
1574static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580static void abbrev_table_free (struct abbrev_table *);
1581
f4dc4d17
DE
1582static void abbrev_table_free_cleanup (void *);
1583
dee91e82
DE
1584static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
c906108c 1586
f3dd6933 1587static void dwarf2_free_abbrev_table (void *);
c906108c 1588
d521ce57 1589static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1590
dee91e82 1591static struct partial_die_info *load_partial_dies
d521ce57 1592 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1593
d521ce57
TT
1594static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
c906108c 1599
36586728 1600static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1601 struct dwarf2_cu *);
72bf9492
DJ
1602
1603static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
d521ce57
TT
1606static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
a8329558 1609
a1855c1d 1610static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1611
a1855c1d 1612static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1613
a1855c1d 1614static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1615
a1855c1d 1616static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1617
a1855c1d 1618static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1619
d521ce57 1620static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1621 unsigned int *);
c906108c 1622
d521ce57 1623static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1624
1625static LONGEST read_checked_initial_length_and_offset
d521ce57 1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1627 unsigned int *, unsigned int *);
613e1657 1628
d521ce57
TT
1629static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
c764a876
DE
1631 unsigned int *);
1632
d521ce57 1633static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1634
f4dc4d17
DE
1635static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
d521ce57 1638static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1639
d521ce57 1640static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1641
d521ce57
TT
1642static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
4bdf3d34 1645
43988095
JK
1646static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
36586728 1649
43988095 1650static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1651
d521ce57 1652static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1653
d521ce57
TT
1654static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
3019eac3
DE
1656 unsigned int *);
1657
d521ce57 1658static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1659 ULONGEST str_index);
3019eac3 1660
e142c38c 1661static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1662
e142c38c
DJ
1663static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
c906108c 1665
348e048f 1666static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1667 unsigned int);
348e048f 1668
7d45c7c3
KB
1669static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
05cf31d1
JB
1672static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
e142c38c 1675static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1676
e142c38c 1677static struct die_info *die_specification (struct die_info *die,
f2f0e013 1678 struct dwarf2_cu **);
63d06c5c 1679
9c541725 1680static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1681 struct dwarf2_cu *cu);
debd256d 1682
f3f5162e 1683static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1684 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1685 CORE_ADDR, int decode_mapping);
c906108c 1686
4d663531 1687static void dwarf2_start_subfile (const char *, const char *);
c906108c 1688
43f3e411
DE
1689static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
f4dc4d17 1692
a14ed312 1693static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1694 struct dwarf2_cu *);
c906108c 1695
34eaf542
TT
1696static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
ff39bb5e 1699static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1700 struct dwarf2_cu *);
c906108c 1701
ff39bb5e 1702static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
12df843f 1706 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1707 const gdb_byte **bytes,
98bfdba5 1708 struct dwarf2_locexpr_baton **baton);
2df3850c 1709
e7c27a73 1710static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1711
b4ba55a1
JB
1712static int need_gnat_info (struct dwarf2_cu *);
1713
3e43a32a
MS
1714static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
b4ba55a1
JB
1716
1717static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
e7c27a73
DJ
1720static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
c906108c 1722
ff39bb5e 1723static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1724 struct dwarf2_cu *);
c906108c 1725
f792889a 1726static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1727
673bfd45
DE
1728static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
0d5cff50 1730static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1731
6e70227d 1732static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
63d06c5c 1735
e7c27a73 1736static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1737
348e048f
DE
1738static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
e7c27a73 1740static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1741
e7c27a73 1742static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1743
96408a79
SA
1744static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
ff013f42
JK
1746static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
3a2b436a 1749/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1750 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1751enum pc_bounds_kind
1752{
e385593e 1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1754 PC_BOUNDS_NOT_PRESENT,
1755
e385593e
JK
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
3a2b436a
JK
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765};
1766
1767static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
c906108c 1771
fae299cd
DC
1772static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
801e3a5b
JB
1776static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
a14ed312 1779static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1780 struct dwarf2_cu *);
c906108c 1781
a14ed312 1782static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1783 struct type *, struct dwarf2_cu *);
c906108c 1784
a14ed312 1785static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1786 struct die_info *, struct type *,
e7c27a73 1787 struct dwarf2_cu *);
c906108c 1788
a14ed312 1789static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1790 struct type *,
1791 struct dwarf2_cu *);
c906108c 1792
134d01f1 1793static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1794
e7c27a73 1795static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1796
e7c27a73 1797static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1798
5d7cb8df
JK
1799static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
22cee43f
PMR
1801static struct using_direct **using_directives (enum language);
1802
27aa8d6a
SW
1803static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
74921315
KS
1805static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
f55ee35c
JK
1807static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
38d518c9 1810static const char *namespace_name (struct die_info *die,
e142c38c 1811 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1812
134d01f1 1813static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1814
e7c27a73 1815static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1816
6e70227d 1817static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1818 struct dwarf2_cu *);
1819
bf6af496 1820static struct die_info *read_die_and_siblings_1
d521ce57 1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1822 struct die_info *);
639d11d3 1823
dee91e82 1824static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
639d11d3
DC
1827 struct die_info *parent);
1828
d521ce57
TT
1829static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
3019eac3 1832
d521ce57
TT
1833static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
93311388 1836
e7c27a73 1837static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1838
15d034d0
TT
1839static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
71c25dea 1841
15d034d0 1842static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1843
15d034d0 1844static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
ca69b9e6
DE
1848static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
e142c38c 1851static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1852 struct dwarf2_cu **);
9219021c 1853
f39c6ffd 1854static const char *dwarf_tag_name (unsigned int);
c906108c 1855
f39c6ffd 1856static const char *dwarf_attr_name (unsigned int);
c906108c 1857
f39c6ffd 1858static const char *dwarf_form_name (unsigned int);
c906108c 1859
a121b7c1 1860static const char *dwarf_bool_name (unsigned int);
c906108c 1861
f39c6ffd 1862static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1863
f9aca02d 1864static struct die_info *sibling_die (struct die_info *);
c906108c 1865
d97bc12b
DE
1866static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868static void dump_die_for_error (struct die_info *);
1869
1870static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
c906108c 1872
d97bc12b 1873/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1874
51545339 1875static void store_in_ref_table (struct die_info *,
10b3939b 1876 struct dwarf2_cu *);
c906108c 1877
ff39bb5e 1878static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1879
ff39bb5e 1880static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1881
348e048f 1882static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1883 const struct attribute *,
348e048f
DE
1884 struct dwarf2_cu **);
1885
10b3939b 1886static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1887 const struct attribute *,
f2f0e013 1888 struct dwarf2_cu **);
c906108c 1889
348e048f 1890static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1891 const struct attribute *,
348e048f
DE
1892 struct dwarf2_cu **);
1893
ac9ec31b
DE
1894static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1898 const struct attribute *,
ac9ec31b
DE
1899 struct dwarf2_cu *);
1900
e5fe5e75 1901static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1902
52dc124a 1903static void read_signatured_type (struct signatured_type *);
348e048f 1904
63e43d3a
PMR
1905static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
c906108c
SS
1909/* memory allocation interface */
1910
7b5a2f43 1911static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1912
b60c80d6 1913static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1914
43f3e411 1915static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1916
6e5a29e1 1917static int attr_form_is_block (const struct attribute *);
8e19ed76 1918
6e5a29e1 1919static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1920
6e5a29e1 1921static int attr_form_is_constant (const struct attribute *);
3690dd37 1922
6e5a29e1 1923static int attr_form_is_ref (const struct attribute *);
7771576e 1924
8cf6f0b1
TT
1925static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
ff39bb5e 1927 const struct attribute *attr);
8cf6f0b1 1928
ff39bb5e 1929static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1930 struct symbol *sym,
f1e6e072
TT
1931 struct dwarf2_cu *cu,
1932 int is_block);
4c2df51b 1933
d521ce57
TT
1934static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
4bb7a0a7 1937
72bf9492
DJ
1938static void free_stack_comp_unit (void *);
1939
72bf9492
DJ
1940static hashval_t partial_die_hash (const void *item);
1941
1942static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
ae038cb0 1944static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1946
9816fde3 1947static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1948 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1949
1950static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
93311388 1953
68dc6402 1954static void free_heap_comp_unit (void *);
ae038cb0
DJ
1955
1956static void free_cached_comp_units (void *);
1957
1958static void age_cached_comp_units (void);
1959
dee91e82 1960static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1961
f792889a
DJ
1962static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1c379e20 1964
ae038cb0
DJ
1965static void create_all_comp_units (struct objfile *);
1966
0e50663e 1967static int create_all_type_units (struct objfile *);
1fd400ff 1968
95554aad
TT
1969static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
10b3939b 1971
95554aad
TT
1972static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
10b3939b 1974
f4dc4d17
DE
1975static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
10b3939b
DJ
1978static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
ae038cb0
DJ
1981static void dwarf2_mark (struct dwarf2_cu *);
1982
1983static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
b64f50a1 1985static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1986 struct dwarf2_per_cu_data *);
673bfd45 1987
f792889a 1988static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1989
9291a0cd
TT
1990static void dwarf2_release_queue (void *dummy);
1991
95554aad
TT
1992static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
a0f42c21 1995static void process_queue (void);
9291a0cd 1996
d721ba37
PA
1997/* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000struct file_and_directory
2001{
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014};
2015
2016static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
9291a0cd
TT
2018
2019static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
43988095
JK
2022/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023enum class rcuh_kind { COMPILE, TYPE };
2024
d521ce57 2025static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
d521ce57 2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2029 rcuh_kind section_kind);
36586728 2030
fd820528 2031static void init_cutu_and_read_dies
f4dc4d17
DE
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
3019eac3
DE
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
dee91e82
DE
2036static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2039
673bfd45 2040static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2041
3019eac3
DE
2042static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
57d63ce2
DE
2044static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2047
2048static struct dwp_file *get_dwp_file (void);
2049
3019eac3 2050static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2052
2053static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2054 (struct signatured_type *, const char *, const char *);
3019eac3 2055
89e63ee4
DE
2056static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
3019eac3
DE
2058static void free_dwo_file_cleanup (void *);
2059
95554aad
TT
2060static void process_cu_includes (void);
2061
1b80a9fa 2062static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2063
2064static void free_line_header_voidp (void *arg);
4390d890
DE
2065\f
2066/* Various complaints about symbol reading that don't abort the process. */
2067
2068static void
2069dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070{
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073}
2074
2075static void
2076dwarf2_debug_line_missing_file_complaint (void)
2077{
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080}
2081
2082static void
2083dwarf2_debug_line_missing_end_sequence_complaint (void)
2084{
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088}
2089
2090static void
2091dwarf2_complex_location_expr_complaint (void)
2092{
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094}
2095
2096static void
2097dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099{
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103}
2104
2105static void
2106dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107{
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
a32a8923
DE
2111 get_section_name (section),
2112 get_section_file_name (section));
4390d890 2113}
1b80a9fa 2114
4390d890
DE
2115static void
2116dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117{
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122}
2123
2124static void
2125dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126{
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130}
527f3840
JK
2131
2132/* Hash function for line_header_hash. */
2133
2134static hashval_t
2135line_header_hash (const struct line_header *ofs)
2136{
9c541725 2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2138}
2139
2140/* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142static hashval_t
2143line_header_hash_voidp (const void *item)
2144{
9a3c8263 2145 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2146
2147 return line_header_hash (ofs);
2148}
2149
2150/* Equality function for line_header_hash. */
2151
2152static int
2153line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154{
9a3c8263
SM
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2157
9c541725 2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160}
2161
4390d890 2162\f
9291a0cd
TT
2163#if WORDS_BIGENDIAN
2164
2165/* Convert VALUE between big- and little-endian. */
2166static offset_type
2167byte_swap (offset_type value)
2168{
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176}
2177
2178#define MAYBE_SWAP(V) byte_swap (V)
2179
2180#else
bc8f2430 2181#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2182#endif /* WORDS_BIGENDIAN */
2183
31aa7e4e
JB
2184/* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187static CORE_ADDR
2188attr_value_as_address (struct attribute *attr)
2189{
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212}
2213
9291a0cd
TT
2214/* The suffix for an index file. */
2215#define INDEX_SUFFIX ".gdb-index"
2216
330cdd98
PA
2217/* See declaration. */
2218
2219dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222{
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230}
2231
2232dwarf2_per_objfile::~dwarf2_per_objfile ()
2233{
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244}
2245
2246/* See declaration. */
2247
2248void
2249dwarf2_per_objfile::free_cached_comp_units ()
2250{
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261}
2262
c906108c 2263/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
c906108c
SS
2267
2268int
251d32d9
TG
2269dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
c906108c 2271{
9a3c8263
SM
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
8d749320 2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2279
330cdd98
PA
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2282 }
73869dc2 2283 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2284 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2285 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2287}
2288
2289/* Return the containing section of virtual section SECTION. */
2290
2291static struct dwarf2_section_info *
2292get_containing_section (const struct dwarf2_section_info *section)
2293{
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
c906108c
SS
2296}
2297
a32a8923
DE
2298/* Return the bfd owner of SECTION. */
2299
2300static struct bfd *
2301get_section_bfd_owner (const struct dwarf2_section_info *section)
2302{
73869dc2
DE
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
049412e3 2308 return section->s.section->owner;
a32a8923
DE
2309}
2310
2311/* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314static asection *
2315get_section_bfd_section (const struct dwarf2_section_info *section)
2316{
73869dc2
DE
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
049412e3 2322 return section->s.section;
a32a8923
DE
2323}
2324
2325/* Return the name of SECTION. */
2326
2327static const char *
2328get_section_name (const struct dwarf2_section_info *section)
2329{
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334}
2335
2336/* Return the name of the file SECTION is in. */
2337
2338static const char *
2339get_section_file_name (const struct dwarf2_section_info *section)
2340{
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344}
2345
2346/* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349static int
2350get_section_id (const struct dwarf2_section_info *section)
2351{
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357}
2358
2359/* Return the flags of SECTION.
73869dc2 2360 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2361
2362static int
2363get_section_flags (const struct dwarf2_section_info *section)
2364{
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369}
2370
251d32d9
TG
2371/* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
233a11ab
CS
2373
2374static int
251d32d9
TG
2375section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
233a11ab 2377{
251d32d9
TG
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
233a11ab
CS
2385}
2386
330cdd98 2387/* See declaration. */
c906108c 2388
330cdd98
PA
2389void
2390dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
c906108c 2392{
dc7650b8 2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2394
dc7650b8
JK
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
330cdd98 2398 else if (section_is_p (sectp->name, &names.info))
c906108c 2399 {
330cdd98
PA
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
c906108c 2402 }
330cdd98 2403 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2404 {
330cdd98
PA
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2407 }
330cdd98 2408 else if (section_is_p (sectp->name, &names.line))
c906108c 2409 {
330cdd98
PA
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
c906108c 2412 }
330cdd98 2413 else if (section_is_p (sectp->name, &names.loc))
c906108c 2414 {
330cdd98
PA
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
c906108c 2417 }
330cdd98 2418 else if (section_is_p (sectp->name, &names.loclists))
43988095 2419 {
330cdd98
PA
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
43988095 2422 }
330cdd98 2423 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2424 {
330cdd98
PA
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2427 }
330cdd98 2428 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2429 {
330cdd98
PA
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2432 }
330cdd98 2433 else if (section_is_p (sectp->name, &names.str))
c906108c 2434 {
330cdd98
PA
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
c906108c 2437 }
330cdd98 2438 else if (section_is_p (sectp->name, &names.line_str))
43988095 2439 {
330cdd98
PA
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
43988095 2442 }
330cdd98 2443 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2444 {
330cdd98
PA
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2447 }
330cdd98 2448 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2449 {
330cdd98
PA
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2452 }
330cdd98 2453 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2454 {
330cdd98
PA
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2457 }
330cdd98 2458 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2459 {
330cdd98
PA
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2462 }
330cdd98 2463 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2464 {
330cdd98
PA
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2467 }
330cdd98 2468 else if (section_is_p (sectp->name, &names.types))
348e048f 2469 {
8b70b953
TT
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
049412e3 2473 type_section.s.section = sectp;
8b70b953
TT
2474 type_section.size = bfd_get_section_size (sectp);
2475
330cdd98 2476 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2477 &type_section);
348e048f 2478 }
330cdd98 2479 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2480 {
330cdd98
PA
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2483 }
dce234bc 2484
b4e1fd61 2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2486 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2487 this->has_section_at_zero = true;
c906108c
SS
2488}
2489
fceca515
DE
2490/* A helper function that decides whether a section is empty,
2491 or not present. */
9e0ac564
TT
2492
2493static int
19ac8c2e 2494dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2495{
73869dc2
DE
2496 if (section->is_virtual)
2497 return section->size == 0;
049412e3 2498 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2499}
2500
3019eac3
DE
2501/* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
dce234bc 2505 If the section is compressed, uncompress it before returning. */
c906108c 2506
dce234bc
PP
2507static void
2508dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2509{
a32a8923 2510 asection *sectp;
3019eac3 2511 bfd *abfd;
dce234bc 2512 gdb_byte *buf, *retbuf;
c906108c 2513
be391dca
TT
2514 if (info->readin)
2515 return;
dce234bc 2516 info->buffer = NULL;
be391dca 2517 info->readin = 1;
188dd5d6 2518
9e0ac564 2519 if (dwarf2_section_empty_p (info))
dce234bc 2520 return;
c906108c 2521
a32a8923 2522 sectp = get_section_bfd_section (info);
3019eac3 2523
73869dc2
DE
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
4bf44c1c
TT
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2552 {
d521ce57 2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2554 return;
dce234bc 2555 }
dce234bc 2556
224c3ddb 2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2558 info->buffer = buf;
dce234bc
PP
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
ac8035ab 2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
a32a8923
DE
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
dce234bc
PP
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
dce234bc
PP
2581}
2582
9e0ac564
TT
2583/* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590static bfd_size_type
2591dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593{
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597}
2598
dce234bc 2599/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2600 SECTION_NAME. */
af34e669 2601
dce234bc 2602void
3017a003
TG
2603dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
d521ce57 2605 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2606 bfd_size_type *sizep)
2607{
2608 struct dwarf2_per_objfile *data
9a3c8263
SM
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
dce234bc 2611 struct dwarf2_section_info *info;
a3b2a86b
TT
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
3017a003
TG
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
dce234bc 2633
9e0ac564 2634 dwarf2_read_section (objfile, info);
dce234bc 2635
a32a8923 2636 *sectp = get_section_bfd_section (info);
dce234bc
PP
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639}
2640
36586728
TT
2641/* A helper function to find the sections for a .dwz file. */
2642
2643static void
2644locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645{
9a3c8263 2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
049412e3 2652 dwz_file->abbrev.s.section = sectp;
36586728
TT
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
049412e3 2657 dwz_file->info.s.section = sectp;
36586728
TT
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
049412e3 2662 dwz_file->str.s.section = sectp;
36586728
TT
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
049412e3 2667 dwz_file->line.s.section = sectp;
36586728
TT
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
049412e3 2672 dwz_file->macro.s.section = sectp;
36586728
TT
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2ec9a5e0
TT
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
049412e3 2677 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
36586728
TT
2680}
2681
4db1a1dc
TT
2682/* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
36586728
TT
2685
2686static struct dwz_file *
2687dwarf2_get_dwz_file (void)
2688{
36586728
TT
2689 const char *filename;
2690 struct dwz_file *result;
acd13123 2691 bfd_size_type buildid_len_arg;
dc294be5
TT
2692 size_t buildid_len;
2693 bfd_byte *buildid;
36586728
TT
2694
2695 if (dwarf2_per_objfile->dwz_file != NULL)
2696 return dwarf2_per_objfile->dwz_file;
2697
4db1a1dc 2698 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2699 gdb::unique_xmalloc_ptr<char> data
2700 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2701 &buildid_len_arg, &buildid));
4db1a1dc
TT
2702 if (data == NULL)
2703 {
2704 if (bfd_get_error () == bfd_error_no_error)
2705 return NULL;
2706 error (_("could not read '.gnu_debugaltlink' section: %s"),
2707 bfd_errmsg (bfd_get_error ()));
2708 }
791afaa2
TT
2709
2710 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2711
acd13123
TT
2712 buildid_len = (size_t) buildid_len_arg;
2713
791afaa2 2714 filename = data.get ();
d721ba37
PA
2715
2716 std::string abs_storage;
36586728
TT
2717 if (!IS_ABSOLUTE_PATH (filename))
2718 {
14278e1f
TT
2719 gdb::unique_xmalloc_ptr<char> abs
2720 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2721
14278e1f 2722 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2723 filename = abs_storage.c_str ();
36586728
TT
2724 }
2725
dc294be5
TT
2726 /* First try the file name given in the section. If that doesn't
2727 work, try to use the build-id instead. */
192b62ce 2728 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2729 if (dwz_bfd != NULL)
36586728 2730 {
192b62ce
TT
2731 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2732 dwz_bfd.release ();
36586728
TT
2733 }
2734
dc294be5
TT
2735 if (dwz_bfd == NULL)
2736 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2737
2738 if (dwz_bfd == NULL)
2739 error (_("could not find '.gnu_debugaltlink' file for %s"),
2740 objfile_name (dwarf2_per_objfile->objfile));
2741
36586728
TT
2742 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2743 struct dwz_file);
192b62ce 2744 result->dwz_bfd = dwz_bfd.release ();
36586728 2745
192b62ce 2746 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728 2747
192b62ce 2748 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2749 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2750 return result;
2751}
9291a0cd 2752\f
7b9f3c50
DE
2753/* DWARF quick_symbols_functions support. */
2754
2755/* TUs can share .debug_line entries, and there can be a lot more TUs than
2756 unique line tables, so we maintain a separate table of all .debug_line
2757 derived entries to support the sharing.
2758 All the quick functions need is the list of file names. We discard the
2759 line_header when we're done and don't need to record it here. */
2760struct quick_file_names
2761{
094b34ac
DE
2762 /* The data used to construct the hash key. */
2763 struct stmt_list_hash hash;
7b9f3c50
DE
2764
2765 /* The number of entries in file_names, real_names. */
2766 unsigned int num_file_names;
2767
2768 /* The file names from the line table, after being run through
2769 file_full_name. */
2770 const char **file_names;
2771
2772 /* The file names from the line table after being run through
2773 gdb_realpath. These are computed lazily. */
2774 const char **real_names;
2775};
2776
2777/* When using the index (and thus not using psymtabs), each CU has an
2778 object of this type. This is used to hold information needed by
2779 the various "quick" methods. */
2780struct dwarf2_per_cu_quick_data
2781{
2782 /* The file table. This can be NULL if there was no file table
2783 or it's currently not read in.
2784 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2785 struct quick_file_names *file_names;
2786
2787 /* The corresponding symbol table. This is NULL if symbols for this
2788 CU have not yet been read. */
43f3e411 2789 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2790
2791 /* A temporary mark bit used when iterating over all CUs in
2792 expand_symtabs_matching. */
2793 unsigned int mark : 1;
2794
2795 /* True if we've tried to read the file table and found there isn't one.
2796 There will be no point in trying to read it again next time. */
2797 unsigned int no_file_data : 1;
2798};
2799
094b34ac
DE
2800/* Utility hash function for a stmt_list_hash. */
2801
2802static hashval_t
2803hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2804{
2805 hashval_t v = 0;
2806
2807 if (stmt_list_hash->dwo_unit != NULL)
2808 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2809 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2810 return v;
2811}
2812
2813/* Utility equality function for a stmt_list_hash. */
2814
2815static int
2816eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2817 const struct stmt_list_hash *rhs)
2818{
2819 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2820 return 0;
2821 if (lhs->dwo_unit != NULL
2822 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2823 return 0;
2824
9c541725 2825 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2826}
2827
7b9f3c50
DE
2828/* Hash function for a quick_file_names. */
2829
2830static hashval_t
2831hash_file_name_entry (const void *e)
2832{
9a3c8263
SM
2833 const struct quick_file_names *file_data
2834 = (const struct quick_file_names *) e;
7b9f3c50 2835
094b34ac 2836 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2837}
2838
2839/* Equality function for a quick_file_names. */
2840
2841static int
2842eq_file_name_entry (const void *a, const void *b)
2843{
9a3c8263
SM
2844 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2845 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2846
094b34ac 2847 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2848}
2849
2850/* Delete function for a quick_file_names. */
2851
2852static void
2853delete_file_name_entry (void *e)
2854{
9a3c8263 2855 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2856 int i;
2857
2858 for (i = 0; i < file_data->num_file_names; ++i)
2859 {
2860 xfree ((void*) file_data->file_names[i]);
2861 if (file_data->real_names)
2862 xfree ((void*) file_data->real_names[i]);
2863 }
2864
2865 /* The space for the struct itself lives on objfile_obstack,
2866 so we don't free it here. */
2867}
2868
2869/* Create a quick_file_names hash table. */
2870
2871static htab_t
2872create_quick_file_names_table (unsigned int nr_initial_entries)
2873{
2874 return htab_create_alloc (nr_initial_entries,
2875 hash_file_name_entry, eq_file_name_entry,
2876 delete_file_name_entry, xcalloc, xfree);
2877}
9291a0cd 2878
918dd910
JK
2879/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2880 have to be created afterwards. You should call age_cached_comp_units after
2881 processing PER_CU->CU. dw2_setup must have been already called. */
2882
2883static void
2884load_cu (struct dwarf2_per_cu_data *per_cu)
2885{
3019eac3 2886 if (per_cu->is_debug_types)
e5fe5e75 2887 load_full_type_unit (per_cu);
918dd910 2888 else
95554aad 2889 load_full_comp_unit (per_cu, language_minimal);
918dd910 2890
cc12ce38
DE
2891 if (per_cu->cu == NULL)
2892 return; /* Dummy CU. */
2dc860c0
DE
2893
2894 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2895}
2896
a0f42c21 2897/* Read in the symbols for PER_CU. */
2fdf6df6 2898
9291a0cd 2899static void
a0f42c21 2900dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2901{
2902 struct cleanup *back_to;
2903
f4dc4d17
DE
2904 /* Skip type_unit_groups, reading the type units they contain
2905 is handled elsewhere. */
2906 if (IS_TYPE_UNIT_GROUP (per_cu))
2907 return;
2908
9291a0cd
TT
2909 back_to = make_cleanup (dwarf2_release_queue, NULL);
2910
95554aad 2911 if (dwarf2_per_objfile->using_index
43f3e411 2912 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2913 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2914 {
2915 queue_comp_unit (per_cu, language_minimal);
2916 load_cu (per_cu);
89e63ee4
DE
2917
2918 /* If we just loaded a CU from a DWO, and we're working with an index
2919 that may badly handle TUs, load all the TUs in that DWO as well.
2920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2921 if (!per_cu->is_debug_types
cc12ce38 2922 && per_cu->cu != NULL
89e63ee4
DE
2923 && per_cu->cu->dwo_unit != NULL
2924 && dwarf2_per_objfile->index_table != NULL
2925 && dwarf2_per_objfile->index_table->version <= 7
2926 /* DWP files aren't supported yet. */
2927 && get_dwp_file () == NULL)
2928 queue_and_load_all_dwo_tus (per_cu);
95554aad 2929 }
9291a0cd 2930
a0f42c21 2931 process_queue ();
9291a0cd
TT
2932
2933 /* Age the cache, releasing compilation units that have not
2934 been used recently. */
2935 age_cached_comp_units ();
2936
2937 do_cleanups (back_to);
2938}
2939
2940/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2941 the objfile from which this CU came. Returns the resulting symbol
2942 table. */
2fdf6df6 2943
43f3e411 2944static struct compunit_symtab *
a0f42c21 2945dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2946{
95554aad 2947 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2948 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2949 {
2950 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2951 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2952 dw2_do_instantiate_symtab (per_cu);
95554aad 2953 process_cu_includes ();
9291a0cd
TT
2954 do_cleanups (back_to);
2955 }
f194fefb 2956
43f3e411 2957 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2958}
2959
8832e7e3 2960/* Return the CU/TU given its index.
f4dc4d17
DE
2961
2962 This is intended for loops like:
2963
2964 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2965 + dwarf2_per_objfile->n_type_units); ++i)
2966 {
8832e7e3 2967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2968
2969 ...;
2970 }
2971*/
2fdf6df6 2972
1fd400ff 2973static struct dwarf2_per_cu_data *
8832e7e3 2974dw2_get_cutu (int index)
1fd400ff
TT
2975{
2976 if (index >= dwarf2_per_objfile->n_comp_units)
2977 {
f4dc4d17 2978 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2979 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2980 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2981 }
2982
2983 return dwarf2_per_objfile->all_comp_units[index];
2984}
2985
8832e7e3
DE
2986/* Return the CU given its index.
2987 This differs from dw2_get_cutu in that it's for when you know INDEX
2988 refers to a CU. */
f4dc4d17
DE
2989
2990static struct dwarf2_per_cu_data *
8832e7e3 2991dw2_get_cu (int index)
f4dc4d17 2992{
8832e7e3 2993 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2994
1fd400ff
TT
2995 return dwarf2_per_objfile->all_comp_units[index];
2996}
2997
2ec9a5e0
TT
2998/* A helper for create_cus_from_index that handles a given list of
2999 CUs. */
2fdf6df6 3000
74a0d9f6 3001static void
2ec9a5e0
TT
3002create_cus_from_index_list (struct objfile *objfile,
3003 const gdb_byte *cu_list, offset_type n_elements,
3004 struct dwarf2_section_info *section,
3005 int is_dwz,
3006 int base_offset)
9291a0cd
TT
3007{
3008 offset_type i;
9291a0cd 3009
2ec9a5e0 3010 for (i = 0; i < n_elements; i += 2)
9291a0cd 3011 {
74a0d9f6 3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3017 cu_list += 2 * 8;
3018
9c541725
PA
3019 dwarf2_per_cu_data *the_cu
3020 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3021 struct dwarf2_per_cu_data);
3022 the_cu->sect_off = sect_off;
9291a0cd
TT
3023 the_cu->length = length;
3024 the_cu->objfile = objfile;
8a0459fd 3025 the_cu->section = section;
9291a0cd
TT
3026 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3027 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3028 the_cu->is_dwz = is_dwz;
3029 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3030 }
9291a0cd
TT
3031}
3032
2ec9a5e0 3033/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3034 the CU objects for this objfile. */
2ec9a5e0 3035
74a0d9f6 3036static void
2ec9a5e0
TT
3037create_cus_from_index (struct objfile *objfile,
3038 const gdb_byte *cu_list, offset_type cu_list_elements,
3039 const gdb_byte *dwz_list, offset_type dwz_elements)
3040{
3041 struct dwz_file *dwz;
3042
3043 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3044 dwarf2_per_objfile->all_comp_units =
3045 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3046 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3047
74a0d9f6
JK
3048 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3049 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3050
3051 if (dwz_elements == 0)
74a0d9f6 3052 return;
2ec9a5e0
TT
3053
3054 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3055 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3056 cu_list_elements / 2);
2ec9a5e0
TT
3057}
3058
1fd400ff 3059/* Create the signatured type hash table from the index. */
673bfd45 3060
74a0d9f6 3061static void
673bfd45 3062create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3063 struct dwarf2_section_info *section,
673bfd45
DE
3064 const gdb_byte *bytes,
3065 offset_type elements)
1fd400ff
TT
3066{
3067 offset_type i;
673bfd45 3068 htab_t sig_types_hash;
1fd400ff 3069
6aa5f3a6
DE
3070 dwarf2_per_objfile->n_type_units
3071 = dwarf2_per_objfile->n_allocated_type_units
3072 = elements / 3;
8d749320
SM
3073 dwarf2_per_objfile->all_type_units =
3074 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3075
673bfd45 3076 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3077
3078 for (i = 0; i < elements; i += 3)
3079 {
52dc124a 3080 struct signatured_type *sig_type;
9c541725 3081 ULONGEST signature;
1fd400ff 3082 void **slot;
9c541725 3083 cu_offset type_offset_in_tu;
1fd400ff 3084
74a0d9f6 3085 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3086 sect_offset sect_off
3087 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3088 type_offset_in_tu
3089 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3090 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3091 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3092 bytes += 3 * 8;
3093
52dc124a 3094 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3095 struct signatured_type);
52dc124a 3096 sig_type->signature = signature;
9c541725 3097 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3098 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3099 sig_type->per_cu.section = section;
9c541725 3100 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3101 sig_type->per_cu.objfile = objfile;
3102 sig_type->per_cu.v.quick
1fd400ff
TT
3103 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3104 struct dwarf2_per_cu_quick_data);
3105
52dc124a
DE
3106 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3107 *slot = sig_type;
1fd400ff 3108
b4dd5633 3109 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3110 }
3111
673bfd45 3112 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3113}
3114
9291a0cd
TT
3115/* Read the address map data from the mapped index, and use it to
3116 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3117
9291a0cd
TT
3118static void
3119create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3120{
3e29f34a 3121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3122 const gdb_byte *iter, *end;
9291a0cd 3123 struct addrmap *mutable_map;
9291a0cd
TT
3124 CORE_ADDR baseaddr;
3125
8268c778
PA
3126 auto_obstack temp_obstack;
3127
9291a0cd
TT
3128 mutable_map = addrmap_create_mutable (&temp_obstack);
3129
3130 iter = index->address_table;
3131 end = iter + index->address_table_size;
3132
3133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3134
3135 while (iter < end)
3136 {
3137 ULONGEST hi, lo, cu_index;
3138 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3139 iter += 8;
3140 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3141 iter += 8;
3142 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3143 iter += 4;
f652bce2 3144
24a55014 3145 if (lo > hi)
f652bce2 3146 {
24a55014
DE
3147 complaint (&symfile_complaints,
3148 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3149 hex_string (lo), hex_string (hi));
24a55014 3150 continue;
f652bce2 3151 }
24a55014
DE
3152
3153 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3154 {
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid CU number %u"),
3157 (unsigned) cu_index);
24a55014 3158 continue;
f652bce2 3159 }
24a55014 3160
3e29f34a
MR
3161 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3162 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3163 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3164 }
3165
3166 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3167 &objfile->objfile_obstack);
9291a0cd
TT
3168}
3169
59d7bcaf
JK
3170/* The hash function for strings in the mapped index. This is the same as
3171 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3172 implementation. This is necessary because the hash function is tied to the
3173 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3174 SYMBOL_HASH_NEXT.
3175
3176 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3177
9291a0cd 3178static hashval_t
559a7a62 3179mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3180{
3181 const unsigned char *str = (const unsigned char *) p;
3182 hashval_t r = 0;
3183 unsigned char c;
3184
3185 while ((c = *str++) != 0)
559a7a62
JK
3186 {
3187 if (index_version >= 5)
3188 c = tolower (c);
3189 r = r * 67 + c - 113;
3190 }
9291a0cd
TT
3191
3192 return r;
3193}
3194
3195/* Find a slot in the mapped index INDEX for the object named NAME.
3196 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3197 constant pool and return true. If NAME cannot be found, return
3198 false. */
2fdf6df6 3199
109483d9 3200static bool
9291a0cd
TT
3201find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3202 offset_type **vec_out)
3203{
0cf03b49 3204 offset_type hash;
9291a0cd 3205 offset_type slot, step;
559a7a62 3206 int (*cmp) (const char *, const char *);
9291a0cd 3207
791afaa2 3208 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3209 if (current_language->la_language == language_cplus
45280282
IB
3210 || current_language->la_language == language_fortran
3211 || current_language->la_language == language_d)
0cf03b49
JK
3212 {
3213 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3214 not contain any. */
a8719064 3215
72998fb3 3216 if (strchr (name, '(') != NULL)
0cf03b49 3217 {
109483d9 3218 without_params = cp_remove_params (name);
0cf03b49 3219
72998fb3 3220 if (without_params != NULL)
791afaa2 3221 name = without_params.get ();
0cf03b49
JK
3222 }
3223 }
3224
559a7a62 3225 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3226 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3227 simulate our NAME being searched is also lowercased. */
3228 hash = mapped_index_string_hash ((index->version == 4
3229 && case_sensitivity == case_sensitive_off
3230 ? 5 : index->version),
3231 name);
3232
3876f04e
DE
3233 slot = hash & (index->symbol_table_slots - 1);
3234 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3235 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3236
3237 for (;;)
3238 {
3239 /* Convert a slot number to an offset into the table. */
3240 offset_type i = 2 * slot;
3241 const char *str;
3876f04e 3242 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
109483d9 3243 return false;
9291a0cd 3244
3876f04e 3245 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3246 if (!cmp (name, str))
9291a0cd
TT
3247 {
3248 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3249 + MAYBE_SWAP (index->symbol_table[i + 1]));
109483d9 3250 return true;
9291a0cd
TT
3251 }
3252
3876f04e 3253 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3254 }
3255}
3256
2ec9a5e0
TT
3257/* A helper function that reads the .gdb_index from SECTION and fills
3258 in MAP. FILENAME is the name of the file containing the section;
3259 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3260 ok to use deprecated sections.
3261
3262 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3263 out parameters that are filled in with information about the CU and
3264 TU lists in the section.
3265
3266 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3267
9291a0cd 3268static int
2ec9a5e0
TT
3269read_index_from_section (struct objfile *objfile,
3270 const char *filename,
3271 int deprecated_ok,
3272 struct dwarf2_section_info *section,
3273 struct mapped_index *map,
3274 const gdb_byte **cu_list,
3275 offset_type *cu_list_elements,
3276 const gdb_byte **types_list,
3277 offset_type *types_list_elements)
9291a0cd 3278{
948f8e3d 3279 const gdb_byte *addr;
2ec9a5e0 3280 offset_type version;
b3b272e1 3281 offset_type *metadata;
1fd400ff 3282 int i;
9291a0cd 3283
2ec9a5e0 3284 if (dwarf2_section_empty_p (section))
9291a0cd 3285 return 0;
82430852
JK
3286
3287 /* Older elfutils strip versions could keep the section in the main
3288 executable while splitting it for the separate debug info file. */
a32a8923 3289 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3290 return 0;
3291
2ec9a5e0 3292 dwarf2_read_section (objfile, section);
9291a0cd 3293
2ec9a5e0 3294 addr = section->buffer;
9291a0cd 3295 /* Version check. */
1fd400ff 3296 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3297 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3298 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3299 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3300 indices. */
831adc1f 3301 if (version < 4)
481860b3
GB
3302 {
3303 static int warning_printed = 0;
3304 if (!warning_printed)
3305 {
3306 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3307 filename);
481860b3
GB
3308 warning_printed = 1;
3309 }
3310 return 0;
3311 }
3312 /* Index version 4 uses a different hash function than index version
3313 5 and later.
3314
3315 Versions earlier than 6 did not emit psymbols for inlined
3316 functions. Using these files will cause GDB not to be able to
3317 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3318 indices unless the user has done
3319 "set use-deprecated-index-sections on". */
2ec9a5e0 3320 if (version < 6 && !deprecated_ok)
481860b3
GB
3321 {
3322 static int warning_printed = 0;
3323 if (!warning_printed)
3324 {
e615022a
DE
3325 warning (_("\
3326Skipping deprecated .gdb_index section in %s.\n\
3327Do \"set use-deprecated-index-sections on\" before the file is read\n\
3328to use the section anyway."),
2ec9a5e0 3329 filename);
481860b3
GB
3330 warning_printed = 1;
3331 }
3332 return 0;
3333 }
796a7ff8 3334 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3335 of the TU (for symbols coming from TUs),
3336 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3337 Plus gold-generated indices can have duplicate entries for global symbols,
3338 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3339 These are just performance bugs, and we can't distinguish gdb-generated
3340 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3341
481860b3 3342 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3343 longer backward compatible. */
796a7ff8 3344 if (version > 8)
594e8718 3345 return 0;
9291a0cd 3346
559a7a62 3347 map->version = version;
2ec9a5e0 3348 map->total_size = section->size;
9291a0cd
TT
3349
3350 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3351
3352 i = 0;
2ec9a5e0
TT
3353 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3354 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3355 / 8);
1fd400ff
TT
3356 ++i;
3357
2ec9a5e0
TT
3358 *types_list = addr + MAYBE_SWAP (metadata[i]);
3359 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3360 - MAYBE_SWAP (metadata[i]))
3361 / 8);
987d643c 3362 ++i;
1fd400ff
TT
3363
3364 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3365 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3366 - MAYBE_SWAP (metadata[i]));
3367 ++i;
3368
3876f04e
DE
3369 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3370 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3371 - MAYBE_SWAP (metadata[i]))
3372 / (2 * sizeof (offset_type)));
1fd400ff 3373 ++i;
9291a0cd 3374
f9d83a0b 3375 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3376
2ec9a5e0
TT
3377 return 1;
3378}
3379
3380
3381/* Read the index file. If everything went ok, initialize the "quick"
3382 elements of all the CUs and return 1. Otherwise, return 0. */
3383
3384static int
3385dwarf2_read_index (struct objfile *objfile)
3386{
3387 struct mapped_index local_map, *map;
3388 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3389 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3390 struct dwz_file *dwz;
2ec9a5e0 3391
4262abfb 3392 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3393 use_deprecated_index_sections,
3394 &dwarf2_per_objfile->gdb_index, &local_map,
3395 &cu_list, &cu_list_elements,
3396 &types_list, &types_list_elements))
3397 return 0;
3398
0fefef59 3399 /* Don't use the index if it's empty. */
2ec9a5e0 3400 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3401 return 0;
3402
2ec9a5e0
TT
3403 /* If there is a .dwz file, read it so we can get its CU list as
3404 well. */
4db1a1dc
TT
3405 dwz = dwarf2_get_dwz_file ();
3406 if (dwz != NULL)
2ec9a5e0 3407 {
2ec9a5e0
TT
3408 struct mapped_index dwz_map;
3409 const gdb_byte *dwz_types_ignore;
3410 offset_type dwz_types_elements_ignore;
3411
3412 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3413 1,
3414 &dwz->gdb_index, &dwz_map,
3415 &dwz_list, &dwz_list_elements,
3416 &dwz_types_ignore,
3417 &dwz_types_elements_ignore))
3418 {
3419 warning (_("could not read '.gdb_index' section from %s; skipping"),
3420 bfd_get_filename (dwz->dwz_bfd));
3421 return 0;
3422 }
3423 }
3424
74a0d9f6
JK
3425 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3426 dwz_list_elements);
1fd400ff 3427
8b70b953
TT
3428 if (types_list_elements)
3429 {
3430 struct dwarf2_section_info *section;
3431
3432 /* We can only handle a single .debug_types when we have an
3433 index. */
3434 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3435 return 0;
3436
3437 section = VEC_index (dwarf2_section_info_def,
3438 dwarf2_per_objfile->types, 0);
3439
74a0d9f6
JK
3440 create_signatured_type_table_from_index (objfile, section, types_list,
3441 types_list_elements);
8b70b953 3442 }
9291a0cd 3443
2ec9a5e0
TT
3444 create_addrmap_from_index (objfile, &local_map);
3445
8d749320 3446 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3447 *map = local_map;
9291a0cd
TT
3448
3449 dwarf2_per_objfile->index_table = map;
3450 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3451 dwarf2_per_objfile->quick_file_names_table =
3452 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3453
3454 return 1;
3455}
3456
3457/* A helper for the "quick" functions which sets the global
3458 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3459
9291a0cd
TT
3460static void
3461dw2_setup (struct objfile *objfile)
3462{
9a3c8263
SM
3463 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3464 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3465 gdb_assert (dwarf2_per_objfile);
3466}
3467
dee91e82 3468/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3469
dee91e82
DE
3470static void
3471dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3472 const gdb_byte *info_ptr,
dee91e82
DE
3473 struct die_info *comp_unit_die,
3474 int has_children,
3475 void *data)
9291a0cd 3476{
dee91e82
DE
3477 struct dwarf2_cu *cu = reader->cu;
3478 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3479 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3480 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3481 struct attribute *attr;
dee91e82 3482 int i;
7b9f3c50
DE
3483 void **slot;
3484 struct quick_file_names *qfn;
9291a0cd 3485
0186c6a7
DE
3486 gdb_assert (! this_cu->is_debug_types);
3487
07261596
TT
3488 /* Our callers never want to match partial units -- instead they
3489 will match the enclosing full CU. */
3490 if (comp_unit_die->tag == DW_TAG_partial_unit)
3491 {
3492 this_cu->v.quick->no_file_data = 1;
3493 return;
3494 }
3495
0186c6a7 3496 lh_cu = this_cu;
7b9f3c50 3497 slot = NULL;
dee91e82 3498
fff8551c 3499 line_header_up lh;
9c541725 3500 sect_offset line_offset {};
fff8551c 3501
dee91e82 3502 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3503 if (attr)
3504 {
7b9f3c50
DE
3505 struct quick_file_names find_entry;
3506
9c541725 3507 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3508
3509 /* We may have already read in this line header (TU line header sharing).
3510 If we have we're done. */
094b34ac 3511 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3512 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3513 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3514 &find_entry, INSERT);
3515 if (*slot != NULL)
3516 {
9a3c8263 3517 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3518 return;
7b9f3c50
DE
3519 }
3520
3019eac3 3521 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3522 }
3523 if (lh == NULL)
3524 {
094b34ac 3525 lh_cu->v.quick->no_file_data = 1;
dee91e82 3526 return;
9291a0cd
TT
3527 }
3528
8d749320 3529 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3530 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3531 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3532 gdb_assert (slot != NULL);
3533 *slot = qfn;
9291a0cd 3534
d721ba37 3535 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3536
fff8551c 3537 qfn->num_file_names = lh->file_names.size ();
8d749320 3538 qfn->file_names =
fff8551c
PA
3539 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3540 for (i = 0; i < lh->file_names.size (); ++i)
3541 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3542 qfn->real_names = NULL;
9291a0cd 3543
094b34ac 3544 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3545}
3546
3547/* A helper for the "quick" functions which attempts to read the line
3548 table for THIS_CU. */
3549
3550static struct quick_file_names *
e4a48d9d 3551dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3552{
0186c6a7
DE
3553 /* This should never be called for TUs. */
3554 gdb_assert (! this_cu->is_debug_types);
3555 /* Nor type unit groups. */
3556 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3557
dee91e82
DE
3558 if (this_cu->v.quick->file_names != NULL)
3559 return this_cu->v.quick->file_names;
3560 /* If we know there is no line data, no point in looking again. */
3561 if (this_cu->v.quick->no_file_data)
3562 return NULL;
3563
0186c6a7 3564 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3565
3566 if (this_cu->v.quick->no_file_data)
3567 return NULL;
3568 return this_cu->v.quick->file_names;
9291a0cd
TT
3569}
3570
3571/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3572 real path for a given file name from the line table. */
2fdf6df6 3573
9291a0cd 3574static const char *
7b9f3c50
DE
3575dw2_get_real_path (struct objfile *objfile,
3576 struct quick_file_names *qfn, int index)
9291a0cd 3577{
7b9f3c50
DE
3578 if (qfn->real_names == NULL)
3579 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3580 qfn->num_file_names, const char *);
9291a0cd 3581
7b9f3c50 3582 if (qfn->real_names[index] == NULL)
14278e1f 3583 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3584
7b9f3c50 3585 return qfn->real_names[index];
9291a0cd
TT
3586}
3587
3588static struct symtab *
3589dw2_find_last_source_symtab (struct objfile *objfile)
3590{
43f3e411 3591 struct compunit_symtab *cust;
9291a0cd 3592 int index;
ae2de4f8 3593
9291a0cd
TT
3594 dw2_setup (objfile);
3595 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3596 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3597 if (cust == NULL)
3598 return NULL;
3599 return compunit_primary_filetab (cust);
9291a0cd
TT
3600}
3601
7b9f3c50
DE
3602/* Traversal function for dw2_forget_cached_source_info. */
3603
3604static int
3605dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3606{
7b9f3c50 3607 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3608
7b9f3c50 3609 if (file_data->real_names)
9291a0cd 3610 {
7b9f3c50 3611 int i;
9291a0cd 3612
7b9f3c50 3613 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3614 {
7b9f3c50
DE
3615 xfree ((void*) file_data->real_names[i]);
3616 file_data->real_names[i] = NULL;
9291a0cd
TT
3617 }
3618 }
7b9f3c50
DE
3619
3620 return 1;
3621}
3622
3623static void
3624dw2_forget_cached_source_info (struct objfile *objfile)
3625{
3626 dw2_setup (objfile);
3627
3628 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3629 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3630}
3631
f8eba3c6
TT
3632/* Helper function for dw2_map_symtabs_matching_filename that expands
3633 the symtabs and calls the iterator. */
3634
3635static int
3636dw2_map_expand_apply (struct objfile *objfile,
3637 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3638 const char *name, const char *real_path,
14bc53a8 3639 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3640{
43f3e411 3641 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3642
3643 /* Don't visit already-expanded CUs. */
43f3e411 3644 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3645 return 0;
3646
3647 /* This may expand more than one symtab, and we want to iterate over
3648 all of them. */
a0f42c21 3649 dw2_instantiate_symtab (per_cu);
f8eba3c6 3650
14bc53a8
PA
3651 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3652 last_made, callback);
f8eba3c6
TT
3653}
3654
3655/* Implementation of the map_symtabs_matching_filename method. */
3656
14bc53a8
PA
3657static bool
3658dw2_map_symtabs_matching_filename
3659 (struct objfile *objfile, const char *name, const char *real_path,
3660 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3661{
3662 int i;
c011a4f4 3663 const char *name_basename = lbasename (name);
9291a0cd
TT
3664
3665 dw2_setup (objfile);
ae2de4f8 3666
848e3e78
DE
3667 /* The rule is CUs specify all the files, including those used by
3668 any TU, so there's no need to scan TUs here. */
f4dc4d17 3669
848e3e78 3670 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3671 {
3672 int j;
8832e7e3 3673 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3674 struct quick_file_names *file_data;
9291a0cd 3675
3d7bb9d9 3676 /* We only need to look at symtabs not already expanded. */
43f3e411 3677 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3678 continue;
3679
e4a48d9d 3680 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3681 if (file_data == NULL)
9291a0cd
TT
3682 continue;
3683
7b9f3c50 3684 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3685 {
7b9f3c50 3686 const char *this_name = file_data->file_names[j];
da235a7c 3687 const char *this_real_name;
9291a0cd 3688
af529f8f 3689 if (compare_filenames_for_search (this_name, name))
9291a0cd 3690 {
f5b95b50 3691 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3692 callback))
3693 return true;
288e77a7 3694 continue;
4aac40c8 3695 }
9291a0cd 3696
c011a4f4
DE
3697 /* Before we invoke realpath, which can get expensive when many
3698 files are involved, do a quick comparison of the basenames. */
3699 if (! basenames_may_differ
3700 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3701 continue;
3702
da235a7c
JK
3703 this_real_name = dw2_get_real_path (objfile, file_data, j);
3704 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3705 {
da235a7c 3706 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3707 callback))
3708 return true;
288e77a7 3709 continue;
da235a7c 3710 }
9291a0cd 3711
da235a7c
JK
3712 if (real_path != NULL)
3713 {
af529f8f
JK
3714 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3715 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3716 if (this_real_name != NULL
af529f8f 3717 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3718 {
f5b95b50 3719 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3720 callback))
3721 return true;
288e77a7 3722 continue;
9291a0cd
TT
3723 }
3724 }
3725 }
3726 }
3727
14bc53a8 3728 return false;
9291a0cd
TT
3729}
3730
da51c347
DE
3731/* Struct used to manage iterating over all CUs looking for a symbol. */
3732
3733struct dw2_symtab_iterator
9291a0cd 3734{
da51c347
DE
3735 /* The internalized form of .gdb_index. */
3736 struct mapped_index *index;
3737 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3738 int want_specific_block;
3739 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3740 Unused if !WANT_SPECIFIC_BLOCK. */
3741 int block_index;
3742 /* The kind of symbol we're looking for. */
3743 domain_enum domain;
3744 /* The list of CUs from the index entry of the symbol,
3745 or NULL if not found. */
3746 offset_type *vec;
3747 /* The next element in VEC to look at. */
3748 int next;
3749 /* The number of elements in VEC, or zero if there is no match. */
3750 int length;
8943b874
DE
3751 /* Have we seen a global version of the symbol?
3752 If so we can ignore all further global instances.
3753 This is to work around gold/15646, inefficient gold-generated
3754 indices. */
3755 int global_seen;
da51c347 3756};
9291a0cd 3757
da51c347
DE
3758/* Initialize the index symtab iterator ITER.
3759 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3760 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3761
9291a0cd 3762static void
da51c347
DE
3763dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3764 struct mapped_index *index,
3765 int want_specific_block,
3766 int block_index,
3767 domain_enum domain,
3768 const char *name)
3769{
3770 iter->index = index;
3771 iter->want_specific_block = want_specific_block;
3772 iter->block_index = block_index;
3773 iter->domain = domain;
3774 iter->next = 0;
8943b874 3775 iter->global_seen = 0;
da51c347
DE
3776
3777 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3778 iter->length = MAYBE_SWAP (*iter->vec);
3779 else
3780 {
3781 iter->vec = NULL;
3782 iter->length = 0;
3783 }
3784}
3785
3786/* Return the next matching CU or NULL if there are no more. */
3787
3788static struct dwarf2_per_cu_data *
3789dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3790{
3791 for ( ; iter->next < iter->length; ++iter->next)
3792 {
3793 offset_type cu_index_and_attrs =
3794 MAYBE_SWAP (iter->vec[iter->next + 1]);
3795 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3796 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3797 int want_static = iter->block_index != GLOBAL_BLOCK;
3798 /* This value is only valid for index versions >= 7. */
3799 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3800 gdb_index_symbol_kind symbol_kind =
3801 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3802 /* Only check the symbol attributes if they're present.
3803 Indices prior to version 7 don't record them,
3804 and indices >= 7 may elide them for certain symbols
3805 (gold does this). */
3806 int attrs_valid =
3807 (iter->index->version >= 7
3808 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3809
3190f0c6
DE
3810 /* Don't crash on bad data. */
3811 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3812 + dwarf2_per_objfile->n_type_units))
3813 {
3814 complaint (&symfile_complaints,
3815 _(".gdb_index entry has bad CU index"
4262abfb
JK
3816 " [in module %s]"),
3817 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3818 continue;
3819 }
3820
8832e7e3 3821 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3822
da51c347 3823 /* Skip if already read in. */
43f3e411 3824 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3825 continue;
3826
8943b874
DE
3827 /* Check static vs global. */
3828 if (attrs_valid)
3829 {
3830 if (iter->want_specific_block
3831 && want_static != is_static)
3832 continue;
3833 /* Work around gold/15646. */
3834 if (!is_static && iter->global_seen)
3835 continue;
3836 if (!is_static)
3837 iter->global_seen = 1;
3838 }
da51c347
DE
3839
3840 /* Only check the symbol's kind if it has one. */
3841 if (attrs_valid)
3842 {
3843 switch (iter->domain)
3844 {
3845 case VAR_DOMAIN:
3846 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3847 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3848 /* Some types are also in VAR_DOMAIN. */
3849 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3850 continue;
3851 break;
3852 case STRUCT_DOMAIN:
3853 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3854 continue;
3855 break;
3856 case LABEL_DOMAIN:
3857 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3858 continue;
3859 break;
3860 default:
3861 break;
3862 }
3863 }
3864
3865 ++iter->next;
3866 return per_cu;
3867 }
3868
3869 return NULL;
3870}
3871
43f3e411 3872static struct compunit_symtab *
da51c347
DE
3873dw2_lookup_symbol (struct objfile *objfile, int block_index,
3874 const char *name, domain_enum domain)
9291a0cd 3875{
43f3e411 3876 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3877 struct mapped_index *index;
3878
9291a0cd
TT
3879 dw2_setup (objfile);
3880
156942c7
DE
3881 index = dwarf2_per_objfile->index_table;
3882
da51c347 3883 /* index is NULL if OBJF_READNOW. */
156942c7 3884 if (index)
9291a0cd 3885 {
da51c347
DE
3886 struct dw2_symtab_iterator iter;
3887 struct dwarf2_per_cu_data *per_cu;
3888
3889 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3890
da51c347 3891 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3892 {
b2e2f908 3893 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3894 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3895 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3896 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3897
b2e2f908
DE
3898 sym = block_find_symbol (block, name, domain,
3899 block_find_non_opaque_type_preferred,
3900 &with_opaque);
3901
da51c347
DE
3902 /* Some caution must be observed with overloaded functions
3903 and methods, since the index will not contain any overload
3904 information (but NAME might contain it). */
da51c347 3905
b2e2f908 3906 if (sym != NULL
a778f165 3907 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
b2e2f908
DE
3908 return stab;
3909 if (with_opaque != NULL
a778f165 3910 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
b2e2f908 3911 stab_best = stab;
da51c347
DE
3912
3913 /* Keep looking through other CUs. */
9291a0cd
TT
3914 }
3915 }
9291a0cd 3916
da51c347 3917 return stab_best;
9291a0cd
TT
3918}
3919
3920static void
3921dw2_print_stats (struct objfile *objfile)
3922{
e4a48d9d 3923 int i, total, count;
9291a0cd
TT
3924
3925 dw2_setup (objfile);
e4a48d9d 3926 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3927 count = 0;
e4a48d9d 3928 for (i = 0; i < total; ++i)
9291a0cd 3929 {
8832e7e3 3930 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3931
43f3e411 3932 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3933 ++count;
3934 }
e4a48d9d 3935 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3936 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3937}
3938
779bd270
DE
3939/* This dumps minimal information about the index.
3940 It is called via "mt print objfiles".
3941 One use is to verify .gdb_index has been loaded by the
3942 gdb.dwarf2/gdb-index.exp testcase. */
3943
9291a0cd
TT
3944static void
3945dw2_dump (struct objfile *objfile)
3946{
779bd270
DE
3947 dw2_setup (objfile);
3948 gdb_assert (dwarf2_per_objfile->using_index);
3949 printf_filtered (".gdb_index:");
3950 if (dwarf2_per_objfile->index_table != NULL)
3951 {
3952 printf_filtered (" version %d\n",
3953 dwarf2_per_objfile->index_table->version);
3954 }
3955 else
3956 printf_filtered (" faked for \"readnow\"\n");
3957 printf_filtered ("\n");
9291a0cd
TT
3958}
3959
3960static void
3189cb12
DE
3961dw2_relocate (struct objfile *objfile,
3962 const struct section_offsets *new_offsets,
3963 const struct section_offsets *delta)
9291a0cd
TT
3964{
3965 /* There's nothing to relocate here. */
3966}
3967
3968static void
3969dw2_expand_symtabs_for_function (struct objfile *objfile,
3970 const char *func_name)
3971{
da51c347
DE
3972 struct mapped_index *index;
3973
3974 dw2_setup (objfile);
3975
3976 index = dwarf2_per_objfile->index_table;
3977
3978 /* index is NULL if OBJF_READNOW. */
3979 if (index)
3980 {
3981 struct dw2_symtab_iterator iter;
3982 struct dwarf2_per_cu_data *per_cu;
3983
3984 /* Note: It doesn't matter what we pass for block_index here. */
3985 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3986 func_name);
3987
3988 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3989 dw2_instantiate_symtab (per_cu);
3990 }
9291a0cd
TT
3991}
3992
3993static void
3994dw2_expand_all_symtabs (struct objfile *objfile)
3995{
3996 int i;
3997
3998 dw2_setup (objfile);
1fd400ff
TT
3999
4000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4001 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4002 {
8832e7e3 4003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4004
a0f42c21 4005 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4006 }
4007}
4008
4009static void
652a8996
JK
4010dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4011 const char *fullname)
9291a0cd
TT
4012{
4013 int i;
4014
4015 dw2_setup (objfile);
d4637a04
DE
4016
4017 /* We don't need to consider type units here.
4018 This is only called for examining code, e.g. expand_line_sal.
4019 There can be an order of magnitude (or more) more type units
4020 than comp units, and we avoid them if we can. */
4021
4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4023 {
4024 int j;
8832e7e3 4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4026 struct quick_file_names *file_data;
9291a0cd 4027
3d7bb9d9 4028 /* We only need to look at symtabs not already expanded. */
43f3e411 4029 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4030 continue;
4031
e4a48d9d 4032 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4033 if (file_data == NULL)
9291a0cd
TT
4034 continue;
4035
7b9f3c50 4036 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4037 {
652a8996
JK
4038 const char *this_fullname = file_data->file_names[j];
4039
4040 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4041 {
a0f42c21 4042 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4043 break;
4044 }
4045 }
4046 }
4047}
4048
9291a0cd 4049static void
ade7ed9e 4050dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4051 const char * name, domain_enum domain,
ade7ed9e 4052 int global,
40658b94
PH
4053 int (*callback) (struct block *,
4054 struct symbol *, void *),
2edb89d3
JK
4055 void *data, symbol_compare_ftype *match,
4056 symbol_compare_ftype *ordered_compare)
9291a0cd 4057{
40658b94 4058 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4059 current language is Ada for a non-Ada objfile using GNU index. As Ada
4060 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4061}
4062
4063static void
f8eba3c6
TT
4064dw2_expand_symtabs_matching
4065 (struct objfile *objfile,
14bc53a8
PA
4066 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4067 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4068 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4069 enum search_domain kind)
9291a0cd
TT
4070{
4071 int i;
4072 offset_type iter;
4b5246aa 4073 struct mapped_index *index;
9291a0cd
TT
4074
4075 dw2_setup (objfile);
ae2de4f8
DE
4076
4077 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4078 if (!dwarf2_per_objfile->index_table)
4079 return;
4b5246aa 4080 index = dwarf2_per_objfile->index_table;
9291a0cd 4081
7b08b9eb 4082 if (file_matcher != NULL)
24c79950 4083 {
fc4007c9
TT
4084 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4085 htab_eq_pointer,
4086 NULL, xcalloc, xfree));
4087 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
24c79950 4090
848e3e78
DE
4091 /* The rule is CUs specify all the files, including those used by
4092 any TU, so there's no need to scan TUs here. */
4093
4094 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4095 {
4096 int j;
8832e7e3 4097 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4098 struct quick_file_names *file_data;
4099 void **slot;
7b08b9eb 4100
61d96d7e
DE
4101 QUIT;
4102
24c79950 4103 per_cu->v.quick->mark = 0;
3d7bb9d9 4104
24c79950 4105 /* We only need to look at symtabs not already expanded. */
43f3e411 4106 if (per_cu->v.quick->compunit_symtab)
24c79950 4107 continue;
7b08b9eb 4108
e4a48d9d 4109 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4110 if (file_data == NULL)
4111 continue;
7b08b9eb 4112
fc4007c9 4113 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4114 continue;
fc4007c9 4115 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4116 {
4117 per_cu->v.quick->mark = 1;
4118 continue;
4119 }
4120
4121 for (j = 0; j < file_data->num_file_names; ++j)
4122 {
da235a7c
JK
4123 const char *this_real_name;
4124
14bc53a8 4125 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4126 {
4127 per_cu->v.quick->mark = 1;
4128 break;
4129 }
da235a7c
JK
4130
4131 /* Before we invoke realpath, which can get expensive when many
4132 files are involved, do a quick comparison of the basenames. */
4133 if (!basenames_may_differ
4134 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4135 true))
da235a7c
JK
4136 continue;
4137
4138 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4139 if (file_matcher (this_real_name, false))
da235a7c
JK
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
24c79950
TT
4144 }
4145
4146 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4147 ? visited_found.get ()
4148 : visited_not_found.get (),
24c79950
TT
4149 file_data, INSERT);
4150 *slot = file_data;
4151 }
24c79950 4152 }
9291a0cd 4153
3876f04e 4154 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4155 {
4156 offset_type idx = 2 * iter;
4157 const char *name;
4158 offset_type *vec, vec_len, vec_idx;
8943b874 4159 int global_seen = 0;
9291a0cd 4160
61d96d7e
DE
4161 QUIT;
4162
3876f04e 4163 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4164 continue;
4165
3876f04e 4166 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4167
14bc53a8 4168 if (!symbol_matcher (name))
9291a0cd
TT
4169 continue;
4170
4171 /* The name was matched, now expand corresponding CUs that were
4172 marked. */
4b5246aa 4173 vec = (offset_type *) (index->constant_pool
3876f04e 4174 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4175 vec_len = MAYBE_SWAP (vec[0]);
4176 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4177 {
e254ef6a 4178 struct dwarf2_per_cu_data *per_cu;
156942c7 4179 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4180 /* This value is only valid for index versions >= 7. */
4181 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4182 gdb_index_symbol_kind symbol_kind =
4183 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4184 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4185 /* Only check the symbol attributes if they're present.
4186 Indices prior to version 7 don't record them,
4187 and indices >= 7 may elide them for certain symbols
4188 (gold does this). */
4189 int attrs_valid =
4190 (index->version >= 7
4191 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4192
8943b874
DE
4193 /* Work around gold/15646. */
4194 if (attrs_valid)
4195 {
4196 if (!is_static && global_seen)
4197 continue;
4198 if (!is_static)
4199 global_seen = 1;
4200 }
4201
3190f0c6
DE
4202 /* Only check the symbol's kind if it has one. */
4203 if (attrs_valid)
156942c7
DE
4204 {
4205 switch (kind)
4206 {
4207 case VARIABLES_DOMAIN:
4208 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4209 continue;
4210 break;
4211 case FUNCTIONS_DOMAIN:
4212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4213 continue;
4214 break;
4215 case TYPES_DOMAIN:
4216 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4217 continue;
4218 break;
4219 default:
4220 break;
4221 }
4222 }
4223
3190f0c6
DE
4224 /* Don't crash on bad data. */
4225 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4226 + dwarf2_per_objfile->n_type_units))
4227 {
4228 complaint (&symfile_complaints,
4229 _(".gdb_index entry has bad CU index"
4262abfb 4230 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4231 continue;
4232 }
4233
8832e7e3 4234 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4235 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4236 {
4237 int symtab_was_null =
4238 (per_cu->v.quick->compunit_symtab == NULL);
4239
4240 dw2_instantiate_symtab (per_cu);
4241
4242 if (expansion_notify != NULL
4243 && symtab_was_null
4244 && per_cu->v.quick->compunit_symtab != NULL)
4245 {
14bc53a8 4246 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4247 }
4248 }
9291a0cd
TT
4249 }
4250 }
4251}
4252
43f3e411 4253/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4254 symtab. */
4255
43f3e411
DE
4256static struct compunit_symtab *
4257recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4258 CORE_ADDR pc)
9703b513
TT
4259{
4260 int i;
4261
43f3e411
DE
4262 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4263 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4264 return cust;
9703b513 4265
43f3e411 4266 if (cust->includes == NULL)
a3ec0bb1
DE
4267 return NULL;
4268
43f3e411 4269 for (i = 0; cust->includes[i]; ++i)
9703b513 4270 {
43f3e411 4271 struct compunit_symtab *s = cust->includes[i];
9703b513 4272
43f3e411 4273 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4274 if (s != NULL)
4275 return s;
4276 }
4277
4278 return NULL;
4279}
4280
43f3e411
DE
4281static struct compunit_symtab *
4282dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4283 struct bound_minimal_symbol msymbol,
4284 CORE_ADDR pc,
4285 struct obj_section *section,
4286 int warn_if_readin)
9291a0cd
TT
4287{
4288 struct dwarf2_per_cu_data *data;
43f3e411 4289 struct compunit_symtab *result;
9291a0cd
TT
4290
4291 dw2_setup (objfile);
4292
4293 if (!objfile->psymtabs_addrmap)
4294 return NULL;
4295
9a3c8263
SM
4296 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4297 pc);
9291a0cd
TT
4298 if (!data)
4299 return NULL;
4300
43f3e411 4301 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4302 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4303 paddress (get_objfile_arch (objfile), pc));
4304
43f3e411
DE
4305 result
4306 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4307 pc);
9703b513
TT
4308 gdb_assert (result != NULL);
4309 return result;
9291a0cd
TT
4310}
4311
9291a0cd 4312static void
44b13c5a 4313dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4314 void *data, int need_fullname)
9291a0cd 4315{
9291a0cd 4316 dw2_setup (objfile);
ae2de4f8 4317
bbf2f4df 4318 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4319 {
bbf2f4df 4320 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4321
bbf2f4df
PA
4322 htab_up visited (htab_create_alloc (10,
4323 htab_hash_pointer, htab_eq_pointer,
4324 NULL, xcalloc, xfree));
24c79950 4325
bbf2f4df
PA
4326 /* The rule is CUs specify all the files, including those used
4327 by any TU, so there's no need to scan TUs here. We can
4328 ignore file names coming from already-expanded CUs. */
24c79950 4329
bbf2f4df
PA
4330 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4331 {
4332 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4333
bbf2f4df
PA
4334 if (per_cu->v.quick->compunit_symtab)
4335 {
4336 void **slot = htab_find_slot (visited.get (),
4337 per_cu->v.quick->file_names,
4338 INSERT);
9291a0cd 4339
bbf2f4df
PA
4340 *slot = per_cu->v.quick->file_names;
4341 }
24c79950 4342 }
24c79950 4343
bbf2f4df 4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4345 {
bbf2f4df
PA
4346 int j;
4347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4348 struct quick_file_names *file_data;
4349 void **slot;
4350
4351 /* We only need to look at symtabs not already expanded. */
4352 if (per_cu->v.quick->compunit_symtab)
4353 continue;
74e2f255 4354
bbf2f4df
PA
4355 file_data = dw2_get_file_names (per_cu);
4356 if (file_data == NULL)
4357 continue;
4358
4359 slot = htab_find_slot (visited.get (), file_data, INSERT);
4360 if (*slot)
4361 {
4362 /* Already visited. */
4363 continue;
4364 }
4365 *slot = file_data;
4366
4367 for (int j = 0; j < file_data->num_file_names; ++j)
4368 {
4369 const char *filename = file_data->file_names[j];
4370 dwarf2_per_objfile->filenames_cache->seen (filename);
4371 }
9291a0cd
TT
4372 }
4373 }
bbf2f4df
PA
4374
4375 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4376 {
14278e1f 4377 gdb::unique_xmalloc_ptr<char> this_real_name;
bbf2f4df
PA
4378
4379 if (need_fullname)
4380 this_real_name = gdb_realpath (filename);
14278e1f 4381 (*fun) (filename, this_real_name.get (), data);
bbf2f4df 4382 });
9291a0cd
TT
4383}
4384
4385static int
4386dw2_has_symbols (struct objfile *objfile)
4387{
4388 return 1;
4389}
4390
4391const struct quick_symbol_functions dwarf2_gdb_index_functions =
4392{
4393 dw2_has_symbols,
4394 dw2_find_last_source_symtab,
4395 dw2_forget_cached_source_info,
f8eba3c6 4396 dw2_map_symtabs_matching_filename,
9291a0cd 4397 dw2_lookup_symbol,
9291a0cd
TT
4398 dw2_print_stats,
4399 dw2_dump,
4400 dw2_relocate,
4401 dw2_expand_symtabs_for_function,
4402 dw2_expand_all_symtabs,
652a8996 4403 dw2_expand_symtabs_with_fullname,
40658b94 4404 dw2_map_matching_symbols,
9291a0cd 4405 dw2_expand_symtabs_matching,
43f3e411 4406 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4407 dw2_map_symbol_filenames
4408};
4409
4410/* Initialize for reading DWARF for this objfile. Return 0 if this
4411 file will use psymtabs, or 1 if using the GNU index. */
4412
4413int
4414dwarf2_initialize_objfile (struct objfile *objfile)
4415{
4416 /* If we're about to read full symbols, don't bother with the
4417 indices. In this case we also don't care if some other debug
4418 format is making psymtabs, because they are all about to be
4419 expanded anyway. */
4420 if ((objfile->flags & OBJF_READNOW))
4421 {
4422 int i;
4423
4424 dwarf2_per_objfile->using_index = 1;
4425 create_all_comp_units (objfile);
0e50663e 4426 create_all_type_units (objfile);
7b9f3c50
DE
4427 dwarf2_per_objfile->quick_file_names_table =
4428 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4429
1fd400ff 4430 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4431 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4432 {
8832e7e3 4433 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4434
e254ef6a
DE
4435 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4436 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4437 }
4438
4439 /* Return 1 so that gdb sees the "quick" functions. However,
4440 these functions will be no-ops because we will have expanded
4441 all symtabs. */
4442 return 1;
4443 }
4444
4445 if (dwarf2_read_index (objfile))
4446 return 1;
4447
9291a0cd
TT
4448 return 0;
4449}
4450
4451\f
4452
dce234bc
PP
4453/* Build a partial symbol table. */
4454
4455void
f29dff0a 4456dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4457{
c9bf0622 4458
af5bf4ad
SM
4459 if (objfile->global_psymbols.capacity () == 0
4460 && objfile->static_psymbols.capacity () == 0)
4461 init_psymbol_list (objfile, 1024);
c906108c 4462
492d29ea 4463 TRY
c9bf0622
TT
4464 {
4465 /* This isn't really ideal: all the data we allocate on the
4466 objfile's obstack is still uselessly kept around. However,
4467 freeing it seems unsafe. */
906768f9 4468 psymtab_discarder psymtabs (objfile);
c9bf0622 4469 dwarf2_build_psymtabs_hard (objfile);
906768f9 4470 psymtabs.keep ();
c9bf0622 4471 }
492d29ea
PA
4472 CATCH (except, RETURN_MASK_ERROR)
4473 {
4474 exception_print (gdb_stderr, except);
4475 }
4476 END_CATCH
c906108c 4477}
c906108c 4478
1ce1cefd
DE
4479/* Return the total length of the CU described by HEADER. */
4480
4481static unsigned int
4482get_cu_length (const struct comp_unit_head *header)
4483{
4484 return header->initial_length_size + header->length;
4485}
4486
9c541725 4487/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4488
9c541725
PA
4489static inline bool
4490offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4491{
9c541725
PA
4492 sect_offset bottom = cu_header->sect_off;
4493 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4494
9c541725 4495 return sect_off >= bottom && sect_off < top;
45452591
DE
4496}
4497
3b80fe9b
DE
4498/* Find the base address of the compilation unit for range lists and
4499 location lists. It will normally be specified by DW_AT_low_pc.
4500 In DWARF-3 draft 4, the base address could be overridden by
4501 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4502 compilation units with discontinuous ranges. */
4503
4504static void
4505dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4506{
4507 struct attribute *attr;
4508
4509 cu->base_known = 0;
4510 cu->base_address = 0;
4511
4512 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4513 if (attr)
4514 {
31aa7e4e 4515 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4516 cu->base_known = 1;
4517 }
4518 else
4519 {
4520 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4521 if (attr)
4522 {
31aa7e4e 4523 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4524 cu->base_known = 1;
4525 }
4526 }
4527}
4528
93311388 4529/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4530 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4531 NOTE: This leaves members offset, first_die_offset to be filled in
4532 by the caller. */
107d2387 4533
d521ce57 4534static const gdb_byte *
107d2387 4535read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4536 const gdb_byte *info_ptr,
4537 struct dwarf2_section_info *section,
4538 rcuh_kind section_kind)
107d2387
AC
4539{
4540 int signed_addr;
891d2f0b 4541 unsigned int bytes_read;
43988095
JK
4542 const char *filename = get_section_file_name (section);
4543 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4544
4545 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4546 cu_header->initial_length_size = bytes_read;
4547 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4548 info_ptr += bytes_read;
107d2387
AC
4549 cu_header->version = read_2_bytes (abfd, info_ptr);
4550 info_ptr += 2;
43988095
JK
4551 if (cu_header->version < 5)
4552 switch (section_kind)
4553 {
4554 case rcuh_kind::COMPILE:
4555 cu_header->unit_type = DW_UT_compile;
4556 break;
4557 case rcuh_kind::TYPE:
4558 cu_header->unit_type = DW_UT_type;
4559 break;
4560 default:
4561 internal_error (__FILE__, __LINE__,
4562 _("read_comp_unit_head: invalid section_kind"));
4563 }
4564 else
4565 {
4566 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4567 (read_1_byte (abfd, info_ptr));
4568 info_ptr += 1;
4569 switch (cu_header->unit_type)
4570 {
4571 case DW_UT_compile:
4572 if (section_kind != rcuh_kind::COMPILE)
4573 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4574 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4575 filename);
4576 break;
4577 case DW_UT_type:
4578 section_kind = rcuh_kind::TYPE;
4579 break;
4580 default:
4581 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4582 "(is %d, should be %d or %d) [in module %s]"),
4583 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4584 }
4585
4586 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4587 info_ptr += 1;
4588 }
9c541725
PA
4589 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4590 cu_header,
4591 &bytes_read);
613e1657 4592 info_ptr += bytes_read;
43988095
JK
4593 if (cu_header->version < 5)
4594 {
4595 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4596 info_ptr += 1;
4597 }
107d2387
AC
4598 signed_addr = bfd_get_sign_extend_vma (abfd);
4599 if (signed_addr < 0)
8e65ff28 4600 internal_error (__FILE__, __LINE__,
e2e0b3e5 4601 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4602 cu_header->signed_addr_p = signed_addr;
c764a876 4603
43988095
JK
4604 if (section_kind == rcuh_kind::TYPE)
4605 {
4606 LONGEST type_offset;
4607
4608 cu_header->signature = read_8_bytes (abfd, info_ptr);
4609 info_ptr += 8;
4610
4611 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4612 info_ptr += bytes_read;
9c541725
PA
4613 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4614 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4615 error (_("Dwarf Error: Too big type_offset in compilation unit "
4616 "header (is %s) [in module %s]"), plongest (type_offset),
4617 filename);
4618 }
4619
107d2387
AC
4620 return info_ptr;
4621}
4622
36586728
TT
4623/* Helper function that returns the proper abbrev section for
4624 THIS_CU. */
4625
4626static struct dwarf2_section_info *
4627get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4628{
4629 struct dwarf2_section_info *abbrev;
4630
4631 if (this_cu->is_dwz)
4632 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4633 else
4634 abbrev = &dwarf2_per_objfile->abbrev;
4635
4636 return abbrev;
4637}
4638
9ff913ba
DE
4639/* Subroutine of read_and_check_comp_unit_head and
4640 read_and_check_type_unit_head to simplify them.
4641 Perform various error checking on the header. */
4642
4643static void
4644error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4645 struct dwarf2_section_info *section,
4646 struct dwarf2_section_info *abbrev_section)
9ff913ba 4647{
a32a8923 4648 const char *filename = get_section_file_name (section);
9ff913ba 4649
43988095 4650 if (header->version < 2 || header->version > 5)
9ff913ba 4651 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4652 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4653 filename);
4654
9c541725 4655 if (to_underlying (header->abbrev_sect_off)
36586728 4656 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4657 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4658 "(offset 0x%x + 6) [in module %s]"),
4659 to_underlying (header->abbrev_sect_off),
4660 to_underlying (header->sect_off),
9ff913ba
DE
4661 filename);
4662
9c541725 4663 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4664 avoid potential 32-bit overflow. */
9c541725 4665 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4666 > section->size)
9c541725
PA
4667 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4668 "(offset 0x%x + 0) [in module %s]"),
4669 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4670 filename);
4671}
4672
4673/* Read in a CU/TU header and perform some basic error checking.
4674 The contents of the header are stored in HEADER.
4675 The result is a pointer to the start of the first DIE. */
adabb602 4676
d521ce57 4677static const gdb_byte *
9ff913ba
DE
4678read_and_check_comp_unit_head (struct comp_unit_head *header,
4679 struct dwarf2_section_info *section,
4bdcc0c1 4680 struct dwarf2_section_info *abbrev_section,
d521ce57 4681 const gdb_byte *info_ptr,
43988095 4682 rcuh_kind section_kind)
72bf9492 4683{
d521ce57 4684 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4685 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4686
9c541725 4687 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4688
43988095 4689 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4690
9c541725 4691 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4692
4bdcc0c1 4693 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4694
4695 return info_ptr;
348e048f
DE
4696}
4697
f4dc4d17
DE
4698/* Fetch the abbreviation table offset from a comp or type unit header. */
4699
4700static sect_offset
4701read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4702 sect_offset sect_off)
f4dc4d17 4703{
a32a8923 4704 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4705 const gdb_byte *info_ptr;
ac298888 4706 unsigned int initial_length_size, offset_size;
43988095 4707 uint16_t version;
f4dc4d17
DE
4708
4709 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4710 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4711 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4712 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4713 info_ptr += initial_length_size;
4714
4715 version = read_2_bytes (abfd, info_ptr);
4716 info_ptr += 2;
4717 if (version >= 5)
4718 {
4719 /* Skip unit type and address size. */
4720 info_ptr += 2;
4721 }
4722
9c541725 4723 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4724}
4725
aaa75496
JB
4726/* Allocate a new partial symtab for file named NAME and mark this new
4727 partial symtab as being an include of PST. */
4728
4729static void
d521ce57 4730dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4731 struct objfile *objfile)
4732{
4733 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4734
fbd9ab74
JK
4735 if (!IS_ABSOLUTE_PATH (subpst->filename))
4736 {
4737 /* It shares objfile->objfile_obstack. */
4738 subpst->dirname = pst->dirname;
4739 }
4740
aaa75496
JB
4741 subpst->textlow = 0;
4742 subpst->texthigh = 0;
4743
8d749320
SM
4744 subpst->dependencies
4745 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4746 subpst->dependencies[0] = pst;
4747 subpst->number_of_dependencies = 1;
4748
4749 subpst->globals_offset = 0;
4750 subpst->n_global_syms = 0;
4751 subpst->statics_offset = 0;
4752 subpst->n_static_syms = 0;
43f3e411 4753 subpst->compunit_symtab = NULL;
aaa75496
JB
4754 subpst->read_symtab = pst->read_symtab;
4755 subpst->readin = 0;
4756
4757 /* No private part is necessary for include psymtabs. This property
4758 can be used to differentiate between such include psymtabs and
10b3939b 4759 the regular ones. */
58a9656e 4760 subpst->read_symtab_private = NULL;
aaa75496
JB
4761}
4762
4763/* Read the Line Number Program data and extract the list of files
4764 included by the source file represented by PST. Build an include
d85a05f0 4765 partial symtab for each of these included files. */
aaa75496
JB
4766
4767static void
4768dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4769 struct die_info *die,
4770 struct partial_symtab *pst)
aaa75496 4771{
fff8551c 4772 line_header_up lh;
d85a05f0 4773 struct attribute *attr;
aaa75496 4774
d85a05f0
DJ
4775 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4776 if (attr)
9c541725 4777 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4778 if (lh == NULL)
4779 return; /* No linetable, so no includes. */
4780
c6da4cef 4781 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4782 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4783}
4784
348e048f 4785static hashval_t
52dc124a 4786hash_signatured_type (const void *item)
348e048f 4787{
9a3c8263
SM
4788 const struct signatured_type *sig_type
4789 = (const struct signatured_type *) item;
9a619af0 4790
348e048f 4791 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4792 return sig_type->signature;
348e048f
DE
4793}
4794
4795static int
52dc124a 4796eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4797{
9a3c8263
SM
4798 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4799 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4800
348e048f
DE
4801 return lhs->signature == rhs->signature;
4802}
4803
1fd400ff
TT
4804/* Allocate a hash table for signatured types. */
4805
4806static htab_t
673bfd45 4807allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4808{
4809 return htab_create_alloc_ex (41,
52dc124a
DE
4810 hash_signatured_type,
4811 eq_signatured_type,
1fd400ff
TT
4812 NULL,
4813 &objfile->objfile_obstack,
4814 hashtab_obstack_allocate,
4815 dummy_obstack_deallocate);
4816}
4817
d467dd73 4818/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4819
4820static int
d467dd73 4821add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4822{
9a3c8263
SM
4823 struct signatured_type *sigt = (struct signatured_type *) *slot;
4824 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4825
b4dd5633 4826 **datap = sigt;
1fd400ff
TT
4827 ++*datap;
4828
4829 return 1;
4830}
4831
78d4d2c5 4832/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4833 and fill them into TYPES_HTAB. It will process only type units,
4834 therefore DW_UT_type. */
c88ee1f0 4835
78d4d2c5
JK
4836static void
4837create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4838 dwarf2_section_info *section, htab_t &types_htab,
4839 rcuh_kind section_kind)
348e048f 4840{
3019eac3 4841 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4842 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4843 bfd *abfd;
4844 const gdb_byte *info_ptr, *end_ptr;
348e048f 4845
4bdcc0c1
DE
4846 abbrev_section = (dwo_file != NULL
4847 ? &dwo_file->sections.abbrev
4848 : &dwarf2_per_objfile->abbrev);
4849
b4f54984 4850 if (dwarf_read_debug)
43988095
JK
4851 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4852 get_section_name (section),
a32a8923 4853 get_section_file_name (abbrev_section));
09406207 4854
78d4d2c5
JK
4855 dwarf2_read_section (objfile, section);
4856 info_ptr = section->buffer;
348e048f 4857
78d4d2c5
JK
4858 if (info_ptr == NULL)
4859 return;
348e048f 4860
78d4d2c5
JK
4861 /* We can't set abfd until now because the section may be empty or
4862 not present, in which case the bfd is unknown. */
4863 abfd = get_section_bfd_owner (section);
348e048f 4864
78d4d2c5
JK
4865 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4866 because we don't need to read any dies: the signature is in the
4867 header. */
3019eac3 4868
78d4d2c5
JK
4869 end_ptr = info_ptr + section->size;
4870 while (info_ptr < end_ptr)
4871 {
78d4d2c5
JK
4872 struct signatured_type *sig_type;
4873 struct dwo_unit *dwo_tu;
4874 void **slot;
4875 const gdb_byte *ptr = info_ptr;
4876 struct comp_unit_head header;
4877 unsigned int length;
8b70b953 4878
9c541725 4879 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4880
a49dd8dd
JK
4881 /* Initialize it due to a false compiler warning. */
4882 header.signature = -1;
9c541725 4883 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4884
78d4d2c5
JK
4885 /* We need to read the type's signature in order to build the hash
4886 table, but we don't need anything else just yet. */
348e048f 4887
43988095
JK
4888 ptr = read_and_check_comp_unit_head (&header, section,
4889 abbrev_section, ptr, section_kind);
348e048f 4890
78d4d2c5 4891 length = get_cu_length (&header);
6caca83c 4892
78d4d2c5
JK
4893 /* Skip dummy type units. */
4894 if (ptr >= info_ptr + length
43988095
JK
4895 || peek_abbrev_code (abfd, ptr) == 0
4896 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4897 {
4898 info_ptr += length;
4899 continue;
4900 }
dee91e82 4901
78d4d2c5
JK
4902 if (types_htab == NULL)
4903 {
4904 if (dwo_file)
4905 types_htab = allocate_dwo_unit_table (objfile);
4906 else
4907 types_htab = allocate_signatured_type_table (objfile);
4908 }
8b70b953 4909
78d4d2c5
JK
4910 if (dwo_file)
4911 {
4912 sig_type = NULL;
4913 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4914 struct dwo_unit);
4915 dwo_tu->dwo_file = dwo_file;
43988095 4916 dwo_tu->signature = header.signature;
9c541725 4917 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4918 dwo_tu->section = section;
9c541725 4919 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4920 dwo_tu->length = length;
4921 }
4922 else
4923 {
4924 /* N.B.: type_offset is not usable if this type uses a DWO file.
4925 The real type_offset is in the DWO file. */
4926 dwo_tu = NULL;
4927 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4928 struct signatured_type);
43988095 4929 sig_type->signature = header.signature;
9c541725 4930 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4931 sig_type->per_cu.objfile = objfile;
4932 sig_type->per_cu.is_debug_types = 1;
4933 sig_type->per_cu.section = section;
9c541725 4934 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4935 sig_type->per_cu.length = length;
4936 }
4937
4938 slot = htab_find_slot (types_htab,
4939 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4940 INSERT);
4941 gdb_assert (slot != NULL);
4942 if (*slot != NULL)
4943 {
9c541725 4944 sect_offset dup_sect_off;
0349ea22 4945
3019eac3
DE
4946 if (dwo_file)
4947 {
78d4d2c5
JK
4948 const struct dwo_unit *dup_tu
4949 = (const struct dwo_unit *) *slot;
4950
9c541725 4951 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4952 }
4953 else
4954 {
78d4d2c5
JK
4955 const struct signatured_type *dup_tu
4956 = (const struct signatured_type *) *slot;
4957
9c541725 4958 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4959 }
8b70b953 4960
78d4d2c5
JK
4961 complaint (&symfile_complaints,
4962 _("debug type entry at offset 0x%x is duplicate to"
4963 " the entry at offset 0x%x, signature %s"),
9c541725 4964 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4965 hex_string (header.signature));
78d4d2c5
JK
4966 }
4967 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4968
78d4d2c5
JK
4969 if (dwarf_read_debug > 1)
4970 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4971 to_underlying (sect_off),
43988095 4972 hex_string (header.signature));
3019eac3 4973
78d4d2c5
JK
4974 info_ptr += length;
4975 }
4976}
3019eac3 4977
78d4d2c5
JK
4978/* Create the hash table of all entries in the .debug_types
4979 (or .debug_types.dwo) section(s).
4980 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4981 otherwise it is NULL.
b3c8eb43 4982
78d4d2c5 4983 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4984
78d4d2c5 4985 Note: This function processes DWO files only, not DWP files. */
348e048f 4986
78d4d2c5
JK
4987static void
4988create_debug_types_hash_table (struct dwo_file *dwo_file,
4989 VEC (dwarf2_section_info_def) *types,
4990 htab_t &types_htab)
4991{
4992 int ix;
4993 struct dwarf2_section_info *section;
4994
4995 if (VEC_empty (dwarf2_section_info_def, types))
4996 return;
348e048f 4997
78d4d2c5
JK
4998 for (ix = 0;
4999 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5000 ++ix)
43988095
JK
5001 create_debug_type_hash_table (dwo_file, section, types_htab,
5002 rcuh_kind::TYPE);
3019eac3
DE
5003}
5004
5005/* Create the hash table of all entries in the .debug_types section,
5006 and initialize all_type_units.
5007 The result is zero if there is an error (e.g. missing .debug_types section),
5008 otherwise non-zero. */
5009
5010static int
5011create_all_type_units (struct objfile *objfile)
5012{
78d4d2c5 5013 htab_t types_htab = NULL;
b4dd5633 5014 struct signatured_type **iter;
3019eac3 5015
43988095
JK
5016 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5017 rcuh_kind::COMPILE);
78d4d2c5 5018 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5019 if (types_htab == NULL)
5020 {
5021 dwarf2_per_objfile->signatured_types = NULL;
5022 return 0;
5023 }
5024
348e048f
DE
5025 dwarf2_per_objfile->signatured_types = types_htab;
5026
6aa5f3a6
DE
5027 dwarf2_per_objfile->n_type_units
5028 = dwarf2_per_objfile->n_allocated_type_units
5029 = htab_elements (types_htab);
8d749320
SM
5030 dwarf2_per_objfile->all_type_units =
5031 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5032 iter = &dwarf2_per_objfile->all_type_units[0];
5033 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5034 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5035 == dwarf2_per_objfile->n_type_units);
1fd400ff 5036
348e048f
DE
5037 return 1;
5038}
5039
6aa5f3a6
DE
5040/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5041 If SLOT is non-NULL, it is the entry to use in the hash table.
5042 Otherwise we find one. */
5043
5044static struct signatured_type *
5045add_type_unit (ULONGEST sig, void **slot)
5046{
5047 struct objfile *objfile = dwarf2_per_objfile->objfile;
5048 int n_type_units = dwarf2_per_objfile->n_type_units;
5049 struct signatured_type *sig_type;
5050
5051 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5052 ++n_type_units;
5053 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5054 {
5055 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5056 dwarf2_per_objfile->n_allocated_type_units = 1;
5057 dwarf2_per_objfile->n_allocated_type_units *= 2;
5058 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5059 = XRESIZEVEC (struct signatured_type *,
5060 dwarf2_per_objfile->all_type_units,
5061 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5062 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5063 }
5064 dwarf2_per_objfile->n_type_units = n_type_units;
5065
5066 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5067 struct signatured_type);
5068 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5069 sig_type->signature = sig;
5070 sig_type->per_cu.is_debug_types = 1;
5071 if (dwarf2_per_objfile->using_index)
5072 {
5073 sig_type->per_cu.v.quick =
5074 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5075 struct dwarf2_per_cu_quick_data);
5076 }
5077
5078 if (slot == NULL)
5079 {
5080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5081 sig_type, INSERT);
5082 }
5083 gdb_assert (*slot == NULL);
5084 *slot = sig_type;
5085 /* The rest of sig_type must be filled in by the caller. */
5086 return sig_type;
5087}
5088
a2ce51a0
DE
5089/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5090 Fill in SIG_ENTRY with DWO_ENTRY. */
5091
5092static void
5093fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5094 struct signatured_type *sig_entry,
5095 struct dwo_unit *dwo_entry)
5096{
7ee85ab1 5097 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5098 gdb_assert (! sig_entry->per_cu.queued);
5099 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5100 if (dwarf2_per_objfile->using_index)
5101 {
5102 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5103 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5104 }
5105 else
5106 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5107 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5108 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5109 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5110 gdb_assert (sig_entry->dwo_unit == NULL);
5111
5112 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5113 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5114 sig_entry->per_cu.length = dwo_entry->length;
5115 sig_entry->per_cu.reading_dwo_directly = 1;
5116 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5117 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5118 sig_entry->dwo_unit = dwo_entry;
5119}
5120
5121/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5122 If we haven't read the TU yet, create the signatured_type data structure
5123 for a TU to be read in directly from a DWO file, bypassing the stub.
5124 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5125 using .gdb_index, then when reading a CU we want to stay in the DWO file
5126 containing that CU. Otherwise we could end up reading several other DWO
5127 files (due to comdat folding) to process the transitive closure of all the
5128 mentioned TUs, and that can be slow. The current DWO file will have every
5129 type signature that it needs.
a2ce51a0
DE
5130 We only do this for .gdb_index because in the psymtab case we already have
5131 to read all the DWOs to build the type unit groups. */
5132
5133static struct signatured_type *
5134lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5135{
5136 struct objfile *objfile = dwarf2_per_objfile->objfile;
5137 struct dwo_file *dwo_file;
5138 struct dwo_unit find_dwo_entry, *dwo_entry;
5139 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5140 void **slot;
a2ce51a0
DE
5141
5142 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5143
6aa5f3a6
DE
5144 /* If TU skeletons have been removed then we may not have read in any
5145 TUs yet. */
5146 if (dwarf2_per_objfile->signatured_types == NULL)
5147 {
5148 dwarf2_per_objfile->signatured_types
5149 = allocate_signatured_type_table (objfile);
5150 }
a2ce51a0
DE
5151
5152 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5153 Use the global signatured_types array to do our own comdat-folding
5154 of types. If this is the first time we're reading this TU, and
5155 the TU has an entry in .gdb_index, replace the recorded data from
5156 .gdb_index with this TU. */
a2ce51a0 5157
a2ce51a0 5158 find_sig_entry.signature = sig;
6aa5f3a6
DE
5159 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5160 &find_sig_entry, INSERT);
9a3c8263 5161 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5162
5163 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5164 read. Don't reassign the global entry to point to this DWO if that's
5165 the case. Also note that if the TU is already being read, it may not
5166 have come from a DWO, the program may be a mix of Fission-compiled
5167 code and non-Fission-compiled code. */
5168
5169 /* Have we already tried to read this TU?
5170 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5171 needn't exist in the global table yet). */
5172 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5173 return sig_entry;
5174
6aa5f3a6
DE
5175 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5176 dwo_unit of the TU itself. */
5177 dwo_file = cu->dwo_unit->dwo_file;
5178
a2ce51a0
DE
5179 /* Ok, this is the first time we're reading this TU. */
5180 if (dwo_file->tus == NULL)
5181 return NULL;
5182 find_dwo_entry.signature = sig;
9a3c8263 5183 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5184 if (dwo_entry == NULL)
5185 return NULL;
5186
6aa5f3a6
DE
5187 /* If the global table doesn't have an entry for this TU, add one. */
5188 if (sig_entry == NULL)
5189 sig_entry = add_type_unit (sig, slot);
5190
a2ce51a0 5191 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5192 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5193 return sig_entry;
5194}
5195
a2ce51a0
DE
5196/* Subroutine of lookup_signatured_type.
5197 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5198 then try the DWP file. If the TU stub (skeleton) has been removed then
5199 it won't be in .gdb_index. */
a2ce51a0
DE
5200
5201static struct signatured_type *
5202lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5203{
5204 struct objfile *objfile = dwarf2_per_objfile->objfile;
5205 struct dwp_file *dwp_file = get_dwp_file ();
5206 struct dwo_unit *dwo_entry;
5207 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5208 void **slot;
a2ce51a0
DE
5209
5210 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5211 gdb_assert (dwp_file != NULL);
5212
6aa5f3a6
DE
5213 /* If TU skeletons have been removed then we may not have read in any
5214 TUs yet. */
5215 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5216 {
6aa5f3a6
DE
5217 dwarf2_per_objfile->signatured_types
5218 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5219 }
5220
6aa5f3a6
DE
5221 find_sig_entry.signature = sig;
5222 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5223 &find_sig_entry, INSERT);
9a3c8263 5224 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5225
5226 /* Have we already tried to read this TU?
5227 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5228 needn't exist in the global table yet). */
5229 if (sig_entry != NULL)
5230 return sig_entry;
5231
a2ce51a0
DE
5232 if (dwp_file->tus == NULL)
5233 return NULL;
57d63ce2
DE
5234 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5235 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5236 if (dwo_entry == NULL)
5237 return NULL;
5238
6aa5f3a6 5239 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5240 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5241
a2ce51a0
DE
5242 return sig_entry;
5243}
5244
380bca97 5245/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5246 Returns NULL if signature SIG is not present in the table.
5247 It is up to the caller to complain about this. */
348e048f
DE
5248
5249static struct signatured_type *
a2ce51a0 5250lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5251{
a2ce51a0
DE
5252 if (cu->dwo_unit
5253 && dwarf2_per_objfile->using_index)
5254 {
5255 /* We're in a DWO/DWP file, and we're using .gdb_index.
5256 These cases require special processing. */
5257 if (get_dwp_file () == NULL)
5258 return lookup_dwo_signatured_type (cu, sig);
5259 else
5260 return lookup_dwp_signatured_type (cu, sig);
5261 }
5262 else
5263 {
5264 struct signatured_type find_entry, *entry;
348e048f 5265
a2ce51a0
DE
5266 if (dwarf2_per_objfile->signatured_types == NULL)
5267 return NULL;
5268 find_entry.signature = sig;
9a3c8263
SM
5269 entry = ((struct signatured_type *)
5270 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5271 return entry;
5272 }
348e048f 5273}
42e7ad6c
DE
5274\f
5275/* Low level DIE reading support. */
348e048f 5276
d85a05f0
DJ
5277/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5278
5279static void
5280init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5281 struct dwarf2_cu *cu,
3019eac3
DE
5282 struct dwarf2_section_info *section,
5283 struct dwo_file *dwo_file)
d85a05f0 5284{
fceca515 5285 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5286 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5287 reader->cu = cu;
3019eac3 5288 reader->dwo_file = dwo_file;
dee91e82
DE
5289 reader->die_section = section;
5290 reader->buffer = section->buffer;
f664829e 5291 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5292 reader->comp_dir = NULL;
d85a05f0
DJ
5293}
5294
b0c7bfa9
DE
5295/* Subroutine of init_cutu_and_read_dies to simplify it.
5296 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5297 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5298 already.
5299
5300 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5301 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5302 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5303 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5304 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5305 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5306 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5307 are filled in with the info of the DIE from the DWO file.
5308 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5309 provided an abbrev table to use.
5310 The result is non-zero if a valid (non-dummy) DIE was found. */
5311
5312static int
5313read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5314 struct dwo_unit *dwo_unit,
5315 int abbrev_table_provided,
5316 struct die_info *stub_comp_unit_die,
a2ce51a0 5317 const char *stub_comp_dir,
b0c7bfa9 5318 struct die_reader_specs *result_reader,
d521ce57 5319 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5320 struct die_info **result_comp_unit_die,
5321 int *result_has_children)
5322{
5323 struct objfile *objfile = dwarf2_per_objfile->objfile;
5324 struct dwarf2_cu *cu = this_cu->cu;
5325 struct dwarf2_section_info *section;
5326 bfd *abfd;
d521ce57 5327 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5328 ULONGEST signature; /* Or dwo_id. */
5329 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5330 int i,num_extra_attrs;
5331 struct dwarf2_section_info *dwo_abbrev_section;
5332 struct attribute *attr;
5333 struct die_info *comp_unit_die;
5334
b0aeadb3
DE
5335 /* At most one of these may be provided. */
5336 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5337
b0c7bfa9
DE
5338 /* These attributes aren't processed until later:
5339 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5340 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5341 referenced later. However, these attributes are found in the stub
5342 which we won't have later. In order to not impose this complication
5343 on the rest of the code, we read them here and copy them to the
5344 DWO CU/TU die. */
b0c7bfa9
DE
5345
5346 stmt_list = NULL;
5347 low_pc = NULL;
5348 high_pc = NULL;
5349 ranges = NULL;
5350 comp_dir = NULL;
5351
5352 if (stub_comp_unit_die != NULL)
5353 {
5354 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5355 DWO file. */
5356 if (! this_cu->is_debug_types)
5357 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5358 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5359 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5360 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5361 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5362
5363 /* There should be a DW_AT_addr_base attribute here (if needed).
5364 We need the value before we can process DW_FORM_GNU_addr_index. */
5365 cu->addr_base = 0;
5366 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5367 if (attr)
5368 cu->addr_base = DW_UNSND (attr);
5369
5370 /* There should be a DW_AT_ranges_base attribute here (if needed).
5371 We need the value before we can process DW_AT_ranges. */
5372 cu->ranges_base = 0;
5373 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5374 if (attr)
5375 cu->ranges_base = DW_UNSND (attr);
5376 }
a2ce51a0
DE
5377 else if (stub_comp_dir != NULL)
5378 {
5379 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5380 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5381 comp_dir->name = DW_AT_comp_dir;
5382 comp_dir->form = DW_FORM_string;
5383 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5384 DW_STRING (comp_dir) = stub_comp_dir;
5385 }
b0c7bfa9
DE
5386
5387 /* Set up for reading the DWO CU/TU. */
5388 cu->dwo_unit = dwo_unit;
5389 section = dwo_unit->section;
5390 dwarf2_read_section (objfile, section);
a32a8923 5391 abfd = get_section_bfd_owner (section);
9c541725
PA
5392 begin_info_ptr = info_ptr = (section->buffer
5393 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5394 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5395 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5396
5397 if (this_cu->is_debug_types)
5398 {
b0c7bfa9
DE
5399 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5400
43988095 5401 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5402 dwo_abbrev_section,
43988095 5403 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5404 /* This is not an assert because it can be caused by bad debug info. */
43988095 5405 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5406 {
5407 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5408 " TU at offset 0x%x [in module %s]"),
5409 hex_string (sig_type->signature),
43988095 5410 hex_string (cu->header.signature),
9c541725 5411 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5412 bfd_get_filename (abfd));
5413 }
9c541725 5414 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5415 /* For DWOs coming from DWP files, we don't know the CU length
5416 nor the type's offset in the TU until now. */
5417 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5418 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5419
5420 /* Establish the type offset that can be used to lookup the type.
5421 For DWO files, we don't know it until now. */
9c541725
PA
5422 sig_type->type_offset_in_section
5423 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5424 }
5425 else
5426 {
5427 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5428 dwo_abbrev_section,
43988095 5429 info_ptr, rcuh_kind::COMPILE);
9c541725 5430 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5431 /* For DWOs coming from DWP files, we don't know the CU length
5432 until now. */
5433 dwo_unit->length = get_cu_length (&cu->header);
5434 }
5435
02142a6c
DE
5436 /* Replace the CU's original abbrev table with the DWO's.
5437 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5438 if (abbrev_table_provided)
5439 {
5440 /* Don't free the provided abbrev table, the caller of
5441 init_cutu_and_read_dies owns it. */
5442 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5443 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5444 make_cleanup (dwarf2_free_abbrev_table, cu);
5445 }
5446 else
5447 {
5448 dwarf2_free_abbrev_table (cu);
5449 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5450 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5451 }
5452
5453 /* Read in the die, but leave space to copy over the attributes
5454 from the stub. This has the benefit of simplifying the rest of
5455 the code - all the work to maintain the illusion of a single
5456 DW_TAG_{compile,type}_unit DIE is done here. */
5457 num_extra_attrs = ((stmt_list != NULL)
5458 + (low_pc != NULL)
5459 + (high_pc != NULL)
5460 + (ranges != NULL)
5461 + (comp_dir != NULL));
5462 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5463 result_has_children, num_extra_attrs);
5464
5465 /* Copy over the attributes from the stub to the DIE we just read in. */
5466 comp_unit_die = *result_comp_unit_die;
5467 i = comp_unit_die->num_attrs;
5468 if (stmt_list != NULL)
5469 comp_unit_die->attrs[i++] = *stmt_list;
5470 if (low_pc != NULL)
5471 comp_unit_die->attrs[i++] = *low_pc;
5472 if (high_pc != NULL)
5473 comp_unit_die->attrs[i++] = *high_pc;
5474 if (ranges != NULL)
5475 comp_unit_die->attrs[i++] = *ranges;
5476 if (comp_dir != NULL)
5477 comp_unit_die->attrs[i++] = *comp_dir;
5478 comp_unit_die->num_attrs += num_extra_attrs;
5479
b4f54984 5480 if (dwarf_die_debug)
bf6af496
DE
5481 {
5482 fprintf_unfiltered (gdb_stdlog,
5483 "Read die from %s@0x%x of %s:\n",
a32a8923 5484 get_section_name (section),
bf6af496
DE
5485 (unsigned) (begin_info_ptr - section->buffer),
5486 bfd_get_filename (abfd));
b4f54984 5487 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5488 }
5489
a2ce51a0
DE
5490 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5491 TUs by skipping the stub and going directly to the entry in the DWO file.
5492 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5493 to get it via circuitous means. Blech. */
5494 if (comp_dir != NULL)
5495 result_reader->comp_dir = DW_STRING (comp_dir);
5496
b0c7bfa9
DE
5497 /* Skip dummy compilation units. */
5498 if (info_ptr >= begin_info_ptr + dwo_unit->length
5499 || peek_abbrev_code (abfd, info_ptr) == 0)
5500 return 0;
5501
5502 *result_info_ptr = info_ptr;
5503 return 1;
5504}
5505
5506/* Subroutine of init_cutu_and_read_dies to simplify it.
5507 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5508 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5509
5510static struct dwo_unit *
5511lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5512 struct die_info *comp_unit_die)
5513{
5514 struct dwarf2_cu *cu = this_cu->cu;
5515 struct attribute *attr;
5516 ULONGEST signature;
5517 struct dwo_unit *dwo_unit;
5518 const char *comp_dir, *dwo_name;
5519
a2ce51a0
DE
5520 gdb_assert (cu != NULL);
5521
b0c7bfa9 5522 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5523 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5524 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5525
5526 if (this_cu->is_debug_types)
5527 {
5528 struct signatured_type *sig_type;
5529
5530 /* Since this_cu is the first member of struct signatured_type,
5531 we can go from a pointer to one to a pointer to the other. */
5532 sig_type = (struct signatured_type *) this_cu;
5533 signature = sig_type->signature;
5534 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5535 }
5536 else
5537 {
5538 struct attribute *attr;
5539
5540 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5541 if (! attr)
5542 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5543 " [in module %s]"),
4262abfb 5544 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5545 signature = DW_UNSND (attr);
5546 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5547 signature);
5548 }
5549
b0c7bfa9
DE
5550 return dwo_unit;
5551}
5552
a2ce51a0 5553/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5554 See it for a description of the parameters.
5555 Read a TU directly from a DWO file, bypassing the stub.
5556
5557 Note: This function could be a little bit simpler if we shared cleanups
5558 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5559 to do, so we keep this function self-contained. Or we could move this
5560 into our caller, but it's complex enough already. */
a2ce51a0
DE
5561
5562static void
6aa5f3a6
DE
5563init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5564 int use_existing_cu, int keep,
a2ce51a0
DE
5565 die_reader_func_ftype *die_reader_func,
5566 void *data)
5567{
5568 struct dwarf2_cu *cu;
5569 struct signatured_type *sig_type;
6aa5f3a6 5570 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5571 struct die_reader_specs reader;
5572 const gdb_byte *info_ptr;
5573 struct die_info *comp_unit_die;
5574 int has_children;
5575
5576 /* Verify we can do the following downcast, and that we have the
5577 data we need. */
5578 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5579 sig_type = (struct signatured_type *) this_cu;
5580 gdb_assert (sig_type->dwo_unit != NULL);
5581
5582 cleanups = make_cleanup (null_cleanup, NULL);
5583
6aa5f3a6
DE
5584 if (use_existing_cu && this_cu->cu != NULL)
5585 {
5586 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5587 cu = this_cu->cu;
5588 /* There's no need to do the rereading_dwo_cu handling that
5589 init_cutu_and_read_dies does since we don't read the stub. */
5590 }
5591 else
5592 {
5593 /* If !use_existing_cu, this_cu->cu must be NULL. */
5594 gdb_assert (this_cu->cu == NULL);
8d749320 5595 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5596 init_one_comp_unit (cu, this_cu);
5597 /* If an error occurs while loading, release our storage. */
5598 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5599 }
5600
5601 /* A future optimization, if needed, would be to use an existing
5602 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5603 could share abbrev tables. */
a2ce51a0
DE
5604
5605 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5606 0 /* abbrev_table_provided */,
5607 NULL /* stub_comp_unit_die */,
5608 sig_type->dwo_unit->dwo_file->comp_dir,
5609 &reader, &info_ptr,
5610 &comp_unit_die, &has_children) == 0)
5611 {
5612 /* Dummy die. */
5613 do_cleanups (cleanups);
5614 return;
5615 }
5616
5617 /* All the "real" work is done here. */
5618 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5619
6aa5f3a6 5620 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5621 but the alternative is making the latter more complex.
5622 This function is only for the special case of using DWO files directly:
5623 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5624 if (free_cu_cleanup != NULL)
a2ce51a0 5625 {
6aa5f3a6
DE
5626 if (keep)
5627 {
5628 /* We've successfully allocated this compilation unit. Let our
5629 caller clean it up when finished with it. */
5630 discard_cleanups (free_cu_cleanup);
a2ce51a0 5631
6aa5f3a6
DE
5632 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5633 So we have to manually free the abbrev table. */
5634 dwarf2_free_abbrev_table (cu);
a2ce51a0 5635
6aa5f3a6
DE
5636 /* Link this CU into read_in_chain. */
5637 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5638 dwarf2_per_objfile->read_in_chain = this_cu;
5639 }
5640 else
5641 do_cleanups (free_cu_cleanup);
a2ce51a0 5642 }
a2ce51a0
DE
5643
5644 do_cleanups (cleanups);
5645}
5646
fd820528 5647/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5648 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5649
f4dc4d17
DE
5650 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5651 Otherwise the table specified in the comp unit header is read in and used.
5652 This is an optimization for when we already have the abbrev table.
5653
dee91e82
DE
5654 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5655 Otherwise, a new CU is allocated with xmalloc.
5656
5657 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5658 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5659
5660 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5661 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5662
70221824 5663static void
fd820528 5664init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5665 struct abbrev_table *abbrev_table,
fd820528
DE
5666 int use_existing_cu, int keep,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
c906108c 5669{
dee91e82 5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5671 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5672 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5673 struct dwarf2_cu *cu;
d521ce57 5674 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5675 struct die_reader_specs reader;
d85a05f0 5676 struct die_info *comp_unit_die;
dee91e82 5677 int has_children;
d85a05f0 5678 struct attribute *attr;
365156ad 5679 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5680 struct signatured_type *sig_type = NULL;
4bdcc0c1 5681 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5682 /* Non-zero if CU currently points to a DWO file and we need to
5683 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5684 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5685 int rereading_dwo_cu = 0;
c906108c 5686
b4f54984 5687 if (dwarf_die_debug)
09406207
DE
5688 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5689 this_cu->is_debug_types ? "type" : "comp",
9c541725 5690 to_underlying (this_cu->sect_off));
09406207 5691
dee91e82
DE
5692 if (use_existing_cu)
5693 gdb_assert (keep);
23745b47 5694
a2ce51a0
DE
5695 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5696 file (instead of going through the stub), short-circuit all of this. */
5697 if (this_cu->reading_dwo_directly)
5698 {
5699 /* Narrow down the scope of possibilities to have to understand. */
5700 gdb_assert (this_cu->is_debug_types);
5701 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5702 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5703 die_reader_func, data);
a2ce51a0
DE
5704 return;
5705 }
5706
dee91e82
DE
5707 cleanups = make_cleanup (null_cleanup, NULL);
5708
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
9c541725 5712 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5713
5714 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5715
5716 if (use_existing_cu && this_cu->cu != NULL)
5717 {
5718 cu = this_cu->cu;
42e7ad6c
DE
5719 /* If this CU is from a DWO file we need to start over, we need to
5720 refetch the attributes from the skeleton CU.
5721 This could be optimized by retrieving those attributes from when we
5722 were here the first time: the previous comp_unit_die was stored in
5723 comp_unit_obstack. But there's no data yet that we need this
5724 optimization. */
5725 if (cu->dwo_unit != NULL)
5726 rereading_dwo_cu = 1;
dee91e82
DE
5727 }
5728 else
5729 {
5730 /* If !use_existing_cu, this_cu->cu must be NULL. */
5731 gdb_assert (this_cu->cu == NULL);
8d749320 5732 cu = XNEW (struct dwarf2_cu);
dee91e82 5733 init_one_comp_unit (cu, this_cu);
dee91e82 5734 /* If an error occurs while loading, release our storage. */
365156ad 5735 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5736 }
dee91e82 5737
b0c7bfa9 5738 /* Get the header. */
9c541725 5739 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5740 {
5741 /* We already have the header, there's no need to read it in again. */
9c541725 5742 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5743 }
5744 else
5745 {
3019eac3 5746 if (this_cu->is_debug_types)
dee91e82 5747 {
43988095 5748 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5749 abbrev_section, info_ptr,
43988095 5750 rcuh_kind::TYPE);
dee91e82 5751
42e7ad6c
DE
5752 /* Since per_cu is the first member of struct signatured_type,
5753 we can go from a pointer to one to a pointer to the other. */
5754 sig_type = (struct signatured_type *) this_cu;
43988095 5755 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5756 gdb_assert (sig_type->type_offset_in_tu
5757 == cu->header.type_cu_offset_in_tu);
5758 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5759
42e7ad6c
DE
5760 /* LENGTH has not been set yet for type units if we're
5761 using .gdb_index. */
1ce1cefd 5762 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5763
5764 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5765 sig_type->type_offset_in_section =
5766 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5767
5768 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5769 }
5770 else
5771 {
4bdcc0c1
DE
5772 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5773 abbrev_section,
43988095
JK
5774 info_ptr,
5775 rcuh_kind::COMPILE);
dee91e82 5776
9c541725 5777 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5778 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5779 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5780 }
5781 }
10b3939b 5782
6caca83c 5783 /* Skip dummy compilation units. */
dee91e82 5784 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5785 || peek_abbrev_code (abfd, info_ptr) == 0)
5786 {
dee91e82 5787 do_cleanups (cleanups);
21b2bd31 5788 return;
6caca83c
CC
5789 }
5790
433df2d4
DE
5791 /* If we don't have them yet, read the abbrevs for this compilation unit.
5792 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5793 done. Note that it's important that if the CU had an abbrev table
5794 on entry we don't free it when we're done: Somewhere up the call stack
5795 it may be in use. */
f4dc4d17
DE
5796 if (abbrev_table != NULL)
5797 {
5798 gdb_assert (cu->abbrev_table == NULL);
9c541725 5799 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5800 cu->abbrev_table = abbrev_table;
5801 }
5802 else if (cu->abbrev_table == NULL)
dee91e82 5803 {
4bdcc0c1 5804 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5805 make_cleanup (dwarf2_free_abbrev_table, cu);
5806 }
42e7ad6c
DE
5807 else if (rereading_dwo_cu)
5808 {
5809 dwarf2_free_abbrev_table (cu);
5810 dwarf2_read_abbrevs (cu, abbrev_section);
5811 }
af703f96 5812
dee91e82 5813 /* Read the top level CU/TU die. */
3019eac3 5814 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5815 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5816
b0c7bfa9
DE
5817 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5818 from the DWO file.
5819 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5820 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5821 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5822 if (attr)
5823 {
3019eac3 5824 struct dwo_unit *dwo_unit;
b0c7bfa9 5825 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5826
5827 if (has_children)
6a506a2d
DE
5828 {
5829 complaint (&symfile_complaints,
5830 _("compilation unit with DW_AT_GNU_dwo_name"
5831 " has children (offset 0x%x) [in module %s]"),
9c541725 5832 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5833 }
b0c7bfa9 5834 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5835 if (dwo_unit != NULL)
3019eac3 5836 {
6a506a2d
DE
5837 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5838 abbrev_table != NULL,
a2ce51a0 5839 comp_unit_die, NULL,
6a506a2d
DE
5840 &reader, &info_ptr,
5841 &dwo_comp_unit_die, &has_children) == 0)
5842 {
5843 /* Dummy die. */
5844 do_cleanups (cleanups);
5845 return;
5846 }
5847 comp_unit_die = dwo_comp_unit_die;
5848 }
5849 else
5850 {
5851 /* Yikes, we couldn't find the rest of the DIE, we only have
5852 the stub. A complaint has already been logged. There's
5853 not much more we can do except pass on the stub DIE to
5854 die_reader_func. We don't want to throw an error on bad
5855 debug info. */
3019eac3
DE
5856 }
5857 }
5858
b0c7bfa9 5859 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5860 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5861
b0c7bfa9 5862 /* Done, clean up. */
365156ad 5863 if (free_cu_cleanup != NULL)
348e048f 5864 {
365156ad
TT
5865 if (keep)
5866 {
5867 /* We've successfully allocated this compilation unit. Let our
5868 caller clean it up when finished with it. */
5869 discard_cleanups (free_cu_cleanup);
dee91e82 5870
365156ad
TT
5871 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5872 So we have to manually free the abbrev table. */
5873 dwarf2_free_abbrev_table (cu);
dee91e82 5874
365156ad
TT
5875 /* Link this CU into read_in_chain. */
5876 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5877 dwarf2_per_objfile->read_in_chain = this_cu;
5878 }
5879 else
5880 do_cleanups (free_cu_cleanup);
348e048f 5881 }
365156ad
TT
5882
5883 do_cleanups (cleanups);
dee91e82
DE
5884}
5885
33e80786
DE
5886/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5887 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5888 to have already done the lookup to find the DWO file).
dee91e82
DE
5889
5890 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5891 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5892
5893 We fill in THIS_CU->length.
5894
5895 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5896 linker) then DIE_READER_FUNC will not get called.
5897
5898 THIS_CU->cu is always freed when done.
3019eac3
DE
5899 This is done in order to not leave THIS_CU->cu in a state where we have
5900 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5901
5902static void
5903init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5904 struct dwo_file *dwo_file,
dee91e82
DE
5905 die_reader_func_ftype *die_reader_func,
5906 void *data)
5907{
5908 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5909 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5910 bfd *abfd = get_section_bfd_owner (section);
33e80786 5911 struct dwarf2_section_info *abbrev_section;
dee91e82 5912 struct dwarf2_cu cu;
d521ce57 5913 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5914 struct die_reader_specs reader;
5915 struct cleanup *cleanups;
5916 struct die_info *comp_unit_die;
5917 int has_children;
5918
b4f54984 5919 if (dwarf_die_debug)
09406207
DE
5920 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5921 this_cu->is_debug_types ? "type" : "comp",
9c541725 5922 to_underlying (this_cu->sect_off));
09406207 5923
dee91e82
DE
5924 gdb_assert (this_cu->cu == NULL);
5925
33e80786
DE
5926 abbrev_section = (dwo_file != NULL
5927 ? &dwo_file->sections.abbrev
5928 : get_abbrev_section_for_cu (this_cu));
5929
dee91e82
DE
5930 /* This is cheap if the section is already read in. */
5931 dwarf2_read_section (objfile, section);
5932
5933 init_one_comp_unit (&cu, this_cu);
5934
5935 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5936
9c541725 5937 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5938 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5939 abbrev_section, info_ptr,
43988095
JK
5940 (this_cu->is_debug_types
5941 ? rcuh_kind::TYPE
5942 : rcuh_kind::COMPILE));
dee91e82 5943
1ce1cefd 5944 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5945
5946 /* Skip dummy compilation units. */
5947 if (info_ptr >= begin_info_ptr + this_cu->length
5948 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5949 {
dee91e82 5950 do_cleanups (cleanups);
21b2bd31 5951 return;
93311388 5952 }
72bf9492 5953
dee91e82
DE
5954 dwarf2_read_abbrevs (&cu, abbrev_section);
5955 make_cleanup (dwarf2_free_abbrev_table, &cu);
5956
3019eac3 5957 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5958 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5959
5960 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5961
5962 do_cleanups (cleanups);
5963}
5964
3019eac3
DE
5965/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5966 does not lookup the specified DWO file.
5967 This cannot be used to read DWO files.
dee91e82
DE
5968
5969 THIS_CU->cu is always freed when done.
3019eac3
DE
5970 This is done in order to not leave THIS_CU->cu in a state where we have
5971 to care whether it refers to the "main" CU or the DWO CU.
5972 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5973
5974static void
5975init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5976 die_reader_func_ftype *die_reader_func,
5977 void *data)
5978{
33e80786 5979 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5980}
0018ea6f
DE
5981\f
5982/* Type Unit Groups.
dee91e82 5983
0018ea6f
DE
5984 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5985 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5986 so that all types coming from the same compilation (.o file) are grouped
5987 together. A future step could be to put the types in the same symtab as
5988 the CU the types ultimately came from. */
ff013f42 5989
f4dc4d17
DE
5990static hashval_t
5991hash_type_unit_group (const void *item)
5992{
9a3c8263
SM
5993 const struct type_unit_group *tu_group
5994 = (const struct type_unit_group *) item;
f4dc4d17 5995
094b34ac 5996 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5997}
348e048f
DE
5998
5999static int
f4dc4d17 6000eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6001{
9a3c8263
SM
6002 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6003 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6004
094b34ac 6005 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6006}
348e048f 6007
f4dc4d17
DE
6008/* Allocate a hash table for type unit groups. */
6009
6010static htab_t
6011allocate_type_unit_groups_table (void)
6012{
6013 return htab_create_alloc_ex (3,
6014 hash_type_unit_group,
6015 eq_type_unit_group,
6016 NULL,
6017 &dwarf2_per_objfile->objfile->objfile_obstack,
6018 hashtab_obstack_allocate,
6019 dummy_obstack_deallocate);
6020}
dee91e82 6021
f4dc4d17
DE
6022/* Type units that don't have DW_AT_stmt_list are grouped into their own
6023 partial symtabs. We combine several TUs per psymtab to not let the size
6024 of any one psymtab grow too big. */
6025#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6026#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6027
094b34ac 6028/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6029 Create the type_unit_group object used to hold one or more TUs. */
6030
6031static struct type_unit_group *
094b34ac 6032create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6033{
6034 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6035 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6036 struct type_unit_group *tu_group;
f4dc4d17
DE
6037
6038 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6039 struct type_unit_group);
094b34ac 6040 per_cu = &tu_group->per_cu;
f4dc4d17 6041 per_cu->objfile = objfile;
f4dc4d17 6042
094b34ac
DE
6043 if (dwarf2_per_objfile->using_index)
6044 {
6045 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6046 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6047 }
6048 else
6049 {
9c541725 6050 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6051 struct partial_symtab *pst;
6052 char *name;
6053
6054 /* Give the symtab a useful name for debug purposes. */
6055 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6056 name = xstrprintf ("<type_units_%d>",
6057 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6058 else
6059 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6060
6061 pst = create_partial_symtab (per_cu, name);
6062 pst->anonymous = 1;
f4dc4d17 6063
094b34ac
DE
6064 xfree (name);
6065 }
f4dc4d17 6066
094b34ac 6067 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6068 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6069
6070 return tu_group;
6071}
6072
094b34ac
DE
6073/* Look up the type_unit_group for type unit CU, and create it if necessary.
6074 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6075
6076static struct type_unit_group *
ff39bb5e 6077get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6078{
6079 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6080 struct type_unit_group *tu_group;
6081 void **slot;
6082 unsigned int line_offset;
6083 struct type_unit_group type_unit_group_for_lookup;
6084
6085 if (dwarf2_per_objfile->type_unit_groups == NULL)
6086 {
6087 dwarf2_per_objfile->type_unit_groups =
6088 allocate_type_unit_groups_table ();
6089 }
6090
6091 /* Do we need to create a new group, or can we use an existing one? */
6092
6093 if (stmt_list)
6094 {
6095 line_offset = DW_UNSND (stmt_list);
6096 ++tu_stats->nr_symtab_sharers;
6097 }
6098 else
6099 {
6100 /* Ugh, no stmt_list. Rare, but we have to handle it.
6101 We can do various things here like create one group per TU or
6102 spread them over multiple groups to split up the expansion work.
6103 To avoid worst case scenarios (too many groups or too large groups)
6104 we, umm, group them in bunches. */
6105 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6106 | (tu_stats->nr_stmt_less_type_units
6107 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6108 ++tu_stats->nr_stmt_less_type_units;
6109 }
6110
094b34ac 6111 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6112 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6113 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6114 &type_unit_group_for_lookup, INSERT);
6115 if (*slot != NULL)
6116 {
9a3c8263 6117 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6118 gdb_assert (tu_group != NULL);
6119 }
6120 else
6121 {
9c541725 6122 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6123 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6124 *slot = tu_group;
6125 ++tu_stats->nr_symtabs;
6126 }
6127
6128 return tu_group;
6129}
0018ea6f
DE
6130\f
6131/* Partial symbol tables. */
6132
6133/* Create a psymtab named NAME and assign it to PER_CU.
6134
6135 The caller must fill in the following details:
6136 dirname, textlow, texthigh. */
6137
6138static struct partial_symtab *
6139create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6140{
6141 struct objfile *objfile = per_cu->objfile;
6142 struct partial_symtab *pst;
6143
18a94d75 6144 pst = start_psymtab_common (objfile, name, 0,
af5bf4ad
SM
6145 objfile->global_psymbols,
6146 objfile->static_psymbols);
0018ea6f
DE
6147
6148 pst->psymtabs_addrmap_supported = 1;
6149
6150 /* This is the glue that links PST into GDB's symbol API. */
6151 pst->read_symtab_private = per_cu;
6152 pst->read_symtab = dwarf2_read_symtab;
6153 per_cu->v.psymtab = pst;
6154
6155 return pst;
6156}
6157
b93601f3
TT
6158/* The DATA object passed to process_psymtab_comp_unit_reader has this
6159 type. */
6160
6161struct process_psymtab_comp_unit_data
6162{
6163 /* True if we are reading a DW_TAG_partial_unit. */
6164
6165 int want_partial_unit;
6166
6167 /* The "pretend" language that is used if the CU doesn't declare a
6168 language. */
6169
6170 enum language pretend_language;
6171};
6172
0018ea6f
DE
6173/* die_reader_func for process_psymtab_comp_unit. */
6174
6175static void
6176process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6177 const gdb_byte *info_ptr,
0018ea6f
DE
6178 struct die_info *comp_unit_die,
6179 int has_children,
6180 void *data)
6181{
6182 struct dwarf2_cu *cu = reader->cu;
6183 struct objfile *objfile = cu->objfile;
3e29f34a 6184 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6185 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6186 CORE_ADDR baseaddr;
6187 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6188 struct partial_symtab *pst;
3a2b436a 6189 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6190 const char *filename;
9a3c8263
SM
6191 struct process_psymtab_comp_unit_data *info
6192 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6193
b93601f3 6194 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6195 return;
6196
6197 gdb_assert (! per_cu->is_debug_types);
6198
b93601f3 6199 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6200
6201 cu->list_in_scope = &file_symbols;
6202
6203 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6204 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6205 if (filename == NULL)
0018ea6f 6206 filename = "";
0018ea6f
DE
6207
6208 pst = create_partial_symtab (per_cu, filename);
6209
6210 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6211 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6212
6213 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6214
6215 dwarf2_find_base_address (comp_unit_die, cu);
6216
6217 /* Possibly set the default values of LOWPC and HIGHPC from
6218 `DW_AT_ranges'. */
3a2b436a
JK
6219 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6220 &best_highpc, cu, pst);
6221 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6222 /* Store the contiguous range if it is not empty; it can be empty for
6223 CUs with no code. */
6224 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6225 gdbarch_adjust_dwarf2_addr (gdbarch,
6226 best_lowpc + baseaddr),
6227 gdbarch_adjust_dwarf2_addr (gdbarch,
6228 best_highpc + baseaddr) - 1,
6229 pst);
0018ea6f
DE
6230
6231 /* Check if comp unit has_children.
6232 If so, read the rest of the partial symbols from this comp unit.
6233 If not, there's no more debug_info for this comp unit. */
6234 if (has_children)
6235 {
6236 struct partial_die_info *first_die;
6237 CORE_ADDR lowpc, highpc;
6238
6239 lowpc = ((CORE_ADDR) -1);
6240 highpc = ((CORE_ADDR) 0);
6241
6242 first_die = load_partial_dies (reader, info_ptr, 1);
6243
6244 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6245 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6246
6247 /* If we didn't find a lowpc, set it to highpc to avoid
6248 complaints from `maint check'. */
6249 if (lowpc == ((CORE_ADDR) -1))
6250 lowpc = highpc;
6251
6252 /* If the compilation unit didn't have an explicit address range,
6253 then use the information extracted from its child dies. */
e385593e 6254 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6255 {
6256 best_lowpc = lowpc;
6257 best_highpc = highpc;
6258 }
6259 }
3e29f34a
MR
6260 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6261 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6262
8763cede 6263 end_psymtab_common (objfile, pst);
0018ea6f
DE
6264
6265 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6266 {
6267 int i;
6268 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6269 struct dwarf2_per_cu_data *iter;
6270
6271 /* Fill in 'dependencies' here; we fill in 'users' in a
6272 post-pass. */
6273 pst->number_of_dependencies = len;
8d749320
SM
6274 pst->dependencies =
6275 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6276 for (i = 0;
6277 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6278 i, iter);
6279 ++i)
6280 pst->dependencies[i] = iter->v.psymtab;
6281
6282 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6283 }
6284
6285 /* Get the list of files included in the current compilation unit,
6286 and build a psymtab for each of them. */
6287 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6288
b4f54984 6289 if (dwarf_read_debug)
0018ea6f
DE
6290 {
6291 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6292
6293 fprintf_unfiltered (gdb_stdlog,
6294 "Psymtab for %s unit @0x%x: %s - %s"
6295 ", %d global, %d static syms\n",
6296 per_cu->is_debug_types ? "type" : "comp",
9c541725 6297 to_underlying (per_cu->sect_off),
0018ea6f
DE
6298 paddress (gdbarch, pst->textlow),
6299 paddress (gdbarch, pst->texthigh),
6300 pst->n_global_syms, pst->n_static_syms);
6301 }
6302}
6303
6304/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6305 Process compilation unit THIS_CU for a psymtab. */
6306
6307static void
6308process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6309 int want_partial_unit,
6310 enum language pretend_language)
0018ea6f
DE
6311{
6312 /* If this compilation unit was already read in, free the
6313 cached copy in order to read it in again. This is
6314 necessary because we skipped some symbols when we first
6315 read in the compilation unit (see load_partial_dies).
6316 This problem could be avoided, but the benefit is unclear. */
6317 if (this_cu->cu != NULL)
6318 free_one_cached_comp_unit (this_cu);
6319
f1902523
JK
6320 if (this_cu->is_debug_types)
6321 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6322 NULL);
6323 else
6324 {
6325 process_psymtab_comp_unit_data info;
6326 info.want_partial_unit = want_partial_unit;
6327 info.pretend_language = pretend_language;
6328 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6329 process_psymtab_comp_unit_reader, &info);
6330 }
0018ea6f
DE
6331
6332 /* Age out any secondary CUs. */
6333 age_cached_comp_units ();
6334}
f4dc4d17
DE
6335
6336/* Reader function for build_type_psymtabs. */
6337
6338static void
6339build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6340 const gdb_byte *info_ptr,
f4dc4d17
DE
6341 struct die_info *type_unit_die,
6342 int has_children,
6343 void *data)
6344{
6345 struct objfile *objfile = dwarf2_per_objfile->objfile;
6346 struct dwarf2_cu *cu = reader->cu;
6347 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6348 struct signatured_type *sig_type;
f4dc4d17
DE
6349 struct type_unit_group *tu_group;
6350 struct attribute *attr;
6351 struct partial_die_info *first_die;
6352 CORE_ADDR lowpc, highpc;
6353 struct partial_symtab *pst;
6354
6355 gdb_assert (data == NULL);
0186c6a7
DE
6356 gdb_assert (per_cu->is_debug_types);
6357 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6358
6359 if (! has_children)
6360 return;
6361
6362 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6363 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6364
0186c6a7 6365 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6366
6367 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6368 cu->list_in_scope = &file_symbols;
6369 pst = create_partial_symtab (per_cu, "");
6370 pst->anonymous = 1;
6371
6372 first_die = load_partial_dies (reader, info_ptr, 1);
6373
6374 lowpc = (CORE_ADDR) -1;
6375 highpc = (CORE_ADDR) 0;
6376 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6377
8763cede 6378 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6379}
6380
73051182
DE
6381/* Struct used to sort TUs by their abbreviation table offset. */
6382
6383struct tu_abbrev_offset
6384{
6385 struct signatured_type *sig_type;
6386 sect_offset abbrev_offset;
6387};
6388
6389/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6390
6391static int
6392sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6393{
9a3c8263
SM
6394 const struct tu_abbrev_offset * const *a
6395 = (const struct tu_abbrev_offset * const*) ap;
6396 const struct tu_abbrev_offset * const *b
6397 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6398 sect_offset aoff = (*a)->abbrev_offset;
6399 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6400
6401 return (aoff > boff) - (aoff < boff);
6402}
6403
6404/* Efficiently read all the type units.
6405 This does the bulk of the work for build_type_psymtabs.
6406
6407 The efficiency is because we sort TUs by the abbrev table they use and
6408 only read each abbrev table once. In one program there are 200K TUs
6409 sharing 8K abbrev tables.
6410
6411 The main purpose of this function is to support building the
6412 dwarf2_per_objfile->type_unit_groups table.
6413 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6414 can collapse the search space by grouping them by stmt_list.
6415 The savings can be significant, in the same program from above the 200K TUs
6416 share 8K stmt_list tables.
6417
6418 FUNC is expected to call get_type_unit_group, which will create the
6419 struct type_unit_group if necessary and add it to
6420 dwarf2_per_objfile->type_unit_groups. */
6421
6422static void
6423build_type_psymtabs_1 (void)
6424{
73051182
DE
6425 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6426 struct cleanup *cleanups;
6427 struct abbrev_table *abbrev_table;
6428 sect_offset abbrev_offset;
6429 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6430 int i;
6431
6432 /* It's up to the caller to not call us multiple times. */
6433 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6434
6435 if (dwarf2_per_objfile->n_type_units == 0)
6436 return;
6437
6438 /* TUs typically share abbrev tables, and there can be way more TUs than
6439 abbrev tables. Sort by abbrev table to reduce the number of times we
6440 read each abbrev table in.
6441 Alternatives are to punt or to maintain a cache of abbrev tables.
6442 This is simpler and efficient enough for now.
6443
6444 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6445 symtab to use). Typically TUs with the same abbrev offset have the same
6446 stmt_list value too so in practice this should work well.
6447
6448 The basic algorithm here is:
6449
6450 sort TUs by abbrev table
6451 for each TU with same abbrev table:
6452 read abbrev table if first user
6453 read TU top level DIE
6454 [IWBN if DWO skeletons had DW_AT_stmt_list]
6455 call FUNC */
6456
b4f54984 6457 if (dwarf_read_debug)
73051182
DE
6458 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6459
6460 /* Sort in a separate table to maintain the order of all_type_units
6461 for .gdb_index: TU indices directly index all_type_units. */
6462 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6463 dwarf2_per_objfile->n_type_units);
6464 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6465 {
6466 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6467
6468 sorted_by_abbrev[i].sig_type = sig_type;
6469 sorted_by_abbrev[i].abbrev_offset =
6470 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6471 sig_type->per_cu.sect_off);
73051182
DE
6472 }
6473 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6474 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6475 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6476
9c541725 6477 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6478 abbrev_table = NULL;
6479 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6480
6481 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6482 {
6483 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6484
6485 /* Switch to the next abbrev table if necessary. */
6486 if (abbrev_table == NULL
9c541725 6487 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6488 {
6489 if (abbrev_table != NULL)
6490 {
6491 abbrev_table_free (abbrev_table);
6492 /* Reset to NULL in case abbrev_table_read_table throws
6493 an error: abbrev_table_free_cleanup will get called. */
6494 abbrev_table = NULL;
6495 }
6496 abbrev_offset = tu->abbrev_offset;
6497 abbrev_table =
6498 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6499 abbrev_offset);
6500 ++tu_stats->nr_uniq_abbrev_tables;
6501 }
6502
6503 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6504 build_type_psymtabs_reader, NULL);
6505 }
6506
73051182 6507 do_cleanups (cleanups);
6aa5f3a6 6508}
73051182 6509
6aa5f3a6
DE
6510/* Print collected type unit statistics. */
6511
6512static void
6513print_tu_stats (void)
6514{
6515 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6516
6517 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6518 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6519 dwarf2_per_objfile->n_type_units);
6520 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6521 tu_stats->nr_uniq_abbrev_tables);
6522 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6523 tu_stats->nr_symtabs);
6524 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6525 tu_stats->nr_symtab_sharers);
6526 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6527 tu_stats->nr_stmt_less_type_units);
6528 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6529 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6530}
6531
f4dc4d17
DE
6532/* Traversal function for build_type_psymtabs. */
6533
6534static int
6535build_type_psymtab_dependencies (void **slot, void *info)
6536{
6537 struct objfile *objfile = dwarf2_per_objfile->objfile;
6538 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6539 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6540 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6541 int len = VEC_length (sig_type_ptr, tu_group->tus);
6542 struct signatured_type *iter;
f4dc4d17
DE
6543 int i;
6544
6545 gdb_assert (len > 0);
0186c6a7 6546 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6547
6548 pst->number_of_dependencies = len;
8d749320
SM
6549 pst->dependencies =
6550 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6551 for (i = 0;
0186c6a7 6552 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6553 ++i)
6554 {
0186c6a7
DE
6555 gdb_assert (iter->per_cu.is_debug_types);
6556 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6557 iter->type_unit_group = tu_group;
f4dc4d17
DE
6558 }
6559
0186c6a7 6560 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6561
6562 return 1;
6563}
6564
6565/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6566 Build partial symbol tables for the .debug_types comp-units. */
6567
6568static void
6569build_type_psymtabs (struct objfile *objfile)
6570{
0e50663e 6571 if (! create_all_type_units (objfile))
348e048f
DE
6572 return;
6573
73051182 6574 build_type_psymtabs_1 ();
6aa5f3a6 6575}
f4dc4d17 6576
6aa5f3a6
DE
6577/* Traversal function for process_skeletonless_type_unit.
6578 Read a TU in a DWO file and build partial symbols for it. */
6579
6580static int
6581process_skeletonless_type_unit (void **slot, void *info)
6582{
6583 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6584 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6585 struct signatured_type find_entry, *entry;
6586
6587 /* If this TU doesn't exist in the global table, add it and read it in. */
6588
6589 if (dwarf2_per_objfile->signatured_types == NULL)
6590 {
6591 dwarf2_per_objfile->signatured_types
6592 = allocate_signatured_type_table (objfile);
6593 }
6594
6595 find_entry.signature = dwo_unit->signature;
6596 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6597 INSERT);
6598 /* If we've already seen this type there's nothing to do. What's happening
6599 is we're doing our own version of comdat-folding here. */
6600 if (*slot != NULL)
6601 return 1;
6602
6603 /* This does the job that create_all_type_units would have done for
6604 this TU. */
6605 entry = add_type_unit (dwo_unit->signature, slot);
6606 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6607 *slot = entry;
6608
6609 /* This does the job that build_type_psymtabs_1 would have done. */
6610 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6611 build_type_psymtabs_reader, NULL);
6612
6613 return 1;
6614}
6615
6616/* Traversal function for process_skeletonless_type_units. */
6617
6618static int
6619process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6620{
6621 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6622
6623 if (dwo_file->tus != NULL)
6624 {
6625 htab_traverse_noresize (dwo_file->tus,
6626 process_skeletonless_type_unit, info);
6627 }
6628
6629 return 1;
6630}
6631
6632/* Scan all TUs of DWO files, verifying we've processed them.
6633 This is needed in case a TU was emitted without its skeleton.
6634 Note: This can't be done until we know what all the DWO files are. */
6635
6636static void
6637process_skeletonless_type_units (struct objfile *objfile)
6638{
6639 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6640 if (get_dwp_file () == NULL
6641 && dwarf2_per_objfile->dwo_files != NULL)
6642 {
6643 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6644 process_dwo_file_for_skeletonless_type_units,
6645 objfile);
6646 }
348e048f
DE
6647}
6648
95554aad
TT
6649/* Compute the 'user' field for each psymtab in OBJFILE. */
6650
6651static void
6652set_partial_user (struct objfile *objfile)
6653{
6654 int i;
6655
6656 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6657 {
8832e7e3 6658 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6659 struct partial_symtab *pst = per_cu->v.psymtab;
6660 int j;
6661
36586728
TT
6662 if (pst == NULL)
6663 continue;
6664
95554aad
TT
6665 for (j = 0; j < pst->number_of_dependencies; ++j)
6666 {
6667 /* Set the 'user' field only if it is not already set. */
6668 if (pst->dependencies[j]->user == NULL)
6669 pst->dependencies[j]->user = pst;
6670 }
6671 }
6672}
6673
93311388
DE
6674/* Build the partial symbol table by doing a quick pass through the
6675 .debug_info and .debug_abbrev sections. */
72bf9492 6676
93311388 6677static void
c67a9c90 6678dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6679{
791afaa2 6680 struct cleanup *back_to;
21b2bd31 6681 int i;
93311388 6682
b4f54984 6683 if (dwarf_read_debug)
45cfd468
DE
6684 {
6685 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6686 objfile_name (objfile));
45cfd468
DE
6687 }
6688
98bfdba5
PA
6689 dwarf2_per_objfile->reading_partial_symbols = 1;
6690
be391dca 6691 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6692
93311388
DE
6693 /* Any cached compilation units will be linked by the per-objfile
6694 read_in_chain. Make sure to free them when we're done. */
6695 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6696
348e048f
DE
6697 build_type_psymtabs (objfile);
6698
93311388 6699 create_all_comp_units (objfile);
c906108c 6700
60606b2c
TT
6701 /* Create a temporary address map on a temporary obstack. We later
6702 copy this to the final obstack. */
8268c778 6703 auto_obstack temp_obstack;
791afaa2
TT
6704
6705 scoped_restore save_psymtabs_addrmap
6706 = make_scoped_restore (&objfile->psymtabs_addrmap,
6707 addrmap_create_mutable (&temp_obstack));
72bf9492 6708
21b2bd31 6709 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6710 {
8832e7e3 6711 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6712
b93601f3 6713 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6714 }
ff013f42 6715
6aa5f3a6
DE
6716 /* This has to wait until we read the CUs, we need the list of DWOs. */
6717 process_skeletonless_type_units (objfile);
6718
6719 /* Now that all TUs have been processed we can fill in the dependencies. */
6720 if (dwarf2_per_objfile->type_unit_groups != NULL)
6721 {
6722 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6723 build_type_psymtab_dependencies, NULL);
6724 }
6725
b4f54984 6726 if (dwarf_read_debug)
6aa5f3a6
DE
6727 print_tu_stats ();
6728
95554aad
TT
6729 set_partial_user (objfile);
6730
ff013f42
JK
6731 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6732 &objfile->objfile_obstack);
791afaa2
TT
6733 /* At this point we want to keep the address map. */
6734 save_psymtabs_addrmap.release ();
ff013f42 6735
ae038cb0 6736 do_cleanups (back_to);
45cfd468 6737
b4f54984 6738 if (dwarf_read_debug)
45cfd468 6739 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6740 objfile_name (objfile));
ae038cb0
DJ
6741}
6742
3019eac3 6743/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6744
6745static void
dee91e82 6746load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6747 const gdb_byte *info_ptr,
dee91e82
DE
6748 struct die_info *comp_unit_die,
6749 int has_children,
6750 void *data)
ae038cb0 6751{
dee91e82 6752 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6753
95554aad 6754 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6755
ae038cb0
DJ
6756 /* Check if comp unit has_children.
6757 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6758 If not, there's no more debug_info for this comp unit. */
d85a05f0 6759 if (has_children)
dee91e82
DE
6760 load_partial_dies (reader, info_ptr, 0);
6761}
98bfdba5 6762
dee91e82
DE
6763/* Load the partial DIEs for a secondary CU into memory.
6764 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6765
dee91e82
DE
6766static void
6767load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6768{
f4dc4d17
DE
6769 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6770 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6771}
6772
ae038cb0 6773static void
36586728
TT
6774read_comp_units_from_section (struct objfile *objfile,
6775 struct dwarf2_section_info *section,
f1902523 6776 struct dwarf2_section_info *abbrev_section,
36586728
TT
6777 unsigned int is_dwz,
6778 int *n_allocated,
6779 int *n_comp_units,
6780 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6781{
d521ce57 6782 const gdb_byte *info_ptr;
a32a8923 6783 bfd *abfd = get_section_bfd_owner (section);
be391dca 6784
b4f54984 6785 if (dwarf_read_debug)
bf6af496 6786 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6787 get_section_name (section),
6788 get_section_file_name (section));
bf6af496 6789
36586728 6790 dwarf2_read_section (objfile, section);
ae038cb0 6791
36586728 6792 info_ptr = section->buffer;
6e70227d 6793
36586728 6794 while (info_ptr < section->buffer + section->size)
ae038cb0 6795 {
ae038cb0 6796 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6797
9c541725 6798 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 6799
f1902523
JK
6800 comp_unit_head cu_header;
6801 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6802 info_ptr, rcuh_kind::COMPILE);
ae038cb0
DJ
6803
6804 /* Save the compilation unit for later lookup. */
f1902523
JK
6805 if (cu_header.unit_type != DW_UT_type)
6806 {
6807 this_cu = XOBNEW (&objfile->objfile_obstack,
6808 struct dwarf2_per_cu_data);
6809 memset (this_cu, 0, sizeof (*this_cu));
6810 }
6811 else
6812 {
6813 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6814 struct signatured_type);
6815 memset (sig_type, 0, sizeof (*sig_type));
6816 sig_type->signature = cu_header.signature;
6817 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6818 this_cu = &sig_type->per_cu;
6819 }
6820 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 6821 this_cu->sect_off = sect_off;
f1902523 6822 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 6823 this_cu->is_dwz = is_dwz;
9291a0cd 6824 this_cu->objfile = objfile;
8a0459fd 6825 this_cu->section = section;
ae038cb0 6826
36586728 6827 if (*n_comp_units == *n_allocated)
ae038cb0 6828 {
36586728 6829 *n_allocated *= 2;
224c3ddb
SM
6830 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6831 *all_comp_units, *n_allocated);
ae038cb0 6832 }
36586728
TT
6833 (*all_comp_units)[*n_comp_units] = this_cu;
6834 ++*n_comp_units;
ae038cb0
DJ
6835
6836 info_ptr = info_ptr + this_cu->length;
6837 }
36586728
TT
6838}
6839
6840/* Create a list of all compilation units in OBJFILE.
6841 This is only done for -readnow and building partial symtabs. */
6842
6843static void
6844create_all_comp_units (struct objfile *objfile)
6845{
6846 int n_allocated;
6847 int n_comp_units;
6848 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6849 struct dwz_file *dwz;
36586728
TT
6850
6851 n_comp_units = 0;
6852 n_allocated = 10;
8d749320 6853 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728 6854
f1902523
JK
6855 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6856 &dwarf2_per_objfile->abbrev, 0,
36586728
TT
6857 &n_allocated, &n_comp_units, &all_comp_units);
6858
4db1a1dc
TT
6859 dwz = dwarf2_get_dwz_file ();
6860 if (dwz != NULL)
f1902523 6861 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
4db1a1dc
TT
6862 &n_allocated, &n_comp_units,
6863 &all_comp_units);
ae038cb0 6864
8d749320
SM
6865 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6866 struct dwarf2_per_cu_data *,
6867 n_comp_units);
ae038cb0
DJ
6868 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6869 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6870 xfree (all_comp_units);
6871 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6872}
6873
5734ee8b 6874/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6875 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6876 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6877 DW_AT_ranges). See the comments of add_partial_subprogram on how
6878 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6879
72bf9492
DJ
6880static void
6881scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6882 CORE_ADDR *highpc, int set_addrmap,
6883 struct dwarf2_cu *cu)
c906108c 6884{
72bf9492 6885 struct partial_die_info *pdi;
c906108c 6886
91c24f0a
DC
6887 /* Now, march along the PDI's, descending into ones which have
6888 interesting children but skipping the children of the other ones,
6889 until we reach the end of the compilation unit. */
c906108c 6890
72bf9492 6891 pdi = first_die;
91c24f0a 6892
72bf9492
DJ
6893 while (pdi != NULL)
6894 {
6895 fixup_partial_die (pdi, cu);
c906108c 6896
f55ee35c 6897 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6898 children, so we need to look at them. Ditto for anonymous
6899 enums. */
933c6fe4 6900
72bf9492 6901 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6902 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6903 || pdi->tag == DW_TAG_imported_unit)
c906108c 6904 {
72bf9492 6905 switch (pdi->tag)
c906108c
SS
6906 {
6907 case DW_TAG_subprogram:
cdc07690 6908 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6909 break;
72929c62 6910 case DW_TAG_constant:
c906108c
SS
6911 case DW_TAG_variable:
6912 case DW_TAG_typedef:
91c24f0a 6913 case DW_TAG_union_type:
72bf9492 6914 if (!pdi->is_declaration)
63d06c5c 6915 {
72bf9492 6916 add_partial_symbol (pdi, cu);
63d06c5c
DC
6917 }
6918 break;
c906108c 6919 case DW_TAG_class_type:
680b30c7 6920 case DW_TAG_interface_type:
c906108c 6921 case DW_TAG_structure_type:
72bf9492 6922 if (!pdi->is_declaration)
c906108c 6923 {
72bf9492 6924 add_partial_symbol (pdi, cu);
c906108c 6925 }
e98c9e7c
TT
6926 if (cu->language == language_rust && pdi->has_children)
6927 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6928 set_addrmap, cu);
c906108c 6929 break;
91c24f0a 6930 case DW_TAG_enumeration_type:
72bf9492
DJ
6931 if (!pdi->is_declaration)
6932 add_partial_enumeration (pdi, cu);
c906108c
SS
6933 break;
6934 case DW_TAG_base_type:
a02abb62 6935 case DW_TAG_subrange_type:
c906108c 6936 /* File scope base type definitions are added to the partial
c5aa993b 6937 symbol table. */
72bf9492 6938 add_partial_symbol (pdi, cu);
c906108c 6939 break;
d9fa45fe 6940 case DW_TAG_namespace:
cdc07690 6941 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6942 break;
5d7cb8df 6943 case DW_TAG_module:
cdc07690 6944 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6945 break;
95554aad
TT
6946 case DW_TAG_imported_unit:
6947 {
6948 struct dwarf2_per_cu_data *per_cu;
6949
f4dc4d17
DE
6950 /* For now we don't handle imported units in type units. */
6951 if (cu->per_cu->is_debug_types)
6952 {
6953 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6954 " supported in type units [in module %s]"),
4262abfb 6955 objfile_name (cu->objfile));
f4dc4d17
DE
6956 }
6957
9c541725 6958 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6959 pdi->is_dwz,
95554aad
TT
6960 cu->objfile);
6961
6962 /* Go read the partial unit, if needed. */
6963 if (per_cu->v.psymtab == NULL)
b93601f3 6964 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6965
f4dc4d17 6966 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6967 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6968 }
6969 break;
74921315
KS
6970 case DW_TAG_imported_declaration:
6971 add_partial_symbol (pdi, cu);
6972 break;
c906108c
SS
6973 default:
6974 break;
6975 }
6976 }
6977
72bf9492
DJ
6978 /* If the die has a sibling, skip to the sibling. */
6979
6980 pdi = pdi->die_sibling;
6981 }
6982}
6983
6984/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6985
72bf9492 6986 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6987 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6988 Enumerators are an exception; they use the scope of their parent
6989 enumeration type, i.e. the name of the enumeration type is not
6990 prepended to the enumerator.
91c24f0a 6991
72bf9492
DJ
6992 There are two complexities. One is DW_AT_specification; in this
6993 case "parent" means the parent of the target of the specification,
6994 instead of the direct parent of the DIE. The other is compilers
6995 which do not emit DW_TAG_namespace; in this case we try to guess
6996 the fully qualified name of structure types from their members'
6997 linkage names. This must be done using the DIE's children rather
6998 than the children of any DW_AT_specification target. We only need
6999 to do this for structures at the top level, i.e. if the target of
7000 any DW_AT_specification (if any; otherwise the DIE itself) does not
7001 have a parent. */
7002
7003/* Compute the scope prefix associated with PDI's parent, in
7004 compilation unit CU. The result will be allocated on CU's
7005 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7006 field. NULL is returned if no prefix is necessary. */
15d034d0 7007static const char *
72bf9492
DJ
7008partial_die_parent_scope (struct partial_die_info *pdi,
7009 struct dwarf2_cu *cu)
7010{
15d034d0 7011 const char *grandparent_scope;
72bf9492 7012 struct partial_die_info *parent, *real_pdi;
91c24f0a 7013
72bf9492
DJ
7014 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7015 then this means the parent of the specification DIE. */
7016
7017 real_pdi = pdi;
72bf9492 7018 while (real_pdi->has_specification)
36586728
TT
7019 real_pdi = find_partial_die (real_pdi->spec_offset,
7020 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7021
7022 parent = real_pdi->die_parent;
7023 if (parent == NULL)
7024 return NULL;
7025
7026 if (parent->scope_set)
7027 return parent->scope;
7028
7029 fixup_partial_die (parent, cu);
7030
10b3939b 7031 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7032
acebe513
UW
7033 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7034 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7035 Work around this problem here. */
7036 if (cu->language == language_cplus
6e70227d 7037 && parent->tag == DW_TAG_namespace
acebe513
UW
7038 && strcmp (parent->name, "::") == 0
7039 && grandparent_scope == NULL)
7040 {
7041 parent->scope = NULL;
7042 parent->scope_set = 1;
7043 return NULL;
7044 }
7045
9c6c53f7
SA
7046 if (pdi->tag == DW_TAG_enumerator)
7047 /* Enumerators should not get the name of the enumeration as a prefix. */
7048 parent->scope = grandparent_scope;
7049 else if (parent->tag == DW_TAG_namespace
f55ee35c 7050 || parent->tag == DW_TAG_module
72bf9492
DJ
7051 || parent->tag == DW_TAG_structure_type
7052 || parent->tag == DW_TAG_class_type
680b30c7 7053 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7054 || parent->tag == DW_TAG_union_type
7055 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7056 {
7057 if (grandparent_scope == NULL)
7058 parent->scope = parent->name;
7059 else
3e43a32a
MS
7060 parent->scope = typename_concat (&cu->comp_unit_obstack,
7061 grandparent_scope,
f55ee35c 7062 parent->name, 0, cu);
72bf9492 7063 }
72bf9492
DJ
7064 else
7065 {
7066 /* FIXME drow/2004-04-01: What should we be doing with
7067 function-local names? For partial symbols, we should probably be
7068 ignoring them. */
7069 complaint (&symfile_complaints,
e2e0b3e5 7070 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7071 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7072 parent->scope = grandparent_scope;
c906108c
SS
7073 }
7074
72bf9492
DJ
7075 parent->scope_set = 1;
7076 return parent->scope;
7077}
7078
7079/* Return the fully scoped name associated with PDI, from compilation unit
7080 CU. The result will be allocated with malloc. */
4568ecf9 7081
72bf9492
DJ
7082static char *
7083partial_die_full_name (struct partial_die_info *pdi,
7084 struct dwarf2_cu *cu)
7085{
15d034d0 7086 const char *parent_scope;
72bf9492 7087
98bfdba5
PA
7088 /* If this is a template instantiation, we can not work out the
7089 template arguments from partial DIEs. So, unfortunately, we have
7090 to go through the full DIEs. At least any work we do building
7091 types here will be reused if full symbols are loaded later. */
7092 if (pdi->has_template_arguments)
7093 {
7094 fixup_partial_die (pdi, cu);
7095
7096 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7097 {
7098 struct die_info *die;
7099 struct attribute attr;
7100 struct dwarf2_cu *ref_cu = cu;
7101
b64f50a1 7102 /* DW_FORM_ref_addr is using section offset. */
b4069958 7103 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7104 attr.form = DW_FORM_ref_addr;
9c541725 7105 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7106 die = follow_die_ref (NULL, &attr, &ref_cu);
7107
7108 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7109 }
7110 }
7111
72bf9492
DJ
7112 parent_scope = partial_die_parent_scope (pdi, cu);
7113 if (parent_scope == NULL)
7114 return NULL;
7115 else
f55ee35c 7116 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7117}
7118
7119static void
72bf9492 7120add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7121{
e7c27a73 7122 struct objfile *objfile = cu->objfile;
3e29f34a 7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7124 CORE_ADDR addr = 0;
15d034d0 7125 const char *actual_name = NULL;
e142c38c 7126 CORE_ADDR baseaddr;
15d034d0 7127 char *built_actual_name;
e142c38c
DJ
7128
7129 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7130
15d034d0
TT
7131 built_actual_name = partial_die_full_name (pdi, cu);
7132 if (built_actual_name != NULL)
7133 actual_name = built_actual_name;
63d06c5c 7134
72bf9492
DJ
7135 if (actual_name == NULL)
7136 actual_name = pdi->name;
7137
c906108c
SS
7138 switch (pdi->tag)
7139 {
7140 case DW_TAG_subprogram:
3e29f34a 7141 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7142 if (pdi->is_external || cu->language == language_ada)
c906108c 7143 {
2cfa0c8d
JB
7144 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7145 of the global scope. But in Ada, we want to be able to access
7146 nested procedures globally. So all Ada subprograms are stored
7147 in the global scope. */
f47fb265 7148 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7149 built_actual_name != NULL,
f47fb265
MS
7150 VAR_DOMAIN, LOC_BLOCK,
7151 &objfile->global_psymbols,
1762568f 7152 addr, cu->language, objfile);
c906108c
SS
7153 }
7154 else
7155 {
f47fb265 7156 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7157 built_actual_name != NULL,
f47fb265
MS
7158 VAR_DOMAIN, LOC_BLOCK,
7159 &objfile->static_psymbols,
1762568f 7160 addr, cu->language, objfile);
c906108c 7161 }
0c1b455e
TT
7162
7163 if (pdi->main_subprogram && actual_name != NULL)
7164 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7165 break;
72929c62
JB
7166 case DW_TAG_constant:
7167 {
af5bf4ad 7168 std::vector<partial_symbol *> *list;
72929c62
JB
7169
7170 if (pdi->is_external)
7171 list = &objfile->global_psymbols;
7172 else
7173 list = &objfile->static_psymbols;
f47fb265 7174 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7175 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7176 list, 0, cu->language, objfile);
72929c62
JB
7177 }
7178 break;
c906108c 7179 case DW_TAG_variable:
95554aad
TT
7180 if (pdi->d.locdesc)
7181 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7182
95554aad 7183 if (pdi->d.locdesc
caac4577
JG
7184 && addr == 0
7185 && !dwarf2_per_objfile->has_section_at_zero)
7186 {
7187 /* A global or static variable may also have been stripped
7188 out by the linker if unused, in which case its address
7189 will be nullified; do not add such variables into partial
7190 symbol table then. */
7191 }
7192 else if (pdi->is_external)
c906108c
SS
7193 {
7194 /* Global Variable.
7195 Don't enter into the minimal symbol tables as there is
7196 a minimal symbol table entry from the ELF symbols already.
7197 Enter into partial symbol table if it has a location
7198 descriptor or a type.
7199 If the location descriptor is missing, new_symbol will create
7200 a LOC_UNRESOLVED symbol, the address of the variable will then
7201 be determined from the minimal symbol table whenever the variable
7202 is referenced.
7203 The address for the partial symbol table entry is not
7204 used by GDB, but it comes in handy for debugging partial symbol
7205 table building. */
7206
95554aad 7207 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7208 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7209 built_actual_name != NULL,
f47fb265
MS
7210 VAR_DOMAIN, LOC_STATIC,
7211 &objfile->global_psymbols,
1762568f 7212 addr + baseaddr,
f47fb265 7213 cu->language, objfile);
c906108c
SS
7214 }
7215 else
7216 {
ff908ebf
AW
7217 int has_loc = pdi->d.locdesc != NULL;
7218
7219 /* Static Variable. Skip symbols whose value we cannot know (those
7220 without location descriptors or constant values). */
7221 if (!has_loc && !pdi->has_const_value)
decbce07 7222 {
15d034d0 7223 xfree (built_actual_name);
decbce07
MS
7224 return;
7225 }
ff908ebf 7226
f47fb265 7227 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7228 built_actual_name != NULL,
f47fb265
MS
7229 VAR_DOMAIN, LOC_STATIC,
7230 &objfile->static_psymbols,
ff908ebf 7231 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7232 cu->language, objfile);
c906108c
SS
7233 }
7234 break;
7235 case DW_TAG_typedef:
7236 case DW_TAG_base_type:
a02abb62 7237 case DW_TAG_subrange_type:
38d518c9 7238 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7239 built_actual_name != NULL,
176620f1 7240 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7241 &objfile->static_psymbols,
1762568f 7242 0, cu->language, objfile);
c906108c 7243 break;
74921315 7244 case DW_TAG_imported_declaration:
72bf9492
DJ
7245 case DW_TAG_namespace:
7246 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7247 built_actual_name != NULL,
72bf9492
DJ
7248 VAR_DOMAIN, LOC_TYPEDEF,
7249 &objfile->global_psymbols,
1762568f 7250 0, cu->language, objfile);
72bf9492 7251 break;
530e8392
KB
7252 case DW_TAG_module:
7253 add_psymbol_to_list (actual_name, strlen (actual_name),
7254 built_actual_name != NULL,
7255 MODULE_DOMAIN, LOC_TYPEDEF,
7256 &objfile->global_psymbols,
1762568f 7257 0, cu->language, objfile);
530e8392 7258 break;
c906108c 7259 case DW_TAG_class_type:
680b30c7 7260 case DW_TAG_interface_type:
c906108c
SS
7261 case DW_TAG_structure_type:
7262 case DW_TAG_union_type:
7263 case DW_TAG_enumeration_type:
fa4028e9
JB
7264 /* Skip external references. The DWARF standard says in the section
7265 about "Structure, Union, and Class Type Entries": "An incomplete
7266 structure, union or class type is represented by a structure,
7267 union or class entry that does not have a byte size attribute
7268 and that has a DW_AT_declaration attribute." */
7269 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7270 {
15d034d0 7271 xfree (built_actual_name);
decbce07
MS
7272 return;
7273 }
fa4028e9 7274
63d06c5c
DC
7275 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7276 static vs. global. */
38d518c9 7277 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7278 built_actual_name != NULL,
176620f1 7279 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7280 cu->language == language_cplus
63d06c5c
DC
7281 ? &objfile->global_psymbols
7282 : &objfile->static_psymbols,
1762568f 7283 0, cu->language, objfile);
c906108c 7284
c906108c
SS
7285 break;
7286 case DW_TAG_enumerator:
38d518c9 7287 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7288 built_actual_name != NULL,
176620f1 7289 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7290 cu->language == language_cplus
f6fe98ef
DJ
7291 ? &objfile->global_psymbols
7292 : &objfile->static_psymbols,
1762568f 7293 0, cu->language, objfile);
c906108c
SS
7294 break;
7295 default:
7296 break;
7297 }
5c4e30ca 7298
15d034d0 7299 xfree (built_actual_name);
c906108c
SS
7300}
7301
5c4e30ca
DC
7302/* Read a partial die corresponding to a namespace; also, add a symbol
7303 corresponding to that namespace to the symbol table. NAMESPACE is
7304 the name of the enclosing namespace. */
91c24f0a 7305
72bf9492
DJ
7306static void
7307add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7308 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7309 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7310{
72bf9492 7311 /* Add a symbol for the namespace. */
e7c27a73 7312
72bf9492 7313 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7314
7315 /* Now scan partial symbols in that namespace. */
7316
91c24f0a 7317 if (pdi->has_children)
cdc07690 7318 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7319}
7320
5d7cb8df
JK
7321/* Read a partial die corresponding to a Fortran module. */
7322
7323static void
7324add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7325 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7326{
530e8392
KB
7327 /* Add a symbol for the namespace. */
7328
7329 add_partial_symbol (pdi, cu);
7330
f55ee35c 7331 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7332
7333 if (pdi->has_children)
cdc07690 7334 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7335}
7336
bc30ff58
JB
7337/* Read a partial die corresponding to a subprogram and create a partial
7338 symbol for that subprogram. When the CU language allows it, this
7339 routine also defines a partial symbol for each nested subprogram
cdc07690 7340 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7341 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7342 and highest PC values found in PDI.
6e70227d 7343
cdc07690
YQ
7344 PDI may also be a lexical block, in which case we simply search
7345 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7346 Again, this is only performed when the CU language allows this
7347 type of definitions. */
7348
7349static void
7350add_partial_subprogram (struct partial_die_info *pdi,
7351 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7352 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7353{
7354 if (pdi->tag == DW_TAG_subprogram)
7355 {
7356 if (pdi->has_pc_info)
7357 {
7358 if (pdi->lowpc < *lowpc)
7359 *lowpc = pdi->lowpc;
7360 if (pdi->highpc > *highpc)
7361 *highpc = pdi->highpc;
cdc07690 7362 if (set_addrmap)
5734ee8b 7363 {
5734ee8b 7364 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7366 CORE_ADDR baseaddr;
7367 CORE_ADDR highpc;
7368 CORE_ADDR lowpc;
5734ee8b
DJ
7369
7370 baseaddr = ANOFFSET (objfile->section_offsets,
7371 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7372 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7373 pdi->lowpc + baseaddr);
7374 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7375 pdi->highpc + baseaddr);
7376 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7377 cu->per_cu->v.psymtab);
5734ee8b 7378 }
481860b3
GB
7379 }
7380
7381 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7382 {
bc30ff58 7383 if (!pdi->is_declaration)
e8d05480
JB
7384 /* Ignore subprogram DIEs that do not have a name, they are
7385 illegal. Do not emit a complaint at this point, we will
7386 do so when we convert this psymtab into a symtab. */
7387 if (pdi->name)
7388 add_partial_symbol (pdi, cu);
bc30ff58
JB
7389 }
7390 }
6e70227d 7391
bc30ff58
JB
7392 if (! pdi->has_children)
7393 return;
7394
7395 if (cu->language == language_ada)
7396 {
7397 pdi = pdi->die_child;
7398 while (pdi != NULL)
7399 {
7400 fixup_partial_die (pdi, cu);
7401 if (pdi->tag == DW_TAG_subprogram
7402 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7403 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7404 pdi = pdi->die_sibling;
7405 }
7406 }
7407}
7408
91c24f0a
DC
7409/* Read a partial die corresponding to an enumeration type. */
7410
72bf9492
DJ
7411static void
7412add_partial_enumeration (struct partial_die_info *enum_pdi,
7413 struct dwarf2_cu *cu)
91c24f0a 7414{
72bf9492 7415 struct partial_die_info *pdi;
91c24f0a
DC
7416
7417 if (enum_pdi->name != NULL)
72bf9492
DJ
7418 add_partial_symbol (enum_pdi, cu);
7419
7420 pdi = enum_pdi->die_child;
7421 while (pdi)
91c24f0a 7422 {
72bf9492 7423 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7424 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7425 else
72bf9492
DJ
7426 add_partial_symbol (pdi, cu);
7427 pdi = pdi->die_sibling;
91c24f0a 7428 }
91c24f0a
DC
7429}
7430
6caca83c
CC
7431/* Return the initial uleb128 in the die at INFO_PTR. */
7432
7433static unsigned int
d521ce57 7434peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7435{
7436 unsigned int bytes_read;
7437
7438 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7439}
7440
4bb7a0a7
DJ
7441/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7442 Return the corresponding abbrev, or NULL if the number is zero (indicating
7443 an empty DIE). In either case *BYTES_READ will be set to the length of
7444 the initial number. */
7445
7446static struct abbrev_info *
d521ce57 7447peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7448 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7449{
7450 bfd *abfd = cu->objfile->obfd;
7451 unsigned int abbrev_number;
7452 struct abbrev_info *abbrev;
7453
7454 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7455
7456 if (abbrev_number == 0)
7457 return NULL;
7458
433df2d4 7459 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7460 if (!abbrev)
7461 {
422b9917
DE
7462 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7463 " at offset 0x%x [in module %s]"),
7464 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7465 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7466 }
7467
7468 return abbrev;
7469}
7470
93311388
DE
7471/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7472 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7473 DIE. Any children of the skipped DIEs will also be skipped. */
7474
d521ce57
TT
7475static const gdb_byte *
7476skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7477{
dee91e82 7478 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7479 struct abbrev_info *abbrev;
7480 unsigned int bytes_read;
7481
7482 while (1)
7483 {
7484 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7485 if (abbrev == NULL)
7486 return info_ptr + bytes_read;
7487 else
dee91e82 7488 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7489 }
7490}
7491
93311388
DE
7492/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7493 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7494 abbrev corresponding to that skipped uleb128 should be passed in
7495 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7496 children. */
7497
d521ce57
TT
7498static const gdb_byte *
7499skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7500 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7501{
7502 unsigned int bytes_read;
7503 struct attribute attr;
dee91e82
DE
7504 bfd *abfd = reader->abfd;
7505 struct dwarf2_cu *cu = reader->cu;
d521ce57 7506 const gdb_byte *buffer = reader->buffer;
f664829e 7507 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7508 unsigned int form, i;
7509
7510 for (i = 0; i < abbrev->num_attrs; i++)
7511 {
7512 /* The only abbrev we care about is DW_AT_sibling. */
7513 if (abbrev->attrs[i].name == DW_AT_sibling)
7514 {
dee91e82 7515 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7516 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7517 complaint (&symfile_complaints,
7518 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7519 else
b9502d3f 7520 {
9c541725
PA
7521 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7522 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7523
7524 if (sibling_ptr < info_ptr)
7525 complaint (&symfile_complaints,
7526 _("DW_AT_sibling points backwards"));
22869d73
KS
7527 else if (sibling_ptr > reader->buffer_end)
7528 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7529 else
7530 return sibling_ptr;
7531 }
4bb7a0a7
DJ
7532 }
7533
7534 /* If it isn't DW_AT_sibling, skip this attribute. */
7535 form = abbrev->attrs[i].form;
7536 skip_attribute:
7537 switch (form)
7538 {
4bb7a0a7 7539 case DW_FORM_ref_addr:
ae411497
TT
7540 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7541 and later it is offset sized. */
7542 if (cu->header.version == 2)
7543 info_ptr += cu->header.addr_size;
7544 else
7545 info_ptr += cu->header.offset_size;
7546 break;
36586728
TT
7547 case DW_FORM_GNU_ref_alt:
7548 info_ptr += cu->header.offset_size;
7549 break;
ae411497 7550 case DW_FORM_addr:
4bb7a0a7
DJ
7551 info_ptr += cu->header.addr_size;
7552 break;
7553 case DW_FORM_data1:
7554 case DW_FORM_ref1:
7555 case DW_FORM_flag:
7556 info_ptr += 1;
7557 break;
2dc7f7b3 7558 case DW_FORM_flag_present:
43988095 7559 case DW_FORM_implicit_const:
2dc7f7b3 7560 break;
4bb7a0a7
DJ
7561 case DW_FORM_data2:
7562 case DW_FORM_ref2:
7563 info_ptr += 2;
7564 break;
7565 case DW_FORM_data4:
7566 case DW_FORM_ref4:
7567 info_ptr += 4;
7568 break;
7569 case DW_FORM_data8:
7570 case DW_FORM_ref8:
55f1336d 7571 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7572 info_ptr += 8;
7573 break;
0224619f
JK
7574 case DW_FORM_data16:
7575 info_ptr += 16;
7576 break;
4bb7a0a7 7577 case DW_FORM_string:
9b1c24c8 7578 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7579 info_ptr += bytes_read;
7580 break;
2dc7f7b3 7581 case DW_FORM_sec_offset:
4bb7a0a7 7582 case DW_FORM_strp:
36586728 7583 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7584 info_ptr += cu->header.offset_size;
7585 break;
2dc7f7b3 7586 case DW_FORM_exprloc:
4bb7a0a7
DJ
7587 case DW_FORM_block:
7588 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7589 info_ptr += bytes_read;
7590 break;
7591 case DW_FORM_block1:
7592 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7593 break;
7594 case DW_FORM_block2:
7595 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7596 break;
7597 case DW_FORM_block4:
7598 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7599 break;
7600 case DW_FORM_sdata:
7601 case DW_FORM_udata:
7602 case DW_FORM_ref_udata:
3019eac3
DE
7603 case DW_FORM_GNU_addr_index:
7604 case DW_FORM_GNU_str_index:
d521ce57 7605 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7606 break;
7607 case DW_FORM_indirect:
7608 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7609 info_ptr += bytes_read;
7610 /* We need to continue parsing from here, so just go back to
7611 the top. */
7612 goto skip_attribute;
7613
7614 default:
3e43a32a
MS
7615 error (_("Dwarf Error: Cannot handle %s "
7616 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7617 dwarf_form_name (form),
7618 bfd_get_filename (abfd));
7619 }
7620 }
7621
7622 if (abbrev->has_children)
dee91e82 7623 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7624 else
7625 return info_ptr;
7626}
7627
93311388 7628/* Locate ORIG_PDI's sibling.
dee91e82 7629 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7630
d521ce57 7631static const gdb_byte *
dee91e82
DE
7632locate_pdi_sibling (const struct die_reader_specs *reader,
7633 struct partial_die_info *orig_pdi,
d521ce57 7634 const gdb_byte *info_ptr)
91c24f0a
DC
7635{
7636 /* Do we know the sibling already? */
72bf9492 7637
91c24f0a
DC
7638 if (orig_pdi->sibling)
7639 return orig_pdi->sibling;
7640
7641 /* Are there any children to deal with? */
7642
7643 if (!orig_pdi->has_children)
7644 return info_ptr;
7645
4bb7a0a7 7646 /* Skip the children the long way. */
91c24f0a 7647
dee91e82 7648 return skip_children (reader, info_ptr);
91c24f0a
DC
7649}
7650
257e7a09 7651/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7652 not NULL. */
c906108c
SS
7653
7654static void
257e7a09
YQ
7655dwarf2_read_symtab (struct partial_symtab *self,
7656 struct objfile *objfile)
c906108c 7657{
257e7a09 7658 if (self->readin)
c906108c 7659 {
442e4d9c 7660 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7661 self->filename);
442e4d9c
YQ
7662 }
7663 else
7664 {
7665 if (info_verbose)
c906108c 7666 {
442e4d9c 7667 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7668 self->filename);
442e4d9c 7669 gdb_flush (gdb_stdout);
c906108c 7670 }
c906108c 7671
442e4d9c 7672 /* Restore our global data. */
9a3c8263
SM
7673 dwarf2_per_objfile
7674 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7675 dwarf2_objfile_data_key);
10b3939b 7676
442e4d9c
YQ
7677 /* If this psymtab is constructed from a debug-only objfile, the
7678 has_section_at_zero flag will not necessarily be correct. We
7679 can get the correct value for this flag by looking at the data
7680 associated with the (presumably stripped) associated objfile. */
7681 if (objfile->separate_debug_objfile_backlink)
7682 {
7683 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7684 = ((struct dwarf2_per_objfile *)
7685 objfile_data (objfile->separate_debug_objfile_backlink,
7686 dwarf2_objfile_data_key));
9a619af0 7687
442e4d9c
YQ
7688 dwarf2_per_objfile->has_section_at_zero
7689 = dpo_backlink->has_section_at_zero;
7690 }
b2ab525c 7691
442e4d9c 7692 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7693
257e7a09 7694 psymtab_to_symtab_1 (self);
c906108c 7695
442e4d9c
YQ
7696 /* Finish up the debug error message. */
7697 if (info_verbose)
7698 printf_filtered (_("done.\n"));
c906108c 7699 }
95554aad
TT
7700
7701 process_cu_includes ();
c906108c 7702}
9cdd5dbd
DE
7703\f
7704/* Reading in full CUs. */
c906108c 7705
10b3939b
DJ
7706/* Add PER_CU to the queue. */
7707
7708static void
95554aad
TT
7709queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7710 enum language pretend_language)
10b3939b
DJ
7711{
7712 struct dwarf2_queue_item *item;
7713
7714 per_cu->queued = 1;
8d749320 7715 item = XNEW (struct dwarf2_queue_item);
10b3939b 7716 item->per_cu = per_cu;
95554aad 7717 item->pretend_language = pretend_language;
10b3939b
DJ
7718 item->next = NULL;
7719
7720 if (dwarf2_queue == NULL)
7721 dwarf2_queue = item;
7722 else
7723 dwarf2_queue_tail->next = item;
7724
7725 dwarf2_queue_tail = item;
7726}
7727
89e63ee4
DE
7728/* If PER_CU is not yet queued, add it to the queue.
7729 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7730 dependency.
0907af0c 7731 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7732 meaning either PER_CU is already queued or it is already loaded.
7733
7734 N.B. There is an invariant here that if a CU is queued then it is loaded.
7735 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7736
7737static int
89e63ee4 7738maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7739 struct dwarf2_per_cu_data *per_cu,
7740 enum language pretend_language)
7741{
7742 /* We may arrive here during partial symbol reading, if we need full
7743 DIEs to process an unusual case (e.g. template arguments). Do
7744 not queue PER_CU, just tell our caller to load its DIEs. */
7745 if (dwarf2_per_objfile->reading_partial_symbols)
7746 {
7747 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7748 return 1;
7749 return 0;
7750 }
7751
7752 /* Mark the dependence relation so that we don't flush PER_CU
7753 too early. */
89e63ee4
DE
7754 if (dependent_cu != NULL)
7755 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7756
7757 /* If it's already on the queue, we have nothing to do. */
7758 if (per_cu->queued)
7759 return 0;
7760
7761 /* If the compilation unit is already loaded, just mark it as
7762 used. */
7763 if (per_cu->cu != NULL)
7764 {
7765 per_cu->cu->last_used = 0;
7766 return 0;
7767 }
7768
7769 /* Add it to the queue. */
7770 queue_comp_unit (per_cu, pretend_language);
7771
7772 return 1;
7773}
7774
10b3939b
DJ
7775/* Process the queue. */
7776
7777static void
a0f42c21 7778process_queue (void)
10b3939b
DJ
7779{
7780 struct dwarf2_queue_item *item, *next_item;
7781
b4f54984 7782 if (dwarf_read_debug)
45cfd468
DE
7783 {
7784 fprintf_unfiltered (gdb_stdlog,
7785 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7786 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7787 }
7788
03dd20cc
DJ
7789 /* The queue starts out with one item, but following a DIE reference
7790 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7791 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7792 {
cc12ce38
DE
7793 if ((dwarf2_per_objfile->using_index
7794 ? !item->per_cu->v.quick->compunit_symtab
7795 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7796 /* Skip dummy CUs. */
7797 && item->per_cu->cu != NULL)
f4dc4d17
DE
7798 {
7799 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7800 unsigned int debug_print_threshold;
247f5c4f 7801 char buf[100];
f4dc4d17 7802
247f5c4f 7803 if (per_cu->is_debug_types)
f4dc4d17 7804 {
247f5c4f
DE
7805 struct signatured_type *sig_type =
7806 (struct signatured_type *) per_cu;
7807
7808 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7809 hex_string (sig_type->signature),
9c541725 7810 to_underlying (per_cu->sect_off));
73be47f5
DE
7811 /* There can be 100s of TUs.
7812 Only print them in verbose mode. */
7813 debug_print_threshold = 2;
f4dc4d17 7814 }
247f5c4f 7815 else
73be47f5 7816 {
9c541725
PA
7817 sprintf (buf, "CU at offset 0x%x",
7818 to_underlying (per_cu->sect_off));
73be47f5
DE
7819 debug_print_threshold = 1;
7820 }
247f5c4f 7821
b4f54984 7822 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7823 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7824
7825 if (per_cu->is_debug_types)
7826 process_full_type_unit (per_cu, item->pretend_language);
7827 else
7828 process_full_comp_unit (per_cu, item->pretend_language);
7829
b4f54984 7830 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7831 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7832 }
10b3939b
DJ
7833
7834 item->per_cu->queued = 0;
7835 next_item = item->next;
7836 xfree (item);
7837 }
7838
7839 dwarf2_queue_tail = NULL;
45cfd468 7840
b4f54984 7841 if (dwarf_read_debug)
45cfd468
DE
7842 {
7843 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7844 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7845 }
10b3939b
DJ
7846}
7847
7848/* Free all allocated queue entries. This function only releases anything if
7849 an error was thrown; if the queue was processed then it would have been
7850 freed as we went along. */
7851
7852static void
7853dwarf2_release_queue (void *dummy)
7854{
7855 struct dwarf2_queue_item *item, *last;
7856
7857 item = dwarf2_queue;
7858 while (item)
7859 {
7860 /* Anything still marked queued is likely to be in an
7861 inconsistent state, so discard it. */
7862 if (item->per_cu->queued)
7863 {
7864 if (item->per_cu->cu != NULL)
dee91e82 7865 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7866 item->per_cu->queued = 0;
7867 }
7868
7869 last = item;
7870 item = item->next;
7871 xfree (last);
7872 }
7873
7874 dwarf2_queue = dwarf2_queue_tail = NULL;
7875}
7876
7877/* Read in full symbols for PST, and anything it depends on. */
7878
c906108c 7879static void
fba45db2 7880psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7881{
10b3939b 7882 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7883 int i;
7884
95554aad
TT
7885 if (pst->readin)
7886 return;
7887
aaa75496 7888 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7889 if (!pst->dependencies[i]->readin
7890 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7891 {
7892 /* Inform about additional files that need to be read in. */
7893 if (info_verbose)
7894 {
a3f17187 7895 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7896 fputs_filtered (" ", gdb_stdout);
7897 wrap_here ("");
7898 fputs_filtered ("and ", gdb_stdout);
7899 wrap_here ("");
7900 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7901 wrap_here (""); /* Flush output. */
aaa75496
JB
7902 gdb_flush (gdb_stdout);
7903 }
7904 psymtab_to_symtab_1 (pst->dependencies[i]);
7905 }
7906
9a3c8263 7907 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7908
7909 if (per_cu == NULL)
aaa75496
JB
7910 {
7911 /* It's an include file, no symbols to read for it.
7912 Everything is in the parent symtab. */
7913 pst->readin = 1;
7914 return;
7915 }
c906108c 7916
a0f42c21 7917 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7918}
7919
dee91e82
DE
7920/* Trivial hash function for die_info: the hash value of a DIE
7921 is its offset in .debug_info for this objfile. */
10b3939b 7922
dee91e82
DE
7923static hashval_t
7924die_hash (const void *item)
10b3939b 7925{
9a3c8263 7926 const struct die_info *die = (const struct die_info *) item;
6502dd73 7927
9c541725 7928 return to_underlying (die->sect_off);
dee91e82 7929}
63d06c5c 7930
dee91e82
DE
7931/* Trivial comparison function for die_info structures: two DIEs
7932 are equal if they have the same offset. */
98bfdba5 7933
dee91e82
DE
7934static int
7935die_eq (const void *item_lhs, const void *item_rhs)
7936{
9a3c8263
SM
7937 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7938 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7939
9c541725 7940 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7941}
c906108c 7942
dee91e82
DE
7943/* die_reader_func for load_full_comp_unit.
7944 This is identical to read_signatured_type_reader,
7945 but is kept separate for now. */
c906108c 7946
dee91e82
DE
7947static void
7948load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7949 const gdb_byte *info_ptr,
dee91e82
DE
7950 struct die_info *comp_unit_die,
7951 int has_children,
7952 void *data)
7953{
7954 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7955 enum language *language_ptr = (enum language *) data;
6caca83c 7956
dee91e82
DE
7957 gdb_assert (cu->die_hash == NULL);
7958 cu->die_hash =
7959 htab_create_alloc_ex (cu->header.length / 12,
7960 die_hash,
7961 die_eq,
7962 NULL,
7963 &cu->comp_unit_obstack,
7964 hashtab_obstack_allocate,
7965 dummy_obstack_deallocate);
e142c38c 7966
dee91e82
DE
7967 if (has_children)
7968 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7969 &info_ptr, comp_unit_die);
7970 cu->dies = comp_unit_die;
7971 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7972
7973 /* We try not to read any attributes in this function, because not
9cdd5dbd 7974 all CUs needed for references have been loaded yet, and symbol
10b3939b 7975 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7976 or we won't be able to build types correctly.
7977 Similarly, if we do not read the producer, we can not apply
7978 producer-specific interpretation. */
95554aad 7979 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7980}
10b3939b 7981
dee91e82 7982/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7983
dee91e82 7984static void
95554aad
TT
7985load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7986 enum language pretend_language)
dee91e82 7987{
3019eac3 7988 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7989
f4dc4d17
DE
7990 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7991 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7992}
7993
3da10d80
KS
7994/* Add a DIE to the delayed physname list. */
7995
7996static void
7997add_to_method_list (struct type *type, int fnfield_index, int index,
7998 const char *name, struct die_info *die,
7999 struct dwarf2_cu *cu)
8000{
8001 struct delayed_method_info mi;
8002 mi.type = type;
8003 mi.fnfield_index = fnfield_index;
8004 mi.index = index;
8005 mi.name = name;
8006 mi.die = die;
8007 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8008}
8009
8010/* A cleanup for freeing the delayed method list. */
8011
8012static void
8013free_delayed_list (void *ptr)
8014{
8015 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8016 if (cu->method_list != NULL)
8017 {
8018 VEC_free (delayed_method_info, cu->method_list);
8019 cu->method_list = NULL;
8020 }
8021}
8022
3693fdb3
PA
8023/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8024 "const" / "volatile". If so, decrements LEN by the length of the
8025 modifier and return true. Otherwise return false. */
8026
8027template<size_t N>
8028static bool
8029check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8030{
8031 size_t mod_len = sizeof (mod) - 1;
8032 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8033 {
8034 len -= mod_len;
8035 return true;
8036 }
8037 return false;
8038}
8039
3da10d80
KS
8040/* Compute the physnames of any methods on the CU's method list.
8041
8042 The computation of method physnames is delayed in order to avoid the
8043 (bad) condition that one of the method's formal parameters is of an as yet
8044 incomplete type. */
8045
8046static void
8047compute_delayed_physnames (struct dwarf2_cu *cu)
8048{
8049 int i;
8050 struct delayed_method_info *mi;
3693fdb3
PA
8051
8052 /* Only C++ delays computing physnames. */
8053 if (VEC_empty (delayed_method_info, cu->method_list))
8054 return;
8055 gdb_assert (cu->language == language_cplus);
8056
3da10d80
KS
8057 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8058 {
1d06ead6 8059 const char *physname;
3da10d80
KS
8060 struct fn_fieldlist *fn_flp
8061 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8062 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8063 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8064 = physname ? physname : "";
3693fdb3
PA
8065
8066 /* Since there's no tag to indicate whether a method is a
8067 const/volatile overload, extract that information out of the
8068 demangled name. */
8069 if (physname != NULL)
8070 {
8071 size_t len = strlen (physname);
8072
8073 while (1)
8074 {
8075 if (physname[len] == ')') /* shortcut */
8076 break;
8077 else if (check_modifier (physname, len, " const"))
8078 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8079 else if (check_modifier (physname, len, " volatile"))
8080 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8081 else
8082 break;
8083 }
8084 }
3da10d80
KS
8085 }
8086}
8087
a766d390
DE
8088/* Go objects should be embedded in a DW_TAG_module DIE,
8089 and it's not clear if/how imported objects will appear.
8090 To keep Go support simple until that's worked out,
8091 go back through what we've read and create something usable.
8092 We could do this while processing each DIE, and feels kinda cleaner,
8093 but that way is more invasive.
8094 This is to, for example, allow the user to type "p var" or "b main"
8095 without having to specify the package name, and allow lookups
8096 of module.object to work in contexts that use the expression
8097 parser. */
8098
8099static void
8100fixup_go_packaging (struct dwarf2_cu *cu)
8101{
8102 char *package_name = NULL;
8103 struct pending *list;
8104 int i;
8105
8106 for (list = global_symbols; list != NULL; list = list->next)
8107 {
8108 for (i = 0; i < list->nsyms; ++i)
8109 {
8110 struct symbol *sym = list->symbol[i];
8111
8112 if (SYMBOL_LANGUAGE (sym) == language_go
8113 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8114 {
8115 char *this_package_name = go_symbol_package_name (sym);
8116
8117 if (this_package_name == NULL)
8118 continue;
8119 if (package_name == NULL)
8120 package_name = this_package_name;
8121 else
8122 {
8123 if (strcmp (package_name, this_package_name) != 0)
8124 complaint (&symfile_complaints,
8125 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8126 (symbol_symtab (sym) != NULL
8127 ? symtab_to_filename_for_display
8128 (symbol_symtab (sym))
4262abfb 8129 : objfile_name (cu->objfile)),
a766d390
DE
8130 this_package_name, package_name);
8131 xfree (this_package_name);
8132 }
8133 }
8134 }
8135 }
8136
8137 if (package_name != NULL)
8138 {
8139 struct objfile *objfile = cu->objfile;
34a68019 8140 const char *saved_package_name
224c3ddb
SM
8141 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8142 package_name,
8143 strlen (package_name));
19f392bc
UW
8144 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8145 saved_package_name);
a766d390
DE
8146 struct symbol *sym;
8147
8148 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8149
e623cf5d 8150 sym = allocate_symbol (objfile);
f85f34ed 8151 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8152 SYMBOL_SET_NAMES (sym, saved_package_name,
8153 strlen (saved_package_name), 0, objfile);
a766d390
DE
8154 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8155 e.g., "main" finds the "main" module and not C's main(). */
8156 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8157 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8158 SYMBOL_TYPE (sym) = type;
8159
8160 add_symbol_to_list (sym, &global_symbols);
8161
8162 xfree (package_name);
8163 }
8164}
8165
95554aad
TT
8166/* Return the symtab for PER_CU. This works properly regardless of
8167 whether we're using the index or psymtabs. */
8168
43f3e411
DE
8169static struct compunit_symtab *
8170get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8171{
8172 return (dwarf2_per_objfile->using_index
43f3e411
DE
8173 ? per_cu->v.quick->compunit_symtab
8174 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8175}
8176
8177/* A helper function for computing the list of all symbol tables
8178 included by PER_CU. */
8179
8180static void
43f3e411 8181recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8182 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8183 struct dwarf2_per_cu_data *per_cu,
43f3e411 8184 struct compunit_symtab *immediate_parent)
95554aad
TT
8185{
8186 void **slot;
8187 int ix;
43f3e411 8188 struct compunit_symtab *cust;
95554aad
TT
8189 struct dwarf2_per_cu_data *iter;
8190
8191 slot = htab_find_slot (all_children, per_cu, INSERT);
8192 if (*slot != NULL)
8193 {
8194 /* This inclusion and its children have been processed. */
8195 return;
8196 }
8197
8198 *slot = per_cu;
8199 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8200 cust = get_compunit_symtab (per_cu);
8201 if (cust != NULL)
ec94af83
DE
8202 {
8203 /* If this is a type unit only add its symbol table if we haven't
8204 seen it yet (type unit per_cu's can share symtabs). */
8205 if (per_cu->is_debug_types)
8206 {
43f3e411 8207 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8208 if (*slot == NULL)
8209 {
43f3e411
DE
8210 *slot = cust;
8211 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8212 if (cust->user == NULL)
8213 cust->user = immediate_parent;
ec94af83
DE
8214 }
8215 }
8216 else
f9125b6c 8217 {
43f3e411
DE
8218 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8219 if (cust->user == NULL)
8220 cust->user = immediate_parent;
f9125b6c 8221 }
ec94af83 8222 }
95554aad
TT
8223
8224 for (ix = 0;
796a7ff8 8225 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8226 ++ix)
ec94af83
DE
8227 {
8228 recursively_compute_inclusions (result, all_children,
43f3e411 8229 all_type_symtabs, iter, cust);
ec94af83 8230 }
95554aad
TT
8231}
8232
43f3e411 8233/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8234 PER_CU. */
8235
8236static void
43f3e411 8237compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8238{
f4dc4d17
DE
8239 gdb_assert (! per_cu->is_debug_types);
8240
796a7ff8 8241 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8242 {
8243 int ix, len;
ec94af83 8244 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8245 struct compunit_symtab *compunit_symtab_iter;
8246 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8247 htab_t all_children, all_type_symtabs;
43f3e411 8248 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8249
8250 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8251 if (cust == NULL)
95554aad
TT
8252 return;
8253
8254 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8255 NULL, xcalloc, xfree);
ec94af83
DE
8256 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8257 NULL, xcalloc, xfree);
95554aad
TT
8258
8259 for (ix = 0;
796a7ff8 8260 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8261 ix, per_cu_iter);
95554aad 8262 ++ix)
ec94af83
DE
8263 {
8264 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8265 all_type_symtabs, per_cu_iter,
43f3e411 8266 cust);
ec94af83 8267 }
95554aad 8268
ec94af83 8269 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8270 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8271 cust->includes
8d749320
SM
8272 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8273 struct compunit_symtab *, len + 1);
95554aad 8274 for (ix = 0;
43f3e411
DE
8275 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8276 compunit_symtab_iter);
95554aad 8277 ++ix)
43f3e411
DE
8278 cust->includes[ix] = compunit_symtab_iter;
8279 cust->includes[len] = NULL;
95554aad 8280
43f3e411 8281 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8282 htab_delete (all_children);
ec94af83 8283 htab_delete (all_type_symtabs);
95554aad
TT
8284 }
8285}
8286
8287/* Compute the 'includes' field for the symtabs of all the CUs we just
8288 read. */
8289
8290static void
8291process_cu_includes (void)
8292{
8293 int ix;
8294 struct dwarf2_per_cu_data *iter;
8295
8296 for (ix = 0;
8297 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8298 ix, iter);
8299 ++ix)
f4dc4d17
DE
8300 {
8301 if (! iter->is_debug_types)
43f3e411 8302 compute_compunit_symtab_includes (iter);
f4dc4d17 8303 }
95554aad
TT
8304
8305 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8306}
8307
9cdd5dbd 8308/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8309 already been loaded into memory. */
8310
8311static void
95554aad
TT
8312process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8313 enum language pretend_language)
10b3939b 8314{
10b3939b 8315 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8316 struct objfile *objfile = per_cu->objfile;
3e29f34a 8317 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8318 CORE_ADDR lowpc, highpc;
43f3e411 8319 struct compunit_symtab *cust;
33c7c59d 8320 struct cleanup *delayed_list_cleanup;
10b3939b 8321 CORE_ADDR baseaddr;
4359dff1 8322 struct block *static_block;
3e29f34a 8323 CORE_ADDR addr;
10b3939b
DJ
8324
8325 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8326
10b3939b 8327 buildsym_init ();
33c7c59d 8328 scoped_free_pendings free_pending;
3da10d80 8329 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8330
8331 cu->list_in_scope = &file_symbols;
c906108c 8332
95554aad
TT
8333 cu->language = pretend_language;
8334 cu->language_defn = language_def (cu->language);
8335
c906108c 8336 /* Do line number decoding in read_file_scope () */
10b3939b 8337 process_die (cu->dies, cu);
c906108c 8338
a766d390
DE
8339 /* For now fudge the Go package. */
8340 if (cu->language == language_go)
8341 fixup_go_packaging (cu);
8342
3da10d80
KS
8343 /* Now that we have processed all the DIEs in the CU, all the types
8344 should be complete, and it should now be safe to compute all of the
8345 physnames. */
8346 compute_delayed_physnames (cu);
8347 do_cleanups (delayed_list_cleanup);
8348
fae299cd
DC
8349 /* Some compilers don't define a DW_AT_high_pc attribute for the
8350 compilation unit. If the DW_AT_high_pc is missing, synthesize
8351 it, by scanning the DIE's below the compilation unit. */
10b3939b 8352 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8353
3e29f34a
MR
8354 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8355 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8356
8357 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8358 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8359 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8360 addrmap to help ensure it has an accurate map of pc values belonging to
8361 this comp unit. */
8362 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8363
43f3e411
DE
8364 cust = end_symtab_from_static_block (static_block,
8365 SECT_OFF_TEXT (objfile), 0);
c906108c 8366
43f3e411 8367 if (cust != NULL)
c906108c 8368 {
df15bd07 8369 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8370
8be455d7
JK
8371 /* Set symtab language to language from DW_AT_language. If the
8372 compilation is from a C file generated by language preprocessors, do
8373 not set the language if it was already deduced by start_subfile. */
43f3e411 8374 if (!(cu->language == language_c
40e3ad0e 8375 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8376 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8377
8378 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8379 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8380 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8381 there were bugs in prologue debug info, fixed later in GCC-4.5
8382 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8383
8384 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8385 needed, it would be wrong due to missing DW_AT_producer there.
8386
8387 Still one can confuse GDB by using non-standard GCC compilation
8388 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8389 */
ab260dad 8390 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8391 cust->locations_valid = 1;
e0d00bc7
JK
8392
8393 if (gcc_4_minor >= 5)
43f3e411 8394 cust->epilogue_unwind_valid = 1;
96408a79 8395
43f3e411 8396 cust->call_site_htab = cu->call_site_htab;
c906108c 8397 }
9291a0cd
TT
8398
8399 if (dwarf2_per_objfile->using_index)
43f3e411 8400 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8401 else
8402 {
8403 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8404 pst->compunit_symtab = cust;
9291a0cd
TT
8405 pst->readin = 1;
8406 }
c906108c 8407
95554aad
TT
8408 /* Push it for inclusion processing later. */
8409 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
f4dc4d17 8410}
45cfd468 8411
f4dc4d17
DE
8412/* Generate full symbol information for type unit PER_CU, whose DIEs have
8413 already been loaded into memory. */
8414
8415static void
8416process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8417 enum language pretend_language)
8418{
8419 struct dwarf2_cu *cu = per_cu->cu;
8420 struct objfile *objfile = per_cu->objfile;
43f3e411 8421 struct compunit_symtab *cust;
33c7c59d 8422 struct cleanup *delayed_list_cleanup;
0186c6a7
DE
8423 struct signatured_type *sig_type;
8424
8425 gdb_assert (per_cu->is_debug_types);
8426 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8427
8428 buildsym_init ();
33c7c59d 8429 scoped_free_pendings free_pending;
f4dc4d17
DE
8430 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8431
8432 cu->list_in_scope = &file_symbols;
8433
8434 cu->language = pretend_language;
8435 cu->language_defn = language_def (cu->language);
8436
8437 /* The symbol tables are set up in read_type_unit_scope. */
8438 process_die (cu->dies, cu);
8439
8440 /* For now fudge the Go package. */
8441 if (cu->language == language_go)
8442 fixup_go_packaging (cu);
8443
8444 /* Now that we have processed all the DIEs in the CU, all the types
8445 should be complete, and it should now be safe to compute all of the
8446 physnames. */
8447 compute_delayed_physnames (cu);
8448 do_cleanups (delayed_list_cleanup);
8449
8450 /* TUs share symbol tables.
8451 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8452 of it with end_expandable_symtab. Otherwise, complete the addition of
8453 this TU's symbols to the existing symtab. */
43f3e411 8454 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8455 {
43f3e411
DE
8456 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8457 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8458
43f3e411 8459 if (cust != NULL)
f4dc4d17
DE
8460 {
8461 /* Set symtab language to language from DW_AT_language. If the
8462 compilation is from a C file generated by language preprocessors,
8463 do not set the language if it was already deduced by
8464 start_subfile. */
43f3e411
DE
8465 if (!(cu->language == language_c
8466 && COMPUNIT_FILETABS (cust)->language != language_c))
8467 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8468 }
8469 }
8470 else
8471 {
0ab9ce85 8472 augment_type_symtab ();
43f3e411 8473 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8474 }
8475
8476 if (dwarf2_per_objfile->using_index)
43f3e411 8477 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8478 else
8479 {
8480 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8481 pst->compunit_symtab = cust;
f4dc4d17 8482 pst->readin = 1;
45cfd468 8483 }
c906108c
SS
8484}
8485
95554aad
TT
8486/* Process an imported unit DIE. */
8487
8488static void
8489process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8490{
8491 struct attribute *attr;
8492
f4dc4d17
DE
8493 /* For now we don't handle imported units in type units. */
8494 if (cu->per_cu->is_debug_types)
8495 {
8496 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8497 " supported in type units [in module %s]"),
4262abfb 8498 objfile_name (cu->objfile));
f4dc4d17
DE
8499 }
8500
95554aad
TT
8501 attr = dwarf2_attr (die, DW_AT_import, cu);
8502 if (attr != NULL)
8503 {
9c541725
PA
8504 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8505 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8506 dwarf2_per_cu_data *per_cu
8507 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8508
69d751e3 8509 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8510 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8511 load_full_comp_unit (per_cu, cu->language);
8512
796a7ff8 8513 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8514 per_cu);
8515 }
8516}
8517
4c8aa72d
PA
8518/* RAII object that represents a process_die scope: i.e.,
8519 starts/finishes processing a DIE. */
8520class process_die_scope
adde2bff 8521{
4c8aa72d
PA
8522public:
8523 process_die_scope (die_info *die, dwarf2_cu *cu)
8524 : m_die (die), m_cu (cu)
8525 {
8526 /* We should only be processing DIEs not already in process. */
8527 gdb_assert (!m_die->in_process);
8528 m_die->in_process = true;
8529 }
8c3cb9fa 8530
4c8aa72d
PA
8531 ~process_die_scope ()
8532 {
8533 m_die->in_process = false;
8534
8535 /* If we're done processing the DIE for the CU that owns the line
8536 header, we don't need the line header anymore. */
8537 if (m_cu->line_header_die_owner == m_die)
8538 {
8539 delete m_cu->line_header;
8540 m_cu->line_header = NULL;
8541 m_cu->line_header_die_owner = NULL;
8542 }
8543 }
8544
8545private:
8546 die_info *m_die;
8547 dwarf2_cu *m_cu;
8548};
adde2bff 8549
c906108c
SS
8550/* Process a die and its children. */
8551
8552static void
e7c27a73 8553process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8554{
4c8aa72d 8555 process_die_scope scope (die, cu);
adde2bff 8556
c906108c
SS
8557 switch (die->tag)
8558 {
8559 case DW_TAG_padding:
8560 break;
8561 case DW_TAG_compile_unit:
95554aad 8562 case DW_TAG_partial_unit:
e7c27a73 8563 read_file_scope (die, cu);
c906108c 8564 break;
348e048f
DE
8565 case DW_TAG_type_unit:
8566 read_type_unit_scope (die, cu);
8567 break;
c906108c 8568 case DW_TAG_subprogram:
c906108c 8569 case DW_TAG_inlined_subroutine:
edb3359d 8570 read_func_scope (die, cu);
c906108c
SS
8571 break;
8572 case DW_TAG_lexical_block:
14898363
L
8573 case DW_TAG_try_block:
8574 case DW_TAG_catch_block:
e7c27a73 8575 read_lexical_block_scope (die, cu);
c906108c 8576 break;
216f72a1 8577 case DW_TAG_call_site:
96408a79
SA
8578 case DW_TAG_GNU_call_site:
8579 read_call_site_scope (die, cu);
8580 break;
c906108c 8581 case DW_TAG_class_type:
680b30c7 8582 case DW_TAG_interface_type:
c906108c
SS
8583 case DW_TAG_structure_type:
8584 case DW_TAG_union_type:
134d01f1 8585 process_structure_scope (die, cu);
c906108c
SS
8586 break;
8587 case DW_TAG_enumeration_type:
134d01f1 8588 process_enumeration_scope (die, cu);
c906108c 8589 break;
134d01f1 8590
f792889a
DJ
8591 /* These dies have a type, but processing them does not create
8592 a symbol or recurse to process the children. Therefore we can
8593 read them on-demand through read_type_die. */
c906108c 8594 case DW_TAG_subroutine_type:
72019c9c 8595 case DW_TAG_set_type:
c906108c 8596 case DW_TAG_array_type:
c906108c 8597 case DW_TAG_pointer_type:
c906108c 8598 case DW_TAG_ptr_to_member_type:
c906108c 8599 case DW_TAG_reference_type:
4297a3f0 8600 case DW_TAG_rvalue_reference_type:
c906108c 8601 case DW_TAG_string_type:
c906108c 8602 break;
134d01f1 8603
c906108c 8604 case DW_TAG_base_type:
a02abb62 8605 case DW_TAG_subrange_type:
cb249c71 8606 case DW_TAG_typedef:
134d01f1
DJ
8607 /* Add a typedef symbol for the type definition, if it has a
8608 DW_AT_name. */
f792889a 8609 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8610 break;
c906108c 8611 case DW_TAG_common_block:
e7c27a73 8612 read_common_block (die, cu);
c906108c
SS
8613 break;
8614 case DW_TAG_common_inclusion:
8615 break;
d9fa45fe 8616 case DW_TAG_namespace:
4d4ec4e5 8617 cu->processing_has_namespace_info = 1;
e7c27a73 8618 read_namespace (die, cu);
d9fa45fe 8619 break;
5d7cb8df 8620 case DW_TAG_module:
4d4ec4e5 8621 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8622 read_module (die, cu);
8623 break;
d9fa45fe 8624 case DW_TAG_imported_declaration:
74921315
KS
8625 cu->processing_has_namespace_info = 1;
8626 if (read_namespace_alias (die, cu))
8627 break;
8628 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8629 case DW_TAG_imported_module:
4d4ec4e5 8630 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8631 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8632 || cu->language != language_fortran))
8633 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8634 dwarf_tag_name (die->tag));
8635 read_import_statement (die, cu);
d9fa45fe 8636 break;
95554aad
TT
8637
8638 case DW_TAG_imported_unit:
8639 process_imported_unit_die (die, cu);
8640 break;
8641
c906108c 8642 default:
e7c27a73 8643 new_symbol (die, NULL, cu);
c906108c
SS
8644 break;
8645 }
8646}
ca69b9e6
DE
8647\f
8648/* DWARF name computation. */
c906108c 8649
94af9270
KS
8650/* A helper function for dwarf2_compute_name which determines whether DIE
8651 needs to have the name of the scope prepended to the name listed in the
8652 die. */
8653
8654static int
8655die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8656{
1c809c68
TT
8657 struct attribute *attr;
8658
94af9270
KS
8659 switch (die->tag)
8660 {
8661 case DW_TAG_namespace:
8662 case DW_TAG_typedef:
8663 case DW_TAG_class_type:
8664 case DW_TAG_interface_type:
8665 case DW_TAG_structure_type:
8666 case DW_TAG_union_type:
8667 case DW_TAG_enumeration_type:
8668 case DW_TAG_enumerator:
8669 case DW_TAG_subprogram:
08a76f8a 8670 case DW_TAG_inlined_subroutine:
94af9270 8671 case DW_TAG_member:
74921315 8672 case DW_TAG_imported_declaration:
94af9270
KS
8673 return 1;
8674
8675 case DW_TAG_variable:
c2b0a229 8676 case DW_TAG_constant:
94af9270
KS
8677 /* We only need to prefix "globally" visible variables. These include
8678 any variable marked with DW_AT_external or any variable that
8679 lives in a namespace. [Variables in anonymous namespaces
8680 require prefixing, but they are not DW_AT_external.] */
8681
8682 if (dwarf2_attr (die, DW_AT_specification, cu))
8683 {
8684 struct dwarf2_cu *spec_cu = cu;
9a619af0 8685
94af9270
KS
8686 return die_needs_namespace (die_specification (die, &spec_cu),
8687 spec_cu);
8688 }
8689
1c809c68 8690 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8691 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8692 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8693 return 0;
8694 /* A variable in a lexical block of some kind does not need a
8695 namespace, even though in C++ such variables may be external
8696 and have a mangled name. */
8697 if (die->parent->tag == DW_TAG_lexical_block
8698 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8699 || die->parent->tag == DW_TAG_catch_block
8700 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8701 return 0;
8702 return 1;
94af9270
KS
8703
8704 default:
8705 return 0;
8706 }
8707}
8708
73b9be8b
KS
8709/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8710 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8711 defined for the given DIE. */
8712
8713static struct attribute *
8714dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8715{
8716 struct attribute *attr;
8717
8718 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8719 if (attr == NULL)
8720 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 return attr;
8723}
8724
8725/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8726 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8727 defined for the given DIE. */
8728
8729static const char *
8730dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8731{
8732 const char *linkage_name;
8733
8734 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8735 if (linkage_name == NULL)
8736 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8737
8738 return linkage_name;
8739}
8740
94af9270 8741/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8742 compute the physname for the object, which include a method's:
9c37b5ae 8743 - formal parameters (C++),
a766d390 8744 - receiver type (Go),
a766d390
DE
8745
8746 The term "physname" is a bit confusing.
8747 For C++, for example, it is the demangled name.
8748 For Go, for example, it's the mangled name.
94af9270 8749
af6b7be1
JB
8750 For Ada, return the DIE's linkage name rather than the fully qualified
8751 name. PHYSNAME is ignored..
8752
94af9270
KS
8753 The result is allocated on the objfile_obstack and canonicalized. */
8754
8755static const char *
15d034d0
TT
8756dwarf2_compute_name (const char *name,
8757 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8758 int physname)
8759{
bb5ed363
DE
8760 struct objfile *objfile = cu->objfile;
8761
94af9270
KS
8762 if (name == NULL)
8763 name = dwarf2_name (die, cu);
8764
2ee7123e
DE
8765 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8766 but otherwise compute it by typename_concat inside GDB.
8767 FIXME: Actually this is not really true, or at least not always true.
8768 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8769 Fortran names because there is no mangling standard. So new_symbol_full
8770 will set the demangled name to the result of dwarf2_full_name, and it is
8771 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8772 if (cu->language == language_ada
8773 || (cu->language == language_fortran && physname))
8774 {
8775 /* For Ada unit, we prefer the linkage name over the name, as
8776 the former contains the exported name, which the user expects
8777 to be able to reference. Ideally, we want the user to be able
8778 to reference this entity using either natural or linkage name,
8779 but we haven't started looking at this enhancement yet. */
73b9be8b 8780 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 8781
2ee7123e
DE
8782 if (linkage_name != NULL)
8783 return linkage_name;
f55ee35c
JK
8784 }
8785
94af9270
KS
8786 /* These are the only languages we know how to qualify names in. */
8787 if (name != NULL
9c37b5ae 8788 && (cu->language == language_cplus
c44af4eb
TT
8789 || cu->language == language_fortran || cu->language == language_d
8790 || cu->language == language_rust))
94af9270
KS
8791 {
8792 if (die_needs_namespace (die, cu))
8793 {
8794 long length;
0d5cff50 8795 const char *prefix;
34a68019 8796 const char *canonical_name = NULL;
94af9270 8797
d7e74731
PA
8798 string_file buf;
8799
94af9270 8800 prefix = determine_prefix (die, cu);
94af9270
KS
8801 if (*prefix != '\0')
8802 {
f55ee35c
JK
8803 char *prefixed_name = typename_concat (NULL, prefix, name,
8804 physname, cu);
9a619af0 8805
d7e74731 8806 buf.puts (prefixed_name);
94af9270
KS
8807 xfree (prefixed_name);
8808 }
8809 else
d7e74731 8810 buf.puts (name);
94af9270 8811
98bfdba5
PA
8812 /* Template parameters may be specified in the DIE's DW_AT_name, or
8813 as children with DW_TAG_template_type_param or
8814 DW_TAG_value_type_param. If the latter, add them to the name
8815 here. If the name already has template parameters, then
8816 skip this step; some versions of GCC emit both, and
8817 it is more efficient to use the pre-computed name.
8818
8819 Something to keep in mind about this process: it is very
8820 unlikely, or in some cases downright impossible, to produce
8821 something that will match the mangled name of a function.
8822 If the definition of the function has the same debug info,
8823 we should be able to match up with it anyway. But fallbacks
8824 using the minimal symbol, for instance to find a method
8825 implemented in a stripped copy of libstdc++, will not work.
8826 If we do not have debug info for the definition, we will have to
8827 match them up some other way.
8828
8829 When we do name matching there is a related problem with function
8830 templates; two instantiated function templates are allowed to
8831 differ only by their return types, which we do not add here. */
8832
8833 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8834 {
8835 struct attribute *attr;
8836 struct die_info *child;
8837 int first = 1;
8838
8839 die->building_fullname = 1;
8840
8841 for (child = die->child; child != NULL; child = child->sibling)
8842 {
8843 struct type *type;
12df843f 8844 LONGEST value;
d521ce57 8845 const gdb_byte *bytes;
98bfdba5
PA
8846 struct dwarf2_locexpr_baton *baton;
8847 struct value *v;
8848
8849 if (child->tag != DW_TAG_template_type_param
8850 && child->tag != DW_TAG_template_value_param)
8851 continue;
8852
8853 if (first)
8854 {
d7e74731 8855 buf.puts ("<");
98bfdba5
PA
8856 first = 0;
8857 }
8858 else
d7e74731 8859 buf.puts (", ");
98bfdba5
PA
8860
8861 attr = dwarf2_attr (child, DW_AT_type, cu);
8862 if (attr == NULL)
8863 {
8864 complaint (&symfile_complaints,
8865 _("template parameter missing DW_AT_type"));
d7e74731 8866 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8867 continue;
8868 }
8869 type = die_type (child, cu);
8870
8871 if (child->tag == DW_TAG_template_type_param)
8872 {
d7e74731 8873 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8874 continue;
8875 }
8876
8877 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8878 if (attr == NULL)
8879 {
8880 complaint (&symfile_complaints,
3e43a32a
MS
8881 _("template parameter missing "
8882 "DW_AT_const_value"));
d7e74731 8883 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8884 continue;
8885 }
8886
8887 dwarf2_const_value_attr (attr, type, name,
8888 &cu->comp_unit_obstack, cu,
8889 &value, &bytes, &baton);
8890
8891 if (TYPE_NOSIGN (type))
8892 /* GDB prints characters as NUMBER 'CHAR'. If that's
8893 changed, this can use value_print instead. */
d7e74731 8894 c_printchar (value, type, &buf);
98bfdba5
PA
8895 else
8896 {
8897 struct value_print_options opts;
8898
8899 if (baton != NULL)
8900 v = dwarf2_evaluate_loc_desc (type, NULL,
8901 baton->data,
8902 baton->size,
8903 baton->per_cu);
8904 else if (bytes != NULL)
8905 {
8906 v = allocate_value (type);
8907 memcpy (value_contents_writeable (v), bytes,
8908 TYPE_LENGTH (type));
8909 }
8910 else
8911 v = value_from_longest (type, value);
8912
3e43a32a
MS
8913 /* Specify decimal so that we do not depend on
8914 the radix. */
98bfdba5
PA
8915 get_formatted_print_options (&opts, 'd');
8916 opts.raw = 1;
d7e74731 8917 value_print (v, &buf, &opts);
98bfdba5
PA
8918 release_value (v);
8919 value_free (v);
8920 }
8921 }
8922
8923 die->building_fullname = 0;
8924
8925 if (!first)
8926 {
8927 /* Close the argument list, with a space if necessary
8928 (nested templates). */
d7e74731
PA
8929 if (!buf.empty () && buf.string ().back () == '>')
8930 buf.puts (" >");
98bfdba5 8931 else
d7e74731 8932 buf.puts (">");
98bfdba5
PA
8933 }
8934 }
8935
9c37b5ae 8936 /* For C++ methods, append formal parameter type
94af9270 8937 information, if PHYSNAME. */
6e70227d 8938
94af9270 8939 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8940 && cu->language == language_cplus)
94af9270
KS
8941 {
8942 struct type *type = read_type_die (die, cu);
8943
d7e74731 8944 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8945 &type_print_raw_options);
94af9270 8946
9c37b5ae 8947 if (cu->language == language_cplus)
94af9270 8948 {
60430eff
DJ
8949 /* Assume that an artificial first parameter is
8950 "this", but do not crash if it is not. RealView
8951 marks unnamed (and thus unused) parameters as
8952 artificial; there is no way to differentiate
8953 the two cases. */
94af9270
KS
8954 if (TYPE_NFIELDS (type) > 0
8955 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8956 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8957 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8958 0))))
d7e74731 8959 buf.puts (" const");
94af9270
KS
8960 }
8961 }
8962
d7e74731 8963 const std::string &intermediate_name = buf.string ();
94af9270
KS
8964
8965 if (cu->language == language_cplus)
34a68019 8966 canonical_name
322a8516 8967 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8968 &objfile->per_bfd->storage_obstack);
8969
8970 /* If we only computed INTERMEDIATE_NAME, or if
8971 INTERMEDIATE_NAME is already canonical, then we need to
8972 copy it to the appropriate obstack. */
322a8516 8973 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8974 name = ((const char *)
8975 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8976 intermediate_name.c_str (),
8977 intermediate_name.length ()));
34a68019
TT
8978 else
8979 name = canonical_name;
94af9270
KS
8980 }
8981 }
8982
8983 return name;
8984}
8985
0114d602
DJ
8986/* Return the fully qualified name of DIE, based on its DW_AT_name.
8987 If scope qualifiers are appropriate they will be added. The result
34a68019 8988 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8989 not have a name. NAME may either be from a previous call to
8990 dwarf2_name or NULL.
8991
9c37b5ae 8992 The output string will be canonicalized (if C++). */
0114d602
DJ
8993
8994static const char *
15d034d0 8995dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8996{
94af9270
KS
8997 return dwarf2_compute_name (name, die, cu, 0);
8998}
0114d602 8999
94af9270
KS
9000/* Construct a physname for the given DIE in CU. NAME may either be
9001 from a previous call to dwarf2_name or NULL. The result will be
9002 allocated on the objfile_objstack or NULL if the DIE does not have a
9003 name.
0114d602 9004
9c37b5ae 9005 The output string will be canonicalized (if C++). */
0114d602 9006
94af9270 9007static const char *
15d034d0 9008dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 9009{
bb5ed363 9010 struct objfile *objfile = cu->objfile;
900e11f9 9011 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
9012 int need_copy = 1;
9013
9014 /* In this case dwarf2_compute_name is just a shortcut not building anything
9015 on its own. */
9016 if (!die_needs_namespace (die, cu))
9017 return dwarf2_compute_name (name, die, cu, 1);
9018
73b9be8b 9019 mangled = dw2_linkage_name (die, cu);
900e11f9 9020
e98c9e7c
TT
9021 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9022 See https://github.com/rust-lang/rust/issues/32925. */
9023 if (cu->language == language_rust && mangled != NULL
9024 && strchr (mangled, '{') != NULL)
9025 mangled = NULL;
9026
900e11f9
JK
9027 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9028 has computed. */
791afaa2 9029 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 9030 if (mangled != NULL)
900e11f9 9031 {
900e11f9
JK
9032 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9033 type. It is easier for GDB users to search for such functions as
9034 `name(params)' than `long name(params)'. In such case the minimal
9035 symbol names do not match the full symbol names but for template
9036 functions there is never a need to look up their definition from their
9037 declaration so the only disadvantage remains the minimal symbol
9038 variant `long name(params)' does not have the proper inferior type.
9039 */
9040
a766d390
DE
9041 if (cu->language == language_go)
9042 {
9043 /* This is a lie, but we already lie to the caller new_symbol_full.
9044 new_symbol_full assumes we return the mangled name.
9045 This just undoes that lie until things are cleaned up. */
a766d390
DE
9046 }
9047 else
9048 {
791afaa2
TT
9049 demangled.reset (gdb_demangle (mangled,
9050 (DMGL_PARAMS | DMGL_ANSI
9051 | DMGL_RET_DROP)));
a766d390 9052 }
900e11f9 9053 if (demangled)
791afaa2 9054 canon = demangled.get ();
900e11f9
JK
9055 else
9056 {
9057 canon = mangled;
9058 need_copy = 0;
9059 }
9060 }
9061
9062 if (canon == NULL || check_physname)
9063 {
9064 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9065
9066 if (canon != NULL && strcmp (physname, canon) != 0)
9067 {
9068 /* It may not mean a bug in GDB. The compiler could also
9069 compute DW_AT_linkage_name incorrectly. But in such case
9070 GDB would need to be bug-to-bug compatible. */
9071
9072 complaint (&symfile_complaints,
9073 _("Computed physname <%s> does not match demangled <%s> "
9074 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 9075 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 9076 objfile_name (objfile));
900e11f9
JK
9077
9078 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9079 is available here - over computed PHYSNAME. It is safer
9080 against both buggy GDB and buggy compilers. */
9081
9082 retval = canon;
9083 }
9084 else
9085 {
9086 retval = physname;
9087 need_copy = 0;
9088 }
9089 }
9090 else
9091 retval = canon;
9092
9093 if (need_copy)
224c3ddb
SM
9094 retval = ((const char *)
9095 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9096 retval, strlen (retval)));
900e11f9 9097
900e11f9 9098 return retval;
0114d602
DJ
9099}
9100
74921315
KS
9101/* Inspect DIE in CU for a namespace alias. If one exists, record
9102 a new symbol for it.
9103
9104 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9105
9106static int
9107read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9108{
9109 struct attribute *attr;
9110
9111 /* If the die does not have a name, this is not a namespace
9112 alias. */
9113 attr = dwarf2_attr (die, DW_AT_name, cu);
9114 if (attr != NULL)
9115 {
9116 int num;
9117 struct die_info *d = die;
9118 struct dwarf2_cu *imported_cu = cu;
9119
9120 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9121 keep inspecting DIEs until we hit the underlying import. */
9122#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9123 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9124 {
9125 attr = dwarf2_attr (d, DW_AT_import, cu);
9126 if (attr == NULL)
9127 break;
9128
9129 d = follow_die_ref (d, attr, &imported_cu);
9130 if (d->tag != DW_TAG_imported_declaration)
9131 break;
9132 }
9133
9134 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9135 {
9136 complaint (&symfile_complaints,
9137 _("DIE at 0x%x has too many recursively imported "
9c541725 9138 "declarations"), to_underlying (d->sect_off));
74921315
KS
9139 return 0;
9140 }
9141
9142 if (attr != NULL)
9143 {
9144 struct type *type;
9c541725 9145 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9146
9c541725 9147 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9148 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9149 {
9150 /* This declaration is a global namespace alias. Add
9151 a symbol for it whose type is the aliased namespace. */
9152 new_symbol (die, type, cu);
9153 return 1;
9154 }
9155 }
9156 }
9157
9158 return 0;
9159}
9160
22cee43f
PMR
9161/* Return the using directives repository (global or local?) to use in the
9162 current context for LANGUAGE.
9163
9164 For Ada, imported declarations can materialize renamings, which *may* be
9165 global. However it is impossible (for now?) in DWARF to distinguish
9166 "external" imported declarations and "static" ones. As all imported
9167 declarations seem to be static in all other languages, make them all CU-wide
9168 global only in Ada. */
9169
9170static struct using_direct **
9171using_directives (enum language language)
9172{
9173 if (language == language_ada && context_stack_depth == 0)
9174 return &global_using_directives;
9175 else
9176 return &local_using_directives;
9177}
9178
27aa8d6a
SW
9179/* Read the import statement specified by the given die and record it. */
9180
9181static void
9182read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9183{
bb5ed363 9184 struct objfile *objfile = cu->objfile;
27aa8d6a 9185 struct attribute *import_attr;
32019081 9186 struct die_info *imported_die, *child_die;
de4affc9 9187 struct dwarf2_cu *imported_cu;
27aa8d6a 9188 const char *imported_name;
794684b6 9189 const char *imported_name_prefix;
13387711
SW
9190 const char *canonical_name;
9191 const char *import_alias;
9192 const char *imported_declaration = NULL;
794684b6 9193 const char *import_prefix;
eb1e02fd 9194 std::vector<const char *> excludes;
13387711 9195
27aa8d6a
SW
9196 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9197 if (import_attr == NULL)
9198 {
9199 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9200 dwarf_tag_name (die->tag));
9201 return;
9202 }
9203
de4affc9
CC
9204 imported_cu = cu;
9205 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9206 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9207 if (imported_name == NULL)
9208 {
9209 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9210
9211 The import in the following code:
9212 namespace A
9213 {
9214 typedef int B;
9215 }
9216
9217 int main ()
9218 {
9219 using A::B;
9220 B b;
9221 return b;
9222 }
9223
9224 ...
9225 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9226 <52> DW_AT_decl_file : 1
9227 <53> DW_AT_decl_line : 6
9228 <54> DW_AT_import : <0x75>
9229 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9230 <59> DW_AT_name : B
9231 <5b> DW_AT_decl_file : 1
9232 <5c> DW_AT_decl_line : 2
9233 <5d> DW_AT_type : <0x6e>
9234 ...
9235 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9236 <76> DW_AT_byte_size : 4
9237 <77> DW_AT_encoding : 5 (signed)
9238
9239 imports the wrong die ( 0x75 instead of 0x58 ).
9240 This case will be ignored until the gcc bug is fixed. */
9241 return;
9242 }
9243
82856980
SW
9244 /* Figure out the local name after import. */
9245 import_alias = dwarf2_name (die, cu);
27aa8d6a 9246
794684b6
SW
9247 /* Figure out where the statement is being imported to. */
9248 import_prefix = determine_prefix (die, cu);
9249
9250 /* Figure out what the scope of the imported die is and prepend it
9251 to the name of the imported die. */
de4affc9 9252 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9253
f55ee35c
JK
9254 if (imported_die->tag != DW_TAG_namespace
9255 && imported_die->tag != DW_TAG_module)
794684b6 9256 {
13387711
SW
9257 imported_declaration = imported_name;
9258 canonical_name = imported_name_prefix;
794684b6 9259 }
13387711 9260 else if (strlen (imported_name_prefix) > 0)
12aaed36 9261 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9262 imported_name_prefix,
9263 (cu->language == language_d ? "." : "::"),
9264 imported_name, (char *) NULL);
13387711
SW
9265 else
9266 canonical_name = imported_name;
794684b6 9267
32019081
JK
9268 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9269 for (child_die = die->child; child_die && child_die->tag;
9270 child_die = sibling_die (child_die))
9271 {
9272 /* DWARF-4: A Fortran use statement with a “rename list” may be
9273 represented by an imported module entry with an import attribute
9274 referring to the module and owned entries corresponding to those
9275 entities that are renamed as part of being imported. */
9276
9277 if (child_die->tag != DW_TAG_imported_declaration)
9278 {
9279 complaint (&symfile_complaints,
9280 _("child DW_TAG_imported_declaration expected "
9281 "- DIE at 0x%x [in module %s]"),
9c541725 9282 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9283 continue;
9284 }
9285
9286 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9287 if (import_attr == NULL)
9288 {
9289 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9290 dwarf_tag_name (child_die->tag));
9291 continue;
9292 }
9293
9294 imported_cu = cu;
9295 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9296 &imported_cu);
9297 imported_name = dwarf2_name (imported_die, imported_cu);
9298 if (imported_name == NULL)
9299 {
9300 complaint (&symfile_complaints,
9301 _("child DW_TAG_imported_declaration has unknown "
9302 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9303 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9304 continue;
9305 }
9306
eb1e02fd 9307 excludes.push_back (imported_name);
32019081
JK
9308
9309 process_die (child_die, cu);
9310 }
9311
22cee43f
PMR
9312 add_using_directive (using_directives (cu->language),
9313 import_prefix,
9314 canonical_name,
9315 import_alias,
9316 imported_declaration,
9317 excludes,
9318 0,
9319 &objfile->objfile_obstack);
27aa8d6a
SW
9320}
9321
5230b05a
WT
9322/* ICC<14 does not output the required DW_AT_declaration on incomplete
9323 types, but gives them a size of zero. Starting with version 14,
9324 ICC is compatible with GCC. */
9325
9326static int
9327producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9328{
9329 if (!cu->checked_producer)
9330 check_producer (cu);
9331
9332 return cu->producer_is_icc_lt_14;
9333}
9334
1b80a9fa
JK
9335/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9336 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9337 this, it was first present in GCC release 4.3.0. */
9338
9339static int
9340producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9341{
9342 if (!cu->checked_producer)
9343 check_producer (cu);
9344
9345 return cu->producer_is_gcc_lt_4_3;
9346}
9347
d721ba37
PA
9348static file_and_directory
9349find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9350{
d721ba37
PA
9351 file_and_directory res;
9352
9291a0cd
TT
9353 /* Find the filename. Do not use dwarf2_name here, since the filename
9354 is not a source language identifier. */
d721ba37
PA
9355 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9356 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9357
d721ba37
PA
9358 if (res.comp_dir == NULL
9359 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9360 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9361 {
d721ba37
PA
9362 res.comp_dir_storage = ldirname (res.name);
9363 if (!res.comp_dir_storage.empty ())
9364 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9365 }
d721ba37 9366 if (res.comp_dir != NULL)
9291a0cd
TT
9367 {
9368 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9369 directory, get rid of it. */
d721ba37 9370 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9371
d721ba37
PA
9372 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9373 res.comp_dir = cp + 1;
9291a0cd
TT
9374 }
9375
d721ba37
PA
9376 if (res.name == NULL)
9377 res.name = "<unknown>";
9378
9379 return res;
9291a0cd
TT
9380}
9381
f4dc4d17
DE
9382/* Handle DW_AT_stmt_list for a compilation unit.
9383 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9384 COMP_DIR is the compilation directory. LOWPC is passed to
9385 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9386
9387static void
9388handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9389 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9390{
527f3840 9391 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9392 struct attribute *attr;
527f3840
JK
9393 struct line_header line_header_local;
9394 hashval_t line_header_local_hash;
9395 unsigned u;
9396 void **slot;
9397 int decode_mapping;
2ab95328 9398
f4dc4d17
DE
9399 gdb_assert (! cu->per_cu->is_debug_types);
9400
2ab95328 9401 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9402 if (attr == NULL)
9403 return;
9404
9c541725 9405 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9406
9407 /* The line header hash table is only created if needed (it exists to
9408 prevent redundant reading of the line table for partial_units).
9409 If we're given a partial_unit, we'll need it. If we're given a
9410 compile_unit, then use the line header hash table if it's already
9411 created, but don't create one just yet. */
9412
9413 if (dwarf2_per_objfile->line_header_hash == NULL
9414 && die->tag == DW_TAG_partial_unit)
2ab95328 9415 {
527f3840
JK
9416 dwarf2_per_objfile->line_header_hash
9417 = htab_create_alloc_ex (127, line_header_hash_voidp,
9418 line_header_eq_voidp,
9419 free_line_header_voidp,
9420 &objfile->objfile_obstack,
9421 hashtab_obstack_allocate,
9422 dummy_obstack_deallocate);
9423 }
2ab95328 9424
9c541725 9425 line_header_local.sect_off = line_offset;
527f3840
JK
9426 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9427 line_header_local_hash = line_header_hash (&line_header_local);
9428 if (dwarf2_per_objfile->line_header_hash != NULL)
9429 {
9430 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9431 &line_header_local,
9432 line_header_local_hash, NO_INSERT);
9433
9434 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9435 is not present in *SLOT (since if there is something in *SLOT then
9436 it will be for a partial_unit). */
9437 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9438 {
527f3840 9439 gdb_assert (*slot != NULL);
9a3c8263 9440 cu->line_header = (struct line_header *) *slot;
527f3840 9441 return;
dee91e82 9442 }
2ab95328 9443 }
527f3840
JK
9444
9445 /* dwarf_decode_line_header does not yet provide sufficient information.
9446 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9447 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9448 if (lh == NULL)
527f3840 9449 return;
4c8aa72d
PA
9450
9451 cu->line_header = lh.release ();
9452 cu->line_header_die_owner = die;
527f3840
JK
9453
9454 if (dwarf2_per_objfile->line_header_hash == NULL)
9455 slot = NULL;
9456 else
9457 {
9458 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9459 &line_header_local,
9460 line_header_local_hash, INSERT);
9461 gdb_assert (slot != NULL);
9462 }
9463 if (slot != NULL && *slot == NULL)
9464 {
9465 /* This newly decoded line number information unit will be owned
9466 by line_header_hash hash table. */
9467 *slot = cu->line_header;
4c8aa72d 9468 cu->line_header_die_owner = NULL;
527f3840
JK
9469 }
9470 else
9471 {
9472 /* We cannot free any current entry in (*slot) as that struct line_header
9473 may be already used by multiple CUs. Create only temporary decoded
9474 line_header for this CU - it may happen at most once for each line
9475 number information unit. And if we're not using line_header_hash
9476 then this is what we want as well. */
9477 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9478 }
9479 decode_mapping = (die->tag != DW_TAG_partial_unit);
9480 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9481 decode_mapping);
fff8551c 9482
2ab95328
TT
9483}
9484
95554aad 9485/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9486
c906108c 9487static void
e7c27a73 9488read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9489{
dee91e82 9490 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9491 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9492 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9493 CORE_ADDR highpc = ((CORE_ADDR) 0);
9494 struct attribute *attr;
c906108c 9495 struct die_info *child_die;
e142c38c 9496 CORE_ADDR baseaddr;
6e70227d 9497
e142c38c 9498 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9499
fae299cd 9500 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9501
9502 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9503 from finish_block. */
2acceee2 9504 if (lowpc == ((CORE_ADDR) -1))
c906108c 9505 lowpc = highpc;
3e29f34a 9506 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9507
d721ba37 9508 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9509
95554aad 9510 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9511
f4b8a18d
KW
9512 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9513 standardised yet. As a workaround for the language detection we fall
9514 back to the DW_AT_producer string. */
9515 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9516 cu->language = language_opencl;
9517
3019eac3
DE
9518 /* Similar hack for Go. */
9519 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9520 set_cu_language (DW_LANG_Go, cu);
9521
d721ba37 9522 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9523
9524 /* Decode line number information if present. We do this before
9525 processing child DIEs, so that the line header table is available
9526 for DW_AT_decl_file. */
d721ba37 9527 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9528
9529 /* Process all dies in compilation unit. */
9530 if (die->child != NULL)
9531 {
9532 child_die = die->child;
9533 while (child_die && child_die->tag)
9534 {
9535 process_die (child_die, cu);
9536 child_die = sibling_die (child_die);
9537 }
9538 }
9539
9540 /* Decode macro information, if present. Dwarf 2 macro information
9541 refers to information in the line number info statement program
9542 header, so we can only read it if we've read the header
9543 successfully. */
0af92d60
JK
9544 attr = dwarf2_attr (die, DW_AT_macros, cu);
9545 if (attr == NULL)
9546 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9547 if (attr && cu->line_header)
9548 {
9549 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9550 complaint (&symfile_complaints,
0af92d60 9551 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9552
43f3e411 9553 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9554 }
9555 else
9556 {
9557 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9558 if (attr && cu->line_header)
9559 {
9560 unsigned int macro_offset = DW_UNSND (attr);
9561
43f3e411 9562 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9563 }
9564 }
3019eac3
DE
9565}
9566
f4dc4d17
DE
9567/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9568 Create the set of symtabs used by this TU, or if this TU is sharing
9569 symtabs with another TU and the symtabs have already been created
9570 then restore those symtabs in the line header.
9571 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9572
9573static void
f4dc4d17 9574setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9575{
f4dc4d17
DE
9576 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9577 struct type_unit_group *tu_group;
9578 int first_time;
3019eac3 9579 struct attribute *attr;
9c541725 9580 unsigned int i;
0186c6a7 9581 struct signatured_type *sig_type;
3019eac3 9582
f4dc4d17 9583 gdb_assert (per_cu->is_debug_types);
0186c6a7 9584 sig_type = (struct signatured_type *) per_cu;
3019eac3 9585
f4dc4d17 9586 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9587
f4dc4d17 9588 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9589 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9590 if (sig_type->type_unit_group == NULL)
9591 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9592 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9593
9594 /* If we've already processed this stmt_list there's no real need to
9595 do it again, we could fake it and just recreate the part we need
9596 (file name,index -> symtab mapping). If data shows this optimization
9597 is useful we can do it then. */
43f3e411 9598 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9599
9600 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9601 debug info. */
fff8551c 9602 line_header_up lh;
f4dc4d17 9603 if (attr != NULL)
3019eac3 9604 {
9c541725 9605 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9606 lh = dwarf_decode_line_header (line_offset, cu);
9607 }
9608 if (lh == NULL)
9609 {
9610 if (first_time)
9611 dwarf2_start_symtab (cu, "", NULL, 0);
9612 else
9613 {
9614 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9615 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9616 }
f4dc4d17 9617 return;
3019eac3
DE
9618 }
9619
4c8aa72d
PA
9620 cu->line_header = lh.release ();
9621 cu->line_header_die_owner = die;
3019eac3 9622
f4dc4d17
DE
9623 if (first_time)
9624 {
43f3e411 9625 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9626
1fd60fc0
DE
9627 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9628 still initializing it, and our caller (a few levels up)
9629 process_full_type_unit still needs to know if this is the first
9630 time. */
9631
4c8aa72d
PA
9632 tu_group->num_symtabs = cu->line_header->file_names.size ();
9633 tu_group->symtabs = XNEWVEC (struct symtab *,
9634 cu->line_header->file_names.size ());
3019eac3 9635
4c8aa72d 9636 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9637 {
4c8aa72d 9638 file_entry &fe = cu->line_header->file_names[i];
3019eac3 9639
4c8aa72d 9640 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
3019eac3 9641
f4dc4d17
DE
9642 if (current_subfile->symtab == NULL)
9643 {
4c8aa72d
PA
9644 /* NOTE: start_subfile will recognize when it's been
9645 passed a file it has already seen. So we can't
9646 assume there's a simple mapping from
9647 cu->line_header->file_names to subfiles, plus
9648 cu->line_header->file_names may contain dups. */
43f3e411
DE
9649 current_subfile->symtab
9650 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9651 }
9652
8c43009f
PA
9653 fe.symtab = current_subfile->symtab;
9654 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9655 }
9656 }
9657 else
3019eac3 9658 {
0ab9ce85 9659 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9660
4c8aa72d 9661 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9662 {
4c8aa72d 9663 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 9664
4c8aa72d 9665 fe.symtab = tu_group->symtabs[i];
f4dc4d17 9666 }
3019eac3
DE
9667 }
9668
f4dc4d17
DE
9669 /* The main symtab is allocated last. Type units don't have DW_AT_name
9670 so they don't have a "real" (so to speak) symtab anyway.
9671 There is later code that will assign the main symtab to all symbols
9672 that don't have one. We need to handle the case of a symbol with a
9673 missing symtab (DW_AT_decl_file) anyway. */
9674}
3019eac3 9675
f4dc4d17
DE
9676/* Process DW_TAG_type_unit.
9677 For TUs we want to skip the first top level sibling if it's not the
9678 actual type being defined by this TU. In this case the first top
9679 level sibling is there to provide context only. */
3019eac3 9680
f4dc4d17
DE
9681static void
9682read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9683{
9684 struct die_info *child_die;
3019eac3 9685
f4dc4d17
DE
9686 prepare_one_comp_unit (cu, die, language_minimal);
9687
9688 /* Initialize (or reinitialize) the machinery for building symtabs.
9689 We do this before processing child DIEs, so that the line header table
9690 is available for DW_AT_decl_file. */
9691 setup_type_unit_groups (die, cu);
9692
9693 if (die->child != NULL)
9694 {
9695 child_die = die->child;
9696 while (child_die && child_die->tag)
9697 {
9698 process_die (child_die, cu);
9699 child_die = sibling_die (child_die);
9700 }
9701 }
3019eac3
DE
9702}
9703\f
80626a55
DE
9704/* DWO/DWP files.
9705
9706 http://gcc.gnu.org/wiki/DebugFission
9707 http://gcc.gnu.org/wiki/DebugFissionDWP
9708
9709 To simplify handling of both DWO files ("object" files with the DWARF info)
9710 and DWP files (a file with the DWOs packaged up into one file), we treat
9711 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9712
9713static hashval_t
9714hash_dwo_file (const void *item)
9715{
9a3c8263 9716 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9717 hashval_t hash;
3019eac3 9718
a2ce51a0
DE
9719 hash = htab_hash_string (dwo_file->dwo_name);
9720 if (dwo_file->comp_dir != NULL)
9721 hash += htab_hash_string (dwo_file->comp_dir);
9722 return hash;
3019eac3
DE
9723}
9724
9725static int
9726eq_dwo_file (const void *item_lhs, const void *item_rhs)
9727{
9a3c8263
SM
9728 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9729 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9730
a2ce51a0
DE
9731 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9732 return 0;
9733 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9734 return lhs->comp_dir == rhs->comp_dir;
9735 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9736}
9737
9738/* Allocate a hash table for DWO files. */
9739
9740static htab_t
9741allocate_dwo_file_hash_table (void)
9742{
9743 struct objfile *objfile = dwarf2_per_objfile->objfile;
9744
9745 return htab_create_alloc_ex (41,
9746 hash_dwo_file,
9747 eq_dwo_file,
9748 NULL,
9749 &objfile->objfile_obstack,
9750 hashtab_obstack_allocate,
9751 dummy_obstack_deallocate);
9752}
9753
80626a55
DE
9754/* Lookup DWO file DWO_NAME. */
9755
9756static void **
0ac5b59e 9757lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9758{
9759 struct dwo_file find_entry;
9760 void **slot;
9761
9762 if (dwarf2_per_objfile->dwo_files == NULL)
9763 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9764
9765 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9766 find_entry.dwo_name = dwo_name;
9767 find_entry.comp_dir = comp_dir;
80626a55
DE
9768 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9769
9770 return slot;
9771}
9772
3019eac3
DE
9773static hashval_t
9774hash_dwo_unit (const void *item)
9775{
9a3c8263 9776 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9777
9778 /* This drops the top 32 bits of the id, but is ok for a hash. */
9779 return dwo_unit->signature;
9780}
9781
9782static int
9783eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9784{
9a3c8263
SM
9785 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9786 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9787
9788 /* The signature is assumed to be unique within the DWO file.
9789 So while object file CU dwo_id's always have the value zero,
9790 that's OK, assuming each object file DWO file has only one CU,
9791 and that's the rule for now. */
9792 return lhs->signature == rhs->signature;
9793}
9794
9795/* Allocate a hash table for DWO CUs,TUs.
9796 There is one of these tables for each of CUs,TUs for each DWO file. */
9797
9798static htab_t
9799allocate_dwo_unit_table (struct objfile *objfile)
9800{
9801 /* Start out with a pretty small number.
9802 Generally DWO files contain only one CU and maybe some TUs. */
9803 return htab_create_alloc_ex (3,
9804 hash_dwo_unit,
9805 eq_dwo_unit,
9806 NULL,
9807 &objfile->objfile_obstack,
9808 hashtab_obstack_allocate,
9809 dummy_obstack_deallocate);
9810}
9811
80626a55 9812/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9813
19c3d4c9 9814struct create_dwo_cu_data
3019eac3
DE
9815{
9816 struct dwo_file *dwo_file;
19c3d4c9 9817 struct dwo_unit dwo_unit;
3019eac3
DE
9818};
9819
19c3d4c9 9820/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9821
9822static void
19c3d4c9
DE
9823create_dwo_cu_reader (const struct die_reader_specs *reader,
9824 const gdb_byte *info_ptr,
9825 struct die_info *comp_unit_die,
9826 int has_children,
9827 void *datap)
3019eac3
DE
9828{
9829 struct dwarf2_cu *cu = reader->cu;
9c541725 9830 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9831 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9832 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9833 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9834 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9835 struct attribute *attr;
3019eac3
DE
9836
9837 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9838 if (attr == NULL)
9839 {
19c3d4c9
DE
9840 complaint (&symfile_complaints,
9841 _("Dwarf Error: debug entry at offset 0x%x is missing"
9842 " its dwo_id [in module %s]"),
9c541725 9843 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9844 return;
9845 }
9846
3019eac3
DE
9847 dwo_unit->dwo_file = dwo_file;
9848 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9849 dwo_unit->section = section;
9c541725 9850 dwo_unit->sect_off = sect_off;
3019eac3
DE
9851 dwo_unit->length = cu->per_cu->length;
9852
b4f54984 9853 if (dwarf_read_debug)
4031ecc5 9854 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9855 to_underlying (sect_off),
9856 hex_string (dwo_unit->signature));
3019eac3
DE
9857}
9858
33c5cd75 9859/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9860 Note: This function processes DWO files only, not DWP files. */
3019eac3 9861
33c5cd75
DB
9862static void
9863create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9864 htab_t &cus_htab)
3019eac3
DE
9865{
9866 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9867 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9868 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9869
33c5cd75
DB
9870 dwarf2_read_section (objfile, &section);
9871 info_ptr = section.buffer;
3019eac3
DE
9872
9873 if (info_ptr == NULL)
33c5cd75 9874 return;
3019eac3 9875
b4f54984 9876 if (dwarf_read_debug)
19c3d4c9
DE
9877 {
9878 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9879 get_section_name (&section),
9880 get_section_file_name (&section));
19c3d4c9 9881 }
3019eac3 9882
33c5cd75 9883 end_ptr = info_ptr + section.size;
3019eac3
DE
9884 while (info_ptr < end_ptr)
9885 {
9886 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9887 struct create_dwo_cu_data create_dwo_cu_data;
9888 struct dwo_unit *dwo_unit;
9889 void **slot;
9890 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9891
19c3d4c9
DE
9892 memset (&create_dwo_cu_data.dwo_unit, 0,
9893 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9894 memset (&per_cu, 0, sizeof (per_cu));
9895 per_cu.objfile = objfile;
9896 per_cu.is_debug_types = 0;
33c5cd75
DB
9897 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9898 per_cu.section = &section;
c5ed0576 9899 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
9900
9901 init_cutu_and_read_dies_no_follow (
9902 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9903 info_ptr += per_cu.length;
9904
9905 // If the unit could not be parsed, skip it.
9906 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9907 continue;
3019eac3 9908
33c5cd75
DB
9909 if (cus_htab == NULL)
9910 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9911
33c5cd75
DB
9912 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9913 *dwo_unit = create_dwo_cu_data.dwo_unit;
9914 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9915 gdb_assert (slot != NULL);
9916 if (*slot != NULL)
19c3d4c9 9917 {
33c5cd75
DB
9918 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9919 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9920
33c5cd75
DB
9921 complaint (&symfile_complaints,
9922 _("debug cu entry at offset 0x%x is duplicate to"
9923 " the entry at offset 0x%x, signature %s"),
9924 to_underlying (sect_off), to_underlying (dup_sect_off),
9925 hex_string (dwo_unit->signature));
19c3d4c9 9926 }
33c5cd75 9927 *slot = (void *)dwo_unit;
3019eac3 9928 }
3019eac3
DE
9929}
9930
80626a55
DE
9931/* DWP file .debug_{cu,tu}_index section format:
9932 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9933
d2415c6c
DE
9934 DWP Version 1:
9935
80626a55
DE
9936 Both index sections have the same format, and serve to map a 64-bit
9937 signature to a set of section numbers. Each section begins with a header,
9938 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9939 indexes, and a pool of 32-bit section numbers. The index sections will be
9940 aligned at 8-byte boundaries in the file.
9941
d2415c6c
DE
9942 The index section header consists of:
9943
9944 V, 32 bit version number
9945 -, 32 bits unused
9946 N, 32 bit number of compilation units or type units in the index
9947 M, 32 bit number of slots in the hash table
80626a55 9948
d2415c6c 9949 Numbers are recorded using the byte order of the application binary.
80626a55 9950
d2415c6c
DE
9951 The hash table begins at offset 16 in the section, and consists of an array
9952 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9953 order of the application binary). Unused slots in the hash table are 0.
9954 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9955
d2415c6c
DE
9956 The parallel table begins immediately after the hash table
9957 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9958 array of 32-bit indexes (using the byte order of the application binary),
9959 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9960 table contains a 32-bit index into the pool of section numbers. For unused
9961 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9962
73869dc2
DE
9963 The pool of section numbers begins immediately following the hash table
9964 (at offset 16 + 12 * M from the beginning of the section). The pool of
9965 section numbers consists of an array of 32-bit words (using the byte order
9966 of the application binary). Each item in the array is indexed starting
9967 from 0. The hash table entry provides the index of the first section
9968 number in the set. Additional section numbers in the set follow, and the
9969 set is terminated by a 0 entry (section number 0 is not used in ELF).
9970
9971 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9972 section must be the first entry in the set, and the .debug_abbrev.dwo must
9973 be the second entry. Other members of the set may follow in any order.
9974
9975 ---
9976
9977 DWP Version 2:
9978
9979 DWP Version 2 combines all the .debug_info, etc. sections into one,
9980 and the entries in the index tables are now offsets into these sections.
9981 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9982 section.
9983
9984 Index Section Contents:
9985 Header
9986 Hash Table of Signatures dwp_hash_table.hash_table
9987 Parallel Table of Indices dwp_hash_table.unit_table
9988 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9989 Table of Section Sizes dwp_hash_table.v2.sizes
9990
9991 The index section header consists of:
9992
9993 V, 32 bit version number
9994 L, 32 bit number of columns in the table of section offsets
9995 N, 32 bit number of compilation units or type units in the index
9996 M, 32 bit number of slots in the hash table
9997
9998 Numbers are recorded using the byte order of the application binary.
9999
10000 The hash table has the same format as version 1.
10001 The parallel table of indices has the same format as version 1,
10002 except that the entries are origin-1 indices into the table of sections
10003 offsets and the table of section sizes.
10004
10005 The table of offsets begins immediately following the parallel table
10006 (at offset 16 + 12 * M from the beginning of the section). The table is
10007 a two-dimensional array of 32-bit words (using the byte order of the
10008 application binary), with L columns and N+1 rows, in row-major order.
10009 Each row in the array is indexed starting from 0. The first row provides
10010 a key to the remaining rows: each column in this row provides an identifier
10011 for a debug section, and the offsets in the same column of subsequent rows
10012 refer to that section. The section identifiers are:
10013
10014 DW_SECT_INFO 1 .debug_info.dwo
10015 DW_SECT_TYPES 2 .debug_types.dwo
10016 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10017 DW_SECT_LINE 4 .debug_line.dwo
10018 DW_SECT_LOC 5 .debug_loc.dwo
10019 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10020 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10021 DW_SECT_MACRO 8 .debug_macro.dwo
10022
10023 The offsets provided by the CU and TU index sections are the base offsets
10024 for the contributions made by each CU or TU to the corresponding section
10025 in the package file. Each CU and TU header contains an abbrev_offset
10026 field, used to find the abbreviations table for that CU or TU within the
10027 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10028 be interpreted as relative to the base offset given in the index section.
10029 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10030 should be interpreted as relative to the base offset for .debug_line.dwo,
10031 and offsets into other debug sections obtained from DWARF attributes should
10032 also be interpreted as relative to the corresponding base offset.
10033
10034 The table of sizes begins immediately following the table of offsets.
10035 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10036 with L columns and N rows, in row-major order. Each row in the array is
10037 indexed starting from 1 (row 0 is shared by the two tables).
10038
10039 ---
10040
10041 Hash table lookup is handled the same in version 1 and 2:
10042
10043 We assume that N and M will not exceed 2^32 - 1.
10044 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10045
d2415c6c
DE
10046 Given a 64-bit compilation unit signature or a type signature S, an entry
10047 in the hash table is located as follows:
80626a55 10048
d2415c6c
DE
10049 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10050 the low-order k bits all set to 1.
80626a55 10051
d2415c6c 10052 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 10053
d2415c6c
DE
10054 3) If the hash table entry at index H matches the signature, use that
10055 entry. If the hash table entry at index H is unused (all zeroes),
10056 terminate the search: the signature is not present in the table.
80626a55 10057
d2415c6c 10058 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 10059
d2415c6c 10060 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 10061 to stop at an unused slot or find the match. */
80626a55
DE
10062
10063/* Create a hash table to map DWO IDs to their CU/TU entry in
10064 .debug_{info,types}.dwo in DWP_FILE.
10065 Returns NULL if there isn't one.
10066 Note: This function processes DWP files only, not DWO files. */
10067
10068static struct dwp_hash_table *
10069create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10070{
10071 struct objfile *objfile = dwarf2_per_objfile->objfile;
10072 bfd *dbfd = dwp_file->dbfd;
948f8e3d 10073 const gdb_byte *index_ptr, *index_end;
80626a55 10074 struct dwarf2_section_info *index;
73869dc2 10075 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
10076 struct dwp_hash_table *htab;
10077
10078 if (is_debug_types)
10079 index = &dwp_file->sections.tu_index;
10080 else
10081 index = &dwp_file->sections.cu_index;
10082
10083 if (dwarf2_section_empty_p (index))
10084 return NULL;
10085 dwarf2_read_section (objfile, index);
10086
10087 index_ptr = index->buffer;
10088 index_end = index_ptr + index->size;
10089
10090 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10091 index_ptr += 4;
10092 if (version == 2)
10093 nr_columns = read_4_bytes (dbfd, index_ptr);
10094 else
10095 nr_columns = 0;
10096 index_ptr += 4;
80626a55
DE
10097 nr_units = read_4_bytes (dbfd, index_ptr);
10098 index_ptr += 4;
10099 nr_slots = read_4_bytes (dbfd, index_ptr);
10100 index_ptr += 4;
10101
73869dc2 10102 if (version != 1 && version != 2)
80626a55 10103 {
21aa081e 10104 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10105 " [in module %s]"),
21aa081e 10106 pulongest (version), dwp_file->name);
80626a55
DE
10107 }
10108 if (nr_slots != (nr_slots & -nr_slots))
10109 {
21aa081e 10110 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10111 " is not power of 2 [in module %s]"),
21aa081e 10112 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10113 }
10114
10115 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10116 htab->version = version;
10117 htab->nr_columns = nr_columns;
80626a55
DE
10118 htab->nr_units = nr_units;
10119 htab->nr_slots = nr_slots;
10120 htab->hash_table = index_ptr;
10121 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10122
10123 /* Exit early if the table is empty. */
10124 if (nr_slots == 0 || nr_units == 0
10125 || (version == 2 && nr_columns == 0))
10126 {
10127 /* All must be zero. */
10128 if (nr_slots != 0 || nr_units != 0
10129 || (version == 2 && nr_columns != 0))
10130 {
10131 complaint (&symfile_complaints,
10132 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10133 " all zero [in modules %s]"),
10134 dwp_file->name);
10135 }
10136 return htab;
10137 }
10138
10139 if (version == 1)
10140 {
10141 htab->section_pool.v1.indices =
10142 htab->unit_table + sizeof (uint32_t) * nr_slots;
10143 /* It's harder to decide whether the section is too small in v1.
10144 V1 is deprecated anyway so we punt. */
10145 }
10146 else
10147 {
10148 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10149 int *ids = htab->section_pool.v2.section_ids;
10150 /* Reverse map for error checking. */
10151 int ids_seen[DW_SECT_MAX + 1];
10152 int i;
10153
10154 if (nr_columns < 2)
10155 {
10156 error (_("Dwarf Error: bad DWP hash table, too few columns"
10157 " in section table [in module %s]"),
10158 dwp_file->name);
10159 }
10160 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10161 {
10162 error (_("Dwarf Error: bad DWP hash table, too many columns"
10163 " in section table [in module %s]"),
10164 dwp_file->name);
10165 }
10166 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10167 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10168 for (i = 0; i < nr_columns; ++i)
10169 {
10170 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10171
10172 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10173 {
10174 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10175 " in section table [in module %s]"),
10176 id, dwp_file->name);
10177 }
10178 if (ids_seen[id] != -1)
10179 {
10180 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10181 " id %d in section table [in module %s]"),
10182 id, dwp_file->name);
10183 }
10184 ids_seen[id] = i;
10185 ids[i] = id;
10186 }
10187 /* Must have exactly one info or types section. */
10188 if (((ids_seen[DW_SECT_INFO] != -1)
10189 + (ids_seen[DW_SECT_TYPES] != -1))
10190 != 1)
10191 {
10192 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10193 " DWO info/types section [in module %s]"),
10194 dwp_file->name);
10195 }
10196 /* Must have an abbrev section. */
10197 if (ids_seen[DW_SECT_ABBREV] == -1)
10198 {
10199 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10200 " section [in module %s]"),
10201 dwp_file->name);
10202 }
10203 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10204 htab->section_pool.v2.sizes =
10205 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10206 * nr_units * nr_columns);
10207 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10208 * nr_units * nr_columns))
10209 > index_end)
10210 {
10211 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10212 " [in module %s]"),
10213 dwp_file->name);
10214 }
10215 }
80626a55
DE
10216
10217 return htab;
10218}
10219
10220/* Update SECTIONS with the data from SECTP.
10221
10222 This function is like the other "locate" section routines that are
10223 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10224 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10225
10226 The result is non-zero for success, or zero if an error was found. */
10227
10228static int
73869dc2
DE
10229locate_v1_virtual_dwo_sections (asection *sectp,
10230 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10231{
10232 const struct dwop_section_names *names = &dwop_section_names;
10233
10234 if (section_is_p (sectp->name, &names->abbrev_dwo))
10235 {
10236 /* There can be only one. */
049412e3 10237 if (sections->abbrev.s.section != NULL)
80626a55 10238 return 0;
049412e3 10239 sections->abbrev.s.section = sectp;
80626a55
DE
10240 sections->abbrev.size = bfd_get_section_size (sectp);
10241 }
10242 else if (section_is_p (sectp->name, &names->info_dwo)
10243 || section_is_p (sectp->name, &names->types_dwo))
10244 {
10245 /* There can be only one. */
049412e3 10246 if (sections->info_or_types.s.section != NULL)
80626a55 10247 return 0;
049412e3 10248 sections->info_or_types.s.section = sectp;
80626a55
DE
10249 sections->info_or_types.size = bfd_get_section_size (sectp);
10250 }
10251 else if (section_is_p (sectp->name, &names->line_dwo))
10252 {
10253 /* There can be only one. */
049412e3 10254 if (sections->line.s.section != NULL)
80626a55 10255 return 0;
049412e3 10256 sections->line.s.section = sectp;
80626a55
DE
10257 sections->line.size = bfd_get_section_size (sectp);
10258 }
10259 else if (section_is_p (sectp->name, &names->loc_dwo))
10260 {
10261 /* There can be only one. */
049412e3 10262 if (sections->loc.s.section != NULL)
80626a55 10263 return 0;
049412e3 10264 sections->loc.s.section = sectp;
80626a55
DE
10265 sections->loc.size = bfd_get_section_size (sectp);
10266 }
10267 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10268 {
10269 /* There can be only one. */
049412e3 10270 if (sections->macinfo.s.section != NULL)
80626a55 10271 return 0;
049412e3 10272 sections->macinfo.s.section = sectp;
80626a55
DE
10273 sections->macinfo.size = bfd_get_section_size (sectp);
10274 }
10275 else if (section_is_p (sectp->name, &names->macro_dwo))
10276 {
10277 /* There can be only one. */
049412e3 10278 if (sections->macro.s.section != NULL)
80626a55 10279 return 0;
049412e3 10280 sections->macro.s.section = sectp;
80626a55
DE
10281 sections->macro.size = bfd_get_section_size (sectp);
10282 }
10283 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10284 {
10285 /* There can be only one. */
049412e3 10286 if (sections->str_offsets.s.section != NULL)
80626a55 10287 return 0;
049412e3 10288 sections->str_offsets.s.section = sectp;
80626a55
DE
10289 sections->str_offsets.size = bfd_get_section_size (sectp);
10290 }
10291 else
10292 {
10293 /* No other kind of section is valid. */
10294 return 0;
10295 }
10296
10297 return 1;
10298}
10299
73869dc2
DE
10300/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10301 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10302 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10303 This is for DWP version 1 files. */
80626a55
DE
10304
10305static struct dwo_unit *
73869dc2
DE
10306create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10307 uint32_t unit_index,
10308 const char *comp_dir,
10309 ULONGEST signature, int is_debug_types)
80626a55
DE
10310{
10311 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10312 const struct dwp_hash_table *dwp_htab =
10313 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10314 bfd *dbfd = dwp_file->dbfd;
10315 const char *kind = is_debug_types ? "TU" : "CU";
10316 struct dwo_file *dwo_file;
10317 struct dwo_unit *dwo_unit;
73869dc2 10318 struct virtual_v1_dwo_sections sections;
80626a55 10319 void **dwo_file_slot;
80626a55
DE
10320 int i;
10321
73869dc2
DE
10322 gdb_assert (dwp_file->version == 1);
10323
b4f54984 10324 if (dwarf_read_debug)
80626a55 10325 {
73869dc2 10326 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10327 kind,
73869dc2 10328 pulongest (unit_index), hex_string (signature),
80626a55
DE
10329 dwp_file->name);
10330 }
10331
19ac8c2e 10332 /* Fetch the sections of this DWO unit.
80626a55
DE
10333 Put a limit on the number of sections we look for so that bad data
10334 doesn't cause us to loop forever. */
10335
73869dc2 10336#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10337 (1 /* .debug_info or .debug_types */ \
10338 + 1 /* .debug_abbrev */ \
10339 + 1 /* .debug_line */ \
10340 + 1 /* .debug_loc */ \
10341 + 1 /* .debug_str_offsets */ \
19ac8c2e 10342 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10343 + 1 /* trailing zero */)
10344
10345 memset (&sections, 0, sizeof (sections));
80626a55 10346
73869dc2 10347 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10348 {
10349 asection *sectp;
10350 uint32_t section_nr =
10351 read_4_bytes (dbfd,
73869dc2
DE
10352 dwp_htab->section_pool.v1.indices
10353 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10354
10355 if (section_nr == 0)
10356 break;
10357 if (section_nr >= dwp_file->num_sections)
10358 {
10359 error (_("Dwarf Error: bad DWP hash table, section number too large"
10360 " [in module %s]"),
10361 dwp_file->name);
10362 }
10363
10364 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10365 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10366 {
10367 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10368 " [in module %s]"),
10369 dwp_file->name);
10370 }
10371 }
10372
10373 if (i < 2
a32a8923
DE
10374 || dwarf2_section_empty_p (&sections.info_or_types)
10375 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10376 {
10377 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10378 " [in module %s]"),
10379 dwp_file->name);
10380 }
73869dc2 10381 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10382 {
10383 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10384 " [in module %s]"),
10385 dwp_file->name);
10386 }
10387
10388 /* It's easier for the rest of the code if we fake a struct dwo_file and
10389 have dwo_unit "live" in that. At least for now.
10390
10391 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10392 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10393 file, we can combine them back into a virtual DWO file to save space
10394 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10395 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10396
791afaa2
TT
10397 std::string virtual_dwo_name =
10398 string_printf ("virtual-dwo/%d-%d-%d-%d",
10399 get_section_id (&sections.abbrev),
10400 get_section_id (&sections.line),
10401 get_section_id (&sections.loc),
10402 get_section_id (&sections.str_offsets));
80626a55 10403 /* Can we use an existing virtual DWO file? */
791afaa2 10404 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
80626a55
DE
10405 /* Create one if necessary. */
10406 if (*dwo_file_slot == NULL)
10407 {
b4f54984 10408 if (dwarf_read_debug)
80626a55
DE
10409 {
10410 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 10411 virtual_dwo_name.c_str ());
80626a55
DE
10412 }
10413 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10414 dwo_file->dwo_name
10415 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
10416 virtual_dwo_name.c_str (),
10417 virtual_dwo_name.size ());
0ac5b59e 10418 dwo_file->comp_dir = comp_dir;
80626a55
DE
10419 dwo_file->sections.abbrev = sections.abbrev;
10420 dwo_file->sections.line = sections.line;
10421 dwo_file->sections.loc = sections.loc;
10422 dwo_file->sections.macinfo = sections.macinfo;
10423 dwo_file->sections.macro = sections.macro;
10424 dwo_file->sections.str_offsets = sections.str_offsets;
10425 /* The "str" section is global to the entire DWP file. */
10426 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10427 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10428 there's no need to record it in dwo_file.
10429 Also, we can't simply record type sections in dwo_file because
10430 we record a pointer into the vector in dwo_unit. As we collect more
10431 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10432 for it, invalidating all copies of pointers into the previous
10433 contents. */
80626a55
DE
10434 *dwo_file_slot = dwo_file;
10435 }
10436 else
10437 {
b4f54984 10438 if (dwarf_read_debug)
80626a55
DE
10439 {
10440 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 10441 virtual_dwo_name.c_str ());
80626a55 10442 }
9a3c8263 10443 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 10444 }
80626a55
DE
10445
10446 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10447 dwo_unit->dwo_file = dwo_file;
10448 dwo_unit->signature = signature;
8d749320
SM
10449 dwo_unit->section =
10450 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10451 *dwo_unit->section = sections.info_or_types;
57d63ce2 10452 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10453
10454 return dwo_unit;
10455}
10456
73869dc2
DE
10457/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10458 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10459 piece within that section used by a TU/CU, return a virtual section
10460 of just that piece. */
10461
10462static struct dwarf2_section_info
10463create_dwp_v2_section (struct dwarf2_section_info *section,
10464 bfd_size_type offset, bfd_size_type size)
10465{
10466 struct dwarf2_section_info result;
10467 asection *sectp;
10468
10469 gdb_assert (section != NULL);
10470 gdb_assert (!section->is_virtual);
10471
10472 memset (&result, 0, sizeof (result));
10473 result.s.containing_section = section;
10474 result.is_virtual = 1;
10475
10476 if (size == 0)
10477 return result;
10478
10479 sectp = get_section_bfd_section (section);
10480
10481 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10482 bounds of the real section. This is a pretty-rare event, so just
10483 flag an error (easier) instead of a warning and trying to cope. */
10484 if (sectp == NULL
10485 || offset + size > bfd_get_section_size (sectp))
10486 {
10487 bfd *abfd = sectp->owner;
10488
10489 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10490 " in section %s [in module %s]"),
10491 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10492 objfile_name (dwarf2_per_objfile->objfile));
10493 }
10494
10495 result.virtual_offset = offset;
10496 result.size = size;
10497 return result;
10498}
10499
10500/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10501 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10502 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10503 This is for DWP version 2 files. */
10504
10505static struct dwo_unit *
10506create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10507 uint32_t unit_index,
10508 const char *comp_dir,
10509 ULONGEST signature, int is_debug_types)
10510{
10511 struct objfile *objfile = dwarf2_per_objfile->objfile;
10512 const struct dwp_hash_table *dwp_htab =
10513 is_debug_types ? dwp_file->tus : dwp_file->cus;
10514 bfd *dbfd = dwp_file->dbfd;
10515 const char *kind = is_debug_types ? "TU" : "CU";
10516 struct dwo_file *dwo_file;
10517 struct dwo_unit *dwo_unit;
10518 struct virtual_v2_dwo_sections sections;
10519 void **dwo_file_slot;
73869dc2
DE
10520 int i;
10521
10522 gdb_assert (dwp_file->version == 2);
10523
b4f54984 10524 if (dwarf_read_debug)
73869dc2
DE
10525 {
10526 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10527 kind,
10528 pulongest (unit_index), hex_string (signature),
10529 dwp_file->name);
10530 }
10531
10532 /* Fetch the section offsets of this DWO unit. */
10533
10534 memset (&sections, 0, sizeof (sections));
73869dc2
DE
10535
10536 for (i = 0; i < dwp_htab->nr_columns; ++i)
10537 {
10538 uint32_t offset = read_4_bytes (dbfd,
10539 dwp_htab->section_pool.v2.offsets
10540 + (((unit_index - 1) * dwp_htab->nr_columns
10541 + i)
10542 * sizeof (uint32_t)));
10543 uint32_t size = read_4_bytes (dbfd,
10544 dwp_htab->section_pool.v2.sizes
10545 + (((unit_index - 1) * dwp_htab->nr_columns
10546 + i)
10547 * sizeof (uint32_t)));
10548
10549 switch (dwp_htab->section_pool.v2.section_ids[i])
10550 {
10551 case DW_SECT_INFO:
10552 case DW_SECT_TYPES:
10553 sections.info_or_types_offset = offset;
10554 sections.info_or_types_size = size;
10555 break;
10556 case DW_SECT_ABBREV:
10557 sections.abbrev_offset = offset;
10558 sections.abbrev_size = size;
10559 break;
10560 case DW_SECT_LINE:
10561 sections.line_offset = offset;
10562 sections.line_size = size;
10563 break;
10564 case DW_SECT_LOC:
10565 sections.loc_offset = offset;
10566 sections.loc_size = size;
10567 break;
10568 case DW_SECT_STR_OFFSETS:
10569 sections.str_offsets_offset = offset;
10570 sections.str_offsets_size = size;
10571 break;
10572 case DW_SECT_MACINFO:
10573 sections.macinfo_offset = offset;
10574 sections.macinfo_size = size;
10575 break;
10576 case DW_SECT_MACRO:
10577 sections.macro_offset = offset;
10578 sections.macro_size = size;
10579 break;
10580 }
10581 }
10582
10583 /* It's easier for the rest of the code if we fake a struct dwo_file and
10584 have dwo_unit "live" in that. At least for now.
10585
10586 The DWP file can be made up of a random collection of CUs and TUs.
10587 However, for each CU + set of TUs that came from the same original DWO
10588 file, we can combine them back into a virtual DWO file to save space
10589 (fewer struct dwo_file objects to allocate). Remember that for really
10590 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10591
791afaa2
TT
10592 std::string virtual_dwo_name =
10593 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10594 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10595 (long) (sections.line_size ? sections.line_offset : 0),
10596 (long) (sections.loc_size ? sections.loc_offset : 0),
10597 (long) (sections.str_offsets_size
10598 ? sections.str_offsets_offset : 0));
73869dc2 10599 /* Can we use an existing virtual DWO file? */
791afaa2 10600 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
73869dc2
DE
10601 /* Create one if necessary. */
10602 if (*dwo_file_slot == NULL)
10603 {
b4f54984 10604 if (dwarf_read_debug)
73869dc2
DE
10605 {
10606 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 10607 virtual_dwo_name.c_str ());
73869dc2
DE
10608 }
10609 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10610 dwo_file->dwo_name
10611 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
10612 virtual_dwo_name.c_str (),
10613 virtual_dwo_name.size ());
73869dc2
DE
10614 dwo_file->comp_dir = comp_dir;
10615 dwo_file->sections.abbrev =
10616 create_dwp_v2_section (&dwp_file->sections.abbrev,
10617 sections.abbrev_offset, sections.abbrev_size);
10618 dwo_file->sections.line =
10619 create_dwp_v2_section (&dwp_file->sections.line,
10620 sections.line_offset, sections.line_size);
10621 dwo_file->sections.loc =
10622 create_dwp_v2_section (&dwp_file->sections.loc,
10623 sections.loc_offset, sections.loc_size);
10624 dwo_file->sections.macinfo =
10625 create_dwp_v2_section (&dwp_file->sections.macinfo,
10626 sections.macinfo_offset, sections.macinfo_size);
10627 dwo_file->sections.macro =
10628 create_dwp_v2_section (&dwp_file->sections.macro,
10629 sections.macro_offset, sections.macro_size);
10630 dwo_file->sections.str_offsets =
10631 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10632 sections.str_offsets_offset,
10633 sections.str_offsets_size);
10634 /* The "str" section is global to the entire DWP file. */
10635 dwo_file->sections.str = dwp_file->sections.str;
10636 /* The info or types section is assigned below to dwo_unit,
10637 there's no need to record it in dwo_file.
10638 Also, we can't simply record type sections in dwo_file because
10639 we record a pointer into the vector in dwo_unit. As we collect more
10640 types we'll grow the vector and eventually have to reallocate space
10641 for it, invalidating all copies of pointers into the previous
10642 contents. */
10643 *dwo_file_slot = dwo_file;
10644 }
10645 else
10646 {
b4f54984 10647 if (dwarf_read_debug)
73869dc2
DE
10648 {
10649 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 10650 virtual_dwo_name.c_str ());
73869dc2 10651 }
9a3c8263 10652 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 10653 }
73869dc2
DE
10654
10655 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10656 dwo_unit->dwo_file = dwo_file;
10657 dwo_unit->signature = signature;
8d749320
SM
10658 dwo_unit->section =
10659 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10660 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10661 ? &dwp_file->sections.types
10662 : &dwp_file->sections.info,
10663 sections.info_or_types_offset,
10664 sections.info_or_types_size);
10665 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10666
10667 return dwo_unit;
10668}
10669
57d63ce2
DE
10670/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10671 Returns NULL if the signature isn't found. */
80626a55
DE
10672
10673static struct dwo_unit *
57d63ce2
DE
10674lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10675 ULONGEST signature, int is_debug_types)
80626a55 10676{
57d63ce2
DE
10677 const struct dwp_hash_table *dwp_htab =
10678 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10679 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10680 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10681 uint32_t hash = signature & mask;
10682 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10683 unsigned int i;
10684 void **slot;
870f88f7 10685 struct dwo_unit find_dwo_cu;
80626a55
DE
10686
10687 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10688 find_dwo_cu.signature = signature;
19ac8c2e
DE
10689 slot = htab_find_slot (is_debug_types
10690 ? dwp_file->loaded_tus
10691 : dwp_file->loaded_cus,
10692 &find_dwo_cu, INSERT);
80626a55
DE
10693
10694 if (*slot != NULL)
9a3c8263 10695 return (struct dwo_unit *) *slot;
80626a55
DE
10696
10697 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10698 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10699 {
10700 ULONGEST signature_in_table;
10701
10702 signature_in_table =
57d63ce2 10703 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10704 if (signature_in_table == signature)
10705 {
57d63ce2
DE
10706 uint32_t unit_index =
10707 read_4_bytes (dbfd,
10708 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10709
73869dc2
DE
10710 if (dwp_file->version == 1)
10711 {
10712 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10713 comp_dir, signature,
10714 is_debug_types);
10715 }
10716 else
10717 {
10718 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10719 comp_dir, signature,
10720 is_debug_types);
10721 }
9a3c8263 10722 return (struct dwo_unit *) *slot;
80626a55
DE
10723 }
10724 if (signature_in_table == 0)
10725 return NULL;
10726 hash = (hash + hash2) & mask;
10727 }
10728
10729 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10730 " [in module %s]"),
10731 dwp_file->name);
10732}
10733
ab5088bf 10734/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10735 Open the file specified by FILE_NAME and hand it off to BFD for
10736 preliminary analysis. Return a newly initialized bfd *, which
10737 includes a canonicalized copy of FILE_NAME.
80626a55 10738 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10739 SEARCH_CWD is true if the current directory is to be searched.
10740 It will be searched before debug-file-directory.
13aaf454
DE
10741 If successful, the file is added to the bfd include table of the
10742 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10743 If unable to find/open the file, return NULL.
3019eac3
DE
10744 NOTE: This function is derived from symfile_bfd_open. */
10745
192b62ce 10746static gdb_bfd_ref_ptr
6ac97d4c 10747try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10748{
80626a55 10749 int desc, flags;
3019eac3 10750 char *absolute_name;
9c02c129
DE
10751 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10752 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10753 to debug_file_directory. */
10754 char *search_path;
10755 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10756
6ac97d4c
DE
10757 if (search_cwd)
10758 {
10759 if (*debug_file_directory != '\0')
10760 search_path = concat (".", dirname_separator_string,
b36cec19 10761 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10762 else
10763 search_path = xstrdup (".");
10764 }
9c02c129 10765 else
6ac97d4c 10766 search_path = xstrdup (debug_file_directory);
3019eac3 10767
492c0ab7 10768 flags = OPF_RETURN_REALPATH;
80626a55
DE
10769 if (is_dwp)
10770 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10771 desc = openp (search_path, flags, file_name,
3019eac3 10772 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10773 xfree (search_path);
3019eac3
DE
10774 if (desc < 0)
10775 return NULL;
10776
192b62ce 10777 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10778 xfree (absolute_name);
9c02c129
DE
10779 if (sym_bfd == NULL)
10780 return NULL;
192b62ce 10781 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10782
192b62ce
TT
10783 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10784 return NULL;
3019eac3 10785
13aaf454
DE
10786 /* Success. Record the bfd as having been included by the objfile's bfd.
10787 This is important because things like demangled_names_hash lives in the
10788 objfile's per_bfd space and may have references to things like symbol
10789 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10790 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10791
3019eac3
DE
10792 return sym_bfd;
10793}
10794
ab5088bf 10795/* Try to open DWO file FILE_NAME.
3019eac3
DE
10796 COMP_DIR is the DW_AT_comp_dir attribute.
10797 The result is the bfd handle of the file.
10798 If there is a problem finding or opening the file, return NULL.
10799 Upon success, the canonicalized path of the file is stored in the bfd,
10800 same as symfile_bfd_open. */
10801
192b62ce 10802static gdb_bfd_ref_ptr
ab5088bf 10803open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10804{
80626a55 10805 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10806 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10807
10808 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10809
10810 if (comp_dir != NULL)
10811 {
b36cec19
PA
10812 char *path_to_try = concat (comp_dir, SLASH_STRING,
10813 file_name, (char *) NULL);
3019eac3
DE
10814
10815 /* NOTE: If comp_dir is a relative path, this will also try the
10816 search path, which seems useful. */
192b62ce
TT
10817 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10818 1 /*search_cwd*/));
3019eac3
DE
10819 xfree (path_to_try);
10820 if (abfd != NULL)
10821 return abfd;
10822 }
10823
10824 /* That didn't work, try debug-file-directory, which, despite its name,
10825 is a list of paths. */
10826
10827 if (*debug_file_directory == '\0')
10828 return NULL;
10829
6ac97d4c 10830 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10831}
10832
80626a55
DE
10833/* This function is mapped across the sections and remembers the offset and
10834 size of each of the DWO debugging sections we are interested in. */
10835
10836static void
10837dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10838{
9a3c8263 10839 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10840 const struct dwop_section_names *names = &dwop_section_names;
10841
10842 if (section_is_p (sectp->name, &names->abbrev_dwo))
10843 {
049412e3 10844 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10845 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10846 }
10847 else if (section_is_p (sectp->name, &names->info_dwo))
10848 {
049412e3 10849 dwo_sections->info.s.section = sectp;
80626a55
DE
10850 dwo_sections->info.size = bfd_get_section_size (sectp);
10851 }
10852 else if (section_is_p (sectp->name, &names->line_dwo))
10853 {
049412e3 10854 dwo_sections->line.s.section = sectp;
80626a55
DE
10855 dwo_sections->line.size = bfd_get_section_size (sectp);
10856 }
10857 else if (section_is_p (sectp->name, &names->loc_dwo))
10858 {
049412e3 10859 dwo_sections->loc.s.section = sectp;
80626a55
DE
10860 dwo_sections->loc.size = bfd_get_section_size (sectp);
10861 }
10862 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10863 {
049412e3 10864 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10865 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10866 }
10867 else if (section_is_p (sectp->name, &names->macro_dwo))
10868 {
049412e3 10869 dwo_sections->macro.s.section = sectp;
80626a55
DE
10870 dwo_sections->macro.size = bfd_get_section_size (sectp);
10871 }
10872 else if (section_is_p (sectp->name, &names->str_dwo))
10873 {
049412e3 10874 dwo_sections->str.s.section = sectp;
80626a55
DE
10875 dwo_sections->str.size = bfd_get_section_size (sectp);
10876 }
10877 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10878 {
049412e3 10879 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10880 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10881 }
10882 else if (section_is_p (sectp->name, &names->types_dwo))
10883 {
10884 struct dwarf2_section_info type_section;
10885
10886 memset (&type_section, 0, sizeof (type_section));
049412e3 10887 type_section.s.section = sectp;
80626a55
DE
10888 type_section.size = bfd_get_section_size (sectp);
10889 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10890 &type_section);
10891 }
10892}
10893
ab5088bf 10894/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10895 by PER_CU. This is for the non-DWP case.
80626a55 10896 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10897
10898static struct dwo_file *
0ac5b59e
DE
10899open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10900 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10901{
10902 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10903 struct dwo_file *dwo_file;
3019eac3
DE
10904 struct cleanup *cleanups;
10905
192b62ce 10906 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10907 if (dbfd == NULL)
10908 {
b4f54984 10909 if (dwarf_read_debug)
80626a55
DE
10910 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10911 return NULL;
10912 }
10913 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10914 dwo_file->dwo_name = dwo_name;
10915 dwo_file->comp_dir = comp_dir;
192b62ce 10916 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10917
10918 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10919
192b62ce
TT
10920 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10921 &dwo_file->sections);
3019eac3 10922
33c5cd75 10923 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10924
78d4d2c5
JK
10925 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10926 dwo_file->tus);
3019eac3
DE
10927
10928 discard_cleanups (cleanups);
10929
b4f54984 10930 if (dwarf_read_debug)
80626a55
DE
10931 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10932
3019eac3
DE
10933 return dwo_file;
10934}
10935
80626a55 10936/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10937 size of each of the DWP debugging sections common to version 1 and 2 that
10938 we are interested in. */
3019eac3 10939
80626a55 10940static void
73869dc2
DE
10941dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10942 void *dwp_file_ptr)
3019eac3 10943{
9a3c8263 10944 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10945 const struct dwop_section_names *names = &dwop_section_names;
10946 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10947
80626a55 10948 /* Record the ELF section number for later lookup: this is what the
73869dc2 10949 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10950 gdb_assert (elf_section_nr < dwp_file->num_sections);
10951 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10952
80626a55
DE
10953 /* Look for specific sections that we need. */
10954 if (section_is_p (sectp->name, &names->str_dwo))
10955 {
049412e3 10956 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10957 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10958 }
10959 else if (section_is_p (sectp->name, &names->cu_index))
10960 {
049412e3 10961 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10962 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10963 }
10964 else if (section_is_p (sectp->name, &names->tu_index))
10965 {
049412e3 10966 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10967 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10968 }
10969}
3019eac3 10970
73869dc2
DE
10971/* This function is mapped across the sections and remembers the offset and
10972 size of each of the DWP version 2 debugging sections that we are interested
10973 in. This is split into a separate function because we don't know if we
10974 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10975
10976static void
10977dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10978{
9a3c8263 10979 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10980 const struct dwop_section_names *names = &dwop_section_names;
10981 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10982
10983 /* Record the ELF section number for later lookup: this is what the
10984 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10985 gdb_assert (elf_section_nr < dwp_file->num_sections);
10986 dwp_file->elf_sections[elf_section_nr] = sectp;
10987
10988 /* Look for specific sections that we need. */
10989 if (section_is_p (sectp->name, &names->abbrev_dwo))
10990 {
049412e3 10991 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10992 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10993 }
10994 else if (section_is_p (sectp->name, &names->info_dwo))
10995 {
049412e3 10996 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10997 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10998 }
10999 else if (section_is_p (sectp->name, &names->line_dwo))
11000 {
049412e3 11001 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
11002 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11003 }
11004 else if (section_is_p (sectp->name, &names->loc_dwo))
11005 {
049412e3 11006 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
11007 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11008 }
11009 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11010 {
049412e3 11011 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
11012 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11013 }
11014 else if (section_is_p (sectp->name, &names->macro_dwo))
11015 {
049412e3 11016 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
11017 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11018 }
11019 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11020 {
049412e3 11021 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
11022 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11023 }
11024 else if (section_is_p (sectp->name, &names->types_dwo))
11025 {
049412e3 11026 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
11027 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11028 }
11029}
11030
80626a55 11031/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 11032
80626a55
DE
11033static hashval_t
11034hash_dwp_loaded_cutus (const void *item)
11035{
9a3c8263 11036 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 11037
80626a55
DE
11038 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11039 return dwo_unit->signature;
3019eac3
DE
11040}
11041
80626a55 11042/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 11043
80626a55
DE
11044static int
11045eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 11046{
9a3c8263
SM
11047 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11048 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 11049
80626a55
DE
11050 return dua->signature == dub->signature;
11051}
3019eac3 11052
80626a55 11053/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 11054
80626a55
DE
11055static htab_t
11056allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11057{
11058 return htab_create_alloc_ex (3,
11059 hash_dwp_loaded_cutus,
11060 eq_dwp_loaded_cutus,
11061 NULL,
11062 &objfile->objfile_obstack,
11063 hashtab_obstack_allocate,
11064 dummy_obstack_deallocate);
11065}
3019eac3 11066
ab5088bf
DE
11067/* Try to open DWP file FILE_NAME.
11068 The result is the bfd handle of the file.
11069 If there is a problem finding or opening the file, return NULL.
11070 Upon success, the canonicalized path of the file is stored in the bfd,
11071 same as symfile_bfd_open. */
11072
192b62ce 11073static gdb_bfd_ref_ptr
ab5088bf
DE
11074open_dwp_file (const char *file_name)
11075{
192b62ce
TT
11076 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11077 1 /*search_cwd*/));
6ac97d4c
DE
11078 if (abfd != NULL)
11079 return abfd;
11080
11081 /* Work around upstream bug 15652.
11082 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11083 [Whether that's a "bug" is debatable, but it is getting in our way.]
11084 We have no real idea where the dwp file is, because gdb's realpath-ing
11085 of the executable's path may have discarded the needed info.
11086 [IWBN if the dwp file name was recorded in the executable, akin to
11087 .gnu_debuglink, but that doesn't exist yet.]
11088 Strip the directory from FILE_NAME and search again. */
11089 if (*debug_file_directory != '\0')
11090 {
11091 /* Don't implicitly search the current directory here.
11092 If the user wants to search "." to handle this case,
11093 it must be added to debug-file-directory. */
11094 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11095 0 /*search_cwd*/);
11096 }
11097
11098 return NULL;
ab5088bf
DE
11099}
11100
80626a55
DE
11101/* Initialize the use of the DWP file for the current objfile.
11102 By convention the name of the DWP file is ${objfile}.dwp.
11103 The result is NULL if it can't be found. */
a766d390 11104
80626a55 11105static struct dwp_file *
ab5088bf 11106open_and_init_dwp_file (void)
80626a55
DE
11107{
11108 struct objfile *objfile = dwarf2_per_objfile->objfile;
11109 struct dwp_file *dwp_file;
80626a55 11110
82bf32bc
JK
11111 /* Try to find first .dwp for the binary file before any symbolic links
11112 resolving. */
6c447423
DE
11113
11114 /* If the objfile is a debug file, find the name of the real binary
11115 file and get the name of dwp file from there. */
d721ba37 11116 std::string dwp_name;
6c447423
DE
11117 if (objfile->separate_debug_objfile_backlink != NULL)
11118 {
11119 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11120 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11121
d721ba37 11122 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11123 }
11124 else
d721ba37
PA
11125 dwp_name = objfile->original_name;
11126
11127 dwp_name += ".dwp";
80626a55 11128
d721ba37 11129 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11130 if (dbfd == NULL
11131 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11132 {
11133 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11134 dwp_name = objfile_name (objfile);
11135 dwp_name += ".dwp";
11136 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11137 }
11138
80626a55
DE
11139 if (dbfd == NULL)
11140 {
b4f54984 11141 if (dwarf_read_debug)
d721ba37 11142 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11143 return NULL;
3019eac3 11144 }
80626a55 11145 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11146 dwp_file->name = bfd_get_filename (dbfd.get ());
11147 dwp_file->dbfd = dbfd.release ();
c906108c 11148
80626a55 11149 /* +1: section 0 is unused */
192b62ce 11150 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11151 dwp_file->elf_sections =
11152 OBSTACK_CALLOC (&objfile->objfile_obstack,
11153 dwp_file->num_sections, asection *);
11154
192b62ce
TT
11155 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11156 dwp_file);
80626a55
DE
11157
11158 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11159
11160 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11161
73869dc2 11162 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
11163 if (dwp_file->cus && dwp_file->tus
11164 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
11165 {
11166 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11167 pretty bizarre. We use pulongest here because that's the established
4d65956b 11168 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11169 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11170 " TU version %s [in DWP file %s]"),
11171 pulongest (dwp_file->cus->version),
d721ba37 11172 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 11173 }
08302ed2
DE
11174
11175 if (dwp_file->cus)
11176 dwp_file->version = dwp_file->cus->version;
11177 else if (dwp_file->tus)
11178 dwp_file->version = dwp_file->tus->version;
11179 else
11180 dwp_file->version = 2;
73869dc2
DE
11181
11182 if (dwp_file->version == 2)
192b62ce
TT
11183 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11184 dwp_file);
73869dc2 11185
19ac8c2e
DE
11186 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11187 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11188
b4f54984 11189 if (dwarf_read_debug)
80626a55
DE
11190 {
11191 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11192 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11193 " %s CUs, %s TUs\n",
11194 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11195 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11196 }
11197
11198 return dwp_file;
3019eac3 11199}
c906108c 11200
ab5088bf
DE
11201/* Wrapper around open_and_init_dwp_file, only open it once. */
11202
11203static struct dwp_file *
11204get_dwp_file (void)
11205{
11206 if (! dwarf2_per_objfile->dwp_checked)
11207 {
11208 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11209 dwarf2_per_objfile->dwp_checked = 1;
11210 }
11211 return dwarf2_per_objfile->dwp_file;
11212}
11213
80626a55
DE
11214/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11215 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11216 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11217 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11218 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11219
11220 This is called, for example, when wanting to read a variable with a
11221 complex location. Therefore we don't want to do file i/o for every call.
11222 Therefore we don't want to look for a DWO file on every call.
11223 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11224 then we check if we've already seen DWO_NAME, and only THEN do we check
11225 for a DWO file.
11226
1c658ad5 11227 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11228 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11229
3019eac3 11230static struct dwo_unit *
80626a55
DE
11231lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11232 const char *dwo_name, const char *comp_dir,
11233 ULONGEST signature, int is_debug_types)
3019eac3
DE
11234{
11235 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11236 const char *kind = is_debug_types ? "TU" : "CU";
11237 void **dwo_file_slot;
3019eac3 11238 struct dwo_file *dwo_file;
80626a55 11239 struct dwp_file *dwp_file;
cb1df416 11240
6a506a2d
DE
11241 /* First see if there's a DWP file.
11242 If we have a DWP file but didn't find the DWO inside it, don't
11243 look for the original DWO file. It makes gdb behave differently
11244 depending on whether one is debugging in the build tree. */
cf2c3c16 11245
ab5088bf 11246 dwp_file = get_dwp_file ();
80626a55 11247 if (dwp_file != NULL)
cf2c3c16 11248 {
80626a55
DE
11249 const struct dwp_hash_table *dwp_htab =
11250 is_debug_types ? dwp_file->tus : dwp_file->cus;
11251
11252 if (dwp_htab != NULL)
11253 {
11254 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11255 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11256 signature, is_debug_types);
80626a55
DE
11257
11258 if (dwo_cutu != NULL)
11259 {
b4f54984 11260 if (dwarf_read_debug)
80626a55
DE
11261 {
11262 fprintf_unfiltered (gdb_stdlog,
11263 "Virtual DWO %s %s found: @%s\n",
11264 kind, hex_string (signature),
11265 host_address_to_string (dwo_cutu));
11266 }
11267 return dwo_cutu;
11268 }
11269 }
11270 }
6a506a2d 11271 else
80626a55 11272 {
6a506a2d 11273 /* No DWP file, look for the DWO file. */
80626a55 11274
6a506a2d
DE
11275 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11276 if (*dwo_file_slot == NULL)
80626a55 11277 {
6a506a2d
DE
11278 /* Read in the file and build a table of the CUs/TUs it contains. */
11279 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11280 }
6a506a2d 11281 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11282 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11283
6a506a2d 11284 if (dwo_file != NULL)
19c3d4c9 11285 {
6a506a2d
DE
11286 struct dwo_unit *dwo_cutu = NULL;
11287
11288 if (is_debug_types && dwo_file->tus)
11289 {
11290 struct dwo_unit find_dwo_cutu;
11291
11292 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11293 find_dwo_cutu.signature = signature;
9a3c8263
SM
11294 dwo_cutu
11295 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11296 }
33c5cd75 11297 else if (!is_debug_types && dwo_file->cus)
80626a55 11298 {
33c5cd75
DB
11299 struct dwo_unit find_dwo_cutu;
11300
11301 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11302 find_dwo_cutu.signature = signature;
11303 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11304 &find_dwo_cutu);
6a506a2d
DE
11305 }
11306
11307 if (dwo_cutu != NULL)
11308 {
b4f54984 11309 if (dwarf_read_debug)
6a506a2d
DE
11310 {
11311 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11312 kind, dwo_name, hex_string (signature),
11313 host_address_to_string (dwo_cutu));
11314 }
11315 return dwo_cutu;
80626a55
DE
11316 }
11317 }
2e276125 11318 }
9cdd5dbd 11319
80626a55
DE
11320 /* We didn't find it. This could mean a dwo_id mismatch, or
11321 someone deleted the DWO/DWP file, or the search path isn't set up
11322 correctly to find the file. */
11323
b4f54984 11324 if (dwarf_read_debug)
80626a55
DE
11325 {
11326 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11327 kind, dwo_name, hex_string (signature));
11328 }
3019eac3 11329
6656a72d
DE
11330 /* This is a warning and not a complaint because it can be caused by
11331 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11332 {
11333 /* Print the name of the DWP file if we looked there, helps the user
11334 better diagnose the problem. */
791afaa2 11335 std::string dwp_text;
43942612
DE
11336
11337 if (dwp_file != NULL)
791afaa2
TT
11338 dwp_text = string_printf (" [in DWP file %s]",
11339 lbasename (dwp_file->name));
43942612
DE
11340
11341 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11342 " [in module %s]"),
11343 kind, dwo_name, hex_string (signature),
791afaa2 11344 dwp_text.c_str (),
43942612 11345 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11346 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612 11347 }
3019eac3 11348 return NULL;
5fb290d7
DJ
11349}
11350
80626a55
DE
11351/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11352 See lookup_dwo_cutu_unit for details. */
11353
11354static struct dwo_unit *
11355lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11356 const char *dwo_name, const char *comp_dir,
11357 ULONGEST signature)
11358{
11359 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11360}
11361
11362/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11363 See lookup_dwo_cutu_unit for details. */
11364
11365static struct dwo_unit *
11366lookup_dwo_type_unit (struct signatured_type *this_tu,
11367 const char *dwo_name, const char *comp_dir)
11368{
11369 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11370}
11371
89e63ee4
DE
11372/* Traversal function for queue_and_load_all_dwo_tus. */
11373
11374static int
11375queue_and_load_dwo_tu (void **slot, void *info)
11376{
11377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11378 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11379 ULONGEST signature = dwo_unit->signature;
11380 struct signatured_type *sig_type =
11381 lookup_dwo_signatured_type (per_cu->cu, signature);
11382
11383 if (sig_type != NULL)
11384 {
11385 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11386
11387 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11388 a real dependency of PER_CU on SIG_TYPE. That is detected later
11389 while processing PER_CU. */
11390 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11391 load_full_type_unit (sig_cu);
11392 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11393 }
11394
11395 return 1;
11396}
11397
11398/* Queue all TUs contained in the DWO of PER_CU to be read in.
11399 The DWO may have the only definition of the type, though it may not be
11400 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11401 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11402
11403static void
11404queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11405{
11406 struct dwo_unit *dwo_unit;
11407 struct dwo_file *dwo_file;
11408
11409 gdb_assert (!per_cu->is_debug_types);
11410 gdb_assert (get_dwp_file () == NULL);
11411 gdb_assert (per_cu->cu != NULL);
11412
11413 dwo_unit = per_cu->cu->dwo_unit;
11414 gdb_assert (dwo_unit != NULL);
11415
11416 dwo_file = dwo_unit->dwo_file;
11417 if (dwo_file->tus != NULL)
11418 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11419}
11420
3019eac3
DE
11421/* Free all resources associated with DWO_FILE.
11422 Close the DWO file and munmap the sections.
11423 All memory should be on the objfile obstack. */
348e048f
DE
11424
11425static void
3019eac3 11426free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11427{
348e048f 11428
5c6fa7ab 11429 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11430 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11431
3019eac3
DE
11432 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11433}
348e048f 11434
3019eac3 11435/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11436
3019eac3
DE
11437static void
11438free_dwo_file_cleanup (void *arg)
11439{
11440 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11441 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11442
3019eac3
DE
11443 free_dwo_file (dwo_file, objfile);
11444}
348e048f 11445
3019eac3 11446/* Traversal function for free_dwo_files. */
2ab95328 11447
3019eac3
DE
11448static int
11449free_dwo_file_from_slot (void **slot, void *info)
11450{
11451 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11452 struct objfile *objfile = (struct objfile *) info;
348e048f 11453
3019eac3 11454 free_dwo_file (dwo_file, objfile);
348e048f 11455
3019eac3
DE
11456 return 1;
11457}
348e048f 11458
3019eac3 11459/* Free all resources associated with DWO_FILES. */
348e048f 11460
3019eac3
DE
11461static void
11462free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11463{
11464 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11465}
3019eac3
DE
11466\f
11467/* Read in various DIEs. */
348e048f 11468
d389af10 11469/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11470 Inherit only the children of the DW_AT_abstract_origin DIE not being
11471 already referenced by DW_AT_abstract_origin from the children of the
11472 current DIE. */
d389af10
JK
11473
11474static void
11475inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11476{
11477 struct die_info *child_die;
791afaa2 11478 sect_offset *offsetp;
d389af10
JK
11479 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11480 struct die_info *origin_die;
11481 /* Iterator of the ORIGIN_DIE children. */
11482 struct die_info *origin_child_die;
d389af10 11483 struct attribute *attr;
cd02d79d
PA
11484 struct dwarf2_cu *origin_cu;
11485 struct pending **origin_previous_list_in_scope;
d389af10
JK
11486
11487 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11488 if (!attr)
11489 return;
11490
cd02d79d
PA
11491 /* Note that following die references may follow to a die in a
11492 different cu. */
11493
11494 origin_cu = cu;
11495 origin_die = follow_die_ref (die, attr, &origin_cu);
11496
11497 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11498 symbols in. */
11499 origin_previous_list_in_scope = origin_cu->list_in_scope;
11500 origin_cu->list_in_scope = cu->list_in_scope;
11501
edb3359d
DJ
11502 if (die->tag != origin_die->tag
11503 && !(die->tag == DW_TAG_inlined_subroutine
11504 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11505 complaint (&symfile_complaints,
11506 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11507 to_underlying (die->sect_off),
11508 to_underlying (origin_die->sect_off));
d389af10 11509
791afaa2 11510 std::vector<sect_offset> offsets;
d389af10 11511
3ea89b92
PMR
11512 for (child_die = die->child;
11513 child_die && child_die->tag;
11514 child_die = sibling_die (child_die))
11515 {
11516 struct die_info *child_origin_die;
11517 struct dwarf2_cu *child_origin_cu;
11518
11519 /* We are trying to process concrete instance entries:
216f72a1 11520 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11521 it's not relevant to our analysis here. i.e. detecting DIEs that are
11522 present in the abstract instance but not referenced in the concrete
11523 one. */
216f72a1
JK
11524 if (child_die->tag == DW_TAG_call_site
11525 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11526 continue;
11527
c38f313d
DJ
11528 /* For each CHILD_DIE, find the corresponding child of
11529 ORIGIN_DIE. If there is more than one layer of
11530 DW_AT_abstract_origin, follow them all; there shouldn't be,
11531 but GCC versions at least through 4.4 generate this (GCC PR
11532 40573). */
3ea89b92
PMR
11533 child_origin_die = child_die;
11534 child_origin_cu = cu;
c38f313d
DJ
11535 while (1)
11536 {
cd02d79d
PA
11537 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11538 child_origin_cu);
c38f313d
DJ
11539 if (attr == NULL)
11540 break;
cd02d79d
PA
11541 child_origin_die = follow_die_ref (child_origin_die, attr,
11542 &child_origin_cu);
c38f313d
DJ
11543 }
11544
d389af10
JK
11545 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11546 counterpart may exist. */
c38f313d 11547 if (child_origin_die != child_die)
d389af10 11548 {
edb3359d
DJ
11549 if (child_die->tag != child_origin_die->tag
11550 && !(child_die->tag == DW_TAG_inlined_subroutine
11551 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11552 complaint (&symfile_complaints,
11553 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11554 "different tags"),
11555 to_underlying (child_die->sect_off),
11556 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11557 if (child_origin_die->parent != origin_die)
11558 complaint (&symfile_complaints,
11559 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11560 "different parents"),
11561 to_underlying (child_die->sect_off),
11562 to_underlying (child_origin_die->sect_off));
c38f313d 11563 else
791afaa2 11564 offsets.push_back (child_origin_die->sect_off);
d389af10 11565 }
d389af10 11566 }
791afaa2
TT
11567 std::sort (offsets.begin (), offsets.end ());
11568 sect_offset *offsets_end = offsets.data () + offsets.size ();
11569 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 11570 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11571 complaint (&symfile_complaints,
11572 _("Multiple children of DIE 0x%x refer "
11573 "to DIE 0x%x as their abstract origin"),
9c541725 11574 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10 11575
791afaa2 11576 offsetp = offsets.data ();
d389af10
JK
11577 origin_child_die = origin_die->child;
11578 while (origin_child_die && origin_child_die->tag)
11579 {
11580 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11581 while (offsetp < offsets_end
9c541725 11582 && *offsetp < origin_child_die->sect_off)
d389af10 11583 offsetp++;
b64f50a1 11584 if (offsetp >= offsets_end
9c541725 11585 || *offsetp > origin_child_die->sect_off)
d389af10 11586 {
adde2bff
DE
11587 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11588 Check whether we're already processing ORIGIN_CHILD_DIE.
11589 This can happen with mutually referenced abstract_origins.
11590 PR 16581. */
11591 if (!origin_child_die->in_process)
11592 process_die (origin_child_die, origin_cu);
d389af10
JK
11593 }
11594 origin_child_die = sibling_die (origin_child_die);
11595 }
cd02d79d 11596 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11597}
11598
c906108c 11599static void
e7c27a73 11600read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11601{
e7c27a73 11602 struct objfile *objfile = cu->objfile;
3e29f34a 11603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11604 struct context_stack *newobj;
c906108c
SS
11605 CORE_ADDR lowpc;
11606 CORE_ADDR highpc;
11607 struct die_info *child_die;
edb3359d 11608 struct attribute *attr, *call_line, *call_file;
15d034d0 11609 const char *name;
e142c38c 11610 CORE_ADDR baseaddr;
801e3a5b 11611 struct block *block;
edb3359d 11612 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11613 VEC (symbolp) *template_args = NULL;
11614 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11615
11616 if (inlined_func)
11617 {
11618 /* If we do not have call site information, we can't show the
11619 caller of this inlined function. That's too confusing, so
11620 only use the scope for local variables. */
11621 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11622 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11623 if (call_line == NULL || call_file == NULL)
11624 {
11625 read_lexical_block_scope (die, cu);
11626 return;
11627 }
11628 }
c906108c 11629
e142c38c
DJ
11630 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11631
94af9270 11632 name = dwarf2_name (die, cu);
c906108c 11633
e8d05480
JB
11634 /* Ignore functions with missing or empty names. These are actually
11635 illegal according to the DWARF standard. */
11636 if (name == NULL)
11637 {
11638 complaint (&symfile_complaints,
b64f50a1 11639 _("missing name for subprogram DIE at %d"),
9c541725 11640 to_underlying (die->sect_off));
e8d05480
JB
11641 return;
11642 }
11643
11644 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11645 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11646 <= PC_BOUNDS_INVALID)
e8d05480 11647 {
ae4d0c03
PM
11648 attr = dwarf2_attr (die, DW_AT_external, cu);
11649 if (!attr || !DW_UNSND (attr))
11650 complaint (&symfile_complaints,
3e43a32a
MS
11651 _("cannot get low and high bounds "
11652 "for subprogram DIE at %d"),
9c541725 11653 to_underlying (die->sect_off));
e8d05480
JB
11654 return;
11655 }
c906108c 11656
3e29f34a
MR
11657 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11658 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11659
34eaf542
TT
11660 /* If we have any template arguments, then we must allocate a
11661 different sort of symbol. */
11662 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11663 {
11664 if (child_die->tag == DW_TAG_template_type_param
11665 || child_die->tag == DW_TAG_template_value_param)
11666 {
e623cf5d 11667 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11668 templ_func->base.is_cplus_template_function = 1;
11669 break;
11670 }
11671 }
11672
fe978cb0
PA
11673 newobj = push_context (0, lowpc);
11674 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11675 (struct symbol *) templ_func);
4c2df51b 11676
4cecd739
DJ
11677 /* If there is a location expression for DW_AT_frame_base, record
11678 it. */
e142c38c 11679 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11680 if (attr)
fe978cb0 11681 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11682
63e43d3a
PMR
11683 /* If there is a location for the static link, record it. */
11684 newobj->static_link = NULL;
11685 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11686 if (attr)
11687 {
224c3ddb
SM
11688 newobj->static_link
11689 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11690 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11691 }
11692
e142c38c 11693 cu->list_in_scope = &local_symbols;
c906108c 11694
639d11d3 11695 if (die->child != NULL)
c906108c 11696 {
639d11d3 11697 child_die = die->child;
c906108c
SS
11698 while (child_die && child_die->tag)
11699 {
34eaf542
TT
11700 if (child_die->tag == DW_TAG_template_type_param
11701 || child_die->tag == DW_TAG_template_value_param)
11702 {
11703 struct symbol *arg = new_symbol (child_die, NULL, cu);
11704
f1078f66
DJ
11705 if (arg != NULL)
11706 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11707 }
11708 else
11709 process_die (child_die, cu);
c906108c
SS
11710 child_die = sibling_die (child_die);
11711 }
11712 }
11713
d389af10
JK
11714 inherit_abstract_dies (die, cu);
11715
4a811a97
UW
11716 /* If we have a DW_AT_specification, we might need to import using
11717 directives from the context of the specification DIE. See the
11718 comment in determine_prefix. */
11719 if (cu->language == language_cplus
11720 && dwarf2_attr (die, DW_AT_specification, cu))
11721 {
11722 struct dwarf2_cu *spec_cu = cu;
11723 struct die_info *spec_die = die_specification (die, &spec_cu);
11724
11725 while (spec_die)
11726 {
11727 child_die = spec_die->child;
11728 while (child_die && child_die->tag)
11729 {
11730 if (child_die->tag == DW_TAG_imported_module)
11731 process_die (child_die, spec_cu);
11732 child_die = sibling_die (child_die);
11733 }
11734
11735 /* In some cases, GCC generates specification DIEs that
11736 themselves contain DW_AT_specification attributes. */
11737 spec_die = die_specification (spec_die, &spec_cu);
11738 }
11739 }
11740
fe978cb0 11741 newobj = pop_context ();
c906108c 11742 /* Make a block for the local symbols within. */
fe978cb0 11743 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11744 newobj->static_link, lowpc, highpc);
801e3a5b 11745
df8a16a1 11746 /* For C++, set the block's scope. */
45280282
IB
11747 if ((cu->language == language_cplus
11748 || cu->language == language_fortran
c44af4eb
TT
11749 || cu->language == language_d
11750 || cu->language == language_rust)
4d4ec4e5 11751 && cu->processing_has_namespace_info)
195a3f6c
TT
11752 block_set_scope (block, determine_prefix (die, cu),
11753 &objfile->objfile_obstack);
df8a16a1 11754
801e3a5b
JB
11755 /* If we have address ranges, record them. */
11756 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11757
fe978cb0 11758 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11759
34eaf542
TT
11760 /* Attach template arguments to function. */
11761 if (! VEC_empty (symbolp, template_args))
11762 {
11763 gdb_assert (templ_func != NULL);
11764
11765 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11766 templ_func->template_arguments
8d749320
SM
11767 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11768 templ_func->n_template_arguments);
34eaf542
TT
11769 memcpy (templ_func->template_arguments,
11770 VEC_address (symbolp, template_args),
11771 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11772 VEC_free (symbolp, template_args);
11773 }
11774
208d8187
JB
11775 /* In C++, we can have functions nested inside functions (e.g., when
11776 a function declares a class that has methods). This means that
11777 when we finish processing a function scope, we may need to go
11778 back to building a containing block's symbol lists. */
fe978cb0 11779 local_symbols = newobj->locals;
22cee43f 11780 local_using_directives = newobj->local_using_directives;
208d8187 11781
921e78cf
JB
11782 /* If we've finished processing a top-level function, subsequent
11783 symbols go in the file symbol list. */
11784 if (outermost_context_p ())
e142c38c 11785 cu->list_in_scope = &file_symbols;
c906108c
SS
11786}
11787
11788/* Process all the DIES contained within a lexical block scope. Start
11789 a new scope, process the dies, and then close the scope. */
11790
11791static void
e7c27a73 11792read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11793{
e7c27a73 11794 struct objfile *objfile = cu->objfile;
3e29f34a 11795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11796 struct context_stack *newobj;
c906108c
SS
11797 CORE_ADDR lowpc, highpc;
11798 struct die_info *child_die;
e142c38c
DJ
11799 CORE_ADDR baseaddr;
11800
11801 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11802
11803 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11804 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11805 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11806 be nasty. Might be easier to properly extend generic blocks to
af34e669 11807 describe ranges. */
e385593e
JK
11808 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11809 {
11810 case PC_BOUNDS_NOT_PRESENT:
11811 /* DW_TAG_lexical_block has no attributes, process its children as if
11812 there was no wrapping by that DW_TAG_lexical_block.
11813 GCC does no longer produces such DWARF since GCC r224161. */
11814 for (child_die = die->child;
11815 child_die != NULL && child_die->tag;
11816 child_die = sibling_die (child_die))
11817 process_die (child_die, cu);
11818 return;
11819 case PC_BOUNDS_INVALID:
11820 return;
11821 }
3e29f34a
MR
11822 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11823 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11824
11825 push_context (0, lowpc);
639d11d3 11826 if (die->child != NULL)
c906108c 11827 {
639d11d3 11828 child_die = die->child;
c906108c
SS
11829 while (child_die && child_die->tag)
11830 {
e7c27a73 11831 process_die (child_die, cu);
c906108c
SS
11832 child_die = sibling_die (child_die);
11833 }
11834 }
3ea89b92 11835 inherit_abstract_dies (die, cu);
fe978cb0 11836 newobj = pop_context ();
c906108c 11837
22cee43f 11838 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11839 {
801e3a5b 11840 struct block *block
63e43d3a 11841 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11842 newobj->start_addr, highpc);
801e3a5b
JB
11843
11844 /* Note that recording ranges after traversing children, as we
11845 do here, means that recording a parent's ranges entails
11846 walking across all its children's ranges as they appear in
11847 the address map, which is quadratic behavior.
11848
11849 It would be nicer to record the parent's ranges before
11850 traversing its children, simply overriding whatever you find
11851 there. But since we don't even decide whether to create a
11852 block until after we've traversed its children, that's hard
11853 to do. */
11854 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11855 }
fe978cb0 11856 local_symbols = newobj->locals;
22cee43f 11857 local_using_directives = newobj->local_using_directives;
c906108c
SS
11858}
11859
216f72a1 11860/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11861
11862static void
11863read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11864{
11865 struct objfile *objfile = cu->objfile;
11866 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11867 CORE_ADDR pc, baseaddr;
11868 struct attribute *attr;
11869 struct call_site *call_site, call_site_local;
11870 void **slot;
11871 int nparams;
11872 struct die_info *child_die;
11873
11874 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11875
216f72a1
JK
11876 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11877 if (attr == NULL)
11878 {
11879 /* This was a pre-DWARF-5 GNU extension alias
11880 for DW_AT_call_return_pc. */
11881 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11882 }
96408a79
SA
11883 if (!attr)
11884 {
11885 complaint (&symfile_complaints,
216f72a1 11886 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11887 "DIE 0x%x [in module %s]"),
9c541725 11888 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11889 return;
11890 }
31aa7e4e 11891 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11892 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11893
11894 if (cu->call_site_htab == NULL)
11895 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11896 NULL, &objfile->objfile_obstack,
11897 hashtab_obstack_allocate, NULL);
11898 call_site_local.pc = pc;
11899 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11900 if (*slot != NULL)
11901 {
11902 complaint (&symfile_complaints,
216f72a1 11903 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11904 "DIE 0x%x [in module %s]"),
9c541725 11905 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11906 objfile_name (objfile));
96408a79
SA
11907 return;
11908 }
11909
11910 /* Count parameters at the caller. */
11911
11912 nparams = 0;
11913 for (child_die = die->child; child_die && child_die->tag;
11914 child_die = sibling_die (child_die))
11915 {
216f72a1
JK
11916 if (child_die->tag != DW_TAG_call_site_parameter
11917 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11918 {
11919 complaint (&symfile_complaints,
216f72a1
JK
11920 _("Tag %d is not DW_TAG_call_site_parameter in "
11921 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11922 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11923 objfile_name (objfile));
96408a79
SA
11924 continue;
11925 }
11926
11927 nparams++;
11928 }
11929
224c3ddb
SM
11930 call_site
11931 = ((struct call_site *)
11932 obstack_alloc (&objfile->objfile_obstack,
11933 sizeof (*call_site)
11934 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11935 *slot = call_site;
11936 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11937 call_site->pc = pc;
11938
216f72a1
JK
11939 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11940 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11941 {
11942 struct die_info *func_die;
11943
11944 /* Skip also over DW_TAG_inlined_subroutine. */
11945 for (func_die = die->parent;
11946 func_die && func_die->tag != DW_TAG_subprogram
11947 && func_die->tag != DW_TAG_subroutine_type;
11948 func_die = func_die->parent);
11949
216f72a1
JK
11950 /* DW_AT_call_all_calls is a superset
11951 of DW_AT_call_all_tail_calls. */
96408a79 11952 if (func_die
216f72a1 11953 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 11954 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 11955 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
11956 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11957 {
11958 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11959 not complete. But keep CALL_SITE for look ups via call_site_htab,
11960 both the initial caller containing the real return address PC and
11961 the final callee containing the current PC of a chain of tail
11962 calls do not need to have the tail call list complete. But any
11963 function candidate for a virtual tail call frame searched via
11964 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11965 determined unambiguously. */
11966 }
11967 else
11968 {
11969 struct type *func_type = NULL;
11970
11971 if (func_die)
11972 func_type = get_die_type (func_die, cu);
11973 if (func_type != NULL)
11974 {
11975 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11976
11977 /* Enlist this call site to the function. */
11978 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11979 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11980 }
11981 else
11982 complaint (&symfile_complaints,
216f72a1 11983 _("Cannot find function owning DW_TAG_call_site "
96408a79 11984 "DIE 0x%x [in module %s]"),
9c541725 11985 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11986 }
11987 }
11988
216f72a1
JK
11989 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11990 if (attr == NULL)
11991 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11992 if (attr == NULL)
11993 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 11994 if (attr == NULL)
216f72a1
JK
11995 {
11996 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11997 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11998 }
96408a79
SA
11999 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12000 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12001 /* Keep NULL DWARF_BLOCK. */;
12002 else if (attr_form_is_block (attr))
12003 {
12004 struct dwarf2_locexpr_baton *dlbaton;
12005
8d749320 12006 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
12007 dlbaton->data = DW_BLOCK (attr)->data;
12008 dlbaton->size = DW_BLOCK (attr)->size;
12009 dlbaton->per_cu = cu->per_cu;
12010
12011 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12012 }
7771576e 12013 else if (attr_form_is_ref (attr))
96408a79 12014 {
96408a79
SA
12015 struct dwarf2_cu *target_cu = cu;
12016 struct die_info *target_die;
12017
ac9ec31b 12018 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
12019 gdb_assert (target_cu->objfile == objfile);
12020 if (die_is_declaration (target_die, target_cu))
12021 {
7d45c7c3 12022 const char *target_physname;
9112db09
JK
12023
12024 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 12025 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 12026 if (target_physname == NULL)
9112db09 12027 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
12028 if (target_physname == NULL)
12029 complaint (&symfile_complaints,
216f72a1 12030 _("DW_AT_call_target target DIE has invalid "
96408a79 12031 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 12032 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12033 else
7d455152 12034 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
12035 }
12036 else
12037 {
12038 CORE_ADDR lowpc;
12039
12040 /* DW_AT_entry_pc should be preferred. */
3a2b436a 12041 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 12042 <= PC_BOUNDS_INVALID)
96408a79 12043 complaint (&symfile_complaints,
216f72a1 12044 _("DW_AT_call_target target DIE has invalid "
96408a79 12045 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 12046 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12047 else
3e29f34a
MR
12048 {
12049 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12050 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12051 }
96408a79
SA
12052 }
12053 }
12054 else
12055 complaint (&symfile_complaints,
216f72a1 12056 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12057 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12058 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12059
12060 call_site->per_cu = cu->per_cu;
12061
12062 for (child_die = die->child;
12063 child_die && child_die->tag;
12064 child_die = sibling_die (child_die))
12065 {
96408a79 12066 struct call_site_parameter *parameter;
1788b2d3 12067 struct attribute *loc, *origin;
96408a79 12068
216f72a1
JK
12069 if (child_die->tag != DW_TAG_call_site_parameter
12070 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12071 {
12072 /* Already printed the complaint above. */
12073 continue;
12074 }
12075
12076 gdb_assert (call_site->parameter_count < nparams);
12077 parameter = &call_site->parameter[call_site->parameter_count];
12078
1788b2d3
JK
12079 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12080 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12081 register is contained in DW_AT_call_value. */
96408a79 12082
24c5c679 12083 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12084 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12085 if (origin == NULL)
12086 {
12087 /* This was a pre-DWARF-5 GNU extension alias
12088 for DW_AT_call_parameter. */
12089 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12090 }
7771576e 12091 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12092 {
1788b2d3 12093 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12094
12095 sect_offset sect_off
12096 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12097 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12098 {
12099 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12100 binding can be done only inside one CU. Such referenced DIE
12101 therefore cannot be even moved to DW_TAG_partial_unit. */
12102 complaint (&symfile_complaints,
216f72a1
JK
12103 _("DW_AT_call_parameter offset is not in CU for "
12104 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12105 to_underlying (child_die->sect_off),
12106 objfile_name (objfile));
d76b7dbc
JK
12107 continue;
12108 }
9c541725
PA
12109 parameter->u.param_cu_off
12110 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12111 }
12112 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12113 {
12114 complaint (&symfile_complaints,
12115 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12116 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12117 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12118 continue;
12119 }
24c5c679 12120 else
96408a79 12121 {
24c5c679
JK
12122 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12123 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12124 if (parameter->u.dwarf_reg != -1)
12125 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12126 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12127 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12128 &parameter->u.fb_offset))
12129 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12130 else
12131 {
12132 complaint (&symfile_complaints,
12133 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12134 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12135 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12136 "[in module %s]"),
9c541725
PA
12137 to_underlying (child_die->sect_off),
12138 objfile_name (objfile));
24c5c679
JK
12139 continue;
12140 }
96408a79
SA
12141 }
12142
216f72a1
JK
12143 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12144 if (attr == NULL)
12145 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12146 if (!attr_form_is_block (attr))
12147 {
12148 complaint (&symfile_complaints,
216f72a1
JK
12149 _("No DW_FORM_block* DW_AT_call_value for "
12150 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12151 to_underlying (child_die->sect_off),
12152 objfile_name (objfile));
96408a79
SA
12153 continue;
12154 }
12155 parameter->value = DW_BLOCK (attr)->data;
12156 parameter->value_size = DW_BLOCK (attr)->size;
12157
12158 /* Parameters are not pre-cleared by memset above. */
12159 parameter->data_value = NULL;
12160 parameter->data_value_size = 0;
12161 call_site->parameter_count++;
12162
216f72a1
JK
12163 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12164 if (attr == NULL)
12165 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12166 if (attr)
12167 {
12168 if (!attr_form_is_block (attr))
12169 complaint (&symfile_complaints,
216f72a1
JK
12170 _("No DW_FORM_block* DW_AT_call_data_value for "
12171 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12172 to_underlying (child_die->sect_off),
12173 objfile_name (objfile));
96408a79
SA
12174 else
12175 {
12176 parameter->data_value = DW_BLOCK (attr)->data;
12177 parameter->data_value_size = DW_BLOCK (attr)->size;
12178 }
12179 }
12180 }
12181}
12182
43988095
JK
12183/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12184 reading .debug_rnglists.
12185 Callback's type should be:
12186 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12187 Return true if the attributes are present and valid, otherwise,
12188 return false. */
12189
12190template <typename Callback>
12191static bool
12192dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12193 Callback &&callback)
12194{
12195 struct objfile *objfile = cu->objfile;
12196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12197 struct comp_unit_head *cu_header = &cu->header;
12198 bfd *obfd = objfile->obfd;
12199 unsigned int addr_size = cu_header->addr_size;
12200 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12201 /* Base address selection entry. */
12202 CORE_ADDR base;
12203 int found_base;
12204 unsigned int dummy;
12205 const gdb_byte *buffer;
12206 CORE_ADDR low = 0;
12207 CORE_ADDR high = 0;
12208 CORE_ADDR baseaddr;
12209 bool overflow = false;
12210
12211 found_base = cu->base_known;
12212 base = cu->base_address;
12213
12214 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12215 if (offset >= dwarf2_per_objfile->rnglists.size)
12216 {
12217 complaint (&symfile_complaints,
12218 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12219 offset);
12220 return false;
12221 }
12222 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12223
12224 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12225
12226 while (1)
12227 {
7814882a
JK
12228 /* Initialize it due to a false compiler warning. */
12229 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12230 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12231 + dwarf2_per_objfile->rnglists.size);
12232 unsigned int bytes_read;
12233
12234 if (buffer == buf_end)
12235 {
12236 overflow = true;
12237 break;
12238 }
12239 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12240 switch (rlet)
12241 {
12242 case DW_RLE_end_of_list:
12243 break;
12244 case DW_RLE_base_address:
12245 if (buffer + cu->header.addr_size > buf_end)
12246 {
12247 overflow = true;
12248 break;
12249 }
12250 base = read_address (obfd, buffer, cu, &bytes_read);
12251 found_base = 1;
12252 buffer += bytes_read;
12253 break;
12254 case DW_RLE_start_length:
12255 if (buffer + cu->header.addr_size > buf_end)
12256 {
12257 overflow = true;
12258 break;
12259 }
12260 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12261 buffer += bytes_read;
12262 range_end = (range_beginning
12263 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12264 buffer += bytes_read;
12265 if (buffer > buf_end)
12266 {
12267 overflow = true;
12268 break;
12269 }
12270 break;
12271 case DW_RLE_offset_pair:
12272 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12273 buffer += bytes_read;
12274 if (buffer > buf_end)
12275 {
12276 overflow = true;
12277 break;
12278 }
12279 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12280 buffer += bytes_read;
12281 if (buffer > buf_end)
12282 {
12283 overflow = true;
12284 break;
12285 }
12286 break;
12287 case DW_RLE_start_end:
12288 if (buffer + 2 * cu->header.addr_size > buf_end)
12289 {
12290 overflow = true;
12291 break;
12292 }
12293 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12294 buffer += bytes_read;
12295 range_end = read_address (obfd, buffer, cu, &bytes_read);
12296 buffer += bytes_read;
12297 break;
12298 default:
12299 complaint (&symfile_complaints,
12300 _("Invalid .debug_rnglists data (no base address)"));
12301 return false;
12302 }
12303 if (rlet == DW_RLE_end_of_list || overflow)
12304 break;
12305 if (rlet == DW_RLE_base_address)
12306 continue;
12307
12308 if (!found_base)
12309 {
12310 /* We have no valid base address for the ranges
12311 data. */
12312 complaint (&symfile_complaints,
12313 _("Invalid .debug_rnglists data (no base address)"));
12314 return false;
12315 }
12316
12317 if (range_beginning > range_end)
12318 {
12319 /* Inverted range entries are invalid. */
12320 complaint (&symfile_complaints,
12321 _("Invalid .debug_rnglists data (inverted range)"));
12322 return false;
12323 }
12324
12325 /* Empty range entries have no effect. */
12326 if (range_beginning == range_end)
12327 continue;
12328
12329 range_beginning += base;
12330 range_end += base;
12331
12332 /* A not-uncommon case of bad debug info.
12333 Don't pollute the addrmap with bad data. */
12334 if (range_beginning + baseaddr == 0
12335 && !dwarf2_per_objfile->has_section_at_zero)
12336 {
12337 complaint (&symfile_complaints,
12338 _(".debug_rnglists entry has start address of zero"
12339 " [in module %s]"), objfile_name (objfile));
12340 continue;
12341 }
12342
12343 callback (range_beginning, range_end);
12344 }
12345
12346 if (overflow)
12347 {
12348 complaint (&symfile_complaints,
12349 _("Offset %d is not terminated "
12350 "for DW_AT_ranges attribute"),
12351 offset);
12352 return false;
12353 }
12354
12355 return true;
12356}
12357
12358/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12359 Callback's type should be:
12360 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12361 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12362
43988095 12363template <typename Callback>
43039443 12364static int
5f46c5a5 12365dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12366 Callback &&callback)
43039443
JK
12367{
12368 struct objfile *objfile = cu->objfile;
3e29f34a 12369 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12370 struct comp_unit_head *cu_header = &cu->header;
12371 bfd *obfd = objfile->obfd;
12372 unsigned int addr_size = cu_header->addr_size;
12373 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12374 /* Base address selection entry. */
12375 CORE_ADDR base;
12376 int found_base;
12377 unsigned int dummy;
d521ce57 12378 const gdb_byte *buffer;
ff013f42 12379 CORE_ADDR baseaddr;
43039443 12380
43988095
JK
12381 if (cu_header->version >= 5)
12382 return dwarf2_rnglists_process (offset, cu, callback);
12383
d00adf39
DE
12384 found_base = cu->base_known;
12385 base = cu->base_address;
43039443 12386
be391dca 12387 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12388 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12389 {
12390 complaint (&symfile_complaints,
12391 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12392 offset);
12393 return 0;
12394 }
dce234bc 12395 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12396
e7030f15 12397 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12398
43039443
JK
12399 while (1)
12400 {
12401 CORE_ADDR range_beginning, range_end;
12402
12403 range_beginning = read_address (obfd, buffer, cu, &dummy);
12404 buffer += addr_size;
12405 range_end = read_address (obfd, buffer, cu, &dummy);
12406 buffer += addr_size;
12407 offset += 2 * addr_size;
12408
12409 /* An end of list marker is a pair of zero addresses. */
12410 if (range_beginning == 0 && range_end == 0)
12411 /* Found the end of list entry. */
12412 break;
12413
12414 /* Each base address selection entry is a pair of 2 values.
12415 The first is the largest possible address, the second is
12416 the base address. Check for a base address here. */
12417 if ((range_beginning & mask) == mask)
12418 {
28d2bfb9
AB
12419 /* If we found the largest possible address, then we already
12420 have the base address in range_end. */
12421 base = range_end;
43039443
JK
12422 found_base = 1;
12423 continue;
12424 }
12425
12426 if (!found_base)
12427 {
12428 /* We have no valid base address for the ranges
12429 data. */
12430 complaint (&symfile_complaints,
12431 _("Invalid .debug_ranges data (no base address)"));
12432 return 0;
12433 }
12434
9277c30c
UW
12435 if (range_beginning > range_end)
12436 {
12437 /* Inverted range entries are invalid. */
12438 complaint (&symfile_complaints,
12439 _("Invalid .debug_ranges data (inverted range)"));
12440 return 0;
12441 }
12442
12443 /* Empty range entries have no effect. */
12444 if (range_beginning == range_end)
12445 continue;
12446
43039443
JK
12447 range_beginning += base;
12448 range_end += base;
12449
01093045
DE
12450 /* A not-uncommon case of bad debug info.
12451 Don't pollute the addrmap with bad data. */
12452 if (range_beginning + baseaddr == 0
12453 && !dwarf2_per_objfile->has_section_at_zero)
12454 {
12455 complaint (&symfile_complaints,
12456 _(".debug_ranges entry has start address of zero"
4262abfb 12457 " [in module %s]"), objfile_name (objfile));
01093045
DE
12458 continue;
12459 }
12460
5f46c5a5
JK
12461 callback (range_beginning, range_end);
12462 }
12463
12464 return 1;
12465}
12466
12467/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12468 Return 1 if the attributes are present and valid, otherwise, return 0.
12469 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12470
12471static int
12472dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12473 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12474 struct partial_symtab *ranges_pst)
12475{
12476 struct objfile *objfile = cu->objfile;
12477 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12478 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12479 SECT_OFF_TEXT (objfile));
12480 int low_set = 0;
12481 CORE_ADDR low = 0;
12482 CORE_ADDR high = 0;
12483 int retval;
12484
12485 retval = dwarf2_ranges_process (offset, cu,
12486 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12487 {
9277c30c 12488 if (ranges_pst != NULL)
3e29f34a
MR
12489 {
12490 CORE_ADDR lowpc;
12491 CORE_ADDR highpc;
12492
12493 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12494 range_beginning + baseaddr);
12495 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12496 range_end + baseaddr);
12497 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12498 ranges_pst);
12499 }
ff013f42 12500
43039443
JK
12501 /* FIXME: This is recording everything as a low-high
12502 segment of consecutive addresses. We should have a
12503 data structure for discontiguous block ranges
12504 instead. */
12505 if (! low_set)
12506 {
12507 low = range_beginning;
12508 high = range_end;
12509 low_set = 1;
12510 }
12511 else
12512 {
12513 if (range_beginning < low)
12514 low = range_beginning;
12515 if (range_end > high)
12516 high = range_end;
12517 }
5f46c5a5
JK
12518 });
12519 if (!retval)
12520 return 0;
43039443
JK
12521
12522 if (! low_set)
12523 /* If the first entry is an end-of-list marker, the range
12524 describes an empty scope, i.e. no instructions. */
12525 return 0;
12526
12527 if (low_return)
12528 *low_return = low;
12529 if (high_return)
12530 *high_return = high;
12531 return 1;
12532}
12533
3a2b436a
JK
12534/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12535 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12536 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12537
3a2b436a 12538static enum pc_bounds_kind
af34e669 12539dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12540 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12541 struct partial_symtab *pst)
c906108c
SS
12542{
12543 struct attribute *attr;
91da1414 12544 struct attribute *attr_high;
af34e669
DJ
12545 CORE_ADDR low = 0;
12546 CORE_ADDR high = 0;
e385593e 12547 enum pc_bounds_kind ret;
c906108c 12548
91da1414
MW
12549 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12550 if (attr_high)
af34e669 12551 {
e142c38c 12552 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12553 if (attr)
91da1414 12554 {
31aa7e4e
JB
12555 low = attr_value_as_address (attr);
12556 high = attr_value_as_address (attr_high);
12557 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12558 high += low;
91da1414 12559 }
af34e669
DJ
12560 else
12561 /* Found high w/o low attribute. */
e385593e 12562 return PC_BOUNDS_INVALID;
af34e669
DJ
12563
12564 /* Found consecutive range of addresses. */
3a2b436a 12565 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12566 }
c906108c 12567 else
af34e669 12568 {
e142c38c 12569 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12570 if (attr != NULL)
12571 {
ab435259
DE
12572 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12573 We take advantage of the fact that DW_AT_ranges does not appear
12574 in DW_TAG_compile_unit of DWO files. */
12575 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12576 unsigned int ranges_offset = (DW_UNSND (attr)
12577 + (need_ranges_base
12578 ? cu->ranges_base
12579 : 0));
2e3cf129 12580
af34e669 12581 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12582 .debug_ranges section. */
2e3cf129 12583 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12584 return PC_BOUNDS_INVALID;
43039443 12585 /* Found discontinuous range of addresses. */
3a2b436a 12586 ret = PC_BOUNDS_RANGES;
af34e669 12587 }
e385593e
JK
12588 else
12589 return PC_BOUNDS_NOT_PRESENT;
af34e669 12590 }
c906108c 12591
9373cf26
JK
12592 /* read_partial_die has also the strict LOW < HIGH requirement. */
12593 if (high <= low)
e385593e 12594 return PC_BOUNDS_INVALID;
c906108c
SS
12595
12596 /* When using the GNU linker, .gnu.linkonce. sections are used to
12597 eliminate duplicate copies of functions and vtables and such.
12598 The linker will arbitrarily choose one and discard the others.
12599 The AT_*_pc values for such functions refer to local labels in
12600 these sections. If the section from that file was discarded, the
12601 labels are not in the output, so the relocs get a value of 0.
12602 If this is a discarded function, mark the pc bounds as invalid,
12603 so that GDB will ignore it. */
72dca2f5 12604 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12605 return PC_BOUNDS_INVALID;
c906108c
SS
12606
12607 *lowpc = low;
96408a79
SA
12608 if (highpc)
12609 *highpc = high;
af34e669 12610 return ret;
c906108c
SS
12611}
12612
b084d499
JB
12613/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12614 its low and high PC addresses. Do nothing if these addresses could not
12615 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12616 and HIGHPC to the high address if greater than HIGHPC. */
12617
12618static void
12619dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12620 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12621 struct dwarf2_cu *cu)
12622{
12623 CORE_ADDR low, high;
12624 struct die_info *child = die->child;
12625
e385593e 12626 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12627 {
325fac50
PA
12628 *lowpc = std::min (*lowpc, low);
12629 *highpc = std::max (*highpc, high);
b084d499
JB
12630 }
12631
12632 /* If the language does not allow nested subprograms (either inside
12633 subprograms or lexical blocks), we're done. */
12634 if (cu->language != language_ada)
12635 return;
6e70227d 12636
b084d499
JB
12637 /* Check all the children of the given DIE. If it contains nested
12638 subprograms, then check their pc bounds. Likewise, we need to
12639 check lexical blocks as well, as they may also contain subprogram
12640 definitions. */
12641 while (child && child->tag)
12642 {
12643 if (child->tag == DW_TAG_subprogram
12644 || child->tag == DW_TAG_lexical_block)
12645 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12646 child = sibling_die (child);
12647 }
12648}
12649
fae299cd
DC
12650/* Get the low and high pc's represented by the scope DIE, and store
12651 them in *LOWPC and *HIGHPC. If the correct values can't be
12652 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12653
12654static void
12655get_scope_pc_bounds (struct die_info *die,
12656 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12657 struct dwarf2_cu *cu)
12658{
12659 CORE_ADDR best_low = (CORE_ADDR) -1;
12660 CORE_ADDR best_high = (CORE_ADDR) 0;
12661 CORE_ADDR current_low, current_high;
12662
3a2b436a 12663 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12664 >= PC_BOUNDS_RANGES)
fae299cd
DC
12665 {
12666 best_low = current_low;
12667 best_high = current_high;
12668 }
12669 else
12670 {
12671 struct die_info *child = die->child;
12672
12673 while (child && child->tag)
12674 {
12675 switch (child->tag) {
12676 case DW_TAG_subprogram:
b084d499 12677 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12678 break;
12679 case DW_TAG_namespace:
f55ee35c 12680 case DW_TAG_module:
fae299cd
DC
12681 /* FIXME: carlton/2004-01-16: Should we do this for
12682 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12683 that current GCC's always emit the DIEs corresponding
12684 to definitions of methods of classes as children of a
12685 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12686 the DIEs giving the declarations, which could be
12687 anywhere). But I don't see any reason why the
12688 standards says that they have to be there. */
12689 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12690
12691 if (current_low != ((CORE_ADDR) -1))
12692 {
325fac50
PA
12693 best_low = std::min (best_low, current_low);
12694 best_high = std::max (best_high, current_high);
fae299cd
DC
12695 }
12696 break;
12697 default:
0963b4bd 12698 /* Ignore. */
fae299cd
DC
12699 break;
12700 }
12701
12702 child = sibling_die (child);
12703 }
12704 }
12705
12706 *lowpc = best_low;
12707 *highpc = best_high;
12708}
12709
801e3a5b
JB
12710/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12711 in DIE. */
380bca97 12712
801e3a5b
JB
12713static void
12714dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12715 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12716{
bb5ed363 12717 struct objfile *objfile = cu->objfile;
3e29f34a 12718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12719 struct attribute *attr;
91da1414 12720 struct attribute *attr_high;
801e3a5b 12721
91da1414
MW
12722 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12723 if (attr_high)
801e3a5b 12724 {
801e3a5b
JB
12725 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12726 if (attr)
12727 {
31aa7e4e
JB
12728 CORE_ADDR low = attr_value_as_address (attr);
12729 CORE_ADDR high = attr_value_as_address (attr_high);
12730
12731 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12732 high += low;
9a619af0 12733
3e29f34a
MR
12734 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12735 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12736 record_block_range (block, low, high - 1);
801e3a5b
JB
12737 }
12738 }
12739
12740 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12741 if (attr)
12742 {
bb5ed363 12743 bfd *obfd = objfile->obfd;
ab435259
DE
12744 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12745 We take advantage of the fact that DW_AT_ranges does not appear
12746 in DW_TAG_compile_unit of DWO files. */
12747 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12748
12749 /* The value of the DW_AT_ranges attribute is the offset of the
12750 address range list in the .debug_ranges section. */
ab435259
DE
12751 unsigned long offset = (DW_UNSND (attr)
12752 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12753 const gdb_byte *buffer;
801e3a5b
JB
12754
12755 /* For some target architectures, but not others, the
12756 read_address function sign-extends the addresses it returns.
12757 To recognize base address selection entries, we need a
12758 mask. */
12759 unsigned int addr_size = cu->header.addr_size;
12760 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12761
12762 /* The base address, to which the next pair is relative. Note
12763 that this 'base' is a DWARF concept: most entries in a range
12764 list are relative, to reduce the number of relocs against the
12765 debugging information. This is separate from this function's
12766 'baseaddr' argument, which GDB uses to relocate debugging
12767 information from a shared library based on the address at
12768 which the library was loaded. */
d00adf39
DE
12769 CORE_ADDR base = cu->base_address;
12770 int base_known = cu->base_known;
801e3a5b 12771
5f46c5a5
JK
12772 dwarf2_ranges_process (offset, cu,
12773 [&] (CORE_ADDR start, CORE_ADDR end)
12774 {
58fdfd2c
JK
12775 start += baseaddr;
12776 end += baseaddr;
5f46c5a5
JK
12777 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12778 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12779 record_block_range (block, start, end - 1);
12780 });
801e3a5b
JB
12781 }
12782}
12783
685b1105
JK
12784/* Check whether the producer field indicates either of GCC < 4.6, or the
12785 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12786
685b1105
JK
12787static void
12788check_producer (struct dwarf2_cu *cu)
60d5a603 12789{
38360086 12790 int major, minor;
60d5a603
JK
12791
12792 if (cu->producer == NULL)
12793 {
12794 /* For unknown compilers expect their behavior is DWARF version
12795 compliant.
12796
12797 GCC started to support .debug_types sections by -gdwarf-4 since
12798 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12799 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12800 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12801 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12802 }
b1ffba5a 12803 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12804 {
38360086
MW
12805 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12806 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12807 }
5230b05a
WT
12808 else if (producer_is_icc (cu->producer, &major, &minor))
12809 cu->producer_is_icc_lt_14 = major < 14;
685b1105
JK
12810 else
12811 {
12812 /* For other non-GCC compilers, expect their behavior is DWARF version
12813 compliant. */
60d5a603
JK
12814 }
12815
ba919b58 12816 cu->checked_producer = 1;
685b1105 12817}
ba919b58 12818
685b1105
JK
12819/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12820 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12821 during 4.6.0 experimental. */
12822
12823static int
12824producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12825{
12826 if (!cu->checked_producer)
12827 check_producer (cu);
12828
12829 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12830}
12831
12832/* Return the default accessibility type if it is not overriden by
12833 DW_AT_accessibility. */
12834
12835static enum dwarf_access_attribute
12836dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12837{
12838 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12839 {
12840 /* The default DWARF 2 accessibility for members is public, the default
12841 accessibility for inheritance is private. */
12842
12843 if (die->tag != DW_TAG_inheritance)
12844 return DW_ACCESS_public;
12845 else
12846 return DW_ACCESS_private;
12847 }
12848 else
12849 {
12850 /* DWARF 3+ defines the default accessibility a different way. The same
12851 rules apply now for DW_TAG_inheritance as for the members and it only
12852 depends on the container kind. */
12853
12854 if (die->parent->tag == DW_TAG_class_type)
12855 return DW_ACCESS_private;
12856 else
12857 return DW_ACCESS_public;
12858 }
12859}
12860
74ac6d43
TT
12861/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12862 offset. If the attribute was not found return 0, otherwise return
12863 1. If it was found but could not properly be handled, set *OFFSET
12864 to 0. */
12865
12866static int
12867handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12868 LONGEST *offset)
12869{
12870 struct attribute *attr;
12871
12872 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12873 if (attr != NULL)
12874 {
12875 *offset = 0;
12876
12877 /* Note that we do not check for a section offset first here.
12878 This is because DW_AT_data_member_location is new in DWARF 4,
12879 so if we see it, we can assume that a constant form is really
12880 a constant and not a section offset. */
12881 if (attr_form_is_constant (attr))
12882 *offset = dwarf2_get_attr_constant_value (attr, 0);
12883 else if (attr_form_is_section_offset (attr))
12884 dwarf2_complex_location_expr_complaint ();
12885 else if (attr_form_is_block (attr))
12886 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12887 else
12888 dwarf2_complex_location_expr_complaint ();
12889
12890 return 1;
12891 }
12892
12893 return 0;
12894}
12895
c906108c
SS
12896/* Add an aggregate field to the field list. */
12897
12898static void
107d2387 12899dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12900 struct dwarf2_cu *cu)
6e70227d 12901{
e7c27a73 12902 struct objfile *objfile = cu->objfile;
5e2b427d 12903 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12904 struct nextfield *new_field;
12905 struct attribute *attr;
12906 struct field *fp;
15d034d0 12907 const char *fieldname = "";
c906108c
SS
12908
12909 /* Allocate a new field list entry and link it in. */
8d749320 12910 new_field = XNEW (struct nextfield);
b8c9b27d 12911 make_cleanup (xfree, new_field);
c906108c 12912 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12913
12914 if (die->tag == DW_TAG_inheritance)
12915 {
12916 new_field->next = fip->baseclasses;
12917 fip->baseclasses = new_field;
12918 }
12919 else
12920 {
12921 new_field->next = fip->fields;
12922 fip->fields = new_field;
12923 }
c906108c
SS
12924 fip->nfields++;
12925
e142c38c 12926 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12927 if (attr)
12928 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12929 else
12930 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12931 if (new_field->accessibility != DW_ACCESS_public)
12932 fip->non_public_fields = 1;
60d5a603 12933
e142c38c 12934 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12935 if (attr)
12936 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12937 else
12938 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12939
12940 fp = &new_field->field;
a9a9bd0f 12941
e142c38c 12942 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12943 {
74ac6d43
TT
12944 LONGEST offset;
12945
a9a9bd0f 12946 /* Data member other than a C++ static data member. */
6e70227d 12947
c906108c 12948 /* Get type of field. */
e7c27a73 12949 fp->type = die_type (die, cu);
c906108c 12950
d6a843b5 12951 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12952
c906108c 12953 /* Get bit size of field (zero if none). */
e142c38c 12954 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12955 if (attr)
12956 {
12957 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12958 }
12959 else
12960 {
12961 FIELD_BITSIZE (*fp) = 0;
12962 }
12963
12964 /* Get bit offset of field. */
74ac6d43
TT
12965 if (handle_data_member_location (die, cu, &offset))
12966 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12967 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12968 if (attr)
12969 {
5e2b427d 12970 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12971 {
12972 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12973 additional bit offset from the MSB of the containing
12974 anonymous object to the MSB of the field. We don't
12975 have to do anything special since we don't need to
12976 know the size of the anonymous object. */
f41f5e61 12977 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12978 }
12979 else
12980 {
12981 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12982 MSB of the anonymous object, subtract off the number of
12983 bits from the MSB of the field to the MSB of the
12984 object, and then subtract off the number of bits of
12985 the field itself. The result is the bit offset of
12986 the LSB of the field. */
c906108c
SS
12987 int anonymous_size;
12988 int bit_offset = DW_UNSND (attr);
12989
e142c38c 12990 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12991 if (attr)
12992 {
12993 /* The size of the anonymous object containing
12994 the bit field is explicit, so use the
12995 indicated size (in bytes). */
12996 anonymous_size = DW_UNSND (attr);
12997 }
12998 else
12999 {
13000 /* The size of the anonymous object containing
13001 the bit field must be inferred from the type
13002 attribute of the data member containing the
13003 bit field. */
13004 anonymous_size = TYPE_LENGTH (fp->type);
13005 }
f41f5e61
PA
13006 SET_FIELD_BITPOS (*fp,
13007 (FIELD_BITPOS (*fp)
13008 + anonymous_size * bits_per_byte
13009 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
13010 }
13011 }
da5b30da
AA
13012 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13013 if (attr != NULL)
13014 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13015 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
13016
13017 /* Get name of field. */
39cbfefa
DJ
13018 fieldname = dwarf2_name (die, cu);
13019 if (fieldname == NULL)
13020 fieldname = "";
d8151005
DJ
13021
13022 /* The name is already allocated along with this objfile, so we don't
13023 need to duplicate it for the type. */
13024 fp->name = fieldname;
c906108c
SS
13025
13026 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 13027 pointer or virtual base class pointer) to private. */
e142c38c 13028 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 13029 {
d48cc9dd 13030 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
13031 new_field->accessibility = DW_ACCESS_private;
13032 fip->non_public_fields = 1;
13033 }
13034 }
a9a9bd0f 13035 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 13036 {
a9a9bd0f
DC
13037 /* C++ static member. */
13038
13039 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13040 is a declaration, but all versions of G++ as of this writing
13041 (so through at least 3.2.1) incorrectly generate
13042 DW_TAG_variable tags. */
6e70227d 13043
ff355380 13044 const char *physname;
c906108c 13045
a9a9bd0f 13046 /* Get name of field. */
39cbfefa
DJ
13047 fieldname = dwarf2_name (die, cu);
13048 if (fieldname == NULL)
c906108c
SS
13049 return;
13050
254e6b9e 13051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13052 if (attr
13053 /* Only create a symbol if this is an external value.
13054 new_symbol checks this and puts the value in the global symbol
13055 table, which we want. If it is not external, new_symbol
13056 will try to put the value in cu->list_in_scope which is wrong. */
13057 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13058 {
13059 /* A static const member, not much different than an enum as far as
13060 we're concerned, except that we can support more types. */
13061 new_symbol (die, NULL, cu);
13062 }
13063
2df3850c 13064 /* Get physical name. */
ff355380 13065 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13066
d8151005
DJ
13067 /* The name is already allocated along with this objfile, so we don't
13068 need to duplicate it for the type. */
13069 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13070 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13071 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13072 }
13073 else if (die->tag == DW_TAG_inheritance)
13074 {
74ac6d43 13075 LONGEST offset;
d4b96c9a 13076
74ac6d43
TT
13077 /* C++ base class field. */
13078 if (handle_data_member_location (die, cu, &offset))
13079 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13080 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13081 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13082 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13083 fip->nbaseclasses++;
13084 }
13085}
13086
98751a41
JK
13087/* Add a typedef defined in the scope of the FIP's class. */
13088
13089static void
13090dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13091 struct dwarf2_cu *cu)
6e70227d 13092{
98751a41 13093 struct typedef_field_list *new_field;
98751a41 13094 struct typedef_field *fp;
98751a41
JK
13095
13096 /* Allocate a new field list entry and link it in. */
8d749320 13097 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13098 make_cleanup (xfree, new_field);
13099
13100 gdb_assert (die->tag == DW_TAG_typedef);
13101
13102 fp = &new_field->field;
13103
13104 /* Get name of field. */
13105 fp->name = dwarf2_name (die, cu);
13106 if (fp->name == NULL)
13107 return;
13108
13109 fp->type = read_type_die (die, cu);
13110
c191a687
KS
13111 /* Save accessibility. */
13112 enum dwarf_access_attribute accessibility;
13113 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13114 if (attr != NULL)
13115 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13116 else
13117 accessibility = dwarf2_default_access_attribute (die, cu);
13118 switch (accessibility)
13119 {
13120 case DW_ACCESS_public:
13121 /* The assumed value if neither private nor protected. */
13122 break;
13123 case DW_ACCESS_private:
13124 fp->is_private = 1;
13125 break;
13126 case DW_ACCESS_protected:
13127 fp->is_protected = 1;
13128 break;
13129 default:
37534686
KS
13130 complaint (&symfile_complaints,
13131 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
13132 }
13133
98751a41
JK
13134 new_field->next = fip->typedef_field_list;
13135 fip->typedef_field_list = new_field;
13136 fip->typedef_field_list_count++;
13137}
13138
c906108c
SS
13139/* Create the vector of fields, and attach it to the type. */
13140
13141static void
fba45db2 13142dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13143 struct dwarf2_cu *cu)
c906108c
SS
13144{
13145 int nfields = fip->nfields;
13146
13147 /* Record the field count, allocate space for the array of fields,
13148 and create blank accessibility bitfields if necessary. */
13149 TYPE_NFIELDS (type) = nfields;
13150 TYPE_FIELDS (type) = (struct field *)
13151 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13152 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13153
b4ba55a1 13154 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13155 {
13156 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13157
13158 TYPE_FIELD_PRIVATE_BITS (type) =
13159 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13160 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13161
13162 TYPE_FIELD_PROTECTED_BITS (type) =
13163 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13164 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13165
774b6a14
TT
13166 TYPE_FIELD_IGNORE_BITS (type) =
13167 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13168 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13169 }
13170
13171 /* If the type has baseclasses, allocate and clear a bit vector for
13172 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13173 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13174 {
13175 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13176 unsigned char *pointer;
c906108c
SS
13177
13178 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13179 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13180 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13181 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13182 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13183 }
13184
3e43a32a
MS
13185 /* Copy the saved-up fields into the field vector. Start from the head of
13186 the list, adding to the tail of the field array, so that they end up in
13187 the same order in the array in which they were added to the list. */
c906108c
SS
13188 while (nfields-- > 0)
13189 {
7d0ccb61
DJ
13190 struct nextfield *fieldp;
13191
13192 if (fip->fields)
13193 {
13194 fieldp = fip->fields;
13195 fip->fields = fieldp->next;
13196 }
13197 else
13198 {
13199 fieldp = fip->baseclasses;
13200 fip->baseclasses = fieldp->next;
13201 }
13202
13203 TYPE_FIELD (type, nfields) = fieldp->field;
13204 switch (fieldp->accessibility)
c906108c 13205 {
c5aa993b 13206 case DW_ACCESS_private:
b4ba55a1
JB
13207 if (cu->language != language_ada)
13208 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13209 break;
c906108c 13210
c5aa993b 13211 case DW_ACCESS_protected:
b4ba55a1
JB
13212 if (cu->language != language_ada)
13213 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13214 break;
c906108c 13215
c5aa993b
JM
13216 case DW_ACCESS_public:
13217 break;
c906108c 13218
c5aa993b
JM
13219 default:
13220 /* Unknown accessibility. Complain and treat it as public. */
13221 {
e2e0b3e5 13222 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13223 fieldp->accessibility);
c5aa993b
JM
13224 }
13225 break;
c906108c
SS
13226 }
13227 if (nfields < fip->nbaseclasses)
13228 {
7d0ccb61 13229 switch (fieldp->virtuality)
c906108c 13230 {
c5aa993b
JM
13231 case DW_VIRTUALITY_virtual:
13232 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13233 if (cu->language == language_ada)
a73c6dcd 13234 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13235 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13236 break;
c906108c
SS
13237 }
13238 }
c906108c
SS
13239 }
13240}
13241
7d27a96d
TT
13242/* Return true if this member function is a constructor, false
13243 otherwise. */
13244
13245static int
13246dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13247{
13248 const char *fieldname;
fe978cb0 13249 const char *type_name;
7d27a96d
TT
13250 int len;
13251
13252 if (die->parent == NULL)
13253 return 0;
13254
13255 if (die->parent->tag != DW_TAG_structure_type
13256 && die->parent->tag != DW_TAG_union_type
13257 && die->parent->tag != DW_TAG_class_type)
13258 return 0;
13259
13260 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13261 type_name = dwarf2_name (die->parent, cu);
13262 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13263 return 0;
13264
13265 len = strlen (fieldname);
fe978cb0
PA
13266 return (strncmp (fieldname, type_name, len) == 0
13267 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13268}
13269
c906108c
SS
13270/* Add a member function to the proper fieldlist. */
13271
13272static void
107d2387 13273dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13274 struct type *type, struct dwarf2_cu *cu)
c906108c 13275{
e7c27a73 13276 struct objfile *objfile = cu->objfile;
c906108c
SS
13277 struct attribute *attr;
13278 struct fnfieldlist *flp;
13279 int i;
13280 struct fn_field *fnp;
15d034d0 13281 const char *fieldname;
c906108c 13282 struct nextfnfield *new_fnfield;
f792889a 13283 struct type *this_type;
60d5a603 13284 enum dwarf_access_attribute accessibility;
c906108c 13285
b4ba55a1 13286 if (cu->language == language_ada)
a73c6dcd 13287 error (_("unexpected member function in Ada type"));
b4ba55a1 13288
2df3850c 13289 /* Get name of member function. */
39cbfefa
DJ
13290 fieldname = dwarf2_name (die, cu);
13291 if (fieldname == NULL)
2df3850c 13292 return;
c906108c 13293
c906108c
SS
13294 /* Look up member function name in fieldlist. */
13295 for (i = 0; i < fip->nfnfields; i++)
13296 {
27bfe10e 13297 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13298 break;
13299 }
13300
13301 /* Create new list element if necessary. */
13302 if (i < fip->nfnfields)
13303 flp = &fip->fnfieldlists[i];
13304 else
13305 {
13306 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13307 {
13308 fip->fnfieldlists = (struct fnfieldlist *)
13309 xrealloc (fip->fnfieldlists,
13310 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13311 * sizeof (struct fnfieldlist));
c906108c 13312 if (fip->nfnfields == 0)
c13c43fd 13313 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13314 }
13315 flp = &fip->fnfieldlists[fip->nfnfields];
13316 flp->name = fieldname;
13317 flp->length = 0;
13318 flp->head = NULL;
3da10d80 13319 i = fip->nfnfields++;
c906108c
SS
13320 }
13321
13322 /* Create a new member function field and chain it to the field list
0963b4bd 13323 entry. */
8d749320 13324 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13325 make_cleanup (xfree, new_fnfield);
c906108c
SS
13326 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13327 new_fnfield->next = flp->head;
13328 flp->head = new_fnfield;
13329 flp->length++;
13330
13331 /* Fill in the member function field info. */
13332 fnp = &new_fnfield->fnfield;
3da10d80
KS
13333
13334 /* Delay processing of the physname until later. */
9c37b5ae 13335 if (cu->language == language_cplus)
3da10d80
KS
13336 {
13337 add_to_method_list (type, i, flp->length - 1, fieldname,
13338 die, cu);
13339 }
13340 else
13341 {
1d06ead6 13342 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13343 fnp->physname = physname ? physname : "";
13344 }
13345
c906108c 13346 fnp->type = alloc_type (objfile);
f792889a
DJ
13347 this_type = read_type_die (die, cu);
13348 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13349 {
f792889a 13350 int nparams = TYPE_NFIELDS (this_type);
c906108c 13351
f792889a 13352 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13353 of the method itself (TYPE_CODE_METHOD). */
13354 smash_to_method_type (fnp->type, type,
f792889a
DJ
13355 TYPE_TARGET_TYPE (this_type),
13356 TYPE_FIELDS (this_type),
13357 TYPE_NFIELDS (this_type),
13358 TYPE_VARARGS (this_type));
c906108c
SS
13359
13360 /* Handle static member functions.
c5aa993b 13361 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13362 member functions. G++ helps GDB by marking the first
13363 parameter for non-static member functions (which is the this
13364 pointer) as artificial. We obtain this information from
13365 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13366 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13367 fnp->voffset = VOFFSET_STATIC;
13368 }
13369 else
e2e0b3e5 13370 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13371 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13372
13373 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13374 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13375 fnp->fcontext = die_containing_type (die, cu);
c906108c 13376
3e43a32a
MS
13377 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13378 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13379
13380 /* Get accessibility. */
e142c38c 13381 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13382 if (attr)
aead7601 13383 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13384 else
13385 accessibility = dwarf2_default_access_attribute (die, cu);
13386 switch (accessibility)
c906108c 13387 {
60d5a603
JK
13388 case DW_ACCESS_private:
13389 fnp->is_private = 1;
13390 break;
13391 case DW_ACCESS_protected:
13392 fnp->is_protected = 1;
13393 break;
c906108c
SS
13394 }
13395
b02dede2 13396 /* Check for artificial methods. */
e142c38c 13397 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13398 if (attr && DW_UNSND (attr) != 0)
13399 fnp->is_artificial = 1;
13400
7d27a96d
TT
13401 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13402
0d564a31 13403 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13404 function. For older versions of GCC, this is an offset in the
13405 appropriate virtual table, as specified by DW_AT_containing_type.
13406 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13407 to the object address. */
13408
e142c38c 13409 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13410 if (attr)
8e19ed76 13411 {
aec5aa8b 13412 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13413 {
aec5aa8b
TT
13414 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13415 {
13416 /* Old-style GCC. */
13417 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13418 }
13419 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13420 || (DW_BLOCK (attr)->size > 1
13421 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13422 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13423 {
aec5aa8b
TT
13424 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13425 if ((fnp->voffset % cu->header.addr_size) != 0)
13426 dwarf2_complex_location_expr_complaint ();
13427 else
13428 fnp->voffset /= cu->header.addr_size;
13429 fnp->voffset += 2;
13430 }
13431 else
13432 dwarf2_complex_location_expr_complaint ();
13433
13434 if (!fnp->fcontext)
7e993ebf
KS
13435 {
13436 /* If there is no `this' field and no DW_AT_containing_type,
13437 we cannot actually find a base class context for the
13438 vtable! */
13439 if (TYPE_NFIELDS (this_type) == 0
13440 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13441 {
13442 complaint (&symfile_complaints,
13443 _("cannot determine context for virtual member "
13444 "function \"%s\" (offset %d)"),
9c541725 13445 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13446 }
13447 else
13448 {
13449 fnp->fcontext
13450 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13451 }
13452 }
aec5aa8b 13453 }
3690dd37 13454 else if (attr_form_is_section_offset (attr))
8e19ed76 13455 {
4d3c2250 13456 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13457 }
13458 else
13459 {
4d3c2250
KB
13460 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13461 fieldname);
8e19ed76 13462 }
0d564a31 13463 }
d48cc9dd
DJ
13464 else
13465 {
13466 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13467 if (attr && DW_UNSND (attr))
13468 {
13469 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13470 complaint (&symfile_complaints,
3e43a32a
MS
13471 _("Member function \"%s\" (offset %d) is virtual "
13472 "but the vtable offset is not specified"),
9c541725 13473 fieldname, to_underlying (die->sect_off));
9655fd1a 13474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13475 TYPE_CPLUS_DYNAMIC (type) = 1;
13476 }
13477 }
c906108c
SS
13478}
13479
13480/* Create the vector of member function fields, and attach it to the type. */
13481
13482static void
fba45db2 13483dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13484 struct dwarf2_cu *cu)
c906108c
SS
13485{
13486 struct fnfieldlist *flp;
c906108c
SS
13487 int i;
13488
b4ba55a1 13489 if (cu->language == language_ada)
a73c6dcd 13490 error (_("unexpected member functions in Ada type"));
b4ba55a1 13491
c906108c
SS
13492 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13493 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13494 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13495
13496 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13497 {
13498 struct nextfnfield *nfp = flp->head;
13499 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13500 int k;
13501
13502 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13503 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13504 fn_flp->fn_fields = (struct fn_field *)
13505 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13506 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13507 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13508 }
13509
13510 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13511}
13512
1168df01
JB
13513/* Returns non-zero if NAME is the name of a vtable member in CU's
13514 language, zero otherwise. */
13515static int
13516is_vtable_name (const char *name, struct dwarf2_cu *cu)
13517{
13518 static const char vptr[] = "_vptr";
987504bb 13519 static const char vtable[] = "vtable";
1168df01 13520
9c37b5ae
TT
13521 /* Look for the C++ form of the vtable. */
13522 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13523 return 1;
13524
13525 return 0;
13526}
13527
c0dd20ea 13528/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13529 functions, with the ABI-specified layout. If TYPE describes
13530 such a structure, smash it into a member function type.
61049d3b
DJ
13531
13532 GCC shouldn't do this; it should just output pointer to member DIEs.
13533 This is GCC PR debug/28767. */
c0dd20ea 13534
0b92b5bb
TT
13535static void
13536quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13537{
09e2d7c7 13538 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13539
13540 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13541 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13542 return;
c0dd20ea
DJ
13543
13544 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13545 if (TYPE_FIELD_NAME (type, 0) == NULL
13546 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13547 || TYPE_FIELD_NAME (type, 1) == NULL
13548 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13549 return;
c0dd20ea
DJ
13550
13551 /* Find the type of the method. */
0b92b5bb 13552 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13553 if (pfn_type == NULL
13554 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13555 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13556 return;
c0dd20ea
DJ
13557
13558 /* Look for the "this" argument. */
13559 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13560 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13561 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13562 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13563 return;
c0dd20ea 13564
09e2d7c7 13565 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13566 new_type = alloc_type (objfile);
09e2d7c7 13567 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13568 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13569 TYPE_VARARGS (pfn_type));
0b92b5bb 13570 smash_to_methodptr_type (type, new_type);
c0dd20ea 13571}
1168df01 13572
685b1105 13573
c906108c 13574/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13575 (definition) to create a type for the structure or union. Fill in
13576 the type's name and general properties; the members will not be
83655187
DE
13577 processed until process_structure_scope. A symbol table entry for
13578 the type will also not be done until process_structure_scope (assuming
13579 the type has a name).
c906108c 13580
c767944b
DJ
13581 NOTE: we need to call these functions regardless of whether or not the
13582 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13583 structure or union. This gets the type entered into our set of
83655187 13584 user defined types. */
c906108c 13585
f792889a 13586static struct type *
134d01f1 13587read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13588{
e7c27a73 13589 struct objfile *objfile = cu->objfile;
c906108c
SS
13590 struct type *type;
13591 struct attribute *attr;
15d034d0 13592 const char *name;
c906108c 13593
348e048f
DE
13594 /* If the definition of this type lives in .debug_types, read that type.
13595 Don't follow DW_AT_specification though, that will take us back up
13596 the chain and we want to go down. */
45e58e77 13597 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13598 if (attr)
13599 {
ac9ec31b 13600 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13601
ac9ec31b 13602 /* The type's CU may not be the same as CU.
02142a6c 13603 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13604 return set_die_type (die, type, cu);
13605 }
13606
c0dd20ea 13607 type = alloc_type (objfile);
c906108c 13608 INIT_CPLUS_SPECIFIC (type);
93311388 13609
39cbfefa
DJ
13610 name = dwarf2_name (die, cu);
13611 if (name != NULL)
c906108c 13612 {
987504bb 13613 if (cu->language == language_cplus
c44af4eb
TT
13614 || cu->language == language_d
13615 || cu->language == language_rust)
63d06c5c 13616 {
15d034d0 13617 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13618
13619 /* dwarf2_full_name might have already finished building the DIE's
13620 type. If so, there is no need to continue. */
13621 if (get_die_type (die, cu) != NULL)
13622 return get_die_type (die, cu);
13623
13624 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13625 if (die->tag == DW_TAG_structure_type
13626 || die->tag == DW_TAG_class_type)
13627 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13628 }
13629 else
13630 {
d8151005
DJ
13631 /* The name is already allocated along with this objfile, so
13632 we don't need to duplicate it for the type. */
7d455152 13633 TYPE_TAG_NAME (type) = name;
94af9270
KS
13634 if (die->tag == DW_TAG_class_type)
13635 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13636 }
c906108c
SS
13637 }
13638
13639 if (die->tag == DW_TAG_structure_type)
13640 {
13641 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13642 }
13643 else if (die->tag == DW_TAG_union_type)
13644 {
13645 TYPE_CODE (type) = TYPE_CODE_UNION;
13646 }
13647 else
13648 {
4753d33b 13649 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13650 }
13651
0cc2414c
TT
13652 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13653 TYPE_DECLARED_CLASS (type) = 1;
13654
e142c38c 13655 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13656 if (attr)
13657 {
155bfbd3
JB
13658 if (attr_form_is_constant (attr))
13659 TYPE_LENGTH (type) = DW_UNSND (attr);
13660 else
13661 {
13662 /* For the moment, dynamic type sizes are not supported
13663 by GDB's struct type. The actual size is determined
13664 on-demand when resolving the type of a given object,
13665 so set the type's length to zero for now. Otherwise,
13666 we record an expression as the length, and that expression
13667 could lead to a very large value, which could eventually
13668 lead to us trying to allocate that much memory when creating
13669 a value of that type. */
13670 TYPE_LENGTH (type) = 0;
13671 }
c906108c
SS
13672 }
13673 else
13674 {
13675 TYPE_LENGTH (type) = 0;
13676 }
13677
5230b05a 13678 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 13679 {
5230b05a
WT
13680 /* ICC<14 does not output the required DW_AT_declaration on
13681 incomplete types, but gives them a size of zero. */
422b1cb0 13682 TYPE_STUB (type) = 1;
685b1105
JK
13683 }
13684 else
13685 TYPE_STUB_SUPPORTED (type) = 1;
13686
dc718098 13687 if (die_is_declaration (die, cu))
876cecd0 13688 TYPE_STUB (type) = 1;
a6c727b2
DJ
13689 else if (attr == NULL && die->child == NULL
13690 && producer_is_realview (cu->producer))
13691 /* RealView does not output the required DW_AT_declaration
13692 on incomplete types. */
13693 TYPE_STUB (type) = 1;
dc718098 13694
c906108c
SS
13695 /* We need to add the type field to the die immediately so we don't
13696 infinitely recurse when dealing with pointers to the structure
0963b4bd 13697 type within the structure itself. */
1c379e20 13698 set_die_type (die, type, cu);
c906108c 13699
7e314c57
JK
13700 /* set_die_type should be already done. */
13701 set_descriptive_type (type, die, cu);
13702
c767944b
DJ
13703 return type;
13704}
13705
13706/* Finish creating a structure or union type, including filling in
13707 its members and creating a symbol for it. */
13708
13709static void
13710process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13711{
13712 struct objfile *objfile = cu->objfile;
ca040673 13713 struct die_info *child_die;
c767944b
DJ
13714 struct type *type;
13715
13716 type = get_die_type (die, cu);
13717 if (type == NULL)
13718 type = read_structure_type (die, cu);
13719
e142c38c 13720 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13721 {
13722 struct field_info fi;
34eaf542 13723 VEC (symbolp) *template_args = NULL;
c767944b 13724 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13725
13726 memset (&fi, 0, sizeof (struct field_info));
13727
639d11d3 13728 child_die = die->child;
c906108c
SS
13729
13730 while (child_die && child_die->tag)
13731 {
a9a9bd0f
DC
13732 if (child_die->tag == DW_TAG_member
13733 || child_die->tag == DW_TAG_variable)
c906108c 13734 {
a9a9bd0f
DC
13735 /* NOTE: carlton/2002-11-05: A C++ static data member
13736 should be a DW_TAG_member that is a declaration, but
13737 all versions of G++ as of this writing (so through at
13738 least 3.2.1) incorrectly generate DW_TAG_variable
13739 tags for them instead. */
e7c27a73 13740 dwarf2_add_field (&fi, child_die, cu);
c906108c 13741 }
8713b1b1 13742 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13743 {
e98c9e7c
TT
13744 /* Rust doesn't have member functions in the C++ sense.
13745 However, it does emit ordinary functions as children
13746 of a struct DIE. */
13747 if (cu->language == language_rust)
13748 read_func_scope (child_die, cu);
13749 else
13750 {
13751 /* C++ member function. */
13752 dwarf2_add_member_fn (&fi, child_die, type, cu);
13753 }
c906108c
SS
13754 }
13755 else if (child_die->tag == DW_TAG_inheritance)
13756 {
13757 /* C++ base class field. */
e7c27a73 13758 dwarf2_add_field (&fi, child_die, cu);
c906108c 13759 }
98751a41
JK
13760 else if (child_die->tag == DW_TAG_typedef)
13761 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13762 else if (child_die->tag == DW_TAG_template_type_param
13763 || child_die->tag == DW_TAG_template_value_param)
13764 {
13765 struct symbol *arg = new_symbol (child_die, NULL, cu);
13766
f1078f66
DJ
13767 if (arg != NULL)
13768 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13769 }
13770
c906108c
SS
13771 child_die = sibling_die (child_die);
13772 }
13773
34eaf542
TT
13774 /* Attach template arguments to type. */
13775 if (! VEC_empty (symbolp, template_args))
13776 {
13777 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13778 TYPE_N_TEMPLATE_ARGUMENTS (type)
13779 = VEC_length (symbolp, template_args);
13780 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13781 = XOBNEWVEC (&objfile->objfile_obstack,
13782 struct symbol *,
13783 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13784 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13785 VEC_address (symbolp, template_args),
13786 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13787 * sizeof (struct symbol *)));
13788 VEC_free (symbolp, template_args);
13789 }
13790
c906108c
SS
13791 /* Attach fields and member functions to the type. */
13792 if (fi.nfields)
e7c27a73 13793 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13794 if (fi.nfnfields)
13795 {
e7c27a73 13796 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13797
c5aa993b 13798 /* Get the type which refers to the base class (possibly this
c906108c 13799 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13800 class from the DW_AT_containing_type attribute. This use of
13801 DW_AT_containing_type is a GNU extension. */
c906108c 13802
e142c38c 13803 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13804 {
e7c27a73 13805 struct type *t = die_containing_type (die, cu);
c906108c 13806
ae6ae975 13807 set_type_vptr_basetype (type, t);
c906108c
SS
13808 if (type == t)
13809 {
c906108c
SS
13810 int i;
13811
13812 /* Our own class provides vtbl ptr. */
13813 for (i = TYPE_NFIELDS (t) - 1;
13814 i >= TYPE_N_BASECLASSES (t);
13815 --i)
13816 {
0d5cff50 13817 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13818
1168df01 13819 if (is_vtable_name (fieldname, cu))
c906108c 13820 {
ae6ae975 13821 set_type_vptr_fieldno (type, i);
c906108c
SS
13822 break;
13823 }
13824 }
13825
13826 /* Complain if virtual function table field not found. */
13827 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13828 complaint (&symfile_complaints,
3e43a32a
MS
13829 _("virtual function table pointer "
13830 "not found when defining class '%s'"),
4d3c2250
KB
13831 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13832 "");
c906108c
SS
13833 }
13834 else
13835 {
ae6ae975 13836 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13837 }
13838 }
f6235d4c 13839 else if (cu->producer
61012eef 13840 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13841 {
13842 /* The IBM XLC compiler does not provide direct indication
13843 of the containing type, but the vtable pointer is
13844 always named __vfp. */
13845
13846 int i;
13847
13848 for (i = TYPE_NFIELDS (type) - 1;
13849 i >= TYPE_N_BASECLASSES (type);
13850 --i)
13851 {
13852 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13853 {
ae6ae975
DE
13854 set_type_vptr_fieldno (type, i);
13855 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13856 break;
13857 }
13858 }
13859 }
c906108c 13860 }
98751a41
JK
13861
13862 /* Copy fi.typedef_field_list linked list elements content into the
13863 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13864 if (fi.typedef_field_list)
13865 {
13866 int i = fi.typedef_field_list_count;
13867
a0d7a4ff 13868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13869 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13870 = ((struct typedef_field *)
13871 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13872 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13873
13874 /* Reverse the list order to keep the debug info elements order. */
13875 while (--i >= 0)
13876 {
13877 struct typedef_field *dest, *src;
6e70227d 13878
98751a41
JK
13879 dest = &TYPE_TYPEDEF_FIELD (type, i);
13880 src = &fi.typedef_field_list->field;
13881 fi.typedef_field_list = fi.typedef_field_list->next;
13882 *dest = *src;
13883 }
13884 }
c767944b
DJ
13885
13886 do_cleanups (back_to);
c906108c 13887 }
63d06c5c 13888
bb5ed363 13889 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13890
90aeadfc
DC
13891 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13892 snapshots) has been known to create a die giving a declaration
13893 for a class that has, as a child, a die giving a definition for a
13894 nested class. So we have to process our children even if the
13895 current die is a declaration. Normally, of course, a declaration
13896 won't have any children at all. */
134d01f1 13897
ca040673
DE
13898 child_die = die->child;
13899
90aeadfc
DC
13900 while (child_die != NULL && child_die->tag)
13901 {
13902 if (child_die->tag == DW_TAG_member
13903 || child_die->tag == DW_TAG_variable
34eaf542
TT
13904 || child_die->tag == DW_TAG_inheritance
13905 || child_die->tag == DW_TAG_template_value_param
13906 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13907 {
90aeadfc 13908 /* Do nothing. */
134d01f1 13909 }
90aeadfc
DC
13910 else
13911 process_die (child_die, cu);
134d01f1 13912
90aeadfc 13913 child_die = sibling_die (child_die);
134d01f1
DJ
13914 }
13915
fa4028e9
JB
13916 /* Do not consider external references. According to the DWARF standard,
13917 these DIEs are identified by the fact that they have no byte_size
13918 attribute, and a declaration attribute. */
13919 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13920 || !die_is_declaration (die, cu))
c767944b 13921 new_symbol (die, type, cu);
134d01f1
DJ
13922}
13923
55426c9d
JB
13924/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13925 update TYPE using some information only available in DIE's children. */
13926
13927static void
13928update_enumeration_type_from_children (struct die_info *die,
13929 struct type *type,
13930 struct dwarf2_cu *cu)
13931{
60f7655a 13932 struct die_info *child_die;
55426c9d
JB
13933 int unsigned_enum = 1;
13934 int flag_enum = 1;
13935 ULONGEST mask = 0;
55426c9d 13936
8268c778 13937 auto_obstack obstack;
55426c9d 13938
60f7655a
DE
13939 for (child_die = die->child;
13940 child_die != NULL && child_die->tag;
13941 child_die = sibling_die (child_die))
55426c9d
JB
13942 {
13943 struct attribute *attr;
13944 LONGEST value;
13945 const gdb_byte *bytes;
13946 struct dwarf2_locexpr_baton *baton;
13947 const char *name;
60f7655a 13948
55426c9d
JB
13949 if (child_die->tag != DW_TAG_enumerator)
13950 continue;
13951
13952 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13953 if (attr == NULL)
13954 continue;
13955
13956 name = dwarf2_name (child_die, cu);
13957 if (name == NULL)
13958 name = "<anonymous enumerator>";
13959
13960 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13961 &value, &bytes, &baton);
13962 if (value < 0)
13963 {
13964 unsigned_enum = 0;
13965 flag_enum = 0;
13966 }
13967 else if ((mask & value) != 0)
13968 flag_enum = 0;
13969 else
13970 mask |= value;
13971
13972 /* If we already know that the enum type is neither unsigned, nor
13973 a flag type, no need to look at the rest of the enumerates. */
13974 if (!unsigned_enum && !flag_enum)
13975 break;
55426c9d
JB
13976 }
13977
13978 if (unsigned_enum)
13979 TYPE_UNSIGNED (type) = 1;
13980 if (flag_enum)
13981 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
13982}
13983
134d01f1
DJ
13984/* Given a DW_AT_enumeration_type die, set its type. We do not
13985 complete the type's fields yet, or create any symbols. */
c906108c 13986
f792889a 13987static struct type *
134d01f1 13988read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13989{
e7c27a73 13990 struct objfile *objfile = cu->objfile;
c906108c 13991 struct type *type;
c906108c 13992 struct attribute *attr;
0114d602 13993 const char *name;
134d01f1 13994
348e048f
DE
13995 /* If the definition of this type lives in .debug_types, read that type.
13996 Don't follow DW_AT_specification though, that will take us back up
13997 the chain and we want to go down. */
45e58e77 13998 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13999 if (attr)
14000 {
ac9ec31b 14001 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 14002
ac9ec31b 14003 /* The type's CU may not be the same as CU.
02142a6c 14004 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
14005 return set_die_type (die, type, cu);
14006 }
14007
c906108c
SS
14008 type = alloc_type (objfile);
14009
14010 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 14011 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 14012 if (name != NULL)
7d455152 14013 TYPE_TAG_NAME (type) = name;
c906108c 14014
0626fc76
TT
14015 attr = dwarf2_attr (die, DW_AT_type, cu);
14016 if (attr != NULL)
14017 {
14018 struct type *underlying_type = die_type (die, cu);
14019
14020 TYPE_TARGET_TYPE (type) = underlying_type;
14021 }
14022
e142c38c 14023 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14024 if (attr)
14025 {
14026 TYPE_LENGTH (type) = DW_UNSND (attr);
14027 }
14028 else
14029 {
14030 TYPE_LENGTH (type) = 0;
14031 }
14032
137033e9
JB
14033 /* The enumeration DIE can be incomplete. In Ada, any type can be
14034 declared as private in the package spec, and then defined only
14035 inside the package body. Such types are known as Taft Amendment
14036 Types. When another package uses such a type, an incomplete DIE
14037 may be generated by the compiler. */
02eb380e 14038 if (die_is_declaration (die, cu))
876cecd0 14039 TYPE_STUB (type) = 1;
02eb380e 14040
0626fc76
TT
14041 /* Finish the creation of this type by using the enum's children.
14042 We must call this even when the underlying type has been provided
14043 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
14044 update_enumeration_type_from_children (die, type, cu);
14045
0626fc76
TT
14046 /* If this type has an underlying type that is not a stub, then we
14047 may use its attributes. We always use the "unsigned" attribute
14048 in this situation, because ordinarily we guess whether the type
14049 is unsigned -- but the guess can be wrong and the underlying type
14050 can tell us the reality. However, we defer to a local size
14051 attribute if one exists, because this lets the compiler override
14052 the underlying type if needed. */
14053 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14054 {
14055 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14056 if (TYPE_LENGTH (type) == 0)
14057 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14058 }
14059
3d567982
TT
14060 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14061
f792889a 14062 return set_die_type (die, type, cu);
134d01f1
DJ
14063}
14064
14065/* Given a pointer to a die which begins an enumeration, process all
14066 the dies that define the members of the enumeration, and create the
14067 symbol for the enumeration type.
14068
14069 NOTE: We reverse the order of the element list. */
14070
14071static void
14072process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14073{
f792889a 14074 struct type *this_type;
134d01f1 14075
f792889a
DJ
14076 this_type = get_die_type (die, cu);
14077 if (this_type == NULL)
14078 this_type = read_enumeration_type (die, cu);
9dc481d3 14079
639d11d3 14080 if (die->child != NULL)
c906108c 14081 {
9dc481d3
DE
14082 struct die_info *child_die;
14083 struct symbol *sym;
14084 struct field *fields = NULL;
14085 int num_fields = 0;
15d034d0 14086 const char *name;
9dc481d3 14087
639d11d3 14088 child_die = die->child;
c906108c
SS
14089 while (child_die && child_die->tag)
14090 {
14091 if (child_die->tag != DW_TAG_enumerator)
14092 {
e7c27a73 14093 process_die (child_die, cu);
c906108c
SS
14094 }
14095 else
14096 {
39cbfefa
DJ
14097 name = dwarf2_name (child_die, cu);
14098 if (name)
c906108c 14099 {
f792889a 14100 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14101
14102 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14103 {
14104 fields = (struct field *)
14105 xrealloc (fields,
14106 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14107 * sizeof (struct field));
c906108c
SS
14108 }
14109
3567439c 14110 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14111 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14112 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14113 FIELD_BITSIZE (fields[num_fields]) = 0;
14114
14115 num_fields++;
14116 }
14117 }
14118
14119 child_die = sibling_die (child_die);
14120 }
14121
14122 if (num_fields)
14123 {
f792889a
DJ
14124 TYPE_NFIELDS (this_type) = num_fields;
14125 TYPE_FIELDS (this_type) = (struct field *)
14126 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14127 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14128 sizeof (struct field) * num_fields);
b8c9b27d 14129 xfree (fields);
c906108c 14130 }
c906108c 14131 }
134d01f1 14132
6c83ed52
TT
14133 /* If we are reading an enum from a .debug_types unit, and the enum
14134 is a declaration, and the enum is not the signatured type in the
14135 unit, then we do not want to add a symbol for it. Adding a
14136 symbol would in some cases obscure the true definition of the
14137 enum, giving users an incomplete type when the definition is
14138 actually available. Note that we do not want to do this for all
14139 enums which are just declarations, because C++0x allows forward
14140 enum declarations. */
3019eac3 14141 if (cu->per_cu->is_debug_types
6c83ed52
TT
14142 && die_is_declaration (die, cu))
14143 {
52dc124a 14144 struct signatured_type *sig_type;
6c83ed52 14145
c0f78cd4 14146 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14147 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14148 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14149 return;
14150 }
14151
f792889a 14152 new_symbol (die, this_type, cu);
c906108c
SS
14153}
14154
14155/* Extract all information from a DW_TAG_array_type DIE and put it in
14156 the DIE's type field. For now, this only handles one dimensional
14157 arrays. */
14158
f792889a 14159static struct type *
e7c27a73 14160read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14161{
e7c27a73 14162 struct objfile *objfile = cu->objfile;
c906108c 14163 struct die_info *child_die;
7e314c57 14164 struct type *type;
c906108c 14165 struct type *element_type, *range_type, *index_type;
c906108c 14166 struct attribute *attr;
15d034d0 14167 const char *name;
dc53a7ad 14168 unsigned int bit_stride = 0;
c906108c 14169
e7c27a73 14170 element_type = die_type (die, cu);
c906108c 14171
7e314c57
JK
14172 /* The die_type call above may have already set the type for this DIE. */
14173 type = get_die_type (die, cu);
14174 if (type)
14175 return type;
14176
dc53a7ad
JB
14177 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14178 if (attr != NULL)
14179 bit_stride = DW_UNSND (attr) * 8;
14180
14181 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14182 if (attr != NULL)
14183 bit_stride = DW_UNSND (attr);
14184
c906108c
SS
14185 /* Irix 6.2 native cc creates array types without children for
14186 arrays with unspecified length. */
639d11d3 14187 if (die->child == NULL)
c906108c 14188 {
46bf5051 14189 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14190 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14191 type = create_array_type_with_stride (NULL, element_type, range_type,
14192 bit_stride);
f792889a 14193 return set_die_type (die, type, cu);
c906108c
SS
14194 }
14195
791afaa2 14196 std::vector<struct type *> range_types;
639d11d3 14197 child_die = die->child;
c906108c
SS
14198 while (child_die && child_die->tag)
14199 {
14200 if (child_die->tag == DW_TAG_subrange_type)
14201 {
f792889a 14202 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14203
f792889a 14204 if (child_type != NULL)
a02abb62 14205 {
0963b4bd
MS
14206 /* The range type was succesfully read. Save it for the
14207 array type creation. */
791afaa2 14208 range_types.push_back (child_type);
a02abb62 14209 }
c906108c
SS
14210 }
14211 child_die = sibling_die (child_die);
14212 }
14213
14214 /* Dwarf2 dimensions are output from left to right, create the
14215 necessary array types in backwards order. */
7ca2d3a3 14216
c906108c 14217 type = element_type;
7ca2d3a3
DL
14218
14219 if (read_array_order (die, cu) == DW_ORD_col_major)
14220 {
14221 int i = 0;
9a619af0 14222
791afaa2 14223 while (i < range_types.size ())
dc53a7ad
JB
14224 type = create_array_type_with_stride (NULL, type, range_types[i++],
14225 bit_stride);
7ca2d3a3
DL
14226 }
14227 else
14228 {
791afaa2 14229 size_t ndim = range_types.size ();
7ca2d3a3 14230 while (ndim-- > 0)
dc53a7ad
JB
14231 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14232 bit_stride);
7ca2d3a3 14233 }
c906108c 14234
f5f8a009
EZ
14235 /* Understand Dwarf2 support for vector types (like they occur on
14236 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14237 array type. This is not part of the Dwarf2/3 standard yet, but a
14238 custom vendor extension. The main difference between a regular
14239 array and the vector variant is that vectors are passed by value
14240 to functions. */
e142c38c 14241 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14242 if (attr)
ea37ba09 14243 make_vector_type (type);
f5f8a009 14244
dbc98a8b
KW
14245 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14246 implementation may choose to implement triple vectors using this
14247 attribute. */
14248 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14249 if (attr)
14250 {
14251 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14252 TYPE_LENGTH (type) = DW_UNSND (attr);
14253 else
3e43a32a
MS
14254 complaint (&symfile_complaints,
14255 _("DW_AT_byte_size for array type smaller "
14256 "than the total size of elements"));
dbc98a8b
KW
14257 }
14258
39cbfefa
DJ
14259 name = dwarf2_name (die, cu);
14260 if (name)
14261 TYPE_NAME (type) = name;
6e70227d 14262
0963b4bd 14263 /* Install the type in the die. */
7e314c57
JK
14264 set_die_type (die, type, cu);
14265
14266 /* set_die_type should be already done. */
b4ba55a1
JB
14267 set_descriptive_type (type, die, cu);
14268
7e314c57 14269 return type;
c906108c
SS
14270}
14271
7ca2d3a3 14272static enum dwarf_array_dim_ordering
6e70227d 14273read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14274{
14275 struct attribute *attr;
14276
14277 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14278
aead7601
SM
14279 if (attr)
14280 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14281
0963b4bd
MS
14282 /* GNU F77 is a special case, as at 08/2004 array type info is the
14283 opposite order to the dwarf2 specification, but data is still
14284 laid out as per normal fortran.
7ca2d3a3 14285
0963b4bd
MS
14286 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14287 version checking. */
7ca2d3a3 14288
905e0470
PM
14289 if (cu->language == language_fortran
14290 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14291 {
14292 return DW_ORD_row_major;
14293 }
14294
6e70227d 14295 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14296 {
14297 case array_column_major:
14298 return DW_ORD_col_major;
14299 case array_row_major:
14300 default:
14301 return DW_ORD_row_major;
14302 };
14303}
14304
72019c9c 14305/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14306 the DIE's type field. */
72019c9c 14307
f792889a 14308static struct type *
72019c9c
GM
14309read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14310{
7e314c57
JK
14311 struct type *domain_type, *set_type;
14312 struct attribute *attr;
f792889a 14313
7e314c57
JK
14314 domain_type = die_type (die, cu);
14315
14316 /* The die_type call above may have already set the type for this DIE. */
14317 set_type = get_die_type (die, cu);
14318 if (set_type)
14319 return set_type;
14320
14321 set_type = create_set_type (NULL, domain_type);
14322
14323 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14324 if (attr)
14325 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14326
f792889a 14327 return set_die_type (die, set_type, cu);
72019c9c 14328}
7ca2d3a3 14329
0971de02
TT
14330/* A helper for read_common_block that creates a locexpr baton.
14331 SYM is the symbol which we are marking as computed.
14332 COMMON_DIE is the DIE for the common block.
14333 COMMON_LOC is the location expression attribute for the common
14334 block itself.
14335 MEMBER_LOC is the location expression attribute for the particular
14336 member of the common block that we are processing.
14337 CU is the CU from which the above come. */
14338
14339static void
14340mark_common_block_symbol_computed (struct symbol *sym,
14341 struct die_info *common_die,
14342 struct attribute *common_loc,
14343 struct attribute *member_loc,
14344 struct dwarf2_cu *cu)
14345{
14346 struct objfile *objfile = dwarf2_per_objfile->objfile;
14347 struct dwarf2_locexpr_baton *baton;
14348 gdb_byte *ptr;
14349 unsigned int cu_off;
14350 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14351 LONGEST offset = 0;
14352
14353 gdb_assert (common_loc && member_loc);
14354 gdb_assert (attr_form_is_block (common_loc));
14355 gdb_assert (attr_form_is_block (member_loc)
14356 || attr_form_is_constant (member_loc));
14357
8d749320 14358 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14359 baton->per_cu = cu->per_cu;
14360 gdb_assert (baton->per_cu);
14361
14362 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14363
14364 if (attr_form_is_constant (member_loc))
14365 {
14366 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14367 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14368 }
14369 else
14370 baton->size += DW_BLOCK (member_loc)->size;
14371
224c3ddb 14372 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14373 baton->data = ptr;
14374
14375 *ptr++ = DW_OP_call4;
9c541725 14376 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14377 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14378 ptr += 4;
14379
14380 if (attr_form_is_constant (member_loc))
14381 {
14382 *ptr++ = DW_OP_addr;
14383 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14384 ptr += cu->header.addr_size;
14385 }
14386 else
14387 {
14388 /* We have to copy the data here, because DW_OP_call4 will only
14389 use a DW_AT_location attribute. */
14390 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14391 ptr += DW_BLOCK (member_loc)->size;
14392 }
14393
14394 *ptr++ = DW_OP_plus;
14395 gdb_assert (ptr - baton->data == baton->size);
14396
0971de02 14397 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14398 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14399}
14400
4357ac6c
TT
14401/* Create appropriate locally-scoped variables for all the
14402 DW_TAG_common_block entries. Also create a struct common_block
14403 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14404 is used to sepate the common blocks name namespace from regular
14405 variable names. */
c906108c
SS
14406
14407static void
e7c27a73 14408read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14409{
0971de02
TT
14410 struct attribute *attr;
14411
14412 attr = dwarf2_attr (die, DW_AT_location, cu);
14413 if (attr)
14414 {
14415 /* Support the .debug_loc offsets. */
14416 if (attr_form_is_block (attr))
14417 {
14418 /* Ok. */
14419 }
14420 else if (attr_form_is_section_offset (attr))
14421 {
14422 dwarf2_complex_location_expr_complaint ();
14423 attr = NULL;
14424 }
14425 else
14426 {
14427 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14428 "common block member");
14429 attr = NULL;
14430 }
14431 }
14432
639d11d3 14433 if (die->child != NULL)
c906108c 14434 {
4357ac6c
TT
14435 struct objfile *objfile = cu->objfile;
14436 struct die_info *child_die;
14437 size_t n_entries = 0, size;
14438 struct common_block *common_block;
14439 struct symbol *sym;
74ac6d43 14440
4357ac6c
TT
14441 for (child_die = die->child;
14442 child_die && child_die->tag;
14443 child_die = sibling_die (child_die))
14444 ++n_entries;
14445
14446 size = (sizeof (struct common_block)
14447 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14448 common_block
14449 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14450 size);
4357ac6c
TT
14451 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14452 common_block->n_entries = 0;
14453
14454 for (child_die = die->child;
14455 child_die && child_die->tag;
14456 child_die = sibling_die (child_die))
14457 {
14458 /* Create the symbol in the DW_TAG_common_block block in the current
14459 symbol scope. */
e7c27a73 14460 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14461 if (sym != NULL)
14462 {
14463 struct attribute *member_loc;
14464
14465 common_block->contents[common_block->n_entries++] = sym;
14466
14467 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14468 cu);
14469 if (member_loc)
14470 {
14471 /* GDB has handled this for a long time, but it is
14472 not specified by DWARF. It seems to have been
14473 emitted by gfortran at least as recently as:
14474 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14475 complaint (&symfile_complaints,
14476 _("Variable in common block has "
14477 "DW_AT_data_member_location "
14478 "- DIE at 0x%x [in module %s]"),
9c541725 14479 to_underlying (child_die->sect_off),
4262abfb 14480 objfile_name (cu->objfile));
0971de02
TT
14481
14482 if (attr_form_is_section_offset (member_loc))
14483 dwarf2_complex_location_expr_complaint ();
14484 else if (attr_form_is_constant (member_loc)
14485 || attr_form_is_block (member_loc))
14486 {
14487 if (attr)
14488 mark_common_block_symbol_computed (sym, die, attr,
14489 member_loc, cu);
14490 }
14491 else
14492 dwarf2_complex_location_expr_complaint ();
14493 }
14494 }
c906108c 14495 }
4357ac6c
TT
14496
14497 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14498 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14499 }
14500}
14501
0114d602 14502/* Create a type for a C++ namespace. */
d9fa45fe 14503
0114d602
DJ
14504static struct type *
14505read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14506{
e7c27a73 14507 struct objfile *objfile = cu->objfile;
0114d602 14508 const char *previous_prefix, *name;
9219021c 14509 int is_anonymous;
0114d602
DJ
14510 struct type *type;
14511
14512 /* For extensions, reuse the type of the original namespace. */
14513 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14514 {
14515 struct die_info *ext_die;
14516 struct dwarf2_cu *ext_cu = cu;
9a619af0 14517
0114d602
DJ
14518 ext_die = dwarf2_extension (die, &ext_cu);
14519 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14520
14521 /* EXT_CU may not be the same as CU.
02142a6c 14522 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14523 return set_die_type (die, type, cu);
14524 }
9219021c 14525
e142c38c 14526 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14527
14528 /* Now build the name of the current namespace. */
14529
0114d602
DJ
14530 previous_prefix = determine_prefix (die, cu);
14531 if (previous_prefix[0] != '\0')
14532 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14533 previous_prefix, name, 0, cu);
0114d602
DJ
14534
14535 /* Create the type. */
19f392bc 14536 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14537 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14538
60531b24 14539 return set_die_type (die, type, cu);
0114d602
DJ
14540}
14541
22cee43f 14542/* Read a namespace scope. */
0114d602
DJ
14543
14544static void
14545read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14546{
14547 struct objfile *objfile = cu->objfile;
0114d602 14548 int is_anonymous;
9219021c 14549
5c4e30ca
DC
14550 /* Add a symbol associated to this if we haven't seen the namespace
14551 before. Also, add a using directive if it's an anonymous
14552 namespace. */
9219021c 14553
f2f0e013 14554 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14555 {
14556 struct type *type;
14557
0114d602 14558 type = read_type_die (die, cu);
e7c27a73 14559 new_symbol (die, type, cu);
5c4e30ca 14560
e8e80198 14561 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14562 if (is_anonymous)
0114d602
DJ
14563 {
14564 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14565
eb1e02fd 14566 std::vector<const char *> excludes;
22cee43f
PMR
14567 add_using_directive (using_directives (cu->language),
14568 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 14569 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 14570 }
5c4e30ca 14571 }
9219021c 14572
639d11d3 14573 if (die->child != NULL)
d9fa45fe 14574 {
639d11d3 14575 struct die_info *child_die = die->child;
6e70227d 14576
d9fa45fe
DC
14577 while (child_die && child_die->tag)
14578 {
e7c27a73 14579 process_die (child_die, cu);
d9fa45fe
DC
14580 child_die = sibling_die (child_die);
14581 }
14582 }
38d518c9
EZ
14583}
14584
f55ee35c
JK
14585/* Read a Fortran module as type. This DIE can be only a declaration used for
14586 imported module. Still we need that type as local Fortran "use ... only"
14587 declaration imports depend on the created type in determine_prefix. */
14588
14589static struct type *
14590read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14591{
14592 struct objfile *objfile = cu->objfile;
15d034d0 14593 const char *module_name;
f55ee35c
JK
14594 struct type *type;
14595
14596 module_name = dwarf2_name (die, cu);
14597 if (!module_name)
3e43a32a
MS
14598 complaint (&symfile_complaints,
14599 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14600 to_underlying (die->sect_off));
19f392bc 14601 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14602
14603 /* determine_prefix uses TYPE_TAG_NAME. */
14604 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14605
14606 return set_die_type (die, type, cu);
14607}
14608
5d7cb8df
JK
14609/* Read a Fortran module. */
14610
14611static void
14612read_module (struct die_info *die, struct dwarf2_cu *cu)
14613{
14614 struct die_info *child_die = die->child;
530e8392
KB
14615 struct type *type;
14616
14617 type = read_type_die (die, cu);
14618 new_symbol (die, type, cu);
5d7cb8df 14619
5d7cb8df
JK
14620 while (child_die && child_die->tag)
14621 {
14622 process_die (child_die, cu);
14623 child_die = sibling_die (child_die);
14624 }
14625}
14626
38d518c9
EZ
14627/* Return the name of the namespace represented by DIE. Set
14628 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14629 namespace. */
14630
14631static const char *
e142c38c 14632namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14633{
14634 struct die_info *current_die;
14635 const char *name = NULL;
14636
14637 /* Loop through the extensions until we find a name. */
14638
14639 for (current_die = die;
14640 current_die != NULL;
f2f0e013 14641 current_die = dwarf2_extension (die, &cu))
38d518c9 14642 {
96553a0c
DE
14643 /* We don't use dwarf2_name here so that we can detect the absence
14644 of a name -> anonymous namespace. */
7d45c7c3 14645 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14646
38d518c9
EZ
14647 if (name != NULL)
14648 break;
14649 }
14650
14651 /* Is it an anonymous namespace? */
14652
14653 *is_anonymous = (name == NULL);
14654 if (*is_anonymous)
2b1dbab0 14655 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14656
14657 return name;
d9fa45fe
DC
14658}
14659
c906108c
SS
14660/* Extract all information from a DW_TAG_pointer_type DIE and add to
14661 the user defined type vector. */
14662
f792889a 14663static struct type *
e7c27a73 14664read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14665{
5e2b427d 14666 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14667 struct comp_unit_head *cu_header = &cu->header;
c906108c 14668 struct type *type;
8b2dbe47
KB
14669 struct attribute *attr_byte_size;
14670 struct attribute *attr_address_class;
14671 int byte_size, addr_class;
7e314c57
JK
14672 struct type *target_type;
14673
14674 target_type = die_type (die, cu);
c906108c 14675
7e314c57
JK
14676 /* The die_type call above may have already set the type for this DIE. */
14677 type = get_die_type (die, cu);
14678 if (type)
14679 return type;
14680
14681 type = lookup_pointer_type (target_type);
8b2dbe47 14682
e142c38c 14683 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14684 if (attr_byte_size)
14685 byte_size = DW_UNSND (attr_byte_size);
c906108c 14686 else
8b2dbe47
KB
14687 byte_size = cu_header->addr_size;
14688
e142c38c 14689 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14690 if (attr_address_class)
14691 addr_class = DW_UNSND (attr_address_class);
14692 else
14693 addr_class = DW_ADDR_none;
14694
14695 /* If the pointer size or address class is different than the
14696 default, create a type variant marked as such and set the
14697 length accordingly. */
14698 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14699 {
5e2b427d 14700 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14701 {
14702 int type_flags;
14703
849957d9 14704 type_flags = gdbarch_address_class_type_flags
5e2b427d 14705 (gdbarch, byte_size, addr_class);
876cecd0
TT
14706 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14707 == 0);
8b2dbe47
KB
14708 type = make_type_with_address_space (type, type_flags);
14709 }
14710 else if (TYPE_LENGTH (type) != byte_size)
14711 {
3e43a32a
MS
14712 complaint (&symfile_complaints,
14713 _("invalid pointer size %d"), byte_size);
8b2dbe47 14714 }
6e70227d 14715 else
9a619af0
MS
14716 {
14717 /* Should we also complain about unhandled address classes? */
14718 }
c906108c 14719 }
8b2dbe47
KB
14720
14721 TYPE_LENGTH (type) = byte_size;
f792889a 14722 return set_die_type (die, type, cu);
c906108c
SS
14723}
14724
14725/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14726 the user defined type vector. */
14727
f792889a 14728static struct type *
e7c27a73 14729read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14730{
14731 struct type *type;
14732 struct type *to_type;
14733 struct type *domain;
14734
e7c27a73
DJ
14735 to_type = die_type (die, cu);
14736 domain = die_containing_type (die, cu);
0d5de010 14737
7e314c57
JK
14738 /* The calls above may have already set the type for this DIE. */
14739 type = get_die_type (die, cu);
14740 if (type)
14741 return type;
14742
0d5de010
DJ
14743 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14744 type = lookup_methodptr_type (to_type);
7078baeb
TT
14745 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14746 {
14747 struct type *new_type = alloc_type (cu->objfile);
14748
14749 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14750 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14751 TYPE_VARARGS (to_type));
14752 type = lookup_methodptr_type (new_type);
14753 }
0d5de010
DJ
14754 else
14755 type = lookup_memberptr_type (to_type, domain);
c906108c 14756
f792889a 14757 return set_die_type (die, type, cu);
c906108c
SS
14758}
14759
4297a3f0 14760/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14761 the user defined type vector. */
14762
f792889a 14763static struct type *
4297a3f0
AV
14764read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14765 enum type_code refcode)
c906108c 14766{
e7c27a73 14767 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14768 struct type *type, *target_type;
c906108c
SS
14769 struct attribute *attr;
14770
4297a3f0
AV
14771 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14772
7e314c57
JK
14773 target_type = die_type (die, cu);
14774
14775 /* The die_type call above may have already set the type for this DIE. */
14776 type = get_die_type (die, cu);
14777 if (type)
14778 return type;
14779
4297a3f0 14780 type = lookup_reference_type (target_type, refcode);
e142c38c 14781 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14782 if (attr)
14783 {
14784 TYPE_LENGTH (type) = DW_UNSND (attr);
14785 }
14786 else
14787 {
107d2387 14788 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14789 }
f792889a 14790 return set_die_type (die, type, cu);
c906108c
SS
14791}
14792
cf363f18
MW
14793/* Add the given cv-qualifiers to the element type of the array. GCC
14794 outputs DWARF type qualifiers that apply to an array, not the
14795 element type. But GDB relies on the array element type to carry
14796 the cv-qualifiers. This mimics section 6.7.3 of the C99
14797 specification. */
14798
14799static struct type *
14800add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14801 struct type *base_type, int cnst, int voltl)
14802{
14803 struct type *el_type, *inner_array;
14804
14805 base_type = copy_type (base_type);
14806 inner_array = base_type;
14807
14808 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14809 {
14810 TYPE_TARGET_TYPE (inner_array) =
14811 copy_type (TYPE_TARGET_TYPE (inner_array));
14812 inner_array = TYPE_TARGET_TYPE (inner_array);
14813 }
14814
14815 el_type = TYPE_TARGET_TYPE (inner_array);
14816 cnst |= TYPE_CONST (el_type);
14817 voltl |= TYPE_VOLATILE (el_type);
14818 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14819
14820 return set_die_type (die, base_type, cu);
14821}
14822
f792889a 14823static struct type *
e7c27a73 14824read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14825{
f792889a 14826 struct type *base_type, *cv_type;
c906108c 14827
e7c27a73 14828 base_type = die_type (die, cu);
7e314c57
JK
14829
14830 /* The die_type call above may have already set the type for this DIE. */
14831 cv_type = get_die_type (die, cu);
14832 if (cv_type)
14833 return cv_type;
14834
2f608a3a
KW
14835 /* In case the const qualifier is applied to an array type, the element type
14836 is so qualified, not the array type (section 6.7.3 of C99). */
14837 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14838 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14839
f792889a
DJ
14840 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14841 return set_die_type (die, cv_type, cu);
c906108c
SS
14842}
14843
f792889a 14844static struct type *
e7c27a73 14845read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14846{
f792889a 14847 struct type *base_type, *cv_type;
c906108c 14848
e7c27a73 14849 base_type = die_type (die, cu);
7e314c57
JK
14850
14851 /* The die_type call above may have already set the type for this DIE. */
14852 cv_type = get_die_type (die, cu);
14853 if (cv_type)
14854 return cv_type;
14855
cf363f18
MW
14856 /* In case the volatile qualifier is applied to an array type, the
14857 element type is so qualified, not the array type (section 6.7.3
14858 of C99). */
14859 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14860 return add_array_cv_type (die, cu, base_type, 0, 1);
14861
f792889a
DJ
14862 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14863 return set_die_type (die, cv_type, cu);
c906108c
SS
14864}
14865
06d66ee9
TT
14866/* Handle DW_TAG_restrict_type. */
14867
14868static struct type *
14869read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14870{
14871 struct type *base_type, *cv_type;
14872
14873 base_type = die_type (die, cu);
14874
14875 /* The die_type call above may have already set the type for this DIE. */
14876 cv_type = get_die_type (die, cu);
14877 if (cv_type)
14878 return cv_type;
14879
14880 cv_type = make_restrict_type (base_type);
14881 return set_die_type (die, cv_type, cu);
14882}
14883
a2c2acaf
MW
14884/* Handle DW_TAG_atomic_type. */
14885
14886static struct type *
14887read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14888{
14889 struct type *base_type, *cv_type;
14890
14891 base_type = die_type (die, cu);
14892
14893 /* The die_type call above may have already set the type for this DIE. */
14894 cv_type = get_die_type (die, cu);
14895 if (cv_type)
14896 return cv_type;
14897
14898 cv_type = make_atomic_type (base_type);
14899 return set_die_type (die, cv_type, cu);
14900}
14901
c906108c
SS
14902/* Extract all information from a DW_TAG_string_type DIE and add to
14903 the user defined type vector. It isn't really a user defined type,
14904 but it behaves like one, with other DIE's using an AT_user_def_type
14905 attribute to reference it. */
14906
f792889a 14907static struct type *
e7c27a73 14908read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14909{
e7c27a73 14910 struct objfile *objfile = cu->objfile;
3b7538c0 14911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14912 struct type *type, *range_type, *index_type, *char_type;
14913 struct attribute *attr;
14914 unsigned int length;
14915
e142c38c 14916 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14917 if (attr)
14918 {
14919 length = DW_UNSND (attr);
14920 }
14921 else
14922 {
0963b4bd 14923 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14924 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14925 if (attr)
14926 {
14927 length = DW_UNSND (attr);
14928 }
14929 else
14930 {
14931 length = 1;
14932 }
c906108c 14933 }
6ccb9162 14934
46bf5051 14935 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14936 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14937 char_type = language_string_char_type (cu->language_defn, gdbarch);
14938 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14939
f792889a 14940 return set_die_type (die, type, cu);
c906108c
SS
14941}
14942
4d804846
JB
14943/* Assuming that DIE corresponds to a function, returns nonzero
14944 if the function is prototyped. */
14945
14946static int
14947prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14948{
14949 struct attribute *attr;
14950
14951 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14952 if (attr && (DW_UNSND (attr) != 0))
14953 return 1;
14954
14955 /* The DWARF standard implies that the DW_AT_prototyped attribute
14956 is only meaninful for C, but the concept also extends to other
14957 languages that allow unprototyped functions (Eg: Objective C).
14958 For all other languages, assume that functions are always
14959 prototyped. */
14960 if (cu->language != language_c
14961 && cu->language != language_objc
14962 && cu->language != language_opencl)
14963 return 1;
14964
14965 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14966 prototyped and unprototyped functions; default to prototyped,
14967 since that is more common in modern code (and RealView warns
14968 about unprototyped functions). */
14969 if (producer_is_realview (cu->producer))
14970 return 1;
14971
14972 return 0;
14973}
14974
c906108c
SS
14975/* Handle DIES due to C code like:
14976
14977 struct foo
c5aa993b
JM
14978 {
14979 int (*funcp)(int a, long l);
14980 int b;
14981 };
c906108c 14982
0963b4bd 14983 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14984
f792889a 14985static struct type *
e7c27a73 14986read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14987{
bb5ed363 14988 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14989 struct type *type; /* Type that this function returns. */
14990 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14991 struct attribute *attr;
14992
e7c27a73 14993 type = die_type (die, cu);
7e314c57
JK
14994
14995 /* The die_type call above may have already set the type for this DIE. */
14996 ftype = get_die_type (die, cu);
14997 if (ftype)
14998 return ftype;
14999
0c8b41f1 15000 ftype = lookup_function_type (type);
c906108c 15001
4d804846 15002 if (prototyped_function_p (die, cu))
a6c727b2 15003 TYPE_PROTOTYPED (ftype) = 1;
c906108c 15004
c055b101
CV
15005 /* Store the calling convention in the type if it's available in
15006 the subroutine die. Otherwise set the calling convention to
15007 the default value DW_CC_normal. */
15008 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
15009 if (attr)
15010 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15011 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15012 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15013 else
15014 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 15015
743649fd
MW
15016 /* Record whether the function returns normally to its caller or not
15017 if the DWARF producer set that information. */
15018 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15019 if (attr && (DW_UNSND (attr) != 0))
15020 TYPE_NO_RETURN (ftype) = 1;
15021
76c10ea2
GM
15022 /* We need to add the subroutine type to the die immediately so
15023 we don't infinitely recurse when dealing with parameters
0963b4bd 15024 declared as the same subroutine type. */
76c10ea2 15025 set_die_type (die, ftype, cu);
6e70227d 15026
639d11d3 15027 if (die->child != NULL)
c906108c 15028 {
bb5ed363 15029 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 15030 struct die_info *child_die;
8072405b 15031 int nparams, iparams;
c906108c
SS
15032
15033 /* Count the number of parameters.
15034 FIXME: GDB currently ignores vararg functions, but knows about
15035 vararg member functions. */
8072405b 15036 nparams = 0;
639d11d3 15037 child_die = die->child;
c906108c
SS
15038 while (child_die && child_die->tag)
15039 {
15040 if (child_die->tag == DW_TAG_formal_parameter)
15041 nparams++;
15042 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 15043 TYPE_VARARGS (ftype) = 1;
c906108c
SS
15044 child_die = sibling_die (child_die);
15045 }
15046
15047 /* Allocate storage for parameters and fill them in. */
15048 TYPE_NFIELDS (ftype) = nparams;
15049 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 15050 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 15051
8072405b
JK
15052 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15053 even if we error out during the parameters reading below. */
15054 for (iparams = 0; iparams < nparams; iparams++)
15055 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15056
15057 iparams = 0;
639d11d3 15058 child_die = die->child;
c906108c
SS
15059 while (child_die && child_die->tag)
15060 {
15061 if (child_die->tag == DW_TAG_formal_parameter)
15062 {
3ce3b1ba
PA
15063 struct type *arg_type;
15064
15065 /* DWARF version 2 has no clean way to discern C++
15066 static and non-static member functions. G++ helps
15067 GDB by marking the first parameter for non-static
15068 member functions (which is the this pointer) as
15069 artificial. We pass this information to
15070 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15071
15072 DWARF version 3 added DW_AT_object_pointer, which GCC
15073 4.5 does not yet generate. */
e142c38c 15074 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15075 if (attr)
15076 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15077 else
9c37b5ae 15078 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15079 arg_type = die_type (child_die, cu);
15080
15081 /* RealView does not mark THIS as const, which the testsuite
15082 expects. GCC marks THIS as const in method definitions,
15083 but not in the class specifications (GCC PR 43053). */
15084 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15085 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15086 {
15087 int is_this = 0;
15088 struct dwarf2_cu *arg_cu = cu;
15089 const char *name = dwarf2_name (child_die, cu);
15090
15091 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15092 if (attr)
15093 {
15094 /* If the compiler emits this, use it. */
15095 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15096 is_this = 1;
15097 }
15098 else if (name && strcmp (name, "this") == 0)
15099 /* Function definitions will have the argument names. */
15100 is_this = 1;
15101 else if (name == NULL && iparams == 0)
15102 /* Declarations may not have the names, so like
15103 elsewhere in GDB, assume an artificial first
15104 argument is "this". */
15105 is_this = 1;
15106
15107 if (is_this)
15108 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15109 arg_type, 0);
15110 }
15111
15112 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15113 iparams++;
15114 }
15115 child_die = sibling_die (child_die);
15116 }
15117 }
15118
76c10ea2 15119 return ftype;
c906108c
SS
15120}
15121
f792889a 15122static struct type *
e7c27a73 15123read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15124{
e7c27a73 15125 struct objfile *objfile = cu->objfile;
0114d602 15126 const char *name = NULL;
3c8e0968 15127 struct type *this_type, *target_type;
c906108c 15128
94af9270 15129 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15130 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15131 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15132 set_die_type (die, this_type, cu);
3c8e0968
DE
15133 target_type = die_type (die, cu);
15134 if (target_type != this_type)
15135 TYPE_TARGET_TYPE (this_type) = target_type;
15136 else
15137 {
15138 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15139 spec and cause infinite loops in GDB. */
15140 complaint (&symfile_complaints,
15141 _("Self-referential DW_TAG_typedef "
15142 "- DIE at 0x%x [in module %s]"),
9c541725 15143 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15144 TYPE_TARGET_TYPE (this_type) = NULL;
15145 }
f792889a 15146 return this_type;
c906108c
SS
15147}
15148
9b790ce7
UW
15149/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15150 (which may be different from NAME) to the architecture back-end to allow
15151 it to guess the correct format if necessary. */
15152
15153static struct type *
15154dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15155 const char *name_hint)
15156{
15157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15158 const struct floatformat **format;
15159 struct type *type;
15160
15161 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15162 if (format)
15163 type = init_float_type (objfile, bits, name, format);
15164 else
77b7c781 15165 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
15166
15167 return type;
15168}
15169
c906108c
SS
15170/* Find a representation of a given base type and install
15171 it in the TYPE field of the die. */
15172
f792889a 15173static struct type *
e7c27a73 15174read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15175{
e7c27a73 15176 struct objfile *objfile = cu->objfile;
c906108c
SS
15177 struct type *type;
15178 struct attribute *attr;
19f392bc 15179 int encoding = 0, bits = 0;
15d034d0 15180 const char *name;
c906108c 15181
e142c38c 15182 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15183 if (attr)
15184 {
15185 encoding = DW_UNSND (attr);
15186 }
e142c38c 15187 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15188 if (attr)
15189 {
19f392bc 15190 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15191 }
39cbfefa 15192 name = dwarf2_name (die, cu);
6ccb9162 15193 if (!name)
c906108c 15194 {
6ccb9162
UW
15195 complaint (&symfile_complaints,
15196 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15197 }
6ccb9162
UW
15198
15199 switch (encoding)
c906108c 15200 {
6ccb9162
UW
15201 case DW_ATE_address:
15202 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 15203 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 15204 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15205 break;
15206 case DW_ATE_boolean:
19f392bc 15207 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15208 break;
15209 case DW_ATE_complex_float:
9b790ce7 15210 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15211 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15212 break;
15213 case DW_ATE_decimal_float:
19f392bc 15214 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15215 break;
15216 case DW_ATE_float:
9b790ce7 15217 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15218 break;
15219 case DW_ATE_signed:
19f392bc 15220 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15221 break;
15222 case DW_ATE_unsigned:
3b2b8fea
TT
15223 if (cu->language == language_fortran
15224 && name
61012eef 15225 && startswith (name, "character("))
19f392bc
UW
15226 type = init_character_type (objfile, bits, 1, name);
15227 else
15228 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15229 break;
15230 case DW_ATE_signed_char:
6e70227d 15231 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15232 || cu->language == language_pascal
15233 || cu->language == language_fortran)
19f392bc
UW
15234 type = init_character_type (objfile, bits, 0, name);
15235 else
15236 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15237 break;
15238 case DW_ATE_unsigned_char:
868a0084 15239 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15240 || cu->language == language_pascal
c44af4eb
TT
15241 || cu->language == language_fortran
15242 || cu->language == language_rust)
19f392bc
UW
15243 type = init_character_type (objfile, bits, 1, name);
15244 else
15245 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15246 break;
75079b2b 15247 case DW_ATE_UTF:
53e710ac
PA
15248 {
15249 gdbarch *arch = get_objfile_arch (objfile);
15250
15251 if (bits == 16)
15252 type = builtin_type (arch)->builtin_char16;
15253 else if (bits == 32)
15254 type = builtin_type (arch)->builtin_char32;
15255 else
15256 {
15257 complaint (&symfile_complaints,
15258 _("unsupported DW_ATE_UTF bit size: '%d'"),
15259 bits);
15260 type = init_integer_type (objfile, bits, 1, name);
15261 }
15262 return set_die_type (die, type, cu);
15263 }
75079b2b
TT
15264 break;
15265
6ccb9162
UW
15266 default:
15267 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15268 dwarf_type_encoding_name (encoding));
77b7c781 15269 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 15270 break;
c906108c 15271 }
6ccb9162 15272
0114d602 15273 if (name && strcmp (name, "char") == 0)
876cecd0 15274 TYPE_NOSIGN (type) = 1;
0114d602 15275
f792889a 15276 return set_die_type (die, type, cu);
c906108c
SS
15277}
15278
80180f79
SA
15279/* Parse dwarf attribute if it's a block, reference or constant and put the
15280 resulting value of the attribute into struct bound_prop.
15281 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15282
15283static int
15284attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15285 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15286{
15287 struct dwarf2_property_baton *baton;
15288 struct obstack *obstack = &cu->objfile->objfile_obstack;
15289
15290 if (attr == NULL || prop == NULL)
15291 return 0;
15292
15293 if (attr_form_is_block (attr))
15294 {
8d749320 15295 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15296 baton->referenced_type = NULL;
15297 baton->locexpr.per_cu = cu->per_cu;
15298 baton->locexpr.size = DW_BLOCK (attr)->size;
15299 baton->locexpr.data = DW_BLOCK (attr)->data;
15300 prop->data.baton = baton;
15301 prop->kind = PROP_LOCEXPR;
15302 gdb_assert (prop->data.baton != NULL);
15303 }
15304 else if (attr_form_is_ref (attr))
15305 {
15306 struct dwarf2_cu *target_cu = cu;
15307 struct die_info *target_die;
15308 struct attribute *target_attr;
15309
15310 target_die = follow_die_ref (die, attr, &target_cu);
15311 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15312 if (target_attr == NULL)
15313 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15314 target_cu);
80180f79
SA
15315 if (target_attr == NULL)
15316 return 0;
15317
df25ebbd 15318 switch (target_attr->name)
80180f79 15319 {
df25ebbd
JB
15320 case DW_AT_location:
15321 if (attr_form_is_section_offset (target_attr))
15322 {
8d749320 15323 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15324 baton->referenced_type = die_type (target_die, target_cu);
15325 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15326 prop->data.baton = baton;
15327 prop->kind = PROP_LOCLIST;
15328 gdb_assert (prop->data.baton != NULL);
15329 }
15330 else if (attr_form_is_block (target_attr))
15331 {
8d749320 15332 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15333 baton->referenced_type = die_type (target_die, target_cu);
15334 baton->locexpr.per_cu = cu->per_cu;
15335 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15336 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15337 prop->data.baton = baton;
15338 prop->kind = PROP_LOCEXPR;
15339 gdb_assert (prop->data.baton != NULL);
15340 }
15341 else
15342 {
15343 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15344 "dynamic property");
15345 return 0;
15346 }
15347 break;
15348 case DW_AT_data_member_location:
15349 {
15350 LONGEST offset;
15351
15352 if (!handle_data_member_location (target_die, target_cu,
15353 &offset))
15354 return 0;
15355
8d749320 15356 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15357 baton->referenced_type = read_type_die (target_die->parent,
15358 target_cu);
df25ebbd
JB
15359 baton->offset_info.offset = offset;
15360 baton->offset_info.type = die_type (target_die, target_cu);
15361 prop->data.baton = baton;
15362 prop->kind = PROP_ADDR_OFFSET;
15363 break;
15364 }
80180f79
SA
15365 }
15366 }
15367 else if (attr_form_is_constant (attr))
15368 {
15369 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15370 prop->kind = PROP_CONST;
15371 }
15372 else
15373 {
15374 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15375 dwarf2_name (die, cu));
15376 return 0;
15377 }
15378
15379 return 1;
15380}
15381
a02abb62
JB
15382/* Read the given DW_AT_subrange DIE. */
15383
f792889a 15384static struct type *
a02abb62
JB
15385read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15386{
4c9ad8c2 15387 struct type *base_type, *orig_base_type;
a02abb62
JB
15388 struct type *range_type;
15389 struct attribute *attr;
729efb13 15390 struct dynamic_prop low, high;
4fae6e18 15391 int low_default_is_valid;
c451ebe5 15392 int high_bound_is_count = 0;
15d034d0 15393 const char *name;
43bbcdc2 15394 LONGEST negative_mask;
e77813c8 15395
4c9ad8c2
TT
15396 orig_base_type = die_type (die, cu);
15397 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15398 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15399 creating the range type, but we use the result of check_typedef
15400 when examining properties of the type. */
15401 base_type = check_typedef (orig_base_type);
a02abb62 15402
7e314c57
JK
15403 /* The die_type call above may have already set the type for this DIE. */
15404 range_type = get_die_type (die, cu);
15405 if (range_type)
15406 return range_type;
15407
729efb13
SA
15408 low.kind = PROP_CONST;
15409 high.kind = PROP_CONST;
15410 high.data.const_val = 0;
15411
4fae6e18
JK
15412 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15413 omitting DW_AT_lower_bound. */
15414 switch (cu->language)
6e70227d 15415 {
4fae6e18
JK
15416 case language_c:
15417 case language_cplus:
729efb13 15418 low.data.const_val = 0;
4fae6e18
JK
15419 low_default_is_valid = 1;
15420 break;
15421 case language_fortran:
729efb13 15422 low.data.const_val = 1;
4fae6e18
JK
15423 low_default_is_valid = 1;
15424 break;
15425 case language_d:
4fae6e18 15426 case language_objc:
c44af4eb 15427 case language_rust:
729efb13 15428 low.data.const_val = 0;
4fae6e18
JK
15429 low_default_is_valid = (cu->header.version >= 4);
15430 break;
15431 case language_ada:
15432 case language_m2:
15433 case language_pascal:
729efb13 15434 low.data.const_val = 1;
4fae6e18
JK
15435 low_default_is_valid = (cu->header.version >= 4);
15436 break;
15437 default:
729efb13 15438 low.data.const_val = 0;
4fae6e18
JK
15439 low_default_is_valid = 0;
15440 break;
a02abb62
JB
15441 }
15442
e142c38c 15443 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15444 if (attr)
11c1ba78 15445 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15446 else if (!low_default_is_valid)
15447 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15448 "- DIE at 0x%x [in module %s]"),
9c541725 15449 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15450
e142c38c 15451 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15452 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15453 {
15454 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15455 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15456 {
c451ebe5
SA
15457 /* If bounds are constant do the final calculation here. */
15458 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15459 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15460 else
15461 high_bound_is_count = 1;
c2ff108b 15462 }
e77813c8
PM
15463 }
15464
15465 /* Dwarf-2 specifications explicitly allows to create subrange types
15466 without specifying a base type.
15467 In that case, the base type must be set to the type of
15468 the lower bound, upper bound or count, in that order, if any of these
15469 three attributes references an object that has a type.
15470 If no base type is found, the Dwarf-2 specifications say that
15471 a signed integer type of size equal to the size of an address should
15472 be used.
15473 For the following C code: `extern char gdb_int [];'
15474 GCC produces an empty range DIE.
15475 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15476 high bound or count are not yet handled by this code. */
e77813c8
PM
15477 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15478 {
15479 struct objfile *objfile = cu->objfile;
15480 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15481 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15482 struct type *int_type = objfile_type (objfile)->builtin_int;
15483
15484 /* Test "int", "long int", and "long long int" objfile types,
15485 and select the first one having a size above or equal to the
15486 architecture address size. */
15487 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15488 base_type = int_type;
15489 else
15490 {
15491 int_type = objfile_type (objfile)->builtin_long;
15492 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15493 base_type = int_type;
15494 else
15495 {
15496 int_type = objfile_type (objfile)->builtin_long_long;
15497 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15498 base_type = int_type;
15499 }
15500 }
15501 }
a02abb62 15502
dbb9c2b1
JB
15503 /* Normally, the DWARF producers are expected to use a signed
15504 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15505 But this is unfortunately not always the case, as witnessed
15506 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15507 is used instead. To work around that ambiguity, we treat
15508 the bounds as signed, and thus sign-extend their values, when
15509 the base type is signed. */
6e70227d 15510 negative_mask =
66c6502d 15511 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15512 if (low.kind == PROP_CONST
15513 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15514 low.data.const_val |= negative_mask;
15515 if (high.kind == PROP_CONST
15516 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15517 high.data.const_val |= negative_mask;
43bbcdc2 15518
729efb13 15519 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15520
c451ebe5
SA
15521 if (high_bound_is_count)
15522 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15523
c2ff108b
JK
15524 /* Ada expects an empty array on no boundary attributes. */
15525 if (attr == NULL && cu->language != language_ada)
729efb13 15526 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15527
39cbfefa
DJ
15528 name = dwarf2_name (die, cu);
15529 if (name)
15530 TYPE_NAME (range_type) = name;
6e70227d 15531
e142c38c 15532 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15533 if (attr)
15534 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15535
7e314c57
JK
15536 set_die_type (die, range_type, cu);
15537
15538 /* set_die_type should be already done. */
b4ba55a1
JB
15539 set_descriptive_type (range_type, die, cu);
15540
7e314c57 15541 return range_type;
a02abb62 15542}
6e70227d 15543
f792889a 15544static struct type *
81a17f79
JB
15545read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15546{
15547 struct type *type;
81a17f79 15548
81a17f79
JB
15549 /* For now, we only support the C meaning of an unspecified type: void. */
15550
19f392bc 15551 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15552 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15553
f792889a 15554 return set_die_type (die, type, cu);
81a17f79 15555}
a02abb62 15556
639d11d3
DC
15557/* Read a single die and all its descendents. Set the die's sibling
15558 field to NULL; set other fields in the die correctly, and set all
15559 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15560 location of the info_ptr after reading all of those dies. PARENT
15561 is the parent of the die in question. */
15562
15563static struct die_info *
dee91e82 15564read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15565 const gdb_byte *info_ptr,
15566 const gdb_byte **new_info_ptr,
dee91e82 15567 struct die_info *parent)
639d11d3
DC
15568{
15569 struct die_info *die;
d521ce57 15570 const gdb_byte *cur_ptr;
639d11d3
DC
15571 int has_children;
15572
bf6af496 15573 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15574 if (die == NULL)
15575 {
15576 *new_info_ptr = cur_ptr;
15577 return NULL;
15578 }
93311388 15579 store_in_ref_table (die, reader->cu);
639d11d3
DC
15580
15581 if (has_children)
bf6af496 15582 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15583 else
15584 {
15585 die->child = NULL;
15586 *new_info_ptr = cur_ptr;
15587 }
15588
15589 die->sibling = NULL;
15590 die->parent = parent;
15591 return die;
15592}
15593
15594/* Read a die, all of its descendents, and all of its siblings; set
15595 all of the fields of all of the dies correctly. Arguments are as
15596 in read_die_and_children. */
15597
15598static struct die_info *
bf6af496 15599read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15600 const gdb_byte *info_ptr,
15601 const gdb_byte **new_info_ptr,
bf6af496 15602 struct die_info *parent)
639d11d3
DC
15603{
15604 struct die_info *first_die, *last_sibling;
d521ce57 15605 const gdb_byte *cur_ptr;
639d11d3 15606
c906108c 15607 cur_ptr = info_ptr;
639d11d3
DC
15608 first_die = last_sibling = NULL;
15609
15610 while (1)
c906108c 15611 {
639d11d3 15612 struct die_info *die
dee91e82 15613 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15614
1d325ec1 15615 if (die == NULL)
c906108c 15616 {
639d11d3
DC
15617 *new_info_ptr = cur_ptr;
15618 return first_die;
c906108c 15619 }
1d325ec1
DJ
15620
15621 if (!first_die)
15622 first_die = die;
c906108c 15623 else
1d325ec1
DJ
15624 last_sibling->sibling = die;
15625
15626 last_sibling = die;
c906108c 15627 }
c906108c
SS
15628}
15629
bf6af496
DE
15630/* Read a die, all of its descendents, and all of its siblings; set
15631 all of the fields of all of the dies correctly. Arguments are as
15632 in read_die_and_children.
15633 This the main entry point for reading a DIE and all its children. */
15634
15635static struct die_info *
15636read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15637 const gdb_byte *info_ptr,
15638 const gdb_byte **new_info_ptr,
bf6af496
DE
15639 struct die_info *parent)
15640{
15641 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15642 new_info_ptr, parent);
15643
b4f54984 15644 if (dwarf_die_debug)
bf6af496
DE
15645 {
15646 fprintf_unfiltered (gdb_stdlog,
15647 "Read die from %s@0x%x of %s:\n",
a32a8923 15648 get_section_name (reader->die_section),
bf6af496
DE
15649 (unsigned) (info_ptr - reader->die_section->buffer),
15650 bfd_get_filename (reader->abfd));
b4f54984 15651 dump_die (die, dwarf_die_debug);
bf6af496
DE
15652 }
15653
15654 return die;
15655}
15656
3019eac3
DE
15657/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15658 attributes.
15659 The caller is responsible for filling in the extra attributes
15660 and updating (*DIEP)->num_attrs.
15661 Set DIEP to point to a newly allocated die with its information,
15662 except for its child, sibling, and parent fields.
15663 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15664
d521ce57 15665static const gdb_byte *
3019eac3 15666read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15667 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15668 int *has_children, int num_extra_attrs)
93311388 15669{
b64f50a1 15670 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15671 struct abbrev_info *abbrev;
15672 struct die_info *die;
15673 struct dwarf2_cu *cu = reader->cu;
15674 bfd *abfd = reader->abfd;
15675
9c541725 15676 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15677 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15678 info_ptr += bytes_read;
15679 if (!abbrev_number)
15680 {
15681 *diep = NULL;
15682 *has_children = 0;
15683 return info_ptr;
15684 }
15685
433df2d4 15686 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15687 if (!abbrev)
348e048f
DE
15688 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15689 abbrev_number,
15690 bfd_get_filename (abfd));
15691
3019eac3 15692 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15693 die->sect_off = sect_off;
93311388
DE
15694 die->tag = abbrev->tag;
15695 die->abbrev = abbrev_number;
15696
3019eac3
DE
15697 /* Make the result usable.
15698 The caller needs to update num_attrs after adding the extra
15699 attributes. */
93311388
DE
15700 die->num_attrs = abbrev->num_attrs;
15701
15702 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15703 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15704 info_ptr);
93311388
DE
15705
15706 *diep = die;
15707 *has_children = abbrev->has_children;
15708 return info_ptr;
15709}
15710
3019eac3
DE
15711/* Read a die and all its attributes.
15712 Set DIEP to point to a newly allocated die with its information,
15713 except for its child, sibling, and parent fields.
15714 Set HAS_CHILDREN to tell whether the die has children or not. */
15715
d521ce57 15716static const gdb_byte *
3019eac3 15717read_full_die (const struct die_reader_specs *reader,
d521ce57 15718 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15719 int *has_children)
15720{
d521ce57 15721 const gdb_byte *result;
bf6af496
DE
15722
15723 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15724
b4f54984 15725 if (dwarf_die_debug)
bf6af496
DE
15726 {
15727 fprintf_unfiltered (gdb_stdlog,
15728 "Read die from %s@0x%x of %s:\n",
a32a8923 15729 get_section_name (reader->die_section),
bf6af496
DE
15730 (unsigned) (info_ptr - reader->die_section->buffer),
15731 bfd_get_filename (reader->abfd));
b4f54984 15732 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15733 }
15734
15735 return result;
3019eac3 15736}
433df2d4
DE
15737\f
15738/* Abbreviation tables.
3019eac3 15739
433df2d4 15740 In DWARF version 2, the description of the debugging information is
c906108c
SS
15741 stored in a separate .debug_abbrev section. Before we read any
15742 dies from a section we read in all abbreviations and install them
433df2d4
DE
15743 in a hash table. */
15744
15745/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15746
15747static struct abbrev_info *
15748abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15749{
15750 struct abbrev_info *abbrev;
15751
8d749320 15752 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15753 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15754
433df2d4
DE
15755 return abbrev;
15756}
15757
15758/* Add an abbreviation to the table. */
c906108c
SS
15759
15760static void
433df2d4
DE
15761abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15762 unsigned int abbrev_number,
15763 struct abbrev_info *abbrev)
15764{
15765 unsigned int hash_number;
15766
15767 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15768 abbrev->next = abbrev_table->abbrevs[hash_number];
15769 abbrev_table->abbrevs[hash_number] = abbrev;
15770}
dee91e82 15771
433df2d4
DE
15772/* Look up an abbrev in the table.
15773 Returns NULL if the abbrev is not found. */
15774
15775static struct abbrev_info *
15776abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15777 unsigned int abbrev_number)
c906108c 15778{
433df2d4
DE
15779 unsigned int hash_number;
15780 struct abbrev_info *abbrev;
15781
15782 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15783 abbrev = abbrev_table->abbrevs[hash_number];
15784
15785 while (abbrev)
15786 {
15787 if (abbrev->number == abbrev_number)
15788 return abbrev;
15789 abbrev = abbrev->next;
15790 }
15791 return NULL;
15792}
15793
15794/* Read in an abbrev table. */
15795
15796static struct abbrev_table *
15797abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15798 sect_offset sect_off)
433df2d4
DE
15799{
15800 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15801 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15802 struct abbrev_table *abbrev_table;
d521ce57 15803 const gdb_byte *abbrev_ptr;
c906108c
SS
15804 struct abbrev_info *cur_abbrev;
15805 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15806 unsigned int abbrev_form;
f3dd6933
DJ
15807 struct attr_abbrev *cur_attrs;
15808 unsigned int allocated_attrs;
c906108c 15809
70ba0933 15810 abbrev_table = XNEW (struct abbrev_table);
9c541725 15811 abbrev_table->sect_off = sect_off;
433df2d4 15812 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15813 abbrev_table->abbrevs =
15814 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15815 ABBREV_HASH_SIZE);
433df2d4
DE
15816 memset (abbrev_table->abbrevs, 0,
15817 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15818
433df2d4 15819 dwarf2_read_section (objfile, section);
9c541725 15820 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15821 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15822 abbrev_ptr += bytes_read;
15823
f3dd6933 15824 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15825 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15826
0963b4bd 15827 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15828 while (abbrev_number)
15829 {
433df2d4 15830 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15831
15832 /* read in abbrev header */
15833 cur_abbrev->number = abbrev_number;
aead7601
SM
15834 cur_abbrev->tag
15835 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15836 abbrev_ptr += bytes_read;
15837 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15838 abbrev_ptr += 1;
15839
15840 /* now read in declarations */
22d2f3ab 15841 for (;;)
c906108c 15842 {
43988095
JK
15843 LONGEST implicit_const;
15844
22d2f3ab
JK
15845 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15846 abbrev_ptr += bytes_read;
15847 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15848 abbrev_ptr += bytes_read;
43988095
JK
15849 if (abbrev_form == DW_FORM_implicit_const)
15850 {
15851 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15852 &bytes_read);
15853 abbrev_ptr += bytes_read;
15854 }
15855 else
15856 {
15857 /* Initialize it due to a false compiler warning. */
15858 implicit_const = -1;
15859 }
22d2f3ab
JK
15860
15861 if (abbrev_name == 0)
15862 break;
15863
f3dd6933 15864 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15865 {
f3dd6933
DJ
15866 allocated_attrs += ATTR_ALLOC_CHUNK;
15867 cur_attrs
224c3ddb 15868 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15869 }
ae038cb0 15870
aead7601
SM
15871 cur_attrs[cur_abbrev->num_attrs].name
15872 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15873 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15874 = (enum dwarf_form) abbrev_form;
43988095 15875 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15876 ++cur_abbrev->num_attrs;
c906108c
SS
15877 }
15878
8d749320
SM
15879 cur_abbrev->attrs =
15880 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15881 cur_abbrev->num_attrs);
f3dd6933
DJ
15882 memcpy (cur_abbrev->attrs, cur_attrs,
15883 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15884
433df2d4 15885 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15886
15887 /* Get next abbreviation.
15888 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15889 always properly terminated with an abbrev number of 0.
15890 Exit loop if we encounter an abbreviation which we have
15891 already read (which means we are about to read the abbreviations
15892 for the next compile unit) or if the end of the abbreviation
15893 table is reached. */
433df2d4 15894 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15895 break;
15896 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15897 abbrev_ptr += bytes_read;
433df2d4 15898 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15899 break;
15900 }
f3dd6933
DJ
15901
15902 xfree (cur_attrs);
433df2d4 15903 return abbrev_table;
c906108c
SS
15904}
15905
433df2d4 15906/* Free the resources held by ABBREV_TABLE. */
c906108c 15907
c906108c 15908static void
433df2d4 15909abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15910{
433df2d4
DE
15911 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15912 xfree (abbrev_table);
c906108c
SS
15913}
15914
f4dc4d17
DE
15915/* Same as abbrev_table_free but as a cleanup.
15916 We pass in a pointer to the pointer to the table so that we can
15917 set the pointer to NULL when we're done. It also simplifies
73051182 15918 build_type_psymtabs_1. */
f4dc4d17
DE
15919
15920static void
15921abbrev_table_free_cleanup (void *table_ptr)
15922{
9a3c8263 15923 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15924
15925 if (*abbrev_table_ptr != NULL)
15926 abbrev_table_free (*abbrev_table_ptr);
15927 *abbrev_table_ptr = NULL;
15928}
15929
433df2d4
DE
15930/* Read the abbrev table for CU from ABBREV_SECTION. */
15931
15932static void
15933dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15934 struct dwarf2_section_info *abbrev_section)
c906108c 15935{
433df2d4 15936 cu->abbrev_table =
9c541725 15937 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15938}
c906108c 15939
433df2d4 15940/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15941
433df2d4
DE
15942static void
15943dwarf2_free_abbrev_table (void *ptr_to_cu)
15944{
9a3c8263 15945 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15946
a2ce51a0
DE
15947 if (cu->abbrev_table != NULL)
15948 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15949 /* Set this to NULL so that we SEGV if we try to read it later,
15950 and also because free_comp_unit verifies this is NULL. */
15951 cu->abbrev_table = NULL;
15952}
15953\f
72bf9492
DJ
15954/* Returns nonzero if TAG represents a type that we might generate a partial
15955 symbol for. */
15956
15957static int
15958is_type_tag_for_partial (int tag)
15959{
15960 switch (tag)
15961 {
15962#if 0
15963 /* Some types that would be reasonable to generate partial symbols for,
15964 that we don't at present. */
15965 case DW_TAG_array_type:
15966 case DW_TAG_file_type:
15967 case DW_TAG_ptr_to_member_type:
15968 case DW_TAG_set_type:
15969 case DW_TAG_string_type:
15970 case DW_TAG_subroutine_type:
15971#endif
15972 case DW_TAG_base_type:
15973 case DW_TAG_class_type:
680b30c7 15974 case DW_TAG_interface_type:
72bf9492
DJ
15975 case DW_TAG_enumeration_type:
15976 case DW_TAG_structure_type:
15977 case DW_TAG_subrange_type:
15978 case DW_TAG_typedef:
15979 case DW_TAG_union_type:
15980 return 1;
15981 default:
15982 return 0;
15983 }
15984}
15985
15986/* Load all DIEs that are interesting for partial symbols into memory. */
15987
15988static struct partial_die_info *
dee91e82 15989load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15990 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15991{
dee91e82 15992 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15993 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15994 struct partial_die_info *part_die;
15995 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15996 struct abbrev_info *abbrev;
15997 unsigned int bytes_read;
5afb4e99 15998 unsigned int load_all = 0;
72bf9492
DJ
15999 int nesting_level = 1;
16000
16001 parent_die = NULL;
16002 last_die = NULL;
16003
7adf1e79
DE
16004 gdb_assert (cu->per_cu != NULL);
16005 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
16006 load_all = 1;
16007
72bf9492
DJ
16008 cu->partial_dies
16009 = htab_create_alloc_ex (cu->header.length / 12,
16010 partial_die_hash,
16011 partial_die_eq,
16012 NULL,
16013 &cu->comp_unit_obstack,
16014 hashtab_obstack_allocate,
16015 dummy_obstack_deallocate);
16016
8d749320 16017 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16018
16019 while (1)
16020 {
16021 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16022
16023 /* A NULL abbrev means the end of a series of children. */
16024 if (abbrev == NULL)
16025 {
16026 if (--nesting_level == 0)
16027 {
16028 /* PART_DIE was probably the last thing allocated on the
16029 comp_unit_obstack, so we could call obstack_free
16030 here. We don't do that because the waste is small,
16031 and will be cleaned up when we're done with this
16032 compilation unit. This way, we're also more robust
16033 against other users of the comp_unit_obstack. */
16034 return first_die;
16035 }
16036 info_ptr += bytes_read;
16037 last_die = parent_die;
16038 parent_die = parent_die->die_parent;
16039 continue;
16040 }
16041
98bfdba5
PA
16042 /* Check for template arguments. We never save these; if
16043 they're seen, we just mark the parent, and go on our way. */
16044 if (parent_die != NULL
16045 && cu->language == language_cplus
16046 && (abbrev->tag == DW_TAG_template_type_param
16047 || abbrev->tag == DW_TAG_template_value_param))
16048 {
16049 parent_die->has_template_arguments = 1;
16050
16051 if (!load_all)
16052 {
16053 /* We don't need a partial DIE for the template argument. */
dee91e82 16054 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16055 continue;
16056 }
16057 }
16058
0d99eb77 16059 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16060 Skip their other children. */
16061 if (!load_all
16062 && cu->language == language_cplus
16063 && parent_die != NULL
16064 && parent_die->tag == DW_TAG_subprogram)
16065 {
dee91e82 16066 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16067 continue;
16068 }
16069
5afb4e99
DJ
16070 /* Check whether this DIE is interesting enough to save. Normally
16071 we would not be interested in members here, but there may be
16072 later variables referencing them via DW_AT_specification (for
16073 static members). */
16074 if (!load_all
16075 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16076 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16077 && abbrev->tag != DW_TAG_enumerator
16078 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16079 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16080 && abbrev->tag != DW_TAG_variable
5afb4e99 16081 && abbrev->tag != DW_TAG_namespace
f55ee35c 16082 && abbrev->tag != DW_TAG_module
95554aad 16083 && abbrev->tag != DW_TAG_member
74921315
KS
16084 && abbrev->tag != DW_TAG_imported_unit
16085 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16086 {
16087 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16088 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16089 continue;
16090 }
16091
dee91e82
DE
16092 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16093 info_ptr);
72bf9492
DJ
16094
16095 /* This two-pass algorithm for processing partial symbols has a
16096 high cost in cache pressure. Thus, handle some simple cases
16097 here which cover the majority of C partial symbols. DIEs
16098 which neither have specification tags in them, nor could have
16099 specification tags elsewhere pointing at them, can simply be
16100 processed and discarded.
16101
16102 This segment is also optional; scan_partial_symbols and
16103 add_partial_symbol will handle these DIEs if we chain
16104 them in normally. When compilers which do not emit large
16105 quantities of duplicate debug information are more common,
16106 this code can probably be removed. */
16107
16108 /* Any complete simple types at the top level (pretty much all
16109 of them, for a language without namespaces), can be processed
16110 directly. */
16111 if (parent_die == NULL
16112 && part_die->has_specification == 0
16113 && part_die->is_declaration == 0
d8228535 16114 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16115 || part_die->tag == DW_TAG_base_type
16116 || part_die->tag == DW_TAG_subrange_type))
16117 {
16118 if (building_psymtab && part_die->name != NULL)
04a679b8 16119 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16120 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16121 &objfile->static_psymbols,
1762568f 16122 0, cu->language, objfile);
dee91e82 16123 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16124 continue;
16125 }
16126
d8228535
JK
16127 /* The exception for DW_TAG_typedef with has_children above is
16128 a workaround of GCC PR debug/47510. In the case of this complaint
16129 type_name_no_tag_or_error will error on such types later.
16130
16131 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16132 it could not find the child DIEs referenced later, this is checked
16133 above. In correct DWARF DW_TAG_typedef should have no children. */
16134
16135 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16136 complaint (&symfile_complaints,
16137 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16138 "- DIE at 0x%x [in module %s]"),
9c541725 16139 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16140
72bf9492
DJ
16141 /* If we're at the second level, and we're an enumerator, and
16142 our parent has no specification (meaning possibly lives in a
16143 namespace elsewhere), then we can add the partial symbol now
16144 instead of queueing it. */
16145 if (part_die->tag == DW_TAG_enumerator
16146 && parent_die != NULL
16147 && parent_die->die_parent == NULL
16148 && parent_die->tag == DW_TAG_enumeration_type
16149 && parent_die->has_specification == 0)
16150 {
16151 if (part_die->name == NULL)
3e43a32a
MS
16152 complaint (&symfile_complaints,
16153 _("malformed enumerator DIE ignored"));
72bf9492 16154 else if (building_psymtab)
04a679b8 16155 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16156 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16157 cu->language == language_cplus
bb5ed363
DE
16158 ? &objfile->global_psymbols
16159 : &objfile->static_psymbols,
1762568f 16160 0, cu->language, objfile);
72bf9492 16161
dee91e82 16162 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16163 continue;
16164 }
16165
16166 /* We'll save this DIE so link it in. */
16167 part_die->die_parent = parent_die;
16168 part_die->die_sibling = NULL;
16169 part_die->die_child = NULL;
16170
16171 if (last_die && last_die == parent_die)
16172 last_die->die_child = part_die;
16173 else if (last_die)
16174 last_die->die_sibling = part_die;
16175
16176 last_die = part_die;
16177
16178 if (first_die == NULL)
16179 first_die = part_die;
16180
16181 /* Maybe add the DIE to the hash table. Not all DIEs that we
16182 find interesting need to be in the hash table, because we
16183 also have the parent/sibling/child chains; only those that we
16184 might refer to by offset later during partial symbol reading.
16185
16186 For now this means things that might have be the target of a
16187 DW_AT_specification, DW_AT_abstract_origin, or
16188 DW_AT_extension. DW_AT_extension will refer only to
16189 namespaces; DW_AT_abstract_origin refers to functions (and
16190 many things under the function DIE, but we do not recurse
16191 into function DIEs during partial symbol reading) and
16192 possibly variables as well; DW_AT_specification refers to
16193 declarations. Declarations ought to have the DW_AT_declaration
16194 flag. It happens that GCC forgets to put it in sometimes, but
16195 only for functions, not for types.
16196
16197 Adding more things than necessary to the hash table is harmless
16198 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16199 wasted time in find_partial_die, when we reread the compilation
16200 unit with load_all_dies set. */
72bf9492 16201
5afb4e99 16202 if (load_all
72929c62 16203 || abbrev->tag == DW_TAG_constant
5afb4e99 16204 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16205 || abbrev->tag == DW_TAG_variable
16206 || abbrev->tag == DW_TAG_namespace
16207 || part_die->is_declaration)
16208 {
16209 void **slot;
16210
16211 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16212 to_underlying (part_die->sect_off),
16213 INSERT);
72bf9492
DJ
16214 *slot = part_die;
16215 }
16216
8d749320 16217 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16218
16219 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16220 we have no reason to follow the children of structures; for other
98bfdba5
PA
16221 languages we have to, so that we can get at method physnames
16222 to infer fully qualified class names, for DW_AT_specification,
16223 and for C++ template arguments. For C++, we also look one level
16224 inside functions to find template arguments (if the name of the
16225 function does not already contain the template arguments).
bc30ff58
JB
16226
16227 For Ada, we need to scan the children of subprograms and lexical
16228 blocks as well because Ada allows the definition of nested
16229 entities that could be interesting for the debugger, such as
16230 nested subprograms for instance. */
72bf9492 16231 if (last_die->has_children
5afb4e99
DJ
16232 && (load_all
16233 || last_die->tag == DW_TAG_namespace
f55ee35c 16234 || last_die->tag == DW_TAG_module
72bf9492 16235 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16236 || (cu->language == language_cplus
16237 && last_die->tag == DW_TAG_subprogram
16238 && (last_die->name == NULL
16239 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16240 || (cu->language != language_c
16241 && (last_die->tag == DW_TAG_class_type
680b30c7 16242 || last_die->tag == DW_TAG_interface_type
72bf9492 16243 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16244 || last_die->tag == DW_TAG_union_type))
16245 || (cu->language == language_ada
16246 && (last_die->tag == DW_TAG_subprogram
16247 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16248 {
16249 nesting_level++;
16250 parent_die = last_die;
16251 continue;
16252 }
16253
16254 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16255 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16256
16257 /* Back to the top, do it again. */
16258 }
16259}
16260
c906108c
SS
16261/* Read a minimal amount of information into the minimal die structure. */
16262
d521ce57 16263static const gdb_byte *
dee91e82
DE
16264read_partial_die (const struct die_reader_specs *reader,
16265 struct partial_die_info *part_die,
16266 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16267 const gdb_byte *info_ptr)
c906108c 16268{
dee91e82 16269 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16270 struct objfile *objfile = cu->objfile;
d521ce57 16271 const gdb_byte *buffer = reader->buffer;
fa238c03 16272 unsigned int i;
c906108c 16273 struct attribute attr;
c5aa993b 16274 int has_low_pc_attr = 0;
c906108c 16275 int has_high_pc_attr = 0;
91da1414 16276 int high_pc_relative = 0;
c906108c 16277
72bf9492 16278 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16279
9c541725 16280 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16281
16282 info_ptr += abbrev_len;
16283
16284 if (abbrev == NULL)
16285 return info_ptr;
16286
c906108c
SS
16287 part_die->tag = abbrev->tag;
16288 part_die->has_children = abbrev->has_children;
c906108c
SS
16289
16290 for (i = 0; i < abbrev->num_attrs; ++i)
16291 {
dee91e82 16292 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16293
16294 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16295 partial symbol table. */
c906108c
SS
16296 switch (attr.name)
16297 {
16298 case DW_AT_name:
71c25dea
TT
16299 switch (part_die->tag)
16300 {
16301 case DW_TAG_compile_unit:
95554aad 16302 case DW_TAG_partial_unit:
348e048f 16303 case DW_TAG_type_unit:
71c25dea
TT
16304 /* Compilation units have a DW_AT_name that is a filename, not
16305 a source language identifier. */
16306 case DW_TAG_enumeration_type:
16307 case DW_TAG_enumerator:
16308 /* These tags always have simple identifiers already; no need
16309 to canonicalize them. */
16310 part_die->name = DW_STRING (&attr);
16311 break;
16312 default:
16313 part_die->name
16314 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16315 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16316 break;
16317 }
c906108c 16318 break;
31ef98ae 16319 case DW_AT_linkage_name:
c906108c 16320 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16321 /* Note that both forms of linkage name might appear. We
16322 assume they will be the same, and we only store the last
16323 one we see. */
94af9270
KS
16324 if (cu->language == language_ada)
16325 part_die->name = DW_STRING (&attr);
abc72ce4 16326 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16327 break;
16328 case DW_AT_low_pc:
16329 has_low_pc_attr = 1;
31aa7e4e 16330 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16331 break;
16332 case DW_AT_high_pc:
16333 has_high_pc_attr = 1;
31aa7e4e
JB
16334 part_die->highpc = attr_value_as_address (&attr);
16335 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16336 high_pc_relative = 1;
c906108c
SS
16337 break;
16338 case DW_AT_location:
0963b4bd 16339 /* Support the .debug_loc offsets. */
8e19ed76
PS
16340 if (attr_form_is_block (&attr))
16341 {
95554aad 16342 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16343 }
3690dd37 16344 else if (attr_form_is_section_offset (&attr))
8e19ed76 16345 {
4d3c2250 16346 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16347 }
16348 else
16349 {
4d3c2250
KB
16350 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16351 "partial symbol information");
8e19ed76 16352 }
c906108c 16353 break;
c906108c
SS
16354 case DW_AT_external:
16355 part_die->is_external = DW_UNSND (&attr);
16356 break;
16357 case DW_AT_declaration:
16358 part_die->is_declaration = DW_UNSND (&attr);
16359 break;
16360 case DW_AT_type:
16361 part_die->has_type = 1;
16362 break;
16363 case DW_AT_abstract_origin:
16364 case DW_AT_specification:
72bf9492
DJ
16365 case DW_AT_extension:
16366 part_die->has_specification = 1;
c764a876 16367 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16368 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16369 || cu->per_cu->is_dwz);
c906108c
SS
16370 break;
16371 case DW_AT_sibling:
16372 /* Ignore absolute siblings, they might point outside of
16373 the current compile unit. */
16374 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16375 complaint (&symfile_complaints,
16376 _("ignoring absolute DW_AT_sibling"));
c906108c 16377 else
b9502d3f 16378 {
9c541725
PA
16379 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16380 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16381
16382 if (sibling_ptr < info_ptr)
16383 complaint (&symfile_complaints,
16384 _("DW_AT_sibling points backwards"));
22869d73
KS
16385 else if (sibling_ptr > reader->buffer_end)
16386 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16387 else
16388 part_die->sibling = sibling_ptr;
16389 }
c906108c 16390 break;
fa4028e9
JB
16391 case DW_AT_byte_size:
16392 part_die->has_byte_size = 1;
16393 break;
ff908ebf
AW
16394 case DW_AT_const_value:
16395 part_die->has_const_value = 1;
16396 break;
68511cec
CES
16397 case DW_AT_calling_convention:
16398 /* DWARF doesn't provide a way to identify a program's source-level
16399 entry point. DW_AT_calling_convention attributes are only meant
16400 to describe functions' calling conventions.
16401
16402 However, because it's a necessary piece of information in
0c1b455e
TT
16403 Fortran, and before DWARF 4 DW_CC_program was the only
16404 piece of debugging information whose definition refers to
16405 a 'main program' at all, several compilers marked Fortran
16406 main programs with DW_CC_program --- even when those
16407 functions use the standard calling conventions.
16408
16409 Although DWARF now specifies a way to provide this
16410 information, we support this practice for backward
16411 compatibility. */
68511cec 16412 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16413 && cu->language == language_fortran)
16414 part_die->main_subprogram = 1;
68511cec 16415 break;
481860b3
GB
16416 case DW_AT_inline:
16417 if (DW_UNSND (&attr) == DW_INL_inlined
16418 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16419 part_die->may_be_inlined = 1;
16420 break;
95554aad
TT
16421
16422 case DW_AT_import:
16423 if (part_die->tag == DW_TAG_imported_unit)
36586728 16424 {
9c541725 16425 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16426 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16427 || cu->per_cu->is_dwz);
16428 }
95554aad
TT
16429 break;
16430
0c1b455e
TT
16431 case DW_AT_main_subprogram:
16432 part_die->main_subprogram = DW_UNSND (&attr);
16433 break;
16434
c906108c
SS
16435 default:
16436 break;
16437 }
16438 }
16439
91da1414
MW
16440 if (high_pc_relative)
16441 part_die->highpc += part_die->lowpc;
16442
9373cf26
JK
16443 if (has_low_pc_attr && has_high_pc_attr)
16444 {
16445 /* When using the GNU linker, .gnu.linkonce. sections are used to
16446 eliminate duplicate copies of functions and vtables and such.
16447 The linker will arbitrarily choose one and discard the others.
16448 The AT_*_pc values for such functions refer to local labels in
16449 these sections. If the section from that file was discarded, the
16450 labels are not in the output, so the relocs get a value of 0.
16451 If this is a discarded function, mark the pc bounds as invalid,
16452 so that GDB will ignore it. */
16453 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16454 {
bb5ed363 16455 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16456
16457 complaint (&symfile_complaints,
16458 _("DW_AT_low_pc %s is zero "
16459 "for DIE at 0x%x [in module %s]"),
16460 paddress (gdbarch, part_die->lowpc),
9c541725 16461 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16462 }
16463 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16464 else if (part_die->lowpc >= part_die->highpc)
16465 {
bb5ed363 16466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16467
16468 complaint (&symfile_complaints,
16469 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16470 "for DIE at 0x%x [in module %s]"),
16471 paddress (gdbarch, part_die->lowpc),
16472 paddress (gdbarch, part_die->highpc),
9c541725
PA
16473 to_underlying (part_die->sect_off),
16474 objfile_name (objfile));
9373cf26
JK
16475 }
16476 else
16477 part_die->has_pc_info = 1;
16478 }
85cbf3d3 16479
c906108c
SS
16480 return info_ptr;
16481}
16482
72bf9492
DJ
16483/* Find a cached partial DIE at OFFSET in CU. */
16484
16485static struct partial_die_info *
9c541725 16486find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16487{
16488 struct partial_die_info *lookup_die = NULL;
16489 struct partial_die_info part_die;
16490
9c541725 16491 part_die.sect_off = sect_off;
9a3c8263
SM
16492 lookup_die = ((struct partial_die_info *)
16493 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16494 to_underlying (sect_off)));
72bf9492 16495
72bf9492
DJ
16496 return lookup_die;
16497}
16498
348e048f
DE
16499/* Find a partial DIE at OFFSET, which may or may not be in CU,
16500 except in the case of .debug_types DIEs which do not reference
16501 outside their CU (they do however referencing other types via
55f1336d 16502 DW_FORM_ref_sig8). */
72bf9492
DJ
16503
16504static struct partial_die_info *
9c541725 16505find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16506{
bb5ed363 16507 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16508 struct dwarf2_per_cu_data *per_cu = NULL;
16509 struct partial_die_info *pd = NULL;
72bf9492 16510
36586728 16511 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16512 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16513 {
9c541725 16514 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16515 if (pd != NULL)
16516 return pd;
0d99eb77
DE
16517 /* We missed recording what we needed.
16518 Load all dies and try again. */
16519 per_cu = cu->per_cu;
5afb4e99 16520 }
0d99eb77
DE
16521 else
16522 {
16523 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16524 if (cu->per_cu->is_debug_types)
0d99eb77 16525 {
9c541725
PA
16526 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16527 " external reference to offset 0x%x [in module %s].\n"),
16528 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16529 bfd_get_filename (objfile->obfd));
16530 }
9c541725 16531 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16532 objfile);
72bf9492 16533
0d99eb77
DE
16534 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16535 load_partial_comp_unit (per_cu);
ae038cb0 16536
0d99eb77 16537 per_cu->cu->last_used = 0;
9c541725 16538 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16539 }
5afb4e99 16540
dee91e82
DE
16541 /* If we didn't find it, and not all dies have been loaded,
16542 load them all and try again. */
16543
5afb4e99
DJ
16544 if (pd == NULL && per_cu->load_all_dies == 0)
16545 {
5afb4e99 16546 per_cu->load_all_dies = 1;
fd820528
DE
16547
16548 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16549 THIS_CU->cu may already be in use. So we can't just free it and
16550 replace its DIEs with the ones we read in. Instead, we leave those
16551 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16552 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16553 set. */
dee91e82 16554 load_partial_comp_unit (per_cu);
5afb4e99 16555
9c541725 16556 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16557 }
16558
16559 if (pd == NULL)
16560 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16561 _("could not find partial DIE 0x%x "
16562 "in cache [from module %s]\n"),
9c541725 16563 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16564 return pd;
72bf9492
DJ
16565}
16566
abc72ce4
DE
16567/* See if we can figure out if the class lives in a namespace. We do
16568 this by looking for a member function; its demangled name will
16569 contain namespace info, if there is any. */
16570
16571static void
16572guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16573 struct dwarf2_cu *cu)
16574{
16575 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16576 what template types look like, because the demangler
16577 frequently doesn't give the same name as the debug info. We
16578 could fix this by only using the demangled name to get the
16579 prefix (but see comment in read_structure_type). */
16580
16581 struct partial_die_info *real_pdi;
16582 struct partial_die_info *child_pdi;
16583
16584 /* If this DIE (this DIE's specification, if any) has a parent, then
16585 we should not do this. We'll prepend the parent's fully qualified
16586 name when we create the partial symbol. */
16587
16588 real_pdi = struct_pdi;
16589 while (real_pdi->has_specification)
36586728
TT
16590 real_pdi = find_partial_die (real_pdi->spec_offset,
16591 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16592
16593 if (real_pdi->die_parent != NULL)
16594 return;
16595
16596 for (child_pdi = struct_pdi->die_child;
16597 child_pdi != NULL;
16598 child_pdi = child_pdi->die_sibling)
16599 {
16600 if (child_pdi->tag == DW_TAG_subprogram
16601 && child_pdi->linkage_name != NULL)
16602 {
16603 char *actual_class_name
16604 = language_class_name_from_physname (cu->language_defn,
16605 child_pdi->linkage_name);
16606 if (actual_class_name != NULL)
16607 {
16608 struct_pdi->name
224c3ddb
SM
16609 = ((const char *)
16610 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16611 actual_class_name,
16612 strlen (actual_class_name)));
abc72ce4
DE
16613 xfree (actual_class_name);
16614 }
16615 break;
16616 }
16617 }
16618}
16619
72bf9492
DJ
16620/* Adjust PART_DIE before generating a symbol for it. This function
16621 may set the is_external flag or change the DIE's name. */
16622
16623static void
16624fixup_partial_die (struct partial_die_info *part_die,
16625 struct dwarf2_cu *cu)
16626{
abc72ce4
DE
16627 /* Once we've fixed up a die, there's no point in doing so again.
16628 This also avoids a memory leak if we were to call
16629 guess_partial_die_structure_name multiple times. */
16630 if (part_die->fixup_called)
16631 return;
16632
72bf9492
DJ
16633 /* If we found a reference attribute and the DIE has no name, try
16634 to find a name in the referred to DIE. */
16635
16636 if (part_die->name == NULL && part_die->has_specification)
16637 {
16638 struct partial_die_info *spec_die;
72bf9492 16639
36586728
TT
16640 spec_die = find_partial_die (part_die->spec_offset,
16641 part_die->spec_is_dwz, cu);
72bf9492 16642
10b3939b 16643 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16644
16645 if (spec_die->name)
16646 {
16647 part_die->name = spec_die->name;
16648
16649 /* Copy DW_AT_external attribute if it is set. */
16650 if (spec_die->is_external)
16651 part_die->is_external = spec_die->is_external;
16652 }
16653 }
16654
16655 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16656
16657 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16658 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16659
abc72ce4
DE
16660 /* If there is no parent die to provide a namespace, and there are
16661 children, see if we can determine the namespace from their linkage
122d1940 16662 name. */
abc72ce4 16663 if (cu->language == language_cplus
8b70b953 16664 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16665 && part_die->die_parent == NULL
16666 && part_die->has_children
16667 && (part_die->tag == DW_TAG_class_type
16668 || part_die->tag == DW_TAG_structure_type
16669 || part_die->tag == DW_TAG_union_type))
16670 guess_partial_die_structure_name (part_die, cu);
16671
53832f31
TT
16672 /* GCC might emit a nameless struct or union that has a linkage
16673 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16674 if (part_die->name == NULL
96408a79
SA
16675 && (part_die->tag == DW_TAG_class_type
16676 || part_die->tag == DW_TAG_interface_type
16677 || part_die->tag == DW_TAG_structure_type
16678 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16679 && part_die->linkage_name != NULL)
16680 {
16681 char *demangled;
16682
8de20a37 16683 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16684 if (demangled)
16685 {
96408a79
SA
16686 const char *base;
16687
16688 /* Strip any leading namespaces/classes, keep only the base name.
16689 DW_AT_name for named DIEs does not contain the prefixes. */
16690 base = strrchr (demangled, ':');
16691 if (base && base > demangled && base[-1] == ':')
16692 base++;
16693 else
16694 base = demangled;
16695
34a68019 16696 part_die->name
224c3ddb
SM
16697 = ((const char *)
16698 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16699 base, strlen (base)));
53832f31
TT
16700 xfree (demangled);
16701 }
16702 }
16703
abc72ce4 16704 part_die->fixup_called = 1;
72bf9492
DJ
16705}
16706
a8329558 16707/* Read an attribute value described by an attribute form. */
c906108c 16708
d521ce57 16709static const gdb_byte *
dee91e82
DE
16710read_attribute_value (const struct die_reader_specs *reader,
16711 struct attribute *attr, unsigned form,
43988095 16712 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16713{
dee91e82 16714 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16715 struct objfile *objfile = cu->objfile;
16716 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16717 bfd *abfd = reader->abfd;
e7c27a73 16718 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16719 unsigned int bytes_read;
16720 struct dwarf_block *blk;
16721
aead7601 16722 attr->form = (enum dwarf_form) form;
a8329558 16723 switch (form)
c906108c 16724 {
c906108c 16725 case DW_FORM_ref_addr:
ae411497 16726 if (cu->header.version == 2)
4568ecf9 16727 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16728 else
4568ecf9
DE
16729 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16730 &cu->header, &bytes_read);
ae411497
TT
16731 info_ptr += bytes_read;
16732 break;
36586728
TT
16733 case DW_FORM_GNU_ref_alt:
16734 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16735 info_ptr += bytes_read;
16736 break;
ae411497 16737 case DW_FORM_addr:
e7c27a73 16738 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16739 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16740 info_ptr += bytes_read;
c906108c
SS
16741 break;
16742 case DW_FORM_block2:
7b5a2f43 16743 blk = dwarf_alloc_block (cu);
c906108c
SS
16744 blk->size = read_2_bytes (abfd, info_ptr);
16745 info_ptr += 2;
16746 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16747 info_ptr += blk->size;
16748 DW_BLOCK (attr) = blk;
16749 break;
16750 case DW_FORM_block4:
7b5a2f43 16751 blk = dwarf_alloc_block (cu);
c906108c
SS
16752 blk->size = read_4_bytes (abfd, info_ptr);
16753 info_ptr += 4;
16754 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16755 info_ptr += blk->size;
16756 DW_BLOCK (attr) = blk;
16757 break;
16758 case DW_FORM_data2:
16759 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16760 info_ptr += 2;
16761 break;
16762 case DW_FORM_data4:
16763 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16764 info_ptr += 4;
16765 break;
16766 case DW_FORM_data8:
16767 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16768 info_ptr += 8;
16769 break;
0224619f
JK
16770 case DW_FORM_data16:
16771 blk = dwarf_alloc_block (cu);
16772 blk->size = 16;
16773 blk->data = read_n_bytes (abfd, info_ptr, 16);
16774 info_ptr += 16;
16775 DW_BLOCK (attr) = blk;
16776 break;
2dc7f7b3
TT
16777 case DW_FORM_sec_offset:
16778 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16779 info_ptr += bytes_read;
16780 break;
c906108c 16781 case DW_FORM_string:
9b1c24c8 16782 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16783 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16784 info_ptr += bytes_read;
16785 break;
4bdf3d34 16786 case DW_FORM_strp:
36586728
TT
16787 if (!cu->per_cu->is_dwz)
16788 {
16789 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16790 &bytes_read);
16791 DW_STRING_IS_CANONICAL (attr) = 0;
16792 info_ptr += bytes_read;
16793 break;
16794 }
16795 /* FALLTHROUGH */
43988095
JK
16796 case DW_FORM_line_strp:
16797 if (!cu->per_cu->is_dwz)
16798 {
16799 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16800 cu_header, &bytes_read);
16801 DW_STRING_IS_CANONICAL (attr) = 0;
16802 info_ptr += bytes_read;
16803 break;
16804 }
16805 /* FALLTHROUGH */
36586728
TT
16806 case DW_FORM_GNU_strp_alt:
16807 {
16808 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16809 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16810 &bytes_read);
16811
16812 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16813 DW_STRING_IS_CANONICAL (attr) = 0;
16814 info_ptr += bytes_read;
16815 }
4bdf3d34 16816 break;
2dc7f7b3 16817 case DW_FORM_exprloc:
c906108c 16818 case DW_FORM_block:
7b5a2f43 16819 blk = dwarf_alloc_block (cu);
c906108c
SS
16820 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16821 info_ptr += bytes_read;
16822 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16823 info_ptr += blk->size;
16824 DW_BLOCK (attr) = blk;
16825 break;
16826 case DW_FORM_block1:
7b5a2f43 16827 blk = dwarf_alloc_block (cu);
c906108c
SS
16828 blk->size = read_1_byte (abfd, info_ptr);
16829 info_ptr += 1;
16830 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16831 info_ptr += blk->size;
16832 DW_BLOCK (attr) = blk;
16833 break;
16834 case DW_FORM_data1:
16835 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16836 info_ptr += 1;
16837 break;
16838 case DW_FORM_flag:
16839 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16840 info_ptr += 1;
16841 break;
2dc7f7b3
TT
16842 case DW_FORM_flag_present:
16843 DW_UNSND (attr) = 1;
16844 break;
c906108c
SS
16845 case DW_FORM_sdata:
16846 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16847 info_ptr += bytes_read;
16848 break;
16849 case DW_FORM_udata:
16850 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16851 info_ptr += bytes_read;
16852 break;
16853 case DW_FORM_ref1:
9c541725 16854 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16855 + read_1_byte (abfd, info_ptr));
c906108c
SS
16856 info_ptr += 1;
16857 break;
16858 case DW_FORM_ref2:
9c541725 16859 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16860 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16861 info_ptr += 2;
16862 break;
16863 case DW_FORM_ref4:
9c541725 16864 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16865 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16866 info_ptr += 4;
16867 break;
613e1657 16868 case DW_FORM_ref8:
9c541725 16869 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16870 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16871 info_ptr += 8;
16872 break;
55f1336d 16873 case DW_FORM_ref_sig8:
ac9ec31b 16874 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16875 info_ptr += 8;
16876 break;
c906108c 16877 case DW_FORM_ref_udata:
9c541725 16878 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16879 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16880 info_ptr += bytes_read;
16881 break;
c906108c 16882 case DW_FORM_indirect:
a8329558
KW
16883 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16884 info_ptr += bytes_read;
43988095
JK
16885 if (form == DW_FORM_implicit_const)
16886 {
16887 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16888 info_ptr += bytes_read;
16889 }
16890 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16891 info_ptr);
16892 break;
16893 case DW_FORM_implicit_const:
16894 DW_SND (attr) = implicit_const;
a8329558 16895 break;
3019eac3
DE
16896 case DW_FORM_GNU_addr_index:
16897 if (reader->dwo_file == NULL)
16898 {
16899 /* For now flag a hard error.
16900 Later we can turn this into a complaint. */
16901 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16902 dwarf_form_name (form),
16903 bfd_get_filename (abfd));
16904 }
16905 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16906 info_ptr += bytes_read;
16907 break;
16908 case DW_FORM_GNU_str_index:
16909 if (reader->dwo_file == NULL)
16910 {
16911 /* For now flag a hard error.
16912 Later we can turn this into a complaint if warranted. */
16913 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16914 dwarf_form_name (form),
16915 bfd_get_filename (abfd));
16916 }
16917 {
16918 ULONGEST str_index =
16919 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16920
342587c4 16921 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16922 DW_STRING_IS_CANONICAL (attr) = 0;
16923 info_ptr += bytes_read;
16924 }
16925 break;
c906108c 16926 default:
8a3fe4f8 16927 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16928 dwarf_form_name (form),
16929 bfd_get_filename (abfd));
c906108c 16930 }
28e94949 16931
36586728 16932 /* Super hack. */
7771576e 16933 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16934 attr->form = DW_FORM_GNU_ref_alt;
16935
28e94949
JB
16936 /* We have seen instances where the compiler tried to emit a byte
16937 size attribute of -1 which ended up being encoded as an unsigned
16938 0xffffffff. Although 0xffffffff is technically a valid size value,
16939 an object of this size seems pretty unlikely so we can relatively
16940 safely treat these cases as if the size attribute was invalid and
16941 treat them as zero by default. */
16942 if (attr->name == DW_AT_byte_size
16943 && form == DW_FORM_data4
16944 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16945 {
16946 complaint
16947 (&symfile_complaints,
43bbcdc2
PH
16948 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16949 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16950 DW_UNSND (attr) = 0;
16951 }
28e94949 16952
c906108c
SS
16953 return info_ptr;
16954}
16955
a8329558
KW
16956/* Read an attribute described by an abbreviated attribute. */
16957
d521ce57 16958static const gdb_byte *
dee91e82
DE
16959read_attribute (const struct die_reader_specs *reader,
16960 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16961 const gdb_byte *info_ptr)
a8329558
KW
16962{
16963 attr->name = abbrev->name;
43988095
JK
16964 return read_attribute_value (reader, attr, abbrev->form,
16965 abbrev->implicit_const, info_ptr);
a8329558
KW
16966}
16967
0963b4bd 16968/* Read dwarf information from a buffer. */
c906108c
SS
16969
16970static unsigned int
a1855c1d 16971read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16972{
fe1b8b76 16973 return bfd_get_8 (abfd, buf);
c906108c
SS
16974}
16975
16976static int
a1855c1d 16977read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16978{
fe1b8b76 16979 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16980}
16981
16982static unsigned int
a1855c1d 16983read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16984{
fe1b8b76 16985 return bfd_get_16 (abfd, buf);
c906108c
SS
16986}
16987
21ae7a4d 16988static int
a1855c1d 16989read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16990{
16991 return bfd_get_signed_16 (abfd, buf);
16992}
16993
c906108c 16994static unsigned int
a1855c1d 16995read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16996{
fe1b8b76 16997 return bfd_get_32 (abfd, buf);
c906108c
SS
16998}
16999
21ae7a4d 17000static int
a1855c1d 17001read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
17002{
17003 return bfd_get_signed_32 (abfd, buf);
17004}
17005
93311388 17006static ULONGEST
a1855c1d 17007read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17008{
fe1b8b76 17009 return bfd_get_64 (abfd, buf);
c906108c
SS
17010}
17011
17012static CORE_ADDR
d521ce57 17013read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 17014 unsigned int *bytes_read)
c906108c 17015{
e7c27a73 17016 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
17017 CORE_ADDR retval = 0;
17018
107d2387 17019 if (cu_header->signed_addr_p)
c906108c 17020 {
107d2387
AC
17021 switch (cu_header->addr_size)
17022 {
17023 case 2:
fe1b8b76 17024 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
17025 break;
17026 case 4:
fe1b8b76 17027 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
17028 break;
17029 case 8:
fe1b8b76 17030 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
17031 break;
17032 default:
8e65ff28 17033 internal_error (__FILE__, __LINE__,
e2e0b3e5 17034 _("read_address: bad switch, signed [in module %s]"),
659b0389 17035 bfd_get_filename (abfd));
107d2387
AC
17036 }
17037 }
17038 else
17039 {
17040 switch (cu_header->addr_size)
17041 {
17042 case 2:
fe1b8b76 17043 retval = bfd_get_16 (abfd, buf);
107d2387
AC
17044 break;
17045 case 4:
fe1b8b76 17046 retval = bfd_get_32 (abfd, buf);
107d2387
AC
17047 break;
17048 case 8:
fe1b8b76 17049 retval = bfd_get_64 (abfd, buf);
107d2387
AC
17050 break;
17051 default:
8e65ff28 17052 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17053 _("read_address: bad switch, "
17054 "unsigned [in module %s]"),
659b0389 17055 bfd_get_filename (abfd));
107d2387 17056 }
c906108c 17057 }
64367e0a 17058
107d2387
AC
17059 *bytes_read = cu_header->addr_size;
17060 return retval;
c906108c
SS
17061}
17062
f7ef9339 17063/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17064 specification allows the initial length to take up either 4 bytes
17065 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17066 bytes describe the length and all offsets will be 8 bytes in length
17067 instead of 4.
17068
f7ef9339
KB
17069 An older, non-standard 64-bit format is also handled by this
17070 function. The older format in question stores the initial length
17071 as an 8-byte quantity without an escape value. Lengths greater
17072 than 2^32 aren't very common which means that the initial 4 bytes
17073 is almost always zero. Since a length value of zero doesn't make
17074 sense for the 32-bit format, this initial zero can be considered to
17075 be an escape value which indicates the presence of the older 64-bit
17076 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17077 greater than 4GB. If it becomes necessary to handle lengths
17078 somewhat larger than 4GB, we could allow other small values (such
17079 as the non-sensical values of 1, 2, and 3) to also be used as
17080 escape values indicating the presence of the old format.
f7ef9339 17081
917c78fc
MK
17082 The value returned via bytes_read should be used to increment the
17083 relevant pointer after calling read_initial_length().
c764a876 17084
613e1657
KB
17085 [ Note: read_initial_length() and read_offset() are based on the
17086 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17087 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17088 from:
17089
f7ef9339 17090 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17091
613e1657
KB
17092 This document is only a draft and is subject to change. (So beware.)
17093
f7ef9339 17094 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17095 determined empirically by examining 64-bit ELF files produced by
17096 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17097
17098 - Kevin, July 16, 2002
613e1657
KB
17099 ] */
17100
17101static LONGEST
d521ce57 17102read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17103{
fe1b8b76 17104 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17105
dd373385 17106 if (length == 0xffffffff)
613e1657 17107 {
fe1b8b76 17108 length = bfd_get_64 (abfd, buf + 4);
613e1657 17109 *bytes_read = 12;
613e1657 17110 }
dd373385 17111 else if (length == 0)
f7ef9339 17112 {
dd373385 17113 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17114 length = bfd_get_64 (abfd, buf);
f7ef9339 17115 *bytes_read = 8;
f7ef9339 17116 }
613e1657
KB
17117 else
17118 {
17119 *bytes_read = 4;
613e1657
KB
17120 }
17121
c764a876
DE
17122 return length;
17123}
dd373385 17124
c764a876
DE
17125/* Cover function for read_initial_length.
17126 Returns the length of the object at BUF, and stores the size of the
17127 initial length in *BYTES_READ and stores the size that offsets will be in
17128 *OFFSET_SIZE.
17129 If the initial length size is not equivalent to that specified in
17130 CU_HEADER then issue a complaint.
17131 This is useful when reading non-comp-unit headers. */
dd373385 17132
c764a876 17133static LONGEST
d521ce57 17134read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17135 const struct comp_unit_head *cu_header,
17136 unsigned int *bytes_read,
17137 unsigned int *offset_size)
17138{
17139 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17140
17141 gdb_assert (cu_header->initial_length_size == 4
17142 || cu_header->initial_length_size == 8
17143 || cu_header->initial_length_size == 12);
17144
17145 if (cu_header->initial_length_size != *bytes_read)
17146 complaint (&symfile_complaints,
17147 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17148
c764a876 17149 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17150 return length;
613e1657
KB
17151}
17152
17153/* Read an offset from the data stream. The size of the offset is
917c78fc 17154 given by cu_header->offset_size. */
613e1657
KB
17155
17156static LONGEST
d521ce57
TT
17157read_offset (bfd *abfd, const gdb_byte *buf,
17158 const struct comp_unit_head *cu_header,
891d2f0b 17159 unsigned int *bytes_read)
c764a876
DE
17160{
17161 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17162
c764a876
DE
17163 *bytes_read = cu_header->offset_size;
17164 return offset;
17165}
17166
17167/* Read an offset from the data stream. */
17168
17169static LONGEST
d521ce57 17170read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17171{
17172 LONGEST retval = 0;
17173
c764a876 17174 switch (offset_size)
613e1657
KB
17175 {
17176 case 4:
fe1b8b76 17177 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17178 break;
17179 case 8:
fe1b8b76 17180 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17181 break;
17182 default:
8e65ff28 17183 internal_error (__FILE__, __LINE__,
c764a876 17184 _("read_offset_1: bad switch [in module %s]"),
659b0389 17185 bfd_get_filename (abfd));
613e1657
KB
17186 }
17187
917c78fc 17188 return retval;
613e1657
KB
17189}
17190
d521ce57
TT
17191static const gdb_byte *
17192read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17193{
17194 /* If the size of a host char is 8 bits, we can return a pointer
17195 to the buffer, otherwise we have to copy the data to a buffer
17196 allocated on the temporary obstack. */
4bdf3d34 17197 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17198 return buf;
c906108c
SS
17199}
17200
d521ce57
TT
17201static const char *
17202read_direct_string (bfd *abfd, const gdb_byte *buf,
17203 unsigned int *bytes_read_ptr)
c906108c
SS
17204{
17205 /* If the size of a host char is 8 bits, we can return a pointer
17206 to the string, otherwise we have to copy the string to a buffer
17207 allocated on the temporary obstack. */
4bdf3d34 17208 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17209 if (*buf == '\0')
17210 {
17211 *bytes_read_ptr = 1;
17212 return NULL;
17213 }
d521ce57
TT
17214 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17215 return (const char *) buf;
4bdf3d34
JJ
17216}
17217
43988095
JK
17218/* Return pointer to string at section SECT offset STR_OFFSET with error
17219 reporting strings FORM_NAME and SECT_NAME. */
17220
d521ce57 17221static const char *
43988095
JK
17222read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17223 struct dwarf2_section_info *sect,
17224 const char *form_name,
17225 const char *sect_name)
17226{
17227 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17228 if (sect->buffer == NULL)
17229 error (_("%s used without %s section [in module %s]"),
17230 form_name, sect_name, bfd_get_filename (abfd));
17231 if (str_offset >= sect->size)
17232 error (_("%s pointing outside of %s section [in module %s]"),
17233 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17234 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17235 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17236 return NULL;
43988095
JK
17237 return (const char *) (sect->buffer + str_offset);
17238}
17239
17240/* Return pointer to string at .debug_str offset STR_OFFSET. */
17241
17242static const char *
17243read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17244{
17245 return read_indirect_string_at_offset_from (abfd, str_offset,
17246 &dwarf2_per_objfile->str,
17247 "DW_FORM_strp", ".debug_str");
17248}
17249
17250/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17251
17252static const char *
17253read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17254{
17255 return read_indirect_string_at_offset_from (abfd, str_offset,
17256 &dwarf2_per_objfile->line_str,
17257 "DW_FORM_line_strp",
17258 ".debug_line_str");
c906108c
SS
17259}
17260
36586728
TT
17261/* Read a string at offset STR_OFFSET in the .debug_str section from
17262 the .dwz file DWZ. Throw an error if the offset is too large. If
17263 the string consists of a single NUL byte, return NULL; otherwise
17264 return a pointer to the string. */
17265
d521ce57 17266static const char *
36586728
TT
17267read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17268{
17269 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17270
17271 if (dwz->str.buffer == NULL)
17272 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17273 "section [in module %s]"),
17274 bfd_get_filename (dwz->dwz_bfd));
17275 if (str_offset >= dwz->str.size)
17276 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17277 ".debug_str section [in module %s]"),
17278 bfd_get_filename (dwz->dwz_bfd));
17279 gdb_assert (HOST_CHAR_BIT == 8);
17280 if (dwz->str.buffer[str_offset] == '\0')
17281 return NULL;
d521ce57 17282 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17283}
17284
43988095
JK
17285/* Return pointer to string at .debug_str offset as read from BUF.
17286 BUF is assumed to be in a compilation unit described by CU_HEADER.
17287 Return *BYTES_READ_PTR count of bytes read from BUF. */
17288
d521ce57
TT
17289static const char *
17290read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17291 const struct comp_unit_head *cu_header,
17292 unsigned int *bytes_read_ptr)
17293{
17294 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17295
17296 return read_indirect_string_at_offset (abfd, str_offset);
17297}
17298
43988095
JK
17299/* Return pointer to string at .debug_line_str offset as read from BUF.
17300 BUF is assumed to be in a compilation unit described by CU_HEADER.
17301 Return *BYTES_READ_PTR count of bytes read from BUF. */
17302
17303static const char *
17304read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17305 const struct comp_unit_head *cu_header,
17306 unsigned int *bytes_read_ptr)
17307{
17308 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17309
17310 return read_indirect_line_string_at_offset (abfd, str_offset);
17311}
17312
17313ULONGEST
d521ce57 17314read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17315 unsigned int *bytes_read_ptr)
c906108c 17316{
12df843f 17317 ULONGEST result;
ce5d95e1 17318 unsigned int num_read;
870f88f7 17319 int shift;
c906108c
SS
17320 unsigned char byte;
17321
17322 result = 0;
17323 shift = 0;
17324 num_read = 0;
c906108c
SS
17325 while (1)
17326 {
fe1b8b76 17327 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17328 buf++;
17329 num_read++;
12df843f 17330 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17331 if ((byte & 128) == 0)
17332 {
17333 break;
17334 }
17335 shift += 7;
17336 }
17337 *bytes_read_ptr = num_read;
17338 return result;
17339}
17340
12df843f 17341static LONGEST
d521ce57
TT
17342read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17343 unsigned int *bytes_read_ptr)
c906108c 17344{
12df843f 17345 LONGEST result;
870f88f7 17346 int shift, num_read;
c906108c
SS
17347 unsigned char byte;
17348
17349 result = 0;
17350 shift = 0;
c906108c 17351 num_read = 0;
c906108c
SS
17352 while (1)
17353 {
fe1b8b76 17354 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17355 buf++;
17356 num_read++;
12df843f 17357 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17358 shift += 7;
17359 if ((byte & 128) == 0)
17360 {
17361 break;
17362 }
17363 }
77e0b926 17364 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17365 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17366 *bytes_read_ptr = num_read;
17367 return result;
17368}
17369
3019eac3
DE
17370/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17371 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17372 ADDR_SIZE is the size of addresses from the CU header. */
17373
17374static CORE_ADDR
17375read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17376{
17377 struct objfile *objfile = dwarf2_per_objfile->objfile;
17378 bfd *abfd = objfile->obfd;
17379 const gdb_byte *info_ptr;
17380
17381 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17382 if (dwarf2_per_objfile->addr.buffer == NULL)
17383 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17384 objfile_name (objfile));
3019eac3
DE
17385 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17386 error (_("DW_FORM_addr_index pointing outside of "
17387 ".debug_addr section [in module %s]"),
4262abfb 17388 objfile_name (objfile));
3019eac3
DE
17389 info_ptr = (dwarf2_per_objfile->addr.buffer
17390 + addr_base + addr_index * addr_size);
17391 if (addr_size == 4)
17392 return bfd_get_32 (abfd, info_ptr);
17393 else
17394 return bfd_get_64 (abfd, info_ptr);
17395}
17396
17397/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17398
17399static CORE_ADDR
17400read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17401{
17402 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17403}
17404
17405/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17406
17407static CORE_ADDR
d521ce57 17408read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17409 unsigned int *bytes_read)
17410{
17411 bfd *abfd = cu->objfile->obfd;
17412 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17413
17414 return read_addr_index (cu, addr_index);
17415}
17416
17417/* Data structure to pass results from dwarf2_read_addr_index_reader
17418 back to dwarf2_read_addr_index. */
17419
17420struct dwarf2_read_addr_index_data
17421{
17422 ULONGEST addr_base;
17423 int addr_size;
17424};
17425
17426/* die_reader_func for dwarf2_read_addr_index. */
17427
17428static void
17429dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17430 const gdb_byte *info_ptr,
3019eac3
DE
17431 struct die_info *comp_unit_die,
17432 int has_children,
17433 void *data)
17434{
17435 struct dwarf2_cu *cu = reader->cu;
17436 struct dwarf2_read_addr_index_data *aidata =
17437 (struct dwarf2_read_addr_index_data *) data;
17438
17439 aidata->addr_base = cu->addr_base;
17440 aidata->addr_size = cu->header.addr_size;
17441}
17442
17443/* Given an index in .debug_addr, fetch the value.
17444 NOTE: This can be called during dwarf expression evaluation,
17445 long after the debug information has been read, and thus per_cu->cu
17446 may no longer exist. */
17447
17448CORE_ADDR
17449dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17450 unsigned int addr_index)
17451{
17452 struct objfile *objfile = per_cu->objfile;
17453 struct dwarf2_cu *cu = per_cu->cu;
17454 ULONGEST addr_base;
17455 int addr_size;
17456
17457 /* This is intended to be called from outside this file. */
17458 dw2_setup (objfile);
17459
17460 /* We need addr_base and addr_size.
17461 If we don't have PER_CU->cu, we have to get it.
17462 Nasty, but the alternative is storing the needed info in PER_CU,
17463 which at this point doesn't seem justified: it's not clear how frequently
17464 it would get used and it would increase the size of every PER_CU.
17465 Entry points like dwarf2_per_cu_addr_size do a similar thing
17466 so we're not in uncharted territory here.
17467 Alas we need to be a bit more complicated as addr_base is contained
17468 in the DIE.
17469
17470 We don't need to read the entire CU(/TU).
17471 We just need the header and top level die.
a1b64ce1 17472
3019eac3 17473 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17474 For now we skip this optimization. */
3019eac3
DE
17475
17476 if (cu != NULL)
17477 {
17478 addr_base = cu->addr_base;
17479 addr_size = cu->header.addr_size;
17480 }
17481 else
17482 {
17483 struct dwarf2_read_addr_index_data aidata;
17484
a1b64ce1
DE
17485 /* Note: We can't use init_cutu_and_read_dies_simple here,
17486 we need addr_base. */
17487 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17488 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17489 addr_base = aidata.addr_base;
17490 addr_size = aidata.addr_size;
17491 }
17492
17493 return read_addr_index_1 (addr_index, addr_base, addr_size);
17494}
17495
57d63ce2
DE
17496/* Given a DW_FORM_GNU_str_index, fetch the string.
17497 This is only used by the Fission support. */
3019eac3 17498
d521ce57 17499static const char *
342587c4 17500read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17501{
17502 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17503 const char *objf_name = objfile_name (objfile);
3019eac3 17504 bfd *abfd = objfile->obfd;
342587c4 17505 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17506 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17507 struct dwarf2_section_info *str_offsets_section =
17508 &reader->dwo_file->sections.str_offsets;
d521ce57 17509 const gdb_byte *info_ptr;
3019eac3 17510 ULONGEST str_offset;
57d63ce2 17511 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17512
73869dc2
DE
17513 dwarf2_read_section (objfile, str_section);
17514 dwarf2_read_section (objfile, str_offsets_section);
17515 if (str_section->buffer == NULL)
57d63ce2 17516 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17517 " in CU at offset 0x%x [in module %s]"),
17518 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17519 if (str_offsets_section->buffer == NULL)
57d63ce2 17520 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17521 " in CU at offset 0x%x [in module %s]"),
17522 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17523 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17524 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17525 " section in CU at offset 0x%x [in module %s]"),
17526 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17527 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17528 + str_index * cu->header.offset_size);
17529 if (cu->header.offset_size == 4)
17530 str_offset = bfd_get_32 (abfd, info_ptr);
17531 else
17532 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17533 if (str_offset >= str_section->size)
57d63ce2 17534 error (_("Offset from %s pointing outside of"
9c541725
PA
17535 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17536 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17537 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17538}
17539
3019eac3
DE
17540/* Return the length of an LEB128 number in BUF. */
17541
17542static int
17543leb128_size (const gdb_byte *buf)
17544{
17545 const gdb_byte *begin = buf;
17546 gdb_byte byte;
17547
17548 while (1)
17549 {
17550 byte = *buf++;
17551 if ((byte & 128) == 0)
17552 return buf - begin;
17553 }
17554}
17555
c906108c 17556static void
e142c38c 17557set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17558{
17559 switch (lang)
17560 {
17561 case DW_LANG_C89:
76bee0cc 17562 case DW_LANG_C99:
0cfd832f 17563 case DW_LANG_C11:
c906108c 17564 case DW_LANG_C:
d1be3247 17565 case DW_LANG_UPC:
e142c38c 17566 cu->language = language_c;
c906108c 17567 break;
9c37b5ae 17568 case DW_LANG_Java:
c906108c 17569 case DW_LANG_C_plus_plus:
0cfd832f
MW
17570 case DW_LANG_C_plus_plus_11:
17571 case DW_LANG_C_plus_plus_14:
e142c38c 17572 cu->language = language_cplus;
c906108c 17573 break;
6aecb9c2
JB
17574 case DW_LANG_D:
17575 cu->language = language_d;
17576 break;
c906108c
SS
17577 case DW_LANG_Fortran77:
17578 case DW_LANG_Fortran90:
b21b22e0 17579 case DW_LANG_Fortran95:
f7de9aab
MW
17580 case DW_LANG_Fortran03:
17581 case DW_LANG_Fortran08:
e142c38c 17582 cu->language = language_fortran;
c906108c 17583 break;
a766d390
DE
17584 case DW_LANG_Go:
17585 cu->language = language_go;
17586 break;
c906108c 17587 case DW_LANG_Mips_Assembler:
e142c38c 17588 cu->language = language_asm;
c906108c
SS
17589 break;
17590 case DW_LANG_Ada83:
8aaf0b47 17591 case DW_LANG_Ada95:
bc5f45f8
JB
17592 cu->language = language_ada;
17593 break;
72019c9c
GM
17594 case DW_LANG_Modula2:
17595 cu->language = language_m2;
17596 break;
fe8e67fd
PM
17597 case DW_LANG_Pascal83:
17598 cu->language = language_pascal;
17599 break;
22566fbd
DJ
17600 case DW_LANG_ObjC:
17601 cu->language = language_objc;
17602 break;
c44af4eb
TT
17603 case DW_LANG_Rust:
17604 case DW_LANG_Rust_old:
17605 cu->language = language_rust;
17606 break;
c906108c
SS
17607 case DW_LANG_Cobol74:
17608 case DW_LANG_Cobol85:
c906108c 17609 default:
e142c38c 17610 cu->language = language_minimal;
c906108c
SS
17611 break;
17612 }
e142c38c 17613 cu->language_defn = language_def (cu->language);
c906108c
SS
17614}
17615
17616/* Return the named attribute or NULL if not there. */
17617
17618static struct attribute *
e142c38c 17619dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17620{
a48e046c 17621 for (;;)
c906108c 17622 {
a48e046c
TT
17623 unsigned int i;
17624 struct attribute *spec = NULL;
17625
17626 for (i = 0; i < die->num_attrs; ++i)
17627 {
17628 if (die->attrs[i].name == name)
17629 return &die->attrs[i];
17630 if (die->attrs[i].name == DW_AT_specification
17631 || die->attrs[i].name == DW_AT_abstract_origin)
17632 spec = &die->attrs[i];
17633 }
17634
17635 if (!spec)
17636 break;
c906108c 17637
f2f0e013 17638 die = follow_die_ref (die, spec, &cu);
f2f0e013 17639 }
c5aa993b 17640
c906108c
SS
17641 return NULL;
17642}
17643
348e048f
DE
17644/* Return the named attribute or NULL if not there,
17645 but do not follow DW_AT_specification, etc.
17646 This is for use in contexts where we're reading .debug_types dies.
17647 Following DW_AT_specification, DW_AT_abstract_origin will take us
17648 back up the chain, and we want to go down. */
17649
17650static struct attribute *
45e58e77 17651dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17652{
17653 unsigned int i;
17654
17655 for (i = 0; i < die->num_attrs; ++i)
17656 if (die->attrs[i].name == name)
17657 return &die->attrs[i];
17658
17659 return NULL;
17660}
17661
7d45c7c3
KB
17662/* Return the string associated with a string-typed attribute, or NULL if it
17663 is either not found or is of an incorrect type. */
17664
17665static const char *
17666dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17667{
17668 struct attribute *attr;
17669 const char *str = NULL;
17670
17671 attr = dwarf2_attr (die, name, cu);
17672
17673 if (attr != NULL)
17674 {
43988095 17675 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
17676 || attr->form == DW_FORM_string
17677 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 17678 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17679 str = DW_STRING (attr);
17680 else
17681 complaint (&symfile_complaints,
17682 _("string type expected for attribute %s for "
17683 "DIE at 0x%x in module %s"),
9c541725 17684 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17685 objfile_name (cu->objfile));
17686 }
17687
17688 return str;
17689}
17690
05cf31d1
JB
17691/* Return non-zero iff the attribute NAME is defined for the given DIE,
17692 and holds a non-zero value. This function should only be used for
2dc7f7b3 17693 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17694
17695static int
17696dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17697{
17698 struct attribute *attr = dwarf2_attr (die, name, cu);
17699
17700 return (attr && DW_UNSND (attr));
17701}
17702
3ca72b44 17703static int
e142c38c 17704die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17705{
05cf31d1
JB
17706 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17707 which value is non-zero. However, we have to be careful with
17708 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17709 (via dwarf2_flag_true_p) follows this attribute. So we may
17710 end up accidently finding a declaration attribute that belongs
17711 to a different DIE referenced by the specification attribute,
17712 even though the given DIE does not have a declaration attribute. */
17713 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17714 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17715}
17716
63d06c5c 17717/* Return the die giving the specification for DIE, if there is
f2f0e013 17718 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17719 containing the return value on output. If there is no
17720 specification, but there is an abstract origin, that is
17721 returned. */
63d06c5c
DC
17722
17723static struct die_info *
f2f0e013 17724die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17725{
f2f0e013
DJ
17726 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17727 *spec_cu);
63d06c5c 17728
edb3359d
DJ
17729 if (spec_attr == NULL)
17730 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17731
63d06c5c
DC
17732 if (spec_attr == NULL)
17733 return NULL;
17734 else
f2f0e013 17735 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17736}
c906108c 17737
527f3840
JK
17738/* Stub for free_line_header to match void * callback types. */
17739
17740static void
17741free_line_header_voidp (void *arg)
17742{
9a3c8263 17743 struct line_header *lh = (struct line_header *) arg;
527f3840 17744
fff8551c 17745 delete lh;
527f3840
JK
17746}
17747
fff8551c
PA
17748void
17749line_header::add_include_dir (const char *include_dir)
c906108c 17750{
27e0867f 17751 if (dwarf_line_debug >= 2)
fff8551c
PA
17752 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17753 include_dirs.size () + 1, include_dir);
27e0867f 17754
fff8551c 17755 include_dirs.push_back (include_dir);
debd256d 17756}
6e70227d 17757
fff8551c
PA
17758void
17759line_header::add_file_name (const char *name,
ecfb656c 17760 dir_index d_index,
fff8551c
PA
17761 unsigned int mod_time,
17762 unsigned int length)
debd256d 17763{
27e0867f
DE
17764 if (dwarf_line_debug >= 2)
17765 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17766 (unsigned) file_names.size () + 1, name);
27e0867f 17767
ecfb656c 17768 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17769}
6e70227d 17770
83769d0b 17771/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17772
17773static struct dwarf2_section_info *
17774get_debug_line_section (struct dwarf2_cu *cu)
17775{
17776 struct dwarf2_section_info *section;
17777
17778 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17779 DWO file. */
17780 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17781 section = &cu->dwo_unit->dwo_file->sections.line;
17782 else if (cu->per_cu->is_dwz)
17783 {
17784 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17785
17786 section = &dwz->line;
17787 }
17788 else
17789 section = &dwarf2_per_objfile->line;
17790
17791 return section;
17792}
17793
43988095
JK
17794/* Read directory or file name entry format, starting with byte of
17795 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17796 entries count and the entries themselves in the described entry
17797 format. */
17798
17799static void
17800read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17801 struct line_header *lh,
17802 const struct comp_unit_head *cu_header,
17803 void (*callback) (struct line_header *lh,
17804 const char *name,
ecfb656c 17805 dir_index d_index,
43988095
JK
17806 unsigned int mod_time,
17807 unsigned int length))
17808{
17809 gdb_byte format_count, formati;
17810 ULONGEST data_count, datai;
17811 const gdb_byte *buf = *bufp;
17812 const gdb_byte *format_header_data;
17813 int i;
17814 unsigned int bytes_read;
17815
17816 format_count = read_1_byte (abfd, buf);
17817 buf += 1;
17818 format_header_data = buf;
17819 for (formati = 0; formati < format_count; formati++)
17820 {
17821 read_unsigned_leb128 (abfd, buf, &bytes_read);
17822 buf += bytes_read;
17823 read_unsigned_leb128 (abfd, buf, &bytes_read);
17824 buf += bytes_read;
17825 }
17826
17827 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17828 buf += bytes_read;
17829 for (datai = 0; datai < data_count; datai++)
17830 {
17831 const gdb_byte *format = format_header_data;
17832 struct file_entry fe;
17833
43988095
JK
17834 for (formati = 0; formati < format_count; formati++)
17835 {
ecfb656c 17836 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17837 format += bytes_read;
43988095 17838
ecfb656c 17839 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17840 format += bytes_read;
ecfb656c
PA
17841
17842 gdb::optional<const char *> string;
17843 gdb::optional<unsigned int> uint;
17844
43988095
JK
17845 switch (form)
17846 {
17847 case DW_FORM_string:
ecfb656c 17848 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17849 buf += bytes_read;
17850 break;
17851
17852 case DW_FORM_line_strp:
ecfb656c
PA
17853 string.emplace (read_indirect_line_string (abfd, buf,
17854 cu_header,
17855 &bytes_read));
43988095
JK
17856 buf += bytes_read;
17857 break;
17858
17859 case DW_FORM_data1:
ecfb656c 17860 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17861 buf += 1;
17862 break;
17863
17864 case DW_FORM_data2:
ecfb656c 17865 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17866 buf += 2;
17867 break;
17868
17869 case DW_FORM_data4:
ecfb656c 17870 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17871 buf += 4;
17872 break;
17873
17874 case DW_FORM_data8:
ecfb656c 17875 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17876 buf += 8;
17877 break;
17878
17879 case DW_FORM_udata:
ecfb656c 17880 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17881 buf += bytes_read;
17882 break;
17883
17884 case DW_FORM_block:
17885 /* It is valid only for DW_LNCT_timestamp which is ignored by
17886 current GDB. */
17887 break;
17888 }
ecfb656c
PA
17889
17890 switch (content_type)
17891 {
17892 case DW_LNCT_path:
17893 if (string.has_value ())
17894 fe.name = *string;
17895 break;
17896 case DW_LNCT_directory_index:
17897 if (uint.has_value ())
17898 fe.d_index = (dir_index) *uint;
17899 break;
17900 case DW_LNCT_timestamp:
17901 if (uint.has_value ())
17902 fe.mod_time = *uint;
17903 break;
17904 case DW_LNCT_size:
17905 if (uint.has_value ())
17906 fe.length = *uint;
17907 break;
17908 case DW_LNCT_MD5:
17909 break;
17910 default:
17911 complaint (&symfile_complaints,
17912 _("Unknown format content type %s"),
17913 pulongest (content_type));
17914 }
43988095
JK
17915 }
17916
ecfb656c 17917 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17918 }
17919
17920 *bufp = buf;
17921}
17922
debd256d 17923/* Read the statement program header starting at OFFSET in
3019eac3 17924 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17925 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17926 Returns NULL if there is a problem reading the header, e.g., if it
17927 has a version we don't understand.
debd256d
JB
17928
17929 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17930 the returned object point into the dwarf line section buffer,
17931 and must not be freed. */
ae2de4f8 17932
fff8551c 17933static line_header_up
9c541725 17934dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17935{
d521ce57 17936 const gdb_byte *line_ptr;
c764a876 17937 unsigned int bytes_read, offset_size;
debd256d 17938 int i;
d521ce57 17939 const char *cur_dir, *cur_file;
3019eac3
DE
17940 struct dwarf2_section_info *section;
17941 bfd *abfd;
17942
36586728 17943 section = get_debug_line_section (cu);
3019eac3
DE
17944 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17945 if (section->buffer == NULL)
debd256d 17946 {
3019eac3
DE
17947 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17948 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17949 else
17950 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17951 return 0;
17952 }
17953
fceca515
DE
17954 /* We can't do this until we know the section is non-empty.
17955 Only then do we know we have such a section. */
a32a8923 17956 abfd = get_section_bfd_owner (section);
fceca515 17957
a738430d
MK
17958 /* Make sure that at least there's room for the total_length field.
17959 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 17960 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 17961 {
4d3c2250 17962 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17963 return 0;
17964 }
17965
fff8551c 17966 line_header_up lh (new line_header ());
debd256d 17967
9c541725 17968 lh->sect_off = sect_off;
527f3840
JK
17969 lh->offset_in_dwz = cu->per_cu->is_dwz;
17970
9c541725 17971 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 17972
a738430d 17973 /* Read in the header. */
6e70227d 17974 lh->total_length =
c764a876
DE
17975 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17976 &bytes_read, &offset_size);
debd256d 17977 line_ptr += bytes_read;
3019eac3 17978 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17979 {
4d3c2250 17980 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17981 return 0;
17982 }
17983 lh->statement_program_end = line_ptr + lh->total_length;
17984 lh->version = read_2_bytes (abfd, line_ptr);
17985 line_ptr += 2;
43988095 17986 if (lh->version > 5)
cd366ee8
DE
17987 {
17988 /* This is a version we don't understand. The format could have
17989 changed in ways we don't handle properly so just punt. */
17990 complaint (&symfile_complaints,
17991 _("unsupported version in .debug_line section"));
17992 return NULL;
17993 }
43988095
JK
17994 if (lh->version >= 5)
17995 {
17996 gdb_byte segment_selector_size;
17997
17998 /* Skip address size. */
17999 read_1_byte (abfd, line_ptr);
18000 line_ptr += 1;
18001
18002 segment_selector_size = read_1_byte (abfd, line_ptr);
18003 line_ptr += 1;
18004 if (segment_selector_size != 0)
18005 {
18006 complaint (&symfile_complaints,
18007 _("unsupported segment selector size %u "
18008 "in .debug_line section"),
18009 segment_selector_size);
18010 return NULL;
18011 }
18012 }
c764a876
DE
18013 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18014 line_ptr += offset_size;
debd256d
JB
18015 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18016 line_ptr += 1;
2dc7f7b3
TT
18017 if (lh->version >= 4)
18018 {
18019 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18020 line_ptr += 1;
18021 }
18022 else
18023 lh->maximum_ops_per_instruction = 1;
18024
18025 if (lh->maximum_ops_per_instruction == 0)
18026 {
18027 lh->maximum_ops_per_instruction = 1;
18028 complaint (&symfile_complaints,
3e43a32a
MS
18029 _("invalid maximum_ops_per_instruction "
18030 "in `.debug_line' section"));
2dc7f7b3
TT
18031 }
18032
debd256d
JB
18033 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18034 line_ptr += 1;
18035 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18036 line_ptr += 1;
18037 lh->line_range = read_1_byte (abfd, line_ptr);
18038 line_ptr += 1;
18039 lh->opcode_base = read_1_byte (abfd, line_ptr);
18040 line_ptr += 1;
fff8551c 18041 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
18042
18043 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18044 for (i = 1; i < lh->opcode_base; ++i)
18045 {
18046 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18047 line_ptr += 1;
18048 }
18049
43988095 18050 if (lh->version >= 5)
debd256d 18051 {
43988095 18052 /* Read directory table. */
fff8551c
PA
18053 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18054 [] (struct line_header *lh, const char *name,
ecfb656c 18055 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18056 unsigned int length)
18057 {
18058 lh->add_include_dir (name);
18059 });
debd256d 18060
43988095 18061 /* Read file name table. */
fff8551c
PA
18062 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18063 [] (struct line_header *lh, const char *name,
ecfb656c 18064 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18065 unsigned int length)
18066 {
ecfb656c 18067 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18068 });
43988095
JK
18069 }
18070 else
debd256d 18071 {
43988095
JK
18072 /* Read directory table. */
18073 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18074 {
18075 line_ptr += bytes_read;
fff8551c 18076 lh->add_include_dir (cur_dir);
43988095 18077 }
debd256d
JB
18078 line_ptr += bytes_read;
18079
43988095
JK
18080 /* Read file name table. */
18081 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18082 {
ecfb656c
PA
18083 unsigned int mod_time, length;
18084 dir_index d_index;
43988095
JK
18085
18086 line_ptr += bytes_read;
ecfb656c 18087 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18088 line_ptr += bytes_read;
18089 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18090 line_ptr += bytes_read;
18091 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18092 line_ptr += bytes_read;
18093
ecfb656c 18094 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18095 }
18096 line_ptr += bytes_read;
debd256d 18097 }
6e70227d 18098 lh->statement_program_start = line_ptr;
debd256d 18099
3019eac3 18100 if (line_ptr > (section->buffer + section->size))
4d3c2250 18101 complaint (&symfile_complaints,
3e43a32a
MS
18102 _("line number info header doesn't "
18103 "fit in `.debug_line' section"));
debd256d 18104
debd256d
JB
18105 return lh;
18106}
c906108c 18107
c6da4cef
DE
18108/* Subroutine of dwarf_decode_lines to simplify it.
18109 Return the file name of the psymtab for included file FILE_INDEX
18110 in line header LH of PST.
18111 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18112 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18113 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18114
18115 The function creates dangling cleanup registration. */
c6da4cef 18116
d521ce57 18117static const char *
c6da4cef
DE
18118psymtab_include_file_name (const struct line_header *lh, int file_index,
18119 const struct partial_symtab *pst,
18120 const char *comp_dir)
18121{
8c43009f 18122 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18123 const char *include_name = fe.name;
18124 const char *include_name_to_compare = include_name;
72b9f47f
TT
18125 const char *pst_filename;
18126 char *copied_name = NULL;
c6da4cef
DE
18127 int file_is_pst;
18128
8c43009f 18129 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18130
18131 if (!IS_ABSOLUTE_PATH (include_name)
18132 && (dir_name != NULL || comp_dir != NULL))
18133 {
18134 /* Avoid creating a duplicate psymtab for PST.
18135 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18136 Before we do the comparison, however, we need to account
18137 for DIR_NAME and COMP_DIR.
18138 First prepend dir_name (if non-NULL). If we still don't
18139 have an absolute path prepend comp_dir (if non-NULL).
18140 However, the directory we record in the include-file's
18141 psymtab does not contain COMP_DIR (to match the
18142 corresponding symtab(s)).
18143
18144 Example:
18145
18146 bash$ cd /tmp
18147 bash$ gcc -g ./hello.c
18148 include_name = "hello.c"
18149 dir_name = "."
18150 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18151 DW_AT_name = "./hello.c"
18152
18153 */
c6da4cef
DE
18154
18155 if (dir_name != NULL)
18156 {
d521ce57
TT
18157 char *tem = concat (dir_name, SLASH_STRING,
18158 include_name, (char *)NULL);
18159
18160 make_cleanup (xfree, tem);
18161 include_name = tem;
c6da4cef 18162 include_name_to_compare = include_name;
c6da4cef
DE
18163 }
18164 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18165 {
d521ce57
TT
18166 char *tem = concat (comp_dir, SLASH_STRING,
18167 include_name, (char *)NULL);
18168
18169 make_cleanup (xfree, tem);
18170 include_name_to_compare = tem;
c6da4cef
DE
18171 }
18172 }
18173
18174 pst_filename = pst->filename;
18175 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18176 {
72b9f47f
TT
18177 copied_name = concat (pst->dirname, SLASH_STRING,
18178 pst_filename, (char *)NULL);
18179 pst_filename = copied_name;
c6da4cef
DE
18180 }
18181
1e3fad37 18182 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18183
72b9f47f
TT
18184 if (copied_name != NULL)
18185 xfree (copied_name);
c6da4cef
DE
18186
18187 if (file_is_pst)
18188 return NULL;
18189 return include_name;
18190}
18191
d9b3de22
DE
18192/* State machine to track the state of the line number program. */
18193
6f77053d 18194class lnp_state_machine
d9b3de22 18195{
6f77053d
PA
18196public:
18197 /* Initialize a machine state for the start of a line number
18198 program. */
18199 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18200
8c43009f
PA
18201 file_entry *current_file ()
18202 {
18203 /* lh->file_names is 0-based, but the file name numbers in the
18204 statement program are 1-based. */
6f77053d
PA
18205 return m_line_header->file_name_at (m_file);
18206 }
18207
18208 /* Record the line in the state machine. END_SEQUENCE is true if
18209 we're processing the end of a sequence. */
18210 void record_line (bool end_sequence);
18211
18212 /* Check address and if invalid nop-out the rest of the lines in this
18213 sequence. */
18214 void check_line_address (struct dwarf2_cu *cu,
18215 const gdb_byte *line_ptr,
18216 CORE_ADDR lowpc, CORE_ADDR address);
18217
18218 void handle_set_discriminator (unsigned int discriminator)
18219 {
18220 m_discriminator = discriminator;
18221 m_line_has_non_zero_discriminator |= discriminator != 0;
18222 }
18223
18224 /* Handle DW_LNE_set_address. */
18225 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18226 {
18227 m_op_index = 0;
18228 address += baseaddr;
18229 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18230 }
18231
18232 /* Handle DW_LNS_advance_pc. */
18233 void handle_advance_pc (CORE_ADDR adjust);
18234
18235 /* Handle a special opcode. */
18236 void handle_special_opcode (unsigned char op_code);
18237
18238 /* Handle DW_LNS_advance_line. */
18239 void handle_advance_line (int line_delta)
18240 {
18241 advance_line (line_delta);
18242 }
18243
18244 /* Handle DW_LNS_set_file. */
18245 void handle_set_file (file_name_index file);
18246
18247 /* Handle DW_LNS_negate_stmt. */
18248 void handle_negate_stmt ()
18249 {
18250 m_is_stmt = !m_is_stmt;
18251 }
18252
18253 /* Handle DW_LNS_const_add_pc. */
18254 void handle_const_add_pc ();
18255
18256 /* Handle DW_LNS_fixed_advance_pc. */
18257 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18258 {
18259 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18260 m_op_index = 0;
18261 }
18262
18263 /* Handle DW_LNS_copy. */
18264 void handle_copy ()
18265 {
18266 record_line (false);
18267 m_discriminator = 0;
18268 }
18269
18270 /* Handle DW_LNE_end_sequence. */
18271 void handle_end_sequence ()
18272 {
18273 m_record_line_callback = ::record_line;
18274 }
18275
18276private:
18277 /* Advance the line by LINE_DELTA. */
18278 void advance_line (int line_delta)
18279 {
18280 m_line += line_delta;
18281
18282 if (line_delta != 0)
18283 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18284 }
18285
6f77053d
PA
18286 gdbarch *m_gdbarch;
18287
18288 /* True if we're recording lines.
18289 Otherwise we're building partial symtabs and are just interested in
18290 finding include files mentioned by the line number program. */
18291 bool m_record_lines_p;
18292
8c43009f 18293 /* The line number header. */
6f77053d 18294 line_header *m_line_header;
8c43009f 18295
6f77053d
PA
18296 /* These are part of the standard DWARF line number state machine,
18297 and initialized according to the DWARF spec. */
d9b3de22 18298
6f77053d 18299 unsigned char m_op_index = 0;
8c43009f 18300 /* The line table index (1-based) of the current file. */
6f77053d
PA
18301 file_name_index m_file = (file_name_index) 1;
18302 unsigned int m_line = 1;
18303
18304 /* These are initialized in the constructor. */
18305
18306 CORE_ADDR m_address;
18307 bool m_is_stmt;
18308 unsigned int m_discriminator;
d9b3de22
DE
18309
18310 /* Additional bits of state we need to track. */
18311
18312 /* The last file that we called dwarf2_start_subfile for.
18313 This is only used for TLLs. */
6f77053d 18314 unsigned int m_last_file = 0;
d9b3de22 18315 /* The last file a line number was recorded for. */
6f77053d 18316 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18317
18318 /* The function to call to record a line. */
6f77053d 18319 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18320
18321 /* The last line number that was recorded, used to coalesce
18322 consecutive entries for the same line. This can happen, for
18323 example, when discriminators are present. PR 17276. */
6f77053d
PA
18324 unsigned int m_last_line = 0;
18325 bool m_line_has_non_zero_discriminator = false;
8c43009f 18326};
d9b3de22 18327
6f77053d
PA
18328void
18329lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18330{
18331 CORE_ADDR addr_adj = (((m_op_index + adjust)
18332 / m_line_header->maximum_ops_per_instruction)
18333 * m_line_header->minimum_instruction_length);
18334 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18335 m_op_index = ((m_op_index + adjust)
18336 % m_line_header->maximum_ops_per_instruction);
18337}
d9b3de22 18338
6f77053d
PA
18339void
18340lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18341{
6f77053d
PA
18342 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18343 CORE_ADDR addr_adj = (((m_op_index
18344 + (adj_opcode / m_line_header->line_range))
18345 / m_line_header->maximum_ops_per_instruction)
18346 * m_line_header->minimum_instruction_length);
18347 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18348 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18349 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18350
6f77053d
PA
18351 int line_delta = (m_line_header->line_base
18352 + (adj_opcode % m_line_header->line_range));
18353 advance_line (line_delta);
18354 record_line (false);
18355 m_discriminator = 0;
18356}
d9b3de22 18357
6f77053d
PA
18358void
18359lnp_state_machine::handle_set_file (file_name_index file)
18360{
18361 m_file = file;
18362
18363 const file_entry *fe = current_file ();
18364 if (fe == NULL)
18365 dwarf2_debug_line_missing_file_complaint ();
18366 else if (m_record_lines_p)
18367 {
18368 const char *dir = fe->include_dir (m_line_header);
18369
18370 m_last_subfile = current_subfile;
18371 m_line_has_non_zero_discriminator = m_discriminator != 0;
18372 dwarf2_start_subfile (fe->name, dir);
18373 }
18374}
18375
18376void
18377lnp_state_machine::handle_const_add_pc ()
18378{
18379 CORE_ADDR adjust
18380 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18381
18382 CORE_ADDR addr_adj
18383 = (((m_op_index + adjust)
18384 / m_line_header->maximum_ops_per_instruction)
18385 * m_line_header->minimum_instruction_length);
18386
18387 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18388 m_op_index = ((m_op_index + adjust)
18389 % m_line_header->maximum_ops_per_instruction);
18390}
d9b3de22 18391
c91513d8
PP
18392/* Ignore this record_line request. */
18393
18394static void
18395noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18396{
18397 return;
18398}
18399
a05a36a5
DE
18400/* Return non-zero if we should add LINE to the line number table.
18401 LINE is the line to add, LAST_LINE is the last line that was added,
18402 LAST_SUBFILE is the subfile for LAST_LINE.
18403 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18404 had a non-zero discriminator.
18405
18406 We have to be careful in the presence of discriminators.
18407 E.g., for this line:
18408
18409 for (i = 0; i < 100000; i++);
18410
18411 clang can emit four line number entries for that one line,
18412 each with a different discriminator.
18413 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18414
18415 However, we want gdb to coalesce all four entries into one.
18416 Otherwise the user could stepi into the middle of the line and
18417 gdb would get confused about whether the pc really was in the
18418 middle of the line.
18419
18420 Things are further complicated by the fact that two consecutive
18421 line number entries for the same line is a heuristic used by gcc
18422 to denote the end of the prologue. So we can't just discard duplicate
18423 entries, we have to be selective about it. The heuristic we use is
18424 that we only collapse consecutive entries for the same line if at least
18425 one of those entries has a non-zero discriminator. PR 17276.
18426
18427 Note: Addresses in the line number state machine can never go backwards
18428 within one sequence, thus this coalescing is ok. */
18429
18430static int
18431dwarf_record_line_p (unsigned int line, unsigned int last_line,
18432 int line_has_non_zero_discriminator,
18433 struct subfile *last_subfile)
18434{
18435 if (current_subfile != last_subfile)
18436 return 1;
18437 if (line != last_line)
18438 return 1;
18439 /* Same line for the same file that we've seen already.
18440 As a last check, for pr 17276, only record the line if the line
18441 has never had a non-zero discriminator. */
18442 if (!line_has_non_zero_discriminator)
18443 return 1;
18444 return 0;
18445}
18446
252a6764
DE
18447/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18448 in the line table of subfile SUBFILE. */
18449
18450static void
d9b3de22
DE
18451dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18452 unsigned int line, CORE_ADDR address,
18453 record_line_ftype p_record_line)
252a6764
DE
18454{
18455 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18456
27e0867f
DE
18457 if (dwarf_line_debug)
18458 {
18459 fprintf_unfiltered (gdb_stdlog,
18460 "Recording line %u, file %s, address %s\n",
18461 line, lbasename (subfile->name),
18462 paddress (gdbarch, address));
18463 }
18464
d5962de5 18465 (*p_record_line) (subfile, line, addr);
252a6764
DE
18466}
18467
18468/* Subroutine of dwarf_decode_lines_1 to simplify it.
18469 Mark the end of a set of line number records.
d9b3de22 18470 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18471 If SUBFILE is NULL the request is ignored. */
18472
18473static void
18474dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18475 CORE_ADDR address, record_line_ftype p_record_line)
18476{
27e0867f
DE
18477 if (subfile == NULL)
18478 return;
18479
18480 if (dwarf_line_debug)
18481 {
18482 fprintf_unfiltered (gdb_stdlog,
18483 "Finishing current line, file %s, address %s\n",
18484 lbasename (subfile->name),
18485 paddress (gdbarch, address));
18486 }
18487
d9b3de22
DE
18488 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18489}
18490
6f77053d
PA
18491void
18492lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18493{
d9b3de22
DE
18494 if (dwarf_line_debug)
18495 {
18496 fprintf_unfiltered (gdb_stdlog,
18497 "Processing actual line %u: file %u,"
18498 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18499 m_line, to_underlying (m_file),
18500 paddress (m_gdbarch, m_address),
18501 m_is_stmt, m_discriminator);
d9b3de22
DE
18502 }
18503
6f77053d 18504 file_entry *fe = current_file ();
8c43009f
PA
18505
18506 if (fe == NULL)
d9b3de22
DE
18507 dwarf2_debug_line_missing_file_complaint ();
18508 /* For now we ignore lines not starting on an instruction boundary.
18509 But not when processing end_sequence for compatibility with the
18510 previous version of the code. */
6f77053d 18511 else if (m_op_index == 0 || end_sequence)
d9b3de22 18512 {
8c43009f 18513 fe->included_p = 1;
6f77053d 18514 if (m_record_lines_p && m_is_stmt)
d9b3de22 18515 {
6f77053d 18516 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18517 {
6f77053d
PA
18518 dwarf_finish_line (m_gdbarch, m_last_subfile,
18519 m_address, m_record_line_callback);
d9b3de22
DE
18520 }
18521
18522 if (!end_sequence)
18523 {
6f77053d
PA
18524 if (dwarf_record_line_p (m_line, m_last_line,
18525 m_line_has_non_zero_discriminator,
18526 m_last_subfile))
d9b3de22 18527 {
6f77053d
PA
18528 dwarf_record_line_1 (m_gdbarch, current_subfile,
18529 m_line, m_address,
18530 m_record_line_callback);
d9b3de22 18531 }
6f77053d
PA
18532 m_last_subfile = current_subfile;
18533 m_last_line = m_line;
d9b3de22
DE
18534 }
18535 }
18536 }
18537}
18538
6f77053d
PA
18539lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18540 bool record_lines_p)
d9b3de22 18541{
6f77053d
PA
18542 m_gdbarch = arch;
18543 m_record_lines_p = record_lines_p;
18544 m_line_header = lh;
d9b3de22 18545
6f77053d 18546 m_record_line_callback = ::record_line;
d9b3de22 18547
d9b3de22
DE
18548 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18549 was a line entry for it so that the backend has a chance to adjust it
18550 and also record it in case it needs it. This is currently used by MIPS
18551 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18552 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18553 m_is_stmt = lh->default_is_stmt;
18554 m_discriminator = 0;
252a6764
DE
18555}
18556
6f77053d
PA
18557void
18558lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18559 const gdb_byte *line_ptr,
18560 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18561{
18562 /* If address < lowpc then it's not a usable value, it's outside the
18563 pc range of the CU. However, we restrict the test to only address
18564 values of zero to preserve GDB's previous behaviour which is to
18565 handle the specific case of a function being GC'd by the linker. */
18566
18567 if (address == 0 && address < lowpc)
18568 {
18569 /* This line table is for a function which has been
18570 GCd by the linker. Ignore it. PR gdb/12528 */
18571
18572 struct objfile *objfile = cu->objfile;
18573 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18574
18575 complaint (&symfile_complaints,
18576 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18577 line_offset, objfile_name (objfile));
6f77053d
PA
18578 m_record_line_callback = noop_record_line;
18579 /* Note: record_line_callback is left as noop_record_line until
18580 we see DW_LNE_end_sequence. */
924c2928
DE
18581 }
18582}
18583
f3f5162e 18584/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18585 Process the line number information in LH.
18586 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18587 program in order to set included_p for every referenced header. */
debd256d 18588
c906108c 18589static void
43f3e411
DE
18590dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18591 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18592{
d521ce57
TT
18593 const gdb_byte *line_ptr, *extended_end;
18594 const gdb_byte *line_end;
a8c50c1f 18595 unsigned int bytes_read, extended_len;
699ca60a 18596 unsigned char op_code, extended_op;
e142c38c
DJ
18597 CORE_ADDR baseaddr;
18598 struct objfile *objfile = cu->objfile;
f3f5162e 18599 bfd *abfd = objfile->obfd;
fbf65064 18600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18601 /* True if we're recording line info (as opposed to building partial
18602 symtabs and just interested in finding include files mentioned by
18603 the line number program). */
18604 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18605
18606 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18607
debd256d
JB
18608 line_ptr = lh->statement_program_start;
18609 line_end = lh->statement_program_end;
c906108c
SS
18610
18611 /* Read the statement sequences until there's nothing left. */
18612 while (line_ptr < line_end)
18613 {
6f77053d
PA
18614 /* The DWARF line number program state machine. Reset the state
18615 machine at the start of each sequence. */
18616 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18617 bool end_sequence = false;
d9b3de22 18618
8c43009f 18619 if (record_lines_p)
c906108c 18620 {
8c43009f
PA
18621 /* Start a subfile for the current file of the state
18622 machine. */
18623 const file_entry *fe = state_machine.current_file ();
18624
18625 if (fe != NULL)
18626 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18627 }
18628
a738430d 18629 /* Decode the table. */
d9b3de22 18630 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18631 {
18632 op_code = read_1_byte (abfd, line_ptr);
18633 line_ptr += 1;
9aa1fe7e 18634
debd256d 18635 if (op_code >= lh->opcode_base)
6e70227d 18636 {
8e07a239 18637 /* Special opcode. */
6f77053d 18638 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18639 }
18640 else switch (op_code)
c906108c
SS
18641 {
18642 case DW_LNS_extended_op:
3e43a32a
MS
18643 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18644 &bytes_read);
473b7be6 18645 line_ptr += bytes_read;
a8c50c1f 18646 extended_end = line_ptr + extended_len;
c906108c
SS
18647 extended_op = read_1_byte (abfd, line_ptr);
18648 line_ptr += 1;
18649 switch (extended_op)
18650 {
18651 case DW_LNE_end_sequence:
6f77053d
PA
18652 state_machine.handle_end_sequence ();
18653 end_sequence = true;
c906108c
SS
18654 break;
18655 case DW_LNE_set_address:
d9b3de22
DE
18656 {
18657 CORE_ADDR address
18658 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18659 line_ptr += bytes_read;
6f77053d
PA
18660
18661 state_machine.check_line_address (cu, line_ptr,
18662 lowpc, address);
18663 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18664 }
c906108c
SS
18665 break;
18666 case DW_LNE_define_file:
debd256d 18667 {
d521ce57 18668 const char *cur_file;
ecfb656c
PA
18669 unsigned int mod_time, length;
18670 dir_index dindex;
6e70227d 18671
3e43a32a
MS
18672 cur_file = read_direct_string (abfd, line_ptr,
18673 &bytes_read);
debd256d 18674 line_ptr += bytes_read;
ecfb656c 18675 dindex = (dir_index)
debd256d
JB
18676 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18677 line_ptr += bytes_read;
18678 mod_time =
18679 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18680 line_ptr += bytes_read;
18681 length =
18682 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18683 line_ptr += bytes_read;
ecfb656c 18684 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18685 }
c906108c 18686 break;
d0c6ba3d 18687 case DW_LNE_set_discriminator:
6f77053d
PA
18688 {
18689 /* The discriminator is not interesting to the
18690 debugger; just ignore it. We still need to
18691 check its value though:
18692 if there are consecutive entries for the same
18693 (non-prologue) line we want to coalesce them.
18694 PR 17276. */
18695 unsigned int discr
18696 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18697 line_ptr += bytes_read;
18698
18699 state_machine.handle_set_discriminator (discr);
18700 }
d0c6ba3d 18701 break;
c906108c 18702 default:
4d3c2250 18703 complaint (&symfile_complaints,
e2e0b3e5 18704 _("mangled .debug_line section"));
debd256d 18705 return;
c906108c 18706 }
a8c50c1f
DJ
18707 /* Make sure that we parsed the extended op correctly. If e.g.
18708 we expected a different address size than the producer used,
18709 we may have read the wrong number of bytes. */
18710 if (line_ptr != extended_end)
18711 {
18712 complaint (&symfile_complaints,
18713 _("mangled .debug_line section"));
18714 return;
18715 }
c906108c
SS
18716 break;
18717 case DW_LNS_copy:
6f77053d 18718 state_machine.handle_copy ();
c906108c
SS
18719 break;
18720 case DW_LNS_advance_pc:
2dc7f7b3
TT
18721 {
18722 CORE_ADDR adjust
18723 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18724 line_ptr += bytes_read;
6f77053d
PA
18725
18726 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18727 }
c906108c
SS
18728 break;
18729 case DW_LNS_advance_line:
a05a36a5
DE
18730 {
18731 int line_delta
18732 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18733 line_ptr += bytes_read;
6f77053d
PA
18734
18735 state_machine.handle_advance_line (line_delta);
a05a36a5 18736 }
c906108c
SS
18737 break;
18738 case DW_LNS_set_file:
d9b3de22 18739 {
6f77053d 18740 file_name_index file
ecfb656c
PA
18741 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18742 &bytes_read);
d9b3de22 18743 line_ptr += bytes_read;
8c43009f 18744
6f77053d 18745 state_machine.handle_set_file (file);
d9b3de22 18746 }
c906108c
SS
18747 break;
18748 case DW_LNS_set_column:
0ad93d4f 18749 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18750 line_ptr += bytes_read;
18751 break;
18752 case DW_LNS_negate_stmt:
6f77053d 18753 state_machine.handle_negate_stmt ();
c906108c
SS
18754 break;
18755 case DW_LNS_set_basic_block:
c906108c 18756 break;
c2c6d25f
JM
18757 /* Add to the address register of the state machine the
18758 address increment value corresponding to special opcode
a738430d
MK
18759 255. I.e., this value is scaled by the minimum
18760 instruction length since special opcode 255 would have
b021a221 18761 scaled the increment. */
c906108c 18762 case DW_LNS_const_add_pc:
6f77053d 18763 state_machine.handle_const_add_pc ();
c906108c
SS
18764 break;
18765 case DW_LNS_fixed_advance_pc:
3e29f34a 18766 {
6f77053d 18767 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18768 line_ptr += 2;
6f77053d
PA
18769
18770 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18771 }
c906108c 18772 break;
9aa1fe7e 18773 default:
a738430d
MK
18774 {
18775 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18776 int i;
a738430d 18777
debd256d 18778 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18779 {
18780 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18781 line_ptr += bytes_read;
18782 }
18783 }
c906108c
SS
18784 }
18785 }
d9b3de22
DE
18786
18787 if (!end_sequence)
18788 dwarf2_debug_line_missing_end_sequence_complaint ();
18789
18790 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18791 in which case we still finish recording the last line). */
6f77053d 18792 state_machine.record_line (true);
c906108c 18793 }
f3f5162e
DE
18794}
18795
18796/* Decode the Line Number Program (LNP) for the given line_header
18797 structure and CU. The actual information extracted and the type
18798 of structures created from the LNP depends on the value of PST.
18799
18800 1. If PST is NULL, then this procedure uses the data from the program
18801 to create all necessary symbol tables, and their linetables.
18802
18803 2. If PST is not NULL, this procedure reads the program to determine
18804 the list of files included by the unit represented by PST, and
18805 builds all the associated partial symbol tables.
18806
18807 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18808 It is used for relative paths in the line table.
18809 NOTE: When processing partial symtabs (pst != NULL),
18810 comp_dir == pst->dirname.
18811
18812 NOTE: It is important that psymtabs have the same file name (via strcmp)
18813 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18814 symtab we don't use it in the name of the psymtabs we create.
18815 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18816 A good testcase for this is mb-inline.exp.
18817
527f3840
JK
18818 LOWPC is the lowest address in CU (or 0 if not known).
18819
18820 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18821 for its PC<->lines mapping information. Otherwise only the filename
18822 table is read in. */
f3f5162e
DE
18823
18824static void
18825dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18826 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18827 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18828{
18829 struct objfile *objfile = cu->objfile;
18830 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18831
527f3840
JK
18832 if (decode_mapping)
18833 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18834
18835 if (decode_for_pst_p)
18836 {
18837 int file_index;
18838
18839 /* Now that we're done scanning the Line Header Program, we can
18840 create the psymtab of each included file. */
fff8551c 18841 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18842 if (lh->file_names[file_index].included_p == 1)
18843 {
d521ce57 18844 const char *include_name =
c6da4cef
DE
18845 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18846 if (include_name != NULL)
aaa75496
JB
18847 dwarf2_create_include_psymtab (include_name, pst, objfile);
18848 }
18849 }
cb1df416
DJ
18850 else
18851 {
18852 /* Make sure a symtab is created for every file, even files
18853 which contain only variables (i.e. no code with associated
18854 line numbers). */
43f3e411 18855 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18856 int i;
cb1df416 18857
fff8551c 18858 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18859 {
8c43009f 18860 file_entry &fe = lh->file_names[i];
9a619af0 18861
8c43009f 18862 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18863
cb1df416 18864 if (current_subfile->symtab == NULL)
43f3e411
DE
18865 {
18866 current_subfile->symtab
18867 = allocate_symtab (cust, current_subfile->name);
18868 }
8c43009f 18869 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18870 }
18871 }
c906108c
SS
18872}
18873
18874/* Start a subfile for DWARF. FILENAME is the name of the file and
18875 DIRNAME the name of the source directory which contains FILENAME
4d663531 18876 or NULL if not known.
c906108c
SS
18877 This routine tries to keep line numbers from identical absolute and
18878 relative file names in a common subfile.
18879
18880 Using the `list' example from the GDB testsuite, which resides in
18881 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18882 of /srcdir/list0.c yields the following debugging information for list0.c:
18883
c5aa993b 18884 DW_AT_name: /srcdir/list0.c
4d663531 18885 DW_AT_comp_dir: /compdir
357e46e7 18886 files.files[0].name: list0.h
c5aa993b 18887 files.files[0].dir: /srcdir
357e46e7 18888 files.files[1].name: list0.c
c5aa993b 18889 files.files[1].dir: /srcdir
c906108c
SS
18890
18891 The line number information for list0.c has to end up in a single
4f1520fb
FR
18892 subfile, so that `break /srcdir/list0.c:1' works as expected.
18893 start_subfile will ensure that this happens provided that we pass the
18894 concatenation of files.files[1].dir and files.files[1].name as the
18895 subfile's name. */
c906108c
SS
18896
18897static void
4d663531 18898dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18899{
d521ce57 18900 char *copy = NULL;
4f1520fb 18901
4d663531 18902 /* In order not to lose the line information directory,
4f1520fb
FR
18903 we concatenate it to the filename when it makes sense.
18904 Note that the Dwarf3 standard says (speaking of filenames in line
18905 information): ``The directory index is ignored for file names
18906 that represent full path names''. Thus ignoring dirname in the
18907 `else' branch below isn't an issue. */
c906108c 18908
d5166ae1 18909 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18910 {
18911 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18912 filename = copy;
18913 }
c906108c 18914
4d663531 18915 start_subfile (filename);
4f1520fb 18916
d521ce57
TT
18917 if (copy != NULL)
18918 xfree (copy);
c906108c
SS
18919}
18920
f4dc4d17
DE
18921/* Start a symtab for DWARF.
18922 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18923
43f3e411 18924static struct compunit_symtab *
f4dc4d17 18925dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18926 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18927{
43f3e411
DE
18928 struct compunit_symtab *cust
18929 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18930
f4dc4d17
DE
18931 record_debugformat ("DWARF 2");
18932 record_producer (cu->producer);
18933
18934 /* We assume that we're processing GCC output. */
18935 processing_gcc_compilation = 2;
18936
4d4ec4e5 18937 cu->processing_has_namespace_info = 0;
43f3e411
DE
18938
18939 return cust;
f4dc4d17
DE
18940}
18941
4c2df51b
DJ
18942static void
18943var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18944 struct dwarf2_cu *cu)
4c2df51b 18945{
e7c27a73
DJ
18946 struct objfile *objfile = cu->objfile;
18947 struct comp_unit_head *cu_header = &cu->header;
18948
4c2df51b
DJ
18949 /* NOTE drow/2003-01-30: There used to be a comment and some special
18950 code here to turn a symbol with DW_AT_external and a
18951 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18952 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18953 with some versions of binutils) where shared libraries could have
18954 relocations against symbols in their debug information - the
18955 minimal symbol would have the right address, but the debug info
18956 would not. It's no longer necessary, because we will explicitly
18957 apply relocations when we read in the debug information now. */
18958
18959 /* A DW_AT_location attribute with no contents indicates that a
18960 variable has been optimized away. */
18961 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18962 {
f1e6e072 18963 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18964 return;
18965 }
18966
18967 /* Handle one degenerate form of location expression specially, to
18968 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18969 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18970 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18971
18972 if (attr_form_is_block (attr)
3019eac3
DE
18973 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18974 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18975 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18976 && (DW_BLOCK (attr)->size
18977 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18978 {
891d2f0b 18979 unsigned int dummy;
4c2df51b 18980
3019eac3
DE
18981 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18982 SYMBOL_VALUE_ADDRESS (sym) =
18983 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18984 else
18985 SYMBOL_VALUE_ADDRESS (sym) =
18986 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18987 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18988 fixup_symbol_section (sym, objfile);
18989 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18990 SYMBOL_SECTION (sym));
4c2df51b
DJ
18991 return;
18992 }
18993
18994 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18995 expression evaluator, and use LOC_COMPUTED only when necessary
18996 (i.e. when the value of a register or memory location is
18997 referenced, or a thread-local block, etc.). Then again, it might
18998 not be worthwhile. I'm assuming that it isn't unless performance
18999 or memory numbers show me otherwise. */
19000
f1e6e072 19001 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 19002
f1e6e072 19003 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 19004 cu->has_loclist = 1;
4c2df51b
DJ
19005}
19006
c906108c
SS
19007/* Given a pointer to a DWARF information entry, figure out if we need
19008 to make a symbol table entry for it, and if so, create a new entry
19009 and return a pointer to it.
19010 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
19011 used the passed type.
19012 If SPACE is not NULL, use it to hold the new symbol. If it is
19013 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
19014
19015static struct symbol *
34eaf542
TT
19016new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19017 struct symbol *space)
c906108c 19018{
e7c27a73 19019 struct objfile *objfile = cu->objfile;
3e29f34a 19020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 19021 struct symbol *sym = NULL;
15d034d0 19022 const char *name;
c906108c
SS
19023 struct attribute *attr = NULL;
19024 struct attribute *attr2 = NULL;
e142c38c 19025 CORE_ADDR baseaddr;
e37fd15a
SW
19026 struct pending **list_to_add = NULL;
19027
edb3359d 19028 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
19029
19030 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 19031
94af9270 19032 name = dwarf2_name (die, cu);
c906108c
SS
19033 if (name)
19034 {
94af9270 19035 const char *linkagename;
34eaf542 19036 int suppress_add = 0;
94af9270 19037
34eaf542
TT
19038 if (space)
19039 sym = space;
19040 else
e623cf5d 19041 sym = allocate_symbol (objfile);
c906108c 19042 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
19043
19044 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 19045 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
19046 linkagename = dwarf2_physname (name, die, cu);
19047 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 19048
f55ee35c
JK
19049 /* Fortran does not have mangling standard and the mangling does differ
19050 between gfortran, iFort etc. */
19051 if (cu->language == language_fortran
b250c185 19052 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19053 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19054 dwarf2_full_name (name, die, cu),
29df156d 19055 NULL);
f55ee35c 19056
c906108c 19057 /* Default assumptions.
c5aa993b 19058 Use the passed type or decode it from the die. */
176620f1 19059 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19060 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19061 if (type != NULL)
19062 SYMBOL_TYPE (sym) = type;
19063 else
e7c27a73 19064 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19065 attr = dwarf2_attr (die,
19066 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19067 cu);
c906108c
SS
19068 if (attr)
19069 {
19070 SYMBOL_LINE (sym) = DW_UNSND (attr);
19071 }
cb1df416 19072
edb3359d
DJ
19073 attr = dwarf2_attr (die,
19074 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19075 cu);
cb1df416
DJ
19076 if (attr)
19077 {
ecfb656c 19078 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19079 struct file_entry *fe;
9a619af0 19080
ecfb656c
PA
19081 if (cu->line_header != NULL)
19082 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19083 else
19084 fe = NULL;
19085
19086 if (fe == NULL)
cb1df416
DJ
19087 complaint (&symfile_complaints,
19088 _("file index out of range"));
8c43009f
PA
19089 else
19090 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19091 }
19092
c906108c
SS
19093 switch (die->tag)
19094 {
19095 case DW_TAG_label:
e142c38c 19096 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19097 if (attr)
3e29f34a
MR
19098 {
19099 CORE_ADDR addr;
19100
19101 addr = attr_value_as_address (attr);
19102 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19103 SYMBOL_VALUE_ADDRESS (sym) = addr;
19104 }
0f5238ed
TT
19105 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19106 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19107 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19108 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19109 break;
19110 case DW_TAG_subprogram:
19111 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19112 finish_block. */
f1e6e072 19113 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19114 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19115 if ((attr2 && (DW_UNSND (attr2) != 0))
19116 || cu->language == language_ada)
c906108c 19117 {
2cfa0c8d
JB
19118 /* Subprograms marked external are stored as a global symbol.
19119 Ada subprograms, whether marked external or not, are always
19120 stored as a global symbol, because we want to be able to
19121 access them globally. For instance, we want to be able
19122 to break on a nested subprogram without having to
19123 specify the context. */
e37fd15a 19124 list_to_add = &global_symbols;
c906108c
SS
19125 }
19126 else
19127 {
e37fd15a 19128 list_to_add = cu->list_in_scope;
c906108c
SS
19129 }
19130 break;
edb3359d
DJ
19131 case DW_TAG_inlined_subroutine:
19132 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19133 finish_block. */
f1e6e072 19134 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19135 SYMBOL_INLINED (sym) = 1;
481860b3 19136 list_to_add = cu->list_in_scope;
edb3359d 19137 break;
34eaf542
TT
19138 case DW_TAG_template_value_param:
19139 suppress_add = 1;
19140 /* Fall through. */
72929c62 19141 case DW_TAG_constant:
c906108c 19142 case DW_TAG_variable:
254e6b9e 19143 case DW_TAG_member:
0963b4bd
MS
19144 /* Compilation with minimal debug info may result in
19145 variables with missing type entries. Change the
19146 misleading `void' type to something sensible. */
c906108c 19147 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 19148 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 19149
e142c38c 19150 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19151 /* In the case of DW_TAG_member, we should only be called for
19152 static const members. */
19153 if (die->tag == DW_TAG_member)
19154 {
3863f96c
DE
19155 /* dwarf2_add_field uses die_is_declaration,
19156 so we do the same. */
254e6b9e
DE
19157 gdb_assert (die_is_declaration (die, cu));
19158 gdb_assert (attr);
19159 }
c906108c
SS
19160 if (attr)
19161 {
e7c27a73 19162 dwarf2_const_value (attr, sym, cu);
e142c38c 19163 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19164 if (!suppress_add)
34eaf542
TT
19165 {
19166 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19167 list_to_add = &global_symbols;
34eaf542 19168 else
e37fd15a 19169 list_to_add = cu->list_in_scope;
34eaf542 19170 }
c906108c
SS
19171 break;
19172 }
e142c38c 19173 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19174 if (attr)
19175 {
e7c27a73 19176 var_decode_location (attr, sym, cu);
e142c38c 19177 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19178
19179 /* Fortran explicitly imports any global symbols to the local
19180 scope by DW_TAG_common_block. */
19181 if (cu->language == language_fortran && die->parent
19182 && die->parent->tag == DW_TAG_common_block)
19183 attr2 = NULL;
19184
caac4577
JG
19185 if (SYMBOL_CLASS (sym) == LOC_STATIC
19186 && SYMBOL_VALUE_ADDRESS (sym) == 0
19187 && !dwarf2_per_objfile->has_section_at_zero)
19188 {
19189 /* When a static variable is eliminated by the linker,
19190 the corresponding debug information is not stripped
19191 out, but the variable address is set to null;
19192 do not add such variables into symbol table. */
19193 }
19194 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19195 {
f55ee35c
JK
19196 /* Workaround gfortran PR debug/40040 - it uses
19197 DW_AT_location for variables in -fPIC libraries which may
19198 get overriden by other libraries/executable and get
19199 a different address. Resolve it by the minimal symbol
19200 which may come from inferior's executable using copy
19201 relocation. Make this workaround only for gfortran as for
19202 other compilers GDB cannot guess the minimal symbol
19203 Fortran mangling kind. */
19204 if (cu->language == language_fortran && die->parent
19205 && die->parent->tag == DW_TAG_module
19206 && cu->producer
28586665 19207 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19208 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19209
1c809c68
TT
19210 /* A variable with DW_AT_external is never static,
19211 but it may be block-scoped. */
19212 list_to_add = (cu->list_in_scope == &file_symbols
19213 ? &global_symbols : cu->list_in_scope);
1c809c68 19214 }
c906108c 19215 else
e37fd15a 19216 list_to_add = cu->list_in_scope;
c906108c
SS
19217 }
19218 else
19219 {
19220 /* We do not know the address of this symbol.
c5aa993b
JM
19221 If it is an external symbol and we have type information
19222 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19223 The address of the variable will then be determined from
19224 the minimal symbol table whenever the variable is
19225 referenced. */
e142c38c 19226 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19227
19228 /* Fortran explicitly imports any global symbols to the local
19229 scope by DW_TAG_common_block. */
19230 if (cu->language == language_fortran && die->parent
19231 && die->parent->tag == DW_TAG_common_block)
19232 {
19233 /* SYMBOL_CLASS doesn't matter here because
19234 read_common_block is going to reset it. */
19235 if (!suppress_add)
19236 list_to_add = cu->list_in_scope;
19237 }
19238 else if (attr2 && (DW_UNSND (attr2) != 0)
19239 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19240 {
0fe7935b
DJ
19241 /* A variable with DW_AT_external is never static, but it
19242 may be block-scoped. */
19243 list_to_add = (cu->list_in_scope == &file_symbols
19244 ? &global_symbols : cu->list_in_scope);
19245
f1e6e072 19246 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19247 }
442ddf59
JK
19248 else if (!die_is_declaration (die, cu))
19249 {
19250 /* Use the default LOC_OPTIMIZED_OUT class. */
19251 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19252 if (!suppress_add)
19253 list_to_add = cu->list_in_scope;
442ddf59 19254 }
c906108c
SS
19255 }
19256 break;
19257 case DW_TAG_formal_parameter:
edb3359d
DJ
19258 /* If we are inside a function, mark this as an argument. If
19259 not, we might be looking at an argument to an inlined function
19260 when we do not have enough information to show inlined frames;
19261 pretend it's a local variable in that case so that the user can
19262 still see it. */
19263 if (context_stack_depth > 0
19264 && context_stack[context_stack_depth - 1].name != NULL)
19265 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19266 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19267 if (attr)
19268 {
e7c27a73 19269 var_decode_location (attr, sym, cu);
c906108c 19270 }
e142c38c 19271 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19272 if (attr)
19273 {
e7c27a73 19274 dwarf2_const_value (attr, sym, cu);
c906108c 19275 }
f346a30d 19276
e37fd15a 19277 list_to_add = cu->list_in_scope;
c906108c
SS
19278 break;
19279 case DW_TAG_unspecified_parameters:
19280 /* From varargs functions; gdb doesn't seem to have any
19281 interest in this information, so just ignore it for now.
19282 (FIXME?) */
19283 break;
34eaf542
TT
19284 case DW_TAG_template_type_param:
19285 suppress_add = 1;
19286 /* Fall through. */
c906108c 19287 case DW_TAG_class_type:
680b30c7 19288 case DW_TAG_interface_type:
c906108c
SS
19289 case DW_TAG_structure_type:
19290 case DW_TAG_union_type:
72019c9c 19291 case DW_TAG_set_type:
c906108c 19292 case DW_TAG_enumeration_type:
f1e6e072 19293 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19294 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19295
63d06c5c 19296 {
9c37b5ae 19297 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19298 really ever be static objects: otherwise, if you try
19299 to, say, break of a class's method and you're in a file
19300 which doesn't mention that class, it won't work unless
19301 the check for all static symbols in lookup_symbol_aux
19302 saves you. See the OtherFileClass tests in
19303 gdb.c++/namespace.exp. */
19304
e37fd15a 19305 if (!suppress_add)
34eaf542 19306 {
34eaf542 19307 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19308 && cu->language == language_cplus
34eaf542 19309 ? &global_symbols : cu->list_in_scope);
63d06c5c 19310
64382290 19311 /* The semantics of C++ state that "struct foo {
9c37b5ae 19312 ... }" also defines a typedef for "foo". */
64382290 19313 if (cu->language == language_cplus
45280282 19314 || cu->language == language_ada
c44af4eb
TT
19315 || cu->language == language_d
19316 || cu->language == language_rust)
64382290
TT
19317 {
19318 /* The symbol's name is already allocated along
19319 with this objfile, so we don't need to
19320 duplicate it for the type. */
19321 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19322 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19323 }
63d06c5c
DC
19324 }
19325 }
c906108c
SS
19326 break;
19327 case DW_TAG_typedef:
f1e6e072 19328 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19329 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19330 list_to_add = cu->list_in_scope;
63d06c5c 19331 break;
c906108c 19332 case DW_TAG_base_type:
a02abb62 19333 case DW_TAG_subrange_type:
f1e6e072 19334 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19335 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19336 list_to_add = cu->list_in_scope;
c906108c
SS
19337 break;
19338 case DW_TAG_enumerator:
e142c38c 19339 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19340 if (attr)
19341 {
e7c27a73 19342 dwarf2_const_value (attr, sym, cu);
c906108c 19343 }
63d06c5c
DC
19344 {
19345 /* NOTE: carlton/2003-11-10: See comment above in the
19346 DW_TAG_class_type, etc. block. */
19347
e142c38c 19348 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19349 && cu->language == language_cplus
e142c38c 19350 ? &global_symbols : cu->list_in_scope);
63d06c5c 19351 }
c906108c 19352 break;
74921315 19353 case DW_TAG_imported_declaration:
5c4e30ca 19354 case DW_TAG_namespace:
f1e6e072 19355 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19356 list_to_add = &global_symbols;
5c4e30ca 19357 break;
530e8392
KB
19358 case DW_TAG_module:
19359 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19360 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19361 list_to_add = &global_symbols;
19362 break;
4357ac6c 19363 case DW_TAG_common_block:
f1e6e072 19364 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19365 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19366 add_symbol_to_list (sym, cu->list_in_scope);
19367 break;
c906108c
SS
19368 default:
19369 /* Not a tag we recognize. Hopefully we aren't processing
19370 trash data, but since we must specifically ignore things
19371 we don't recognize, there is nothing else we should do at
0963b4bd 19372 this point. */
e2e0b3e5 19373 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19374 dwarf_tag_name (die->tag));
c906108c
SS
19375 break;
19376 }
df8a16a1 19377
e37fd15a
SW
19378 if (suppress_add)
19379 {
19380 sym->hash_next = objfile->template_symbols;
19381 objfile->template_symbols = sym;
19382 list_to_add = NULL;
19383 }
19384
19385 if (list_to_add != NULL)
19386 add_symbol_to_list (sym, list_to_add);
19387
df8a16a1
DJ
19388 /* For the benefit of old versions of GCC, check for anonymous
19389 namespaces based on the demangled name. */
4d4ec4e5 19390 if (!cu->processing_has_namespace_info
94af9270 19391 && cu->language == language_cplus)
a10964d1 19392 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19393 }
19394 return (sym);
19395}
19396
34eaf542
TT
19397/* A wrapper for new_symbol_full that always allocates a new symbol. */
19398
19399static struct symbol *
19400new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19401{
19402 return new_symbol_full (die, type, cu, NULL);
19403}
19404
98bfdba5
PA
19405/* Given an attr with a DW_FORM_dataN value in host byte order,
19406 zero-extend it as appropriate for the symbol's type. The DWARF
19407 standard (v4) is not entirely clear about the meaning of using
19408 DW_FORM_dataN for a constant with a signed type, where the type is
19409 wider than the data. The conclusion of a discussion on the DWARF
19410 list was that this is unspecified. We choose to always zero-extend
19411 because that is the interpretation long in use by GCC. */
c906108c 19412
98bfdba5 19413static gdb_byte *
ff39bb5e 19414dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19415 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19416{
e7c27a73 19417 struct objfile *objfile = cu->objfile;
e17a4113
UW
19418 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19419 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19420 LONGEST l = DW_UNSND (attr);
19421
19422 if (bits < sizeof (*value) * 8)
19423 {
19424 l &= ((LONGEST) 1 << bits) - 1;
19425 *value = l;
19426 }
19427 else if (bits == sizeof (*value) * 8)
19428 *value = l;
19429 else
19430 {
224c3ddb 19431 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19432 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19433 return bytes;
19434 }
19435
19436 return NULL;
19437}
19438
19439/* Read a constant value from an attribute. Either set *VALUE, or if
19440 the value does not fit in *VALUE, set *BYTES - either already
19441 allocated on the objfile obstack, or newly allocated on OBSTACK,
19442 or, set *BATON, if we translated the constant to a location
19443 expression. */
19444
19445static void
ff39bb5e 19446dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19447 const char *name, struct obstack *obstack,
19448 struct dwarf2_cu *cu,
d521ce57 19449 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19450 struct dwarf2_locexpr_baton **baton)
19451{
19452 struct objfile *objfile = cu->objfile;
19453 struct comp_unit_head *cu_header = &cu->header;
c906108c 19454 struct dwarf_block *blk;
98bfdba5
PA
19455 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19456 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19457
19458 *value = 0;
19459 *bytes = NULL;
19460 *baton = NULL;
c906108c
SS
19461
19462 switch (attr->form)
19463 {
19464 case DW_FORM_addr:
3019eac3 19465 case DW_FORM_GNU_addr_index:
ac56253d 19466 {
ac56253d
TT
19467 gdb_byte *data;
19468
98bfdba5
PA
19469 if (TYPE_LENGTH (type) != cu_header->addr_size)
19470 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19471 cu_header->addr_size,
98bfdba5 19472 TYPE_LENGTH (type));
ac56253d
TT
19473 /* Symbols of this form are reasonably rare, so we just
19474 piggyback on the existing location code rather than writing
19475 a new implementation of symbol_computed_ops. */
8d749320 19476 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19477 (*baton)->per_cu = cu->per_cu;
19478 gdb_assert ((*baton)->per_cu);
ac56253d 19479
98bfdba5 19480 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19481 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19482 (*baton)->data = data;
ac56253d
TT
19483
19484 data[0] = DW_OP_addr;
19485 store_unsigned_integer (&data[1], cu_header->addr_size,
19486 byte_order, DW_ADDR (attr));
19487 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19488 }
c906108c 19489 break;
4ac36638 19490 case DW_FORM_string:
93b5768b 19491 case DW_FORM_strp:
3019eac3 19492 case DW_FORM_GNU_str_index:
36586728 19493 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19494 /* DW_STRING is already allocated on the objfile obstack, point
19495 directly to it. */
d521ce57 19496 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19497 break;
c906108c
SS
19498 case DW_FORM_block1:
19499 case DW_FORM_block2:
19500 case DW_FORM_block4:
19501 case DW_FORM_block:
2dc7f7b3 19502 case DW_FORM_exprloc:
0224619f 19503 case DW_FORM_data16:
c906108c 19504 blk = DW_BLOCK (attr);
98bfdba5
PA
19505 if (TYPE_LENGTH (type) != blk->size)
19506 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19507 TYPE_LENGTH (type));
19508 *bytes = blk->data;
c906108c 19509 break;
2df3850c
JM
19510
19511 /* The DW_AT_const_value attributes are supposed to carry the
19512 symbol's value "represented as it would be on the target
19513 architecture." By the time we get here, it's already been
19514 converted to host endianness, so we just need to sign- or
19515 zero-extend it as appropriate. */
19516 case DW_FORM_data1:
3aef2284 19517 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19518 break;
c906108c 19519 case DW_FORM_data2:
3aef2284 19520 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19521 break;
c906108c 19522 case DW_FORM_data4:
3aef2284 19523 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19524 break;
c906108c 19525 case DW_FORM_data8:
3aef2284 19526 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19527 break;
19528
c906108c 19529 case DW_FORM_sdata:
663c44ac 19530 case DW_FORM_implicit_const:
98bfdba5 19531 *value = DW_SND (attr);
2df3850c
JM
19532 break;
19533
c906108c 19534 case DW_FORM_udata:
98bfdba5 19535 *value = DW_UNSND (attr);
c906108c 19536 break;
2df3850c 19537
c906108c 19538 default:
4d3c2250 19539 complaint (&symfile_complaints,
e2e0b3e5 19540 _("unsupported const value attribute form: '%s'"),
4d3c2250 19541 dwarf_form_name (attr->form));
98bfdba5 19542 *value = 0;
c906108c
SS
19543 break;
19544 }
19545}
19546
2df3850c 19547
98bfdba5
PA
19548/* Copy constant value from an attribute to a symbol. */
19549
2df3850c 19550static void
ff39bb5e 19551dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19552 struct dwarf2_cu *cu)
2df3850c 19553{
98bfdba5 19554 struct objfile *objfile = cu->objfile;
12df843f 19555 LONGEST value;
d521ce57 19556 const gdb_byte *bytes;
98bfdba5 19557 struct dwarf2_locexpr_baton *baton;
2df3850c 19558
98bfdba5
PA
19559 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19560 SYMBOL_PRINT_NAME (sym),
19561 &objfile->objfile_obstack, cu,
19562 &value, &bytes, &baton);
2df3850c 19563
98bfdba5
PA
19564 if (baton != NULL)
19565 {
98bfdba5 19566 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19567 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19568 }
19569 else if (bytes != NULL)
19570 {
19571 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19572 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19573 }
19574 else
19575 {
19576 SYMBOL_VALUE (sym) = value;
f1e6e072 19577 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19578 }
2df3850c
JM
19579}
19580
c906108c
SS
19581/* Return the type of the die in question using its DW_AT_type attribute. */
19582
19583static struct type *
e7c27a73 19584die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19585{
c906108c 19586 struct attribute *type_attr;
c906108c 19587
e142c38c 19588 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19589 if (!type_attr)
19590 {
19591 /* A missing DW_AT_type represents a void type. */
46bf5051 19592 return objfile_type (cu->objfile)->builtin_void;
c906108c 19593 }
348e048f 19594
673bfd45 19595 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19596}
19597
b4ba55a1
JB
19598/* True iff CU's producer generates GNAT Ada auxiliary information
19599 that allows to find parallel types through that information instead
19600 of having to do expensive parallel lookups by type name. */
19601
19602static int
19603need_gnat_info (struct dwarf2_cu *cu)
19604{
19605 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19606 of GNAT produces this auxiliary information, without any indication
19607 that it is produced. Part of enhancing the FSF version of GNAT
19608 to produce that information will be to put in place an indicator
19609 that we can use in order to determine whether the descriptive type
19610 info is available or not. One suggestion that has been made is
19611 to use a new attribute, attached to the CU die. For now, assume
19612 that the descriptive type info is not available. */
19613 return 0;
19614}
19615
b4ba55a1
JB
19616/* Return the auxiliary type of the die in question using its
19617 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19618 attribute is not present. */
19619
19620static struct type *
19621die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19622{
b4ba55a1 19623 struct attribute *type_attr;
b4ba55a1
JB
19624
19625 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19626 if (!type_attr)
19627 return NULL;
19628
673bfd45 19629 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19630}
19631
19632/* If DIE has a descriptive_type attribute, then set the TYPE's
19633 descriptive type accordingly. */
19634
19635static void
19636set_descriptive_type (struct type *type, struct die_info *die,
19637 struct dwarf2_cu *cu)
19638{
19639 struct type *descriptive_type = die_descriptive_type (die, cu);
19640
19641 if (descriptive_type)
19642 {
19643 ALLOCATE_GNAT_AUX_TYPE (type);
19644 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19645 }
19646}
19647
c906108c
SS
19648/* Return the containing type of the die in question using its
19649 DW_AT_containing_type attribute. */
19650
19651static struct type *
e7c27a73 19652die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19653{
c906108c 19654 struct attribute *type_attr;
c906108c 19655
e142c38c 19656 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19657 if (!type_attr)
19658 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19659 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19660
673bfd45 19661 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19662}
19663
ac9ec31b
DE
19664/* Return an error marker type to use for the ill formed type in DIE/CU. */
19665
19666static struct type *
19667build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19668{
19669 struct objfile *objfile = dwarf2_per_objfile->objfile;
19670 char *message, *saved;
19671
19672 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19673 objfile_name (objfile),
9c541725
PA
19674 to_underlying (cu->header.sect_off),
19675 to_underlying (die->sect_off));
224c3ddb
SM
19676 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19677 message, strlen (message));
ac9ec31b
DE
19678 xfree (message);
19679
19f392bc 19680 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19681}
19682
673bfd45 19683/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19684 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19685 DW_AT_containing_type.
673bfd45
DE
19686 If there is no type substitute an error marker. */
19687
c906108c 19688static struct type *
ff39bb5e 19689lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19690 struct dwarf2_cu *cu)
c906108c 19691{
bb5ed363 19692 struct objfile *objfile = cu->objfile;
f792889a
DJ
19693 struct type *this_type;
19694
ac9ec31b
DE
19695 gdb_assert (attr->name == DW_AT_type
19696 || attr->name == DW_AT_GNAT_descriptive_type
19697 || attr->name == DW_AT_containing_type);
19698
673bfd45
DE
19699 /* First see if we have it cached. */
19700
36586728
TT
19701 if (attr->form == DW_FORM_GNU_ref_alt)
19702 {
19703 struct dwarf2_per_cu_data *per_cu;
9c541725 19704 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19705
9c541725
PA
19706 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19707 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19708 }
7771576e 19709 else if (attr_form_is_ref (attr))
673bfd45 19710 {
9c541725 19711 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19712
9c541725 19713 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19714 }
55f1336d 19715 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19716 {
ac9ec31b 19717 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19718
ac9ec31b 19719 return get_signatured_type (die, signature, cu);
673bfd45
DE
19720 }
19721 else
19722 {
ac9ec31b
DE
19723 complaint (&symfile_complaints,
19724 _("Dwarf Error: Bad type attribute %s in DIE"
19725 " at 0x%x [in module %s]"),
9c541725 19726 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19727 objfile_name (objfile));
ac9ec31b 19728 return build_error_marker_type (cu, die);
673bfd45
DE
19729 }
19730
19731 /* If not cached we need to read it in. */
19732
19733 if (this_type == NULL)
19734 {
ac9ec31b 19735 struct die_info *type_die = NULL;
673bfd45
DE
19736 struct dwarf2_cu *type_cu = cu;
19737
7771576e 19738 if (attr_form_is_ref (attr))
ac9ec31b
DE
19739 type_die = follow_die_ref (die, attr, &type_cu);
19740 if (type_die == NULL)
19741 return build_error_marker_type (cu, die);
19742 /* If we find the type now, it's probably because the type came
3019eac3
DE
19743 from an inter-CU reference and the type's CU got expanded before
19744 ours. */
ac9ec31b 19745 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19746 }
19747
19748 /* If we still don't have a type use an error marker. */
19749
19750 if (this_type == NULL)
ac9ec31b 19751 return build_error_marker_type (cu, die);
673bfd45 19752
f792889a 19753 return this_type;
c906108c
SS
19754}
19755
673bfd45
DE
19756/* Return the type in DIE, CU.
19757 Returns NULL for invalid types.
19758
02142a6c 19759 This first does a lookup in die_type_hash,
673bfd45
DE
19760 and only reads the die in if necessary.
19761
19762 NOTE: This can be called when reading in partial or full symbols. */
19763
f792889a 19764static struct type *
e7c27a73 19765read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19766{
f792889a
DJ
19767 struct type *this_type;
19768
19769 this_type = get_die_type (die, cu);
19770 if (this_type)
19771 return this_type;
19772
673bfd45
DE
19773 return read_type_die_1 (die, cu);
19774}
19775
19776/* Read the type in DIE, CU.
19777 Returns NULL for invalid types. */
19778
19779static struct type *
19780read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19781{
19782 struct type *this_type = NULL;
19783
c906108c
SS
19784 switch (die->tag)
19785 {
19786 case DW_TAG_class_type:
680b30c7 19787 case DW_TAG_interface_type:
c906108c
SS
19788 case DW_TAG_structure_type:
19789 case DW_TAG_union_type:
f792889a 19790 this_type = read_structure_type (die, cu);
c906108c
SS
19791 break;
19792 case DW_TAG_enumeration_type:
f792889a 19793 this_type = read_enumeration_type (die, cu);
c906108c
SS
19794 break;
19795 case DW_TAG_subprogram:
19796 case DW_TAG_subroutine_type:
edb3359d 19797 case DW_TAG_inlined_subroutine:
f792889a 19798 this_type = read_subroutine_type (die, cu);
c906108c
SS
19799 break;
19800 case DW_TAG_array_type:
f792889a 19801 this_type = read_array_type (die, cu);
c906108c 19802 break;
72019c9c 19803 case DW_TAG_set_type:
f792889a 19804 this_type = read_set_type (die, cu);
72019c9c 19805 break;
c906108c 19806 case DW_TAG_pointer_type:
f792889a 19807 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19808 break;
19809 case DW_TAG_ptr_to_member_type:
f792889a 19810 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19811 break;
19812 case DW_TAG_reference_type:
4297a3f0
AV
19813 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19814 break;
19815 case DW_TAG_rvalue_reference_type:
19816 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19817 break;
19818 case DW_TAG_const_type:
f792889a 19819 this_type = read_tag_const_type (die, cu);
c906108c
SS
19820 break;
19821 case DW_TAG_volatile_type:
f792889a 19822 this_type = read_tag_volatile_type (die, cu);
c906108c 19823 break;
06d66ee9
TT
19824 case DW_TAG_restrict_type:
19825 this_type = read_tag_restrict_type (die, cu);
19826 break;
c906108c 19827 case DW_TAG_string_type:
f792889a 19828 this_type = read_tag_string_type (die, cu);
c906108c
SS
19829 break;
19830 case DW_TAG_typedef:
f792889a 19831 this_type = read_typedef (die, cu);
c906108c 19832 break;
a02abb62 19833 case DW_TAG_subrange_type:
f792889a 19834 this_type = read_subrange_type (die, cu);
a02abb62 19835 break;
c906108c 19836 case DW_TAG_base_type:
f792889a 19837 this_type = read_base_type (die, cu);
c906108c 19838 break;
81a17f79 19839 case DW_TAG_unspecified_type:
f792889a 19840 this_type = read_unspecified_type (die, cu);
81a17f79 19841 break;
0114d602
DJ
19842 case DW_TAG_namespace:
19843 this_type = read_namespace_type (die, cu);
19844 break;
f55ee35c
JK
19845 case DW_TAG_module:
19846 this_type = read_module_type (die, cu);
19847 break;
a2c2acaf
MW
19848 case DW_TAG_atomic_type:
19849 this_type = read_tag_atomic_type (die, cu);
19850 break;
c906108c 19851 default:
3e43a32a
MS
19852 complaint (&symfile_complaints,
19853 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19854 dwarf_tag_name (die->tag));
c906108c
SS
19855 break;
19856 }
63d06c5c 19857
f792889a 19858 return this_type;
63d06c5c
DC
19859}
19860
abc72ce4
DE
19861/* See if we can figure out if the class lives in a namespace. We do
19862 this by looking for a member function; its demangled name will
19863 contain namespace info, if there is any.
19864 Return the computed name or NULL.
19865 Space for the result is allocated on the objfile's obstack.
19866 This is the full-die version of guess_partial_die_structure_name.
19867 In this case we know DIE has no useful parent. */
19868
19869static char *
19870guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19871{
19872 struct die_info *spec_die;
19873 struct dwarf2_cu *spec_cu;
19874 struct die_info *child;
19875
19876 spec_cu = cu;
19877 spec_die = die_specification (die, &spec_cu);
19878 if (spec_die != NULL)
19879 {
19880 die = spec_die;
19881 cu = spec_cu;
19882 }
19883
19884 for (child = die->child;
19885 child != NULL;
19886 child = child->sibling)
19887 {
19888 if (child->tag == DW_TAG_subprogram)
19889 {
73b9be8b 19890 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 19891
7d45c7c3 19892 if (linkage_name != NULL)
abc72ce4
DE
19893 {
19894 char *actual_name
19895 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19896 linkage_name);
abc72ce4
DE
19897 char *name = NULL;
19898
19899 if (actual_name != NULL)
19900 {
15d034d0 19901 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19902
19903 if (die_name != NULL
19904 && strcmp (die_name, actual_name) != 0)
19905 {
19906 /* Strip off the class name from the full name.
19907 We want the prefix. */
19908 int die_name_len = strlen (die_name);
19909 int actual_name_len = strlen (actual_name);
19910
19911 /* Test for '::' as a sanity check. */
19912 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19913 && actual_name[actual_name_len
19914 - die_name_len - 1] == ':')
224c3ddb
SM
19915 name = (char *) obstack_copy0 (
19916 &cu->objfile->per_bfd->storage_obstack,
19917 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19918 }
19919 }
19920 xfree (actual_name);
19921 return name;
19922 }
19923 }
19924 }
19925
19926 return NULL;
19927}
19928
96408a79
SA
19929/* GCC might emit a nameless typedef that has a linkage name. Determine the
19930 prefix part in such case. See
19931 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19932
a121b7c1 19933static const char *
96408a79
SA
19934anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19935{
19936 struct attribute *attr;
e6a959d6 19937 const char *base;
96408a79
SA
19938
19939 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19940 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19941 return NULL;
19942
7d45c7c3 19943 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19944 return NULL;
19945
73b9be8b 19946 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
19947 if (attr == NULL || DW_STRING (attr) == NULL)
19948 return NULL;
19949
19950 /* dwarf2_name had to be already called. */
19951 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19952
19953 /* Strip the base name, keep any leading namespaces/classes. */
19954 base = strrchr (DW_STRING (attr), ':');
19955 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19956 return "";
19957
224c3ddb
SM
19958 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19959 DW_STRING (attr),
19960 &base[-1] - DW_STRING (attr));
96408a79
SA
19961}
19962
fdde2d81 19963/* Return the name of the namespace/class that DIE is defined within,
0114d602 19964 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19965
0114d602
DJ
19966 For example, if we're within the method foo() in the following
19967 code:
19968
19969 namespace N {
19970 class C {
19971 void foo () {
19972 }
19973 };
19974 }
19975
19976 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19977
0d5cff50 19978static const char *
e142c38c 19979determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19980{
0114d602
DJ
19981 struct die_info *parent, *spec_die;
19982 struct dwarf2_cu *spec_cu;
19983 struct type *parent_type;
a121b7c1 19984 const char *retval;
63d06c5c 19985
9c37b5ae 19986 if (cu->language != language_cplus
c44af4eb
TT
19987 && cu->language != language_fortran && cu->language != language_d
19988 && cu->language != language_rust)
0114d602
DJ
19989 return "";
19990
96408a79
SA
19991 retval = anonymous_struct_prefix (die, cu);
19992 if (retval)
19993 return retval;
19994
0114d602
DJ
19995 /* We have to be careful in the presence of DW_AT_specification.
19996 For example, with GCC 3.4, given the code
19997
19998 namespace N {
19999 void foo() {
20000 // Definition of N::foo.
20001 }
20002 }
20003
20004 then we'll have a tree of DIEs like this:
20005
20006 1: DW_TAG_compile_unit
20007 2: DW_TAG_namespace // N
20008 3: DW_TAG_subprogram // declaration of N::foo
20009 4: DW_TAG_subprogram // definition of N::foo
20010 DW_AT_specification // refers to die #3
20011
20012 Thus, when processing die #4, we have to pretend that we're in
20013 the context of its DW_AT_specification, namely the contex of die
20014 #3. */
20015 spec_cu = cu;
20016 spec_die = die_specification (die, &spec_cu);
20017 if (spec_die == NULL)
20018 parent = die->parent;
20019 else
63d06c5c 20020 {
0114d602
DJ
20021 parent = spec_die->parent;
20022 cu = spec_cu;
63d06c5c 20023 }
0114d602
DJ
20024
20025 if (parent == NULL)
20026 return "";
98bfdba5
PA
20027 else if (parent->building_fullname)
20028 {
20029 const char *name;
20030 const char *parent_name;
20031
20032 /* It has been seen on RealView 2.2 built binaries,
20033 DW_TAG_template_type_param types actually _defined_ as
20034 children of the parent class:
20035
20036 enum E {};
20037 template class <class Enum> Class{};
20038 Class<enum E> class_e;
20039
20040 1: DW_TAG_class_type (Class)
20041 2: DW_TAG_enumeration_type (E)
20042 3: DW_TAG_enumerator (enum1:0)
20043 3: DW_TAG_enumerator (enum2:1)
20044 ...
20045 2: DW_TAG_template_type_param
20046 DW_AT_type DW_FORM_ref_udata (E)
20047
20048 Besides being broken debug info, it can put GDB into an
20049 infinite loop. Consider:
20050
20051 When we're building the full name for Class<E>, we'll start
20052 at Class, and go look over its template type parameters,
20053 finding E. We'll then try to build the full name of E, and
20054 reach here. We're now trying to build the full name of E,
20055 and look over the parent DIE for containing scope. In the
20056 broken case, if we followed the parent DIE of E, we'd again
20057 find Class, and once again go look at its template type
20058 arguments, etc., etc. Simply don't consider such parent die
20059 as source-level parent of this die (it can't be, the language
20060 doesn't allow it), and break the loop here. */
20061 name = dwarf2_name (die, cu);
20062 parent_name = dwarf2_name (parent, cu);
20063 complaint (&symfile_complaints,
20064 _("template param type '%s' defined within parent '%s'"),
20065 name ? name : "<unknown>",
20066 parent_name ? parent_name : "<unknown>");
20067 return "";
20068 }
63d06c5c 20069 else
0114d602
DJ
20070 switch (parent->tag)
20071 {
63d06c5c 20072 case DW_TAG_namespace:
0114d602 20073 parent_type = read_type_die (parent, cu);
acebe513
UW
20074 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20075 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20076 Work around this problem here. */
20077 if (cu->language == language_cplus
20078 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20079 return "";
0114d602
DJ
20080 /* We give a name to even anonymous namespaces. */
20081 return TYPE_TAG_NAME (parent_type);
63d06c5c 20082 case DW_TAG_class_type:
680b30c7 20083 case DW_TAG_interface_type:
63d06c5c 20084 case DW_TAG_structure_type:
0114d602 20085 case DW_TAG_union_type:
f55ee35c 20086 case DW_TAG_module:
0114d602
DJ
20087 parent_type = read_type_die (parent, cu);
20088 if (TYPE_TAG_NAME (parent_type) != NULL)
20089 return TYPE_TAG_NAME (parent_type);
20090 else
20091 /* An anonymous structure is only allowed non-static data
20092 members; no typedefs, no member functions, et cetera.
20093 So it does not need a prefix. */
20094 return "";
abc72ce4 20095 case DW_TAG_compile_unit:
95554aad 20096 case DW_TAG_partial_unit:
abc72ce4
DE
20097 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20098 if (cu->language == language_cplus
8b70b953 20099 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20100 && die->child != NULL
20101 && (die->tag == DW_TAG_class_type
20102 || die->tag == DW_TAG_structure_type
20103 || die->tag == DW_TAG_union_type))
20104 {
20105 char *name = guess_full_die_structure_name (die, cu);
20106 if (name != NULL)
20107 return name;
20108 }
20109 return "";
3d567982
TT
20110 case DW_TAG_enumeration_type:
20111 parent_type = read_type_die (parent, cu);
20112 if (TYPE_DECLARED_CLASS (parent_type))
20113 {
20114 if (TYPE_TAG_NAME (parent_type) != NULL)
20115 return TYPE_TAG_NAME (parent_type);
20116 return "";
20117 }
20118 /* Fall through. */
63d06c5c 20119 default:
8176b9b8 20120 return determine_prefix (parent, cu);
63d06c5c 20121 }
63d06c5c
DC
20122}
20123
3e43a32a
MS
20124/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20125 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20126 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20127 an obconcat, otherwise allocate storage for the result. The CU argument is
20128 used to determine the language and hence, the appropriate separator. */
987504bb 20129
f55ee35c 20130#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20131
20132static char *
f55ee35c
JK
20133typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20134 int physname, struct dwarf2_cu *cu)
63d06c5c 20135{
f55ee35c 20136 const char *lead = "";
5c315b68 20137 const char *sep;
63d06c5c 20138
3e43a32a
MS
20139 if (suffix == NULL || suffix[0] == '\0'
20140 || prefix == NULL || prefix[0] == '\0')
987504bb 20141 sep = "";
45280282
IB
20142 else if (cu->language == language_d)
20143 {
20144 /* For D, the 'main' function could be defined in any module, but it
20145 should never be prefixed. */
20146 if (strcmp (suffix, "D main") == 0)
20147 {
20148 prefix = "";
20149 sep = "";
20150 }
20151 else
20152 sep = ".";
20153 }
f55ee35c
JK
20154 else if (cu->language == language_fortran && physname)
20155 {
20156 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20157 DW_AT_MIPS_linkage_name is preferred and used instead. */
20158
20159 lead = "__";
20160 sep = "_MOD_";
20161 }
987504bb
JJ
20162 else
20163 sep = "::";
63d06c5c 20164
6dd47d34
DE
20165 if (prefix == NULL)
20166 prefix = "";
20167 if (suffix == NULL)
20168 suffix = "";
20169
987504bb
JJ
20170 if (obs == NULL)
20171 {
3e43a32a 20172 char *retval
224c3ddb
SM
20173 = ((char *)
20174 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20175
f55ee35c
JK
20176 strcpy (retval, lead);
20177 strcat (retval, prefix);
6dd47d34
DE
20178 strcat (retval, sep);
20179 strcat (retval, suffix);
63d06c5c
DC
20180 return retval;
20181 }
987504bb
JJ
20182 else
20183 {
20184 /* We have an obstack. */
f55ee35c 20185 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20186 }
63d06c5c
DC
20187}
20188
c906108c
SS
20189/* Return sibling of die, NULL if no sibling. */
20190
f9aca02d 20191static struct die_info *
fba45db2 20192sibling_die (struct die_info *die)
c906108c 20193{
639d11d3 20194 return die->sibling;
c906108c
SS
20195}
20196
71c25dea
TT
20197/* Get name of a die, return NULL if not found. */
20198
15d034d0
TT
20199static const char *
20200dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20201 struct obstack *obstack)
20202{
20203 if (name && cu->language == language_cplus)
20204 {
2f408ecb 20205 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20206
2f408ecb 20207 if (!canon_name.empty ())
71c25dea 20208 {
2f408ecb
PA
20209 if (canon_name != name)
20210 name = (const char *) obstack_copy0 (obstack,
20211 canon_name.c_str (),
20212 canon_name.length ());
71c25dea
TT
20213 }
20214 }
20215
20216 return name;
c906108c
SS
20217}
20218
96553a0c
DE
20219/* Get name of a die, return NULL if not found.
20220 Anonymous namespaces are converted to their magic string. */
9219021c 20221
15d034d0 20222static const char *
e142c38c 20223dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20224{
20225 struct attribute *attr;
20226
e142c38c 20227 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20228 if ((!attr || !DW_STRING (attr))
96553a0c 20229 && die->tag != DW_TAG_namespace
53832f31
TT
20230 && die->tag != DW_TAG_class_type
20231 && die->tag != DW_TAG_interface_type
20232 && die->tag != DW_TAG_structure_type
20233 && die->tag != DW_TAG_union_type)
71c25dea
TT
20234 return NULL;
20235
20236 switch (die->tag)
20237 {
20238 case DW_TAG_compile_unit:
95554aad 20239 case DW_TAG_partial_unit:
71c25dea
TT
20240 /* Compilation units have a DW_AT_name that is a filename, not
20241 a source language identifier. */
20242 case DW_TAG_enumeration_type:
20243 case DW_TAG_enumerator:
20244 /* These tags always have simple identifiers already; no need
20245 to canonicalize them. */
20246 return DW_STRING (attr);
907af001 20247
96553a0c
DE
20248 case DW_TAG_namespace:
20249 if (attr != NULL && DW_STRING (attr) != NULL)
20250 return DW_STRING (attr);
20251 return CP_ANONYMOUS_NAMESPACE_STR;
20252
907af001
UW
20253 case DW_TAG_class_type:
20254 case DW_TAG_interface_type:
20255 case DW_TAG_structure_type:
20256 case DW_TAG_union_type:
20257 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20258 structures or unions. These were of the form "._%d" in GCC 4.1,
20259 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20260 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20261 if (attr && DW_STRING (attr)
61012eef
GB
20262 && (startswith (DW_STRING (attr), "._")
20263 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20264 return NULL;
53832f31
TT
20265
20266 /* GCC might emit a nameless typedef that has a linkage name. See
20267 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20268 if (!attr || DW_STRING (attr) == NULL)
20269 {
df5c6c50 20270 char *demangled = NULL;
53832f31 20271
73b9be8b 20272 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
20273 if (attr == NULL || DW_STRING (attr) == NULL)
20274 return NULL;
20275
df5c6c50
JK
20276 /* Avoid demangling DW_STRING (attr) the second time on a second
20277 call for the same DIE. */
20278 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20279 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20280
20281 if (demangled)
20282 {
e6a959d6 20283 const char *base;
96408a79 20284
53832f31 20285 /* FIXME: we already did this for the partial symbol... */
34a68019 20286 DW_STRING (attr)
224c3ddb
SM
20287 = ((const char *)
20288 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20289 demangled, strlen (demangled)));
53832f31
TT
20290 DW_STRING_IS_CANONICAL (attr) = 1;
20291 xfree (demangled);
96408a79
SA
20292
20293 /* Strip any leading namespaces/classes, keep only the base name.
20294 DW_AT_name for named DIEs does not contain the prefixes. */
20295 base = strrchr (DW_STRING (attr), ':');
20296 if (base && base > DW_STRING (attr) && base[-1] == ':')
20297 return &base[1];
20298 else
20299 return DW_STRING (attr);
53832f31
TT
20300 }
20301 }
907af001
UW
20302 break;
20303
71c25dea 20304 default:
907af001
UW
20305 break;
20306 }
20307
20308 if (!DW_STRING_IS_CANONICAL (attr))
20309 {
20310 DW_STRING (attr)
20311 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20312 &cu->objfile->per_bfd->storage_obstack);
907af001 20313 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20314 }
907af001 20315 return DW_STRING (attr);
9219021c
DC
20316}
20317
20318/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20319 is none. *EXT_CU is the CU containing DIE on input, and the CU
20320 containing the return value on output. */
9219021c
DC
20321
20322static struct die_info *
f2f0e013 20323dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20324{
20325 struct attribute *attr;
9219021c 20326
f2f0e013 20327 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20328 if (attr == NULL)
20329 return NULL;
20330
f2f0e013 20331 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20332}
20333
c906108c
SS
20334/* Convert a DIE tag into its string name. */
20335
f39c6ffd 20336static const char *
aa1ee363 20337dwarf_tag_name (unsigned tag)
c906108c 20338{
f39c6ffd
TT
20339 const char *name = get_DW_TAG_name (tag);
20340
20341 if (name == NULL)
20342 return "DW_TAG_<unknown>";
20343
20344 return name;
c906108c
SS
20345}
20346
20347/* Convert a DWARF attribute code into its string name. */
20348
f39c6ffd 20349static const char *
aa1ee363 20350dwarf_attr_name (unsigned attr)
c906108c 20351{
f39c6ffd
TT
20352 const char *name;
20353
c764a876 20354#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20355 if (attr == DW_AT_MIPS_fde)
20356 return "DW_AT_MIPS_fde";
20357#else
20358 if (attr == DW_AT_HP_block_index)
20359 return "DW_AT_HP_block_index";
c764a876 20360#endif
f39c6ffd
TT
20361
20362 name = get_DW_AT_name (attr);
20363
20364 if (name == NULL)
20365 return "DW_AT_<unknown>";
20366
20367 return name;
c906108c
SS
20368}
20369
20370/* Convert a DWARF value form code into its string name. */
20371
f39c6ffd 20372static const char *
aa1ee363 20373dwarf_form_name (unsigned form)
c906108c 20374{
f39c6ffd
TT
20375 const char *name = get_DW_FORM_name (form);
20376
20377 if (name == NULL)
20378 return "DW_FORM_<unknown>";
20379
20380 return name;
c906108c
SS
20381}
20382
a121b7c1 20383static const char *
fba45db2 20384dwarf_bool_name (unsigned mybool)
c906108c
SS
20385{
20386 if (mybool)
20387 return "TRUE";
20388 else
20389 return "FALSE";
20390}
20391
20392/* Convert a DWARF type code into its string name. */
20393
f39c6ffd 20394static const char *
aa1ee363 20395dwarf_type_encoding_name (unsigned enc)
c906108c 20396{
f39c6ffd 20397 const char *name = get_DW_ATE_name (enc);
c906108c 20398
f39c6ffd
TT
20399 if (name == NULL)
20400 return "DW_ATE_<unknown>";
c906108c 20401
f39c6ffd 20402 return name;
c906108c 20403}
c906108c 20404
f9aca02d 20405static void
d97bc12b 20406dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20407{
20408 unsigned int i;
20409
d97bc12b
DE
20410 print_spaces (indent, f);
20411 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20412 dwarf_tag_name (die->tag), die->abbrev,
20413 to_underlying (die->sect_off));
d97bc12b
DE
20414
20415 if (die->parent != NULL)
20416 {
20417 print_spaces (indent, f);
20418 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20419 to_underlying (die->parent->sect_off));
d97bc12b
DE
20420 }
20421
20422 print_spaces (indent, f);
20423 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20424 dwarf_bool_name (die->child != NULL));
c906108c 20425
d97bc12b
DE
20426 print_spaces (indent, f);
20427 fprintf_unfiltered (f, " attributes:\n");
20428
c906108c
SS
20429 for (i = 0; i < die->num_attrs; ++i)
20430 {
d97bc12b
DE
20431 print_spaces (indent, f);
20432 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20433 dwarf_attr_name (die->attrs[i].name),
20434 dwarf_form_name (die->attrs[i].form));
d97bc12b 20435
c906108c
SS
20436 switch (die->attrs[i].form)
20437 {
c906108c 20438 case DW_FORM_addr:
3019eac3 20439 case DW_FORM_GNU_addr_index:
d97bc12b 20440 fprintf_unfiltered (f, "address: ");
5af949e3 20441 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20442 break;
20443 case DW_FORM_block2:
20444 case DW_FORM_block4:
20445 case DW_FORM_block:
20446 case DW_FORM_block1:
56eb65bd
SP
20447 fprintf_unfiltered (f, "block: size %s",
20448 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20449 break;
2dc7f7b3 20450 case DW_FORM_exprloc:
56eb65bd
SP
20451 fprintf_unfiltered (f, "expression: size %s",
20452 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20453 break;
0224619f
JK
20454 case DW_FORM_data16:
20455 fprintf_unfiltered (f, "constant of 16 bytes");
20456 break;
4568ecf9
DE
20457 case DW_FORM_ref_addr:
20458 fprintf_unfiltered (f, "ref address: ");
20459 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20460 break;
36586728
TT
20461 case DW_FORM_GNU_ref_alt:
20462 fprintf_unfiltered (f, "alt ref address: ");
20463 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20464 break;
10b3939b
DJ
20465 case DW_FORM_ref1:
20466 case DW_FORM_ref2:
20467 case DW_FORM_ref4:
4568ecf9
DE
20468 case DW_FORM_ref8:
20469 case DW_FORM_ref_udata:
d97bc12b 20470 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20471 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20472 break;
c906108c
SS
20473 case DW_FORM_data1:
20474 case DW_FORM_data2:
20475 case DW_FORM_data4:
ce5d95e1 20476 case DW_FORM_data8:
c906108c
SS
20477 case DW_FORM_udata:
20478 case DW_FORM_sdata:
43bbcdc2
PH
20479 fprintf_unfiltered (f, "constant: %s",
20480 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20481 break;
2dc7f7b3
TT
20482 case DW_FORM_sec_offset:
20483 fprintf_unfiltered (f, "section offset: %s",
20484 pulongest (DW_UNSND (&die->attrs[i])));
20485 break;
55f1336d 20486 case DW_FORM_ref_sig8:
ac9ec31b
DE
20487 fprintf_unfiltered (f, "signature: %s",
20488 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20489 break;
c906108c 20490 case DW_FORM_string:
4bdf3d34 20491 case DW_FORM_strp:
43988095 20492 case DW_FORM_line_strp:
3019eac3 20493 case DW_FORM_GNU_str_index:
36586728 20494 case DW_FORM_GNU_strp_alt:
8285870a 20495 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20496 DW_STRING (&die->attrs[i])
8285870a
JK
20497 ? DW_STRING (&die->attrs[i]) : "",
20498 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20499 break;
20500 case DW_FORM_flag:
20501 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20502 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20503 else
d97bc12b 20504 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20505 break;
2dc7f7b3
TT
20506 case DW_FORM_flag_present:
20507 fprintf_unfiltered (f, "flag: TRUE");
20508 break;
a8329558 20509 case DW_FORM_indirect:
0963b4bd
MS
20510 /* The reader will have reduced the indirect form to
20511 the "base form" so this form should not occur. */
3e43a32a
MS
20512 fprintf_unfiltered (f,
20513 "unexpected attribute form: DW_FORM_indirect");
a8329558 20514 break;
663c44ac
JK
20515 case DW_FORM_implicit_const:
20516 fprintf_unfiltered (f, "constant: %s",
20517 plongest (DW_SND (&die->attrs[i])));
20518 break;
c906108c 20519 default:
d97bc12b 20520 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20521 die->attrs[i].form);
d97bc12b 20522 break;
c906108c 20523 }
d97bc12b 20524 fprintf_unfiltered (f, "\n");
c906108c
SS
20525 }
20526}
20527
f9aca02d 20528static void
d97bc12b 20529dump_die_for_error (struct die_info *die)
c906108c 20530{
d97bc12b
DE
20531 dump_die_shallow (gdb_stderr, 0, die);
20532}
20533
20534static void
20535dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20536{
20537 int indent = level * 4;
20538
20539 gdb_assert (die != NULL);
20540
20541 if (level >= max_level)
20542 return;
20543
20544 dump_die_shallow (f, indent, die);
20545
20546 if (die->child != NULL)
c906108c 20547 {
d97bc12b
DE
20548 print_spaces (indent, f);
20549 fprintf_unfiltered (f, " Children:");
20550 if (level + 1 < max_level)
20551 {
20552 fprintf_unfiltered (f, "\n");
20553 dump_die_1 (f, level + 1, max_level, die->child);
20554 }
20555 else
20556 {
3e43a32a
MS
20557 fprintf_unfiltered (f,
20558 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20559 }
20560 }
20561
20562 if (die->sibling != NULL && level > 0)
20563 {
20564 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20565 }
20566}
20567
d97bc12b
DE
20568/* This is called from the pdie macro in gdbinit.in.
20569 It's not static so gcc will keep a copy callable from gdb. */
20570
20571void
20572dump_die (struct die_info *die, int max_level)
20573{
20574 dump_die_1 (gdb_stdlog, 0, max_level, die);
20575}
20576
f9aca02d 20577static void
51545339 20578store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20579{
51545339 20580 void **slot;
c906108c 20581
9c541725
PA
20582 slot = htab_find_slot_with_hash (cu->die_hash, die,
20583 to_underlying (die->sect_off),
b64f50a1 20584 INSERT);
51545339
DJ
20585
20586 *slot = die;
c906108c
SS
20587}
20588
b64f50a1
JK
20589/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20590 required kind. */
20591
20592static sect_offset
ff39bb5e 20593dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20594{
7771576e 20595 if (attr_form_is_ref (attr))
9c541725 20596 return (sect_offset) DW_UNSND (attr);
93311388
DE
20597
20598 complaint (&symfile_complaints,
20599 _("unsupported die ref attribute form: '%s'"),
20600 dwarf_form_name (attr->form));
9c541725 20601 return {};
c906108c
SS
20602}
20603
43bbcdc2
PH
20604/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20605 * the value held by the attribute is not constant. */
a02abb62 20606
43bbcdc2 20607static LONGEST
ff39bb5e 20608dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 20609{
663c44ac 20610 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
20611 return DW_SND (attr);
20612 else if (attr->form == DW_FORM_udata
20613 || attr->form == DW_FORM_data1
20614 || attr->form == DW_FORM_data2
20615 || attr->form == DW_FORM_data4
20616 || attr->form == DW_FORM_data8)
20617 return DW_UNSND (attr);
20618 else
20619 {
0224619f 20620 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20621 complaint (&symfile_complaints,
20622 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20623 dwarf_form_name (attr->form));
20624 return default_value;
20625 }
20626}
20627
348e048f
DE
20628/* Follow reference or signature attribute ATTR of SRC_DIE.
20629 On entry *REF_CU is the CU of SRC_DIE.
20630 On exit *REF_CU is the CU of the result. */
20631
20632static struct die_info *
ff39bb5e 20633follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20634 struct dwarf2_cu **ref_cu)
20635{
20636 struct die_info *die;
20637
7771576e 20638 if (attr_form_is_ref (attr))
348e048f 20639 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20640 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20641 die = follow_die_sig (src_die, attr, ref_cu);
20642 else
20643 {
20644 dump_die_for_error (src_die);
20645 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20646 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20647 }
20648
20649 return die;
03dd20cc
DJ
20650}
20651
5c631832 20652/* Follow reference OFFSET.
673bfd45
DE
20653 On entry *REF_CU is the CU of the source die referencing OFFSET.
20654 On exit *REF_CU is the CU of the result.
20655 Returns NULL if OFFSET is invalid. */
f504f079 20656
f9aca02d 20657static struct die_info *
9c541725 20658follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20659 struct dwarf2_cu **ref_cu)
c906108c 20660{
10b3939b 20661 struct die_info temp_die;
f2f0e013 20662 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20663
348e048f
DE
20664 gdb_assert (cu->per_cu != NULL);
20665
98bfdba5
PA
20666 target_cu = cu;
20667
3019eac3 20668 if (cu->per_cu->is_debug_types)
348e048f
DE
20669 {
20670 /* .debug_types CUs cannot reference anything outside their CU.
20671 If they need to, they have to reference a signatured type via
55f1336d 20672 DW_FORM_ref_sig8. */
9c541725 20673 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20674 return NULL;
348e048f 20675 }
36586728 20676 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20677 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20678 {
20679 struct dwarf2_per_cu_data *per_cu;
9a619af0 20680
9c541725 20681 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20682 cu->objfile);
03dd20cc
DJ
20683
20684 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20685 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20686 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20687
10b3939b
DJ
20688 target_cu = per_cu->cu;
20689 }
98bfdba5
PA
20690 else if (cu->dies == NULL)
20691 {
20692 /* We're loading full DIEs during partial symbol reading. */
20693 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20694 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20695 }
c906108c 20696
f2f0e013 20697 *ref_cu = target_cu;
9c541725 20698 temp_die.sect_off = sect_off;
9a3c8263 20699 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20700 &temp_die,
20701 to_underlying (sect_off));
5c631832 20702}
10b3939b 20703
5c631832
JK
20704/* Follow reference attribute ATTR of SRC_DIE.
20705 On entry *REF_CU is the CU of SRC_DIE.
20706 On exit *REF_CU is the CU of the result. */
20707
20708static struct die_info *
ff39bb5e 20709follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20710 struct dwarf2_cu **ref_cu)
20711{
9c541725 20712 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20713 struct dwarf2_cu *cu = *ref_cu;
20714 struct die_info *die;
20715
9c541725 20716 die = follow_die_offset (sect_off,
36586728
TT
20717 (attr->form == DW_FORM_GNU_ref_alt
20718 || cu->per_cu->is_dwz),
20719 ref_cu);
5c631832
JK
20720 if (!die)
20721 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20722 "at 0x%x [in module %s]"),
9c541725 20723 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20724 objfile_name (cu->objfile));
348e048f 20725
5c631832
JK
20726 return die;
20727}
20728
9c541725 20729/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20730 Returned value is intended for DW_OP_call*. Returned
20731 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20732
20733struct dwarf2_locexpr_baton
9c541725 20734dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20735 struct dwarf2_per_cu_data *per_cu,
20736 CORE_ADDR (*get_frame_pc) (void *baton),
20737 void *baton)
5c631832 20738{
918dd910 20739 struct dwarf2_cu *cu;
5c631832
JK
20740 struct die_info *die;
20741 struct attribute *attr;
20742 struct dwarf2_locexpr_baton retval;
20743
8cf6f0b1
TT
20744 dw2_setup (per_cu->objfile);
20745
918dd910
JK
20746 if (per_cu->cu == NULL)
20747 load_cu (per_cu);
20748 cu = per_cu->cu;
cc12ce38
DE
20749 if (cu == NULL)
20750 {
20751 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20752 Instead just throw an error, not much else we can do. */
20753 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20754 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20755 }
918dd910 20756
9c541725 20757 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20758 if (!die)
20759 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20760 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20761
20762 attr = dwarf2_attr (die, DW_AT_location, cu);
20763 if (!attr)
20764 {
e103e986
JK
20765 /* DWARF: "If there is no such attribute, then there is no effect.".
20766 DATA is ignored if SIZE is 0. */
5c631832 20767
e103e986 20768 retval.data = NULL;
5c631832
JK
20769 retval.size = 0;
20770 }
8cf6f0b1
TT
20771 else if (attr_form_is_section_offset (attr))
20772 {
20773 struct dwarf2_loclist_baton loclist_baton;
20774 CORE_ADDR pc = (*get_frame_pc) (baton);
20775 size_t size;
20776
20777 fill_in_loclist_baton (cu, &loclist_baton, attr);
20778
20779 retval.data = dwarf2_find_location_expression (&loclist_baton,
20780 &size, pc);
20781 retval.size = size;
20782 }
5c631832
JK
20783 else
20784 {
20785 if (!attr_form_is_block (attr))
20786 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20787 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20788 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20789
20790 retval.data = DW_BLOCK (attr)->data;
20791 retval.size = DW_BLOCK (attr)->size;
20792 }
20793 retval.per_cu = cu->per_cu;
918dd910 20794
918dd910
JK
20795 age_cached_comp_units ();
20796
5c631832 20797 return retval;
348e048f
DE
20798}
20799
8b9737bf
TT
20800/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20801 offset. */
20802
20803struct dwarf2_locexpr_baton
20804dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20805 struct dwarf2_per_cu_data *per_cu,
20806 CORE_ADDR (*get_frame_pc) (void *baton),
20807 void *baton)
20808{
9c541725 20809 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20810
9c541725 20811 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20812}
20813
b6807d98
TT
20814/* Write a constant of a given type as target-ordered bytes into
20815 OBSTACK. */
20816
20817static const gdb_byte *
20818write_constant_as_bytes (struct obstack *obstack,
20819 enum bfd_endian byte_order,
20820 struct type *type,
20821 ULONGEST value,
20822 LONGEST *len)
20823{
20824 gdb_byte *result;
20825
20826 *len = TYPE_LENGTH (type);
224c3ddb 20827 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20828 store_unsigned_integer (result, *len, byte_order, value);
20829
20830 return result;
20831}
20832
20833/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20834 pointer to the constant bytes and set LEN to the length of the
20835 data. If memory is needed, allocate it on OBSTACK. If the DIE
20836 does not have a DW_AT_const_value, return NULL. */
20837
20838const gdb_byte *
9c541725 20839dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20840 struct dwarf2_per_cu_data *per_cu,
20841 struct obstack *obstack,
20842 LONGEST *len)
20843{
20844 struct dwarf2_cu *cu;
20845 struct die_info *die;
20846 struct attribute *attr;
20847 const gdb_byte *result = NULL;
20848 struct type *type;
20849 LONGEST value;
20850 enum bfd_endian byte_order;
20851
20852 dw2_setup (per_cu->objfile);
20853
20854 if (per_cu->cu == NULL)
20855 load_cu (per_cu);
20856 cu = per_cu->cu;
cc12ce38
DE
20857 if (cu == NULL)
20858 {
20859 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20860 Instead just throw an error, not much else we can do. */
20861 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20862 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20863 }
b6807d98 20864
9c541725 20865 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20866 if (!die)
20867 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20868 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20869
20870
20871 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20872 if (attr == NULL)
20873 return NULL;
20874
20875 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20876 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20877
20878 switch (attr->form)
20879 {
20880 case DW_FORM_addr:
20881 case DW_FORM_GNU_addr_index:
20882 {
20883 gdb_byte *tem;
20884
20885 *len = cu->header.addr_size;
224c3ddb 20886 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20887 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20888 result = tem;
20889 }
20890 break;
20891 case DW_FORM_string:
20892 case DW_FORM_strp:
20893 case DW_FORM_GNU_str_index:
20894 case DW_FORM_GNU_strp_alt:
20895 /* DW_STRING is already allocated on the objfile obstack, point
20896 directly to it. */
20897 result = (const gdb_byte *) DW_STRING (attr);
20898 *len = strlen (DW_STRING (attr));
20899 break;
20900 case DW_FORM_block1:
20901 case DW_FORM_block2:
20902 case DW_FORM_block4:
20903 case DW_FORM_block:
20904 case DW_FORM_exprloc:
0224619f 20905 case DW_FORM_data16:
b6807d98
TT
20906 result = DW_BLOCK (attr)->data;
20907 *len = DW_BLOCK (attr)->size;
20908 break;
20909
20910 /* The DW_AT_const_value attributes are supposed to carry the
20911 symbol's value "represented as it would be on the target
20912 architecture." By the time we get here, it's already been
20913 converted to host endianness, so we just need to sign- or
20914 zero-extend it as appropriate. */
20915 case DW_FORM_data1:
20916 type = die_type (die, cu);
20917 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20918 if (result == NULL)
20919 result = write_constant_as_bytes (obstack, byte_order,
20920 type, value, len);
20921 break;
20922 case DW_FORM_data2:
20923 type = die_type (die, cu);
20924 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20925 if (result == NULL)
20926 result = write_constant_as_bytes (obstack, byte_order,
20927 type, value, len);
20928 break;
20929 case DW_FORM_data4:
20930 type = die_type (die, cu);
20931 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20932 if (result == NULL)
20933 result = write_constant_as_bytes (obstack, byte_order,
20934 type, value, len);
20935 break;
20936 case DW_FORM_data8:
20937 type = die_type (die, cu);
20938 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20939 if (result == NULL)
20940 result = write_constant_as_bytes (obstack, byte_order,
20941 type, value, len);
20942 break;
20943
20944 case DW_FORM_sdata:
663c44ac 20945 case DW_FORM_implicit_const:
b6807d98
TT
20946 type = die_type (die, cu);
20947 result = write_constant_as_bytes (obstack, byte_order,
20948 type, DW_SND (attr), len);
20949 break;
20950
20951 case DW_FORM_udata:
20952 type = die_type (die, cu);
20953 result = write_constant_as_bytes (obstack, byte_order,
20954 type, DW_UNSND (attr), len);
20955 break;
20956
20957 default:
20958 complaint (&symfile_complaints,
20959 _("unsupported const value attribute form: '%s'"),
20960 dwarf_form_name (attr->form));
20961 break;
20962 }
20963
20964 return result;
20965}
20966
7942e96e
AA
20967/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20968 valid type for this die is found. */
20969
20970struct type *
9c541725 20971dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
20972 struct dwarf2_per_cu_data *per_cu)
20973{
20974 struct dwarf2_cu *cu;
20975 struct die_info *die;
20976
20977 dw2_setup (per_cu->objfile);
20978
20979 if (per_cu->cu == NULL)
20980 load_cu (per_cu);
20981 cu = per_cu->cu;
20982 if (!cu)
20983 return NULL;
20984
9c541725 20985 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
20986 if (!die)
20987 return NULL;
20988
20989 return die_type (die, cu);
20990}
20991
8a9b8146
TT
20992/* Return the type of the DIE at DIE_OFFSET in the CU named by
20993 PER_CU. */
20994
20995struct type *
b64f50a1 20996dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20997 struct dwarf2_per_cu_data *per_cu)
20998{
8a9b8146 20999 dw2_setup (per_cu->objfile);
b64f50a1 21000
9c541725 21001 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 21002 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
21003}
21004
ac9ec31b 21005/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 21006 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
21007 On exit *REF_CU is the CU of the result.
21008 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
21009
21010static struct die_info *
ac9ec31b
DE
21011follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21012 struct dwarf2_cu **ref_cu)
348e048f 21013{
348e048f 21014 struct die_info temp_die;
348e048f
DE
21015 struct dwarf2_cu *sig_cu;
21016 struct die_info *die;
21017
ac9ec31b
DE
21018 /* While it might be nice to assert sig_type->type == NULL here,
21019 we can get here for DW_AT_imported_declaration where we need
21020 the DIE not the type. */
348e048f
DE
21021
21022 /* If necessary, add it to the queue and load its DIEs. */
21023
95554aad 21024 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 21025 read_signatured_type (sig_type);
348e048f 21026
348e048f 21027 sig_cu = sig_type->per_cu.cu;
69d751e3 21028 gdb_assert (sig_cu != NULL);
9c541725
PA
21029 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21030 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 21031 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 21032 to_underlying (temp_die.sect_off));
348e048f
DE
21033 if (die)
21034 {
796a7ff8
DE
21035 /* For .gdb_index version 7 keep track of included TUs.
21036 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21037 if (dwarf2_per_objfile->index_table != NULL
21038 && dwarf2_per_objfile->index_table->version <= 7)
21039 {
21040 VEC_safe_push (dwarf2_per_cu_ptr,
21041 (*ref_cu)->per_cu->imported_symtabs,
21042 sig_cu->per_cu);
21043 }
21044
348e048f
DE
21045 *ref_cu = sig_cu;
21046 return die;
21047 }
21048
ac9ec31b
DE
21049 return NULL;
21050}
21051
21052/* Follow signatured type referenced by ATTR in SRC_DIE.
21053 On entry *REF_CU is the CU of SRC_DIE.
21054 On exit *REF_CU is the CU of the result.
21055 The result is the DIE of the type.
21056 If the referenced type cannot be found an error is thrown. */
21057
21058static struct die_info *
ff39bb5e 21059follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21060 struct dwarf2_cu **ref_cu)
21061{
21062 ULONGEST signature = DW_SIGNATURE (attr);
21063 struct signatured_type *sig_type;
21064 struct die_info *die;
21065
21066 gdb_assert (attr->form == DW_FORM_ref_sig8);
21067
a2ce51a0 21068 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21069 /* sig_type will be NULL if the signatured type is missing from
21070 the debug info. */
21071 if (sig_type == NULL)
21072 {
21073 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21074 " from DIE at 0x%x [in module %s]"),
9c541725 21075 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21076 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21077 }
21078
21079 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21080 if (die == NULL)
21081 {
21082 dump_die_for_error (src_die);
21083 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21084 " from DIE at 0x%x [in module %s]"),
9c541725 21085 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21086 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21087 }
21088
21089 return die;
21090}
21091
21092/* Get the type specified by SIGNATURE referenced in DIE/CU,
21093 reading in and processing the type unit if necessary. */
21094
21095static struct type *
21096get_signatured_type (struct die_info *die, ULONGEST signature,
21097 struct dwarf2_cu *cu)
21098{
21099 struct signatured_type *sig_type;
21100 struct dwarf2_cu *type_cu;
21101 struct die_info *type_die;
21102 struct type *type;
21103
a2ce51a0 21104 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21105 /* sig_type will be NULL if the signatured type is missing from
21106 the debug info. */
21107 if (sig_type == NULL)
21108 {
21109 complaint (&symfile_complaints,
21110 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21111 " from DIE at 0x%x [in module %s]"),
9c541725 21112 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21113 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21114 return build_error_marker_type (cu, die);
21115 }
21116
21117 /* If we already know the type we're done. */
21118 if (sig_type->type != NULL)
21119 return sig_type->type;
21120
21121 type_cu = cu;
21122 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21123 if (type_die != NULL)
21124 {
21125 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21126 is created. This is important, for example, because for c++ classes
21127 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21128 type = read_type_die (type_die, type_cu);
21129 if (type == NULL)
21130 {
21131 complaint (&symfile_complaints,
21132 _("Dwarf Error: Cannot build signatured type %s"
21133 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21134 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21135 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21136 type = build_error_marker_type (cu, die);
21137 }
21138 }
21139 else
21140 {
21141 complaint (&symfile_complaints,
21142 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21143 " from DIE at 0x%x [in module %s]"),
9c541725 21144 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21145 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21146 type = build_error_marker_type (cu, die);
21147 }
21148 sig_type->type = type;
21149
21150 return type;
21151}
21152
21153/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21154 reading in and processing the type unit if necessary. */
21155
21156static struct type *
ff39bb5e 21157get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21158 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21159{
21160 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21161 if (attr_form_is_ref (attr))
ac9ec31b
DE
21162 {
21163 struct dwarf2_cu *type_cu = cu;
21164 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21165
21166 return read_type_die (type_die, type_cu);
21167 }
21168 else if (attr->form == DW_FORM_ref_sig8)
21169 {
21170 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21171 }
21172 else
21173 {
21174 complaint (&symfile_complaints,
21175 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21176 " at 0x%x [in module %s]"),
9c541725 21177 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21178 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21179 return build_error_marker_type (cu, die);
21180 }
348e048f
DE
21181}
21182
e5fe5e75 21183/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21184
21185static void
e5fe5e75 21186load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21187{
52dc124a 21188 struct signatured_type *sig_type;
348e048f 21189
f4dc4d17
DE
21190 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21191 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21192
6721b2ec
DE
21193 /* We have the per_cu, but we need the signatured_type.
21194 Fortunately this is an easy translation. */
21195 gdb_assert (per_cu->is_debug_types);
21196 sig_type = (struct signatured_type *) per_cu;
348e048f 21197
6721b2ec 21198 gdb_assert (per_cu->cu == NULL);
348e048f 21199
52dc124a 21200 read_signatured_type (sig_type);
348e048f 21201
6721b2ec 21202 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21203}
21204
dee91e82
DE
21205/* die_reader_func for read_signatured_type.
21206 This is identical to load_full_comp_unit_reader,
21207 but is kept separate for now. */
348e048f
DE
21208
21209static void
dee91e82 21210read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21211 const gdb_byte *info_ptr,
dee91e82
DE
21212 struct die_info *comp_unit_die,
21213 int has_children,
21214 void *data)
348e048f 21215{
dee91e82 21216 struct dwarf2_cu *cu = reader->cu;
348e048f 21217
dee91e82
DE
21218 gdb_assert (cu->die_hash == NULL);
21219 cu->die_hash =
21220 htab_create_alloc_ex (cu->header.length / 12,
21221 die_hash,
21222 die_eq,
21223 NULL,
21224 &cu->comp_unit_obstack,
21225 hashtab_obstack_allocate,
21226 dummy_obstack_deallocate);
348e048f 21227
dee91e82
DE
21228 if (has_children)
21229 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21230 &info_ptr, comp_unit_die);
21231 cu->dies = comp_unit_die;
21232 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21233
21234 /* We try not to read any attributes in this function, because not
9cdd5dbd 21235 all CUs needed for references have been loaded yet, and symbol
348e048f 21236 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21237 or we won't be able to build types correctly.
21238 Similarly, if we do not read the producer, we can not apply
21239 producer-specific interpretation. */
95554aad 21240 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21241}
348e048f 21242
3019eac3
DE
21243/* Read in a signatured type and build its CU and DIEs.
21244 If the type is a stub for the real type in a DWO file,
21245 read in the real type from the DWO file as well. */
dee91e82
DE
21246
21247static void
21248read_signatured_type (struct signatured_type *sig_type)
21249{
21250 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21251
3019eac3 21252 gdb_assert (per_cu->is_debug_types);
dee91e82 21253 gdb_assert (per_cu->cu == NULL);
348e048f 21254
f4dc4d17
DE
21255 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21256 read_signatured_type_reader, NULL);
7ee85ab1 21257 sig_type->per_cu.tu_read = 1;
c906108c
SS
21258}
21259
c906108c
SS
21260/* Decode simple location descriptions.
21261 Given a pointer to a dwarf block that defines a location, compute
21262 the location and return the value.
21263
4cecd739
DJ
21264 NOTE drow/2003-11-18: This function is called in two situations
21265 now: for the address of static or global variables (partial symbols
21266 only) and for offsets into structures which are expected to be
21267 (more or less) constant. The partial symbol case should go away,
21268 and only the constant case should remain. That will let this
21269 function complain more accurately. A few special modes are allowed
21270 without complaint for global variables (for instance, global
21271 register values and thread-local values).
c906108c
SS
21272
21273 A location description containing no operations indicates that the
4cecd739 21274 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21275 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21276 callers will only want a very basic result and this can become a
21ae7a4d
JK
21277 complaint.
21278
21279 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21280
21281static CORE_ADDR
e7c27a73 21282decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21283{
e7c27a73 21284 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21285 size_t i;
21286 size_t size = blk->size;
d521ce57 21287 const gdb_byte *data = blk->data;
21ae7a4d
JK
21288 CORE_ADDR stack[64];
21289 int stacki;
21290 unsigned int bytes_read, unsnd;
21291 gdb_byte op;
c906108c 21292
21ae7a4d
JK
21293 i = 0;
21294 stacki = 0;
21295 stack[stacki] = 0;
21296 stack[++stacki] = 0;
21297
21298 while (i < size)
21299 {
21300 op = data[i++];
21301 switch (op)
21302 {
21303 case DW_OP_lit0:
21304 case DW_OP_lit1:
21305 case DW_OP_lit2:
21306 case DW_OP_lit3:
21307 case DW_OP_lit4:
21308 case DW_OP_lit5:
21309 case DW_OP_lit6:
21310 case DW_OP_lit7:
21311 case DW_OP_lit8:
21312 case DW_OP_lit9:
21313 case DW_OP_lit10:
21314 case DW_OP_lit11:
21315 case DW_OP_lit12:
21316 case DW_OP_lit13:
21317 case DW_OP_lit14:
21318 case DW_OP_lit15:
21319 case DW_OP_lit16:
21320 case DW_OP_lit17:
21321 case DW_OP_lit18:
21322 case DW_OP_lit19:
21323 case DW_OP_lit20:
21324 case DW_OP_lit21:
21325 case DW_OP_lit22:
21326 case DW_OP_lit23:
21327 case DW_OP_lit24:
21328 case DW_OP_lit25:
21329 case DW_OP_lit26:
21330 case DW_OP_lit27:
21331 case DW_OP_lit28:
21332 case DW_OP_lit29:
21333 case DW_OP_lit30:
21334 case DW_OP_lit31:
21335 stack[++stacki] = op - DW_OP_lit0;
21336 break;
f1bea926 21337
21ae7a4d
JK
21338 case DW_OP_reg0:
21339 case DW_OP_reg1:
21340 case DW_OP_reg2:
21341 case DW_OP_reg3:
21342 case DW_OP_reg4:
21343 case DW_OP_reg5:
21344 case DW_OP_reg6:
21345 case DW_OP_reg7:
21346 case DW_OP_reg8:
21347 case DW_OP_reg9:
21348 case DW_OP_reg10:
21349 case DW_OP_reg11:
21350 case DW_OP_reg12:
21351 case DW_OP_reg13:
21352 case DW_OP_reg14:
21353 case DW_OP_reg15:
21354 case DW_OP_reg16:
21355 case DW_OP_reg17:
21356 case DW_OP_reg18:
21357 case DW_OP_reg19:
21358 case DW_OP_reg20:
21359 case DW_OP_reg21:
21360 case DW_OP_reg22:
21361 case DW_OP_reg23:
21362 case DW_OP_reg24:
21363 case DW_OP_reg25:
21364 case DW_OP_reg26:
21365 case DW_OP_reg27:
21366 case DW_OP_reg28:
21367 case DW_OP_reg29:
21368 case DW_OP_reg30:
21369 case DW_OP_reg31:
21370 stack[++stacki] = op - DW_OP_reg0;
21371 if (i < size)
21372 dwarf2_complex_location_expr_complaint ();
21373 break;
c906108c 21374
21ae7a4d
JK
21375 case DW_OP_regx:
21376 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21377 i += bytes_read;
21378 stack[++stacki] = unsnd;
21379 if (i < size)
21380 dwarf2_complex_location_expr_complaint ();
21381 break;
c906108c 21382
21ae7a4d
JK
21383 case DW_OP_addr:
21384 stack[++stacki] = read_address (objfile->obfd, &data[i],
21385 cu, &bytes_read);
21386 i += bytes_read;
21387 break;
d53d4ac5 21388
21ae7a4d
JK
21389 case DW_OP_const1u:
21390 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21391 i += 1;
21392 break;
21393
21394 case DW_OP_const1s:
21395 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21396 i += 1;
21397 break;
21398
21399 case DW_OP_const2u:
21400 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21401 i += 2;
21402 break;
21403
21404 case DW_OP_const2s:
21405 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21406 i += 2;
21407 break;
d53d4ac5 21408
21ae7a4d
JK
21409 case DW_OP_const4u:
21410 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21411 i += 4;
21412 break;
21413
21414 case DW_OP_const4s:
21415 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21416 i += 4;
21417 break;
21418
585861ea
JK
21419 case DW_OP_const8u:
21420 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21421 i += 8;
21422 break;
21423
21ae7a4d
JK
21424 case DW_OP_constu:
21425 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21426 &bytes_read);
21427 i += bytes_read;
21428 break;
21429
21430 case DW_OP_consts:
21431 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21432 i += bytes_read;
21433 break;
21434
21435 case DW_OP_dup:
21436 stack[stacki + 1] = stack[stacki];
21437 stacki++;
21438 break;
21439
21440 case DW_OP_plus:
21441 stack[stacki - 1] += stack[stacki];
21442 stacki--;
21443 break;
21444
21445 case DW_OP_plus_uconst:
21446 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21447 &bytes_read);
21448 i += bytes_read;
21449 break;
21450
21451 case DW_OP_minus:
21452 stack[stacki - 1] -= stack[stacki];
21453 stacki--;
21454 break;
21455
21456 case DW_OP_deref:
21457 /* If we're not the last op, then we definitely can't encode
21458 this using GDB's address_class enum. This is valid for partial
21459 global symbols, although the variable's address will be bogus
21460 in the psymtab. */
21461 if (i < size)
21462 dwarf2_complex_location_expr_complaint ();
21463 break;
21464
21465 case DW_OP_GNU_push_tls_address:
4aa4e28b 21466 case DW_OP_form_tls_address:
21ae7a4d
JK
21467 /* The top of the stack has the offset from the beginning
21468 of the thread control block at which the variable is located. */
21469 /* Nothing should follow this operator, so the top of stack would
21470 be returned. */
21471 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21472 address will be bogus in the psymtab. Make it always at least
21473 non-zero to not look as a variable garbage collected by linker
21474 which have DW_OP_addr 0. */
21ae7a4d
JK
21475 if (i < size)
21476 dwarf2_complex_location_expr_complaint ();
585861ea 21477 stack[stacki]++;
21ae7a4d
JK
21478 break;
21479
21480 case DW_OP_GNU_uninit:
21481 break;
21482
3019eac3 21483 case DW_OP_GNU_addr_index:
49f6c839 21484 case DW_OP_GNU_const_index:
3019eac3
DE
21485 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21486 &bytes_read);
21487 i += bytes_read;
21488 break;
21489
21ae7a4d
JK
21490 default:
21491 {
f39c6ffd 21492 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21493
21494 if (name)
21495 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21496 name);
21497 else
21498 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21499 op);
21500 }
21501
21502 return (stack[stacki]);
d53d4ac5 21503 }
3c6e0cb3 21504
21ae7a4d
JK
21505 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21506 outside of the allocated space. Also enforce minimum>0. */
21507 if (stacki >= ARRAY_SIZE (stack) - 1)
21508 {
21509 complaint (&symfile_complaints,
21510 _("location description stack overflow"));
21511 return 0;
21512 }
21513
21514 if (stacki <= 0)
21515 {
21516 complaint (&symfile_complaints,
21517 _("location description stack underflow"));
21518 return 0;
21519 }
21520 }
21521 return (stack[stacki]);
c906108c
SS
21522}
21523
21524/* memory allocation interface */
21525
c906108c 21526static struct dwarf_block *
7b5a2f43 21527dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21528{
8d749320 21529 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21530}
21531
c906108c 21532static struct die_info *
b60c80d6 21533dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21534{
21535 struct die_info *die;
b60c80d6
DJ
21536 size_t size = sizeof (struct die_info);
21537
21538 if (num_attrs > 1)
21539 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21540
b60c80d6 21541 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21542 memset (die, 0, sizeof (struct die_info));
21543 return (die);
21544}
2e276125
JB
21545
21546\f
21547/* Macro support. */
21548
233d95b5
JK
21549/* Return file name relative to the compilation directory of file number I in
21550 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21551 responsible for freeing it. */
233d95b5 21552
2e276125 21553static char *
233d95b5 21554file_file_name (int file, struct line_header *lh)
2e276125 21555{
6a83a1e6
EZ
21556 /* Is the file number a valid index into the line header's file name
21557 table? Remember that file numbers start with one, not zero. */
fff8551c 21558 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21559 {
8c43009f 21560 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21561
8c43009f
PA
21562 if (!IS_ABSOLUTE_PATH (fe.name))
21563 {
21564 const char *dir = fe.include_dir (lh);
21565 if (dir != NULL)
21566 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21567 }
21568 return xstrdup (fe.name);
6a83a1e6 21569 }
2e276125
JB
21570 else
21571 {
6a83a1e6
EZ
21572 /* The compiler produced a bogus file number. We can at least
21573 record the macro definitions made in the file, even if we
21574 won't be able to find the file by name. */
21575 char fake_name[80];
9a619af0 21576
8c042590
PM
21577 xsnprintf (fake_name, sizeof (fake_name),
21578 "<bad macro file number %d>", file);
2e276125 21579
6e70227d 21580 complaint (&symfile_complaints,
6a83a1e6
EZ
21581 _("bad file number in macro information (%d)"),
21582 file);
2e276125 21583
6a83a1e6 21584 return xstrdup (fake_name);
2e276125
JB
21585 }
21586}
21587
233d95b5
JK
21588/* Return the full name of file number I in *LH's file name table.
21589 Use COMP_DIR as the name of the current directory of the
21590 compilation. The result is allocated using xmalloc; the caller is
21591 responsible for freeing it. */
21592static char *
21593file_full_name (int file, struct line_header *lh, const char *comp_dir)
21594{
21595 /* Is the file number a valid index into the line header's file name
21596 table? Remember that file numbers start with one, not zero. */
fff8551c 21597 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21598 {
21599 char *relative = file_file_name (file, lh);
21600
21601 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21602 return relative;
b36cec19
PA
21603 return reconcat (relative, comp_dir, SLASH_STRING,
21604 relative, (char *) NULL);
233d95b5
JK
21605 }
21606 else
21607 return file_file_name (file, lh);
21608}
21609
2e276125
JB
21610
21611static struct macro_source_file *
21612macro_start_file (int file, int line,
21613 struct macro_source_file *current_file,
43f3e411 21614 struct line_header *lh)
2e276125 21615{
233d95b5
JK
21616 /* File name relative to the compilation directory of this source file. */
21617 char *file_name = file_file_name (file, lh);
2e276125 21618
2e276125 21619 if (! current_file)
abc9d0dc 21620 {
fc474241
DE
21621 /* Note: We don't create a macro table for this compilation unit
21622 at all until we actually get a filename. */
43f3e411 21623 struct macro_table *macro_table = get_macro_table ();
fc474241 21624
abc9d0dc
TT
21625 /* If we have no current file, then this must be the start_file
21626 directive for the compilation unit's main source file. */
fc474241
DE
21627 current_file = macro_set_main (macro_table, file_name);
21628 macro_define_special (macro_table);
abc9d0dc 21629 }
2e276125 21630 else
233d95b5 21631 current_file = macro_include (current_file, line, file_name);
2e276125 21632
233d95b5 21633 xfree (file_name);
6e70227d 21634
2e276125
JB
21635 return current_file;
21636}
21637
2e276125
JB
21638static const char *
21639consume_improper_spaces (const char *p, const char *body)
21640{
21641 if (*p == ' ')
21642 {
4d3c2250 21643 complaint (&symfile_complaints,
3e43a32a
MS
21644 _("macro definition contains spaces "
21645 "in formal argument list:\n`%s'"),
4d3c2250 21646 body);
2e276125
JB
21647
21648 while (*p == ' ')
21649 p++;
21650 }
21651
21652 return p;
21653}
21654
21655
21656static void
21657parse_macro_definition (struct macro_source_file *file, int line,
21658 const char *body)
21659{
21660 const char *p;
21661
21662 /* The body string takes one of two forms. For object-like macro
21663 definitions, it should be:
21664
21665 <macro name> " " <definition>
21666
21667 For function-like macro definitions, it should be:
21668
21669 <macro name> "() " <definition>
21670 or
21671 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21672
21673 Spaces may appear only where explicitly indicated, and in the
21674 <definition>.
21675
21676 The Dwarf 2 spec says that an object-like macro's name is always
21677 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21678 the space when the macro's definition is the empty string.
2e276125
JB
21679
21680 The Dwarf 2 spec says that there should be no spaces between the
21681 formal arguments in a function-like macro's formal argument list,
21682 but versions of GCC around March 2002 include spaces after the
21683 commas. */
21684
21685
21686 /* Find the extent of the macro name. The macro name is terminated
21687 by either a space or null character (for an object-like macro) or
21688 an opening paren (for a function-like macro). */
21689 for (p = body; *p; p++)
21690 if (*p == ' ' || *p == '(')
21691 break;
21692
21693 if (*p == ' ' || *p == '\0')
21694 {
21695 /* It's an object-like macro. */
21696 int name_len = p - body;
3f8a7804 21697 char *name = savestring (body, name_len);
2e276125
JB
21698 const char *replacement;
21699
21700 if (*p == ' ')
21701 replacement = body + name_len + 1;
21702 else
21703 {
4d3c2250 21704 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21705 replacement = body + name_len;
21706 }
6e70227d 21707
2e276125
JB
21708 macro_define_object (file, line, name, replacement);
21709
21710 xfree (name);
21711 }
21712 else if (*p == '(')
21713 {
21714 /* It's a function-like macro. */
3f8a7804 21715 char *name = savestring (body, p - body);
2e276125
JB
21716 int argc = 0;
21717 int argv_size = 1;
8d749320 21718 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21719
21720 p++;
21721
21722 p = consume_improper_spaces (p, body);
21723
21724 /* Parse the formal argument list. */
21725 while (*p && *p != ')')
21726 {
21727 /* Find the extent of the current argument name. */
21728 const char *arg_start = p;
21729
21730 while (*p && *p != ',' && *p != ')' && *p != ' ')
21731 p++;
21732
21733 if (! *p || p == arg_start)
4d3c2250 21734 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21735 else
21736 {
21737 /* Make sure argv has room for the new argument. */
21738 if (argc >= argv_size)
21739 {
21740 argv_size *= 2;
224c3ddb 21741 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21742 }
21743
3f8a7804 21744 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
21745 }
21746
21747 p = consume_improper_spaces (p, body);
21748
21749 /* Consume the comma, if present. */
21750 if (*p == ',')
21751 {
21752 p++;
21753
21754 p = consume_improper_spaces (p, body);
21755 }
21756 }
21757
21758 if (*p == ')')
21759 {
21760 p++;
21761
21762 if (*p == ' ')
21763 /* Perfectly formed definition, no complaints. */
21764 macro_define_function (file, line, name,
6e70227d 21765 argc, (const char **) argv,
2e276125
JB
21766 p + 1);
21767 else if (*p == '\0')
21768 {
21769 /* Complain, but do define it. */
4d3c2250 21770 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21771 macro_define_function (file, line, name,
6e70227d 21772 argc, (const char **) argv,
2e276125
JB
21773 p);
21774 }
21775 else
21776 /* Just complain. */
4d3c2250 21777 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21778 }
21779 else
21780 /* Just complain. */
4d3c2250 21781 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21782
21783 xfree (name);
21784 {
21785 int i;
21786
21787 for (i = 0; i < argc; i++)
21788 xfree (argv[i]);
21789 }
21790 xfree (argv);
21791 }
21792 else
4d3c2250 21793 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21794}
21795
cf2c3c16
TT
21796/* Skip some bytes from BYTES according to the form given in FORM.
21797 Returns the new pointer. */
2e276125 21798
d521ce57
TT
21799static const gdb_byte *
21800skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21801 enum dwarf_form form,
21802 unsigned int offset_size,
21803 struct dwarf2_section_info *section)
2e276125 21804{
cf2c3c16 21805 unsigned int bytes_read;
2e276125 21806
cf2c3c16 21807 switch (form)
2e276125 21808 {
cf2c3c16
TT
21809 case DW_FORM_data1:
21810 case DW_FORM_flag:
21811 ++bytes;
21812 break;
21813
21814 case DW_FORM_data2:
21815 bytes += 2;
21816 break;
21817
21818 case DW_FORM_data4:
21819 bytes += 4;
21820 break;
21821
21822 case DW_FORM_data8:
21823 bytes += 8;
21824 break;
21825
0224619f
JK
21826 case DW_FORM_data16:
21827 bytes += 16;
21828 break;
21829
cf2c3c16
TT
21830 case DW_FORM_string:
21831 read_direct_string (abfd, bytes, &bytes_read);
21832 bytes += bytes_read;
21833 break;
21834
21835 case DW_FORM_sec_offset:
21836 case DW_FORM_strp:
36586728 21837 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21838 bytes += offset_size;
21839 break;
21840
21841 case DW_FORM_block:
21842 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21843 bytes += bytes_read;
21844 break;
21845
21846 case DW_FORM_block1:
21847 bytes += 1 + read_1_byte (abfd, bytes);
21848 break;
21849 case DW_FORM_block2:
21850 bytes += 2 + read_2_bytes (abfd, bytes);
21851 break;
21852 case DW_FORM_block4:
21853 bytes += 4 + read_4_bytes (abfd, bytes);
21854 break;
21855
21856 case DW_FORM_sdata:
21857 case DW_FORM_udata:
3019eac3
DE
21858 case DW_FORM_GNU_addr_index:
21859 case DW_FORM_GNU_str_index:
d521ce57 21860 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21861 if (bytes == NULL)
21862 {
21863 dwarf2_section_buffer_overflow_complaint (section);
21864 return NULL;
21865 }
cf2c3c16
TT
21866 break;
21867
663c44ac
JK
21868 case DW_FORM_implicit_const:
21869 break;
21870
cf2c3c16
TT
21871 default:
21872 {
21873 complain:
21874 complaint (&symfile_complaints,
21875 _("invalid form 0x%x in `%s'"),
a32a8923 21876 form, get_section_name (section));
cf2c3c16
TT
21877 return NULL;
21878 }
2e276125
JB
21879 }
21880
cf2c3c16
TT
21881 return bytes;
21882}
757a13d0 21883
cf2c3c16
TT
21884/* A helper for dwarf_decode_macros that handles skipping an unknown
21885 opcode. Returns an updated pointer to the macro data buffer; or,
21886 on error, issues a complaint and returns NULL. */
757a13d0 21887
d521ce57 21888static const gdb_byte *
cf2c3c16 21889skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21890 const gdb_byte **opcode_definitions,
21891 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21892 bfd *abfd,
21893 unsigned int offset_size,
21894 struct dwarf2_section_info *section)
21895{
21896 unsigned int bytes_read, i;
21897 unsigned long arg;
d521ce57 21898 const gdb_byte *defn;
2e276125 21899
cf2c3c16 21900 if (opcode_definitions[opcode] == NULL)
2e276125 21901 {
cf2c3c16
TT
21902 complaint (&symfile_complaints,
21903 _("unrecognized DW_MACFINO opcode 0x%x"),
21904 opcode);
21905 return NULL;
21906 }
2e276125 21907
cf2c3c16
TT
21908 defn = opcode_definitions[opcode];
21909 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21910 defn += bytes_read;
2e276125 21911
cf2c3c16
TT
21912 for (i = 0; i < arg; ++i)
21913 {
aead7601
SM
21914 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21915 (enum dwarf_form) defn[i], offset_size,
f664829e 21916 section);
cf2c3c16
TT
21917 if (mac_ptr == NULL)
21918 {
21919 /* skip_form_bytes already issued the complaint. */
21920 return NULL;
21921 }
21922 }
757a13d0 21923
cf2c3c16
TT
21924 return mac_ptr;
21925}
757a13d0 21926
cf2c3c16
TT
21927/* A helper function which parses the header of a macro section.
21928 If the macro section is the extended (for now called "GNU") type,
21929 then this updates *OFFSET_SIZE. Returns a pointer to just after
21930 the header, or issues a complaint and returns NULL on error. */
757a13d0 21931
d521ce57
TT
21932static const gdb_byte *
21933dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21934 bfd *abfd,
d521ce57 21935 const gdb_byte *mac_ptr,
cf2c3c16
TT
21936 unsigned int *offset_size,
21937 int section_is_gnu)
21938{
21939 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21940
cf2c3c16
TT
21941 if (section_is_gnu)
21942 {
21943 unsigned int version, flags;
757a13d0 21944
cf2c3c16 21945 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21946 if (version != 4 && version != 5)
cf2c3c16
TT
21947 {
21948 complaint (&symfile_complaints,
21949 _("unrecognized version `%d' in .debug_macro section"),
21950 version);
21951 return NULL;
21952 }
21953 mac_ptr += 2;
757a13d0 21954
cf2c3c16
TT
21955 flags = read_1_byte (abfd, mac_ptr);
21956 ++mac_ptr;
21957 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21958
cf2c3c16
TT
21959 if ((flags & 2) != 0)
21960 /* We don't need the line table offset. */
21961 mac_ptr += *offset_size;
757a13d0 21962
cf2c3c16
TT
21963 /* Vendor opcode descriptions. */
21964 if ((flags & 4) != 0)
21965 {
21966 unsigned int i, count;
757a13d0 21967
cf2c3c16
TT
21968 count = read_1_byte (abfd, mac_ptr);
21969 ++mac_ptr;
21970 for (i = 0; i < count; ++i)
21971 {
21972 unsigned int opcode, bytes_read;
21973 unsigned long arg;
21974
21975 opcode = read_1_byte (abfd, mac_ptr);
21976 ++mac_ptr;
21977 opcode_definitions[opcode] = mac_ptr;
21978 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21979 mac_ptr += bytes_read;
21980 mac_ptr += arg;
21981 }
757a13d0 21982 }
cf2c3c16 21983 }
757a13d0 21984
cf2c3c16
TT
21985 return mac_ptr;
21986}
757a13d0 21987
cf2c3c16 21988/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 21989 including DW_MACRO_import. */
cf2c3c16
TT
21990
21991static void
d521ce57
TT
21992dwarf_decode_macro_bytes (bfd *abfd,
21993 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21994 struct macro_source_file *current_file,
43f3e411 21995 struct line_header *lh,
cf2c3c16 21996 struct dwarf2_section_info *section,
36586728 21997 int section_is_gnu, int section_is_dwz,
cf2c3c16 21998 unsigned int offset_size,
8fc3fc34 21999 htab_t include_hash)
cf2c3c16 22000{
4d663531 22001 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
22002 enum dwarf_macro_record_type macinfo_type;
22003 int at_commandline;
d521ce57 22004 const gdb_byte *opcode_definitions[256];
757a13d0 22005
cf2c3c16
TT
22006 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22007 &offset_size, section_is_gnu);
22008 if (mac_ptr == NULL)
22009 {
22010 /* We already issued a complaint. */
22011 return;
22012 }
757a13d0
JK
22013
22014 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22015 GDB is still reading the definitions from command line. First
22016 DW_MACINFO_start_file will need to be ignored as it was already executed
22017 to create CURRENT_FILE for the main source holding also the command line
22018 definitions. On first met DW_MACINFO_start_file this flag is reset to
22019 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22020
22021 at_commandline = 1;
22022
22023 do
22024 {
22025 /* Do we at least have room for a macinfo type byte? */
22026 if (mac_ptr >= mac_end)
22027 {
f664829e 22028 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
22029 break;
22030 }
22031
aead7601 22032 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
22033 mac_ptr++;
22034
cf2c3c16
TT
22035 /* Note that we rely on the fact that the corresponding GNU and
22036 DWARF constants are the same. */
757a13d0
JK
22037 switch (macinfo_type)
22038 {
22039 /* A zero macinfo type indicates the end of the macro
22040 information. */
22041 case 0:
22042 break;
2e276125 22043
0af92d60
JK
22044 case DW_MACRO_define:
22045 case DW_MACRO_undef:
22046 case DW_MACRO_define_strp:
22047 case DW_MACRO_undef_strp:
22048 case DW_MACRO_define_sup:
22049 case DW_MACRO_undef_sup:
2e276125 22050 {
891d2f0b 22051 unsigned int bytes_read;
2e276125 22052 int line;
d521ce57 22053 const char *body;
cf2c3c16 22054 int is_define;
2e276125 22055
cf2c3c16
TT
22056 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22057 mac_ptr += bytes_read;
22058
0af92d60
JK
22059 if (macinfo_type == DW_MACRO_define
22060 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22061 {
22062 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22063 mac_ptr += bytes_read;
22064 }
22065 else
22066 {
22067 LONGEST str_offset;
22068
22069 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22070 mac_ptr += offset_size;
2e276125 22071
0af92d60
JK
22072 if (macinfo_type == DW_MACRO_define_sup
22073 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22074 || section_is_dwz)
36586728
TT
22075 {
22076 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22077
22078 body = read_indirect_string_from_dwz (dwz, str_offset);
22079 }
22080 else
22081 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22082 }
22083
0af92d60
JK
22084 is_define = (macinfo_type == DW_MACRO_define
22085 || macinfo_type == DW_MACRO_define_strp
22086 || macinfo_type == DW_MACRO_define_sup);
2e276125 22087 if (! current_file)
757a13d0
JK
22088 {
22089 /* DWARF violation as no main source is present. */
22090 complaint (&symfile_complaints,
22091 _("debug info with no main source gives macro %s "
22092 "on line %d: %s"),
cf2c3c16
TT
22093 is_define ? _("definition") : _("undefinition"),
22094 line, body);
757a13d0
JK
22095 break;
22096 }
3e43a32a
MS
22097 if ((line == 0 && !at_commandline)
22098 || (line != 0 && at_commandline))
4d3c2250 22099 complaint (&symfile_complaints,
757a13d0
JK
22100 _("debug info gives %s macro %s with %s line %d: %s"),
22101 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22102 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22103 line == 0 ? _("zero") : _("non-zero"), line, body);
22104
cf2c3c16 22105 if (is_define)
757a13d0 22106 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22107 else
22108 {
0af92d60
JK
22109 gdb_assert (macinfo_type == DW_MACRO_undef
22110 || macinfo_type == DW_MACRO_undef_strp
22111 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22112 macro_undef (current_file, line, body);
22113 }
2e276125
JB
22114 }
22115 break;
22116
0af92d60 22117 case DW_MACRO_start_file:
2e276125 22118 {
891d2f0b 22119 unsigned int bytes_read;
2e276125
JB
22120 int line, file;
22121
22122 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22123 mac_ptr += bytes_read;
22124 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22125 mac_ptr += bytes_read;
22126
3e43a32a
MS
22127 if ((line == 0 && !at_commandline)
22128 || (line != 0 && at_commandline))
757a13d0
JK
22129 complaint (&symfile_complaints,
22130 _("debug info gives source %d included "
22131 "from %s at %s line %d"),
22132 file, at_commandline ? _("command-line") : _("file"),
22133 line == 0 ? _("zero") : _("non-zero"), line);
22134
22135 if (at_commandline)
22136 {
0af92d60 22137 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22138 pass one. */
757a13d0
JK
22139 at_commandline = 0;
22140 }
22141 else
43f3e411 22142 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22143 }
22144 break;
22145
0af92d60 22146 case DW_MACRO_end_file:
2e276125 22147 if (! current_file)
4d3c2250 22148 complaint (&symfile_complaints,
3e43a32a
MS
22149 _("macro debug info has an unmatched "
22150 "`close_file' directive"));
2e276125
JB
22151 else
22152 {
22153 current_file = current_file->included_by;
22154 if (! current_file)
22155 {
cf2c3c16 22156 enum dwarf_macro_record_type next_type;
2e276125
JB
22157
22158 /* GCC circa March 2002 doesn't produce the zero
22159 type byte marking the end of the compilation
22160 unit. Complain if it's not there, but exit no
22161 matter what. */
22162
22163 /* Do we at least have room for a macinfo type byte? */
22164 if (mac_ptr >= mac_end)
22165 {
f664829e 22166 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22167 return;
22168 }
22169
22170 /* We don't increment mac_ptr here, so this is just
22171 a look-ahead. */
aead7601
SM
22172 next_type
22173 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22174 mac_ptr);
2e276125 22175 if (next_type != 0)
4d3c2250 22176 complaint (&symfile_complaints,
3e43a32a
MS
22177 _("no terminating 0-type entry for "
22178 "macros in `.debug_macinfo' section"));
2e276125
JB
22179
22180 return;
22181 }
22182 }
22183 break;
22184
0af92d60
JK
22185 case DW_MACRO_import:
22186 case DW_MACRO_import_sup:
cf2c3c16
TT
22187 {
22188 LONGEST offset;
8fc3fc34 22189 void **slot;
a036ba48
TT
22190 bfd *include_bfd = abfd;
22191 struct dwarf2_section_info *include_section = section;
d521ce57 22192 const gdb_byte *include_mac_end = mac_end;
a036ba48 22193 int is_dwz = section_is_dwz;
d521ce57 22194 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22195
22196 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22197 mac_ptr += offset_size;
22198
0af92d60 22199 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22200 {
22201 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22202
4d663531 22203 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22204
a036ba48 22205 include_section = &dwz->macro;
a32a8923 22206 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22207 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22208 is_dwz = 1;
22209 }
22210
22211 new_mac_ptr = include_section->buffer + offset;
22212 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22213
8fc3fc34
TT
22214 if (*slot != NULL)
22215 {
22216 /* This has actually happened; see
22217 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22218 complaint (&symfile_complaints,
0af92d60 22219 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22220 ".debug_macro section"));
22221 }
22222 else
22223 {
d521ce57 22224 *slot = (void *) new_mac_ptr;
36586728 22225
a036ba48 22226 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22227 include_mac_end, current_file, lh,
36586728 22228 section, section_is_gnu, is_dwz,
4d663531 22229 offset_size, include_hash);
8fc3fc34 22230
d521ce57 22231 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22232 }
cf2c3c16
TT
22233 }
22234 break;
22235
2e276125 22236 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22237 if (!section_is_gnu)
22238 {
22239 unsigned int bytes_read;
2e276125 22240
ac298888
TT
22241 /* This reads the constant, but since we don't recognize
22242 any vendor extensions, we ignore it. */
22243 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22244 mac_ptr += bytes_read;
22245 read_direct_string (abfd, mac_ptr, &bytes_read);
22246 mac_ptr += bytes_read;
2e276125 22247
cf2c3c16
TT
22248 /* We don't recognize any vendor extensions. */
22249 break;
22250 }
22251 /* FALLTHROUGH */
22252
22253 default:
22254 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22255 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22256 section);
22257 if (mac_ptr == NULL)
22258 return;
22259 break;
2e276125 22260 }
757a13d0 22261 } while (macinfo_type != 0);
2e276125 22262}
8e19ed76 22263
cf2c3c16 22264static void
09262596 22265dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22266 int section_is_gnu)
cf2c3c16 22267{
bb5ed363 22268 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22269 struct line_header *lh = cu->line_header;
22270 bfd *abfd;
d521ce57 22271 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22272 struct macro_source_file *current_file = 0;
22273 enum dwarf_macro_record_type macinfo_type;
22274 unsigned int offset_size = cu->header.offset_size;
d521ce57 22275 const gdb_byte *opcode_definitions[256];
8fc3fc34 22276 void **slot;
09262596
DE
22277 struct dwarf2_section_info *section;
22278 const char *section_name;
22279
22280 if (cu->dwo_unit != NULL)
22281 {
22282 if (section_is_gnu)
22283 {
22284 section = &cu->dwo_unit->dwo_file->sections.macro;
22285 section_name = ".debug_macro.dwo";
22286 }
22287 else
22288 {
22289 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22290 section_name = ".debug_macinfo.dwo";
22291 }
22292 }
22293 else
22294 {
22295 if (section_is_gnu)
22296 {
22297 section = &dwarf2_per_objfile->macro;
22298 section_name = ".debug_macro";
22299 }
22300 else
22301 {
22302 section = &dwarf2_per_objfile->macinfo;
22303 section_name = ".debug_macinfo";
22304 }
22305 }
cf2c3c16 22306
bb5ed363 22307 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22308 if (section->buffer == NULL)
22309 {
fceca515 22310 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22311 return;
22312 }
a32a8923 22313 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22314
22315 /* First pass: Find the name of the base filename.
22316 This filename is needed in order to process all macros whose definition
22317 (or undefinition) comes from the command line. These macros are defined
22318 before the first DW_MACINFO_start_file entry, and yet still need to be
22319 associated to the base file.
22320
22321 To determine the base file name, we scan the macro definitions until we
22322 reach the first DW_MACINFO_start_file entry. We then initialize
22323 CURRENT_FILE accordingly so that any macro definition found before the
22324 first DW_MACINFO_start_file can still be associated to the base file. */
22325
22326 mac_ptr = section->buffer + offset;
22327 mac_end = section->buffer + section->size;
22328
22329 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22330 &offset_size, section_is_gnu);
22331 if (mac_ptr == NULL)
22332 {
22333 /* We already issued a complaint. */
22334 return;
22335 }
22336
22337 do
22338 {
22339 /* Do we at least have room for a macinfo type byte? */
22340 if (mac_ptr >= mac_end)
22341 {
22342 /* Complaint is printed during the second pass as GDB will probably
22343 stop the first pass earlier upon finding
22344 DW_MACINFO_start_file. */
22345 break;
22346 }
22347
aead7601 22348 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22349 mac_ptr++;
22350
22351 /* Note that we rely on the fact that the corresponding GNU and
22352 DWARF constants are the same. */
22353 switch (macinfo_type)
22354 {
22355 /* A zero macinfo type indicates the end of the macro
22356 information. */
22357 case 0:
22358 break;
22359
0af92d60
JK
22360 case DW_MACRO_define:
22361 case DW_MACRO_undef:
cf2c3c16
TT
22362 /* Only skip the data by MAC_PTR. */
22363 {
22364 unsigned int bytes_read;
22365
22366 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22367 mac_ptr += bytes_read;
22368 read_direct_string (abfd, mac_ptr, &bytes_read);
22369 mac_ptr += bytes_read;
22370 }
22371 break;
22372
0af92d60 22373 case DW_MACRO_start_file:
cf2c3c16
TT
22374 {
22375 unsigned int bytes_read;
22376 int line, file;
22377
22378 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22379 mac_ptr += bytes_read;
22380 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22381 mac_ptr += bytes_read;
22382
43f3e411 22383 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22384 }
22385 break;
22386
0af92d60 22387 case DW_MACRO_end_file:
cf2c3c16
TT
22388 /* No data to skip by MAC_PTR. */
22389 break;
22390
0af92d60
JK
22391 case DW_MACRO_define_strp:
22392 case DW_MACRO_undef_strp:
22393 case DW_MACRO_define_sup:
22394 case DW_MACRO_undef_sup:
cf2c3c16
TT
22395 {
22396 unsigned int bytes_read;
22397
22398 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22399 mac_ptr += bytes_read;
22400 mac_ptr += offset_size;
22401 }
22402 break;
22403
0af92d60
JK
22404 case DW_MACRO_import:
22405 case DW_MACRO_import_sup:
cf2c3c16 22406 /* Note that, according to the spec, a transparent include
0af92d60 22407 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22408 skip this opcode. */
22409 mac_ptr += offset_size;
22410 break;
22411
22412 case DW_MACINFO_vendor_ext:
22413 /* Only skip the data by MAC_PTR. */
22414 if (!section_is_gnu)
22415 {
22416 unsigned int bytes_read;
22417
22418 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22419 mac_ptr += bytes_read;
22420 read_direct_string (abfd, mac_ptr, &bytes_read);
22421 mac_ptr += bytes_read;
22422 }
22423 /* FALLTHROUGH */
22424
22425 default:
22426 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22427 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22428 section);
22429 if (mac_ptr == NULL)
22430 return;
22431 break;
22432 }
22433 } while (macinfo_type != 0 && current_file == NULL);
22434
22435 /* Second pass: Process all entries.
22436
22437 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22438 command-line macro definitions/undefinitions. This flag is unset when we
22439 reach the first DW_MACINFO_start_file entry. */
22440
fc4007c9
TT
22441 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22442 htab_eq_pointer,
22443 NULL, xcalloc, xfree));
8fc3fc34 22444 mac_ptr = section->buffer + offset;
fc4007c9 22445 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22446 *slot = (void *) mac_ptr;
8fc3fc34 22447 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22448 current_file, lh, section,
fc4007c9
TT
22449 section_is_gnu, 0, offset_size,
22450 include_hash.get ());
cf2c3c16
TT
22451}
22452
8e19ed76 22453/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22454 if so return true else false. */
380bca97 22455
8e19ed76 22456static int
6e5a29e1 22457attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22458{
22459 return (attr == NULL ? 0 :
22460 attr->form == DW_FORM_block1
22461 || attr->form == DW_FORM_block2
22462 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22463 || attr->form == DW_FORM_block
22464 || attr->form == DW_FORM_exprloc);
8e19ed76 22465}
4c2df51b 22466
c6a0999f
JB
22467/* Return non-zero if ATTR's value is a section offset --- classes
22468 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22469 You may use DW_UNSND (attr) to retrieve such offsets.
22470
22471 Section 7.5.4, "Attribute Encodings", explains that no attribute
22472 may have a value that belongs to more than one of these classes; it
22473 would be ambiguous if we did, because we use the same forms for all
22474 of them. */
380bca97 22475
3690dd37 22476static int
6e5a29e1 22477attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22478{
22479 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22480 || attr->form == DW_FORM_data8
22481 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22482}
22483
3690dd37
JB
22484/* Return non-zero if ATTR's value falls in the 'constant' class, or
22485 zero otherwise. When this function returns true, you can apply
22486 dwarf2_get_attr_constant_value to it.
22487
22488 However, note that for some attributes you must check
22489 attr_form_is_section_offset before using this test. DW_FORM_data4
22490 and DW_FORM_data8 are members of both the constant class, and of
22491 the classes that contain offsets into other debug sections
22492 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22493 that, if an attribute's can be either a constant or one of the
22494 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22495 taken as section offsets, not constants.
22496
22497 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22498 cannot handle that. */
380bca97 22499
3690dd37 22500static int
6e5a29e1 22501attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22502{
22503 switch (attr->form)
22504 {
22505 case DW_FORM_sdata:
22506 case DW_FORM_udata:
22507 case DW_FORM_data1:
22508 case DW_FORM_data2:
22509 case DW_FORM_data4:
22510 case DW_FORM_data8:
663c44ac 22511 case DW_FORM_implicit_const:
3690dd37
JB
22512 return 1;
22513 default:
22514 return 0;
22515 }
22516}
22517
7771576e
SA
22518
22519/* DW_ADDR is always stored already as sect_offset; despite for the forms
22520 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22521
22522static int
6e5a29e1 22523attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22524{
22525 switch (attr->form)
22526 {
22527 case DW_FORM_ref_addr:
22528 case DW_FORM_ref1:
22529 case DW_FORM_ref2:
22530 case DW_FORM_ref4:
22531 case DW_FORM_ref8:
22532 case DW_FORM_ref_udata:
22533 case DW_FORM_GNU_ref_alt:
22534 return 1;
22535 default:
22536 return 0;
22537 }
22538}
22539
3019eac3
DE
22540/* Return the .debug_loc section to use for CU.
22541 For DWO files use .debug_loc.dwo. */
22542
22543static struct dwarf2_section_info *
22544cu_debug_loc_section (struct dwarf2_cu *cu)
22545{
22546 if (cu->dwo_unit)
43988095
JK
22547 {
22548 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22549
22550 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22551 }
22552 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22553 : &dwarf2_per_objfile->loc);
3019eac3
DE
22554}
22555
8cf6f0b1
TT
22556/* A helper function that fills in a dwarf2_loclist_baton. */
22557
22558static void
22559fill_in_loclist_baton (struct dwarf2_cu *cu,
22560 struct dwarf2_loclist_baton *baton,
ff39bb5e 22561 const struct attribute *attr)
8cf6f0b1 22562{
3019eac3
DE
22563 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22564
22565 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22566
22567 baton->per_cu = cu->per_cu;
22568 gdb_assert (baton->per_cu);
22569 /* We don't know how long the location list is, but make sure we
22570 don't run off the edge of the section. */
3019eac3
DE
22571 baton->size = section->size - DW_UNSND (attr);
22572 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22573 baton->base_address = cu->base_address;
f664829e 22574 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22575}
22576
4c2df51b 22577static void
ff39bb5e 22578dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22579 struct dwarf2_cu *cu, int is_block)
4c2df51b 22580{
bb5ed363 22581 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22582 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22583
3690dd37 22584 if (attr_form_is_section_offset (attr)
3019eac3 22585 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22586 the section. If so, fall through to the complaint in the
22587 other branch. */
3019eac3 22588 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22589 {
0d53c4c4 22590 struct dwarf2_loclist_baton *baton;
4c2df51b 22591
8d749320 22592 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22593
8cf6f0b1 22594 fill_in_loclist_baton (cu, baton, attr);
be391dca 22595
d00adf39 22596 if (cu->base_known == 0)
0d53c4c4 22597 complaint (&symfile_complaints,
3e43a32a
MS
22598 _("Location list used without "
22599 "specifying the CU base address."));
4c2df51b 22600
f1e6e072
TT
22601 SYMBOL_ACLASS_INDEX (sym) = (is_block
22602 ? dwarf2_loclist_block_index
22603 : dwarf2_loclist_index);
0d53c4c4
DJ
22604 SYMBOL_LOCATION_BATON (sym) = baton;
22605 }
22606 else
22607 {
22608 struct dwarf2_locexpr_baton *baton;
22609
8d749320 22610 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22611 baton->per_cu = cu->per_cu;
22612 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22613
22614 if (attr_form_is_block (attr))
22615 {
22616 /* Note that we're just copying the block's data pointer
22617 here, not the actual data. We're still pointing into the
6502dd73
DJ
22618 info_buffer for SYM's objfile; right now we never release
22619 that buffer, but when we do clean up properly this may
22620 need to change. */
0d53c4c4
DJ
22621 baton->size = DW_BLOCK (attr)->size;
22622 baton->data = DW_BLOCK (attr)->data;
22623 }
22624 else
22625 {
22626 dwarf2_invalid_attrib_class_complaint ("location description",
22627 SYMBOL_NATURAL_NAME (sym));
22628 baton->size = 0;
0d53c4c4 22629 }
6e70227d 22630
f1e6e072
TT
22631 SYMBOL_ACLASS_INDEX (sym) = (is_block
22632 ? dwarf2_locexpr_block_index
22633 : dwarf2_locexpr_index);
0d53c4c4
DJ
22634 SYMBOL_LOCATION_BATON (sym) = baton;
22635 }
4c2df51b 22636}
6502dd73 22637
9aa1f1e3
TT
22638/* Return the OBJFILE associated with the compilation unit CU. If CU
22639 came from a separate debuginfo file, then the master objfile is
22640 returned. */
ae0d2f24
UW
22641
22642struct objfile *
22643dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22644{
9291a0cd 22645 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22646
22647 /* Return the master objfile, so that we can report and look up the
22648 correct file containing this variable. */
22649 if (objfile->separate_debug_objfile_backlink)
22650 objfile = objfile->separate_debug_objfile_backlink;
22651
22652 return objfile;
22653}
22654
96408a79
SA
22655/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22656 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22657 CU_HEADERP first. */
22658
22659static const struct comp_unit_head *
22660per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22661 struct dwarf2_per_cu_data *per_cu)
22662{
d521ce57 22663 const gdb_byte *info_ptr;
96408a79
SA
22664
22665 if (per_cu->cu)
22666 return &per_cu->cu->header;
22667
9c541725 22668 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22669
22670 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22671 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22672 rcuh_kind::COMPILE);
96408a79
SA
22673
22674 return cu_headerp;
22675}
22676
ae0d2f24
UW
22677/* Return the address size given in the compilation unit header for CU. */
22678
98714339 22679int
ae0d2f24
UW
22680dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22681{
96408a79
SA
22682 struct comp_unit_head cu_header_local;
22683 const struct comp_unit_head *cu_headerp;
c471e790 22684
96408a79
SA
22685 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22686
22687 return cu_headerp->addr_size;
ae0d2f24
UW
22688}
22689
9eae7c52
TT
22690/* Return the offset size given in the compilation unit header for CU. */
22691
22692int
22693dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22694{
96408a79
SA
22695 struct comp_unit_head cu_header_local;
22696 const struct comp_unit_head *cu_headerp;
9c6c53f7 22697
96408a79
SA
22698 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22699
22700 return cu_headerp->offset_size;
22701}
22702
22703/* See its dwarf2loc.h declaration. */
22704
22705int
22706dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22707{
22708 struct comp_unit_head cu_header_local;
22709 const struct comp_unit_head *cu_headerp;
22710
22711 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22712
22713 if (cu_headerp->version == 2)
22714 return cu_headerp->addr_size;
22715 else
22716 return cu_headerp->offset_size;
181cebd4
JK
22717}
22718
9aa1f1e3
TT
22719/* Return the text offset of the CU. The returned offset comes from
22720 this CU's objfile. If this objfile came from a separate debuginfo
22721 file, then the offset may be different from the corresponding
22722 offset in the parent objfile. */
22723
22724CORE_ADDR
22725dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22726{
bb3fa9d0 22727 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22728
22729 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22730}
22731
43988095
JK
22732/* Return DWARF version number of PER_CU. */
22733
22734short
22735dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22736{
22737 return per_cu->dwarf_version;
22738}
22739
348e048f
DE
22740/* Locate the .debug_info compilation unit from CU's objfile which contains
22741 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22742
22743static struct dwarf2_per_cu_data *
9c541725 22744dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22745 unsigned int offset_in_dwz,
ae038cb0
DJ
22746 struct objfile *objfile)
22747{
22748 struct dwarf2_per_cu_data *this_cu;
22749 int low, high;
36586728 22750 const sect_offset *cu_off;
ae038cb0 22751
ae038cb0
DJ
22752 low = 0;
22753 high = dwarf2_per_objfile->n_comp_units - 1;
22754 while (high > low)
22755 {
36586728 22756 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22757 int mid = low + (high - low) / 2;
9a619af0 22758
36586728 22759 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22760 cu_off = &mid_cu->sect_off;
36586728 22761 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22762 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22763 high = mid;
22764 else
22765 low = mid + 1;
22766 }
22767 gdb_assert (low == high);
36586728 22768 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22769 cu_off = &this_cu->sect_off;
22770 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22771 {
36586728 22772 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22773 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22774 "offset 0x%x [in module %s]"),
22775 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22776
9c541725
PA
22777 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22778 <= sect_off);
ae038cb0
DJ
22779 return dwarf2_per_objfile->all_comp_units[low-1];
22780 }
22781 else
22782 {
22783 this_cu = dwarf2_per_objfile->all_comp_units[low];
22784 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22785 && sect_off >= this_cu->sect_off + this_cu->length)
22786 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22787 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22788 return this_cu;
22789 }
22790}
22791
23745b47 22792/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22793
9816fde3 22794static void
23745b47 22795init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22796{
9816fde3 22797 memset (cu, 0, sizeof (*cu));
23745b47
DE
22798 per_cu->cu = cu;
22799 cu->per_cu = per_cu;
22800 cu->objfile = per_cu->objfile;
93311388 22801 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22802}
22803
22804/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22805
22806static void
95554aad
TT
22807prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22808 enum language pretend_language)
9816fde3
JK
22809{
22810 struct attribute *attr;
22811
22812 /* Set the language we're debugging. */
22813 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22814 if (attr)
22815 set_cu_language (DW_UNSND (attr), cu);
22816 else
9cded63f 22817 {
95554aad 22818 cu->language = pretend_language;
9cded63f
TT
22819 cu->language_defn = language_def (cu->language);
22820 }
dee91e82 22821
7d45c7c3 22822 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22823}
22824
ae038cb0
DJ
22825/* Release one cached compilation unit, CU. We unlink it from the tree
22826 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22827 the caller is responsible for that.
22828 NOTE: DATA is a void * because this function is also used as a
22829 cleanup routine. */
ae038cb0
DJ
22830
22831static void
68dc6402 22832free_heap_comp_unit (void *data)
ae038cb0 22833{
9a3c8263 22834 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22835
23745b47
DE
22836 gdb_assert (cu->per_cu != NULL);
22837 cu->per_cu->cu = NULL;
ae038cb0
DJ
22838 cu->per_cu = NULL;
22839
22840 obstack_free (&cu->comp_unit_obstack, NULL);
22841
22842 xfree (cu);
22843}
22844
72bf9492 22845/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22846 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22847 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22848
22849static void
22850free_stack_comp_unit (void *data)
22851{
9a3c8263 22852 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22853
23745b47
DE
22854 gdb_assert (cu->per_cu != NULL);
22855 cu->per_cu->cu = NULL;
22856 cu->per_cu = NULL;
22857
72bf9492
DJ
22858 obstack_free (&cu->comp_unit_obstack, NULL);
22859 cu->partial_dies = NULL;
ae038cb0
DJ
22860}
22861
22862/* Free all cached compilation units. */
22863
22864static void
22865free_cached_comp_units (void *data)
22866{
330cdd98 22867 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22868}
22869
22870/* Increase the age counter on each cached compilation unit, and free
22871 any that are too old. */
22872
22873static void
22874age_cached_comp_units (void)
22875{
22876 struct dwarf2_per_cu_data *per_cu, **last_chain;
22877
22878 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22879 per_cu = dwarf2_per_objfile->read_in_chain;
22880 while (per_cu != NULL)
22881 {
22882 per_cu->cu->last_used ++;
b4f54984 22883 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22884 dwarf2_mark (per_cu->cu);
22885 per_cu = per_cu->cu->read_in_chain;
22886 }
22887
22888 per_cu = dwarf2_per_objfile->read_in_chain;
22889 last_chain = &dwarf2_per_objfile->read_in_chain;
22890 while (per_cu != NULL)
22891 {
22892 struct dwarf2_per_cu_data *next_cu;
22893
22894 next_cu = per_cu->cu->read_in_chain;
22895
22896 if (!per_cu->cu->mark)
22897 {
68dc6402 22898 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22899 *last_chain = next_cu;
22900 }
22901 else
22902 last_chain = &per_cu->cu->read_in_chain;
22903
22904 per_cu = next_cu;
22905 }
22906}
22907
22908/* Remove a single compilation unit from the cache. */
22909
22910static void
dee91e82 22911free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22912{
22913 struct dwarf2_per_cu_data *per_cu, **last_chain;
22914
22915 per_cu = dwarf2_per_objfile->read_in_chain;
22916 last_chain = &dwarf2_per_objfile->read_in_chain;
22917 while (per_cu != NULL)
22918 {
22919 struct dwarf2_per_cu_data *next_cu;
22920
22921 next_cu = per_cu->cu->read_in_chain;
22922
dee91e82 22923 if (per_cu == target_per_cu)
ae038cb0 22924 {
68dc6402 22925 free_heap_comp_unit (per_cu->cu);
dee91e82 22926 per_cu->cu = NULL;
ae038cb0
DJ
22927 *last_chain = next_cu;
22928 break;
22929 }
22930 else
22931 last_chain = &per_cu->cu->read_in_chain;
22932
22933 per_cu = next_cu;
22934 }
22935}
22936
fe3e1990
DJ
22937/* Release all extra memory associated with OBJFILE. */
22938
22939void
22940dwarf2_free_objfile (struct objfile *objfile)
22941{
9a3c8263
SM
22942 dwarf2_per_objfile
22943 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22944 dwarf2_objfile_data_key);
fe3e1990
DJ
22945
22946 if (dwarf2_per_objfile == NULL)
22947 return;
22948
330cdd98 22949 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
22950}
22951
dee91e82
DE
22952/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22953 We store these in a hash table separate from the DIEs, and preserve them
22954 when the DIEs are flushed out of cache.
22955
22956 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22957 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22958 or the type may come from a DWO file. Furthermore, while it's more logical
22959 to use per_cu->section+offset, with Fission the section with the data is in
22960 the DWO file but we don't know that section at the point we need it.
22961 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22962 because we can enter the lookup routine, get_die_type_at_offset, from
22963 outside this file, and thus won't necessarily have PER_CU->cu.
22964 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22965
dee91e82 22966struct dwarf2_per_cu_offset_and_type
1c379e20 22967{
dee91e82 22968 const struct dwarf2_per_cu_data *per_cu;
9c541725 22969 sect_offset sect_off;
1c379e20
DJ
22970 struct type *type;
22971};
22972
dee91e82 22973/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22974
22975static hashval_t
dee91e82 22976per_cu_offset_and_type_hash (const void *item)
1c379e20 22977{
9a3c8263
SM
22978 const struct dwarf2_per_cu_offset_and_type *ofs
22979 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22980
9c541725 22981 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
22982}
22983
dee91e82 22984/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22985
22986static int
dee91e82 22987per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22988{
9a3c8263
SM
22989 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22990 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22991 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22992 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22993
dee91e82 22994 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 22995 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
22996}
22997
22998/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22999 table if necessary. For convenience, return TYPE.
23000
23001 The DIEs reading must have careful ordering to:
23002 * Not cause infite loops trying to read in DIEs as a prerequisite for
23003 reading current DIE.
23004 * Not trying to dereference contents of still incompletely read in types
23005 while reading in other DIEs.
23006 * Enable referencing still incompletely read in types just by a pointer to
23007 the type without accessing its fields.
23008
23009 Therefore caller should follow these rules:
23010 * Try to fetch any prerequisite types we may need to build this DIE type
23011 before building the type and calling set_die_type.
e71ec853 23012 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
23013 possible before fetching more types to complete the current type.
23014 * Make the type as complete as possible before fetching more types. */
1c379e20 23015
f792889a 23016static struct type *
1c379e20
DJ
23017set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23018{
dee91e82 23019 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 23020 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
23021 struct attribute *attr;
23022 struct dynamic_prop prop;
1c379e20 23023
b4ba55a1
JB
23024 /* For Ada types, make sure that the gnat-specific data is always
23025 initialized (if not already set). There are a few types where
23026 we should not be doing so, because the type-specific area is
23027 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23028 where the type-specific area is used to store the floatformat).
23029 But this is not a problem, because the gnat-specific information
23030 is actually not needed for these types. */
23031 if (need_gnat_info (cu)
23032 && TYPE_CODE (type) != TYPE_CODE_FUNC
23033 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
23034 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23035 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23036 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
23037 && !HAVE_GNAT_AUX_INFO (type))
23038 INIT_GNAT_SPECIFIC (type);
23039
3f2f83dd
KB
23040 /* Read DW_AT_allocated and set in type. */
23041 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23042 if (attr_form_is_block (attr))
23043 {
23044 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23045 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23046 }
23047 else if (attr != NULL)
23048 {
23049 complaint (&symfile_complaints,
9c541725
PA
23050 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23051 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23052 to_underlying (die->sect_off));
3f2f83dd
KB
23053 }
23054
23055 /* Read DW_AT_associated and set in type. */
23056 attr = dwarf2_attr (die, DW_AT_associated, cu);
23057 if (attr_form_is_block (attr))
23058 {
23059 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23060 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23061 }
23062 else if (attr != NULL)
23063 {
23064 complaint (&symfile_complaints,
9c541725
PA
23065 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23066 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23067 to_underlying (die->sect_off));
3f2f83dd
KB
23068 }
23069
3cdcd0ce
JB
23070 /* Read DW_AT_data_location and set in type. */
23071 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23072 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23073 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23074
dee91e82 23075 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23076 {
dee91e82
DE
23077 dwarf2_per_objfile->die_type_hash =
23078 htab_create_alloc_ex (127,
23079 per_cu_offset_and_type_hash,
23080 per_cu_offset_and_type_eq,
23081 NULL,
23082 &objfile->objfile_obstack,
23083 hashtab_obstack_allocate,
23084 dummy_obstack_deallocate);
f792889a 23085 }
1c379e20 23086
dee91e82 23087 ofs.per_cu = cu->per_cu;
9c541725 23088 ofs.sect_off = die->sect_off;
1c379e20 23089 ofs.type = type;
dee91e82
DE
23090 slot = (struct dwarf2_per_cu_offset_and_type **)
23091 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23092 if (*slot)
23093 complaint (&symfile_complaints,
23094 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23095 to_underlying (die->sect_off));
8d749320
SM
23096 *slot = XOBNEW (&objfile->objfile_obstack,
23097 struct dwarf2_per_cu_offset_and_type);
1c379e20 23098 **slot = ofs;
f792889a 23099 return type;
1c379e20
DJ
23100}
23101
9c541725 23102/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23103 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23104
23105static struct type *
9c541725 23106get_die_type_at_offset (sect_offset sect_off,
673bfd45 23107 struct dwarf2_per_cu_data *per_cu)
1c379e20 23108{
dee91e82 23109 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23110
dee91e82 23111 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23112 return NULL;
1c379e20 23113
dee91e82 23114 ofs.per_cu = per_cu;
9c541725 23115 ofs.sect_off = sect_off;
9a3c8263
SM
23116 slot = ((struct dwarf2_per_cu_offset_and_type *)
23117 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23118 if (slot)
23119 return slot->type;
23120 else
23121 return NULL;
23122}
23123
02142a6c 23124/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23125 or return NULL if DIE does not have a saved type. */
23126
23127static struct type *
23128get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23129{
9c541725 23130 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23131}
23132
10b3939b
DJ
23133/* Add a dependence relationship from CU to REF_PER_CU. */
23134
23135static void
23136dwarf2_add_dependence (struct dwarf2_cu *cu,
23137 struct dwarf2_per_cu_data *ref_per_cu)
23138{
23139 void **slot;
23140
23141 if (cu->dependencies == NULL)
23142 cu->dependencies
23143 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23144 NULL, &cu->comp_unit_obstack,
23145 hashtab_obstack_allocate,
23146 dummy_obstack_deallocate);
23147
23148 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23149 if (*slot == NULL)
23150 *slot = ref_per_cu;
23151}
1c379e20 23152
f504f079
DE
23153/* Subroutine of dwarf2_mark to pass to htab_traverse.
23154 Set the mark field in every compilation unit in the
ae038cb0
DJ
23155 cache that we must keep because we are keeping CU. */
23156
10b3939b
DJ
23157static int
23158dwarf2_mark_helper (void **slot, void *data)
23159{
23160 struct dwarf2_per_cu_data *per_cu;
23161
23162 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23163
23164 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23165 reading of the chain. As such dependencies remain valid it is not much
23166 useful to track and undo them during QUIT cleanups. */
23167 if (per_cu->cu == NULL)
23168 return 1;
23169
10b3939b
DJ
23170 if (per_cu->cu->mark)
23171 return 1;
23172 per_cu->cu->mark = 1;
23173
23174 if (per_cu->cu->dependencies != NULL)
23175 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23176
23177 return 1;
23178}
23179
f504f079
DE
23180/* Set the mark field in CU and in every other compilation unit in the
23181 cache that we must keep because we are keeping CU. */
23182
ae038cb0
DJ
23183static void
23184dwarf2_mark (struct dwarf2_cu *cu)
23185{
23186 if (cu->mark)
23187 return;
23188 cu->mark = 1;
10b3939b
DJ
23189 if (cu->dependencies != NULL)
23190 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23191}
23192
23193static void
23194dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23195{
23196 while (per_cu)
23197 {
23198 per_cu->cu->mark = 0;
23199 per_cu = per_cu->cu->read_in_chain;
23200 }
72bf9492
DJ
23201}
23202
72bf9492
DJ
23203/* Trivial hash function for partial_die_info: the hash value of a DIE
23204 is its offset in .debug_info for this objfile. */
23205
23206static hashval_t
23207partial_die_hash (const void *item)
23208{
9a3c8263
SM
23209 const struct partial_die_info *part_die
23210 = (const struct partial_die_info *) item;
9a619af0 23211
9c541725 23212 return to_underlying (part_die->sect_off);
72bf9492
DJ
23213}
23214
23215/* Trivial comparison function for partial_die_info structures: two DIEs
23216 are equal if they have the same offset. */
23217
23218static int
23219partial_die_eq (const void *item_lhs, const void *item_rhs)
23220{
9a3c8263
SM
23221 const struct partial_die_info *part_die_lhs
23222 = (const struct partial_die_info *) item_lhs;
23223 const struct partial_die_info *part_die_rhs
23224 = (const struct partial_die_info *) item_rhs;
9a619af0 23225
9c541725 23226 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23227}
23228
b4f54984
DE
23229static struct cmd_list_element *set_dwarf_cmdlist;
23230static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23231
23232static void
981a3fb3 23233set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 23234{
b4f54984 23235 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23236 gdb_stdout);
ae038cb0
DJ
23237}
23238
23239static void
981a3fb3 23240show_dwarf_cmd (const char *args, int from_tty)
6e70227d 23241{
b4f54984 23242 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23243}
23244
4bf44c1c 23245/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23246
23247static void
c1bd65d0 23248dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23249{
9a3c8263 23250 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23251 int ix;
8b70b953 23252
626f2d1c
TT
23253 /* Make sure we don't accidentally use dwarf2_per_objfile while
23254 cleaning up. */
23255 dwarf2_per_objfile = NULL;
23256
59b0c7c1
JB
23257 for (ix = 0; ix < data->n_comp_units; ++ix)
23258 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23259
59b0c7c1 23260 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23261 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23262 data->all_type_units[ix]->per_cu.imported_symtabs);
23263 xfree (data->all_type_units);
95554aad 23264
8b70b953 23265 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23266
23267 if (data->dwo_files)
23268 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23269 if (data->dwp_file)
23270 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23271
23272 if (data->dwz_file && data->dwz_file->dwz_bfd)
23273 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23274}
23275
23276\f
ae2de4f8 23277/* The "save gdb-index" command. */
9291a0cd 23278
bc8f2430
JK
23279/* In-memory buffer to prepare data to be written later to a file. */
23280class data_buf
9291a0cd 23281{
bc8f2430 23282public:
bc8f2430
JK
23283 /* Copy DATA to the end of the buffer. */
23284 template<typename T>
23285 void append_data (const T &data)
23286 {
23287 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23288 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23289 grow (sizeof (data)));
bc8f2430 23290 }
b89be57b 23291
c2f134ac
PA
23292 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23293 terminating zero is appended too. */
bc8f2430
JK
23294 void append_cstr0 (const char *cstr)
23295 {
23296 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23297 std::copy (cstr, cstr + size, grow (size));
23298 }
23299
23300 /* Accept a host-format integer in VAL and append it to the buffer
23301 as a target-format integer which is LEN bytes long. */
23302 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23303 {
23304 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23305 }
9291a0cd 23306
bc8f2430
JK
23307 /* Return the size of the buffer. */
23308 size_t size () const
23309 {
23310 return m_vec.size ();
23311 }
23312
23313 /* Write the buffer to FILE. */
23314 void file_write (FILE *file) const
23315 {
a81e6d4d
PA
23316 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23317 error (_("couldn't write data to file"));
bc8f2430
JK
23318 }
23319
23320private:
c2f134ac
PA
23321 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23322 the start of the new block. */
23323 gdb_byte *grow (size_t size)
23324 {
23325 m_vec.resize (m_vec.size () + size);
23326 return &*m_vec.end () - size;
23327 }
23328
d5722aa2 23329 gdb::byte_vector m_vec;
bc8f2430 23330};
9291a0cd
TT
23331
23332/* An entry in the symbol table. */
23333struct symtab_index_entry
23334{
23335 /* The name of the symbol. */
23336 const char *name;
23337 /* The offset of the name in the constant pool. */
23338 offset_type index_offset;
23339 /* A sorted vector of the indices of all the CUs that hold an object
23340 of this name. */
bc8f2430 23341 std::vector<offset_type> cu_indices;
9291a0cd
TT
23342};
23343
23344/* The symbol table. This is a power-of-2-sized hash table. */
23345struct mapped_symtab
23346{
bc8f2430
JK
23347 mapped_symtab ()
23348 {
23349 data.resize (1024);
23350 }
b89be57b 23351
bc8f2430 23352 offset_type n_elements = 0;
4b76cda9 23353 std::vector<symtab_index_entry> data;
bc8f2430 23354};
9291a0cd 23355
bc8f2430 23356/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23357 the slot.
23358
23359 Function is used only during write_hash_table so no index format backward
23360 compatibility is needed. */
b89be57b 23361
4b76cda9 23362static symtab_index_entry &
9291a0cd
TT
23363find_slot (struct mapped_symtab *symtab, const char *name)
23364{
559a7a62 23365 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23366
bc8f2430
JK
23367 index = hash & (symtab->data.size () - 1);
23368 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23369
23370 for (;;)
23371 {
4b76cda9
PA
23372 if (symtab->data[index].name == NULL
23373 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23374 return symtab->data[index];
23375 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23376 }
23377}
23378
23379/* Expand SYMTAB's hash table. */
b89be57b 23380
9291a0cd
TT
23381static void
23382hash_expand (struct mapped_symtab *symtab)
23383{
bc8f2430 23384 auto old_entries = std::move (symtab->data);
9291a0cd 23385
bc8f2430
JK
23386 symtab->data.clear ();
23387 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23388
bc8f2430 23389 for (auto &it : old_entries)
4b76cda9 23390 if (it.name != NULL)
bc8f2430 23391 {
4b76cda9 23392 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23393 ref = std::move (it);
23394 }
9291a0cd
TT
23395}
23396
156942c7
DE
23397/* Add an entry to SYMTAB. NAME is the name of the symbol.
23398 CU_INDEX is the index of the CU in which the symbol appears.
23399 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23400
9291a0cd
TT
23401static void
23402add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23403 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23404 offset_type cu_index)
23405{
156942c7 23406 offset_type cu_index_and_attrs;
9291a0cd
TT
23407
23408 ++symtab->n_elements;
bc8f2430 23409 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23410 hash_expand (symtab);
23411
4b76cda9
PA
23412 symtab_index_entry &slot = find_slot (symtab, name);
23413 if (slot.name == NULL)
9291a0cd 23414 {
4b76cda9 23415 slot.name = name;
156942c7 23416 /* index_offset is set later. */
9291a0cd 23417 }
156942c7
DE
23418
23419 cu_index_and_attrs = 0;
23420 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23421 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23422 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23423
23424 /* We don't want to record an index value twice as we want to avoid the
23425 duplication.
23426 We process all global symbols and then all static symbols
23427 (which would allow us to avoid the duplication by only having to check
23428 the last entry pushed), but a symbol could have multiple kinds in one CU.
23429 To keep things simple we don't worry about the duplication here and
23430 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23431 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23432}
23433
23434/* Sort and remove duplicates of all symbols' cu_indices lists. */
23435
23436static void
23437uniquify_cu_indices (struct mapped_symtab *symtab)
23438{
4b76cda9 23439 for (auto &entry : symtab->data)
156942c7 23440 {
4b76cda9 23441 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23442 {
4b76cda9 23443 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23444 std::sort (cu_indices.begin (), cu_indices.end ());
23445 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23446 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23447 }
23448 }
9291a0cd
TT
23449}
23450
bc8f2430
JK
23451/* A form of 'const char *' suitable for container keys. Only the
23452 pointer is stored. The strings themselves are compared, not the
23453 pointers. */
23454class c_str_view
9291a0cd 23455{
bc8f2430
JK
23456public:
23457 c_str_view (const char *cstr)
23458 : m_cstr (cstr)
23459 {}
9291a0cd 23460
bc8f2430
JK
23461 bool operator== (const c_str_view &other) const
23462 {
23463 return strcmp (m_cstr, other.m_cstr) == 0;
23464 }
9291a0cd 23465
bc8f2430
JK
23466private:
23467 friend class c_str_view_hasher;
23468 const char *const m_cstr;
23469};
9291a0cd 23470
bc8f2430
JK
23471/* A std::unordered_map::hasher for c_str_view that uses the right
23472 hash function for strings in a mapped index. */
23473class c_str_view_hasher
23474{
23475public:
23476 size_t operator () (const c_str_view &x) const
23477 {
23478 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23479 }
23480};
b89be57b 23481
bc8f2430
JK
23482/* A std::unordered_map::hasher for std::vector<>. */
23483template<typename T>
23484class vector_hasher
9291a0cd 23485{
bc8f2430
JK
23486public:
23487 size_t operator () (const std::vector<T> &key) const
23488 {
23489 return iterative_hash (key.data (),
23490 sizeof (key.front ()) * key.size (), 0);
23491 }
23492};
9291a0cd 23493
bc8f2430
JK
23494/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23495 constant pool entries going into the data buffer CPOOL. */
3876f04e 23496
bc8f2430
JK
23497static void
23498write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23499{
23500 {
23501 /* Elements are sorted vectors of the indices of all the CUs that
23502 hold an object of this name. */
23503 std::unordered_map<std::vector<offset_type>, offset_type,
23504 vector_hasher<offset_type>>
23505 symbol_hash_table;
23506
23507 /* We add all the index vectors to the constant pool first, to
23508 ensure alignment is ok. */
4b76cda9 23509 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23510 {
4b76cda9 23511 if (entry.name == NULL)
bc8f2430 23512 continue;
4b76cda9 23513 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23514
23515 /* Finding before inserting is faster than always trying to
23516 insert, because inserting always allocates a node, does the
23517 lookup, and then destroys the new node if another node
23518 already had the same key. C++17 try_emplace will avoid
23519 this. */
23520 const auto found
4b76cda9 23521 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23522 if (found != symbol_hash_table.end ())
23523 {
4b76cda9 23524 entry.index_offset = found->second;
70a1152b
PA
23525 continue;
23526 }
23527
4b76cda9
PA
23528 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23529 entry.index_offset = cpool.size ();
23530 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23531 for (const auto index : entry.cu_indices)
23532 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23533 }
23534 }
9291a0cd
TT
23535
23536 /* Now write out the hash table. */
bc8f2430 23537 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23538 for (const auto &entry : symtab->data)
9291a0cd
TT
23539 {
23540 offset_type str_off, vec_off;
23541
4b76cda9 23542 if (entry.name != NULL)
9291a0cd 23543 {
4b76cda9 23544 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23545 if (insertpair.second)
4b76cda9 23546 cpool.append_cstr0 (entry.name);
bc8f2430 23547 str_off = insertpair.first->second;
4b76cda9 23548 vec_off = entry.index_offset;
9291a0cd
TT
23549 }
23550 else
23551 {
23552 /* While 0 is a valid constant pool index, it is not valid
23553 to have 0 for both offsets. */
23554 str_off = 0;
23555 vec_off = 0;
23556 }
23557
bc8f2430
JK
23558 output.append_data (MAYBE_SWAP (str_off));
23559 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23560 }
9291a0cd
TT
23561}
23562
bc8f2430 23563typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23564
23565/* Helper struct for building the address table. */
23566struct addrmap_index_data
23567{
bc8f2430
JK
23568 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23569 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23570 {}
23571
0a5429f6 23572 struct objfile *objfile;
bc8f2430
JK
23573 data_buf &addr_vec;
23574 psym_index_map &cu_index_htab;
0a5429f6
DE
23575
23576 /* Non-zero if the previous_* fields are valid.
23577 We can't write an entry until we see the next entry (since it is only then
23578 that we know the end of the entry). */
23579 int previous_valid;
23580 /* Index of the CU in the table of all CUs in the index file. */
23581 unsigned int previous_cu_index;
0963b4bd 23582 /* Start address of the CU. */
0a5429f6
DE
23583 CORE_ADDR previous_cu_start;
23584};
23585
bc8f2430 23586/* Write an address entry to ADDR_VEC. */
b89be57b 23587
9291a0cd 23588static void
bc8f2430 23589add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23590 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23591{
9291a0cd
TT
23592 CORE_ADDR baseaddr;
23593
23594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23595
c2f134ac
PA
23596 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23597 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23598 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23599}
23600
23601/* Worker function for traversing an addrmap to build the address table. */
23602
23603static int
23604add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23605{
9a3c8263
SM
23606 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23607 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23608
23609 if (data->previous_valid)
bc8f2430 23610 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23611 data->previous_cu_start, start_addr,
23612 data->previous_cu_index);
23613
23614 data->previous_cu_start = start_addr;
23615 if (pst != NULL)
23616 {
bc8f2430
JK
23617 const auto it = data->cu_index_htab.find (pst);
23618 gdb_assert (it != data->cu_index_htab.cend ());
23619 data->previous_cu_index = it->second;
0a5429f6
DE
23620 data->previous_valid = 1;
23621 }
23622 else
bc8f2430 23623 data->previous_valid = 0;
0a5429f6
DE
23624
23625 return 0;
23626}
23627
bc8f2430 23628/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23629 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23630 in the index file. */
23631
23632static void
bc8f2430
JK
23633write_address_map (struct objfile *objfile, data_buf &addr_vec,
23634 psym_index_map &cu_index_htab)
0a5429f6 23635{
bc8f2430 23636 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23637
23638 /* When writing the address table, we have to cope with the fact that
23639 the addrmap iterator only provides the start of a region; we have to
23640 wait until the next invocation to get the start of the next region. */
23641
23642 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23643 addrmap_index_data.previous_valid = 0;
23644
23645 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23646 &addrmap_index_data);
23647
23648 /* It's highly unlikely the last entry (end address = 0xff...ff)
23649 is valid, but we should still handle it.
23650 The end address is recorded as the start of the next region, but that
23651 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23652 anyway. */
23653 if (addrmap_index_data.previous_valid)
bc8f2430 23654 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23655 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23656 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23657}
23658
156942c7
DE
23659/* Return the symbol kind of PSYM. */
23660
23661static gdb_index_symbol_kind
23662symbol_kind (struct partial_symbol *psym)
23663{
23664 domain_enum domain = PSYMBOL_DOMAIN (psym);
23665 enum address_class aclass = PSYMBOL_CLASS (psym);
23666
23667 switch (domain)
23668 {
23669 case VAR_DOMAIN:
23670 switch (aclass)
23671 {
23672 case LOC_BLOCK:
23673 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23674 case LOC_TYPEDEF:
23675 return GDB_INDEX_SYMBOL_KIND_TYPE;
23676 case LOC_COMPUTED:
23677 case LOC_CONST_BYTES:
23678 case LOC_OPTIMIZED_OUT:
23679 case LOC_STATIC:
23680 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23681 case LOC_CONST:
23682 /* Note: It's currently impossible to recognize psyms as enum values
23683 short of reading the type info. For now punt. */
23684 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23685 default:
23686 /* There are other LOC_FOO values that one might want to classify
23687 as variables, but dwarf2read.c doesn't currently use them. */
23688 return GDB_INDEX_SYMBOL_KIND_OTHER;
23689 }
23690 case STRUCT_DOMAIN:
23691 return GDB_INDEX_SYMBOL_KIND_TYPE;
23692 default:
23693 return GDB_INDEX_SYMBOL_KIND_OTHER;
23694 }
23695}
23696
9291a0cd 23697/* Add a list of partial symbols to SYMTAB. */
b89be57b 23698
9291a0cd
TT
23699static void
23700write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23701 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23702 struct partial_symbol **psymp,
23703 int count,
987d643c
TT
23704 offset_type cu_index,
23705 int is_static)
9291a0cd
TT
23706{
23707 for (; count-- > 0; ++psymp)
23708 {
156942c7 23709 struct partial_symbol *psym = *psymp;
987d643c 23710
156942c7 23711 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23712 error (_("Ada is not currently supported by the index"));
987d643c 23713
987d643c 23714 /* Only add a given psymbol once. */
bc8f2430 23715 if (psyms_seen.insert (psym).second)
987d643c 23716 {
156942c7
DE
23717 gdb_index_symbol_kind kind = symbol_kind (psym);
23718
156942c7
DE
23719 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23720 is_static, kind, cu_index);
987d643c 23721 }
9291a0cd
TT
23722 }
23723}
23724
1fd400ff
TT
23725/* A helper struct used when iterating over debug_types. */
23726struct signatured_type_index_data
23727{
bc8f2430
JK
23728 signatured_type_index_data (data_buf &types_list_,
23729 std::unordered_set<partial_symbol *> &psyms_seen_)
23730 : types_list (types_list_), psyms_seen (psyms_seen_)
23731 {}
23732
1fd400ff
TT
23733 struct objfile *objfile;
23734 struct mapped_symtab *symtab;
bc8f2430
JK
23735 data_buf &types_list;
23736 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23737 int cu_index;
23738};
23739
23740/* A helper function that writes a single signatured_type to an
23741 obstack. */
b89be57b 23742
1fd400ff
TT
23743static int
23744write_one_signatured_type (void **slot, void *d)
23745{
9a3c8263
SM
23746 struct signatured_type_index_data *info
23747 = (struct signatured_type_index_data *) d;
1fd400ff 23748 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23749 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23750
23751 write_psymbols (info->symtab,
987d643c 23752 info->psyms_seen,
af5bf4ad 23753 &info->objfile->global_psymbols[psymtab->globals_offset],
987d643c
TT
23754 psymtab->n_global_syms, info->cu_index,
23755 0);
1fd400ff 23756 write_psymbols (info->symtab,
987d643c 23757 info->psyms_seen,
af5bf4ad 23758 &info->objfile->static_psymbols[psymtab->statics_offset],
987d643c
TT
23759 psymtab->n_static_syms, info->cu_index,
23760 1);
1fd400ff 23761
c2f134ac
PA
23762 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23763 to_underlying (entry->per_cu.sect_off));
23764 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23765 to_underlying (entry->type_offset_in_tu));
23766 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23767
23768 ++info->cu_index;
23769
23770 return 1;
23771}
23772
e8f8bcb3
PA
23773/* Recurse into all "included" dependencies and count their symbols as
23774 if they appeared in this psymtab. */
23775
23776static void
23777recursively_count_psymbols (struct partial_symtab *psymtab,
23778 size_t &psyms_seen)
23779{
23780 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23781 if (psymtab->dependencies[i]->user != NULL)
23782 recursively_count_psymbols (psymtab->dependencies[i],
23783 psyms_seen);
23784
23785 psyms_seen += psymtab->n_global_syms;
23786 psyms_seen += psymtab->n_static_syms;
23787}
23788
95554aad
TT
23789/* Recurse into all "included" dependencies and write their symbols as
23790 if they appeared in this psymtab. */
23791
23792static void
23793recursively_write_psymbols (struct objfile *objfile,
23794 struct partial_symtab *psymtab,
23795 struct mapped_symtab *symtab,
bc8f2430 23796 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23797 offset_type cu_index)
23798{
23799 int i;
23800
23801 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23802 if (psymtab->dependencies[i]->user != NULL)
23803 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23804 symtab, psyms_seen, cu_index);
23805
23806 write_psymbols (symtab,
23807 psyms_seen,
af5bf4ad 23808 &objfile->global_psymbols[psymtab->globals_offset],
95554aad
TT
23809 psymtab->n_global_syms, cu_index,
23810 0);
23811 write_psymbols (symtab,
23812 psyms_seen,
af5bf4ad 23813 &objfile->static_psymbols[psymtab->statics_offset],
95554aad
TT
23814 psymtab->n_static_syms, cu_index,
23815 1);
23816}
23817
9291a0cd 23818/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23819
9291a0cd
TT
23820static void
23821write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23822{
9291a0cd
TT
23823 if (dwarf2_per_objfile->using_index)
23824 error (_("Cannot use an index to create the index"));
23825
8b70b953
TT
23826 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23827 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23828
260b681b
DE
23829 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23830 return;
23831
bc8f2430 23832 struct stat st;
4262abfb
JK
23833 if (stat (objfile_name (objfile), &st) < 0)
23834 perror_with_name (objfile_name (objfile));
9291a0cd 23835
bc8f2430
JK
23836 std::string filename (std::string (dir) + SLASH_STRING
23837 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23838
d419f42d 23839 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
9291a0cd 23840 if (!out_file)
bc8f2430 23841 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23842
16b7a719
PA
23843 /* Order matters here; we want FILE to be closed before FILENAME is
23844 unlinked, because on MS-Windows one cannot delete a file that is
23845 still open. (Don't call anything here that might throw until
23846 file_closer is created.) */
bc8f2430 23847 gdb::unlinker unlink_file (filename.c_str ());
d419f42d 23848 gdb_file_up close_out_file (out_file);
9291a0cd 23849
bc8f2430
JK
23850 mapped_symtab symtab;
23851 data_buf cu_list;
987d643c 23852
0a5429f6
DE
23853 /* While we're scanning CU's create a table that maps a psymtab pointer
23854 (which is what addrmap records) to its index (which is what is recorded
23855 in the index file). This will later be needed to write the address
23856 table. */
bc8f2430
JK
23857 psym_index_map cu_index_htab;
23858 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23859
23860 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23861 work here. Also, the debug_types entries do not appear in
23862 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23863
23864 /* The psyms_seen set is potentially going to be largish (~40k
23865 elements when indexing a -g3 build of GDB itself). Estimate the
23866 number of elements in order to avoid too many rehashes, which
23867 require rebuilding buckets and thus many trips to
23868 malloc/free. */
23869 size_t psyms_count = 0;
23870 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23871 {
23872 struct dwarf2_per_cu_data *per_cu
23873 = dwarf2_per_objfile->all_comp_units[i];
23874 struct partial_symtab *psymtab = per_cu->v.psymtab;
23875
23876 if (psymtab != NULL && psymtab->user == NULL)
23877 recursively_count_psymbols (psymtab, psyms_count);
23878 }
23879 /* Generating an index for gdb itself shows a ratio of
23880 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23881 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23882 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23883 {
3e43a32a
MS
23884 struct dwarf2_per_cu_data *per_cu
23885 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23886 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23887
92fac807
JK
23888 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23889 It may be referenced from a local scope but in such case it does not
23890 need to be present in .gdb_index. */
23891 if (psymtab == NULL)
23892 continue;
23893
95554aad 23894 if (psymtab->user == NULL)
bc8f2430
JK
23895 recursively_write_psymbols (objfile, psymtab, &symtab,
23896 psyms_seen, i);
9291a0cd 23897
bc8f2430
JK
23898 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23899 gdb_assert (insertpair.second);
9291a0cd 23900
c2f134ac
PA
23901 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23902 to_underlying (per_cu->sect_off));
23903 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23904 }
23905
0a5429f6 23906 /* Dump the address map. */
bc8f2430
JK
23907 data_buf addr_vec;
23908 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23909
1fd400ff 23910 /* Write out the .debug_type entries, if any. */
bc8f2430 23911 data_buf types_cu_list;
1fd400ff
TT
23912 if (dwarf2_per_objfile->signatured_types)
23913 {
bc8f2430
JK
23914 signatured_type_index_data sig_data (types_cu_list,
23915 psyms_seen);
1fd400ff
TT
23916
23917 sig_data.objfile = objfile;
bc8f2430 23918 sig_data.symtab = &symtab;
1fd400ff
TT
23919 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23920 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23921 write_one_signatured_type, &sig_data);
23922 }
23923
156942c7
DE
23924 /* Now that we've processed all symbols we can shrink their cu_indices
23925 lists. */
bc8f2430 23926 uniquify_cu_indices (&symtab);
156942c7 23927
bc8f2430
JK
23928 data_buf symtab_vec, constant_pool;
23929 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 23930
bc8f2430
JK
23931 data_buf contents;
23932 const offset_type size_of_contents = 6 * sizeof (offset_type);
23933 offset_type total_len = size_of_contents;
9291a0cd
TT
23934
23935 /* The version number. */
bc8f2430 23936 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
23937
23938 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
23939 contents.append_data (MAYBE_SWAP (total_len));
23940 total_len += cu_list.size ();
9291a0cd 23941
1fd400ff 23942 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
23943 contents.append_data (MAYBE_SWAP (total_len));
23944 total_len += types_cu_list.size ();
1fd400ff 23945
9291a0cd 23946 /* The offset of the address table from the start of the file. */
bc8f2430
JK
23947 contents.append_data (MAYBE_SWAP (total_len));
23948 total_len += addr_vec.size ();
9291a0cd
TT
23949
23950 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
23951 contents.append_data (MAYBE_SWAP (total_len));
23952 total_len += symtab_vec.size ();
9291a0cd
TT
23953
23954 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
23955 contents.append_data (MAYBE_SWAP (total_len));
23956 total_len += constant_pool.size ();
9291a0cd 23957
bc8f2430 23958 gdb_assert (contents.size () == size_of_contents);
9291a0cd 23959
bc8f2430
JK
23960 contents.file_write (out_file);
23961 cu_list.file_write (out_file);
23962 types_cu_list.file_write (out_file);
23963 addr_vec.file_write (out_file);
23964 symtab_vec.file_write (out_file);
23965 constant_pool.file_write (out_file);
9291a0cd 23966
bef155c3
TT
23967 /* We want to keep the file. */
23968 unlink_file.keep ();
9291a0cd
TT
23969}
23970
90476074
TT
23971/* Implementation of the `save gdb-index' command.
23972
23973 Note that the file format used by this command is documented in the
23974 GDB manual. Any changes here must be documented there. */
11570e71 23975
9291a0cd 23976static void
8384c356 23977save_gdb_index_command (const char *arg, int from_tty)
9291a0cd
TT
23978{
23979 struct objfile *objfile;
23980
23981 if (!arg || !*arg)
96d19272 23982 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23983
23984 ALL_OBJFILES (objfile)
23985 {
23986 struct stat st;
23987
23988 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23989 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23990 continue;
23991
9a3c8263
SM
23992 dwarf2_per_objfile
23993 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23994 dwarf2_objfile_data_key);
9291a0cd
TT
23995 if (dwarf2_per_objfile)
23996 {
9291a0cd 23997
492d29ea 23998 TRY
9291a0cd
TT
23999 {
24000 write_psymtabs_to_index (objfile, arg);
24001 }
492d29ea
PA
24002 CATCH (except, RETURN_MASK_ERROR)
24003 {
24004 exception_fprintf (gdb_stderr, except,
24005 _("Error while writing index for `%s': "),
24006 objfile_name (objfile));
24007 }
24008 END_CATCH
9291a0cd
TT
24009 }
24010 }
dce234bc
PP
24011}
24012
9291a0cd
TT
24013\f
24014
b4f54984 24015int dwarf_always_disassemble;
9eae7c52
TT
24016
24017static void
b4f54984
DE
24018show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24019 struct cmd_list_element *c, const char *value)
9eae7c52 24020{
3e43a32a
MS
24021 fprintf_filtered (file,
24022 _("Whether to always disassemble "
24023 "DWARF expressions is %s.\n"),
9eae7c52
TT
24024 value);
24025}
24026
900e11f9
JK
24027static void
24028show_check_physname (struct ui_file *file, int from_tty,
24029 struct cmd_list_element *c, const char *value)
24030{
24031 fprintf_filtered (file,
24032 _("Whether to check \"physname\" is %s.\n"),
24033 value);
24034}
24035
6502dd73
DJ
24036void
24037_initialize_dwarf2_read (void)
24038{
96d19272
JK
24039 struct cmd_list_element *c;
24040
dce234bc 24041 dwarf2_objfile_data_key
c1bd65d0 24042 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24043
b4f54984
DE
24044 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24045Set DWARF specific variables.\n\
24046Configure DWARF variables such as the cache size"),
24047 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24048 0/*allow-unknown*/, &maintenance_set_cmdlist);
24049
b4f54984
DE
24050 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24051Show DWARF specific variables\n\
24052Show DWARF variables such as the cache size"),
24053 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24054 0/*allow-unknown*/, &maintenance_show_cmdlist);
24055
24056 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24057 &dwarf_max_cache_age, _("\
24058Set the upper bound on the age of cached DWARF compilation units."), _("\
24059Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24060A higher limit means that cached compilation units will be stored\n\
24061in memory longer, and more total memory will be used. Zero disables\n\
24062caching, which can slow down startup."),
2c5b56ce 24063 NULL,
b4f54984
DE
24064 show_dwarf_max_cache_age,
24065 &set_dwarf_cmdlist,
24066 &show_dwarf_cmdlist);
d97bc12b 24067
9eae7c52 24068 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24069 &dwarf_always_disassemble, _("\
9eae7c52
TT
24070Set whether `info address' always disassembles DWARF expressions."), _("\
24071Show whether `info address' always disassembles DWARF expressions."), _("\
24072When enabled, DWARF expressions are always printed in an assembly-like\n\
24073syntax. When disabled, expressions will be printed in a more\n\
24074conversational style, when possible."),
24075 NULL,
b4f54984
DE
24076 show_dwarf_always_disassemble,
24077 &set_dwarf_cmdlist,
24078 &show_dwarf_cmdlist);
24079
24080 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24081Set debugging of the DWARF reader."), _("\
24082Show debugging of the DWARF reader."), _("\
24083When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24084reading and symtab expansion. A value of 1 (one) provides basic\n\
24085information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24086 NULL,
24087 NULL,
24088 &setdebuglist, &showdebuglist);
24089
b4f54984
DE
24090 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24091Set debugging of the DWARF DIE reader."), _("\
24092Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24093When enabled (non-zero), DIEs are dumped after they are read in.\n\
24094The value is the maximum depth to print."),
ccce17b0
YQ
24095 NULL,
24096 NULL,
24097 &setdebuglist, &showdebuglist);
9291a0cd 24098
27e0867f
DE
24099 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24100Set debugging of the dwarf line reader."), _("\
24101Show debugging of the dwarf line reader."), _("\
24102When enabled (non-zero), line number entries are dumped as they are read in.\n\
24103A value of 1 (one) provides basic information.\n\
24104A value greater than 1 provides more verbose information."),
24105 NULL,
24106 NULL,
24107 &setdebuglist, &showdebuglist);
24108
900e11f9
JK
24109 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24110Set cross-checking of \"physname\" code against demangler."), _("\
24111Show cross-checking of \"physname\" code against demangler."), _("\
24112When enabled, GDB's internal \"physname\" code is checked against\n\
24113the demangler."),
24114 NULL, show_check_physname,
24115 &setdebuglist, &showdebuglist);
24116
e615022a
DE
24117 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24118 no_class, &use_deprecated_index_sections, _("\
24119Set whether to use deprecated gdb_index sections."), _("\
24120Show whether to use deprecated gdb_index sections."), _("\
24121When enabled, deprecated .gdb_index sections are used anyway.\n\
24122Normally they are ignored either because of a missing feature or\n\
24123performance issue.\n\
24124Warning: This option must be enabled before gdb reads the file."),
24125 NULL,
24126 NULL,
24127 &setlist, &showlist);
24128
96d19272 24129 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24130 _("\
fc1a9d6e 24131Save a gdb-index file.\n\
11570e71 24132Usage: save gdb-index DIRECTORY"),
96d19272
JK
24133 &save_cmdlist);
24134 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24135
24136 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24137 &dwarf2_locexpr_funcs);
24138 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24139 &dwarf2_loclist_funcs);
24140
24141 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24142 &dwarf2_block_frame_base_locexpr_funcs);
24143 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24144 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24145}
This page took 4.058458 seconds and 4 git commands to generate.