* gdb.opt/clobbered-registers-O2.c: New testcase source file.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca
DJ
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
a9762ec7
JB
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
c906108c 19
a9762ec7
JB
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
c906108c 24
c5aa993b 25 You should have received a copy of the GNU General Public License
a9762ec7 26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
27
28#include "defs.h"
29#include "bfd.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
c906108c
SS
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
d5166ae1 37#include "filenames.h" /* for DOSish file names */
2e276125 38#include "macrotab.h"
c906108c
SS
39#include "language.h"
40#include "complaints.h"
357e46e7 41#include "bcache.h"
4c2df51b
DJ
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
9219021c 44#include "cp-support.h"
72bf9492 45#include "hashtab.h"
ae038cb0
DJ
46#include "command.h"
47#include "gdbcmd.h"
4c2df51b 48
c906108c
SS
49#include <fcntl.h>
50#include "gdb_string.h"
4bdf3d34 51#include "gdb_assert.h"
c906108c
SS
52#include <sys/types.h>
53
d8151005
DJ
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
107d2387 68#if 0
357e46e7 69/* .debug_info header for a compilation unit
c906108c
SS
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81_COMP_UNIT_HEADER;
82#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 83#endif
c906108c
SS
84
85/* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98_PUBNAMES_HEADER;
99#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101/* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114_ARANGES_HEADER;
115#define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117/* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138_STATEMENT_PROLOGUE;
139
6502dd73
DJ
140static const struct objfile_data *dwarf2_objfile_data_key;
141
142struct dwarf2_per_objfile
143{
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
fe1b8b76
JB
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
ae038cb0 165
10b3939b
DJ
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
ae038cb0
DJ
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
6502dd73
DJ
180};
181
182static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 183
086df311
DJ
184static asection *dwarf_info_section;
185static asection *dwarf_abbrev_section;
186static asection *dwarf_line_section;
187static asection *dwarf_pubnames_section;
188static asection *dwarf_aranges_section;
189static asection *dwarf_loc_section;
190static asection *dwarf_macinfo_section;
191static asection *dwarf_str_section;
192static asection *dwarf_ranges_section;
193asection *dwarf_frame_section;
194asection *dwarf_eh_frame_section;
195
c906108c
SS
196/* names of the debugging sections */
197
198#define INFO_SECTION ".debug_info"
199#define ABBREV_SECTION ".debug_abbrev"
200#define LINE_SECTION ".debug_line"
201#define PUBNAMES_SECTION ".debug_pubnames"
202#define ARANGES_SECTION ".debug_aranges"
203#define LOC_SECTION ".debug_loc"
204#define MACINFO_SECTION ".debug_macinfo"
205#define STR_SECTION ".debug_str"
af34e669 206#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
207#define FRAME_SECTION ".debug_frame"
208#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
209
210/* local data types */
211
57349743
JB
212/* We hold several abbreviation tables in memory at the same time. */
213#ifndef ABBREV_HASH_SIZE
214#define ABBREV_HASH_SIZE 121
215#endif
216
107d2387
AC
217/* The data in a compilation unit header, after target2host
218 translation, looks like this. */
c906108c 219struct comp_unit_head
a738430d
MK
220{
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
57349743 226
a738430d
MK
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
57349743 229
a738430d
MK
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
57349743 232
a738430d
MK
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
57349743 236
a738430d
MK
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
fe1b8b76 239 gdb_byte *cu_head_ptr;
57349743 240
a738430d
MK
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
fe1b8b76 243 gdb_byte *first_die_ptr;
af34e669 244
a738430d
MK
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
0d53c4c4 247
a738430d
MK
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
0d53c4c4 250
a738430d
MK
251 /* Non-zero if base_address has been set. */
252 int base_known;
253};
c906108c 254
10b3939b
DJ
255/* Fixed size for the DIE hash table. */
256#ifndef REF_HASH_SIZE
257#define REF_HASH_SIZE 1021
258#endif
259
e7c27a73
DJ
260/* Internal state when decoding a particular compilation unit. */
261struct dwarf2_cu
262{
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 269 should logically be moved to the dwarf2_cu structure. */
e7c27a73 270 struct comp_unit_head header;
e142c38c
DJ
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
b0f35d58
DL
278 const char *producer;
279
e142c38c
DJ
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* Maintain an array of referenced fundamental types for the current
292 compilation unit being read. For DWARF version 1, we have to construct
293 the fundamental types on the fly, since no information about the
294 fundamental types is supplied. Each such fundamental type is created by
295 calling a language dependent routine to create the type, and then a
296 pointer to that type is then placed in the array at the index specified
297 by it's FT_<TYPENAME> value. The array has a fixed size set by the
298 FT_NUM_MEMBERS compile time constant, which is the number of predefined
299 fundamental types gdb knows how to construct. */
300 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
301
302 /* DWARF abbreviation table associated with this compilation unit. */
303 struct abbrev_info **dwarf2_abbrevs;
304
305 /* Storage for the abbrev table. */
306 struct obstack abbrev_obstack;
72bf9492
DJ
307
308 /* Hash table holding all the loaded partial DIEs. */
309 htab_t partial_dies;
310
311 /* Storage for things with the same lifetime as this read-in compilation
312 unit, including partial DIEs. */
313 struct obstack comp_unit_obstack;
314
ae038cb0
DJ
315 /* When multiple dwarf2_cu structures are living in memory, this field
316 chains them all together, so that they can be released efficiently.
317 We will probably also want a generation counter so that most-recently-used
318 compilation units are cached... */
319 struct dwarf2_per_cu_data *read_in_chain;
320
321 /* Backchain to our per_cu entry if the tree has been built. */
322 struct dwarf2_per_cu_data *per_cu;
323
324 /* How many compilation units ago was this CU last referenced? */
325 int last_used;
326
10b3939b
DJ
327 /* A hash table of die offsets for following references. */
328 struct die_info *die_ref_table[REF_HASH_SIZE];
329
330 /* Full DIEs if read in. */
331 struct die_info *dies;
332
333 /* A set of pointers to dwarf2_per_cu_data objects for compilation
334 units referenced by this one. Only set during full symbol processing;
335 partial symbol tables do not have dependencies. */
336 htab_t dependencies;
337
cb1df416
DJ
338 /* Header data from the line table, during full symbol processing. */
339 struct line_header *line_header;
340
ae038cb0
DJ
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
72bf9492
DJ
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
e7c27a73
DJ
353};
354
10b3939b
DJ
355/* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
ae038cb0
DJ
361struct dwarf2_per_cu_data
362{
5afb4e99 363 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
5afb4e99 367 unsigned long length : 30;
ae038cb0
DJ
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
5afb4e99
DJ
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
ae038cb0
DJ
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
1c379e20
DJ
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
1c379e20 386 htab_t type_hash;
10b3939b 387
31ffec48
DJ
388 /* The partial symbol table associated with this compilation unit,
389 or NULL for partial units (which do not have an associated
390 symtab). */
10b3939b 391 struct partial_symtab *psymtab;
ae038cb0
DJ
392};
393
debd256d
JB
394/* The line number information for a compilation unit (found in the
395 .debug_line section) begins with a "statement program header",
396 which contains the following information. */
397struct line_header
398{
399 unsigned int total_length;
400 unsigned short version;
401 unsigned int header_length;
402 unsigned char minimum_instruction_length;
403 unsigned char default_is_stmt;
404 int line_base;
405 unsigned char line_range;
406 unsigned char opcode_base;
407
408 /* standard_opcode_lengths[i] is the number of operands for the
409 standard opcode whose value is i. This means that
410 standard_opcode_lengths[0] is unused, and the last meaningful
411 element is standard_opcode_lengths[opcode_base - 1]. */
412 unsigned char *standard_opcode_lengths;
413
414 /* The include_directories table. NOTE! These strings are not
415 allocated with xmalloc; instead, they are pointers into
416 debug_line_buffer. If you try to free them, `free' will get
417 indigestion. */
418 unsigned int num_include_dirs, include_dirs_size;
419 char **include_dirs;
420
421 /* The file_names table. NOTE! These strings are not allocated
422 with xmalloc; instead, they are pointers into debug_line_buffer.
423 Don't try to free them directly. */
424 unsigned int num_file_names, file_names_size;
425 struct file_entry
c906108c 426 {
debd256d
JB
427 char *name;
428 unsigned int dir_index;
429 unsigned int mod_time;
430 unsigned int length;
aaa75496 431 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 432 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
433 } *file_names;
434
435 /* The start and end of the statement program following this
6502dd73 436 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 437 gdb_byte *statement_program_start, *statement_program_end;
debd256d 438};
c906108c
SS
439
440/* When we construct a partial symbol table entry we only
441 need this much information. */
442struct partial_die_info
443 {
72bf9492 444 /* Offset of this DIE. */
c906108c 445 unsigned int offset;
72bf9492
DJ
446
447 /* DWARF-2 tag for this DIE. */
448 ENUM_BITFIELD(dwarf_tag) tag : 16;
449
450 /* Language code associated with this DIE. This is only used
451 for the compilation unit DIE. */
452 unsigned int language : 8;
453
454 /* Assorted flags describing the data found in this DIE. */
455 unsigned int has_children : 1;
456 unsigned int is_external : 1;
457 unsigned int is_declaration : 1;
458 unsigned int has_type : 1;
459 unsigned int has_specification : 1;
aaa75496 460 unsigned int has_stmt_list : 1;
72bf9492
DJ
461 unsigned int has_pc_info : 1;
462
463 /* Flag set if the SCOPE field of this structure has been
464 computed. */
465 unsigned int scope_set : 1;
466
fa4028e9
JB
467 /* Flag set if the DIE has a byte_size attribute. */
468 unsigned int has_byte_size : 1;
469
72bf9492
DJ
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
c906108c 473 char *name;
57c22c6c 474 char *dirname;
72bf9492
DJ
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
72bf9492
DJ
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
fe1b8b76 490 gdb_byte *sibling;
72bf9492
DJ
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
aaa75496
JB
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
72bf9492
DJ
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
503 };
504
505/* This data structure holds the information of an abbrev. */
506struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
c906108c
SS
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522/* This data structure holds a complete die structure. */
523struct die_info
524 {
c5aa993b 525 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
639d11d3
DC
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
78ba4af6 540
c5aa993b 541 struct type *type; /* Cached type information */
c906108c
SS
542 };
543
544/* Attributes have a name and a value */
545struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
ce5d95e1
JB
553 unsigned long unsnd;
554 long int snd;
c906108c
SS
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
5fb290d7
DJ
560struct function_range
561{
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566};
567
c906108c
SS
568/* Get at parts of an attribute structure */
569
570#define DW_STRING(attr) ((attr)->u.str)
571#define DW_UNSND(attr) ((attr)->u.unsnd)
572#define DW_BLOCK(attr) ((attr)->u.blk)
573#define DW_SND(attr) ((attr)->u.snd)
574#define DW_ADDR(attr) ((attr)->u.addr)
575
576/* Blocks are a bunch of untyped bytes. */
577struct dwarf_block
578 {
579 unsigned int size;
fe1b8b76 580 gdb_byte *data;
c906108c
SS
581 };
582
c906108c
SS
583#ifndef ATTR_ALLOC_CHUNK
584#define ATTR_ALLOC_CHUNK 4
585#endif
586
c906108c
SS
587/* Allocate fields for structs, unions and enums in this size. */
588#ifndef DW_FIELD_ALLOC_CHUNK
589#define DW_FIELD_ALLOC_CHUNK 4
590#endif
591
c906108c
SS
592/* A zeroed version of a partial die for initialization purposes. */
593static struct partial_die_info zeroed_partial_die;
594
c906108c
SS
595/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598static int bits_per_byte = 8;
599
600/* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603struct field_info
c5aa993b
JM
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
c906108c 614
c5aa993b
JM
615 /* Number of fields. */
616 int nfields;
c906108c 617
c5aa993b
JM
618 /* Number of baseclasses. */
619 int nbaseclasses;
c906108c 620
c5aa993b
JM
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
c906108c 623
c5aa993b
JM
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
c906108c 632
c5aa993b
JM
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
c906108c 643
c5aa993b
JM
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
c906108c 647
10b3939b
DJ
648/* One item on the queue of compilation units to read in full symbols
649 for. */
650struct dwarf2_queue_item
651{
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654};
655
656/* The current queue. */
657static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
ae038cb0
DJ
659/* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664static int dwarf2_max_cache_age = 5;
920d2a44
AC
665static void
666show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668{
669 fprintf_filtered (file, _("\
670The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672}
673
ae038cb0 674
c906108c
SS
675/* Various complaints about symbol reading that don't abort the process */
676
4d3c2250
KB
677static void
678dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 679{
4d3c2250 680 complaint (&symfile_complaints,
e2e0b3e5 681 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
682}
683
25e43795
DJ
684static void
685dwarf2_debug_line_missing_file_complaint (void)
686{
687 complaint (&symfile_complaints,
688 _(".debug_line section has line data without a file"));
689}
690
4d3c2250
KB
691static void
692dwarf2_complex_location_expr_complaint (void)
2e276125 693{
e2e0b3e5 694 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
695}
696
4d3c2250
KB
697static void
698dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
699 int arg3)
2e276125 700{
4d3c2250 701 complaint (&symfile_complaints,
e2e0b3e5 702 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
703 arg2, arg3);
704}
705
706static void
707dwarf2_macros_too_long_complaint (void)
2e276125 708{
4d3c2250 709 complaint (&symfile_complaints,
e2e0b3e5 710 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
711}
712
713static void
714dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 715{
4d3c2250 716 complaint (&symfile_complaints,
e2e0b3e5 717 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
718 arg1);
719}
720
721static void
722dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 723{
4d3c2250 724 complaint (&symfile_complaints,
e2e0b3e5 725 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 726}
c906108c 727
c906108c
SS
728/* local function prototypes */
729
4efb68b1 730static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
731
732#if 0
a14ed312 733static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
734#endif
735
aaa75496
JB
736static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
737 struct objfile *);
738
739static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
740 struct partial_die_info *,
741 struct partial_symtab *);
742
a14ed312 743static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 744
72bf9492
DJ
745static void scan_partial_symbols (struct partial_die_info *,
746 CORE_ADDR *, CORE_ADDR *,
747 struct dwarf2_cu *);
c906108c 748
72bf9492
DJ
749static void add_partial_symbol (struct partial_die_info *,
750 struct dwarf2_cu *);
63d06c5c 751
72bf9492 752static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 753
72bf9492
DJ
754static void add_partial_namespace (struct partial_die_info *pdi,
755 CORE_ADDR *lowpc, CORE_ADDR *highpc,
756 struct dwarf2_cu *cu);
63d06c5c 757
72bf9492
DJ
758static void add_partial_enumeration (struct partial_die_info *enum_pdi,
759 struct dwarf2_cu *cu);
91c24f0a 760
fe1b8b76
JB
761static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
762 gdb_byte *info_ptr,
763 bfd *abfd,
764 struct dwarf2_cu *cu);
91c24f0a 765
a14ed312 766static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 767
a14ed312 768static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 769
fe1b8b76 770gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 771
e7c27a73 772static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 773
f3dd6933 774static void dwarf2_free_abbrev_table (void *);
c906108c 775
fe1b8b76 776static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 777 struct dwarf2_cu *);
72bf9492 778
57349743 779static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 780 struct dwarf2_cu *);
c906108c 781
fe1b8b76 782static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
783 struct dwarf2_cu *);
784
fe1b8b76
JB
785static gdb_byte *read_partial_die (struct partial_die_info *,
786 struct abbrev_info *abbrev, unsigned int,
787 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 788
72bf9492 789static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 790 struct dwarf2_cu *);
72bf9492
DJ
791
792static void fixup_partial_die (struct partial_die_info *,
793 struct dwarf2_cu *);
794
fe1b8b76
JB
795static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
796 struct dwarf2_cu *, int *);
c906108c 797
fe1b8b76
JB
798static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
799 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 800
fe1b8b76
JB
801static gdb_byte *read_attribute_value (struct attribute *, unsigned,
802 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 803
fe1b8b76 804static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 805
fe1b8b76 806static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 807
fe1b8b76 808static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 809
fe1b8b76 810static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 811
fe1b8b76 812static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 813
fe1b8b76 814static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 815 unsigned int *);
c906108c 816
fe1b8b76 817static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 818 struct comp_unit_head *, unsigned int *);
613e1657 819
fe1b8b76 820static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 821 unsigned int *);
613e1657 822
fe1b8b76 823static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 824
fe1b8b76 825static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 826
fe1b8b76
JB
827static char *read_indirect_string (bfd *, gdb_byte *,
828 const struct comp_unit_head *,
829 unsigned int *);
4bdf3d34 830
fe1b8b76 831static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 832
fe1b8b76 833static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 834
fe1b8b76 835static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 836
e142c38c 837static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 838
e142c38c
DJ
839static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
840 struct dwarf2_cu *);
c906108c 841
05cf31d1
JB
842static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
843 struct dwarf2_cu *cu);
844
e142c38c 845static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 846
e142c38c
DJ
847static struct die_info *die_specification (struct die_info *die,
848 struct dwarf2_cu *);
63d06c5c 849
debd256d
JB
850static void free_line_header (struct line_header *lh);
851
aaa75496
JB
852static void add_file_name (struct line_header *, char *, unsigned int,
853 unsigned int, unsigned int);
854
debd256d
JB
855static struct line_header *(dwarf_decode_line_header
856 (unsigned int offset,
e7c27a73 857 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
858
859static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 860 struct dwarf2_cu *, struct partial_symtab *);
c906108c 861
4f1520fb 862static void dwarf2_start_subfile (char *, char *, char *);
c906108c 863
a14ed312 864static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 865 struct dwarf2_cu *);
c906108c 866
a14ed312 867static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 868 struct dwarf2_cu *);
c906108c 869
2df3850c
JM
870static void dwarf2_const_value_data (struct attribute *attr,
871 struct symbol *sym,
872 int bits);
873
e7c27a73 874static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 875
e7c27a73
DJ
876static struct type *die_containing_type (struct die_info *,
877 struct dwarf2_cu *);
c906108c 878
e7c27a73 879static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 880
e7c27a73 881static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 882
086ed43d 883static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 884
fe1b8b76
JB
885static char *typename_concat (struct obstack *,
886 const char *prefix,
887 const char *suffix,
987504bb 888 struct dwarf2_cu *);
63d06c5c 889
e7c27a73 890static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 891
e7c27a73 892static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 893
a02abb62
JB
894static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
895
e7c27a73 896static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 897
e7c27a73 898static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 899
e7c27a73 900static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 901
a14ed312 902static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 903 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 904
fae299cd
DC
905static void get_scope_pc_bounds (struct die_info *,
906 CORE_ADDR *, CORE_ADDR *,
907 struct dwarf2_cu *);
908
a14ed312 909static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 910 struct dwarf2_cu *);
c906108c 911
a14ed312 912static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 913 struct type *, struct dwarf2_cu *);
c906108c 914
a14ed312 915static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 916 struct die_info *, struct type *,
e7c27a73 917 struct dwarf2_cu *);
c906108c 918
a14ed312 919static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 920 struct type *, struct dwarf2_cu *);
c906108c 921
134d01f1
DJ
922static void read_structure_type (struct die_info *, struct dwarf2_cu *);
923
924static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 925
8176b9b8
DC
926static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
927
e7c27a73 928static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 929
e7c27a73 930static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 931
38d518c9 932static const char *namespace_name (struct die_info *die,
e142c38c 933 int *is_anonymous, struct dwarf2_cu *);
38d518c9 934
134d01f1
DJ
935static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
936
937static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 938
e7c27a73 939static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 940
e7c27a73 941static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 942
e7c27a73 943static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 944
7ca2d3a3
DL
945static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
946 struct dwarf2_cu *);
947
e7c27a73 948static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 949
e7c27a73
DJ
950static void read_tag_ptr_to_member_type (struct die_info *,
951 struct dwarf2_cu *);
c906108c 952
e7c27a73 953static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 954
e7c27a73 955static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 956
e7c27a73 957static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 958
e7c27a73 959static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 960
e7c27a73 961static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 962
fe1b8b76 963static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 964
fe1b8b76 965static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 966 struct dwarf2_cu *,
fe1b8b76 967 gdb_byte **new_info_ptr,
639d11d3
DC
968 struct die_info *parent);
969
fe1b8b76 970static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 971 struct dwarf2_cu *,
fe1b8b76 972 gdb_byte **new_info_ptr,
639d11d3
DC
973 struct die_info *parent);
974
a14ed312 975static void free_die_list (struct die_info *);
c906108c 976
e7c27a73 977static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 978
e142c38c 979static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 980
e142c38c 981static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 982
e142c38c
DJ
983static struct die_info *dwarf2_extension (struct die_info *die,
984 struct dwarf2_cu *);
9219021c 985
a14ed312 986static char *dwarf_tag_name (unsigned int);
c906108c 987
a14ed312 988static char *dwarf_attr_name (unsigned int);
c906108c 989
a14ed312 990static char *dwarf_form_name (unsigned int);
c906108c 991
a14ed312 992static char *dwarf_stack_op_name (unsigned int);
c906108c 993
a14ed312 994static char *dwarf_bool_name (unsigned int);
c906108c 995
a14ed312 996static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
997
998#if 0
a14ed312 999static char *dwarf_cfi_name (unsigned int);
c906108c 1000
a14ed312 1001struct die_info *copy_die (struct die_info *);
c906108c
SS
1002#endif
1003
f9aca02d 1004static struct die_info *sibling_die (struct die_info *);
c906108c 1005
f9aca02d 1006static void dump_die (struct die_info *);
c906108c 1007
f9aca02d 1008static void dump_die_list (struct die_info *);
c906108c 1009
10b3939b
DJ
1010static void store_in_ref_table (unsigned int, struct die_info *,
1011 struct dwarf2_cu *);
c906108c 1012
e142c38c
DJ
1013static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1014 struct dwarf2_cu *);
c906108c 1015
a02abb62
JB
1016static int dwarf2_get_attr_constant_value (struct attribute *, int);
1017
10b3939b
DJ
1018static struct die_info *follow_die_ref (struct die_info *,
1019 struct attribute *,
1020 struct dwarf2_cu *);
c906108c 1021
e142c38c
DJ
1022static struct type *dwarf2_fundamental_type (struct objfile *, int,
1023 struct dwarf2_cu *);
c906108c
SS
1024
1025/* memory allocation interface */
1026
7b5a2f43 1027static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1028
f3dd6933 1029static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1030
a14ed312 1031static struct die_info *dwarf_alloc_die (void);
c906108c 1032
e142c38c 1033static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1034
e142c38c
DJ
1035static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1036 struct dwarf2_cu *);
5fb290d7 1037
2e276125 1038static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1039 char *, bfd *, struct dwarf2_cu *);
2e276125 1040
8e19ed76
PS
1041static int attr_form_is_block (struct attribute *);
1042
93e7bd98
DJ
1043static void dwarf2_symbol_mark_computed (struct attribute *attr,
1044 struct symbol *sym,
1045 struct dwarf2_cu *cu);
4c2df51b 1046
fe1b8b76
JB
1047static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1048 struct dwarf2_cu *cu);
4bb7a0a7 1049
72bf9492
DJ
1050static void free_stack_comp_unit (void *);
1051
72bf9492
DJ
1052static hashval_t partial_die_hash (const void *item);
1053
1054static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1055
ae038cb0
DJ
1056static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1057 (unsigned long offset, struct objfile *objfile);
1058
1059static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1060 (unsigned long offset, struct objfile *objfile);
1061
1062static void free_one_comp_unit (void *);
1063
1064static void free_cached_comp_units (void *);
1065
1066static void age_cached_comp_units (void);
1067
1068static void free_one_cached_comp_unit (void *);
1069
1c379e20
DJ
1070static void set_die_type (struct die_info *, struct type *,
1071 struct dwarf2_cu *);
1072
1c379e20
DJ
1073static void reset_die_and_siblings_types (struct die_info *,
1074 struct dwarf2_cu *);
1c379e20 1075
ae038cb0
DJ
1076static void create_all_comp_units (struct objfile *);
1077
31ffec48
DJ
1078static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1079 struct objfile *);
10b3939b
DJ
1080
1081static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1082
1083static void dwarf2_add_dependence (struct dwarf2_cu *,
1084 struct dwarf2_per_cu_data *);
1085
ae038cb0
DJ
1086static void dwarf2_mark (struct dwarf2_cu *);
1087
1088static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1089
72019c9c
GM
1090static void read_set_type (struct die_info *, struct dwarf2_cu *);
1091
1092
c906108c
SS
1093/* Try to locate the sections we need for DWARF 2 debugging
1094 information and return true if we have enough to do something. */
1095
1096int
6502dd73 1097dwarf2_has_info (struct objfile *objfile)
c906108c 1098{
6502dd73
DJ
1099 struct dwarf2_per_objfile *data;
1100
1101 /* Initialize per-objfile state. */
1102 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1103 memset (data, 0, sizeof (*data));
1104 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1105 dwarf2_per_objfile = data;
1106
188dd5d6
DJ
1107 dwarf_info_section = 0;
1108 dwarf_abbrev_section = 0;
1109 dwarf_line_section = 0;
1110 dwarf_str_section = 0;
1111 dwarf_macinfo_section = 0;
1112 dwarf_frame_section = 0;
1113 dwarf_eh_frame_section = 0;
1114 dwarf_ranges_section = 0;
1115 dwarf_loc_section = 0;
af34e669 1116
6502dd73 1117 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1118 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1119}
1120
1121/* This function is mapped across the sections and remembers the
1122 offset and size of each of the debugging sections we are interested
1123 in. */
1124
1125static void
72dca2f5 1126dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1127{
6314a349 1128 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1129 {
2c500098 1130 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1131 dwarf_info_section = sectp;
c906108c 1132 }
6314a349 1133 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1134 {
2c500098 1135 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1136 dwarf_abbrev_section = sectp;
c906108c 1137 }
6314a349 1138 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1139 {
2c500098 1140 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1141 dwarf_line_section = sectp;
c906108c 1142 }
6314a349 1143 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1144 {
2c500098 1145 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1146 dwarf_pubnames_section = sectp;
c906108c 1147 }
6314a349 1148 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1149 {
2c500098 1150 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1151 dwarf_aranges_section = sectp;
c906108c 1152 }
6314a349 1153 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1154 {
2c500098 1155 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1156 dwarf_loc_section = sectp;
c906108c 1157 }
6314a349 1158 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1159 {
2c500098 1160 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1161 dwarf_macinfo_section = sectp;
c906108c 1162 }
6314a349 1163 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1164 {
2c500098 1165 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1166 dwarf_str_section = sectp;
c906108c 1167 }
6314a349 1168 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1169 {
2c500098 1170 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1171 dwarf_frame_section = sectp;
b6af0555 1172 }
6314a349 1173 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1174 {
3799ccc6
EZ
1175 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1176 if (aflag & SEC_HAS_CONTENTS)
1177 {
2c500098 1178 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1179 dwarf_eh_frame_section = sectp;
1180 }
b6af0555 1181 }
6314a349 1182 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1183 {
2c500098 1184 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1185 dwarf_ranges_section = sectp;
af34e669 1186 }
72dca2f5
FR
1187
1188 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1189 && bfd_section_vma (abfd, sectp) == 0)
1190 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1191}
1192
1193/* Build a partial symbol table. */
1194
1195void
fba45db2 1196dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1197{
c906108c
SS
1198 /* We definitely need the .debug_info and .debug_abbrev sections */
1199
6502dd73
DJ
1200 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1201 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1202
1203 if (dwarf_line_section)
6502dd73 1204 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1205 else
6502dd73 1206 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1207
188dd5d6 1208 if (dwarf_str_section)
6502dd73 1209 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1210 else
6502dd73 1211 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1212
188dd5d6 1213 if (dwarf_macinfo_section)
6502dd73 1214 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1215 dwarf_macinfo_section);
2e276125 1216 else
6502dd73 1217 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1218
188dd5d6 1219 if (dwarf_ranges_section)
6502dd73 1220 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1221 else
6502dd73 1222 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1223
188dd5d6 1224 if (dwarf_loc_section)
6502dd73 1225 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1226 else
6502dd73 1227 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1228
ef96bde8
EZ
1229 if (mainline
1230 || (objfile->global_psymbols.size == 0
1231 && objfile->static_psymbols.size == 0))
c906108c
SS
1232 {
1233 init_psymbol_list (objfile, 1024);
1234 }
1235
1236#if 0
1237 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1238 {
d4f3574e 1239 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1240 .debug_pubnames sections */
1241
d4f3574e 1242 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1243 }
1244 else
1245#endif
1246 /* only test this case for now */
c5aa993b 1247 {
c906108c 1248 /* In this case we have to work a bit harder */
d4f3574e 1249 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1250 }
1251}
1252
1253#if 0
1254/* Build the partial symbol table from the information in the
1255 .debug_pubnames and .debug_aranges sections. */
1256
1257static void
fba45db2 1258dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1259{
1260 bfd *abfd = objfile->obfd;
1261 char *aranges_buffer, *pubnames_buffer;
1262 char *aranges_ptr, *pubnames_ptr;
1263 unsigned int entry_length, version, info_offset, info_size;
1264
1265 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1266 dwarf_pubnames_section);
c906108c 1267 pubnames_ptr = pubnames_buffer;
6502dd73 1268 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1269 {
613e1657 1270 struct comp_unit_head cu_header;
891d2f0b 1271 unsigned int bytes_read;
613e1657
KB
1272
1273 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1274 &bytes_read);
613e1657 1275 pubnames_ptr += bytes_read;
c906108c
SS
1276 version = read_1_byte (abfd, pubnames_ptr);
1277 pubnames_ptr += 1;
1278 info_offset = read_4_bytes (abfd, pubnames_ptr);
1279 pubnames_ptr += 4;
1280 info_size = read_4_bytes (abfd, pubnames_ptr);
1281 pubnames_ptr += 4;
1282 }
1283
1284 aranges_buffer = dwarf2_read_section (objfile,
086df311 1285 dwarf_aranges_section);
c906108c
SS
1286
1287}
1288#endif
1289
107d2387 1290/* Read in the comp unit header information from the debug_info at
917c78fc 1291 info_ptr. */
107d2387 1292
fe1b8b76 1293static gdb_byte *
107d2387 1294read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1295 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1296{
1297 int signed_addr;
891d2f0b 1298 unsigned int bytes_read;
613e1657
KB
1299 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1300 &bytes_read);
1301 info_ptr += bytes_read;
107d2387
AC
1302 cu_header->version = read_2_bytes (abfd, info_ptr);
1303 info_ptr += 2;
613e1657
KB
1304 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1305 &bytes_read);
1306 info_ptr += bytes_read;
107d2387
AC
1307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1308 info_ptr += 1;
1309 signed_addr = bfd_get_sign_extend_vma (abfd);
1310 if (signed_addr < 0)
8e65ff28 1311 internal_error (__FILE__, __LINE__,
e2e0b3e5 1312 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1313 cu_header->signed_addr_p = signed_addr;
1314 return info_ptr;
1315}
1316
fe1b8b76
JB
1317static gdb_byte *
1318partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1319 bfd *abfd)
1320{
fe1b8b76 1321 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1322
1323 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1324
2b949cb6 1325 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1326 error (_("Dwarf Error: wrong version in compilation unit header "
1327 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1328 2, bfd_get_filename (abfd));
1329
1330 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1331 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1332 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1333 (long) header->abbrev_offset,
1334 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1335 bfd_get_filename (abfd));
1336
1337 if (beg_of_comp_unit + header->length + header->initial_length_size
1338 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1339 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1340 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1341 (long) header->length,
1342 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1343 bfd_get_filename (abfd));
1344
1345 return info_ptr;
1346}
1347
aaa75496
JB
1348/* Allocate a new partial symtab for file named NAME and mark this new
1349 partial symtab as being an include of PST. */
1350
1351static void
1352dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1353 struct objfile *objfile)
1354{
1355 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1356
1357 subpst->section_offsets = pst->section_offsets;
1358 subpst->textlow = 0;
1359 subpst->texthigh = 0;
1360
1361 subpst->dependencies = (struct partial_symtab **)
1362 obstack_alloc (&objfile->objfile_obstack,
1363 sizeof (struct partial_symtab *));
1364 subpst->dependencies[0] = pst;
1365 subpst->number_of_dependencies = 1;
1366
1367 subpst->globals_offset = 0;
1368 subpst->n_global_syms = 0;
1369 subpst->statics_offset = 0;
1370 subpst->n_static_syms = 0;
1371 subpst->symtab = NULL;
1372 subpst->read_symtab = pst->read_symtab;
1373 subpst->readin = 0;
1374
1375 /* No private part is necessary for include psymtabs. This property
1376 can be used to differentiate between such include psymtabs and
10b3939b 1377 the regular ones. */
58a9656e 1378 subpst->read_symtab_private = NULL;
aaa75496
JB
1379}
1380
1381/* Read the Line Number Program data and extract the list of files
1382 included by the source file represented by PST. Build an include
1383 partial symtab for each of these included files.
1384
1385 This procedure assumes that there *is* a Line Number Program in
1386 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1387 before calling this procedure. */
1388
1389static void
1390dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1391 struct partial_die_info *pdi,
1392 struct partial_symtab *pst)
1393{
1394 struct objfile *objfile = cu->objfile;
1395 bfd *abfd = objfile->obfd;
1396 struct line_header *lh;
1397
1398 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1399 if (lh == NULL)
1400 return; /* No linetable, so no includes. */
1401
1402 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1403
1404 free_line_header (lh);
1405}
1406
1407
c906108c
SS
1408/* Build the partial symbol table by doing a quick pass through the
1409 .debug_info and .debug_abbrev sections. */
1410
1411static void
fba45db2 1412dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1413{
1414 /* Instead of reading this into a big buffer, we should probably use
1415 mmap() on architectures that support it. (FIXME) */
1416 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1417 gdb_byte *info_ptr;
1418 gdb_byte *beg_of_comp_unit;
c906108c
SS
1419 struct partial_die_info comp_unit_die;
1420 struct partial_symtab *pst;
ae038cb0 1421 struct cleanup *back_to;
e142c38c 1422 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1423
6502dd73 1424 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1425
ae038cb0
DJ
1426 /* Any cached compilation units will be linked by the per-objfile
1427 read_in_chain. Make sure to free them when we're done. */
1428 back_to = make_cleanup (free_cached_comp_units, NULL);
1429
10b3939b
DJ
1430 create_all_comp_units (objfile);
1431
6502dd73 1432 /* Since the objects we're extracting from .debug_info vary in
af703f96 1433 length, only the individual functions to extract them (like
72bf9492 1434 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1435 the buffer is large enough to hold another complete object.
1436
6502dd73
DJ
1437 At the moment, they don't actually check that. If .debug_info
1438 holds just one extra byte after the last compilation unit's dies,
1439 then read_comp_unit_head will happily read off the end of the
1440 buffer. read_partial_die is similarly casual. Those functions
1441 should be fixed.
af703f96
JB
1442
1443 For this loop condition, simply checking whether there's any data
1444 left at all should be sufficient. */
6502dd73
DJ
1445 while (info_ptr < (dwarf2_per_objfile->info_buffer
1446 + dwarf2_per_objfile->info_size))
c906108c 1447 {
f3dd6933 1448 struct cleanup *back_to_inner;
e7c27a73 1449 struct dwarf2_cu cu;
72bf9492
DJ
1450 struct abbrev_info *abbrev;
1451 unsigned int bytes_read;
1452 struct dwarf2_per_cu_data *this_cu;
1453
c906108c 1454 beg_of_comp_unit = info_ptr;
c906108c 1455
72bf9492
DJ
1456 memset (&cu, 0, sizeof (cu));
1457
1458 obstack_init (&cu.comp_unit_obstack);
1459
1460 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1461
e7c27a73 1462 cu.objfile = objfile;
72bf9492 1463 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1464
57349743 1465 /* Complete the cu_header */
6502dd73 1466 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1467 cu.header.first_die_ptr = info_ptr;
1468 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1469
e142c38c
DJ
1470 cu.list_in_scope = &file_symbols;
1471
c906108c 1472 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1473 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1474 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1475
10b3939b 1476 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1477
c906108c 1478 /* Read the compilation unit die */
72bf9492
DJ
1479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1480 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1481 abfd, info_ptr, &cu);
c906108c 1482
31ffec48
DJ
1483 if (comp_unit_die.tag == DW_TAG_partial_unit)
1484 {
1485 info_ptr = (beg_of_comp_unit + cu.header.length
1486 + cu.header.initial_length_size);
1487 do_cleanups (back_to_inner);
1488 continue;
1489 }
1490
c906108c 1491 /* Set the language we're debugging */
e142c38c 1492 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1493
1494 /* Allocate a new partial symbol table structure */
d4f3574e 1495 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1496 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1497 comp_unit_die.lowpc,
1498 objfile->global_psymbols.next,
1499 objfile->static_psymbols.next);
1500
ae038cb0
DJ
1501 if (comp_unit_die.dirname)
1502 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1503
10b3939b
DJ
1504 pst->read_symtab_private = (char *) this_cu;
1505
613e1657 1506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1507
1508 /* Store the function that reads in the rest of the symbol table */
1509 pst->read_symtab = dwarf2_psymtab_to_symtab;
1510
10b3939b
DJ
1511 /* If this compilation unit was already read in, free the
1512 cached copy in order to read it in again. This is
1513 necessary because we skipped some symbols when we first
1514 read in the compilation unit (see load_partial_dies).
1515 This problem could be avoided, but the benefit is
1516 unclear. */
1517 if (this_cu->cu != NULL)
1518 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1519
10b3939b 1520 cu.per_cu = this_cu;
ae038cb0 1521
10b3939b
DJ
1522 /* Note that this is a pointer to our stack frame, being
1523 added to a global data structure. It will be cleaned up
1524 in free_stack_comp_unit when we finish with this
1525 compilation unit. */
1526 this_cu->cu = &cu;
ae038cb0 1527
10b3939b 1528 this_cu->psymtab = pst;
ae038cb0 1529
c906108c
SS
1530 /* Check if comp unit has_children.
1531 If so, read the rest of the partial symbols from this comp unit.
1532 If not, there's no more debug_info for this comp unit. */
1533 if (comp_unit_die.has_children)
1534 {
72bf9492
DJ
1535 struct partial_die_info *first_die;
1536
91c24f0a
DC
1537 lowpc = ((CORE_ADDR) -1);
1538 highpc = ((CORE_ADDR) 0);
1539
72bf9492
DJ
1540 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1541
1542 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1543
91c24f0a
DC
1544 /* If we didn't find a lowpc, set it to highpc to avoid
1545 complaints from `maint check'. */
1546 if (lowpc == ((CORE_ADDR) -1))
1547 lowpc = highpc;
72bf9492 1548
c906108c
SS
1549 /* If the compilation unit didn't have an explicit address range,
1550 then use the information extracted from its child dies. */
0b010bcc 1551 if (! comp_unit_die.has_pc_info)
c906108c 1552 {
c5aa993b 1553 comp_unit_die.lowpc = lowpc;
c906108c
SS
1554 comp_unit_die.highpc = highpc;
1555 }
1556 }
c5aa993b 1557 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1558 pst->texthigh = comp_unit_die.highpc + baseaddr;
1559
1560 pst->n_global_syms = objfile->global_psymbols.next -
1561 (objfile->global_psymbols.list + pst->globals_offset);
1562 pst->n_static_syms = objfile->static_psymbols.next -
1563 (objfile->static_psymbols.list + pst->statics_offset);
1564 sort_pst_symbols (pst);
1565
1566 /* If there is already a psymtab or symtab for a file of this
1567 name, remove it. (If there is a symtab, more drastic things
1568 also happen.) This happens in VxWorks. */
1569 free_named_symtabs (pst->filename);
1570
dd373385
EZ
1571 info_ptr = beg_of_comp_unit + cu.header.length
1572 + cu.header.initial_length_size;
1573
aaa75496
JB
1574 if (comp_unit_die.has_stmt_list)
1575 {
1576 /* Get the list of files included in the current compilation unit,
1577 and build a psymtab for each of them. */
1578 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1579 }
1580
f3dd6933 1581 do_cleanups (back_to_inner);
c906108c 1582 }
ae038cb0
DJ
1583 do_cleanups (back_to);
1584}
1585
1586/* Load the DIEs for a secondary CU into memory. */
1587
1588static void
1589load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1590{
1591 bfd *abfd = objfile->obfd;
fe1b8b76 1592 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1593 struct partial_die_info comp_unit_die;
1594 struct dwarf2_cu *cu;
1595 struct abbrev_info *abbrev;
1596 unsigned int bytes_read;
1597 struct cleanup *back_to;
1598
1599 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1600 beg_of_comp_unit = info_ptr;
1601
1602 cu = xmalloc (sizeof (struct dwarf2_cu));
1603 memset (cu, 0, sizeof (struct dwarf2_cu));
1604
1605 obstack_init (&cu->comp_unit_obstack);
1606
1607 cu->objfile = objfile;
1608 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1609
1610 /* Complete the cu_header. */
1611 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1612 cu->header.first_die_ptr = info_ptr;
1613 cu->header.cu_head_ptr = beg_of_comp_unit;
1614
1615 /* Read the abbrevs for this compilation unit into a table. */
1616 dwarf2_read_abbrevs (abfd, cu);
1617 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1618
1619 /* Read the compilation unit die. */
1620 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1621 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1622 abfd, info_ptr, cu);
1623
1624 /* Set the language we're debugging. */
1625 set_cu_language (comp_unit_die.language, cu);
1626
1627 /* Link this compilation unit into the compilation unit tree. */
1628 this_cu->cu = cu;
1629 cu->per_cu = this_cu;
1630
1631 /* Check if comp unit has_children.
1632 If so, read the rest of the partial symbols from this comp unit.
1633 If not, there's no more debug_info for this comp unit. */
1634 if (comp_unit_die.has_children)
1635 load_partial_dies (abfd, info_ptr, 0, cu);
1636
1637 do_cleanups (back_to);
1638}
1639
1640/* Create a list of all compilation units in OBJFILE. We do this only
1641 if an inter-comp-unit reference is found; presumably if there is one,
1642 there will be many, and one will occur early in the .debug_info section.
1643 So there's no point in building this list incrementally. */
1644
1645static void
1646create_all_comp_units (struct objfile *objfile)
1647{
1648 int n_allocated;
1649 int n_comp_units;
1650 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1651 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1652
1653 n_comp_units = 0;
1654 n_allocated = 10;
1655 all_comp_units = xmalloc (n_allocated
1656 * sizeof (struct dwarf2_per_cu_data *));
1657
1658 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1659 {
1660 struct comp_unit_head cu_header;
fe1b8b76 1661 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1662 struct dwarf2_per_cu_data *this_cu;
1663 unsigned long offset;
891d2f0b 1664 unsigned int bytes_read;
ae038cb0
DJ
1665
1666 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1667
1668 /* Read just enough information to find out where the next
1669 compilation unit is. */
dd373385 1670 cu_header.initial_length_size = 0;
ae038cb0
DJ
1671 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1672 &cu_header, &bytes_read);
1673
1674 /* Save the compilation unit for later lookup. */
1675 this_cu = obstack_alloc (&objfile->objfile_obstack,
1676 sizeof (struct dwarf2_per_cu_data));
1677 memset (this_cu, 0, sizeof (*this_cu));
1678 this_cu->offset = offset;
1679 this_cu->length = cu_header.length + cu_header.initial_length_size;
1680
1681 if (n_comp_units == n_allocated)
1682 {
1683 n_allocated *= 2;
1684 all_comp_units = xrealloc (all_comp_units,
1685 n_allocated
1686 * sizeof (struct dwarf2_per_cu_data *));
1687 }
1688 all_comp_units[n_comp_units++] = this_cu;
1689
1690 info_ptr = info_ptr + this_cu->length;
1691 }
1692
1693 dwarf2_per_objfile->all_comp_units
1694 = obstack_alloc (&objfile->objfile_obstack,
1695 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1696 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1697 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1698 xfree (all_comp_units);
1699 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1700}
1701
72bf9492
DJ
1702/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1703 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1704 in CU. */
c906108c 1705
72bf9492
DJ
1706static void
1707scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1708 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1709{
e7c27a73 1710 struct objfile *objfile = cu->objfile;
c906108c 1711 bfd *abfd = objfile->obfd;
72bf9492 1712 struct partial_die_info *pdi;
c906108c 1713
91c24f0a
DC
1714 /* Now, march along the PDI's, descending into ones which have
1715 interesting children but skipping the children of the other ones,
1716 until we reach the end of the compilation unit. */
c906108c 1717
72bf9492 1718 pdi = first_die;
91c24f0a 1719
72bf9492
DJ
1720 while (pdi != NULL)
1721 {
1722 fixup_partial_die (pdi, cu);
c906108c 1723
91c24f0a
DC
1724 /* Anonymous namespaces have no name but have interesting
1725 children, so we need to look at them. Ditto for anonymous
1726 enums. */
933c6fe4 1727
72bf9492
DJ
1728 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1729 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1730 {
72bf9492 1731 switch (pdi->tag)
c906108c
SS
1732 {
1733 case DW_TAG_subprogram:
72bf9492 1734 if (pdi->has_pc_info)
c906108c 1735 {
72bf9492 1736 if (pdi->lowpc < *lowpc)
c906108c 1737 {
72bf9492 1738 *lowpc = pdi->lowpc;
c906108c 1739 }
72bf9492 1740 if (pdi->highpc > *highpc)
c906108c 1741 {
72bf9492 1742 *highpc = pdi->highpc;
c906108c 1743 }
72bf9492 1744 if (!pdi->is_declaration)
c906108c 1745 {
72bf9492 1746 add_partial_symbol (pdi, cu);
c906108c
SS
1747 }
1748 }
1749 break;
1750 case DW_TAG_variable:
1751 case DW_TAG_typedef:
91c24f0a 1752 case DW_TAG_union_type:
72bf9492 1753 if (!pdi->is_declaration)
63d06c5c 1754 {
72bf9492 1755 add_partial_symbol (pdi, cu);
63d06c5c
DC
1756 }
1757 break;
c906108c
SS
1758 case DW_TAG_class_type:
1759 case DW_TAG_structure_type:
72bf9492 1760 if (!pdi->is_declaration)
c906108c 1761 {
72bf9492 1762 add_partial_symbol (pdi, cu);
c906108c
SS
1763 }
1764 break;
91c24f0a 1765 case DW_TAG_enumeration_type:
72bf9492
DJ
1766 if (!pdi->is_declaration)
1767 add_partial_enumeration (pdi, cu);
c906108c
SS
1768 break;
1769 case DW_TAG_base_type:
a02abb62 1770 case DW_TAG_subrange_type:
c906108c 1771 /* File scope base type definitions are added to the partial
c5aa993b 1772 symbol table. */
72bf9492 1773 add_partial_symbol (pdi, cu);
c906108c 1774 break;
d9fa45fe 1775 case DW_TAG_namespace:
72bf9492 1776 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1777 break;
c906108c
SS
1778 default:
1779 break;
1780 }
1781 }
1782
72bf9492
DJ
1783 /* If the die has a sibling, skip to the sibling. */
1784
1785 pdi = pdi->die_sibling;
1786 }
1787}
1788
1789/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1790
72bf9492 1791 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1792 name is concatenated with "::" and the partial DIE's name. For
1793 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1794 Enumerators are an exception; they use the scope of their parent
1795 enumeration type, i.e. the name of the enumeration type is not
1796 prepended to the enumerator.
91c24f0a 1797
72bf9492
DJ
1798 There are two complexities. One is DW_AT_specification; in this
1799 case "parent" means the parent of the target of the specification,
1800 instead of the direct parent of the DIE. The other is compilers
1801 which do not emit DW_TAG_namespace; in this case we try to guess
1802 the fully qualified name of structure types from their members'
1803 linkage names. This must be done using the DIE's children rather
1804 than the children of any DW_AT_specification target. We only need
1805 to do this for structures at the top level, i.e. if the target of
1806 any DW_AT_specification (if any; otherwise the DIE itself) does not
1807 have a parent. */
1808
1809/* Compute the scope prefix associated with PDI's parent, in
1810 compilation unit CU. The result will be allocated on CU's
1811 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1812 field. NULL is returned if no prefix is necessary. */
1813static char *
1814partial_die_parent_scope (struct partial_die_info *pdi,
1815 struct dwarf2_cu *cu)
1816{
1817 char *grandparent_scope;
1818 struct partial_die_info *parent, *real_pdi;
91c24f0a 1819
72bf9492
DJ
1820 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1821 then this means the parent of the specification DIE. */
1822
1823 real_pdi = pdi;
72bf9492 1824 while (real_pdi->has_specification)
10b3939b 1825 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1826
1827 parent = real_pdi->die_parent;
1828 if (parent == NULL)
1829 return NULL;
1830
1831 if (parent->scope_set)
1832 return parent->scope;
1833
1834 fixup_partial_die (parent, cu);
1835
10b3939b 1836 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1837
1838 if (parent->tag == DW_TAG_namespace
1839 || parent->tag == DW_TAG_structure_type
1840 || parent->tag == DW_TAG_class_type
1841 || parent->tag == DW_TAG_union_type)
1842 {
1843 if (grandparent_scope == NULL)
1844 parent->scope = parent->name;
1845 else
987504bb
JJ
1846 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1847 parent->name, cu);
72bf9492
DJ
1848 }
1849 else if (parent->tag == DW_TAG_enumeration_type)
1850 /* Enumerators should not get the name of the enumeration as a prefix. */
1851 parent->scope = grandparent_scope;
1852 else
1853 {
1854 /* FIXME drow/2004-04-01: What should we be doing with
1855 function-local names? For partial symbols, we should probably be
1856 ignoring them. */
1857 complaint (&symfile_complaints,
e2e0b3e5 1858 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1859 parent->tag, pdi->offset);
1860 parent->scope = grandparent_scope;
c906108c
SS
1861 }
1862
72bf9492
DJ
1863 parent->scope_set = 1;
1864 return parent->scope;
1865}
1866
1867/* Return the fully scoped name associated with PDI, from compilation unit
1868 CU. The result will be allocated with malloc. */
1869static char *
1870partial_die_full_name (struct partial_die_info *pdi,
1871 struct dwarf2_cu *cu)
1872{
1873 char *parent_scope;
1874
1875 parent_scope = partial_die_parent_scope (pdi, cu);
1876 if (parent_scope == NULL)
1877 return NULL;
1878 else
987504bb 1879 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1880}
1881
1882static void
72bf9492 1883add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1884{
e7c27a73 1885 struct objfile *objfile = cu->objfile;
c906108c 1886 CORE_ADDR addr = 0;
decbce07 1887 char *actual_name = NULL;
72bf9492 1888 const char *my_prefix;
5c4e30ca 1889 const struct partial_symbol *psym = NULL;
e142c38c 1890 CORE_ADDR baseaddr;
72bf9492 1891 int built_actual_name = 0;
e142c38c
DJ
1892
1893 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1894
72bf9492 1895 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1896 {
72bf9492
DJ
1897 actual_name = partial_die_full_name (pdi, cu);
1898 if (actual_name)
1899 built_actual_name = 1;
63d06c5c
DC
1900 }
1901
72bf9492
DJ
1902 if (actual_name == NULL)
1903 actual_name = pdi->name;
1904
c906108c
SS
1905 switch (pdi->tag)
1906 {
1907 case DW_TAG_subprogram:
1908 if (pdi->is_external)
1909 {
38d518c9 1910 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1911 mst_text, objfile); */
38d518c9 1912 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1913 VAR_DOMAIN, LOC_BLOCK,
1914 &objfile->global_psymbols,
1915 0, pdi->lowpc + baseaddr,
e142c38c 1916 cu->language, objfile);
c906108c
SS
1917 }
1918 else
1919 {
38d518c9 1920 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1921 mst_file_text, objfile); */
38d518c9 1922 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1923 VAR_DOMAIN, LOC_BLOCK,
1924 &objfile->static_psymbols,
1925 0, pdi->lowpc + baseaddr,
e142c38c 1926 cu->language, objfile);
c906108c
SS
1927 }
1928 break;
1929 case DW_TAG_variable:
1930 if (pdi->is_external)
1931 {
1932 /* Global Variable.
1933 Don't enter into the minimal symbol tables as there is
1934 a minimal symbol table entry from the ELF symbols already.
1935 Enter into partial symbol table if it has a location
1936 descriptor or a type.
1937 If the location descriptor is missing, new_symbol will create
1938 a LOC_UNRESOLVED symbol, the address of the variable will then
1939 be determined from the minimal symbol table whenever the variable
1940 is referenced.
1941 The address for the partial symbol table entry is not
1942 used by GDB, but it comes in handy for debugging partial symbol
1943 table building. */
1944
1945 if (pdi->locdesc)
e7c27a73 1946 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1947 if (pdi->locdesc || pdi->has_type)
38d518c9 1948 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1949 VAR_DOMAIN, LOC_STATIC,
1950 &objfile->global_psymbols,
1951 0, addr + baseaddr,
e142c38c 1952 cu->language, objfile);
c906108c
SS
1953 }
1954 else
1955 {
1956 /* Static Variable. Skip symbols without location descriptors. */
1957 if (pdi->locdesc == NULL)
decbce07
MS
1958 {
1959 if (built_actual_name)
1960 xfree (actual_name);
1961 return;
1962 }
e7c27a73 1963 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1964 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1965 mst_file_data, objfile); */
38d518c9 1966 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1967 VAR_DOMAIN, LOC_STATIC,
1968 &objfile->static_psymbols,
1969 0, addr + baseaddr,
e142c38c 1970 cu->language, objfile);
c906108c
SS
1971 }
1972 break;
1973 case DW_TAG_typedef:
1974 case DW_TAG_base_type:
a02abb62 1975 case DW_TAG_subrange_type:
38d518c9 1976 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1977 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1978 &objfile->static_psymbols,
e142c38c 1979 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1980 break;
72bf9492
DJ
1981 case DW_TAG_namespace:
1982 add_psymbol_to_list (actual_name, strlen (actual_name),
1983 VAR_DOMAIN, LOC_TYPEDEF,
1984 &objfile->global_psymbols,
1985 0, (CORE_ADDR) 0, cu->language, objfile);
1986 break;
c906108c
SS
1987 case DW_TAG_class_type:
1988 case DW_TAG_structure_type:
1989 case DW_TAG_union_type:
1990 case DW_TAG_enumeration_type:
fa4028e9
JB
1991 /* Skip external references. The DWARF standard says in the section
1992 about "Structure, Union, and Class Type Entries": "An incomplete
1993 structure, union or class type is represented by a structure,
1994 union or class entry that does not have a byte size attribute
1995 and that has a DW_AT_declaration attribute." */
1996 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
1997 {
1998 if (built_actual_name)
1999 xfree (actual_name);
2000 return;
2001 }
fa4028e9 2002
63d06c5c
DC
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
38d518c9 2005 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2006 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
63d06c5c
DC
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
e142c38c 2011 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2012
987504bb 2013 if (cu->language == language_cplus
8c6860bb
JB
2014 || cu->language == language_java
2015 || cu->language == language_ada)
c906108c 2016 {
987504bb 2017 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2018 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2019 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2020 &objfile->global_psymbols,
e142c38c 2021 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2022 }
2023 break;
2024 case DW_TAG_enumerator:
38d518c9 2025 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2026 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
f6fe98ef
DJ
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
e142c38c 2031 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2032 break;
2033 default:
2034 break;
2035 }
5c4e30ca
DC
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
72bf9492
DJ
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
e142c38c 2046 if (cu->language == language_cplus
72bf9492 2047 && cu->has_namespace_info == 0
5c4e30ca
DC
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
72bf9492
DJ
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
c906108c
SS
2055}
2056
72bf9492
DJ
2057/* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2059 name listed in the die. */
2060
2061static int
72bf9492 2062pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2063{
63d06c5c
DC
2064 switch (tag)
2065 {
72bf9492 2066 case DW_TAG_namespace:
63d06c5c
DC
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077}
2078
5c4e30ca
DC
2079/* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
91c24f0a 2082
72bf9492
DJ
2083static void
2084add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2086 struct dwarf2_cu *cu)
91c24f0a 2087{
e7c27a73 2088 struct objfile *objfile = cu->objfile;
5c4e30ca 2089
72bf9492 2090 /* Add a symbol for the namespace. */
e7c27a73 2091
72bf9492 2092 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2093
2094 /* Now scan partial symbols in that namespace. */
2095
91c24f0a 2096 if (pdi->has_children)
72bf9492 2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2098}
2099
72bf9492
DJ
2100/* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
63d06c5c 2103
72bf9492
DJ
2104static void
2105guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
63d06c5c 2107{
987504bb
JJ
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
72bf9492 2110 && cu->has_namespace_info == 0
63d06c5c
DC
2111 && struct_pdi->has_children)
2112 {
63d06c5c
DC
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
134d01f1 2117 prefix (but see comment in read_structure_type). */
63d06c5c 2118
72bf9492
DJ
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
5d51ca54 2121
72bf9492
DJ
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
5d51ca54 2125
72bf9492 2126 real_pdi = struct_pdi;
72bf9492 2127 while (real_pdi->has_specification)
10b3939b 2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2129
72bf9492
DJ
2130 if (real_pdi->die_parent != NULL)
2131 return;
63d06c5c 2132
72bf9492
DJ
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2136 {
72bf9492 2137 char *actual_class_name
31c27f77
JJ
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
63d06c5c 2140 if (actual_class_name != NULL)
72bf9492
DJ
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
63d06c5c
DC
2148 break;
2149 }
72bf9492
DJ
2150
2151 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2152 }
2153 }
63d06c5c
DC
2154}
2155
91c24f0a
DC
2156/* Read a partial die corresponding to an enumeration type. */
2157
72bf9492
DJ
2158static void
2159add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
91c24f0a 2161{
e7c27a73 2162 struct objfile *objfile = cu->objfile;
91c24f0a 2163 bfd *abfd = objfile->obfd;
72bf9492 2164 struct partial_die_info *pdi;
91c24f0a
DC
2165
2166 if (enum_pdi->name != NULL)
72bf9492
DJ
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
91c24f0a 2171 {
72bf9492 2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2174 else
72bf9492
DJ
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
91c24f0a 2177 }
91c24f0a
DC
2178}
2179
4bb7a0a7
DJ
2180/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185static struct abbrev_info *
fe1b8b76 2186peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2187 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2188{
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
8a3fe4f8 2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206}
2207
2208/* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
fe1b8b76
JB
2212static gdb_byte *
2213skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2214{
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226}
2227
2228/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
fe1b8b76
JB
2234static gdb_byte *
2235skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2236 struct dwarf2_cu *cu)
2237{
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2252 else
6502dd73
DJ
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
8a3fe4f8 2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326}
2327
2328/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
91c24f0a 2330
fe1b8b76
JB
2331static gdb_byte *
2332locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2333 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2334{
2335 /* Do we know the sibling already? */
72bf9492 2336
91c24f0a
DC
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
4bb7a0a7 2345 /* Skip the children the long way. */
91c24f0a 2346
4bb7a0a7 2347 return skip_children (info_ptr, cu);
91c24f0a
DC
2348}
2349
c906108c
SS
2350/* Expand this partial symbol table into a full symbol table. */
2351
2352static void
fba45db2 2353dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2354{
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
8a3fe4f8 2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
a3f17187 2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2367 gdb_flush (gdb_stdout);
2368 }
2369
10b3939b
DJ
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
c906108c
SS
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
a3f17187 2378 printf_filtered (_("done.\n"));
c906108c
SS
2379 }
2380 }
2381}
2382
10b3939b
DJ
2383/* Add PER_CU to the queue. */
2384
2385static void
2386queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387{
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401}
2402
2403/* Process the queue. */
2404
2405static void
2406process_queue (struct objfile *objfile)
2407{
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
31ffec48 2418 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
31ffec48 2425 if (item->per_cu->type_hash)
10b3939b
DJ
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
31ffec48 2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443}
2444
2445/* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449static void
2450dwarf2_release_queue (void *dummy)
2451{
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472}
2473
2474/* Read in full symbols for PST, and anything it depends on. */
2475
c906108c 2476static void
fba45db2 2477psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2478{
10b3939b 2479 struct dwarf2_per_cu_data *per_cu;
c906108c 2480 struct cleanup *back_to;
aaa75496
JB
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
a3f17187 2489 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
10b3939b
DJ
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
aaa75496
JB
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
c906108c 2510
10b3939b
DJ
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522}
2523
2524/* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526static struct dwarf2_cu *
31ffec48 2527load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2528{
31ffec48 2529 bfd *abfd = objfile->obfd;
10b3939b
DJ
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
fe1b8b76 2532 gdb_byte *info_ptr;
10b3939b
DJ
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
6502dd73 2536
c906108c 2537 /* Set local variables from the partial symbol table info. */
10b3939b 2538 offset = per_cu->offset;
6502dd73
DJ
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2541
10b3939b
DJ
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2544
10b3939b
DJ
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2547
31ffec48 2548 cu->objfile = objfile;
e7c27a73 2549
c906108c 2550 /* read in the comp_unit header */
10b3939b 2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2552
2553 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
c906108c 2558
10b3939b
DJ
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
e142c38c 2561
10b3939b
DJ
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
e142c38c 2578
10b3939b
DJ
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
c906108c 2582
10b3939b
DJ
2583 return cu;
2584}
2585
2586/* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589static void
2590process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591{
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
c906108c 2611
0d53c4c4
DJ
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
10b3939b
DJ
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
0d53c4c4 2620
10b3939b 2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2622 if (attr)
2623 {
10b3939b
DJ
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
0d53c4c4
DJ
2626 }
2627 else
2628 {
10b3939b 2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2630 if (attr)
2631 {
10b3939b
DJ
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
0d53c4c4
DJ
2634 }
2635 }
2636
c906108c 2637 /* Do line number decoding in read_file_scope () */
10b3939b 2638 process_die (cu->dies, cu);
c906108c 2639
fae299cd
DC
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
10b3939b 2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2644
613e1657 2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
10b3939b 2651 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2652 {
10b3939b 2653 symtab->language = cu->language;
c906108c
SS
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
c906108c
SS
2657
2658 do_cleanups (back_to);
2659}
2660
2661/* Process a die and its children. */
2662
2663static void
e7c27a73 2664process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2665{
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
e7c27a73 2671 read_file_scope (die, cu);
c906108c
SS
2672 break;
2673 case DW_TAG_subprogram:
e7c27a73
DJ
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
c906108c
SS
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
c5aa993b
JM
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2681 break;
2682 case DW_TAG_lexical_block:
14898363
L
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
e7c27a73 2685 read_lexical_block_scope (die, cu);
c906108c
SS
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
134d01f1
DJ
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
c906108c
SS
2692 break;
2693 case DW_TAG_enumeration_type:
134d01f1
DJ
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
c906108c 2696 break;
134d01f1
DJ
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
c906108c 2701 case DW_TAG_subroutine_type:
e7c27a73 2702 read_subroutine_type (die, cu);
c906108c 2703 break;
72019c9c
GM
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
c906108c 2707 case DW_TAG_array_type:
e7c27a73 2708 read_array_type (die, cu);
c906108c
SS
2709 break;
2710 case DW_TAG_pointer_type:
e7c27a73 2711 read_tag_pointer_type (die, cu);
c906108c
SS
2712 break;
2713 case DW_TAG_ptr_to_member_type:
e7c27a73 2714 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2715 break;
2716 case DW_TAG_reference_type:
e7c27a73 2717 read_tag_reference_type (die, cu);
c906108c
SS
2718 break;
2719 case DW_TAG_string_type:
e7c27a73 2720 read_tag_string_type (die, cu);
c906108c 2721 break;
134d01f1
DJ
2722 /* END FIXME */
2723
c906108c 2724 case DW_TAG_base_type:
e7c27a73 2725 read_base_type (die, cu);
134d01f1
DJ
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
c906108c 2729 break;
a02abb62
JB
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
134d01f1
DJ
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
a02abb62 2735 break;
c906108c 2736 case DW_TAG_common_block:
e7c27a73 2737 read_common_block (die, cu);
c906108c
SS
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
d9fa45fe 2741 case DW_TAG_namespace:
63d06c5c 2742 processing_has_namespace_info = 1;
e7c27a73 2743 read_namespace (die, cu);
d9fa45fe
DC
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
63d06c5c 2753 processing_has_namespace_info = 1;
639d11d3 2754 gdb_assert (die->child == NULL);
d9fa45fe 2755 break;
c906108c 2756 default:
e7c27a73 2757 new_symbol (die, NULL, cu);
c906108c
SS
2758 break;
2759 }
2760}
2761
5fb290d7 2762static void
e142c38c 2763initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2764{
e142c38c 2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2766}
2767
cb1df416
DJ
2768static void
2769free_cu_line_header (void *arg)
2770{
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775}
2776
c906108c 2777static void
e7c27a73 2778read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2779{
e7c27a73
DJ
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
debd256d 2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
e1024ff1 2786 char *name = NULL;
c906108c
SS
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
debd256d 2790 struct line_header *line_header = 0;
e142c38c
DJ
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2794
fae299cd 2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2acceee2 2799 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
39cbfefa
DJ
2804 /* Find the filename. Do not use dwarf2_name here, since the filename
2805 is not a source language identifier. */
e142c38c 2806 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2807 if (attr)
2808 {
2809 name = DW_STRING (attr);
2810 }
e1024ff1 2811
e142c38c 2812 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2813 if (attr)
e1024ff1
DJ
2814 comp_dir = DW_STRING (attr);
2815 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2816 {
e1024ff1
DJ
2817 comp_dir = ldirname (name);
2818 if (comp_dir != NULL)
2819 make_cleanup (xfree, comp_dir);
2820 }
2821 if (comp_dir != NULL)
2822 {
2823 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2824 directory, get rid of it. */
2825 char *cp = strchr (comp_dir, ':');
c906108c 2826
e1024ff1
DJ
2827 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2828 comp_dir = cp + 1;
c906108c
SS
2829 }
2830
e1024ff1
DJ
2831 if (name == NULL)
2832 name = "<unknown>";
2833
e142c38c 2834 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2835 if (attr)
2836 {
e142c38c 2837 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2838 }
2839
b0f35d58
DL
2840 attr = dwarf2_attr (die, DW_AT_producer, cu);
2841 if (attr)
2842 cu->producer = DW_STRING (attr);
303b6f5d 2843
c906108c
SS
2844 /* We assume that we're processing GCC output. */
2845 processing_gcc_compilation = 2;
c906108c
SS
2846
2847 /* The compilation unit may be in a different language or objfile,
2848 zero out all remembered fundamental types. */
e142c38c 2849 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2850
2851 start_symtab (name, comp_dir, lowpc);
2852 record_debugformat ("DWARF 2");
303b6f5d 2853 record_producer (cu->producer);
c906108c 2854
e142c38c 2855 initialize_cu_func_list (cu);
c906108c 2856
cb1df416
DJ
2857 /* Decode line number information if present. We do this before
2858 processing child DIEs, so that the line header table is available
2859 for DW_AT_decl_file. */
e142c38c 2860 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2861 if (attr)
2862 {
debd256d 2863 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2864 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2865 if (line_header)
2866 {
cb1df416
DJ
2867 cu->line_header = line_header;
2868 make_cleanup (free_cu_line_header, cu);
aaa75496 2869 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2870 }
5fb290d7 2871 }
debd256d 2872
cb1df416
DJ
2873 /* Process all dies in compilation unit. */
2874 if (die->child != NULL)
2875 {
2876 child_die = die->child;
2877 while (child_die && child_die->tag)
2878 {
2879 process_die (child_die, cu);
2880 child_die = sibling_die (child_die);
2881 }
2882 }
2883
2e276125
JB
2884 /* Decode macro information, if present. Dwarf 2 macro information
2885 refers to information in the line number info statement program
2886 header, so we can only read it if we've read the header
2887 successfully. */
e142c38c 2888 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2889 if (attr && line_header)
2e276125
JB
2890 {
2891 unsigned int macro_offset = DW_UNSND (attr);
2892 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2893 comp_dir, abfd, cu);
2e276125 2894 }
debd256d 2895 do_cleanups (back_to);
5fb290d7
DJ
2896}
2897
2898static void
e142c38c
DJ
2899add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2900 struct dwarf2_cu *cu)
5fb290d7
DJ
2901{
2902 struct function_range *thisfn;
2903
2904 thisfn = (struct function_range *)
7b5a2f43 2905 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2906 thisfn->name = name;
2907 thisfn->lowpc = lowpc;
2908 thisfn->highpc = highpc;
2909 thisfn->seen_line = 0;
2910 thisfn->next = NULL;
2911
e142c38c
DJ
2912 if (cu->last_fn == NULL)
2913 cu->first_fn = thisfn;
5fb290d7 2914 else
e142c38c 2915 cu->last_fn->next = thisfn;
5fb290d7 2916
e142c38c 2917 cu->last_fn = thisfn;
c906108c
SS
2918}
2919
2920static void
e7c27a73 2921read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2922{
e7c27a73 2923 struct objfile *objfile = cu->objfile;
52f0bd74 2924 struct context_stack *new;
c906108c
SS
2925 CORE_ADDR lowpc;
2926 CORE_ADDR highpc;
2927 struct die_info *child_die;
2928 struct attribute *attr;
2929 char *name;
fdde2d81
DC
2930 const char *previous_prefix = processing_current_prefix;
2931 struct cleanup *back_to = NULL;
e142c38c 2932 CORE_ADDR baseaddr;
c906108c 2933
e142c38c
DJ
2934 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2935
2936 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2937
2938 /* Ignore functions with missing or empty names and functions with
2939 missing or invalid low and high pc attributes. */
e7c27a73 2940 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2941 return;
2942
987504bb
JJ
2943 if (cu->language == language_cplus
2944 || cu->language == language_java)
fdde2d81 2945 {
086ed43d 2946 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2947
2a35147e
JB
2948 /* NOTE: carlton/2004-01-23: We have to be careful in the
2949 presence of DW_AT_specification. For example, with GCC 3.4,
2950 given the code
2951
2952 namespace N {
2953 void foo() {
2954 // Definition of N::foo.
2955 }
2956 }
2957
2958 then we'll have a tree of DIEs like this:
2959
2960 1: DW_TAG_compile_unit
2961 2: DW_TAG_namespace // N
2962 3: DW_TAG_subprogram // declaration of N::foo
2963 4: DW_TAG_subprogram // definition of N::foo
2964 DW_AT_specification // refers to die #3
2965
2966 Thus, when processing die #4, we have to pretend that we're
2967 in the context of its DW_AT_specification, namely the contex
2968 of die #3. */
fdde2d81
DC
2969
2970 if (spec_die != NULL)
2971 {
e142c38c 2972 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2973 processing_current_prefix = specification_prefix;
2974 back_to = make_cleanup (xfree, specification_prefix);
2975 }
2976 }
2977
c906108c
SS
2978 lowpc += baseaddr;
2979 highpc += baseaddr;
2980
5fb290d7 2981 /* Record the function range for dwarf_decode_lines. */
e142c38c 2982 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2983
c906108c 2984 new = push_context (0, lowpc);
e7c27a73 2985 new->name = new_symbol (die, die->type, cu);
4c2df51b 2986
4cecd739
DJ
2987 /* If there is a location expression for DW_AT_frame_base, record
2988 it. */
e142c38c 2989 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2990 if (attr)
c034e007
AC
2991 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2992 expression is being recorded directly in the function's symbol
2993 and not in a separate frame-base object. I guess this hack is
2994 to avoid adding some sort of frame-base adjunct/annex to the
2995 function's symbol :-(. The problem with doing this is that it
2996 results in a function symbol with a location expression that
2997 has nothing to do with the location of the function, ouch! The
2998 relationship should be: a function's symbol has-a frame base; a
2999 frame-base has-a location expression. */
e7c27a73 3000 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3001
e142c38c 3002 cu->list_in_scope = &local_symbols;
c906108c 3003
639d11d3 3004 if (die->child != NULL)
c906108c 3005 {
639d11d3 3006 child_die = die->child;
c906108c
SS
3007 while (child_die && child_die->tag)
3008 {
e7c27a73 3009 process_die (child_die, cu);
c906108c
SS
3010 child_die = sibling_die (child_die);
3011 }
3012 }
3013
3014 new = pop_context ();
3015 /* Make a block for the local symbols within. */
3016 finish_block (new->name, &local_symbols, new->old_blocks,
3017 lowpc, highpc, objfile);
208d8187
JB
3018
3019 /* In C++, we can have functions nested inside functions (e.g., when
3020 a function declares a class that has methods). This means that
3021 when we finish processing a function scope, we may need to go
3022 back to building a containing block's symbol lists. */
3023 local_symbols = new->locals;
3024 param_symbols = new->params;
3025
921e78cf
JB
3026 /* If we've finished processing a top-level function, subsequent
3027 symbols go in the file symbol list. */
3028 if (outermost_context_p ())
e142c38c 3029 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3030
3031 processing_current_prefix = previous_prefix;
3032 if (back_to != NULL)
3033 do_cleanups (back_to);
c906108c
SS
3034}
3035
3036/* Process all the DIES contained within a lexical block scope. Start
3037 a new scope, process the dies, and then close the scope. */
3038
3039static void
e7c27a73 3040read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3041{
e7c27a73 3042 struct objfile *objfile = cu->objfile;
52f0bd74 3043 struct context_stack *new;
c906108c
SS
3044 CORE_ADDR lowpc, highpc;
3045 struct die_info *child_die;
e142c38c
DJ
3046 CORE_ADDR baseaddr;
3047
3048 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3049
3050 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3051 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3052 as multiple lexical blocks? Handling children in a sane way would
3053 be nasty. Might be easier to properly extend generic blocks to
3054 describe ranges. */
e7c27a73 3055 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3056 return;
3057 lowpc += baseaddr;
3058 highpc += baseaddr;
3059
3060 push_context (0, lowpc);
639d11d3 3061 if (die->child != NULL)
c906108c 3062 {
639d11d3 3063 child_die = die->child;
c906108c
SS
3064 while (child_die && child_die->tag)
3065 {
e7c27a73 3066 process_die (child_die, cu);
c906108c
SS
3067 child_die = sibling_die (child_die);
3068 }
3069 }
3070 new = pop_context ();
3071
3072 if (local_symbols != NULL)
3073 {
3074 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3075 highpc, objfile);
3076 }
3077 local_symbols = new->locals;
3078}
3079
af34e669
DJ
3080/* Get low and high pc attributes from a die. Return 1 if the attributes
3081 are present and valid, otherwise, return 0. Return -1 if the range is
3082 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3083static int
af34e669 3084dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3085 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3086{
e7c27a73
DJ
3087 struct objfile *objfile = cu->objfile;
3088 struct comp_unit_head *cu_header = &cu->header;
c906108c 3089 struct attribute *attr;
af34e669
DJ
3090 bfd *obfd = objfile->obfd;
3091 CORE_ADDR low = 0;
3092 CORE_ADDR high = 0;
3093 int ret = 0;
c906108c 3094
e142c38c 3095 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3096 if (attr)
af34e669
DJ
3097 {
3098 high = DW_ADDR (attr);
e142c38c 3099 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3100 if (attr)
3101 low = DW_ADDR (attr);
3102 else
3103 /* Found high w/o low attribute. */
3104 return 0;
3105
3106 /* Found consecutive range of addresses. */
3107 ret = 1;
3108 }
c906108c 3109 else
af34e669 3110 {
e142c38c 3111 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3112 if (attr != NULL)
3113 {
3114 unsigned int addr_size = cu_header->addr_size;
3115 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3116 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3117 .debug_ranges section. */
af34e669
DJ
3118 unsigned int offset = DW_UNSND (attr);
3119 /* Base address selection entry. */
0d53c4c4
DJ
3120 CORE_ADDR base;
3121 int found_base;
891d2f0b 3122 unsigned int dummy;
fe1b8b76 3123 gdb_byte *buffer;
af34e669
DJ
3124 CORE_ADDR marker;
3125 int low_set;
3126
0d53c4c4
DJ
3127 found_base = cu_header->base_known;
3128 base = cu_header->base_address;
a604369a 3129
6502dd73 3130 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3131 {
3132 complaint (&symfile_complaints,
e2e0b3e5 3133 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3134 offset);
3135 return 0;
3136 }
6502dd73 3137 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3138
af34e669 3139 /* Read in the largest possible address. */
e7c27a73 3140 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3141 if ((marker & mask) == mask)
3142 {
3143 /* If we found the largest possible address, then
3144 read the base address. */
e7c27a73 3145 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3146 buffer += 2 * addr_size;
3147 offset += 2 * addr_size;
3148 found_base = 1;
3149 }
3150
3151 low_set = 0;
3152
3153 while (1)
3154 {
3155 CORE_ADDR range_beginning, range_end;
3156
e7c27a73 3157 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3158 buffer += addr_size;
e7c27a73 3159 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3160 buffer += addr_size;
3161 offset += 2 * addr_size;
3162
3163 /* An end of list marker is a pair of zero addresses. */
3164 if (range_beginning == 0 && range_end == 0)
3165 /* Found the end of list entry. */
3166 break;
3167
3168 /* Each base address selection entry is a pair of 2 values.
3169 The first is the largest possible address, the second is
3170 the base address. Check for a base address here. */
3171 if ((range_beginning & mask) == mask)
3172 {
3173 /* If we found the largest possible address, then
3174 read the base address. */
e7c27a73 3175 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3176 found_base = 1;
3177 continue;
3178 }
3179
3180 if (!found_base)
3181 {
3182 /* We have no valid base address for the ranges
3183 data. */
3184 complaint (&symfile_complaints,
e2e0b3e5 3185 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3186 return 0;
3187 }
3188
8f05cde5
DJ
3189 range_beginning += base;
3190 range_end += base;
3191
af34e669
DJ
3192 /* FIXME: This is recording everything as a low-high
3193 segment of consecutive addresses. We should have a
3194 data structure for discontiguous block ranges
3195 instead. */
3196 if (! low_set)
3197 {
3198 low = range_beginning;
3199 high = range_end;
3200 low_set = 1;
3201 }
3202 else
3203 {
3204 if (range_beginning < low)
3205 low = range_beginning;
3206 if (range_end > high)
3207 high = range_end;
3208 }
3209 }
3210
3211 if (! low_set)
3212 /* If the first entry is an end-of-list marker, the range
3213 describes an empty scope, i.e. no instructions. */
3214 return 0;
3215
3216 ret = -1;
3217 }
3218 }
c906108c
SS
3219
3220 if (high < low)
3221 return 0;
3222
3223 /* When using the GNU linker, .gnu.linkonce. sections are used to
3224 eliminate duplicate copies of functions and vtables and such.
3225 The linker will arbitrarily choose one and discard the others.
3226 The AT_*_pc values for such functions refer to local labels in
3227 these sections. If the section from that file was discarded, the
3228 labels are not in the output, so the relocs get a value of 0.
3229 If this is a discarded function, mark the pc bounds as invalid,
3230 so that GDB will ignore it. */
72dca2f5 3231 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3232 return 0;
3233
3234 *lowpc = low;
3235 *highpc = high;
af34e669 3236 return ret;
c906108c
SS
3237}
3238
fae299cd
DC
3239/* Get the low and high pc's represented by the scope DIE, and store
3240 them in *LOWPC and *HIGHPC. If the correct values can't be
3241 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3242
3243static void
3244get_scope_pc_bounds (struct die_info *die,
3245 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3246 struct dwarf2_cu *cu)
3247{
3248 CORE_ADDR best_low = (CORE_ADDR) -1;
3249 CORE_ADDR best_high = (CORE_ADDR) 0;
3250 CORE_ADDR current_low, current_high;
3251
3252 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3253 {
3254 best_low = current_low;
3255 best_high = current_high;
3256 }
3257 else
3258 {
3259 struct die_info *child = die->child;
3260
3261 while (child && child->tag)
3262 {
3263 switch (child->tag) {
3264 case DW_TAG_subprogram:
3265 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3266 {
3267 best_low = min (best_low, current_low);
3268 best_high = max (best_high, current_high);
3269 }
3270 break;
3271 case DW_TAG_namespace:
3272 /* FIXME: carlton/2004-01-16: Should we do this for
3273 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3274 that current GCC's always emit the DIEs corresponding
3275 to definitions of methods of classes as children of a
3276 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3277 the DIEs giving the declarations, which could be
3278 anywhere). But I don't see any reason why the
3279 standards says that they have to be there. */
3280 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3281
3282 if (current_low != ((CORE_ADDR) -1))
3283 {
3284 best_low = min (best_low, current_low);
3285 best_high = max (best_high, current_high);
3286 }
3287 break;
3288 default:
3289 /* Ignore. */
3290 break;
3291 }
3292
3293 child = sibling_die (child);
3294 }
3295 }
3296
3297 *lowpc = best_low;
3298 *highpc = best_high;
3299}
3300
c906108c
SS
3301/* Add an aggregate field to the field list. */
3302
3303static void
107d2387 3304dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3305 struct dwarf2_cu *cu)
3306{
3307 struct objfile *objfile = cu->objfile;
c906108c
SS
3308 struct nextfield *new_field;
3309 struct attribute *attr;
3310 struct field *fp;
3311 char *fieldname = "";
3312
3313 /* Allocate a new field list entry and link it in. */
3314 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3315 make_cleanup (xfree, new_field);
c906108c
SS
3316 memset (new_field, 0, sizeof (struct nextfield));
3317 new_field->next = fip->fields;
3318 fip->fields = new_field;
3319 fip->nfields++;
3320
3321 /* Handle accessibility and virtuality of field.
3322 The default accessibility for members is public, the default
3323 accessibility for inheritance is private. */
3324 if (die->tag != DW_TAG_inheritance)
3325 new_field->accessibility = DW_ACCESS_public;
3326 else
3327 new_field->accessibility = DW_ACCESS_private;
3328 new_field->virtuality = DW_VIRTUALITY_none;
3329
e142c38c 3330 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3331 if (attr)
3332 new_field->accessibility = DW_UNSND (attr);
3333 if (new_field->accessibility != DW_ACCESS_public)
3334 fip->non_public_fields = 1;
e142c38c 3335 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3336 if (attr)
3337 new_field->virtuality = DW_UNSND (attr);
3338
3339 fp = &new_field->field;
a9a9bd0f 3340
e142c38c 3341 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3342 {
a9a9bd0f
DC
3343 /* Data member other than a C++ static data member. */
3344
c906108c 3345 /* Get type of field. */
e7c27a73 3346 fp->type = die_type (die, cu);
c906108c 3347
01ad7f36
DJ
3348 FIELD_STATIC_KIND (*fp) = 0;
3349
c906108c 3350 /* Get bit size of field (zero if none). */
e142c38c 3351 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3352 if (attr)
3353 {
3354 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3355 }
3356 else
3357 {
3358 FIELD_BITSIZE (*fp) = 0;
3359 }
3360
3361 /* Get bit offset of field. */
e142c38c 3362 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3363 if (attr)
3364 {
3365 FIELD_BITPOS (*fp) =
e7c27a73 3366 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3367 }
3368 else
3369 FIELD_BITPOS (*fp) = 0;
e142c38c 3370 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3371 if (attr)
3372 {
3373 if (BITS_BIG_ENDIAN)
3374 {
3375 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3376 additional bit offset from the MSB of the containing
3377 anonymous object to the MSB of the field. We don't
3378 have to do anything special since we don't need to
3379 know the size of the anonymous object. */
c906108c
SS
3380 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3381 }
3382 else
3383 {
3384 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3385 MSB of the anonymous object, subtract off the number of
3386 bits from the MSB of the field to the MSB of the
3387 object, and then subtract off the number of bits of
3388 the field itself. The result is the bit offset of
3389 the LSB of the field. */
c906108c
SS
3390 int anonymous_size;
3391 int bit_offset = DW_UNSND (attr);
3392
e142c38c 3393 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3394 if (attr)
3395 {
3396 /* The size of the anonymous object containing
3397 the bit field is explicit, so use the
3398 indicated size (in bytes). */
3399 anonymous_size = DW_UNSND (attr);
3400 }
3401 else
3402 {
3403 /* The size of the anonymous object containing
3404 the bit field must be inferred from the type
3405 attribute of the data member containing the
3406 bit field. */
3407 anonymous_size = TYPE_LENGTH (fp->type);
3408 }
3409 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3410 - bit_offset - FIELD_BITSIZE (*fp);
3411 }
3412 }
3413
3414 /* Get name of field. */
39cbfefa
DJ
3415 fieldname = dwarf2_name (die, cu);
3416 if (fieldname == NULL)
3417 fieldname = "";
d8151005
DJ
3418
3419 /* The name is already allocated along with this objfile, so we don't
3420 need to duplicate it for the type. */
3421 fp->name = fieldname;
c906108c
SS
3422
3423 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3424 pointer or virtual base class pointer) to private. */
e142c38c 3425 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3426 {
3427 new_field->accessibility = DW_ACCESS_private;
3428 fip->non_public_fields = 1;
3429 }
3430 }
a9a9bd0f 3431 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3432 {
a9a9bd0f
DC
3433 /* C++ static member. */
3434
3435 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3436 is a declaration, but all versions of G++ as of this writing
3437 (so through at least 3.2.1) incorrectly generate
3438 DW_TAG_variable tags. */
3439
c906108c 3440 char *physname;
c906108c 3441
a9a9bd0f 3442 /* Get name of field. */
39cbfefa
DJ
3443 fieldname = dwarf2_name (die, cu);
3444 if (fieldname == NULL)
c906108c
SS
3445 return;
3446
2df3850c 3447 /* Get physical name. */
e142c38c 3448 physname = dwarf2_linkage_name (die, cu);
c906108c 3449
d8151005
DJ
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3453 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3454 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
e142c38c 3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3460 if (attr)
e7c27a73 3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3462 * bits_per_byte);
c906108c 3463 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3464 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3465 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469}
3470
3471/* Create the vector of fields, and attach it to the type. */
3472
3473static void
fba45db2 3474dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3475 struct dwarf2_cu *cu)
c906108c
SS
3476{
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3508 unsigned char *pointer;
c906108c
SS
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
c5aa993b
JM
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
c906108c 3528
c5aa993b
JM
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
c906108c 3532
c5aa993b
JM
3533 case DW_ACCESS_public:
3534 break;
c906108c 3535
c5aa993b
JM
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
e2e0b3e5 3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3540 fip->fields->accessibility);
c5aa993b
JM
3541 }
3542 break;
c906108c
SS
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
c5aa993b
JM
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
c906108c
SS
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556}
3557
c906108c
SS
3558/* Add a member function to the proper fieldlist. */
3559
3560static void
107d2387 3561dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3562 struct type *type, struct dwarf2_cu *cu)
c906108c 3563{
e7c27a73 3564 struct objfile *objfile = cu->objfile;
c906108c
SS
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
2df3850c 3573 /* Get name of member function. */
39cbfefa
DJ
3574 fieldname = dwarf2_name (die, cu);
3575 if (fieldname == NULL)
2df3850c 3576 return;
c906108c 3577
2df3850c 3578 /* Get the mangled name. */
e142c38c 3579 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3580
3581 /* Look up member function name in fieldlist. */
3582 for (i = 0; i < fip->nfnfields; i++)
3583 {
27bfe10e 3584 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3585 break;
3586 }
3587
3588 /* Create new list element if necessary. */
3589 if (i < fip->nfnfields)
3590 flp = &fip->fnfieldlists[i];
3591 else
3592 {
3593 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3594 {
3595 fip->fnfieldlists = (struct fnfieldlist *)
3596 xrealloc (fip->fnfieldlists,
3597 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3598 * sizeof (struct fnfieldlist));
c906108c 3599 if (fip->nfnfields == 0)
c13c43fd 3600 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3601 }
3602 flp = &fip->fnfieldlists[fip->nfnfields];
3603 flp->name = fieldname;
3604 flp->length = 0;
3605 flp->head = NULL;
3606 fip->nfnfields++;
3607 }
3608
3609 /* Create a new member function field and chain it to the field list
3610 entry. */
3611 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3612 make_cleanup (xfree, new_fnfield);
c906108c
SS
3613 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3614 new_fnfield->next = flp->head;
3615 flp->head = new_fnfield;
3616 flp->length++;
3617
3618 /* Fill in the member function field info. */
3619 fnp = &new_fnfield->fnfield;
d8151005
DJ
3620 /* The name is already allocated along with this objfile, so we don't
3621 need to duplicate it for the type. */
3622 fnp->physname = physname ? physname : "";
c906108c
SS
3623 fnp->type = alloc_type (objfile);
3624 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3625 {
c906108c 3626 int nparams = TYPE_NFIELDS (die->type);
c906108c 3627
e26fb1d7
DC
3628 /* TYPE is the domain of this method, and DIE->TYPE is the type
3629 of the method itself (TYPE_CODE_METHOD). */
3630 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3631 TYPE_TARGET_TYPE (die->type),
3632 TYPE_FIELDS (die->type),
3633 TYPE_NFIELDS (die->type),
3634 TYPE_VARARGS (die->type));
c906108c
SS
3635
3636 /* Handle static member functions.
c5aa993b
JM
3637 Dwarf2 has no clean way to discern C++ static and non-static
3638 member functions. G++ helps GDB by marking the first
3639 parameter for non-static member functions (which is the
3640 this pointer) as artificial. We obtain this information
3641 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3642 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3643 fnp->voffset = VOFFSET_STATIC;
3644 }
3645 else
e2e0b3e5 3646 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3647 physname);
c906108c
SS
3648
3649 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3650 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3651 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3652
3653 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3654 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3655
3656 /* Get accessibility. */
e142c38c 3657 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3658 if (attr)
3659 {
3660 switch (DW_UNSND (attr))
3661 {
c5aa993b
JM
3662 case DW_ACCESS_private:
3663 fnp->is_private = 1;
3664 break;
3665 case DW_ACCESS_protected:
3666 fnp->is_protected = 1;
3667 break;
c906108c
SS
3668 }
3669 }
3670
b02dede2 3671 /* Check for artificial methods. */
e142c38c 3672 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3673 if (attr && DW_UNSND (attr) != 0)
3674 fnp->is_artificial = 1;
3675
c906108c 3676 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3677 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3678 if (attr)
8e19ed76
PS
3679 {
3680 /* Support the .debug_loc offsets */
3681 if (attr_form_is_block (attr))
3682 {
e7c27a73 3683 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3684 }
3685 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3686 {
4d3c2250 3687 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3688 }
3689 else
3690 {
4d3c2250
KB
3691 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3692 fieldname);
8e19ed76
PS
3693 }
3694 }
c906108c
SS
3695}
3696
3697/* Create the vector of member function fields, and attach it to the type. */
3698
3699static void
fba45db2 3700dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3701 struct dwarf2_cu *cu)
c906108c
SS
3702{
3703 struct fnfieldlist *flp;
3704 int total_length = 0;
3705 int i;
3706
3707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3708 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3709 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3710
3711 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3712 {
3713 struct nextfnfield *nfp = flp->head;
3714 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3715 int k;
3716
3717 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3718 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3719 fn_flp->fn_fields = (struct fn_field *)
3720 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3721 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3722 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3723
3724 total_length += flp->length;
3725 }
3726
3727 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3728 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3729}
3730
1168df01
JB
3731/* Returns non-zero if NAME is the name of a vtable member in CU's
3732 language, zero otherwise. */
3733static int
3734is_vtable_name (const char *name, struct dwarf2_cu *cu)
3735{
3736 static const char vptr[] = "_vptr";
987504bb 3737 static const char vtable[] = "vtable";
1168df01 3738
987504bb
JJ
3739 /* Look for the C++ and Java forms of the vtable. */
3740 if ((cu->language == language_java
3741 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3742 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3743 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3744 return 1;
3745
3746 return 0;
3747}
3748
c0dd20ea
DJ
3749/* GCC outputs unnamed structures that are really pointers to member
3750 functions, with the ABI-specified layout. If DIE (from CU) describes
3751 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3752 zero.
3753
3754 GCC shouldn't do this; it should just output pointer to member DIEs.
3755 This is GCC PR debug/28767. */
c0dd20ea
DJ
3756
3757static int
3758quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3759{
3760 struct objfile *objfile = cu->objfile;
3761 struct type *type;
3762 struct die_info *pfn_die, *delta_die;
3763 struct attribute *pfn_name, *delta_name;
3764 struct type *pfn_type, *domain_type;
3765
3766 /* Check for a structure with no name and two children. */
3767 if (die->tag != DW_TAG_structure_type
3768 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3769 || die->child == NULL
3770 || die->child->sibling == NULL
3771 || (die->child->sibling->sibling != NULL
3772 && die->child->sibling->sibling->tag != DW_TAG_padding))
3773 return 0;
3774
3775 /* Check for __pfn and __delta members. */
3776 pfn_die = die->child;
3777 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3778 if (pfn_die->tag != DW_TAG_member
3779 || pfn_name == NULL
3780 || DW_STRING (pfn_name) == NULL
3781 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3782 return 0;
3783
3784 delta_die = pfn_die->sibling;
3785 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3786 if (delta_die->tag != DW_TAG_member
3787 || delta_name == NULL
3788 || DW_STRING (delta_name) == NULL
3789 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3790 return 0;
3791
3792 /* Find the type of the method. */
3793 pfn_type = die_type (pfn_die, cu);
3794 if (pfn_type == NULL
3795 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3796 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3797 return 0;
3798
3799 /* Look for the "this" argument. */
3800 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3801 if (TYPE_NFIELDS (pfn_type) == 0
3802 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3803 return 0;
3804
3805 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3806 type = alloc_type (objfile);
3807 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3808 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3809 TYPE_VARARGS (pfn_type));
0d5de010 3810 type = lookup_methodptr_type (type);
c0dd20ea
DJ
3811 set_die_type (die, type, cu);
3812
3813 return 1;
3814}
1168df01 3815
c906108c
SS
3816/* Called when we find the DIE that starts a structure or union scope
3817 (definition) to process all dies that define the members of the
3818 structure or union.
3819
3820 NOTE: we need to call struct_type regardless of whether or not the
3821 DIE has an at_name attribute, since it might be an anonymous
3822 structure or union. This gets the type entered into our set of
3823 user defined types.
3824
3825 However, if the structure is incomplete (an opaque struct/union)
3826 then suppress creating a symbol table entry for it since gdb only
3827 wants to find the one with the complete definition. Note that if
3828 it is complete, we just call new_symbol, which does it's own
3829 checking about whether the struct/union is anonymous or not (and
3830 suppresses creating a symbol table entry itself). */
3831
3832static void
134d01f1 3833read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3834{
e7c27a73 3835 struct objfile *objfile = cu->objfile;
c906108c
SS
3836 struct type *type;
3837 struct attribute *attr;
63d06c5c
DC
3838 const char *previous_prefix = processing_current_prefix;
3839 struct cleanup *back_to = NULL;
39cbfefa 3840 char *name;
c906108c 3841
134d01f1
DJ
3842 if (die->type)
3843 return;
3844
c0dd20ea
DJ
3845 if (quirk_gcc_member_function_pointer (die, cu))
3846 return;
c906108c 3847
c0dd20ea 3848 type = alloc_type (objfile);
c906108c 3849 INIT_CPLUS_SPECIFIC (type);
39cbfefa
DJ
3850 name = dwarf2_name (die, cu);
3851 if (name != NULL)
c906108c 3852 {
987504bb
JJ
3853 if (cu->language == language_cplus
3854 || cu->language == language_java)
63d06c5c 3855 {
8176b9b8
DC
3856 char *new_prefix = determine_class_name (die, cu);
3857 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3858 strlen (new_prefix),
3859 &objfile->objfile_obstack);
3860 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3861 processing_current_prefix = new_prefix;
3862 }
3863 else
3864 {
d8151005
DJ
3865 /* The name is already allocated along with this objfile, so
3866 we don't need to duplicate it for the type. */
39cbfefa 3867 TYPE_TAG_NAME (type) = name;
63d06c5c 3868 }
c906108c
SS
3869 }
3870
3871 if (die->tag == DW_TAG_structure_type)
3872 {
3873 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3874 }
3875 else if (die->tag == DW_TAG_union_type)
3876 {
3877 TYPE_CODE (type) = TYPE_CODE_UNION;
3878 }
3879 else
3880 {
3881 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3882 in gdbtypes.h. */
c906108c
SS
3883 TYPE_CODE (type) = TYPE_CODE_CLASS;
3884 }
3885
e142c38c 3886 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3887 if (attr)
3888 {
3889 TYPE_LENGTH (type) = DW_UNSND (attr);
3890 }
3891 else
3892 {
3893 TYPE_LENGTH (type) = 0;
3894 }
3895
d77b6808 3896 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
3897 if (die_is_declaration (die, cu))
3898 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3899
c906108c
SS
3900 /* We need to add the type field to the die immediately so we don't
3901 infinitely recurse when dealing with pointers to the structure
3902 type within the structure itself. */
1c379e20 3903 set_die_type (die, type, cu);
c906108c 3904
e142c38c 3905 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3906 {
3907 struct field_info fi;
3908 struct die_info *child_die;
3909 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3910
3911 memset (&fi, 0, sizeof (struct field_info));
3912
639d11d3 3913 child_die = die->child;
c906108c
SS
3914
3915 while (child_die && child_die->tag)
3916 {
a9a9bd0f
DC
3917 if (child_die->tag == DW_TAG_member
3918 || child_die->tag == DW_TAG_variable)
c906108c 3919 {
a9a9bd0f
DC
3920 /* NOTE: carlton/2002-11-05: A C++ static data member
3921 should be a DW_TAG_member that is a declaration, but
3922 all versions of G++ as of this writing (so through at
3923 least 3.2.1) incorrectly generate DW_TAG_variable
3924 tags for them instead. */
e7c27a73 3925 dwarf2_add_field (&fi, child_die, cu);
c906108c 3926 }
8713b1b1 3927 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3928 {
3929 /* C++ member function. */
134d01f1 3930 read_type_die (child_die, cu);
e7c27a73 3931 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3932 }
3933 else if (child_die->tag == DW_TAG_inheritance)
3934 {
3935 /* C++ base class field. */
e7c27a73 3936 dwarf2_add_field (&fi, child_die, cu);
c906108c 3937 }
c906108c
SS
3938 child_die = sibling_die (child_die);
3939 }
3940
3941 /* Attach fields and member functions to the type. */
3942 if (fi.nfields)
e7c27a73 3943 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3944 if (fi.nfnfields)
3945 {
e7c27a73 3946 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3947
c5aa993b 3948 /* Get the type which refers to the base class (possibly this
c906108c
SS
3949 class itself) which contains the vtable pointer for the current
3950 class from the DW_AT_containing_type attribute. */
3951
e142c38c 3952 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3953 {
e7c27a73 3954 struct type *t = die_containing_type (die, cu);
c906108c
SS
3955
3956 TYPE_VPTR_BASETYPE (type) = t;
3957 if (type == t)
3958 {
c906108c
SS
3959 int i;
3960
3961 /* Our own class provides vtbl ptr. */
3962 for (i = TYPE_NFIELDS (t) - 1;
3963 i >= TYPE_N_BASECLASSES (t);
3964 --i)
3965 {
3966 char *fieldname = TYPE_FIELD_NAME (t, i);
3967
1168df01 3968 if (is_vtable_name (fieldname, cu))
c906108c
SS
3969 {
3970 TYPE_VPTR_FIELDNO (type) = i;
3971 break;
3972 }
3973 }
3974
3975 /* Complain if virtual function table field not found. */
3976 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3977 complaint (&symfile_complaints,
e2e0b3e5 3978 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3979 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3980 "");
c906108c
SS
3981 }
3982 else
3983 {
3984 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3985 }
3986 }
f6235d4c
EZ
3987 else if (cu->producer
3988 && strncmp (cu->producer,
3989 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3990 {
3991 /* The IBM XLC compiler does not provide direct indication
3992 of the containing type, but the vtable pointer is
3993 always named __vfp. */
3994
3995 int i;
3996
3997 for (i = TYPE_NFIELDS (type) - 1;
3998 i >= TYPE_N_BASECLASSES (type);
3999 --i)
4000 {
4001 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4002 {
4003 TYPE_VPTR_FIELDNO (type) = i;
4004 TYPE_VPTR_BASETYPE (type) = type;
4005 break;
4006 }
4007 }
4008 }
c906108c
SS
4009 }
4010
c906108c
SS
4011 do_cleanups (back_to);
4012 }
63d06c5c
DC
4013
4014 processing_current_prefix = previous_prefix;
4015 if (back_to != NULL)
4016 do_cleanups (back_to);
c906108c
SS
4017}
4018
134d01f1
DJ
4019static void
4020process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4021{
4022 struct objfile *objfile = cu->objfile;
4023 const char *previous_prefix = processing_current_prefix;
90aeadfc 4024 struct die_info *child_die = die->child;
c906108c 4025
134d01f1
DJ
4026 if (TYPE_TAG_NAME (die->type) != NULL)
4027 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 4028
90aeadfc
DC
4029 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4030 snapshots) has been known to create a die giving a declaration
4031 for a class that has, as a child, a die giving a definition for a
4032 nested class. So we have to process our children even if the
4033 current die is a declaration. Normally, of course, a declaration
4034 won't have any children at all. */
134d01f1 4035
90aeadfc
DC
4036 while (child_die != NULL && child_die->tag)
4037 {
4038 if (child_die->tag == DW_TAG_member
4039 || child_die->tag == DW_TAG_variable
4040 || child_die->tag == DW_TAG_inheritance)
134d01f1 4041 {
90aeadfc 4042 /* Do nothing. */
134d01f1 4043 }
90aeadfc
DC
4044 else
4045 process_die (child_die, cu);
134d01f1 4046
90aeadfc 4047 child_die = sibling_die (child_die);
134d01f1
DJ
4048 }
4049
fa4028e9
JB
4050 /* Do not consider external references. According to the DWARF standard,
4051 these DIEs are identified by the fact that they have no byte_size
4052 attribute, and a declaration attribute. */
4053 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4054 || !die_is_declaration (die, cu))
90aeadfc
DC
4055 new_symbol (die, die->type, cu);
4056
134d01f1
DJ
4057 processing_current_prefix = previous_prefix;
4058}
4059
4060/* Given a DW_AT_enumeration_type die, set its type. We do not
4061 complete the type's fields yet, or create any symbols. */
c906108c
SS
4062
4063static void
134d01f1 4064read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4065{
e7c27a73 4066 struct objfile *objfile = cu->objfile;
c906108c 4067 struct type *type;
c906108c 4068 struct attribute *attr;
39cbfefa 4069 char *name;
134d01f1
DJ
4070
4071 if (die->type)
4072 return;
c906108c
SS
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
39cbfefa
DJ
4077 name = dwarf2_name (die, cu);
4078 if (name != NULL)
c906108c 4079 {
63d06c5c
DC
4080 if (processing_has_namespace_info)
4081 {
987504bb
JJ
4082 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4083 processing_current_prefix,
4084 name, cu);
63d06c5c
DC
4085 }
4086 else
4087 {
d8151005
DJ
4088 /* The name is already allocated along with this objfile, so
4089 we don't need to duplicate it for the type. */
4090 TYPE_TAG_NAME (type) = name;
63d06c5c 4091 }
c906108c
SS
4092 }
4093
e142c38c 4094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4095 if (attr)
4096 {
4097 TYPE_LENGTH (type) = DW_UNSND (attr);
4098 }
4099 else
4100 {
4101 TYPE_LENGTH (type) = 0;
4102 }
4103
1c379e20 4104 set_die_type (die, type, cu);
134d01f1
DJ
4105}
4106
8176b9b8 4107/* Determine the name of the type represented by DIE, which should be
987504bb 4108 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4109 is responsible for xfree()'ing it. */
4110
4111static char *
4112determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4113{
4114 struct cleanup *back_to = NULL;
4115 struct die_info *spec_die = die_specification (die, cu);
4116 char *new_prefix = NULL;
4117
4118 /* If this is the definition of a class that is declared by another
4119 die, then processing_current_prefix may not be accurate; see
4120 read_func_scope for a similar example. */
4121 if (spec_die != NULL)
4122 {
4123 char *specification_prefix = determine_prefix (spec_die, cu);
4124 processing_current_prefix = specification_prefix;
4125 back_to = make_cleanup (xfree, specification_prefix);
4126 }
4127
4128 /* If we don't have namespace debug info, guess the name by trying
4129 to demangle the names of members, just like we did in
72bf9492 4130 guess_structure_name. */
8176b9b8
DC
4131 if (!processing_has_namespace_info)
4132 {
4133 struct die_info *child;
4134
4135 for (child = die->child;
4136 child != NULL && child->tag != 0;
4137 child = sibling_die (child))
4138 {
4139 if (child->tag == DW_TAG_subprogram)
4140 {
31c27f77
JJ
4141 new_prefix
4142 = language_class_name_from_physname (cu->language_defn,
4143 dwarf2_linkage_name
8176b9b8
DC
4144 (child, cu));
4145
4146 if (new_prefix != NULL)
4147 break;
4148 }
4149 }
4150 }
4151
4152 if (new_prefix == NULL)
4153 {
4154 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4155 new_prefix = typename_concat (NULL, processing_current_prefix,
4156 name ? name : "<<anonymous>>",
4157 cu);
8176b9b8
DC
4158 }
4159
4160 if (back_to != NULL)
4161 do_cleanups (back_to);
4162
4163 return new_prefix;
4164}
4165
134d01f1
DJ
4166/* Given a pointer to a die which begins an enumeration, process all
4167 the dies that define the members of the enumeration, and create the
4168 symbol for the enumeration type.
4169
4170 NOTE: We reverse the order of the element list. */
4171
4172static void
4173process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4174{
4175 struct objfile *objfile = cu->objfile;
4176 struct die_info *child_die;
4177 struct field *fields;
134d01f1
DJ
4178 struct symbol *sym;
4179 int num_fields;
4180 int unsigned_enum = 1;
39cbfefa 4181 char *name;
134d01f1 4182
c906108c
SS
4183 num_fields = 0;
4184 fields = NULL;
639d11d3 4185 if (die->child != NULL)
c906108c 4186 {
639d11d3 4187 child_die = die->child;
c906108c
SS
4188 while (child_die && child_die->tag)
4189 {
4190 if (child_die->tag != DW_TAG_enumerator)
4191 {
e7c27a73 4192 process_die (child_die, cu);
c906108c
SS
4193 }
4194 else
4195 {
39cbfefa
DJ
4196 name = dwarf2_name (child_die, cu);
4197 if (name)
c906108c 4198 {
134d01f1 4199 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4200 if (SYMBOL_VALUE (sym) < 0)
4201 unsigned_enum = 0;
4202
4203 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4204 {
4205 fields = (struct field *)
4206 xrealloc (fields,
4207 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4208 * sizeof (struct field));
c906108c
SS
4209 }
4210
22abf04a 4211 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4212 FIELD_TYPE (fields[num_fields]) = NULL;
4213 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4214 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4215 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4216
4217 num_fields++;
4218 }
4219 }
4220
4221 child_die = sibling_die (child_die);
4222 }
4223
4224 if (num_fields)
4225 {
134d01f1
DJ
4226 TYPE_NFIELDS (die->type) = num_fields;
4227 TYPE_FIELDS (die->type) = (struct field *)
4228 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4229 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4230 sizeof (struct field) * num_fields);
b8c9b27d 4231 xfree (fields);
c906108c
SS
4232 }
4233 if (unsigned_enum)
134d01f1 4234 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4235 }
134d01f1
DJ
4236
4237 new_symbol (die, die->type, cu);
c906108c
SS
4238}
4239
4240/* Extract all information from a DW_TAG_array_type DIE and put it in
4241 the DIE's type field. For now, this only handles one dimensional
4242 arrays. */
4243
4244static void
e7c27a73 4245read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4246{
e7c27a73 4247 struct objfile *objfile = cu->objfile;
c906108c
SS
4248 struct die_info *child_die;
4249 struct type *type = NULL;
4250 struct type *element_type, *range_type, *index_type;
4251 struct type **range_types = NULL;
4252 struct attribute *attr;
4253 int ndim = 0;
4254 struct cleanup *back_to;
39cbfefa 4255 char *name;
c906108c
SS
4256
4257 /* Return if we've already decoded this type. */
4258 if (die->type)
4259 {
4260 return;
4261 }
4262
e7c27a73 4263 element_type = die_type (die, cu);
c906108c
SS
4264
4265 /* Irix 6.2 native cc creates array types without children for
4266 arrays with unspecified length. */
639d11d3 4267 if (die->child == NULL)
c906108c 4268 {
e142c38c 4269 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4270 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4271 set_die_type (die, create_array_type (NULL, element_type, range_type),
4272 cu);
c906108c
SS
4273 return;
4274 }
4275
4276 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4277 child_die = die->child;
c906108c
SS
4278 while (child_die && child_die->tag)
4279 {
4280 if (child_die->tag == DW_TAG_subrange_type)
4281 {
a02abb62 4282 read_subrange_type (child_die, cu);
c906108c 4283
a02abb62
JB
4284 if (child_die->type != NULL)
4285 {
4286 /* The range type was succesfully read. Save it for
4287 the array type creation. */
4288 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4289 {
4290 range_types = (struct type **)
4291 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4292 * sizeof (struct type *));
4293 if (ndim == 0)
4294 make_cleanup (free_current_contents, &range_types);
4295 }
4296 range_types[ndim++] = child_die->type;
4297 }
c906108c
SS
4298 }
4299 child_die = sibling_die (child_die);
4300 }
4301
4302 /* Dwarf2 dimensions are output from left to right, create the
4303 necessary array types in backwards order. */
7ca2d3a3 4304
c906108c 4305 type = element_type;
7ca2d3a3
DL
4306
4307 if (read_array_order (die, cu) == DW_ORD_col_major)
4308 {
4309 int i = 0;
4310 while (i < ndim)
4311 type = create_array_type (NULL, type, range_types[i++]);
4312 }
4313 else
4314 {
4315 while (ndim-- > 0)
4316 type = create_array_type (NULL, type, range_types[ndim]);
4317 }
c906108c 4318
f5f8a009
EZ
4319 /* Understand Dwarf2 support for vector types (like they occur on
4320 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4321 array type. This is not part of the Dwarf2/3 standard yet, but a
4322 custom vendor extension. The main difference between a regular
4323 array and the vector variant is that vectors are passed by value
4324 to functions. */
e142c38c 4325 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 4326 if (attr)
ea37ba09 4327 make_vector_type (type);
f5f8a009 4328
39cbfefa
DJ
4329 name = dwarf2_name (die, cu);
4330 if (name)
4331 TYPE_NAME (type) = name;
714e295e 4332
c906108c
SS
4333 do_cleanups (back_to);
4334
4335 /* Install the type in the die. */
1c379e20 4336 set_die_type (die, type, cu);
c906108c
SS
4337}
4338
7ca2d3a3
DL
4339static enum dwarf_array_dim_ordering
4340read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4341{
4342 struct attribute *attr;
4343
4344 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4345
4346 if (attr) return DW_SND (attr);
4347
4348 /*
4349 GNU F77 is a special case, as at 08/2004 array type info is the
4350 opposite order to the dwarf2 specification, but data is still
4351 laid out as per normal fortran.
4352
4353 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4354 version checking.
4355 */
4356
4357 if (cu->language == language_fortran &&
4358 cu->producer && strstr (cu->producer, "GNU F77"))
4359 {
4360 return DW_ORD_row_major;
4361 }
4362
4363 switch (cu->language_defn->la_array_ordering)
4364 {
4365 case array_column_major:
4366 return DW_ORD_col_major;
4367 case array_row_major:
4368 default:
4369 return DW_ORD_row_major;
4370 };
4371}
4372
72019c9c
GM
4373/* Extract all information from a DW_TAG_set_type DIE and put it in
4374 the DIE's type field. */
4375
4376static void
4377read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4378{
4379 if (die->type == NULL)
4380 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4381}
7ca2d3a3 4382
c906108c
SS
4383/* First cut: install each common block member as a global variable. */
4384
4385static void
e7c27a73 4386read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4387{
4388 struct die_info *child_die;
4389 struct attribute *attr;
4390 struct symbol *sym;
4391 CORE_ADDR base = (CORE_ADDR) 0;
4392
e142c38c 4393 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4394 if (attr)
4395 {
8e19ed76
PS
4396 /* Support the .debug_loc offsets */
4397 if (attr_form_is_block (attr))
4398 {
e7c27a73 4399 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4400 }
4401 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4402 {
4d3c2250 4403 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4404 }
4405 else
4406 {
4d3c2250
KB
4407 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4408 "common block member");
8e19ed76 4409 }
c906108c 4410 }
639d11d3 4411 if (die->child != NULL)
c906108c 4412 {
639d11d3 4413 child_die = die->child;
c906108c
SS
4414 while (child_die && child_die->tag)
4415 {
e7c27a73 4416 sym = new_symbol (child_die, NULL, cu);
e142c38c 4417 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4418 if (attr)
4419 {
4420 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4421 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4422 add_symbol_to_list (sym, &global_symbols);
4423 }
4424 child_die = sibling_die (child_die);
4425 }
4426 }
4427}
4428
d9fa45fe
DC
4429/* Read a C++ namespace. */
4430
d9fa45fe 4431static void
e7c27a73 4432read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4433{
e7c27a73 4434 struct objfile *objfile = cu->objfile;
38d518c9 4435 const char *previous_prefix = processing_current_prefix;
63d06c5c 4436 const char *name;
9219021c
DC
4437 int is_anonymous;
4438 struct die_info *current_die;
987504bb 4439 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4440
e142c38c 4441 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4442
4443 /* Now build the name of the current namespace. */
4444
38d518c9 4445 if (previous_prefix[0] == '\0')
9219021c 4446 {
38d518c9 4447 processing_current_prefix = name;
9219021c
DC
4448 }
4449 else
4450 {
987504bb
JJ
4451 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4452 make_cleanup (xfree, temp_name);
38d518c9 4453 processing_current_prefix = temp_name;
9219021c
DC
4454 }
4455
5c4e30ca
DC
4456 /* Add a symbol associated to this if we haven't seen the namespace
4457 before. Also, add a using directive if it's an anonymous
4458 namespace. */
9219021c 4459
e142c38c 4460 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4461 {
4462 struct type *type;
4463
4464 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4465 this cast will hopefully become unnecessary. */
4466 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4467 (char *) processing_current_prefix,
5c4e30ca
DC
4468 objfile);
4469 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4470
e7c27a73 4471 new_symbol (die, type, cu);
1c379e20 4472 set_die_type (die, type, cu);
5c4e30ca
DC
4473
4474 if (is_anonymous)
38d518c9
EZ
4475 cp_add_using_directive (processing_current_prefix,
4476 strlen (previous_prefix),
4477 strlen (processing_current_prefix));
5c4e30ca 4478 }
9219021c 4479
639d11d3 4480 if (die->child != NULL)
d9fa45fe 4481 {
639d11d3 4482 struct die_info *child_die = die->child;
d9fa45fe
DC
4483
4484 while (child_die && child_die->tag)
4485 {
e7c27a73 4486 process_die (child_die, cu);
d9fa45fe
DC
4487 child_die = sibling_die (child_die);
4488 }
4489 }
9219021c 4490
38d518c9 4491 processing_current_prefix = previous_prefix;
987504bb 4492 do_cleanups (back_to);
38d518c9
EZ
4493}
4494
4495/* Return the name of the namespace represented by DIE. Set
4496 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4497 namespace. */
4498
4499static const char *
e142c38c 4500namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4501{
4502 struct die_info *current_die;
4503 const char *name = NULL;
4504
4505 /* Loop through the extensions until we find a name. */
4506
4507 for (current_die = die;
4508 current_die != NULL;
e142c38c 4509 current_die = dwarf2_extension (die, cu))
38d518c9 4510 {
e142c38c 4511 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4512 if (name != NULL)
4513 break;
4514 }
4515
4516 /* Is it an anonymous namespace? */
4517
4518 *is_anonymous = (name == NULL);
4519 if (*is_anonymous)
4520 name = "(anonymous namespace)";
4521
4522 return name;
d9fa45fe
DC
4523}
4524
c906108c
SS
4525/* Extract all information from a DW_TAG_pointer_type DIE and add to
4526 the user defined type vector. */
4527
4528static void
e7c27a73 4529read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4530{
e7c27a73 4531 struct comp_unit_head *cu_header = &cu->header;
c906108c 4532 struct type *type;
8b2dbe47
KB
4533 struct attribute *attr_byte_size;
4534 struct attribute *attr_address_class;
4535 int byte_size, addr_class;
c906108c
SS
4536
4537 if (die->type)
4538 {
4539 return;
4540 }
4541
e7c27a73 4542 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4543
e142c38c 4544 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4545 if (attr_byte_size)
4546 byte_size = DW_UNSND (attr_byte_size);
c906108c 4547 else
8b2dbe47
KB
4548 byte_size = cu_header->addr_size;
4549
e142c38c 4550 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4551 if (attr_address_class)
4552 addr_class = DW_UNSND (attr_address_class);
4553 else
4554 addr_class = DW_ADDR_none;
4555
4556 /* If the pointer size or address class is different than the
4557 default, create a type variant marked as such and set the
4558 length accordingly. */
4559 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4560 {
849957d9 4561 if (gdbarch_address_class_type_flags_p (current_gdbarch))
8b2dbe47
KB
4562 {
4563 int type_flags;
4564
849957d9
UW
4565 type_flags = gdbarch_address_class_type_flags
4566 (current_gdbarch, byte_size, addr_class);
8b2dbe47
KB
4567 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4568 type = make_type_with_address_space (type, type_flags);
4569 }
4570 else if (TYPE_LENGTH (type) != byte_size)
4571 {
e2e0b3e5 4572 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4573 }
4574 else {
4575 /* Should we also complain about unhandled address classes? */
4576 }
c906108c 4577 }
8b2dbe47
KB
4578
4579 TYPE_LENGTH (type) = byte_size;
1c379e20 4580 set_die_type (die, type, cu);
c906108c
SS
4581}
4582
4583/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4584 the user defined type vector. */
4585
4586static void
e7c27a73 4587read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4588{
e7c27a73 4589 struct objfile *objfile = cu->objfile;
c906108c
SS
4590 struct type *type;
4591 struct type *to_type;
4592 struct type *domain;
4593
4594 if (die->type)
4595 {
4596 return;
4597 }
4598
e7c27a73
DJ
4599 to_type = die_type (die, cu);
4600 domain = die_containing_type (die, cu);
0d5de010
DJ
4601
4602 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4603 type = lookup_methodptr_type (to_type);
4604 else
4605 type = lookup_memberptr_type (to_type, domain);
c906108c 4606
1c379e20 4607 set_die_type (die, type, cu);
c906108c
SS
4608}
4609
4610/* Extract all information from a DW_TAG_reference_type DIE and add to
4611 the user defined type vector. */
4612
4613static void
e7c27a73 4614read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4615{
e7c27a73 4616 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4617 struct type *type;
4618 struct attribute *attr;
4619
4620 if (die->type)
4621 {
4622 return;
4623 }
4624
e7c27a73 4625 type = lookup_reference_type (die_type (die, cu));
e142c38c 4626 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4627 if (attr)
4628 {
4629 TYPE_LENGTH (type) = DW_UNSND (attr);
4630 }
4631 else
4632 {
107d2387 4633 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4634 }
1c379e20 4635 set_die_type (die, type, cu);
c906108c
SS
4636}
4637
4638static void
e7c27a73 4639read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4640{
090c42a4
JB
4641 struct type *base_type;
4642
c906108c
SS
4643 if (die->type)
4644 {
4645 return;
4646 }
4647
e7c27a73 4648 base_type = die_type (die, cu);
1c379e20
DJ
4649 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4650 cu);
c906108c
SS
4651}
4652
4653static void
e7c27a73 4654read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4655{
090c42a4
JB
4656 struct type *base_type;
4657
c906108c
SS
4658 if (die->type)
4659 {
4660 return;
4661 }
4662
e7c27a73 4663 base_type = die_type (die, cu);
1c379e20
DJ
4664 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4665 cu);
c906108c
SS
4666}
4667
4668/* Extract all information from a DW_TAG_string_type DIE and add to
4669 the user defined type vector. It isn't really a user defined type,
4670 but it behaves like one, with other DIE's using an AT_user_def_type
4671 attribute to reference it. */
4672
4673static void
e7c27a73 4674read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4675{
e7c27a73 4676 struct objfile *objfile = cu->objfile;
c906108c
SS
4677 struct type *type, *range_type, *index_type, *char_type;
4678 struct attribute *attr;
4679 unsigned int length;
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
e142c38c 4686 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4687 if (attr)
4688 {
4689 length = DW_UNSND (attr);
4690 }
4691 else
4692 {
b21b22e0 4693 /* check for the DW_AT_byte_size attribute */
e142c38c 4694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4695 if (attr)
4696 {
4697 length = DW_UNSND (attr);
4698 }
4699 else
4700 {
4701 length = 1;
4702 }
c906108c 4703 }
e142c38c 4704 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4705 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4706 if (cu->language == language_fortran)
b21b22e0
PS
4707 {
4708 /* Need to create a unique string type for bounds
4709 information */
4710 type = create_string_type (0, range_type);
4711 }
4712 else
4713 {
e142c38c 4714 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4715 type = create_string_type (char_type, range_type);
4716 }
1c379e20 4717 set_die_type (die, type, cu);
c906108c
SS
4718}
4719
4720/* Handle DIES due to C code like:
4721
4722 struct foo
c5aa993b
JM
4723 {
4724 int (*funcp)(int a, long l);
4725 int b;
4726 };
c906108c
SS
4727
4728 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4729 */
c906108c
SS
4730
4731static void
e7c27a73 4732read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4733{
4734 struct type *type; /* Type that this function returns */
4735 struct type *ftype; /* Function that returns above type */
4736 struct attribute *attr;
4737
4738 /* Decode the type that this subroutine returns */
4739 if (die->type)
4740 {
4741 return;
4742 }
e7c27a73 4743 type = die_type (die, cu);
1326e61b 4744 ftype = make_function_type (type, (struct type **) 0);
c906108c 4745
5b8101ae 4746 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 4747 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4748 if ((attr && (DW_UNSND (attr) != 0))
987504bb 4749 || cu->language == language_cplus
5b8101ae
PM
4750 || cu->language == language_java
4751 || cu->language == language_pascal)
c906108c
SS
4752 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4753
639d11d3 4754 if (die->child != NULL)
c906108c
SS
4755 {
4756 struct die_info *child_die;
4757 int nparams = 0;
4758 int iparams = 0;
4759
4760 /* Count the number of parameters.
4761 FIXME: GDB currently ignores vararg functions, but knows about
4762 vararg member functions. */
639d11d3 4763 child_die = die->child;
c906108c
SS
4764 while (child_die && child_die->tag)
4765 {
4766 if (child_die->tag == DW_TAG_formal_parameter)
4767 nparams++;
4768 else if (child_die->tag == DW_TAG_unspecified_parameters)
4769 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4770 child_die = sibling_die (child_die);
4771 }
4772
4773 /* Allocate storage for parameters and fill them in. */
4774 TYPE_NFIELDS (ftype) = nparams;
4775 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4776 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4777
639d11d3 4778 child_die = die->child;
c906108c
SS
4779 while (child_die && child_die->tag)
4780 {
4781 if (child_die->tag == DW_TAG_formal_parameter)
4782 {
4783 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4784 member functions. G++ helps GDB by marking the first
4785 parameter for non-static member functions (which is the
4786 this pointer) as artificial. We pass this information
4787 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4788 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4789 if (attr)
4790 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4791 else
4792 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4793 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4794 iparams++;
4795 }
4796 child_die = sibling_die (child_die);
4797 }
4798 }
4799
1c379e20 4800 set_die_type (die, ftype, cu);
c906108c
SS
4801}
4802
4803static void
e7c27a73 4804read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4805{
e7c27a73 4806 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4807 struct attribute *attr;
4808 char *name = NULL;
c906108c
SS
4809
4810 if (!die->type)
4811 {
39cbfefa 4812 name = dwarf2_name (die, cu);
1c379e20
DJ
4813 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4814 TYPE_FLAG_TARGET_STUB, name, objfile),
4815 cu);
e7c27a73 4816 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4817 }
4818}
4819
4820/* Find a representation of a given base type and install
4821 it in the TYPE field of the die. */
4822
4823static void
e7c27a73 4824read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4825{
e7c27a73 4826 struct objfile *objfile = cu->objfile;
c906108c
SS
4827 struct type *type;
4828 struct attribute *attr;
4829 int encoding = 0, size = 0;
39cbfefa 4830 char *name;
c906108c
SS
4831
4832 /* If we've already decoded this die, this is a no-op. */
4833 if (die->type)
4834 {
4835 return;
4836 }
4837
e142c38c 4838 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4839 if (attr)
4840 {
4841 encoding = DW_UNSND (attr);
4842 }
e142c38c 4843 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4844 if (attr)
4845 {
4846 size = DW_UNSND (attr);
4847 }
39cbfefa
DJ
4848 name = dwarf2_name (die, cu);
4849 if (name)
c906108c
SS
4850 {
4851 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4852 int type_flags = 0;
c906108c
SS
4853
4854 switch (encoding)
4855 {
4856 case DW_ATE_address:
4857 /* Turn DW_ATE_address into a void * pointer. */
4858 code = TYPE_CODE_PTR;
f5ef7c67 4859 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4860 break;
4861 case DW_ATE_boolean:
4862 code = TYPE_CODE_BOOL;
f5ef7c67 4863 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4864 break;
4865 case DW_ATE_complex_float:
4866 code = TYPE_CODE_COMPLEX;
4867 break;
7678ef8f
TJB
4868 case DW_ATE_decimal_float:
4869 code = TYPE_CODE_DECFLOAT;
4870 break;
c906108c
SS
4871 case DW_ATE_float:
4872 code = TYPE_CODE_FLT;
4873 break;
4874 case DW_ATE_signed:
c906108c
SS
4875 break;
4876 case DW_ATE_unsigned:
72019c9c
GM
4877 type_flags |= TYPE_FLAG_UNSIGNED;
4878 break;
4879 case DW_ATE_signed_char:
4880 if (cu->language == language_m2)
4881 code = TYPE_CODE_CHAR;
4882 break;
4883 case DW_ATE_unsigned_char:
4884 if (cu->language == language_m2)
4885 code = TYPE_CODE_CHAR;
f5ef7c67 4886 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4887 break;
4888 default:
e2e0b3e5 4889 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4890 dwarf_type_encoding_name (encoding));
c906108c
SS
4891 break;
4892 }
39cbfefa 4893 type = init_type (code, size, type_flags, name, objfile);
c906108c 4894 if (encoding == DW_ATE_address)
e142c38c
DJ
4895 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4896 cu);
f65ca430
DJ
4897 else if (encoding == DW_ATE_complex_float)
4898 {
4899 if (size == 32)
4900 TYPE_TARGET_TYPE (type)
e142c38c 4901 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4902 else if (size == 16)
4903 TYPE_TARGET_TYPE (type)
e142c38c 4904 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4905 else if (size == 8)
4906 TYPE_TARGET_TYPE (type)
e142c38c 4907 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4908 }
c906108c
SS
4909 }
4910 else
4911 {
e7c27a73 4912 type = dwarf_base_type (encoding, size, cu);
c906108c 4913 }
1c379e20 4914 set_die_type (die, type, cu);
c906108c
SS
4915}
4916
a02abb62
JB
4917/* Read the given DW_AT_subrange DIE. */
4918
4919static void
4920read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4921{
4922 struct type *base_type;
4923 struct type *range_type;
4924 struct attribute *attr;
4925 int low = 0;
4926 int high = -1;
39cbfefa 4927 char *name;
a02abb62
JB
4928
4929 /* If we have already decoded this die, then nothing more to do. */
4930 if (die->type)
4931 return;
4932
4933 base_type = die_type (die, cu);
3d1f72c2 4934 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
4935 {
4936 complaint (&symfile_complaints,
e2e0b3e5 4937 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6
UW
4938 base_type
4939 = dwarf_base_type (DW_ATE_signed,
4940 gdbarch_addr_bit (current_gdbarch) / 8, cu);
a02abb62
JB
4941 }
4942
e142c38c 4943 if (cu->language == language_fortran)
a02abb62
JB
4944 {
4945 /* FORTRAN implies a lower bound of 1, if not given. */
4946 low = 1;
4947 }
4948
dd5e6932
DJ
4949 /* FIXME: For variable sized arrays either of these could be
4950 a variable rather than a constant value. We'll allow it,
4951 but we don't know how to handle it. */
e142c38c 4952 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4953 if (attr)
4954 low = dwarf2_get_attr_constant_value (attr, 0);
4955
e142c38c 4956 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4957 if (attr)
4958 {
4959 if (attr->form == DW_FORM_block1)
4960 {
4961 /* GCC encodes arrays with unspecified or dynamic length
4962 with a DW_FORM_block1 attribute.
4963 FIXME: GDB does not yet know how to handle dynamic
4964 arrays properly, treat them as arrays with unspecified
4965 length for now.
4966
4967 FIXME: jimb/2003-09-22: GDB does not really know
4968 how to handle arrays of unspecified length
4969 either; we just represent them as zero-length
4970 arrays. Choose an appropriate upper bound given
4971 the lower bound we've computed above. */
4972 high = low - 1;
4973 }
4974 else
4975 high = dwarf2_get_attr_constant_value (attr, 1);
4976 }
4977
4978 range_type = create_range_type (NULL, base_type, low, high);
4979
39cbfefa
DJ
4980 name = dwarf2_name (die, cu);
4981 if (name)
4982 TYPE_NAME (range_type) = name;
a02abb62 4983
e142c38c 4984 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4985 if (attr)
4986 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4987
1c379e20 4988 set_die_type (die, range_type, cu);
a02abb62
JB
4989}
4990
81a17f79
JB
4991static void
4992read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4993{
4994 struct type *type;
81a17f79
JB
4995
4996 if (die->type)
4997 return;
4998
4999 /* For now, we only support the C meaning of an unspecified type: void. */
5000
39cbfefa 5001 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
81a17f79
JB
5002 cu->objfile);
5003
5004 set_die_type (die, type, cu);
5005}
a02abb62 5006
c906108c
SS
5007/* Read a whole compilation unit into a linked list of dies. */
5008
f9aca02d 5009static struct die_info *
fe1b8b76 5010read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5011{
e7c27a73 5012 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5013}
5014
5015/* Read a single die and all its descendents. Set the die's sibling
5016 field to NULL; set other fields in the die correctly, and set all
5017 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5018 location of the info_ptr after reading all of those dies. PARENT
5019 is the parent of the die in question. */
5020
5021static struct die_info *
fe1b8b76 5022read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5023 struct dwarf2_cu *cu,
fe1b8b76 5024 gdb_byte **new_info_ptr,
639d11d3
DC
5025 struct die_info *parent)
5026{
5027 struct die_info *die;
fe1b8b76 5028 gdb_byte *cur_ptr;
639d11d3
DC
5029 int has_children;
5030
e7c27a73 5031 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5032 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5033
5034 if (has_children)
5035 {
e7c27a73 5036 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5037 new_info_ptr, die);
5038 }
5039 else
5040 {
5041 die->child = NULL;
5042 *new_info_ptr = cur_ptr;
5043 }
5044
5045 die->sibling = NULL;
5046 die->parent = parent;
5047 return die;
5048}
5049
5050/* Read a die, all of its descendents, and all of its siblings; set
5051 all of the fields of all of the dies correctly. Arguments are as
5052 in read_die_and_children. */
5053
5054static struct die_info *
fe1b8b76 5055read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5056 struct dwarf2_cu *cu,
fe1b8b76 5057 gdb_byte **new_info_ptr,
639d11d3
DC
5058 struct die_info *parent)
5059{
5060 struct die_info *first_die, *last_sibling;
fe1b8b76 5061 gdb_byte *cur_ptr;
639d11d3 5062
c906108c 5063 cur_ptr = info_ptr;
639d11d3
DC
5064 first_die = last_sibling = NULL;
5065
5066 while (1)
c906108c 5067 {
639d11d3 5068 struct die_info *die
e7c27a73 5069 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5070
5071 if (!first_die)
c906108c 5072 {
639d11d3 5073 first_die = die;
c906108c 5074 }
639d11d3 5075 else
c906108c 5076 {
639d11d3 5077 last_sibling->sibling = die;
c906108c
SS
5078 }
5079
639d11d3 5080 if (die->tag == 0)
c906108c 5081 {
639d11d3
DC
5082 *new_info_ptr = cur_ptr;
5083 return first_die;
c906108c
SS
5084 }
5085 else
5086 {
639d11d3 5087 last_sibling = die;
c906108c
SS
5088 }
5089 }
c906108c
SS
5090}
5091
5092/* Free a linked list of dies. */
5093
5094static void
fba45db2 5095free_die_list (struct die_info *dies)
c906108c
SS
5096{
5097 struct die_info *die, *next;
5098
5099 die = dies;
5100 while (die)
5101 {
639d11d3
DC
5102 if (die->child != NULL)
5103 free_die_list (die->child);
5104 next = die->sibling;
b8c9b27d
KB
5105 xfree (die->attrs);
5106 xfree (die);
c906108c
SS
5107 die = next;
5108 }
5109}
5110
5111/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5112 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5113
fe1b8b76 5114gdb_byte *
188dd5d6 5115dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5116{
5117 bfd *abfd = objfile->obfd;
fe1b8b76 5118 gdb_byte *buf, *retbuf;
2c500098 5119 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5120
5121 if (size == 0)
5122 return NULL;
5123
fe1b8b76
JB
5124 buf = obstack_alloc (&objfile->objfile_obstack, size);
5125 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5126 if (retbuf != NULL)
5127 return retbuf;
5128
188dd5d6
DJ
5129 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5130 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5131 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5132 bfd_get_filename (abfd));
5133
c906108c
SS
5134 return buf;
5135}
5136
5137/* In DWARF version 2, the description of the debugging information is
5138 stored in a separate .debug_abbrev section. Before we read any
5139 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5140 in a hash table. This function also sets flags in CU describing
5141 the data found in the abbrev table. */
c906108c
SS
5142
5143static void
e7c27a73 5144dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5145{
e7c27a73 5146 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5147 gdb_byte *abbrev_ptr;
c906108c
SS
5148 struct abbrev_info *cur_abbrev;
5149 unsigned int abbrev_number, bytes_read, abbrev_name;
5150 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5151 struct attr_abbrev *cur_attrs;
5152 unsigned int allocated_attrs;
c906108c 5153
57349743 5154 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5155 obstack_init (&cu->abbrev_obstack);
5156 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5157 (ABBREV_HASH_SIZE
5158 * sizeof (struct abbrev_info *)));
5159 memset (cu->dwarf2_abbrevs, 0,
5160 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5161
6502dd73 5162 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5163 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5164 abbrev_ptr += bytes_read;
5165
f3dd6933
DJ
5166 allocated_attrs = ATTR_ALLOC_CHUNK;
5167 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5168
c906108c
SS
5169 /* loop until we reach an abbrev number of 0 */
5170 while (abbrev_number)
5171 {
f3dd6933 5172 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5173
5174 /* read in abbrev header */
5175 cur_abbrev->number = abbrev_number;
5176 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5177 abbrev_ptr += bytes_read;
5178 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5179 abbrev_ptr += 1;
5180
72bf9492
DJ
5181 if (cur_abbrev->tag == DW_TAG_namespace)
5182 cu->has_namespace_info = 1;
5183
c906108c
SS
5184 /* now read in declarations */
5185 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5186 abbrev_ptr += bytes_read;
5187 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5188 abbrev_ptr += bytes_read;
5189 while (abbrev_name)
5190 {
f3dd6933 5191 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5192 {
f3dd6933
DJ
5193 allocated_attrs += ATTR_ALLOC_CHUNK;
5194 cur_attrs
5195 = xrealloc (cur_attrs, (allocated_attrs
5196 * sizeof (struct attr_abbrev)));
c906108c 5197 }
ae038cb0
DJ
5198
5199 /* Record whether this compilation unit might have
5200 inter-compilation-unit references. If we don't know what form
5201 this attribute will have, then it might potentially be a
5202 DW_FORM_ref_addr, so we conservatively expect inter-CU
5203 references. */
5204
5205 if (abbrev_form == DW_FORM_ref_addr
5206 || abbrev_form == DW_FORM_indirect)
5207 cu->has_form_ref_addr = 1;
5208
f3dd6933
DJ
5209 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5210 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5211 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5212 abbrev_ptr += bytes_read;
5213 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5214 abbrev_ptr += bytes_read;
5215 }
5216
f3dd6933
DJ
5217 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5218 (cur_abbrev->num_attrs
5219 * sizeof (struct attr_abbrev)));
5220 memcpy (cur_abbrev->attrs, cur_attrs,
5221 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5222
c906108c 5223 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5224 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5225 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5226
5227 /* Get next abbreviation.
5228 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5229 always properly terminated with an abbrev number of 0.
5230 Exit loop if we encounter an abbreviation which we have
5231 already read (which means we are about to read the abbreviations
5232 for the next compile unit) or if the end of the abbreviation
5233 table is reached. */
6502dd73
DJ
5234 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5235 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5236 break;
5237 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5238 abbrev_ptr += bytes_read;
e7c27a73 5239 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5240 break;
5241 }
f3dd6933
DJ
5242
5243 xfree (cur_attrs);
c906108c
SS
5244}
5245
f3dd6933 5246/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5247
c906108c 5248static void
f3dd6933 5249dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5250{
f3dd6933 5251 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5252
f3dd6933
DJ
5253 obstack_free (&cu->abbrev_obstack, NULL);
5254 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5255}
5256
5257/* Lookup an abbrev_info structure in the abbrev hash table. */
5258
5259static struct abbrev_info *
e7c27a73 5260dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5261{
5262 unsigned int hash_number;
5263 struct abbrev_info *abbrev;
5264
5265 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5266 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5267
5268 while (abbrev)
5269 {
5270 if (abbrev->number == number)
5271 return abbrev;
5272 else
5273 abbrev = abbrev->next;
5274 }
5275 return NULL;
5276}
5277
72bf9492
DJ
5278/* Returns nonzero if TAG represents a type that we might generate a partial
5279 symbol for. */
5280
5281static int
5282is_type_tag_for_partial (int tag)
5283{
5284 switch (tag)
5285 {
5286#if 0
5287 /* Some types that would be reasonable to generate partial symbols for,
5288 that we don't at present. */
5289 case DW_TAG_array_type:
5290 case DW_TAG_file_type:
5291 case DW_TAG_ptr_to_member_type:
5292 case DW_TAG_set_type:
5293 case DW_TAG_string_type:
5294 case DW_TAG_subroutine_type:
5295#endif
5296 case DW_TAG_base_type:
5297 case DW_TAG_class_type:
5298 case DW_TAG_enumeration_type:
5299 case DW_TAG_structure_type:
5300 case DW_TAG_subrange_type:
5301 case DW_TAG_typedef:
5302 case DW_TAG_union_type:
5303 return 1;
5304 default:
5305 return 0;
5306 }
5307}
5308
5309/* Load all DIEs that are interesting for partial symbols into memory. */
5310
5311static struct partial_die_info *
fe1b8b76 5312load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5313 struct dwarf2_cu *cu)
5314{
5315 struct partial_die_info *part_die;
5316 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5317 struct abbrev_info *abbrev;
5318 unsigned int bytes_read;
5afb4e99 5319 unsigned int load_all = 0;
72bf9492
DJ
5320
5321 int nesting_level = 1;
5322
5323 parent_die = NULL;
5324 last_die = NULL;
5325
5afb4e99
DJ
5326 if (cu->per_cu && cu->per_cu->load_all_dies)
5327 load_all = 1;
5328
72bf9492
DJ
5329 cu->partial_dies
5330 = htab_create_alloc_ex (cu->header.length / 12,
5331 partial_die_hash,
5332 partial_die_eq,
5333 NULL,
5334 &cu->comp_unit_obstack,
5335 hashtab_obstack_allocate,
5336 dummy_obstack_deallocate);
5337
5338 part_die = obstack_alloc (&cu->comp_unit_obstack,
5339 sizeof (struct partial_die_info));
5340
5341 while (1)
5342 {
5343 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5344
5345 /* A NULL abbrev means the end of a series of children. */
5346 if (abbrev == NULL)
5347 {
5348 if (--nesting_level == 0)
5349 {
5350 /* PART_DIE was probably the last thing allocated on the
5351 comp_unit_obstack, so we could call obstack_free
5352 here. We don't do that because the waste is small,
5353 and will be cleaned up when we're done with this
5354 compilation unit. This way, we're also more robust
5355 against other users of the comp_unit_obstack. */
5356 return first_die;
5357 }
5358 info_ptr += bytes_read;
5359 last_die = parent_die;
5360 parent_die = parent_die->die_parent;
5361 continue;
5362 }
5363
5afb4e99
DJ
5364 /* Check whether this DIE is interesting enough to save. Normally
5365 we would not be interested in members here, but there may be
5366 later variables referencing them via DW_AT_specification (for
5367 static members). */
5368 if (!load_all
5369 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5370 && abbrev->tag != DW_TAG_enumerator
5371 && abbrev->tag != DW_TAG_subprogram
5372 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5373 && abbrev->tag != DW_TAG_namespace
5374 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5375 {
5376 /* Otherwise we skip to the next sibling, if any. */
5377 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5378 continue;
5379 }
5380
5381 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5382 abfd, info_ptr, cu);
5383
5384 /* This two-pass algorithm for processing partial symbols has a
5385 high cost in cache pressure. Thus, handle some simple cases
5386 here which cover the majority of C partial symbols. DIEs
5387 which neither have specification tags in them, nor could have
5388 specification tags elsewhere pointing at them, can simply be
5389 processed and discarded.
5390
5391 This segment is also optional; scan_partial_symbols and
5392 add_partial_symbol will handle these DIEs if we chain
5393 them in normally. When compilers which do not emit large
5394 quantities of duplicate debug information are more common,
5395 this code can probably be removed. */
5396
5397 /* Any complete simple types at the top level (pretty much all
5398 of them, for a language without namespaces), can be processed
5399 directly. */
5400 if (parent_die == NULL
5401 && part_die->has_specification == 0
5402 && part_die->is_declaration == 0
5403 && (part_die->tag == DW_TAG_typedef
5404 || part_die->tag == DW_TAG_base_type
5405 || part_die->tag == DW_TAG_subrange_type))
5406 {
5407 if (building_psymtab && part_die->name != NULL)
5408 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5409 VAR_DOMAIN, LOC_TYPEDEF,
5410 &cu->objfile->static_psymbols,
5411 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5412 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5413 continue;
5414 }
5415
5416 /* If we're at the second level, and we're an enumerator, and
5417 our parent has no specification (meaning possibly lives in a
5418 namespace elsewhere), then we can add the partial symbol now
5419 instead of queueing it. */
5420 if (part_die->tag == DW_TAG_enumerator
5421 && parent_die != NULL
5422 && parent_die->die_parent == NULL
5423 && parent_die->tag == DW_TAG_enumeration_type
5424 && parent_die->has_specification == 0)
5425 {
5426 if (part_die->name == NULL)
e2e0b3e5 5427 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5428 else if (building_psymtab)
5429 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5430 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5431 (cu->language == language_cplus
5432 || cu->language == language_java)
72bf9492
DJ
5433 ? &cu->objfile->global_psymbols
5434 : &cu->objfile->static_psymbols,
5435 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5436
5437 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5438 continue;
5439 }
5440
5441 /* We'll save this DIE so link it in. */
5442 part_die->die_parent = parent_die;
5443 part_die->die_sibling = NULL;
5444 part_die->die_child = NULL;
5445
5446 if (last_die && last_die == parent_die)
5447 last_die->die_child = part_die;
5448 else if (last_die)
5449 last_die->die_sibling = part_die;
5450
5451 last_die = part_die;
5452
5453 if (first_die == NULL)
5454 first_die = part_die;
5455
5456 /* Maybe add the DIE to the hash table. Not all DIEs that we
5457 find interesting need to be in the hash table, because we
5458 also have the parent/sibling/child chains; only those that we
5459 might refer to by offset later during partial symbol reading.
5460
5461 For now this means things that might have be the target of a
5462 DW_AT_specification, DW_AT_abstract_origin, or
5463 DW_AT_extension. DW_AT_extension will refer only to
5464 namespaces; DW_AT_abstract_origin refers to functions (and
5465 many things under the function DIE, but we do not recurse
5466 into function DIEs during partial symbol reading) and
5467 possibly variables as well; DW_AT_specification refers to
5468 declarations. Declarations ought to have the DW_AT_declaration
5469 flag. It happens that GCC forgets to put it in sometimes, but
5470 only for functions, not for types.
5471
5472 Adding more things than necessary to the hash table is harmless
5473 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5474 wasted time in find_partial_die, when we reread the compilation
5475 unit with load_all_dies set. */
72bf9492 5476
5afb4e99
DJ
5477 if (load_all
5478 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5479 || abbrev->tag == DW_TAG_variable
5480 || abbrev->tag == DW_TAG_namespace
5481 || part_die->is_declaration)
5482 {
5483 void **slot;
5484
5485 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5486 part_die->offset, INSERT);
5487 *slot = part_die;
5488 }
5489
5490 part_die = obstack_alloc (&cu->comp_unit_obstack,
5491 sizeof (struct partial_die_info));
5492
5493 /* For some DIEs we want to follow their children (if any). For C
5494 we have no reason to follow the children of structures; for other
5495 languages we have to, both so that we can get at method physnames
5496 to infer fully qualified class names, and for DW_AT_specification. */
5497 if (last_die->has_children
5afb4e99
DJ
5498 && (load_all
5499 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5500 || last_die->tag == DW_TAG_enumeration_type
5501 || (cu->language != language_c
5502 && (last_die->tag == DW_TAG_class_type
5503 || last_die->tag == DW_TAG_structure_type
5504 || last_die->tag == DW_TAG_union_type))))
5505 {
5506 nesting_level++;
5507 parent_die = last_die;
5508 continue;
5509 }
5510
5511 /* Otherwise we skip to the next sibling, if any. */
5512 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5513
5514 /* Back to the top, do it again. */
5515 }
5516}
5517
c906108c
SS
5518/* Read a minimal amount of information into the minimal die structure. */
5519
fe1b8b76 5520static gdb_byte *
72bf9492
DJ
5521read_partial_die (struct partial_die_info *part_die,
5522 struct abbrev_info *abbrev,
5523 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5524 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5525{
72bf9492 5526 unsigned int bytes_read, i;
c906108c 5527 struct attribute attr;
c5aa993b 5528 int has_low_pc_attr = 0;
c906108c
SS
5529 int has_high_pc_attr = 0;
5530
72bf9492 5531 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5532
6502dd73 5533 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5534
5535 info_ptr += abbrev_len;
5536
5537 if (abbrev == NULL)
5538 return info_ptr;
5539
c906108c
SS
5540 part_die->tag = abbrev->tag;
5541 part_die->has_children = abbrev->has_children;
c906108c
SS
5542
5543 for (i = 0; i < abbrev->num_attrs; ++i)
5544 {
e7c27a73 5545 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5546
5547 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5548 partial symbol table. */
c906108c
SS
5549 switch (attr.name)
5550 {
5551 case DW_AT_name:
5552
5553 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5554 if (part_die->name == NULL)
5555 part_die->name = DW_STRING (&attr);
5556 break;
57c22c6c
BR
5557 case DW_AT_comp_dir:
5558 if (part_die->dirname == NULL)
5559 part_die->dirname = DW_STRING (&attr);
5560 break;
c906108c
SS
5561 case DW_AT_MIPS_linkage_name:
5562 part_die->name = DW_STRING (&attr);
5563 break;
5564 case DW_AT_low_pc:
5565 has_low_pc_attr = 1;
5566 part_die->lowpc = DW_ADDR (&attr);
5567 break;
5568 case DW_AT_high_pc:
5569 has_high_pc_attr = 1;
5570 part_die->highpc = DW_ADDR (&attr);
5571 break;
5572 case DW_AT_location:
8e19ed76
PS
5573 /* Support the .debug_loc offsets */
5574 if (attr_form_is_block (&attr))
5575 {
5576 part_die->locdesc = DW_BLOCK (&attr);
5577 }
5578 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5579 {
4d3c2250 5580 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5581 }
5582 else
5583 {
4d3c2250
KB
5584 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5585 "partial symbol information");
8e19ed76 5586 }
c906108c
SS
5587 break;
5588 case DW_AT_language:
5589 part_die->language = DW_UNSND (&attr);
5590 break;
5591 case DW_AT_external:
5592 part_die->is_external = DW_UNSND (&attr);
5593 break;
5594 case DW_AT_declaration:
5595 part_die->is_declaration = DW_UNSND (&attr);
5596 break;
5597 case DW_AT_type:
5598 part_die->has_type = 1;
5599 break;
5600 case DW_AT_abstract_origin:
5601 case DW_AT_specification:
72bf9492
DJ
5602 case DW_AT_extension:
5603 part_die->has_specification = 1;
5604 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5605 break;
5606 case DW_AT_sibling:
5607 /* Ignore absolute siblings, they might point outside of
5608 the current compile unit. */
5609 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5610 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5611 else
6502dd73
DJ
5612 part_die->sibling = dwarf2_per_objfile->info_buffer
5613 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5614 break;
aaa75496
JB
5615 case DW_AT_stmt_list:
5616 part_die->has_stmt_list = 1;
5617 part_die->line_offset = DW_UNSND (&attr);
5618 break;
fa4028e9
JB
5619 case DW_AT_byte_size:
5620 part_die->has_byte_size = 1;
5621 break;
c906108c
SS
5622 default:
5623 break;
5624 }
5625 }
5626
c906108c
SS
5627 /* When using the GNU linker, .gnu.linkonce. sections are used to
5628 eliminate duplicate copies of functions and vtables and such.
5629 The linker will arbitrarily choose one and discard the others.
5630 The AT_*_pc values for such functions refer to local labels in
5631 these sections. If the section from that file was discarded, the
5632 labels are not in the output, so the relocs get a value of 0.
5633 If this is a discarded function, mark the pc bounds as invalid,
5634 so that GDB will ignore it. */
5635 if (has_low_pc_attr && has_high_pc_attr
5636 && part_die->lowpc < part_die->highpc
5637 && (part_die->lowpc != 0
72dca2f5 5638 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5639 part_die->has_pc_info = 1;
c906108c
SS
5640 return info_ptr;
5641}
5642
72bf9492
DJ
5643/* Find a cached partial DIE at OFFSET in CU. */
5644
5645static struct partial_die_info *
5646find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5647{
5648 struct partial_die_info *lookup_die = NULL;
5649 struct partial_die_info part_die;
5650
5651 part_die.offset = offset;
5652 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5653
72bf9492
DJ
5654 return lookup_die;
5655}
5656
5657/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5658
5659static struct partial_die_info *
10b3939b 5660find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5661{
5afb4e99
DJ
5662 struct dwarf2_per_cu_data *per_cu = NULL;
5663 struct partial_die_info *pd = NULL;
72bf9492
DJ
5664
5665 if (offset >= cu->header.offset
5666 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5667 {
5668 pd = find_partial_die_in_comp_unit (offset, cu);
5669 if (pd != NULL)
5670 return pd;
5671 }
72bf9492 5672
ae038cb0
DJ
5673 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5674
ae038cb0
DJ
5675 if (per_cu->cu == NULL)
5676 {
5677 load_comp_unit (per_cu, cu->objfile);
5678 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5679 dwarf2_per_objfile->read_in_chain = per_cu;
5680 }
5681
5682 per_cu->cu->last_used = 0;
5afb4e99
DJ
5683 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5684
5685 if (pd == NULL && per_cu->load_all_dies == 0)
5686 {
5687 struct cleanup *back_to;
5688 struct partial_die_info comp_unit_die;
5689 struct abbrev_info *abbrev;
5690 unsigned int bytes_read;
5691 char *info_ptr;
5692
5693 per_cu->load_all_dies = 1;
5694
5695 /* Re-read the DIEs. */
5696 back_to = make_cleanup (null_cleanup, 0);
5697 if (per_cu->cu->dwarf2_abbrevs == NULL)
5698 {
5699 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5700 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5701 }
5702 info_ptr = per_cu->cu->header.first_die_ptr;
5703 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5704 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5705 per_cu->cu->objfile->obfd, info_ptr,
5706 per_cu->cu);
5707 if (comp_unit_die.has_children)
5708 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5709 do_cleanups (back_to);
5710
5711 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5712 }
5713
5714 if (pd == NULL)
5715 internal_error (__FILE__, __LINE__,
5716 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5717 offset, bfd_get_filename (cu->objfile->obfd));
5718 return pd;
72bf9492
DJ
5719}
5720
5721/* Adjust PART_DIE before generating a symbol for it. This function
5722 may set the is_external flag or change the DIE's name. */
5723
5724static void
5725fixup_partial_die (struct partial_die_info *part_die,
5726 struct dwarf2_cu *cu)
5727{
5728 /* If we found a reference attribute and the DIE has no name, try
5729 to find a name in the referred to DIE. */
5730
5731 if (part_die->name == NULL && part_die->has_specification)
5732 {
5733 struct partial_die_info *spec_die;
72bf9492 5734
10b3939b 5735 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5736
10b3939b 5737 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5738
5739 if (spec_die->name)
5740 {
5741 part_die->name = spec_die->name;
5742
5743 /* Copy DW_AT_external attribute if it is set. */
5744 if (spec_die->is_external)
5745 part_die->is_external = spec_die->is_external;
5746 }
5747 }
5748
5749 /* Set default names for some unnamed DIEs. */
5750 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5751 || part_die->tag == DW_TAG_class_type))
5752 part_die->name = "(anonymous class)";
5753
5754 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5755 part_die->name = "(anonymous namespace)";
5756
5757 if (part_die->tag == DW_TAG_structure_type
5758 || part_die->tag == DW_TAG_class_type
5759 || part_die->tag == DW_TAG_union_type)
5760 guess_structure_name (part_die, cu);
5761}
5762
639d11d3
DC
5763/* Read the die from the .debug_info section buffer. Set DIEP to
5764 point to a newly allocated die with its information, except for its
5765 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5766 whether the die has children or not. */
c906108c 5767
fe1b8b76
JB
5768static gdb_byte *
5769read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5770 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5771{
5772 unsigned int abbrev_number, bytes_read, i, offset;
5773 struct abbrev_info *abbrev;
5774 struct die_info *die;
5775
6502dd73 5776 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5777 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5778 info_ptr += bytes_read;
5779 if (!abbrev_number)
5780 {
5781 die = dwarf_alloc_die ();
5782 die->tag = 0;
5783 die->abbrev = abbrev_number;
5784 die->type = NULL;
5785 *diep = die;
639d11d3 5786 *has_children = 0;
c906108c
SS
5787 return info_ptr;
5788 }
5789
e7c27a73 5790 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5791 if (!abbrev)
5792 {
8a3fe4f8 5793 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5794 abbrev_number,
639d11d3 5795 bfd_get_filename (abfd));
c906108c
SS
5796 }
5797 die = dwarf_alloc_die ();
5798 die->offset = offset;
5799 die->tag = abbrev->tag;
c906108c
SS
5800 die->abbrev = abbrev_number;
5801 die->type = NULL;
5802
5803 die->num_attrs = abbrev->num_attrs;
5804 die->attrs = (struct attribute *)
5805 xmalloc (die->num_attrs * sizeof (struct attribute));
5806
5807 for (i = 0; i < abbrev->num_attrs; ++i)
5808 {
5809 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5810 abfd, info_ptr, cu);
10b3939b
DJ
5811
5812 /* If this attribute is an absolute reference to a different
5813 compilation unit, make sure that compilation unit is loaded
5814 also. */
5815 if (die->attrs[i].form == DW_FORM_ref_addr
5816 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5817 || (DW_ADDR (&die->attrs[i])
5818 >= cu->header.offset + cu->header.length)))
5819 {
5820 struct dwarf2_per_cu_data *per_cu;
5821 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5822 cu->objfile);
5823
5824 /* Mark the dependence relation so that we don't flush PER_CU
5825 too early. */
5826 dwarf2_add_dependence (cu, per_cu);
5827
5828 /* If it's already on the queue, we have nothing to do. */
5829 if (per_cu->queued)
5830 continue;
5831
5832 /* If the compilation unit is already loaded, just mark it as
5833 used. */
5834 if (per_cu->cu != NULL)
5835 {
5836 per_cu->cu->last_used = 0;
5837 continue;
5838 }
5839
5840 /* Add it to the queue. */
5841 queue_comp_unit (per_cu);
5842 }
c906108c
SS
5843 }
5844
5845 *diep = die;
639d11d3 5846 *has_children = abbrev->has_children;
c906108c
SS
5847 return info_ptr;
5848}
5849
a8329558 5850/* Read an attribute value described by an attribute form. */
c906108c 5851
fe1b8b76 5852static gdb_byte *
a8329558 5853read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5854 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5855 struct dwarf2_cu *cu)
c906108c 5856{
e7c27a73 5857 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5858 unsigned int bytes_read;
5859 struct dwarf_block *blk;
5860
a8329558
KW
5861 attr->form = form;
5862 switch (form)
c906108c
SS
5863 {
5864 case DW_FORM_addr:
5865 case DW_FORM_ref_addr:
e7c27a73 5866 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5867 info_ptr += bytes_read;
c906108c
SS
5868 break;
5869 case DW_FORM_block2:
7b5a2f43 5870 blk = dwarf_alloc_block (cu);
c906108c
SS
5871 blk->size = read_2_bytes (abfd, info_ptr);
5872 info_ptr += 2;
5873 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5874 info_ptr += blk->size;
5875 DW_BLOCK (attr) = blk;
5876 break;
5877 case DW_FORM_block4:
7b5a2f43 5878 blk = dwarf_alloc_block (cu);
c906108c
SS
5879 blk->size = read_4_bytes (abfd, info_ptr);
5880 info_ptr += 4;
5881 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5882 info_ptr += blk->size;
5883 DW_BLOCK (attr) = blk;
5884 break;
5885 case DW_FORM_data2:
5886 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5887 info_ptr += 2;
5888 break;
5889 case DW_FORM_data4:
5890 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5891 info_ptr += 4;
5892 break;
5893 case DW_FORM_data8:
5894 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5895 info_ptr += 8;
5896 break;
5897 case DW_FORM_string:
5898 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5899 info_ptr += bytes_read;
5900 break;
4bdf3d34
JJ
5901 case DW_FORM_strp:
5902 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5903 &bytes_read);
5904 info_ptr += bytes_read;
5905 break;
c906108c 5906 case DW_FORM_block:
7b5a2f43 5907 blk = dwarf_alloc_block (cu);
c906108c
SS
5908 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5909 info_ptr += bytes_read;
5910 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5911 info_ptr += blk->size;
5912 DW_BLOCK (attr) = blk;
5913 break;
5914 case DW_FORM_block1:
7b5a2f43 5915 blk = dwarf_alloc_block (cu);
c906108c
SS
5916 blk->size = read_1_byte (abfd, info_ptr);
5917 info_ptr += 1;
5918 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5919 info_ptr += blk->size;
5920 DW_BLOCK (attr) = blk;
5921 break;
5922 case DW_FORM_data1:
5923 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5924 info_ptr += 1;
5925 break;
5926 case DW_FORM_flag:
5927 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5928 info_ptr += 1;
5929 break;
5930 case DW_FORM_sdata:
5931 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5932 info_ptr += bytes_read;
5933 break;
5934 case DW_FORM_udata:
5935 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5936 info_ptr += bytes_read;
5937 break;
5938 case DW_FORM_ref1:
10b3939b 5939 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5940 info_ptr += 1;
5941 break;
5942 case DW_FORM_ref2:
10b3939b 5943 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5944 info_ptr += 2;
5945 break;
5946 case DW_FORM_ref4:
10b3939b 5947 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5948 info_ptr += 4;
5949 break;
613e1657 5950 case DW_FORM_ref8:
10b3939b 5951 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5952 info_ptr += 8;
5953 break;
c906108c 5954 case DW_FORM_ref_udata:
10b3939b
DJ
5955 DW_ADDR (attr) = (cu->header.offset
5956 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5957 info_ptr += bytes_read;
5958 break;
c906108c 5959 case DW_FORM_indirect:
a8329558
KW
5960 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5961 info_ptr += bytes_read;
e7c27a73 5962 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5963 break;
c906108c 5964 default:
8a3fe4f8 5965 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5966 dwarf_form_name (form),
5967 bfd_get_filename (abfd));
c906108c
SS
5968 }
5969 return info_ptr;
5970}
5971
a8329558
KW
5972/* Read an attribute described by an abbreviated attribute. */
5973
fe1b8b76 5974static gdb_byte *
a8329558 5975read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 5976 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5977{
5978 attr->name = abbrev->name;
e7c27a73 5979 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5980}
5981
c906108c
SS
5982/* read dwarf information from a buffer */
5983
5984static unsigned int
fe1b8b76 5985read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 5986{
fe1b8b76 5987 return bfd_get_8 (abfd, buf);
c906108c
SS
5988}
5989
5990static int
fe1b8b76 5991read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 5992{
fe1b8b76 5993 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
5994}
5995
5996static unsigned int
fe1b8b76 5997read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5998{
fe1b8b76 5999 return bfd_get_16 (abfd, buf);
c906108c
SS
6000}
6001
6002static int
fe1b8b76 6003read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6004{
fe1b8b76 6005 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6006}
6007
6008static unsigned int
fe1b8b76 6009read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6010{
fe1b8b76 6011 return bfd_get_32 (abfd, buf);
c906108c
SS
6012}
6013
6014static int
fe1b8b76 6015read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6016{
fe1b8b76 6017 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6018}
6019
ce5d95e1 6020static unsigned long
fe1b8b76 6021read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6022{
fe1b8b76 6023 return bfd_get_64 (abfd, buf);
c906108c
SS
6024}
6025
6026static CORE_ADDR
fe1b8b76 6027read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6028 unsigned int *bytes_read)
c906108c 6029{
e7c27a73 6030 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6031 CORE_ADDR retval = 0;
6032
107d2387 6033 if (cu_header->signed_addr_p)
c906108c 6034 {
107d2387
AC
6035 switch (cu_header->addr_size)
6036 {
6037 case 2:
fe1b8b76 6038 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6039 break;
6040 case 4:
fe1b8b76 6041 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6042 break;
6043 case 8:
fe1b8b76 6044 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6045 break;
6046 default:
8e65ff28 6047 internal_error (__FILE__, __LINE__,
e2e0b3e5 6048 _("read_address: bad switch, signed [in module %s]"),
659b0389 6049 bfd_get_filename (abfd));
107d2387
AC
6050 }
6051 }
6052 else
6053 {
6054 switch (cu_header->addr_size)
6055 {
6056 case 2:
fe1b8b76 6057 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6058 break;
6059 case 4:
fe1b8b76 6060 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6061 break;
6062 case 8:
fe1b8b76 6063 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6064 break;
6065 default:
8e65ff28 6066 internal_error (__FILE__, __LINE__,
e2e0b3e5 6067 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6068 bfd_get_filename (abfd));
107d2387 6069 }
c906108c 6070 }
64367e0a 6071
107d2387
AC
6072 *bytes_read = cu_header->addr_size;
6073 return retval;
c906108c
SS
6074}
6075
f7ef9339 6076/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6077 specification allows the initial length to take up either 4 bytes
6078 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6079 bytes describe the length and all offsets will be 8 bytes in length
6080 instead of 4.
6081
f7ef9339
KB
6082 An older, non-standard 64-bit format is also handled by this
6083 function. The older format in question stores the initial length
6084 as an 8-byte quantity without an escape value. Lengths greater
6085 than 2^32 aren't very common which means that the initial 4 bytes
6086 is almost always zero. Since a length value of zero doesn't make
6087 sense for the 32-bit format, this initial zero can be considered to
6088 be an escape value which indicates the presence of the older 64-bit
6089 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6090 greater than 4GB. If it becomes necessary to handle lengths
6091 somewhat larger than 4GB, we could allow other small values (such
6092 as the non-sensical values of 1, 2, and 3) to also be used as
6093 escape values indicating the presence of the old format.
f7ef9339 6094
917c78fc
MK
6095 The value returned via bytes_read should be used to increment the
6096 relevant pointer after calling read_initial_length().
613e1657
KB
6097
6098 As a side effect, this function sets the fields initial_length_size
6099 and offset_size in cu_header to the values appropriate for the
6100 length field. (The format of the initial length field determines
dd373385 6101 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6102
6103 [ Note: read_initial_length() and read_offset() are based on the
6104 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6105 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6106 from:
6107
f7ef9339 6108 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6109
6110 This document is only a draft and is subject to change. (So beware.)
6111
f7ef9339 6112 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6113 determined empirically by examining 64-bit ELF files produced by
6114 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6115
6116 - Kevin, July 16, 2002
613e1657
KB
6117 ] */
6118
6119static LONGEST
fe1b8b76 6120read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6121 unsigned int *bytes_read)
613e1657 6122{
fe1b8b76 6123 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6124
dd373385 6125 if (length == 0xffffffff)
613e1657 6126 {
fe1b8b76 6127 length = bfd_get_64 (abfd, buf + 4);
613e1657 6128 *bytes_read = 12;
613e1657 6129 }
dd373385 6130 else if (length == 0)
f7ef9339 6131 {
dd373385 6132 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6133 length = bfd_get_64 (abfd, buf);
f7ef9339 6134 *bytes_read = 8;
f7ef9339 6135 }
613e1657
KB
6136 else
6137 {
6138 *bytes_read = 4;
613e1657
KB
6139 }
6140
dd373385
EZ
6141 if (cu_header)
6142 {
6143 gdb_assert (cu_header->initial_length_size == 0
6144 || cu_header->initial_length_size == 4
6145 || cu_header->initial_length_size == 8
6146 || cu_header->initial_length_size == 12);
6147
6148 if (cu_header->initial_length_size != 0
6149 && cu_header->initial_length_size != *bytes_read)
6150 complaint (&symfile_complaints,
6151 _("intermixed 32-bit and 64-bit DWARF sections"));
6152
6153 cu_header->initial_length_size = *bytes_read;
6154 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6155 }
6156
6157 return length;
613e1657
KB
6158}
6159
6160/* Read an offset from the data stream. The size of the offset is
917c78fc 6161 given by cu_header->offset_size. */
613e1657
KB
6162
6163static LONGEST
fe1b8b76 6164read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6165 unsigned int *bytes_read)
613e1657
KB
6166{
6167 LONGEST retval = 0;
6168
6169 switch (cu_header->offset_size)
6170 {
6171 case 4:
fe1b8b76 6172 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6173 *bytes_read = 4;
6174 break;
6175 case 8:
fe1b8b76 6176 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6177 *bytes_read = 8;
6178 break;
6179 default:
8e65ff28 6180 internal_error (__FILE__, __LINE__,
e2e0b3e5 6181 _("read_offset: bad switch [in module %s]"),
659b0389 6182 bfd_get_filename (abfd));
613e1657
KB
6183 }
6184
917c78fc 6185 return retval;
613e1657
KB
6186}
6187
fe1b8b76
JB
6188static gdb_byte *
6189read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6190{
6191 /* If the size of a host char is 8 bits, we can return a pointer
6192 to the buffer, otherwise we have to copy the data to a buffer
6193 allocated on the temporary obstack. */
4bdf3d34 6194 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6195 return buf;
c906108c
SS
6196}
6197
6198static char *
fe1b8b76 6199read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6200{
6201 /* If the size of a host char is 8 bits, we can return a pointer
6202 to the string, otherwise we have to copy the string to a buffer
6203 allocated on the temporary obstack. */
4bdf3d34 6204 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6205 if (*buf == '\0')
6206 {
6207 *bytes_read_ptr = 1;
6208 return NULL;
6209 }
fe1b8b76
JB
6210 *bytes_read_ptr = strlen ((char *) buf) + 1;
6211 return (char *) buf;
4bdf3d34
JJ
6212}
6213
6214static char *
fe1b8b76 6215read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6216 const struct comp_unit_head *cu_header,
6217 unsigned int *bytes_read_ptr)
6218{
6219 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6220 bytes_read_ptr);
c906108c 6221
6502dd73 6222 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6223 {
8a3fe4f8 6224 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6225 bfd_get_filename (abfd));
4bdf3d34 6226 return NULL;
c906108c 6227 }
6502dd73 6228 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6229 {
8a3fe4f8 6230 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6231 bfd_get_filename (abfd));
c906108c
SS
6232 return NULL;
6233 }
4bdf3d34 6234 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6235 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6236 return NULL;
fe1b8b76 6237 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6238}
6239
ce5d95e1 6240static unsigned long
fe1b8b76 6241read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6242{
ce5d95e1
JB
6243 unsigned long result;
6244 unsigned int num_read;
c906108c
SS
6245 int i, shift;
6246 unsigned char byte;
6247
6248 result = 0;
6249 shift = 0;
6250 num_read = 0;
6251 i = 0;
6252 while (1)
6253 {
fe1b8b76 6254 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6255 buf++;
6256 num_read++;
ce5d95e1 6257 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6258 if ((byte & 128) == 0)
6259 {
6260 break;
6261 }
6262 shift += 7;
6263 }
6264 *bytes_read_ptr = num_read;
6265 return result;
6266}
6267
ce5d95e1 6268static long
fe1b8b76 6269read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6270{
ce5d95e1 6271 long result;
77e0b926 6272 int i, shift, num_read;
c906108c
SS
6273 unsigned char byte;
6274
6275 result = 0;
6276 shift = 0;
c906108c
SS
6277 num_read = 0;
6278 i = 0;
6279 while (1)
6280 {
fe1b8b76 6281 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6282 buf++;
6283 num_read++;
ce5d95e1 6284 result |= ((long)(byte & 127) << shift);
c906108c
SS
6285 shift += 7;
6286 if ((byte & 128) == 0)
6287 {
6288 break;
6289 }
6290 }
77e0b926
DJ
6291 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6292 result |= -(((long)1) << shift);
c906108c
SS
6293 *bytes_read_ptr = num_read;
6294 return result;
6295}
6296
4bb7a0a7
DJ
6297/* Return a pointer to just past the end of an LEB128 number in BUF. */
6298
fe1b8b76
JB
6299static gdb_byte *
6300skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6301{
6302 int byte;
6303
6304 while (1)
6305 {
fe1b8b76 6306 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6307 buf++;
6308 if ((byte & 128) == 0)
6309 return buf;
6310 }
6311}
6312
c906108c 6313static void
e142c38c 6314set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6315{
6316 switch (lang)
6317 {
6318 case DW_LANG_C89:
6319 case DW_LANG_C:
e142c38c 6320 cu->language = language_c;
c906108c
SS
6321 break;
6322 case DW_LANG_C_plus_plus:
e142c38c 6323 cu->language = language_cplus;
c906108c
SS
6324 break;
6325 case DW_LANG_Fortran77:
6326 case DW_LANG_Fortran90:
b21b22e0 6327 case DW_LANG_Fortran95:
e142c38c 6328 cu->language = language_fortran;
c906108c
SS
6329 break;
6330 case DW_LANG_Mips_Assembler:
e142c38c 6331 cu->language = language_asm;
c906108c 6332 break;
bebd888e 6333 case DW_LANG_Java:
e142c38c 6334 cu->language = language_java;
bebd888e 6335 break;
c906108c 6336 case DW_LANG_Ada83:
8aaf0b47 6337 case DW_LANG_Ada95:
bc5f45f8
JB
6338 cu->language = language_ada;
6339 break;
72019c9c
GM
6340 case DW_LANG_Modula2:
6341 cu->language = language_m2;
6342 break;
fe8e67fd
PM
6343 case DW_LANG_Pascal83:
6344 cu->language = language_pascal;
6345 break;
c906108c
SS
6346 case DW_LANG_Cobol74:
6347 case DW_LANG_Cobol85:
c906108c 6348 default:
e142c38c 6349 cu->language = language_minimal;
c906108c
SS
6350 break;
6351 }
e142c38c 6352 cu->language_defn = language_def (cu->language);
c906108c
SS
6353}
6354
6355/* Return the named attribute or NULL if not there. */
6356
6357static struct attribute *
e142c38c 6358dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6359{
6360 unsigned int i;
6361 struct attribute *spec = NULL;
6362
6363 for (i = 0; i < die->num_attrs; ++i)
6364 {
6365 if (die->attrs[i].name == name)
10b3939b 6366 return &die->attrs[i];
c906108c
SS
6367 if (die->attrs[i].name == DW_AT_specification
6368 || die->attrs[i].name == DW_AT_abstract_origin)
6369 spec = &die->attrs[i];
6370 }
c906108c 6371
10b3939b
DJ
6372 if (spec)
6373 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6374
c906108c
SS
6375 return NULL;
6376}
6377
05cf31d1
JB
6378/* Return non-zero iff the attribute NAME is defined for the given DIE,
6379 and holds a non-zero value. This function should only be used for
6380 DW_FORM_flag attributes. */
6381
6382static int
6383dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6384{
6385 struct attribute *attr = dwarf2_attr (die, name, cu);
6386
6387 return (attr && DW_UNSND (attr));
6388}
6389
3ca72b44 6390static int
e142c38c 6391die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6392{
05cf31d1
JB
6393 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6394 which value is non-zero. However, we have to be careful with
6395 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6396 (via dwarf2_flag_true_p) follows this attribute. So we may
6397 end up accidently finding a declaration attribute that belongs
6398 to a different DIE referenced by the specification attribute,
6399 even though the given DIE does not have a declaration attribute. */
6400 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6401 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6402}
6403
63d06c5c
DC
6404/* Return the die giving the specification for DIE, if there is
6405 one. */
6406
6407static struct die_info *
e142c38c 6408die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6409{
e142c38c 6410 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6411
6412 if (spec_attr == NULL)
6413 return NULL;
6414 else
10b3939b 6415 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6416}
c906108c 6417
debd256d
JB
6418/* Free the line_header structure *LH, and any arrays and strings it
6419 refers to. */
6420static void
6421free_line_header (struct line_header *lh)
6422{
6423 if (lh->standard_opcode_lengths)
a8bc7b56 6424 xfree (lh->standard_opcode_lengths);
debd256d
JB
6425
6426 /* Remember that all the lh->file_names[i].name pointers are
6427 pointers into debug_line_buffer, and don't need to be freed. */
6428 if (lh->file_names)
a8bc7b56 6429 xfree (lh->file_names);
debd256d
JB
6430
6431 /* Similarly for the include directory names. */
6432 if (lh->include_dirs)
a8bc7b56 6433 xfree (lh->include_dirs);
debd256d 6434
a8bc7b56 6435 xfree (lh);
debd256d
JB
6436}
6437
6438
6439/* Add an entry to LH's include directory table. */
6440static void
6441add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6442{
debd256d
JB
6443 /* Grow the array if necessary. */
6444 if (lh->include_dirs_size == 0)
c5aa993b 6445 {
debd256d
JB
6446 lh->include_dirs_size = 1; /* for testing */
6447 lh->include_dirs = xmalloc (lh->include_dirs_size
6448 * sizeof (*lh->include_dirs));
6449 }
6450 else if (lh->num_include_dirs >= lh->include_dirs_size)
6451 {
6452 lh->include_dirs_size *= 2;
6453 lh->include_dirs = xrealloc (lh->include_dirs,
6454 (lh->include_dirs_size
6455 * sizeof (*lh->include_dirs)));
c5aa993b 6456 }
c906108c 6457
debd256d
JB
6458 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6459}
6460
6461
6462/* Add an entry to LH's file name table. */
6463static void
6464add_file_name (struct line_header *lh,
6465 char *name,
6466 unsigned int dir_index,
6467 unsigned int mod_time,
6468 unsigned int length)
6469{
6470 struct file_entry *fe;
6471
6472 /* Grow the array if necessary. */
6473 if (lh->file_names_size == 0)
6474 {
6475 lh->file_names_size = 1; /* for testing */
6476 lh->file_names = xmalloc (lh->file_names_size
6477 * sizeof (*lh->file_names));
6478 }
6479 else if (lh->num_file_names >= lh->file_names_size)
6480 {
6481 lh->file_names_size *= 2;
6482 lh->file_names = xrealloc (lh->file_names,
6483 (lh->file_names_size
6484 * sizeof (*lh->file_names)));
6485 }
6486
6487 fe = &lh->file_names[lh->num_file_names++];
6488 fe->name = name;
6489 fe->dir_index = dir_index;
6490 fe->mod_time = mod_time;
6491 fe->length = length;
aaa75496 6492 fe->included_p = 0;
cb1df416 6493 fe->symtab = NULL;
debd256d
JB
6494}
6495
6496
6497/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6498 .debug_line, according to the endianness of ABFD. Return a pointer
6499 to a struct line_header, allocated using xmalloc.
debd256d
JB
6500
6501 NOTE: the strings in the include directory and file name tables of
6502 the returned object point into debug_line_buffer, and must not be
6503 freed. */
6504static struct line_header *
6505dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6506 struct dwarf2_cu *cu)
debd256d
JB
6507{
6508 struct cleanup *back_to;
6509 struct line_header *lh;
fe1b8b76 6510 gdb_byte *line_ptr;
891d2f0b 6511 unsigned int bytes_read;
debd256d
JB
6512 int i;
6513 char *cur_dir, *cur_file;
6514
6502dd73 6515 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6516 {
e2e0b3e5 6517 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6518 return 0;
6519 }
6520
a738430d
MK
6521 /* Make sure that at least there's room for the total_length field.
6522 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6523 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6524 {
4d3c2250 6525 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6526 return 0;
6527 }
6528
6529 lh = xmalloc (sizeof (*lh));
6530 memset (lh, 0, sizeof (*lh));
6531 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6532 (void *) lh);
6533
6502dd73 6534 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6535
a738430d 6536 /* Read in the header. */
dd373385
EZ
6537 lh->total_length =
6538 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6539 line_ptr += bytes_read;
6502dd73
DJ
6540 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6541 + dwarf2_per_objfile->line_size))
debd256d 6542 {
4d3c2250 6543 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6544 return 0;
6545 }
6546 lh->statement_program_end = line_ptr + lh->total_length;
6547 lh->version = read_2_bytes (abfd, line_ptr);
6548 line_ptr += 2;
e7c27a73 6549 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6550 line_ptr += bytes_read;
6551 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6552 line_ptr += 1;
6553 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6554 line_ptr += 1;
6555 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6556 line_ptr += 1;
6557 lh->line_range = read_1_byte (abfd, line_ptr);
6558 line_ptr += 1;
6559 lh->opcode_base = read_1_byte (abfd, line_ptr);
6560 line_ptr += 1;
6561 lh->standard_opcode_lengths
fe1b8b76 6562 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6563
6564 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6565 for (i = 1; i < lh->opcode_base; ++i)
6566 {
6567 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6568 line_ptr += 1;
6569 }
6570
a738430d 6571 /* Read directory table. */
debd256d
JB
6572 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6573 {
6574 line_ptr += bytes_read;
6575 add_include_dir (lh, cur_dir);
6576 }
6577 line_ptr += bytes_read;
6578
a738430d 6579 /* Read file name table. */
debd256d
JB
6580 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6581 {
6582 unsigned int dir_index, mod_time, length;
6583
6584 line_ptr += bytes_read;
6585 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6586 line_ptr += bytes_read;
6587 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6588 line_ptr += bytes_read;
6589 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6590 line_ptr += bytes_read;
6591
6592 add_file_name (lh, cur_file, dir_index, mod_time, length);
6593 }
6594 line_ptr += bytes_read;
6595 lh->statement_program_start = line_ptr;
6596
6502dd73
DJ
6597 if (line_ptr > (dwarf2_per_objfile->line_buffer
6598 + dwarf2_per_objfile->line_size))
4d3c2250 6599 complaint (&symfile_complaints,
e2e0b3e5 6600 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6601
6602 discard_cleanups (back_to);
6603 return lh;
6604}
c906108c 6605
5fb290d7
DJ
6606/* This function exists to work around a bug in certain compilers
6607 (particularly GCC 2.95), in which the first line number marker of a
6608 function does not show up until after the prologue, right before
6609 the second line number marker. This function shifts ADDRESS down
6610 to the beginning of the function if necessary, and is called on
6611 addresses passed to record_line. */
6612
6613static CORE_ADDR
e142c38c 6614check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6615{
6616 struct function_range *fn;
6617
6618 /* Find the function_range containing address. */
e142c38c 6619 if (!cu->first_fn)
5fb290d7
DJ
6620 return address;
6621
e142c38c
DJ
6622 if (!cu->cached_fn)
6623 cu->cached_fn = cu->first_fn;
5fb290d7 6624
e142c38c 6625 fn = cu->cached_fn;
5fb290d7
DJ
6626 while (fn)
6627 if (fn->lowpc <= address && fn->highpc > address)
6628 goto found;
6629 else
6630 fn = fn->next;
6631
e142c38c
DJ
6632 fn = cu->first_fn;
6633 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6634 if (fn->lowpc <= address && fn->highpc > address)
6635 goto found;
6636 else
6637 fn = fn->next;
6638
6639 return address;
6640
6641 found:
6642 if (fn->seen_line)
6643 return address;
6644 if (address != fn->lowpc)
4d3c2250 6645 complaint (&symfile_complaints,
e2e0b3e5 6646 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6647 (unsigned long) address, fn->name);
5fb290d7
DJ
6648 fn->seen_line = 1;
6649 return fn->lowpc;
6650}
6651
aaa75496
JB
6652/* Decode the Line Number Program (LNP) for the given line_header
6653 structure and CU. The actual information extracted and the type
6654 of structures created from the LNP depends on the value of PST.
6655
6656 1. If PST is NULL, then this procedure uses the data from the program
6657 to create all necessary symbol tables, and their linetables.
6658 The compilation directory of the file is passed in COMP_DIR,
6659 and must not be NULL.
6660
6661 2. If PST is not NULL, this procedure reads the program to determine
6662 the list of files included by the unit represented by PST, and
6663 builds all the associated partial symbol tables. In this case,
6664 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6665 is not used to compute the full name of the symtab, and therefore
6666 omitting it when building the partial symtab does not introduce
6667 the potential for inconsistency - a partial symtab and its associated
6668 symbtab having a different fullname -). */
debd256d 6669
c906108c 6670static void
debd256d 6671dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6672 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6673{
a8c50c1f 6674 gdb_byte *line_ptr, *extended_end;
fe1b8b76 6675 gdb_byte *line_end;
a8c50c1f 6676 unsigned int bytes_read, extended_len;
c906108c 6677 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6678 CORE_ADDR baseaddr;
6679 struct objfile *objfile = cu->objfile;
aaa75496 6680 const int decode_for_pst_p = (pst != NULL);
cb1df416 6681 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6682
6683 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6684
debd256d
JB
6685 line_ptr = lh->statement_program_start;
6686 line_end = lh->statement_program_end;
c906108c
SS
6687
6688 /* Read the statement sequences until there's nothing left. */
6689 while (line_ptr < line_end)
6690 {
6691 /* state machine registers */
6692 CORE_ADDR address = 0;
6693 unsigned int file = 1;
6694 unsigned int line = 1;
6695 unsigned int column = 0;
debd256d 6696 int is_stmt = lh->default_is_stmt;
c906108c
SS
6697 int basic_block = 0;
6698 int end_sequence = 0;
6699
aaa75496 6700 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6701 {
aaa75496 6702 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6703 /* lh->include_dirs and lh->file_names are 0-based, but the
6704 directory and file name numbers in the statement program
6705 are 1-based. */
6706 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6707 char *dir = NULL;
a738430d 6708
debd256d
JB
6709 if (fe->dir_index)
6710 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6711
6712 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6713 }
6714
a738430d 6715 /* Decode the table. */
c5aa993b 6716 while (!end_sequence)
c906108c
SS
6717 {
6718 op_code = read_1_byte (abfd, line_ptr);
6719 line_ptr += 1;
9aa1fe7e 6720
debd256d 6721 if (op_code >= lh->opcode_base)
a738430d
MK
6722 {
6723 /* Special operand. */
debd256d
JB
6724 adj_opcode = op_code - lh->opcode_base;
6725 address += (adj_opcode / lh->line_range)
6726 * lh->minimum_instruction_length;
6727 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
6728 if (lh->num_file_names < file)
6729 dwarf2_debug_line_missing_file_complaint ();
6730 else
6731 {
6732 lh->file_names[file - 1].included_p = 1;
6733 if (!decode_for_pst_p)
6734 {
6735 if (last_subfile != current_subfile)
6736 {
6737 if (last_subfile)
6738 record_line (last_subfile, 0, address);
6739 last_subfile = current_subfile;
6740 }
6741 /* Append row to matrix using current values. */
6742 record_line (current_subfile, line,
6743 check_cu_functions (address, cu));
366da635 6744 }
25e43795 6745 }
9aa1fe7e
GK
6746 basic_block = 1;
6747 }
6748 else switch (op_code)
c906108c
SS
6749 {
6750 case DW_LNS_extended_op:
a8c50c1f 6751 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 6752 line_ptr += bytes_read;
a8c50c1f 6753 extended_end = line_ptr + extended_len;
c906108c
SS
6754 extended_op = read_1_byte (abfd, line_ptr);
6755 line_ptr += 1;
6756 switch (extended_op)
6757 {
6758 case DW_LNE_end_sequence:
6759 end_sequence = 1;
25e43795
DJ
6760
6761 if (lh->num_file_names < file)
6762 dwarf2_debug_line_missing_file_complaint ();
6763 else
6764 {
6765 lh->file_names[file - 1].included_p = 1;
6766 if (!decode_for_pst_p)
6767 record_line (current_subfile, 0, address);
6768 }
c906108c
SS
6769 break;
6770 case DW_LNE_set_address:
e7c27a73 6771 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6772 line_ptr += bytes_read;
6773 address += baseaddr;
c906108c
SS
6774 break;
6775 case DW_LNE_define_file:
debd256d
JB
6776 {
6777 char *cur_file;
6778 unsigned int dir_index, mod_time, length;
6779
6780 cur_file = read_string (abfd, line_ptr, &bytes_read);
6781 line_ptr += bytes_read;
6782 dir_index =
6783 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6784 line_ptr += bytes_read;
6785 mod_time =
6786 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6787 line_ptr += bytes_read;
6788 length =
6789 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6790 line_ptr += bytes_read;
6791 add_file_name (lh, cur_file, dir_index, mod_time, length);
6792 }
c906108c
SS
6793 break;
6794 default:
4d3c2250 6795 complaint (&symfile_complaints,
e2e0b3e5 6796 _("mangled .debug_line section"));
debd256d 6797 return;
c906108c 6798 }
a8c50c1f
DJ
6799 /* Make sure that we parsed the extended op correctly. If e.g.
6800 we expected a different address size than the producer used,
6801 we may have read the wrong number of bytes. */
6802 if (line_ptr != extended_end)
6803 {
6804 complaint (&symfile_complaints,
6805 _("mangled .debug_line section"));
6806 return;
6807 }
c906108c
SS
6808 break;
6809 case DW_LNS_copy:
25e43795
DJ
6810 if (lh->num_file_names < file)
6811 dwarf2_debug_line_missing_file_complaint ();
6812 else
366da635 6813 {
25e43795
DJ
6814 lh->file_names[file - 1].included_p = 1;
6815 if (!decode_for_pst_p)
6816 {
6817 if (last_subfile != current_subfile)
6818 {
6819 if (last_subfile)
6820 record_line (last_subfile, 0, address);
6821 last_subfile = current_subfile;
6822 }
6823 record_line (current_subfile, line,
6824 check_cu_functions (address, cu));
6825 }
366da635 6826 }
c906108c
SS
6827 basic_block = 0;
6828 break;
6829 case DW_LNS_advance_pc:
debd256d 6830 address += lh->minimum_instruction_length
c906108c
SS
6831 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6832 line_ptr += bytes_read;
6833 break;
6834 case DW_LNS_advance_line:
6835 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6836 line_ptr += bytes_read;
6837 break;
6838 case DW_LNS_set_file:
debd256d 6839 {
a738430d
MK
6840 /* The arrays lh->include_dirs and lh->file_names are
6841 0-based, but the directory and file name numbers in
6842 the statement program are 1-based. */
debd256d 6843 struct file_entry *fe;
4f1520fb 6844 char *dir = NULL;
a738430d 6845
debd256d
JB
6846 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6847 line_ptr += bytes_read;
25e43795
DJ
6848 if (lh->num_file_names < file)
6849 dwarf2_debug_line_missing_file_complaint ();
6850 else
6851 {
6852 fe = &lh->file_names[file - 1];
6853 if (fe->dir_index)
6854 dir = lh->include_dirs[fe->dir_index - 1];
6855 if (!decode_for_pst_p)
6856 {
6857 last_subfile = current_subfile;
6858 dwarf2_start_subfile (fe->name, dir, comp_dir);
6859 }
6860 }
debd256d 6861 }
c906108c
SS
6862 break;
6863 case DW_LNS_set_column:
6864 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6865 line_ptr += bytes_read;
6866 break;
6867 case DW_LNS_negate_stmt:
6868 is_stmt = (!is_stmt);
6869 break;
6870 case DW_LNS_set_basic_block:
6871 basic_block = 1;
6872 break;
c2c6d25f
JM
6873 /* Add to the address register of the state machine the
6874 address increment value corresponding to special opcode
a738430d
MK
6875 255. I.e., this value is scaled by the minimum
6876 instruction length since special opcode 255 would have
6877 scaled the the increment. */
c906108c 6878 case DW_LNS_const_add_pc:
debd256d
JB
6879 address += (lh->minimum_instruction_length
6880 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6881 break;
6882 case DW_LNS_fixed_advance_pc:
6883 address += read_2_bytes (abfd, line_ptr);
6884 line_ptr += 2;
6885 break;
9aa1fe7e 6886 default:
a738430d
MK
6887 {
6888 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6889 int i;
a738430d 6890
debd256d 6891 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6892 {
6893 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6894 line_ptr += bytes_read;
6895 }
6896 }
c906108c
SS
6897 }
6898 }
6899 }
aaa75496
JB
6900
6901 if (decode_for_pst_p)
6902 {
6903 int file_index;
6904
6905 /* Now that we're done scanning the Line Header Program, we can
6906 create the psymtab of each included file. */
6907 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6908 if (lh->file_names[file_index].included_p == 1)
6909 {
5b5464ad
JB
6910 const struct file_entry fe = lh->file_names [file_index];
6911 char *include_name = fe.name;
6912 char *dir_name = NULL;
6913 char *pst_filename = pst->filename;
6914
6915 if (fe.dir_index)
6916 dir_name = lh->include_dirs[fe.dir_index - 1];
6917
6918 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6919 {
1754f103
MK
6920 include_name = concat (dir_name, SLASH_STRING,
6921 include_name, (char *)NULL);
5b5464ad
JB
6922 make_cleanup (xfree, include_name);
6923 }
6924
6925 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6926 {
1754f103
MK
6927 pst_filename = concat (pst->dirname, SLASH_STRING,
6928 pst_filename, (char *)NULL);
5b5464ad
JB
6929 make_cleanup (xfree, pst_filename);
6930 }
6931
6932 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6933 dwarf2_create_include_psymtab (include_name, pst, objfile);
6934 }
6935 }
cb1df416
DJ
6936 else
6937 {
6938 /* Make sure a symtab is created for every file, even files
6939 which contain only variables (i.e. no code with associated
6940 line numbers). */
6941
6942 int i;
6943 struct file_entry *fe;
6944
6945 for (i = 0; i < lh->num_file_names; i++)
6946 {
6947 char *dir = NULL;
6948 fe = &lh->file_names[i];
6949 if (fe->dir_index)
6950 dir = lh->include_dirs[fe->dir_index - 1];
6951 dwarf2_start_subfile (fe->name, dir, comp_dir);
6952
6953 /* Skip the main file; we don't need it, and it must be
6954 allocated last, so that it will show up before the
6955 non-primary symtabs in the objfile's symtab list. */
6956 if (current_subfile == first_subfile)
6957 continue;
6958
6959 if (current_subfile->symtab == NULL)
6960 current_subfile->symtab = allocate_symtab (current_subfile->name,
6961 cu->objfile);
6962 fe->symtab = current_subfile->symtab;
6963 }
6964 }
c906108c
SS
6965}
6966
6967/* Start a subfile for DWARF. FILENAME is the name of the file and
6968 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
6969 or NULL if not known. COMP_DIR is the compilation directory for the
6970 linetable's compilation unit or NULL if not known.
c906108c
SS
6971 This routine tries to keep line numbers from identical absolute and
6972 relative file names in a common subfile.
6973
6974 Using the `list' example from the GDB testsuite, which resides in
6975 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6976 of /srcdir/list0.c yields the following debugging information for list0.c:
6977
c5aa993b
JM
6978 DW_AT_name: /srcdir/list0.c
6979 DW_AT_comp_dir: /compdir
357e46e7 6980 files.files[0].name: list0.h
c5aa993b 6981 files.files[0].dir: /srcdir
357e46e7 6982 files.files[1].name: list0.c
c5aa993b 6983 files.files[1].dir: /srcdir
c906108c
SS
6984
6985 The line number information for list0.c has to end up in a single
4f1520fb
FR
6986 subfile, so that `break /srcdir/list0.c:1' works as expected.
6987 start_subfile will ensure that this happens provided that we pass the
6988 concatenation of files.files[1].dir and files.files[1].name as the
6989 subfile's name. */
c906108c
SS
6990
6991static void
4f1520fb 6992dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 6993{
4f1520fb
FR
6994 char *fullname;
6995
6996 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6997 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6998 second argument to start_subfile. To be consistent, we do the
6999 same here. In order not to lose the line information directory,
7000 we concatenate it to the filename when it makes sense.
7001 Note that the Dwarf3 standard says (speaking of filenames in line
7002 information): ``The directory index is ignored for file names
7003 that represent full path names''. Thus ignoring dirname in the
7004 `else' branch below isn't an issue. */
c906108c 7005
d5166ae1 7006 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
7007 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7008 else
7009 fullname = filename;
c906108c 7010
4f1520fb
FR
7011 start_subfile (fullname, comp_dir);
7012
7013 if (fullname != filename)
7014 xfree (fullname);
c906108c
SS
7015}
7016
4c2df51b
DJ
7017static void
7018var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7019 struct dwarf2_cu *cu)
4c2df51b 7020{
e7c27a73
DJ
7021 struct objfile *objfile = cu->objfile;
7022 struct comp_unit_head *cu_header = &cu->header;
7023
4c2df51b
DJ
7024 /* NOTE drow/2003-01-30: There used to be a comment and some special
7025 code here to turn a symbol with DW_AT_external and a
7026 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7027 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7028 with some versions of binutils) where shared libraries could have
7029 relocations against symbols in their debug information - the
7030 minimal symbol would have the right address, but the debug info
7031 would not. It's no longer necessary, because we will explicitly
7032 apply relocations when we read in the debug information now. */
7033
7034 /* A DW_AT_location attribute with no contents indicates that a
7035 variable has been optimized away. */
7036 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7037 {
7038 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7039 return;
7040 }
7041
7042 /* Handle one degenerate form of location expression specially, to
7043 preserve GDB's previous behavior when section offsets are
7044 specified. If this is just a DW_OP_addr then mark this symbol
7045 as LOC_STATIC. */
7046
7047 if (attr_form_is_block (attr)
7048 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7049 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7050 {
891d2f0b 7051 unsigned int dummy;
4c2df51b
DJ
7052
7053 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7054 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7055 fixup_symbol_section (sym, objfile);
7056 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7057 SYMBOL_SECTION (sym));
7058 SYMBOL_CLASS (sym) = LOC_STATIC;
7059 return;
7060 }
7061
7062 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7063 expression evaluator, and use LOC_COMPUTED only when necessary
7064 (i.e. when the value of a register or memory location is
7065 referenced, or a thread-local block, etc.). Then again, it might
7066 not be worthwhile. I'm assuming that it isn't unless performance
7067 or memory numbers show me otherwise. */
7068
e7c27a73 7069 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7070 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7071}
7072
c906108c
SS
7073/* Given a pointer to a DWARF information entry, figure out if we need
7074 to make a symbol table entry for it, and if so, create a new entry
7075 and return a pointer to it.
7076 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7077 used the passed type. */
c906108c
SS
7078
7079static struct symbol *
e7c27a73 7080new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7081{
e7c27a73 7082 struct objfile *objfile = cu->objfile;
c906108c
SS
7083 struct symbol *sym = NULL;
7084 char *name;
7085 struct attribute *attr = NULL;
7086 struct attribute *attr2 = NULL;
e142c38c
DJ
7087 CORE_ADDR baseaddr;
7088
7089 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7090
5c4e30ca 7091 if (die->tag != DW_TAG_namespace)
e142c38c 7092 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7093 else
7094 name = TYPE_NAME (type);
7095
c906108c
SS
7096 if (name)
7097 {
4a146b47 7098 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7099 sizeof (struct symbol));
7100 OBJSTAT (objfile, n_syms++);
7101 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7102
7103 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7104 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7105 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7106
7107 /* Default assumptions.
c5aa993b 7108 Use the passed type or decode it from the die. */
176620f1 7109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7110 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7111 if (type != NULL)
7112 SYMBOL_TYPE (sym) = type;
7113 else
e7c27a73 7114 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7115 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7116 if (attr)
7117 {
7118 SYMBOL_LINE (sym) = DW_UNSND (attr);
7119 }
cb1df416
DJ
7120
7121 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7122 if (attr)
7123 {
7124 int file_index = DW_UNSND (attr);
7125 if (cu->line_header == NULL
7126 || file_index > cu->line_header->num_file_names)
7127 complaint (&symfile_complaints,
7128 _("file index out of range"));
1c3d648d 7129 else if (file_index > 0)
cb1df416
DJ
7130 {
7131 struct file_entry *fe;
7132 fe = &cu->line_header->file_names[file_index - 1];
7133 SYMBOL_SYMTAB (sym) = fe->symtab;
7134 }
7135 }
7136
c906108c
SS
7137 switch (die->tag)
7138 {
7139 case DW_TAG_label:
e142c38c 7140 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7141 if (attr)
7142 {
7143 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7144 }
7145 SYMBOL_CLASS (sym) = LOC_LABEL;
7146 break;
7147 case DW_TAG_subprogram:
7148 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7149 finish_block. */
7150 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7151 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7152 if (attr2 && (DW_UNSND (attr2) != 0))
7153 {
7154 add_symbol_to_list (sym, &global_symbols);
7155 }
7156 else
7157 {
e142c38c 7158 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7159 }
7160 break;
7161 case DW_TAG_variable:
7162 /* Compilation with minimal debug info may result in variables
7163 with missing type entries. Change the misleading `void' type
7164 to something sensible. */
7165 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499
UW
7166 SYMBOL_TYPE (sym)
7167 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7168
e142c38c 7169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7170 if (attr)
7171 {
e7c27a73 7172 dwarf2_const_value (attr, sym, cu);
e142c38c 7173 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7174 if (attr2 && (DW_UNSND (attr2) != 0))
7175 add_symbol_to_list (sym, &global_symbols);
7176 else
e142c38c 7177 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7178 break;
7179 }
e142c38c 7180 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7181 if (attr)
7182 {
e7c27a73 7183 var_decode_location (attr, sym, cu);
e142c38c 7184 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7185 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7186 add_symbol_to_list (sym, &global_symbols);
c906108c 7187 else
e142c38c 7188 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7189 }
7190 else
7191 {
7192 /* We do not know the address of this symbol.
c5aa993b
JM
7193 If it is an external symbol and we have type information
7194 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7195 The address of the variable will then be determined from
7196 the minimal symbol table whenever the variable is
7197 referenced. */
e142c38c 7198 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7199 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7200 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7201 {
7202 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7203 add_symbol_to_list (sym, &global_symbols);
7204 }
7205 }
7206 break;
7207 case DW_TAG_formal_parameter:
e142c38c 7208 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7209 if (attr)
7210 {
e7c27a73 7211 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7212 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7213 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7214 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7215 }
e142c38c 7216 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7217 if (attr)
7218 {
e7c27a73 7219 dwarf2_const_value (attr, sym, cu);
c906108c 7220 }
e142c38c 7221 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7222 break;
7223 case DW_TAG_unspecified_parameters:
7224 /* From varargs functions; gdb doesn't seem to have any
7225 interest in this information, so just ignore it for now.
7226 (FIXME?) */
7227 break;
7228 case DW_TAG_class_type:
7229 case DW_TAG_structure_type:
7230 case DW_TAG_union_type:
72019c9c 7231 case DW_TAG_set_type:
c906108c
SS
7232 case DW_TAG_enumeration_type:
7233 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7234 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7235
63d06c5c
DC
7236 /* Make sure that the symbol includes appropriate enclosing
7237 classes/namespaces in its name. These are calculated in
134d01f1 7238 read_structure_type, and the correct name is saved in
63d06c5c
DC
7239 the type. */
7240
987504bb
JJ
7241 if (cu->language == language_cplus
7242 || cu->language == language_java)
c906108c 7243 {
63d06c5c
DC
7244 struct type *type = SYMBOL_TYPE (sym);
7245
7246 if (TYPE_TAG_NAME (type) != NULL)
7247 {
7248 /* FIXME: carlton/2003-11-10: Should this use
7249 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7250 arises further down in this function.) */
7251 /* The type's name is already allocated along with
7252 this objfile, so we don't need to duplicate it
7253 for the symbol. */
7254 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7255 }
c906108c 7256 }
63d06c5c
DC
7257
7258 {
987504bb 7259 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7260 really ever be static objects: otherwise, if you try
7261 to, say, break of a class's method and you're in a file
7262 which doesn't mention that class, it won't work unless
7263 the check for all static symbols in lookup_symbol_aux
7264 saves you. See the OtherFileClass tests in
7265 gdb.c++/namespace.exp. */
7266
7267 struct pending **list_to_add;
7268
e142c38c 7269 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7270 && (cu->language == language_cplus
7271 || cu->language == language_java)
e142c38c 7272 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7273
7274 add_symbol_to_list (sym, list_to_add);
7275
7276 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7277 defines a typedef for "foo". A Java class declaration also
7278 defines a typedef for the class. Synthesize a typedef symbol
7279 so that "ptype foo" works as expected. */
7280 if (cu->language == language_cplus
8c6860bb
JB
7281 || cu->language == language_java
7282 || cu->language == language_ada)
63d06c5c
DC
7283 {
7284 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7285 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7286 sizeof (struct symbol));
7287 *typedef_sym = *sym;
7288 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7289 /* The symbol's name is already allocated along with
7290 this objfile, so we don't need to duplicate it for
7291 the type. */
63d06c5c 7292 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7293 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7294 add_symbol_to_list (typedef_sym, list_to_add);
7295 }
7296 }
c906108c
SS
7297 break;
7298 case DW_TAG_typedef:
63d06c5c
DC
7299 if (processing_has_namespace_info
7300 && processing_current_prefix[0] != '\0')
7301 {
987504bb
JJ
7302 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7303 processing_current_prefix,
7304 name, cu);
63d06c5c
DC
7305 }
7306 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7307 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7308 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7309 break;
c906108c 7310 case DW_TAG_base_type:
a02abb62 7311 case DW_TAG_subrange_type:
c906108c 7312 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7313 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7314 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7315 break;
7316 case DW_TAG_enumerator:
63d06c5c
DC
7317 if (processing_has_namespace_info
7318 && processing_current_prefix[0] != '\0')
7319 {
987504bb
JJ
7320 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7321 processing_current_prefix,
7322 name, cu);
63d06c5c 7323 }
e142c38c 7324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7325 if (attr)
7326 {
e7c27a73 7327 dwarf2_const_value (attr, sym, cu);
c906108c 7328 }
63d06c5c
DC
7329 {
7330 /* NOTE: carlton/2003-11-10: See comment above in the
7331 DW_TAG_class_type, etc. block. */
7332
7333 struct pending **list_to_add;
7334
e142c38c 7335 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7336 && (cu->language == language_cplus
7337 || cu->language == language_java)
e142c38c 7338 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7339
7340 add_symbol_to_list (sym, list_to_add);
7341 }
c906108c 7342 break;
5c4e30ca
DC
7343 case DW_TAG_namespace:
7344 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7345 add_symbol_to_list (sym, &global_symbols);
7346 break;
c906108c
SS
7347 default:
7348 /* Not a tag we recognize. Hopefully we aren't processing
7349 trash data, but since we must specifically ignore things
7350 we don't recognize, there is nothing else we should do at
7351 this point. */
e2e0b3e5 7352 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7353 dwarf_tag_name (die->tag));
c906108c
SS
7354 break;
7355 }
7356 }
7357 return (sym);
7358}
7359
7360/* Copy constant value from an attribute to a symbol. */
7361
7362static void
107d2387 7363dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7364 struct dwarf2_cu *cu)
c906108c 7365{
e7c27a73
DJ
7366 struct objfile *objfile = cu->objfile;
7367 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7368 struct dwarf_block *blk;
7369
7370 switch (attr->form)
7371 {
7372 case DW_FORM_addr:
107d2387 7373 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7374 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7375 cu_header->addr_size,
7376 TYPE_LENGTH (SYMBOL_TYPE
7377 (sym)));
4e38b386 7378 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7379 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7380 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7381 it's body - store_unsigned_integer. */
7382 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7383 DW_ADDR (attr));
c906108c
SS
7384 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7385 break;
7386 case DW_FORM_block1:
7387 case DW_FORM_block2:
7388 case DW_FORM_block4:
7389 case DW_FORM_block:
7390 blk = DW_BLOCK (attr);
7391 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7392 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7393 blk->size,
7394 TYPE_LENGTH (SYMBOL_TYPE
7395 (sym)));
4e38b386 7396 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7397 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7398 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7399 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7400 break;
2df3850c
JM
7401
7402 /* The DW_AT_const_value attributes are supposed to carry the
7403 symbol's value "represented as it would be on the target
7404 architecture." By the time we get here, it's already been
7405 converted to host endianness, so we just need to sign- or
7406 zero-extend it as appropriate. */
7407 case DW_FORM_data1:
7408 dwarf2_const_value_data (attr, sym, 8);
7409 break;
c906108c 7410 case DW_FORM_data2:
2df3850c
JM
7411 dwarf2_const_value_data (attr, sym, 16);
7412 break;
c906108c 7413 case DW_FORM_data4:
2df3850c
JM
7414 dwarf2_const_value_data (attr, sym, 32);
7415 break;
c906108c 7416 case DW_FORM_data8:
2df3850c
JM
7417 dwarf2_const_value_data (attr, sym, 64);
7418 break;
7419
c906108c 7420 case DW_FORM_sdata:
2df3850c
JM
7421 SYMBOL_VALUE (sym) = DW_SND (attr);
7422 SYMBOL_CLASS (sym) = LOC_CONST;
7423 break;
7424
c906108c
SS
7425 case DW_FORM_udata:
7426 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7427 SYMBOL_CLASS (sym) = LOC_CONST;
7428 break;
2df3850c 7429
c906108c 7430 default:
4d3c2250 7431 complaint (&symfile_complaints,
e2e0b3e5 7432 _("unsupported const value attribute form: '%s'"),
4d3c2250 7433 dwarf_form_name (attr->form));
c906108c
SS
7434 SYMBOL_VALUE (sym) = 0;
7435 SYMBOL_CLASS (sym) = LOC_CONST;
7436 break;
7437 }
7438}
7439
2df3850c
JM
7440
7441/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7442 or zero-extend it as appropriate for the symbol's type. */
7443static void
7444dwarf2_const_value_data (struct attribute *attr,
7445 struct symbol *sym,
7446 int bits)
7447{
7448 LONGEST l = DW_UNSND (attr);
7449
7450 if (bits < sizeof (l) * 8)
7451 {
7452 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7453 l &= ((LONGEST) 1 << bits) - 1;
7454 else
bf9198f1 7455 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7456 }
7457
7458 SYMBOL_VALUE (sym) = l;
7459 SYMBOL_CLASS (sym) = LOC_CONST;
7460}
7461
7462
c906108c
SS
7463/* Return the type of the die in question using its DW_AT_type attribute. */
7464
7465static struct type *
e7c27a73 7466die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7467{
7468 struct type *type;
7469 struct attribute *type_attr;
7470 struct die_info *type_die;
c906108c 7471
e142c38c 7472 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7473 if (!type_attr)
7474 {
7475 /* A missing DW_AT_type represents a void type. */
e142c38c 7476 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7477 }
7478 else
10b3939b
DJ
7479 type_die = follow_die_ref (die, type_attr, cu);
7480
e7c27a73 7481 type = tag_type_to_type (type_die, cu);
c906108c
SS
7482 if (!type)
7483 {
7484 dump_die (type_die);
8a3fe4f8 7485 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7486 cu->objfile->name);
c906108c
SS
7487 }
7488 return type;
7489}
7490
7491/* Return the containing type of the die in question using its
7492 DW_AT_containing_type attribute. */
7493
7494static struct type *
e7c27a73 7495die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7496{
7497 struct type *type = NULL;
7498 struct attribute *type_attr;
7499 struct die_info *type_die = NULL;
c906108c 7500
e142c38c 7501 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7502 if (type_attr)
7503 {
10b3939b 7504 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7505 type = tag_type_to_type (type_die, cu);
c906108c
SS
7506 }
7507 if (!type)
7508 {
7509 if (type_die)
7510 dump_die (type_die);
8a3fe4f8 7511 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7512 cu->objfile->name);
c906108c
SS
7513 }
7514 return type;
7515}
7516
c906108c 7517static struct type *
e7c27a73 7518tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7519{
7520 if (die->type)
7521 {
7522 return die->type;
7523 }
7524 else
7525 {
e7c27a73 7526 read_type_die (die, cu);
c906108c
SS
7527 if (!die->type)
7528 {
7529 dump_die (die);
8a3fe4f8 7530 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7531 cu->objfile->name);
c906108c
SS
7532 }
7533 return die->type;
7534 }
7535}
7536
7537static void
e7c27a73 7538read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7539{
e142c38c 7540 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7541 const char *old_prefix = processing_current_prefix;
7542 struct cleanup *back_to = make_cleanup (xfree, prefix);
7543 processing_current_prefix = prefix;
7544
c906108c
SS
7545 switch (die->tag)
7546 {
7547 case DW_TAG_class_type:
7548 case DW_TAG_structure_type:
7549 case DW_TAG_union_type:
134d01f1 7550 read_structure_type (die, cu);
c906108c
SS
7551 break;
7552 case DW_TAG_enumeration_type:
134d01f1 7553 read_enumeration_type (die, cu);
c906108c
SS
7554 break;
7555 case DW_TAG_subprogram:
7556 case DW_TAG_subroutine_type:
e7c27a73 7557 read_subroutine_type (die, cu);
c906108c
SS
7558 break;
7559 case DW_TAG_array_type:
e7c27a73 7560 read_array_type (die, cu);
c906108c 7561 break;
72019c9c
GM
7562 case DW_TAG_set_type:
7563 read_set_type (die, cu);
7564 break;
c906108c 7565 case DW_TAG_pointer_type:
e7c27a73 7566 read_tag_pointer_type (die, cu);
c906108c
SS
7567 break;
7568 case DW_TAG_ptr_to_member_type:
e7c27a73 7569 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7570 break;
7571 case DW_TAG_reference_type:
e7c27a73 7572 read_tag_reference_type (die, cu);
c906108c
SS
7573 break;
7574 case DW_TAG_const_type:
e7c27a73 7575 read_tag_const_type (die, cu);
c906108c
SS
7576 break;
7577 case DW_TAG_volatile_type:
e7c27a73 7578 read_tag_volatile_type (die, cu);
c906108c
SS
7579 break;
7580 case DW_TAG_string_type:
e7c27a73 7581 read_tag_string_type (die, cu);
c906108c
SS
7582 break;
7583 case DW_TAG_typedef:
e7c27a73 7584 read_typedef (die, cu);
c906108c 7585 break;
a02abb62
JB
7586 case DW_TAG_subrange_type:
7587 read_subrange_type (die, cu);
7588 break;
c906108c 7589 case DW_TAG_base_type:
e7c27a73 7590 read_base_type (die, cu);
c906108c 7591 break;
81a17f79
JB
7592 case DW_TAG_unspecified_type:
7593 read_unspecified_type (die, cu);
7594 break;
c906108c 7595 default:
a1f5b845 7596 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7597 dwarf_tag_name (die->tag));
c906108c
SS
7598 break;
7599 }
63d06c5c
DC
7600
7601 processing_current_prefix = old_prefix;
7602 do_cleanups (back_to);
7603}
7604
fdde2d81
DC
7605/* Return the name of the namespace/class that DIE is defined within,
7606 or "" if we can't tell. The caller should xfree the result. */
7607
7608/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7609 therein) for an example of how to use this function to deal with
7610 DW_AT_specification. */
7611
7612static char *
e142c38c 7613determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7614{
7615 struct die_info *parent;
7616
987504bb
JJ
7617 if (cu->language != language_cplus
7618 && cu->language != language_java)
63d06c5c
DC
7619 return NULL;
7620
7621 parent = die->parent;
7622
7623 if (parent == NULL)
7624 {
8176b9b8 7625 return xstrdup ("");
63d06c5c
DC
7626 }
7627 else
7628 {
63d06c5c
DC
7629 switch (parent->tag) {
7630 case DW_TAG_namespace:
7631 {
8176b9b8
DC
7632 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7633 before doing this check? */
7634 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7635 {
7636 return xstrdup (TYPE_TAG_NAME (parent->type));
7637 }
7638 else
7639 {
7640 int dummy;
7641 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7642 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7643 namespace_name (parent, &dummy,
987504bb
JJ
7644 cu),
7645 cu);
8176b9b8
DC
7646 xfree (parent_prefix);
7647 return retval;
7648 }
63d06c5c
DC
7649 }
7650 break;
7651 case DW_TAG_class_type:
7652 case DW_TAG_structure_type:
7653 {
8176b9b8 7654 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7655 {
8176b9b8 7656 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7657 }
7658 else
8176b9b8
DC
7659 {
7660 const char *old_prefix = processing_current_prefix;
7661 char *new_prefix = determine_prefix (parent, cu);
7662 char *retval;
7663
7664 processing_current_prefix = new_prefix;
7665 retval = determine_class_name (parent, cu);
7666 processing_current_prefix = old_prefix;
7667
7668 xfree (new_prefix);
7669 return retval;
7670 }
63d06c5c 7671 }
63d06c5c 7672 default:
8176b9b8 7673 return determine_prefix (parent, cu);
63d06c5c 7674 }
63d06c5c
DC
7675 }
7676}
7677
987504bb
JJ
7678/* Return a newly-allocated string formed by concatenating PREFIX and
7679 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7680 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7681 perform an obconcat, otherwise allocate storage for the result. The CU argument
7682 is used to determine the language and hence, the appropriate separator. */
7683
7684#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7685
7686static char *
987504bb
JJ
7687typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7688 struct dwarf2_cu *cu)
63d06c5c 7689{
987504bb 7690 char *sep;
63d06c5c 7691
987504bb
JJ
7692 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7693 sep = "";
7694 else if (cu->language == language_java)
7695 sep = ".";
7696 else
7697 sep = "::";
63d06c5c 7698
987504bb
JJ
7699 if (obs == NULL)
7700 {
7701 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7702 retval[0] = '\0';
7703
7704 if (prefix)
7705 {
7706 strcpy (retval, prefix);
7707 strcat (retval, sep);
7708 }
7709 if (suffix)
7710 strcat (retval, suffix);
7711
63d06c5c
DC
7712 return retval;
7713 }
987504bb
JJ
7714 else
7715 {
7716 /* We have an obstack. */
7717 return obconcat (obs, prefix, sep, suffix);
7718 }
63d06c5c
DC
7719}
7720
c906108c 7721static struct type *
e7c27a73 7722dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7723{
e7c27a73
DJ
7724 struct objfile *objfile = cu->objfile;
7725
c906108c
SS
7726 /* FIXME - this should not produce a new (struct type *)
7727 every time. It should cache base types. */
7728 struct type *type;
7729 switch (encoding)
7730 {
7731 case DW_ATE_address:
e142c38c 7732 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7733 return type;
7734 case DW_ATE_boolean:
e142c38c 7735 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7736 return type;
7737 case DW_ATE_complex_float:
7738 if (size == 16)
7739 {
e142c38c 7740 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7741 }
7742 else
7743 {
e142c38c 7744 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7745 }
7746 return type;
7747 case DW_ATE_float:
7748 if (size == 8)
7749 {
e142c38c 7750 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7751 }
7752 else
7753 {
e142c38c 7754 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7755 }
7756 return type;
7678ef8f
TJB
7757 case DW_ATE_decimal_float:
7758 if (size == 16)
7759 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_DECFLOAT, cu);
7760 else if (size == 8)
7761 type = dwarf2_fundamental_type (objfile, FT_EXT_PREC_DECFLOAT, cu);
7762 else
7763 type = dwarf2_fundamental_type (objfile, FT_DECFLOAT, cu);
7764 return type;
c906108c
SS
7765 case DW_ATE_signed:
7766 switch (size)
7767 {
7768 case 1:
e142c38c 7769 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7770 break;
7771 case 2:
e142c38c 7772 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7773 break;
7774 default:
7775 case 4:
e142c38c 7776 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7777 break;
7778 }
7779 return type;
7780 case DW_ATE_signed_char:
e142c38c 7781 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7782 return type;
7783 case DW_ATE_unsigned:
7784 switch (size)
7785 {
7786 case 1:
e142c38c 7787 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7788 break;
7789 case 2:
e142c38c 7790 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7791 break;
7792 default:
7793 case 4:
e142c38c 7794 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7795 break;
7796 }
7797 return type;
7798 case DW_ATE_unsigned_char:
e142c38c 7799 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7800 return type;
7801 default:
e142c38c 7802 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7803 return type;
7804 }
7805}
7806
7807#if 0
7808struct die_info *
fba45db2 7809copy_die (struct die_info *old_die)
c906108c
SS
7810{
7811 struct die_info *new_die;
7812 int i, num_attrs;
7813
7814 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7815 memset (new_die, 0, sizeof (struct die_info));
7816
7817 new_die->tag = old_die->tag;
7818 new_die->has_children = old_die->has_children;
7819 new_die->abbrev = old_die->abbrev;
7820 new_die->offset = old_die->offset;
7821 new_die->type = NULL;
7822
7823 num_attrs = old_die->num_attrs;
7824 new_die->num_attrs = num_attrs;
7825 new_die->attrs = (struct attribute *)
7826 xmalloc (num_attrs * sizeof (struct attribute));
7827
7828 for (i = 0; i < old_die->num_attrs; ++i)
7829 {
7830 new_die->attrs[i].name = old_die->attrs[i].name;
7831 new_die->attrs[i].form = old_die->attrs[i].form;
7832 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7833 }
7834
7835 new_die->next = NULL;
7836 return new_die;
7837}
7838#endif
7839
7840/* Return sibling of die, NULL if no sibling. */
7841
f9aca02d 7842static struct die_info *
fba45db2 7843sibling_die (struct die_info *die)
c906108c 7844{
639d11d3 7845 return die->sibling;
c906108c
SS
7846}
7847
7848/* Get linkage name of a die, return NULL if not found. */
7849
7850static char *
e142c38c 7851dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7852{
7853 struct attribute *attr;
7854
e142c38c 7855 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7856 if (attr && DW_STRING (attr))
7857 return DW_STRING (attr);
e142c38c 7858 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7859 if (attr && DW_STRING (attr))
7860 return DW_STRING (attr);
7861 return NULL;
7862}
7863
9219021c
DC
7864/* Get name of a die, return NULL if not found. */
7865
7866static char *
e142c38c 7867dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7868{
7869 struct attribute *attr;
7870
e142c38c 7871 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7872 if (attr && DW_STRING (attr))
7873 return DW_STRING (attr);
7874 return NULL;
7875}
7876
7877/* Return the die that this die in an extension of, or NULL if there
7878 is none. */
7879
7880static struct die_info *
e142c38c 7881dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7882{
7883 struct attribute *attr;
9219021c 7884
e142c38c 7885 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7886 if (attr == NULL)
7887 return NULL;
7888
10b3939b 7889 return follow_die_ref (die, attr, cu);
9219021c
DC
7890}
7891
c906108c
SS
7892/* Convert a DIE tag into its string name. */
7893
7894static char *
aa1ee363 7895dwarf_tag_name (unsigned tag)
c906108c
SS
7896{
7897 switch (tag)
7898 {
7899 case DW_TAG_padding:
7900 return "DW_TAG_padding";
7901 case DW_TAG_array_type:
7902 return "DW_TAG_array_type";
7903 case DW_TAG_class_type:
7904 return "DW_TAG_class_type";
7905 case DW_TAG_entry_point:
7906 return "DW_TAG_entry_point";
7907 case DW_TAG_enumeration_type:
7908 return "DW_TAG_enumeration_type";
7909 case DW_TAG_formal_parameter:
7910 return "DW_TAG_formal_parameter";
7911 case DW_TAG_imported_declaration:
7912 return "DW_TAG_imported_declaration";
7913 case DW_TAG_label:
7914 return "DW_TAG_label";
7915 case DW_TAG_lexical_block:
7916 return "DW_TAG_lexical_block";
7917 case DW_TAG_member:
7918 return "DW_TAG_member";
7919 case DW_TAG_pointer_type:
7920 return "DW_TAG_pointer_type";
7921 case DW_TAG_reference_type:
7922 return "DW_TAG_reference_type";
7923 case DW_TAG_compile_unit:
7924 return "DW_TAG_compile_unit";
7925 case DW_TAG_string_type:
7926 return "DW_TAG_string_type";
7927 case DW_TAG_structure_type:
7928 return "DW_TAG_structure_type";
7929 case DW_TAG_subroutine_type:
7930 return "DW_TAG_subroutine_type";
7931 case DW_TAG_typedef:
7932 return "DW_TAG_typedef";
7933 case DW_TAG_union_type:
7934 return "DW_TAG_union_type";
7935 case DW_TAG_unspecified_parameters:
7936 return "DW_TAG_unspecified_parameters";
7937 case DW_TAG_variant:
7938 return "DW_TAG_variant";
7939 case DW_TAG_common_block:
7940 return "DW_TAG_common_block";
7941 case DW_TAG_common_inclusion:
7942 return "DW_TAG_common_inclusion";
7943 case DW_TAG_inheritance:
7944 return "DW_TAG_inheritance";
7945 case DW_TAG_inlined_subroutine:
7946 return "DW_TAG_inlined_subroutine";
7947 case DW_TAG_module:
7948 return "DW_TAG_module";
7949 case DW_TAG_ptr_to_member_type:
7950 return "DW_TAG_ptr_to_member_type";
7951 case DW_TAG_set_type:
7952 return "DW_TAG_set_type";
7953 case DW_TAG_subrange_type:
7954 return "DW_TAG_subrange_type";
7955 case DW_TAG_with_stmt:
7956 return "DW_TAG_with_stmt";
7957 case DW_TAG_access_declaration:
7958 return "DW_TAG_access_declaration";
7959 case DW_TAG_base_type:
7960 return "DW_TAG_base_type";
7961 case DW_TAG_catch_block:
7962 return "DW_TAG_catch_block";
7963 case DW_TAG_const_type:
7964 return "DW_TAG_const_type";
7965 case DW_TAG_constant:
7966 return "DW_TAG_constant";
7967 case DW_TAG_enumerator:
7968 return "DW_TAG_enumerator";
7969 case DW_TAG_file_type:
7970 return "DW_TAG_file_type";
7971 case DW_TAG_friend:
7972 return "DW_TAG_friend";
7973 case DW_TAG_namelist:
7974 return "DW_TAG_namelist";
7975 case DW_TAG_namelist_item:
7976 return "DW_TAG_namelist_item";
7977 case DW_TAG_packed_type:
7978 return "DW_TAG_packed_type";
7979 case DW_TAG_subprogram:
7980 return "DW_TAG_subprogram";
7981 case DW_TAG_template_type_param:
7982 return "DW_TAG_template_type_param";
7983 case DW_TAG_template_value_param:
7984 return "DW_TAG_template_value_param";
7985 case DW_TAG_thrown_type:
7986 return "DW_TAG_thrown_type";
7987 case DW_TAG_try_block:
7988 return "DW_TAG_try_block";
7989 case DW_TAG_variant_part:
7990 return "DW_TAG_variant_part";
7991 case DW_TAG_variable:
7992 return "DW_TAG_variable";
7993 case DW_TAG_volatile_type:
7994 return "DW_TAG_volatile_type";
d9fa45fe
DC
7995 case DW_TAG_dwarf_procedure:
7996 return "DW_TAG_dwarf_procedure";
7997 case DW_TAG_restrict_type:
7998 return "DW_TAG_restrict_type";
7999 case DW_TAG_interface_type:
8000 return "DW_TAG_interface_type";
8001 case DW_TAG_namespace:
8002 return "DW_TAG_namespace";
8003 case DW_TAG_imported_module:
8004 return "DW_TAG_imported_module";
8005 case DW_TAG_unspecified_type:
8006 return "DW_TAG_unspecified_type";
8007 case DW_TAG_partial_unit:
8008 return "DW_TAG_partial_unit";
8009 case DW_TAG_imported_unit:
8010 return "DW_TAG_imported_unit";
b7619582
GF
8011 case DW_TAG_condition:
8012 return "DW_TAG_condition";
8013 case DW_TAG_shared_type:
8014 return "DW_TAG_shared_type";
c906108c
SS
8015 case DW_TAG_MIPS_loop:
8016 return "DW_TAG_MIPS_loop";
b7619582
GF
8017 case DW_TAG_HP_array_descriptor:
8018 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8019 case DW_TAG_format_label:
8020 return "DW_TAG_format_label";
8021 case DW_TAG_function_template:
8022 return "DW_TAG_function_template";
8023 case DW_TAG_class_template:
8024 return "DW_TAG_class_template";
b7619582
GF
8025 case DW_TAG_GNU_BINCL:
8026 return "DW_TAG_GNU_BINCL";
8027 case DW_TAG_GNU_EINCL:
8028 return "DW_TAG_GNU_EINCL";
8029 case DW_TAG_upc_shared_type:
8030 return "DW_TAG_upc_shared_type";
8031 case DW_TAG_upc_strict_type:
8032 return "DW_TAG_upc_strict_type";
8033 case DW_TAG_upc_relaxed_type:
8034 return "DW_TAG_upc_relaxed_type";
8035 case DW_TAG_PGI_kanji_type:
8036 return "DW_TAG_PGI_kanji_type";
8037 case DW_TAG_PGI_interface_block:
8038 return "DW_TAG_PGI_interface_block";
c906108c
SS
8039 default:
8040 return "DW_TAG_<unknown>";
8041 }
8042}
8043
8044/* Convert a DWARF attribute code into its string name. */
8045
8046static char *
aa1ee363 8047dwarf_attr_name (unsigned attr)
c906108c
SS
8048{
8049 switch (attr)
8050 {
8051 case DW_AT_sibling:
8052 return "DW_AT_sibling";
8053 case DW_AT_location:
8054 return "DW_AT_location";
8055 case DW_AT_name:
8056 return "DW_AT_name";
8057 case DW_AT_ordering:
8058 return "DW_AT_ordering";
8059 case DW_AT_subscr_data:
8060 return "DW_AT_subscr_data";
8061 case DW_AT_byte_size:
8062 return "DW_AT_byte_size";
8063 case DW_AT_bit_offset:
8064 return "DW_AT_bit_offset";
8065 case DW_AT_bit_size:
8066 return "DW_AT_bit_size";
8067 case DW_AT_element_list:
8068 return "DW_AT_element_list";
8069 case DW_AT_stmt_list:
8070 return "DW_AT_stmt_list";
8071 case DW_AT_low_pc:
8072 return "DW_AT_low_pc";
8073 case DW_AT_high_pc:
8074 return "DW_AT_high_pc";
8075 case DW_AT_language:
8076 return "DW_AT_language";
8077 case DW_AT_member:
8078 return "DW_AT_member";
8079 case DW_AT_discr:
8080 return "DW_AT_discr";
8081 case DW_AT_discr_value:
8082 return "DW_AT_discr_value";
8083 case DW_AT_visibility:
8084 return "DW_AT_visibility";
8085 case DW_AT_import:
8086 return "DW_AT_import";
8087 case DW_AT_string_length:
8088 return "DW_AT_string_length";
8089 case DW_AT_common_reference:
8090 return "DW_AT_common_reference";
8091 case DW_AT_comp_dir:
8092 return "DW_AT_comp_dir";
8093 case DW_AT_const_value:
8094 return "DW_AT_const_value";
8095 case DW_AT_containing_type:
8096 return "DW_AT_containing_type";
8097 case DW_AT_default_value:
8098 return "DW_AT_default_value";
8099 case DW_AT_inline:
8100 return "DW_AT_inline";
8101 case DW_AT_is_optional:
8102 return "DW_AT_is_optional";
8103 case DW_AT_lower_bound:
8104 return "DW_AT_lower_bound";
8105 case DW_AT_producer:
8106 return "DW_AT_producer";
8107 case DW_AT_prototyped:
8108 return "DW_AT_prototyped";
8109 case DW_AT_return_addr:
8110 return "DW_AT_return_addr";
8111 case DW_AT_start_scope:
8112 return "DW_AT_start_scope";
8113 case DW_AT_stride_size:
8114 return "DW_AT_stride_size";
8115 case DW_AT_upper_bound:
8116 return "DW_AT_upper_bound";
8117 case DW_AT_abstract_origin:
8118 return "DW_AT_abstract_origin";
8119 case DW_AT_accessibility:
8120 return "DW_AT_accessibility";
8121 case DW_AT_address_class:
8122 return "DW_AT_address_class";
8123 case DW_AT_artificial:
8124 return "DW_AT_artificial";
8125 case DW_AT_base_types:
8126 return "DW_AT_base_types";
8127 case DW_AT_calling_convention:
8128 return "DW_AT_calling_convention";
8129 case DW_AT_count:
8130 return "DW_AT_count";
8131 case DW_AT_data_member_location:
8132 return "DW_AT_data_member_location";
8133 case DW_AT_decl_column:
8134 return "DW_AT_decl_column";
8135 case DW_AT_decl_file:
8136 return "DW_AT_decl_file";
8137 case DW_AT_decl_line:
8138 return "DW_AT_decl_line";
8139 case DW_AT_declaration:
8140 return "DW_AT_declaration";
8141 case DW_AT_discr_list:
8142 return "DW_AT_discr_list";
8143 case DW_AT_encoding:
8144 return "DW_AT_encoding";
8145 case DW_AT_external:
8146 return "DW_AT_external";
8147 case DW_AT_frame_base:
8148 return "DW_AT_frame_base";
8149 case DW_AT_friend:
8150 return "DW_AT_friend";
8151 case DW_AT_identifier_case:
8152 return "DW_AT_identifier_case";
8153 case DW_AT_macro_info:
8154 return "DW_AT_macro_info";
8155 case DW_AT_namelist_items:
8156 return "DW_AT_namelist_items";
8157 case DW_AT_priority:
8158 return "DW_AT_priority";
8159 case DW_AT_segment:
8160 return "DW_AT_segment";
8161 case DW_AT_specification:
8162 return "DW_AT_specification";
8163 case DW_AT_static_link:
8164 return "DW_AT_static_link";
8165 case DW_AT_type:
8166 return "DW_AT_type";
8167 case DW_AT_use_location:
8168 return "DW_AT_use_location";
8169 case DW_AT_variable_parameter:
8170 return "DW_AT_variable_parameter";
8171 case DW_AT_virtuality:
8172 return "DW_AT_virtuality";
8173 case DW_AT_vtable_elem_location:
8174 return "DW_AT_vtable_elem_location";
b7619582 8175 /* DWARF 3 values. */
d9fa45fe
DC
8176 case DW_AT_allocated:
8177 return "DW_AT_allocated";
8178 case DW_AT_associated:
8179 return "DW_AT_associated";
8180 case DW_AT_data_location:
8181 return "DW_AT_data_location";
8182 case DW_AT_stride:
8183 return "DW_AT_stride";
8184 case DW_AT_entry_pc:
8185 return "DW_AT_entry_pc";
8186 case DW_AT_use_UTF8:
8187 return "DW_AT_use_UTF8";
8188 case DW_AT_extension:
8189 return "DW_AT_extension";
8190 case DW_AT_ranges:
8191 return "DW_AT_ranges";
8192 case DW_AT_trampoline:
8193 return "DW_AT_trampoline";
8194 case DW_AT_call_column:
8195 return "DW_AT_call_column";
8196 case DW_AT_call_file:
8197 return "DW_AT_call_file";
8198 case DW_AT_call_line:
8199 return "DW_AT_call_line";
b7619582
GF
8200 case DW_AT_description:
8201 return "DW_AT_description";
8202 case DW_AT_binary_scale:
8203 return "DW_AT_binary_scale";
8204 case DW_AT_decimal_scale:
8205 return "DW_AT_decimal_scale";
8206 case DW_AT_small:
8207 return "DW_AT_small";
8208 case DW_AT_decimal_sign:
8209 return "DW_AT_decimal_sign";
8210 case DW_AT_digit_count:
8211 return "DW_AT_digit_count";
8212 case DW_AT_picture_string:
8213 return "DW_AT_picture_string";
8214 case DW_AT_mutable:
8215 return "DW_AT_mutable";
8216 case DW_AT_threads_scaled:
8217 return "DW_AT_threads_scaled";
8218 case DW_AT_explicit:
8219 return "DW_AT_explicit";
8220 case DW_AT_object_pointer:
8221 return "DW_AT_object_pointer";
8222 case DW_AT_endianity:
8223 return "DW_AT_endianity";
8224 case DW_AT_elemental:
8225 return "DW_AT_elemental";
8226 case DW_AT_pure:
8227 return "DW_AT_pure";
8228 case DW_AT_recursive:
8229 return "DW_AT_recursive";
c906108c 8230#ifdef MIPS
b7619582 8231 /* SGI/MIPS extensions. */
c906108c
SS
8232 case DW_AT_MIPS_fde:
8233 return "DW_AT_MIPS_fde";
8234 case DW_AT_MIPS_loop_begin:
8235 return "DW_AT_MIPS_loop_begin";
8236 case DW_AT_MIPS_tail_loop_begin:
8237 return "DW_AT_MIPS_tail_loop_begin";
8238 case DW_AT_MIPS_epilog_begin:
8239 return "DW_AT_MIPS_epilog_begin";
8240 case DW_AT_MIPS_loop_unroll_factor:
8241 return "DW_AT_MIPS_loop_unroll_factor";
8242 case DW_AT_MIPS_software_pipeline_depth:
8243 return "DW_AT_MIPS_software_pipeline_depth";
8244 case DW_AT_MIPS_linkage_name:
8245 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8246 case DW_AT_MIPS_stride:
8247 return "DW_AT_MIPS_stride";
8248 case DW_AT_MIPS_abstract_name:
8249 return "DW_AT_MIPS_abstract_name";
8250 case DW_AT_MIPS_clone_origin:
8251 return "DW_AT_MIPS_clone_origin";
8252 case DW_AT_MIPS_has_inlines:
8253 return "DW_AT_MIPS_has_inlines";
8254#endif
8255 /* HP extensions. */
8256 case DW_AT_HP_block_index:
8257 return "DW_AT_HP_block_index";
8258 case DW_AT_HP_unmodifiable:
8259 return "DW_AT_HP_unmodifiable";
8260 case DW_AT_HP_actuals_stmt_list:
8261 return "DW_AT_HP_actuals_stmt_list";
8262 case DW_AT_HP_proc_per_section:
8263 return "DW_AT_HP_proc_per_section";
8264 case DW_AT_HP_raw_data_ptr:
8265 return "DW_AT_HP_raw_data_ptr";
8266 case DW_AT_HP_pass_by_reference:
8267 return "DW_AT_HP_pass_by_reference";
8268 case DW_AT_HP_opt_level:
8269 return "DW_AT_HP_opt_level";
8270 case DW_AT_HP_prof_version_id:
8271 return "DW_AT_HP_prof_version_id";
8272 case DW_AT_HP_opt_flags:
8273 return "DW_AT_HP_opt_flags";
8274 case DW_AT_HP_cold_region_low_pc:
8275 return "DW_AT_HP_cold_region_low_pc";
8276 case DW_AT_HP_cold_region_high_pc:
8277 return "DW_AT_HP_cold_region_high_pc";
8278 case DW_AT_HP_all_variables_modifiable:
8279 return "DW_AT_HP_all_variables_modifiable";
8280 case DW_AT_HP_linkage_name:
8281 return "DW_AT_HP_linkage_name";
8282 case DW_AT_HP_prof_flags:
8283 return "DW_AT_HP_prof_flags";
8284 /* GNU extensions. */
c906108c
SS
8285 case DW_AT_sf_names:
8286 return "DW_AT_sf_names";
8287 case DW_AT_src_info:
8288 return "DW_AT_src_info";
8289 case DW_AT_mac_info:
8290 return "DW_AT_mac_info";
8291 case DW_AT_src_coords:
8292 return "DW_AT_src_coords";
8293 case DW_AT_body_begin:
8294 return "DW_AT_body_begin";
8295 case DW_AT_body_end:
8296 return "DW_AT_body_end";
f5f8a009
EZ
8297 case DW_AT_GNU_vector:
8298 return "DW_AT_GNU_vector";
b7619582
GF
8299 /* VMS extensions. */
8300 case DW_AT_VMS_rtnbeg_pd_address:
8301 return "DW_AT_VMS_rtnbeg_pd_address";
8302 /* UPC extension. */
8303 case DW_AT_upc_threads_scaled:
8304 return "DW_AT_upc_threads_scaled";
8305 /* PGI (STMicroelectronics) extensions. */
8306 case DW_AT_PGI_lbase:
8307 return "DW_AT_PGI_lbase";
8308 case DW_AT_PGI_soffset:
8309 return "DW_AT_PGI_soffset";
8310 case DW_AT_PGI_lstride:
8311 return "DW_AT_PGI_lstride";
c906108c
SS
8312 default:
8313 return "DW_AT_<unknown>";
8314 }
8315}
8316
8317/* Convert a DWARF value form code into its string name. */
8318
8319static char *
aa1ee363 8320dwarf_form_name (unsigned form)
c906108c
SS
8321{
8322 switch (form)
8323 {
8324 case DW_FORM_addr:
8325 return "DW_FORM_addr";
8326 case DW_FORM_block2:
8327 return "DW_FORM_block2";
8328 case DW_FORM_block4:
8329 return "DW_FORM_block4";
8330 case DW_FORM_data2:
8331 return "DW_FORM_data2";
8332 case DW_FORM_data4:
8333 return "DW_FORM_data4";
8334 case DW_FORM_data8:
8335 return "DW_FORM_data8";
8336 case DW_FORM_string:
8337 return "DW_FORM_string";
8338 case DW_FORM_block:
8339 return "DW_FORM_block";
8340 case DW_FORM_block1:
8341 return "DW_FORM_block1";
8342 case DW_FORM_data1:
8343 return "DW_FORM_data1";
8344 case DW_FORM_flag:
8345 return "DW_FORM_flag";
8346 case DW_FORM_sdata:
8347 return "DW_FORM_sdata";
8348 case DW_FORM_strp:
8349 return "DW_FORM_strp";
8350 case DW_FORM_udata:
8351 return "DW_FORM_udata";
8352 case DW_FORM_ref_addr:
8353 return "DW_FORM_ref_addr";
8354 case DW_FORM_ref1:
8355 return "DW_FORM_ref1";
8356 case DW_FORM_ref2:
8357 return "DW_FORM_ref2";
8358 case DW_FORM_ref4:
8359 return "DW_FORM_ref4";
8360 case DW_FORM_ref8:
8361 return "DW_FORM_ref8";
8362 case DW_FORM_ref_udata:
8363 return "DW_FORM_ref_udata";
8364 case DW_FORM_indirect:
8365 return "DW_FORM_indirect";
8366 default:
8367 return "DW_FORM_<unknown>";
8368 }
8369}
8370
8371/* Convert a DWARF stack opcode into its string name. */
8372
8373static char *
aa1ee363 8374dwarf_stack_op_name (unsigned op)
c906108c
SS
8375{
8376 switch (op)
8377 {
8378 case DW_OP_addr:
8379 return "DW_OP_addr";
8380 case DW_OP_deref:
8381 return "DW_OP_deref";
8382 case DW_OP_const1u:
8383 return "DW_OP_const1u";
8384 case DW_OP_const1s:
8385 return "DW_OP_const1s";
8386 case DW_OP_const2u:
8387 return "DW_OP_const2u";
8388 case DW_OP_const2s:
8389 return "DW_OP_const2s";
8390 case DW_OP_const4u:
8391 return "DW_OP_const4u";
8392 case DW_OP_const4s:
8393 return "DW_OP_const4s";
8394 case DW_OP_const8u:
8395 return "DW_OP_const8u";
8396 case DW_OP_const8s:
8397 return "DW_OP_const8s";
8398 case DW_OP_constu:
8399 return "DW_OP_constu";
8400 case DW_OP_consts:
8401 return "DW_OP_consts";
8402 case DW_OP_dup:
8403 return "DW_OP_dup";
8404 case DW_OP_drop:
8405 return "DW_OP_drop";
8406 case DW_OP_over:
8407 return "DW_OP_over";
8408 case DW_OP_pick:
8409 return "DW_OP_pick";
8410 case DW_OP_swap:
8411 return "DW_OP_swap";
8412 case DW_OP_rot:
8413 return "DW_OP_rot";
8414 case DW_OP_xderef:
8415 return "DW_OP_xderef";
8416 case DW_OP_abs:
8417 return "DW_OP_abs";
8418 case DW_OP_and:
8419 return "DW_OP_and";
8420 case DW_OP_div:
8421 return "DW_OP_div";
8422 case DW_OP_minus:
8423 return "DW_OP_minus";
8424 case DW_OP_mod:
8425 return "DW_OP_mod";
8426 case DW_OP_mul:
8427 return "DW_OP_mul";
8428 case DW_OP_neg:
8429 return "DW_OP_neg";
8430 case DW_OP_not:
8431 return "DW_OP_not";
8432 case DW_OP_or:
8433 return "DW_OP_or";
8434 case DW_OP_plus:
8435 return "DW_OP_plus";
8436 case DW_OP_plus_uconst:
8437 return "DW_OP_plus_uconst";
8438 case DW_OP_shl:
8439 return "DW_OP_shl";
8440 case DW_OP_shr:
8441 return "DW_OP_shr";
8442 case DW_OP_shra:
8443 return "DW_OP_shra";
8444 case DW_OP_xor:
8445 return "DW_OP_xor";
8446 case DW_OP_bra:
8447 return "DW_OP_bra";
8448 case DW_OP_eq:
8449 return "DW_OP_eq";
8450 case DW_OP_ge:
8451 return "DW_OP_ge";
8452 case DW_OP_gt:
8453 return "DW_OP_gt";
8454 case DW_OP_le:
8455 return "DW_OP_le";
8456 case DW_OP_lt:
8457 return "DW_OP_lt";
8458 case DW_OP_ne:
8459 return "DW_OP_ne";
8460 case DW_OP_skip:
8461 return "DW_OP_skip";
8462 case DW_OP_lit0:
8463 return "DW_OP_lit0";
8464 case DW_OP_lit1:
8465 return "DW_OP_lit1";
8466 case DW_OP_lit2:
8467 return "DW_OP_lit2";
8468 case DW_OP_lit3:
8469 return "DW_OP_lit3";
8470 case DW_OP_lit4:
8471 return "DW_OP_lit4";
8472 case DW_OP_lit5:
8473 return "DW_OP_lit5";
8474 case DW_OP_lit6:
8475 return "DW_OP_lit6";
8476 case DW_OP_lit7:
8477 return "DW_OP_lit7";
8478 case DW_OP_lit8:
8479 return "DW_OP_lit8";
8480 case DW_OP_lit9:
8481 return "DW_OP_lit9";
8482 case DW_OP_lit10:
8483 return "DW_OP_lit10";
8484 case DW_OP_lit11:
8485 return "DW_OP_lit11";
8486 case DW_OP_lit12:
8487 return "DW_OP_lit12";
8488 case DW_OP_lit13:
8489 return "DW_OP_lit13";
8490 case DW_OP_lit14:
8491 return "DW_OP_lit14";
8492 case DW_OP_lit15:
8493 return "DW_OP_lit15";
8494 case DW_OP_lit16:
8495 return "DW_OP_lit16";
8496 case DW_OP_lit17:
8497 return "DW_OP_lit17";
8498 case DW_OP_lit18:
8499 return "DW_OP_lit18";
8500 case DW_OP_lit19:
8501 return "DW_OP_lit19";
8502 case DW_OP_lit20:
8503 return "DW_OP_lit20";
8504 case DW_OP_lit21:
8505 return "DW_OP_lit21";
8506 case DW_OP_lit22:
8507 return "DW_OP_lit22";
8508 case DW_OP_lit23:
8509 return "DW_OP_lit23";
8510 case DW_OP_lit24:
8511 return "DW_OP_lit24";
8512 case DW_OP_lit25:
8513 return "DW_OP_lit25";
8514 case DW_OP_lit26:
8515 return "DW_OP_lit26";
8516 case DW_OP_lit27:
8517 return "DW_OP_lit27";
8518 case DW_OP_lit28:
8519 return "DW_OP_lit28";
8520 case DW_OP_lit29:
8521 return "DW_OP_lit29";
8522 case DW_OP_lit30:
8523 return "DW_OP_lit30";
8524 case DW_OP_lit31:
8525 return "DW_OP_lit31";
8526 case DW_OP_reg0:
8527 return "DW_OP_reg0";
8528 case DW_OP_reg1:
8529 return "DW_OP_reg1";
8530 case DW_OP_reg2:
8531 return "DW_OP_reg2";
8532 case DW_OP_reg3:
8533 return "DW_OP_reg3";
8534 case DW_OP_reg4:
8535 return "DW_OP_reg4";
8536 case DW_OP_reg5:
8537 return "DW_OP_reg5";
8538 case DW_OP_reg6:
8539 return "DW_OP_reg6";
8540 case DW_OP_reg7:
8541 return "DW_OP_reg7";
8542 case DW_OP_reg8:
8543 return "DW_OP_reg8";
8544 case DW_OP_reg9:
8545 return "DW_OP_reg9";
8546 case DW_OP_reg10:
8547 return "DW_OP_reg10";
8548 case DW_OP_reg11:
8549 return "DW_OP_reg11";
8550 case DW_OP_reg12:
8551 return "DW_OP_reg12";
8552 case DW_OP_reg13:
8553 return "DW_OP_reg13";
8554 case DW_OP_reg14:
8555 return "DW_OP_reg14";
8556 case DW_OP_reg15:
8557 return "DW_OP_reg15";
8558 case DW_OP_reg16:
8559 return "DW_OP_reg16";
8560 case DW_OP_reg17:
8561 return "DW_OP_reg17";
8562 case DW_OP_reg18:
8563 return "DW_OP_reg18";
8564 case DW_OP_reg19:
8565 return "DW_OP_reg19";
8566 case DW_OP_reg20:
8567 return "DW_OP_reg20";
8568 case DW_OP_reg21:
8569 return "DW_OP_reg21";
8570 case DW_OP_reg22:
8571 return "DW_OP_reg22";
8572 case DW_OP_reg23:
8573 return "DW_OP_reg23";
8574 case DW_OP_reg24:
8575 return "DW_OP_reg24";
8576 case DW_OP_reg25:
8577 return "DW_OP_reg25";
8578 case DW_OP_reg26:
8579 return "DW_OP_reg26";
8580 case DW_OP_reg27:
8581 return "DW_OP_reg27";
8582 case DW_OP_reg28:
8583 return "DW_OP_reg28";
8584 case DW_OP_reg29:
8585 return "DW_OP_reg29";
8586 case DW_OP_reg30:
8587 return "DW_OP_reg30";
8588 case DW_OP_reg31:
8589 return "DW_OP_reg31";
8590 case DW_OP_breg0:
8591 return "DW_OP_breg0";
8592 case DW_OP_breg1:
8593 return "DW_OP_breg1";
8594 case DW_OP_breg2:
8595 return "DW_OP_breg2";
8596 case DW_OP_breg3:
8597 return "DW_OP_breg3";
8598 case DW_OP_breg4:
8599 return "DW_OP_breg4";
8600 case DW_OP_breg5:
8601 return "DW_OP_breg5";
8602 case DW_OP_breg6:
8603 return "DW_OP_breg6";
8604 case DW_OP_breg7:
8605 return "DW_OP_breg7";
8606 case DW_OP_breg8:
8607 return "DW_OP_breg8";
8608 case DW_OP_breg9:
8609 return "DW_OP_breg9";
8610 case DW_OP_breg10:
8611 return "DW_OP_breg10";
8612 case DW_OP_breg11:
8613 return "DW_OP_breg11";
8614 case DW_OP_breg12:
8615 return "DW_OP_breg12";
8616 case DW_OP_breg13:
8617 return "DW_OP_breg13";
8618 case DW_OP_breg14:
8619 return "DW_OP_breg14";
8620 case DW_OP_breg15:
8621 return "DW_OP_breg15";
8622 case DW_OP_breg16:
8623 return "DW_OP_breg16";
8624 case DW_OP_breg17:
8625 return "DW_OP_breg17";
8626 case DW_OP_breg18:
8627 return "DW_OP_breg18";
8628 case DW_OP_breg19:
8629 return "DW_OP_breg19";
8630 case DW_OP_breg20:
8631 return "DW_OP_breg20";
8632 case DW_OP_breg21:
8633 return "DW_OP_breg21";
8634 case DW_OP_breg22:
8635 return "DW_OP_breg22";
8636 case DW_OP_breg23:
8637 return "DW_OP_breg23";
8638 case DW_OP_breg24:
8639 return "DW_OP_breg24";
8640 case DW_OP_breg25:
8641 return "DW_OP_breg25";
8642 case DW_OP_breg26:
8643 return "DW_OP_breg26";
8644 case DW_OP_breg27:
8645 return "DW_OP_breg27";
8646 case DW_OP_breg28:
8647 return "DW_OP_breg28";
8648 case DW_OP_breg29:
8649 return "DW_OP_breg29";
8650 case DW_OP_breg30:
8651 return "DW_OP_breg30";
8652 case DW_OP_breg31:
8653 return "DW_OP_breg31";
8654 case DW_OP_regx:
8655 return "DW_OP_regx";
8656 case DW_OP_fbreg:
8657 return "DW_OP_fbreg";
8658 case DW_OP_bregx:
8659 return "DW_OP_bregx";
8660 case DW_OP_piece:
8661 return "DW_OP_piece";
8662 case DW_OP_deref_size:
8663 return "DW_OP_deref_size";
8664 case DW_OP_xderef_size:
8665 return "DW_OP_xderef_size";
8666 case DW_OP_nop:
8667 return "DW_OP_nop";
b7619582 8668 /* DWARF 3 extensions. */
ed348acc
EZ
8669 case DW_OP_push_object_address:
8670 return "DW_OP_push_object_address";
8671 case DW_OP_call2:
8672 return "DW_OP_call2";
8673 case DW_OP_call4:
8674 return "DW_OP_call4";
8675 case DW_OP_call_ref:
8676 return "DW_OP_call_ref";
b7619582
GF
8677 /* GNU extensions. */
8678 case DW_OP_form_tls_address:
8679 return "DW_OP_form_tls_address";
8680 case DW_OP_call_frame_cfa:
8681 return "DW_OP_call_frame_cfa";
8682 case DW_OP_bit_piece:
8683 return "DW_OP_bit_piece";
ed348acc
EZ
8684 case DW_OP_GNU_push_tls_address:
8685 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8686 case DW_OP_GNU_uninit:
8687 return "DW_OP_GNU_uninit";
b7619582
GF
8688 /* HP extensions. */
8689 case DW_OP_HP_is_value:
8690 return "DW_OP_HP_is_value";
8691 case DW_OP_HP_fltconst4:
8692 return "DW_OP_HP_fltconst4";
8693 case DW_OP_HP_fltconst8:
8694 return "DW_OP_HP_fltconst8";
8695 case DW_OP_HP_mod_range:
8696 return "DW_OP_HP_mod_range";
8697 case DW_OP_HP_unmod_range:
8698 return "DW_OP_HP_unmod_range";
8699 case DW_OP_HP_tls:
8700 return "DW_OP_HP_tls";
c906108c
SS
8701 default:
8702 return "OP_<unknown>";
8703 }
8704}
8705
8706static char *
fba45db2 8707dwarf_bool_name (unsigned mybool)
c906108c
SS
8708{
8709 if (mybool)
8710 return "TRUE";
8711 else
8712 return "FALSE";
8713}
8714
8715/* Convert a DWARF type code into its string name. */
8716
8717static char *
aa1ee363 8718dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8719{
8720 switch (enc)
8721 {
b7619582
GF
8722 case DW_ATE_void:
8723 return "DW_ATE_void";
c906108c
SS
8724 case DW_ATE_address:
8725 return "DW_ATE_address";
8726 case DW_ATE_boolean:
8727 return "DW_ATE_boolean";
8728 case DW_ATE_complex_float:
8729 return "DW_ATE_complex_float";
8730 case DW_ATE_float:
8731 return "DW_ATE_float";
8732 case DW_ATE_signed:
8733 return "DW_ATE_signed";
8734 case DW_ATE_signed_char:
8735 return "DW_ATE_signed_char";
8736 case DW_ATE_unsigned:
8737 return "DW_ATE_unsigned";
8738 case DW_ATE_unsigned_char:
8739 return "DW_ATE_unsigned_char";
b7619582 8740 /* DWARF 3. */
d9fa45fe
DC
8741 case DW_ATE_imaginary_float:
8742 return "DW_ATE_imaginary_float";
b7619582
GF
8743 case DW_ATE_packed_decimal:
8744 return "DW_ATE_packed_decimal";
8745 case DW_ATE_numeric_string:
8746 return "DW_ATE_numeric_string";
8747 case DW_ATE_edited:
8748 return "DW_ATE_edited";
8749 case DW_ATE_signed_fixed:
8750 return "DW_ATE_signed_fixed";
8751 case DW_ATE_unsigned_fixed:
8752 return "DW_ATE_unsigned_fixed";
8753 case DW_ATE_decimal_float:
8754 return "DW_ATE_decimal_float";
8755 /* HP extensions. */
8756 case DW_ATE_HP_float80:
8757 return "DW_ATE_HP_float80";
8758 case DW_ATE_HP_complex_float80:
8759 return "DW_ATE_HP_complex_float80";
8760 case DW_ATE_HP_float128:
8761 return "DW_ATE_HP_float128";
8762 case DW_ATE_HP_complex_float128:
8763 return "DW_ATE_HP_complex_float128";
8764 case DW_ATE_HP_floathpintel:
8765 return "DW_ATE_HP_floathpintel";
8766 case DW_ATE_HP_imaginary_float80:
8767 return "DW_ATE_HP_imaginary_float80";
8768 case DW_ATE_HP_imaginary_float128:
8769 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8770 default:
8771 return "DW_ATE_<unknown>";
8772 }
8773}
8774
8775/* Convert a DWARF call frame info operation to its string name. */
8776
8777#if 0
8778static char *
aa1ee363 8779dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8780{
8781 switch (cfi_opc)
8782 {
8783 case DW_CFA_advance_loc:
8784 return "DW_CFA_advance_loc";
8785 case DW_CFA_offset:
8786 return "DW_CFA_offset";
8787 case DW_CFA_restore:
8788 return "DW_CFA_restore";
8789 case DW_CFA_nop:
8790 return "DW_CFA_nop";
8791 case DW_CFA_set_loc:
8792 return "DW_CFA_set_loc";
8793 case DW_CFA_advance_loc1:
8794 return "DW_CFA_advance_loc1";
8795 case DW_CFA_advance_loc2:
8796 return "DW_CFA_advance_loc2";
8797 case DW_CFA_advance_loc4:
8798 return "DW_CFA_advance_loc4";
8799 case DW_CFA_offset_extended:
8800 return "DW_CFA_offset_extended";
8801 case DW_CFA_restore_extended:
8802 return "DW_CFA_restore_extended";
8803 case DW_CFA_undefined:
8804 return "DW_CFA_undefined";
8805 case DW_CFA_same_value:
8806 return "DW_CFA_same_value";
8807 case DW_CFA_register:
8808 return "DW_CFA_register";
8809 case DW_CFA_remember_state:
8810 return "DW_CFA_remember_state";
8811 case DW_CFA_restore_state:
8812 return "DW_CFA_restore_state";
8813 case DW_CFA_def_cfa:
8814 return "DW_CFA_def_cfa";
8815 case DW_CFA_def_cfa_register:
8816 return "DW_CFA_def_cfa_register";
8817 case DW_CFA_def_cfa_offset:
8818 return "DW_CFA_def_cfa_offset";
b7619582 8819 /* DWARF 3. */
985cb1a3
JM
8820 case DW_CFA_def_cfa_expression:
8821 return "DW_CFA_def_cfa_expression";
8822 case DW_CFA_expression:
8823 return "DW_CFA_expression";
8824 case DW_CFA_offset_extended_sf:
8825 return "DW_CFA_offset_extended_sf";
8826 case DW_CFA_def_cfa_sf:
8827 return "DW_CFA_def_cfa_sf";
8828 case DW_CFA_def_cfa_offset_sf:
8829 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
8830 case DW_CFA_val_offset:
8831 return "DW_CFA_val_offset";
8832 case DW_CFA_val_offset_sf:
8833 return "DW_CFA_val_offset_sf";
8834 case DW_CFA_val_expression:
8835 return "DW_CFA_val_expression";
8836 /* SGI/MIPS specific. */
c906108c
SS
8837 case DW_CFA_MIPS_advance_loc8:
8838 return "DW_CFA_MIPS_advance_loc8";
b7619582 8839 /* GNU extensions. */
985cb1a3
JM
8840 case DW_CFA_GNU_window_save:
8841 return "DW_CFA_GNU_window_save";
8842 case DW_CFA_GNU_args_size:
8843 return "DW_CFA_GNU_args_size";
8844 case DW_CFA_GNU_negative_offset_extended:
8845 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
8846 default:
8847 return "DW_CFA_<unknown>";
8848 }
8849}
8850#endif
8851
f9aca02d 8852static void
fba45db2 8853dump_die (struct die_info *die)
c906108c
SS
8854{
8855 unsigned int i;
8856
48cd0caa 8857 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8858 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8859 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8860 dwarf_bool_name (die->child != NULL));
c906108c 8861
48cd0caa 8862 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8863 for (i = 0; i < die->num_attrs; ++i)
8864 {
48cd0caa 8865 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8866 dwarf_attr_name (die->attrs[i].name),
8867 dwarf_form_name (die->attrs[i].form));
8868 switch (die->attrs[i].form)
8869 {
8870 case DW_FORM_ref_addr:
8871 case DW_FORM_addr:
48cd0caa 8872 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8873 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8874 break;
8875 case DW_FORM_block2:
8876 case DW_FORM_block4:
8877 case DW_FORM_block:
8878 case DW_FORM_block1:
48cd0caa 8879 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8880 break;
10b3939b
DJ
8881 case DW_FORM_ref1:
8882 case DW_FORM_ref2:
8883 case DW_FORM_ref4:
8884 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8885 (long) (DW_ADDR (&die->attrs[i])));
8886 break;
c906108c
SS
8887 case DW_FORM_data1:
8888 case DW_FORM_data2:
8889 case DW_FORM_data4:
ce5d95e1 8890 case DW_FORM_data8:
c906108c
SS
8891 case DW_FORM_udata:
8892 case DW_FORM_sdata:
48cd0caa 8893 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8894 break;
8895 case DW_FORM_string:
4bdf3d34 8896 case DW_FORM_strp:
48cd0caa 8897 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8898 DW_STRING (&die->attrs[i])
c5aa993b 8899 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8900 break;
8901 case DW_FORM_flag:
8902 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8903 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8904 else
48cd0caa 8905 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8906 break;
a8329558
KW
8907 case DW_FORM_indirect:
8908 /* the reader will have reduced the indirect form to
8909 the "base form" so this form should not occur */
48cd0caa 8910 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8911 break;
c906108c 8912 default:
48cd0caa 8913 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8914 die->attrs[i].form);
c906108c 8915 }
48cd0caa 8916 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8917 }
8918}
8919
f9aca02d 8920static void
fba45db2 8921dump_die_list (struct die_info *die)
c906108c
SS
8922{
8923 while (die)
8924 {
8925 dump_die (die);
639d11d3
DC
8926 if (die->child != NULL)
8927 dump_die_list (die->child);
8928 if (die->sibling != NULL)
8929 dump_die_list (die->sibling);
c906108c
SS
8930 }
8931}
8932
f9aca02d 8933static void
10b3939b
DJ
8934store_in_ref_table (unsigned int offset, struct die_info *die,
8935 struct dwarf2_cu *cu)
c906108c
SS
8936{
8937 int h;
8938 struct die_info *old;
8939
8940 h = (offset % REF_HASH_SIZE);
10b3939b 8941 old = cu->die_ref_table[h];
c906108c 8942 die->next_ref = old;
10b3939b 8943 cu->die_ref_table[h] = die;
c906108c
SS
8944}
8945
8946static unsigned int
e142c38c 8947dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8948{
8949 unsigned int result = 0;
8950
8951 switch (attr->form)
8952 {
8953 case DW_FORM_ref_addr:
c906108c
SS
8954 case DW_FORM_ref1:
8955 case DW_FORM_ref2:
8956 case DW_FORM_ref4:
613e1657 8957 case DW_FORM_ref8:
c906108c 8958 case DW_FORM_ref_udata:
10b3939b 8959 result = DW_ADDR (attr);
c906108c
SS
8960 break;
8961 default:
4d3c2250 8962 complaint (&symfile_complaints,
e2e0b3e5 8963 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8964 dwarf_form_name (attr->form));
c906108c
SS
8965 }
8966 return result;
8967}
8968
a02abb62
JB
8969/* Return the constant value held by the given attribute. Return -1
8970 if the value held by the attribute is not constant. */
8971
8972static int
8973dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8974{
8975 if (attr->form == DW_FORM_sdata)
8976 return DW_SND (attr);
8977 else if (attr->form == DW_FORM_udata
8978 || attr->form == DW_FORM_data1
8979 || attr->form == DW_FORM_data2
8980 || attr->form == DW_FORM_data4
8981 || attr->form == DW_FORM_data8)
8982 return DW_UNSND (attr);
8983 else
8984 {
e2e0b3e5 8985 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8986 dwarf_form_name (attr->form));
8987 return default_value;
8988 }
8989}
8990
f9aca02d 8991static struct die_info *
10b3939b
DJ
8992follow_die_ref (struct die_info *src_die, struct attribute *attr,
8993 struct dwarf2_cu *cu)
c906108c
SS
8994{
8995 struct die_info *die;
10b3939b 8996 unsigned int offset;
c906108c 8997 int h;
10b3939b
DJ
8998 struct die_info temp_die;
8999 struct dwarf2_cu *target_cu;
9000
9001 offset = dwarf2_get_ref_die_offset (attr, cu);
9002
9003 if (DW_ADDR (attr) < cu->header.offset
9004 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9005 {
9006 struct dwarf2_per_cu_data *per_cu;
9007 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9008 cu->objfile);
9009 target_cu = per_cu->cu;
9010 }
9011 else
9012 target_cu = cu;
c906108c
SS
9013
9014 h = (offset % REF_HASH_SIZE);
10b3939b 9015 die = target_cu->die_ref_table[h];
c906108c
SS
9016 while (die)
9017 {
9018 if (die->offset == offset)
10b3939b 9019 return die;
c906108c
SS
9020 die = die->next_ref;
9021 }
10b3939b 9022
8a3fe4f8
AC
9023 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9024 "at 0x%lx [in module %s]"),
10b3939b
DJ
9025 (long) src_die->offset, (long) offset, cu->objfile->name);
9026
c906108c
SS
9027 return NULL;
9028}
9029
9030static struct type *
e142c38c
DJ
9031dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9032 struct dwarf2_cu *cu)
c906108c
SS
9033{
9034 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9035 {
8a3fe4f8 9036 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 9037 typeid, objfile->name);
c906108c
SS
9038 }
9039
9040 /* Look for this particular type in the fundamental type vector. If
9041 one is not found, create and install one appropriate for the
9042 current language and the current target machine. */
9043
e142c38c 9044 if (cu->ftypes[typeid] == NULL)
c906108c 9045 {
e142c38c 9046 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
9047 }
9048
e142c38c 9049 return (cu->ftypes[typeid]);
c906108c
SS
9050}
9051
9052/* Decode simple location descriptions.
9053 Given a pointer to a dwarf block that defines a location, compute
9054 the location and return the value.
9055
4cecd739
DJ
9056 NOTE drow/2003-11-18: This function is called in two situations
9057 now: for the address of static or global variables (partial symbols
9058 only) and for offsets into structures which are expected to be
9059 (more or less) constant. The partial symbol case should go away,
9060 and only the constant case should remain. That will let this
9061 function complain more accurately. A few special modes are allowed
9062 without complaint for global variables (for instance, global
9063 register values and thread-local values).
c906108c
SS
9064
9065 A location description containing no operations indicates that the
4cecd739 9066 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9067 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9068 callers will only want a very basic result and this can become a
9069 complaint.
c906108c 9070
c906108c
SS
9071 Note that stack[0] is unused except as a default error return.
9072 Note that stack overflow is not yet handled. */
9073
9074static CORE_ADDR
e7c27a73 9075decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9076{
e7c27a73
DJ
9077 struct objfile *objfile = cu->objfile;
9078 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9079 int i;
9080 int size = blk->size;
fe1b8b76 9081 gdb_byte *data = blk->data;
c906108c
SS
9082 CORE_ADDR stack[64];
9083 int stacki;
9084 unsigned int bytes_read, unsnd;
fe1b8b76 9085 gdb_byte op;
c906108c
SS
9086
9087 i = 0;
9088 stacki = 0;
9089 stack[stacki] = 0;
c906108c
SS
9090
9091 while (i < size)
9092 {
c906108c
SS
9093 op = data[i++];
9094 switch (op)
9095 {
f1bea926
JM
9096 case DW_OP_lit0:
9097 case DW_OP_lit1:
9098 case DW_OP_lit2:
9099 case DW_OP_lit3:
9100 case DW_OP_lit4:
9101 case DW_OP_lit5:
9102 case DW_OP_lit6:
9103 case DW_OP_lit7:
9104 case DW_OP_lit8:
9105 case DW_OP_lit9:
9106 case DW_OP_lit10:
9107 case DW_OP_lit11:
9108 case DW_OP_lit12:
9109 case DW_OP_lit13:
9110 case DW_OP_lit14:
9111 case DW_OP_lit15:
9112 case DW_OP_lit16:
9113 case DW_OP_lit17:
9114 case DW_OP_lit18:
9115 case DW_OP_lit19:
9116 case DW_OP_lit20:
9117 case DW_OP_lit21:
9118 case DW_OP_lit22:
9119 case DW_OP_lit23:
9120 case DW_OP_lit24:
9121 case DW_OP_lit25:
9122 case DW_OP_lit26:
9123 case DW_OP_lit27:
9124 case DW_OP_lit28:
9125 case DW_OP_lit29:
9126 case DW_OP_lit30:
9127 case DW_OP_lit31:
9128 stack[++stacki] = op - DW_OP_lit0;
9129 break;
9130
c906108c
SS
9131 case DW_OP_reg0:
9132 case DW_OP_reg1:
9133 case DW_OP_reg2:
9134 case DW_OP_reg3:
9135 case DW_OP_reg4:
9136 case DW_OP_reg5:
9137 case DW_OP_reg6:
9138 case DW_OP_reg7:
9139 case DW_OP_reg8:
9140 case DW_OP_reg9:
9141 case DW_OP_reg10:
9142 case DW_OP_reg11:
9143 case DW_OP_reg12:
9144 case DW_OP_reg13:
9145 case DW_OP_reg14:
9146 case DW_OP_reg15:
9147 case DW_OP_reg16:
9148 case DW_OP_reg17:
9149 case DW_OP_reg18:
9150 case DW_OP_reg19:
9151 case DW_OP_reg20:
9152 case DW_OP_reg21:
9153 case DW_OP_reg22:
9154 case DW_OP_reg23:
9155 case DW_OP_reg24:
9156 case DW_OP_reg25:
9157 case DW_OP_reg26:
9158 case DW_OP_reg27:
9159 case DW_OP_reg28:
9160 case DW_OP_reg29:
9161 case DW_OP_reg30:
9162 case DW_OP_reg31:
c906108c 9163 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9164 if (i < size)
9165 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9166 break;
9167
9168 case DW_OP_regx:
c906108c
SS
9169 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9170 i += bytes_read;
c906108c 9171 stack[++stacki] = unsnd;
4cecd739
DJ
9172 if (i < size)
9173 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9174 break;
9175
9176 case DW_OP_addr:
107d2387 9177 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9178 cu, &bytes_read);
107d2387 9179 i += bytes_read;
c906108c
SS
9180 break;
9181
9182 case DW_OP_const1u:
9183 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9184 i += 1;
9185 break;
9186
9187 case DW_OP_const1s:
9188 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9189 i += 1;
9190 break;
9191
9192 case DW_OP_const2u:
9193 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9194 i += 2;
9195 break;
9196
9197 case DW_OP_const2s:
9198 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9199 i += 2;
9200 break;
9201
9202 case DW_OP_const4u:
9203 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9204 i += 4;
9205 break;
9206
9207 case DW_OP_const4s:
9208 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9209 i += 4;
9210 break;
9211
9212 case DW_OP_constu:
9213 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9214 &bytes_read);
c906108c
SS
9215 i += bytes_read;
9216 break;
9217
9218 case DW_OP_consts:
9219 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9220 i += bytes_read;
9221 break;
9222
f1bea926
JM
9223 case DW_OP_dup:
9224 stack[stacki + 1] = stack[stacki];
9225 stacki++;
9226 break;
9227
c906108c
SS
9228 case DW_OP_plus:
9229 stack[stacki - 1] += stack[stacki];
9230 stacki--;
9231 break;
9232
9233 case DW_OP_plus_uconst:
9234 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9235 i += bytes_read;
9236 break;
9237
9238 case DW_OP_minus:
f1bea926 9239 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9240 stacki--;
9241 break;
9242
7a292a7a 9243 case DW_OP_deref:
7a292a7a 9244 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9245 this using GDB's address_class enum. This is valid for partial
9246 global symbols, although the variable's address will be bogus
9247 in the psymtab. */
7a292a7a 9248 if (i < size)
4d3c2250 9249 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9250 break;
9251
9d774e44 9252 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9253 /* The top of the stack has the offset from the beginning
9254 of the thread control block at which the variable is located. */
9255 /* Nothing should follow this operator, so the top of stack would
9256 be returned. */
4cecd739
DJ
9257 /* This is valid for partial global symbols, but the variable's
9258 address will be bogus in the psymtab. */
9d774e44 9259 if (i < size)
4d3c2250 9260 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9261 break;
9262
42be36b3
CT
9263 case DW_OP_GNU_uninit:
9264 break;
9265
c906108c 9266 default:
e2e0b3e5 9267 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9268 dwarf_stack_op_name (op));
c906108c
SS
9269 return (stack[stacki]);
9270 }
9271 }
9272 return (stack[stacki]);
9273}
9274
9275/* memory allocation interface */
9276
c906108c 9277static struct dwarf_block *
7b5a2f43 9278dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9279{
9280 struct dwarf_block *blk;
9281
9282 blk = (struct dwarf_block *)
7b5a2f43 9283 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9284 return (blk);
9285}
9286
9287static struct abbrev_info *
f3dd6933 9288dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9289{
9290 struct abbrev_info *abbrev;
9291
f3dd6933
DJ
9292 abbrev = (struct abbrev_info *)
9293 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9294 memset (abbrev, 0, sizeof (struct abbrev_info));
9295 return (abbrev);
9296}
9297
9298static struct die_info *
fba45db2 9299dwarf_alloc_die (void)
c906108c
SS
9300{
9301 struct die_info *die;
9302
9303 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9304 memset (die, 0, sizeof (struct die_info));
9305 return (die);
9306}
2e276125
JB
9307
9308\f
9309/* Macro support. */
9310
9311
9312/* Return the full name of file number I in *LH's file name table.
9313 Use COMP_DIR as the name of the current directory of the
9314 compilation. The result is allocated using xmalloc; the caller is
9315 responsible for freeing it. */
9316static char *
9317file_full_name (int file, struct line_header *lh, const char *comp_dir)
9318{
6a83a1e6
EZ
9319 /* Is the file number a valid index into the line header's file name
9320 table? Remember that file numbers start with one, not zero. */
9321 if (1 <= file && file <= lh->num_file_names)
9322 {
9323 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9324
6a83a1e6
EZ
9325 if (IS_ABSOLUTE_PATH (fe->name))
9326 return xstrdup (fe->name);
9327 else
9328 {
9329 const char *dir;
9330 int dir_len;
9331 char *full_name;
9332
9333 if (fe->dir_index)
9334 dir = lh->include_dirs[fe->dir_index - 1];
9335 else
9336 dir = comp_dir;
9337
9338 if (dir)
9339 {
9340 dir_len = strlen (dir);
9341 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9342 strcpy (full_name, dir);
9343 full_name[dir_len] = '/';
9344 strcpy (full_name + dir_len + 1, fe->name);
9345 return full_name;
9346 }
9347 else
9348 return xstrdup (fe->name);
9349 }
9350 }
2e276125
JB
9351 else
9352 {
6a83a1e6
EZ
9353 /* The compiler produced a bogus file number. We can at least
9354 record the macro definitions made in the file, even if we
9355 won't be able to find the file by name. */
9356 char fake_name[80];
9357 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9358
6a83a1e6
EZ
9359 complaint (&symfile_complaints,
9360 _("bad file number in macro information (%d)"),
9361 file);
2e276125 9362
6a83a1e6 9363 return xstrdup (fake_name);
2e276125
JB
9364 }
9365}
9366
9367
9368static struct macro_source_file *
9369macro_start_file (int file, int line,
9370 struct macro_source_file *current_file,
9371 const char *comp_dir,
9372 struct line_header *lh, struct objfile *objfile)
9373{
9374 /* The full name of this source file. */
9375 char *full_name = file_full_name (file, lh, comp_dir);
9376
9377 /* We don't create a macro table for this compilation unit
9378 at all until we actually get a filename. */
9379 if (! pending_macros)
4a146b47 9380 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9381 objfile->macro_cache);
2e276125
JB
9382
9383 if (! current_file)
9384 /* If we have no current file, then this must be the start_file
9385 directive for the compilation unit's main source file. */
9386 current_file = macro_set_main (pending_macros, full_name);
9387 else
9388 current_file = macro_include (current_file, line, full_name);
9389
9390 xfree (full_name);
9391
9392 return current_file;
9393}
9394
9395
9396/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9397 followed by a null byte. */
9398static char *
9399copy_string (const char *buf, int len)
9400{
9401 char *s = xmalloc (len + 1);
9402 memcpy (s, buf, len);
9403 s[len] = '\0';
9404
9405 return s;
9406}
9407
9408
9409static const char *
9410consume_improper_spaces (const char *p, const char *body)
9411{
9412 if (*p == ' ')
9413 {
4d3c2250 9414 complaint (&symfile_complaints,
e2e0b3e5 9415 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9416 body);
2e276125
JB
9417
9418 while (*p == ' ')
9419 p++;
9420 }
9421
9422 return p;
9423}
9424
9425
9426static void
9427parse_macro_definition (struct macro_source_file *file, int line,
9428 const char *body)
9429{
9430 const char *p;
9431
9432 /* The body string takes one of two forms. For object-like macro
9433 definitions, it should be:
9434
9435 <macro name> " " <definition>
9436
9437 For function-like macro definitions, it should be:
9438
9439 <macro name> "() " <definition>
9440 or
9441 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9442
9443 Spaces may appear only where explicitly indicated, and in the
9444 <definition>.
9445
9446 The Dwarf 2 spec says that an object-like macro's name is always
9447 followed by a space, but versions of GCC around March 2002 omit
9448 the space when the macro's definition is the empty string.
9449
9450 The Dwarf 2 spec says that there should be no spaces between the
9451 formal arguments in a function-like macro's formal argument list,
9452 but versions of GCC around March 2002 include spaces after the
9453 commas. */
9454
9455
9456 /* Find the extent of the macro name. The macro name is terminated
9457 by either a space or null character (for an object-like macro) or
9458 an opening paren (for a function-like macro). */
9459 for (p = body; *p; p++)
9460 if (*p == ' ' || *p == '(')
9461 break;
9462
9463 if (*p == ' ' || *p == '\0')
9464 {
9465 /* It's an object-like macro. */
9466 int name_len = p - body;
9467 char *name = copy_string (body, name_len);
9468 const char *replacement;
9469
9470 if (*p == ' ')
9471 replacement = body + name_len + 1;
9472 else
9473 {
4d3c2250 9474 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9475 replacement = body + name_len;
9476 }
9477
9478 macro_define_object (file, line, name, replacement);
9479
9480 xfree (name);
9481 }
9482 else if (*p == '(')
9483 {
9484 /* It's a function-like macro. */
9485 char *name = copy_string (body, p - body);
9486 int argc = 0;
9487 int argv_size = 1;
9488 char **argv = xmalloc (argv_size * sizeof (*argv));
9489
9490 p++;
9491
9492 p = consume_improper_spaces (p, body);
9493
9494 /* Parse the formal argument list. */
9495 while (*p && *p != ')')
9496 {
9497 /* Find the extent of the current argument name. */
9498 const char *arg_start = p;
9499
9500 while (*p && *p != ',' && *p != ')' && *p != ' ')
9501 p++;
9502
9503 if (! *p || p == arg_start)
4d3c2250 9504 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9505 else
9506 {
9507 /* Make sure argv has room for the new argument. */
9508 if (argc >= argv_size)
9509 {
9510 argv_size *= 2;
9511 argv = xrealloc (argv, argv_size * sizeof (*argv));
9512 }
9513
9514 argv[argc++] = copy_string (arg_start, p - arg_start);
9515 }
9516
9517 p = consume_improper_spaces (p, body);
9518
9519 /* Consume the comma, if present. */
9520 if (*p == ',')
9521 {
9522 p++;
9523
9524 p = consume_improper_spaces (p, body);
9525 }
9526 }
9527
9528 if (*p == ')')
9529 {
9530 p++;
9531
9532 if (*p == ' ')
9533 /* Perfectly formed definition, no complaints. */
9534 macro_define_function (file, line, name,
9535 argc, (const char **) argv,
9536 p + 1);
9537 else if (*p == '\0')
9538 {
9539 /* Complain, but do define it. */
4d3c2250 9540 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9541 macro_define_function (file, line, name,
9542 argc, (const char **) argv,
9543 p);
9544 }
9545 else
9546 /* Just complain. */
4d3c2250 9547 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9548 }
9549 else
9550 /* Just complain. */
4d3c2250 9551 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9552
9553 xfree (name);
9554 {
9555 int i;
9556
9557 for (i = 0; i < argc; i++)
9558 xfree (argv[i]);
9559 }
9560 xfree (argv);
9561 }
9562 else
4d3c2250 9563 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9564}
9565
9566
9567static void
9568dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9569 char *comp_dir, bfd *abfd,
e7c27a73 9570 struct dwarf2_cu *cu)
2e276125 9571{
fe1b8b76 9572 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9573 struct macro_source_file *current_file = 0;
9574
6502dd73 9575 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9576 {
e2e0b3e5 9577 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9578 return;
9579 }
9580
6502dd73
DJ
9581 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9582 mac_end = dwarf2_per_objfile->macinfo_buffer
9583 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9584
9585 for (;;)
9586 {
9587 enum dwarf_macinfo_record_type macinfo_type;
9588
9589 /* Do we at least have room for a macinfo type byte? */
9590 if (mac_ptr >= mac_end)
9591 {
4d3c2250 9592 dwarf2_macros_too_long_complaint ();
2e276125
JB
9593 return;
9594 }
9595
9596 macinfo_type = read_1_byte (abfd, mac_ptr);
9597 mac_ptr++;
9598
9599 switch (macinfo_type)
9600 {
9601 /* A zero macinfo type indicates the end of the macro
9602 information. */
9603 case 0:
9604 return;
9605
9606 case DW_MACINFO_define:
9607 case DW_MACINFO_undef:
9608 {
891d2f0b 9609 unsigned int bytes_read;
2e276125
JB
9610 int line;
9611 char *body;
9612
9613 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9614 mac_ptr += bytes_read;
9615 body = read_string (abfd, mac_ptr, &bytes_read);
9616 mac_ptr += bytes_read;
9617
9618 if (! current_file)
4d3c2250 9619 complaint (&symfile_complaints,
e2e0b3e5 9620 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9621 macinfo_type ==
9622 DW_MACINFO_define ? "definition" : macinfo_type ==
9623 DW_MACINFO_undef ? "undefinition" :
9624 "something-or-other", body);
2e276125
JB
9625 else
9626 {
9627 if (macinfo_type == DW_MACINFO_define)
9628 parse_macro_definition (current_file, line, body);
9629 else if (macinfo_type == DW_MACINFO_undef)
9630 macro_undef (current_file, line, body);
9631 }
9632 }
9633 break;
9634
9635 case DW_MACINFO_start_file:
9636 {
891d2f0b 9637 unsigned int bytes_read;
2e276125
JB
9638 int line, file;
9639
9640 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9641 mac_ptr += bytes_read;
9642 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9643 mac_ptr += bytes_read;
9644
9645 current_file = macro_start_file (file, line,
9646 current_file, comp_dir,
e7c27a73 9647 lh, cu->objfile);
2e276125
JB
9648 }
9649 break;
9650
9651 case DW_MACINFO_end_file:
9652 if (! current_file)
4d3c2250 9653 complaint (&symfile_complaints,
e2e0b3e5 9654 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9655 else
9656 {
9657 current_file = current_file->included_by;
9658 if (! current_file)
9659 {
9660 enum dwarf_macinfo_record_type next_type;
9661
9662 /* GCC circa March 2002 doesn't produce the zero
9663 type byte marking the end of the compilation
9664 unit. Complain if it's not there, but exit no
9665 matter what. */
9666
9667 /* Do we at least have room for a macinfo type byte? */
9668 if (mac_ptr >= mac_end)
9669 {
4d3c2250 9670 dwarf2_macros_too_long_complaint ();
2e276125
JB
9671 return;
9672 }
9673
9674 /* We don't increment mac_ptr here, so this is just
9675 a look-ahead. */
9676 next_type = read_1_byte (abfd, mac_ptr);
9677 if (next_type != 0)
4d3c2250 9678 complaint (&symfile_complaints,
e2e0b3e5 9679 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9680
9681 return;
9682 }
9683 }
9684 break;
9685
9686 case DW_MACINFO_vendor_ext:
9687 {
891d2f0b 9688 unsigned int bytes_read;
2e276125
JB
9689 int constant;
9690 char *string;
9691
9692 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9693 mac_ptr += bytes_read;
9694 string = read_string (abfd, mac_ptr, &bytes_read);
9695 mac_ptr += bytes_read;
9696
9697 /* We don't recognize any vendor extensions. */
9698 }
9699 break;
9700 }
9701 }
9702}
8e19ed76
PS
9703
9704/* Check if the attribute's form is a DW_FORM_block*
9705 if so return true else false. */
9706static int
9707attr_form_is_block (struct attribute *attr)
9708{
9709 return (attr == NULL ? 0 :
9710 attr->form == DW_FORM_block1
9711 || attr->form == DW_FORM_block2
9712 || attr->form == DW_FORM_block4
9713 || attr->form == DW_FORM_block);
9714}
4c2df51b
DJ
9715
9716static void
9717dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9718 struct dwarf2_cu *cu)
4c2df51b 9719{
93e7bd98
DJ
9720 struct objfile *objfile = cu->objfile;
9721
9722 /* Save the master objfile, so that we can report and look up the
9723 correct file containing this variable. */
9724 if (objfile->separate_debug_objfile_backlink)
9725 objfile = objfile->separate_debug_objfile_backlink;
9726
99bcc461
DJ
9727 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9728 /* ".debug_loc" may not exist at all, or the offset may be outside
9729 the section. If so, fall through to the complaint in the
9730 other branch. */
9731 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9732 {
0d53c4c4 9733 struct dwarf2_loclist_baton *baton;
4c2df51b 9734
4a146b47 9735 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9736 sizeof (struct dwarf2_loclist_baton));
93e7bd98 9737 baton->objfile = objfile;
4c2df51b 9738
0d53c4c4
DJ
9739 /* We don't know how long the location list is, but make sure we
9740 don't run off the edge of the section. */
6502dd73
DJ
9741 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9742 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9743 baton->base_address = cu->header.base_address;
9744 if (cu->header.base_known == 0)
0d53c4c4 9745 complaint (&symfile_complaints,
e2e0b3e5 9746 _("Location list used without specifying the CU base address."));
4c2df51b 9747
a67af2b9 9748 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9749 SYMBOL_LOCATION_BATON (sym) = baton;
9750 }
9751 else
9752 {
9753 struct dwarf2_locexpr_baton *baton;
9754
4a146b47 9755 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9756 sizeof (struct dwarf2_locexpr_baton));
93e7bd98 9757 baton->objfile = objfile;
0d53c4c4
DJ
9758
9759 if (attr_form_is_block (attr))
9760 {
9761 /* Note that we're just copying the block's data pointer
9762 here, not the actual data. We're still pointing into the
6502dd73
DJ
9763 info_buffer for SYM's objfile; right now we never release
9764 that buffer, but when we do clean up properly this may
9765 need to change. */
0d53c4c4
DJ
9766 baton->size = DW_BLOCK (attr)->size;
9767 baton->data = DW_BLOCK (attr)->data;
9768 }
9769 else
9770 {
9771 dwarf2_invalid_attrib_class_complaint ("location description",
9772 SYMBOL_NATURAL_NAME (sym));
9773 baton->size = 0;
9774 baton->data = NULL;
9775 }
9776
a67af2b9 9777 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9778 SYMBOL_LOCATION_BATON (sym) = baton;
9779 }
4c2df51b 9780}
6502dd73 9781
ae038cb0 9782/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9783 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9784
9785static struct dwarf2_per_cu_data *
9786dwarf2_find_containing_comp_unit (unsigned long offset,
9787 struct objfile *objfile)
9788{
9789 struct dwarf2_per_cu_data *this_cu;
9790 int low, high;
9791
ae038cb0
DJ
9792 low = 0;
9793 high = dwarf2_per_objfile->n_comp_units - 1;
9794 while (high > low)
9795 {
9796 int mid = low + (high - low) / 2;
9797 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9798 high = mid;
9799 else
9800 low = mid + 1;
9801 }
9802 gdb_assert (low == high);
9803 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9804 {
10b3939b 9805 if (low == 0)
8a3fe4f8
AC
9806 error (_("Dwarf Error: could not find partial DIE containing "
9807 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9808 (long) offset, bfd_get_filename (objfile->obfd));
9809
ae038cb0
DJ
9810 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9811 return dwarf2_per_objfile->all_comp_units[low-1];
9812 }
9813 else
9814 {
9815 this_cu = dwarf2_per_objfile->all_comp_units[low];
9816 if (low == dwarf2_per_objfile->n_comp_units - 1
9817 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9818 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9819 gdb_assert (offset < this_cu->offset + this_cu->length);
9820 return this_cu;
9821 }
9822}
9823
10b3939b
DJ
9824/* Locate the compilation unit from OBJFILE which is located at exactly
9825 OFFSET. Raises an error on failure. */
9826
ae038cb0
DJ
9827static struct dwarf2_per_cu_data *
9828dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9829{
9830 struct dwarf2_per_cu_data *this_cu;
9831 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9832 if (this_cu->offset != offset)
8a3fe4f8 9833 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9834 return this_cu;
9835}
9836
9837/* Release one cached compilation unit, CU. We unlink it from the tree
9838 of compilation units, but we don't remove it from the read_in_chain;
9839 the caller is responsible for that. */
9840
9841static void
9842free_one_comp_unit (void *data)
9843{
9844 struct dwarf2_cu *cu = data;
9845
9846 if (cu->per_cu != NULL)
9847 cu->per_cu->cu = NULL;
9848 cu->per_cu = NULL;
9849
9850 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9851 if (cu->dies)
9852 free_die_list (cu->dies);
ae038cb0
DJ
9853
9854 xfree (cu);
9855}
9856
72bf9492 9857/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9858 when we're finished with it. We can't free the pointer itself, but be
9859 sure to unlink it from the cache. Also release any associated storage
9860 and perform cache maintenance.
72bf9492
DJ
9861
9862 Only used during partial symbol parsing. */
9863
9864static void
9865free_stack_comp_unit (void *data)
9866{
9867 struct dwarf2_cu *cu = data;
9868
9869 obstack_free (&cu->comp_unit_obstack, NULL);
9870 cu->partial_dies = NULL;
ae038cb0
DJ
9871
9872 if (cu->per_cu != NULL)
9873 {
9874 /* This compilation unit is on the stack in our caller, so we
9875 should not xfree it. Just unlink it. */
9876 cu->per_cu->cu = NULL;
9877 cu->per_cu = NULL;
9878
9879 /* If we had a per-cu pointer, then we may have other compilation
9880 units loaded, so age them now. */
9881 age_cached_comp_units ();
9882 }
9883}
9884
9885/* Free all cached compilation units. */
9886
9887static void
9888free_cached_comp_units (void *data)
9889{
9890 struct dwarf2_per_cu_data *per_cu, **last_chain;
9891
9892 per_cu = dwarf2_per_objfile->read_in_chain;
9893 last_chain = &dwarf2_per_objfile->read_in_chain;
9894 while (per_cu != NULL)
9895 {
9896 struct dwarf2_per_cu_data *next_cu;
9897
9898 next_cu = per_cu->cu->read_in_chain;
9899
9900 free_one_comp_unit (per_cu->cu);
9901 *last_chain = next_cu;
9902
9903 per_cu = next_cu;
9904 }
9905}
9906
9907/* Increase the age counter on each cached compilation unit, and free
9908 any that are too old. */
9909
9910static void
9911age_cached_comp_units (void)
9912{
9913 struct dwarf2_per_cu_data *per_cu, **last_chain;
9914
9915 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9916 per_cu = dwarf2_per_objfile->read_in_chain;
9917 while (per_cu != NULL)
9918 {
9919 per_cu->cu->last_used ++;
9920 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9921 dwarf2_mark (per_cu->cu);
9922 per_cu = per_cu->cu->read_in_chain;
9923 }
9924
9925 per_cu = dwarf2_per_objfile->read_in_chain;
9926 last_chain = &dwarf2_per_objfile->read_in_chain;
9927 while (per_cu != NULL)
9928 {
9929 struct dwarf2_per_cu_data *next_cu;
9930
9931 next_cu = per_cu->cu->read_in_chain;
9932
9933 if (!per_cu->cu->mark)
9934 {
9935 free_one_comp_unit (per_cu->cu);
9936 *last_chain = next_cu;
9937 }
9938 else
9939 last_chain = &per_cu->cu->read_in_chain;
9940
9941 per_cu = next_cu;
9942 }
9943}
9944
9945/* Remove a single compilation unit from the cache. */
9946
9947static void
9948free_one_cached_comp_unit (void *target_cu)
9949{
9950 struct dwarf2_per_cu_data *per_cu, **last_chain;
9951
9952 per_cu = dwarf2_per_objfile->read_in_chain;
9953 last_chain = &dwarf2_per_objfile->read_in_chain;
9954 while (per_cu != NULL)
9955 {
9956 struct dwarf2_per_cu_data *next_cu;
9957
9958 next_cu = per_cu->cu->read_in_chain;
9959
9960 if (per_cu->cu == target_cu)
9961 {
9962 free_one_comp_unit (per_cu->cu);
9963 *last_chain = next_cu;
9964 break;
9965 }
9966 else
9967 last_chain = &per_cu->cu->read_in_chain;
9968
9969 per_cu = next_cu;
9970 }
9971}
9972
fe3e1990
DJ
9973/* Release all extra memory associated with OBJFILE. */
9974
9975void
9976dwarf2_free_objfile (struct objfile *objfile)
9977{
9978 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
9979
9980 if (dwarf2_per_objfile == NULL)
9981 return;
9982
9983 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
9984 free_cached_comp_units (NULL);
9985
9986 /* Everything else should be on the objfile obstack. */
9987}
9988
1c379e20
DJ
9989/* A pair of DIE offset and GDB type pointer. We store these
9990 in a hash table separate from the DIEs, and preserve them
9991 when the DIEs are flushed out of cache. */
9992
9993struct dwarf2_offset_and_type
9994{
9995 unsigned int offset;
9996 struct type *type;
9997};
9998
9999/* Hash function for a dwarf2_offset_and_type. */
10000
10001static hashval_t
10002offset_and_type_hash (const void *item)
10003{
10004 const struct dwarf2_offset_and_type *ofs = item;
10005 return ofs->offset;
10006}
10007
10008/* Equality function for a dwarf2_offset_and_type. */
10009
10010static int
10011offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10012{
10013 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10014 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10015 return ofs_lhs->offset == ofs_rhs->offset;
10016}
10017
10018/* Set the type associated with DIE to TYPE. Save it in CU's hash
10019 table if necessary. */
10020
10021static void
10022set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10023{
10024 struct dwarf2_offset_and_type **slot, ofs;
10025
10026 die->type = type;
10027
10028 if (cu->per_cu == NULL)
10029 return;
10030
10031 if (cu->per_cu->type_hash == NULL)
10032 cu->per_cu->type_hash
10033 = htab_create_alloc_ex (cu->header.length / 24,
10034 offset_and_type_hash,
10035 offset_and_type_eq,
10036 NULL,
10037 &cu->objfile->objfile_obstack,
10038 hashtab_obstack_allocate,
10039 dummy_obstack_deallocate);
10040
10041 ofs.offset = die->offset;
10042 ofs.type = type;
10043 slot = (struct dwarf2_offset_and_type **)
10044 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10045 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10046 **slot = ofs;
10047}
10048
1c379e20
DJ
10049/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10050 have a saved type. */
10051
10052static struct type *
10053get_die_type (struct die_info *die, htab_t type_hash)
10054{
10055 struct dwarf2_offset_and_type *slot, ofs;
10056
10057 ofs.offset = die->offset;
10058 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10059 if (slot)
10060 return slot->type;
10061 else
10062 return NULL;
10063}
10064
10065/* Restore the types of the DIE tree starting at START_DIE from the hash
10066 table saved in CU. */
10067
10068static void
10069reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10070{
10071 struct die_info *die;
10072
10073 if (cu->per_cu->type_hash == NULL)
10074 return;
10075
10076 for (die = start_die; die != NULL; die = die->sibling)
10077 {
10078 die->type = get_die_type (die, cu->per_cu->type_hash);
10079 if (die->child != NULL)
10080 reset_die_and_siblings_types (die->child, cu);
10081 }
10082}
10083
10b3939b
DJ
10084/* Set the mark field in CU and in every other compilation unit in the
10085 cache that we must keep because we are keeping CU. */
10086
10087/* Add a dependence relationship from CU to REF_PER_CU. */
10088
10089static void
10090dwarf2_add_dependence (struct dwarf2_cu *cu,
10091 struct dwarf2_per_cu_data *ref_per_cu)
10092{
10093 void **slot;
10094
10095 if (cu->dependencies == NULL)
10096 cu->dependencies
10097 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10098 NULL, &cu->comp_unit_obstack,
10099 hashtab_obstack_allocate,
10100 dummy_obstack_deallocate);
10101
10102 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10103 if (*slot == NULL)
10104 *slot = ref_per_cu;
10105}
1c379e20 10106
ae038cb0
DJ
10107/* Set the mark field in CU and in every other compilation unit in the
10108 cache that we must keep because we are keeping CU. */
10109
10b3939b
DJ
10110static int
10111dwarf2_mark_helper (void **slot, void *data)
10112{
10113 struct dwarf2_per_cu_data *per_cu;
10114
10115 per_cu = (struct dwarf2_per_cu_data *) *slot;
10116 if (per_cu->cu->mark)
10117 return 1;
10118 per_cu->cu->mark = 1;
10119
10120 if (per_cu->cu->dependencies != NULL)
10121 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10122
10123 return 1;
10124}
10125
ae038cb0
DJ
10126static void
10127dwarf2_mark (struct dwarf2_cu *cu)
10128{
10129 if (cu->mark)
10130 return;
10131 cu->mark = 1;
10b3939b
DJ
10132 if (cu->dependencies != NULL)
10133 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10134}
10135
10136static void
10137dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10138{
10139 while (per_cu)
10140 {
10141 per_cu->cu->mark = 0;
10142 per_cu = per_cu->cu->read_in_chain;
10143 }
72bf9492
DJ
10144}
10145
72bf9492
DJ
10146/* Trivial hash function for partial_die_info: the hash value of a DIE
10147 is its offset in .debug_info for this objfile. */
10148
10149static hashval_t
10150partial_die_hash (const void *item)
10151{
10152 const struct partial_die_info *part_die = item;
10153 return part_die->offset;
10154}
10155
10156/* Trivial comparison function for partial_die_info structures: two DIEs
10157 are equal if they have the same offset. */
10158
10159static int
10160partial_die_eq (const void *item_lhs, const void *item_rhs)
10161{
10162 const struct partial_die_info *part_die_lhs = item_lhs;
10163 const struct partial_die_info *part_die_rhs = item_rhs;
10164 return part_die_lhs->offset == part_die_rhs->offset;
10165}
10166
ae038cb0
DJ
10167static struct cmd_list_element *set_dwarf2_cmdlist;
10168static struct cmd_list_element *show_dwarf2_cmdlist;
10169
10170static void
10171set_dwarf2_cmd (char *args, int from_tty)
10172{
10173 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10174}
10175
10176static void
10177show_dwarf2_cmd (char *args, int from_tty)
10178{
10179 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10180}
10181
6502dd73
DJ
10182void _initialize_dwarf2_read (void);
10183
10184void
10185_initialize_dwarf2_read (void)
10186{
10187 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10188
1bedd215
AC
10189 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10190Set DWARF 2 specific variables.\n\
10191Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10192 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10193 0/*allow-unknown*/, &maintenance_set_cmdlist);
10194
1bedd215
AC
10195 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10196Show DWARF 2 specific variables\n\
10197Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10198 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10199 0/*allow-unknown*/, &maintenance_show_cmdlist);
10200
10201 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10202 &dwarf2_max_cache_age, _("\
10203Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10204Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10205A higher limit means that cached compilation units will be stored\n\
10206in memory longer, and more total memory will be used. Zero disables\n\
10207caching, which can slow down startup."),
2c5b56ce 10208 NULL,
920d2a44 10209 show_dwarf2_max_cache_age,
2c5b56ce 10210 &set_dwarf2_cmdlist,
ae038cb0 10211 &show_dwarf2_cmdlist);
6502dd73 10212}
This page took 1.23262 seconds and 4 git commands to generate.