gdb: ARM: Add support for thumb32 instructions recording
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
0e9f083f 75#include <string.h>
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
a2ce51a0
DE
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
b4dd5633 240 struct signatured_type **all_type_units;
1fd400ff 241
f4dc4d17
DE
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
72dca2f5 252
348e048f
DE
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
f4dc4d17
DE
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
3019eac3
DE
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
80626a55
DE
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
36586728
TT
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
72dca2f5
FR
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
9291a0cd 288
ae2de4f8
DE
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
291 unsigned char using_index;
292
ae2de4f8 293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 294 struct mapped_index *index_table;
98bfdba5 295
7b9f3c50 296 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
7b9f3c50
DE
303 htab_t quick_file_names_table;
304
98bfdba5
PA
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
673bfd45 308
dee91e82 309 /* Table mapping type DIEs to their struct type *.
673bfd45 310 This is NULL if not allocated yet.
02142a6c 311 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 312 htab_t die_type_hash;
95554aad
TT
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
722
723 /* The primary symtab.
094b34ac
DE
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
726 struct symtab *primary_symtab;
727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
debd256d
JB
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
2dc7f7b3 1036 unsigned char maximum_ops_per_instruction;
debd256d
JB
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1053 const char **include_dirs;
debd256d
JB
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
c906108c 1060 {
d521ce57 1061 const char *name;
debd256d
JB
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
aaa75496 1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1066 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
6502dd73 1070 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1071 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1072};
c906108c
SS
1073
1074/* When we construct a partial symbol table entry we only
0963b4bd 1075 need this much information. */
c906108c
SS
1076struct partial_die_info
1077 {
72bf9492 1078 /* Offset of this DIE. */
b64f50a1 1079 sect_offset offset;
72bf9492
DJ
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
72bf9492
DJ
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
481860b3 1091 unsigned int may_be_inlined : 1;
72bf9492
DJ
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
fa4028e9
JB
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
98bfdba5
PA
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
abc72ce4
DE
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
36586728
TT
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
72bf9492 1112 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1113 sometimes a default name for unnamed DIEs. */
15d034d0 1114 const char *name;
72bf9492 1115
abc72ce4
DE
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
72bf9492
DJ
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
15d034d0 1122 const char *scope;
72bf9492 1123
95554aad
TT
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
72bf9492
DJ
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
72bf9492 1137
93311388 1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1139 DW_AT_sibling, if any. */
abc72ce4
DE
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1142 const gdb_byte *sibling;
72bf9492
DJ
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
b64f50a1 1147 sect_offset spec_offset;
72bf9492
DJ
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1152 };
1153
0963b4bd 1154/* This data structure holds the information of an abbrev. */
c906108c
SS
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
9d25dd43
DE
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1169 };
1170
433df2d4
DE
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
f4dc4d17
DE
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
433df2d4
DE
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
0963b4bd 1192/* Attributes have a name and a value. */
b60c80d6
DJ
1193struct attribute
1194 {
9d25dd43 1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
b60c80d6
DJ
1203 union
1204 {
15d034d0 1205 const char *str;
b60c80d6 1206 struct dwarf_block *blk;
43bbcdc2
PH
1207 ULONGEST unsnd;
1208 LONGEST snd;
b60c80d6 1209 CORE_ADDR addr;
ac9ec31b 1210 ULONGEST signature;
b60c80d6
DJ
1211 }
1212 u;
1213 };
1214
0963b4bd 1215/* This data structure holds a complete die structure. */
c906108c
SS
1216struct die_info
1217 {
76815b17
DE
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
98bfdba5
PA
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
76815b17
DE
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
93311388 1231 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1232 sect_offset offset;
78ba4af6
JB
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
4950bc1c 1237 together via their SIBLING fields. */
639d11d3
DC
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
c906108c 1241
b60c80d6
DJ
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
c906108c
SS
1246 };
1247
0963b4bd 1248/* Get at parts of an attribute structure. */
c906108c
SS
1249
1250#define DW_STRING(attr) ((attr)->u.str)
8285870a 1251#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1252#define DW_UNSND(attr) ((attr)->u.unsnd)
1253#define DW_BLOCK(attr) ((attr)->u.blk)
1254#define DW_SND(attr) ((attr)->u.snd)
1255#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1256#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1257
0963b4bd 1258/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1259struct dwarf_block
1260 {
56eb65bd 1261 size_t size;
1d6edc3c
JK
1262
1263 /* Valid only if SIZE is not zero. */
d521ce57 1264 const gdb_byte *data;
c906108c
SS
1265 };
1266
c906108c
SS
1267#ifndef ATTR_ALLOC_CHUNK
1268#define ATTR_ALLOC_CHUNK 4
1269#endif
1270
c906108c
SS
1271/* Allocate fields for structs, unions and enums in this size. */
1272#ifndef DW_FIELD_ALLOC_CHUNK
1273#define DW_FIELD_ALLOC_CHUNK 4
1274#endif
1275
c906108c
SS
1276/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279static int bits_per_byte = 8;
1280
1281/* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284struct field_info
c5aa993b 1285 {
0963b4bd 1286 /* List of data member and baseclasses fields. */
c5aa993b
JM
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
7d0ccb61 1294 *fields, *baseclasses;
c906108c 1295
7d0ccb61 1296 /* Number of fields (including baseclasses). */
c5aa993b 1297 int nfields;
c906108c 1298
c5aa993b
JM
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
c906108c 1301
c5aa993b
JM
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
c906108c 1304
c5aa993b
JM
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
c906108c 1313
c5aa993b
JM
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
15d034d0 1319 const char *name;
c5aa993b
JM
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
c906108c 1324
c5aa993b
JM
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
98751a41
JK
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
c5aa993b 1337 };
c906108c 1338
10b3939b
DJ
1339/* One item on the queue of compilation units to read in full symbols
1340 for. */
1341struct dwarf2_queue_item
1342{
1343 struct dwarf2_per_cu_data *per_cu;
95554aad 1344 enum language pretend_language;
10b3939b
DJ
1345 struct dwarf2_queue_item *next;
1346};
1347
1348/* The current queue. */
1349static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
ae038cb0
DJ
1351/* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356static int dwarf2_max_cache_age = 5;
920d2a44
AC
1357static void
1358show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360{
3e43a32a
MS
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1363 value);
1364}
4390d890 1365\f
c906108c
SS
1366/* local function prototypes */
1367
a32a8923
DE
1368static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
4efb68b1 1372static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1373
918dd910
JK
1374static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
0018ea6f
DE
1377static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
c67a9c90 1380static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1381
72bf9492
DJ
1382static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1384 int, struct dwarf2_cu *);
c906108c 1385
72bf9492
DJ
1386static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
63d06c5c 1388
72bf9492
DJ
1389static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1391 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1392
5d7cb8df
JK
1393static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
72bf9492
DJ
1397static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
91c24f0a 1399
bc30ff58
JB
1400static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1402 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1403
257e7a09
YQ
1404static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
c906108c 1406
a14ed312 1407static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1408
433df2d4
DE
1409static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415static void abbrev_table_free (struct abbrev_table *);
1416
f4dc4d17
DE
1417static void abbrev_table_free_cleanup (void *);
1418
dee91e82
DE
1419static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
c906108c 1421
f3dd6933 1422static void dwarf2_free_abbrev_table (void *);
c906108c 1423
d521ce57 1424static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1425
dee91e82 1426static struct partial_die_info *load_partial_dies
d521ce57 1427 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1428
d521ce57
TT
1429static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
c906108c 1434
36586728 1435static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1436 struct dwarf2_cu *);
72bf9492
DJ
1437
1438static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
d521ce57
TT
1441static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
a8329558 1444
a1855c1d 1445static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1446
a1855c1d 1447static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1448
a1855c1d 1449static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1450
a1855c1d 1451static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1452
a1855c1d 1453static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1454
d521ce57 1455static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1456 unsigned int *);
c906108c 1457
d521ce57 1458static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1459
1460static LONGEST read_checked_initial_length_and_offset
d521ce57 1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1462 unsigned int *, unsigned int *);
613e1657 1463
d521ce57
TT
1464static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
c764a876
DE
1466 unsigned int *);
1467
d521ce57 1468static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1469
f4dc4d17
DE
1470static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
d521ce57 1473static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1474
d521ce57 1475static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1476
d521ce57
TT
1477static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
4bdf3d34 1480
d521ce57 1481static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1482
d521ce57 1483static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1484
d521ce57 1485static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1486
d521ce57
TT
1487static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
3019eac3
DE
1489 unsigned int *);
1490
d521ce57
TT
1491static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1493
e142c38c 1494static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1495
e142c38c
DJ
1496static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
c906108c 1498
348e048f 1499static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1500 unsigned int);
348e048f 1501
05cf31d1
JB
1502static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
e142c38c 1505static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1506
e142c38c 1507static struct die_info *die_specification (struct die_info *die,
f2f0e013 1508 struct dwarf2_cu **);
63d06c5c 1509
debd256d
JB
1510static void free_line_header (struct line_header *lh);
1511
3019eac3
DE
1512static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
debd256d 1514
f3f5162e
DE
1515static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
c906108c 1518
d521ce57 1519static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1520
f4dc4d17 1521static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1522 const char *, const char *, CORE_ADDR);
f4dc4d17 1523
a14ed312 1524static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1525 struct dwarf2_cu *);
c906108c 1526
34eaf542
TT
1527static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
ff39bb5e 1530static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1531 struct dwarf2_cu *);
c906108c 1532
ff39bb5e 1533static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
12df843f 1537 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1538 const gdb_byte **bytes,
98bfdba5 1539 struct dwarf2_locexpr_baton **baton);
2df3850c 1540
e7c27a73 1541static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1542
b4ba55a1
JB
1543static int need_gnat_info (struct dwarf2_cu *);
1544
3e43a32a
MS
1545static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
b4ba55a1
JB
1547
1548static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
e7c27a73
DJ
1551static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
c906108c 1553
ff39bb5e 1554static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1555 struct dwarf2_cu *);
c906108c 1556
f792889a 1557static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1558
673bfd45
DE
1559static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
0d5cff50 1561static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1562
6e70227d 1563static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
63d06c5c 1566
e7c27a73 1567static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1568
348e048f
DE
1569static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
e7c27a73 1571static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1572
e7c27a73 1573static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1574
96408a79
SA
1575static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
ff013f42
JK
1577static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
a14ed312 1580static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
c906108c 1583
fae299cd
DC
1584static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
801e3a5b
JB
1588static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
a14ed312 1591static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1592 struct dwarf2_cu *);
c906108c 1593
a14ed312 1594static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1595 struct type *, struct dwarf2_cu *);
c906108c 1596
a14ed312 1597static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1598 struct die_info *, struct type *,
e7c27a73 1599 struct dwarf2_cu *);
c906108c 1600
a14ed312 1601static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1602 struct type *,
1603 struct dwarf2_cu *);
c906108c 1604
134d01f1 1605static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1606
e7c27a73 1607static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1608
e7c27a73 1609static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1610
5d7cb8df
JK
1611static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
27aa8d6a
SW
1613static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
74921315
KS
1615static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
f55ee35c
JK
1617static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
38d518c9 1620static const char *namespace_name (struct die_info *die,
e142c38c 1621 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1622
134d01f1 1623static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1624
e7c27a73 1625static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1626
6e70227d 1627static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1628 struct dwarf2_cu *);
1629
bf6af496 1630static struct die_info *read_die_and_siblings_1
d521ce57 1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1632 struct die_info *);
639d11d3 1633
dee91e82 1634static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
639d11d3
DC
1637 struct die_info *parent);
1638
d521ce57
TT
1639static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
3019eac3 1642
d521ce57
TT
1643static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
93311388 1646
e7c27a73 1647static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1648
15d034d0
TT
1649static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
71c25dea 1651
15d034d0 1652static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1653
15d034d0 1654static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
ca69b9e6
DE
1658static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
e142c38c 1661static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1662 struct dwarf2_cu **);
9219021c 1663
f39c6ffd 1664static const char *dwarf_tag_name (unsigned int);
c906108c 1665
f39c6ffd 1666static const char *dwarf_attr_name (unsigned int);
c906108c 1667
f39c6ffd 1668static const char *dwarf_form_name (unsigned int);
c906108c 1669
a14ed312 1670static char *dwarf_bool_name (unsigned int);
c906108c 1671
f39c6ffd 1672static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1673
f9aca02d 1674static struct die_info *sibling_die (struct die_info *);
c906108c 1675
d97bc12b
DE
1676static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678static void dump_die_for_error (struct die_info *);
1679
1680static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
c906108c 1682
d97bc12b 1683/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1684
51545339 1685static void store_in_ref_table (struct die_info *,
10b3939b 1686 struct dwarf2_cu *);
c906108c 1687
ff39bb5e 1688static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1689
ff39bb5e 1690static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1691
348e048f 1692static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1693 const struct attribute *,
348e048f
DE
1694 struct dwarf2_cu **);
1695
10b3939b 1696static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1697 const struct attribute *,
f2f0e013 1698 struct dwarf2_cu **);
c906108c 1699
348e048f 1700static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1701 const struct attribute *,
348e048f
DE
1702 struct dwarf2_cu **);
1703
ac9ec31b
DE
1704static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1708 const struct attribute *,
ac9ec31b
DE
1709 struct dwarf2_cu *);
1710
e5fe5e75 1711static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1712
52dc124a 1713static void read_signatured_type (struct signatured_type *);
348e048f 1714
f4dc4d17 1715static struct type_unit_group *get_type_unit_group
ff39bb5e 1716 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1717
1718static void build_type_unit_groups (die_reader_func_ftype *, void *);
1719
c906108c
SS
1720/* memory allocation interface */
1721
7b5a2f43 1722static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1723
b60c80d6 1724static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1725
09262596 1726static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1727 const char *, int);
2e276125 1728
6e5a29e1 1729static int attr_form_is_block (const struct attribute *);
8e19ed76 1730
6e5a29e1 1731static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1732
6e5a29e1 1733static int attr_form_is_constant (const struct attribute *);
3690dd37 1734
6e5a29e1 1735static int attr_form_is_ref (const struct attribute *);
7771576e 1736
8cf6f0b1
TT
1737static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1738 struct dwarf2_loclist_baton *baton,
ff39bb5e 1739 const struct attribute *attr);
8cf6f0b1 1740
ff39bb5e 1741static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1742 struct symbol *sym,
f1e6e072
TT
1743 struct dwarf2_cu *cu,
1744 int is_block);
4c2df51b 1745
d521ce57
TT
1746static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1747 const gdb_byte *info_ptr,
1748 struct abbrev_info *abbrev);
4bb7a0a7 1749
72bf9492
DJ
1750static void free_stack_comp_unit (void *);
1751
72bf9492
DJ
1752static hashval_t partial_die_hash (const void *item);
1753
1754static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1755
ae038cb0 1756static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1757 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1758
9816fde3 1759static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1760 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1761
1762static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1763 struct die_info *comp_unit_die,
1764 enum language pretend_language);
93311388 1765
68dc6402 1766static void free_heap_comp_unit (void *);
ae038cb0
DJ
1767
1768static void free_cached_comp_units (void *);
1769
1770static void age_cached_comp_units (void);
1771
dee91e82 1772static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1773
f792889a
DJ
1774static struct type *set_die_type (struct die_info *, struct type *,
1775 struct dwarf2_cu *);
1c379e20 1776
ae038cb0
DJ
1777static void create_all_comp_units (struct objfile *);
1778
0e50663e 1779static int create_all_type_units (struct objfile *);
1fd400ff 1780
95554aad
TT
1781static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1782 enum language);
10b3939b 1783
95554aad
TT
1784static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
10b3939b 1786
f4dc4d17
DE
1787static void process_full_type_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
10b3939b
DJ
1790static void dwarf2_add_dependence (struct dwarf2_cu *,
1791 struct dwarf2_per_cu_data *);
1792
ae038cb0
DJ
1793static void dwarf2_mark (struct dwarf2_cu *);
1794
1795static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1796
b64f50a1 1797static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1798 struct dwarf2_per_cu_data *);
673bfd45 1799
f792889a 1800static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1801
9291a0cd
TT
1802static void dwarf2_release_queue (void *dummy);
1803
95554aad
TT
1804static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1805 enum language pretend_language);
1806
a0f42c21 1807static void process_queue (void);
9291a0cd
TT
1808
1809static void find_file_and_directory (struct die_info *die,
1810 struct dwarf2_cu *cu,
15d034d0 1811 const char **name, const char **comp_dir);
9291a0cd
TT
1812
1813static char *file_full_name (int file, struct line_header *lh,
1814 const char *comp_dir);
1815
d521ce57 1816static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1817 (struct comp_unit_head *header,
1818 struct dwarf2_section_info *section,
d521ce57 1819 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1820 int is_debug_types_section);
1821
fd820528 1822static void init_cutu_and_read_dies
f4dc4d17
DE
1823 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1824 int use_existing_cu, int keep,
3019eac3
DE
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
dee91e82
DE
1827static void init_cutu_and_read_dies_simple
1828 (struct dwarf2_per_cu_data *this_cu,
1829 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1830
673bfd45 1831static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1832
3019eac3
DE
1833static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1834
57d63ce2
DE
1835static struct dwo_unit *lookup_dwo_unit_in_dwp
1836 (struct dwp_file *dwp_file, const char *comp_dir,
1837 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1838
1839static struct dwp_file *get_dwp_file (void);
1840
3019eac3 1841static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1842 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1843
1844static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1845 (struct signatured_type *, const char *, const char *);
3019eac3 1846
89e63ee4
DE
1847static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1848
3019eac3
DE
1849static void free_dwo_file_cleanup (void *);
1850
95554aad
TT
1851static void process_cu_includes (void);
1852
1b80a9fa 1853static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1854\f
1855/* Various complaints about symbol reading that don't abort the process. */
1856
1857static void
1858dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1859{
1860 complaint (&symfile_complaints,
1861 _("statement list doesn't fit in .debug_line section"));
1862}
1863
1864static void
1865dwarf2_debug_line_missing_file_complaint (void)
1866{
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line data without a file"));
1869}
1870
1871static void
1872dwarf2_debug_line_missing_end_sequence_complaint (void)
1873{
1874 complaint (&symfile_complaints,
1875 _(".debug_line section has line "
1876 "program sequence without an end"));
1877}
1878
1879static void
1880dwarf2_complex_location_expr_complaint (void)
1881{
1882 complaint (&symfile_complaints, _("location expression too complex"));
1883}
1884
1885static void
1886dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1887 int arg3)
1888{
1889 complaint (&symfile_complaints,
1890 _("const value length mismatch for '%s', got %d, expected %d"),
1891 arg1, arg2, arg3);
1892}
1893
1894static void
1895dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1896{
1897 complaint (&symfile_complaints,
1898 _("debug info runs off end of %s section"
1899 " [in module %s]"),
a32a8923
DE
1900 get_section_name (section),
1901 get_section_file_name (section));
4390d890 1902}
1b80a9fa 1903
4390d890
DE
1904static void
1905dwarf2_macro_malformed_definition_complaint (const char *arg1)
1906{
1907 complaint (&symfile_complaints,
1908 _("macro debug info contains a "
1909 "malformed macro definition:\n`%s'"),
1910 arg1);
1911}
1912
1913static void
1914dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1915{
1916 complaint (&symfile_complaints,
1917 _("invalid attribute class or form for '%s' in '%s'"),
1918 arg1, arg2);
1919}
1920\f
9291a0cd
TT
1921#if WORDS_BIGENDIAN
1922
1923/* Convert VALUE between big- and little-endian. */
1924static offset_type
1925byte_swap (offset_type value)
1926{
1927 offset_type result;
1928
1929 result = (value & 0xff) << 24;
1930 result |= (value & 0xff00) << 8;
1931 result |= (value & 0xff0000) >> 8;
1932 result |= (value & 0xff000000) >> 24;
1933 return result;
1934}
1935
1936#define MAYBE_SWAP(V) byte_swap (V)
1937
1938#else
1939#define MAYBE_SWAP(V) (V)
1940#endif /* WORDS_BIGENDIAN */
1941
1942/* The suffix for an index file. */
1943#define INDEX_SUFFIX ".gdb-index"
1944
c906108c 1945/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1946 information and return true if we have enough to do something.
1947 NAMES points to the dwarf2 section names, or is NULL if the standard
1948 ELF names are used. */
c906108c
SS
1949
1950int
251d32d9
TG
1951dwarf2_has_info (struct objfile *objfile,
1952 const struct dwarf2_debug_sections *names)
c906108c 1953{
be391dca
TT
1954 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1955 if (!dwarf2_per_objfile)
1956 {
1957 /* Initialize per-objfile state. */
1958 struct dwarf2_per_objfile *data
1959 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1960
be391dca
TT
1961 memset (data, 0, sizeof (*data));
1962 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1963 dwarf2_per_objfile = data;
6502dd73 1964
251d32d9
TG
1965 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1966 (void *) names);
be391dca
TT
1967 dwarf2_per_objfile->objfile = objfile;
1968 }
73869dc2
DE
1969 return (!dwarf2_per_objfile->info.is_virtual
1970 && dwarf2_per_objfile->info.s.asection != NULL
1971 && !dwarf2_per_objfile->abbrev.is_virtual
1972 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1973}
1974
1975/* Return the containing section of virtual section SECTION. */
1976
1977static struct dwarf2_section_info *
1978get_containing_section (const struct dwarf2_section_info *section)
1979{
1980 gdb_assert (section->is_virtual);
1981 return section->s.containing_section;
c906108c
SS
1982}
1983
a32a8923
DE
1984/* Return the bfd owner of SECTION. */
1985
1986static struct bfd *
1987get_section_bfd_owner (const struct dwarf2_section_info *section)
1988{
73869dc2
DE
1989 if (section->is_virtual)
1990 {
1991 section = get_containing_section (section);
1992 gdb_assert (!section->is_virtual);
1993 }
1994 return section->s.asection->owner;
a32a8923
DE
1995}
1996
1997/* Return the bfd section of SECTION.
1998 Returns NULL if the section is not present. */
1999
2000static asection *
2001get_section_bfd_section (const struct dwarf2_section_info *section)
2002{
73869dc2
DE
2003 if (section->is_virtual)
2004 {
2005 section = get_containing_section (section);
2006 gdb_assert (!section->is_virtual);
2007 }
2008 return section->s.asection;
a32a8923
DE
2009}
2010
2011/* Return the name of SECTION. */
2012
2013static const char *
2014get_section_name (const struct dwarf2_section_info *section)
2015{
2016 asection *sectp = get_section_bfd_section (section);
2017
2018 gdb_assert (sectp != NULL);
2019 return bfd_section_name (get_section_bfd_owner (section), sectp);
2020}
2021
2022/* Return the name of the file SECTION is in. */
2023
2024static const char *
2025get_section_file_name (const struct dwarf2_section_info *section)
2026{
2027 bfd *abfd = get_section_bfd_owner (section);
2028
2029 return bfd_get_filename (abfd);
2030}
2031
2032/* Return the id of SECTION.
2033 Returns 0 if SECTION doesn't exist. */
2034
2035static int
2036get_section_id (const struct dwarf2_section_info *section)
2037{
2038 asection *sectp = get_section_bfd_section (section);
2039
2040 if (sectp == NULL)
2041 return 0;
2042 return sectp->id;
2043}
2044
2045/* Return the flags of SECTION.
73869dc2 2046 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2047
2048static int
2049get_section_flags (const struct dwarf2_section_info *section)
2050{
2051 asection *sectp = get_section_bfd_section (section);
2052
2053 gdb_assert (sectp != NULL);
2054 return bfd_get_section_flags (sectp->owner, sectp);
2055}
2056
251d32d9
TG
2057/* When loading sections, we look either for uncompressed section or for
2058 compressed section names. */
233a11ab
CS
2059
2060static int
251d32d9
TG
2061section_is_p (const char *section_name,
2062 const struct dwarf2_section_names *names)
233a11ab 2063{
251d32d9
TG
2064 if (names->normal != NULL
2065 && strcmp (section_name, names->normal) == 0)
2066 return 1;
2067 if (names->compressed != NULL
2068 && strcmp (section_name, names->compressed) == 0)
2069 return 1;
2070 return 0;
233a11ab
CS
2071}
2072
c906108c
SS
2073/* This function is mapped across the sections and remembers the
2074 offset and size of each of the debugging sections we are interested
2075 in. */
2076
2077static void
251d32d9 2078dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2079{
251d32d9 2080 const struct dwarf2_debug_sections *names;
dc7650b8 2081 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2082
2083 if (vnames == NULL)
2084 names = &dwarf2_elf_names;
2085 else
2086 names = (const struct dwarf2_debug_sections *) vnames;
2087
dc7650b8
JK
2088 if ((aflag & SEC_HAS_CONTENTS) == 0)
2089 {
2090 }
2091 else if (section_is_p (sectp->name, &names->info))
c906108c 2092 {
73869dc2 2093 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2094 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2095 }
251d32d9 2096 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2097 {
73869dc2 2098 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2099 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2100 }
251d32d9 2101 else if (section_is_p (sectp->name, &names->line))
c906108c 2102 {
73869dc2 2103 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2104 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2105 }
251d32d9 2106 else if (section_is_p (sectp->name, &names->loc))
c906108c 2107 {
73869dc2 2108 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2109 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2110 }
251d32d9 2111 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2112 {
73869dc2 2113 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2114 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2115 }
cf2c3c16
TT
2116 else if (section_is_p (sectp->name, &names->macro))
2117 {
73869dc2 2118 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2119 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2120 }
251d32d9 2121 else if (section_is_p (sectp->name, &names->str))
c906108c 2122 {
73869dc2 2123 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2124 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2125 }
3019eac3
DE
2126 else if (section_is_p (sectp->name, &names->addr))
2127 {
73869dc2 2128 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2129 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2130 }
251d32d9 2131 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2132 {
73869dc2 2133 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2134 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2135 }
251d32d9 2136 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2137 {
73869dc2 2138 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2139 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2140 }
251d32d9 2141 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2142 {
73869dc2 2143 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2144 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2145 }
251d32d9 2146 else if (section_is_p (sectp->name, &names->types))
348e048f 2147 {
8b70b953
TT
2148 struct dwarf2_section_info type_section;
2149
2150 memset (&type_section, 0, sizeof (type_section));
73869dc2 2151 type_section.s.asection = sectp;
8b70b953
TT
2152 type_section.size = bfd_get_section_size (sectp);
2153
2154 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2155 &type_section);
348e048f 2156 }
251d32d9 2157 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2158 {
73869dc2 2159 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2160 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2161 }
dce234bc 2162
72dca2f5
FR
2163 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2164 && bfd_section_vma (abfd, sectp) == 0)
2165 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2166}
2167
fceca515
DE
2168/* A helper function that decides whether a section is empty,
2169 or not present. */
9e0ac564
TT
2170
2171static int
19ac8c2e 2172dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2173{
73869dc2
DE
2174 if (section->is_virtual)
2175 return section->size == 0;
2176 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2177}
2178
3019eac3
DE
2179/* Read the contents of the section INFO.
2180 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2181 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2182 of the DWO file.
dce234bc 2183 If the section is compressed, uncompress it before returning. */
c906108c 2184
dce234bc
PP
2185static void
2186dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2187{
a32a8923 2188 asection *sectp;
3019eac3 2189 bfd *abfd;
dce234bc 2190 gdb_byte *buf, *retbuf;
c906108c 2191
be391dca
TT
2192 if (info->readin)
2193 return;
dce234bc 2194 info->buffer = NULL;
be391dca 2195 info->readin = 1;
188dd5d6 2196
9e0ac564 2197 if (dwarf2_section_empty_p (info))
dce234bc 2198 return;
c906108c 2199
a32a8923 2200 sectp = get_section_bfd_section (info);
3019eac3 2201
73869dc2
DE
2202 /* If this is a virtual section we need to read in the real one first. */
2203 if (info->is_virtual)
2204 {
2205 struct dwarf2_section_info *containing_section =
2206 get_containing_section (info);
2207
2208 gdb_assert (sectp != NULL);
2209 if ((sectp->flags & SEC_RELOC) != 0)
2210 {
2211 error (_("Dwarf Error: DWP format V2 with relocations is not"
2212 " supported in section %s [in module %s]"),
2213 get_section_name (info), get_section_file_name (info));
2214 }
2215 dwarf2_read_section (objfile, containing_section);
2216 /* Other code should have already caught virtual sections that don't
2217 fit. */
2218 gdb_assert (info->virtual_offset + info->size
2219 <= containing_section->size);
2220 /* If the real section is empty or there was a problem reading the
2221 section we shouldn't get here. */
2222 gdb_assert (containing_section->buffer != NULL);
2223 info->buffer = containing_section->buffer + info->virtual_offset;
2224 return;
2225 }
2226
4bf44c1c
TT
2227 /* If the section has relocations, we must read it ourselves.
2228 Otherwise we attach it to the BFD. */
2229 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2230 {
d521ce57 2231 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2232 return;
dce234bc 2233 }
dce234bc 2234
4bf44c1c
TT
2235 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2236 info->buffer = buf;
dce234bc
PP
2237
2238 /* When debugging .o files, we may need to apply relocations; see
2239 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2240 We never compress sections in .o files, so we only need to
2241 try this when the section is not compressed. */
ac8035ab 2242 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2243 if (retbuf != NULL)
2244 {
2245 info->buffer = retbuf;
2246 return;
2247 }
2248
a32a8923
DE
2249 abfd = get_section_bfd_owner (info);
2250 gdb_assert (abfd != NULL);
2251
dce234bc
PP
2252 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2253 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2254 {
2255 error (_("Dwarf Error: Can't read DWARF data"
2256 " in section %s [in module %s]"),
2257 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2258 }
dce234bc
PP
2259}
2260
9e0ac564
TT
2261/* A helper function that returns the size of a section in a safe way.
2262 If you are positive that the section has been read before using the
2263 size, then it is safe to refer to the dwarf2_section_info object's
2264 "size" field directly. In other cases, you must call this
2265 function, because for compressed sections the size field is not set
2266 correctly until the section has been read. */
2267
2268static bfd_size_type
2269dwarf2_section_size (struct objfile *objfile,
2270 struct dwarf2_section_info *info)
2271{
2272 if (!info->readin)
2273 dwarf2_read_section (objfile, info);
2274 return info->size;
2275}
2276
dce234bc 2277/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2278 SECTION_NAME. */
af34e669 2279
dce234bc 2280void
3017a003
TG
2281dwarf2_get_section_info (struct objfile *objfile,
2282 enum dwarf2_section_enum sect,
d521ce57 2283 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2284 bfd_size_type *sizep)
2285{
2286 struct dwarf2_per_objfile *data
2287 = objfile_data (objfile, dwarf2_objfile_data_key);
2288 struct dwarf2_section_info *info;
a3b2a86b
TT
2289
2290 /* We may see an objfile without any DWARF, in which case we just
2291 return nothing. */
2292 if (data == NULL)
2293 {
2294 *sectp = NULL;
2295 *bufp = NULL;
2296 *sizep = 0;
2297 return;
2298 }
3017a003
TG
2299 switch (sect)
2300 {
2301 case DWARF2_DEBUG_FRAME:
2302 info = &data->frame;
2303 break;
2304 case DWARF2_EH_FRAME:
2305 info = &data->eh_frame;
2306 break;
2307 default:
2308 gdb_assert_not_reached ("unexpected section");
2309 }
dce234bc 2310
9e0ac564 2311 dwarf2_read_section (objfile, info);
dce234bc 2312
a32a8923 2313 *sectp = get_section_bfd_section (info);
dce234bc
PP
2314 *bufp = info->buffer;
2315 *sizep = info->size;
2316}
2317
36586728
TT
2318/* A helper function to find the sections for a .dwz file. */
2319
2320static void
2321locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2322{
2323 struct dwz_file *dwz_file = arg;
2324
2325 /* Note that we only support the standard ELF names, because .dwz
2326 is ELF-only (at the time of writing). */
2327 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2328 {
73869dc2 2329 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2330 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2331 }
2332 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2333 {
73869dc2 2334 dwz_file->info.s.asection = sectp;
36586728
TT
2335 dwz_file->info.size = bfd_get_section_size (sectp);
2336 }
2337 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2338 {
73869dc2 2339 dwz_file->str.s.asection = sectp;
36586728
TT
2340 dwz_file->str.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2343 {
73869dc2 2344 dwz_file->line.s.asection = sectp;
36586728
TT
2345 dwz_file->line.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2348 {
73869dc2 2349 dwz_file->macro.s.asection = sectp;
36586728
TT
2350 dwz_file->macro.size = bfd_get_section_size (sectp);
2351 }
2ec9a5e0
TT
2352 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2353 {
73869dc2 2354 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2355 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2356 }
36586728
TT
2357}
2358
4db1a1dc
TT
2359/* Open the separate '.dwz' debug file, if needed. Return NULL if
2360 there is no .gnu_debugaltlink section in the file. Error if there
2361 is such a section but the file cannot be found. */
36586728
TT
2362
2363static struct dwz_file *
2364dwarf2_get_dwz_file (void)
2365{
4db1a1dc
TT
2366 bfd *dwz_bfd;
2367 char *data;
36586728
TT
2368 struct cleanup *cleanup;
2369 const char *filename;
2370 struct dwz_file *result;
acd13123 2371 bfd_size_type buildid_len_arg;
dc294be5
TT
2372 size_t buildid_len;
2373 bfd_byte *buildid;
36586728
TT
2374
2375 if (dwarf2_per_objfile->dwz_file != NULL)
2376 return dwarf2_per_objfile->dwz_file;
2377
4db1a1dc
TT
2378 bfd_set_error (bfd_error_no_error);
2379 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2380 &buildid_len_arg, &buildid);
4db1a1dc
TT
2381 if (data == NULL)
2382 {
2383 if (bfd_get_error () == bfd_error_no_error)
2384 return NULL;
2385 error (_("could not read '.gnu_debugaltlink' section: %s"),
2386 bfd_errmsg (bfd_get_error ()));
2387 }
36586728 2388 cleanup = make_cleanup (xfree, data);
dc294be5 2389 make_cleanup (xfree, buildid);
36586728 2390
acd13123
TT
2391 buildid_len = (size_t) buildid_len_arg;
2392
f9d83a0b 2393 filename = (const char *) data;
36586728
TT
2394 if (!IS_ABSOLUTE_PATH (filename))
2395 {
4262abfb 2396 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2397 char *rel;
2398
2399 make_cleanup (xfree, abs);
2400 abs = ldirname (abs);
2401 make_cleanup (xfree, abs);
2402
2403 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2404 make_cleanup (xfree, rel);
2405 filename = rel;
2406 }
2407
dc294be5
TT
2408 /* First try the file name given in the section. If that doesn't
2409 work, try to use the build-id instead. */
36586728 2410 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2411 if (dwz_bfd != NULL)
36586728 2412 {
dc294be5
TT
2413 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2414 {
2415 gdb_bfd_unref (dwz_bfd);
2416 dwz_bfd = NULL;
2417 }
36586728
TT
2418 }
2419
dc294be5
TT
2420 if (dwz_bfd == NULL)
2421 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2422
2423 if (dwz_bfd == NULL)
2424 error (_("could not find '.gnu_debugaltlink' file for %s"),
2425 objfile_name (dwarf2_per_objfile->objfile));
2426
36586728
TT
2427 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2428 struct dwz_file);
2429 result->dwz_bfd = dwz_bfd;
2430
2431 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2432
2433 do_cleanups (cleanup);
2434
13aaf454 2435 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2436 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2437 return result;
2438}
9291a0cd 2439\f
7b9f3c50
DE
2440/* DWARF quick_symbols_functions support. */
2441
2442/* TUs can share .debug_line entries, and there can be a lot more TUs than
2443 unique line tables, so we maintain a separate table of all .debug_line
2444 derived entries to support the sharing.
2445 All the quick functions need is the list of file names. We discard the
2446 line_header when we're done and don't need to record it here. */
2447struct quick_file_names
2448{
094b34ac
DE
2449 /* The data used to construct the hash key. */
2450 struct stmt_list_hash hash;
7b9f3c50
DE
2451
2452 /* The number of entries in file_names, real_names. */
2453 unsigned int num_file_names;
2454
2455 /* The file names from the line table, after being run through
2456 file_full_name. */
2457 const char **file_names;
2458
2459 /* The file names from the line table after being run through
2460 gdb_realpath. These are computed lazily. */
2461 const char **real_names;
2462};
2463
2464/* When using the index (and thus not using psymtabs), each CU has an
2465 object of this type. This is used to hold information needed by
2466 the various "quick" methods. */
2467struct dwarf2_per_cu_quick_data
2468{
2469 /* The file table. This can be NULL if there was no file table
2470 or it's currently not read in.
2471 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2472 struct quick_file_names *file_names;
2473
2474 /* The corresponding symbol table. This is NULL if symbols for this
2475 CU have not yet been read. */
2476 struct symtab *symtab;
2477
2478 /* A temporary mark bit used when iterating over all CUs in
2479 expand_symtabs_matching. */
2480 unsigned int mark : 1;
2481
2482 /* True if we've tried to read the file table and found there isn't one.
2483 There will be no point in trying to read it again next time. */
2484 unsigned int no_file_data : 1;
2485};
2486
094b34ac
DE
2487/* Utility hash function for a stmt_list_hash. */
2488
2489static hashval_t
2490hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2491{
2492 hashval_t v = 0;
2493
2494 if (stmt_list_hash->dwo_unit != NULL)
2495 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2496 v += stmt_list_hash->line_offset.sect_off;
2497 return v;
2498}
2499
2500/* Utility equality function for a stmt_list_hash. */
2501
2502static int
2503eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2504 const struct stmt_list_hash *rhs)
2505{
2506 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2507 return 0;
2508 if (lhs->dwo_unit != NULL
2509 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2510 return 0;
2511
2512 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2513}
2514
7b9f3c50
DE
2515/* Hash function for a quick_file_names. */
2516
2517static hashval_t
2518hash_file_name_entry (const void *e)
2519{
2520 const struct quick_file_names *file_data = e;
2521
094b34ac 2522 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2523}
2524
2525/* Equality function for a quick_file_names. */
2526
2527static int
2528eq_file_name_entry (const void *a, const void *b)
2529{
2530 const struct quick_file_names *ea = a;
2531 const struct quick_file_names *eb = b;
2532
094b34ac 2533 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2534}
2535
2536/* Delete function for a quick_file_names. */
2537
2538static void
2539delete_file_name_entry (void *e)
2540{
2541 struct quick_file_names *file_data = e;
2542 int i;
2543
2544 for (i = 0; i < file_data->num_file_names; ++i)
2545 {
2546 xfree ((void*) file_data->file_names[i]);
2547 if (file_data->real_names)
2548 xfree ((void*) file_data->real_names[i]);
2549 }
2550
2551 /* The space for the struct itself lives on objfile_obstack,
2552 so we don't free it here. */
2553}
2554
2555/* Create a quick_file_names hash table. */
2556
2557static htab_t
2558create_quick_file_names_table (unsigned int nr_initial_entries)
2559{
2560 return htab_create_alloc (nr_initial_entries,
2561 hash_file_name_entry, eq_file_name_entry,
2562 delete_file_name_entry, xcalloc, xfree);
2563}
9291a0cd 2564
918dd910
JK
2565/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2566 have to be created afterwards. You should call age_cached_comp_units after
2567 processing PER_CU->CU. dw2_setup must have been already called. */
2568
2569static void
2570load_cu (struct dwarf2_per_cu_data *per_cu)
2571{
3019eac3 2572 if (per_cu->is_debug_types)
e5fe5e75 2573 load_full_type_unit (per_cu);
918dd910 2574 else
95554aad 2575 load_full_comp_unit (per_cu, language_minimal);
918dd910 2576
918dd910 2577 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2578
2579 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2580}
2581
a0f42c21 2582/* Read in the symbols for PER_CU. */
2fdf6df6 2583
9291a0cd 2584static void
a0f42c21 2585dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2586{
2587 struct cleanup *back_to;
2588
f4dc4d17
DE
2589 /* Skip type_unit_groups, reading the type units they contain
2590 is handled elsewhere. */
2591 if (IS_TYPE_UNIT_GROUP (per_cu))
2592 return;
2593
9291a0cd
TT
2594 back_to = make_cleanup (dwarf2_release_queue, NULL);
2595
95554aad
TT
2596 if (dwarf2_per_objfile->using_index
2597 ? per_cu->v.quick->symtab == NULL
2598 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2599 {
2600 queue_comp_unit (per_cu, language_minimal);
2601 load_cu (per_cu);
89e63ee4
DE
2602
2603 /* If we just loaded a CU from a DWO, and we're working with an index
2604 that may badly handle TUs, load all the TUs in that DWO as well.
2605 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2606 if (!per_cu->is_debug_types
2607 && per_cu->cu->dwo_unit != NULL
2608 && dwarf2_per_objfile->index_table != NULL
2609 && dwarf2_per_objfile->index_table->version <= 7
2610 /* DWP files aren't supported yet. */
2611 && get_dwp_file () == NULL)
2612 queue_and_load_all_dwo_tus (per_cu);
95554aad 2613 }
9291a0cd 2614
a0f42c21 2615 process_queue ();
9291a0cd
TT
2616
2617 /* Age the cache, releasing compilation units that have not
2618 been used recently. */
2619 age_cached_comp_units ();
2620
2621 do_cleanups (back_to);
2622}
2623
2624/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2625 the objfile from which this CU came. Returns the resulting symbol
2626 table. */
2fdf6df6 2627
9291a0cd 2628static struct symtab *
a0f42c21 2629dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2630{
95554aad 2631 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2632 if (!per_cu->v.quick->symtab)
2633 {
2634 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2635 increment_reading_symtab ();
a0f42c21 2636 dw2_do_instantiate_symtab (per_cu);
95554aad 2637 process_cu_includes ();
9291a0cd
TT
2638 do_cleanups (back_to);
2639 }
2640 return per_cu->v.quick->symtab;
2641}
2642
f4dc4d17
DE
2643/* Return the CU given its index.
2644
2645 This is intended for loops like:
2646
2647 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2648 + dwarf2_per_objfile->n_type_units); ++i)
2649 {
2650 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2651
2652 ...;
2653 }
2654*/
2fdf6df6 2655
1fd400ff
TT
2656static struct dwarf2_per_cu_data *
2657dw2_get_cu (int index)
2658{
2659 if (index >= dwarf2_per_objfile->n_comp_units)
2660 {
f4dc4d17 2661 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2662 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2663 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2664 }
2665
2666 return dwarf2_per_objfile->all_comp_units[index];
2667}
2668
2669/* Return the primary CU given its index.
2670 The difference between this function and dw2_get_cu is in the handling
2671 of type units (TUs). Here we return the type_unit_group object.
2672
2673 This is intended for loops like:
2674
2675 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2676 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2677 {
2678 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2679
2680 ...;
2681 }
2682*/
2683
2684static struct dwarf2_per_cu_data *
2685dw2_get_primary_cu (int index)
2686{
2687 if (index >= dwarf2_per_objfile->n_comp_units)
2688 {
1fd400ff 2689 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2690 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2691 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2692 }
f4dc4d17 2693
1fd400ff
TT
2694 return dwarf2_per_objfile->all_comp_units[index];
2695}
2696
2ec9a5e0
TT
2697/* A helper for create_cus_from_index that handles a given list of
2698 CUs. */
2fdf6df6 2699
74a0d9f6 2700static void
2ec9a5e0
TT
2701create_cus_from_index_list (struct objfile *objfile,
2702 const gdb_byte *cu_list, offset_type n_elements,
2703 struct dwarf2_section_info *section,
2704 int is_dwz,
2705 int base_offset)
9291a0cd
TT
2706{
2707 offset_type i;
9291a0cd 2708
2ec9a5e0 2709 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2710 {
2711 struct dwarf2_per_cu_data *the_cu;
2712 ULONGEST offset, length;
2713
74a0d9f6
JK
2714 gdb_static_assert (sizeof (ULONGEST) >= 8);
2715 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2716 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2717 cu_list += 2 * 8;
2718
2719 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2720 struct dwarf2_per_cu_data);
b64f50a1 2721 the_cu->offset.sect_off = offset;
9291a0cd
TT
2722 the_cu->length = length;
2723 the_cu->objfile = objfile;
8a0459fd 2724 the_cu->section = section;
9291a0cd
TT
2725 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2726 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2727 the_cu->is_dwz = is_dwz;
2728 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2729 }
9291a0cd
TT
2730}
2731
2ec9a5e0 2732/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2733 the CU objects for this objfile. */
2ec9a5e0 2734
74a0d9f6 2735static void
2ec9a5e0
TT
2736create_cus_from_index (struct objfile *objfile,
2737 const gdb_byte *cu_list, offset_type cu_list_elements,
2738 const gdb_byte *dwz_list, offset_type dwz_elements)
2739{
2740 struct dwz_file *dwz;
2741
2742 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2743 dwarf2_per_objfile->all_comp_units
2744 = obstack_alloc (&objfile->objfile_obstack,
2745 dwarf2_per_objfile->n_comp_units
2746 * sizeof (struct dwarf2_per_cu_data *));
2747
74a0d9f6
JK
2748 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2749 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2750
2751 if (dwz_elements == 0)
74a0d9f6 2752 return;
2ec9a5e0
TT
2753
2754 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2755 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2756 cu_list_elements / 2);
2ec9a5e0
TT
2757}
2758
1fd400ff 2759/* Create the signatured type hash table from the index. */
673bfd45 2760
74a0d9f6 2761static void
673bfd45 2762create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2763 struct dwarf2_section_info *section,
673bfd45
DE
2764 const gdb_byte *bytes,
2765 offset_type elements)
1fd400ff
TT
2766{
2767 offset_type i;
673bfd45 2768 htab_t sig_types_hash;
1fd400ff 2769
d467dd73
DE
2770 dwarf2_per_objfile->n_type_units = elements / 3;
2771 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2772 = xmalloc (dwarf2_per_objfile->n_type_units
2773 * sizeof (struct signatured_type *));
1fd400ff 2774
673bfd45 2775 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2776
2777 for (i = 0; i < elements; i += 3)
2778 {
52dc124a
DE
2779 struct signatured_type *sig_type;
2780 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2781 void **slot;
2782
74a0d9f6
JK
2783 gdb_static_assert (sizeof (ULONGEST) >= 8);
2784 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2785 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2786 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2787 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2788 bytes += 3 * 8;
2789
52dc124a 2790 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2791 struct signatured_type);
52dc124a 2792 sig_type->signature = signature;
3019eac3
DE
2793 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2794 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2795 sig_type->per_cu.section = section;
52dc124a
DE
2796 sig_type->per_cu.offset.sect_off = offset;
2797 sig_type->per_cu.objfile = objfile;
2798 sig_type->per_cu.v.quick
1fd400ff
TT
2799 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct dwarf2_per_cu_quick_data);
2801
52dc124a
DE
2802 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2803 *slot = sig_type;
1fd400ff 2804
b4dd5633 2805 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2806 }
2807
673bfd45 2808 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2809}
2810
9291a0cd
TT
2811/* Read the address map data from the mapped index, and use it to
2812 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2813
9291a0cd
TT
2814static void
2815create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2816{
2817 const gdb_byte *iter, *end;
2818 struct obstack temp_obstack;
2819 struct addrmap *mutable_map;
2820 struct cleanup *cleanup;
2821 CORE_ADDR baseaddr;
2822
2823 obstack_init (&temp_obstack);
2824 cleanup = make_cleanup_obstack_free (&temp_obstack);
2825 mutable_map = addrmap_create_mutable (&temp_obstack);
2826
2827 iter = index->address_table;
2828 end = iter + index->address_table_size;
2829
2830 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2831
2832 while (iter < end)
2833 {
2834 ULONGEST hi, lo, cu_index;
2835 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2836 iter += 8;
2837 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2838 iter += 8;
2839 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2840 iter += 4;
f652bce2 2841
24a55014 2842 if (lo > hi)
f652bce2 2843 {
24a55014
DE
2844 complaint (&symfile_complaints,
2845 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2846 hex_string (lo), hex_string (hi));
24a55014 2847 continue;
f652bce2 2848 }
24a55014
DE
2849
2850 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2851 {
2852 complaint (&symfile_complaints,
2853 _(".gdb_index address table has invalid CU number %u"),
2854 (unsigned) cu_index);
24a55014 2855 continue;
f652bce2 2856 }
24a55014
DE
2857
2858 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2859 dw2_get_cu (cu_index));
9291a0cd
TT
2860 }
2861
2862 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2863 &objfile->objfile_obstack);
2864 do_cleanups (cleanup);
2865}
2866
59d7bcaf
JK
2867/* The hash function for strings in the mapped index. This is the same as
2868 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2869 implementation. This is necessary because the hash function is tied to the
2870 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2871 SYMBOL_HASH_NEXT.
2872
2873 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2874
9291a0cd 2875static hashval_t
559a7a62 2876mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2877{
2878 const unsigned char *str = (const unsigned char *) p;
2879 hashval_t r = 0;
2880 unsigned char c;
2881
2882 while ((c = *str++) != 0)
559a7a62
JK
2883 {
2884 if (index_version >= 5)
2885 c = tolower (c);
2886 r = r * 67 + c - 113;
2887 }
9291a0cd
TT
2888
2889 return r;
2890}
2891
2892/* Find a slot in the mapped index INDEX for the object named NAME.
2893 If NAME is found, set *VEC_OUT to point to the CU vector in the
2894 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2895
9291a0cd
TT
2896static int
2897find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2898 offset_type **vec_out)
2899{
0cf03b49
JK
2900 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2901 offset_type hash;
9291a0cd 2902 offset_type slot, step;
559a7a62 2903 int (*cmp) (const char *, const char *);
9291a0cd 2904
0cf03b49
JK
2905 if (current_language->la_language == language_cplus
2906 || current_language->la_language == language_java
2907 || current_language->la_language == language_fortran)
2908 {
2909 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2910 not contain any. */
2911 const char *paren = strchr (name, '(');
2912
2913 if (paren)
2914 {
2915 char *dup;
2916
2917 dup = xmalloc (paren - name + 1);
2918 memcpy (dup, name, paren - name);
2919 dup[paren - name] = 0;
2920
2921 make_cleanup (xfree, dup);
2922 name = dup;
2923 }
2924 }
2925
559a7a62 2926 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2927 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2928 simulate our NAME being searched is also lowercased. */
2929 hash = mapped_index_string_hash ((index->version == 4
2930 && case_sensitivity == case_sensitive_off
2931 ? 5 : index->version),
2932 name);
2933
3876f04e
DE
2934 slot = hash & (index->symbol_table_slots - 1);
2935 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2936 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2937
2938 for (;;)
2939 {
2940 /* Convert a slot number to an offset into the table. */
2941 offset_type i = 2 * slot;
2942 const char *str;
3876f04e 2943 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2944 {
2945 do_cleanups (back_to);
2946 return 0;
2947 }
9291a0cd 2948
3876f04e 2949 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2950 if (!cmp (name, str))
9291a0cd
TT
2951 {
2952 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2953 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2954 do_cleanups (back_to);
9291a0cd
TT
2955 return 1;
2956 }
2957
3876f04e 2958 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2959 }
2960}
2961
2ec9a5e0
TT
2962/* A helper function that reads the .gdb_index from SECTION and fills
2963 in MAP. FILENAME is the name of the file containing the section;
2964 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2965 ok to use deprecated sections.
2966
2967 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2968 out parameters that are filled in with information about the CU and
2969 TU lists in the section.
2970
2971 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2972
9291a0cd 2973static int
2ec9a5e0
TT
2974read_index_from_section (struct objfile *objfile,
2975 const char *filename,
2976 int deprecated_ok,
2977 struct dwarf2_section_info *section,
2978 struct mapped_index *map,
2979 const gdb_byte **cu_list,
2980 offset_type *cu_list_elements,
2981 const gdb_byte **types_list,
2982 offset_type *types_list_elements)
9291a0cd 2983{
948f8e3d 2984 const gdb_byte *addr;
2ec9a5e0 2985 offset_type version;
b3b272e1 2986 offset_type *metadata;
1fd400ff 2987 int i;
9291a0cd 2988
2ec9a5e0 2989 if (dwarf2_section_empty_p (section))
9291a0cd 2990 return 0;
82430852
JK
2991
2992 /* Older elfutils strip versions could keep the section in the main
2993 executable while splitting it for the separate debug info file. */
a32a8923 2994 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2995 return 0;
2996
2ec9a5e0 2997 dwarf2_read_section (objfile, section);
9291a0cd 2998
2ec9a5e0 2999 addr = section->buffer;
9291a0cd 3000 /* Version check. */
1fd400ff 3001 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3002 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3003 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3004 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3005 indices. */
831adc1f 3006 if (version < 4)
481860b3
GB
3007 {
3008 static int warning_printed = 0;
3009 if (!warning_printed)
3010 {
3011 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3012 filename);
481860b3
GB
3013 warning_printed = 1;
3014 }
3015 return 0;
3016 }
3017 /* Index version 4 uses a different hash function than index version
3018 5 and later.
3019
3020 Versions earlier than 6 did not emit psymbols for inlined
3021 functions. Using these files will cause GDB not to be able to
3022 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3023 indices unless the user has done
3024 "set use-deprecated-index-sections on". */
2ec9a5e0 3025 if (version < 6 && !deprecated_ok)
481860b3
GB
3026 {
3027 static int warning_printed = 0;
3028 if (!warning_printed)
3029 {
e615022a
DE
3030 warning (_("\
3031Skipping deprecated .gdb_index section in %s.\n\
3032Do \"set use-deprecated-index-sections on\" before the file is read\n\
3033to use the section anyway."),
2ec9a5e0 3034 filename);
481860b3
GB
3035 warning_printed = 1;
3036 }
3037 return 0;
3038 }
796a7ff8 3039 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3040 of the TU (for symbols coming from TUs),
3041 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3042 Plus gold-generated indices can have duplicate entries for global symbols,
3043 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3044 These are just performance bugs, and we can't distinguish gdb-generated
3045 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3046
481860b3 3047 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3048 longer backward compatible. */
796a7ff8 3049 if (version > 8)
594e8718 3050 return 0;
9291a0cd 3051
559a7a62 3052 map->version = version;
2ec9a5e0 3053 map->total_size = section->size;
9291a0cd
TT
3054
3055 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3056
3057 i = 0;
2ec9a5e0
TT
3058 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3059 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3060 / 8);
1fd400ff
TT
3061 ++i;
3062
2ec9a5e0
TT
3063 *types_list = addr + MAYBE_SWAP (metadata[i]);
3064 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3065 - MAYBE_SWAP (metadata[i]))
3066 / 8);
987d643c 3067 ++i;
1fd400ff
TT
3068
3069 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3070 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3071 - MAYBE_SWAP (metadata[i]));
3072 ++i;
3073
3876f04e
DE
3074 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3075 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3076 - MAYBE_SWAP (metadata[i]))
3077 / (2 * sizeof (offset_type)));
1fd400ff 3078 ++i;
9291a0cd 3079
f9d83a0b 3080 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3081
2ec9a5e0
TT
3082 return 1;
3083}
3084
3085
3086/* Read the index file. If everything went ok, initialize the "quick"
3087 elements of all the CUs and return 1. Otherwise, return 0. */
3088
3089static int
3090dwarf2_read_index (struct objfile *objfile)
3091{
3092 struct mapped_index local_map, *map;
3093 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3094 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3095 struct dwz_file *dwz;
2ec9a5e0 3096
4262abfb 3097 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3098 use_deprecated_index_sections,
3099 &dwarf2_per_objfile->gdb_index, &local_map,
3100 &cu_list, &cu_list_elements,
3101 &types_list, &types_list_elements))
3102 return 0;
3103
0fefef59 3104 /* Don't use the index if it's empty. */
2ec9a5e0 3105 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3106 return 0;
3107
2ec9a5e0
TT
3108 /* If there is a .dwz file, read it so we can get its CU list as
3109 well. */
4db1a1dc
TT
3110 dwz = dwarf2_get_dwz_file ();
3111 if (dwz != NULL)
2ec9a5e0 3112 {
2ec9a5e0
TT
3113 struct mapped_index dwz_map;
3114 const gdb_byte *dwz_types_ignore;
3115 offset_type dwz_types_elements_ignore;
3116
3117 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3118 1,
3119 &dwz->gdb_index, &dwz_map,
3120 &dwz_list, &dwz_list_elements,
3121 &dwz_types_ignore,
3122 &dwz_types_elements_ignore))
3123 {
3124 warning (_("could not read '.gdb_index' section from %s; skipping"),
3125 bfd_get_filename (dwz->dwz_bfd));
3126 return 0;
3127 }
3128 }
3129
74a0d9f6
JK
3130 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3131 dwz_list_elements);
1fd400ff 3132
8b70b953
TT
3133 if (types_list_elements)
3134 {
3135 struct dwarf2_section_info *section;
3136
3137 /* We can only handle a single .debug_types when we have an
3138 index. */
3139 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3140 return 0;
3141
3142 section = VEC_index (dwarf2_section_info_def,
3143 dwarf2_per_objfile->types, 0);
3144
74a0d9f6
JK
3145 create_signatured_type_table_from_index (objfile, section, types_list,
3146 types_list_elements);
8b70b953 3147 }
9291a0cd 3148
2ec9a5e0
TT
3149 create_addrmap_from_index (objfile, &local_map);
3150
3151 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3152 *map = local_map;
9291a0cd
TT
3153
3154 dwarf2_per_objfile->index_table = map;
3155 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3156 dwarf2_per_objfile->quick_file_names_table =
3157 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3158
3159 return 1;
3160}
3161
3162/* A helper for the "quick" functions which sets the global
3163 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3164
9291a0cd
TT
3165static void
3166dw2_setup (struct objfile *objfile)
3167{
3168 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3169 gdb_assert (dwarf2_per_objfile);
3170}
3171
dee91e82 3172/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3173
dee91e82
DE
3174static void
3175dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3176 const gdb_byte *info_ptr,
dee91e82
DE
3177 struct die_info *comp_unit_die,
3178 int has_children,
3179 void *data)
9291a0cd 3180{
dee91e82
DE
3181 struct dwarf2_cu *cu = reader->cu;
3182 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3183 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3184 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3185 struct line_header *lh;
9291a0cd 3186 struct attribute *attr;
dee91e82 3187 int i;
15d034d0 3188 const char *name, *comp_dir;
7b9f3c50
DE
3189 void **slot;
3190 struct quick_file_names *qfn;
3191 unsigned int line_offset;
9291a0cd 3192
0186c6a7
DE
3193 gdb_assert (! this_cu->is_debug_types);
3194
07261596
TT
3195 /* Our callers never want to match partial units -- instead they
3196 will match the enclosing full CU. */
3197 if (comp_unit_die->tag == DW_TAG_partial_unit)
3198 {
3199 this_cu->v.quick->no_file_data = 1;
3200 return;
3201 }
3202
0186c6a7 3203 lh_cu = this_cu;
7b9f3c50
DE
3204 lh = NULL;
3205 slot = NULL;
3206 line_offset = 0;
dee91e82
DE
3207
3208 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3209 if (attr)
3210 {
7b9f3c50
DE
3211 struct quick_file_names find_entry;
3212
3213 line_offset = DW_UNSND (attr);
3214
3215 /* We may have already read in this line header (TU line header sharing).
3216 If we have we're done. */
094b34ac
DE
3217 find_entry.hash.dwo_unit = cu->dwo_unit;
3218 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3219 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3220 &find_entry, INSERT);
3221 if (*slot != NULL)
3222 {
094b34ac 3223 lh_cu->v.quick->file_names = *slot;
dee91e82 3224 return;
7b9f3c50
DE
3225 }
3226
3019eac3 3227 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3228 }
3229 if (lh == NULL)
3230 {
094b34ac 3231 lh_cu->v.quick->no_file_data = 1;
dee91e82 3232 return;
9291a0cd
TT
3233 }
3234
7b9f3c50 3235 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3236 qfn->hash.dwo_unit = cu->dwo_unit;
3237 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3238 gdb_assert (slot != NULL);
3239 *slot = qfn;
9291a0cd 3240
dee91e82 3241 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3242
7b9f3c50
DE
3243 qfn->num_file_names = lh->num_file_names;
3244 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3245 lh->num_file_names * sizeof (char *));
9291a0cd 3246 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3247 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3248 qfn->real_names = NULL;
9291a0cd 3249
7b9f3c50 3250 free_line_header (lh);
7b9f3c50 3251
094b34ac 3252 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3253}
3254
3255/* A helper for the "quick" functions which attempts to read the line
3256 table for THIS_CU. */
3257
3258static struct quick_file_names *
e4a48d9d 3259dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3260{
0186c6a7
DE
3261 /* This should never be called for TUs. */
3262 gdb_assert (! this_cu->is_debug_types);
3263 /* Nor type unit groups. */
3264 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3265
dee91e82
DE
3266 if (this_cu->v.quick->file_names != NULL)
3267 return this_cu->v.quick->file_names;
3268 /* If we know there is no line data, no point in looking again. */
3269 if (this_cu->v.quick->no_file_data)
3270 return NULL;
3271
0186c6a7 3272 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3273
3274 if (this_cu->v.quick->no_file_data)
3275 return NULL;
3276 return this_cu->v.quick->file_names;
9291a0cd
TT
3277}
3278
3279/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3280 real path for a given file name from the line table. */
2fdf6df6 3281
9291a0cd 3282static const char *
7b9f3c50
DE
3283dw2_get_real_path (struct objfile *objfile,
3284 struct quick_file_names *qfn, int index)
9291a0cd 3285{
7b9f3c50
DE
3286 if (qfn->real_names == NULL)
3287 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
fd0a4d76 3288 qfn->num_file_names, char *);
9291a0cd 3289
7b9f3c50
DE
3290 if (qfn->real_names[index] == NULL)
3291 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3292
7b9f3c50 3293 return qfn->real_names[index];
9291a0cd
TT
3294}
3295
3296static struct symtab *
3297dw2_find_last_source_symtab (struct objfile *objfile)
3298{
3299 int index;
ae2de4f8 3300
9291a0cd
TT
3301 dw2_setup (objfile);
3302 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3303 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3304}
3305
7b9f3c50
DE
3306/* Traversal function for dw2_forget_cached_source_info. */
3307
3308static int
3309dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3310{
7b9f3c50 3311 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3312
7b9f3c50 3313 if (file_data->real_names)
9291a0cd 3314 {
7b9f3c50 3315 int i;
9291a0cd 3316
7b9f3c50 3317 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3318 {
7b9f3c50
DE
3319 xfree ((void*) file_data->real_names[i]);
3320 file_data->real_names[i] = NULL;
9291a0cd
TT
3321 }
3322 }
7b9f3c50
DE
3323
3324 return 1;
3325}
3326
3327static void
3328dw2_forget_cached_source_info (struct objfile *objfile)
3329{
3330 dw2_setup (objfile);
3331
3332 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3333 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3334}
3335
f8eba3c6
TT
3336/* Helper function for dw2_map_symtabs_matching_filename that expands
3337 the symtabs and calls the iterator. */
3338
3339static int
3340dw2_map_expand_apply (struct objfile *objfile,
3341 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3342 const char *name, const char *real_path,
f8eba3c6
TT
3343 int (*callback) (struct symtab *, void *),
3344 void *data)
3345{
3346 struct symtab *last_made = objfile->symtabs;
3347
3348 /* Don't visit already-expanded CUs. */
3349 if (per_cu->v.quick->symtab)
3350 return 0;
3351
3352 /* This may expand more than one symtab, and we want to iterate over
3353 all of them. */
a0f42c21 3354 dw2_instantiate_symtab (per_cu);
f8eba3c6 3355
f5b95b50 3356 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3357 objfile->symtabs, last_made);
3358}
3359
3360/* Implementation of the map_symtabs_matching_filename method. */
3361
9291a0cd 3362static int
f8eba3c6 3363dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3364 const char *real_path,
f8eba3c6
TT
3365 int (*callback) (struct symtab *, void *),
3366 void *data)
9291a0cd
TT
3367{
3368 int i;
c011a4f4 3369 const char *name_basename = lbasename (name);
9291a0cd
TT
3370
3371 dw2_setup (objfile);
ae2de4f8 3372
848e3e78
DE
3373 /* The rule is CUs specify all the files, including those used by
3374 any TU, so there's no need to scan TUs here. */
f4dc4d17 3375
848e3e78 3376 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3377 {
3378 int j;
f4dc4d17 3379 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3380 struct quick_file_names *file_data;
9291a0cd 3381
3d7bb9d9 3382 /* We only need to look at symtabs not already expanded. */
e254ef6a 3383 if (per_cu->v.quick->symtab)
9291a0cd
TT
3384 continue;
3385
e4a48d9d 3386 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3387 if (file_data == NULL)
9291a0cd
TT
3388 continue;
3389
7b9f3c50 3390 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3391 {
7b9f3c50 3392 const char *this_name = file_data->file_names[j];
da235a7c 3393 const char *this_real_name;
9291a0cd 3394
af529f8f 3395 if (compare_filenames_for_search (this_name, name))
9291a0cd 3396 {
f5b95b50 3397 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3398 callback, data))
3399 return 1;
288e77a7 3400 continue;
4aac40c8 3401 }
9291a0cd 3402
c011a4f4
DE
3403 /* Before we invoke realpath, which can get expensive when many
3404 files are involved, do a quick comparison of the basenames. */
3405 if (! basenames_may_differ
3406 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3407 continue;
3408
da235a7c
JK
3409 this_real_name = dw2_get_real_path (objfile, file_data, j);
3410 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3411 {
da235a7c
JK
3412 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3413 callback, data))
3414 return 1;
288e77a7 3415 continue;
da235a7c 3416 }
9291a0cd 3417
da235a7c
JK
3418 if (real_path != NULL)
3419 {
af529f8f
JK
3420 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3421 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3422 if (this_real_name != NULL
af529f8f 3423 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3424 {
f5b95b50 3425 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3426 callback, data))
3427 return 1;
288e77a7 3428 continue;
9291a0cd
TT
3429 }
3430 }
3431 }
3432 }
3433
9291a0cd
TT
3434 return 0;
3435}
3436
da51c347
DE
3437/* Struct used to manage iterating over all CUs looking for a symbol. */
3438
3439struct dw2_symtab_iterator
9291a0cd 3440{
da51c347
DE
3441 /* The internalized form of .gdb_index. */
3442 struct mapped_index *index;
3443 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3444 int want_specific_block;
3445 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3446 Unused if !WANT_SPECIFIC_BLOCK. */
3447 int block_index;
3448 /* The kind of symbol we're looking for. */
3449 domain_enum domain;
3450 /* The list of CUs from the index entry of the symbol,
3451 or NULL if not found. */
3452 offset_type *vec;
3453 /* The next element in VEC to look at. */
3454 int next;
3455 /* The number of elements in VEC, or zero if there is no match. */
3456 int length;
8943b874
DE
3457 /* Have we seen a global version of the symbol?
3458 If so we can ignore all further global instances.
3459 This is to work around gold/15646, inefficient gold-generated
3460 indices. */
3461 int global_seen;
da51c347 3462};
9291a0cd 3463
da51c347
DE
3464/* Initialize the index symtab iterator ITER.
3465 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3466 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3467
9291a0cd 3468static void
da51c347
DE
3469dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3470 struct mapped_index *index,
3471 int want_specific_block,
3472 int block_index,
3473 domain_enum domain,
3474 const char *name)
3475{
3476 iter->index = index;
3477 iter->want_specific_block = want_specific_block;
3478 iter->block_index = block_index;
3479 iter->domain = domain;
3480 iter->next = 0;
8943b874 3481 iter->global_seen = 0;
da51c347
DE
3482
3483 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3484 iter->length = MAYBE_SWAP (*iter->vec);
3485 else
3486 {
3487 iter->vec = NULL;
3488 iter->length = 0;
3489 }
3490}
3491
3492/* Return the next matching CU or NULL if there are no more. */
3493
3494static struct dwarf2_per_cu_data *
3495dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3496{
3497 for ( ; iter->next < iter->length; ++iter->next)
3498 {
3499 offset_type cu_index_and_attrs =
3500 MAYBE_SWAP (iter->vec[iter->next + 1]);
3501 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3502 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3503 int want_static = iter->block_index != GLOBAL_BLOCK;
3504 /* This value is only valid for index versions >= 7. */
3505 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3506 gdb_index_symbol_kind symbol_kind =
3507 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3508 /* Only check the symbol attributes if they're present.
3509 Indices prior to version 7 don't record them,
3510 and indices >= 7 may elide them for certain symbols
3511 (gold does this). */
3512 int attrs_valid =
3513 (iter->index->version >= 7
3514 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3515
3190f0c6
DE
3516 /* Don't crash on bad data. */
3517 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3518 + dwarf2_per_objfile->n_type_units))
3519 {
3520 complaint (&symfile_complaints,
3521 _(".gdb_index entry has bad CU index"
4262abfb
JK
3522 " [in module %s]"),
3523 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3524 continue;
3525 }
3526
3527 per_cu = dw2_get_cu (cu_index);
3528
da51c347
DE
3529 /* Skip if already read in. */
3530 if (per_cu->v.quick->symtab)
3531 continue;
3532
8943b874
DE
3533 /* Check static vs global. */
3534 if (attrs_valid)
3535 {
3536 if (iter->want_specific_block
3537 && want_static != is_static)
3538 continue;
3539 /* Work around gold/15646. */
3540 if (!is_static && iter->global_seen)
3541 continue;
3542 if (!is_static)
3543 iter->global_seen = 1;
3544 }
da51c347
DE
3545
3546 /* Only check the symbol's kind if it has one. */
3547 if (attrs_valid)
3548 {
3549 switch (iter->domain)
3550 {
3551 case VAR_DOMAIN:
3552 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3553 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3554 /* Some types are also in VAR_DOMAIN. */
3555 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3556 continue;
3557 break;
3558 case STRUCT_DOMAIN:
3559 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3560 continue;
3561 break;
3562 case LABEL_DOMAIN:
3563 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3564 continue;
3565 break;
3566 default:
3567 break;
3568 }
3569 }
3570
3571 ++iter->next;
3572 return per_cu;
3573 }
3574
3575 return NULL;
3576}
3577
3578static struct symtab *
3579dw2_lookup_symbol (struct objfile *objfile, int block_index,
3580 const char *name, domain_enum domain)
9291a0cd 3581{
da51c347 3582 struct symtab *stab_best = NULL;
156942c7
DE
3583 struct mapped_index *index;
3584
9291a0cd
TT
3585 dw2_setup (objfile);
3586
156942c7
DE
3587 index = dwarf2_per_objfile->index_table;
3588
da51c347 3589 /* index is NULL if OBJF_READNOW. */
156942c7 3590 if (index)
9291a0cd 3591 {
da51c347
DE
3592 struct dw2_symtab_iterator iter;
3593 struct dwarf2_per_cu_data *per_cu;
3594
3595 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3596
da51c347 3597 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3598 {
da51c347
DE
3599 struct symbol *sym = NULL;
3600 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3601
3602 /* Some caution must be observed with overloaded functions
3603 and methods, since the index will not contain any overload
3604 information (but NAME might contain it). */
3605 if (stab->primary)
9291a0cd 3606 {
da51c347
DE
3607 struct blockvector *bv = BLOCKVECTOR (stab);
3608 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3609
da51c347
DE
3610 sym = lookup_block_symbol (block, name, domain);
3611 }
1fd400ff 3612
da51c347
DE
3613 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3614 {
3615 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3616 return stab;
3617
3618 stab_best = stab;
9291a0cd 3619 }
da51c347
DE
3620
3621 /* Keep looking through other CUs. */
9291a0cd
TT
3622 }
3623 }
9291a0cd 3624
da51c347 3625 return stab_best;
9291a0cd
TT
3626}
3627
3628static void
3629dw2_print_stats (struct objfile *objfile)
3630{
e4a48d9d 3631 int i, total, count;
9291a0cd
TT
3632
3633 dw2_setup (objfile);
e4a48d9d 3634 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3635 count = 0;
e4a48d9d 3636 for (i = 0; i < total; ++i)
9291a0cd 3637 {
e254ef6a 3638 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3639
e254ef6a 3640 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3641 ++count;
3642 }
e4a48d9d 3643 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3644 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3645}
3646
779bd270
DE
3647/* This dumps minimal information about the index.
3648 It is called via "mt print objfiles".
3649 One use is to verify .gdb_index has been loaded by the
3650 gdb.dwarf2/gdb-index.exp testcase. */
3651
9291a0cd
TT
3652static void
3653dw2_dump (struct objfile *objfile)
3654{
779bd270
DE
3655 dw2_setup (objfile);
3656 gdb_assert (dwarf2_per_objfile->using_index);
3657 printf_filtered (".gdb_index:");
3658 if (dwarf2_per_objfile->index_table != NULL)
3659 {
3660 printf_filtered (" version %d\n",
3661 dwarf2_per_objfile->index_table->version);
3662 }
3663 else
3664 printf_filtered (" faked for \"readnow\"\n");
3665 printf_filtered ("\n");
9291a0cd
TT
3666}
3667
3668static void
3189cb12
DE
3669dw2_relocate (struct objfile *objfile,
3670 const struct section_offsets *new_offsets,
3671 const struct section_offsets *delta)
9291a0cd
TT
3672{
3673 /* There's nothing to relocate here. */
3674}
3675
3676static void
3677dw2_expand_symtabs_for_function (struct objfile *objfile,
3678 const char *func_name)
3679{
da51c347
DE
3680 struct mapped_index *index;
3681
3682 dw2_setup (objfile);
3683
3684 index = dwarf2_per_objfile->index_table;
3685
3686 /* index is NULL if OBJF_READNOW. */
3687 if (index)
3688 {
3689 struct dw2_symtab_iterator iter;
3690 struct dwarf2_per_cu_data *per_cu;
3691
3692 /* Note: It doesn't matter what we pass for block_index here. */
3693 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3694 func_name);
3695
3696 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3697 dw2_instantiate_symtab (per_cu);
3698 }
9291a0cd
TT
3699}
3700
3701static void
3702dw2_expand_all_symtabs (struct objfile *objfile)
3703{
3704 int i;
3705
3706 dw2_setup (objfile);
1fd400ff
TT
3707
3708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3709 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3710 {
e254ef6a 3711 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3712
a0f42c21 3713 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3714 }
3715}
3716
3717static void
652a8996
JK
3718dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3719 const char *fullname)
9291a0cd
TT
3720{
3721 int i;
3722
3723 dw2_setup (objfile);
d4637a04
DE
3724
3725 /* We don't need to consider type units here.
3726 This is only called for examining code, e.g. expand_line_sal.
3727 There can be an order of magnitude (or more) more type units
3728 than comp units, and we avoid them if we can. */
3729
3730 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3731 {
3732 int j;
e254ef6a 3733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3734 struct quick_file_names *file_data;
9291a0cd 3735
3d7bb9d9 3736 /* We only need to look at symtabs not already expanded. */
e254ef6a 3737 if (per_cu->v.quick->symtab)
9291a0cd
TT
3738 continue;
3739
e4a48d9d 3740 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3741 if (file_data == NULL)
9291a0cd
TT
3742 continue;
3743
7b9f3c50 3744 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3745 {
652a8996
JK
3746 const char *this_fullname = file_data->file_names[j];
3747
3748 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3749 {
a0f42c21 3750 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3751 break;
3752 }
3753 }
3754 }
3755}
3756
9291a0cd 3757static void
ade7ed9e
DE
3758dw2_map_matching_symbols (struct objfile *objfile,
3759 const char * name, domain_enum namespace,
3760 int global,
40658b94
PH
3761 int (*callback) (struct block *,
3762 struct symbol *, void *),
2edb89d3
JK
3763 void *data, symbol_compare_ftype *match,
3764 symbol_compare_ftype *ordered_compare)
9291a0cd 3765{
40658b94 3766 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3767 current language is Ada for a non-Ada objfile using GNU index. As Ada
3768 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3769}
3770
3771static void
f8eba3c6
TT
3772dw2_expand_symtabs_matching
3773 (struct objfile *objfile,
206f2a57
DE
3774 expand_symtabs_file_matcher_ftype *file_matcher,
3775 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3776 enum search_domain kind,
3777 void *data)
9291a0cd
TT
3778{
3779 int i;
3780 offset_type iter;
4b5246aa 3781 struct mapped_index *index;
9291a0cd
TT
3782
3783 dw2_setup (objfile);
ae2de4f8
DE
3784
3785 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3786 if (!dwarf2_per_objfile->index_table)
3787 return;
4b5246aa 3788 index = dwarf2_per_objfile->index_table;
9291a0cd 3789
7b08b9eb 3790 if (file_matcher != NULL)
24c79950
TT
3791 {
3792 struct cleanup *cleanup;
3793 htab_t visited_found, visited_not_found;
3794
3795 visited_found = htab_create_alloc (10,
3796 htab_hash_pointer, htab_eq_pointer,
3797 NULL, xcalloc, xfree);
3798 cleanup = make_cleanup_htab_delete (visited_found);
3799 visited_not_found = htab_create_alloc (10,
3800 htab_hash_pointer, htab_eq_pointer,
3801 NULL, xcalloc, xfree);
3802 make_cleanup_htab_delete (visited_not_found);
3803
848e3e78
DE
3804 /* The rule is CUs specify all the files, including those used by
3805 any TU, so there's no need to scan TUs here. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3808 {
3809 int j;
f4dc4d17 3810 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3811 struct quick_file_names *file_data;
3812 void **slot;
7b08b9eb 3813
24c79950 3814 per_cu->v.quick->mark = 0;
3d7bb9d9 3815
24c79950
TT
3816 /* We only need to look at symtabs not already expanded. */
3817 if (per_cu->v.quick->symtab)
3818 continue;
7b08b9eb 3819
e4a48d9d 3820 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3821 if (file_data == NULL)
3822 continue;
7b08b9eb 3823
24c79950
TT
3824 if (htab_find (visited_not_found, file_data) != NULL)
3825 continue;
3826 else if (htab_find (visited_found, file_data) != NULL)
3827 {
3828 per_cu->v.quick->mark = 1;
3829 continue;
3830 }
3831
3832 for (j = 0; j < file_data->num_file_names; ++j)
3833 {
da235a7c
JK
3834 const char *this_real_name;
3835
fbd9ab74 3836 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3837 {
3838 per_cu->v.quick->mark = 1;
3839 break;
3840 }
da235a7c
JK
3841
3842 /* Before we invoke realpath, which can get expensive when many
3843 files are involved, do a quick comparison of the basenames. */
3844 if (!basenames_may_differ
3845 && !file_matcher (lbasename (file_data->file_names[j]),
3846 data, 1))
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (file_matcher (this_real_name, data, 0))
3851 {
3852 per_cu->v.quick->mark = 1;
3853 break;
3854 }
24c79950
TT
3855 }
3856
3857 slot = htab_find_slot (per_cu->v.quick->mark
3858 ? visited_found
3859 : visited_not_found,
3860 file_data, INSERT);
3861 *slot = file_data;
3862 }
3863
3864 do_cleanups (cleanup);
3865 }
9291a0cd 3866
3876f04e 3867 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3868 {
3869 offset_type idx = 2 * iter;
3870 const char *name;
3871 offset_type *vec, vec_len, vec_idx;
8943b874 3872 int global_seen = 0;
9291a0cd 3873
3876f04e 3874 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3875 continue;
3876
3876f04e 3877 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3878
206f2a57 3879 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3880 continue;
3881
3882 /* The name was matched, now expand corresponding CUs that were
3883 marked. */
4b5246aa 3884 vec = (offset_type *) (index->constant_pool
3876f04e 3885 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3886 vec_len = MAYBE_SWAP (vec[0]);
3887 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3888 {
e254ef6a 3889 struct dwarf2_per_cu_data *per_cu;
156942c7 3890 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3891 /* This value is only valid for index versions >= 7. */
3892 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3893 gdb_index_symbol_kind symbol_kind =
3894 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3895 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3896 /* Only check the symbol attributes if they're present.
3897 Indices prior to version 7 don't record them,
3898 and indices >= 7 may elide them for certain symbols
3899 (gold does this). */
3900 int attrs_valid =
3901 (index->version >= 7
3902 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3903
8943b874
DE
3904 /* Work around gold/15646. */
3905 if (attrs_valid)
3906 {
3907 if (!is_static && global_seen)
3908 continue;
3909 if (!is_static)
3910 global_seen = 1;
3911 }
3912
3190f0c6
DE
3913 /* Only check the symbol's kind if it has one. */
3914 if (attrs_valid)
156942c7
DE
3915 {
3916 switch (kind)
3917 {
3918 case VARIABLES_DOMAIN:
3919 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3920 continue;
3921 break;
3922 case FUNCTIONS_DOMAIN:
3923 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3924 continue;
3925 break;
3926 case TYPES_DOMAIN:
3927 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3928 continue;
3929 break;
3930 default:
3931 break;
3932 }
3933 }
3934
3190f0c6
DE
3935 /* Don't crash on bad data. */
3936 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3937 + dwarf2_per_objfile->n_type_units))
3938 {
3939 complaint (&symfile_complaints,
3940 _(".gdb_index entry has bad CU index"
4262abfb 3941 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3942 continue;
3943 }
3944
156942c7 3945 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3946 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3947 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3948 }
3949 }
3950}
3951
9703b513
TT
3952/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3953 symtab. */
3954
3955static struct symtab *
3956recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3957{
3958 int i;
3959
3960 if (BLOCKVECTOR (symtab) != NULL
3961 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3962 return symtab;
3963
a3ec0bb1
DE
3964 if (symtab->includes == NULL)
3965 return NULL;
3966
9703b513
TT
3967 for (i = 0; symtab->includes[i]; ++i)
3968 {
a3ec0bb1 3969 struct symtab *s = symtab->includes[i];
9703b513
TT
3970
3971 s = recursively_find_pc_sect_symtab (s, pc);
3972 if (s != NULL)
3973 return s;
3974 }
3975
3976 return NULL;
3977}
3978
9291a0cd
TT
3979static struct symtab *
3980dw2_find_pc_sect_symtab (struct objfile *objfile,
3981 struct minimal_symbol *msymbol,
3982 CORE_ADDR pc,
3983 struct obj_section *section,
3984 int warn_if_readin)
3985{
3986 struct dwarf2_per_cu_data *data;
9703b513 3987 struct symtab *result;
9291a0cd
TT
3988
3989 dw2_setup (objfile);
3990
3991 if (!objfile->psymtabs_addrmap)
3992 return NULL;
3993
3994 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3995 if (!data)
3996 return NULL;
3997
3998 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3999 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4000 paddress (get_objfile_arch (objfile), pc));
4001
9703b513
TT
4002 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4003 gdb_assert (result != NULL);
4004 return result;
9291a0cd
TT
4005}
4006
9291a0cd 4007static void
44b13c5a 4008dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4009 void *data, int need_fullname)
9291a0cd
TT
4010{
4011 int i;
24c79950
TT
4012 struct cleanup *cleanup;
4013 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4014 NULL, xcalloc, xfree);
9291a0cd 4015
24c79950 4016 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4017 dw2_setup (objfile);
ae2de4f8 4018
848e3e78
DE
4019 /* The rule is CUs specify all the files, including those used by
4020 any TU, so there's no need to scan TUs here.
4021 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4022
848e3e78 4023 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4024 {
4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4026
4027 if (per_cu->v.quick->symtab)
4028 {
4029 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4030 INSERT);
4031
4032 *slot = per_cu->v.quick->file_names;
4033 }
4034 }
4035
848e3e78 4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4037 {
4038 int j;
f4dc4d17 4039 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 4040 struct quick_file_names *file_data;
24c79950 4041 void **slot;
9291a0cd 4042
3d7bb9d9 4043 /* We only need to look at symtabs not already expanded. */
e254ef6a 4044 if (per_cu->v.quick->symtab)
9291a0cd
TT
4045 continue;
4046
e4a48d9d 4047 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4048 if (file_data == NULL)
9291a0cd
TT
4049 continue;
4050
24c79950
TT
4051 slot = htab_find_slot (visited, file_data, INSERT);
4052 if (*slot)
4053 {
4054 /* Already visited. */
4055 continue;
4056 }
4057 *slot = file_data;
4058
7b9f3c50 4059 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4060 {
74e2f255
DE
4061 const char *this_real_name;
4062
4063 if (need_fullname)
4064 this_real_name = dw2_get_real_path (objfile, file_data, j);
4065 else
4066 this_real_name = NULL;
7b9f3c50 4067 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4068 }
4069 }
24c79950
TT
4070
4071 do_cleanups (cleanup);
9291a0cd
TT
4072}
4073
4074static int
4075dw2_has_symbols (struct objfile *objfile)
4076{
4077 return 1;
4078}
4079
4080const struct quick_symbol_functions dwarf2_gdb_index_functions =
4081{
4082 dw2_has_symbols,
4083 dw2_find_last_source_symtab,
4084 dw2_forget_cached_source_info,
f8eba3c6 4085 dw2_map_symtabs_matching_filename,
9291a0cd 4086 dw2_lookup_symbol,
9291a0cd
TT
4087 dw2_print_stats,
4088 dw2_dump,
4089 dw2_relocate,
4090 dw2_expand_symtabs_for_function,
4091 dw2_expand_all_symtabs,
652a8996 4092 dw2_expand_symtabs_with_fullname,
40658b94 4093 dw2_map_matching_symbols,
9291a0cd
TT
4094 dw2_expand_symtabs_matching,
4095 dw2_find_pc_sect_symtab,
9291a0cd
TT
4096 dw2_map_symbol_filenames
4097};
4098
4099/* Initialize for reading DWARF for this objfile. Return 0 if this
4100 file will use psymtabs, or 1 if using the GNU index. */
4101
4102int
4103dwarf2_initialize_objfile (struct objfile *objfile)
4104{
4105 /* If we're about to read full symbols, don't bother with the
4106 indices. In this case we also don't care if some other debug
4107 format is making psymtabs, because they are all about to be
4108 expanded anyway. */
4109 if ((objfile->flags & OBJF_READNOW))
4110 {
4111 int i;
4112
4113 dwarf2_per_objfile->using_index = 1;
4114 create_all_comp_units (objfile);
0e50663e 4115 create_all_type_units (objfile);
7b9f3c50
DE
4116 dwarf2_per_objfile->quick_file_names_table =
4117 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4118
1fd400ff 4119 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4120 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4121 {
e254ef6a 4122 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 4123
e254ef6a
DE
4124 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4125 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4126 }
4127
4128 /* Return 1 so that gdb sees the "quick" functions. However,
4129 these functions will be no-ops because we will have expanded
4130 all symtabs. */
4131 return 1;
4132 }
4133
4134 if (dwarf2_read_index (objfile))
4135 return 1;
4136
9291a0cd
TT
4137 return 0;
4138}
4139
4140\f
4141
dce234bc
PP
4142/* Build a partial symbol table. */
4143
4144void
f29dff0a 4145dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4146{
c9bf0622
TT
4147 volatile struct gdb_exception except;
4148
f29dff0a 4149 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4150 {
4151 init_psymbol_list (objfile, 1024);
4152 }
4153
c9bf0622
TT
4154 TRY_CATCH (except, RETURN_MASK_ERROR)
4155 {
4156 /* This isn't really ideal: all the data we allocate on the
4157 objfile's obstack is still uselessly kept around. However,
4158 freeing it seems unsafe. */
4159 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4160
4161 dwarf2_build_psymtabs_hard (objfile);
4162 discard_cleanups (cleanups);
4163 }
4164 if (except.reason < 0)
4165 exception_print (gdb_stderr, except);
c906108c 4166}
c906108c 4167
1ce1cefd
DE
4168/* Return the total length of the CU described by HEADER. */
4169
4170static unsigned int
4171get_cu_length (const struct comp_unit_head *header)
4172{
4173 return header->initial_length_size + header->length;
4174}
4175
45452591
DE
4176/* Return TRUE if OFFSET is within CU_HEADER. */
4177
4178static inline int
b64f50a1 4179offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4180{
b64f50a1 4181 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4182 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4183
b64f50a1 4184 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4185}
4186
3b80fe9b
DE
4187/* Find the base address of the compilation unit for range lists and
4188 location lists. It will normally be specified by DW_AT_low_pc.
4189 In DWARF-3 draft 4, the base address could be overridden by
4190 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4191 compilation units with discontinuous ranges. */
4192
4193static void
4194dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4195{
4196 struct attribute *attr;
4197
4198 cu->base_known = 0;
4199 cu->base_address = 0;
4200
4201 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4202 if (attr)
4203 {
4204 cu->base_address = DW_ADDR (attr);
4205 cu->base_known = 1;
4206 }
4207 else
4208 {
4209 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4210 if (attr)
4211 {
4212 cu->base_address = DW_ADDR (attr);
4213 cu->base_known = 1;
4214 }
4215 }
4216}
4217
93311388
DE
4218/* Read in the comp unit header information from the debug_info at info_ptr.
4219 NOTE: This leaves members offset, first_die_offset to be filled in
4220 by the caller. */
107d2387 4221
d521ce57 4222static const gdb_byte *
107d2387 4223read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4224 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4225{
4226 int signed_addr;
891d2f0b 4227 unsigned int bytes_read;
c764a876
DE
4228
4229 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4230 cu_header->initial_length_size = bytes_read;
4231 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4232 info_ptr += bytes_read;
107d2387
AC
4233 cu_header->version = read_2_bytes (abfd, info_ptr);
4234 info_ptr += 2;
b64f50a1
JK
4235 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4236 &bytes_read);
613e1657 4237 info_ptr += bytes_read;
107d2387
AC
4238 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4239 info_ptr += 1;
4240 signed_addr = bfd_get_sign_extend_vma (abfd);
4241 if (signed_addr < 0)
8e65ff28 4242 internal_error (__FILE__, __LINE__,
e2e0b3e5 4243 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4244 cu_header->signed_addr_p = signed_addr;
c764a876 4245
107d2387
AC
4246 return info_ptr;
4247}
4248
36586728
TT
4249/* Helper function that returns the proper abbrev section for
4250 THIS_CU. */
4251
4252static struct dwarf2_section_info *
4253get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4254{
4255 struct dwarf2_section_info *abbrev;
4256
4257 if (this_cu->is_dwz)
4258 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4259 else
4260 abbrev = &dwarf2_per_objfile->abbrev;
4261
4262 return abbrev;
4263}
4264
9ff913ba
DE
4265/* Subroutine of read_and_check_comp_unit_head and
4266 read_and_check_type_unit_head to simplify them.
4267 Perform various error checking on the header. */
4268
4269static void
4270error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4271 struct dwarf2_section_info *section,
4272 struct dwarf2_section_info *abbrev_section)
9ff913ba 4273{
a32a8923
DE
4274 bfd *abfd = get_section_bfd_owner (section);
4275 const char *filename = get_section_file_name (section);
9ff913ba
DE
4276
4277 if (header->version != 2 && header->version != 3 && header->version != 4)
4278 error (_("Dwarf Error: wrong version in compilation unit header "
4279 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4280 filename);
4281
b64f50a1 4282 if (header->abbrev_offset.sect_off
36586728 4283 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4284 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4285 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4286 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4287 filename);
4288
4289 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4290 avoid potential 32-bit overflow. */
1ce1cefd 4291 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4292 > section->size)
4293 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4295 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4296 filename);
4297}
4298
4299/* Read in a CU/TU header and perform some basic error checking.
4300 The contents of the header are stored in HEADER.
4301 The result is a pointer to the start of the first DIE. */
adabb602 4302
d521ce57 4303static const gdb_byte *
9ff913ba
DE
4304read_and_check_comp_unit_head (struct comp_unit_head *header,
4305 struct dwarf2_section_info *section,
4bdcc0c1 4306 struct dwarf2_section_info *abbrev_section,
d521ce57 4307 const gdb_byte *info_ptr,
9ff913ba 4308 int is_debug_types_section)
72bf9492 4309{
d521ce57 4310 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4311 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4312
b64f50a1 4313 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4314
72bf9492
DJ
4315 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4316
460c1c54
CC
4317 /* If we're reading a type unit, skip over the signature and
4318 type_offset fields. */
b0df02fd 4319 if (is_debug_types_section)
460c1c54
CC
4320 info_ptr += 8 /*signature*/ + header->offset_size;
4321
b64f50a1 4322 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4323
4bdcc0c1 4324 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4325
4326 return info_ptr;
4327}
4328
348e048f
DE
4329/* Read in the types comp unit header information from .debug_types entry at
4330 types_ptr. The result is a pointer to one past the end of the header. */
4331
d521ce57 4332static const gdb_byte *
9ff913ba
DE
4333read_and_check_type_unit_head (struct comp_unit_head *header,
4334 struct dwarf2_section_info *section,
4bdcc0c1 4335 struct dwarf2_section_info *abbrev_section,
d521ce57 4336 const gdb_byte *info_ptr,
dee91e82
DE
4337 ULONGEST *signature,
4338 cu_offset *type_offset_in_tu)
348e048f 4339{
d521ce57 4340 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4341 bfd *abfd = get_section_bfd_owner (section);
348e048f 4342
b64f50a1 4343 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4344
9ff913ba 4345 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4346
9ff913ba
DE
4347 /* If we're reading a type unit, skip over the signature and
4348 type_offset fields. */
4349 if (signature != NULL)
4350 *signature = read_8_bytes (abfd, info_ptr);
4351 info_ptr += 8;
dee91e82
DE
4352 if (type_offset_in_tu != NULL)
4353 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4354 header->offset_size);
9ff913ba
DE
4355 info_ptr += header->offset_size;
4356
b64f50a1 4357 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4358
4bdcc0c1 4359 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4360
4361 return info_ptr;
348e048f
DE
4362}
4363
f4dc4d17
DE
4364/* Fetch the abbreviation table offset from a comp or type unit header. */
4365
4366static sect_offset
4367read_abbrev_offset (struct dwarf2_section_info *section,
4368 sect_offset offset)
4369{
a32a8923 4370 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4371 const gdb_byte *info_ptr;
f4dc4d17
DE
4372 unsigned int length, initial_length_size, offset_size;
4373 sect_offset abbrev_offset;
4374
4375 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4376 info_ptr = section->buffer + offset.sect_off;
4377 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4378 offset_size = initial_length_size == 4 ? 4 : 8;
4379 info_ptr += initial_length_size + 2 /*version*/;
4380 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4381 return abbrev_offset;
4382}
4383
aaa75496
JB
4384/* Allocate a new partial symtab for file named NAME and mark this new
4385 partial symtab as being an include of PST. */
4386
4387static void
d521ce57 4388dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4389 struct objfile *objfile)
4390{
4391 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4392
fbd9ab74
JK
4393 if (!IS_ABSOLUTE_PATH (subpst->filename))
4394 {
4395 /* It shares objfile->objfile_obstack. */
4396 subpst->dirname = pst->dirname;
4397 }
4398
aaa75496
JB
4399 subpst->section_offsets = pst->section_offsets;
4400 subpst->textlow = 0;
4401 subpst->texthigh = 0;
4402
4403 subpst->dependencies = (struct partial_symtab **)
4404 obstack_alloc (&objfile->objfile_obstack,
4405 sizeof (struct partial_symtab *));
4406 subpst->dependencies[0] = pst;
4407 subpst->number_of_dependencies = 1;
4408
4409 subpst->globals_offset = 0;
4410 subpst->n_global_syms = 0;
4411 subpst->statics_offset = 0;
4412 subpst->n_static_syms = 0;
4413 subpst->symtab = NULL;
4414 subpst->read_symtab = pst->read_symtab;
4415 subpst->readin = 0;
4416
4417 /* No private part is necessary for include psymtabs. This property
4418 can be used to differentiate between such include psymtabs and
10b3939b 4419 the regular ones. */
58a9656e 4420 subpst->read_symtab_private = NULL;
aaa75496
JB
4421}
4422
4423/* Read the Line Number Program data and extract the list of files
4424 included by the source file represented by PST. Build an include
d85a05f0 4425 partial symtab for each of these included files. */
aaa75496
JB
4426
4427static void
4428dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4429 struct die_info *die,
4430 struct partial_symtab *pst)
aaa75496 4431{
d85a05f0
DJ
4432 struct line_header *lh = NULL;
4433 struct attribute *attr;
aaa75496 4434
d85a05f0
DJ
4435 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4436 if (attr)
3019eac3 4437 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4438 if (lh == NULL)
4439 return; /* No linetable, so no includes. */
4440
c6da4cef 4441 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4442 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4443
4444 free_line_header (lh);
4445}
4446
348e048f 4447static hashval_t
52dc124a 4448hash_signatured_type (const void *item)
348e048f 4449{
52dc124a 4450 const struct signatured_type *sig_type = item;
9a619af0 4451
348e048f 4452 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4453 return sig_type->signature;
348e048f
DE
4454}
4455
4456static int
52dc124a 4457eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4458{
4459 const struct signatured_type *lhs = item_lhs;
4460 const struct signatured_type *rhs = item_rhs;
9a619af0 4461
348e048f
DE
4462 return lhs->signature == rhs->signature;
4463}
4464
1fd400ff
TT
4465/* Allocate a hash table for signatured types. */
4466
4467static htab_t
673bfd45 4468allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4469{
4470 return htab_create_alloc_ex (41,
52dc124a
DE
4471 hash_signatured_type,
4472 eq_signatured_type,
1fd400ff
TT
4473 NULL,
4474 &objfile->objfile_obstack,
4475 hashtab_obstack_allocate,
4476 dummy_obstack_deallocate);
4477}
4478
d467dd73 4479/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4480
4481static int
d467dd73 4482add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4483{
4484 struct signatured_type *sigt = *slot;
b4dd5633 4485 struct signatured_type ***datap = datum;
1fd400ff 4486
b4dd5633 4487 **datap = sigt;
1fd400ff
TT
4488 ++*datap;
4489
4490 return 1;
4491}
4492
c88ee1f0
DE
4493/* Create the hash table of all entries in the .debug_types
4494 (or .debug_types.dwo) section(s).
4495 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4496 otherwise it is NULL.
4497
4498 The result is a pointer to the hash table or NULL if there are no types.
4499
4500 Note: This function processes DWO files only, not DWP files. */
348e048f 4501
3019eac3
DE
4502static htab_t
4503create_debug_types_hash_table (struct dwo_file *dwo_file,
4504 VEC (dwarf2_section_info_def) *types)
348e048f 4505{
3019eac3 4506 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4507 htab_t types_htab = NULL;
8b70b953
TT
4508 int ix;
4509 struct dwarf2_section_info *section;
4bdcc0c1 4510 struct dwarf2_section_info *abbrev_section;
348e048f 4511
3019eac3
DE
4512 if (VEC_empty (dwarf2_section_info_def, types))
4513 return NULL;
348e048f 4514
4bdcc0c1
DE
4515 abbrev_section = (dwo_file != NULL
4516 ? &dwo_file->sections.abbrev
4517 : &dwarf2_per_objfile->abbrev);
4518
09406207
DE
4519 if (dwarf2_read_debug)
4520 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4521 dwo_file ? ".dwo" : "",
a32a8923 4522 get_section_file_name (abbrev_section));
09406207 4523
8b70b953 4524 for (ix = 0;
3019eac3 4525 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4526 ++ix)
4527 {
3019eac3 4528 bfd *abfd;
d521ce57 4529 const gdb_byte *info_ptr, *end_ptr;
348e048f 4530
8b70b953
TT
4531 dwarf2_read_section (objfile, section);
4532 info_ptr = section->buffer;
348e048f 4533
8b70b953
TT
4534 if (info_ptr == NULL)
4535 continue;
348e048f 4536
3019eac3 4537 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4538 not present, in which case the bfd is unknown. */
4539 abfd = get_section_bfd_owner (section);
3019eac3 4540
dee91e82
DE
4541 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4542 because we don't need to read any dies: the signature is in the
4543 header. */
8b70b953
TT
4544
4545 end_ptr = info_ptr + section->size;
4546 while (info_ptr < end_ptr)
4547 {
b64f50a1 4548 sect_offset offset;
3019eac3 4549 cu_offset type_offset_in_tu;
8b70b953 4550 ULONGEST signature;
52dc124a 4551 struct signatured_type *sig_type;
3019eac3 4552 struct dwo_unit *dwo_tu;
8b70b953 4553 void **slot;
d521ce57 4554 const gdb_byte *ptr = info_ptr;
9ff913ba 4555 struct comp_unit_head header;
dee91e82 4556 unsigned int length;
348e048f 4557
b64f50a1 4558 offset.sect_off = ptr - section->buffer;
348e048f 4559
8b70b953 4560 /* We need to read the type's signature in order to build the hash
9ff913ba 4561 table, but we don't need anything else just yet. */
348e048f 4562
4bdcc0c1
DE
4563 ptr = read_and_check_type_unit_head (&header, section,
4564 abbrev_section, ptr,
3019eac3 4565 &signature, &type_offset_in_tu);
6caca83c 4566
1ce1cefd 4567 length = get_cu_length (&header);
dee91e82 4568
6caca83c 4569 /* Skip dummy type units. */
dee91e82
DE
4570 if (ptr >= info_ptr + length
4571 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4572 {
1ce1cefd 4573 info_ptr += length;
6caca83c
CC
4574 continue;
4575 }
8b70b953 4576
0349ea22
DE
4577 if (types_htab == NULL)
4578 {
4579 if (dwo_file)
4580 types_htab = allocate_dwo_unit_table (objfile);
4581 else
4582 types_htab = allocate_signatured_type_table (objfile);
4583 }
4584
3019eac3
DE
4585 if (dwo_file)
4586 {
4587 sig_type = NULL;
4588 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4589 struct dwo_unit);
4590 dwo_tu->dwo_file = dwo_file;
4591 dwo_tu->signature = signature;
4592 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4593 dwo_tu->section = section;
3019eac3
DE
4594 dwo_tu->offset = offset;
4595 dwo_tu->length = length;
4596 }
4597 else
4598 {
4599 /* N.B.: type_offset is not usable if this type uses a DWO file.
4600 The real type_offset is in the DWO file. */
4601 dwo_tu = NULL;
4602 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4603 struct signatured_type);
4604 sig_type->signature = signature;
4605 sig_type->type_offset_in_tu = type_offset_in_tu;
4606 sig_type->per_cu.objfile = objfile;
4607 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4608 sig_type->per_cu.section = section;
3019eac3
DE
4609 sig_type->per_cu.offset = offset;
4610 sig_type->per_cu.length = length;
4611 }
8b70b953 4612
3019eac3
DE
4613 slot = htab_find_slot (types_htab,
4614 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4615 INSERT);
8b70b953
TT
4616 gdb_assert (slot != NULL);
4617 if (*slot != NULL)
4618 {
3019eac3
DE
4619 sect_offset dup_offset;
4620
4621 if (dwo_file)
4622 {
4623 const struct dwo_unit *dup_tu = *slot;
4624
4625 dup_offset = dup_tu->offset;
4626 }
4627 else
4628 {
4629 const struct signatured_type *dup_tu = *slot;
4630
4631 dup_offset = dup_tu->per_cu.offset;
4632 }
b3c8eb43 4633
8b70b953 4634 complaint (&symfile_complaints,
c88ee1f0 4635 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4636 " the entry at offset 0x%x, signature %s"),
3019eac3 4637 offset.sect_off, dup_offset.sect_off,
4031ecc5 4638 hex_string (signature));
8b70b953 4639 }
3019eac3 4640 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4641
73be47f5 4642 if (dwarf2_read_debug > 1)
4031ecc5 4643 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4644 offset.sect_off,
4031ecc5 4645 hex_string (signature));
348e048f 4646
dee91e82 4647 info_ptr += length;
8b70b953 4648 }
348e048f
DE
4649 }
4650
3019eac3
DE
4651 return types_htab;
4652}
4653
4654/* Create the hash table of all entries in the .debug_types section,
4655 and initialize all_type_units.
4656 The result is zero if there is an error (e.g. missing .debug_types section),
4657 otherwise non-zero. */
4658
4659static int
4660create_all_type_units (struct objfile *objfile)
4661{
4662 htab_t types_htab;
b4dd5633 4663 struct signatured_type **iter;
3019eac3
DE
4664
4665 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4666 if (types_htab == NULL)
4667 {
4668 dwarf2_per_objfile->signatured_types = NULL;
4669 return 0;
4670 }
4671
348e048f
DE
4672 dwarf2_per_objfile->signatured_types = types_htab;
4673
d467dd73
DE
4674 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4675 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4676 = xmalloc (dwarf2_per_objfile->n_type_units
4677 * sizeof (struct signatured_type *));
d467dd73
DE
4678 iter = &dwarf2_per_objfile->all_type_units[0];
4679 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4680 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4681 == dwarf2_per_objfile->n_type_units);
1fd400ff 4682
348e048f
DE
4683 return 1;
4684}
4685
a2ce51a0
DE
4686/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4687 Fill in SIG_ENTRY with DWO_ENTRY. */
4688
4689static void
4690fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4691 struct signatured_type *sig_entry,
4692 struct dwo_unit *dwo_entry)
4693{
7ee85ab1 4694 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4695 gdb_assert (! sig_entry->per_cu.queued);
4696 gdb_assert (sig_entry->per_cu.cu == NULL);
4697 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4698 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4699 gdb_assert (sig_entry->signature == dwo_entry->signature);
4700 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4701 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4702 gdb_assert (sig_entry->dwo_unit == NULL);
4703
4704 sig_entry->per_cu.section = dwo_entry->section;
4705 sig_entry->per_cu.offset = dwo_entry->offset;
4706 sig_entry->per_cu.length = dwo_entry->length;
4707 sig_entry->per_cu.reading_dwo_directly = 1;
4708 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4709 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4710 sig_entry->dwo_unit = dwo_entry;
4711}
4712
4713/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4714 If we haven't read the TU yet, create the signatured_type data structure
4715 for a TU to be read in directly from a DWO file, bypassing the stub.
4716 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4717 using .gdb_index, then when reading a CU we want to stay in the DWO file
4718 containing that CU. Otherwise we could end up reading several other DWO
4719 files (due to comdat folding) to process the transitive closure of all the
4720 mentioned TUs, and that can be slow. The current DWO file will have every
4721 type signature that it needs.
a2ce51a0
DE
4722 We only do this for .gdb_index because in the psymtab case we already have
4723 to read all the DWOs to build the type unit groups. */
4724
4725static struct signatured_type *
4726lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4727{
4728 struct objfile *objfile = dwarf2_per_objfile->objfile;
4729 struct dwo_file *dwo_file;
4730 struct dwo_unit find_dwo_entry, *dwo_entry;
4731 struct signatured_type find_sig_entry, *sig_entry;
4732
4733 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4734
4735 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4736 dwo_unit of the TU itself. */
4737 dwo_file = cu->dwo_unit->dwo_file;
4738
4739 /* We only ever need to read in one copy of a signatured type.
4740 Just use the global signatured_types array. If this is the first time
4741 we're reading this type, replace the recorded data from .gdb_index with
4742 this TU. */
4743
4744 if (dwarf2_per_objfile->signatured_types == NULL)
4745 return NULL;
4746 find_sig_entry.signature = sig;
4747 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4748 if (sig_entry == NULL)
4749 return NULL;
7ee85ab1
DE
4750
4751 /* We can get here with the TU already read, *or* in the process of being
4752 read. Don't reassign it if that's the case. Also note that if the TU is
4753 already being read, it may not have come from a DWO, the program may be
4754 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4755 /* Have we already tried to read this TU? */
7ee85ab1 4756 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4757 return sig_entry;
4758
4759 /* Ok, this is the first time we're reading this TU. */
4760 if (dwo_file->tus == NULL)
4761 return NULL;
4762 find_dwo_entry.signature = sig;
4763 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4764 if (dwo_entry == NULL)
4765 return NULL;
4766
4767 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4768 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4769 return sig_entry;
4770}
4771
4772/* Subroutine of lookup_dwp_signatured_type.
4773 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4774
4775static struct signatured_type *
4776add_type_unit (ULONGEST sig)
4777{
4778 struct objfile *objfile = dwarf2_per_objfile->objfile;
4779 int n_type_units = dwarf2_per_objfile->n_type_units;
4780 struct signatured_type *sig_type;
4781 void **slot;
4782
4783 ++n_type_units;
4784 dwarf2_per_objfile->all_type_units =
4785 xrealloc (dwarf2_per_objfile->all_type_units,
4786 n_type_units * sizeof (struct signatured_type *));
4787 dwarf2_per_objfile->n_type_units = n_type_units;
4788 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4789 struct signatured_type);
4790 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4791 sig_type->signature = sig;
4792 sig_type->per_cu.is_debug_types = 1;
4793 sig_type->per_cu.v.quick =
4794 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4795 struct dwarf2_per_cu_quick_data);
4796 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4797 sig_type, INSERT);
4798 gdb_assert (*slot == NULL);
4799 *slot = sig_type;
4800 /* The rest of sig_type must be filled in by the caller. */
4801 return sig_type;
4802}
4803
4804/* Subroutine of lookup_signatured_type.
4805 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4806 then try the DWP file.
4807 Normally this "can't happen", but if there's a bug in signature
4808 generation and/or the DWP file is built incorrectly, it can happen.
4809 Using the type directly from the DWP file means we don't have the stub
4810 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4811 not critical. [Eventually the stub may go away for type units anyway.] */
4812
4813static struct signatured_type *
4814lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4815{
4816 struct objfile *objfile = dwarf2_per_objfile->objfile;
4817 struct dwp_file *dwp_file = get_dwp_file ();
4818 struct dwo_unit *dwo_entry;
4819 struct signatured_type find_sig_entry, *sig_entry;
4820
4821 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4822 gdb_assert (dwp_file != NULL);
4823
4824 if (dwarf2_per_objfile->signatured_types != NULL)
4825 {
4826 find_sig_entry.signature = sig;
4827 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4828 &find_sig_entry);
4829 if (sig_entry != NULL)
4830 return sig_entry;
4831 }
4832
4833 /* This is the "shouldn't happen" case.
4834 Try the DWP file and hope for the best. */
4835 if (dwp_file->tus == NULL)
4836 return NULL;
57d63ce2
DE
4837 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4838 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4839 if (dwo_entry == NULL)
4840 return NULL;
4841
4842 sig_entry = add_type_unit (sig);
4843 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4844
4845 /* The caller will signal a complaint if we return NULL.
4846 Here we don't return NULL but we still want to complain. */
4847 complaint (&symfile_complaints,
4848 _("Bad type signature %s referenced by %s at 0x%x,"
4849 " coping by using copy in DWP [in module %s]"),
4850 hex_string (sig),
4851 cu->per_cu->is_debug_types ? "TU" : "CU",
4852 cu->per_cu->offset.sect_off,
4262abfb 4853 objfile_name (objfile));
a2ce51a0
DE
4854
4855 return sig_entry;
4856}
4857
380bca97 4858/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4859 Returns NULL if signature SIG is not present in the table.
4860 It is up to the caller to complain about this. */
348e048f
DE
4861
4862static struct signatured_type *
a2ce51a0 4863lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4864{
a2ce51a0
DE
4865 if (cu->dwo_unit
4866 && dwarf2_per_objfile->using_index)
4867 {
4868 /* We're in a DWO/DWP file, and we're using .gdb_index.
4869 These cases require special processing. */
4870 if (get_dwp_file () == NULL)
4871 return lookup_dwo_signatured_type (cu, sig);
4872 else
4873 return lookup_dwp_signatured_type (cu, sig);
4874 }
4875 else
4876 {
4877 struct signatured_type find_entry, *entry;
348e048f 4878
a2ce51a0
DE
4879 if (dwarf2_per_objfile->signatured_types == NULL)
4880 return NULL;
4881 find_entry.signature = sig;
4882 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4883 return entry;
4884 }
348e048f 4885}
42e7ad6c
DE
4886\f
4887/* Low level DIE reading support. */
348e048f 4888
d85a05f0
DJ
4889/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4890
4891static void
4892init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4893 struct dwarf2_cu *cu,
3019eac3
DE
4894 struct dwarf2_section_info *section,
4895 struct dwo_file *dwo_file)
d85a05f0 4896{
fceca515 4897 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4898 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4899 reader->cu = cu;
3019eac3 4900 reader->dwo_file = dwo_file;
dee91e82
DE
4901 reader->die_section = section;
4902 reader->buffer = section->buffer;
f664829e 4903 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4904 reader->comp_dir = NULL;
d85a05f0
DJ
4905}
4906
b0c7bfa9
DE
4907/* Subroutine of init_cutu_and_read_dies to simplify it.
4908 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4909 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4910 already.
4911
4912 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4913 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4914 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4915 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4916 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4917 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4918 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4919 are filled in with the info of the DIE from the DWO file.
4920 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4921 provided an abbrev table to use.
4922 The result is non-zero if a valid (non-dummy) DIE was found. */
4923
4924static int
4925read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4926 struct dwo_unit *dwo_unit,
4927 int abbrev_table_provided,
4928 struct die_info *stub_comp_unit_die,
a2ce51a0 4929 const char *stub_comp_dir,
b0c7bfa9 4930 struct die_reader_specs *result_reader,
d521ce57 4931 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4932 struct die_info **result_comp_unit_die,
4933 int *result_has_children)
4934{
4935 struct objfile *objfile = dwarf2_per_objfile->objfile;
4936 struct dwarf2_cu *cu = this_cu->cu;
4937 struct dwarf2_section_info *section;
4938 bfd *abfd;
d521ce57 4939 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4940 const char *comp_dir_string;
4941 ULONGEST signature; /* Or dwo_id. */
4942 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4943 int i,num_extra_attrs;
4944 struct dwarf2_section_info *dwo_abbrev_section;
4945 struct attribute *attr;
a2ce51a0 4946 struct attribute comp_dir_attr;
b0c7bfa9
DE
4947 struct die_info *comp_unit_die;
4948
a2ce51a0
DE
4949 /* Both can't be provided. */
4950 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4951
b0c7bfa9
DE
4952 /* These attributes aren't processed until later:
4953 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4954 However, the attribute is found in the stub which we won't have later.
4955 In order to not impose this complication on the rest of the code,
4956 we read them here and copy them to the DWO CU/TU die. */
4957
4958 stmt_list = NULL;
4959 low_pc = NULL;
4960 high_pc = NULL;
4961 ranges = NULL;
4962 comp_dir = NULL;
4963
4964 if (stub_comp_unit_die != NULL)
4965 {
4966 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4967 DWO file. */
4968 if (! this_cu->is_debug_types)
4969 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4970 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4971 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4972 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4973 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4974
4975 /* There should be a DW_AT_addr_base attribute here (if needed).
4976 We need the value before we can process DW_FORM_GNU_addr_index. */
4977 cu->addr_base = 0;
4978 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4979 if (attr)
4980 cu->addr_base = DW_UNSND (attr);
4981
4982 /* There should be a DW_AT_ranges_base attribute here (if needed).
4983 We need the value before we can process DW_AT_ranges. */
4984 cu->ranges_base = 0;
4985 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4986 if (attr)
4987 cu->ranges_base = DW_UNSND (attr);
4988 }
a2ce51a0
DE
4989 else if (stub_comp_dir != NULL)
4990 {
4991 /* Reconstruct the comp_dir attribute to simplify the code below. */
4992 comp_dir = (struct attribute *)
4993 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4994 comp_dir->name = DW_AT_comp_dir;
4995 comp_dir->form = DW_FORM_string;
4996 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4997 DW_STRING (comp_dir) = stub_comp_dir;
4998 }
b0c7bfa9
DE
4999
5000 /* Set up for reading the DWO CU/TU. */
5001 cu->dwo_unit = dwo_unit;
5002 section = dwo_unit->section;
5003 dwarf2_read_section (objfile, section);
a32a8923 5004 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5005 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5006 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5007 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5008
5009 if (this_cu->is_debug_types)
5010 {
5011 ULONGEST header_signature;
5012 cu_offset type_offset_in_tu;
5013 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5014
5015 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5016 dwo_abbrev_section,
5017 info_ptr,
5018 &header_signature,
5019 &type_offset_in_tu);
a2ce51a0
DE
5020 /* This is not an assert because it can be caused by bad debug info. */
5021 if (sig_type->signature != header_signature)
5022 {
5023 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5024 " TU at offset 0x%x [in module %s]"),
5025 hex_string (sig_type->signature),
5026 hex_string (header_signature),
5027 dwo_unit->offset.sect_off,
5028 bfd_get_filename (abfd));
5029 }
b0c7bfa9
DE
5030 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5031 /* For DWOs coming from DWP files, we don't know the CU length
5032 nor the type's offset in the TU until now. */
5033 dwo_unit->length = get_cu_length (&cu->header);
5034 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5035
5036 /* Establish the type offset that can be used to lookup the type.
5037 For DWO files, we don't know it until now. */
5038 sig_type->type_offset_in_section.sect_off =
5039 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5040 }
5041 else
5042 {
5043 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5044 dwo_abbrev_section,
5045 info_ptr, 0);
5046 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5047 /* For DWOs coming from DWP files, we don't know the CU length
5048 until now. */
5049 dwo_unit->length = get_cu_length (&cu->header);
5050 }
5051
02142a6c
DE
5052 /* Replace the CU's original abbrev table with the DWO's.
5053 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5054 if (abbrev_table_provided)
5055 {
5056 /* Don't free the provided abbrev table, the caller of
5057 init_cutu_and_read_dies owns it. */
5058 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5059 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5060 make_cleanup (dwarf2_free_abbrev_table, cu);
5061 }
5062 else
5063 {
5064 dwarf2_free_abbrev_table (cu);
5065 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5066 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5067 }
5068
5069 /* Read in the die, but leave space to copy over the attributes
5070 from the stub. This has the benefit of simplifying the rest of
5071 the code - all the work to maintain the illusion of a single
5072 DW_TAG_{compile,type}_unit DIE is done here. */
5073 num_extra_attrs = ((stmt_list != NULL)
5074 + (low_pc != NULL)
5075 + (high_pc != NULL)
5076 + (ranges != NULL)
5077 + (comp_dir != NULL));
5078 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5079 result_has_children, num_extra_attrs);
5080
5081 /* Copy over the attributes from the stub to the DIE we just read in. */
5082 comp_unit_die = *result_comp_unit_die;
5083 i = comp_unit_die->num_attrs;
5084 if (stmt_list != NULL)
5085 comp_unit_die->attrs[i++] = *stmt_list;
5086 if (low_pc != NULL)
5087 comp_unit_die->attrs[i++] = *low_pc;
5088 if (high_pc != NULL)
5089 comp_unit_die->attrs[i++] = *high_pc;
5090 if (ranges != NULL)
5091 comp_unit_die->attrs[i++] = *ranges;
5092 if (comp_dir != NULL)
5093 comp_unit_die->attrs[i++] = *comp_dir;
5094 comp_unit_die->num_attrs += num_extra_attrs;
5095
bf6af496
DE
5096 if (dwarf2_die_debug)
5097 {
5098 fprintf_unfiltered (gdb_stdlog,
5099 "Read die from %s@0x%x of %s:\n",
a32a8923 5100 get_section_name (section),
bf6af496
DE
5101 (unsigned) (begin_info_ptr - section->buffer),
5102 bfd_get_filename (abfd));
5103 dump_die (comp_unit_die, dwarf2_die_debug);
5104 }
5105
a2ce51a0
DE
5106 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5107 TUs by skipping the stub and going directly to the entry in the DWO file.
5108 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5109 to get it via circuitous means. Blech. */
5110 if (comp_dir != NULL)
5111 result_reader->comp_dir = DW_STRING (comp_dir);
5112
b0c7bfa9
DE
5113 /* Skip dummy compilation units. */
5114 if (info_ptr >= begin_info_ptr + dwo_unit->length
5115 || peek_abbrev_code (abfd, info_ptr) == 0)
5116 return 0;
5117
5118 *result_info_ptr = info_ptr;
5119 return 1;
5120}
5121
5122/* Subroutine of init_cutu_and_read_dies to simplify it.
5123 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5124 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5125
5126static struct dwo_unit *
5127lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5128 struct die_info *comp_unit_die)
5129{
5130 struct dwarf2_cu *cu = this_cu->cu;
5131 struct attribute *attr;
5132 ULONGEST signature;
5133 struct dwo_unit *dwo_unit;
5134 const char *comp_dir, *dwo_name;
5135
a2ce51a0
DE
5136 gdb_assert (cu != NULL);
5137
b0c7bfa9
DE
5138 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5139 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5140 gdb_assert (attr != NULL);
5141 dwo_name = DW_STRING (attr);
5142 comp_dir = NULL;
5143 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5144 if (attr)
5145 comp_dir = DW_STRING (attr);
5146
5147 if (this_cu->is_debug_types)
5148 {
5149 struct signatured_type *sig_type;
5150
5151 /* Since this_cu is the first member of struct signatured_type,
5152 we can go from a pointer to one to a pointer to the other. */
5153 sig_type = (struct signatured_type *) this_cu;
5154 signature = sig_type->signature;
5155 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5156 }
5157 else
5158 {
5159 struct attribute *attr;
5160
5161 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5162 if (! attr)
5163 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5164 " [in module %s]"),
4262abfb 5165 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5166 signature = DW_UNSND (attr);
5167 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5168 signature);
5169 }
5170
b0c7bfa9
DE
5171 return dwo_unit;
5172}
5173
a2ce51a0
DE
5174/* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Read a TU directly from a DWO file, bypassing the stub. */
5176
5177static void
5178init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5179 die_reader_func_ftype *die_reader_func,
5180 void *data)
5181{
5182 struct dwarf2_cu *cu;
5183 struct signatured_type *sig_type;
5184 struct cleanup *cleanups, *free_cu_cleanup;
5185 struct die_reader_specs reader;
5186 const gdb_byte *info_ptr;
5187 struct die_info *comp_unit_die;
5188 int has_children;
5189
5190 /* Verify we can do the following downcast, and that we have the
5191 data we need. */
5192 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5193 sig_type = (struct signatured_type *) this_cu;
5194 gdb_assert (sig_type->dwo_unit != NULL);
5195
5196 cleanups = make_cleanup (null_cleanup, NULL);
5197
5198 gdb_assert (this_cu->cu == NULL);
5199 cu = xmalloc (sizeof (*cu));
5200 init_one_comp_unit (cu, this_cu);
5201 /* If an error occurs while loading, release our storage. */
5202 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5203
5204 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5205 0 /* abbrev_table_provided */,
5206 NULL /* stub_comp_unit_die */,
5207 sig_type->dwo_unit->dwo_file->comp_dir,
5208 &reader, &info_ptr,
5209 &comp_unit_die, &has_children) == 0)
5210 {
5211 /* Dummy die. */
5212 do_cleanups (cleanups);
5213 return;
5214 }
5215
5216 /* All the "real" work is done here. */
5217 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5218
5219 /* This duplicates some code in init_cutu_and_read_dies,
5220 but the alternative is making the latter more complex.
5221 This function is only for the special case of using DWO files directly:
5222 no point in overly complicating the general case just to handle this. */
5223 if (keep)
5224 {
5225 /* We've successfully allocated this compilation unit. Let our
5226 caller clean it up when finished with it. */
5227 discard_cleanups (free_cu_cleanup);
5228
5229 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5230 So we have to manually free the abbrev table. */
5231 dwarf2_free_abbrev_table (cu);
5232
5233 /* Link this CU into read_in_chain. */
5234 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5235 dwarf2_per_objfile->read_in_chain = this_cu;
5236 }
5237 else
5238 do_cleanups (free_cu_cleanup);
5239
5240 do_cleanups (cleanups);
5241}
5242
fd820528 5243/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5244 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5245
f4dc4d17
DE
5246 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5247 Otherwise the table specified in the comp unit header is read in and used.
5248 This is an optimization for when we already have the abbrev table.
5249
dee91e82
DE
5250 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5251 Otherwise, a new CU is allocated with xmalloc.
5252
5253 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5254 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5255
5256 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5257 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5258
70221824 5259static void
fd820528 5260init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5261 struct abbrev_table *abbrev_table,
fd820528
DE
5262 int use_existing_cu, int keep,
5263 die_reader_func_ftype *die_reader_func,
5264 void *data)
c906108c 5265{
dee91e82 5266 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5267 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5268 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5269 struct dwarf2_cu *cu;
d521ce57 5270 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5271 struct die_reader_specs reader;
d85a05f0 5272 struct die_info *comp_unit_die;
dee91e82 5273 int has_children;
d85a05f0 5274 struct attribute *attr;
365156ad 5275 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5276 struct signatured_type *sig_type = NULL;
4bdcc0c1 5277 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5278 /* Non-zero if CU currently points to a DWO file and we need to
5279 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5280 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5281 int rereading_dwo_cu = 0;
c906108c 5282
09406207
DE
5283 if (dwarf2_die_debug)
5284 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5285 this_cu->is_debug_types ? "type" : "comp",
5286 this_cu->offset.sect_off);
5287
dee91e82
DE
5288 if (use_existing_cu)
5289 gdb_assert (keep);
23745b47 5290
a2ce51a0
DE
5291 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5292 file (instead of going through the stub), short-circuit all of this. */
5293 if (this_cu->reading_dwo_directly)
5294 {
5295 /* Narrow down the scope of possibilities to have to understand. */
5296 gdb_assert (this_cu->is_debug_types);
5297 gdb_assert (abbrev_table == NULL);
5298 gdb_assert (!use_existing_cu);
5299 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5300 return;
5301 }
5302
dee91e82
DE
5303 cleanups = make_cleanup (null_cleanup, NULL);
5304
5305 /* This is cheap if the section is already read in. */
5306 dwarf2_read_section (objfile, section);
5307
5308 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5309
5310 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5311
5312 if (use_existing_cu && this_cu->cu != NULL)
5313 {
5314 cu = this_cu->cu;
42e7ad6c
DE
5315
5316 /* If this CU is from a DWO file we need to start over, we need to
5317 refetch the attributes from the skeleton CU.
5318 This could be optimized by retrieving those attributes from when we
5319 were here the first time: the previous comp_unit_die was stored in
5320 comp_unit_obstack. But there's no data yet that we need this
5321 optimization. */
5322 if (cu->dwo_unit != NULL)
5323 rereading_dwo_cu = 1;
dee91e82
DE
5324 }
5325 else
5326 {
5327 /* If !use_existing_cu, this_cu->cu must be NULL. */
5328 gdb_assert (this_cu->cu == NULL);
5329
5330 cu = xmalloc (sizeof (*cu));
5331 init_one_comp_unit (cu, this_cu);
5332
5333 /* If an error occurs while loading, release our storage. */
365156ad 5334 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5335 }
dee91e82 5336
b0c7bfa9 5337 /* Get the header. */
42e7ad6c
DE
5338 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5339 {
5340 /* We already have the header, there's no need to read it in again. */
5341 info_ptr += cu->header.first_die_offset.cu_off;
5342 }
5343 else
5344 {
3019eac3 5345 if (this_cu->is_debug_types)
dee91e82
DE
5346 {
5347 ULONGEST signature;
42e7ad6c 5348 cu_offset type_offset_in_tu;
dee91e82 5349
4bdcc0c1
DE
5350 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5351 abbrev_section, info_ptr,
42e7ad6c
DE
5352 &signature,
5353 &type_offset_in_tu);
dee91e82 5354
42e7ad6c
DE
5355 /* Since per_cu is the first member of struct signatured_type,
5356 we can go from a pointer to one to a pointer to the other. */
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->signature == signature);
5359 gdb_assert (sig_type->type_offset_in_tu.cu_off
5360 == type_offset_in_tu.cu_off);
dee91e82
DE
5361 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5362
42e7ad6c
DE
5363 /* LENGTH has not been set yet for type units if we're
5364 using .gdb_index. */
1ce1cefd 5365 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5366
5367 /* Establish the type offset that can be used to lookup the type. */
5368 sig_type->type_offset_in_section.sect_off =
5369 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5370 }
5371 else
5372 {
4bdcc0c1
DE
5373 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5374 abbrev_section,
5375 info_ptr, 0);
dee91e82
DE
5376
5377 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5378 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5379 }
5380 }
10b3939b 5381
6caca83c 5382 /* Skip dummy compilation units. */
dee91e82 5383 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5384 || peek_abbrev_code (abfd, info_ptr) == 0)
5385 {
dee91e82 5386 do_cleanups (cleanups);
21b2bd31 5387 return;
6caca83c
CC
5388 }
5389
433df2d4
DE
5390 /* If we don't have them yet, read the abbrevs for this compilation unit.
5391 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5392 done. Note that it's important that if the CU had an abbrev table
5393 on entry we don't free it when we're done: Somewhere up the call stack
5394 it may be in use. */
f4dc4d17
DE
5395 if (abbrev_table != NULL)
5396 {
5397 gdb_assert (cu->abbrev_table == NULL);
5398 gdb_assert (cu->header.abbrev_offset.sect_off
5399 == abbrev_table->offset.sect_off);
5400 cu->abbrev_table = abbrev_table;
5401 }
5402 else if (cu->abbrev_table == NULL)
dee91e82 5403 {
4bdcc0c1 5404 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5405 make_cleanup (dwarf2_free_abbrev_table, cu);
5406 }
42e7ad6c
DE
5407 else if (rereading_dwo_cu)
5408 {
5409 dwarf2_free_abbrev_table (cu);
5410 dwarf2_read_abbrevs (cu, abbrev_section);
5411 }
af703f96 5412
dee91e82 5413 /* Read the top level CU/TU die. */
3019eac3 5414 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5415 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5416
b0c7bfa9
DE
5417 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5418 from the DWO file.
5419 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5420 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5421 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5422 if (attr)
5423 {
3019eac3 5424 struct dwo_unit *dwo_unit;
b0c7bfa9 5425 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5426
5427 if (has_children)
6a506a2d
DE
5428 {
5429 complaint (&symfile_complaints,
5430 _("compilation unit with DW_AT_GNU_dwo_name"
5431 " has children (offset 0x%x) [in module %s]"),
5432 this_cu->offset.sect_off, bfd_get_filename (abfd));
5433 }
b0c7bfa9 5434 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5435 if (dwo_unit != NULL)
3019eac3 5436 {
6a506a2d
DE
5437 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5438 abbrev_table != NULL,
a2ce51a0 5439 comp_unit_die, NULL,
6a506a2d
DE
5440 &reader, &info_ptr,
5441 &dwo_comp_unit_die, &has_children) == 0)
5442 {
5443 /* Dummy die. */
5444 do_cleanups (cleanups);
5445 return;
5446 }
5447 comp_unit_die = dwo_comp_unit_die;
5448 }
5449 else
5450 {
5451 /* Yikes, we couldn't find the rest of the DIE, we only have
5452 the stub. A complaint has already been logged. There's
5453 not much more we can do except pass on the stub DIE to
5454 die_reader_func. We don't want to throw an error on bad
5455 debug info. */
3019eac3
DE
5456 }
5457 }
5458
b0c7bfa9 5459 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5460 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5461
b0c7bfa9 5462 /* Done, clean up. */
365156ad 5463 if (free_cu_cleanup != NULL)
348e048f 5464 {
365156ad
TT
5465 if (keep)
5466 {
5467 /* We've successfully allocated this compilation unit. Let our
5468 caller clean it up when finished with it. */
5469 discard_cleanups (free_cu_cleanup);
dee91e82 5470
365156ad
TT
5471 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5472 So we have to manually free the abbrev table. */
5473 dwarf2_free_abbrev_table (cu);
dee91e82 5474
365156ad
TT
5475 /* Link this CU into read_in_chain. */
5476 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5477 dwarf2_per_objfile->read_in_chain = this_cu;
5478 }
5479 else
5480 do_cleanups (free_cu_cleanup);
348e048f 5481 }
365156ad
TT
5482
5483 do_cleanups (cleanups);
dee91e82
DE
5484}
5485
3019eac3
DE
5486/* Read CU/TU THIS_CU in section SECTION,
5487 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5488 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5489 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5490
5491 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5492 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5493
5494 We fill in THIS_CU->length.
5495
5496 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5497 linker) then DIE_READER_FUNC will not get called.
5498
5499 THIS_CU->cu is always freed when done.
3019eac3
DE
5500 This is done in order to not leave THIS_CU->cu in a state where we have
5501 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5502
5503static void
5504init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5505 struct dwarf2_section_info *abbrev_section,
3019eac3 5506 struct dwo_file *dwo_file,
dee91e82
DE
5507 die_reader_func_ftype *die_reader_func,
5508 void *data)
5509{
5510 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5511 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5512 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5513 struct dwarf2_cu cu;
d521ce57 5514 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5515 struct die_reader_specs reader;
5516 struct cleanup *cleanups;
5517 struct die_info *comp_unit_die;
5518 int has_children;
5519
09406207
DE
5520 if (dwarf2_die_debug)
5521 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5522 this_cu->is_debug_types ? "type" : "comp",
5523 this_cu->offset.sect_off);
5524
dee91e82
DE
5525 gdb_assert (this_cu->cu == NULL);
5526
dee91e82
DE
5527 /* This is cheap if the section is already read in. */
5528 dwarf2_read_section (objfile, section);
5529
5530 init_one_comp_unit (&cu, this_cu);
5531
5532 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5533
5534 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5535 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5536 abbrev_section, info_ptr,
3019eac3 5537 this_cu->is_debug_types);
dee91e82 5538
1ce1cefd 5539 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5540
5541 /* Skip dummy compilation units. */
5542 if (info_ptr >= begin_info_ptr + this_cu->length
5543 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5544 {
dee91e82 5545 do_cleanups (cleanups);
21b2bd31 5546 return;
93311388 5547 }
72bf9492 5548
dee91e82
DE
5549 dwarf2_read_abbrevs (&cu, abbrev_section);
5550 make_cleanup (dwarf2_free_abbrev_table, &cu);
5551
3019eac3 5552 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5553 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5554
5555 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5556
5557 do_cleanups (cleanups);
5558}
5559
3019eac3
DE
5560/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5561 does not lookup the specified DWO file.
5562 This cannot be used to read DWO files.
dee91e82
DE
5563
5564 THIS_CU->cu is always freed when done.
3019eac3
DE
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU.
5567 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5568
5569static void
5570init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573{
5574 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5575 get_abbrev_section_for_cu (this_cu),
3019eac3 5576 NULL,
dee91e82
DE
5577 die_reader_func, data);
5578}
0018ea6f
DE
5579\f
5580/* Type Unit Groups.
dee91e82 5581
0018ea6f
DE
5582 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5583 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5584 so that all types coming from the same compilation (.o file) are grouped
5585 together. A future step could be to put the types in the same symtab as
5586 the CU the types ultimately came from. */
ff013f42 5587
f4dc4d17
DE
5588static hashval_t
5589hash_type_unit_group (const void *item)
5590{
094b34ac 5591 const struct type_unit_group *tu_group = item;
f4dc4d17 5592
094b34ac 5593 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5594}
348e048f
DE
5595
5596static int
f4dc4d17 5597eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5598{
f4dc4d17
DE
5599 const struct type_unit_group *lhs = item_lhs;
5600 const struct type_unit_group *rhs = item_rhs;
348e048f 5601
094b34ac 5602 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5603}
348e048f 5604
f4dc4d17
DE
5605/* Allocate a hash table for type unit groups. */
5606
5607static htab_t
5608allocate_type_unit_groups_table (void)
5609{
5610 return htab_create_alloc_ex (3,
5611 hash_type_unit_group,
5612 eq_type_unit_group,
5613 NULL,
5614 &dwarf2_per_objfile->objfile->objfile_obstack,
5615 hashtab_obstack_allocate,
5616 dummy_obstack_deallocate);
5617}
dee91e82 5618
f4dc4d17
DE
5619/* Type units that don't have DW_AT_stmt_list are grouped into their own
5620 partial symtabs. We combine several TUs per psymtab to not let the size
5621 of any one psymtab grow too big. */
5622#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5623#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5624
094b34ac 5625/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5626 Create the type_unit_group object used to hold one or more TUs. */
5627
5628static struct type_unit_group *
094b34ac 5629create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5630{
5631 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5632 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5633 struct type_unit_group *tu_group;
f4dc4d17
DE
5634
5635 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5636 struct type_unit_group);
094b34ac 5637 per_cu = &tu_group->per_cu;
f4dc4d17 5638 per_cu->objfile = objfile;
f4dc4d17 5639
094b34ac
DE
5640 if (dwarf2_per_objfile->using_index)
5641 {
5642 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5643 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5644 }
5645 else
5646 {
5647 unsigned int line_offset = line_offset_struct.sect_off;
5648 struct partial_symtab *pst;
5649 char *name;
5650
5651 /* Give the symtab a useful name for debug purposes. */
5652 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5653 name = xstrprintf ("<type_units_%d>",
5654 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5655 else
5656 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5657
5658 pst = create_partial_symtab (per_cu, name);
5659 pst->anonymous = 1;
f4dc4d17 5660
094b34ac
DE
5661 xfree (name);
5662 }
f4dc4d17 5663
094b34ac
DE
5664 tu_group->hash.dwo_unit = cu->dwo_unit;
5665 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5666
5667 return tu_group;
5668}
5669
094b34ac
DE
5670/* Look up the type_unit_group for type unit CU, and create it if necessary.
5671 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5672
5673static struct type_unit_group *
ff39bb5e 5674get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5675{
5676 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5677 struct type_unit_group *tu_group;
5678 void **slot;
5679 unsigned int line_offset;
5680 struct type_unit_group type_unit_group_for_lookup;
5681
5682 if (dwarf2_per_objfile->type_unit_groups == NULL)
5683 {
5684 dwarf2_per_objfile->type_unit_groups =
5685 allocate_type_unit_groups_table ();
5686 }
5687
5688 /* Do we need to create a new group, or can we use an existing one? */
5689
5690 if (stmt_list)
5691 {
5692 line_offset = DW_UNSND (stmt_list);
5693 ++tu_stats->nr_symtab_sharers;
5694 }
5695 else
5696 {
5697 /* Ugh, no stmt_list. Rare, but we have to handle it.
5698 We can do various things here like create one group per TU or
5699 spread them over multiple groups to split up the expansion work.
5700 To avoid worst case scenarios (too many groups or too large groups)
5701 we, umm, group them in bunches. */
5702 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5703 | (tu_stats->nr_stmt_less_type_units
5704 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5705 ++tu_stats->nr_stmt_less_type_units;
5706 }
5707
094b34ac
DE
5708 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5709 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5710 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5711 &type_unit_group_for_lookup, INSERT);
5712 if (*slot != NULL)
5713 {
5714 tu_group = *slot;
5715 gdb_assert (tu_group != NULL);
5716 }
5717 else
5718 {
5719 sect_offset line_offset_struct;
5720
5721 line_offset_struct.sect_off = line_offset;
094b34ac 5722 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5723 *slot = tu_group;
5724 ++tu_stats->nr_symtabs;
5725 }
5726
5727 return tu_group;
5728}
5729
5730/* Struct used to sort TUs by their abbreviation table offset. */
5731
5732struct tu_abbrev_offset
5733{
5734 struct signatured_type *sig_type;
5735 sect_offset abbrev_offset;
5736};
5737
5738/* Helper routine for build_type_unit_groups, passed to qsort. */
5739
5740static int
5741sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5742{
5743 const struct tu_abbrev_offset * const *a = ap;
5744 const struct tu_abbrev_offset * const *b = bp;
5745 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5746 unsigned int boff = (*b)->abbrev_offset.sect_off;
5747
5748 return (aoff > boff) - (aoff < boff);
5749}
5750
5751/* A helper function to add a type_unit_group to a table. */
5752
5753static int
5754add_type_unit_group_to_table (void **slot, void *datum)
5755{
5756 struct type_unit_group *tu_group = *slot;
5757 struct type_unit_group ***datap = datum;
5758
5759 **datap = tu_group;
5760 ++*datap;
5761
5762 return 1;
5763}
5764
5765/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5766 each one passing FUNC,DATA.
5767
5768 The efficiency is because we sort TUs by the abbrev table they use and
5769 only read each abbrev table once. In one program there are 200K TUs
5770 sharing 8K abbrev tables.
5771
5772 The main purpose of this function is to support building the
5773 dwarf2_per_objfile->type_unit_groups table.
5774 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5775 can collapse the search space by grouping them by stmt_list.
5776 The savings can be significant, in the same program from above the 200K TUs
5777 share 8K stmt_list tables.
5778
5779 FUNC is expected to call get_type_unit_group, which will create the
5780 struct type_unit_group if necessary and add it to
5781 dwarf2_per_objfile->type_unit_groups. */
5782
5783static void
5784build_type_unit_groups (die_reader_func_ftype *func, void *data)
5785{
5786 struct objfile *objfile = dwarf2_per_objfile->objfile;
5787 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5788 struct cleanup *cleanups;
5789 struct abbrev_table *abbrev_table;
5790 sect_offset abbrev_offset;
5791 struct tu_abbrev_offset *sorted_by_abbrev;
5792 struct type_unit_group **iter;
5793 int i;
5794
5795 /* It's up to the caller to not call us multiple times. */
5796 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5797
5798 if (dwarf2_per_objfile->n_type_units == 0)
5799 return;
5800
5801 /* TUs typically share abbrev tables, and there can be way more TUs than
5802 abbrev tables. Sort by abbrev table to reduce the number of times we
5803 read each abbrev table in.
5804 Alternatives are to punt or to maintain a cache of abbrev tables.
5805 This is simpler and efficient enough for now.
5806
5807 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5808 symtab to use). Typically TUs with the same abbrev offset have the same
5809 stmt_list value too so in practice this should work well.
5810
5811 The basic algorithm here is:
5812
5813 sort TUs by abbrev table
5814 for each TU with same abbrev table:
5815 read abbrev table if first user
5816 read TU top level DIE
5817 [IWBN if DWO skeletons had DW_AT_stmt_list]
5818 call FUNC */
5819
5820 if (dwarf2_read_debug)
5821 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5822
5823 /* Sort in a separate table to maintain the order of all_type_units
5824 for .gdb_index: TU indices directly index all_type_units. */
5825 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5826 dwarf2_per_objfile->n_type_units);
5827 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5828 {
5829 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5830
5831 sorted_by_abbrev[i].sig_type = sig_type;
5832 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5833 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5834 sig_type->per_cu.offset);
5835 }
5836 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5837 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5838 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5839
094b34ac
DE
5840 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5841 called any number of times, so we don't reset tu_stats here. */
5842
f4dc4d17
DE
5843 abbrev_offset.sect_off = ~(unsigned) 0;
5844 abbrev_table = NULL;
5845 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5846
5847 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5848 {
5849 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5850
5851 /* Switch to the next abbrev table if necessary. */
5852 if (abbrev_table == NULL
5853 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5854 {
5855 if (abbrev_table != NULL)
5856 {
5857 abbrev_table_free (abbrev_table);
5858 /* Reset to NULL in case abbrev_table_read_table throws
5859 an error: abbrev_table_free_cleanup will get called. */
5860 abbrev_table = NULL;
5861 }
5862 abbrev_offset = tu->abbrev_offset;
5863 abbrev_table =
5864 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5865 abbrev_offset);
5866 ++tu_stats->nr_uniq_abbrev_tables;
5867 }
5868
5869 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5870 func, data);
5871 }
5872
a2ce51a0
DE
5873 /* type_unit_groups can be NULL if there is an error in the debug info.
5874 Just create an empty table so the rest of gdb doesn't have to watch
5875 for this error case. */
5876 if (dwarf2_per_objfile->type_unit_groups == NULL)
5877 {
5878 dwarf2_per_objfile->type_unit_groups =
5879 allocate_type_unit_groups_table ();
5880 dwarf2_per_objfile->n_type_unit_groups = 0;
5881 }
5882
f4dc4d17
DE
5883 /* Create a vector of pointers to primary type units to make it easy to
5884 iterate over them and CUs. See dw2_get_primary_cu. */
5885 dwarf2_per_objfile->n_type_unit_groups =
5886 htab_elements (dwarf2_per_objfile->type_unit_groups);
5887 dwarf2_per_objfile->all_type_unit_groups =
5888 obstack_alloc (&objfile->objfile_obstack,
5889 dwarf2_per_objfile->n_type_unit_groups
5890 * sizeof (struct type_unit_group *));
5891 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5892 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5893 add_type_unit_group_to_table, &iter);
5894 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5895 == dwarf2_per_objfile->n_type_unit_groups);
5896
5897 do_cleanups (cleanups);
5898
5899 if (dwarf2_read_debug)
5900 {
5901 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5902 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5903 dwarf2_per_objfile->n_type_units);
5904 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5905 tu_stats->nr_uniq_abbrev_tables);
5906 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5907 tu_stats->nr_symtabs);
5908 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5909 tu_stats->nr_symtab_sharers);
5910 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5911 tu_stats->nr_stmt_less_type_units);
5912 }
5913}
0018ea6f
DE
5914\f
5915/* Partial symbol tables. */
5916
5917/* Create a psymtab named NAME and assign it to PER_CU.
5918
5919 The caller must fill in the following details:
5920 dirname, textlow, texthigh. */
5921
5922static struct partial_symtab *
5923create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5924{
5925 struct objfile *objfile = per_cu->objfile;
5926 struct partial_symtab *pst;
5927
5928 pst = start_psymtab_common (objfile, objfile->section_offsets,
5929 name, 0,
5930 objfile->global_psymbols.next,
5931 objfile->static_psymbols.next);
5932
5933 pst->psymtabs_addrmap_supported = 1;
5934
5935 /* This is the glue that links PST into GDB's symbol API. */
5936 pst->read_symtab_private = per_cu;
5937 pst->read_symtab = dwarf2_read_symtab;
5938 per_cu->v.psymtab = pst;
5939
5940 return pst;
5941}
5942
b93601f3
TT
5943/* The DATA object passed to process_psymtab_comp_unit_reader has this
5944 type. */
5945
5946struct process_psymtab_comp_unit_data
5947{
5948 /* True if we are reading a DW_TAG_partial_unit. */
5949
5950 int want_partial_unit;
5951
5952 /* The "pretend" language that is used if the CU doesn't declare a
5953 language. */
5954
5955 enum language pretend_language;
5956};
5957
0018ea6f
DE
5958/* die_reader_func for process_psymtab_comp_unit. */
5959
5960static void
5961process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5962 const gdb_byte *info_ptr,
0018ea6f
DE
5963 struct die_info *comp_unit_die,
5964 int has_children,
5965 void *data)
5966{
5967 struct dwarf2_cu *cu = reader->cu;
5968 struct objfile *objfile = cu->objfile;
5969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5970 struct attribute *attr;
5971 CORE_ADDR baseaddr;
5972 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5973 struct partial_symtab *pst;
5974 int has_pc_info;
5975 const char *filename;
b93601f3 5976 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5977
b93601f3 5978 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5979 return;
5980
5981 gdb_assert (! per_cu->is_debug_types);
5982
b93601f3 5983 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5984
5985 cu->list_in_scope = &file_symbols;
5986
5987 /* Allocate a new partial symbol table structure. */
5988 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5989 if (attr == NULL || !DW_STRING (attr))
5990 filename = "";
5991 else
5992 filename = DW_STRING (attr);
5993
5994 pst = create_partial_symtab (per_cu, filename);
5995
5996 /* This must be done before calling dwarf2_build_include_psymtabs. */
5997 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5998 if (attr != NULL)
5999 pst->dirname = DW_STRING (attr);
6000
6001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6002
6003 dwarf2_find_base_address (comp_unit_die, cu);
6004
6005 /* Possibly set the default values of LOWPC and HIGHPC from
6006 `DW_AT_ranges'. */
6007 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6008 &best_highpc, cu, pst);
6009 if (has_pc_info == 1 && best_lowpc < best_highpc)
6010 /* Store the contiguous range if it is not empty; it can be empty for
6011 CUs with no code. */
6012 addrmap_set_empty (objfile->psymtabs_addrmap,
6013 best_lowpc + baseaddr,
6014 best_highpc + baseaddr - 1, pst);
6015
6016 /* Check if comp unit has_children.
6017 If so, read the rest of the partial symbols from this comp unit.
6018 If not, there's no more debug_info for this comp unit. */
6019 if (has_children)
6020 {
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023
6024 lowpc = ((CORE_ADDR) -1);
6025 highpc = ((CORE_ADDR) 0);
6026
6027 first_die = load_partial_dies (reader, info_ptr, 1);
6028
6029 scan_partial_symbols (first_die, &lowpc, &highpc,
6030 ! has_pc_info, cu);
6031
6032 /* If we didn't find a lowpc, set it to highpc to avoid
6033 complaints from `maint check'. */
6034 if (lowpc == ((CORE_ADDR) -1))
6035 lowpc = highpc;
6036
6037 /* If the compilation unit didn't have an explicit address range,
6038 then use the information extracted from its child dies. */
6039 if (! has_pc_info)
6040 {
6041 best_lowpc = lowpc;
6042 best_highpc = highpc;
6043 }
6044 }
6045 pst->textlow = best_lowpc + baseaddr;
6046 pst->texthigh = best_highpc + baseaddr;
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6053
6054 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6055 {
6056 int i;
6057 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6058 struct dwarf2_per_cu_data *iter;
6059
6060 /* Fill in 'dependencies' here; we fill in 'users' in a
6061 post-pass. */
6062 pst->number_of_dependencies = len;
6063 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6064 len * sizeof (struct symtab *));
6065 for (i = 0;
6066 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6067 i, iter);
6068 ++i)
6069 pst->dependencies[i] = iter->v.psymtab;
6070
6071 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6072 }
6073
6074 /* Get the list of files included in the current compilation unit,
6075 and build a psymtab for each of them. */
6076 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6077
6078 if (dwarf2_read_debug)
6079 {
6080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6081
6082 fprintf_unfiltered (gdb_stdlog,
6083 "Psymtab for %s unit @0x%x: %s - %s"
6084 ", %d global, %d static syms\n",
6085 per_cu->is_debug_types ? "type" : "comp",
6086 per_cu->offset.sect_off,
6087 paddress (gdbarch, pst->textlow),
6088 paddress (gdbarch, pst->texthigh),
6089 pst->n_global_syms, pst->n_static_syms);
6090 }
6091}
6092
6093/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6094 Process compilation unit THIS_CU for a psymtab. */
6095
6096static void
6097process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6098 int want_partial_unit,
6099 enum language pretend_language)
0018ea6f 6100{
b93601f3
TT
6101 struct process_psymtab_comp_unit_data info;
6102
0018ea6f
DE
6103 /* If this compilation unit was already read in, free the
6104 cached copy in order to read it in again. This is
6105 necessary because we skipped some symbols when we first
6106 read in the compilation unit (see load_partial_dies).
6107 This problem could be avoided, but the benefit is unclear. */
6108 if (this_cu->cu != NULL)
6109 free_one_cached_comp_unit (this_cu);
6110
6111 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6112 info.want_partial_unit = want_partial_unit;
6113 info.pretend_language = pretend_language;
0018ea6f
DE
6114 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6115 process_psymtab_comp_unit_reader,
b93601f3 6116 &info);
0018ea6f
DE
6117
6118 /* Age out any secondary CUs. */
6119 age_cached_comp_units ();
6120}
f4dc4d17
DE
6121
6122/* Reader function for build_type_psymtabs. */
6123
6124static void
6125build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6126 const gdb_byte *info_ptr,
f4dc4d17
DE
6127 struct die_info *type_unit_die,
6128 int has_children,
6129 void *data)
6130{
6131 struct objfile *objfile = dwarf2_per_objfile->objfile;
6132 struct dwarf2_cu *cu = reader->cu;
6133 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6134 struct signatured_type *sig_type;
f4dc4d17
DE
6135 struct type_unit_group *tu_group;
6136 struct attribute *attr;
6137 struct partial_die_info *first_die;
6138 CORE_ADDR lowpc, highpc;
6139 struct partial_symtab *pst;
6140
6141 gdb_assert (data == NULL);
0186c6a7
DE
6142 gdb_assert (per_cu->is_debug_types);
6143 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6144
6145 if (! has_children)
6146 return;
6147
6148 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6149 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6150
0186c6a7 6151 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6152
6153 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6154 cu->list_in_scope = &file_symbols;
6155 pst = create_partial_symtab (per_cu, "");
6156 pst->anonymous = 1;
6157
6158 first_die = load_partial_dies (reader, info_ptr, 1);
6159
6160 lowpc = (CORE_ADDR) -1;
6161 highpc = (CORE_ADDR) 0;
6162 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6163
6164 pst->n_global_syms = objfile->global_psymbols.next -
6165 (objfile->global_psymbols.list + pst->globals_offset);
6166 pst->n_static_syms = objfile->static_psymbols.next -
6167 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6168 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6169}
6170
6171/* Traversal function for build_type_psymtabs. */
6172
6173static int
6174build_type_psymtab_dependencies (void **slot, void *info)
6175{
6176 struct objfile *objfile = dwarf2_per_objfile->objfile;
6177 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6178 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6179 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6180 int len = VEC_length (sig_type_ptr, tu_group->tus);
6181 struct signatured_type *iter;
f4dc4d17
DE
6182 int i;
6183
6184 gdb_assert (len > 0);
0186c6a7 6185 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6186
6187 pst->number_of_dependencies = len;
6188 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6189 len * sizeof (struct psymtab *));
6190 for (i = 0;
0186c6a7 6191 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6192 ++i)
6193 {
0186c6a7
DE
6194 gdb_assert (iter->per_cu.is_debug_types);
6195 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6196 iter->type_unit_group = tu_group;
f4dc4d17
DE
6197 }
6198
0186c6a7 6199 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6200
6201 return 1;
6202}
6203
6204/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6205 Build partial symbol tables for the .debug_types comp-units. */
6206
6207static void
6208build_type_psymtabs (struct objfile *objfile)
6209{
0e50663e 6210 if (! create_all_type_units (objfile))
348e048f
DE
6211 return;
6212
f4dc4d17
DE
6213 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6214
6215 /* Now that all TUs have been processed we can fill in the dependencies. */
6216 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6217 build_type_psymtab_dependencies, NULL);
348e048f
DE
6218}
6219
60606b2c
TT
6220/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6221
6222static void
6223psymtabs_addrmap_cleanup (void *o)
6224{
6225 struct objfile *objfile = o;
ec61707d 6226
60606b2c
TT
6227 objfile->psymtabs_addrmap = NULL;
6228}
6229
95554aad
TT
6230/* Compute the 'user' field for each psymtab in OBJFILE. */
6231
6232static void
6233set_partial_user (struct objfile *objfile)
6234{
6235 int i;
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6238 {
6239 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6240 struct partial_symtab *pst = per_cu->v.psymtab;
6241 int j;
6242
36586728
TT
6243 if (pst == NULL)
6244 continue;
6245
95554aad
TT
6246 for (j = 0; j < pst->number_of_dependencies; ++j)
6247 {
6248 /* Set the 'user' field only if it is not already set. */
6249 if (pst->dependencies[j]->user == NULL)
6250 pst->dependencies[j]->user = pst;
6251 }
6252 }
6253}
6254
93311388
DE
6255/* Build the partial symbol table by doing a quick pass through the
6256 .debug_info and .debug_abbrev sections. */
72bf9492 6257
93311388 6258static void
c67a9c90 6259dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6260{
60606b2c
TT
6261 struct cleanup *back_to, *addrmap_cleanup;
6262 struct obstack temp_obstack;
21b2bd31 6263 int i;
93311388 6264
45cfd468
DE
6265 if (dwarf2_read_debug)
6266 {
6267 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6268 objfile_name (objfile));
45cfd468
DE
6269 }
6270
98bfdba5
PA
6271 dwarf2_per_objfile->reading_partial_symbols = 1;
6272
be391dca 6273 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6274
93311388
DE
6275 /* Any cached compilation units will be linked by the per-objfile
6276 read_in_chain. Make sure to free them when we're done. */
6277 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6278
348e048f
DE
6279 build_type_psymtabs (objfile);
6280
93311388 6281 create_all_comp_units (objfile);
c906108c 6282
60606b2c
TT
6283 /* Create a temporary address map on a temporary obstack. We later
6284 copy this to the final obstack. */
6285 obstack_init (&temp_obstack);
6286 make_cleanup_obstack_free (&temp_obstack);
6287 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6288 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6289
21b2bd31 6290 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6291 {
21b2bd31 6292 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6293
b93601f3 6294 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6295 }
ff013f42 6296
95554aad
TT
6297 set_partial_user (objfile);
6298
ff013f42
JK
6299 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6300 &objfile->objfile_obstack);
60606b2c 6301 discard_cleanups (addrmap_cleanup);
ff013f42 6302
ae038cb0 6303 do_cleanups (back_to);
45cfd468
DE
6304
6305 if (dwarf2_read_debug)
6306 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6307 objfile_name (objfile));
ae038cb0
DJ
6308}
6309
3019eac3 6310/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6311
6312static void
dee91e82 6313load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6314 const gdb_byte *info_ptr,
dee91e82
DE
6315 struct die_info *comp_unit_die,
6316 int has_children,
6317 void *data)
ae038cb0 6318{
dee91e82 6319 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6320
95554aad 6321 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6322
ae038cb0
DJ
6323 /* Check if comp unit has_children.
6324 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6325 If not, there's no more debug_info for this comp unit. */
d85a05f0 6326 if (has_children)
dee91e82
DE
6327 load_partial_dies (reader, info_ptr, 0);
6328}
98bfdba5 6329
dee91e82
DE
6330/* Load the partial DIEs for a secondary CU into memory.
6331 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6332
dee91e82
DE
6333static void
6334load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6335{
f4dc4d17
DE
6336 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6337 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6338}
6339
ae038cb0 6340static void
36586728
TT
6341read_comp_units_from_section (struct objfile *objfile,
6342 struct dwarf2_section_info *section,
6343 unsigned int is_dwz,
6344 int *n_allocated,
6345 int *n_comp_units,
6346 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6347{
d521ce57 6348 const gdb_byte *info_ptr;
a32a8923 6349 bfd *abfd = get_section_bfd_owner (section);
be391dca 6350
bf6af496
DE
6351 if (dwarf2_read_debug)
6352 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6353 get_section_name (section),
6354 get_section_file_name (section));
bf6af496 6355
36586728 6356 dwarf2_read_section (objfile, section);
ae038cb0 6357
36586728 6358 info_ptr = section->buffer;
6e70227d 6359
36586728 6360 while (info_ptr < section->buffer + section->size)
ae038cb0 6361 {
c764a876 6362 unsigned int length, initial_length_size;
ae038cb0 6363 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6364 sect_offset offset;
ae038cb0 6365
36586728 6366 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6367
6368 /* Read just enough information to find out where the next
6369 compilation unit is. */
36586728 6370 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6371
6372 /* Save the compilation unit for later lookup. */
6373 this_cu = obstack_alloc (&objfile->objfile_obstack,
6374 sizeof (struct dwarf2_per_cu_data));
6375 memset (this_cu, 0, sizeof (*this_cu));
6376 this_cu->offset = offset;
c764a876 6377 this_cu->length = length + initial_length_size;
36586728 6378 this_cu->is_dwz = is_dwz;
9291a0cd 6379 this_cu->objfile = objfile;
8a0459fd 6380 this_cu->section = section;
ae038cb0 6381
36586728 6382 if (*n_comp_units == *n_allocated)
ae038cb0 6383 {
36586728
TT
6384 *n_allocated *= 2;
6385 *all_comp_units = xrealloc (*all_comp_units,
6386 *n_allocated
6387 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6388 }
36586728
TT
6389 (*all_comp_units)[*n_comp_units] = this_cu;
6390 ++*n_comp_units;
ae038cb0
DJ
6391
6392 info_ptr = info_ptr + this_cu->length;
6393 }
36586728
TT
6394}
6395
6396/* Create a list of all compilation units in OBJFILE.
6397 This is only done for -readnow and building partial symtabs. */
6398
6399static void
6400create_all_comp_units (struct objfile *objfile)
6401{
6402 int n_allocated;
6403 int n_comp_units;
6404 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6405 struct dwz_file *dwz;
36586728
TT
6406
6407 n_comp_units = 0;
6408 n_allocated = 10;
6409 all_comp_units = xmalloc (n_allocated
6410 * sizeof (struct dwarf2_per_cu_data *));
6411
6412 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6413 &n_allocated, &n_comp_units, &all_comp_units);
6414
4db1a1dc
TT
6415 dwz = dwarf2_get_dwz_file ();
6416 if (dwz != NULL)
6417 read_comp_units_from_section (objfile, &dwz->info, 1,
6418 &n_allocated, &n_comp_units,
6419 &all_comp_units);
ae038cb0
DJ
6420
6421 dwarf2_per_objfile->all_comp_units
6422 = obstack_alloc (&objfile->objfile_obstack,
6423 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6424 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6425 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6426 xfree (all_comp_units);
6427 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6428}
6429
5734ee8b
DJ
6430/* Process all loaded DIEs for compilation unit CU, starting at
6431 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6432 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6433 DW_AT_ranges). If NEED_PC is set, then this function will set
6434 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6435 and record the covered ranges in the addrmap. */
c906108c 6436
72bf9492
DJ
6437static void
6438scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6439 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6440{
72bf9492 6441 struct partial_die_info *pdi;
c906108c 6442
91c24f0a
DC
6443 /* Now, march along the PDI's, descending into ones which have
6444 interesting children but skipping the children of the other ones,
6445 until we reach the end of the compilation unit. */
c906108c 6446
72bf9492 6447 pdi = first_die;
91c24f0a 6448
72bf9492
DJ
6449 while (pdi != NULL)
6450 {
6451 fixup_partial_die (pdi, cu);
c906108c 6452
f55ee35c 6453 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6454 children, so we need to look at them. Ditto for anonymous
6455 enums. */
933c6fe4 6456
72bf9492 6457 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6458 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6459 || pdi->tag == DW_TAG_imported_unit)
c906108c 6460 {
72bf9492 6461 switch (pdi->tag)
c906108c
SS
6462 {
6463 case DW_TAG_subprogram:
5734ee8b 6464 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6465 break;
72929c62 6466 case DW_TAG_constant:
c906108c
SS
6467 case DW_TAG_variable:
6468 case DW_TAG_typedef:
91c24f0a 6469 case DW_TAG_union_type:
72bf9492 6470 if (!pdi->is_declaration)
63d06c5c 6471 {
72bf9492 6472 add_partial_symbol (pdi, cu);
63d06c5c
DC
6473 }
6474 break;
c906108c 6475 case DW_TAG_class_type:
680b30c7 6476 case DW_TAG_interface_type:
c906108c 6477 case DW_TAG_structure_type:
72bf9492 6478 if (!pdi->is_declaration)
c906108c 6479 {
72bf9492 6480 add_partial_symbol (pdi, cu);
c906108c
SS
6481 }
6482 break;
91c24f0a 6483 case DW_TAG_enumeration_type:
72bf9492
DJ
6484 if (!pdi->is_declaration)
6485 add_partial_enumeration (pdi, cu);
c906108c
SS
6486 break;
6487 case DW_TAG_base_type:
a02abb62 6488 case DW_TAG_subrange_type:
c906108c 6489 /* File scope base type definitions are added to the partial
c5aa993b 6490 symbol table. */
72bf9492 6491 add_partial_symbol (pdi, cu);
c906108c 6492 break;
d9fa45fe 6493 case DW_TAG_namespace:
5734ee8b 6494 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6495 break;
5d7cb8df
JK
6496 case DW_TAG_module:
6497 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6498 break;
95554aad
TT
6499 case DW_TAG_imported_unit:
6500 {
6501 struct dwarf2_per_cu_data *per_cu;
6502
f4dc4d17
DE
6503 /* For now we don't handle imported units in type units. */
6504 if (cu->per_cu->is_debug_types)
6505 {
6506 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6507 " supported in type units [in module %s]"),
4262abfb 6508 objfile_name (cu->objfile));
f4dc4d17
DE
6509 }
6510
95554aad 6511 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6512 pdi->is_dwz,
95554aad
TT
6513 cu->objfile);
6514
6515 /* Go read the partial unit, if needed. */
6516 if (per_cu->v.psymtab == NULL)
b93601f3 6517 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6518
f4dc4d17 6519 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6520 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6521 }
6522 break;
74921315
KS
6523 case DW_TAG_imported_declaration:
6524 add_partial_symbol (pdi, cu);
6525 break;
c906108c
SS
6526 default:
6527 break;
6528 }
6529 }
6530
72bf9492
DJ
6531 /* If the die has a sibling, skip to the sibling. */
6532
6533 pdi = pdi->die_sibling;
6534 }
6535}
6536
6537/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6538
72bf9492 6539 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6540 name is concatenated with "::" and the partial DIE's name. For
6541 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6542 Enumerators are an exception; they use the scope of their parent
6543 enumeration type, i.e. the name of the enumeration type is not
6544 prepended to the enumerator.
91c24f0a 6545
72bf9492
DJ
6546 There are two complexities. One is DW_AT_specification; in this
6547 case "parent" means the parent of the target of the specification,
6548 instead of the direct parent of the DIE. The other is compilers
6549 which do not emit DW_TAG_namespace; in this case we try to guess
6550 the fully qualified name of structure types from their members'
6551 linkage names. This must be done using the DIE's children rather
6552 than the children of any DW_AT_specification target. We only need
6553 to do this for structures at the top level, i.e. if the target of
6554 any DW_AT_specification (if any; otherwise the DIE itself) does not
6555 have a parent. */
6556
6557/* Compute the scope prefix associated with PDI's parent, in
6558 compilation unit CU. The result will be allocated on CU's
6559 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6560 field. NULL is returned if no prefix is necessary. */
15d034d0 6561static const char *
72bf9492
DJ
6562partial_die_parent_scope (struct partial_die_info *pdi,
6563 struct dwarf2_cu *cu)
6564{
15d034d0 6565 const char *grandparent_scope;
72bf9492 6566 struct partial_die_info *parent, *real_pdi;
91c24f0a 6567
72bf9492
DJ
6568 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6569 then this means the parent of the specification DIE. */
6570
6571 real_pdi = pdi;
72bf9492 6572 while (real_pdi->has_specification)
36586728
TT
6573 real_pdi = find_partial_die (real_pdi->spec_offset,
6574 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6575
6576 parent = real_pdi->die_parent;
6577 if (parent == NULL)
6578 return NULL;
6579
6580 if (parent->scope_set)
6581 return parent->scope;
6582
6583 fixup_partial_die (parent, cu);
6584
10b3939b 6585 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6586
acebe513
UW
6587 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6588 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6589 Work around this problem here. */
6590 if (cu->language == language_cplus
6e70227d 6591 && parent->tag == DW_TAG_namespace
acebe513
UW
6592 && strcmp (parent->name, "::") == 0
6593 && grandparent_scope == NULL)
6594 {
6595 parent->scope = NULL;
6596 parent->scope_set = 1;
6597 return NULL;
6598 }
6599
9c6c53f7
SA
6600 if (pdi->tag == DW_TAG_enumerator)
6601 /* Enumerators should not get the name of the enumeration as a prefix. */
6602 parent->scope = grandparent_scope;
6603 else if (parent->tag == DW_TAG_namespace
f55ee35c 6604 || parent->tag == DW_TAG_module
72bf9492
DJ
6605 || parent->tag == DW_TAG_structure_type
6606 || parent->tag == DW_TAG_class_type
680b30c7 6607 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6608 || parent->tag == DW_TAG_union_type
6609 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6610 {
6611 if (grandparent_scope == NULL)
6612 parent->scope = parent->name;
6613 else
3e43a32a
MS
6614 parent->scope = typename_concat (&cu->comp_unit_obstack,
6615 grandparent_scope,
f55ee35c 6616 parent->name, 0, cu);
72bf9492 6617 }
72bf9492
DJ
6618 else
6619 {
6620 /* FIXME drow/2004-04-01: What should we be doing with
6621 function-local names? For partial symbols, we should probably be
6622 ignoring them. */
6623 complaint (&symfile_complaints,
e2e0b3e5 6624 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6625 parent->tag, pdi->offset.sect_off);
72bf9492 6626 parent->scope = grandparent_scope;
c906108c
SS
6627 }
6628
72bf9492
DJ
6629 parent->scope_set = 1;
6630 return parent->scope;
6631}
6632
6633/* Return the fully scoped name associated with PDI, from compilation unit
6634 CU. The result will be allocated with malloc. */
4568ecf9 6635
72bf9492
DJ
6636static char *
6637partial_die_full_name (struct partial_die_info *pdi,
6638 struct dwarf2_cu *cu)
6639{
15d034d0 6640 const char *parent_scope;
72bf9492 6641
98bfdba5
PA
6642 /* If this is a template instantiation, we can not work out the
6643 template arguments from partial DIEs. So, unfortunately, we have
6644 to go through the full DIEs. At least any work we do building
6645 types here will be reused if full symbols are loaded later. */
6646 if (pdi->has_template_arguments)
6647 {
6648 fixup_partial_die (pdi, cu);
6649
6650 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6651 {
6652 struct die_info *die;
6653 struct attribute attr;
6654 struct dwarf2_cu *ref_cu = cu;
6655
b64f50a1 6656 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6657 attr.name = 0;
6658 attr.form = DW_FORM_ref_addr;
4568ecf9 6659 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6660 die = follow_die_ref (NULL, &attr, &ref_cu);
6661
6662 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6663 }
6664 }
6665
72bf9492
DJ
6666 parent_scope = partial_die_parent_scope (pdi, cu);
6667 if (parent_scope == NULL)
6668 return NULL;
6669 else
f55ee35c 6670 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6671}
6672
6673static void
72bf9492 6674add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6675{
e7c27a73 6676 struct objfile *objfile = cu->objfile;
c906108c 6677 CORE_ADDR addr = 0;
15d034d0 6678 const char *actual_name = NULL;
e142c38c 6679 CORE_ADDR baseaddr;
15d034d0 6680 char *built_actual_name;
e142c38c
DJ
6681
6682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6683
15d034d0
TT
6684 built_actual_name = partial_die_full_name (pdi, cu);
6685 if (built_actual_name != NULL)
6686 actual_name = built_actual_name;
63d06c5c 6687
72bf9492
DJ
6688 if (actual_name == NULL)
6689 actual_name = pdi->name;
6690
c906108c
SS
6691 switch (pdi->tag)
6692 {
6693 case DW_TAG_subprogram:
2cfa0c8d 6694 if (pdi->is_external || cu->language == language_ada)
c906108c 6695 {
2cfa0c8d
JB
6696 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6697 of the global scope. But in Ada, we want to be able to access
6698 nested procedures globally. So all Ada subprograms are stored
6699 in the global scope. */
f47fb265 6700 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6701 mst_text, objfile); */
f47fb265 6702 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6703 built_actual_name != NULL,
f47fb265
MS
6704 VAR_DOMAIN, LOC_BLOCK,
6705 &objfile->global_psymbols,
6706 0, pdi->lowpc + baseaddr,
6707 cu->language, objfile);
c906108c
SS
6708 }
6709 else
6710 {
f47fb265 6711 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6712 mst_file_text, objfile); */
f47fb265 6713 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6714 built_actual_name != NULL,
f47fb265
MS
6715 VAR_DOMAIN, LOC_BLOCK,
6716 &objfile->static_psymbols,
6717 0, pdi->lowpc + baseaddr,
6718 cu->language, objfile);
c906108c
SS
6719 }
6720 break;
72929c62
JB
6721 case DW_TAG_constant:
6722 {
6723 struct psymbol_allocation_list *list;
6724
6725 if (pdi->is_external)
6726 list = &objfile->global_psymbols;
6727 else
6728 list = &objfile->static_psymbols;
f47fb265 6729 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6730 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6731 list, 0, 0, cu->language, objfile);
72929c62
JB
6732 }
6733 break;
c906108c 6734 case DW_TAG_variable:
95554aad
TT
6735 if (pdi->d.locdesc)
6736 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6737
95554aad 6738 if (pdi->d.locdesc
caac4577
JG
6739 && addr == 0
6740 && !dwarf2_per_objfile->has_section_at_zero)
6741 {
6742 /* A global or static variable may also have been stripped
6743 out by the linker if unused, in which case its address
6744 will be nullified; do not add such variables into partial
6745 symbol table then. */
6746 }
6747 else if (pdi->is_external)
c906108c
SS
6748 {
6749 /* Global Variable.
6750 Don't enter into the minimal symbol tables as there is
6751 a minimal symbol table entry from the ELF symbols already.
6752 Enter into partial symbol table if it has a location
6753 descriptor or a type.
6754 If the location descriptor is missing, new_symbol will create
6755 a LOC_UNRESOLVED symbol, the address of the variable will then
6756 be determined from the minimal symbol table whenever the variable
6757 is referenced.
6758 The address for the partial symbol table entry is not
6759 used by GDB, but it comes in handy for debugging partial symbol
6760 table building. */
6761
95554aad 6762 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6763 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6764 built_actual_name != NULL,
f47fb265
MS
6765 VAR_DOMAIN, LOC_STATIC,
6766 &objfile->global_psymbols,
6767 0, addr + baseaddr,
6768 cu->language, objfile);
c906108c
SS
6769 }
6770 else
6771 {
0963b4bd 6772 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6773 if (pdi->d.locdesc == NULL)
decbce07 6774 {
15d034d0 6775 xfree (built_actual_name);
decbce07
MS
6776 return;
6777 }
f47fb265 6778 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6779 mst_file_data, objfile); */
f47fb265 6780 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6781 built_actual_name != NULL,
f47fb265
MS
6782 VAR_DOMAIN, LOC_STATIC,
6783 &objfile->static_psymbols,
6784 0, addr + baseaddr,
6785 cu->language, objfile);
c906108c
SS
6786 }
6787 break;
6788 case DW_TAG_typedef:
6789 case DW_TAG_base_type:
a02abb62 6790 case DW_TAG_subrange_type:
38d518c9 6791 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6792 built_actual_name != NULL,
176620f1 6793 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6794 &objfile->static_psymbols,
e142c38c 6795 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6796 break;
74921315 6797 case DW_TAG_imported_declaration:
72bf9492
DJ
6798 case DW_TAG_namespace:
6799 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6800 built_actual_name != NULL,
72bf9492
DJ
6801 VAR_DOMAIN, LOC_TYPEDEF,
6802 &objfile->global_psymbols,
6803 0, (CORE_ADDR) 0, cu->language, objfile);
6804 break;
530e8392
KB
6805 case DW_TAG_module:
6806 add_psymbol_to_list (actual_name, strlen (actual_name),
6807 built_actual_name != NULL,
6808 MODULE_DOMAIN, LOC_TYPEDEF,
6809 &objfile->global_psymbols,
6810 0, (CORE_ADDR) 0, cu->language, objfile);
6811 break;
c906108c 6812 case DW_TAG_class_type:
680b30c7 6813 case DW_TAG_interface_type:
c906108c
SS
6814 case DW_TAG_structure_type:
6815 case DW_TAG_union_type:
6816 case DW_TAG_enumeration_type:
fa4028e9
JB
6817 /* Skip external references. The DWARF standard says in the section
6818 about "Structure, Union, and Class Type Entries": "An incomplete
6819 structure, union or class type is represented by a structure,
6820 union or class entry that does not have a byte size attribute
6821 and that has a DW_AT_declaration attribute." */
6822 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6823 {
15d034d0 6824 xfree (built_actual_name);
decbce07
MS
6825 return;
6826 }
fa4028e9 6827
63d06c5c
DC
6828 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6829 static vs. global. */
38d518c9 6830 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6831 built_actual_name != NULL,
176620f1 6832 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6833 (cu->language == language_cplus
6834 || cu->language == language_java)
63d06c5c
DC
6835 ? &objfile->global_psymbols
6836 : &objfile->static_psymbols,
e142c38c 6837 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6838
c906108c
SS
6839 break;
6840 case DW_TAG_enumerator:
38d518c9 6841 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6842 built_actual_name != NULL,
176620f1 6843 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6844 (cu->language == language_cplus
6845 || cu->language == language_java)
f6fe98ef
DJ
6846 ? &objfile->global_psymbols
6847 : &objfile->static_psymbols,
e142c38c 6848 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6849 break;
6850 default:
6851 break;
6852 }
5c4e30ca 6853
15d034d0 6854 xfree (built_actual_name);
c906108c
SS
6855}
6856
5c4e30ca
DC
6857/* Read a partial die corresponding to a namespace; also, add a symbol
6858 corresponding to that namespace to the symbol table. NAMESPACE is
6859 the name of the enclosing namespace. */
91c24f0a 6860
72bf9492
DJ
6861static void
6862add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6863 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6864 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6865{
72bf9492 6866 /* Add a symbol for the namespace. */
e7c27a73 6867
72bf9492 6868 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6869
6870 /* Now scan partial symbols in that namespace. */
6871
91c24f0a 6872 if (pdi->has_children)
5734ee8b 6873 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6874}
6875
5d7cb8df
JK
6876/* Read a partial die corresponding to a Fortran module. */
6877
6878static void
6879add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6880 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6881{
530e8392
KB
6882 /* Add a symbol for the namespace. */
6883
6884 add_partial_symbol (pdi, cu);
6885
f55ee35c 6886 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6887
6888 if (pdi->has_children)
6889 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6890}
6891
bc30ff58
JB
6892/* Read a partial die corresponding to a subprogram and create a partial
6893 symbol for that subprogram. When the CU language allows it, this
6894 routine also defines a partial symbol for each nested subprogram
6895 that this subprogram contains.
6e70227d 6896
bc30ff58
JB
6897 DIE my also be a lexical block, in which case we simply search
6898 recursively for suprograms defined inside that lexical block.
6899 Again, this is only performed when the CU language allows this
6900 type of definitions. */
6901
6902static void
6903add_partial_subprogram (struct partial_die_info *pdi,
6904 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6905 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6906{
6907 if (pdi->tag == DW_TAG_subprogram)
6908 {
6909 if (pdi->has_pc_info)
6910 {
6911 if (pdi->lowpc < *lowpc)
6912 *lowpc = pdi->lowpc;
6913 if (pdi->highpc > *highpc)
6914 *highpc = pdi->highpc;
5734ee8b
DJ
6915 if (need_pc)
6916 {
6917 CORE_ADDR baseaddr;
6918 struct objfile *objfile = cu->objfile;
6919
6920 baseaddr = ANOFFSET (objfile->section_offsets,
6921 SECT_OFF_TEXT (objfile));
6922 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6923 pdi->lowpc + baseaddr,
6924 pdi->highpc - 1 + baseaddr,
9291a0cd 6925 cu->per_cu->v.psymtab);
5734ee8b 6926 }
481860b3
GB
6927 }
6928
6929 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6930 {
bc30ff58 6931 if (!pdi->is_declaration)
e8d05480
JB
6932 /* Ignore subprogram DIEs that do not have a name, they are
6933 illegal. Do not emit a complaint at this point, we will
6934 do so when we convert this psymtab into a symtab. */
6935 if (pdi->name)
6936 add_partial_symbol (pdi, cu);
bc30ff58
JB
6937 }
6938 }
6e70227d 6939
bc30ff58
JB
6940 if (! pdi->has_children)
6941 return;
6942
6943 if (cu->language == language_ada)
6944 {
6945 pdi = pdi->die_child;
6946 while (pdi != NULL)
6947 {
6948 fixup_partial_die (pdi, cu);
6949 if (pdi->tag == DW_TAG_subprogram
6950 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6951 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6952 pdi = pdi->die_sibling;
6953 }
6954 }
6955}
6956
91c24f0a
DC
6957/* Read a partial die corresponding to an enumeration type. */
6958
72bf9492
DJ
6959static void
6960add_partial_enumeration (struct partial_die_info *enum_pdi,
6961 struct dwarf2_cu *cu)
91c24f0a 6962{
72bf9492 6963 struct partial_die_info *pdi;
91c24f0a
DC
6964
6965 if (enum_pdi->name != NULL)
72bf9492
DJ
6966 add_partial_symbol (enum_pdi, cu);
6967
6968 pdi = enum_pdi->die_child;
6969 while (pdi)
91c24f0a 6970 {
72bf9492 6971 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6972 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6973 else
72bf9492
DJ
6974 add_partial_symbol (pdi, cu);
6975 pdi = pdi->die_sibling;
91c24f0a 6976 }
91c24f0a
DC
6977}
6978
6caca83c
CC
6979/* Return the initial uleb128 in the die at INFO_PTR. */
6980
6981static unsigned int
d521ce57 6982peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6983{
6984 unsigned int bytes_read;
6985
6986 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6987}
6988
4bb7a0a7
DJ
6989/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6990 Return the corresponding abbrev, or NULL if the number is zero (indicating
6991 an empty DIE). In either case *BYTES_READ will be set to the length of
6992 the initial number. */
6993
6994static struct abbrev_info *
d521ce57 6995peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6996 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6997{
6998 bfd *abfd = cu->objfile->obfd;
6999 unsigned int abbrev_number;
7000 struct abbrev_info *abbrev;
7001
7002 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7003
7004 if (abbrev_number == 0)
7005 return NULL;
7006
433df2d4 7007 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7008 if (!abbrev)
7009 {
3e43a32a
MS
7010 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7011 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7012 }
7013
7014 return abbrev;
7015}
7016
93311388
DE
7017/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7018 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7019 DIE. Any children of the skipped DIEs will also be skipped. */
7020
d521ce57
TT
7021static const gdb_byte *
7022skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7023{
dee91e82 7024 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7025 struct abbrev_info *abbrev;
7026 unsigned int bytes_read;
7027
7028 while (1)
7029 {
7030 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7031 if (abbrev == NULL)
7032 return info_ptr + bytes_read;
7033 else
dee91e82 7034 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7035 }
7036}
7037
93311388
DE
7038/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7039 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7040 abbrev corresponding to that skipped uleb128 should be passed in
7041 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7042 children. */
7043
d521ce57
TT
7044static const gdb_byte *
7045skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7046 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7047{
7048 unsigned int bytes_read;
7049 struct attribute attr;
dee91e82
DE
7050 bfd *abfd = reader->abfd;
7051 struct dwarf2_cu *cu = reader->cu;
d521ce57 7052 const gdb_byte *buffer = reader->buffer;
f664829e 7053 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7054 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7055 unsigned int form, i;
7056
7057 for (i = 0; i < abbrev->num_attrs; i++)
7058 {
7059 /* The only abbrev we care about is DW_AT_sibling. */
7060 if (abbrev->attrs[i].name == DW_AT_sibling)
7061 {
dee91e82 7062 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7063 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7064 complaint (&symfile_complaints,
7065 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7066 else
b9502d3f
WN
7067 {
7068 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7069 const gdb_byte *sibling_ptr = buffer + off;
7070
7071 if (sibling_ptr < info_ptr)
7072 complaint (&symfile_complaints,
7073 _("DW_AT_sibling points backwards"));
7074 else
7075 return sibling_ptr;
7076 }
4bb7a0a7
DJ
7077 }
7078
7079 /* If it isn't DW_AT_sibling, skip this attribute. */
7080 form = abbrev->attrs[i].form;
7081 skip_attribute:
7082 switch (form)
7083 {
4bb7a0a7 7084 case DW_FORM_ref_addr:
ae411497
TT
7085 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7086 and later it is offset sized. */
7087 if (cu->header.version == 2)
7088 info_ptr += cu->header.addr_size;
7089 else
7090 info_ptr += cu->header.offset_size;
7091 break;
36586728
TT
7092 case DW_FORM_GNU_ref_alt:
7093 info_ptr += cu->header.offset_size;
7094 break;
ae411497 7095 case DW_FORM_addr:
4bb7a0a7
DJ
7096 info_ptr += cu->header.addr_size;
7097 break;
7098 case DW_FORM_data1:
7099 case DW_FORM_ref1:
7100 case DW_FORM_flag:
7101 info_ptr += 1;
7102 break;
2dc7f7b3
TT
7103 case DW_FORM_flag_present:
7104 break;
4bb7a0a7
DJ
7105 case DW_FORM_data2:
7106 case DW_FORM_ref2:
7107 info_ptr += 2;
7108 break;
7109 case DW_FORM_data4:
7110 case DW_FORM_ref4:
7111 info_ptr += 4;
7112 break;
7113 case DW_FORM_data8:
7114 case DW_FORM_ref8:
55f1336d 7115 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7116 info_ptr += 8;
7117 break;
7118 case DW_FORM_string:
9b1c24c8 7119 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7120 info_ptr += bytes_read;
7121 break;
2dc7f7b3 7122 case DW_FORM_sec_offset:
4bb7a0a7 7123 case DW_FORM_strp:
36586728 7124 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7125 info_ptr += cu->header.offset_size;
7126 break;
2dc7f7b3 7127 case DW_FORM_exprloc:
4bb7a0a7
DJ
7128 case DW_FORM_block:
7129 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7130 info_ptr += bytes_read;
7131 break;
7132 case DW_FORM_block1:
7133 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7134 break;
7135 case DW_FORM_block2:
7136 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7137 break;
7138 case DW_FORM_block4:
7139 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7140 break;
7141 case DW_FORM_sdata:
7142 case DW_FORM_udata:
7143 case DW_FORM_ref_udata:
3019eac3
DE
7144 case DW_FORM_GNU_addr_index:
7145 case DW_FORM_GNU_str_index:
d521ce57 7146 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7147 break;
7148 case DW_FORM_indirect:
7149 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7150 info_ptr += bytes_read;
7151 /* We need to continue parsing from here, so just go back to
7152 the top. */
7153 goto skip_attribute;
7154
7155 default:
3e43a32a
MS
7156 error (_("Dwarf Error: Cannot handle %s "
7157 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7158 dwarf_form_name (form),
7159 bfd_get_filename (abfd));
7160 }
7161 }
7162
7163 if (abbrev->has_children)
dee91e82 7164 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7165 else
7166 return info_ptr;
7167}
7168
93311388 7169/* Locate ORIG_PDI's sibling.
dee91e82 7170 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7171
d521ce57 7172static const gdb_byte *
dee91e82
DE
7173locate_pdi_sibling (const struct die_reader_specs *reader,
7174 struct partial_die_info *orig_pdi,
d521ce57 7175 const gdb_byte *info_ptr)
91c24f0a
DC
7176{
7177 /* Do we know the sibling already? */
72bf9492 7178
91c24f0a
DC
7179 if (orig_pdi->sibling)
7180 return orig_pdi->sibling;
7181
7182 /* Are there any children to deal with? */
7183
7184 if (!orig_pdi->has_children)
7185 return info_ptr;
7186
4bb7a0a7 7187 /* Skip the children the long way. */
91c24f0a 7188
dee91e82 7189 return skip_children (reader, info_ptr);
91c24f0a
DC
7190}
7191
257e7a09 7192/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7193 not NULL. */
c906108c
SS
7194
7195static void
257e7a09
YQ
7196dwarf2_read_symtab (struct partial_symtab *self,
7197 struct objfile *objfile)
c906108c 7198{
257e7a09 7199 if (self->readin)
c906108c 7200 {
442e4d9c 7201 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7202 self->filename);
442e4d9c
YQ
7203 }
7204 else
7205 {
7206 if (info_verbose)
c906108c 7207 {
442e4d9c 7208 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7209 self->filename);
442e4d9c 7210 gdb_flush (gdb_stdout);
c906108c 7211 }
c906108c 7212
442e4d9c
YQ
7213 /* Restore our global data. */
7214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7215
442e4d9c
YQ
7216 /* If this psymtab is constructed from a debug-only objfile, the
7217 has_section_at_zero flag will not necessarily be correct. We
7218 can get the correct value for this flag by looking at the data
7219 associated with the (presumably stripped) associated objfile. */
7220 if (objfile->separate_debug_objfile_backlink)
7221 {
7222 struct dwarf2_per_objfile *dpo_backlink
7223 = objfile_data (objfile->separate_debug_objfile_backlink,
7224 dwarf2_objfile_data_key);
9a619af0 7225
442e4d9c
YQ
7226 dwarf2_per_objfile->has_section_at_zero
7227 = dpo_backlink->has_section_at_zero;
7228 }
b2ab525c 7229
442e4d9c 7230 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7231
257e7a09 7232 psymtab_to_symtab_1 (self);
c906108c 7233
442e4d9c
YQ
7234 /* Finish up the debug error message. */
7235 if (info_verbose)
7236 printf_filtered (_("done.\n"));
c906108c 7237 }
95554aad
TT
7238
7239 process_cu_includes ();
c906108c 7240}
9cdd5dbd
DE
7241\f
7242/* Reading in full CUs. */
c906108c 7243
10b3939b
DJ
7244/* Add PER_CU to the queue. */
7245
7246static void
95554aad
TT
7247queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7248 enum language pretend_language)
10b3939b
DJ
7249{
7250 struct dwarf2_queue_item *item;
7251
7252 per_cu->queued = 1;
7253 item = xmalloc (sizeof (*item));
7254 item->per_cu = per_cu;
95554aad 7255 item->pretend_language = pretend_language;
10b3939b
DJ
7256 item->next = NULL;
7257
7258 if (dwarf2_queue == NULL)
7259 dwarf2_queue = item;
7260 else
7261 dwarf2_queue_tail->next = item;
7262
7263 dwarf2_queue_tail = item;
7264}
7265
89e63ee4
DE
7266/* If PER_CU is not yet queued, add it to the queue.
7267 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7268 dependency.
0907af0c 7269 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7270 meaning either PER_CU is already queued or it is already loaded.
7271
7272 N.B. There is an invariant here that if a CU is queued then it is loaded.
7273 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7274
7275static int
89e63ee4 7276maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7277 struct dwarf2_per_cu_data *per_cu,
7278 enum language pretend_language)
7279{
7280 /* We may arrive here during partial symbol reading, if we need full
7281 DIEs to process an unusual case (e.g. template arguments). Do
7282 not queue PER_CU, just tell our caller to load its DIEs. */
7283 if (dwarf2_per_objfile->reading_partial_symbols)
7284 {
7285 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7286 return 1;
7287 return 0;
7288 }
7289
7290 /* Mark the dependence relation so that we don't flush PER_CU
7291 too early. */
89e63ee4
DE
7292 if (dependent_cu != NULL)
7293 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7294
7295 /* If it's already on the queue, we have nothing to do. */
7296 if (per_cu->queued)
7297 return 0;
7298
7299 /* If the compilation unit is already loaded, just mark it as
7300 used. */
7301 if (per_cu->cu != NULL)
7302 {
7303 per_cu->cu->last_used = 0;
7304 return 0;
7305 }
7306
7307 /* Add it to the queue. */
7308 queue_comp_unit (per_cu, pretend_language);
7309
7310 return 1;
7311}
7312
10b3939b
DJ
7313/* Process the queue. */
7314
7315static void
a0f42c21 7316process_queue (void)
10b3939b
DJ
7317{
7318 struct dwarf2_queue_item *item, *next_item;
7319
45cfd468
DE
7320 if (dwarf2_read_debug)
7321 {
7322 fprintf_unfiltered (gdb_stdlog,
7323 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7324 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7325 }
7326
03dd20cc
DJ
7327 /* The queue starts out with one item, but following a DIE reference
7328 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7329 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7330 {
9291a0cd
TT
7331 if (dwarf2_per_objfile->using_index
7332 ? !item->per_cu->v.quick->symtab
7333 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7334 {
7335 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7336 unsigned int debug_print_threshold;
247f5c4f 7337 char buf[100];
f4dc4d17 7338
247f5c4f 7339 if (per_cu->is_debug_types)
f4dc4d17 7340 {
247f5c4f
DE
7341 struct signatured_type *sig_type =
7342 (struct signatured_type *) per_cu;
7343
7344 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7345 hex_string (sig_type->signature),
7346 per_cu->offset.sect_off);
7347 /* There can be 100s of TUs.
7348 Only print them in verbose mode. */
7349 debug_print_threshold = 2;
f4dc4d17 7350 }
247f5c4f 7351 else
73be47f5
DE
7352 {
7353 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7354 debug_print_threshold = 1;
7355 }
247f5c4f 7356
73be47f5 7357 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7358 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7359
7360 if (per_cu->is_debug_types)
7361 process_full_type_unit (per_cu, item->pretend_language);
7362 else
7363 process_full_comp_unit (per_cu, item->pretend_language);
7364
73be47f5 7365 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7366 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7367 }
10b3939b
DJ
7368
7369 item->per_cu->queued = 0;
7370 next_item = item->next;
7371 xfree (item);
7372 }
7373
7374 dwarf2_queue_tail = NULL;
45cfd468
DE
7375
7376 if (dwarf2_read_debug)
7377 {
7378 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7379 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7380 }
10b3939b
DJ
7381}
7382
7383/* Free all allocated queue entries. This function only releases anything if
7384 an error was thrown; if the queue was processed then it would have been
7385 freed as we went along. */
7386
7387static void
7388dwarf2_release_queue (void *dummy)
7389{
7390 struct dwarf2_queue_item *item, *last;
7391
7392 item = dwarf2_queue;
7393 while (item)
7394 {
7395 /* Anything still marked queued is likely to be in an
7396 inconsistent state, so discard it. */
7397 if (item->per_cu->queued)
7398 {
7399 if (item->per_cu->cu != NULL)
dee91e82 7400 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7401 item->per_cu->queued = 0;
7402 }
7403
7404 last = item;
7405 item = item->next;
7406 xfree (last);
7407 }
7408
7409 dwarf2_queue = dwarf2_queue_tail = NULL;
7410}
7411
7412/* Read in full symbols for PST, and anything it depends on. */
7413
c906108c 7414static void
fba45db2 7415psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7416{
10b3939b 7417 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7418 int i;
7419
95554aad
TT
7420 if (pst->readin)
7421 return;
7422
aaa75496 7423 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7424 if (!pst->dependencies[i]->readin
7425 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7426 {
7427 /* Inform about additional files that need to be read in. */
7428 if (info_verbose)
7429 {
a3f17187 7430 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7431 fputs_filtered (" ", gdb_stdout);
7432 wrap_here ("");
7433 fputs_filtered ("and ", gdb_stdout);
7434 wrap_here ("");
7435 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7436 wrap_here (""); /* Flush output. */
aaa75496
JB
7437 gdb_flush (gdb_stdout);
7438 }
7439 psymtab_to_symtab_1 (pst->dependencies[i]);
7440 }
7441
e38df1d0 7442 per_cu = pst->read_symtab_private;
10b3939b
DJ
7443
7444 if (per_cu == NULL)
aaa75496
JB
7445 {
7446 /* It's an include file, no symbols to read for it.
7447 Everything is in the parent symtab. */
7448 pst->readin = 1;
7449 return;
7450 }
c906108c 7451
a0f42c21 7452 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7453}
7454
dee91e82
DE
7455/* Trivial hash function for die_info: the hash value of a DIE
7456 is its offset in .debug_info for this objfile. */
10b3939b 7457
dee91e82
DE
7458static hashval_t
7459die_hash (const void *item)
10b3939b 7460{
dee91e82 7461 const struct die_info *die = item;
6502dd73 7462
dee91e82
DE
7463 return die->offset.sect_off;
7464}
63d06c5c 7465
dee91e82
DE
7466/* Trivial comparison function for die_info structures: two DIEs
7467 are equal if they have the same offset. */
98bfdba5 7468
dee91e82
DE
7469static int
7470die_eq (const void *item_lhs, const void *item_rhs)
7471{
7472 const struct die_info *die_lhs = item_lhs;
7473 const struct die_info *die_rhs = item_rhs;
c906108c 7474
dee91e82
DE
7475 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7476}
c906108c 7477
dee91e82
DE
7478/* die_reader_func for load_full_comp_unit.
7479 This is identical to read_signatured_type_reader,
7480 but is kept separate for now. */
c906108c 7481
dee91e82
DE
7482static void
7483load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7484 const gdb_byte *info_ptr,
dee91e82
DE
7485 struct die_info *comp_unit_die,
7486 int has_children,
7487 void *data)
7488{
7489 struct dwarf2_cu *cu = reader->cu;
95554aad 7490 enum language *language_ptr = data;
6caca83c 7491
dee91e82
DE
7492 gdb_assert (cu->die_hash == NULL);
7493 cu->die_hash =
7494 htab_create_alloc_ex (cu->header.length / 12,
7495 die_hash,
7496 die_eq,
7497 NULL,
7498 &cu->comp_unit_obstack,
7499 hashtab_obstack_allocate,
7500 dummy_obstack_deallocate);
e142c38c 7501
dee91e82
DE
7502 if (has_children)
7503 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7504 &info_ptr, comp_unit_die);
7505 cu->dies = comp_unit_die;
7506 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7507
7508 /* We try not to read any attributes in this function, because not
9cdd5dbd 7509 all CUs needed for references have been loaded yet, and symbol
10b3939b 7510 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7511 or we won't be able to build types correctly.
7512 Similarly, if we do not read the producer, we can not apply
7513 producer-specific interpretation. */
95554aad 7514 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7515}
10b3939b 7516
dee91e82 7517/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7518
dee91e82 7519static void
95554aad
TT
7520load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7521 enum language pretend_language)
dee91e82 7522{
3019eac3 7523 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7524
f4dc4d17
DE
7525 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7526 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7527}
7528
3da10d80
KS
7529/* Add a DIE to the delayed physname list. */
7530
7531static void
7532add_to_method_list (struct type *type, int fnfield_index, int index,
7533 const char *name, struct die_info *die,
7534 struct dwarf2_cu *cu)
7535{
7536 struct delayed_method_info mi;
7537 mi.type = type;
7538 mi.fnfield_index = fnfield_index;
7539 mi.index = index;
7540 mi.name = name;
7541 mi.die = die;
7542 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7543}
7544
7545/* A cleanup for freeing the delayed method list. */
7546
7547static void
7548free_delayed_list (void *ptr)
7549{
7550 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7551 if (cu->method_list != NULL)
7552 {
7553 VEC_free (delayed_method_info, cu->method_list);
7554 cu->method_list = NULL;
7555 }
7556}
7557
7558/* Compute the physnames of any methods on the CU's method list.
7559
7560 The computation of method physnames is delayed in order to avoid the
7561 (bad) condition that one of the method's formal parameters is of an as yet
7562 incomplete type. */
7563
7564static void
7565compute_delayed_physnames (struct dwarf2_cu *cu)
7566{
7567 int i;
7568 struct delayed_method_info *mi;
7569 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7570 {
1d06ead6 7571 const char *physname;
3da10d80
KS
7572 struct fn_fieldlist *fn_flp
7573 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7574 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7575 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7576 }
7577}
7578
a766d390
DE
7579/* Go objects should be embedded in a DW_TAG_module DIE,
7580 and it's not clear if/how imported objects will appear.
7581 To keep Go support simple until that's worked out,
7582 go back through what we've read and create something usable.
7583 We could do this while processing each DIE, and feels kinda cleaner,
7584 but that way is more invasive.
7585 This is to, for example, allow the user to type "p var" or "b main"
7586 without having to specify the package name, and allow lookups
7587 of module.object to work in contexts that use the expression
7588 parser. */
7589
7590static void
7591fixup_go_packaging (struct dwarf2_cu *cu)
7592{
7593 char *package_name = NULL;
7594 struct pending *list;
7595 int i;
7596
7597 for (list = global_symbols; list != NULL; list = list->next)
7598 {
7599 for (i = 0; i < list->nsyms; ++i)
7600 {
7601 struct symbol *sym = list->symbol[i];
7602
7603 if (SYMBOL_LANGUAGE (sym) == language_go
7604 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7605 {
7606 char *this_package_name = go_symbol_package_name (sym);
7607
7608 if (this_package_name == NULL)
7609 continue;
7610 if (package_name == NULL)
7611 package_name = this_package_name;
7612 else
7613 {
7614 if (strcmp (package_name, this_package_name) != 0)
7615 complaint (&symfile_complaints,
7616 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7617 (SYMBOL_SYMTAB (sym)
05cba821 7618 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7619 : objfile_name (cu->objfile)),
a766d390
DE
7620 this_package_name, package_name);
7621 xfree (this_package_name);
7622 }
7623 }
7624 }
7625 }
7626
7627 if (package_name != NULL)
7628 {
7629 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7630 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7631 package_name,
7632 strlen (package_name));
a766d390 7633 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7634 saved_package_name, objfile);
a766d390
DE
7635 struct symbol *sym;
7636
7637 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7638
e623cf5d 7639 sym = allocate_symbol (objfile);
f85f34ed 7640 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7641 SYMBOL_SET_NAMES (sym, saved_package_name,
7642 strlen (saved_package_name), 0, objfile);
a766d390
DE
7643 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7644 e.g., "main" finds the "main" module and not C's main(). */
7645 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7646 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7647 SYMBOL_TYPE (sym) = type;
7648
7649 add_symbol_to_list (sym, &global_symbols);
7650
7651 xfree (package_name);
7652 }
7653}
7654
95554aad
TT
7655/* Return the symtab for PER_CU. This works properly regardless of
7656 whether we're using the index or psymtabs. */
7657
7658static struct symtab *
7659get_symtab (struct dwarf2_per_cu_data *per_cu)
7660{
7661 return (dwarf2_per_objfile->using_index
7662 ? per_cu->v.quick->symtab
7663 : per_cu->v.psymtab->symtab);
7664}
7665
7666/* A helper function for computing the list of all symbol tables
7667 included by PER_CU. */
7668
7669static void
ec94af83
DE
7670recursively_compute_inclusions (VEC (symtab_ptr) **result,
7671 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7672 struct dwarf2_per_cu_data *per_cu,
7673 struct symtab *immediate_parent)
95554aad
TT
7674{
7675 void **slot;
7676 int ix;
ec94af83 7677 struct symtab *symtab;
95554aad
TT
7678 struct dwarf2_per_cu_data *iter;
7679
7680 slot = htab_find_slot (all_children, per_cu, INSERT);
7681 if (*slot != NULL)
7682 {
7683 /* This inclusion and its children have been processed. */
7684 return;
7685 }
7686
7687 *slot = per_cu;
7688 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7689 symtab = get_symtab (per_cu);
7690 if (symtab != NULL)
7691 {
7692 /* If this is a type unit only add its symbol table if we haven't
7693 seen it yet (type unit per_cu's can share symtabs). */
7694 if (per_cu->is_debug_types)
7695 {
7696 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7697 if (*slot == NULL)
7698 {
7699 *slot = symtab;
7700 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7701 if (symtab->user == NULL)
7702 symtab->user = immediate_parent;
ec94af83
DE
7703 }
7704 }
7705 else
f9125b6c
TT
7706 {
7707 VEC_safe_push (symtab_ptr, *result, symtab);
7708 if (symtab->user == NULL)
7709 symtab->user = immediate_parent;
7710 }
ec94af83 7711 }
95554aad
TT
7712
7713 for (ix = 0;
796a7ff8 7714 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7715 ++ix)
ec94af83
DE
7716 {
7717 recursively_compute_inclusions (result, all_children,
f9125b6c 7718 all_type_symtabs, iter, symtab);
ec94af83 7719 }
95554aad
TT
7720}
7721
7722/* Compute the symtab 'includes' fields for the symtab related to
7723 PER_CU. */
7724
7725static void
7726compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7727{
f4dc4d17
DE
7728 gdb_assert (! per_cu->is_debug_types);
7729
796a7ff8 7730 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7731 {
7732 int ix, len;
ec94af83
DE
7733 struct dwarf2_per_cu_data *per_cu_iter;
7734 struct symtab *symtab_iter;
7735 VEC (symtab_ptr) *result_symtabs = NULL;
7736 htab_t all_children, all_type_symtabs;
95554aad
TT
7737 struct symtab *symtab = get_symtab (per_cu);
7738
7739 /* If we don't have a symtab, we can just skip this case. */
7740 if (symtab == NULL)
7741 return;
7742
7743 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7744 NULL, xcalloc, xfree);
ec94af83
DE
7745 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7746 NULL, xcalloc, xfree);
95554aad
TT
7747
7748 for (ix = 0;
796a7ff8 7749 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7750 ix, per_cu_iter);
95554aad 7751 ++ix)
ec94af83
DE
7752 {
7753 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7754 all_type_symtabs, per_cu_iter,
7755 symtab);
ec94af83 7756 }
95554aad 7757
ec94af83
DE
7758 /* Now we have a transitive closure of all the included symtabs. */
7759 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7760 symtab->includes
7761 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7762 (len + 1) * sizeof (struct symtab *));
7763 for (ix = 0;
ec94af83 7764 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7765 ++ix)
ec94af83 7766 symtab->includes[ix] = symtab_iter;
95554aad
TT
7767 symtab->includes[len] = NULL;
7768
ec94af83 7769 VEC_free (symtab_ptr, result_symtabs);
95554aad 7770 htab_delete (all_children);
ec94af83 7771 htab_delete (all_type_symtabs);
95554aad
TT
7772 }
7773}
7774
7775/* Compute the 'includes' field for the symtabs of all the CUs we just
7776 read. */
7777
7778static void
7779process_cu_includes (void)
7780{
7781 int ix;
7782 struct dwarf2_per_cu_data *iter;
7783
7784 for (ix = 0;
7785 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7786 ix, iter);
7787 ++ix)
f4dc4d17
DE
7788 {
7789 if (! iter->is_debug_types)
7790 compute_symtab_includes (iter);
7791 }
95554aad
TT
7792
7793 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7794}
7795
9cdd5dbd 7796/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7797 already been loaded into memory. */
7798
7799static void
95554aad
TT
7800process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7801 enum language pretend_language)
10b3939b 7802{
10b3939b 7803 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7804 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7805 CORE_ADDR lowpc, highpc;
7806 struct symtab *symtab;
3da10d80 7807 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7808 CORE_ADDR baseaddr;
4359dff1 7809 struct block *static_block;
10b3939b
DJ
7810
7811 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7812
10b3939b
DJ
7813 buildsym_init ();
7814 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7815 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7816
7817 cu->list_in_scope = &file_symbols;
c906108c 7818
95554aad
TT
7819 cu->language = pretend_language;
7820 cu->language_defn = language_def (cu->language);
7821
c906108c 7822 /* Do line number decoding in read_file_scope () */
10b3939b 7823 process_die (cu->dies, cu);
c906108c 7824
a766d390
DE
7825 /* For now fudge the Go package. */
7826 if (cu->language == language_go)
7827 fixup_go_packaging (cu);
7828
3da10d80
KS
7829 /* Now that we have processed all the DIEs in the CU, all the types
7830 should be complete, and it should now be safe to compute all of the
7831 physnames. */
7832 compute_delayed_physnames (cu);
7833 do_cleanups (delayed_list_cleanup);
7834
fae299cd
DC
7835 /* Some compilers don't define a DW_AT_high_pc attribute for the
7836 compilation unit. If the DW_AT_high_pc is missing, synthesize
7837 it, by scanning the DIE's below the compilation unit. */
10b3939b 7838 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7839
36586728 7840 static_block
ff546935 7841 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7842
7843 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7844 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7845 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7846 addrmap to help ensure it has an accurate map of pc values belonging to
7847 this comp unit. */
7848 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7849
7850 symtab = end_symtab_from_static_block (static_block, objfile,
7851 SECT_OFF_TEXT (objfile), 0);
c906108c 7852
8be455d7 7853 if (symtab != NULL)
c906108c 7854 {
df15bd07 7855 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7856
8be455d7
JK
7857 /* Set symtab language to language from DW_AT_language. If the
7858 compilation is from a C file generated by language preprocessors, do
7859 not set the language if it was already deduced by start_subfile. */
7860 if (!(cu->language == language_c && symtab->language != language_c))
7861 symtab->language = cu->language;
7862
7863 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7864 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7865 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7866 there were bugs in prologue debug info, fixed later in GCC-4.5
7867 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7868
7869 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7870 needed, it would be wrong due to missing DW_AT_producer there.
7871
7872 Still one can confuse GDB by using non-standard GCC compilation
7873 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7874 */
ab260dad 7875 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7876 symtab->locations_valid = 1;
e0d00bc7
JK
7877
7878 if (gcc_4_minor >= 5)
7879 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7880
7881 symtab->call_site_htab = cu->call_site_htab;
c906108c 7882 }
9291a0cd
TT
7883
7884 if (dwarf2_per_objfile->using_index)
7885 per_cu->v.quick->symtab = symtab;
7886 else
7887 {
7888 struct partial_symtab *pst = per_cu->v.psymtab;
7889 pst->symtab = symtab;
7890 pst->readin = 1;
7891 }
c906108c 7892
95554aad
TT
7893 /* Push it for inclusion processing later. */
7894 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7895
c906108c 7896 do_cleanups (back_to);
f4dc4d17 7897}
45cfd468 7898
f4dc4d17
DE
7899/* Generate full symbol information for type unit PER_CU, whose DIEs have
7900 already been loaded into memory. */
7901
7902static void
7903process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7904 enum language pretend_language)
7905{
7906 struct dwarf2_cu *cu = per_cu->cu;
7907 struct objfile *objfile = per_cu->objfile;
7908 struct symtab *symtab;
7909 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7910 struct signatured_type *sig_type;
7911
7912 gdb_assert (per_cu->is_debug_types);
7913 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7914
7915 buildsym_init ();
7916 back_to = make_cleanup (really_free_pendings, NULL);
7917 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7918
7919 cu->list_in_scope = &file_symbols;
7920
7921 cu->language = pretend_language;
7922 cu->language_defn = language_def (cu->language);
7923
7924 /* The symbol tables are set up in read_type_unit_scope. */
7925 process_die (cu->dies, cu);
7926
7927 /* For now fudge the Go package. */
7928 if (cu->language == language_go)
7929 fixup_go_packaging (cu);
7930
7931 /* Now that we have processed all the DIEs in the CU, all the types
7932 should be complete, and it should now be safe to compute all of the
7933 physnames. */
7934 compute_delayed_physnames (cu);
7935 do_cleanups (delayed_list_cleanup);
7936
7937 /* TUs share symbol tables.
7938 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7939 of it with end_expandable_symtab. Otherwise, complete the addition of
7940 this TU's symbols to the existing symtab. */
0186c6a7 7941 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7942 {
f4dc4d17 7943 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7944 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7945
7946 if (symtab != NULL)
7947 {
7948 /* Set symtab language to language from DW_AT_language. If the
7949 compilation is from a C file generated by language preprocessors,
7950 do not set the language if it was already deduced by
7951 start_subfile. */
7952 if (!(cu->language == language_c && symtab->language != language_c))
7953 symtab->language = cu->language;
7954 }
7955 }
7956 else
7957 {
7958 augment_type_symtab (objfile,
0186c6a7
DE
7959 sig_type->type_unit_group->primary_symtab);
7960 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7961 }
7962
7963 if (dwarf2_per_objfile->using_index)
7964 per_cu->v.quick->symtab = symtab;
7965 else
7966 {
7967 struct partial_symtab *pst = per_cu->v.psymtab;
7968 pst->symtab = symtab;
7969 pst->readin = 1;
45cfd468 7970 }
f4dc4d17
DE
7971
7972 do_cleanups (back_to);
c906108c
SS
7973}
7974
95554aad
TT
7975/* Process an imported unit DIE. */
7976
7977static void
7978process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7979{
7980 struct attribute *attr;
7981
f4dc4d17
DE
7982 /* For now we don't handle imported units in type units. */
7983 if (cu->per_cu->is_debug_types)
7984 {
7985 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7986 " supported in type units [in module %s]"),
4262abfb 7987 objfile_name (cu->objfile));
f4dc4d17
DE
7988 }
7989
95554aad
TT
7990 attr = dwarf2_attr (die, DW_AT_import, cu);
7991 if (attr != NULL)
7992 {
7993 struct dwarf2_per_cu_data *per_cu;
7994 struct symtab *imported_symtab;
7995 sect_offset offset;
36586728 7996 int is_dwz;
95554aad
TT
7997
7998 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7999 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8000 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8001
69d751e3 8002 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8003 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8004 load_full_comp_unit (per_cu, cu->language);
8005
796a7ff8 8006 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8007 per_cu);
8008 }
8009}
8010
c906108c
SS
8011/* Process a die and its children. */
8012
8013static void
e7c27a73 8014process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8015{
8016 switch (die->tag)
8017 {
8018 case DW_TAG_padding:
8019 break;
8020 case DW_TAG_compile_unit:
95554aad 8021 case DW_TAG_partial_unit:
e7c27a73 8022 read_file_scope (die, cu);
c906108c 8023 break;
348e048f
DE
8024 case DW_TAG_type_unit:
8025 read_type_unit_scope (die, cu);
8026 break;
c906108c 8027 case DW_TAG_subprogram:
c906108c 8028 case DW_TAG_inlined_subroutine:
edb3359d 8029 read_func_scope (die, cu);
c906108c
SS
8030 break;
8031 case DW_TAG_lexical_block:
14898363
L
8032 case DW_TAG_try_block:
8033 case DW_TAG_catch_block:
e7c27a73 8034 read_lexical_block_scope (die, cu);
c906108c 8035 break;
96408a79
SA
8036 case DW_TAG_GNU_call_site:
8037 read_call_site_scope (die, cu);
8038 break;
c906108c 8039 case DW_TAG_class_type:
680b30c7 8040 case DW_TAG_interface_type:
c906108c
SS
8041 case DW_TAG_structure_type:
8042 case DW_TAG_union_type:
134d01f1 8043 process_structure_scope (die, cu);
c906108c
SS
8044 break;
8045 case DW_TAG_enumeration_type:
134d01f1 8046 process_enumeration_scope (die, cu);
c906108c 8047 break;
134d01f1 8048
f792889a
DJ
8049 /* These dies have a type, but processing them does not create
8050 a symbol or recurse to process the children. Therefore we can
8051 read them on-demand through read_type_die. */
c906108c 8052 case DW_TAG_subroutine_type:
72019c9c 8053 case DW_TAG_set_type:
c906108c 8054 case DW_TAG_array_type:
c906108c 8055 case DW_TAG_pointer_type:
c906108c 8056 case DW_TAG_ptr_to_member_type:
c906108c 8057 case DW_TAG_reference_type:
c906108c 8058 case DW_TAG_string_type:
c906108c 8059 break;
134d01f1 8060
c906108c 8061 case DW_TAG_base_type:
a02abb62 8062 case DW_TAG_subrange_type:
cb249c71 8063 case DW_TAG_typedef:
134d01f1
DJ
8064 /* Add a typedef symbol for the type definition, if it has a
8065 DW_AT_name. */
f792889a 8066 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8067 break;
c906108c 8068 case DW_TAG_common_block:
e7c27a73 8069 read_common_block (die, cu);
c906108c
SS
8070 break;
8071 case DW_TAG_common_inclusion:
8072 break;
d9fa45fe 8073 case DW_TAG_namespace:
4d4ec4e5 8074 cu->processing_has_namespace_info = 1;
e7c27a73 8075 read_namespace (die, cu);
d9fa45fe 8076 break;
5d7cb8df 8077 case DW_TAG_module:
4d4ec4e5 8078 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8079 read_module (die, cu);
8080 break;
d9fa45fe 8081 case DW_TAG_imported_declaration:
74921315
KS
8082 cu->processing_has_namespace_info = 1;
8083 if (read_namespace_alias (die, cu))
8084 break;
8085 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8086 case DW_TAG_imported_module:
4d4ec4e5 8087 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8088 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8089 || cu->language != language_fortran))
8090 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8091 dwarf_tag_name (die->tag));
8092 read_import_statement (die, cu);
d9fa45fe 8093 break;
95554aad
TT
8094
8095 case DW_TAG_imported_unit:
8096 process_imported_unit_die (die, cu);
8097 break;
8098
c906108c 8099 default:
e7c27a73 8100 new_symbol (die, NULL, cu);
c906108c
SS
8101 break;
8102 }
8103}
ca69b9e6
DE
8104\f
8105/* DWARF name computation. */
c906108c 8106
94af9270
KS
8107/* A helper function for dwarf2_compute_name which determines whether DIE
8108 needs to have the name of the scope prepended to the name listed in the
8109 die. */
8110
8111static int
8112die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8113{
1c809c68
TT
8114 struct attribute *attr;
8115
94af9270
KS
8116 switch (die->tag)
8117 {
8118 case DW_TAG_namespace:
8119 case DW_TAG_typedef:
8120 case DW_TAG_class_type:
8121 case DW_TAG_interface_type:
8122 case DW_TAG_structure_type:
8123 case DW_TAG_union_type:
8124 case DW_TAG_enumeration_type:
8125 case DW_TAG_enumerator:
8126 case DW_TAG_subprogram:
8127 case DW_TAG_member:
74921315 8128 case DW_TAG_imported_declaration:
94af9270
KS
8129 return 1;
8130
8131 case DW_TAG_variable:
c2b0a229 8132 case DW_TAG_constant:
94af9270
KS
8133 /* We only need to prefix "globally" visible variables. These include
8134 any variable marked with DW_AT_external or any variable that
8135 lives in a namespace. [Variables in anonymous namespaces
8136 require prefixing, but they are not DW_AT_external.] */
8137
8138 if (dwarf2_attr (die, DW_AT_specification, cu))
8139 {
8140 struct dwarf2_cu *spec_cu = cu;
9a619af0 8141
94af9270
KS
8142 return die_needs_namespace (die_specification (die, &spec_cu),
8143 spec_cu);
8144 }
8145
1c809c68 8146 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8147 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8148 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8149 return 0;
8150 /* A variable in a lexical block of some kind does not need a
8151 namespace, even though in C++ such variables may be external
8152 and have a mangled name. */
8153 if (die->parent->tag == DW_TAG_lexical_block
8154 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8155 || die->parent->tag == DW_TAG_catch_block
8156 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8157 return 0;
8158 return 1;
94af9270
KS
8159
8160 default:
8161 return 0;
8162 }
8163}
8164
98bfdba5
PA
8165/* Retrieve the last character from a mem_file. */
8166
8167static void
8168do_ui_file_peek_last (void *object, const char *buffer, long length)
8169{
8170 char *last_char_p = (char *) object;
8171
8172 if (length > 0)
8173 *last_char_p = buffer[length - 1];
8174}
8175
94af9270 8176/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8177 compute the physname for the object, which include a method's:
8178 - formal parameters (C++/Java),
8179 - receiver type (Go),
8180 - return type (Java).
8181
8182 The term "physname" is a bit confusing.
8183 For C++, for example, it is the demangled name.
8184 For Go, for example, it's the mangled name.
94af9270 8185
af6b7be1
JB
8186 For Ada, return the DIE's linkage name rather than the fully qualified
8187 name. PHYSNAME is ignored..
8188
94af9270
KS
8189 The result is allocated on the objfile_obstack and canonicalized. */
8190
8191static const char *
15d034d0
TT
8192dwarf2_compute_name (const char *name,
8193 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8194 int physname)
8195{
bb5ed363
DE
8196 struct objfile *objfile = cu->objfile;
8197
94af9270
KS
8198 if (name == NULL)
8199 name = dwarf2_name (die, cu);
8200
f55ee35c
JK
8201 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8202 compute it by typename_concat inside GDB. */
8203 if (cu->language == language_ada
8204 || (cu->language == language_fortran && physname))
8205 {
8206 /* For Ada unit, we prefer the linkage name over the name, as
8207 the former contains the exported name, which the user expects
8208 to be able to reference. Ideally, we want the user to be able
8209 to reference this entity using either natural or linkage name,
8210 but we haven't started looking at this enhancement yet. */
8211 struct attribute *attr;
8212
8213 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8214 if (attr == NULL)
8215 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8216 if (attr && DW_STRING (attr))
8217 return DW_STRING (attr);
8218 }
8219
94af9270
KS
8220 /* These are the only languages we know how to qualify names in. */
8221 if (name != NULL
f55ee35c
JK
8222 && (cu->language == language_cplus || cu->language == language_java
8223 || cu->language == language_fortran))
94af9270
KS
8224 {
8225 if (die_needs_namespace (die, cu))
8226 {
8227 long length;
0d5cff50 8228 const char *prefix;
94af9270
KS
8229 struct ui_file *buf;
8230
8231 prefix = determine_prefix (die, cu);
8232 buf = mem_fileopen ();
8233 if (*prefix != '\0')
8234 {
f55ee35c
JK
8235 char *prefixed_name = typename_concat (NULL, prefix, name,
8236 physname, cu);
9a619af0 8237
94af9270
KS
8238 fputs_unfiltered (prefixed_name, buf);
8239 xfree (prefixed_name);
8240 }
8241 else
62d5b8da 8242 fputs_unfiltered (name, buf);
94af9270 8243
98bfdba5
PA
8244 /* Template parameters may be specified in the DIE's DW_AT_name, or
8245 as children with DW_TAG_template_type_param or
8246 DW_TAG_value_type_param. If the latter, add them to the name
8247 here. If the name already has template parameters, then
8248 skip this step; some versions of GCC emit both, and
8249 it is more efficient to use the pre-computed name.
8250
8251 Something to keep in mind about this process: it is very
8252 unlikely, or in some cases downright impossible, to produce
8253 something that will match the mangled name of a function.
8254 If the definition of the function has the same debug info,
8255 we should be able to match up with it anyway. But fallbacks
8256 using the minimal symbol, for instance to find a method
8257 implemented in a stripped copy of libstdc++, will not work.
8258 If we do not have debug info for the definition, we will have to
8259 match them up some other way.
8260
8261 When we do name matching there is a related problem with function
8262 templates; two instantiated function templates are allowed to
8263 differ only by their return types, which we do not add here. */
8264
8265 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8266 {
8267 struct attribute *attr;
8268 struct die_info *child;
8269 int first = 1;
8270
8271 die->building_fullname = 1;
8272
8273 for (child = die->child; child != NULL; child = child->sibling)
8274 {
8275 struct type *type;
12df843f 8276 LONGEST value;
d521ce57 8277 const gdb_byte *bytes;
98bfdba5
PA
8278 struct dwarf2_locexpr_baton *baton;
8279 struct value *v;
8280
8281 if (child->tag != DW_TAG_template_type_param
8282 && child->tag != DW_TAG_template_value_param)
8283 continue;
8284
8285 if (first)
8286 {
8287 fputs_unfiltered ("<", buf);
8288 first = 0;
8289 }
8290 else
8291 fputs_unfiltered (", ", buf);
8292
8293 attr = dwarf2_attr (child, DW_AT_type, cu);
8294 if (attr == NULL)
8295 {
8296 complaint (&symfile_complaints,
8297 _("template parameter missing DW_AT_type"));
8298 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8299 continue;
8300 }
8301 type = die_type (child, cu);
8302
8303 if (child->tag == DW_TAG_template_type_param)
8304 {
79d43c61 8305 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8306 continue;
8307 }
8308
8309 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8310 if (attr == NULL)
8311 {
8312 complaint (&symfile_complaints,
3e43a32a
MS
8313 _("template parameter missing "
8314 "DW_AT_const_value"));
98bfdba5
PA
8315 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8316 continue;
8317 }
8318
8319 dwarf2_const_value_attr (attr, type, name,
8320 &cu->comp_unit_obstack, cu,
8321 &value, &bytes, &baton);
8322
8323 if (TYPE_NOSIGN (type))
8324 /* GDB prints characters as NUMBER 'CHAR'. If that's
8325 changed, this can use value_print instead. */
8326 c_printchar (value, type, buf);
8327 else
8328 {
8329 struct value_print_options opts;
8330
8331 if (baton != NULL)
8332 v = dwarf2_evaluate_loc_desc (type, NULL,
8333 baton->data,
8334 baton->size,
8335 baton->per_cu);
8336 else if (bytes != NULL)
8337 {
8338 v = allocate_value (type);
8339 memcpy (value_contents_writeable (v), bytes,
8340 TYPE_LENGTH (type));
8341 }
8342 else
8343 v = value_from_longest (type, value);
8344
3e43a32a
MS
8345 /* Specify decimal so that we do not depend on
8346 the radix. */
98bfdba5
PA
8347 get_formatted_print_options (&opts, 'd');
8348 opts.raw = 1;
8349 value_print (v, buf, &opts);
8350 release_value (v);
8351 value_free (v);
8352 }
8353 }
8354
8355 die->building_fullname = 0;
8356
8357 if (!first)
8358 {
8359 /* Close the argument list, with a space if necessary
8360 (nested templates). */
8361 char last_char = '\0';
8362 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8363 if (last_char == '>')
8364 fputs_unfiltered (" >", buf);
8365 else
8366 fputs_unfiltered (">", buf);
8367 }
8368 }
8369
94af9270
KS
8370 /* For Java and C++ methods, append formal parameter type
8371 information, if PHYSNAME. */
6e70227d 8372
94af9270
KS
8373 if (physname && die->tag == DW_TAG_subprogram
8374 && (cu->language == language_cplus
8375 || cu->language == language_java))
8376 {
8377 struct type *type = read_type_die (die, cu);
8378
79d43c61
TT
8379 c_type_print_args (type, buf, 1, cu->language,
8380 &type_print_raw_options);
94af9270
KS
8381
8382 if (cu->language == language_java)
8383 {
8384 /* For java, we must append the return type to method
0963b4bd 8385 names. */
94af9270
KS
8386 if (die->tag == DW_TAG_subprogram)
8387 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8388 0, 0, &type_print_raw_options);
94af9270
KS
8389 }
8390 else if (cu->language == language_cplus)
8391 {
60430eff
DJ
8392 /* Assume that an artificial first parameter is
8393 "this", but do not crash if it is not. RealView
8394 marks unnamed (and thus unused) parameters as
8395 artificial; there is no way to differentiate
8396 the two cases. */
94af9270
KS
8397 if (TYPE_NFIELDS (type) > 0
8398 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8399 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8400 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8401 0))))
94af9270
KS
8402 fputs_unfiltered (" const", buf);
8403 }
8404 }
8405
bb5ed363 8406 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8407 &length);
8408 ui_file_delete (buf);
8409
8410 if (cu->language == language_cplus)
8411 {
15d034d0 8412 const char *cname
94af9270 8413 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8414 &objfile->objfile_obstack);
9a619af0 8415
94af9270
KS
8416 if (cname != NULL)
8417 name = cname;
8418 }
8419 }
8420 }
8421
8422 return name;
8423}
8424
0114d602
DJ
8425/* Return the fully qualified name of DIE, based on its DW_AT_name.
8426 If scope qualifiers are appropriate they will be added. The result
8427 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8428 not have a name. NAME may either be from a previous call to
8429 dwarf2_name or NULL.
8430
0963b4bd 8431 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8432
8433static const char *
15d034d0 8434dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8435{
94af9270
KS
8436 return dwarf2_compute_name (name, die, cu, 0);
8437}
0114d602 8438
94af9270
KS
8439/* Construct a physname for the given DIE in CU. NAME may either be
8440 from a previous call to dwarf2_name or NULL. The result will be
8441 allocated on the objfile_objstack or NULL if the DIE does not have a
8442 name.
0114d602 8443
94af9270 8444 The output string will be canonicalized (if C++/Java). */
0114d602 8445
94af9270 8446static const char *
15d034d0 8447dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8448{
bb5ed363 8449 struct objfile *objfile = cu->objfile;
900e11f9
JK
8450 struct attribute *attr;
8451 const char *retval, *mangled = NULL, *canon = NULL;
8452 struct cleanup *back_to;
8453 int need_copy = 1;
8454
8455 /* In this case dwarf2_compute_name is just a shortcut not building anything
8456 on its own. */
8457 if (!die_needs_namespace (die, cu))
8458 return dwarf2_compute_name (name, die, cu, 1);
8459
8460 back_to = make_cleanup (null_cleanup, NULL);
8461
8462 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8463 if (!attr)
8464 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8465
8466 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8467 has computed. */
8468 if (attr && DW_STRING (attr))
8469 {
8470 char *demangled;
8471
8472 mangled = DW_STRING (attr);
8473
8474 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8475 type. It is easier for GDB users to search for such functions as
8476 `name(params)' than `long name(params)'. In such case the minimal
8477 symbol names do not match the full symbol names but for template
8478 functions there is never a need to look up their definition from their
8479 declaration so the only disadvantage remains the minimal symbol
8480 variant `long name(params)' does not have the proper inferior type.
8481 */
8482
a766d390
DE
8483 if (cu->language == language_go)
8484 {
8485 /* This is a lie, but we already lie to the caller new_symbol_full.
8486 new_symbol_full assumes we return the mangled name.
8487 This just undoes that lie until things are cleaned up. */
8488 demangled = NULL;
8489 }
8490 else
8491 {
8de20a37
TT
8492 demangled = gdb_demangle (mangled,
8493 (DMGL_PARAMS | DMGL_ANSI
8494 | (cu->language == language_java
8495 ? DMGL_JAVA | DMGL_RET_POSTFIX
8496 : DMGL_RET_DROP)));
a766d390 8497 }
900e11f9
JK
8498 if (demangled)
8499 {
8500 make_cleanup (xfree, demangled);
8501 canon = demangled;
8502 }
8503 else
8504 {
8505 canon = mangled;
8506 need_copy = 0;
8507 }
8508 }
8509
8510 if (canon == NULL || check_physname)
8511 {
8512 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8513
8514 if (canon != NULL && strcmp (physname, canon) != 0)
8515 {
8516 /* It may not mean a bug in GDB. The compiler could also
8517 compute DW_AT_linkage_name incorrectly. But in such case
8518 GDB would need to be bug-to-bug compatible. */
8519
8520 complaint (&symfile_complaints,
8521 _("Computed physname <%s> does not match demangled <%s> "
8522 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8523 physname, canon, mangled, die->offset.sect_off,
8524 objfile_name (objfile));
900e11f9
JK
8525
8526 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8527 is available here - over computed PHYSNAME. It is safer
8528 against both buggy GDB and buggy compilers. */
8529
8530 retval = canon;
8531 }
8532 else
8533 {
8534 retval = physname;
8535 need_copy = 0;
8536 }
8537 }
8538 else
8539 retval = canon;
8540
8541 if (need_copy)
10f0c4bb 8542 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8543
8544 do_cleanups (back_to);
8545 return retval;
0114d602
DJ
8546}
8547
74921315
KS
8548/* Inspect DIE in CU for a namespace alias. If one exists, record
8549 a new symbol for it.
8550
8551 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8552
8553static int
8554read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8555{
8556 struct attribute *attr;
8557
8558 /* If the die does not have a name, this is not a namespace
8559 alias. */
8560 attr = dwarf2_attr (die, DW_AT_name, cu);
8561 if (attr != NULL)
8562 {
8563 int num;
8564 struct die_info *d = die;
8565 struct dwarf2_cu *imported_cu = cu;
8566
8567 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8568 keep inspecting DIEs until we hit the underlying import. */
8569#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8570 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8571 {
8572 attr = dwarf2_attr (d, DW_AT_import, cu);
8573 if (attr == NULL)
8574 break;
8575
8576 d = follow_die_ref (d, attr, &imported_cu);
8577 if (d->tag != DW_TAG_imported_declaration)
8578 break;
8579 }
8580
8581 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8582 {
8583 complaint (&symfile_complaints,
8584 _("DIE at 0x%x has too many recursively imported "
8585 "declarations"), d->offset.sect_off);
8586 return 0;
8587 }
8588
8589 if (attr != NULL)
8590 {
8591 struct type *type;
8592 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8593
8594 type = get_die_type_at_offset (offset, cu->per_cu);
8595 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8596 {
8597 /* This declaration is a global namespace alias. Add
8598 a symbol for it whose type is the aliased namespace. */
8599 new_symbol (die, type, cu);
8600 return 1;
8601 }
8602 }
8603 }
8604
8605 return 0;
8606}
8607
27aa8d6a
SW
8608/* Read the import statement specified by the given die and record it. */
8609
8610static void
8611read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8612{
bb5ed363 8613 struct objfile *objfile = cu->objfile;
27aa8d6a 8614 struct attribute *import_attr;
32019081 8615 struct die_info *imported_die, *child_die;
de4affc9 8616 struct dwarf2_cu *imported_cu;
27aa8d6a 8617 const char *imported_name;
794684b6 8618 const char *imported_name_prefix;
13387711
SW
8619 const char *canonical_name;
8620 const char *import_alias;
8621 const char *imported_declaration = NULL;
794684b6 8622 const char *import_prefix;
32019081
JK
8623 VEC (const_char_ptr) *excludes = NULL;
8624 struct cleanup *cleanups;
13387711 8625
27aa8d6a
SW
8626 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8627 if (import_attr == NULL)
8628 {
8629 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8630 dwarf_tag_name (die->tag));
8631 return;
8632 }
8633
de4affc9
CC
8634 imported_cu = cu;
8635 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8636 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8637 if (imported_name == NULL)
8638 {
8639 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8640
8641 The import in the following code:
8642 namespace A
8643 {
8644 typedef int B;
8645 }
8646
8647 int main ()
8648 {
8649 using A::B;
8650 B b;
8651 return b;
8652 }
8653
8654 ...
8655 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8656 <52> DW_AT_decl_file : 1
8657 <53> DW_AT_decl_line : 6
8658 <54> DW_AT_import : <0x75>
8659 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8660 <59> DW_AT_name : B
8661 <5b> DW_AT_decl_file : 1
8662 <5c> DW_AT_decl_line : 2
8663 <5d> DW_AT_type : <0x6e>
8664 ...
8665 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8666 <76> DW_AT_byte_size : 4
8667 <77> DW_AT_encoding : 5 (signed)
8668
8669 imports the wrong die ( 0x75 instead of 0x58 ).
8670 This case will be ignored until the gcc bug is fixed. */
8671 return;
8672 }
8673
82856980
SW
8674 /* Figure out the local name after import. */
8675 import_alias = dwarf2_name (die, cu);
27aa8d6a 8676
794684b6
SW
8677 /* Figure out where the statement is being imported to. */
8678 import_prefix = determine_prefix (die, cu);
8679
8680 /* Figure out what the scope of the imported die is and prepend it
8681 to the name of the imported die. */
de4affc9 8682 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8683
f55ee35c
JK
8684 if (imported_die->tag != DW_TAG_namespace
8685 && imported_die->tag != DW_TAG_module)
794684b6 8686 {
13387711
SW
8687 imported_declaration = imported_name;
8688 canonical_name = imported_name_prefix;
794684b6 8689 }
13387711 8690 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8691 canonical_name = obconcat (&objfile->objfile_obstack,
8692 imported_name_prefix, "::", imported_name,
8693 (char *) NULL);
13387711
SW
8694 else
8695 canonical_name = imported_name;
794684b6 8696
32019081
JK
8697 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8698
8699 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8700 for (child_die = die->child; child_die && child_die->tag;
8701 child_die = sibling_die (child_die))
8702 {
8703 /* DWARF-4: A Fortran use statement with a “rename list” may be
8704 represented by an imported module entry with an import attribute
8705 referring to the module and owned entries corresponding to those
8706 entities that are renamed as part of being imported. */
8707
8708 if (child_die->tag != DW_TAG_imported_declaration)
8709 {
8710 complaint (&symfile_complaints,
8711 _("child DW_TAG_imported_declaration expected "
8712 "- DIE at 0x%x [in module %s]"),
4262abfb 8713 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8714 continue;
8715 }
8716
8717 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8718 if (import_attr == NULL)
8719 {
8720 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8721 dwarf_tag_name (child_die->tag));
8722 continue;
8723 }
8724
8725 imported_cu = cu;
8726 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8727 &imported_cu);
8728 imported_name = dwarf2_name (imported_die, imported_cu);
8729 if (imported_name == NULL)
8730 {
8731 complaint (&symfile_complaints,
8732 _("child DW_TAG_imported_declaration has unknown "
8733 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8734 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8735 continue;
8736 }
8737
8738 VEC_safe_push (const_char_ptr, excludes, imported_name);
8739
8740 process_die (child_die, cu);
8741 }
8742
c0cc3a76
SW
8743 cp_add_using_directive (import_prefix,
8744 canonical_name,
8745 import_alias,
13387711 8746 imported_declaration,
32019081 8747 excludes,
12aaed36 8748 0,
bb5ed363 8749 &objfile->objfile_obstack);
32019081
JK
8750
8751 do_cleanups (cleanups);
27aa8d6a
SW
8752}
8753
f4dc4d17 8754/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8755
cb1df416
DJ
8756static void
8757free_cu_line_header (void *arg)
8758{
8759 struct dwarf2_cu *cu = arg;
8760
8761 free_line_header (cu->line_header);
8762 cu->line_header = NULL;
8763}
8764
1b80a9fa
JK
8765/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8766 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8767 this, it was first present in GCC release 4.3.0. */
8768
8769static int
8770producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8771{
8772 if (!cu->checked_producer)
8773 check_producer (cu);
8774
8775 return cu->producer_is_gcc_lt_4_3;
8776}
8777
9291a0cd
TT
8778static void
8779find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8780 const char **name, const char **comp_dir)
9291a0cd
TT
8781{
8782 struct attribute *attr;
8783
8784 *name = NULL;
8785 *comp_dir = NULL;
8786
8787 /* Find the filename. Do not use dwarf2_name here, since the filename
8788 is not a source language identifier. */
8789 attr = dwarf2_attr (die, DW_AT_name, cu);
8790 if (attr)
8791 {
8792 *name = DW_STRING (attr);
8793 }
8794
8795 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8796 if (attr)
8797 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8798 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8799 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8800 {
15d034d0
TT
8801 char *d = ldirname (*name);
8802
8803 *comp_dir = d;
8804 if (d != NULL)
8805 make_cleanup (xfree, d);
9291a0cd
TT
8806 }
8807 if (*comp_dir != NULL)
8808 {
8809 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8810 directory, get rid of it. */
8811 char *cp = strchr (*comp_dir, ':');
8812
8813 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8814 *comp_dir = cp + 1;
8815 }
8816
8817 if (*name == NULL)
8818 *name = "<unknown>";
8819}
8820
f4dc4d17
DE
8821/* Handle DW_AT_stmt_list for a compilation unit.
8822 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8823 COMP_DIR is the compilation directory.
8824 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8825
8826static void
8827handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8828 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8829{
8830 struct attribute *attr;
2ab95328 8831
f4dc4d17
DE
8832 gdb_assert (! cu->per_cu->is_debug_types);
8833
2ab95328
TT
8834 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8835 if (attr)
8836 {
8837 unsigned int line_offset = DW_UNSND (attr);
8838 struct line_header *line_header
3019eac3 8839 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8840
8841 if (line_header)
dee91e82
DE
8842 {
8843 cu->line_header = line_header;
8844 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8845 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8846 }
2ab95328
TT
8847 }
8848}
8849
95554aad 8850/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8851
c906108c 8852static void
e7c27a73 8853read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8854{
dee91e82 8855 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8856 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8857 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8858 CORE_ADDR highpc = ((CORE_ADDR) 0);
8859 struct attribute *attr;
15d034d0
TT
8860 const char *name = NULL;
8861 const char *comp_dir = NULL;
c906108c
SS
8862 struct die_info *child_die;
8863 bfd *abfd = objfile->obfd;
e142c38c 8864 CORE_ADDR baseaddr;
6e70227d 8865
e142c38c 8866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8867
fae299cd 8868 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8869
8870 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8871 from finish_block. */
2acceee2 8872 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8873 lowpc = highpc;
8874 lowpc += baseaddr;
8875 highpc += baseaddr;
8876
9291a0cd 8877 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8878
95554aad 8879 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8880
f4b8a18d
KW
8881 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8882 standardised yet. As a workaround for the language detection we fall
8883 back to the DW_AT_producer string. */
8884 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8885 cu->language = language_opencl;
8886
3019eac3
DE
8887 /* Similar hack for Go. */
8888 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8889 set_cu_language (DW_LANG_Go, cu);
8890
f4dc4d17 8891 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8892
8893 /* Decode line number information if present. We do this before
8894 processing child DIEs, so that the line header table is available
8895 for DW_AT_decl_file. */
f4dc4d17 8896 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8897
8898 /* Process all dies in compilation unit. */
8899 if (die->child != NULL)
8900 {
8901 child_die = die->child;
8902 while (child_die && child_die->tag)
8903 {
8904 process_die (child_die, cu);
8905 child_die = sibling_die (child_die);
8906 }
8907 }
8908
8909 /* Decode macro information, if present. Dwarf 2 macro information
8910 refers to information in the line number info statement program
8911 header, so we can only read it if we've read the header
8912 successfully. */
8913 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8914 if (attr && cu->line_header)
8915 {
8916 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8917 complaint (&symfile_complaints,
8918 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8919
09262596 8920 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8921 }
8922 else
8923 {
8924 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8925 if (attr && cu->line_header)
8926 {
8927 unsigned int macro_offset = DW_UNSND (attr);
8928
09262596 8929 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8930 }
8931 }
8932
8933 do_cleanups (back_to);
8934}
8935
f4dc4d17
DE
8936/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8937 Create the set of symtabs used by this TU, or if this TU is sharing
8938 symtabs with another TU and the symtabs have already been created
8939 then restore those symtabs in the line header.
8940 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8941
8942static void
f4dc4d17 8943setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8944{
f4dc4d17
DE
8945 struct objfile *objfile = dwarf2_per_objfile->objfile;
8946 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8947 struct type_unit_group *tu_group;
8948 int first_time;
8949 struct line_header *lh;
3019eac3 8950 struct attribute *attr;
f4dc4d17 8951 unsigned int i, line_offset;
0186c6a7 8952 struct signatured_type *sig_type;
3019eac3 8953
f4dc4d17 8954 gdb_assert (per_cu->is_debug_types);
0186c6a7 8955 sig_type = (struct signatured_type *) per_cu;
3019eac3 8956
f4dc4d17 8957 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8958
f4dc4d17 8959 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8960 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8961 if (sig_type->type_unit_group == NULL)
8962 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8963 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8964
8965 /* If we've already processed this stmt_list there's no real need to
8966 do it again, we could fake it and just recreate the part we need
8967 (file name,index -> symtab mapping). If data shows this optimization
8968 is useful we can do it then. */
8969 first_time = tu_group->primary_symtab == NULL;
8970
8971 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8972 debug info. */
8973 lh = NULL;
8974 if (attr != NULL)
3019eac3 8975 {
f4dc4d17
DE
8976 line_offset = DW_UNSND (attr);
8977 lh = dwarf_decode_line_header (line_offset, cu);
8978 }
8979 if (lh == NULL)
8980 {
8981 if (first_time)
8982 dwarf2_start_symtab (cu, "", NULL, 0);
8983 else
8984 {
8985 gdb_assert (tu_group->symtabs == NULL);
8986 restart_symtab (0);
8987 }
8988 /* Note: The primary symtab will get allocated at the end. */
8989 return;
3019eac3
DE
8990 }
8991
f4dc4d17
DE
8992 cu->line_header = lh;
8993 make_cleanup (free_cu_line_header, cu);
3019eac3 8994
f4dc4d17
DE
8995 if (first_time)
8996 {
8997 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8998
f4dc4d17
DE
8999 tu_group->num_symtabs = lh->num_file_names;
9000 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9001
f4dc4d17
DE
9002 for (i = 0; i < lh->num_file_names; ++i)
9003 {
d521ce57 9004 const char *dir = NULL;
f4dc4d17 9005 struct file_entry *fe = &lh->file_names[i];
3019eac3 9006
f4dc4d17
DE
9007 if (fe->dir_index)
9008 dir = lh->include_dirs[fe->dir_index - 1];
9009 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9010
f4dc4d17
DE
9011 /* Note: We don't have to watch for the main subfile here, type units
9012 don't have DW_AT_name. */
3019eac3 9013
f4dc4d17
DE
9014 if (current_subfile->symtab == NULL)
9015 {
9016 /* NOTE: start_subfile will recognize when it's been passed
9017 a file it has already seen. So we can't assume there's a
9018 simple mapping from lh->file_names to subfiles,
9019 lh->file_names may contain dups. */
9020 current_subfile->symtab = allocate_symtab (current_subfile->name,
9021 objfile);
9022 }
9023
9024 fe->symtab = current_subfile->symtab;
9025 tu_group->symtabs[i] = fe->symtab;
9026 }
9027 }
9028 else
3019eac3 9029 {
f4dc4d17
DE
9030 restart_symtab (0);
9031
9032 for (i = 0; i < lh->num_file_names; ++i)
9033 {
9034 struct file_entry *fe = &lh->file_names[i];
9035
9036 fe->symtab = tu_group->symtabs[i];
9037 }
3019eac3
DE
9038 }
9039
f4dc4d17
DE
9040 /* The main symtab is allocated last. Type units don't have DW_AT_name
9041 so they don't have a "real" (so to speak) symtab anyway.
9042 There is later code that will assign the main symtab to all symbols
9043 that don't have one. We need to handle the case of a symbol with a
9044 missing symtab (DW_AT_decl_file) anyway. */
9045}
3019eac3 9046
f4dc4d17
DE
9047/* Process DW_TAG_type_unit.
9048 For TUs we want to skip the first top level sibling if it's not the
9049 actual type being defined by this TU. In this case the first top
9050 level sibling is there to provide context only. */
3019eac3 9051
f4dc4d17
DE
9052static void
9053read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9054{
9055 struct die_info *child_die;
3019eac3 9056
f4dc4d17
DE
9057 prepare_one_comp_unit (cu, die, language_minimal);
9058
9059 /* Initialize (or reinitialize) the machinery for building symtabs.
9060 We do this before processing child DIEs, so that the line header table
9061 is available for DW_AT_decl_file. */
9062 setup_type_unit_groups (die, cu);
9063
9064 if (die->child != NULL)
9065 {
9066 child_die = die->child;
9067 while (child_die && child_die->tag)
9068 {
9069 process_die (child_die, cu);
9070 child_die = sibling_die (child_die);
9071 }
9072 }
3019eac3
DE
9073}
9074\f
80626a55
DE
9075/* DWO/DWP files.
9076
9077 http://gcc.gnu.org/wiki/DebugFission
9078 http://gcc.gnu.org/wiki/DebugFissionDWP
9079
9080 To simplify handling of both DWO files ("object" files with the DWARF info)
9081 and DWP files (a file with the DWOs packaged up into one file), we treat
9082 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9083
9084static hashval_t
9085hash_dwo_file (const void *item)
9086{
9087 const struct dwo_file *dwo_file = item;
a2ce51a0 9088 hashval_t hash;
3019eac3 9089
a2ce51a0
DE
9090 hash = htab_hash_string (dwo_file->dwo_name);
9091 if (dwo_file->comp_dir != NULL)
9092 hash += htab_hash_string (dwo_file->comp_dir);
9093 return hash;
3019eac3
DE
9094}
9095
9096static int
9097eq_dwo_file (const void *item_lhs, const void *item_rhs)
9098{
9099 const struct dwo_file *lhs = item_lhs;
9100 const struct dwo_file *rhs = item_rhs;
9101
a2ce51a0
DE
9102 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9103 return 0;
9104 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9105 return lhs->comp_dir == rhs->comp_dir;
9106 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9107}
9108
9109/* Allocate a hash table for DWO files. */
9110
9111static htab_t
9112allocate_dwo_file_hash_table (void)
9113{
9114 struct objfile *objfile = dwarf2_per_objfile->objfile;
9115
9116 return htab_create_alloc_ex (41,
9117 hash_dwo_file,
9118 eq_dwo_file,
9119 NULL,
9120 &objfile->objfile_obstack,
9121 hashtab_obstack_allocate,
9122 dummy_obstack_deallocate);
9123}
9124
80626a55
DE
9125/* Lookup DWO file DWO_NAME. */
9126
9127static void **
0ac5b59e 9128lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9129{
9130 struct dwo_file find_entry;
9131 void **slot;
9132
9133 if (dwarf2_per_objfile->dwo_files == NULL)
9134 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9135
9136 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9137 find_entry.dwo_name = dwo_name;
9138 find_entry.comp_dir = comp_dir;
80626a55
DE
9139 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9140
9141 return slot;
9142}
9143
3019eac3
DE
9144static hashval_t
9145hash_dwo_unit (const void *item)
9146{
9147 const struct dwo_unit *dwo_unit = item;
9148
9149 /* This drops the top 32 bits of the id, but is ok for a hash. */
9150 return dwo_unit->signature;
9151}
9152
9153static int
9154eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9155{
9156 const struct dwo_unit *lhs = item_lhs;
9157 const struct dwo_unit *rhs = item_rhs;
9158
9159 /* The signature is assumed to be unique within the DWO file.
9160 So while object file CU dwo_id's always have the value zero,
9161 that's OK, assuming each object file DWO file has only one CU,
9162 and that's the rule for now. */
9163 return lhs->signature == rhs->signature;
9164}
9165
9166/* Allocate a hash table for DWO CUs,TUs.
9167 There is one of these tables for each of CUs,TUs for each DWO file. */
9168
9169static htab_t
9170allocate_dwo_unit_table (struct objfile *objfile)
9171{
9172 /* Start out with a pretty small number.
9173 Generally DWO files contain only one CU and maybe some TUs. */
9174 return htab_create_alloc_ex (3,
9175 hash_dwo_unit,
9176 eq_dwo_unit,
9177 NULL,
9178 &objfile->objfile_obstack,
9179 hashtab_obstack_allocate,
9180 dummy_obstack_deallocate);
9181}
9182
80626a55 9183/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9184
19c3d4c9 9185struct create_dwo_cu_data
3019eac3
DE
9186{
9187 struct dwo_file *dwo_file;
19c3d4c9 9188 struct dwo_unit dwo_unit;
3019eac3
DE
9189};
9190
19c3d4c9 9191/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9192
9193static void
19c3d4c9
DE
9194create_dwo_cu_reader (const struct die_reader_specs *reader,
9195 const gdb_byte *info_ptr,
9196 struct die_info *comp_unit_die,
9197 int has_children,
9198 void *datap)
3019eac3
DE
9199{
9200 struct dwarf2_cu *cu = reader->cu;
9201 struct objfile *objfile = dwarf2_per_objfile->objfile;
9202 sect_offset offset = cu->per_cu->offset;
8a0459fd 9203 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9204 struct create_dwo_cu_data *data = datap;
3019eac3 9205 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9206 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9207 struct attribute *attr;
3019eac3
DE
9208
9209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9210 if (attr == NULL)
9211 {
19c3d4c9
DE
9212 complaint (&symfile_complaints,
9213 _("Dwarf Error: debug entry at offset 0x%x is missing"
9214 " its dwo_id [in module %s]"),
9215 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9216 return;
9217 }
9218
3019eac3
DE
9219 dwo_unit->dwo_file = dwo_file;
9220 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9221 dwo_unit->section = section;
3019eac3
DE
9222 dwo_unit->offset = offset;
9223 dwo_unit->length = cu->per_cu->length;
9224
09406207 9225 if (dwarf2_read_debug)
4031ecc5
DE
9226 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9227 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9228}
9229
19c3d4c9
DE
9230/* Create the dwo_unit for the lone CU in DWO_FILE.
9231 Note: This function processes DWO files only, not DWP files. */
3019eac3 9232
19c3d4c9
DE
9233static struct dwo_unit *
9234create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9235{
9236 struct objfile *objfile = dwarf2_per_objfile->objfile;
9237 struct dwarf2_section_info *section = &dwo_file->sections.info;
9238 bfd *abfd;
9239 htab_t cu_htab;
d521ce57 9240 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9241 struct create_dwo_cu_data create_dwo_cu_data;
9242 struct dwo_unit *dwo_unit;
3019eac3
DE
9243
9244 dwarf2_read_section (objfile, section);
9245 info_ptr = section->buffer;
9246
9247 if (info_ptr == NULL)
9248 return NULL;
9249
9250 /* We can't set abfd until now because the section may be empty or
9251 not present, in which case section->asection will be NULL. */
a32a8923 9252 abfd = get_section_bfd_owner (section);
3019eac3 9253
09406207 9254 if (dwarf2_read_debug)
19c3d4c9
DE
9255 {
9256 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9257 get_section_name (section),
9258 get_section_file_name (section));
19c3d4c9 9259 }
3019eac3 9260
19c3d4c9
DE
9261 create_dwo_cu_data.dwo_file = dwo_file;
9262 dwo_unit = NULL;
3019eac3
DE
9263
9264 end_ptr = info_ptr + section->size;
9265 while (info_ptr < end_ptr)
9266 {
9267 struct dwarf2_per_cu_data per_cu;
9268
19c3d4c9
DE
9269 memset (&create_dwo_cu_data.dwo_unit, 0,
9270 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9271 memset (&per_cu, 0, sizeof (per_cu));
9272 per_cu.objfile = objfile;
9273 per_cu.is_debug_types = 0;
9274 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9275 per_cu.section = section;
3019eac3
DE
9276
9277 init_cutu_and_read_dies_no_follow (&per_cu,
9278 &dwo_file->sections.abbrev,
9279 dwo_file,
19c3d4c9
DE
9280 create_dwo_cu_reader,
9281 &create_dwo_cu_data);
9282
9283 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9284 {
9285 /* If we've already found one, complain. We only support one
9286 because having more than one requires hacking the dwo_name of
9287 each to match, which is highly unlikely to happen. */
9288 if (dwo_unit != NULL)
9289 {
9290 complaint (&symfile_complaints,
9291 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9292 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9293 break;
9294 }
9295
9296 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9297 *dwo_unit = create_dwo_cu_data.dwo_unit;
9298 }
3019eac3
DE
9299
9300 info_ptr += per_cu.length;
9301 }
9302
19c3d4c9 9303 return dwo_unit;
3019eac3
DE
9304}
9305
80626a55
DE
9306/* DWP file .debug_{cu,tu}_index section format:
9307 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9308
d2415c6c
DE
9309 DWP Version 1:
9310
80626a55
DE
9311 Both index sections have the same format, and serve to map a 64-bit
9312 signature to a set of section numbers. Each section begins with a header,
9313 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9314 indexes, and a pool of 32-bit section numbers. The index sections will be
9315 aligned at 8-byte boundaries in the file.
9316
d2415c6c
DE
9317 The index section header consists of:
9318
9319 V, 32 bit version number
9320 -, 32 bits unused
9321 N, 32 bit number of compilation units or type units in the index
9322 M, 32 bit number of slots in the hash table
80626a55 9323
d2415c6c 9324 Numbers are recorded using the byte order of the application binary.
80626a55 9325
d2415c6c
DE
9326 The hash table begins at offset 16 in the section, and consists of an array
9327 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9328 order of the application binary). Unused slots in the hash table are 0.
9329 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9330
d2415c6c
DE
9331 The parallel table begins immediately after the hash table
9332 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9333 array of 32-bit indexes (using the byte order of the application binary),
9334 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9335 table contains a 32-bit index into the pool of section numbers. For unused
9336 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9337
73869dc2
DE
9338 The pool of section numbers begins immediately following the hash table
9339 (at offset 16 + 12 * M from the beginning of the section). The pool of
9340 section numbers consists of an array of 32-bit words (using the byte order
9341 of the application binary). Each item in the array is indexed starting
9342 from 0. The hash table entry provides the index of the first section
9343 number in the set. Additional section numbers in the set follow, and the
9344 set is terminated by a 0 entry (section number 0 is not used in ELF).
9345
9346 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9347 section must be the first entry in the set, and the .debug_abbrev.dwo must
9348 be the second entry. Other members of the set may follow in any order.
9349
9350 ---
9351
9352 DWP Version 2:
9353
9354 DWP Version 2 combines all the .debug_info, etc. sections into one,
9355 and the entries in the index tables are now offsets into these sections.
9356 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9357 section.
9358
9359 Index Section Contents:
9360 Header
9361 Hash Table of Signatures dwp_hash_table.hash_table
9362 Parallel Table of Indices dwp_hash_table.unit_table
9363 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9364 Table of Section Sizes dwp_hash_table.v2.sizes
9365
9366 The index section header consists of:
9367
9368 V, 32 bit version number
9369 L, 32 bit number of columns in the table of section offsets
9370 N, 32 bit number of compilation units or type units in the index
9371 M, 32 bit number of slots in the hash table
9372
9373 Numbers are recorded using the byte order of the application binary.
9374
9375 The hash table has the same format as version 1.
9376 The parallel table of indices has the same format as version 1,
9377 except that the entries are origin-1 indices into the table of sections
9378 offsets and the table of section sizes.
9379
9380 The table of offsets begins immediately following the parallel table
9381 (at offset 16 + 12 * M from the beginning of the section). The table is
9382 a two-dimensional array of 32-bit words (using the byte order of the
9383 application binary), with L columns and N+1 rows, in row-major order.
9384 Each row in the array is indexed starting from 0. The first row provides
9385 a key to the remaining rows: each column in this row provides an identifier
9386 for a debug section, and the offsets in the same column of subsequent rows
9387 refer to that section. The section identifiers are:
9388
9389 DW_SECT_INFO 1 .debug_info.dwo
9390 DW_SECT_TYPES 2 .debug_types.dwo
9391 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9392 DW_SECT_LINE 4 .debug_line.dwo
9393 DW_SECT_LOC 5 .debug_loc.dwo
9394 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9395 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9396 DW_SECT_MACRO 8 .debug_macro.dwo
9397
9398 The offsets provided by the CU and TU index sections are the base offsets
9399 for the contributions made by each CU or TU to the corresponding section
9400 in the package file. Each CU and TU header contains an abbrev_offset
9401 field, used to find the abbreviations table for that CU or TU within the
9402 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9403 be interpreted as relative to the base offset given in the index section.
9404 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9405 should be interpreted as relative to the base offset for .debug_line.dwo,
9406 and offsets into other debug sections obtained from DWARF attributes should
9407 also be interpreted as relative to the corresponding base offset.
9408
9409 The table of sizes begins immediately following the table of offsets.
9410 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9411 with L columns and N rows, in row-major order. Each row in the array is
9412 indexed starting from 1 (row 0 is shared by the two tables).
9413
9414 ---
9415
9416 Hash table lookup is handled the same in version 1 and 2:
9417
9418 We assume that N and M will not exceed 2^32 - 1.
9419 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9420
d2415c6c
DE
9421 Given a 64-bit compilation unit signature or a type signature S, an entry
9422 in the hash table is located as follows:
80626a55 9423
d2415c6c
DE
9424 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9425 the low-order k bits all set to 1.
80626a55 9426
d2415c6c 9427 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9428
d2415c6c
DE
9429 3) If the hash table entry at index H matches the signature, use that
9430 entry. If the hash table entry at index H is unused (all zeroes),
9431 terminate the search: the signature is not present in the table.
80626a55 9432
d2415c6c 9433 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9434
d2415c6c 9435 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9436 to stop at an unused slot or find the match. */
80626a55
DE
9437
9438/* Create a hash table to map DWO IDs to their CU/TU entry in
9439 .debug_{info,types}.dwo in DWP_FILE.
9440 Returns NULL if there isn't one.
9441 Note: This function processes DWP files only, not DWO files. */
9442
9443static struct dwp_hash_table *
9444create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9445{
9446 struct objfile *objfile = dwarf2_per_objfile->objfile;
9447 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9448 const gdb_byte *index_ptr, *index_end;
80626a55 9449 struct dwarf2_section_info *index;
73869dc2 9450 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9451 struct dwp_hash_table *htab;
9452
9453 if (is_debug_types)
9454 index = &dwp_file->sections.tu_index;
9455 else
9456 index = &dwp_file->sections.cu_index;
9457
9458 if (dwarf2_section_empty_p (index))
9459 return NULL;
9460 dwarf2_read_section (objfile, index);
9461
9462 index_ptr = index->buffer;
9463 index_end = index_ptr + index->size;
9464
9465 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9466 index_ptr += 4;
9467 if (version == 2)
9468 nr_columns = read_4_bytes (dbfd, index_ptr);
9469 else
9470 nr_columns = 0;
9471 index_ptr += 4;
80626a55
DE
9472 nr_units = read_4_bytes (dbfd, index_ptr);
9473 index_ptr += 4;
9474 nr_slots = read_4_bytes (dbfd, index_ptr);
9475 index_ptr += 4;
9476
73869dc2 9477 if (version != 1 && version != 2)
80626a55 9478 {
21aa081e 9479 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9480 " [in module %s]"),
21aa081e 9481 pulongest (version), dwp_file->name);
80626a55
DE
9482 }
9483 if (nr_slots != (nr_slots & -nr_slots))
9484 {
21aa081e 9485 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9486 " is not power of 2 [in module %s]"),
21aa081e 9487 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9488 }
9489
9490 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9491 htab->version = version;
9492 htab->nr_columns = nr_columns;
80626a55
DE
9493 htab->nr_units = nr_units;
9494 htab->nr_slots = nr_slots;
9495 htab->hash_table = index_ptr;
9496 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9497
9498 /* Exit early if the table is empty. */
9499 if (nr_slots == 0 || nr_units == 0
9500 || (version == 2 && nr_columns == 0))
9501 {
9502 /* All must be zero. */
9503 if (nr_slots != 0 || nr_units != 0
9504 || (version == 2 && nr_columns != 0))
9505 {
9506 complaint (&symfile_complaints,
9507 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9508 " all zero [in modules %s]"),
9509 dwp_file->name);
9510 }
9511 return htab;
9512 }
9513
9514 if (version == 1)
9515 {
9516 htab->section_pool.v1.indices =
9517 htab->unit_table + sizeof (uint32_t) * nr_slots;
9518 /* It's harder to decide whether the section is too small in v1.
9519 V1 is deprecated anyway so we punt. */
9520 }
9521 else
9522 {
9523 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9524 int *ids = htab->section_pool.v2.section_ids;
9525 /* Reverse map for error checking. */
9526 int ids_seen[DW_SECT_MAX + 1];
9527 int i;
9528
9529 if (nr_columns < 2)
9530 {
9531 error (_("Dwarf Error: bad DWP hash table, too few columns"
9532 " in section table [in module %s]"),
9533 dwp_file->name);
9534 }
9535 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9536 {
9537 error (_("Dwarf Error: bad DWP hash table, too many columns"
9538 " in section table [in module %s]"),
9539 dwp_file->name);
9540 }
9541 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9542 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9543 for (i = 0; i < nr_columns; ++i)
9544 {
9545 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9546
9547 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9548 {
9549 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9550 " in section table [in module %s]"),
9551 id, dwp_file->name);
9552 }
9553 if (ids_seen[id] != -1)
9554 {
9555 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9556 " id %d in section table [in module %s]"),
9557 id, dwp_file->name);
9558 }
9559 ids_seen[id] = i;
9560 ids[i] = id;
9561 }
9562 /* Must have exactly one info or types section. */
9563 if (((ids_seen[DW_SECT_INFO] != -1)
9564 + (ids_seen[DW_SECT_TYPES] != -1))
9565 != 1)
9566 {
9567 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9568 " DWO info/types section [in module %s]"),
9569 dwp_file->name);
9570 }
9571 /* Must have an abbrev section. */
9572 if (ids_seen[DW_SECT_ABBREV] == -1)
9573 {
9574 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9575 " section [in module %s]"),
9576 dwp_file->name);
9577 }
9578 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9579 htab->section_pool.v2.sizes =
9580 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9581 * nr_units * nr_columns);
9582 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9583 * nr_units * nr_columns))
9584 > index_end)
9585 {
9586 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9587 " [in module %s]"),
9588 dwp_file->name);
9589 }
9590 }
80626a55
DE
9591
9592 return htab;
9593}
9594
9595/* Update SECTIONS with the data from SECTP.
9596
9597 This function is like the other "locate" section routines that are
9598 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9599 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9600
9601 The result is non-zero for success, or zero if an error was found. */
9602
9603static int
73869dc2
DE
9604locate_v1_virtual_dwo_sections (asection *sectp,
9605 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9606{
9607 const struct dwop_section_names *names = &dwop_section_names;
9608
9609 if (section_is_p (sectp->name, &names->abbrev_dwo))
9610 {
9611 /* There can be only one. */
73869dc2 9612 if (sections->abbrev.s.asection != NULL)
80626a55 9613 return 0;
73869dc2 9614 sections->abbrev.s.asection = sectp;
80626a55
DE
9615 sections->abbrev.size = bfd_get_section_size (sectp);
9616 }
9617 else if (section_is_p (sectp->name, &names->info_dwo)
9618 || section_is_p (sectp->name, &names->types_dwo))
9619 {
9620 /* There can be only one. */
73869dc2 9621 if (sections->info_or_types.s.asection != NULL)
80626a55 9622 return 0;
73869dc2 9623 sections->info_or_types.s.asection = sectp;
80626a55
DE
9624 sections->info_or_types.size = bfd_get_section_size (sectp);
9625 }
9626 else if (section_is_p (sectp->name, &names->line_dwo))
9627 {
9628 /* There can be only one. */
73869dc2 9629 if (sections->line.s.asection != NULL)
80626a55 9630 return 0;
73869dc2 9631 sections->line.s.asection = sectp;
80626a55
DE
9632 sections->line.size = bfd_get_section_size (sectp);
9633 }
9634 else if (section_is_p (sectp->name, &names->loc_dwo))
9635 {
9636 /* There can be only one. */
73869dc2 9637 if (sections->loc.s.asection != NULL)
80626a55 9638 return 0;
73869dc2 9639 sections->loc.s.asection = sectp;
80626a55
DE
9640 sections->loc.size = bfd_get_section_size (sectp);
9641 }
9642 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9643 {
9644 /* There can be only one. */
73869dc2 9645 if (sections->macinfo.s.asection != NULL)
80626a55 9646 return 0;
73869dc2 9647 sections->macinfo.s.asection = sectp;
80626a55
DE
9648 sections->macinfo.size = bfd_get_section_size (sectp);
9649 }
9650 else if (section_is_p (sectp->name, &names->macro_dwo))
9651 {
9652 /* There can be only one. */
73869dc2 9653 if (sections->macro.s.asection != NULL)
80626a55 9654 return 0;
73869dc2 9655 sections->macro.s.asection = sectp;
80626a55
DE
9656 sections->macro.size = bfd_get_section_size (sectp);
9657 }
9658 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9659 {
9660 /* There can be only one. */
73869dc2 9661 if (sections->str_offsets.s.asection != NULL)
80626a55 9662 return 0;
73869dc2 9663 sections->str_offsets.s.asection = sectp;
80626a55
DE
9664 sections->str_offsets.size = bfd_get_section_size (sectp);
9665 }
9666 else
9667 {
9668 /* No other kind of section is valid. */
9669 return 0;
9670 }
9671
9672 return 1;
9673}
9674
73869dc2
DE
9675/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9676 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9677 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9678 This is for DWP version 1 files. */
80626a55
DE
9679
9680static struct dwo_unit *
73869dc2
DE
9681create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9682 uint32_t unit_index,
9683 const char *comp_dir,
9684 ULONGEST signature, int is_debug_types)
80626a55
DE
9685{
9686 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9687 const struct dwp_hash_table *dwp_htab =
9688 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9689 bfd *dbfd = dwp_file->dbfd;
9690 const char *kind = is_debug_types ? "TU" : "CU";
9691 struct dwo_file *dwo_file;
9692 struct dwo_unit *dwo_unit;
73869dc2 9693 struct virtual_v1_dwo_sections sections;
80626a55
DE
9694 void **dwo_file_slot;
9695 char *virtual_dwo_name;
9696 struct dwarf2_section_info *cutu;
9697 struct cleanup *cleanups;
9698 int i;
9699
73869dc2
DE
9700 gdb_assert (dwp_file->version == 1);
9701
80626a55
DE
9702 if (dwarf2_read_debug)
9703 {
73869dc2 9704 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9705 kind,
73869dc2 9706 pulongest (unit_index), hex_string (signature),
80626a55
DE
9707 dwp_file->name);
9708 }
9709
19ac8c2e 9710 /* Fetch the sections of this DWO unit.
80626a55
DE
9711 Put a limit on the number of sections we look for so that bad data
9712 doesn't cause us to loop forever. */
9713
73869dc2 9714#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9715 (1 /* .debug_info or .debug_types */ \
9716 + 1 /* .debug_abbrev */ \
9717 + 1 /* .debug_line */ \
9718 + 1 /* .debug_loc */ \
9719 + 1 /* .debug_str_offsets */ \
19ac8c2e 9720 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9721 + 1 /* trailing zero */)
9722
9723 memset (&sections, 0, sizeof (sections));
9724 cleanups = make_cleanup (null_cleanup, 0);
9725
73869dc2 9726 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9727 {
9728 asection *sectp;
9729 uint32_t section_nr =
9730 read_4_bytes (dbfd,
73869dc2
DE
9731 dwp_htab->section_pool.v1.indices
9732 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9733
9734 if (section_nr == 0)
9735 break;
9736 if (section_nr >= dwp_file->num_sections)
9737 {
9738 error (_("Dwarf Error: bad DWP hash table, section number too large"
9739 " [in module %s]"),
9740 dwp_file->name);
9741 }
9742
9743 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9744 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9745 {
9746 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9747 " [in module %s]"),
9748 dwp_file->name);
9749 }
9750 }
9751
9752 if (i < 2
a32a8923
DE
9753 || dwarf2_section_empty_p (&sections.info_or_types)
9754 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9755 {
9756 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9757 " [in module %s]"),
9758 dwp_file->name);
9759 }
73869dc2 9760 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9761 {
9762 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9763 " [in module %s]"),
9764 dwp_file->name);
9765 }
9766
9767 /* It's easier for the rest of the code if we fake a struct dwo_file and
9768 have dwo_unit "live" in that. At least for now.
9769
9770 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9771 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9772 file, we can combine them back into a virtual DWO file to save space
9773 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9774 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9775
2792b94d
PM
9776 virtual_dwo_name =
9777 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9778 get_section_id (&sections.abbrev),
9779 get_section_id (&sections.line),
9780 get_section_id (&sections.loc),
9781 get_section_id (&sections.str_offsets));
80626a55
DE
9782 make_cleanup (xfree, virtual_dwo_name);
9783 /* Can we use an existing virtual DWO file? */
0ac5b59e 9784 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9785 /* Create one if necessary. */
9786 if (*dwo_file_slot == NULL)
9787 {
9788 if (dwarf2_read_debug)
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9791 virtual_dwo_name);
9792 }
9793 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9794 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9795 virtual_dwo_name,
9796 strlen (virtual_dwo_name));
9797 dwo_file->comp_dir = comp_dir;
80626a55
DE
9798 dwo_file->sections.abbrev = sections.abbrev;
9799 dwo_file->sections.line = sections.line;
9800 dwo_file->sections.loc = sections.loc;
9801 dwo_file->sections.macinfo = sections.macinfo;
9802 dwo_file->sections.macro = sections.macro;
9803 dwo_file->sections.str_offsets = sections.str_offsets;
9804 /* The "str" section is global to the entire DWP file. */
9805 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9806 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9807 there's no need to record it in dwo_file.
9808 Also, we can't simply record type sections in dwo_file because
9809 we record a pointer into the vector in dwo_unit. As we collect more
9810 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9811 for it, invalidating all copies of pointers into the previous
9812 contents. */
80626a55
DE
9813 *dwo_file_slot = dwo_file;
9814 }
9815 else
9816 {
9817 if (dwarf2_read_debug)
9818 {
9819 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9820 virtual_dwo_name);
9821 }
9822 dwo_file = *dwo_file_slot;
9823 }
9824 do_cleanups (cleanups);
9825
9826 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9827 dwo_unit->dwo_file = dwo_file;
9828 dwo_unit->signature = signature;
8a0459fd
DE
9829 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9830 sizeof (struct dwarf2_section_info));
9831 *dwo_unit->section = sections.info_or_types;
57d63ce2 9832 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9833
9834 return dwo_unit;
9835}
9836
73869dc2
DE
9837/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9838 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9839 piece within that section used by a TU/CU, return a virtual section
9840 of just that piece. */
9841
9842static struct dwarf2_section_info
9843create_dwp_v2_section (struct dwarf2_section_info *section,
9844 bfd_size_type offset, bfd_size_type size)
9845{
9846 struct dwarf2_section_info result;
9847 asection *sectp;
9848
9849 gdb_assert (section != NULL);
9850 gdb_assert (!section->is_virtual);
9851
9852 memset (&result, 0, sizeof (result));
9853 result.s.containing_section = section;
9854 result.is_virtual = 1;
9855
9856 if (size == 0)
9857 return result;
9858
9859 sectp = get_section_bfd_section (section);
9860
9861 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9862 bounds of the real section. This is a pretty-rare event, so just
9863 flag an error (easier) instead of a warning and trying to cope. */
9864 if (sectp == NULL
9865 || offset + size > bfd_get_section_size (sectp))
9866 {
9867 bfd *abfd = sectp->owner;
9868
9869 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9870 " in section %s [in module %s]"),
9871 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9872 objfile_name (dwarf2_per_objfile->objfile));
9873 }
9874
9875 result.virtual_offset = offset;
9876 result.size = size;
9877 return result;
9878}
9879
9880/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9881 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9882 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9883 This is for DWP version 2 files. */
9884
9885static struct dwo_unit *
9886create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9887 uint32_t unit_index,
9888 const char *comp_dir,
9889 ULONGEST signature, int is_debug_types)
9890{
9891 struct objfile *objfile = dwarf2_per_objfile->objfile;
9892 const struct dwp_hash_table *dwp_htab =
9893 is_debug_types ? dwp_file->tus : dwp_file->cus;
9894 bfd *dbfd = dwp_file->dbfd;
9895 const char *kind = is_debug_types ? "TU" : "CU";
9896 struct dwo_file *dwo_file;
9897 struct dwo_unit *dwo_unit;
9898 struct virtual_v2_dwo_sections sections;
9899 void **dwo_file_slot;
9900 char *virtual_dwo_name;
9901 struct dwarf2_section_info *cutu;
9902 struct cleanup *cleanups;
9903 int i;
9904
9905 gdb_assert (dwp_file->version == 2);
9906
9907 if (dwarf2_read_debug)
9908 {
9909 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9910 kind,
9911 pulongest (unit_index), hex_string (signature),
9912 dwp_file->name);
9913 }
9914
9915 /* Fetch the section offsets of this DWO unit. */
9916
9917 memset (&sections, 0, sizeof (sections));
9918 cleanups = make_cleanup (null_cleanup, 0);
9919
9920 for (i = 0; i < dwp_htab->nr_columns; ++i)
9921 {
9922 uint32_t offset = read_4_bytes (dbfd,
9923 dwp_htab->section_pool.v2.offsets
9924 + (((unit_index - 1) * dwp_htab->nr_columns
9925 + i)
9926 * sizeof (uint32_t)));
9927 uint32_t size = read_4_bytes (dbfd,
9928 dwp_htab->section_pool.v2.sizes
9929 + (((unit_index - 1) * dwp_htab->nr_columns
9930 + i)
9931 * sizeof (uint32_t)));
9932
9933 switch (dwp_htab->section_pool.v2.section_ids[i])
9934 {
9935 case DW_SECT_INFO:
9936 case DW_SECT_TYPES:
9937 sections.info_or_types_offset = offset;
9938 sections.info_or_types_size = size;
9939 break;
9940 case DW_SECT_ABBREV:
9941 sections.abbrev_offset = offset;
9942 sections.abbrev_size = size;
9943 break;
9944 case DW_SECT_LINE:
9945 sections.line_offset = offset;
9946 sections.line_size = size;
9947 break;
9948 case DW_SECT_LOC:
9949 sections.loc_offset = offset;
9950 sections.loc_size = size;
9951 break;
9952 case DW_SECT_STR_OFFSETS:
9953 sections.str_offsets_offset = offset;
9954 sections.str_offsets_size = size;
9955 break;
9956 case DW_SECT_MACINFO:
9957 sections.macinfo_offset = offset;
9958 sections.macinfo_size = size;
9959 break;
9960 case DW_SECT_MACRO:
9961 sections.macro_offset = offset;
9962 sections.macro_size = size;
9963 break;
9964 }
9965 }
9966
9967 /* It's easier for the rest of the code if we fake a struct dwo_file and
9968 have dwo_unit "live" in that. At least for now.
9969
9970 The DWP file can be made up of a random collection of CUs and TUs.
9971 However, for each CU + set of TUs that came from the same original DWO
9972 file, we can combine them back into a virtual DWO file to save space
9973 (fewer struct dwo_file objects to allocate). Remember that for really
9974 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9975
9976 virtual_dwo_name =
9977 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9978 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9979 (long) (sections.line_size ? sections.line_offset : 0),
9980 (long) (sections.loc_size ? sections.loc_offset : 0),
9981 (long) (sections.str_offsets_size
9982 ? sections.str_offsets_offset : 0));
9983 make_cleanup (xfree, virtual_dwo_name);
9984 /* Can we use an existing virtual DWO file? */
9985 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9986 /* Create one if necessary. */
9987 if (*dwo_file_slot == NULL)
9988 {
9989 if (dwarf2_read_debug)
9990 {
9991 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9992 virtual_dwo_name);
9993 }
9994 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9995 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9996 virtual_dwo_name,
9997 strlen (virtual_dwo_name));
9998 dwo_file->comp_dir = comp_dir;
9999 dwo_file->sections.abbrev =
10000 create_dwp_v2_section (&dwp_file->sections.abbrev,
10001 sections.abbrev_offset, sections.abbrev_size);
10002 dwo_file->sections.line =
10003 create_dwp_v2_section (&dwp_file->sections.line,
10004 sections.line_offset, sections.line_size);
10005 dwo_file->sections.loc =
10006 create_dwp_v2_section (&dwp_file->sections.loc,
10007 sections.loc_offset, sections.loc_size);
10008 dwo_file->sections.macinfo =
10009 create_dwp_v2_section (&dwp_file->sections.macinfo,
10010 sections.macinfo_offset, sections.macinfo_size);
10011 dwo_file->sections.macro =
10012 create_dwp_v2_section (&dwp_file->sections.macro,
10013 sections.macro_offset, sections.macro_size);
10014 dwo_file->sections.str_offsets =
10015 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10016 sections.str_offsets_offset,
10017 sections.str_offsets_size);
10018 /* The "str" section is global to the entire DWP file. */
10019 dwo_file->sections.str = dwp_file->sections.str;
10020 /* The info or types section is assigned below to dwo_unit,
10021 there's no need to record it in dwo_file.
10022 Also, we can't simply record type sections in dwo_file because
10023 we record a pointer into the vector in dwo_unit. As we collect more
10024 types we'll grow the vector and eventually have to reallocate space
10025 for it, invalidating all copies of pointers into the previous
10026 contents. */
10027 *dwo_file_slot = dwo_file;
10028 }
10029 else
10030 {
10031 if (dwarf2_read_debug)
10032 {
10033 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10034 virtual_dwo_name);
10035 }
10036 dwo_file = *dwo_file_slot;
10037 }
10038 do_cleanups (cleanups);
10039
10040 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10041 dwo_unit->dwo_file = dwo_file;
10042 dwo_unit->signature = signature;
10043 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10044 sizeof (struct dwarf2_section_info));
10045 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10046 ? &dwp_file->sections.types
10047 : &dwp_file->sections.info,
10048 sections.info_or_types_offset,
10049 sections.info_or_types_size);
10050 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10051
10052 return dwo_unit;
10053}
10054
57d63ce2
DE
10055/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10056 Returns NULL if the signature isn't found. */
80626a55
DE
10057
10058static struct dwo_unit *
57d63ce2
DE
10059lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10060 ULONGEST signature, int is_debug_types)
80626a55 10061{
57d63ce2
DE
10062 const struct dwp_hash_table *dwp_htab =
10063 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10064 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10065 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10066 uint32_t hash = signature & mask;
10067 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10068 unsigned int i;
10069 void **slot;
10070 struct dwo_unit find_dwo_cu, *dwo_cu;
10071
10072 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10073 find_dwo_cu.signature = signature;
19ac8c2e
DE
10074 slot = htab_find_slot (is_debug_types
10075 ? dwp_file->loaded_tus
10076 : dwp_file->loaded_cus,
10077 &find_dwo_cu, INSERT);
80626a55
DE
10078
10079 if (*slot != NULL)
10080 return *slot;
10081
10082 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10083 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10084 {
10085 ULONGEST signature_in_table;
10086
10087 signature_in_table =
57d63ce2 10088 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10089 if (signature_in_table == signature)
10090 {
57d63ce2
DE
10091 uint32_t unit_index =
10092 read_4_bytes (dbfd,
10093 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10094
73869dc2
DE
10095 if (dwp_file->version == 1)
10096 {
10097 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10098 comp_dir, signature,
10099 is_debug_types);
10100 }
10101 else
10102 {
10103 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10104 comp_dir, signature,
10105 is_debug_types);
10106 }
80626a55
DE
10107 return *slot;
10108 }
10109 if (signature_in_table == 0)
10110 return NULL;
10111 hash = (hash + hash2) & mask;
10112 }
10113
10114 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10115 " [in module %s]"),
10116 dwp_file->name);
10117}
10118
ab5088bf 10119/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10120 Open the file specified by FILE_NAME and hand it off to BFD for
10121 preliminary analysis. Return a newly initialized bfd *, which
10122 includes a canonicalized copy of FILE_NAME.
80626a55 10123 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10124 SEARCH_CWD is true if the current directory is to be searched.
10125 It will be searched before debug-file-directory.
13aaf454
DE
10126 If successful, the file is added to the bfd include table of the
10127 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10128 If unable to find/open the file, return NULL.
3019eac3
DE
10129 NOTE: This function is derived from symfile_bfd_open. */
10130
10131static bfd *
6ac97d4c 10132try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10133{
10134 bfd *sym_bfd;
80626a55 10135 int desc, flags;
3019eac3 10136 char *absolute_name;
9c02c129
DE
10137 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10138 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10139 to debug_file_directory. */
10140 char *search_path;
10141 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10142
6ac97d4c
DE
10143 if (search_cwd)
10144 {
10145 if (*debug_file_directory != '\0')
10146 search_path = concat (".", dirname_separator_string,
10147 debug_file_directory, NULL);
10148 else
10149 search_path = xstrdup (".");
10150 }
9c02c129 10151 else
6ac97d4c 10152 search_path = xstrdup (debug_file_directory);
3019eac3 10153
492c0ab7 10154 flags = OPF_RETURN_REALPATH;
80626a55
DE
10155 if (is_dwp)
10156 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10157 desc = openp (search_path, flags, file_name,
3019eac3 10158 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10159 xfree (search_path);
3019eac3
DE
10160 if (desc < 0)
10161 return NULL;
10162
bb397797 10163 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10164 xfree (absolute_name);
9c02c129
DE
10165 if (sym_bfd == NULL)
10166 return NULL;
3019eac3
DE
10167 bfd_set_cacheable (sym_bfd, 1);
10168
10169 if (!bfd_check_format (sym_bfd, bfd_object))
10170 {
cbb099e8 10171 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10172 return NULL;
10173 }
10174
13aaf454
DE
10175 /* Success. Record the bfd as having been included by the objfile's bfd.
10176 This is important because things like demangled_names_hash lives in the
10177 objfile's per_bfd space and may have references to things like symbol
10178 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10179 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10180
3019eac3
DE
10181 return sym_bfd;
10182}
10183
ab5088bf 10184/* Try to open DWO file FILE_NAME.
3019eac3
DE
10185 COMP_DIR is the DW_AT_comp_dir attribute.
10186 The result is the bfd handle of the file.
10187 If there is a problem finding or opening the file, return NULL.
10188 Upon success, the canonicalized path of the file is stored in the bfd,
10189 same as symfile_bfd_open. */
10190
10191static bfd *
ab5088bf 10192open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10193{
10194 bfd *abfd;
3019eac3 10195
80626a55 10196 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10197 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10198
10199 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10200
10201 if (comp_dir != NULL)
10202 {
80626a55 10203 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10204
10205 /* NOTE: If comp_dir is a relative path, this will also try the
10206 search path, which seems useful. */
6ac97d4c 10207 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10208 xfree (path_to_try);
10209 if (abfd != NULL)
10210 return abfd;
10211 }
10212
10213 /* That didn't work, try debug-file-directory, which, despite its name,
10214 is a list of paths. */
10215
10216 if (*debug_file_directory == '\0')
10217 return NULL;
10218
6ac97d4c 10219 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10220}
10221
80626a55
DE
10222/* This function is mapped across the sections and remembers the offset and
10223 size of each of the DWO debugging sections we are interested in. */
10224
10225static void
10226dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10227{
10228 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10229 const struct dwop_section_names *names = &dwop_section_names;
10230
10231 if (section_is_p (sectp->name, &names->abbrev_dwo))
10232 {
73869dc2 10233 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10234 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10235 }
10236 else if (section_is_p (sectp->name, &names->info_dwo))
10237 {
73869dc2 10238 dwo_sections->info.s.asection = sectp;
80626a55
DE
10239 dwo_sections->info.size = bfd_get_section_size (sectp);
10240 }
10241 else if (section_is_p (sectp->name, &names->line_dwo))
10242 {
73869dc2 10243 dwo_sections->line.s.asection = sectp;
80626a55
DE
10244 dwo_sections->line.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->loc_dwo))
10247 {
73869dc2 10248 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10249 dwo_sections->loc.size = bfd_get_section_size (sectp);
10250 }
10251 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10252 {
73869dc2 10253 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10254 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10255 }
10256 else if (section_is_p (sectp->name, &names->macro_dwo))
10257 {
73869dc2 10258 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10259 dwo_sections->macro.size = bfd_get_section_size (sectp);
10260 }
10261 else if (section_is_p (sectp->name, &names->str_dwo))
10262 {
73869dc2 10263 dwo_sections->str.s.asection = sectp;
80626a55
DE
10264 dwo_sections->str.size = bfd_get_section_size (sectp);
10265 }
10266 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10267 {
73869dc2 10268 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10269 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->types_dwo))
10272 {
10273 struct dwarf2_section_info type_section;
10274
10275 memset (&type_section, 0, sizeof (type_section));
73869dc2 10276 type_section.s.asection = sectp;
80626a55
DE
10277 type_section.size = bfd_get_section_size (sectp);
10278 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10279 &type_section);
10280 }
10281}
10282
ab5088bf 10283/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10284 by PER_CU. This is for the non-DWP case.
80626a55 10285 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10286
10287static struct dwo_file *
0ac5b59e
DE
10288open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10289 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10290{
10291 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10292 struct dwo_file *dwo_file;
10293 bfd *dbfd;
3019eac3
DE
10294 struct cleanup *cleanups;
10295
ab5088bf 10296 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10297 if (dbfd == NULL)
10298 {
10299 if (dwarf2_read_debug)
10300 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10301 return NULL;
10302 }
10303 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10304 dwo_file->dwo_name = dwo_name;
10305 dwo_file->comp_dir = comp_dir;
80626a55 10306 dwo_file->dbfd = dbfd;
3019eac3
DE
10307
10308 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10309
80626a55 10310 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10311
19c3d4c9 10312 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10313
10314 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10315 dwo_file->sections.types);
10316
10317 discard_cleanups (cleanups);
10318
80626a55
DE
10319 if (dwarf2_read_debug)
10320 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10321
3019eac3
DE
10322 return dwo_file;
10323}
10324
80626a55 10325/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10326 size of each of the DWP debugging sections common to version 1 and 2 that
10327 we are interested in. */
3019eac3 10328
80626a55 10329static void
73869dc2
DE
10330dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10331 void *dwp_file_ptr)
3019eac3 10332{
80626a55
DE
10333 struct dwp_file *dwp_file = dwp_file_ptr;
10334 const struct dwop_section_names *names = &dwop_section_names;
10335 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10336
80626a55 10337 /* Record the ELF section number for later lookup: this is what the
73869dc2 10338 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10339 gdb_assert (elf_section_nr < dwp_file->num_sections);
10340 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10341
80626a55
DE
10342 /* Look for specific sections that we need. */
10343 if (section_is_p (sectp->name, &names->str_dwo))
10344 {
73869dc2 10345 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10346 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10347 }
10348 else if (section_is_p (sectp->name, &names->cu_index))
10349 {
73869dc2 10350 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10351 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10352 }
10353 else if (section_is_p (sectp->name, &names->tu_index))
10354 {
73869dc2 10355 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10356 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10357 }
10358}
3019eac3 10359
73869dc2
DE
10360/* This function is mapped across the sections and remembers the offset and
10361 size of each of the DWP version 2 debugging sections that we are interested
10362 in. This is split into a separate function because we don't know if we
10363 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10364
10365static void
10366dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10367{
10368 struct dwp_file *dwp_file = dwp_file_ptr;
10369 const struct dwop_section_names *names = &dwop_section_names;
10370 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10371
10372 /* Record the ELF section number for later lookup: this is what the
10373 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10374 gdb_assert (elf_section_nr < dwp_file->num_sections);
10375 dwp_file->elf_sections[elf_section_nr] = sectp;
10376
10377 /* Look for specific sections that we need. */
10378 if (section_is_p (sectp->name, &names->abbrev_dwo))
10379 {
10380 dwp_file->sections.abbrev.s.asection = sectp;
10381 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10382 }
10383 else if (section_is_p (sectp->name, &names->info_dwo))
10384 {
10385 dwp_file->sections.info.s.asection = sectp;
10386 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->line_dwo))
10389 {
10390 dwp_file->sections.line.s.asection = sectp;
10391 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->loc_dwo))
10394 {
10395 dwp_file->sections.loc.s.asection = sectp;
10396 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10399 {
10400 dwp_file->sections.macinfo.s.asection = sectp;
10401 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->macro_dwo))
10404 {
10405 dwp_file->sections.macro.s.asection = sectp;
10406 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10409 {
10410 dwp_file->sections.str_offsets.s.asection = sectp;
10411 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->types_dwo))
10414 {
10415 dwp_file->sections.types.s.asection = sectp;
10416 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10417 }
10418}
10419
80626a55 10420/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10421
80626a55
DE
10422static hashval_t
10423hash_dwp_loaded_cutus (const void *item)
10424{
10425 const struct dwo_unit *dwo_unit = item;
3019eac3 10426
80626a55
DE
10427 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10428 return dwo_unit->signature;
3019eac3
DE
10429}
10430
80626a55 10431/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10432
80626a55
DE
10433static int
10434eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10435{
80626a55
DE
10436 const struct dwo_unit *dua = a;
10437 const struct dwo_unit *dub = b;
3019eac3 10438
80626a55
DE
10439 return dua->signature == dub->signature;
10440}
3019eac3 10441
80626a55 10442/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10443
80626a55
DE
10444static htab_t
10445allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10446{
10447 return htab_create_alloc_ex (3,
10448 hash_dwp_loaded_cutus,
10449 eq_dwp_loaded_cutus,
10450 NULL,
10451 &objfile->objfile_obstack,
10452 hashtab_obstack_allocate,
10453 dummy_obstack_deallocate);
10454}
3019eac3 10455
ab5088bf
DE
10456/* Try to open DWP file FILE_NAME.
10457 The result is the bfd handle of the file.
10458 If there is a problem finding or opening the file, return NULL.
10459 Upon success, the canonicalized path of the file is stored in the bfd,
10460 same as symfile_bfd_open. */
10461
10462static bfd *
10463open_dwp_file (const char *file_name)
10464{
6ac97d4c
DE
10465 bfd *abfd;
10466
10467 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10468 if (abfd != NULL)
10469 return abfd;
10470
10471 /* Work around upstream bug 15652.
10472 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10473 [Whether that's a "bug" is debatable, but it is getting in our way.]
10474 We have no real idea where the dwp file is, because gdb's realpath-ing
10475 of the executable's path may have discarded the needed info.
10476 [IWBN if the dwp file name was recorded in the executable, akin to
10477 .gnu_debuglink, but that doesn't exist yet.]
10478 Strip the directory from FILE_NAME and search again. */
10479 if (*debug_file_directory != '\0')
10480 {
10481 /* Don't implicitly search the current directory here.
10482 If the user wants to search "." to handle this case,
10483 it must be added to debug-file-directory. */
10484 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10485 0 /*search_cwd*/);
10486 }
10487
10488 return NULL;
ab5088bf
DE
10489}
10490
80626a55
DE
10491/* Initialize the use of the DWP file for the current objfile.
10492 By convention the name of the DWP file is ${objfile}.dwp.
10493 The result is NULL if it can't be found. */
a766d390 10494
80626a55 10495static struct dwp_file *
ab5088bf 10496open_and_init_dwp_file (void)
80626a55
DE
10497{
10498 struct objfile *objfile = dwarf2_per_objfile->objfile;
10499 struct dwp_file *dwp_file;
10500 char *dwp_name;
10501 bfd *dbfd;
10502 struct cleanup *cleanups;
10503
82bf32bc
JK
10504 /* Try to find first .dwp for the binary file before any symbolic links
10505 resolving. */
10506 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10507 cleanups = make_cleanup (xfree, dwp_name);
10508
ab5088bf 10509 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10510 if (dbfd == NULL
10511 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10512 {
10513 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10514 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10515 make_cleanup (xfree, dwp_name);
10516 dbfd = open_dwp_file (dwp_name);
10517 }
10518
80626a55
DE
10519 if (dbfd == NULL)
10520 {
10521 if (dwarf2_read_debug)
10522 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10523 do_cleanups (cleanups);
10524 return NULL;
3019eac3 10525 }
80626a55 10526 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10527 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10528 dwp_file->dbfd = dbfd;
10529 do_cleanups (cleanups);
c906108c 10530
80626a55
DE
10531 /* +1: section 0 is unused */
10532 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10533 dwp_file->elf_sections =
10534 OBSTACK_CALLOC (&objfile->objfile_obstack,
10535 dwp_file->num_sections, asection *);
10536
73869dc2 10537 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10538
10539 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10540
10541 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10542
73869dc2
DE
10543 /* The DWP file version is stored in the hash table. Oh well. */
10544 if (dwp_file->cus->version != dwp_file->tus->version)
10545 {
10546 /* Technically speaking, we should try to limp along, but this is
10547 pretty bizarre. */
10548 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10549 " TU version %d [in DWP file %s]"),
10550 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10551 }
10552 dwp_file->version = dwp_file->cus->version;
10553
10554 if (dwp_file->version == 2)
10555 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10556
19ac8c2e
DE
10557 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10558 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10559
80626a55
DE
10560 if (dwarf2_read_debug)
10561 {
10562 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10563 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10564 " %s CUs, %s TUs\n",
10565 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10566 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10567 }
10568
10569 return dwp_file;
3019eac3 10570}
c906108c 10571
ab5088bf
DE
10572/* Wrapper around open_and_init_dwp_file, only open it once. */
10573
10574static struct dwp_file *
10575get_dwp_file (void)
10576{
10577 if (! dwarf2_per_objfile->dwp_checked)
10578 {
10579 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10580 dwarf2_per_objfile->dwp_checked = 1;
10581 }
10582 return dwarf2_per_objfile->dwp_file;
10583}
10584
80626a55
DE
10585/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10586 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10587 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10588 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10589 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10590
10591 This is called, for example, when wanting to read a variable with a
10592 complex location. Therefore we don't want to do file i/o for every call.
10593 Therefore we don't want to look for a DWO file on every call.
10594 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10595 then we check if we've already seen DWO_NAME, and only THEN do we check
10596 for a DWO file.
10597
1c658ad5 10598 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10599 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10600
3019eac3 10601static struct dwo_unit *
80626a55
DE
10602lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10603 const char *dwo_name, const char *comp_dir,
10604 ULONGEST signature, int is_debug_types)
3019eac3
DE
10605{
10606 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10607 const char *kind = is_debug_types ? "TU" : "CU";
10608 void **dwo_file_slot;
3019eac3 10609 struct dwo_file *dwo_file;
80626a55 10610 struct dwp_file *dwp_file;
cb1df416 10611
6a506a2d
DE
10612 /* First see if there's a DWP file.
10613 If we have a DWP file but didn't find the DWO inside it, don't
10614 look for the original DWO file. It makes gdb behave differently
10615 depending on whether one is debugging in the build tree. */
cf2c3c16 10616
ab5088bf 10617 dwp_file = get_dwp_file ();
80626a55 10618 if (dwp_file != NULL)
cf2c3c16 10619 {
80626a55
DE
10620 const struct dwp_hash_table *dwp_htab =
10621 is_debug_types ? dwp_file->tus : dwp_file->cus;
10622
10623 if (dwp_htab != NULL)
10624 {
10625 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10626 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10627 signature, is_debug_types);
80626a55
DE
10628
10629 if (dwo_cutu != NULL)
10630 {
10631 if (dwarf2_read_debug)
10632 {
10633 fprintf_unfiltered (gdb_stdlog,
10634 "Virtual DWO %s %s found: @%s\n",
10635 kind, hex_string (signature),
10636 host_address_to_string (dwo_cutu));
10637 }
10638 return dwo_cutu;
10639 }
10640 }
10641 }
6a506a2d 10642 else
80626a55 10643 {
6a506a2d 10644 /* No DWP file, look for the DWO file. */
80626a55 10645
6a506a2d
DE
10646 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10647 if (*dwo_file_slot == NULL)
80626a55 10648 {
6a506a2d
DE
10649 /* Read in the file and build a table of the CUs/TUs it contains. */
10650 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10651 }
6a506a2d
DE
10652 /* NOTE: This will be NULL if unable to open the file. */
10653 dwo_file = *dwo_file_slot;
3019eac3 10654
6a506a2d 10655 if (dwo_file != NULL)
19c3d4c9 10656 {
6a506a2d
DE
10657 struct dwo_unit *dwo_cutu = NULL;
10658
10659 if (is_debug_types && dwo_file->tus)
10660 {
10661 struct dwo_unit find_dwo_cutu;
10662
10663 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10664 find_dwo_cutu.signature = signature;
10665 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10666 }
10667 else if (!is_debug_types && dwo_file->cu)
80626a55 10668 {
6a506a2d
DE
10669 if (signature == dwo_file->cu->signature)
10670 dwo_cutu = dwo_file->cu;
10671 }
10672
10673 if (dwo_cutu != NULL)
10674 {
10675 if (dwarf2_read_debug)
10676 {
10677 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10678 kind, dwo_name, hex_string (signature),
10679 host_address_to_string (dwo_cutu));
10680 }
10681 return dwo_cutu;
80626a55
DE
10682 }
10683 }
2e276125 10684 }
9cdd5dbd 10685
80626a55
DE
10686 /* We didn't find it. This could mean a dwo_id mismatch, or
10687 someone deleted the DWO/DWP file, or the search path isn't set up
10688 correctly to find the file. */
10689
10690 if (dwarf2_read_debug)
10691 {
10692 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10693 kind, dwo_name, hex_string (signature));
10694 }
3019eac3 10695
6656a72d
DE
10696 /* This is a warning and not a complaint because it can be caused by
10697 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10698 {
10699 /* Print the name of the DWP file if we looked there, helps the user
10700 better diagnose the problem. */
10701 char *dwp_text = NULL;
10702 struct cleanup *cleanups;
10703
10704 if (dwp_file != NULL)
10705 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10706 cleanups = make_cleanup (xfree, dwp_text);
10707
10708 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10709 " [in module %s]"),
10710 kind, dwo_name, hex_string (signature),
10711 dwp_text != NULL ? dwp_text : "",
10712 this_unit->is_debug_types ? "TU" : "CU",
10713 this_unit->offset.sect_off, objfile_name (objfile));
10714
10715 do_cleanups (cleanups);
10716 }
3019eac3 10717 return NULL;
5fb290d7
DJ
10718}
10719
80626a55
DE
10720/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10721 See lookup_dwo_cutu_unit for details. */
10722
10723static struct dwo_unit *
10724lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10725 const char *dwo_name, const char *comp_dir,
10726 ULONGEST signature)
10727{
10728 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10729}
10730
10731/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10732 See lookup_dwo_cutu_unit for details. */
10733
10734static struct dwo_unit *
10735lookup_dwo_type_unit (struct signatured_type *this_tu,
10736 const char *dwo_name, const char *comp_dir)
10737{
10738 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10739}
10740
89e63ee4
DE
10741/* Traversal function for queue_and_load_all_dwo_tus. */
10742
10743static int
10744queue_and_load_dwo_tu (void **slot, void *info)
10745{
10746 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10747 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10748 ULONGEST signature = dwo_unit->signature;
10749 struct signatured_type *sig_type =
10750 lookup_dwo_signatured_type (per_cu->cu, signature);
10751
10752 if (sig_type != NULL)
10753 {
10754 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10755
10756 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10757 a real dependency of PER_CU on SIG_TYPE. That is detected later
10758 while processing PER_CU. */
10759 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10760 load_full_type_unit (sig_cu);
10761 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10762 }
10763
10764 return 1;
10765}
10766
10767/* Queue all TUs contained in the DWO of PER_CU to be read in.
10768 The DWO may have the only definition of the type, though it may not be
10769 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10770 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10771
10772static void
10773queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10774{
10775 struct dwo_unit *dwo_unit;
10776 struct dwo_file *dwo_file;
10777
10778 gdb_assert (!per_cu->is_debug_types);
10779 gdb_assert (get_dwp_file () == NULL);
10780 gdb_assert (per_cu->cu != NULL);
10781
10782 dwo_unit = per_cu->cu->dwo_unit;
10783 gdb_assert (dwo_unit != NULL);
10784
10785 dwo_file = dwo_unit->dwo_file;
10786 if (dwo_file->tus != NULL)
10787 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10788}
10789
3019eac3
DE
10790/* Free all resources associated with DWO_FILE.
10791 Close the DWO file and munmap the sections.
10792 All memory should be on the objfile obstack. */
348e048f
DE
10793
10794static void
3019eac3 10795free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10796{
3019eac3
DE
10797 int ix;
10798 struct dwarf2_section_info *section;
348e048f 10799
5c6fa7ab 10800 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10801 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10802
3019eac3
DE
10803 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10804}
348e048f 10805
3019eac3 10806/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10807
3019eac3
DE
10808static void
10809free_dwo_file_cleanup (void *arg)
10810{
10811 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10812 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10813
3019eac3
DE
10814 free_dwo_file (dwo_file, objfile);
10815}
348e048f 10816
3019eac3 10817/* Traversal function for free_dwo_files. */
2ab95328 10818
3019eac3
DE
10819static int
10820free_dwo_file_from_slot (void **slot, void *info)
10821{
10822 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10823 struct objfile *objfile = (struct objfile *) info;
348e048f 10824
3019eac3 10825 free_dwo_file (dwo_file, objfile);
348e048f 10826
3019eac3
DE
10827 return 1;
10828}
348e048f 10829
3019eac3 10830/* Free all resources associated with DWO_FILES. */
348e048f 10831
3019eac3
DE
10832static void
10833free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10834{
10835 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10836}
3019eac3
DE
10837\f
10838/* Read in various DIEs. */
348e048f 10839
d389af10
JK
10840/* qsort helper for inherit_abstract_dies. */
10841
10842static int
10843unsigned_int_compar (const void *ap, const void *bp)
10844{
10845 unsigned int a = *(unsigned int *) ap;
10846 unsigned int b = *(unsigned int *) bp;
10847
10848 return (a > b) - (b > a);
10849}
10850
10851/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10852 Inherit only the children of the DW_AT_abstract_origin DIE not being
10853 already referenced by DW_AT_abstract_origin from the children of the
10854 current DIE. */
d389af10
JK
10855
10856static void
10857inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10858{
10859 struct die_info *child_die;
10860 unsigned die_children_count;
10861 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
10862 sect_offset *offsets;
10863 sect_offset *offsets_end, *offsetp;
d389af10
JK
10864 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10865 struct die_info *origin_die;
10866 /* Iterator of the ORIGIN_DIE children. */
10867 struct die_info *origin_child_die;
10868 struct cleanup *cleanups;
10869 struct attribute *attr;
cd02d79d
PA
10870 struct dwarf2_cu *origin_cu;
10871 struct pending **origin_previous_list_in_scope;
d389af10
JK
10872
10873 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10874 if (!attr)
10875 return;
10876
cd02d79d
PA
10877 /* Note that following die references may follow to a die in a
10878 different cu. */
10879
10880 origin_cu = cu;
10881 origin_die = follow_die_ref (die, attr, &origin_cu);
10882
10883 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10884 symbols in. */
10885 origin_previous_list_in_scope = origin_cu->list_in_scope;
10886 origin_cu->list_in_scope = cu->list_in_scope;
10887
edb3359d
DJ
10888 if (die->tag != origin_die->tag
10889 && !(die->tag == DW_TAG_inlined_subroutine
10890 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10891 complaint (&symfile_complaints,
10892 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 10893 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
10894
10895 child_die = die->child;
10896 die_children_count = 0;
10897 while (child_die && child_die->tag)
10898 {
10899 child_die = sibling_die (child_die);
10900 die_children_count++;
10901 }
10902 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10903 cleanups = make_cleanup (xfree, offsets);
10904
10905 offsets_end = offsets;
10906 child_die = die->child;
10907 while (child_die && child_die->tag)
10908 {
c38f313d
DJ
10909 /* For each CHILD_DIE, find the corresponding child of
10910 ORIGIN_DIE. If there is more than one layer of
10911 DW_AT_abstract_origin, follow them all; there shouldn't be,
10912 but GCC versions at least through 4.4 generate this (GCC PR
10913 40573). */
10914 struct die_info *child_origin_die = child_die;
cd02d79d 10915 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 10916
c38f313d
DJ
10917 while (1)
10918 {
cd02d79d
PA
10919 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10920 child_origin_cu);
c38f313d
DJ
10921 if (attr == NULL)
10922 break;
cd02d79d
PA
10923 child_origin_die = follow_die_ref (child_origin_die, attr,
10924 &child_origin_cu);
c38f313d
DJ
10925 }
10926
d389af10
JK
10927 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10928 counterpart may exist. */
c38f313d 10929 if (child_origin_die != child_die)
d389af10 10930 {
edb3359d
DJ
10931 if (child_die->tag != child_origin_die->tag
10932 && !(child_die->tag == DW_TAG_inlined_subroutine
10933 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10934 complaint (&symfile_complaints,
10935 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10936 "different tags"), child_die->offset.sect_off,
10937 child_origin_die->offset.sect_off);
c38f313d
DJ
10938 if (child_origin_die->parent != origin_die)
10939 complaint (&symfile_complaints,
10940 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10941 "different parents"), child_die->offset.sect_off,
10942 child_origin_die->offset.sect_off);
c38f313d
DJ
10943 else
10944 *offsets_end++ = child_origin_die->offset;
d389af10
JK
10945 }
10946 child_die = sibling_die (child_die);
10947 }
10948 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10949 unsigned_int_compar);
10950 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 10951 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
10952 complaint (&symfile_complaints,
10953 _("Multiple children of DIE 0x%x refer "
10954 "to DIE 0x%x as their abstract origin"),
b64f50a1 10955 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
10956
10957 offsetp = offsets;
10958 origin_child_die = origin_die->child;
10959 while (origin_child_die && origin_child_die->tag)
10960 {
10961 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
10962 while (offsetp < offsets_end
10963 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 10964 offsetp++;
b64f50a1
JK
10965 if (offsetp >= offsets_end
10966 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
10967 {
10968 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 10969 process_die (origin_child_die, origin_cu);
d389af10
JK
10970 }
10971 origin_child_die = sibling_die (origin_child_die);
10972 }
cd02d79d 10973 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
10974
10975 do_cleanups (cleanups);
10976}
10977
c906108c 10978static void
e7c27a73 10979read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10980{
e7c27a73 10981 struct objfile *objfile = cu->objfile;
52f0bd74 10982 struct context_stack *new;
c906108c
SS
10983 CORE_ADDR lowpc;
10984 CORE_ADDR highpc;
10985 struct die_info *child_die;
edb3359d 10986 struct attribute *attr, *call_line, *call_file;
15d034d0 10987 const char *name;
e142c38c 10988 CORE_ADDR baseaddr;
801e3a5b 10989 struct block *block;
edb3359d 10990 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
10991 VEC (symbolp) *template_args = NULL;
10992 struct template_symbol *templ_func = NULL;
edb3359d
DJ
10993
10994 if (inlined_func)
10995 {
10996 /* If we do not have call site information, we can't show the
10997 caller of this inlined function. That's too confusing, so
10998 only use the scope for local variables. */
10999 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11000 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11001 if (call_line == NULL || call_file == NULL)
11002 {
11003 read_lexical_block_scope (die, cu);
11004 return;
11005 }
11006 }
c906108c 11007
e142c38c
DJ
11008 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11009
94af9270 11010 name = dwarf2_name (die, cu);
c906108c 11011
e8d05480
JB
11012 /* Ignore functions with missing or empty names. These are actually
11013 illegal according to the DWARF standard. */
11014 if (name == NULL)
11015 {
11016 complaint (&symfile_complaints,
b64f50a1
JK
11017 _("missing name for subprogram DIE at %d"),
11018 die->offset.sect_off);
e8d05480
JB
11019 return;
11020 }
11021
11022 /* Ignore functions with missing or invalid low and high pc attributes. */
11023 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11024 {
ae4d0c03
PM
11025 attr = dwarf2_attr (die, DW_AT_external, cu);
11026 if (!attr || !DW_UNSND (attr))
11027 complaint (&symfile_complaints,
3e43a32a
MS
11028 _("cannot get low and high bounds "
11029 "for subprogram DIE at %d"),
b64f50a1 11030 die->offset.sect_off);
e8d05480
JB
11031 return;
11032 }
c906108c
SS
11033
11034 lowpc += baseaddr;
11035 highpc += baseaddr;
11036
34eaf542
TT
11037 /* If we have any template arguments, then we must allocate a
11038 different sort of symbol. */
11039 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11040 {
11041 if (child_die->tag == DW_TAG_template_type_param
11042 || child_die->tag == DW_TAG_template_value_param)
11043 {
e623cf5d 11044 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11045 templ_func->base.is_cplus_template_function = 1;
11046 break;
11047 }
11048 }
11049
c906108c 11050 new = push_context (0, lowpc);
34eaf542
TT
11051 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11052 (struct symbol *) templ_func);
4c2df51b 11053
4cecd739
DJ
11054 /* If there is a location expression for DW_AT_frame_base, record
11055 it. */
e142c38c 11056 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11057 if (attr)
f1e6e072 11058 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11059
e142c38c 11060 cu->list_in_scope = &local_symbols;
c906108c 11061
639d11d3 11062 if (die->child != NULL)
c906108c 11063 {
639d11d3 11064 child_die = die->child;
c906108c
SS
11065 while (child_die && child_die->tag)
11066 {
34eaf542
TT
11067 if (child_die->tag == DW_TAG_template_type_param
11068 || child_die->tag == DW_TAG_template_value_param)
11069 {
11070 struct symbol *arg = new_symbol (child_die, NULL, cu);
11071
f1078f66
DJ
11072 if (arg != NULL)
11073 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11074 }
11075 else
11076 process_die (child_die, cu);
c906108c
SS
11077 child_die = sibling_die (child_die);
11078 }
11079 }
11080
d389af10
JK
11081 inherit_abstract_dies (die, cu);
11082
4a811a97
UW
11083 /* If we have a DW_AT_specification, we might need to import using
11084 directives from the context of the specification DIE. See the
11085 comment in determine_prefix. */
11086 if (cu->language == language_cplus
11087 && dwarf2_attr (die, DW_AT_specification, cu))
11088 {
11089 struct dwarf2_cu *spec_cu = cu;
11090 struct die_info *spec_die = die_specification (die, &spec_cu);
11091
11092 while (spec_die)
11093 {
11094 child_die = spec_die->child;
11095 while (child_die && child_die->tag)
11096 {
11097 if (child_die->tag == DW_TAG_imported_module)
11098 process_die (child_die, spec_cu);
11099 child_die = sibling_die (child_die);
11100 }
11101
11102 /* In some cases, GCC generates specification DIEs that
11103 themselves contain DW_AT_specification attributes. */
11104 spec_die = die_specification (spec_die, &spec_cu);
11105 }
11106 }
11107
c906108c
SS
11108 new = pop_context ();
11109 /* Make a block for the local symbols within. */
801e3a5b
JB
11110 block = finish_block (new->name, &local_symbols, new->old_blocks,
11111 lowpc, highpc, objfile);
11112
df8a16a1 11113 /* For C++, set the block's scope. */
195a3f6c 11114 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11115 && cu->processing_has_namespace_info)
195a3f6c
TT
11116 block_set_scope (block, determine_prefix (die, cu),
11117 &objfile->objfile_obstack);
df8a16a1 11118
801e3a5b
JB
11119 /* If we have address ranges, record them. */
11120 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11121
34eaf542
TT
11122 /* Attach template arguments to function. */
11123 if (! VEC_empty (symbolp, template_args))
11124 {
11125 gdb_assert (templ_func != NULL);
11126
11127 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11128 templ_func->template_arguments
11129 = obstack_alloc (&objfile->objfile_obstack,
11130 (templ_func->n_template_arguments
11131 * sizeof (struct symbol *)));
11132 memcpy (templ_func->template_arguments,
11133 VEC_address (symbolp, template_args),
11134 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11135 VEC_free (symbolp, template_args);
11136 }
11137
208d8187
JB
11138 /* In C++, we can have functions nested inside functions (e.g., when
11139 a function declares a class that has methods). This means that
11140 when we finish processing a function scope, we may need to go
11141 back to building a containing block's symbol lists. */
11142 local_symbols = new->locals;
27aa8d6a 11143 using_directives = new->using_directives;
208d8187 11144
921e78cf
JB
11145 /* If we've finished processing a top-level function, subsequent
11146 symbols go in the file symbol list. */
11147 if (outermost_context_p ())
e142c38c 11148 cu->list_in_scope = &file_symbols;
c906108c
SS
11149}
11150
11151/* Process all the DIES contained within a lexical block scope. Start
11152 a new scope, process the dies, and then close the scope. */
11153
11154static void
e7c27a73 11155read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11156{
e7c27a73 11157 struct objfile *objfile = cu->objfile;
52f0bd74 11158 struct context_stack *new;
c906108c
SS
11159 CORE_ADDR lowpc, highpc;
11160 struct die_info *child_die;
e142c38c
DJ
11161 CORE_ADDR baseaddr;
11162
11163 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11164
11165 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11166 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11167 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11168 be nasty. Might be easier to properly extend generic blocks to
af34e669 11169 describe ranges. */
d85a05f0 11170 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11171 return;
11172 lowpc += baseaddr;
11173 highpc += baseaddr;
11174
11175 push_context (0, lowpc);
639d11d3 11176 if (die->child != NULL)
c906108c 11177 {
639d11d3 11178 child_die = die->child;
c906108c
SS
11179 while (child_die && child_die->tag)
11180 {
e7c27a73 11181 process_die (child_die, cu);
c906108c
SS
11182 child_die = sibling_die (child_die);
11183 }
11184 }
11185 new = pop_context ();
11186
8540c487 11187 if (local_symbols != NULL || using_directives != NULL)
c906108c 11188 {
801e3a5b
JB
11189 struct block *block
11190 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11191 highpc, objfile);
11192
11193 /* Note that recording ranges after traversing children, as we
11194 do here, means that recording a parent's ranges entails
11195 walking across all its children's ranges as they appear in
11196 the address map, which is quadratic behavior.
11197
11198 It would be nicer to record the parent's ranges before
11199 traversing its children, simply overriding whatever you find
11200 there. But since we don't even decide whether to create a
11201 block until after we've traversed its children, that's hard
11202 to do. */
11203 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11204 }
11205 local_symbols = new->locals;
27aa8d6a 11206 using_directives = new->using_directives;
c906108c
SS
11207}
11208
96408a79
SA
11209/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11210
11211static void
11212read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11213{
11214 struct objfile *objfile = cu->objfile;
11215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11216 CORE_ADDR pc, baseaddr;
11217 struct attribute *attr;
11218 struct call_site *call_site, call_site_local;
11219 void **slot;
11220 int nparams;
11221 struct die_info *child_die;
11222
11223 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11224
11225 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11226 if (!attr)
11227 {
11228 complaint (&symfile_complaints,
11229 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11230 "DIE 0x%x [in module %s]"),
4262abfb 11231 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11232 return;
11233 }
11234 pc = DW_ADDR (attr) + baseaddr;
11235
11236 if (cu->call_site_htab == NULL)
11237 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11238 NULL, &objfile->objfile_obstack,
11239 hashtab_obstack_allocate, NULL);
11240 call_site_local.pc = pc;
11241 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11242 if (*slot != NULL)
11243 {
11244 complaint (&symfile_complaints,
11245 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11246 "DIE 0x%x [in module %s]"),
4262abfb
JK
11247 paddress (gdbarch, pc), die->offset.sect_off,
11248 objfile_name (objfile));
96408a79
SA
11249 return;
11250 }
11251
11252 /* Count parameters at the caller. */
11253
11254 nparams = 0;
11255 for (child_die = die->child; child_die && child_die->tag;
11256 child_die = sibling_die (child_die))
11257 {
11258 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11259 {
11260 complaint (&symfile_complaints,
11261 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11262 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11263 child_die->tag, child_die->offset.sect_off,
11264 objfile_name (objfile));
96408a79
SA
11265 continue;
11266 }
11267
11268 nparams++;
11269 }
11270
11271 call_site = obstack_alloc (&objfile->objfile_obstack,
11272 (sizeof (*call_site)
11273 + (sizeof (*call_site->parameter)
11274 * (nparams - 1))));
11275 *slot = call_site;
11276 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11277 call_site->pc = pc;
11278
11279 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11280 {
11281 struct die_info *func_die;
11282
11283 /* Skip also over DW_TAG_inlined_subroutine. */
11284 for (func_die = die->parent;
11285 func_die && func_die->tag != DW_TAG_subprogram
11286 && func_die->tag != DW_TAG_subroutine_type;
11287 func_die = func_die->parent);
11288
11289 /* DW_AT_GNU_all_call_sites is a superset
11290 of DW_AT_GNU_all_tail_call_sites. */
11291 if (func_die
11292 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11293 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11294 {
11295 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11296 not complete. But keep CALL_SITE for look ups via call_site_htab,
11297 both the initial caller containing the real return address PC and
11298 the final callee containing the current PC of a chain of tail
11299 calls do not need to have the tail call list complete. But any
11300 function candidate for a virtual tail call frame searched via
11301 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11302 determined unambiguously. */
11303 }
11304 else
11305 {
11306 struct type *func_type = NULL;
11307
11308 if (func_die)
11309 func_type = get_die_type (func_die, cu);
11310 if (func_type != NULL)
11311 {
11312 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11313
11314 /* Enlist this call site to the function. */
11315 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11316 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11317 }
11318 else
11319 complaint (&symfile_complaints,
11320 _("Cannot find function owning DW_TAG_GNU_call_site "
11321 "DIE 0x%x [in module %s]"),
4262abfb 11322 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11323 }
11324 }
11325
11326 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11327 if (attr == NULL)
11328 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11329 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11330 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11331 /* Keep NULL DWARF_BLOCK. */;
11332 else if (attr_form_is_block (attr))
11333 {
11334 struct dwarf2_locexpr_baton *dlbaton;
11335
11336 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11337 dlbaton->data = DW_BLOCK (attr)->data;
11338 dlbaton->size = DW_BLOCK (attr)->size;
11339 dlbaton->per_cu = cu->per_cu;
11340
11341 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11342 }
7771576e 11343 else if (attr_form_is_ref (attr))
96408a79 11344 {
96408a79
SA
11345 struct dwarf2_cu *target_cu = cu;
11346 struct die_info *target_die;
11347
ac9ec31b 11348 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11349 gdb_assert (target_cu->objfile == objfile);
11350 if (die_is_declaration (target_die, target_cu))
11351 {
9112db09
JK
11352 const char *target_physname = NULL;
11353 struct attribute *target_attr;
11354
11355 /* Prefer the mangled name; otherwise compute the demangled one. */
11356 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11357 if (target_attr == NULL)
11358 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11359 target_cu);
11360 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11361 target_physname = DW_STRING (target_attr);
11362 else
11363 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11364 if (target_physname == NULL)
11365 complaint (&symfile_complaints,
11366 _("DW_AT_GNU_call_site_target target DIE has invalid "
11367 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11368 die->offset.sect_off, objfile_name (objfile));
96408a79 11369 else
7d455152 11370 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11371 }
11372 else
11373 {
11374 CORE_ADDR lowpc;
11375
11376 /* DW_AT_entry_pc should be preferred. */
11377 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11378 complaint (&symfile_complaints,
11379 _("DW_AT_GNU_call_site_target target DIE has invalid "
11380 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11381 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11382 else
11383 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11384 }
11385 }
11386 else
11387 complaint (&symfile_complaints,
11388 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11389 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11390 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11391
11392 call_site->per_cu = cu->per_cu;
11393
11394 for (child_die = die->child;
11395 child_die && child_die->tag;
11396 child_die = sibling_die (child_die))
11397 {
96408a79 11398 struct call_site_parameter *parameter;
1788b2d3 11399 struct attribute *loc, *origin;
96408a79
SA
11400
11401 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11402 {
11403 /* Already printed the complaint above. */
11404 continue;
11405 }
11406
11407 gdb_assert (call_site->parameter_count < nparams);
11408 parameter = &call_site->parameter[call_site->parameter_count];
11409
1788b2d3
JK
11410 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11411 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11412 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11413
24c5c679 11414 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11415 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11416 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11417 {
11418 sect_offset offset;
11419
11420 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11421 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11422 if (!offset_in_cu_p (&cu->header, offset))
11423 {
11424 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11425 binding can be done only inside one CU. Such referenced DIE
11426 therefore cannot be even moved to DW_TAG_partial_unit. */
11427 complaint (&symfile_complaints,
11428 _("DW_AT_abstract_origin offset is not in CU for "
11429 "DW_TAG_GNU_call_site child DIE 0x%x "
11430 "[in module %s]"),
4262abfb 11431 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11432 continue;
11433 }
1788b2d3
JK
11434 parameter->u.param_offset.cu_off = (offset.sect_off
11435 - cu->header.offset.sect_off);
11436 }
11437 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11438 {
11439 complaint (&symfile_complaints,
11440 _("No DW_FORM_block* DW_AT_location for "
11441 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11442 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11443 continue;
11444 }
24c5c679 11445 else
96408a79 11446 {
24c5c679
JK
11447 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11448 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11449 if (parameter->u.dwarf_reg != -1)
11450 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11451 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11452 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11453 &parameter->u.fb_offset))
11454 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11455 else
11456 {
11457 complaint (&symfile_complaints,
11458 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11459 "for DW_FORM_block* DW_AT_location is supported for "
11460 "DW_TAG_GNU_call_site child DIE 0x%x "
11461 "[in module %s]"),
4262abfb 11462 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11463 continue;
11464 }
96408a79
SA
11465 }
11466
11467 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11468 if (!attr_form_is_block (attr))
11469 {
11470 complaint (&symfile_complaints,
11471 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11472 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11473 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11474 continue;
11475 }
11476 parameter->value = DW_BLOCK (attr)->data;
11477 parameter->value_size = DW_BLOCK (attr)->size;
11478
11479 /* Parameters are not pre-cleared by memset above. */
11480 parameter->data_value = NULL;
11481 parameter->data_value_size = 0;
11482 call_site->parameter_count++;
11483
11484 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11485 if (attr)
11486 {
11487 if (!attr_form_is_block (attr))
11488 complaint (&symfile_complaints,
11489 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11490 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11491 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11492 else
11493 {
11494 parameter->data_value = DW_BLOCK (attr)->data;
11495 parameter->data_value_size = DW_BLOCK (attr)->size;
11496 }
11497 }
11498 }
11499}
11500
43039443 11501/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11502 Return 1 if the attributes are present and valid, otherwise, return 0.
11503 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11504
11505static int
11506dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11507 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11508 struct partial_symtab *ranges_pst)
43039443
JK
11509{
11510 struct objfile *objfile = cu->objfile;
11511 struct comp_unit_head *cu_header = &cu->header;
11512 bfd *obfd = objfile->obfd;
11513 unsigned int addr_size = cu_header->addr_size;
11514 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11515 /* Base address selection entry. */
11516 CORE_ADDR base;
11517 int found_base;
11518 unsigned int dummy;
d521ce57 11519 const gdb_byte *buffer;
43039443
JK
11520 CORE_ADDR marker;
11521 int low_set;
11522 CORE_ADDR low = 0;
11523 CORE_ADDR high = 0;
ff013f42 11524 CORE_ADDR baseaddr;
43039443 11525
d00adf39
DE
11526 found_base = cu->base_known;
11527 base = cu->base_address;
43039443 11528
be391dca 11529 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11530 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11531 {
11532 complaint (&symfile_complaints,
11533 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11534 offset);
11535 return 0;
11536 }
dce234bc 11537 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11538
11539 /* Read in the largest possible address. */
11540 marker = read_address (obfd, buffer, cu, &dummy);
11541 if ((marker & mask) == mask)
11542 {
11543 /* If we found the largest possible address, then
11544 read the base address. */
11545 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11546 buffer += 2 * addr_size;
11547 offset += 2 * addr_size;
11548 found_base = 1;
11549 }
11550
11551 low_set = 0;
11552
e7030f15 11553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11554
43039443
JK
11555 while (1)
11556 {
11557 CORE_ADDR range_beginning, range_end;
11558
11559 range_beginning = read_address (obfd, buffer, cu, &dummy);
11560 buffer += addr_size;
11561 range_end = read_address (obfd, buffer, cu, &dummy);
11562 buffer += addr_size;
11563 offset += 2 * addr_size;
11564
11565 /* An end of list marker is a pair of zero addresses. */
11566 if (range_beginning == 0 && range_end == 0)
11567 /* Found the end of list entry. */
11568 break;
11569
11570 /* Each base address selection entry is a pair of 2 values.
11571 The first is the largest possible address, the second is
11572 the base address. Check for a base address here. */
11573 if ((range_beginning & mask) == mask)
11574 {
11575 /* If we found the largest possible address, then
11576 read the base address. */
11577 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11578 found_base = 1;
11579 continue;
11580 }
11581
11582 if (!found_base)
11583 {
11584 /* We have no valid base address for the ranges
11585 data. */
11586 complaint (&symfile_complaints,
11587 _("Invalid .debug_ranges data (no base address)"));
11588 return 0;
11589 }
11590
9277c30c
UW
11591 if (range_beginning > range_end)
11592 {
11593 /* Inverted range entries are invalid. */
11594 complaint (&symfile_complaints,
11595 _("Invalid .debug_ranges data (inverted range)"));
11596 return 0;
11597 }
11598
11599 /* Empty range entries have no effect. */
11600 if (range_beginning == range_end)
11601 continue;
11602
43039443
JK
11603 range_beginning += base;
11604 range_end += base;
11605
01093045
DE
11606 /* A not-uncommon case of bad debug info.
11607 Don't pollute the addrmap with bad data. */
11608 if (range_beginning + baseaddr == 0
11609 && !dwarf2_per_objfile->has_section_at_zero)
11610 {
11611 complaint (&symfile_complaints,
11612 _(".debug_ranges entry has start address of zero"
4262abfb 11613 " [in module %s]"), objfile_name (objfile));
01093045
DE
11614 continue;
11615 }
11616
9277c30c 11617 if (ranges_pst != NULL)
ff013f42 11618 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11619 range_beginning + baseaddr,
11620 range_end - 1 + baseaddr,
ff013f42
JK
11621 ranges_pst);
11622
43039443
JK
11623 /* FIXME: This is recording everything as a low-high
11624 segment of consecutive addresses. We should have a
11625 data structure for discontiguous block ranges
11626 instead. */
11627 if (! low_set)
11628 {
11629 low = range_beginning;
11630 high = range_end;
11631 low_set = 1;
11632 }
11633 else
11634 {
11635 if (range_beginning < low)
11636 low = range_beginning;
11637 if (range_end > high)
11638 high = range_end;
11639 }
11640 }
11641
11642 if (! low_set)
11643 /* If the first entry is an end-of-list marker, the range
11644 describes an empty scope, i.e. no instructions. */
11645 return 0;
11646
11647 if (low_return)
11648 *low_return = low;
11649 if (high_return)
11650 *high_return = high;
11651 return 1;
11652}
11653
af34e669
DJ
11654/* Get low and high pc attributes from a die. Return 1 if the attributes
11655 are present and valid, otherwise, return 0. Return -1 if the range is
11656 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11657
c906108c 11658static int
af34e669 11659dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11660 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11661 struct partial_symtab *pst)
c906108c
SS
11662{
11663 struct attribute *attr;
91da1414 11664 struct attribute *attr_high;
af34e669
DJ
11665 CORE_ADDR low = 0;
11666 CORE_ADDR high = 0;
11667 int ret = 0;
c906108c 11668
91da1414
MW
11669 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11670 if (attr_high)
af34e669 11671 {
e142c38c 11672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11673 if (attr)
91da1414
MW
11674 {
11675 low = DW_ADDR (attr);
3019eac3
DE
11676 if (attr_high->form == DW_FORM_addr
11677 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
11678 high = DW_ADDR (attr_high);
11679 else
11680 high = low + DW_UNSND (attr_high);
11681 }
af34e669
DJ
11682 else
11683 /* Found high w/o low attribute. */
11684 return 0;
11685
11686 /* Found consecutive range of addresses. */
11687 ret = 1;
11688 }
c906108c 11689 else
af34e669 11690 {
e142c38c 11691 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11692 if (attr != NULL)
11693 {
ab435259
DE
11694 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11695 We take advantage of the fact that DW_AT_ranges does not appear
11696 in DW_TAG_compile_unit of DWO files. */
11697 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11698 unsigned int ranges_offset = (DW_UNSND (attr)
11699 + (need_ranges_base
11700 ? cu->ranges_base
11701 : 0));
2e3cf129 11702
af34e669 11703 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11704 .debug_ranges section. */
2e3cf129 11705 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11706 return 0;
43039443 11707 /* Found discontinuous range of addresses. */
af34e669
DJ
11708 ret = -1;
11709 }
11710 }
c906108c 11711
9373cf26
JK
11712 /* read_partial_die has also the strict LOW < HIGH requirement. */
11713 if (high <= low)
c906108c
SS
11714 return 0;
11715
11716 /* When using the GNU linker, .gnu.linkonce. sections are used to
11717 eliminate duplicate copies of functions and vtables and such.
11718 The linker will arbitrarily choose one and discard the others.
11719 The AT_*_pc values for such functions refer to local labels in
11720 these sections. If the section from that file was discarded, the
11721 labels are not in the output, so the relocs get a value of 0.
11722 If this is a discarded function, mark the pc bounds as invalid,
11723 so that GDB will ignore it. */
72dca2f5 11724 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11725 return 0;
11726
11727 *lowpc = low;
96408a79
SA
11728 if (highpc)
11729 *highpc = high;
af34e669 11730 return ret;
c906108c
SS
11731}
11732
b084d499
JB
11733/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11734 its low and high PC addresses. Do nothing if these addresses could not
11735 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11736 and HIGHPC to the high address if greater than HIGHPC. */
11737
11738static void
11739dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11740 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11741 struct dwarf2_cu *cu)
11742{
11743 CORE_ADDR low, high;
11744 struct die_info *child = die->child;
11745
d85a05f0 11746 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11747 {
11748 *lowpc = min (*lowpc, low);
11749 *highpc = max (*highpc, high);
11750 }
11751
11752 /* If the language does not allow nested subprograms (either inside
11753 subprograms or lexical blocks), we're done. */
11754 if (cu->language != language_ada)
11755 return;
6e70227d 11756
b084d499
JB
11757 /* Check all the children of the given DIE. If it contains nested
11758 subprograms, then check their pc bounds. Likewise, we need to
11759 check lexical blocks as well, as they may also contain subprogram
11760 definitions. */
11761 while (child && child->tag)
11762 {
11763 if (child->tag == DW_TAG_subprogram
11764 || child->tag == DW_TAG_lexical_block)
11765 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11766 child = sibling_die (child);
11767 }
11768}
11769
fae299cd
DC
11770/* Get the low and high pc's represented by the scope DIE, and store
11771 them in *LOWPC and *HIGHPC. If the correct values can't be
11772 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11773
11774static void
11775get_scope_pc_bounds (struct die_info *die,
11776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11777 struct dwarf2_cu *cu)
11778{
11779 CORE_ADDR best_low = (CORE_ADDR) -1;
11780 CORE_ADDR best_high = (CORE_ADDR) 0;
11781 CORE_ADDR current_low, current_high;
11782
d85a05f0 11783 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11784 {
11785 best_low = current_low;
11786 best_high = current_high;
11787 }
11788 else
11789 {
11790 struct die_info *child = die->child;
11791
11792 while (child && child->tag)
11793 {
11794 switch (child->tag) {
11795 case DW_TAG_subprogram:
b084d499 11796 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11797 break;
11798 case DW_TAG_namespace:
f55ee35c 11799 case DW_TAG_module:
fae299cd
DC
11800 /* FIXME: carlton/2004-01-16: Should we do this for
11801 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11802 that current GCC's always emit the DIEs corresponding
11803 to definitions of methods of classes as children of a
11804 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11805 the DIEs giving the declarations, which could be
11806 anywhere). But I don't see any reason why the
11807 standards says that they have to be there. */
11808 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11809
11810 if (current_low != ((CORE_ADDR) -1))
11811 {
11812 best_low = min (best_low, current_low);
11813 best_high = max (best_high, current_high);
11814 }
11815 break;
11816 default:
0963b4bd 11817 /* Ignore. */
fae299cd
DC
11818 break;
11819 }
11820
11821 child = sibling_die (child);
11822 }
11823 }
11824
11825 *lowpc = best_low;
11826 *highpc = best_high;
11827}
11828
801e3a5b
JB
11829/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11830 in DIE. */
380bca97 11831
801e3a5b
JB
11832static void
11833dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11834 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11835{
bb5ed363 11836 struct objfile *objfile = cu->objfile;
801e3a5b 11837 struct attribute *attr;
91da1414 11838 struct attribute *attr_high;
801e3a5b 11839
91da1414
MW
11840 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11841 if (attr_high)
801e3a5b 11842 {
801e3a5b
JB
11843 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11844 if (attr)
11845 {
11846 CORE_ADDR low = DW_ADDR (attr);
91da1414 11847 CORE_ADDR high;
3019eac3
DE
11848 if (attr_high->form == DW_FORM_addr
11849 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
11850 high = DW_ADDR (attr_high);
11851 else
11852 high = low + DW_UNSND (attr_high);
9a619af0 11853
801e3a5b
JB
11854 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11855 }
11856 }
11857
11858 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11859 if (attr)
11860 {
bb5ed363 11861 bfd *obfd = objfile->obfd;
ab435259
DE
11862 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11863 We take advantage of the fact that DW_AT_ranges does not appear
11864 in DW_TAG_compile_unit of DWO files. */
11865 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
11866
11867 /* The value of the DW_AT_ranges attribute is the offset of the
11868 address range list in the .debug_ranges section. */
ab435259
DE
11869 unsigned long offset = (DW_UNSND (attr)
11870 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 11871 const gdb_byte *buffer;
801e3a5b
JB
11872
11873 /* For some target architectures, but not others, the
11874 read_address function sign-extends the addresses it returns.
11875 To recognize base address selection entries, we need a
11876 mask. */
11877 unsigned int addr_size = cu->header.addr_size;
11878 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11879
11880 /* The base address, to which the next pair is relative. Note
11881 that this 'base' is a DWARF concept: most entries in a range
11882 list are relative, to reduce the number of relocs against the
11883 debugging information. This is separate from this function's
11884 'baseaddr' argument, which GDB uses to relocate debugging
11885 information from a shared library based on the address at
11886 which the library was loaded. */
d00adf39
DE
11887 CORE_ADDR base = cu->base_address;
11888 int base_known = cu->base_known;
801e3a5b 11889
d62bfeaf 11890 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11891 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
11892 {
11893 complaint (&symfile_complaints,
11894 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11895 offset);
11896 return;
11897 }
d62bfeaf 11898 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
11899
11900 for (;;)
11901 {
11902 unsigned int bytes_read;
11903 CORE_ADDR start, end;
11904
11905 start = read_address (obfd, buffer, cu, &bytes_read);
11906 buffer += bytes_read;
11907 end = read_address (obfd, buffer, cu, &bytes_read);
11908 buffer += bytes_read;
11909
11910 /* Did we find the end of the range list? */
11911 if (start == 0 && end == 0)
11912 break;
11913
11914 /* Did we find a base address selection entry? */
11915 else if ((start & base_select_mask) == base_select_mask)
11916 {
11917 base = end;
11918 base_known = 1;
11919 }
11920
11921 /* We found an ordinary address range. */
11922 else
11923 {
11924 if (!base_known)
11925 {
11926 complaint (&symfile_complaints,
3e43a32a
MS
11927 _("Invalid .debug_ranges data "
11928 "(no base address)"));
801e3a5b
JB
11929 return;
11930 }
11931
9277c30c
UW
11932 if (start > end)
11933 {
11934 /* Inverted range entries are invalid. */
11935 complaint (&symfile_complaints,
11936 _("Invalid .debug_ranges data "
11937 "(inverted range)"));
11938 return;
11939 }
11940
11941 /* Empty range entries have no effect. */
11942 if (start == end)
11943 continue;
11944
01093045
DE
11945 start += base + baseaddr;
11946 end += base + baseaddr;
11947
11948 /* A not-uncommon case of bad debug info.
11949 Don't pollute the addrmap with bad data. */
11950 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11951 {
11952 complaint (&symfile_complaints,
11953 _(".debug_ranges entry has start address of zero"
4262abfb 11954 " [in module %s]"), objfile_name (objfile));
01093045
DE
11955 continue;
11956 }
11957
11958 record_block_range (block, start, end - 1);
801e3a5b
JB
11959 }
11960 }
11961 }
11962}
11963
685b1105
JK
11964/* Check whether the producer field indicates either of GCC < 4.6, or the
11965 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 11966
685b1105
JK
11967static void
11968check_producer (struct dwarf2_cu *cu)
60d5a603
JK
11969{
11970 const char *cs;
11971 int major, minor, release;
11972
11973 if (cu->producer == NULL)
11974 {
11975 /* For unknown compilers expect their behavior is DWARF version
11976 compliant.
11977
11978 GCC started to support .debug_types sections by -gdwarf-4 since
11979 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11980 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11981 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11982 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 11983 }
685b1105 11984 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 11985 {
685b1105
JK
11986 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11987
ba919b58
TT
11988 cs = &cu->producer[strlen ("GNU ")];
11989 while (*cs && !isdigit (*cs))
11990 cs++;
11991 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11992 {
11993 /* Not recognized as GCC. */
11994 }
11995 else
1b80a9fa
JK
11996 {
11997 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11998 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11999 }
685b1105
JK
12000 }
12001 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12002 cu->producer_is_icc = 1;
12003 else
12004 {
12005 /* For other non-GCC compilers, expect their behavior is DWARF version
12006 compliant. */
60d5a603
JK
12007 }
12008
ba919b58 12009 cu->checked_producer = 1;
685b1105 12010}
ba919b58 12011
685b1105
JK
12012/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12013 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12014 during 4.6.0 experimental. */
12015
12016static int
12017producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12018{
12019 if (!cu->checked_producer)
12020 check_producer (cu);
12021
12022 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12023}
12024
12025/* Return the default accessibility type if it is not overriden by
12026 DW_AT_accessibility. */
12027
12028static enum dwarf_access_attribute
12029dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12030{
12031 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12032 {
12033 /* The default DWARF 2 accessibility for members is public, the default
12034 accessibility for inheritance is private. */
12035
12036 if (die->tag != DW_TAG_inheritance)
12037 return DW_ACCESS_public;
12038 else
12039 return DW_ACCESS_private;
12040 }
12041 else
12042 {
12043 /* DWARF 3+ defines the default accessibility a different way. The same
12044 rules apply now for DW_TAG_inheritance as for the members and it only
12045 depends on the container kind. */
12046
12047 if (die->parent->tag == DW_TAG_class_type)
12048 return DW_ACCESS_private;
12049 else
12050 return DW_ACCESS_public;
12051 }
12052}
12053
74ac6d43
TT
12054/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12055 offset. If the attribute was not found return 0, otherwise return
12056 1. If it was found but could not properly be handled, set *OFFSET
12057 to 0. */
12058
12059static int
12060handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12061 LONGEST *offset)
12062{
12063 struct attribute *attr;
12064
12065 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12066 if (attr != NULL)
12067 {
12068 *offset = 0;
12069
12070 /* Note that we do not check for a section offset first here.
12071 This is because DW_AT_data_member_location is new in DWARF 4,
12072 so if we see it, we can assume that a constant form is really
12073 a constant and not a section offset. */
12074 if (attr_form_is_constant (attr))
12075 *offset = dwarf2_get_attr_constant_value (attr, 0);
12076 else if (attr_form_is_section_offset (attr))
12077 dwarf2_complex_location_expr_complaint ();
12078 else if (attr_form_is_block (attr))
12079 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12080 else
12081 dwarf2_complex_location_expr_complaint ();
12082
12083 return 1;
12084 }
12085
12086 return 0;
12087}
12088
c906108c
SS
12089/* Add an aggregate field to the field list. */
12090
12091static void
107d2387 12092dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12093 struct dwarf2_cu *cu)
6e70227d 12094{
e7c27a73 12095 struct objfile *objfile = cu->objfile;
5e2b427d 12096 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12097 struct nextfield *new_field;
12098 struct attribute *attr;
12099 struct field *fp;
15d034d0 12100 const char *fieldname = "";
c906108c
SS
12101
12102 /* Allocate a new field list entry and link it in. */
12103 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12104 make_cleanup (xfree, new_field);
c906108c 12105 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12106
12107 if (die->tag == DW_TAG_inheritance)
12108 {
12109 new_field->next = fip->baseclasses;
12110 fip->baseclasses = new_field;
12111 }
12112 else
12113 {
12114 new_field->next = fip->fields;
12115 fip->fields = new_field;
12116 }
c906108c
SS
12117 fip->nfields++;
12118
e142c38c 12119 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12120 if (attr)
12121 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12122 else
12123 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12124 if (new_field->accessibility != DW_ACCESS_public)
12125 fip->non_public_fields = 1;
60d5a603 12126
e142c38c 12127 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12128 if (attr)
12129 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12130 else
12131 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12132
12133 fp = &new_field->field;
a9a9bd0f 12134
e142c38c 12135 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12136 {
74ac6d43
TT
12137 LONGEST offset;
12138
a9a9bd0f 12139 /* Data member other than a C++ static data member. */
6e70227d 12140
c906108c 12141 /* Get type of field. */
e7c27a73 12142 fp->type = die_type (die, cu);
c906108c 12143
d6a843b5 12144 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12145
c906108c 12146 /* Get bit size of field (zero if none). */
e142c38c 12147 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12148 if (attr)
12149 {
12150 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12151 }
12152 else
12153 {
12154 FIELD_BITSIZE (*fp) = 0;
12155 }
12156
12157 /* Get bit offset of field. */
74ac6d43
TT
12158 if (handle_data_member_location (die, cu, &offset))
12159 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12160 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12161 if (attr)
12162 {
5e2b427d 12163 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12164 {
12165 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12166 additional bit offset from the MSB of the containing
12167 anonymous object to the MSB of the field. We don't
12168 have to do anything special since we don't need to
12169 know the size of the anonymous object. */
f41f5e61 12170 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12171 }
12172 else
12173 {
12174 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12175 MSB of the anonymous object, subtract off the number of
12176 bits from the MSB of the field to the MSB of the
12177 object, and then subtract off the number of bits of
12178 the field itself. The result is the bit offset of
12179 the LSB of the field. */
c906108c
SS
12180 int anonymous_size;
12181 int bit_offset = DW_UNSND (attr);
12182
e142c38c 12183 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12184 if (attr)
12185 {
12186 /* The size of the anonymous object containing
12187 the bit field is explicit, so use the
12188 indicated size (in bytes). */
12189 anonymous_size = DW_UNSND (attr);
12190 }
12191 else
12192 {
12193 /* The size of the anonymous object containing
12194 the bit field must be inferred from the type
12195 attribute of the data member containing the
12196 bit field. */
12197 anonymous_size = TYPE_LENGTH (fp->type);
12198 }
f41f5e61
PA
12199 SET_FIELD_BITPOS (*fp,
12200 (FIELD_BITPOS (*fp)
12201 + anonymous_size * bits_per_byte
12202 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12203 }
12204 }
12205
12206 /* Get name of field. */
39cbfefa
DJ
12207 fieldname = dwarf2_name (die, cu);
12208 if (fieldname == NULL)
12209 fieldname = "";
d8151005
DJ
12210
12211 /* The name is already allocated along with this objfile, so we don't
12212 need to duplicate it for the type. */
12213 fp->name = fieldname;
c906108c
SS
12214
12215 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12216 pointer or virtual base class pointer) to private. */
e142c38c 12217 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12218 {
d48cc9dd 12219 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12220 new_field->accessibility = DW_ACCESS_private;
12221 fip->non_public_fields = 1;
12222 }
12223 }
a9a9bd0f 12224 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12225 {
a9a9bd0f
DC
12226 /* C++ static member. */
12227
12228 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12229 is a declaration, but all versions of G++ as of this writing
12230 (so through at least 3.2.1) incorrectly generate
12231 DW_TAG_variable tags. */
6e70227d 12232
ff355380 12233 const char *physname;
c906108c 12234
a9a9bd0f 12235 /* Get name of field. */
39cbfefa
DJ
12236 fieldname = dwarf2_name (die, cu);
12237 if (fieldname == NULL)
c906108c
SS
12238 return;
12239
254e6b9e 12240 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12241 if (attr
12242 /* Only create a symbol if this is an external value.
12243 new_symbol checks this and puts the value in the global symbol
12244 table, which we want. If it is not external, new_symbol
12245 will try to put the value in cu->list_in_scope which is wrong. */
12246 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12247 {
12248 /* A static const member, not much different than an enum as far as
12249 we're concerned, except that we can support more types. */
12250 new_symbol (die, NULL, cu);
12251 }
12252
2df3850c 12253 /* Get physical name. */
ff355380 12254 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12255
d8151005
DJ
12256 /* The name is already allocated along with this objfile, so we don't
12257 need to duplicate it for the type. */
12258 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12259 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12260 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12261 }
12262 else if (die->tag == DW_TAG_inheritance)
12263 {
74ac6d43 12264 LONGEST offset;
d4b96c9a 12265
74ac6d43
TT
12266 /* C++ base class field. */
12267 if (handle_data_member_location (die, cu, &offset))
12268 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12269 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12270 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12271 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12272 fip->nbaseclasses++;
12273 }
12274}
12275
98751a41
JK
12276/* Add a typedef defined in the scope of the FIP's class. */
12277
12278static void
12279dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12280 struct dwarf2_cu *cu)
6e70227d 12281{
98751a41 12282 struct objfile *objfile = cu->objfile;
98751a41
JK
12283 struct typedef_field_list *new_field;
12284 struct attribute *attr;
12285 struct typedef_field *fp;
12286 char *fieldname = "";
12287
12288 /* Allocate a new field list entry and link it in. */
12289 new_field = xzalloc (sizeof (*new_field));
12290 make_cleanup (xfree, new_field);
12291
12292 gdb_assert (die->tag == DW_TAG_typedef);
12293
12294 fp = &new_field->field;
12295
12296 /* Get name of field. */
12297 fp->name = dwarf2_name (die, cu);
12298 if (fp->name == NULL)
12299 return;
12300
12301 fp->type = read_type_die (die, cu);
12302
12303 new_field->next = fip->typedef_field_list;
12304 fip->typedef_field_list = new_field;
12305 fip->typedef_field_list_count++;
12306}
12307
c906108c
SS
12308/* Create the vector of fields, and attach it to the type. */
12309
12310static void
fba45db2 12311dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12312 struct dwarf2_cu *cu)
c906108c
SS
12313{
12314 int nfields = fip->nfields;
12315
12316 /* Record the field count, allocate space for the array of fields,
12317 and create blank accessibility bitfields if necessary. */
12318 TYPE_NFIELDS (type) = nfields;
12319 TYPE_FIELDS (type) = (struct field *)
12320 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12321 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12322
b4ba55a1 12323 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12324 {
12325 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12326
12327 TYPE_FIELD_PRIVATE_BITS (type) =
12328 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12329 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12330
12331 TYPE_FIELD_PROTECTED_BITS (type) =
12332 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12333 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12334
774b6a14
TT
12335 TYPE_FIELD_IGNORE_BITS (type) =
12336 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12337 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12338 }
12339
12340 /* If the type has baseclasses, allocate and clear a bit vector for
12341 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12342 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12343 {
12344 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12345 unsigned char *pointer;
c906108c
SS
12346
12347 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12348 pointer = TYPE_ALLOC (type, num_bytes);
12349 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12350 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12351 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12352 }
12353
3e43a32a
MS
12354 /* Copy the saved-up fields into the field vector. Start from the head of
12355 the list, adding to the tail of the field array, so that they end up in
12356 the same order in the array in which they were added to the list. */
c906108c
SS
12357 while (nfields-- > 0)
12358 {
7d0ccb61
DJ
12359 struct nextfield *fieldp;
12360
12361 if (fip->fields)
12362 {
12363 fieldp = fip->fields;
12364 fip->fields = fieldp->next;
12365 }
12366 else
12367 {
12368 fieldp = fip->baseclasses;
12369 fip->baseclasses = fieldp->next;
12370 }
12371
12372 TYPE_FIELD (type, nfields) = fieldp->field;
12373 switch (fieldp->accessibility)
c906108c 12374 {
c5aa993b 12375 case DW_ACCESS_private:
b4ba55a1
JB
12376 if (cu->language != language_ada)
12377 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12378 break;
c906108c 12379
c5aa993b 12380 case DW_ACCESS_protected:
b4ba55a1
JB
12381 if (cu->language != language_ada)
12382 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12383 break;
c906108c 12384
c5aa993b
JM
12385 case DW_ACCESS_public:
12386 break;
c906108c 12387
c5aa993b
JM
12388 default:
12389 /* Unknown accessibility. Complain and treat it as public. */
12390 {
e2e0b3e5 12391 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12392 fieldp->accessibility);
c5aa993b
JM
12393 }
12394 break;
c906108c
SS
12395 }
12396 if (nfields < fip->nbaseclasses)
12397 {
7d0ccb61 12398 switch (fieldp->virtuality)
c906108c 12399 {
c5aa993b
JM
12400 case DW_VIRTUALITY_virtual:
12401 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12402 if (cu->language == language_ada)
a73c6dcd 12403 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12404 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12405 break;
c906108c
SS
12406 }
12407 }
c906108c
SS
12408 }
12409}
12410
7d27a96d
TT
12411/* Return true if this member function is a constructor, false
12412 otherwise. */
12413
12414static int
12415dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12416{
12417 const char *fieldname;
12418 const char *typename;
12419 int len;
12420
12421 if (die->parent == NULL)
12422 return 0;
12423
12424 if (die->parent->tag != DW_TAG_structure_type
12425 && die->parent->tag != DW_TAG_union_type
12426 && die->parent->tag != DW_TAG_class_type)
12427 return 0;
12428
12429 fieldname = dwarf2_name (die, cu);
12430 typename = dwarf2_name (die->parent, cu);
12431 if (fieldname == NULL || typename == NULL)
12432 return 0;
12433
12434 len = strlen (fieldname);
12435 return (strncmp (fieldname, typename, len) == 0
12436 && (typename[len] == '\0' || typename[len] == '<'));
12437}
12438
c906108c
SS
12439/* Add a member function to the proper fieldlist. */
12440
12441static void
107d2387 12442dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12443 struct type *type, struct dwarf2_cu *cu)
c906108c 12444{
e7c27a73 12445 struct objfile *objfile = cu->objfile;
c906108c
SS
12446 struct attribute *attr;
12447 struct fnfieldlist *flp;
12448 int i;
12449 struct fn_field *fnp;
15d034d0 12450 const char *fieldname;
c906108c 12451 struct nextfnfield *new_fnfield;
f792889a 12452 struct type *this_type;
60d5a603 12453 enum dwarf_access_attribute accessibility;
c906108c 12454
b4ba55a1 12455 if (cu->language == language_ada)
a73c6dcd 12456 error (_("unexpected member function in Ada type"));
b4ba55a1 12457
2df3850c 12458 /* Get name of member function. */
39cbfefa
DJ
12459 fieldname = dwarf2_name (die, cu);
12460 if (fieldname == NULL)
2df3850c 12461 return;
c906108c 12462
c906108c
SS
12463 /* Look up member function name in fieldlist. */
12464 for (i = 0; i < fip->nfnfields; i++)
12465 {
27bfe10e 12466 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12467 break;
12468 }
12469
12470 /* Create new list element if necessary. */
12471 if (i < fip->nfnfields)
12472 flp = &fip->fnfieldlists[i];
12473 else
12474 {
12475 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12476 {
12477 fip->fnfieldlists = (struct fnfieldlist *)
12478 xrealloc (fip->fnfieldlists,
12479 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12480 * sizeof (struct fnfieldlist));
c906108c 12481 if (fip->nfnfields == 0)
c13c43fd 12482 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12483 }
12484 flp = &fip->fnfieldlists[fip->nfnfields];
12485 flp->name = fieldname;
12486 flp->length = 0;
12487 flp->head = NULL;
3da10d80 12488 i = fip->nfnfields++;
c906108c
SS
12489 }
12490
12491 /* Create a new member function field and chain it to the field list
0963b4bd 12492 entry. */
c906108c 12493 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12494 make_cleanup (xfree, new_fnfield);
c906108c
SS
12495 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12496 new_fnfield->next = flp->head;
12497 flp->head = new_fnfield;
12498 flp->length++;
12499
12500 /* Fill in the member function field info. */
12501 fnp = &new_fnfield->fnfield;
3da10d80
KS
12502
12503 /* Delay processing of the physname until later. */
12504 if (cu->language == language_cplus || cu->language == language_java)
12505 {
12506 add_to_method_list (type, i, flp->length - 1, fieldname,
12507 die, cu);
12508 }
12509 else
12510 {
1d06ead6 12511 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12512 fnp->physname = physname ? physname : "";
12513 }
12514
c906108c 12515 fnp->type = alloc_type (objfile);
f792889a
DJ
12516 this_type = read_type_die (die, cu);
12517 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12518 {
f792889a 12519 int nparams = TYPE_NFIELDS (this_type);
c906108c 12520
f792889a 12521 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12522 of the method itself (TYPE_CODE_METHOD). */
12523 smash_to_method_type (fnp->type, type,
f792889a
DJ
12524 TYPE_TARGET_TYPE (this_type),
12525 TYPE_FIELDS (this_type),
12526 TYPE_NFIELDS (this_type),
12527 TYPE_VARARGS (this_type));
c906108c
SS
12528
12529 /* Handle static member functions.
c5aa993b 12530 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12531 member functions. G++ helps GDB by marking the first
12532 parameter for non-static member functions (which is the this
12533 pointer) as artificial. We obtain this information from
12534 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12535 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12536 fnp->voffset = VOFFSET_STATIC;
12537 }
12538 else
e2e0b3e5 12539 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12540 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12541
12542 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12543 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12544 fnp->fcontext = die_containing_type (die, cu);
c906108c 12545
3e43a32a
MS
12546 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12547 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12548
12549 /* Get accessibility. */
e142c38c 12550 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12551 if (attr)
60d5a603
JK
12552 accessibility = DW_UNSND (attr);
12553 else
12554 accessibility = dwarf2_default_access_attribute (die, cu);
12555 switch (accessibility)
c906108c 12556 {
60d5a603
JK
12557 case DW_ACCESS_private:
12558 fnp->is_private = 1;
12559 break;
12560 case DW_ACCESS_protected:
12561 fnp->is_protected = 1;
12562 break;
c906108c
SS
12563 }
12564
b02dede2 12565 /* Check for artificial methods. */
e142c38c 12566 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12567 if (attr && DW_UNSND (attr) != 0)
12568 fnp->is_artificial = 1;
12569
7d27a96d
TT
12570 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12571
0d564a31 12572 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12573 function. For older versions of GCC, this is an offset in the
12574 appropriate virtual table, as specified by DW_AT_containing_type.
12575 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12576 to the object address. */
12577
e142c38c 12578 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12579 if (attr)
8e19ed76 12580 {
aec5aa8b 12581 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12582 {
aec5aa8b
TT
12583 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12584 {
12585 /* Old-style GCC. */
12586 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12587 }
12588 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12589 || (DW_BLOCK (attr)->size > 1
12590 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12591 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12592 {
12593 struct dwarf_block blk;
12594 int offset;
12595
12596 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12597 ? 1 : 2);
12598 blk.size = DW_BLOCK (attr)->size - offset;
12599 blk.data = DW_BLOCK (attr)->data + offset;
12600 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12601 if ((fnp->voffset % cu->header.addr_size) != 0)
12602 dwarf2_complex_location_expr_complaint ();
12603 else
12604 fnp->voffset /= cu->header.addr_size;
12605 fnp->voffset += 2;
12606 }
12607 else
12608 dwarf2_complex_location_expr_complaint ();
12609
12610 if (!fnp->fcontext)
12611 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12612 }
3690dd37 12613 else if (attr_form_is_section_offset (attr))
8e19ed76 12614 {
4d3c2250 12615 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12616 }
12617 else
12618 {
4d3c2250
KB
12619 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12620 fieldname);
8e19ed76 12621 }
0d564a31 12622 }
d48cc9dd
DJ
12623 else
12624 {
12625 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12626 if (attr && DW_UNSND (attr))
12627 {
12628 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12629 complaint (&symfile_complaints,
3e43a32a
MS
12630 _("Member function \"%s\" (offset %d) is virtual "
12631 "but the vtable offset is not specified"),
b64f50a1 12632 fieldname, die->offset.sect_off);
9655fd1a 12633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12634 TYPE_CPLUS_DYNAMIC (type) = 1;
12635 }
12636 }
c906108c
SS
12637}
12638
12639/* Create the vector of member function fields, and attach it to the type. */
12640
12641static void
fba45db2 12642dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12643 struct dwarf2_cu *cu)
c906108c
SS
12644{
12645 struct fnfieldlist *flp;
c906108c
SS
12646 int i;
12647
b4ba55a1 12648 if (cu->language == language_ada)
a73c6dcd 12649 error (_("unexpected member functions in Ada type"));
b4ba55a1 12650
c906108c
SS
12651 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12652 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12653 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12654
12655 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12656 {
12657 struct nextfnfield *nfp = flp->head;
12658 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12659 int k;
12660
12661 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12662 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12663 fn_flp->fn_fields = (struct fn_field *)
12664 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12665 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12666 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12667 }
12668
12669 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12670}
12671
1168df01
JB
12672/* Returns non-zero if NAME is the name of a vtable member in CU's
12673 language, zero otherwise. */
12674static int
12675is_vtable_name (const char *name, struct dwarf2_cu *cu)
12676{
12677 static const char vptr[] = "_vptr";
987504bb 12678 static const char vtable[] = "vtable";
1168df01 12679
987504bb
JJ
12680 /* Look for the C++ and Java forms of the vtable. */
12681 if ((cu->language == language_java
12682 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12683 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12684 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12685 return 1;
12686
12687 return 0;
12688}
12689
c0dd20ea 12690/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12691 functions, with the ABI-specified layout. If TYPE describes
12692 such a structure, smash it into a member function type.
61049d3b
DJ
12693
12694 GCC shouldn't do this; it should just output pointer to member DIEs.
12695 This is GCC PR debug/28767. */
c0dd20ea 12696
0b92b5bb
TT
12697static void
12698quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12699{
0b92b5bb 12700 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12701
12702 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12703 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12704 return;
c0dd20ea
DJ
12705
12706 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12707 if (TYPE_FIELD_NAME (type, 0) == NULL
12708 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12709 || TYPE_FIELD_NAME (type, 1) == NULL
12710 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12711 return;
c0dd20ea
DJ
12712
12713 /* Find the type of the method. */
0b92b5bb 12714 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12715 if (pfn_type == NULL
12716 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12717 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12718 return;
c0dd20ea
DJ
12719
12720 /* Look for the "this" argument. */
12721 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12722 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12723 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12724 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12725 return;
c0dd20ea
DJ
12726
12727 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12728 new_type = alloc_type (objfile);
12729 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12730 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12731 TYPE_VARARGS (pfn_type));
0b92b5bb 12732 smash_to_methodptr_type (type, new_type);
c0dd20ea 12733}
1168df01 12734
685b1105
JK
12735/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12736 (icc). */
12737
12738static int
12739producer_is_icc (struct dwarf2_cu *cu)
12740{
12741 if (!cu->checked_producer)
12742 check_producer (cu);
12743
12744 return cu->producer_is_icc;
12745}
12746
c906108c 12747/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12748 (definition) to create a type for the structure or union. Fill in
12749 the type's name and general properties; the members will not be
3d1d5ea3 12750 processed until process_structure_scope.
c906108c 12751
c767944b
DJ
12752 NOTE: we need to call these functions regardless of whether or not the
12753 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
12754 structure or union. This gets the type entered into our set of
12755 user defined types.
12756
12757 However, if the structure is incomplete (an opaque struct/union)
12758 then suppress creating a symbol table entry for it since gdb only
12759 wants to find the one with the complete definition. Note that if
12760 it is complete, we just call new_symbol, which does it's own
12761 checking about whether the struct/union is anonymous or not (and
12762 suppresses creating a symbol table entry itself). */
12763
f792889a 12764static struct type *
134d01f1 12765read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12766{
e7c27a73 12767 struct objfile *objfile = cu->objfile;
c906108c
SS
12768 struct type *type;
12769 struct attribute *attr;
15d034d0 12770 const char *name;
c906108c 12771
348e048f
DE
12772 /* If the definition of this type lives in .debug_types, read that type.
12773 Don't follow DW_AT_specification though, that will take us back up
12774 the chain and we want to go down. */
45e58e77 12775 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12776 if (attr)
12777 {
ac9ec31b 12778 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12779
ac9ec31b 12780 /* The type's CU may not be the same as CU.
02142a6c 12781 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12782 return set_die_type (die, type, cu);
12783 }
12784
c0dd20ea 12785 type = alloc_type (objfile);
c906108c 12786 INIT_CPLUS_SPECIFIC (type);
93311388 12787
39cbfefa
DJ
12788 name = dwarf2_name (die, cu);
12789 if (name != NULL)
c906108c 12790 {
987504bb
JJ
12791 if (cu->language == language_cplus
12792 || cu->language == language_java)
63d06c5c 12793 {
15d034d0 12794 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12795
12796 /* dwarf2_full_name might have already finished building the DIE's
12797 type. If so, there is no need to continue. */
12798 if (get_die_type (die, cu) != NULL)
12799 return get_die_type (die, cu);
12800
12801 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12802 if (die->tag == DW_TAG_structure_type
12803 || die->tag == DW_TAG_class_type)
12804 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12805 }
12806 else
12807 {
d8151005
DJ
12808 /* The name is already allocated along with this objfile, so
12809 we don't need to duplicate it for the type. */
7d455152 12810 TYPE_TAG_NAME (type) = name;
94af9270
KS
12811 if (die->tag == DW_TAG_class_type)
12812 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12813 }
c906108c
SS
12814 }
12815
12816 if (die->tag == DW_TAG_structure_type)
12817 {
12818 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12819 }
12820 else if (die->tag == DW_TAG_union_type)
12821 {
12822 TYPE_CODE (type) = TYPE_CODE_UNION;
12823 }
12824 else
12825 {
c906108c
SS
12826 TYPE_CODE (type) = TYPE_CODE_CLASS;
12827 }
12828
0cc2414c
TT
12829 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12830 TYPE_DECLARED_CLASS (type) = 1;
12831
e142c38c 12832 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12833 if (attr)
12834 {
12835 TYPE_LENGTH (type) = DW_UNSND (attr);
12836 }
12837 else
12838 {
12839 TYPE_LENGTH (type) = 0;
12840 }
12841
685b1105
JK
12842 if (producer_is_icc (cu))
12843 {
12844 /* ICC does not output the required DW_AT_declaration
12845 on incomplete types, but gives them a size of zero. */
12846 }
12847 else
12848 TYPE_STUB_SUPPORTED (type) = 1;
12849
dc718098 12850 if (die_is_declaration (die, cu))
876cecd0 12851 TYPE_STUB (type) = 1;
a6c727b2
DJ
12852 else if (attr == NULL && die->child == NULL
12853 && producer_is_realview (cu->producer))
12854 /* RealView does not output the required DW_AT_declaration
12855 on incomplete types. */
12856 TYPE_STUB (type) = 1;
dc718098 12857
c906108c
SS
12858 /* We need to add the type field to the die immediately so we don't
12859 infinitely recurse when dealing with pointers to the structure
0963b4bd 12860 type within the structure itself. */
1c379e20 12861 set_die_type (die, type, cu);
c906108c 12862
7e314c57
JK
12863 /* set_die_type should be already done. */
12864 set_descriptive_type (type, die, cu);
12865
c767944b
DJ
12866 return type;
12867}
12868
12869/* Finish creating a structure or union type, including filling in
12870 its members and creating a symbol for it. */
12871
12872static void
12873process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12874{
12875 struct objfile *objfile = cu->objfile;
12876 struct die_info *child_die = die->child;
12877 struct type *type;
12878
12879 type = get_die_type (die, cu);
12880 if (type == NULL)
12881 type = read_structure_type (die, cu);
12882
e142c38c 12883 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
12884 {
12885 struct field_info fi;
12886 struct die_info *child_die;
34eaf542 12887 VEC (symbolp) *template_args = NULL;
c767944b 12888 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
12889
12890 memset (&fi, 0, sizeof (struct field_info));
12891
639d11d3 12892 child_die = die->child;
c906108c
SS
12893
12894 while (child_die && child_die->tag)
12895 {
a9a9bd0f
DC
12896 if (child_die->tag == DW_TAG_member
12897 || child_die->tag == DW_TAG_variable)
c906108c 12898 {
a9a9bd0f
DC
12899 /* NOTE: carlton/2002-11-05: A C++ static data member
12900 should be a DW_TAG_member that is a declaration, but
12901 all versions of G++ as of this writing (so through at
12902 least 3.2.1) incorrectly generate DW_TAG_variable
12903 tags for them instead. */
e7c27a73 12904 dwarf2_add_field (&fi, child_die, cu);
c906108c 12905 }
8713b1b1 12906 else if (child_die->tag == DW_TAG_subprogram)
c906108c 12907 {
0963b4bd 12908 /* C++ member function. */
e7c27a73 12909 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
12910 }
12911 else if (child_die->tag == DW_TAG_inheritance)
12912 {
12913 /* C++ base class field. */
e7c27a73 12914 dwarf2_add_field (&fi, child_die, cu);
c906108c 12915 }
98751a41
JK
12916 else if (child_die->tag == DW_TAG_typedef)
12917 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
12918 else if (child_die->tag == DW_TAG_template_type_param
12919 || child_die->tag == DW_TAG_template_value_param)
12920 {
12921 struct symbol *arg = new_symbol (child_die, NULL, cu);
12922
f1078f66
DJ
12923 if (arg != NULL)
12924 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
12925 }
12926
c906108c
SS
12927 child_die = sibling_die (child_die);
12928 }
12929
34eaf542
TT
12930 /* Attach template arguments to type. */
12931 if (! VEC_empty (symbolp, template_args))
12932 {
12933 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12934 TYPE_N_TEMPLATE_ARGUMENTS (type)
12935 = VEC_length (symbolp, template_args);
12936 TYPE_TEMPLATE_ARGUMENTS (type)
12937 = obstack_alloc (&objfile->objfile_obstack,
12938 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12939 * sizeof (struct symbol *)));
12940 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12941 VEC_address (symbolp, template_args),
12942 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12943 * sizeof (struct symbol *)));
12944 VEC_free (symbolp, template_args);
12945 }
12946
c906108c
SS
12947 /* Attach fields and member functions to the type. */
12948 if (fi.nfields)
e7c27a73 12949 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
12950 if (fi.nfnfields)
12951 {
e7c27a73 12952 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 12953
c5aa993b 12954 /* Get the type which refers to the base class (possibly this
c906108c 12955 class itself) which contains the vtable pointer for the current
0d564a31
DJ
12956 class from the DW_AT_containing_type attribute. This use of
12957 DW_AT_containing_type is a GNU extension. */
c906108c 12958
e142c38c 12959 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 12960 {
e7c27a73 12961 struct type *t = die_containing_type (die, cu);
c906108c
SS
12962
12963 TYPE_VPTR_BASETYPE (type) = t;
12964 if (type == t)
12965 {
c906108c
SS
12966 int i;
12967
12968 /* Our own class provides vtbl ptr. */
12969 for (i = TYPE_NFIELDS (t) - 1;
12970 i >= TYPE_N_BASECLASSES (t);
12971 --i)
12972 {
0d5cff50 12973 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 12974
1168df01 12975 if (is_vtable_name (fieldname, cu))
c906108c
SS
12976 {
12977 TYPE_VPTR_FIELDNO (type) = i;
12978 break;
12979 }
12980 }
12981
12982 /* Complain if virtual function table field not found. */
12983 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 12984 complaint (&symfile_complaints,
3e43a32a
MS
12985 _("virtual function table pointer "
12986 "not found when defining class '%s'"),
4d3c2250
KB
12987 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12988 "");
c906108c
SS
12989 }
12990 else
12991 {
12992 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12993 }
12994 }
f6235d4c
EZ
12995 else if (cu->producer
12996 && strncmp (cu->producer,
12997 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12998 {
12999 /* The IBM XLC compiler does not provide direct indication
13000 of the containing type, but the vtable pointer is
13001 always named __vfp. */
13002
13003 int i;
13004
13005 for (i = TYPE_NFIELDS (type) - 1;
13006 i >= TYPE_N_BASECLASSES (type);
13007 --i)
13008 {
13009 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13010 {
13011 TYPE_VPTR_FIELDNO (type) = i;
13012 TYPE_VPTR_BASETYPE (type) = type;
13013 break;
13014 }
13015 }
13016 }
c906108c 13017 }
98751a41
JK
13018
13019 /* Copy fi.typedef_field_list linked list elements content into the
13020 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13021 if (fi.typedef_field_list)
13022 {
13023 int i = fi.typedef_field_list_count;
13024
a0d7a4ff 13025 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13026 TYPE_TYPEDEF_FIELD_ARRAY (type)
13027 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13028 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13029
13030 /* Reverse the list order to keep the debug info elements order. */
13031 while (--i >= 0)
13032 {
13033 struct typedef_field *dest, *src;
6e70227d 13034
98751a41
JK
13035 dest = &TYPE_TYPEDEF_FIELD (type, i);
13036 src = &fi.typedef_field_list->field;
13037 fi.typedef_field_list = fi.typedef_field_list->next;
13038 *dest = *src;
13039 }
13040 }
c767944b
DJ
13041
13042 do_cleanups (back_to);
eb2a6f42
TT
13043
13044 if (HAVE_CPLUS_STRUCT (type))
13045 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13046 }
63d06c5c 13047
bb5ed363 13048 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13049
90aeadfc
DC
13050 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13051 snapshots) has been known to create a die giving a declaration
13052 for a class that has, as a child, a die giving a definition for a
13053 nested class. So we have to process our children even if the
13054 current die is a declaration. Normally, of course, a declaration
13055 won't have any children at all. */
134d01f1 13056
90aeadfc
DC
13057 while (child_die != NULL && child_die->tag)
13058 {
13059 if (child_die->tag == DW_TAG_member
13060 || child_die->tag == DW_TAG_variable
34eaf542
TT
13061 || child_die->tag == DW_TAG_inheritance
13062 || child_die->tag == DW_TAG_template_value_param
13063 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13064 {
90aeadfc 13065 /* Do nothing. */
134d01f1 13066 }
90aeadfc
DC
13067 else
13068 process_die (child_die, cu);
134d01f1 13069
90aeadfc 13070 child_die = sibling_die (child_die);
134d01f1
DJ
13071 }
13072
fa4028e9
JB
13073 /* Do not consider external references. According to the DWARF standard,
13074 these DIEs are identified by the fact that they have no byte_size
13075 attribute, and a declaration attribute. */
13076 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13077 || !die_is_declaration (die, cu))
c767944b 13078 new_symbol (die, type, cu);
134d01f1
DJ
13079}
13080
13081/* Given a DW_AT_enumeration_type die, set its type. We do not
13082 complete the type's fields yet, or create any symbols. */
c906108c 13083
f792889a 13084static struct type *
134d01f1 13085read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13086{
e7c27a73 13087 struct objfile *objfile = cu->objfile;
c906108c 13088 struct type *type;
c906108c 13089 struct attribute *attr;
0114d602 13090 const char *name;
134d01f1 13091
348e048f
DE
13092 /* If the definition of this type lives in .debug_types, read that type.
13093 Don't follow DW_AT_specification though, that will take us back up
13094 the chain and we want to go down. */
45e58e77 13095 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13096 if (attr)
13097 {
ac9ec31b 13098 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13099
ac9ec31b 13100 /* The type's CU may not be the same as CU.
02142a6c 13101 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13102 return set_die_type (die, type, cu);
13103 }
13104
c906108c
SS
13105 type = alloc_type (objfile);
13106
13107 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13108 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13109 if (name != NULL)
7d455152 13110 TYPE_TAG_NAME (type) = name;
c906108c 13111
e142c38c 13112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13113 if (attr)
13114 {
13115 TYPE_LENGTH (type) = DW_UNSND (attr);
13116 }
13117 else
13118 {
13119 TYPE_LENGTH (type) = 0;
13120 }
13121
137033e9
JB
13122 /* The enumeration DIE can be incomplete. In Ada, any type can be
13123 declared as private in the package spec, and then defined only
13124 inside the package body. Such types are known as Taft Amendment
13125 Types. When another package uses such a type, an incomplete DIE
13126 may be generated by the compiler. */
02eb380e 13127 if (die_is_declaration (die, cu))
876cecd0 13128 TYPE_STUB (type) = 1;
02eb380e 13129
f792889a 13130 return set_die_type (die, type, cu);
134d01f1
DJ
13131}
13132
13133/* Given a pointer to a die which begins an enumeration, process all
13134 the dies that define the members of the enumeration, and create the
13135 symbol for the enumeration type.
13136
13137 NOTE: We reverse the order of the element list. */
13138
13139static void
13140process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13141{
f792889a 13142 struct type *this_type;
134d01f1 13143
f792889a
DJ
13144 this_type = get_die_type (die, cu);
13145 if (this_type == NULL)
13146 this_type = read_enumeration_type (die, cu);
9dc481d3 13147
639d11d3 13148 if (die->child != NULL)
c906108c 13149 {
9dc481d3
DE
13150 struct die_info *child_die;
13151 struct symbol *sym;
13152 struct field *fields = NULL;
13153 int num_fields = 0;
13154 int unsigned_enum = 1;
15d034d0 13155 const char *name;
cafec441
TT
13156 int flag_enum = 1;
13157 ULONGEST mask = 0;
9dc481d3 13158
639d11d3 13159 child_die = die->child;
c906108c
SS
13160 while (child_die && child_die->tag)
13161 {
13162 if (child_die->tag != DW_TAG_enumerator)
13163 {
e7c27a73 13164 process_die (child_die, cu);
c906108c
SS
13165 }
13166 else
13167 {
39cbfefa
DJ
13168 name = dwarf2_name (child_die, cu);
13169 if (name)
c906108c 13170 {
f792889a 13171 sym = new_symbol (child_die, this_type, cu);
c906108c 13172 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
13173 {
13174 unsigned_enum = 0;
13175 flag_enum = 0;
13176 }
13177 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13178 flag_enum = 0;
13179 else
13180 mask |= SYMBOL_VALUE (sym);
c906108c
SS
13181
13182 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13183 {
13184 fields = (struct field *)
13185 xrealloc (fields,
13186 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13187 * sizeof (struct field));
c906108c
SS
13188 }
13189
3567439c 13190 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13191 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13192 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13193 FIELD_BITSIZE (fields[num_fields]) = 0;
13194
13195 num_fields++;
13196 }
13197 }
13198
13199 child_die = sibling_die (child_die);
13200 }
13201
13202 if (num_fields)
13203 {
f792889a
DJ
13204 TYPE_NFIELDS (this_type) = num_fields;
13205 TYPE_FIELDS (this_type) = (struct field *)
13206 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13207 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13208 sizeof (struct field) * num_fields);
b8c9b27d 13209 xfree (fields);
c906108c
SS
13210 }
13211 if (unsigned_enum)
876cecd0 13212 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
13213 if (flag_enum)
13214 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 13215 }
134d01f1 13216
6c83ed52
TT
13217 /* If we are reading an enum from a .debug_types unit, and the enum
13218 is a declaration, and the enum is not the signatured type in the
13219 unit, then we do not want to add a symbol for it. Adding a
13220 symbol would in some cases obscure the true definition of the
13221 enum, giving users an incomplete type when the definition is
13222 actually available. Note that we do not want to do this for all
13223 enums which are just declarations, because C++0x allows forward
13224 enum declarations. */
3019eac3 13225 if (cu->per_cu->is_debug_types
6c83ed52
TT
13226 && die_is_declaration (die, cu))
13227 {
52dc124a 13228 struct signatured_type *sig_type;
6c83ed52 13229
c0f78cd4 13230 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13231 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13232 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13233 return;
13234 }
13235
f792889a 13236 new_symbol (die, this_type, cu);
c906108c
SS
13237}
13238
13239/* Extract all information from a DW_TAG_array_type DIE and put it in
13240 the DIE's type field. For now, this only handles one dimensional
13241 arrays. */
13242
f792889a 13243static struct type *
e7c27a73 13244read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13245{
e7c27a73 13246 struct objfile *objfile = cu->objfile;
c906108c 13247 struct die_info *child_die;
7e314c57 13248 struct type *type;
c906108c
SS
13249 struct type *element_type, *range_type, *index_type;
13250 struct type **range_types = NULL;
13251 struct attribute *attr;
13252 int ndim = 0;
13253 struct cleanup *back_to;
15d034d0 13254 const char *name;
c906108c 13255
e7c27a73 13256 element_type = die_type (die, cu);
c906108c 13257
7e314c57
JK
13258 /* The die_type call above may have already set the type for this DIE. */
13259 type = get_die_type (die, cu);
13260 if (type)
13261 return type;
13262
c906108c
SS
13263 /* Irix 6.2 native cc creates array types without children for
13264 arrays with unspecified length. */
639d11d3 13265 if (die->child == NULL)
c906108c 13266 {
46bf5051 13267 index_type = objfile_type (objfile)->builtin_int;
c906108c 13268 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
13269 type = create_array_type (NULL, element_type, range_type);
13270 return set_die_type (die, type, cu);
c906108c
SS
13271 }
13272
13273 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13274 child_die = die->child;
c906108c
SS
13275 while (child_die && child_die->tag)
13276 {
13277 if (child_die->tag == DW_TAG_subrange_type)
13278 {
f792889a 13279 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13280
f792889a 13281 if (child_type != NULL)
a02abb62 13282 {
0963b4bd
MS
13283 /* The range type was succesfully read. Save it for the
13284 array type creation. */
a02abb62
JB
13285 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13286 {
13287 range_types = (struct type **)
13288 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13289 * sizeof (struct type *));
13290 if (ndim == 0)
13291 make_cleanup (free_current_contents, &range_types);
13292 }
f792889a 13293 range_types[ndim++] = child_type;
a02abb62 13294 }
c906108c
SS
13295 }
13296 child_die = sibling_die (child_die);
13297 }
13298
13299 /* Dwarf2 dimensions are output from left to right, create the
13300 necessary array types in backwards order. */
7ca2d3a3 13301
c906108c 13302 type = element_type;
7ca2d3a3
DL
13303
13304 if (read_array_order (die, cu) == DW_ORD_col_major)
13305 {
13306 int i = 0;
9a619af0 13307
7ca2d3a3
DL
13308 while (i < ndim)
13309 type = create_array_type (NULL, type, range_types[i++]);
13310 }
13311 else
13312 {
13313 while (ndim-- > 0)
13314 type = create_array_type (NULL, type, range_types[ndim]);
13315 }
c906108c 13316
f5f8a009
EZ
13317 /* Understand Dwarf2 support for vector types (like they occur on
13318 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13319 array type. This is not part of the Dwarf2/3 standard yet, but a
13320 custom vendor extension. The main difference between a regular
13321 array and the vector variant is that vectors are passed by value
13322 to functions. */
e142c38c 13323 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13324 if (attr)
ea37ba09 13325 make_vector_type (type);
f5f8a009 13326
dbc98a8b
KW
13327 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13328 implementation may choose to implement triple vectors using this
13329 attribute. */
13330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13331 if (attr)
13332 {
13333 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13334 TYPE_LENGTH (type) = DW_UNSND (attr);
13335 else
3e43a32a
MS
13336 complaint (&symfile_complaints,
13337 _("DW_AT_byte_size for array type smaller "
13338 "than the total size of elements"));
dbc98a8b
KW
13339 }
13340
39cbfefa
DJ
13341 name = dwarf2_name (die, cu);
13342 if (name)
13343 TYPE_NAME (type) = name;
6e70227d 13344
0963b4bd 13345 /* Install the type in the die. */
7e314c57
JK
13346 set_die_type (die, type, cu);
13347
13348 /* set_die_type should be already done. */
b4ba55a1
JB
13349 set_descriptive_type (type, die, cu);
13350
c906108c
SS
13351 do_cleanups (back_to);
13352
7e314c57 13353 return type;
c906108c
SS
13354}
13355
7ca2d3a3 13356static enum dwarf_array_dim_ordering
6e70227d 13357read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13358{
13359 struct attribute *attr;
13360
13361 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13362
13363 if (attr) return DW_SND (attr);
13364
0963b4bd
MS
13365 /* GNU F77 is a special case, as at 08/2004 array type info is the
13366 opposite order to the dwarf2 specification, but data is still
13367 laid out as per normal fortran.
7ca2d3a3 13368
0963b4bd
MS
13369 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13370 version checking. */
7ca2d3a3 13371
905e0470
PM
13372 if (cu->language == language_fortran
13373 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13374 {
13375 return DW_ORD_row_major;
13376 }
13377
6e70227d 13378 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13379 {
13380 case array_column_major:
13381 return DW_ORD_col_major;
13382 case array_row_major:
13383 default:
13384 return DW_ORD_row_major;
13385 };
13386}
13387
72019c9c 13388/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13389 the DIE's type field. */
72019c9c 13390
f792889a 13391static struct type *
72019c9c
GM
13392read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13393{
7e314c57
JK
13394 struct type *domain_type, *set_type;
13395 struct attribute *attr;
f792889a 13396
7e314c57
JK
13397 domain_type = die_type (die, cu);
13398
13399 /* The die_type call above may have already set the type for this DIE. */
13400 set_type = get_die_type (die, cu);
13401 if (set_type)
13402 return set_type;
13403
13404 set_type = create_set_type (NULL, domain_type);
13405
13406 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13407 if (attr)
13408 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13409
f792889a 13410 return set_die_type (die, set_type, cu);
72019c9c 13411}
7ca2d3a3 13412
0971de02
TT
13413/* A helper for read_common_block that creates a locexpr baton.
13414 SYM is the symbol which we are marking as computed.
13415 COMMON_DIE is the DIE for the common block.
13416 COMMON_LOC is the location expression attribute for the common
13417 block itself.
13418 MEMBER_LOC is the location expression attribute for the particular
13419 member of the common block that we are processing.
13420 CU is the CU from which the above come. */
13421
13422static void
13423mark_common_block_symbol_computed (struct symbol *sym,
13424 struct die_info *common_die,
13425 struct attribute *common_loc,
13426 struct attribute *member_loc,
13427 struct dwarf2_cu *cu)
13428{
13429 struct objfile *objfile = dwarf2_per_objfile->objfile;
13430 struct dwarf2_locexpr_baton *baton;
13431 gdb_byte *ptr;
13432 unsigned int cu_off;
13433 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13434 LONGEST offset = 0;
13435
13436 gdb_assert (common_loc && member_loc);
13437 gdb_assert (attr_form_is_block (common_loc));
13438 gdb_assert (attr_form_is_block (member_loc)
13439 || attr_form_is_constant (member_loc));
13440
13441 baton = obstack_alloc (&objfile->objfile_obstack,
13442 sizeof (struct dwarf2_locexpr_baton));
13443 baton->per_cu = cu->per_cu;
13444 gdb_assert (baton->per_cu);
13445
13446 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13447
13448 if (attr_form_is_constant (member_loc))
13449 {
13450 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13451 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13452 }
13453 else
13454 baton->size += DW_BLOCK (member_loc)->size;
13455
13456 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13457 baton->data = ptr;
13458
13459 *ptr++ = DW_OP_call4;
13460 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13461 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13462 ptr += 4;
13463
13464 if (attr_form_is_constant (member_loc))
13465 {
13466 *ptr++ = DW_OP_addr;
13467 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13468 ptr += cu->header.addr_size;
13469 }
13470 else
13471 {
13472 /* We have to copy the data here, because DW_OP_call4 will only
13473 use a DW_AT_location attribute. */
13474 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13475 ptr += DW_BLOCK (member_loc)->size;
13476 }
13477
13478 *ptr++ = DW_OP_plus;
13479 gdb_assert (ptr - baton->data == baton->size);
13480
0971de02 13481 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13482 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13483}
13484
4357ac6c
TT
13485/* Create appropriate locally-scoped variables for all the
13486 DW_TAG_common_block entries. Also create a struct common_block
13487 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13488 is used to sepate the common blocks name namespace from regular
13489 variable names. */
c906108c
SS
13490
13491static void
e7c27a73 13492read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13493{
0971de02
TT
13494 struct attribute *attr;
13495
13496 attr = dwarf2_attr (die, DW_AT_location, cu);
13497 if (attr)
13498 {
13499 /* Support the .debug_loc offsets. */
13500 if (attr_form_is_block (attr))
13501 {
13502 /* Ok. */
13503 }
13504 else if (attr_form_is_section_offset (attr))
13505 {
13506 dwarf2_complex_location_expr_complaint ();
13507 attr = NULL;
13508 }
13509 else
13510 {
13511 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13512 "common block member");
13513 attr = NULL;
13514 }
13515 }
13516
639d11d3 13517 if (die->child != NULL)
c906108c 13518 {
4357ac6c
TT
13519 struct objfile *objfile = cu->objfile;
13520 struct die_info *child_die;
13521 size_t n_entries = 0, size;
13522 struct common_block *common_block;
13523 struct symbol *sym;
74ac6d43 13524
4357ac6c
TT
13525 for (child_die = die->child;
13526 child_die && child_die->tag;
13527 child_die = sibling_die (child_die))
13528 ++n_entries;
13529
13530 size = (sizeof (struct common_block)
13531 + (n_entries - 1) * sizeof (struct symbol *));
13532 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13533 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13534 common_block->n_entries = 0;
13535
13536 for (child_die = die->child;
13537 child_die && child_die->tag;
13538 child_die = sibling_die (child_die))
13539 {
13540 /* Create the symbol in the DW_TAG_common_block block in the current
13541 symbol scope. */
e7c27a73 13542 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13543 if (sym != NULL)
13544 {
13545 struct attribute *member_loc;
13546
13547 common_block->contents[common_block->n_entries++] = sym;
13548
13549 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13550 cu);
13551 if (member_loc)
13552 {
13553 /* GDB has handled this for a long time, but it is
13554 not specified by DWARF. It seems to have been
13555 emitted by gfortran at least as recently as:
13556 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13557 complaint (&symfile_complaints,
13558 _("Variable in common block has "
13559 "DW_AT_data_member_location "
13560 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13561 child_die->offset.sect_off,
13562 objfile_name (cu->objfile));
0971de02
TT
13563
13564 if (attr_form_is_section_offset (member_loc))
13565 dwarf2_complex_location_expr_complaint ();
13566 else if (attr_form_is_constant (member_loc)
13567 || attr_form_is_block (member_loc))
13568 {
13569 if (attr)
13570 mark_common_block_symbol_computed (sym, die, attr,
13571 member_loc, cu);
13572 }
13573 else
13574 dwarf2_complex_location_expr_complaint ();
13575 }
13576 }
c906108c 13577 }
4357ac6c
TT
13578
13579 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13580 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13581 }
13582}
13583
0114d602 13584/* Create a type for a C++ namespace. */
d9fa45fe 13585
0114d602
DJ
13586static struct type *
13587read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13588{
e7c27a73 13589 struct objfile *objfile = cu->objfile;
0114d602 13590 const char *previous_prefix, *name;
9219021c 13591 int is_anonymous;
0114d602
DJ
13592 struct type *type;
13593
13594 /* For extensions, reuse the type of the original namespace. */
13595 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13596 {
13597 struct die_info *ext_die;
13598 struct dwarf2_cu *ext_cu = cu;
9a619af0 13599
0114d602
DJ
13600 ext_die = dwarf2_extension (die, &ext_cu);
13601 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13602
13603 /* EXT_CU may not be the same as CU.
02142a6c 13604 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13605 return set_die_type (die, type, cu);
13606 }
9219021c 13607
e142c38c 13608 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13609
13610 /* Now build the name of the current namespace. */
13611
0114d602
DJ
13612 previous_prefix = determine_prefix (die, cu);
13613 if (previous_prefix[0] != '\0')
13614 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13615 previous_prefix, name, 0, cu);
0114d602
DJ
13616
13617 /* Create the type. */
13618 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13619 objfile);
abee88f2 13620 TYPE_NAME (type) = name;
0114d602
DJ
13621 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13622
60531b24 13623 return set_die_type (die, type, cu);
0114d602
DJ
13624}
13625
13626/* Read a C++ namespace. */
13627
13628static void
13629read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13630{
13631 struct objfile *objfile = cu->objfile;
0114d602 13632 int is_anonymous;
9219021c 13633
5c4e30ca
DC
13634 /* Add a symbol associated to this if we haven't seen the namespace
13635 before. Also, add a using directive if it's an anonymous
13636 namespace. */
9219021c 13637
f2f0e013 13638 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13639 {
13640 struct type *type;
13641
0114d602 13642 type = read_type_die (die, cu);
e7c27a73 13643 new_symbol (die, type, cu);
5c4e30ca 13644
e8e80198 13645 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13646 if (is_anonymous)
0114d602
DJ
13647 {
13648 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13649
c0cc3a76 13650 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13651 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13652 }
5c4e30ca 13653 }
9219021c 13654
639d11d3 13655 if (die->child != NULL)
d9fa45fe 13656 {
639d11d3 13657 struct die_info *child_die = die->child;
6e70227d 13658
d9fa45fe
DC
13659 while (child_die && child_die->tag)
13660 {
e7c27a73 13661 process_die (child_die, cu);
d9fa45fe
DC
13662 child_die = sibling_die (child_die);
13663 }
13664 }
38d518c9
EZ
13665}
13666
f55ee35c
JK
13667/* Read a Fortran module as type. This DIE can be only a declaration used for
13668 imported module. Still we need that type as local Fortran "use ... only"
13669 declaration imports depend on the created type in determine_prefix. */
13670
13671static struct type *
13672read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13673{
13674 struct objfile *objfile = cu->objfile;
15d034d0 13675 const char *module_name;
f55ee35c
JK
13676 struct type *type;
13677
13678 module_name = dwarf2_name (die, cu);
13679 if (!module_name)
3e43a32a
MS
13680 complaint (&symfile_complaints,
13681 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13682 die->offset.sect_off);
f55ee35c
JK
13683 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13684
13685 /* determine_prefix uses TYPE_TAG_NAME. */
13686 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13687
13688 return set_die_type (die, type, cu);
13689}
13690
5d7cb8df
JK
13691/* Read a Fortran module. */
13692
13693static void
13694read_module (struct die_info *die, struct dwarf2_cu *cu)
13695{
13696 struct die_info *child_die = die->child;
530e8392
KB
13697 struct type *type;
13698
13699 type = read_type_die (die, cu);
13700 new_symbol (die, type, cu);
5d7cb8df 13701
5d7cb8df
JK
13702 while (child_die && child_die->tag)
13703 {
13704 process_die (child_die, cu);
13705 child_die = sibling_die (child_die);
13706 }
13707}
13708
38d518c9
EZ
13709/* Return the name of the namespace represented by DIE. Set
13710 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13711 namespace. */
13712
13713static const char *
e142c38c 13714namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13715{
13716 struct die_info *current_die;
13717 const char *name = NULL;
13718
13719 /* Loop through the extensions until we find a name. */
13720
13721 for (current_die = die;
13722 current_die != NULL;
f2f0e013 13723 current_die = dwarf2_extension (die, &cu))
38d518c9 13724 {
e142c38c 13725 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13726 if (name != NULL)
13727 break;
13728 }
13729
13730 /* Is it an anonymous namespace? */
13731
13732 *is_anonymous = (name == NULL);
13733 if (*is_anonymous)
2b1dbab0 13734 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13735
13736 return name;
d9fa45fe
DC
13737}
13738
c906108c
SS
13739/* Extract all information from a DW_TAG_pointer_type DIE and add to
13740 the user defined type vector. */
13741
f792889a 13742static struct type *
e7c27a73 13743read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13744{
5e2b427d 13745 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13746 struct comp_unit_head *cu_header = &cu->header;
c906108c 13747 struct type *type;
8b2dbe47
KB
13748 struct attribute *attr_byte_size;
13749 struct attribute *attr_address_class;
13750 int byte_size, addr_class;
7e314c57
JK
13751 struct type *target_type;
13752
13753 target_type = die_type (die, cu);
c906108c 13754
7e314c57
JK
13755 /* The die_type call above may have already set the type for this DIE. */
13756 type = get_die_type (die, cu);
13757 if (type)
13758 return type;
13759
13760 type = lookup_pointer_type (target_type);
8b2dbe47 13761
e142c38c 13762 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13763 if (attr_byte_size)
13764 byte_size = DW_UNSND (attr_byte_size);
c906108c 13765 else
8b2dbe47
KB
13766 byte_size = cu_header->addr_size;
13767
e142c38c 13768 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13769 if (attr_address_class)
13770 addr_class = DW_UNSND (attr_address_class);
13771 else
13772 addr_class = DW_ADDR_none;
13773
13774 /* If the pointer size or address class is different than the
13775 default, create a type variant marked as such and set the
13776 length accordingly. */
13777 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 13778 {
5e2b427d 13779 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
13780 {
13781 int type_flags;
13782
849957d9 13783 type_flags = gdbarch_address_class_type_flags
5e2b427d 13784 (gdbarch, byte_size, addr_class);
876cecd0
TT
13785 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13786 == 0);
8b2dbe47
KB
13787 type = make_type_with_address_space (type, type_flags);
13788 }
13789 else if (TYPE_LENGTH (type) != byte_size)
13790 {
3e43a32a
MS
13791 complaint (&symfile_complaints,
13792 _("invalid pointer size %d"), byte_size);
8b2dbe47 13793 }
6e70227d 13794 else
9a619af0
MS
13795 {
13796 /* Should we also complain about unhandled address classes? */
13797 }
c906108c 13798 }
8b2dbe47
KB
13799
13800 TYPE_LENGTH (type) = byte_size;
f792889a 13801 return set_die_type (die, type, cu);
c906108c
SS
13802}
13803
13804/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13805 the user defined type vector. */
13806
f792889a 13807static struct type *
e7c27a73 13808read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
13809{
13810 struct type *type;
13811 struct type *to_type;
13812 struct type *domain;
13813
e7c27a73
DJ
13814 to_type = die_type (die, cu);
13815 domain = die_containing_type (die, cu);
0d5de010 13816
7e314c57
JK
13817 /* The calls above may have already set the type for this DIE. */
13818 type = get_die_type (die, cu);
13819 if (type)
13820 return type;
13821
0d5de010
DJ
13822 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13823 type = lookup_methodptr_type (to_type);
7078baeb
TT
13824 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13825 {
13826 struct type *new_type = alloc_type (cu->objfile);
13827
13828 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13829 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13830 TYPE_VARARGS (to_type));
13831 type = lookup_methodptr_type (new_type);
13832 }
0d5de010
DJ
13833 else
13834 type = lookup_memberptr_type (to_type, domain);
c906108c 13835
f792889a 13836 return set_die_type (die, type, cu);
c906108c
SS
13837}
13838
13839/* Extract all information from a DW_TAG_reference_type DIE and add to
13840 the user defined type vector. */
13841
f792889a 13842static struct type *
e7c27a73 13843read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13844{
e7c27a73 13845 struct comp_unit_head *cu_header = &cu->header;
7e314c57 13846 struct type *type, *target_type;
c906108c
SS
13847 struct attribute *attr;
13848
7e314c57
JK
13849 target_type = die_type (die, cu);
13850
13851 /* The die_type call above may have already set the type for this DIE. */
13852 type = get_die_type (die, cu);
13853 if (type)
13854 return type;
13855
13856 type = lookup_reference_type (target_type);
e142c38c 13857 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13858 if (attr)
13859 {
13860 TYPE_LENGTH (type) = DW_UNSND (attr);
13861 }
13862 else
13863 {
107d2387 13864 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 13865 }
f792889a 13866 return set_die_type (die, type, cu);
c906108c
SS
13867}
13868
f792889a 13869static struct type *
e7c27a73 13870read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13871{
f792889a 13872 struct type *base_type, *cv_type;
c906108c 13873
e7c27a73 13874 base_type = die_type (die, cu);
7e314c57
JK
13875
13876 /* The die_type call above may have already set the type for this DIE. */
13877 cv_type = get_die_type (die, cu);
13878 if (cv_type)
13879 return cv_type;
13880
2f608a3a
KW
13881 /* In case the const qualifier is applied to an array type, the element type
13882 is so qualified, not the array type (section 6.7.3 of C99). */
13883 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13884 {
13885 struct type *el_type, *inner_array;
13886
13887 base_type = copy_type (base_type);
13888 inner_array = base_type;
13889
13890 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13891 {
13892 TYPE_TARGET_TYPE (inner_array) =
13893 copy_type (TYPE_TARGET_TYPE (inner_array));
13894 inner_array = TYPE_TARGET_TYPE (inner_array);
13895 }
13896
13897 el_type = TYPE_TARGET_TYPE (inner_array);
13898 TYPE_TARGET_TYPE (inner_array) =
13899 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13900
13901 return set_die_type (die, base_type, cu);
13902 }
13903
f792889a
DJ
13904 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13905 return set_die_type (die, cv_type, cu);
c906108c
SS
13906}
13907
f792889a 13908static struct type *
e7c27a73 13909read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13910{
f792889a 13911 struct type *base_type, *cv_type;
c906108c 13912
e7c27a73 13913 base_type = die_type (die, cu);
7e314c57
JK
13914
13915 /* The die_type call above may have already set the type for this DIE. */
13916 cv_type = get_die_type (die, cu);
13917 if (cv_type)
13918 return cv_type;
13919
f792889a
DJ
13920 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13921 return set_die_type (die, cv_type, cu);
c906108c
SS
13922}
13923
06d66ee9
TT
13924/* Handle DW_TAG_restrict_type. */
13925
13926static struct type *
13927read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13928{
13929 struct type *base_type, *cv_type;
13930
13931 base_type = die_type (die, cu);
13932
13933 /* The die_type call above may have already set the type for this DIE. */
13934 cv_type = get_die_type (die, cu);
13935 if (cv_type)
13936 return cv_type;
13937
13938 cv_type = make_restrict_type (base_type);
13939 return set_die_type (die, cv_type, cu);
13940}
13941
c906108c
SS
13942/* Extract all information from a DW_TAG_string_type DIE and add to
13943 the user defined type vector. It isn't really a user defined type,
13944 but it behaves like one, with other DIE's using an AT_user_def_type
13945 attribute to reference it. */
13946
f792889a 13947static struct type *
e7c27a73 13948read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13949{
e7c27a73 13950 struct objfile *objfile = cu->objfile;
3b7538c0 13951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13952 struct type *type, *range_type, *index_type, *char_type;
13953 struct attribute *attr;
13954 unsigned int length;
13955
e142c38c 13956 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
13957 if (attr)
13958 {
13959 length = DW_UNSND (attr);
13960 }
13961 else
13962 {
0963b4bd 13963 /* Check for the DW_AT_byte_size attribute. */
e142c38c 13964 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
13965 if (attr)
13966 {
13967 length = DW_UNSND (attr);
13968 }
13969 else
13970 {
13971 length = 1;
13972 }
c906108c 13973 }
6ccb9162 13974
46bf5051 13975 index_type = objfile_type (objfile)->builtin_int;
c906108c 13976 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
13977 char_type = language_string_char_type (cu->language_defn, gdbarch);
13978 type = create_string_type (NULL, char_type, range_type);
6ccb9162 13979
f792889a 13980 return set_die_type (die, type, cu);
c906108c
SS
13981}
13982
4d804846
JB
13983/* Assuming that DIE corresponds to a function, returns nonzero
13984 if the function is prototyped. */
13985
13986static int
13987prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13988{
13989 struct attribute *attr;
13990
13991 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13992 if (attr && (DW_UNSND (attr) != 0))
13993 return 1;
13994
13995 /* The DWARF standard implies that the DW_AT_prototyped attribute
13996 is only meaninful for C, but the concept also extends to other
13997 languages that allow unprototyped functions (Eg: Objective C).
13998 For all other languages, assume that functions are always
13999 prototyped. */
14000 if (cu->language != language_c
14001 && cu->language != language_objc
14002 && cu->language != language_opencl)
14003 return 1;
14004
14005 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14006 prototyped and unprototyped functions; default to prototyped,
14007 since that is more common in modern code (and RealView warns
14008 about unprototyped functions). */
14009 if (producer_is_realview (cu->producer))
14010 return 1;
14011
14012 return 0;
14013}
14014
c906108c
SS
14015/* Handle DIES due to C code like:
14016
14017 struct foo
c5aa993b
JM
14018 {
14019 int (*funcp)(int a, long l);
14020 int b;
14021 };
c906108c 14022
0963b4bd 14023 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14024
f792889a 14025static struct type *
e7c27a73 14026read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14027{
bb5ed363 14028 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14029 struct type *type; /* Type that this function returns. */
14030 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14031 struct attribute *attr;
14032
e7c27a73 14033 type = die_type (die, cu);
7e314c57
JK
14034
14035 /* The die_type call above may have already set the type for this DIE. */
14036 ftype = get_die_type (die, cu);
14037 if (ftype)
14038 return ftype;
14039
0c8b41f1 14040 ftype = lookup_function_type (type);
c906108c 14041
4d804846 14042 if (prototyped_function_p (die, cu))
a6c727b2 14043 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14044
c055b101
CV
14045 /* Store the calling convention in the type if it's available in
14046 the subroutine die. Otherwise set the calling convention to
14047 the default value DW_CC_normal. */
14048 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14049 if (attr)
14050 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14051 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14052 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14053 else
14054 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14055
14056 /* We need to add the subroutine type to the die immediately so
14057 we don't infinitely recurse when dealing with parameters
0963b4bd 14058 declared as the same subroutine type. */
76c10ea2 14059 set_die_type (die, ftype, cu);
6e70227d 14060
639d11d3 14061 if (die->child != NULL)
c906108c 14062 {
bb5ed363 14063 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14064 struct die_info *child_die;
8072405b 14065 int nparams, iparams;
c906108c
SS
14066
14067 /* Count the number of parameters.
14068 FIXME: GDB currently ignores vararg functions, but knows about
14069 vararg member functions. */
8072405b 14070 nparams = 0;
639d11d3 14071 child_die = die->child;
c906108c
SS
14072 while (child_die && child_die->tag)
14073 {
14074 if (child_die->tag == DW_TAG_formal_parameter)
14075 nparams++;
14076 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14077 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14078 child_die = sibling_die (child_die);
14079 }
14080
14081 /* Allocate storage for parameters and fill them in. */
14082 TYPE_NFIELDS (ftype) = nparams;
14083 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14084 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14085
8072405b
JK
14086 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14087 even if we error out during the parameters reading below. */
14088 for (iparams = 0; iparams < nparams; iparams++)
14089 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14090
14091 iparams = 0;
639d11d3 14092 child_die = die->child;
c906108c
SS
14093 while (child_die && child_die->tag)
14094 {
14095 if (child_die->tag == DW_TAG_formal_parameter)
14096 {
3ce3b1ba
PA
14097 struct type *arg_type;
14098
14099 /* DWARF version 2 has no clean way to discern C++
14100 static and non-static member functions. G++ helps
14101 GDB by marking the first parameter for non-static
14102 member functions (which is the this pointer) as
14103 artificial. We pass this information to
14104 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14105
14106 DWARF version 3 added DW_AT_object_pointer, which GCC
14107 4.5 does not yet generate. */
e142c38c 14108 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14109 if (attr)
14110 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14111 else
418835cc
KS
14112 {
14113 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14114
14115 /* GCC/43521: In java, the formal parameter
14116 "this" is sometimes not marked with DW_AT_artificial. */
14117 if (cu->language == language_java)
14118 {
14119 const char *name = dwarf2_name (child_die, cu);
9a619af0 14120
418835cc
KS
14121 if (name && !strcmp (name, "this"))
14122 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14123 }
14124 }
3ce3b1ba
PA
14125 arg_type = die_type (child_die, cu);
14126
14127 /* RealView does not mark THIS as const, which the testsuite
14128 expects. GCC marks THIS as const in method definitions,
14129 but not in the class specifications (GCC PR 43053). */
14130 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14131 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14132 {
14133 int is_this = 0;
14134 struct dwarf2_cu *arg_cu = cu;
14135 const char *name = dwarf2_name (child_die, cu);
14136
14137 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14138 if (attr)
14139 {
14140 /* If the compiler emits this, use it. */
14141 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14142 is_this = 1;
14143 }
14144 else if (name && strcmp (name, "this") == 0)
14145 /* Function definitions will have the argument names. */
14146 is_this = 1;
14147 else if (name == NULL && iparams == 0)
14148 /* Declarations may not have the names, so like
14149 elsewhere in GDB, assume an artificial first
14150 argument is "this". */
14151 is_this = 1;
14152
14153 if (is_this)
14154 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14155 arg_type, 0);
14156 }
14157
14158 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14159 iparams++;
14160 }
14161 child_die = sibling_die (child_die);
14162 }
14163 }
14164
76c10ea2 14165 return ftype;
c906108c
SS
14166}
14167
f792889a 14168static struct type *
e7c27a73 14169read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14170{
e7c27a73 14171 struct objfile *objfile = cu->objfile;
0114d602 14172 const char *name = NULL;
3c8e0968 14173 struct type *this_type, *target_type;
c906108c 14174
94af9270 14175 name = dwarf2_full_name (NULL, die, cu);
f792889a 14176 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14177 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14178 TYPE_NAME (this_type) = name;
f792889a 14179 set_die_type (die, this_type, cu);
3c8e0968
DE
14180 target_type = die_type (die, cu);
14181 if (target_type != this_type)
14182 TYPE_TARGET_TYPE (this_type) = target_type;
14183 else
14184 {
14185 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14186 spec and cause infinite loops in GDB. */
14187 complaint (&symfile_complaints,
14188 _("Self-referential DW_TAG_typedef "
14189 "- DIE at 0x%x [in module %s]"),
4262abfb 14190 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14191 TYPE_TARGET_TYPE (this_type) = NULL;
14192 }
f792889a 14193 return this_type;
c906108c
SS
14194}
14195
14196/* Find a representation of a given base type and install
14197 it in the TYPE field of the die. */
14198
f792889a 14199static struct type *
e7c27a73 14200read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14201{
e7c27a73 14202 struct objfile *objfile = cu->objfile;
c906108c
SS
14203 struct type *type;
14204 struct attribute *attr;
14205 int encoding = 0, size = 0;
15d034d0 14206 const char *name;
6ccb9162
UW
14207 enum type_code code = TYPE_CODE_INT;
14208 int type_flags = 0;
14209 struct type *target_type = NULL;
c906108c 14210
e142c38c 14211 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14212 if (attr)
14213 {
14214 encoding = DW_UNSND (attr);
14215 }
e142c38c 14216 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14217 if (attr)
14218 {
14219 size = DW_UNSND (attr);
14220 }
39cbfefa 14221 name = dwarf2_name (die, cu);
6ccb9162 14222 if (!name)
c906108c 14223 {
6ccb9162
UW
14224 complaint (&symfile_complaints,
14225 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14226 }
6ccb9162
UW
14227
14228 switch (encoding)
c906108c 14229 {
6ccb9162
UW
14230 case DW_ATE_address:
14231 /* Turn DW_ATE_address into a void * pointer. */
14232 code = TYPE_CODE_PTR;
14233 type_flags |= TYPE_FLAG_UNSIGNED;
14234 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14235 break;
14236 case DW_ATE_boolean:
14237 code = TYPE_CODE_BOOL;
14238 type_flags |= TYPE_FLAG_UNSIGNED;
14239 break;
14240 case DW_ATE_complex_float:
14241 code = TYPE_CODE_COMPLEX;
14242 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14243 break;
14244 case DW_ATE_decimal_float:
14245 code = TYPE_CODE_DECFLOAT;
14246 break;
14247 case DW_ATE_float:
14248 code = TYPE_CODE_FLT;
14249 break;
14250 case DW_ATE_signed:
14251 break;
14252 case DW_ATE_unsigned:
14253 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14254 if (cu->language == language_fortran
14255 && name
14256 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14257 code = TYPE_CODE_CHAR;
6ccb9162
UW
14258 break;
14259 case DW_ATE_signed_char:
6e70227d 14260 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14261 || cu->language == language_pascal
14262 || cu->language == language_fortran)
6ccb9162
UW
14263 code = TYPE_CODE_CHAR;
14264 break;
14265 case DW_ATE_unsigned_char:
868a0084 14266 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14267 || cu->language == language_pascal
14268 || cu->language == language_fortran)
6ccb9162
UW
14269 code = TYPE_CODE_CHAR;
14270 type_flags |= TYPE_FLAG_UNSIGNED;
14271 break;
75079b2b
TT
14272 case DW_ATE_UTF:
14273 /* We just treat this as an integer and then recognize the
14274 type by name elsewhere. */
14275 break;
14276
6ccb9162
UW
14277 default:
14278 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14279 dwarf_type_encoding_name (encoding));
14280 break;
c906108c 14281 }
6ccb9162 14282
0114d602
DJ
14283 type = init_type (code, size, type_flags, NULL, objfile);
14284 TYPE_NAME (type) = name;
6ccb9162
UW
14285 TYPE_TARGET_TYPE (type) = target_type;
14286
0114d602 14287 if (name && strcmp (name, "char") == 0)
876cecd0 14288 TYPE_NOSIGN (type) = 1;
0114d602 14289
f792889a 14290 return set_die_type (die, type, cu);
c906108c
SS
14291}
14292
a02abb62
JB
14293/* Read the given DW_AT_subrange DIE. */
14294
f792889a 14295static struct type *
a02abb62
JB
14296read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14297{
4c9ad8c2 14298 struct type *base_type, *orig_base_type;
a02abb62
JB
14299 struct type *range_type;
14300 struct attribute *attr;
4fae6e18
JK
14301 LONGEST low, high;
14302 int low_default_is_valid;
15d034d0 14303 const char *name;
43bbcdc2 14304 LONGEST negative_mask;
e77813c8 14305
4c9ad8c2
TT
14306 orig_base_type = die_type (die, cu);
14307 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14308 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14309 creating the range type, but we use the result of check_typedef
14310 when examining properties of the type. */
14311 base_type = check_typedef (orig_base_type);
a02abb62 14312
7e314c57
JK
14313 /* The die_type call above may have already set the type for this DIE. */
14314 range_type = get_die_type (die, cu);
14315 if (range_type)
14316 return range_type;
14317
4fae6e18
JK
14318 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14319 omitting DW_AT_lower_bound. */
14320 switch (cu->language)
6e70227d 14321 {
4fae6e18
JK
14322 case language_c:
14323 case language_cplus:
14324 low = 0;
14325 low_default_is_valid = 1;
14326 break;
14327 case language_fortran:
14328 low = 1;
14329 low_default_is_valid = 1;
14330 break;
14331 case language_d:
14332 case language_java:
14333 case language_objc:
14334 low = 0;
14335 low_default_is_valid = (cu->header.version >= 4);
14336 break;
14337 case language_ada:
14338 case language_m2:
14339 case language_pascal:
a02abb62 14340 low = 1;
4fae6e18
JK
14341 low_default_is_valid = (cu->header.version >= 4);
14342 break;
14343 default:
14344 low = 0;
14345 low_default_is_valid = 0;
14346 break;
a02abb62
JB
14347 }
14348
dd5e6932
DJ
14349 /* FIXME: For variable sized arrays either of these could be
14350 a variable rather than a constant value. We'll allow it,
14351 but we don't know how to handle it. */
e142c38c 14352 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14353 if (attr)
4fae6e18
JK
14354 low = dwarf2_get_attr_constant_value (attr, low);
14355 else if (!low_default_is_valid)
14356 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14357 "- DIE at 0x%x [in module %s]"),
4262abfb 14358 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14359
e142c38c 14360 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 14361 if (attr)
6e70227d 14362 {
7771576e 14363 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
14364 {
14365 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 14366 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
14367 FIXME: GDB does not yet know how to handle dynamic
14368 arrays properly, treat them as arrays with unspecified
14369 length for now.
14370
14371 FIXME: jimb/2003-09-22: GDB does not really know
14372 how to handle arrays of unspecified length
14373 either; we just represent them as zero-length
14374 arrays. Choose an appropriate upper bound given
14375 the lower bound we've computed above. */
14376 high = low - 1;
14377 }
14378 else
14379 high = dwarf2_get_attr_constant_value (attr, 1);
14380 }
e77813c8
PM
14381 else
14382 {
14383 attr = dwarf2_attr (die, DW_AT_count, cu);
14384 if (attr)
14385 {
14386 int count = dwarf2_get_attr_constant_value (attr, 1);
14387 high = low + count - 1;
14388 }
c2ff108b
JK
14389 else
14390 {
14391 /* Unspecified array length. */
14392 high = low - 1;
14393 }
e77813c8
PM
14394 }
14395
14396 /* Dwarf-2 specifications explicitly allows to create subrange types
14397 without specifying a base type.
14398 In that case, the base type must be set to the type of
14399 the lower bound, upper bound or count, in that order, if any of these
14400 three attributes references an object that has a type.
14401 If no base type is found, the Dwarf-2 specifications say that
14402 a signed integer type of size equal to the size of an address should
14403 be used.
14404 For the following C code: `extern char gdb_int [];'
14405 GCC produces an empty range DIE.
14406 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14407 high bound or count are not yet handled by this code. */
e77813c8
PM
14408 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14409 {
14410 struct objfile *objfile = cu->objfile;
14411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14412 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14413 struct type *int_type = objfile_type (objfile)->builtin_int;
14414
14415 /* Test "int", "long int", and "long long int" objfile types,
14416 and select the first one having a size above or equal to the
14417 architecture address size. */
14418 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14419 base_type = int_type;
14420 else
14421 {
14422 int_type = objfile_type (objfile)->builtin_long;
14423 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14424 base_type = int_type;
14425 else
14426 {
14427 int_type = objfile_type (objfile)->builtin_long_long;
14428 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14429 base_type = int_type;
14430 }
14431 }
14432 }
a02abb62 14433
6e70227d 14434 negative_mask =
43bbcdc2
PH
14435 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14436 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14437 low |= negative_mask;
14438 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14439 high |= negative_mask;
14440
4c9ad8c2 14441 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 14442
bbb0eef6
JK
14443 /* Mark arrays with dynamic length at least as an array of unspecified
14444 length. GDB could check the boundary but before it gets implemented at
14445 least allow accessing the array elements. */
d48323d8 14446 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
14447 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14448
c2ff108b
JK
14449 /* Ada expects an empty array on no boundary attributes. */
14450 if (attr == NULL && cu->language != language_ada)
14451 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14452
39cbfefa
DJ
14453 name = dwarf2_name (die, cu);
14454 if (name)
14455 TYPE_NAME (range_type) = name;
6e70227d 14456
e142c38c 14457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14458 if (attr)
14459 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14460
7e314c57
JK
14461 set_die_type (die, range_type, cu);
14462
14463 /* set_die_type should be already done. */
b4ba55a1
JB
14464 set_descriptive_type (range_type, die, cu);
14465
7e314c57 14466 return range_type;
a02abb62 14467}
6e70227d 14468
f792889a 14469static struct type *
81a17f79
JB
14470read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14471{
14472 struct type *type;
81a17f79 14473
81a17f79
JB
14474 /* For now, we only support the C meaning of an unspecified type: void. */
14475
0114d602
DJ
14476 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14477 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14478
f792889a 14479 return set_die_type (die, type, cu);
81a17f79 14480}
a02abb62 14481
639d11d3
DC
14482/* Read a single die and all its descendents. Set the die's sibling
14483 field to NULL; set other fields in the die correctly, and set all
14484 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14485 location of the info_ptr after reading all of those dies. PARENT
14486 is the parent of the die in question. */
14487
14488static struct die_info *
dee91e82 14489read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14490 const gdb_byte *info_ptr,
14491 const gdb_byte **new_info_ptr,
dee91e82 14492 struct die_info *parent)
639d11d3
DC
14493{
14494 struct die_info *die;
d521ce57 14495 const gdb_byte *cur_ptr;
639d11d3
DC
14496 int has_children;
14497
bf6af496 14498 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14499 if (die == NULL)
14500 {
14501 *new_info_ptr = cur_ptr;
14502 return NULL;
14503 }
93311388 14504 store_in_ref_table (die, reader->cu);
639d11d3
DC
14505
14506 if (has_children)
bf6af496 14507 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14508 else
14509 {
14510 die->child = NULL;
14511 *new_info_ptr = cur_ptr;
14512 }
14513
14514 die->sibling = NULL;
14515 die->parent = parent;
14516 return die;
14517}
14518
14519/* Read a die, all of its descendents, and all of its siblings; set
14520 all of the fields of all of the dies correctly. Arguments are as
14521 in read_die_and_children. */
14522
14523static struct die_info *
bf6af496 14524read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14525 const gdb_byte *info_ptr,
14526 const gdb_byte **new_info_ptr,
bf6af496 14527 struct die_info *parent)
639d11d3
DC
14528{
14529 struct die_info *first_die, *last_sibling;
d521ce57 14530 const gdb_byte *cur_ptr;
639d11d3 14531
c906108c 14532 cur_ptr = info_ptr;
639d11d3
DC
14533 first_die = last_sibling = NULL;
14534
14535 while (1)
c906108c 14536 {
639d11d3 14537 struct die_info *die
dee91e82 14538 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14539
1d325ec1 14540 if (die == NULL)
c906108c 14541 {
639d11d3
DC
14542 *new_info_ptr = cur_ptr;
14543 return first_die;
c906108c 14544 }
1d325ec1
DJ
14545
14546 if (!first_die)
14547 first_die = die;
c906108c 14548 else
1d325ec1
DJ
14549 last_sibling->sibling = die;
14550
14551 last_sibling = die;
c906108c 14552 }
c906108c
SS
14553}
14554
bf6af496
DE
14555/* Read a die, all of its descendents, and all of its siblings; set
14556 all of the fields of all of the dies correctly. Arguments are as
14557 in read_die_and_children.
14558 This the main entry point for reading a DIE and all its children. */
14559
14560static struct die_info *
14561read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14562 const gdb_byte *info_ptr,
14563 const gdb_byte **new_info_ptr,
bf6af496
DE
14564 struct die_info *parent)
14565{
14566 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14567 new_info_ptr, parent);
14568
14569 if (dwarf2_die_debug)
14570 {
14571 fprintf_unfiltered (gdb_stdlog,
14572 "Read die from %s@0x%x of %s:\n",
a32a8923 14573 get_section_name (reader->die_section),
bf6af496
DE
14574 (unsigned) (info_ptr - reader->die_section->buffer),
14575 bfd_get_filename (reader->abfd));
14576 dump_die (die, dwarf2_die_debug);
14577 }
14578
14579 return die;
14580}
14581
3019eac3
DE
14582/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14583 attributes.
14584 The caller is responsible for filling in the extra attributes
14585 and updating (*DIEP)->num_attrs.
14586 Set DIEP to point to a newly allocated die with its information,
14587 except for its child, sibling, and parent fields.
14588 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14589
d521ce57 14590static const gdb_byte *
3019eac3 14591read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14592 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14593 int *has_children, int num_extra_attrs)
93311388 14594{
b64f50a1
JK
14595 unsigned int abbrev_number, bytes_read, i;
14596 sect_offset offset;
93311388
DE
14597 struct abbrev_info *abbrev;
14598 struct die_info *die;
14599 struct dwarf2_cu *cu = reader->cu;
14600 bfd *abfd = reader->abfd;
14601
b64f50a1 14602 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14603 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14604 info_ptr += bytes_read;
14605 if (!abbrev_number)
14606 {
14607 *diep = NULL;
14608 *has_children = 0;
14609 return info_ptr;
14610 }
14611
433df2d4 14612 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14613 if (!abbrev)
348e048f
DE
14614 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14615 abbrev_number,
14616 bfd_get_filename (abfd));
14617
3019eac3 14618 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14619 die->offset = offset;
14620 die->tag = abbrev->tag;
14621 die->abbrev = abbrev_number;
14622
3019eac3
DE
14623 /* Make the result usable.
14624 The caller needs to update num_attrs after adding the extra
14625 attributes. */
93311388
DE
14626 die->num_attrs = abbrev->num_attrs;
14627
14628 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14629 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14630 info_ptr);
93311388
DE
14631
14632 *diep = die;
14633 *has_children = abbrev->has_children;
14634 return info_ptr;
14635}
14636
3019eac3
DE
14637/* Read a die and all its attributes.
14638 Set DIEP to point to a newly allocated die with its information,
14639 except for its child, sibling, and parent fields.
14640 Set HAS_CHILDREN to tell whether the die has children or not. */
14641
d521ce57 14642static const gdb_byte *
3019eac3 14643read_full_die (const struct die_reader_specs *reader,
d521ce57 14644 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14645 int *has_children)
14646{
d521ce57 14647 const gdb_byte *result;
bf6af496
DE
14648
14649 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14650
14651 if (dwarf2_die_debug)
14652 {
14653 fprintf_unfiltered (gdb_stdlog,
14654 "Read die from %s@0x%x of %s:\n",
a32a8923 14655 get_section_name (reader->die_section),
bf6af496
DE
14656 (unsigned) (info_ptr - reader->die_section->buffer),
14657 bfd_get_filename (reader->abfd));
14658 dump_die (*diep, dwarf2_die_debug);
14659 }
14660
14661 return result;
3019eac3 14662}
433df2d4
DE
14663\f
14664/* Abbreviation tables.
3019eac3 14665
433df2d4 14666 In DWARF version 2, the description of the debugging information is
c906108c
SS
14667 stored in a separate .debug_abbrev section. Before we read any
14668 dies from a section we read in all abbreviations and install them
433df2d4
DE
14669 in a hash table. */
14670
14671/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14672
14673static struct abbrev_info *
14674abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14675{
14676 struct abbrev_info *abbrev;
14677
14678 abbrev = (struct abbrev_info *)
14679 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14680 memset (abbrev, 0, sizeof (struct abbrev_info));
14681 return abbrev;
14682}
14683
14684/* Add an abbreviation to the table. */
c906108c
SS
14685
14686static void
433df2d4
DE
14687abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14688 unsigned int abbrev_number,
14689 struct abbrev_info *abbrev)
14690{
14691 unsigned int hash_number;
14692
14693 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14694 abbrev->next = abbrev_table->abbrevs[hash_number];
14695 abbrev_table->abbrevs[hash_number] = abbrev;
14696}
dee91e82 14697
433df2d4
DE
14698/* Look up an abbrev in the table.
14699 Returns NULL if the abbrev is not found. */
14700
14701static struct abbrev_info *
14702abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14703 unsigned int abbrev_number)
c906108c 14704{
433df2d4
DE
14705 unsigned int hash_number;
14706 struct abbrev_info *abbrev;
14707
14708 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14709 abbrev = abbrev_table->abbrevs[hash_number];
14710
14711 while (abbrev)
14712 {
14713 if (abbrev->number == abbrev_number)
14714 return abbrev;
14715 abbrev = abbrev->next;
14716 }
14717 return NULL;
14718}
14719
14720/* Read in an abbrev table. */
14721
14722static struct abbrev_table *
14723abbrev_table_read_table (struct dwarf2_section_info *section,
14724 sect_offset offset)
14725{
14726 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 14727 bfd *abfd = get_section_bfd_owner (section);
433df2d4 14728 struct abbrev_table *abbrev_table;
d521ce57 14729 const gdb_byte *abbrev_ptr;
c906108c
SS
14730 struct abbrev_info *cur_abbrev;
14731 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 14732 unsigned int abbrev_form;
f3dd6933
DJ
14733 struct attr_abbrev *cur_attrs;
14734 unsigned int allocated_attrs;
c906108c 14735
70ba0933 14736 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 14737 abbrev_table->offset = offset;
433df2d4
DE
14738 obstack_init (&abbrev_table->abbrev_obstack);
14739 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14740 (ABBREV_HASH_SIZE
14741 * sizeof (struct abbrev_info *)));
14742 memset (abbrev_table->abbrevs, 0,
14743 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 14744
433df2d4
DE
14745 dwarf2_read_section (objfile, section);
14746 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
14747 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14748 abbrev_ptr += bytes_read;
14749
f3dd6933
DJ
14750 allocated_attrs = ATTR_ALLOC_CHUNK;
14751 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 14752
0963b4bd 14753 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
14754 while (abbrev_number)
14755 {
433df2d4 14756 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
14757
14758 /* read in abbrev header */
14759 cur_abbrev->number = abbrev_number;
14760 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14761 abbrev_ptr += bytes_read;
14762 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14763 abbrev_ptr += 1;
14764
14765 /* now read in declarations */
14766 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14767 abbrev_ptr += bytes_read;
14768 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14769 abbrev_ptr += bytes_read;
14770 while (abbrev_name)
14771 {
f3dd6933 14772 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 14773 {
f3dd6933
DJ
14774 allocated_attrs += ATTR_ALLOC_CHUNK;
14775 cur_attrs
14776 = xrealloc (cur_attrs, (allocated_attrs
14777 * sizeof (struct attr_abbrev)));
c906108c 14778 }
ae038cb0 14779
f3dd6933
DJ
14780 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14781 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
14782 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14783 abbrev_ptr += bytes_read;
14784 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14785 abbrev_ptr += bytes_read;
14786 }
14787
433df2d4 14788 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
14789 (cur_abbrev->num_attrs
14790 * sizeof (struct attr_abbrev)));
14791 memcpy (cur_abbrev->attrs, cur_attrs,
14792 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14793
433df2d4 14794 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
14795
14796 /* Get next abbreviation.
14797 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
14798 always properly terminated with an abbrev number of 0.
14799 Exit loop if we encounter an abbreviation which we have
14800 already read (which means we are about to read the abbreviations
14801 for the next compile unit) or if the end of the abbreviation
14802 table is reached. */
433df2d4 14803 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
14804 break;
14805 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14806 abbrev_ptr += bytes_read;
433df2d4 14807 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
14808 break;
14809 }
f3dd6933
DJ
14810
14811 xfree (cur_attrs);
433df2d4 14812 return abbrev_table;
c906108c
SS
14813}
14814
433df2d4 14815/* Free the resources held by ABBREV_TABLE. */
c906108c 14816
c906108c 14817static void
433df2d4 14818abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 14819{
433df2d4
DE
14820 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14821 xfree (abbrev_table);
c906108c
SS
14822}
14823
f4dc4d17
DE
14824/* Same as abbrev_table_free but as a cleanup.
14825 We pass in a pointer to the pointer to the table so that we can
14826 set the pointer to NULL when we're done. It also simplifies
14827 build_type_unit_groups. */
14828
14829static void
14830abbrev_table_free_cleanup (void *table_ptr)
14831{
14832 struct abbrev_table **abbrev_table_ptr = table_ptr;
14833
14834 if (*abbrev_table_ptr != NULL)
14835 abbrev_table_free (*abbrev_table_ptr);
14836 *abbrev_table_ptr = NULL;
14837}
14838
433df2d4
DE
14839/* Read the abbrev table for CU from ABBREV_SECTION. */
14840
14841static void
14842dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14843 struct dwarf2_section_info *abbrev_section)
c906108c 14844{
433df2d4
DE
14845 cu->abbrev_table =
14846 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14847}
c906108c 14848
433df2d4 14849/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 14850
433df2d4
DE
14851static void
14852dwarf2_free_abbrev_table (void *ptr_to_cu)
14853{
14854 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 14855
a2ce51a0
DE
14856 if (cu->abbrev_table != NULL)
14857 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
14858 /* Set this to NULL so that we SEGV if we try to read it later,
14859 and also because free_comp_unit verifies this is NULL. */
14860 cu->abbrev_table = NULL;
14861}
14862\f
72bf9492
DJ
14863/* Returns nonzero if TAG represents a type that we might generate a partial
14864 symbol for. */
14865
14866static int
14867is_type_tag_for_partial (int tag)
14868{
14869 switch (tag)
14870 {
14871#if 0
14872 /* Some types that would be reasonable to generate partial symbols for,
14873 that we don't at present. */
14874 case DW_TAG_array_type:
14875 case DW_TAG_file_type:
14876 case DW_TAG_ptr_to_member_type:
14877 case DW_TAG_set_type:
14878 case DW_TAG_string_type:
14879 case DW_TAG_subroutine_type:
14880#endif
14881 case DW_TAG_base_type:
14882 case DW_TAG_class_type:
680b30c7 14883 case DW_TAG_interface_type:
72bf9492
DJ
14884 case DW_TAG_enumeration_type:
14885 case DW_TAG_structure_type:
14886 case DW_TAG_subrange_type:
14887 case DW_TAG_typedef:
14888 case DW_TAG_union_type:
14889 return 1;
14890 default:
14891 return 0;
14892 }
14893}
14894
14895/* Load all DIEs that are interesting for partial symbols into memory. */
14896
14897static struct partial_die_info *
dee91e82 14898load_partial_dies (const struct die_reader_specs *reader,
d521ce57 14899 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 14900{
dee91e82 14901 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14902 struct objfile *objfile = cu->objfile;
72bf9492
DJ
14903 struct partial_die_info *part_die;
14904 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14905 struct abbrev_info *abbrev;
14906 unsigned int bytes_read;
5afb4e99 14907 unsigned int load_all = 0;
72bf9492
DJ
14908 int nesting_level = 1;
14909
14910 parent_die = NULL;
14911 last_die = NULL;
14912
7adf1e79
DE
14913 gdb_assert (cu->per_cu != NULL);
14914 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
14915 load_all = 1;
14916
72bf9492
DJ
14917 cu->partial_dies
14918 = htab_create_alloc_ex (cu->header.length / 12,
14919 partial_die_hash,
14920 partial_die_eq,
14921 NULL,
14922 &cu->comp_unit_obstack,
14923 hashtab_obstack_allocate,
14924 dummy_obstack_deallocate);
14925
14926 part_die = obstack_alloc (&cu->comp_unit_obstack,
14927 sizeof (struct partial_die_info));
14928
14929 while (1)
14930 {
14931 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14932
14933 /* A NULL abbrev means the end of a series of children. */
14934 if (abbrev == NULL)
14935 {
14936 if (--nesting_level == 0)
14937 {
14938 /* PART_DIE was probably the last thing allocated on the
14939 comp_unit_obstack, so we could call obstack_free
14940 here. We don't do that because the waste is small,
14941 and will be cleaned up when we're done with this
14942 compilation unit. This way, we're also more robust
14943 against other users of the comp_unit_obstack. */
14944 return first_die;
14945 }
14946 info_ptr += bytes_read;
14947 last_die = parent_die;
14948 parent_die = parent_die->die_parent;
14949 continue;
14950 }
14951
98bfdba5
PA
14952 /* Check for template arguments. We never save these; if
14953 they're seen, we just mark the parent, and go on our way. */
14954 if (parent_die != NULL
14955 && cu->language == language_cplus
14956 && (abbrev->tag == DW_TAG_template_type_param
14957 || abbrev->tag == DW_TAG_template_value_param))
14958 {
14959 parent_die->has_template_arguments = 1;
14960
14961 if (!load_all)
14962 {
14963 /* We don't need a partial DIE for the template argument. */
dee91e82 14964 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14965 continue;
14966 }
14967 }
14968
0d99eb77 14969 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
14970 Skip their other children. */
14971 if (!load_all
14972 && cu->language == language_cplus
14973 && parent_die != NULL
14974 && parent_die->tag == DW_TAG_subprogram)
14975 {
dee91e82 14976 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14977 continue;
14978 }
14979
5afb4e99
DJ
14980 /* Check whether this DIE is interesting enough to save. Normally
14981 we would not be interested in members here, but there may be
14982 later variables referencing them via DW_AT_specification (for
14983 static members). */
14984 if (!load_all
14985 && !is_type_tag_for_partial (abbrev->tag)
72929c62 14986 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
14987 && abbrev->tag != DW_TAG_enumerator
14988 && abbrev->tag != DW_TAG_subprogram
bc30ff58 14989 && abbrev->tag != DW_TAG_lexical_block
72bf9492 14990 && abbrev->tag != DW_TAG_variable
5afb4e99 14991 && abbrev->tag != DW_TAG_namespace
f55ee35c 14992 && abbrev->tag != DW_TAG_module
95554aad 14993 && abbrev->tag != DW_TAG_member
74921315
KS
14994 && abbrev->tag != DW_TAG_imported_unit
14995 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
14996 {
14997 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14998 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
14999 continue;
15000 }
15001
dee91e82
DE
15002 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15003 info_ptr);
72bf9492
DJ
15004
15005 /* This two-pass algorithm for processing partial symbols has a
15006 high cost in cache pressure. Thus, handle some simple cases
15007 here which cover the majority of C partial symbols. DIEs
15008 which neither have specification tags in them, nor could have
15009 specification tags elsewhere pointing at them, can simply be
15010 processed and discarded.
15011
15012 This segment is also optional; scan_partial_symbols and
15013 add_partial_symbol will handle these DIEs if we chain
15014 them in normally. When compilers which do not emit large
15015 quantities of duplicate debug information are more common,
15016 this code can probably be removed. */
15017
15018 /* Any complete simple types at the top level (pretty much all
15019 of them, for a language without namespaces), can be processed
15020 directly. */
15021 if (parent_die == NULL
15022 && part_die->has_specification == 0
15023 && part_die->is_declaration == 0
d8228535 15024 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15025 || part_die->tag == DW_TAG_base_type
15026 || part_die->tag == DW_TAG_subrange_type))
15027 {
15028 if (building_psymtab && part_die->name != NULL)
04a679b8 15029 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15030 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15031 &objfile->static_psymbols,
15032 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15033 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15034 continue;
15035 }
15036
d8228535
JK
15037 /* The exception for DW_TAG_typedef with has_children above is
15038 a workaround of GCC PR debug/47510. In the case of this complaint
15039 type_name_no_tag_or_error will error on such types later.
15040
15041 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15042 it could not find the child DIEs referenced later, this is checked
15043 above. In correct DWARF DW_TAG_typedef should have no children. */
15044
15045 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15046 complaint (&symfile_complaints,
15047 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15048 "- DIE at 0x%x [in module %s]"),
4262abfb 15049 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15050
72bf9492
DJ
15051 /* If we're at the second level, and we're an enumerator, and
15052 our parent has no specification (meaning possibly lives in a
15053 namespace elsewhere), then we can add the partial symbol now
15054 instead of queueing it. */
15055 if (part_die->tag == DW_TAG_enumerator
15056 && parent_die != NULL
15057 && parent_die->die_parent == NULL
15058 && parent_die->tag == DW_TAG_enumeration_type
15059 && parent_die->has_specification == 0)
15060 {
15061 if (part_die->name == NULL)
3e43a32a
MS
15062 complaint (&symfile_complaints,
15063 _("malformed enumerator DIE ignored"));
72bf9492 15064 else if (building_psymtab)
04a679b8 15065 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15066 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15067 (cu->language == language_cplus
15068 || cu->language == language_java)
bb5ed363
DE
15069 ? &objfile->global_psymbols
15070 : &objfile->static_psymbols,
15071 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15072
dee91e82 15073 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15074 continue;
15075 }
15076
15077 /* We'll save this DIE so link it in. */
15078 part_die->die_parent = parent_die;
15079 part_die->die_sibling = NULL;
15080 part_die->die_child = NULL;
15081
15082 if (last_die && last_die == parent_die)
15083 last_die->die_child = part_die;
15084 else if (last_die)
15085 last_die->die_sibling = part_die;
15086
15087 last_die = part_die;
15088
15089 if (first_die == NULL)
15090 first_die = part_die;
15091
15092 /* Maybe add the DIE to the hash table. Not all DIEs that we
15093 find interesting need to be in the hash table, because we
15094 also have the parent/sibling/child chains; only those that we
15095 might refer to by offset later during partial symbol reading.
15096
15097 For now this means things that might have be the target of a
15098 DW_AT_specification, DW_AT_abstract_origin, or
15099 DW_AT_extension. DW_AT_extension will refer only to
15100 namespaces; DW_AT_abstract_origin refers to functions (and
15101 many things under the function DIE, but we do not recurse
15102 into function DIEs during partial symbol reading) and
15103 possibly variables as well; DW_AT_specification refers to
15104 declarations. Declarations ought to have the DW_AT_declaration
15105 flag. It happens that GCC forgets to put it in sometimes, but
15106 only for functions, not for types.
15107
15108 Adding more things than necessary to the hash table is harmless
15109 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15110 wasted time in find_partial_die, when we reread the compilation
15111 unit with load_all_dies set. */
72bf9492 15112
5afb4e99 15113 if (load_all
72929c62 15114 || abbrev->tag == DW_TAG_constant
5afb4e99 15115 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15116 || abbrev->tag == DW_TAG_variable
15117 || abbrev->tag == DW_TAG_namespace
15118 || part_die->is_declaration)
15119 {
15120 void **slot;
15121
15122 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15123 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15124 *slot = part_die;
15125 }
15126
15127 part_die = obstack_alloc (&cu->comp_unit_obstack,
15128 sizeof (struct partial_die_info));
15129
15130 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15131 we have no reason to follow the children of structures; for other
98bfdba5
PA
15132 languages we have to, so that we can get at method physnames
15133 to infer fully qualified class names, for DW_AT_specification,
15134 and for C++ template arguments. For C++, we also look one level
15135 inside functions to find template arguments (if the name of the
15136 function does not already contain the template arguments).
bc30ff58
JB
15137
15138 For Ada, we need to scan the children of subprograms and lexical
15139 blocks as well because Ada allows the definition of nested
15140 entities that could be interesting for the debugger, such as
15141 nested subprograms for instance. */
72bf9492 15142 if (last_die->has_children
5afb4e99
DJ
15143 && (load_all
15144 || last_die->tag == DW_TAG_namespace
f55ee35c 15145 || last_die->tag == DW_TAG_module
72bf9492 15146 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15147 || (cu->language == language_cplus
15148 && last_die->tag == DW_TAG_subprogram
15149 && (last_die->name == NULL
15150 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15151 || (cu->language != language_c
15152 && (last_die->tag == DW_TAG_class_type
680b30c7 15153 || last_die->tag == DW_TAG_interface_type
72bf9492 15154 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15155 || last_die->tag == DW_TAG_union_type))
15156 || (cu->language == language_ada
15157 && (last_die->tag == DW_TAG_subprogram
15158 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15159 {
15160 nesting_level++;
15161 parent_die = last_die;
15162 continue;
15163 }
15164
15165 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15166 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15167
15168 /* Back to the top, do it again. */
15169 }
15170}
15171
c906108c
SS
15172/* Read a minimal amount of information into the minimal die structure. */
15173
d521ce57 15174static const gdb_byte *
dee91e82
DE
15175read_partial_die (const struct die_reader_specs *reader,
15176 struct partial_die_info *part_die,
15177 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15178 const gdb_byte *info_ptr)
c906108c 15179{
dee91e82 15180 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15181 struct objfile *objfile = cu->objfile;
d521ce57 15182 const gdb_byte *buffer = reader->buffer;
fa238c03 15183 unsigned int i;
c906108c 15184 struct attribute attr;
c5aa993b 15185 int has_low_pc_attr = 0;
c906108c 15186 int has_high_pc_attr = 0;
91da1414 15187 int high_pc_relative = 0;
c906108c 15188
72bf9492 15189 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15190
b64f50a1 15191 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15192
15193 info_ptr += abbrev_len;
15194
15195 if (abbrev == NULL)
15196 return info_ptr;
15197
c906108c
SS
15198 part_die->tag = abbrev->tag;
15199 part_die->has_children = abbrev->has_children;
c906108c
SS
15200
15201 for (i = 0; i < abbrev->num_attrs; ++i)
15202 {
dee91e82 15203 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15204
15205 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15206 partial symbol table. */
c906108c
SS
15207 switch (attr.name)
15208 {
15209 case DW_AT_name:
71c25dea
TT
15210 switch (part_die->tag)
15211 {
15212 case DW_TAG_compile_unit:
95554aad 15213 case DW_TAG_partial_unit:
348e048f 15214 case DW_TAG_type_unit:
71c25dea
TT
15215 /* Compilation units have a DW_AT_name that is a filename, not
15216 a source language identifier. */
15217 case DW_TAG_enumeration_type:
15218 case DW_TAG_enumerator:
15219 /* These tags always have simple identifiers already; no need
15220 to canonicalize them. */
15221 part_die->name = DW_STRING (&attr);
15222 break;
15223 default:
15224 part_die->name
15225 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 15226 &objfile->objfile_obstack);
71c25dea
TT
15227 break;
15228 }
c906108c 15229 break;
31ef98ae 15230 case DW_AT_linkage_name:
c906108c 15231 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15232 /* Note that both forms of linkage name might appear. We
15233 assume they will be the same, and we only store the last
15234 one we see. */
94af9270
KS
15235 if (cu->language == language_ada)
15236 part_die->name = DW_STRING (&attr);
abc72ce4 15237 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15238 break;
15239 case DW_AT_low_pc:
15240 has_low_pc_attr = 1;
15241 part_die->lowpc = DW_ADDR (&attr);
15242 break;
15243 case DW_AT_high_pc:
15244 has_high_pc_attr = 1;
3019eac3
DE
15245 if (attr.form == DW_FORM_addr
15246 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
15247 part_die->highpc = DW_ADDR (&attr);
15248 else
15249 {
15250 high_pc_relative = 1;
15251 part_die->highpc = DW_UNSND (&attr);
15252 }
c906108c
SS
15253 break;
15254 case DW_AT_location:
0963b4bd 15255 /* Support the .debug_loc offsets. */
8e19ed76
PS
15256 if (attr_form_is_block (&attr))
15257 {
95554aad 15258 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15259 }
3690dd37 15260 else if (attr_form_is_section_offset (&attr))
8e19ed76 15261 {
4d3c2250 15262 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15263 }
15264 else
15265 {
4d3c2250
KB
15266 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15267 "partial symbol information");
8e19ed76 15268 }
c906108c 15269 break;
c906108c
SS
15270 case DW_AT_external:
15271 part_die->is_external = DW_UNSND (&attr);
15272 break;
15273 case DW_AT_declaration:
15274 part_die->is_declaration = DW_UNSND (&attr);
15275 break;
15276 case DW_AT_type:
15277 part_die->has_type = 1;
15278 break;
15279 case DW_AT_abstract_origin:
15280 case DW_AT_specification:
72bf9492
DJ
15281 case DW_AT_extension:
15282 part_die->has_specification = 1;
c764a876 15283 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15284 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15285 || cu->per_cu->is_dwz);
c906108c
SS
15286 break;
15287 case DW_AT_sibling:
15288 /* Ignore absolute siblings, they might point outside of
15289 the current compile unit. */
15290 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15291 complaint (&symfile_complaints,
15292 _("ignoring absolute DW_AT_sibling"));
c906108c 15293 else
b9502d3f
WN
15294 {
15295 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15296 const gdb_byte *sibling_ptr = buffer + off;
15297
15298 if (sibling_ptr < info_ptr)
15299 complaint (&symfile_complaints,
15300 _("DW_AT_sibling points backwards"));
15301 else
15302 part_die->sibling = sibling_ptr;
15303 }
c906108c 15304 break;
fa4028e9
JB
15305 case DW_AT_byte_size:
15306 part_die->has_byte_size = 1;
15307 break;
68511cec
CES
15308 case DW_AT_calling_convention:
15309 /* DWARF doesn't provide a way to identify a program's source-level
15310 entry point. DW_AT_calling_convention attributes are only meant
15311 to describe functions' calling conventions.
15312
15313 However, because it's a necessary piece of information in
15314 Fortran, and because DW_CC_program is the only piece of debugging
15315 information whose definition refers to a 'main program' at all,
15316 several compilers have begun marking Fortran main programs with
15317 DW_CC_program --- even when those functions use the standard
15318 calling conventions.
15319
15320 So until DWARF specifies a way to provide this information and
15321 compilers pick up the new representation, we'll support this
15322 practice. */
15323 if (DW_UNSND (&attr) == DW_CC_program
15324 && cu->language == language_fortran)
01f8c46d
JK
15325 {
15326 set_main_name (part_die->name);
15327
15328 /* As this DIE has a static linkage the name would be difficult
15329 to look up later. */
15330 language_of_main = language_fortran;
15331 }
68511cec 15332 break;
481860b3
GB
15333 case DW_AT_inline:
15334 if (DW_UNSND (&attr) == DW_INL_inlined
15335 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15336 part_die->may_be_inlined = 1;
15337 break;
95554aad
TT
15338
15339 case DW_AT_import:
15340 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15341 {
15342 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15343 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15344 || cu->per_cu->is_dwz);
15345 }
95554aad
TT
15346 break;
15347
c906108c
SS
15348 default:
15349 break;
15350 }
15351 }
15352
91da1414
MW
15353 if (high_pc_relative)
15354 part_die->highpc += part_die->lowpc;
15355
9373cf26
JK
15356 if (has_low_pc_attr && has_high_pc_attr)
15357 {
15358 /* When using the GNU linker, .gnu.linkonce. sections are used to
15359 eliminate duplicate copies of functions and vtables and such.
15360 The linker will arbitrarily choose one and discard the others.
15361 The AT_*_pc values for such functions refer to local labels in
15362 these sections. If the section from that file was discarded, the
15363 labels are not in the output, so the relocs get a value of 0.
15364 If this is a discarded function, mark the pc bounds as invalid,
15365 so that GDB will ignore it. */
15366 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15367 {
bb5ed363 15368 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15369
15370 complaint (&symfile_complaints,
15371 _("DW_AT_low_pc %s is zero "
15372 "for DIE at 0x%x [in module %s]"),
15373 paddress (gdbarch, part_die->lowpc),
4262abfb 15374 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15375 }
15376 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15377 else if (part_die->lowpc >= part_die->highpc)
15378 {
bb5ed363 15379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15380
15381 complaint (&symfile_complaints,
15382 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15383 "for DIE at 0x%x [in module %s]"),
15384 paddress (gdbarch, part_die->lowpc),
15385 paddress (gdbarch, part_die->highpc),
4262abfb 15386 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15387 }
15388 else
15389 part_die->has_pc_info = 1;
15390 }
85cbf3d3 15391
c906108c
SS
15392 return info_ptr;
15393}
15394
72bf9492
DJ
15395/* Find a cached partial DIE at OFFSET in CU. */
15396
15397static struct partial_die_info *
b64f50a1 15398find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15399{
15400 struct partial_die_info *lookup_die = NULL;
15401 struct partial_die_info part_die;
15402
15403 part_die.offset = offset;
b64f50a1
JK
15404 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15405 offset.sect_off);
72bf9492 15406
72bf9492
DJ
15407 return lookup_die;
15408}
15409
348e048f
DE
15410/* Find a partial DIE at OFFSET, which may or may not be in CU,
15411 except in the case of .debug_types DIEs which do not reference
15412 outside their CU (they do however referencing other types via
55f1336d 15413 DW_FORM_ref_sig8). */
72bf9492
DJ
15414
15415static struct partial_die_info *
36586728 15416find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15417{
bb5ed363 15418 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15419 struct dwarf2_per_cu_data *per_cu = NULL;
15420 struct partial_die_info *pd = NULL;
72bf9492 15421
36586728
TT
15422 if (offset_in_dwz == cu->per_cu->is_dwz
15423 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15424 {
15425 pd = find_partial_die_in_comp_unit (offset, cu);
15426 if (pd != NULL)
15427 return pd;
0d99eb77
DE
15428 /* We missed recording what we needed.
15429 Load all dies and try again. */
15430 per_cu = cu->per_cu;
5afb4e99 15431 }
0d99eb77
DE
15432 else
15433 {
15434 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15435 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15436 {
15437 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15438 " external reference to offset 0x%lx [in module %s].\n"),
15439 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15440 bfd_get_filename (objfile->obfd));
15441 }
36586728
TT
15442 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15443 objfile);
72bf9492 15444
0d99eb77
DE
15445 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15446 load_partial_comp_unit (per_cu);
ae038cb0 15447
0d99eb77
DE
15448 per_cu->cu->last_used = 0;
15449 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15450 }
5afb4e99 15451
dee91e82
DE
15452 /* If we didn't find it, and not all dies have been loaded,
15453 load them all and try again. */
15454
5afb4e99
DJ
15455 if (pd == NULL && per_cu->load_all_dies == 0)
15456 {
5afb4e99 15457 per_cu->load_all_dies = 1;
fd820528
DE
15458
15459 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15460 THIS_CU->cu may already be in use. So we can't just free it and
15461 replace its DIEs with the ones we read in. Instead, we leave those
15462 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15463 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15464 set. */
dee91e82 15465 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15466
15467 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15468 }
15469
15470 if (pd == NULL)
15471 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15472 _("could not find partial DIE 0x%x "
15473 "in cache [from module %s]\n"),
b64f50a1 15474 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15475 return pd;
72bf9492
DJ
15476}
15477
abc72ce4
DE
15478/* See if we can figure out if the class lives in a namespace. We do
15479 this by looking for a member function; its demangled name will
15480 contain namespace info, if there is any. */
15481
15482static void
15483guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15484 struct dwarf2_cu *cu)
15485{
15486 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15487 what template types look like, because the demangler
15488 frequently doesn't give the same name as the debug info. We
15489 could fix this by only using the demangled name to get the
15490 prefix (but see comment in read_structure_type). */
15491
15492 struct partial_die_info *real_pdi;
15493 struct partial_die_info *child_pdi;
15494
15495 /* If this DIE (this DIE's specification, if any) has a parent, then
15496 we should not do this. We'll prepend the parent's fully qualified
15497 name when we create the partial symbol. */
15498
15499 real_pdi = struct_pdi;
15500 while (real_pdi->has_specification)
36586728
TT
15501 real_pdi = find_partial_die (real_pdi->spec_offset,
15502 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15503
15504 if (real_pdi->die_parent != NULL)
15505 return;
15506
15507 for (child_pdi = struct_pdi->die_child;
15508 child_pdi != NULL;
15509 child_pdi = child_pdi->die_sibling)
15510 {
15511 if (child_pdi->tag == DW_TAG_subprogram
15512 && child_pdi->linkage_name != NULL)
15513 {
15514 char *actual_class_name
15515 = language_class_name_from_physname (cu->language_defn,
15516 child_pdi->linkage_name);
15517 if (actual_class_name != NULL)
15518 {
15519 struct_pdi->name
10f0c4bb
TT
15520 = obstack_copy0 (&cu->objfile->objfile_obstack,
15521 actual_class_name,
15522 strlen (actual_class_name));
abc72ce4
DE
15523 xfree (actual_class_name);
15524 }
15525 break;
15526 }
15527 }
15528}
15529
72bf9492
DJ
15530/* Adjust PART_DIE before generating a symbol for it. This function
15531 may set the is_external flag or change the DIE's name. */
15532
15533static void
15534fixup_partial_die (struct partial_die_info *part_die,
15535 struct dwarf2_cu *cu)
15536{
abc72ce4
DE
15537 /* Once we've fixed up a die, there's no point in doing so again.
15538 This also avoids a memory leak if we were to call
15539 guess_partial_die_structure_name multiple times. */
15540 if (part_die->fixup_called)
15541 return;
15542
72bf9492
DJ
15543 /* If we found a reference attribute and the DIE has no name, try
15544 to find a name in the referred to DIE. */
15545
15546 if (part_die->name == NULL && part_die->has_specification)
15547 {
15548 struct partial_die_info *spec_die;
72bf9492 15549
36586728
TT
15550 spec_die = find_partial_die (part_die->spec_offset,
15551 part_die->spec_is_dwz, cu);
72bf9492 15552
10b3939b 15553 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15554
15555 if (spec_die->name)
15556 {
15557 part_die->name = spec_die->name;
15558
15559 /* Copy DW_AT_external attribute if it is set. */
15560 if (spec_die->is_external)
15561 part_die->is_external = spec_die->is_external;
15562 }
15563 }
15564
15565 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15566
15567 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15568 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15569
abc72ce4
DE
15570 /* If there is no parent die to provide a namespace, and there are
15571 children, see if we can determine the namespace from their linkage
122d1940 15572 name. */
abc72ce4 15573 if (cu->language == language_cplus
8b70b953 15574 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15575 && part_die->die_parent == NULL
15576 && part_die->has_children
15577 && (part_die->tag == DW_TAG_class_type
15578 || part_die->tag == DW_TAG_structure_type
15579 || part_die->tag == DW_TAG_union_type))
15580 guess_partial_die_structure_name (part_die, cu);
15581
53832f31
TT
15582 /* GCC might emit a nameless struct or union that has a linkage
15583 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15584 if (part_die->name == NULL
96408a79
SA
15585 && (part_die->tag == DW_TAG_class_type
15586 || part_die->tag == DW_TAG_interface_type
15587 || part_die->tag == DW_TAG_structure_type
15588 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15589 && part_die->linkage_name != NULL)
15590 {
15591 char *demangled;
15592
8de20a37 15593 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15594 if (demangled)
15595 {
96408a79
SA
15596 const char *base;
15597
15598 /* Strip any leading namespaces/classes, keep only the base name.
15599 DW_AT_name for named DIEs does not contain the prefixes. */
15600 base = strrchr (demangled, ':');
15601 if (base && base > demangled && base[-1] == ':')
15602 base++;
15603 else
15604 base = demangled;
15605
10f0c4bb
TT
15606 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15607 base, strlen (base));
53832f31
TT
15608 xfree (demangled);
15609 }
15610 }
15611
abc72ce4 15612 part_die->fixup_called = 1;
72bf9492
DJ
15613}
15614
a8329558 15615/* Read an attribute value described by an attribute form. */
c906108c 15616
d521ce57 15617static const gdb_byte *
dee91e82
DE
15618read_attribute_value (const struct die_reader_specs *reader,
15619 struct attribute *attr, unsigned form,
d521ce57 15620 const gdb_byte *info_ptr)
c906108c 15621{
dee91e82
DE
15622 struct dwarf2_cu *cu = reader->cu;
15623 bfd *abfd = reader->abfd;
e7c27a73 15624 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15625 unsigned int bytes_read;
15626 struct dwarf_block *blk;
15627
a8329558
KW
15628 attr->form = form;
15629 switch (form)
c906108c 15630 {
c906108c 15631 case DW_FORM_ref_addr:
ae411497 15632 if (cu->header.version == 2)
4568ecf9 15633 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15634 else
4568ecf9
DE
15635 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15636 &cu->header, &bytes_read);
ae411497
TT
15637 info_ptr += bytes_read;
15638 break;
36586728
TT
15639 case DW_FORM_GNU_ref_alt:
15640 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15641 info_ptr += bytes_read;
15642 break;
ae411497 15643 case DW_FORM_addr:
e7c27a73 15644 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15645 info_ptr += bytes_read;
c906108c
SS
15646 break;
15647 case DW_FORM_block2:
7b5a2f43 15648 blk = dwarf_alloc_block (cu);
c906108c
SS
15649 blk->size = read_2_bytes (abfd, info_ptr);
15650 info_ptr += 2;
15651 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15652 info_ptr += blk->size;
15653 DW_BLOCK (attr) = blk;
15654 break;
15655 case DW_FORM_block4:
7b5a2f43 15656 blk = dwarf_alloc_block (cu);
c906108c
SS
15657 blk->size = read_4_bytes (abfd, info_ptr);
15658 info_ptr += 4;
15659 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15660 info_ptr += blk->size;
15661 DW_BLOCK (attr) = blk;
15662 break;
15663 case DW_FORM_data2:
15664 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15665 info_ptr += 2;
15666 break;
15667 case DW_FORM_data4:
15668 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15669 info_ptr += 4;
15670 break;
15671 case DW_FORM_data8:
15672 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15673 info_ptr += 8;
15674 break;
2dc7f7b3
TT
15675 case DW_FORM_sec_offset:
15676 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15677 info_ptr += bytes_read;
15678 break;
c906108c 15679 case DW_FORM_string:
9b1c24c8 15680 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15681 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15682 info_ptr += bytes_read;
15683 break;
4bdf3d34 15684 case DW_FORM_strp:
36586728
TT
15685 if (!cu->per_cu->is_dwz)
15686 {
15687 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15688 &bytes_read);
15689 DW_STRING_IS_CANONICAL (attr) = 0;
15690 info_ptr += bytes_read;
15691 break;
15692 }
15693 /* FALLTHROUGH */
15694 case DW_FORM_GNU_strp_alt:
15695 {
15696 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15697 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15698 &bytes_read);
15699
15700 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15701 DW_STRING_IS_CANONICAL (attr) = 0;
15702 info_ptr += bytes_read;
15703 }
4bdf3d34 15704 break;
2dc7f7b3 15705 case DW_FORM_exprloc:
c906108c 15706 case DW_FORM_block:
7b5a2f43 15707 blk = dwarf_alloc_block (cu);
c906108c
SS
15708 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15709 info_ptr += bytes_read;
15710 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15711 info_ptr += blk->size;
15712 DW_BLOCK (attr) = blk;
15713 break;
15714 case DW_FORM_block1:
7b5a2f43 15715 blk = dwarf_alloc_block (cu);
c906108c
SS
15716 blk->size = read_1_byte (abfd, info_ptr);
15717 info_ptr += 1;
15718 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15719 info_ptr += blk->size;
15720 DW_BLOCK (attr) = blk;
15721 break;
15722 case DW_FORM_data1:
15723 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15724 info_ptr += 1;
15725 break;
15726 case DW_FORM_flag:
15727 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15728 info_ptr += 1;
15729 break;
2dc7f7b3
TT
15730 case DW_FORM_flag_present:
15731 DW_UNSND (attr) = 1;
15732 break;
c906108c
SS
15733 case DW_FORM_sdata:
15734 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15735 info_ptr += bytes_read;
15736 break;
15737 case DW_FORM_udata:
15738 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15739 info_ptr += bytes_read;
15740 break;
15741 case DW_FORM_ref1:
4568ecf9
DE
15742 DW_UNSND (attr) = (cu->header.offset.sect_off
15743 + read_1_byte (abfd, info_ptr));
c906108c
SS
15744 info_ptr += 1;
15745 break;
15746 case DW_FORM_ref2:
4568ecf9
DE
15747 DW_UNSND (attr) = (cu->header.offset.sect_off
15748 + read_2_bytes (abfd, info_ptr));
c906108c
SS
15749 info_ptr += 2;
15750 break;
15751 case DW_FORM_ref4:
4568ecf9
DE
15752 DW_UNSND (attr) = (cu->header.offset.sect_off
15753 + read_4_bytes (abfd, info_ptr));
c906108c
SS
15754 info_ptr += 4;
15755 break;
613e1657 15756 case DW_FORM_ref8:
4568ecf9
DE
15757 DW_UNSND (attr) = (cu->header.offset.sect_off
15758 + read_8_bytes (abfd, info_ptr));
613e1657
KB
15759 info_ptr += 8;
15760 break;
55f1336d 15761 case DW_FORM_ref_sig8:
ac9ec31b 15762 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
15763 info_ptr += 8;
15764 break;
c906108c 15765 case DW_FORM_ref_udata:
4568ecf9
DE
15766 DW_UNSND (attr) = (cu->header.offset.sect_off
15767 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
15768 info_ptr += bytes_read;
15769 break;
c906108c 15770 case DW_FORM_indirect:
a8329558
KW
15771 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15772 info_ptr += bytes_read;
dee91e82 15773 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 15774 break;
3019eac3
DE
15775 case DW_FORM_GNU_addr_index:
15776 if (reader->dwo_file == NULL)
15777 {
15778 /* For now flag a hard error.
15779 Later we can turn this into a complaint. */
15780 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15781 dwarf_form_name (form),
15782 bfd_get_filename (abfd));
15783 }
15784 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15785 info_ptr += bytes_read;
15786 break;
15787 case DW_FORM_GNU_str_index:
15788 if (reader->dwo_file == NULL)
15789 {
15790 /* For now flag a hard error.
15791 Later we can turn this into a complaint if warranted. */
15792 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15793 dwarf_form_name (form),
15794 bfd_get_filename (abfd));
15795 }
15796 {
15797 ULONGEST str_index =
15798 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15799
15800 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15801 DW_STRING_IS_CANONICAL (attr) = 0;
15802 info_ptr += bytes_read;
15803 }
15804 break;
c906108c 15805 default:
8a3fe4f8 15806 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
15807 dwarf_form_name (form),
15808 bfd_get_filename (abfd));
c906108c 15809 }
28e94949 15810
36586728 15811 /* Super hack. */
7771576e 15812 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
15813 attr->form = DW_FORM_GNU_ref_alt;
15814
28e94949
JB
15815 /* We have seen instances where the compiler tried to emit a byte
15816 size attribute of -1 which ended up being encoded as an unsigned
15817 0xffffffff. Although 0xffffffff is technically a valid size value,
15818 an object of this size seems pretty unlikely so we can relatively
15819 safely treat these cases as if the size attribute was invalid and
15820 treat them as zero by default. */
15821 if (attr->name == DW_AT_byte_size
15822 && form == DW_FORM_data4
15823 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
15824 {
15825 complaint
15826 (&symfile_complaints,
43bbcdc2
PH
15827 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15828 hex_string (DW_UNSND (attr)));
01c66ae6
JB
15829 DW_UNSND (attr) = 0;
15830 }
28e94949 15831
c906108c
SS
15832 return info_ptr;
15833}
15834
a8329558
KW
15835/* Read an attribute described by an abbreviated attribute. */
15836
d521ce57 15837static const gdb_byte *
dee91e82
DE
15838read_attribute (const struct die_reader_specs *reader,
15839 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 15840 const gdb_byte *info_ptr)
a8329558
KW
15841{
15842 attr->name = abbrev->name;
dee91e82 15843 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
15844}
15845
0963b4bd 15846/* Read dwarf information from a buffer. */
c906108c
SS
15847
15848static unsigned int
a1855c1d 15849read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15850{
fe1b8b76 15851 return bfd_get_8 (abfd, buf);
c906108c
SS
15852}
15853
15854static int
a1855c1d 15855read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15856{
fe1b8b76 15857 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
15858}
15859
15860static unsigned int
a1855c1d 15861read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15862{
fe1b8b76 15863 return bfd_get_16 (abfd, buf);
c906108c
SS
15864}
15865
21ae7a4d 15866static int
a1855c1d 15867read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15868{
15869 return bfd_get_signed_16 (abfd, buf);
15870}
15871
c906108c 15872static unsigned int
a1855c1d 15873read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15874{
fe1b8b76 15875 return bfd_get_32 (abfd, buf);
c906108c
SS
15876}
15877
21ae7a4d 15878static int
a1855c1d 15879read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15880{
15881 return bfd_get_signed_32 (abfd, buf);
15882}
15883
93311388 15884static ULONGEST
a1855c1d 15885read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15886{
fe1b8b76 15887 return bfd_get_64 (abfd, buf);
c906108c
SS
15888}
15889
15890static CORE_ADDR
d521ce57 15891read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 15892 unsigned int *bytes_read)
c906108c 15893{
e7c27a73 15894 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15895 CORE_ADDR retval = 0;
15896
107d2387 15897 if (cu_header->signed_addr_p)
c906108c 15898 {
107d2387
AC
15899 switch (cu_header->addr_size)
15900 {
15901 case 2:
fe1b8b76 15902 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
15903 break;
15904 case 4:
fe1b8b76 15905 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
15906 break;
15907 case 8:
fe1b8b76 15908 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
15909 break;
15910 default:
8e65ff28 15911 internal_error (__FILE__, __LINE__,
e2e0b3e5 15912 _("read_address: bad switch, signed [in module %s]"),
659b0389 15913 bfd_get_filename (abfd));
107d2387
AC
15914 }
15915 }
15916 else
15917 {
15918 switch (cu_header->addr_size)
15919 {
15920 case 2:
fe1b8b76 15921 retval = bfd_get_16 (abfd, buf);
107d2387
AC
15922 break;
15923 case 4:
fe1b8b76 15924 retval = bfd_get_32 (abfd, buf);
107d2387
AC
15925 break;
15926 case 8:
fe1b8b76 15927 retval = bfd_get_64 (abfd, buf);
107d2387
AC
15928 break;
15929 default:
8e65ff28 15930 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
15931 _("read_address: bad switch, "
15932 "unsigned [in module %s]"),
659b0389 15933 bfd_get_filename (abfd));
107d2387 15934 }
c906108c 15935 }
64367e0a 15936
107d2387
AC
15937 *bytes_read = cu_header->addr_size;
15938 return retval;
c906108c
SS
15939}
15940
f7ef9339 15941/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
15942 specification allows the initial length to take up either 4 bytes
15943 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15944 bytes describe the length and all offsets will be 8 bytes in length
15945 instead of 4.
15946
f7ef9339
KB
15947 An older, non-standard 64-bit format is also handled by this
15948 function. The older format in question stores the initial length
15949 as an 8-byte quantity without an escape value. Lengths greater
15950 than 2^32 aren't very common which means that the initial 4 bytes
15951 is almost always zero. Since a length value of zero doesn't make
15952 sense for the 32-bit format, this initial zero can be considered to
15953 be an escape value which indicates the presence of the older 64-bit
15954 format. As written, the code can't detect (old format) lengths
917c78fc
MK
15955 greater than 4GB. If it becomes necessary to handle lengths
15956 somewhat larger than 4GB, we could allow other small values (such
15957 as the non-sensical values of 1, 2, and 3) to also be used as
15958 escape values indicating the presence of the old format.
f7ef9339 15959
917c78fc
MK
15960 The value returned via bytes_read should be used to increment the
15961 relevant pointer after calling read_initial_length().
c764a876 15962
613e1657
KB
15963 [ Note: read_initial_length() and read_offset() are based on the
15964 document entitled "DWARF Debugging Information Format", revision
f7ef9339 15965 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
15966 from:
15967
f7ef9339 15968 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 15969
613e1657
KB
15970 This document is only a draft and is subject to change. (So beware.)
15971
f7ef9339 15972 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
15973 determined empirically by examining 64-bit ELF files produced by
15974 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
15975
15976 - Kevin, July 16, 2002
613e1657
KB
15977 ] */
15978
15979static LONGEST
d521ce57 15980read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 15981{
fe1b8b76 15982 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 15983
dd373385 15984 if (length == 0xffffffff)
613e1657 15985 {
fe1b8b76 15986 length = bfd_get_64 (abfd, buf + 4);
613e1657 15987 *bytes_read = 12;
613e1657 15988 }
dd373385 15989 else if (length == 0)
f7ef9339 15990 {
dd373385 15991 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 15992 length = bfd_get_64 (abfd, buf);
f7ef9339 15993 *bytes_read = 8;
f7ef9339 15994 }
613e1657
KB
15995 else
15996 {
15997 *bytes_read = 4;
613e1657
KB
15998 }
15999
c764a876
DE
16000 return length;
16001}
dd373385 16002
c764a876
DE
16003/* Cover function for read_initial_length.
16004 Returns the length of the object at BUF, and stores the size of the
16005 initial length in *BYTES_READ and stores the size that offsets will be in
16006 *OFFSET_SIZE.
16007 If the initial length size is not equivalent to that specified in
16008 CU_HEADER then issue a complaint.
16009 This is useful when reading non-comp-unit headers. */
dd373385 16010
c764a876 16011static LONGEST
d521ce57 16012read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16013 const struct comp_unit_head *cu_header,
16014 unsigned int *bytes_read,
16015 unsigned int *offset_size)
16016{
16017 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16018
16019 gdb_assert (cu_header->initial_length_size == 4
16020 || cu_header->initial_length_size == 8
16021 || cu_header->initial_length_size == 12);
16022
16023 if (cu_header->initial_length_size != *bytes_read)
16024 complaint (&symfile_complaints,
16025 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16026
c764a876 16027 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16028 return length;
613e1657
KB
16029}
16030
16031/* Read an offset from the data stream. The size of the offset is
917c78fc 16032 given by cu_header->offset_size. */
613e1657
KB
16033
16034static LONGEST
d521ce57
TT
16035read_offset (bfd *abfd, const gdb_byte *buf,
16036 const struct comp_unit_head *cu_header,
891d2f0b 16037 unsigned int *bytes_read)
c764a876
DE
16038{
16039 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16040
c764a876
DE
16041 *bytes_read = cu_header->offset_size;
16042 return offset;
16043}
16044
16045/* Read an offset from the data stream. */
16046
16047static LONGEST
d521ce57 16048read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16049{
16050 LONGEST retval = 0;
16051
c764a876 16052 switch (offset_size)
613e1657
KB
16053 {
16054 case 4:
fe1b8b76 16055 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16056 break;
16057 case 8:
fe1b8b76 16058 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16059 break;
16060 default:
8e65ff28 16061 internal_error (__FILE__, __LINE__,
c764a876 16062 _("read_offset_1: bad switch [in module %s]"),
659b0389 16063 bfd_get_filename (abfd));
613e1657
KB
16064 }
16065
917c78fc 16066 return retval;
613e1657
KB
16067}
16068
d521ce57
TT
16069static const gdb_byte *
16070read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16071{
16072 /* If the size of a host char is 8 bits, we can return a pointer
16073 to the buffer, otherwise we have to copy the data to a buffer
16074 allocated on the temporary obstack. */
4bdf3d34 16075 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16076 return buf;
c906108c
SS
16077}
16078
d521ce57
TT
16079static const char *
16080read_direct_string (bfd *abfd, const gdb_byte *buf,
16081 unsigned int *bytes_read_ptr)
c906108c
SS
16082{
16083 /* If the size of a host char is 8 bits, we can return a pointer
16084 to the string, otherwise we have to copy the string to a buffer
16085 allocated on the temporary obstack. */
4bdf3d34 16086 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16087 if (*buf == '\0')
16088 {
16089 *bytes_read_ptr = 1;
16090 return NULL;
16091 }
d521ce57
TT
16092 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16093 return (const char *) buf;
4bdf3d34
JJ
16094}
16095
d521ce57 16096static const char *
cf2c3c16 16097read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16098{
be391dca 16099 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16100 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16101 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16102 bfd_get_filename (abfd));
dce234bc 16103 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16104 error (_("DW_FORM_strp pointing outside of "
16105 ".debug_str section [in module %s]"),
16106 bfd_get_filename (abfd));
4bdf3d34 16107 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16108 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16109 return NULL;
d521ce57 16110 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16111}
16112
36586728
TT
16113/* Read a string at offset STR_OFFSET in the .debug_str section from
16114 the .dwz file DWZ. Throw an error if the offset is too large. If
16115 the string consists of a single NUL byte, return NULL; otherwise
16116 return a pointer to the string. */
16117
d521ce57 16118static const char *
36586728
TT
16119read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16120{
16121 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16122
16123 if (dwz->str.buffer == NULL)
16124 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16125 "section [in module %s]"),
16126 bfd_get_filename (dwz->dwz_bfd));
16127 if (str_offset >= dwz->str.size)
16128 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16129 ".debug_str section [in module %s]"),
16130 bfd_get_filename (dwz->dwz_bfd));
16131 gdb_assert (HOST_CHAR_BIT == 8);
16132 if (dwz->str.buffer[str_offset] == '\0')
16133 return NULL;
d521ce57 16134 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16135}
16136
d521ce57
TT
16137static const char *
16138read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16139 const struct comp_unit_head *cu_header,
16140 unsigned int *bytes_read_ptr)
16141{
16142 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16143
16144 return read_indirect_string_at_offset (abfd, str_offset);
16145}
16146
12df843f 16147static ULONGEST
d521ce57
TT
16148read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16149 unsigned int *bytes_read_ptr)
c906108c 16150{
12df843f 16151 ULONGEST result;
ce5d95e1 16152 unsigned int num_read;
c906108c
SS
16153 int i, shift;
16154 unsigned char byte;
16155
16156 result = 0;
16157 shift = 0;
16158 num_read = 0;
16159 i = 0;
16160 while (1)
16161 {
fe1b8b76 16162 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16163 buf++;
16164 num_read++;
12df843f 16165 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16166 if ((byte & 128) == 0)
16167 {
16168 break;
16169 }
16170 shift += 7;
16171 }
16172 *bytes_read_ptr = num_read;
16173 return result;
16174}
16175
12df843f 16176static LONGEST
d521ce57
TT
16177read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16178 unsigned int *bytes_read_ptr)
c906108c 16179{
12df843f 16180 LONGEST result;
77e0b926 16181 int i, shift, num_read;
c906108c
SS
16182 unsigned char byte;
16183
16184 result = 0;
16185 shift = 0;
c906108c
SS
16186 num_read = 0;
16187 i = 0;
16188 while (1)
16189 {
fe1b8b76 16190 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16191 buf++;
16192 num_read++;
12df843f 16193 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16194 shift += 7;
16195 if ((byte & 128) == 0)
16196 {
16197 break;
16198 }
16199 }
77e0b926 16200 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16201 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16202 *bytes_read_ptr = num_read;
16203 return result;
16204}
16205
3019eac3
DE
16206/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16207 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16208 ADDR_SIZE is the size of addresses from the CU header. */
16209
16210static CORE_ADDR
16211read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16212{
16213 struct objfile *objfile = dwarf2_per_objfile->objfile;
16214 bfd *abfd = objfile->obfd;
16215 const gdb_byte *info_ptr;
16216
16217 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16218 if (dwarf2_per_objfile->addr.buffer == NULL)
16219 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16220 objfile_name (objfile));
3019eac3
DE
16221 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16222 error (_("DW_FORM_addr_index pointing outside of "
16223 ".debug_addr section [in module %s]"),
4262abfb 16224 objfile_name (objfile));
3019eac3
DE
16225 info_ptr = (dwarf2_per_objfile->addr.buffer
16226 + addr_base + addr_index * addr_size);
16227 if (addr_size == 4)
16228 return bfd_get_32 (abfd, info_ptr);
16229 else
16230 return bfd_get_64 (abfd, info_ptr);
16231}
16232
16233/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16234
16235static CORE_ADDR
16236read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16237{
16238 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16239}
16240
16241/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16242
16243static CORE_ADDR
d521ce57 16244read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16245 unsigned int *bytes_read)
16246{
16247 bfd *abfd = cu->objfile->obfd;
16248 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16249
16250 return read_addr_index (cu, addr_index);
16251}
16252
16253/* Data structure to pass results from dwarf2_read_addr_index_reader
16254 back to dwarf2_read_addr_index. */
16255
16256struct dwarf2_read_addr_index_data
16257{
16258 ULONGEST addr_base;
16259 int addr_size;
16260};
16261
16262/* die_reader_func for dwarf2_read_addr_index. */
16263
16264static void
16265dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16266 const gdb_byte *info_ptr,
3019eac3
DE
16267 struct die_info *comp_unit_die,
16268 int has_children,
16269 void *data)
16270{
16271 struct dwarf2_cu *cu = reader->cu;
16272 struct dwarf2_read_addr_index_data *aidata =
16273 (struct dwarf2_read_addr_index_data *) data;
16274
16275 aidata->addr_base = cu->addr_base;
16276 aidata->addr_size = cu->header.addr_size;
16277}
16278
16279/* Given an index in .debug_addr, fetch the value.
16280 NOTE: This can be called during dwarf expression evaluation,
16281 long after the debug information has been read, and thus per_cu->cu
16282 may no longer exist. */
16283
16284CORE_ADDR
16285dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16286 unsigned int addr_index)
16287{
16288 struct objfile *objfile = per_cu->objfile;
16289 struct dwarf2_cu *cu = per_cu->cu;
16290 ULONGEST addr_base;
16291 int addr_size;
16292
16293 /* This is intended to be called from outside this file. */
16294 dw2_setup (objfile);
16295
16296 /* We need addr_base and addr_size.
16297 If we don't have PER_CU->cu, we have to get it.
16298 Nasty, but the alternative is storing the needed info in PER_CU,
16299 which at this point doesn't seem justified: it's not clear how frequently
16300 it would get used and it would increase the size of every PER_CU.
16301 Entry points like dwarf2_per_cu_addr_size do a similar thing
16302 so we're not in uncharted territory here.
16303 Alas we need to be a bit more complicated as addr_base is contained
16304 in the DIE.
16305
16306 We don't need to read the entire CU(/TU).
16307 We just need the header and top level die.
a1b64ce1 16308
3019eac3 16309 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16310 For now we skip this optimization. */
3019eac3
DE
16311
16312 if (cu != NULL)
16313 {
16314 addr_base = cu->addr_base;
16315 addr_size = cu->header.addr_size;
16316 }
16317 else
16318 {
16319 struct dwarf2_read_addr_index_data aidata;
16320
a1b64ce1
DE
16321 /* Note: We can't use init_cutu_and_read_dies_simple here,
16322 we need addr_base. */
16323 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16324 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16325 addr_base = aidata.addr_base;
16326 addr_size = aidata.addr_size;
16327 }
16328
16329 return read_addr_index_1 (addr_index, addr_base, addr_size);
16330}
16331
57d63ce2
DE
16332/* Given a DW_FORM_GNU_str_index, fetch the string.
16333 This is only used by the Fission support. */
3019eac3 16334
d521ce57 16335static const char *
3019eac3
DE
16336read_str_index (const struct die_reader_specs *reader,
16337 struct dwarf2_cu *cu, ULONGEST str_index)
16338{
16339 struct objfile *objfile = dwarf2_per_objfile->objfile;
4262abfb 16340 const char *dwo_name = objfile_name (objfile);
3019eac3 16341 bfd *abfd = objfile->obfd;
73869dc2
DE
16342 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16343 struct dwarf2_section_info *str_offsets_section =
16344 &reader->dwo_file->sections.str_offsets;
d521ce57 16345 const gdb_byte *info_ptr;
3019eac3 16346 ULONGEST str_offset;
57d63ce2 16347 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16348
73869dc2
DE
16349 dwarf2_read_section (objfile, str_section);
16350 dwarf2_read_section (objfile, str_offsets_section);
16351 if (str_section->buffer == NULL)
57d63ce2 16352 error (_("%s used without .debug_str.dwo section"
3019eac3 16353 " in CU at offset 0x%lx [in module %s]"),
57d63ce2 16354 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16355 if (str_offsets_section->buffer == NULL)
57d63ce2 16356 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16357 " in CU at offset 0x%lx [in module %s]"),
57d63ce2 16358 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16359 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16360 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16361 " section in CU at offset 0x%lx [in module %s]"),
57d63ce2 16362 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16363 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16364 + str_index * cu->header.offset_size);
16365 if (cu->header.offset_size == 4)
16366 str_offset = bfd_get_32 (abfd, info_ptr);
16367 else
16368 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16369 if (str_offset >= str_section->size)
57d63ce2 16370 error (_("Offset from %s pointing outside of"
3019eac3 16371 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
57d63ce2 16372 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16373 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16374}
16375
3019eac3
DE
16376/* Return the length of an LEB128 number in BUF. */
16377
16378static int
16379leb128_size (const gdb_byte *buf)
16380{
16381 const gdb_byte *begin = buf;
16382 gdb_byte byte;
16383
16384 while (1)
16385 {
16386 byte = *buf++;
16387 if ((byte & 128) == 0)
16388 return buf - begin;
16389 }
16390}
16391
c906108c 16392static void
e142c38c 16393set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16394{
16395 switch (lang)
16396 {
16397 case DW_LANG_C89:
76bee0cc 16398 case DW_LANG_C99:
c906108c 16399 case DW_LANG_C:
d1be3247 16400 case DW_LANG_UPC:
e142c38c 16401 cu->language = language_c;
c906108c
SS
16402 break;
16403 case DW_LANG_C_plus_plus:
e142c38c 16404 cu->language = language_cplus;
c906108c 16405 break;
6aecb9c2
JB
16406 case DW_LANG_D:
16407 cu->language = language_d;
16408 break;
c906108c
SS
16409 case DW_LANG_Fortran77:
16410 case DW_LANG_Fortran90:
b21b22e0 16411 case DW_LANG_Fortran95:
e142c38c 16412 cu->language = language_fortran;
c906108c 16413 break;
a766d390
DE
16414 case DW_LANG_Go:
16415 cu->language = language_go;
16416 break;
c906108c 16417 case DW_LANG_Mips_Assembler:
e142c38c 16418 cu->language = language_asm;
c906108c 16419 break;
bebd888e 16420 case DW_LANG_Java:
e142c38c 16421 cu->language = language_java;
bebd888e 16422 break;
c906108c 16423 case DW_LANG_Ada83:
8aaf0b47 16424 case DW_LANG_Ada95:
bc5f45f8
JB
16425 cu->language = language_ada;
16426 break;
72019c9c
GM
16427 case DW_LANG_Modula2:
16428 cu->language = language_m2;
16429 break;
fe8e67fd
PM
16430 case DW_LANG_Pascal83:
16431 cu->language = language_pascal;
16432 break;
22566fbd
DJ
16433 case DW_LANG_ObjC:
16434 cu->language = language_objc;
16435 break;
c906108c
SS
16436 case DW_LANG_Cobol74:
16437 case DW_LANG_Cobol85:
c906108c 16438 default:
e142c38c 16439 cu->language = language_minimal;
c906108c
SS
16440 break;
16441 }
e142c38c 16442 cu->language_defn = language_def (cu->language);
c906108c
SS
16443}
16444
16445/* Return the named attribute or NULL if not there. */
16446
16447static struct attribute *
e142c38c 16448dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16449{
a48e046c 16450 for (;;)
c906108c 16451 {
a48e046c
TT
16452 unsigned int i;
16453 struct attribute *spec = NULL;
16454
16455 for (i = 0; i < die->num_attrs; ++i)
16456 {
16457 if (die->attrs[i].name == name)
16458 return &die->attrs[i];
16459 if (die->attrs[i].name == DW_AT_specification
16460 || die->attrs[i].name == DW_AT_abstract_origin)
16461 spec = &die->attrs[i];
16462 }
16463
16464 if (!spec)
16465 break;
c906108c 16466
f2f0e013 16467 die = follow_die_ref (die, spec, &cu);
f2f0e013 16468 }
c5aa993b 16469
c906108c
SS
16470 return NULL;
16471}
16472
348e048f
DE
16473/* Return the named attribute or NULL if not there,
16474 but do not follow DW_AT_specification, etc.
16475 This is for use in contexts where we're reading .debug_types dies.
16476 Following DW_AT_specification, DW_AT_abstract_origin will take us
16477 back up the chain, and we want to go down. */
16478
16479static struct attribute *
45e58e77 16480dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16481{
16482 unsigned int i;
16483
16484 for (i = 0; i < die->num_attrs; ++i)
16485 if (die->attrs[i].name == name)
16486 return &die->attrs[i];
16487
16488 return NULL;
16489}
16490
05cf31d1
JB
16491/* Return non-zero iff the attribute NAME is defined for the given DIE,
16492 and holds a non-zero value. This function should only be used for
2dc7f7b3 16493 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16494
16495static int
16496dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16497{
16498 struct attribute *attr = dwarf2_attr (die, name, cu);
16499
16500 return (attr && DW_UNSND (attr));
16501}
16502
3ca72b44 16503static int
e142c38c 16504die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16505{
05cf31d1
JB
16506 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16507 which value is non-zero. However, we have to be careful with
16508 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16509 (via dwarf2_flag_true_p) follows this attribute. So we may
16510 end up accidently finding a declaration attribute that belongs
16511 to a different DIE referenced by the specification attribute,
16512 even though the given DIE does not have a declaration attribute. */
16513 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16514 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16515}
16516
63d06c5c 16517/* Return the die giving the specification for DIE, if there is
f2f0e013 16518 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16519 containing the return value on output. If there is no
16520 specification, but there is an abstract origin, that is
16521 returned. */
63d06c5c
DC
16522
16523static struct die_info *
f2f0e013 16524die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16525{
f2f0e013
DJ
16526 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16527 *spec_cu);
63d06c5c 16528
edb3359d
DJ
16529 if (spec_attr == NULL)
16530 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16531
63d06c5c
DC
16532 if (spec_attr == NULL)
16533 return NULL;
16534 else
f2f0e013 16535 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16536}
c906108c 16537
debd256d 16538/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16539 refers to.
16540 NOTE: This is also used as a "cleanup" function. */
16541
debd256d
JB
16542static void
16543free_line_header (struct line_header *lh)
16544{
16545 if (lh->standard_opcode_lengths)
a8bc7b56 16546 xfree (lh->standard_opcode_lengths);
debd256d
JB
16547
16548 /* Remember that all the lh->file_names[i].name pointers are
16549 pointers into debug_line_buffer, and don't need to be freed. */
16550 if (lh->file_names)
a8bc7b56 16551 xfree (lh->file_names);
debd256d
JB
16552
16553 /* Similarly for the include directory names. */
16554 if (lh->include_dirs)
a8bc7b56 16555 xfree (lh->include_dirs);
debd256d 16556
a8bc7b56 16557 xfree (lh);
debd256d
JB
16558}
16559
debd256d 16560/* Add an entry to LH's include directory table. */
ae2de4f8 16561
debd256d 16562static void
d521ce57 16563add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16564{
debd256d
JB
16565 /* Grow the array if necessary. */
16566 if (lh->include_dirs_size == 0)
c5aa993b 16567 {
debd256d
JB
16568 lh->include_dirs_size = 1; /* for testing */
16569 lh->include_dirs = xmalloc (lh->include_dirs_size
16570 * sizeof (*lh->include_dirs));
16571 }
16572 else if (lh->num_include_dirs >= lh->include_dirs_size)
16573 {
16574 lh->include_dirs_size *= 2;
16575 lh->include_dirs = xrealloc (lh->include_dirs,
16576 (lh->include_dirs_size
16577 * sizeof (*lh->include_dirs)));
c5aa993b 16578 }
c906108c 16579
debd256d
JB
16580 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16581}
6e70227d 16582
debd256d 16583/* Add an entry to LH's file name table. */
ae2de4f8 16584
debd256d
JB
16585static void
16586add_file_name (struct line_header *lh,
d521ce57 16587 const char *name,
debd256d
JB
16588 unsigned int dir_index,
16589 unsigned int mod_time,
16590 unsigned int length)
16591{
16592 struct file_entry *fe;
16593
16594 /* Grow the array if necessary. */
16595 if (lh->file_names_size == 0)
16596 {
16597 lh->file_names_size = 1; /* for testing */
16598 lh->file_names = xmalloc (lh->file_names_size
16599 * sizeof (*lh->file_names));
16600 }
16601 else if (lh->num_file_names >= lh->file_names_size)
16602 {
16603 lh->file_names_size *= 2;
16604 lh->file_names = xrealloc (lh->file_names,
16605 (lh->file_names_size
16606 * sizeof (*lh->file_names)));
16607 }
16608
16609 fe = &lh->file_names[lh->num_file_names++];
16610 fe->name = name;
16611 fe->dir_index = dir_index;
16612 fe->mod_time = mod_time;
16613 fe->length = length;
aaa75496 16614 fe->included_p = 0;
cb1df416 16615 fe->symtab = NULL;
debd256d 16616}
6e70227d 16617
36586728
TT
16618/* A convenience function to find the proper .debug_line section for a
16619 CU. */
16620
16621static struct dwarf2_section_info *
16622get_debug_line_section (struct dwarf2_cu *cu)
16623{
16624 struct dwarf2_section_info *section;
16625
16626 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16627 DWO file. */
16628 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16629 section = &cu->dwo_unit->dwo_file->sections.line;
16630 else if (cu->per_cu->is_dwz)
16631 {
16632 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16633
16634 section = &dwz->line;
16635 }
16636 else
16637 section = &dwarf2_per_objfile->line;
16638
16639 return section;
16640}
16641
debd256d 16642/* Read the statement program header starting at OFFSET in
3019eac3 16643 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16644 to a struct line_header, allocated using xmalloc.
debd256d
JB
16645
16646 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16647 the returned object point into the dwarf line section buffer,
16648 and must not be freed. */
ae2de4f8 16649
debd256d 16650static struct line_header *
3019eac3 16651dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16652{
16653 struct cleanup *back_to;
16654 struct line_header *lh;
d521ce57 16655 const gdb_byte *line_ptr;
c764a876 16656 unsigned int bytes_read, offset_size;
debd256d 16657 int i;
d521ce57 16658 const char *cur_dir, *cur_file;
3019eac3
DE
16659 struct dwarf2_section_info *section;
16660 bfd *abfd;
16661
36586728 16662 section = get_debug_line_section (cu);
3019eac3
DE
16663 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16664 if (section->buffer == NULL)
debd256d 16665 {
3019eac3
DE
16666 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16667 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16668 else
16669 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16670 return 0;
16671 }
16672
fceca515
DE
16673 /* We can't do this until we know the section is non-empty.
16674 Only then do we know we have such a section. */
a32a8923 16675 abfd = get_section_bfd_owner (section);
fceca515 16676
a738430d
MK
16677 /* Make sure that at least there's room for the total_length field.
16678 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16679 if (offset + 4 >= section->size)
debd256d 16680 {
4d3c2250 16681 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16682 return 0;
16683 }
16684
16685 lh = xmalloc (sizeof (*lh));
16686 memset (lh, 0, sizeof (*lh));
16687 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16688 (void *) lh);
16689
3019eac3 16690 line_ptr = section->buffer + offset;
debd256d 16691
a738430d 16692 /* Read in the header. */
6e70227d 16693 lh->total_length =
c764a876
DE
16694 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16695 &bytes_read, &offset_size);
debd256d 16696 line_ptr += bytes_read;
3019eac3 16697 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 16698 {
4d3c2250 16699 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 16700 do_cleanups (back_to);
debd256d
JB
16701 return 0;
16702 }
16703 lh->statement_program_end = line_ptr + lh->total_length;
16704 lh->version = read_2_bytes (abfd, line_ptr);
16705 line_ptr += 2;
c764a876
DE
16706 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16707 line_ptr += offset_size;
debd256d
JB
16708 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16709 line_ptr += 1;
2dc7f7b3
TT
16710 if (lh->version >= 4)
16711 {
16712 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16713 line_ptr += 1;
16714 }
16715 else
16716 lh->maximum_ops_per_instruction = 1;
16717
16718 if (lh->maximum_ops_per_instruction == 0)
16719 {
16720 lh->maximum_ops_per_instruction = 1;
16721 complaint (&symfile_complaints,
3e43a32a
MS
16722 _("invalid maximum_ops_per_instruction "
16723 "in `.debug_line' section"));
2dc7f7b3
TT
16724 }
16725
debd256d
JB
16726 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16727 line_ptr += 1;
16728 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16729 line_ptr += 1;
16730 lh->line_range = read_1_byte (abfd, line_ptr);
16731 line_ptr += 1;
16732 lh->opcode_base = read_1_byte (abfd, line_ptr);
16733 line_ptr += 1;
16734 lh->standard_opcode_lengths
fe1b8b76 16735 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
16736
16737 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16738 for (i = 1; i < lh->opcode_base; ++i)
16739 {
16740 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16741 line_ptr += 1;
16742 }
16743
a738430d 16744 /* Read directory table. */
9b1c24c8 16745 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16746 {
16747 line_ptr += bytes_read;
16748 add_include_dir (lh, cur_dir);
16749 }
16750 line_ptr += bytes_read;
16751
a738430d 16752 /* Read file name table. */
9b1c24c8 16753 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16754 {
16755 unsigned int dir_index, mod_time, length;
16756
16757 line_ptr += bytes_read;
16758 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16759 line_ptr += bytes_read;
16760 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16761 line_ptr += bytes_read;
16762 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16763 line_ptr += bytes_read;
16764
16765 add_file_name (lh, cur_file, dir_index, mod_time, length);
16766 }
16767 line_ptr += bytes_read;
6e70227d 16768 lh->statement_program_start = line_ptr;
debd256d 16769
3019eac3 16770 if (line_ptr > (section->buffer + section->size))
4d3c2250 16771 complaint (&symfile_complaints,
3e43a32a
MS
16772 _("line number info header doesn't "
16773 "fit in `.debug_line' section"));
debd256d
JB
16774
16775 discard_cleanups (back_to);
16776 return lh;
16777}
c906108c 16778
c6da4cef
DE
16779/* Subroutine of dwarf_decode_lines to simplify it.
16780 Return the file name of the psymtab for included file FILE_INDEX
16781 in line header LH of PST.
16782 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16783 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
16784 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16785
16786 The function creates dangling cleanup registration. */
c6da4cef 16787
d521ce57 16788static const char *
c6da4cef
DE
16789psymtab_include_file_name (const struct line_header *lh, int file_index,
16790 const struct partial_symtab *pst,
16791 const char *comp_dir)
16792{
16793 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
16794 const char *include_name = fe.name;
16795 const char *include_name_to_compare = include_name;
16796 const char *dir_name = NULL;
72b9f47f
TT
16797 const char *pst_filename;
16798 char *copied_name = NULL;
c6da4cef
DE
16799 int file_is_pst;
16800
16801 if (fe.dir_index)
16802 dir_name = lh->include_dirs[fe.dir_index - 1];
16803
16804 if (!IS_ABSOLUTE_PATH (include_name)
16805 && (dir_name != NULL || comp_dir != NULL))
16806 {
16807 /* Avoid creating a duplicate psymtab for PST.
16808 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16809 Before we do the comparison, however, we need to account
16810 for DIR_NAME and COMP_DIR.
16811 First prepend dir_name (if non-NULL). If we still don't
16812 have an absolute path prepend comp_dir (if non-NULL).
16813 However, the directory we record in the include-file's
16814 psymtab does not contain COMP_DIR (to match the
16815 corresponding symtab(s)).
16816
16817 Example:
16818
16819 bash$ cd /tmp
16820 bash$ gcc -g ./hello.c
16821 include_name = "hello.c"
16822 dir_name = "."
16823 DW_AT_comp_dir = comp_dir = "/tmp"
16824 DW_AT_name = "./hello.c" */
16825
16826 if (dir_name != NULL)
16827 {
d521ce57
TT
16828 char *tem = concat (dir_name, SLASH_STRING,
16829 include_name, (char *)NULL);
16830
16831 make_cleanup (xfree, tem);
16832 include_name = tem;
c6da4cef 16833 include_name_to_compare = include_name;
c6da4cef
DE
16834 }
16835 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16836 {
d521ce57
TT
16837 char *tem = concat (comp_dir, SLASH_STRING,
16838 include_name, (char *)NULL);
16839
16840 make_cleanup (xfree, tem);
16841 include_name_to_compare = tem;
c6da4cef
DE
16842 }
16843 }
16844
16845 pst_filename = pst->filename;
16846 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16847 {
72b9f47f
TT
16848 copied_name = concat (pst->dirname, SLASH_STRING,
16849 pst_filename, (char *)NULL);
16850 pst_filename = copied_name;
c6da4cef
DE
16851 }
16852
1e3fad37 16853 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 16854
72b9f47f
TT
16855 if (copied_name != NULL)
16856 xfree (copied_name);
c6da4cef
DE
16857
16858 if (file_is_pst)
16859 return NULL;
16860 return include_name;
16861}
16862
c91513d8
PP
16863/* Ignore this record_line request. */
16864
16865static void
16866noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16867{
16868 return;
16869}
16870
f3f5162e
DE
16871/* Subroutine of dwarf_decode_lines to simplify it.
16872 Process the line number information in LH. */
debd256d 16873
c906108c 16874static void
f3f5162e
DE
16875dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16876 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 16877{
d521ce57
TT
16878 const gdb_byte *line_ptr, *extended_end;
16879 const gdb_byte *line_end;
a8c50c1f 16880 unsigned int bytes_read, extended_len;
c906108c 16881 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
16882 CORE_ADDR baseaddr;
16883 struct objfile *objfile = cu->objfile;
f3f5162e 16884 bfd *abfd = objfile->obfd;
fbf65064 16885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 16886 const int decode_for_pst_p = (pst != NULL);
f3f5162e 16887 struct subfile *last_subfile = NULL;
c91513d8
PP
16888 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16889 = record_line;
e142c38c
DJ
16890
16891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16892
debd256d
JB
16893 line_ptr = lh->statement_program_start;
16894 line_end = lh->statement_program_end;
c906108c
SS
16895
16896 /* Read the statement sequences until there's nothing left. */
16897 while (line_ptr < line_end)
16898 {
16899 /* state machine registers */
16900 CORE_ADDR address = 0;
16901 unsigned int file = 1;
16902 unsigned int line = 1;
16903 unsigned int column = 0;
debd256d 16904 int is_stmt = lh->default_is_stmt;
c906108c
SS
16905 int basic_block = 0;
16906 int end_sequence = 0;
fbf65064 16907 CORE_ADDR addr;
2dc7f7b3 16908 unsigned char op_index = 0;
c906108c 16909
aaa75496 16910 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 16911 {
aaa75496 16912 /* Start a subfile for the current file of the state machine. */
debd256d
JB
16913 /* lh->include_dirs and lh->file_names are 0-based, but the
16914 directory and file name numbers in the statement program
16915 are 1-based. */
16916 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 16917 const char *dir = NULL;
a738430d 16918
debd256d
JB
16919 if (fe->dir_index)
16920 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
16921
16922 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
16923 }
16924
a738430d 16925 /* Decode the table. */
c5aa993b 16926 while (!end_sequence)
c906108c
SS
16927 {
16928 op_code = read_1_byte (abfd, line_ptr);
16929 line_ptr += 1;
59205f5a
JB
16930 if (line_ptr > line_end)
16931 {
16932 dwarf2_debug_line_missing_end_sequence_complaint ();
16933 break;
16934 }
9aa1fe7e 16935
debd256d 16936 if (op_code >= lh->opcode_base)
6e70227d 16937 {
a738430d 16938 /* Special operand. */
debd256d 16939 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
16940 address += (((op_index + (adj_opcode / lh->line_range))
16941 / lh->maximum_ops_per_instruction)
16942 * lh->minimum_instruction_length);
16943 op_index = ((op_index + (adj_opcode / lh->line_range))
16944 % lh->maximum_ops_per_instruction);
debd256d 16945 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 16946 if (lh->num_file_names < file || file == 0)
25e43795 16947 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
16948 /* For now we ignore lines not starting on an
16949 instruction boundary. */
16950 else if (op_index == 0)
25e43795
DJ
16951 {
16952 lh->file_names[file - 1].included_p = 1;
ca5f395d 16953 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16954 {
16955 if (last_subfile != current_subfile)
16956 {
16957 addr = gdbarch_addr_bits_remove (gdbarch, address);
16958 if (last_subfile)
c91513d8 16959 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16960 last_subfile = current_subfile;
16961 }
25e43795 16962 /* Append row to matrix using current values. */
7019d805 16963 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16964 (*p_record_line) (current_subfile, line, addr);
366da635 16965 }
25e43795 16966 }
ca5f395d 16967 basic_block = 0;
9aa1fe7e
GK
16968 }
16969 else switch (op_code)
c906108c
SS
16970 {
16971 case DW_LNS_extended_op:
3e43a32a
MS
16972 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16973 &bytes_read);
473b7be6 16974 line_ptr += bytes_read;
a8c50c1f 16975 extended_end = line_ptr + extended_len;
c906108c
SS
16976 extended_op = read_1_byte (abfd, line_ptr);
16977 line_ptr += 1;
16978 switch (extended_op)
16979 {
16980 case DW_LNE_end_sequence:
c91513d8 16981 p_record_line = record_line;
c906108c 16982 end_sequence = 1;
c906108c
SS
16983 break;
16984 case DW_LNE_set_address:
e7c27a73 16985 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
16986
16987 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16988 {
16989 /* This line table is for a function which has been
16990 GCd by the linker. Ignore it. PR gdb/12528 */
16991
16992 long line_offset
36586728 16993 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
16994
16995 complaint (&symfile_complaints,
16996 _(".debug_line address at offset 0x%lx is 0 "
16997 "[in module %s]"),
4262abfb 16998 line_offset, objfile_name (objfile));
c91513d8
PP
16999 p_record_line = noop_record_line;
17000 }
17001
2dc7f7b3 17002 op_index = 0;
107d2387
AC
17003 line_ptr += bytes_read;
17004 address += baseaddr;
c906108c
SS
17005 break;
17006 case DW_LNE_define_file:
debd256d 17007 {
d521ce57 17008 const char *cur_file;
debd256d 17009 unsigned int dir_index, mod_time, length;
6e70227d 17010
3e43a32a
MS
17011 cur_file = read_direct_string (abfd, line_ptr,
17012 &bytes_read);
debd256d
JB
17013 line_ptr += bytes_read;
17014 dir_index =
17015 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17016 line_ptr += bytes_read;
17017 mod_time =
17018 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17019 line_ptr += bytes_read;
17020 length =
17021 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17022 line_ptr += bytes_read;
17023 add_file_name (lh, cur_file, dir_index, mod_time, length);
17024 }
c906108c 17025 break;
d0c6ba3d
CC
17026 case DW_LNE_set_discriminator:
17027 /* The discriminator is not interesting to the debugger;
17028 just ignore it. */
17029 line_ptr = extended_end;
17030 break;
c906108c 17031 default:
4d3c2250 17032 complaint (&symfile_complaints,
e2e0b3e5 17033 _("mangled .debug_line section"));
debd256d 17034 return;
c906108c 17035 }
a8c50c1f
DJ
17036 /* Make sure that we parsed the extended op correctly. If e.g.
17037 we expected a different address size than the producer used,
17038 we may have read the wrong number of bytes. */
17039 if (line_ptr != extended_end)
17040 {
17041 complaint (&symfile_complaints,
17042 _("mangled .debug_line section"));
17043 return;
17044 }
c906108c
SS
17045 break;
17046 case DW_LNS_copy:
59205f5a 17047 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17048 dwarf2_debug_line_missing_file_complaint ();
17049 else
366da635 17050 {
25e43795 17051 lh->file_names[file - 1].included_p = 1;
ca5f395d 17052 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17053 {
17054 if (last_subfile != current_subfile)
17055 {
17056 addr = gdbarch_addr_bits_remove (gdbarch, address);
17057 if (last_subfile)
c91513d8 17058 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17059 last_subfile = current_subfile;
17060 }
7019d805 17061 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17062 (*p_record_line) (current_subfile, line, addr);
fbf65064 17063 }
366da635 17064 }
c906108c
SS
17065 basic_block = 0;
17066 break;
17067 case DW_LNS_advance_pc:
2dc7f7b3
TT
17068 {
17069 CORE_ADDR adjust
17070 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17071
17072 address += (((op_index + adjust)
17073 / lh->maximum_ops_per_instruction)
17074 * lh->minimum_instruction_length);
17075 op_index = ((op_index + adjust)
17076 % lh->maximum_ops_per_instruction);
17077 line_ptr += bytes_read;
17078 }
c906108c
SS
17079 break;
17080 case DW_LNS_advance_line:
17081 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17082 line_ptr += bytes_read;
17083 break;
17084 case DW_LNS_set_file:
debd256d 17085 {
a738430d
MK
17086 /* The arrays lh->include_dirs and lh->file_names are
17087 0-based, but the directory and file name numbers in
17088 the statement program are 1-based. */
debd256d 17089 struct file_entry *fe;
d521ce57 17090 const char *dir = NULL;
a738430d 17091
debd256d
JB
17092 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17093 line_ptr += bytes_read;
59205f5a 17094 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17095 dwarf2_debug_line_missing_file_complaint ();
17096 else
17097 {
17098 fe = &lh->file_names[file - 1];
17099 if (fe->dir_index)
17100 dir = lh->include_dirs[fe->dir_index - 1];
17101 if (!decode_for_pst_p)
17102 {
17103 last_subfile = current_subfile;
17104 dwarf2_start_subfile (fe->name, dir, comp_dir);
17105 }
17106 }
debd256d 17107 }
c906108c
SS
17108 break;
17109 case DW_LNS_set_column:
17110 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17111 line_ptr += bytes_read;
17112 break;
17113 case DW_LNS_negate_stmt:
17114 is_stmt = (!is_stmt);
17115 break;
17116 case DW_LNS_set_basic_block:
17117 basic_block = 1;
17118 break;
c2c6d25f
JM
17119 /* Add to the address register of the state machine the
17120 address increment value corresponding to special opcode
a738430d
MK
17121 255. I.e., this value is scaled by the minimum
17122 instruction length since special opcode 255 would have
b021a221 17123 scaled the increment. */
c906108c 17124 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17125 {
17126 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17127
17128 address += (((op_index + adjust)
17129 / lh->maximum_ops_per_instruction)
17130 * lh->minimum_instruction_length);
17131 op_index = ((op_index + adjust)
17132 % lh->maximum_ops_per_instruction);
17133 }
c906108c
SS
17134 break;
17135 case DW_LNS_fixed_advance_pc:
17136 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17137 op_index = 0;
c906108c
SS
17138 line_ptr += 2;
17139 break;
9aa1fe7e 17140 default:
a738430d
MK
17141 {
17142 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17143 int i;
a738430d 17144
debd256d 17145 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17146 {
17147 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17148 line_ptr += bytes_read;
17149 }
17150 }
c906108c
SS
17151 }
17152 }
59205f5a
JB
17153 if (lh->num_file_names < file || file == 0)
17154 dwarf2_debug_line_missing_file_complaint ();
17155 else
17156 {
17157 lh->file_names[file - 1].included_p = 1;
17158 if (!decode_for_pst_p)
fbf65064
UW
17159 {
17160 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17161 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17162 }
59205f5a 17163 }
c906108c 17164 }
f3f5162e
DE
17165}
17166
17167/* Decode the Line Number Program (LNP) for the given line_header
17168 structure and CU. The actual information extracted and the type
17169 of structures created from the LNP depends on the value of PST.
17170
17171 1. If PST is NULL, then this procedure uses the data from the program
17172 to create all necessary symbol tables, and their linetables.
17173
17174 2. If PST is not NULL, this procedure reads the program to determine
17175 the list of files included by the unit represented by PST, and
17176 builds all the associated partial symbol tables.
17177
17178 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17179 It is used for relative paths in the line table.
17180 NOTE: When processing partial symtabs (pst != NULL),
17181 comp_dir == pst->dirname.
17182
17183 NOTE: It is important that psymtabs have the same file name (via strcmp)
17184 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17185 symtab we don't use it in the name of the psymtabs we create.
17186 E.g. expand_line_sal requires this when finding psymtabs to expand.
17187 A good testcase for this is mb-inline.exp. */
17188
17189static void
17190dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17191 struct dwarf2_cu *cu, struct partial_symtab *pst,
17192 int want_line_info)
17193{
17194 struct objfile *objfile = cu->objfile;
17195 const int decode_for_pst_p = (pst != NULL);
17196 struct subfile *first_subfile = current_subfile;
17197
17198 if (want_line_info)
17199 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17200
17201 if (decode_for_pst_p)
17202 {
17203 int file_index;
17204
17205 /* Now that we're done scanning the Line Header Program, we can
17206 create the psymtab of each included file. */
17207 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17208 if (lh->file_names[file_index].included_p == 1)
17209 {
d521ce57 17210 const char *include_name =
c6da4cef
DE
17211 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17212 if (include_name != NULL)
aaa75496
JB
17213 dwarf2_create_include_psymtab (include_name, pst, objfile);
17214 }
17215 }
cb1df416
DJ
17216 else
17217 {
17218 /* Make sure a symtab is created for every file, even files
17219 which contain only variables (i.e. no code with associated
17220 line numbers). */
cb1df416 17221 int i;
cb1df416
DJ
17222
17223 for (i = 0; i < lh->num_file_names; i++)
17224 {
d521ce57 17225 const char *dir = NULL;
f3f5162e 17226 struct file_entry *fe;
9a619af0 17227
cb1df416
DJ
17228 fe = &lh->file_names[i];
17229 if (fe->dir_index)
17230 dir = lh->include_dirs[fe->dir_index - 1];
17231 dwarf2_start_subfile (fe->name, dir, comp_dir);
17232
17233 /* Skip the main file; we don't need it, and it must be
17234 allocated last, so that it will show up before the
17235 non-primary symtabs in the objfile's symtab list. */
17236 if (current_subfile == first_subfile)
17237 continue;
17238
17239 if (current_subfile->symtab == NULL)
17240 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17241 objfile);
cb1df416
DJ
17242 fe->symtab = current_subfile->symtab;
17243 }
17244 }
c906108c
SS
17245}
17246
17247/* Start a subfile for DWARF. FILENAME is the name of the file and
17248 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17249 or NULL if not known. COMP_DIR is the compilation directory for the
17250 linetable's compilation unit or NULL if not known.
c906108c
SS
17251 This routine tries to keep line numbers from identical absolute and
17252 relative file names in a common subfile.
17253
17254 Using the `list' example from the GDB testsuite, which resides in
17255 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17256 of /srcdir/list0.c yields the following debugging information for list0.c:
17257
c5aa993b
JM
17258 DW_AT_name: /srcdir/list0.c
17259 DW_AT_comp_dir: /compdir
357e46e7 17260 files.files[0].name: list0.h
c5aa993b 17261 files.files[0].dir: /srcdir
357e46e7 17262 files.files[1].name: list0.c
c5aa993b 17263 files.files[1].dir: /srcdir
c906108c
SS
17264
17265 The line number information for list0.c has to end up in a single
4f1520fb
FR
17266 subfile, so that `break /srcdir/list0.c:1' works as expected.
17267 start_subfile will ensure that this happens provided that we pass the
17268 concatenation of files.files[1].dir and files.files[1].name as the
17269 subfile's name. */
c906108c
SS
17270
17271static void
d521ce57 17272dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17273 const char *comp_dir)
c906108c 17274{
d521ce57 17275 char *copy = NULL;
4f1520fb
FR
17276
17277 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17278 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17279 second argument to start_subfile. To be consistent, we do the
17280 same here. In order not to lose the line information directory,
17281 we concatenate it to the filename when it makes sense.
17282 Note that the Dwarf3 standard says (speaking of filenames in line
17283 information): ``The directory index is ignored for file names
17284 that represent full path names''. Thus ignoring dirname in the
17285 `else' branch below isn't an issue. */
c906108c 17286
d5166ae1 17287 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17288 {
17289 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17290 filename = copy;
17291 }
c906108c 17292
d521ce57 17293 start_subfile (filename, comp_dir);
4f1520fb 17294
d521ce57
TT
17295 if (copy != NULL)
17296 xfree (copy);
c906108c
SS
17297}
17298
f4dc4d17
DE
17299/* Start a symtab for DWARF.
17300 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17301
17302static void
17303dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17304 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17305{
17306 start_symtab (name, comp_dir, low_pc);
17307 record_debugformat ("DWARF 2");
17308 record_producer (cu->producer);
17309
17310 /* We assume that we're processing GCC output. */
17311 processing_gcc_compilation = 2;
17312
4d4ec4e5 17313 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17314}
17315
4c2df51b
DJ
17316static void
17317var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17318 struct dwarf2_cu *cu)
4c2df51b 17319{
e7c27a73
DJ
17320 struct objfile *objfile = cu->objfile;
17321 struct comp_unit_head *cu_header = &cu->header;
17322
4c2df51b
DJ
17323 /* NOTE drow/2003-01-30: There used to be a comment and some special
17324 code here to turn a symbol with DW_AT_external and a
17325 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17326 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17327 with some versions of binutils) where shared libraries could have
17328 relocations against symbols in their debug information - the
17329 minimal symbol would have the right address, but the debug info
17330 would not. It's no longer necessary, because we will explicitly
17331 apply relocations when we read in the debug information now. */
17332
17333 /* A DW_AT_location attribute with no contents indicates that a
17334 variable has been optimized away. */
17335 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17336 {
f1e6e072 17337 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17338 return;
17339 }
17340
17341 /* Handle one degenerate form of location expression specially, to
17342 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17343 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17344 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17345
17346 if (attr_form_is_block (attr)
3019eac3
DE
17347 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17348 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17349 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17350 && (DW_BLOCK (attr)->size
17351 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17352 {
891d2f0b 17353 unsigned int dummy;
4c2df51b 17354
3019eac3
DE
17355 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17356 SYMBOL_VALUE_ADDRESS (sym) =
17357 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17358 else
17359 SYMBOL_VALUE_ADDRESS (sym) =
17360 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17361 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17362 fixup_symbol_section (sym, objfile);
17363 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17364 SYMBOL_SECTION (sym));
4c2df51b
DJ
17365 return;
17366 }
17367
17368 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17369 expression evaluator, and use LOC_COMPUTED only when necessary
17370 (i.e. when the value of a register or memory location is
17371 referenced, or a thread-local block, etc.). Then again, it might
17372 not be worthwhile. I'm assuming that it isn't unless performance
17373 or memory numbers show me otherwise. */
17374
f1e6e072 17375 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17376
f1e6e072 17377 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17378 cu->has_loclist = 1;
4c2df51b
DJ
17379}
17380
c906108c
SS
17381/* Given a pointer to a DWARF information entry, figure out if we need
17382 to make a symbol table entry for it, and if so, create a new entry
17383 and return a pointer to it.
17384 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17385 used the passed type.
17386 If SPACE is not NULL, use it to hold the new symbol. If it is
17387 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17388
17389static struct symbol *
34eaf542
TT
17390new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17391 struct symbol *space)
c906108c 17392{
e7c27a73 17393 struct objfile *objfile = cu->objfile;
c906108c 17394 struct symbol *sym = NULL;
15d034d0 17395 const char *name;
c906108c
SS
17396 struct attribute *attr = NULL;
17397 struct attribute *attr2 = NULL;
e142c38c 17398 CORE_ADDR baseaddr;
e37fd15a
SW
17399 struct pending **list_to_add = NULL;
17400
edb3359d 17401 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17402
17403 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17404
94af9270 17405 name = dwarf2_name (die, cu);
c906108c
SS
17406 if (name)
17407 {
94af9270 17408 const char *linkagename;
34eaf542 17409 int suppress_add = 0;
94af9270 17410
34eaf542
TT
17411 if (space)
17412 sym = space;
17413 else
e623cf5d 17414 sym = allocate_symbol (objfile);
c906108c 17415 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17416
17417 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17418 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17419 linkagename = dwarf2_physname (name, die, cu);
17420 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17421
f55ee35c
JK
17422 /* Fortran does not have mangling standard and the mangling does differ
17423 between gfortran, iFort etc. */
17424 if (cu->language == language_fortran
b250c185 17425 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17426 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17427 dwarf2_full_name (name, die, cu),
29df156d 17428 NULL);
f55ee35c 17429
c906108c 17430 /* Default assumptions.
c5aa993b 17431 Use the passed type or decode it from the die. */
176620f1 17432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17433 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17434 if (type != NULL)
17435 SYMBOL_TYPE (sym) = type;
17436 else
e7c27a73 17437 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17438 attr = dwarf2_attr (die,
17439 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17440 cu);
c906108c
SS
17441 if (attr)
17442 {
17443 SYMBOL_LINE (sym) = DW_UNSND (attr);
17444 }
cb1df416 17445
edb3359d
DJ
17446 attr = dwarf2_attr (die,
17447 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17448 cu);
cb1df416
DJ
17449 if (attr)
17450 {
17451 int file_index = DW_UNSND (attr);
9a619af0 17452
cb1df416
DJ
17453 if (cu->line_header == NULL
17454 || file_index > cu->line_header->num_file_names)
17455 complaint (&symfile_complaints,
17456 _("file index out of range"));
1c3d648d 17457 else if (file_index > 0)
cb1df416
DJ
17458 {
17459 struct file_entry *fe;
9a619af0 17460
cb1df416
DJ
17461 fe = &cu->line_header->file_names[file_index - 1];
17462 SYMBOL_SYMTAB (sym) = fe->symtab;
17463 }
17464 }
17465
c906108c
SS
17466 switch (die->tag)
17467 {
17468 case DW_TAG_label:
e142c38c 17469 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
17470 if (attr)
17471 {
17472 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17473 }
0f5238ed
TT
17474 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17475 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17476 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17477 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17478 break;
17479 case DW_TAG_subprogram:
17480 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17481 finish_block. */
f1e6e072 17482 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17483 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17484 if ((attr2 && (DW_UNSND (attr2) != 0))
17485 || cu->language == language_ada)
c906108c 17486 {
2cfa0c8d
JB
17487 /* Subprograms marked external are stored as a global symbol.
17488 Ada subprograms, whether marked external or not, are always
17489 stored as a global symbol, because we want to be able to
17490 access them globally. For instance, we want to be able
17491 to break on a nested subprogram without having to
17492 specify the context. */
e37fd15a 17493 list_to_add = &global_symbols;
c906108c
SS
17494 }
17495 else
17496 {
e37fd15a 17497 list_to_add = cu->list_in_scope;
c906108c
SS
17498 }
17499 break;
edb3359d
DJ
17500 case DW_TAG_inlined_subroutine:
17501 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17502 finish_block. */
f1e6e072 17503 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17504 SYMBOL_INLINED (sym) = 1;
481860b3 17505 list_to_add = cu->list_in_scope;
edb3359d 17506 break;
34eaf542
TT
17507 case DW_TAG_template_value_param:
17508 suppress_add = 1;
17509 /* Fall through. */
72929c62 17510 case DW_TAG_constant:
c906108c 17511 case DW_TAG_variable:
254e6b9e 17512 case DW_TAG_member:
0963b4bd
MS
17513 /* Compilation with minimal debug info may result in
17514 variables with missing type entries. Change the
17515 misleading `void' type to something sensible. */
c906108c 17516 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17517 SYMBOL_TYPE (sym)
46bf5051 17518 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17519
e142c38c 17520 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17521 /* In the case of DW_TAG_member, we should only be called for
17522 static const members. */
17523 if (die->tag == DW_TAG_member)
17524 {
3863f96c
DE
17525 /* dwarf2_add_field uses die_is_declaration,
17526 so we do the same. */
254e6b9e
DE
17527 gdb_assert (die_is_declaration (die, cu));
17528 gdb_assert (attr);
17529 }
c906108c
SS
17530 if (attr)
17531 {
e7c27a73 17532 dwarf2_const_value (attr, sym, cu);
e142c38c 17533 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17534 if (!suppress_add)
34eaf542
TT
17535 {
17536 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17537 list_to_add = &global_symbols;
34eaf542 17538 else
e37fd15a 17539 list_to_add = cu->list_in_scope;
34eaf542 17540 }
c906108c
SS
17541 break;
17542 }
e142c38c 17543 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17544 if (attr)
17545 {
e7c27a73 17546 var_decode_location (attr, sym, cu);
e142c38c 17547 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17548
17549 /* Fortran explicitly imports any global symbols to the local
17550 scope by DW_TAG_common_block. */
17551 if (cu->language == language_fortran && die->parent
17552 && die->parent->tag == DW_TAG_common_block)
17553 attr2 = NULL;
17554
caac4577
JG
17555 if (SYMBOL_CLASS (sym) == LOC_STATIC
17556 && SYMBOL_VALUE_ADDRESS (sym) == 0
17557 && !dwarf2_per_objfile->has_section_at_zero)
17558 {
17559 /* When a static variable is eliminated by the linker,
17560 the corresponding debug information is not stripped
17561 out, but the variable address is set to null;
17562 do not add such variables into symbol table. */
17563 }
17564 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17565 {
f55ee35c
JK
17566 /* Workaround gfortran PR debug/40040 - it uses
17567 DW_AT_location for variables in -fPIC libraries which may
17568 get overriden by other libraries/executable and get
17569 a different address. Resolve it by the minimal symbol
17570 which may come from inferior's executable using copy
17571 relocation. Make this workaround only for gfortran as for
17572 other compilers GDB cannot guess the minimal symbol
17573 Fortran mangling kind. */
17574 if (cu->language == language_fortran && die->parent
17575 && die->parent->tag == DW_TAG_module
17576 && cu->producer
17577 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17578 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17579
1c809c68
TT
17580 /* A variable with DW_AT_external is never static,
17581 but it may be block-scoped. */
17582 list_to_add = (cu->list_in_scope == &file_symbols
17583 ? &global_symbols : cu->list_in_scope);
1c809c68 17584 }
c906108c 17585 else
e37fd15a 17586 list_to_add = cu->list_in_scope;
c906108c
SS
17587 }
17588 else
17589 {
17590 /* We do not know the address of this symbol.
c5aa993b
JM
17591 If it is an external symbol and we have type information
17592 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17593 The address of the variable will then be determined from
17594 the minimal symbol table whenever the variable is
17595 referenced. */
e142c38c 17596 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17597
17598 /* Fortran explicitly imports any global symbols to the local
17599 scope by DW_TAG_common_block. */
17600 if (cu->language == language_fortran && die->parent
17601 && die->parent->tag == DW_TAG_common_block)
17602 {
17603 /* SYMBOL_CLASS doesn't matter here because
17604 read_common_block is going to reset it. */
17605 if (!suppress_add)
17606 list_to_add = cu->list_in_scope;
17607 }
17608 else if (attr2 && (DW_UNSND (attr2) != 0)
17609 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17610 {
0fe7935b
DJ
17611 /* A variable with DW_AT_external is never static, but it
17612 may be block-scoped. */
17613 list_to_add = (cu->list_in_scope == &file_symbols
17614 ? &global_symbols : cu->list_in_scope);
17615
f1e6e072 17616 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17617 }
442ddf59
JK
17618 else if (!die_is_declaration (die, cu))
17619 {
17620 /* Use the default LOC_OPTIMIZED_OUT class. */
17621 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17622 if (!suppress_add)
17623 list_to_add = cu->list_in_scope;
442ddf59 17624 }
c906108c
SS
17625 }
17626 break;
17627 case DW_TAG_formal_parameter:
edb3359d
DJ
17628 /* If we are inside a function, mark this as an argument. If
17629 not, we might be looking at an argument to an inlined function
17630 when we do not have enough information to show inlined frames;
17631 pretend it's a local variable in that case so that the user can
17632 still see it. */
17633 if (context_stack_depth > 0
17634 && context_stack[context_stack_depth - 1].name != NULL)
17635 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17636 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17637 if (attr)
17638 {
e7c27a73 17639 var_decode_location (attr, sym, cu);
c906108c 17640 }
e142c38c 17641 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17642 if (attr)
17643 {
e7c27a73 17644 dwarf2_const_value (attr, sym, cu);
c906108c 17645 }
f346a30d 17646
e37fd15a 17647 list_to_add = cu->list_in_scope;
c906108c
SS
17648 break;
17649 case DW_TAG_unspecified_parameters:
17650 /* From varargs functions; gdb doesn't seem to have any
17651 interest in this information, so just ignore it for now.
17652 (FIXME?) */
17653 break;
34eaf542
TT
17654 case DW_TAG_template_type_param:
17655 suppress_add = 1;
17656 /* Fall through. */
c906108c 17657 case DW_TAG_class_type:
680b30c7 17658 case DW_TAG_interface_type:
c906108c
SS
17659 case DW_TAG_structure_type:
17660 case DW_TAG_union_type:
72019c9c 17661 case DW_TAG_set_type:
c906108c 17662 case DW_TAG_enumeration_type:
f1e6e072 17663 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17664 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17665
63d06c5c 17666 {
987504bb 17667 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17668 really ever be static objects: otherwise, if you try
17669 to, say, break of a class's method and you're in a file
17670 which doesn't mention that class, it won't work unless
17671 the check for all static symbols in lookup_symbol_aux
17672 saves you. See the OtherFileClass tests in
17673 gdb.c++/namespace.exp. */
17674
e37fd15a 17675 if (!suppress_add)
34eaf542 17676 {
34eaf542
TT
17677 list_to_add = (cu->list_in_scope == &file_symbols
17678 && (cu->language == language_cplus
17679 || cu->language == language_java)
17680 ? &global_symbols : cu->list_in_scope);
63d06c5c 17681
64382290
TT
17682 /* The semantics of C++ state that "struct foo {
17683 ... }" also defines a typedef for "foo". A Java
17684 class declaration also defines a typedef for the
17685 class. */
17686 if (cu->language == language_cplus
17687 || cu->language == language_java
17688 || cu->language == language_ada)
17689 {
17690 /* The symbol's name is already allocated along
17691 with this objfile, so we don't need to
17692 duplicate it for the type. */
17693 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17694 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17695 }
63d06c5c
DC
17696 }
17697 }
c906108c
SS
17698 break;
17699 case DW_TAG_typedef:
f1e6e072 17700 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 17701 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17702 list_to_add = cu->list_in_scope;
63d06c5c 17703 break;
c906108c 17704 case DW_TAG_base_type:
a02abb62 17705 case DW_TAG_subrange_type:
f1e6e072 17706 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17707 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17708 list_to_add = cu->list_in_scope;
c906108c
SS
17709 break;
17710 case DW_TAG_enumerator:
e142c38c 17711 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17712 if (attr)
17713 {
e7c27a73 17714 dwarf2_const_value (attr, sym, cu);
c906108c 17715 }
63d06c5c
DC
17716 {
17717 /* NOTE: carlton/2003-11-10: See comment above in the
17718 DW_TAG_class_type, etc. block. */
17719
e142c38c 17720 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
17721 && (cu->language == language_cplus
17722 || cu->language == language_java)
e142c38c 17723 ? &global_symbols : cu->list_in_scope);
63d06c5c 17724 }
c906108c 17725 break;
74921315 17726 case DW_TAG_imported_declaration:
5c4e30ca 17727 case DW_TAG_namespace:
f1e6e072 17728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 17729 list_to_add = &global_symbols;
5c4e30ca 17730 break;
530e8392
KB
17731 case DW_TAG_module:
17732 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17733 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17734 list_to_add = &global_symbols;
17735 break;
4357ac6c 17736 case DW_TAG_common_block:
f1e6e072 17737 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
17738 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17739 add_symbol_to_list (sym, cu->list_in_scope);
17740 break;
c906108c
SS
17741 default:
17742 /* Not a tag we recognize. Hopefully we aren't processing
17743 trash data, but since we must specifically ignore things
17744 we don't recognize, there is nothing else we should do at
0963b4bd 17745 this point. */
e2e0b3e5 17746 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 17747 dwarf_tag_name (die->tag));
c906108c
SS
17748 break;
17749 }
df8a16a1 17750
e37fd15a
SW
17751 if (suppress_add)
17752 {
17753 sym->hash_next = objfile->template_symbols;
17754 objfile->template_symbols = sym;
17755 list_to_add = NULL;
17756 }
17757
17758 if (list_to_add != NULL)
17759 add_symbol_to_list (sym, list_to_add);
17760
df8a16a1
DJ
17761 /* For the benefit of old versions of GCC, check for anonymous
17762 namespaces based on the demangled name. */
4d4ec4e5 17763 if (!cu->processing_has_namespace_info
94af9270 17764 && cu->language == language_cplus)
a10964d1 17765 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
17766 }
17767 return (sym);
17768}
17769
34eaf542
TT
17770/* A wrapper for new_symbol_full that always allocates a new symbol. */
17771
17772static struct symbol *
17773new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17774{
17775 return new_symbol_full (die, type, cu, NULL);
17776}
17777
98bfdba5
PA
17778/* Given an attr with a DW_FORM_dataN value in host byte order,
17779 zero-extend it as appropriate for the symbol's type. The DWARF
17780 standard (v4) is not entirely clear about the meaning of using
17781 DW_FORM_dataN for a constant with a signed type, where the type is
17782 wider than the data. The conclusion of a discussion on the DWARF
17783 list was that this is unspecified. We choose to always zero-extend
17784 because that is the interpretation long in use by GCC. */
c906108c 17785
98bfdba5 17786static gdb_byte *
ff39bb5e 17787dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 17788 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 17789{
e7c27a73 17790 struct objfile *objfile = cu->objfile;
e17a4113
UW
17791 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17792 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
17793 LONGEST l = DW_UNSND (attr);
17794
17795 if (bits < sizeof (*value) * 8)
17796 {
17797 l &= ((LONGEST) 1 << bits) - 1;
17798 *value = l;
17799 }
17800 else if (bits == sizeof (*value) * 8)
17801 *value = l;
17802 else
17803 {
17804 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17805 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17806 return bytes;
17807 }
17808
17809 return NULL;
17810}
17811
17812/* Read a constant value from an attribute. Either set *VALUE, or if
17813 the value does not fit in *VALUE, set *BYTES - either already
17814 allocated on the objfile obstack, or newly allocated on OBSTACK,
17815 or, set *BATON, if we translated the constant to a location
17816 expression. */
17817
17818static void
ff39bb5e 17819dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
17820 const char *name, struct obstack *obstack,
17821 struct dwarf2_cu *cu,
d521ce57 17822 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
17823 struct dwarf2_locexpr_baton **baton)
17824{
17825 struct objfile *objfile = cu->objfile;
17826 struct comp_unit_head *cu_header = &cu->header;
c906108c 17827 struct dwarf_block *blk;
98bfdba5
PA
17828 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17829 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17830
17831 *value = 0;
17832 *bytes = NULL;
17833 *baton = NULL;
c906108c
SS
17834
17835 switch (attr->form)
17836 {
17837 case DW_FORM_addr:
3019eac3 17838 case DW_FORM_GNU_addr_index:
ac56253d 17839 {
ac56253d
TT
17840 gdb_byte *data;
17841
98bfdba5
PA
17842 if (TYPE_LENGTH (type) != cu_header->addr_size)
17843 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 17844 cu_header->addr_size,
98bfdba5 17845 TYPE_LENGTH (type));
ac56253d
TT
17846 /* Symbols of this form are reasonably rare, so we just
17847 piggyback on the existing location code rather than writing
17848 a new implementation of symbol_computed_ops. */
7919a973 17849 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
17850 (*baton)->per_cu = cu->per_cu;
17851 gdb_assert ((*baton)->per_cu);
ac56253d 17852
98bfdba5 17853 (*baton)->size = 2 + cu_header->addr_size;
7919a973 17854 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 17855 (*baton)->data = data;
ac56253d
TT
17856
17857 data[0] = DW_OP_addr;
17858 store_unsigned_integer (&data[1], cu_header->addr_size,
17859 byte_order, DW_ADDR (attr));
17860 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 17861 }
c906108c 17862 break;
4ac36638 17863 case DW_FORM_string:
93b5768b 17864 case DW_FORM_strp:
3019eac3 17865 case DW_FORM_GNU_str_index:
36586728 17866 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
17867 /* DW_STRING is already allocated on the objfile obstack, point
17868 directly to it. */
d521ce57 17869 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 17870 break;
c906108c
SS
17871 case DW_FORM_block1:
17872 case DW_FORM_block2:
17873 case DW_FORM_block4:
17874 case DW_FORM_block:
2dc7f7b3 17875 case DW_FORM_exprloc:
c906108c 17876 blk = DW_BLOCK (attr);
98bfdba5
PA
17877 if (TYPE_LENGTH (type) != blk->size)
17878 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17879 TYPE_LENGTH (type));
17880 *bytes = blk->data;
c906108c 17881 break;
2df3850c
JM
17882
17883 /* The DW_AT_const_value attributes are supposed to carry the
17884 symbol's value "represented as it would be on the target
17885 architecture." By the time we get here, it's already been
17886 converted to host endianness, so we just need to sign- or
17887 zero-extend it as appropriate. */
17888 case DW_FORM_data1:
3aef2284 17889 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 17890 break;
c906108c 17891 case DW_FORM_data2:
3aef2284 17892 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 17893 break;
c906108c 17894 case DW_FORM_data4:
3aef2284 17895 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 17896 break;
c906108c 17897 case DW_FORM_data8:
3aef2284 17898 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
17899 break;
17900
c906108c 17901 case DW_FORM_sdata:
98bfdba5 17902 *value = DW_SND (attr);
2df3850c
JM
17903 break;
17904
c906108c 17905 case DW_FORM_udata:
98bfdba5 17906 *value = DW_UNSND (attr);
c906108c 17907 break;
2df3850c 17908
c906108c 17909 default:
4d3c2250 17910 complaint (&symfile_complaints,
e2e0b3e5 17911 _("unsupported const value attribute form: '%s'"),
4d3c2250 17912 dwarf_form_name (attr->form));
98bfdba5 17913 *value = 0;
c906108c
SS
17914 break;
17915 }
17916}
17917
2df3850c 17918
98bfdba5
PA
17919/* Copy constant value from an attribute to a symbol. */
17920
2df3850c 17921static void
ff39bb5e 17922dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 17923 struct dwarf2_cu *cu)
2df3850c 17924{
98bfdba5
PA
17925 struct objfile *objfile = cu->objfile;
17926 struct comp_unit_head *cu_header = &cu->header;
12df843f 17927 LONGEST value;
d521ce57 17928 const gdb_byte *bytes;
98bfdba5 17929 struct dwarf2_locexpr_baton *baton;
2df3850c 17930
98bfdba5
PA
17931 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17932 SYMBOL_PRINT_NAME (sym),
17933 &objfile->objfile_obstack, cu,
17934 &value, &bytes, &baton);
2df3850c 17935
98bfdba5
PA
17936 if (baton != NULL)
17937 {
98bfdba5 17938 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 17939 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
17940 }
17941 else if (bytes != NULL)
17942 {
17943 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 17944 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
17945 }
17946 else
17947 {
17948 SYMBOL_VALUE (sym) = value;
f1e6e072 17949 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 17950 }
2df3850c
JM
17951}
17952
c906108c
SS
17953/* Return the type of the die in question using its DW_AT_type attribute. */
17954
17955static struct type *
e7c27a73 17956die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17957{
c906108c 17958 struct attribute *type_attr;
c906108c 17959
e142c38c 17960 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
17961 if (!type_attr)
17962 {
17963 /* A missing DW_AT_type represents a void type. */
46bf5051 17964 return objfile_type (cu->objfile)->builtin_void;
c906108c 17965 }
348e048f 17966
673bfd45 17967 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17968}
17969
b4ba55a1
JB
17970/* True iff CU's producer generates GNAT Ada auxiliary information
17971 that allows to find parallel types through that information instead
17972 of having to do expensive parallel lookups by type name. */
17973
17974static int
17975need_gnat_info (struct dwarf2_cu *cu)
17976{
17977 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17978 of GNAT produces this auxiliary information, without any indication
17979 that it is produced. Part of enhancing the FSF version of GNAT
17980 to produce that information will be to put in place an indicator
17981 that we can use in order to determine whether the descriptive type
17982 info is available or not. One suggestion that has been made is
17983 to use a new attribute, attached to the CU die. For now, assume
17984 that the descriptive type info is not available. */
17985 return 0;
17986}
17987
b4ba55a1
JB
17988/* Return the auxiliary type of the die in question using its
17989 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17990 attribute is not present. */
17991
17992static struct type *
17993die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17994{
b4ba55a1 17995 struct attribute *type_attr;
b4ba55a1
JB
17996
17997 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17998 if (!type_attr)
17999 return NULL;
18000
673bfd45 18001 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18002}
18003
18004/* If DIE has a descriptive_type attribute, then set the TYPE's
18005 descriptive type accordingly. */
18006
18007static void
18008set_descriptive_type (struct type *type, struct die_info *die,
18009 struct dwarf2_cu *cu)
18010{
18011 struct type *descriptive_type = die_descriptive_type (die, cu);
18012
18013 if (descriptive_type)
18014 {
18015 ALLOCATE_GNAT_AUX_TYPE (type);
18016 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18017 }
18018}
18019
c906108c
SS
18020/* Return the containing type of the die in question using its
18021 DW_AT_containing_type attribute. */
18022
18023static struct type *
e7c27a73 18024die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18025{
c906108c 18026 struct attribute *type_attr;
c906108c 18027
e142c38c 18028 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18029 if (!type_attr)
18030 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18031 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18032
673bfd45 18033 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18034}
18035
ac9ec31b
DE
18036/* Return an error marker type to use for the ill formed type in DIE/CU. */
18037
18038static struct type *
18039build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18040{
18041 struct objfile *objfile = dwarf2_per_objfile->objfile;
18042 char *message, *saved;
18043
18044 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18045 objfile_name (objfile),
ac9ec31b
DE
18046 cu->header.offset.sect_off,
18047 die->offset.sect_off);
18048 saved = obstack_copy0 (&objfile->objfile_obstack,
18049 message, strlen (message));
18050 xfree (message);
18051
18052 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18053}
18054
673bfd45 18055/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18056 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18057 DW_AT_containing_type.
673bfd45
DE
18058 If there is no type substitute an error marker. */
18059
c906108c 18060static struct type *
ff39bb5e 18061lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18062 struct dwarf2_cu *cu)
c906108c 18063{
bb5ed363 18064 struct objfile *objfile = cu->objfile;
f792889a
DJ
18065 struct type *this_type;
18066
ac9ec31b
DE
18067 gdb_assert (attr->name == DW_AT_type
18068 || attr->name == DW_AT_GNAT_descriptive_type
18069 || attr->name == DW_AT_containing_type);
18070
673bfd45
DE
18071 /* First see if we have it cached. */
18072
36586728
TT
18073 if (attr->form == DW_FORM_GNU_ref_alt)
18074 {
18075 struct dwarf2_per_cu_data *per_cu;
18076 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18077
18078 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18079 this_type = get_die_type_at_offset (offset, per_cu);
18080 }
7771576e 18081 else if (attr_form_is_ref (attr))
673bfd45 18082 {
b64f50a1 18083 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18084
18085 this_type = get_die_type_at_offset (offset, cu->per_cu);
18086 }
55f1336d 18087 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18088 {
ac9ec31b 18089 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18090
ac9ec31b 18091 return get_signatured_type (die, signature, cu);
673bfd45
DE
18092 }
18093 else
18094 {
ac9ec31b
DE
18095 complaint (&symfile_complaints,
18096 _("Dwarf Error: Bad type attribute %s in DIE"
18097 " at 0x%x [in module %s]"),
18098 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18099 objfile_name (objfile));
ac9ec31b 18100 return build_error_marker_type (cu, die);
673bfd45
DE
18101 }
18102
18103 /* If not cached we need to read it in. */
18104
18105 if (this_type == NULL)
18106 {
ac9ec31b 18107 struct die_info *type_die = NULL;
673bfd45
DE
18108 struct dwarf2_cu *type_cu = cu;
18109
7771576e 18110 if (attr_form_is_ref (attr))
ac9ec31b
DE
18111 type_die = follow_die_ref (die, attr, &type_cu);
18112 if (type_die == NULL)
18113 return build_error_marker_type (cu, die);
18114 /* If we find the type now, it's probably because the type came
3019eac3
DE
18115 from an inter-CU reference and the type's CU got expanded before
18116 ours. */
ac9ec31b 18117 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18118 }
18119
18120 /* If we still don't have a type use an error marker. */
18121
18122 if (this_type == NULL)
ac9ec31b 18123 return build_error_marker_type (cu, die);
673bfd45 18124
f792889a 18125 return this_type;
c906108c
SS
18126}
18127
673bfd45
DE
18128/* Return the type in DIE, CU.
18129 Returns NULL for invalid types.
18130
02142a6c 18131 This first does a lookup in die_type_hash,
673bfd45
DE
18132 and only reads the die in if necessary.
18133
18134 NOTE: This can be called when reading in partial or full symbols. */
18135
f792889a 18136static struct type *
e7c27a73 18137read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18138{
f792889a
DJ
18139 struct type *this_type;
18140
18141 this_type = get_die_type (die, cu);
18142 if (this_type)
18143 return this_type;
18144
673bfd45
DE
18145 return read_type_die_1 (die, cu);
18146}
18147
18148/* Read the type in DIE, CU.
18149 Returns NULL for invalid types. */
18150
18151static struct type *
18152read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18153{
18154 struct type *this_type = NULL;
18155
c906108c
SS
18156 switch (die->tag)
18157 {
18158 case DW_TAG_class_type:
680b30c7 18159 case DW_TAG_interface_type:
c906108c
SS
18160 case DW_TAG_structure_type:
18161 case DW_TAG_union_type:
f792889a 18162 this_type = read_structure_type (die, cu);
c906108c
SS
18163 break;
18164 case DW_TAG_enumeration_type:
f792889a 18165 this_type = read_enumeration_type (die, cu);
c906108c
SS
18166 break;
18167 case DW_TAG_subprogram:
18168 case DW_TAG_subroutine_type:
edb3359d 18169 case DW_TAG_inlined_subroutine:
f792889a 18170 this_type = read_subroutine_type (die, cu);
c906108c
SS
18171 break;
18172 case DW_TAG_array_type:
f792889a 18173 this_type = read_array_type (die, cu);
c906108c 18174 break;
72019c9c 18175 case DW_TAG_set_type:
f792889a 18176 this_type = read_set_type (die, cu);
72019c9c 18177 break;
c906108c 18178 case DW_TAG_pointer_type:
f792889a 18179 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18180 break;
18181 case DW_TAG_ptr_to_member_type:
f792889a 18182 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18183 break;
18184 case DW_TAG_reference_type:
f792889a 18185 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18186 break;
18187 case DW_TAG_const_type:
f792889a 18188 this_type = read_tag_const_type (die, cu);
c906108c
SS
18189 break;
18190 case DW_TAG_volatile_type:
f792889a 18191 this_type = read_tag_volatile_type (die, cu);
c906108c 18192 break;
06d66ee9
TT
18193 case DW_TAG_restrict_type:
18194 this_type = read_tag_restrict_type (die, cu);
18195 break;
c906108c 18196 case DW_TAG_string_type:
f792889a 18197 this_type = read_tag_string_type (die, cu);
c906108c
SS
18198 break;
18199 case DW_TAG_typedef:
f792889a 18200 this_type = read_typedef (die, cu);
c906108c 18201 break;
a02abb62 18202 case DW_TAG_subrange_type:
f792889a 18203 this_type = read_subrange_type (die, cu);
a02abb62 18204 break;
c906108c 18205 case DW_TAG_base_type:
f792889a 18206 this_type = read_base_type (die, cu);
c906108c 18207 break;
81a17f79 18208 case DW_TAG_unspecified_type:
f792889a 18209 this_type = read_unspecified_type (die, cu);
81a17f79 18210 break;
0114d602
DJ
18211 case DW_TAG_namespace:
18212 this_type = read_namespace_type (die, cu);
18213 break;
f55ee35c
JK
18214 case DW_TAG_module:
18215 this_type = read_module_type (die, cu);
18216 break;
c906108c 18217 default:
3e43a32a
MS
18218 complaint (&symfile_complaints,
18219 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18220 dwarf_tag_name (die->tag));
c906108c
SS
18221 break;
18222 }
63d06c5c 18223
f792889a 18224 return this_type;
63d06c5c
DC
18225}
18226
abc72ce4
DE
18227/* See if we can figure out if the class lives in a namespace. We do
18228 this by looking for a member function; its demangled name will
18229 contain namespace info, if there is any.
18230 Return the computed name or NULL.
18231 Space for the result is allocated on the objfile's obstack.
18232 This is the full-die version of guess_partial_die_structure_name.
18233 In this case we know DIE has no useful parent. */
18234
18235static char *
18236guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18237{
18238 struct die_info *spec_die;
18239 struct dwarf2_cu *spec_cu;
18240 struct die_info *child;
18241
18242 spec_cu = cu;
18243 spec_die = die_specification (die, &spec_cu);
18244 if (spec_die != NULL)
18245 {
18246 die = spec_die;
18247 cu = spec_cu;
18248 }
18249
18250 for (child = die->child;
18251 child != NULL;
18252 child = child->sibling)
18253 {
18254 if (child->tag == DW_TAG_subprogram)
18255 {
18256 struct attribute *attr;
18257
18258 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18259 if (attr == NULL)
18260 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18261 if (attr != NULL)
18262 {
18263 char *actual_name
18264 = language_class_name_from_physname (cu->language_defn,
18265 DW_STRING (attr));
18266 char *name = NULL;
18267
18268 if (actual_name != NULL)
18269 {
15d034d0 18270 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18271
18272 if (die_name != NULL
18273 && strcmp (die_name, actual_name) != 0)
18274 {
18275 /* Strip off the class name from the full name.
18276 We want the prefix. */
18277 int die_name_len = strlen (die_name);
18278 int actual_name_len = strlen (actual_name);
18279
18280 /* Test for '::' as a sanity check. */
18281 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18282 && actual_name[actual_name_len
18283 - die_name_len - 1] == ':')
abc72ce4 18284 name =
10f0c4bb
TT
18285 obstack_copy0 (&cu->objfile->objfile_obstack,
18286 actual_name,
18287 actual_name_len - die_name_len - 2);
abc72ce4
DE
18288 }
18289 }
18290 xfree (actual_name);
18291 return name;
18292 }
18293 }
18294 }
18295
18296 return NULL;
18297}
18298
96408a79
SA
18299/* GCC might emit a nameless typedef that has a linkage name. Determine the
18300 prefix part in such case. See
18301 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18302
18303static char *
18304anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18305{
18306 struct attribute *attr;
18307 char *base;
18308
18309 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18310 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18311 return NULL;
18312
18313 attr = dwarf2_attr (die, DW_AT_name, cu);
18314 if (attr != NULL && DW_STRING (attr) != NULL)
18315 return NULL;
18316
18317 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18318 if (attr == NULL)
18319 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18320 if (attr == NULL || DW_STRING (attr) == NULL)
18321 return NULL;
18322
18323 /* dwarf2_name had to be already called. */
18324 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18325
18326 /* Strip the base name, keep any leading namespaces/classes. */
18327 base = strrchr (DW_STRING (attr), ':');
18328 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18329 return "";
18330
10f0c4bb
TT
18331 return obstack_copy0 (&cu->objfile->objfile_obstack,
18332 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18333}
18334
fdde2d81 18335/* Return the name of the namespace/class that DIE is defined within,
0114d602 18336 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18337
0114d602
DJ
18338 For example, if we're within the method foo() in the following
18339 code:
18340
18341 namespace N {
18342 class C {
18343 void foo () {
18344 }
18345 };
18346 }
18347
18348 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18349
0d5cff50 18350static const char *
e142c38c 18351determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18352{
0114d602
DJ
18353 struct die_info *parent, *spec_die;
18354 struct dwarf2_cu *spec_cu;
18355 struct type *parent_type;
96408a79 18356 char *retval;
63d06c5c 18357
f55ee35c
JK
18358 if (cu->language != language_cplus && cu->language != language_java
18359 && cu->language != language_fortran)
0114d602
DJ
18360 return "";
18361
96408a79
SA
18362 retval = anonymous_struct_prefix (die, cu);
18363 if (retval)
18364 return retval;
18365
0114d602
DJ
18366 /* We have to be careful in the presence of DW_AT_specification.
18367 For example, with GCC 3.4, given the code
18368
18369 namespace N {
18370 void foo() {
18371 // Definition of N::foo.
18372 }
18373 }
18374
18375 then we'll have a tree of DIEs like this:
18376
18377 1: DW_TAG_compile_unit
18378 2: DW_TAG_namespace // N
18379 3: DW_TAG_subprogram // declaration of N::foo
18380 4: DW_TAG_subprogram // definition of N::foo
18381 DW_AT_specification // refers to die #3
18382
18383 Thus, when processing die #4, we have to pretend that we're in
18384 the context of its DW_AT_specification, namely the contex of die
18385 #3. */
18386 spec_cu = cu;
18387 spec_die = die_specification (die, &spec_cu);
18388 if (spec_die == NULL)
18389 parent = die->parent;
18390 else
63d06c5c 18391 {
0114d602
DJ
18392 parent = spec_die->parent;
18393 cu = spec_cu;
63d06c5c 18394 }
0114d602
DJ
18395
18396 if (parent == NULL)
18397 return "";
98bfdba5
PA
18398 else if (parent->building_fullname)
18399 {
18400 const char *name;
18401 const char *parent_name;
18402
18403 /* It has been seen on RealView 2.2 built binaries,
18404 DW_TAG_template_type_param types actually _defined_ as
18405 children of the parent class:
18406
18407 enum E {};
18408 template class <class Enum> Class{};
18409 Class<enum E> class_e;
18410
18411 1: DW_TAG_class_type (Class)
18412 2: DW_TAG_enumeration_type (E)
18413 3: DW_TAG_enumerator (enum1:0)
18414 3: DW_TAG_enumerator (enum2:1)
18415 ...
18416 2: DW_TAG_template_type_param
18417 DW_AT_type DW_FORM_ref_udata (E)
18418
18419 Besides being broken debug info, it can put GDB into an
18420 infinite loop. Consider:
18421
18422 When we're building the full name for Class<E>, we'll start
18423 at Class, and go look over its template type parameters,
18424 finding E. We'll then try to build the full name of E, and
18425 reach here. We're now trying to build the full name of E,
18426 and look over the parent DIE for containing scope. In the
18427 broken case, if we followed the parent DIE of E, we'd again
18428 find Class, and once again go look at its template type
18429 arguments, etc., etc. Simply don't consider such parent die
18430 as source-level parent of this die (it can't be, the language
18431 doesn't allow it), and break the loop here. */
18432 name = dwarf2_name (die, cu);
18433 parent_name = dwarf2_name (parent, cu);
18434 complaint (&symfile_complaints,
18435 _("template param type '%s' defined within parent '%s'"),
18436 name ? name : "<unknown>",
18437 parent_name ? parent_name : "<unknown>");
18438 return "";
18439 }
63d06c5c 18440 else
0114d602
DJ
18441 switch (parent->tag)
18442 {
63d06c5c 18443 case DW_TAG_namespace:
0114d602 18444 parent_type = read_type_die (parent, cu);
acebe513
UW
18445 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18446 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18447 Work around this problem here. */
18448 if (cu->language == language_cplus
18449 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18450 return "";
0114d602
DJ
18451 /* We give a name to even anonymous namespaces. */
18452 return TYPE_TAG_NAME (parent_type);
63d06c5c 18453 case DW_TAG_class_type:
680b30c7 18454 case DW_TAG_interface_type:
63d06c5c 18455 case DW_TAG_structure_type:
0114d602 18456 case DW_TAG_union_type:
f55ee35c 18457 case DW_TAG_module:
0114d602
DJ
18458 parent_type = read_type_die (parent, cu);
18459 if (TYPE_TAG_NAME (parent_type) != NULL)
18460 return TYPE_TAG_NAME (parent_type);
18461 else
18462 /* An anonymous structure is only allowed non-static data
18463 members; no typedefs, no member functions, et cetera.
18464 So it does not need a prefix. */
18465 return "";
abc72ce4 18466 case DW_TAG_compile_unit:
95554aad 18467 case DW_TAG_partial_unit:
abc72ce4
DE
18468 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18469 if (cu->language == language_cplus
8b70b953 18470 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18471 && die->child != NULL
18472 && (die->tag == DW_TAG_class_type
18473 || die->tag == DW_TAG_structure_type
18474 || die->tag == DW_TAG_union_type))
18475 {
18476 char *name = guess_full_die_structure_name (die, cu);
18477 if (name != NULL)
18478 return name;
18479 }
18480 return "";
63d06c5c 18481 default:
8176b9b8 18482 return determine_prefix (parent, cu);
63d06c5c 18483 }
63d06c5c
DC
18484}
18485
3e43a32a
MS
18486/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18487 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18488 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18489 an obconcat, otherwise allocate storage for the result. The CU argument is
18490 used to determine the language and hence, the appropriate separator. */
987504bb 18491
f55ee35c 18492#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18493
18494static char *
f55ee35c
JK
18495typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18496 int physname, struct dwarf2_cu *cu)
63d06c5c 18497{
f55ee35c 18498 const char *lead = "";
5c315b68 18499 const char *sep;
63d06c5c 18500
3e43a32a
MS
18501 if (suffix == NULL || suffix[0] == '\0'
18502 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18503 sep = "";
18504 else if (cu->language == language_java)
18505 sep = ".";
f55ee35c
JK
18506 else if (cu->language == language_fortran && physname)
18507 {
18508 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18509 DW_AT_MIPS_linkage_name is preferred and used instead. */
18510
18511 lead = "__";
18512 sep = "_MOD_";
18513 }
987504bb
JJ
18514 else
18515 sep = "::";
63d06c5c 18516
6dd47d34
DE
18517 if (prefix == NULL)
18518 prefix = "";
18519 if (suffix == NULL)
18520 suffix = "";
18521
987504bb
JJ
18522 if (obs == NULL)
18523 {
3e43a32a
MS
18524 char *retval
18525 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18526
f55ee35c
JK
18527 strcpy (retval, lead);
18528 strcat (retval, prefix);
6dd47d34
DE
18529 strcat (retval, sep);
18530 strcat (retval, suffix);
63d06c5c
DC
18531 return retval;
18532 }
987504bb
JJ
18533 else
18534 {
18535 /* We have an obstack. */
f55ee35c 18536 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18537 }
63d06c5c
DC
18538}
18539
c906108c
SS
18540/* Return sibling of die, NULL if no sibling. */
18541
f9aca02d 18542static struct die_info *
fba45db2 18543sibling_die (struct die_info *die)
c906108c 18544{
639d11d3 18545 return die->sibling;
c906108c
SS
18546}
18547
71c25dea
TT
18548/* Get name of a die, return NULL if not found. */
18549
15d034d0
TT
18550static const char *
18551dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18552 struct obstack *obstack)
18553{
18554 if (name && cu->language == language_cplus)
18555 {
18556 char *canon_name = cp_canonicalize_string (name);
18557
18558 if (canon_name != NULL)
18559 {
18560 if (strcmp (canon_name, name) != 0)
10f0c4bb 18561 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18562 xfree (canon_name);
18563 }
18564 }
18565
18566 return name;
c906108c
SS
18567}
18568
9219021c
DC
18569/* Get name of a die, return NULL if not found. */
18570
15d034d0 18571static const char *
e142c38c 18572dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18573{
18574 struct attribute *attr;
18575
e142c38c 18576 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18577 if ((!attr || !DW_STRING (attr))
18578 && die->tag != DW_TAG_class_type
18579 && die->tag != DW_TAG_interface_type
18580 && die->tag != DW_TAG_structure_type
18581 && die->tag != DW_TAG_union_type)
71c25dea
TT
18582 return NULL;
18583
18584 switch (die->tag)
18585 {
18586 case DW_TAG_compile_unit:
95554aad 18587 case DW_TAG_partial_unit:
71c25dea
TT
18588 /* Compilation units have a DW_AT_name that is a filename, not
18589 a source language identifier. */
18590 case DW_TAG_enumeration_type:
18591 case DW_TAG_enumerator:
18592 /* These tags always have simple identifiers already; no need
18593 to canonicalize them. */
18594 return DW_STRING (attr);
907af001 18595
418835cc
KS
18596 case DW_TAG_subprogram:
18597 /* Java constructors will all be named "<init>", so return
18598 the class name when we see this special case. */
18599 if (cu->language == language_java
18600 && DW_STRING (attr) != NULL
18601 && strcmp (DW_STRING (attr), "<init>") == 0)
18602 {
18603 struct dwarf2_cu *spec_cu = cu;
18604 struct die_info *spec_die;
18605
18606 /* GCJ will output '<init>' for Java constructor names.
18607 For this special case, return the name of the parent class. */
18608
18609 /* GCJ may output suprogram DIEs with AT_specification set.
18610 If so, use the name of the specified DIE. */
18611 spec_die = die_specification (die, &spec_cu);
18612 if (spec_die != NULL)
18613 return dwarf2_name (spec_die, spec_cu);
18614
18615 do
18616 {
18617 die = die->parent;
18618 if (die->tag == DW_TAG_class_type)
18619 return dwarf2_name (die, cu);
18620 }
95554aad
TT
18621 while (die->tag != DW_TAG_compile_unit
18622 && die->tag != DW_TAG_partial_unit);
418835cc 18623 }
907af001
UW
18624 break;
18625
18626 case DW_TAG_class_type:
18627 case DW_TAG_interface_type:
18628 case DW_TAG_structure_type:
18629 case DW_TAG_union_type:
18630 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18631 structures or unions. These were of the form "._%d" in GCC 4.1,
18632 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18633 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18634 if (attr && DW_STRING (attr)
18635 && (strncmp (DW_STRING (attr), "._", 2) == 0
18636 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18637 return NULL;
53832f31
TT
18638
18639 /* GCC might emit a nameless typedef that has a linkage name. See
18640 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18641 if (!attr || DW_STRING (attr) == NULL)
18642 {
df5c6c50 18643 char *demangled = NULL;
53832f31
TT
18644
18645 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18646 if (attr == NULL)
18647 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18648
18649 if (attr == NULL || DW_STRING (attr) == NULL)
18650 return NULL;
18651
df5c6c50
JK
18652 /* Avoid demangling DW_STRING (attr) the second time on a second
18653 call for the same DIE. */
18654 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18655 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18656
18657 if (demangled)
18658 {
96408a79
SA
18659 char *base;
18660
53832f31 18661 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
18662 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18663 demangled, strlen (demangled));
53832f31
TT
18664 DW_STRING_IS_CANONICAL (attr) = 1;
18665 xfree (demangled);
96408a79
SA
18666
18667 /* Strip any leading namespaces/classes, keep only the base name.
18668 DW_AT_name for named DIEs does not contain the prefixes. */
18669 base = strrchr (DW_STRING (attr), ':');
18670 if (base && base > DW_STRING (attr) && base[-1] == ':')
18671 return &base[1];
18672 else
18673 return DW_STRING (attr);
53832f31
TT
18674 }
18675 }
907af001
UW
18676 break;
18677
71c25dea 18678 default:
907af001
UW
18679 break;
18680 }
18681
18682 if (!DW_STRING_IS_CANONICAL (attr))
18683 {
18684 DW_STRING (attr)
18685 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18686 &cu->objfile->objfile_obstack);
18687 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 18688 }
907af001 18689 return DW_STRING (attr);
9219021c
DC
18690}
18691
18692/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
18693 is none. *EXT_CU is the CU containing DIE on input, and the CU
18694 containing the return value on output. */
9219021c
DC
18695
18696static struct die_info *
f2f0e013 18697dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
18698{
18699 struct attribute *attr;
9219021c 18700
f2f0e013 18701 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
18702 if (attr == NULL)
18703 return NULL;
18704
f2f0e013 18705 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
18706}
18707
c906108c
SS
18708/* Convert a DIE tag into its string name. */
18709
f39c6ffd 18710static const char *
aa1ee363 18711dwarf_tag_name (unsigned tag)
c906108c 18712{
f39c6ffd
TT
18713 const char *name = get_DW_TAG_name (tag);
18714
18715 if (name == NULL)
18716 return "DW_TAG_<unknown>";
18717
18718 return name;
c906108c
SS
18719}
18720
18721/* Convert a DWARF attribute code into its string name. */
18722
f39c6ffd 18723static const char *
aa1ee363 18724dwarf_attr_name (unsigned attr)
c906108c 18725{
f39c6ffd
TT
18726 const char *name;
18727
c764a876 18728#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
18729 if (attr == DW_AT_MIPS_fde)
18730 return "DW_AT_MIPS_fde";
18731#else
18732 if (attr == DW_AT_HP_block_index)
18733 return "DW_AT_HP_block_index";
c764a876 18734#endif
f39c6ffd
TT
18735
18736 name = get_DW_AT_name (attr);
18737
18738 if (name == NULL)
18739 return "DW_AT_<unknown>";
18740
18741 return name;
c906108c
SS
18742}
18743
18744/* Convert a DWARF value form code into its string name. */
18745
f39c6ffd 18746static const char *
aa1ee363 18747dwarf_form_name (unsigned form)
c906108c 18748{
f39c6ffd
TT
18749 const char *name = get_DW_FORM_name (form);
18750
18751 if (name == NULL)
18752 return "DW_FORM_<unknown>";
18753
18754 return name;
c906108c
SS
18755}
18756
18757static char *
fba45db2 18758dwarf_bool_name (unsigned mybool)
c906108c
SS
18759{
18760 if (mybool)
18761 return "TRUE";
18762 else
18763 return "FALSE";
18764}
18765
18766/* Convert a DWARF type code into its string name. */
18767
f39c6ffd 18768static const char *
aa1ee363 18769dwarf_type_encoding_name (unsigned enc)
c906108c 18770{
f39c6ffd 18771 const char *name = get_DW_ATE_name (enc);
c906108c 18772
f39c6ffd
TT
18773 if (name == NULL)
18774 return "DW_ATE_<unknown>";
c906108c 18775
f39c6ffd 18776 return name;
c906108c 18777}
c906108c 18778
f9aca02d 18779static void
d97bc12b 18780dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
18781{
18782 unsigned int i;
18783
d97bc12b
DE
18784 print_spaces (indent, f);
18785 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 18786 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
18787
18788 if (die->parent != NULL)
18789 {
18790 print_spaces (indent, f);
18791 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 18792 die->parent->offset.sect_off);
d97bc12b
DE
18793 }
18794
18795 print_spaces (indent, f);
18796 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 18797 dwarf_bool_name (die->child != NULL));
c906108c 18798
d97bc12b
DE
18799 print_spaces (indent, f);
18800 fprintf_unfiltered (f, " attributes:\n");
18801
c906108c
SS
18802 for (i = 0; i < die->num_attrs; ++i)
18803 {
d97bc12b
DE
18804 print_spaces (indent, f);
18805 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
18806 dwarf_attr_name (die->attrs[i].name),
18807 dwarf_form_name (die->attrs[i].form));
d97bc12b 18808
c906108c
SS
18809 switch (die->attrs[i].form)
18810 {
c906108c 18811 case DW_FORM_addr:
3019eac3 18812 case DW_FORM_GNU_addr_index:
d97bc12b 18813 fprintf_unfiltered (f, "address: ");
5af949e3 18814 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
18815 break;
18816 case DW_FORM_block2:
18817 case DW_FORM_block4:
18818 case DW_FORM_block:
18819 case DW_FORM_block1:
56eb65bd
SP
18820 fprintf_unfiltered (f, "block: size %s",
18821 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 18822 break;
2dc7f7b3 18823 case DW_FORM_exprloc:
56eb65bd
SP
18824 fprintf_unfiltered (f, "expression: size %s",
18825 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 18826 break;
4568ecf9
DE
18827 case DW_FORM_ref_addr:
18828 fprintf_unfiltered (f, "ref address: ");
18829 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18830 break;
36586728
TT
18831 case DW_FORM_GNU_ref_alt:
18832 fprintf_unfiltered (f, "alt ref address: ");
18833 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18834 break;
10b3939b
DJ
18835 case DW_FORM_ref1:
18836 case DW_FORM_ref2:
18837 case DW_FORM_ref4:
4568ecf9
DE
18838 case DW_FORM_ref8:
18839 case DW_FORM_ref_udata:
d97bc12b 18840 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 18841 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 18842 break;
c906108c
SS
18843 case DW_FORM_data1:
18844 case DW_FORM_data2:
18845 case DW_FORM_data4:
ce5d95e1 18846 case DW_FORM_data8:
c906108c
SS
18847 case DW_FORM_udata:
18848 case DW_FORM_sdata:
43bbcdc2
PH
18849 fprintf_unfiltered (f, "constant: %s",
18850 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 18851 break;
2dc7f7b3
TT
18852 case DW_FORM_sec_offset:
18853 fprintf_unfiltered (f, "section offset: %s",
18854 pulongest (DW_UNSND (&die->attrs[i])));
18855 break;
55f1336d 18856 case DW_FORM_ref_sig8:
ac9ec31b
DE
18857 fprintf_unfiltered (f, "signature: %s",
18858 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 18859 break;
c906108c 18860 case DW_FORM_string:
4bdf3d34 18861 case DW_FORM_strp:
3019eac3 18862 case DW_FORM_GNU_str_index:
36586728 18863 case DW_FORM_GNU_strp_alt:
8285870a 18864 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 18865 DW_STRING (&die->attrs[i])
8285870a
JK
18866 ? DW_STRING (&die->attrs[i]) : "",
18867 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
18868 break;
18869 case DW_FORM_flag:
18870 if (DW_UNSND (&die->attrs[i]))
d97bc12b 18871 fprintf_unfiltered (f, "flag: TRUE");
c906108c 18872 else
d97bc12b 18873 fprintf_unfiltered (f, "flag: FALSE");
c906108c 18874 break;
2dc7f7b3
TT
18875 case DW_FORM_flag_present:
18876 fprintf_unfiltered (f, "flag: TRUE");
18877 break;
a8329558 18878 case DW_FORM_indirect:
0963b4bd
MS
18879 /* The reader will have reduced the indirect form to
18880 the "base form" so this form should not occur. */
3e43a32a
MS
18881 fprintf_unfiltered (f,
18882 "unexpected attribute form: DW_FORM_indirect");
a8329558 18883 break;
c906108c 18884 default:
d97bc12b 18885 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 18886 die->attrs[i].form);
d97bc12b 18887 break;
c906108c 18888 }
d97bc12b 18889 fprintf_unfiltered (f, "\n");
c906108c
SS
18890 }
18891}
18892
f9aca02d 18893static void
d97bc12b 18894dump_die_for_error (struct die_info *die)
c906108c 18895{
d97bc12b
DE
18896 dump_die_shallow (gdb_stderr, 0, die);
18897}
18898
18899static void
18900dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18901{
18902 int indent = level * 4;
18903
18904 gdb_assert (die != NULL);
18905
18906 if (level >= max_level)
18907 return;
18908
18909 dump_die_shallow (f, indent, die);
18910
18911 if (die->child != NULL)
c906108c 18912 {
d97bc12b
DE
18913 print_spaces (indent, f);
18914 fprintf_unfiltered (f, " Children:");
18915 if (level + 1 < max_level)
18916 {
18917 fprintf_unfiltered (f, "\n");
18918 dump_die_1 (f, level + 1, max_level, die->child);
18919 }
18920 else
18921 {
3e43a32a
MS
18922 fprintf_unfiltered (f,
18923 " [not printed, max nesting level reached]\n");
d97bc12b
DE
18924 }
18925 }
18926
18927 if (die->sibling != NULL && level > 0)
18928 {
18929 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
18930 }
18931}
18932
d97bc12b
DE
18933/* This is called from the pdie macro in gdbinit.in.
18934 It's not static so gcc will keep a copy callable from gdb. */
18935
18936void
18937dump_die (struct die_info *die, int max_level)
18938{
18939 dump_die_1 (gdb_stdlog, 0, max_level, die);
18940}
18941
f9aca02d 18942static void
51545339 18943store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18944{
51545339 18945 void **slot;
c906108c 18946
b64f50a1
JK
18947 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18948 INSERT);
51545339
DJ
18949
18950 *slot = die;
c906108c
SS
18951}
18952
b64f50a1
JK
18953/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18954 required kind. */
18955
18956static sect_offset
ff39bb5e 18957dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 18958{
4568ecf9 18959 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 18960
7771576e 18961 if (attr_form_is_ref (attr))
b64f50a1 18962 return retval;
93311388 18963
b64f50a1 18964 retval.sect_off = 0;
93311388
DE
18965 complaint (&symfile_complaints,
18966 _("unsupported die ref attribute form: '%s'"),
18967 dwarf_form_name (attr->form));
b64f50a1 18968 return retval;
c906108c
SS
18969}
18970
43bbcdc2
PH
18971/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18972 * the value held by the attribute is not constant. */
a02abb62 18973
43bbcdc2 18974static LONGEST
ff39bb5e 18975dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
18976{
18977 if (attr->form == DW_FORM_sdata)
18978 return DW_SND (attr);
18979 else if (attr->form == DW_FORM_udata
18980 || attr->form == DW_FORM_data1
18981 || attr->form == DW_FORM_data2
18982 || attr->form == DW_FORM_data4
18983 || attr->form == DW_FORM_data8)
18984 return DW_UNSND (attr);
18985 else
18986 {
3e43a32a
MS
18987 complaint (&symfile_complaints,
18988 _("Attribute value is not a constant (%s)"),
a02abb62
JB
18989 dwarf_form_name (attr->form));
18990 return default_value;
18991 }
18992}
18993
348e048f
DE
18994/* Follow reference or signature attribute ATTR of SRC_DIE.
18995 On entry *REF_CU is the CU of SRC_DIE.
18996 On exit *REF_CU is the CU of the result. */
18997
18998static struct die_info *
ff39bb5e 18999follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19000 struct dwarf2_cu **ref_cu)
19001{
19002 struct die_info *die;
19003
7771576e 19004 if (attr_form_is_ref (attr))
348e048f 19005 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19006 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19007 die = follow_die_sig (src_die, attr, ref_cu);
19008 else
19009 {
19010 dump_die_for_error (src_die);
19011 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19012 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19013 }
19014
19015 return die;
03dd20cc
DJ
19016}
19017
5c631832 19018/* Follow reference OFFSET.
673bfd45
DE
19019 On entry *REF_CU is the CU of the source die referencing OFFSET.
19020 On exit *REF_CU is the CU of the result.
19021 Returns NULL if OFFSET is invalid. */
f504f079 19022
f9aca02d 19023static struct die_info *
36586728
TT
19024follow_die_offset (sect_offset offset, int offset_in_dwz,
19025 struct dwarf2_cu **ref_cu)
c906108c 19026{
10b3939b 19027 struct die_info temp_die;
f2f0e013 19028 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19029
348e048f
DE
19030 gdb_assert (cu->per_cu != NULL);
19031
98bfdba5
PA
19032 target_cu = cu;
19033
3019eac3 19034 if (cu->per_cu->is_debug_types)
348e048f
DE
19035 {
19036 /* .debug_types CUs cannot reference anything outside their CU.
19037 If they need to, they have to reference a signatured type via
55f1336d 19038 DW_FORM_ref_sig8. */
348e048f 19039 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19040 return NULL;
348e048f 19041 }
36586728
TT
19042 else if (offset_in_dwz != cu->per_cu->is_dwz
19043 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19044 {
19045 struct dwarf2_per_cu_data *per_cu;
9a619af0 19046
36586728
TT
19047 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19048 cu->objfile);
03dd20cc
DJ
19049
19050 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19051 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19052 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19053
10b3939b
DJ
19054 target_cu = per_cu->cu;
19055 }
98bfdba5
PA
19056 else if (cu->dies == NULL)
19057 {
19058 /* We're loading full DIEs during partial symbol reading. */
19059 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19060 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19061 }
c906108c 19062
f2f0e013 19063 *ref_cu = target_cu;
51545339 19064 temp_die.offset = offset;
b64f50a1 19065 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19066}
10b3939b 19067
5c631832
JK
19068/* Follow reference attribute ATTR of SRC_DIE.
19069 On entry *REF_CU is the CU of SRC_DIE.
19070 On exit *REF_CU is the CU of the result. */
19071
19072static struct die_info *
ff39bb5e 19073follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19074 struct dwarf2_cu **ref_cu)
19075{
b64f50a1 19076 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19077 struct dwarf2_cu *cu = *ref_cu;
19078 struct die_info *die;
19079
36586728
TT
19080 die = follow_die_offset (offset,
19081 (attr->form == DW_FORM_GNU_ref_alt
19082 || cu->per_cu->is_dwz),
19083 ref_cu);
5c631832
JK
19084 if (!die)
19085 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19086 "at 0x%x [in module %s]"),
4262abfb
JK
19087 offset.sect_off, src_die->offset.sect_off,
19088 objfile_name (cu->objfile));
348e048f 19089
5c631832
JK
19090 return die;
19091}
19092
d83e736b
JK
19093/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19094 Returned value is intended for DW_OP_call*. Returned
19095 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19096
19097struct dwarf2_locexpr_baton
8b9737bf
TT
19098dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19099 struct dwarf2_per_cu_data *per_cu,
19100 CORE_ADDR (*get_frame_pc) (void *baton),
19101 void *baton)
5c631832 19102{
918dd910 19103 struct dwarf2_cu *cu;
5c631832
JK
19104 struct die_info *die;
19105 struct attribute *attr;
19106 struct dwarf2_locexpr_baton retval;
19107
8cf6f0b1
TT
19108 dw2_setup (per_cu->objfile);
19109
918dd910
JK
19110 if (per_cu->cu == NULL)
19111 load_cu (per_cu);
19112 cu = per_cu->cu;
19113
36586728 19114 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19115 if (!die)
19116 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19117 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19118
19119 attr = dwarf2_attr (die, DW_AT_location, cu);
19120 if (!attr)
19121 {
e103e986
JK
19122 /* DWARF: "If there is no such attribute, then there is no effect.".
19123 DATA is ignored if SIZE is 0. */
5c631832 19124
e103e986 19125 retval.data = NULL;
5c631832
JK
19126 retval.size = 0;
19127 }
8cf6f0b1
TT
19128 else if (attr_form_is_section_offset (attr))
19129 {
19130 struct dwarf2_loclist_baton loclist_baton;
19131 CORE_ADDR pc = (*get_frame_pc) (baton);
19132 size_t size;
19133
19134 fill_in_loclist_baton (cu, &loclist_baton, attr);
19135
19136 retval.data = dwarf2_find_location_expression (&loclist_baton,
19137 &size, pc);
19138 retval.size = size;
19139 }
5c631832
JK
19140 else
19141 {
19142 if (!attr_form_is_block (attr))
19143 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19144 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19145 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19146
19147 retval.data = DW_BLOCK (attr)->data;
19148 retval.size = DW_BLOCK (attr)->size;
19149 }
19150 retval.per_cu = cu->per_cu;
918dd910 19151
918dd910
JK
19152 age_cached_comp_units ();
19153
5c631832 19154 return retval;
348e048f
DE
19155}
19156
8b9737bf
TT
19157/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19158 offset. */
19159
19160struct dwarf2_locexpr_baton
19161dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19162 struct dwarf2_per_cu_data *per_cu,
19163 CORE_ADDR (*get_frame_pc) (void *baton),
19164 void *baton)
19165{
19166 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19167
19168 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19169}
19170
b6807d98
TT
19171/* Write a constant of a given type as target-ordered bytes into
19172 OBSTACK. */
19173
19174static const gdb_byte *
19175write_constant_as_bytes (struct obstack *obstack,
19176 enum bfd_endian byte_order,
19177 struct type *type,
19178 ULONGEST value,
19179 LONGEST *len)
19180{
19181 gdb_byte *result;
19182
19183 *len = TYPE_LENGTH (type);
19184 result = obstack_alloc (obstack, *len);
19185 store_unsigned_integer (result, *len, byte_order, value);
19186
19187 return result;
19188}
19189
19190/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19191 pointer to the constant bytes and set LEN to the length of the
19192 data. If memory is needed, allocate it on OBSTACK. If the DIE
19193 does not have a DW_AT_const_value, return NULL. */
19194
19195const gdb_byte *
19196dwarf2_fetch_constant_bytes (sect_offset offset,
19197 struct dwarf2_per_cu_data *per_cu,
19198 struct obstack *obstack,
19199 LONGEST *len)
19200{
19201 struct dwarf2_cu *cu;
19202 struct die_info *die;
19203 struct attribute *attr;
19204 const gdb_byte *result = NULL;
19205 struct type *type;
19206 LONGEST value;
19207 enum bfd_endian byte_order;
19208
19209 dw2_setup (per_cu->objfile);
19210
19211 if (per_cu->cu == NULL)
19212 load_cu (per_cu);
19213 cu = per_cu->cu;
19214
19215 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19216 if (!die)
19217 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19218 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19219
19220
19221 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19222 if (attr == NULL)
19223 return NULL;
19224
19225 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19226 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19227
19228 switch (attr->form)
19229 {
19230 case DW_FORM_addr:
19231 case DW_FORM_GNU_addr_index:
19232 {
19233 gdb_byte *tem;
19234
19235 *len = cu->header.addr_size;
19236 tem = obstack_alloc (obstack, *len);
19237 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19238 result = tem;
19239 }
19240 break;
19241 case DW_FORM_string:
19242 case DW_FORM_strp:
19243 case DW_FORM_GNU_str_index:
19244 case DW_FORM_GNU_strp_alt:
19245 /* DW_STRING is already allocated on the objfile obstack, point
19246 directly to it. */
19247 result = (const gdb_byte *) DW_STRING (attr);
19248 *len = strlen (DW_STRING (attr));
19249 break;
19250 case DW_FORM_block1:
19251 case DW_FORM_block2:
19252 case DW_FORM_block4:
19253 case DW_FORM_block:
19254 case DW_FORM_exprloc:
19255 result = DW_BLOCK (attr)->data;
19256 *len = DW_BLOCK (attr)->size;
19257 break;
19258
19259 /* The DW_AT_const_value attributes are supposed to carry the
19260 symbol's value "represented as it would be on the target
19261 architecture." By the time we get here, it's already been
19262 converted to host endianness, so we just need to sign- or
19263 zero-extend it as appropriate. */
19264 case DW_FORM_data1:
19265 type = die_type (die, cu);
19266 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19267 if (result == NULL)
19268 result = write_constant_as_bytes (obstack, byte_order,
19269 type, value, len);
19270 break;
19271 case DW_FORM_data2:
19272 type = die_type (die, cu);
19273 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19274 if (result == NULL)
19275 result = write_constant_as_bytes (obstack, byte_order,
19276 type, value, len);
19277 break;
19278 case DW_FORM_data4:
19279 type = die_type (die, cu);
19280 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19281 if (result == NULL)
19282 result = write_constant_as_bytes (obstack, byte_order,
19283 type, value, len);
19284 break;
19285 case DW_FORM_data8:
19286 type = die_type (die, cu);
19287 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19288 if (result == NULL)
19289 result = write_constant_as_bytes (obstack, byte_order,
19290 type, value, len);
19291 break;
19292
19293 case DW_FORM_sdata:
19294 type = die_type (die, cu);
19295 result = write_constant_as_bytes (obstack, byte_order,
19296 type, DW_SND (attr), len);
19297 break;
19298
19299 case DW_FORM_udata:
19300 type = die_type (die, cu);
19301 result = write_constant_as_bytes (obstack, byte_order,
19302 type, DW_UNSND (attr), len);
19303 break;
19304
19305 default:
19306 complaint (&symfile_complaints,
19307 _("unsupported const value attribute form: '%s'"),
19308 dwarf_form_name (attr->form));
19309 break;
19310 }
19311
19312 return result;
19313}
19314
8a9b8146
TT
19315/* Return the type of the DIE at DIE_OFFSET in the CU named by
19316 PER_CU. */
19317
19318struct type *
b64f50a1 19319dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19320 struct dwarf2_per_cu_data *per_cu)
19321{
b64f50a1
JK
19322 sect_offset die_offset_sect;
19323
8a9b8146 19324 dw2_setup (per_cu->objfile);
b64f50a1
JK
19325
19326 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19327 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19328}
19329
ac9ec31b 19330/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19331 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19332 On exit *REF_CU is the CU of the result.
19333 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19334
19335static struct die_info *
ac9ec31b
DE
19336follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19337 struct dwarf2_cu **ref_cu)
348e048f
DE
19338{
19339 struct objfile *objfile = (*ref_cu)->objfile;
19340 struct die_info temp_die;
348e048f
DE
19341 struct dwarf2_cu *sig_cu;
19342 struct die_info *die;
19343
ac9ec31b
DE
19344 /* While it might be nice to assert sig_type->type == NULL here,
19345 we can get here for DW_AT_imported_declaration where we need
19346 the DIE not the type. */
348e048f
DE
19347
19348 /* If necessary, add it to the queue and load its DIEs. */
19349
95554aad 19350 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19351 read_signatured_type (sig_type);
348e048f 19352
348e048f 19353 sig_cu = sig_type->per_cu.cu;
69d751e3 19354 gdb_assert (sig_cu != NULL);
3019eac3
DE
19355 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19356 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19357 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19358 temp_die.offset.sect_off);
348e048f
DE
19359 if (die)
19360 {
796a7ff8
DE
19361 /* For .gdb_index version 7 keep track of included TUs.
19362 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19363 if (dwarf2_per_objfile->index_table != NULL
19364 && dwarf2_per_objfile->index_table->version <= 7)
19365 {
19366 VEC_safe_push (dwarf2_per_cu_ptr,
19367 (*ref_cu)->per_cu->imported_symtabs,
19368 sig_cu->per_cu);
19369 }
19370
348e048f
DE
19371 *ref_cu = sig_cu;
19372 return die;
19373 }
19374
ac9ec31b
DE
19375 return NULL;
19376}
19377
19378/* Follow signatured type referenced by ATTR in SRC_DIE.
19379 On entry *REF_CU is the CU of SRC_DIE.
19380 On exit *REF_CU is the CU of the result.
19381 The result is the DIE of the type.
19382 If the referenced type cannot be found an error is thrown. */
19383
19384static struct die_info *
ff39bb5e 19385follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19386 struct dwarf2_cu **ref_cu)
19387{
19388 ULONGEST signature = DW_SIGNATURE (attr);
19389 struct signatured_type *sig_type;
19390 struct die_info *die;
19391
19392 gdb_assert (attr->form == DW_FORM_ref_sig8);
19393
a2ce51a0 19394 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19395 /* sig_type will be NULL if the signatured type is missing from
19396 the debug info. */
19397 if (sig_type == NULL)
19398 {
19399 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19400 " from DIE at 0x%x [in module %s]"),
19401 hex_string (signature), src_die->offset.sect_off,
4262abfb 19402 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19403 }
19404
19405 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19406 if (die == NULL)
19407 {
19408 dump_die_for_error (src_die);
19409 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19410 " from DIE at 0x%x [in module %s]"),
19411 hex_string (signature), src_die->offset.sect_off,
4262abfb 19412 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19413 }
19414
19415 return die;
19416}
19417
19418/* Get the type specified by SIGNATURE referenced in DIE/CU,
19419 reading in and processing the type unit if necessary. */
19420
19421static struct type *
19422get_signatured_type (struct die_info *die, ULONGEST signature,
19423 struct dwarf2_cu *cu)
19424{
19425 struct signatured_type *sig_type;
19426 struct dwarf2_cu *type_cu;
19427 struct die_info *type_die;
19428 struct type *type;
19429
a2ce51a0 19430 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19431 /* sig_type will be NULL if the signatured type is missing from
19432 the debug info. */
19433 if (sig_type == NULL)
19434 {
19435 complaint (&symfile_complaints,
19436 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19437 " from DIE at 0x%x [in module %s]"),
19438 hex_string (signature), die->offset.sect_off,
4262abfb 19439 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19440 return build_error_marker_type (cu, die);
19441 }
19442
19443 /* If we already know the type we're done. */
19444 if (sig_type->type != NULL)
19445 return sig_type->type;
19446
19447 type_cu = cu;
19448 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19449 if (type_die != NULL)
19450 {
19451 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19452 is created. This is important, for example, because for c++ classes
19453 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19454 type = read_type_die (type_die, type_cu);
19455 if (type == NULL)
19456 {
19457 complaint (&symfile_complaints,
19458 _("Dwarf Error: Cannot build signatured type %s"
19459 " referenced from DIE at 0x%x [in module %s]"),
19460 hex_string (signature), die->offset.sect_off,
4262abfb 19461 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19462 type = build_error_marker_type (cu, die);
19463 }
19464 }
19465 else
19466 {
19467 complaint (&symfile_complaints,
19468 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19469 " from DIE at 0x%x [in module %s]"),
19470 hex_string (signature), die->offset.sect_off,
4262abfb 19471 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19472 type = build_error_marker_type (cu, die);
19473 }
19474 sig_type->type = type;
19475
19476 return type;
19477}
19478
19479/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19480 reading in and processing the type unit if necessary. */
19481
19482static struct type *
ff39bb5e 19483get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19484 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19485{
19486 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19487 if (attr_form_is_ref (attr))
ac9ec31b
DE
19488 {
19489 struct dwarf2_cu *type_cu = cu;
19490 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19491
19492 return read_type_die (type_die, type_cu);
19493 }
19494 else if (attr->form == DW_FORM_ref_sig8)
19495 {
19496 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19497 }
19498 else
19499 {
19500 complaint (&symfile_complaints,
19501 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19502 " at 0x%x [in module %s]"),
19503 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19504 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19505 return build_error_marker_type (cu, die);
19506 }
348e048f
DE
19507}
19508
e5fe5e75 19509/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19510
19511static void
e5fe5e75 19512load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19513{
52dc124a 19514 struct signatured_type *sig_type;
348e048f 19515
f4dc4d17
DE
19516 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19517 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19518
6721b2ec
DE
19519 /* We have the per_cu, but we need the signatured_type.
19520 Fortunately this is an easy translation. */
19521 gdb_assert (per_cu->is_debug_types);
19522 sig_type = (struct signatured_type *) per_cu;
348e048f 19523
6721b2ec 19524 gdb_assert (per_cu->cu == NULL);
348e048f 19525
52dc124a 19526 read_signatured_type (sig_type);
348e048f 19527
6721b2ec 19528 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19529}
19530
dee91e82
DE
19531/* die_reader_func for read_signatured_type.
19532 This is identical to load_full_comp_unit_reader,
19533 but is kept separate for now. */
348e048f
DE
19534
19535static void
dee91e82 19536read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19537 const gdb_byte *info_ptr,
dee91e82
DE
19538 struct die_info *comp_unit_die,
19539 int has_children,
19540 void *data)
348e048f 19541{
dee91e82 19542 struct dwarf2_cu *cu = reader->cu;
348e048f 19543
dee91e82
DE
19544 gdb_assert (cu->die_hash == NULL);
19545 cu->die_hash =
19546 htab_create_alloc_ex (cu->header.length / 12,
19547 die_hash,
19548 die_eq,
19549 NULL,
19550 &cu->comp_unit_obstack,
19551 hashtab_obstack_allocate,
19552 dummy_obstack_deallocate);
348e048f 19553
dee91e82
DE
19554 if (has_children)
19555 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19556 &info_ptr, comp_unit_die);
19557 cu->dies = comp_unit_die;
19558 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19559
19560 /* We try not to read any attributes in this function, because not
9cdd5dbd 19561 all CUs needed for references have been loaded yet, and symbol
348e048f 19562 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19563 or we won't be able to build types correctly.
19564 Similarly, if we do not read the producer, we can not apply
19565 producer-specific interpretation. */
95554aad 19566 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19567}
348e048f 19568
3019eac3
DE
19569/* Read in a signatured type and build its CU and DIEs.
19570 If the type is a stub for the real type in a DWO file,
19571 read in the real type from the DWO file as well. */
dee91e82
DE
19572
19573static void
19574read_signatured_type (struct signatured_type *sig_type)
19575{
19576 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19577
3019eac3 19578 gdb_assert (per_cu->is_debug_types);
dee91e82 19579 gdb_assert (per_cu->cu == NULL);
348e048f 19580
f4dc4d17
DE
19581 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19582 read_signatured_type_reader, NULL);
7ee85ab1 19583 sig_type->per_cu.tu_read = 1;
c906108c
SS
19584}
19585
c906108c
SS
19586/* Decode simple location descriptions.
19587 Given a pointer to a dwarf block that defines a location, compute
19588 the location and return the value.
19589
4cecd739
DJ
19590 NOTE drow/2003-11-18: This function is called in two situations
19591 now: for the address of static or global variables (partial symbols
19592 only) and for offsets into structures which are expected to be
19593 (more or less) constant. The partial symbol case should go away,
19594 and only the constant case should remain. That will let this
19595 function complain more accurately. A few special modes are allowed
19596 without complaint for global variables (for instance, global
19597 register values and thread-local values).
c906108c
SS
19598
19599 A location description containing no operations indicates that the
4cecd739 19600 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19601 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19602 callers will only want a very basic result and this can become a
21ae7a4d
JK
19603 complaint.
19604
19605 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19606
19607static CORE_ADDR
e7c27a73 19608decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19609{
e7c27a73 19610 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19611 size_t i;
19612 size_t size = blk->size;
d521ce57 19613 const gdb_byte *data = blk->data;
21ae7a4d
JK
19614 CORE_ADDR stack[64];
19615 int stacki;
19616 unsigned int bytes_read, unsnd;
19617 gdb_byte op;
c906108c 19618
21ae7a4d
JK
19619 i = 0;
19620 stacki = 0;
19621 stack[stacki] = 0;
19622 stack[++stacki] = 0;
19623
19624 while (i < size)
19625 {
19626 op = data[i++];
19627 switch (op)
19628 {
19629 case DW_OP_lit0:
19630 case DW_OP_lit1:
19631 case DW_OP_lit2:
19632 case DW_OP_lit3:
19633 case DW_OP_lit4:
19634 case DW_OP_lit5:
19635 case DW_OP_lit6:
19636 case DW_OP_lit7:
19637 case DW_OP_lit8:
19638 case DW_OP_lit9:
19639 case DW_OP_lit10:
19640 case DW_OP_lit11:
19641 case DW_OP_lit12:
19642 case DW_OP_lit13:
19643 case DW_OP_lit14:
19644 case DW_OP_lit15:
19645 case DW_OP_lit16:
19646 case DW_OP_lit17:
19647 case DW_OP_lit18:
19648 case DW_OP_lit19:
19649 case DW_OP_lit20:
19650 case DW_OP_lit21:
19651 case DW_OP_lit22:
19652 case DW_OP_lit23:
19653 case DW_OP_lit24:
19654 case DW_OP_lit25:
19655 case DW_OP_lit26:
19656 case DW_OP_lit27:
19657 case DW_OP_lit28:
19658 case DW_OP_lit29:
19659 case DW_OP_lit30:
19660 case DW_OP_lit31:
19661 stack[++stacki] = op - DW_OP_lit0;
19662 break;
f1bea926 19663
21ae7a4d
JK
19664 case DW_OP_reg0:
19665 case DW_OP_reg1:
19666 case DW_OP_reg2:
19667 case DW_OP_reg3:
19668 case DW_OP_reg4:
19669 case DW_OP_reg5:
19670 case DW_OP_reg6:
19671 case DW_OP_reg7:
19672 case DW_OP_reg8:
19673 case DW_OP_reg9:
19674 case DW_OP_reg10:
19675 case DW_OP_reg11:
19676 case DW_OP_reg12:
19677 case DW_OP_reg13:
19678 case DW_OP_reg14:
19679 case DW_OP_reg15:
19680 case DW_OP_reg16:
19681 case DW_OP_reg17:
19682 case DW_OP_reg18:
19683 case DW_OP_reg19:
19684 case DW_OP_reg20:
19685 case DW_OP_reg21:
19686 case DW_OP_reg22:
19687 case DW_OP_reg23:
19688 case DW_OP_reg24:
19689 case DW_OP_reg25:
19690 case DW_OP_reg26:
19691 case DW_OP_reg27:
19692 case DW_OP_reg28:
19693 case DW_OP_reg29:
19694 case DW_OP_reg30:
19695 case DW_OP_reg31:
19696 stack[++stacki] = op - DW_OP_reg0;
19697 if (i < size)
19698 dwarf2_complex_location_expr_complaint ();
19699 break;
c906108c 19700
21ae7a4d
JK
19701 case DW_OP_regx:
19702 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19703 i += bytes_read;
19704 stack[++stacki] = unsnd;
19705 if (i < size)
19706 dwarf2_complex_location_expr_complaint ();
19707 break;
c906108c 19708
21ae7a4d
JK
19709 case DW_OP_addr:
19710 stack[++stacki] = read_address (objfile->obfd, &data[i],
19711 cu, &bytes_read);
19712 i += bytes_read;
19713 break;
d53d4ac5 19714
21ae7a4d
JK
19715 case DW_OP_const1u:
19716 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19717 i += 1;
19718 break;
19719
19720 case DW_OP_const1s:
19721 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19722 i += 1;
19723 break;
19724
19725 case DW_OP_const2u:
19726 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19727 i += 2;
19728 break;
19729
19730 case DW_OP_const2s:
19731 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19732 i += 2;
19733 break;
d53d4ac5 19734
21ae7a4d
JK
19735 case DW_OP_const4u:
19736 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19737 i += 4;
19738 break;
19739
19740 case DW_OP_const4s:
19741 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19742 i += 4;
19743 break;
19744
585861ea
JK
19745 case DW_OP_const8u:
19746 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19747 i += 8;
19748 break;
19749
21ae7a4d
JK
19750 case DW_OP_constu:
19751 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19752 &bytes_read);
19753 i += bytes_read;
19754 break;
19755
19756 case DW_OP_consts:
19757 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19758 i += bytes_read;
19759 break;
19760
19761 case DW_OP_dup:
19762 stack[stacki + 1] = stack[stacki];
19763 stacki++;
19764 break;
19765
19766 case DW_OP_plus:
19767 stack[stacki - 1] += stack[stacki];
19768 stacki--;
19769 break;
19770
19771 case DW_OP_plus_uconst:
19772 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19773 &bytes_read);
19774 i += bytes_read;
19775 break;
19776
19777 case DW_OP_minus:
19778 stack[stacki - 1] -= stack[stacki];
19779 stacki--;
19780 break;
19781
19782 case DW_OP_deref:
19783 /* If we're not the last op, then we definitely can't encode
19784 this using GDB's address_class enum. This is valid for partial
19785 global symbols, although the variable's address will be bogus
19786 in the psymtab. */
19787 if (i < size)
19788 dwarf2_complex_location_expr_complaint ();
19789 break;
19790
19791 case DW_OP_GNU_push_tls_address:
19792 /* The top of the stack has the offset from the beginning
19793 of the thread control block at which the variable is located. */
19794 /* Nothing should follow this operator, so the top of stack would
19795 be returned. */
19796 /* This is valid for partial global symbols, but the variable's
585861ea
JK
19797 address will be bogus in the psymtab. Make it always at least
19798 non-zero to not look as a variable garbage collected by linker
19799 which have DW_OP_addr 0. */
21ae7a4d
JK
19800 if (i < size)
19801 dwarf2_complex_location_expr_complaint ();
585861ea 19802 stack[stacki]++;
21ae7a4d
JK
19803 break;
19804
19805 case DW_OP_GNU_uninit:
19806 break;
19807
3019eac3 19808 case DW_OP_GNU_addr_index:
49f6c839 19809 case DW_OP_GNU_const_index:
3019eac3
DE
19810 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19811 &bytes_read);
19812 i += bytes_read;
19813 break;
19814
21ae7a4d
JK
19815 default:
19816 {
f39c6ffd 19817 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
19818
19819 if (name)
19820 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19821 name);
19822 else
19823 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19824 op);
19825 }
19826
19827 return (stack[stacki]);
d53d4ac5 19828 }
3c6e0cb3 19829
21ae7a4d
JK
19830 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19831 outside of the allocated space. Also enforce minimum>0. */
19832 if (stacki >= ARRAY_SIZE (stack) - 1)
19833 {
19834 complaint (&symfile_complaints,
19835 _("location description stack overflow"));
19836 return 0;
19837 }
19838
19839 if (stacki <= 0)
19840 {
19841 complaint (&symfile_complaints,
19842 _("location description stack underflow"));
19843 return 0;
19844 }
19845 }
19846 return (stack[stacki]);
c906108c
SS
19847}
19848
19849/* memory allocation interface */
19850
c906108c 19851static struct dwarf_block *
7b5a2f43 19852dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
19853{
19854 struct dwarf_block *blk;
19855
19856 blk = (struct dwarf_block *)
7b5a2f43 19857 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
19858 return (blk);
19859}
19860
c906108c 19861static struct die_info *
b60c80d6 19862dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
19863{
19864 struct die_info *die;
b60c80d6
DJ
19865 size_t size = sizeof (struct die_info);
19866
19867 if (num_attrs > 1)
19868 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 19869
b60c80d6 19870 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
19871 memset (die, 0, sizeof (struct die_info));
19872 return (die);
19873}
2e276125
JB
19874
19875\f
19876/* Macro support. */
19877
233d95b5
JK
19878/* Return file name relative to the compilation directory of file number I in
19879 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 19880 responsible for freeing it. */
233d95b5 19881
2e276125 19882static char *
233d95b5 19883file_file_name (int file, struct line_header *lh)
2e276125 19884{
6a83a1e6
EZ
19885 /* Is the file number a valid index into the line header's file name
19886 table? Remember that file numbers start with one, not zero. */
19887 if (1 <= file && file <= lh->num_file_names)
19888 {
19889 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 19890
233d95b5 19891 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 19892 return xstrdup (fe->name);
233d95b5
JK
19893 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19894 fe->name, NULL);
6a83a1e6 19895 }
2e276125
JB
19896 else
19897 {
6a83a1e6
EZ
19898 /* The compiler produced a bogus file number. We can at least
19899 record the macro definitions made in the file, even if we
19900 won't be able to find the file by name. */
19901 char fake_name[80];
9a619af0 19902
8c042590
PM
19903 xsnprintf (fake_name, sizeof (fake_name),
19904 "<bad macro file number %d>", file);
2e276125 19905
6e70227d 19906 complaint (&symfile_complaints,
6a83a1e6
EZ
19907 _("bad file number in macro information (%d)"),
19908 file);
2e276125 19909
6a83a1e6 19910 return xstrdup (fake_name);
2e276125
JB
19911 }
19912}
19913
233d95b5
JK
19914/* Return the full name of file number I in *LH's file name table.
19915 Use COMP_DIR as the name of the current directory of the
19916 compilation. The result is allocated using xmalloc; the caller is
19917 responsible for freeing it. */
19918static char *
19919file_full_name (int file, struct line_header *lh, const char *comp_dir)
19920{
19921 /* Is the file number a valid index into the line header's file name
19922 table? Remember that file numbers start with one, not zero. */
19923 if (1 <= file && file <= lh->num_file_names)
19924 {
19925 char *relative = file_file_name (file, lh);
19926
19927 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19928 return relative;
19929 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19930 }
19931 else
19932 return file_file_name (file, lh);
19933}
19934
2e276125
JB
19935
19936static struct macro_source_file *
19937macro_start_file (int file, int line,
19938 struct macro_source_file *current_file,
19939 const char *comp_dir,
19940 struct line_header *lh, struct objfile *objfile)
19941{
233d95b5
JK
19942 /* File name relative to the compilation directory of this source file. */
19943 char *file_name = file_file_name (file, lh);
2e276125 19944
2e276125 19945 if (! current_file)
abc9d0dc 19946 {
fc474241
DE
19947 /* Note: We don't create a macro table for this compilation unit
19948 at all until we actually get a filename. */
19949 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19950
abc9d0dc
TT
19951 /* If we have no current file, then this must be the start_file
19952 directive for the compilation unit's main source file. */
fc474241
DE
19953 current_file = macro_set_main (macro_table, file_name);
19954 macro_define_special (macro_table);
abc9d0dc 19955 }
2e276125 19956 else
233d95b5 19957 current_file = macro_include (current_file, line, file_name);
2e276125 19958
233d95b5 19959 xfree (file_name);
6e70227d 19960
2e276125
JB
19961 return current_file;
19962}
19963
19964
19965/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19966 followed by a null byte. */
19967static char *
19968copy_string (const char *buf, int len)
19969{
19970 char *s = xmalloc (len + 1);
9a619af0 19971
2e276125
JB
19972 memcpy (s, buf, len);
19973 s[len] = '\0';
2e276125
JB
19974 return s;
19975}
19976
19977
19978static const char *
19979consume_improper_spaces (const char *p, const char *body)
19980{
19981 if (*p == ' ')
19982 {
4d3c2250 19983 complaint (&symfile_complaints,
3e43a32a
MS
19984 _("macro definition contains spaces "
19985 "in formal argument list:\n`%s'"),
4d3c2250 19986 body);
2e276125
JB
19987
19988 while (*p == ' ')
19989 p++;
19990 }
19991
19992 return p;
19993}
19994
19995
19996static void
19997parse_macro_definition (struct macro_source_file *file, int line,
19998 const char *body)
19999{
20000 const char *p;
20001
20002 /* The body string takes one of two forms. For object-like macro
20003 definitions, it should be:
20004
20005 <macro name> " " <definition>
20006
20007 For function-like macro definitions, it should be:
20008
20009 <macro name> "() " <definition>
20010 or
20011 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20012
20013 Spaces may appear only where explicitly indicated, and in the
20014 <definition>.
20015
20016 The Dwarf 2 spec says that an object-like macro's name is always
20017 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20018 the space when the macro's definition is the empty string.
2e276125
JB
20019
20020 The Dwarf 2 spec says that there should be no spaces between the
20021 formal arguments in a function-like macro's formal argument list,
20022 but versions of GCC around March 2002 include spaces after the
20023 commas. */
20024
20025
20026 /* Find the extent of the macro name. The macro name is terminated
20027 by either a space or null character (for an object-like macro) or
20028 an opening paren (for a function-like macro). */
20029 for (p = body; *p; p++)
20030 if (*p == ' ' || *p == '(')
20031 break;
20032
20033 if (*p == ' ' || *p == '\0')
20034 {
20035 /* It's an object-like macro. */
20036 int name_len = p - body;
20037 char *name = copy_string (body, name_len);
20038 const char *replacement;
20039
20040 if (*p == ' ')
20041 replacement = body + name_len + 1;
20042 else
20043 {
4d3c2250 20044 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20045 replacement = body + name_len;
20046 }
6e70227d 20047
2e276125
JB
20048 macro_define_object (file, line, name, replacement);
20049
20050 xfree (name);
20051 }
20052 else if (*p == '(')
20053 {
20054 /* It's a function-like macro. */
20055 char *name = copy_string (body, p - body);
20056 int argc = 0;
20057 int argv_size = 1;
20058 char **argv = xmalloc (argv_size * sizeof (*argv));
20059
20060 p++;
20061
20062 p = consume_improper_spaces (p, body);
20063
20064 /* Parse the formal argument list. */
20065 while (*p && *p != ')')
20066 {
20067 /* Find the extent of the current argument name. */
20068 const char *arg_start = p;
20069
20070 while (*p && *p != ',' && *p != ')' && *p != ' ')
20071 p++;
20072
20073 if (! *p || p == arg_start)
4d3c2250 20074 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20075 else
20076 {
20077 /* Make sure argv has room for the new argument. */
20078 if (argc >= argv_size)
20079 {
20080 argv_size *= 2;
20081 argv = xrealloc (argv, argv_size * sizeof (*argv));
20082 }
20083
20084 argv[argc++] = copy_string (arg_start, p - arg_start);
20085 }
20086
20087 p = consume_improper_spaces (p, body);
20088
20089 /* Consume the comma, if present. */
20090 if (*p == ',')
20091 {
20092 p++;
20093
20094 p = consume_improper_spaces (p, body);
20095 }
20096 }
20097
20098 if (*p == ')')
20099 {
20100 p++;
20101
20102 if (*p == ' ')
20103 /* Perfectly formed definition, no complaints. */
20104 macro_define_function (file, line, name,
6e70227d 20105 argc, (const char **) argv,
2e276125
JB
20106 p + 1);
20107 else if (*p == '\0')
20108 {
20109 /* Complain, but do define it. */
4d3c2250 20110 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20111 macro_define_function (file, line, name,
6e70227d 20112 argc, (const char **) argv,
2e276125
JB
20113 p);
20114 }
20115 else
20116 /* Just complain. */
4d3c2250 20117 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20118 }
20119 else
20120 /* Just complain. */
4d3c2250 20121 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20122
20123 xfree (name);
20124 {
20125 int i;
20126
20127 for (i = 0; i < argc; i++)
20128 xfree (argv[i]);
20129 }
20130 xfree (argv);
20131 }
20132 else
4d3c2250 20133 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20134}
20135
cf2c3c16
TT
20136/* Skip some bytes from BYTES according to the form given in FORM.
20137 Returns the new pointer. */
2e276125 20138
d521ce57
TT
20139static const gdb_byte *
20140skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20141 enum dwarf_form form,
20142 unsigned int offset_size,
20143 struct dwarf2_section_info *section)
2e276125 20144{
cf2c3c16 20145 unsigned int bytes_read;
2e276125 20146
cf2c3c16 20147 switch (form)
2e276125 20148 {
cf2c3c16
TT
20149 case DW_FORM_data1:
20150 case DW_FORM_flag:
20151 ++bytes;
20152 break;
20153
20154 case DW_FORM_data2:
20155 bytes += 2;
20156 break;
20157
20158 case DW_FORM_data4:
20159 bytes += 4;
20160 break;
20161
20162 case DW_FORM_data8:
20163 bytes += 8;
20164 break;
20165
20166 case DW_FORM_string:
20167 read_direct_string (abfd, bytes, &bytes_read);
20168 bytes += bytes_read;
20169 break;
20170
20171 case DW_FORM_sec_offset:
20172 case DW_FORM_strp:
36586728 20173 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20174 bytes += offset_size;
20175 break;
20176
20177 case DW_FORM_block:
20178 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20179 bytes += bytes_read;
20180 break;
20181
20182 case DW_FORM_block1:
20183 bytes += 1 + read_1_byte (abfd, bytes);
20184 break;
20185 case DW_FORM_block2:
20186 bytes += 2 + read_2_bytes (abfd, bytes);
20187 break;
20188 case DW_FORM_block4:
20189 bytes += 4 + read_4_bytes (abfd, bytes);
20190 break;
20191
20192 case DW_FORM_sdata:
20193 case DW_FORM_udata:
3019eac3
DE
20194 case DW_FORM_GNU_addr_index:
20195 case DW_FORM_GNU_str_index:
d521ce57 20196 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20197 if (bytes == NULL)
20198 {
20199 dwarf2_section_buffer_overflow_complaint (section);
20200 return NULL;
20201 }
cf2c3c16
TT
20202 break;
20203
20204 default:
20205 {
20206 complain:
20207 complaint (&symfile_complaints,
20208 _("invalid form 0x%x in `%s'"),
a32a8923 20209 form, get_section_name (section));
cf2c3c16
TT
20210 return NULL;
20211 }
2e276125
JB
20212 }
20213
cf2c3c16
TT
20214 return bytes;
20215}
757a13d0 20216
cf2c3c16
TT
20217/* A helper for dwarf_decode_macros that handles skipping an unknown
20218 opcode. Returns an updated pointer to the macro data buffer; or,
20219 on error, issues a complaint and returns NULL. */
757a13d0 20220
d521ce57 20221static const gdb_byte *
cf2c3c16 20222skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20223 const gdb_byte **opcode_definitions,
20224 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20225 bfd *abfd,
20226 unsigned int offset_size,
20227 struct dwarf2_section_info *section)
20228{
20229 unsigned int bytes_read, i;
20230 unsigned long arg;
d521ce57 20231 const gdb_byte *defn;
2e276125 20232
cf2c3c16 20233 if (opcode_definitions[opcode] == NULL)
2e276125 20234 {
cf2c3c16
TT
20235 complaint (&symfile_complaints,
20236 _("unrecognized DW_MACFINO opcode 0x%x"),
20237 opcode);
20238 return NULL;
20239 }
2e276125 20240
cf2c3c16
TT
20241 defn = opcode_definitions[opcode];
20242 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20243 defn += bytes_read;
2e276125 20244
cf2c3c16
TT
20245 for (i = 0; i < arg; ++i)
20246 {
f664829e
DE
20247 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20248 section);
cf2c3c16
TT
20249 if (mac_ptr == NULL)
20250 {
20251 /* skip_form_bytes already issued the complaint. */
20252 return NULL;
20253 }
20254 }
757a13d0 20255
cf2c3c16
TT
20256 return mac_ptr;
20257}
757a13d0 20258
cf2c3c16
TT
20259/* A helper function which parses the header of a macro section.
20260 If the macro section is the extended (for now called "GNU") type,
20261 then this updates *OFFSET_SIZE. Returns a pointer to just after
20262 the header, or issues a complaint and returns NULL on error. */
757a13d0 20263
d521ce57
TT
20264static const gdb_byte *
20265dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20266 bfd *abfd,
d521ce57 20267 const gdb_byte *mac_ptr,
cf2c3c16
TT
20268 unsigned int *offset_size,
20269 int section_is_gnu)
20270{
20271 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20272
cf2c3c16
TT
20273 if (section_is_gnu)
20274 {
20275 unsigned int version, flags;
757a13d0 20276
cf2c3c16
TT
20277 version = read_2_bytes (abfd, mac_ptr);
20278 if (version != 4)
20279 {
20280 complaint (&symfile_complaints,
20281 _("unrecognized version `%d' in .debug_macro section"),
20282 version);
20283 return NULL;
20284 }
20285 mac_ptr += 2;
757a13d0 20286
cf2c3c16
TT
20287 flags = read_1_byte (abfd, mac_ptr);
20288 ++mac_ptr;
20289 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20290
cf2c3c16
TT
20291 if ((flags & 2) != 0)
20292 /* We don't need the line table offset. */
20293 mac_ptr += *offset_size;
757a13d0 20294
cf2c3c16
TT
20295 /* Vendor opcode descriptions. */
20296 if ((flags & 4) != 0)
20297 {
20298 unsigned int i, count;
757a13d0 20299
cf2c3c16
TT
20300 count = read_1_byte (abfd, mac_ptr);
20301 ++mac_ptr;
20302 for (i = 0; i < count; ++i)
20303 {
20304 unsigned int opcode, bytes_read;
20305 unsigned long arg;
20306
20307 opcode = read_1_byte (abfd, mac_ptr);
20308 ++mac_ptr;
20309 opcode_definitions[opcode] = mac_ptr;
20310 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20311 mac_ptr += bytes_read;
20312 mac_ptr += arg;
20313 }
757a13d0 20314 }
cf2c3c16 20315 }
757a13d0 20316
cf2c3c16
TT
20317 return mac_ptr;
20318}
757a13d0 20319
cf2c3c16 20320/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20321 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20322
20323static void
d521ce57
TT
20324dwarf_decode_macro_bytes (bfd *abfd,
20325 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20326 struct macro_source_file *current_file,
15d034d0 20327 struct line_header *lh, const char *comp_dir,
cf2c3c16 20328 struct dwarf2_section_info *section,
36586728 20329 int section_is_gnu, int section_is_dwz,
cf2c3c16 20330 unsigned int offset_size,
8fc3fc34
TT
20331 struct objfile *objfile,
20332 htab_t include_hash)
cf2c3c16
TT
20333{
20334 enum dwarf_macro_record_type macinfo_type;
20335 int at_commandline;
d521ce57 20336 const gdb_byte *opcode_definitions[256];
757a13d0 20337
cf2c3c16
TT
20338 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20339 &offset_size, section_is_gnu);
20340 if (mac_ptr == NULL)
20341 {
20342 /* We already issued a complaint. */
20343 return;
20344 }
757a13d0
JK
20345
20346 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20347 GDB is still reading the definitions from command line. First
20348 DW_MACINFO_start_file will need to be ignored as it was already executed
20349 to create CURRENT_FILE for the main source holding also the command line
20350 definitions. On first met DW_MACINFO_start_file this flag is reset to
20351 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20352
20353 at_commandline = 1;
20354
20355 do
20356 {
20357 /* Do we at least have room for a macinfo type byte? */
20358 if (mac_ptr >= mac_end)
20359 {
f664829e 20360 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20361 break;
20362 }
20363
20364 macinfo_type = read_1_byte (abfd, mac_ptr);
20365 mac_ptr++;
20366
cf2c3c16
TT
20367 /* Note that we rely on the fact that the corresponding GNU and
20368 DWARF constants are the same. */
757a13d0
JK
20369 switch (macinfo_type)
20370 {
20371 /* A zero macinfo type indicates the end of the macro
20372 information. */
20373 case 0:
20374 break;
2e276125 20375
cf2c3c16
TT
20376 case DW_MACRO_GNU_define:
20377 case DW_MACRO_GNU_undef:
20378 case DW_MACRO_GNU_define_indirect:
20379 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20380 case DW_MACRO_GNU_define_indirect_alt:
20381 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20382 {
891d2f0b 20383 unsigned int bytes_read;
2e276125 20384 int line;
d521ce57 20385 const char *body;
cf2c3c16 20386 int is_define;
2e276125 20387
cf2c3c16
TT
20388 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20389 mac_ptr += bytes_read;
20390
20391 if (macinfo_type == DW_MACRO_GNU_define
20392 || macinfo_type == DW_MACRO_GNU_undef)
20393 {
20394 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20395 mac_ptr += bytes_read;
20396 }
20397 else
20398 {
20399 LONGEST str_offset;
20400
20401 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20402 mac_ptr += offset_size;
2e276125 20403
36586728 20404 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20405 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20406 || section_is_dwz)
36586728
TT
20407 {
20408 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20409
20410 body = read_indirect_string_from_dwz (dwz, str_offset);
20411 }
20412 else
20413 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20414 }
20415
20416 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20417 || macinfo_type == DW_MACRO_GNU_define_indirect
20418 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20419 if (! current_file)
757a13d0
JK
20420 {
20421 /* DWARF violation as no main source is present. */
20422 complaint (&symfile_complaints,
20423 _("debug info with no main source gives macro %s "
20424 "on line %d: %s"),
cf2c3c16
TT
20425 is_define ? _("definition") : _("undefinition"),
20426 line, body);
757a13d0
JK
20427 break;
20428 }
3e43a32a
MS
20429 if ((line == 0 && !at_commandline)
20430 || (line != 0 && at_commandline))
4d3c2250 20431 complaint (&symfile_complaints,
757a13d0
JK
20432 _("debug info gives %s macro %s with %s line %d: %s"),
20433 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20434 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20435 line == 0 ? _("zero") : _("non-zero"), line, body);
20436
cf2c3c16 20437 if (is_define)
757a13d0 20438 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20439 else
20440 {
20441 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20442 || macinfo_type == DW_MACRO_GNU_undef_indirect
20443 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20444 macro_undef (current_file, line, body);
20445 }
2e276125
JB
20446 }
20447 break;
20448
cf2c3c16 20449 case DW_MACRO_GNU_start_file:
2e276125 20450 {
891d2f0b 20451 unsigned int bytes_read;
2e276125
JB
20452 int line, file;
20453
20454 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20455 mac_ptr += bytes_read;
20456 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20457 mac_ptr += bytes_read;
20458
3e43a32a
MS
20459 if ((line == 0 && !at_commandline)
20460 || (line != 0 && at_commandline))
757a13d0
JK
20461 complaint (&symfile_complaints,
20462 _("debug info gives source %d included "
20463 "from %s at %s line %d"),
20464 file, at_commandline ? _("command-line") : _("file"),
20465 line == 0 ? _("zero") : _("non-zero"), line);
20466
20467 if (at_commandline)
20468 {
cf2c3c16
TT
20469 /* This DW_MACRO_GNU_start_file was executed in the
20470 pass one. */
757a13d0
JK
20471 at_commandline = 0;
20472 }
20473 else
20474 current_file = macro_start_file (file, line,
20475 current_file, comp_dir,
cf2c3c16 20476 lh, objfile);
2e276125
JB
20477 }
20478 break;
20479
cf2c3c16 20480 case DW_MACRO_GNU_end_file:
2e276125 20481 if (! current_file)
4d3c2250 20482 complaint (&symfile_complaints,
3e43a32a
MS
20483 _("macro debug info has an unmatched "
20484 "`close_file' directive"));
2e276125
JB
20485 else
20486 {
20487 current_file = current_file->included_by;
20488 if (! current_file)
20489 {
cf2c3c16 20490 enum dwarf_macro_record_type next_type;
2e276125
JB
20491
20492 /* GCC circa March 2002 doesn't produce the zero
20493 type byte marking the end of the compilation
20494 unit. Complain if it's not there, but exit no
20495 matter what. */
20496
20497 /* Do we at least have room for a macinfo type byte? */
20498 if (mac_ptr >= mac_end)
20499 {
f664829e 20500 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20501 return;
20502 }
20503
20504 /* We don't increment mac_ptr here, so this is just
20505 a look-ahead. */
20506 next_type = read_1_byte (abfd, mac_ptr);
20507 if (next_type != 0)
4d3c2250 20508 complaint (&symfile_complaints,
3e43a32a
MS
20509 _("no terminating 0-type entry for "
20510 "macros in `.debug_macinfo' section"));
2e276125
JB
20511
20512 return;
20513 }
20514 }
20515 break;
20516
cf2c3c16 20517 case DW_MACRO_GNU_transparent_include:
36586728 20518 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20519 {
20520 LONGEST offset;
8fc3fc34 20521 void **slot;
a036ba48
TT
20522 bfd *include_bfd = abfd;
20523 struct dwarf2_section_info *include_section = section;
20524 struct dwarf2_section_info alt_section;
d521ce57 20525 const gdb_byte *include_mac_end = mac_end;
a036ba48 20526 int is_dwz = section_is_dwz;
d521ce57 20527 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20528
20529 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20530 mac_ptr += offset_size;
20531
a036ba48
TT
20532 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20533 {
20534 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20535
20536 dwarf2_read_section (dwarf2_per_objfile->objfile,
20537 &dwz->macro);
20538
a036ba48 20539 include_section = &dwz->macro;
a32a8923 20540 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20541 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20542 is_dwz = 1;
20543 }
20544
20545 new_mac_ptr = include_section->buffer + offset;
20546 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20547
8fc3fc34
TT
20548 if (*slot != NULL)
20549 {
20550 /* This has actually happened; see
20551 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20552 complaint (&symfile_complaints,
20553 _("recursive DW_MACRO_GNU_transparent_include in "
20554 ".debug_macro section"));
20555 }
20556 else
20557 {
d521ce57 20558 *slot = (void *) new_mac_ptr;
36586728 20559
a036ba48 20560 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20561 include_mac_end, current_file,
8fc3fc34 20562 lh, comp_dir,
36586728 20563 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20564 offset_size, objfile, include_hash);
20565
d521ce57 20566 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20567 }
cf2c3c16
TT
20568 }
20569 break;
20570
2e276125 20571 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20572 if (!section_is_gnu)
20573 {
20574 unsigned int bytes_read;
20575 int constant;
2e276125 20576
cf2c3c16
TT
20577 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20578 mac_ptr += bytes_read;
20579 read_direct_string (abfd, mac_ptr, &bytes_read);
20580 mac_ptr += bytes_read;
2e276125 20581
cf2c3c16
TT
20582 /* We don't recognize any vendor extensions. */
20583 break;
20584 }
20585 /* FALLTHROUGH */
20586
20587 default:
20588 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20589 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20590 section);
20591 if (mac_ptr == NULL)
20592 return;
20593 break;
2e276125 20594 }
757a13d0 20595 } while (macinfo_type != 0);
2e276125 20596}
8e19ed76 20597
cf2c3c16 20598static void
09262596 20599dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20600 const char *comp_dir, int section_is_gnu)
cf2c3c16 20601{
bb5ed363 20602 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20603 struct line_header *lh = cu->line_header;
20604 bfd *abfd;
d521ce57 20605 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20606 struct macro_source_file *current_file = 0;
20607 enum dwarf_macro_record_type macinfo_type;
20608 unsigned int offset_size = cu->header.offset_size;
d521ce57 20609 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20610 struct cleanup *cleanup;
20611 htab_t include_hash;
20612 void **slot;
09262596
DE
20613 struct dwarf2_section_info *section;
20614 const char *section_name;
20615
20616 if (cu->dwo_unit != NULL)
20617 {
20618 if (section_is_gnu)
20619 {
20620 section = &cu->dwo_unit->dwo_file->sections.macro;
20621 section_name = ".debug_macro.dwo";
20622 }
20623 else
20624 {
20625 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20626 section_name = ".debug_macinfo.dwo";
20627 }
20628 }
20629 else
20630 {
20631 if (section_is_gnu)
20632 {
20633 section = &dwarf2_per_objfile->macro;
20634 section_name = ".debug_macro";
20635 }
20636 else
20637 {
20638 section = &dwarf2_per_objfile->macinfo;
20639 section_name = ".debug_macinfo";
20640 }
20641 }
cf2c3c16 20642
bb5ed363 20643 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20644 if (section->buffer == NULL)
20645 {
fceca515 20646 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20647 return;
20648 }
a32a8923 20649 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20650
20651 /* First pass: Find the name of the base filename.
20652 This filename is needed in order to process all macros whose definition
20653 (or undefinition) comes from the command line. These macros are defined
20654 before the first DW_MACINFO_start_file entry, and yet still need to be
20655 associated to the base file.
20656
20657 To determine the base file name, we scan the macro definitions until we
20658 reach the first DW_MACINFO_start_file entry. We then initialize
20659 CURRENT_FILE accordingly so that any macro definition found before the
20660 first DW_MACINFO_start_file can still be associated to the base file. */
20661
20662 mac_ptr = section->buffer + offset;
20663 mac_end = section->buffer + section->size;
20664
20665 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20666 &offset_size, section_is_gnu);
20667 if (mac_ptr == NULL)
20668 {
20669 /* We already issued a complaint. */
20670 return;
20671 }
20672
20673 do
20674 {
20675 /* Do we at least have room for a macinfo type byte? */
20676 if (mac_ptr >= mac_end)
20677 {
20678 /* Complaint is printed during the second pass as GDB will probably
20679 stop the first pass earlier upon finding
20680 DW_MACINFO_start_file. */
20681 break;
20682 }
20683
20684 macinfo_type = read_1_byte (abfd, mac_ptr);
20685 mac_ptr++;
20686
20687 /* Note that we rely on the fact that the corresponding GNU and
20688 DWARF constants are the same. */
20689 switch (macinfo_type)
20690 {
20691 /* A zero macinfo type indicates the end of the macro
20692 information. */
20693 case 0:
20694 break;
20695
20696 case DW_MACRO_GNU_define:
20697 case DW_MACRO_GNU_undef:
20698 /* Only skip the data by MAC_PTR. */
20699 {
20700 unsigned int bytes_read;
20701
20702 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20703 mac_ptr += bytes_read;
20704 read_direct_string (abfd, mac_ptr, &bytes_read);
20705 mac_ptr += bytes_read;
20706 }
20707 break;
20708
20709 case DW_MACRO_GNU_start_file:
20710 {
20711 unsigned int bytes_read;
20712 int line, file;
20713
20714 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20715 mac_ptr += bytes_read;
20716 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20717 mac_ptr += bytes_read;
20718
20719 current_file = macro_start_file (file, line, current_file,
bb5ed363 20720 comp_dir, lh, objfile);
cf2c3c16
TT
20721 }
20722 break;
20723
20724 case DW_MACRO_GNU_end_file:
20725 /* No data to skip by MAC_PTR. */
20726 break;
20727
20728 case DW_MACRO_GNU_define_indirect:
20729 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
20730 case DW_MACRO_GNU_define_indirect_alt:
20731 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
20732 {
20733 unsigned int bytes_read;
20734
20735 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20736 mac_ptr += bytes_read;
20737 mac_ptr += offset_size;
20738 }
20739 break;
20740
20741 case DW_MACRO_GNU_transparent_include:
f7a35f02 20742 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20743 /* Note that, according to the spec, a transparent include
20744 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20745 skip this opcode. */
20746 mac_ptr += offset_size;
20747 break;
20748
20749 case DW_MACINFO_vendor_ext:
20750 /* Only skip the data by MAC_PTR. */
20751 if (!section_is_gnu)
20752 {
20753 unsigned int bytes_read;
20754
20755 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20756 mac_ptr += bytes_read;
20757 read_direct_string (abfd, mac_ptr, &bytes_read);
20758 mac_ptr += bytes_read;
20759 }
20760 /* FALLTHROUGH */
20761
20762 default:
20763 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20764 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20765 section);
20766 if (mac_ptr == NULL)
20767 return;
20768 break;
20769 }
20770 } while (macinfo_type != 0 && current_file == NULL);
20771
20772 /* Second pass: Process all entries.
20773
20774 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20775 command-line macro definitions/undefinitions. This flag is unset when we
20776 reach the first DW_MACINFO_start_file entry. */
20777
8fc3fc34
TT
20778 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20779 NULL, xcalloc, xfree);
20780 cleanup = make_cleanup_htab_delete (include_hash);
20781 mac_ptr = section->buffer + offset;
20782 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 20783 *slot = (void *) mac_ptr;
8fc3fc34 20784 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
20785 current_file, lh, comp_dir, section,
20786 section_is_gnu, 0,
8fc3fc34
TT
20787 offset_size, objfile, include_hash);
20788 do_cleanups (cleanup);
cf2c3c16
TT
20789}
20790
8e19ed76 20791/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 20792 if so return true else false. */
380bca97 20793
8e19ed76 20794static int
6e5a29e1 20795attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
20796{
20797 return (attr == NULL ? 0 :
20798 attr->form == DW_FORM_block1
20799 || attr->form == DW_FORM_block2
20800 || attr->form == DW_FORM_block4
2dc7f7b3
TT
20801 || attr->form == DW_FORM_block
20802 || attr->form == DW_FORM_exprloc);
8e19ed76 20803}
4c2df51b 20804
c6a0999f
JB
20805/* Return non-zero if ATTR's value is a section offset --- classes
20806 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20807 You may use DW_UNSND (attr) to retrieve such offsets.
20808
20809 Section 7.5.4, "Attribute Encodings", explains that no attribute
20810 may have a value that belongs to more than one of these classes; it
20811 would be ambiguous if we did, because we use the same forms for all
20812 of them. */
380bca97 20813
3690dd37 20814static int
6e5a29e1 20815attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
20816{
20817 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
20818 || attr->form == DW_FORM_data8
20819 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
20820}
20821
3690dd37
JB
20822/* Return non-zero if ATTR's value falls in the 'constant' class, or
20823 zero otherwise. When this function returns true, you can apply
20824 dwarf2_get_attr_constant_value to it.
20825
20826 However, note that for some attributes you must check
20827 attr_form_is_section_offset before using this test. DW_FORM_data4
20828 and DW_FORM_data8 are members of both the constant class, and of
20829 the classes that contain offsets into other debug sections
20830 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20831 that, if an attribute's can be either a constant or one of the
20832 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20833 taken as section offsets, not constants. */
380bca97 20834
3690dd37 20835static int
6e5a29e1 20836attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
20837{
20838 switch (attr->form)
20839 {
20840 case DW_FORM_sdata:
20841 case DW_FORM_udata:
20842 case DW_FORM_data1:
20843 case DW_FORM_data2:
20844 case DW_FORM_data4:
20845 case DW_FORM_data8:
20846 return 1;
20847 default:
20848 return 0;
20849 }
20850}
20851
7771576e
SA
20852
20853/* DW_ADDR is always stored already as sect_offset; despite for the forms
20854 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20855
20856static int
6e5a29e1 20857attr_form_is_ref (const struct attribute *attr)
7771576e
SA
20858{
20859 switch (attr->form)
20860 {
20861 case DW_FORM_ref_addr:
20862 case DW_FORM_ref1:
20863 case DW_FORM_ref2:
20864 case DW_FORM_ref4:
20865 case DW_FORM_ref8:
20866 case DW_FORM_ref_udata:
20867 case DW_FORM_GNU_ref_alt:
20868 return 1;
20869 default:
20870 return 0;
20871 }
20872}
20873
3019eac3
DE
20874/* Return the .debug_loc section to use for CU.
20875 For DWO files use .debug_loc.dwo. */
20876
20877static struct dwarf2_section_info *
20878cu_debug_loc_section (struct dwarf2_cu *cu)
20879{
20880 if (cu->dwo_unit)
20881 return &cu->dwo_unit->dwo_file->sections.loc;
20882 return &dwarf2_per_objfile->loc;
20883}
20884
8cf6f0b1
TT
20885/* A helper function that fills in a dwarf2_loclist_baton. */
20886
20887static void
20888fill_in_loclist_baton (struct dwarf2_cu *cu,
20889 struct dwarf2_loclist_baton *baton,
ff39bb5e 20890 const struct attribute *attr)
8cf6f0b1 20891{
3019eac3
DE
20892 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20893
20894 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
20895
20896 baton->per_cu = cu->per_cu;
20897 gdb_assert (baton->per_cu);
20898 /* We don't know how long the location list is, but make sure we
20899 don't run off the edge of the section. */
3019eac3
DE
20900 baton->size = section->size - DW_UNSND (attr);
20901 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 20902 baton->base_address = cu->base_address;
f664829e 20903 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
20904}
20905
4c2df51b 20906static void
ff39bb5e 20907dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 20908 struct dwarf2_cu *cu, int is_block)
4c2df51b 20909{
bb5ed363 20910 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 20911 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 20912
3690dd37 20913 if (attr_form_is_section_offset (attr)
3019eac3 20914 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
20915 the section. If so, fall through to the complaint in the
20916 other branch. */
3019eac3 20917 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 20918 {
0d53c4c4 20919 struct dwarf2_loclist_baton *baton;
4c2df51b 20920
bb5ed363 20921 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 20922 sizeof (struct dwarf2_loclist_baton));
4c2df51b 20923
8cf6f0b1 20924 fill_in_loclist_baton (cu, baton, attr);
be391dca 20925
d00adf39 20926 if (cu->base_known == 0)
0d53c4c4 20927 complaint (&symfile_complaints,
3e43a32a
MS
20928 _("Location list used without "
20929 "specifying the CU base address."));
4c2df51b 20930
f1e6e072
TT
20931 SYMBOL_ACLASS_INDEX (sym) = (is_block
20932 ? dwarf2_loclist_block_index
20933 : dwarf2_loclist_index);
0d53c4c4
DJ
20934 SYMBOL_LOCATION_BATON (sym) = baton;
20935 }
20936 else
20937 {
20938 struct dwarf2_locexpr_baton *baton;
20939
bb5ed363 20940 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 20941 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
20942 baton->per_cu = cu->per_cu;
20943 gdb_assert (baton->per_cu);
0d53c4c4
DJ
20944
20945 if (attr_form_is_block (attr))
20946 {
20947 /* Note that we're just copying the block's data pointer
20948 here, not the actual data. We're still pointing into the
6502dd73
DJ
20949 info_buffer for SYM's objfile; right now we never release
20950 that buffer, but when we do clean up properly this may
20951 need to change. */
0d53c4c4
DJ
20952 baton->size = DW_BLOCK (attr)->size;
20953 baton->data = DW_BLOCK (attr)->data;
20954 }
20955 else
20956 {
20957 dwarf2_invalid_attrib_class_complaint ("location description",
20958 SYMBOL_NATURAL_NAME (sym));
20959 baton->size = 0;
0d53c4c4 20960 }
6e70227d 20961
f1e6e072
TT
20962 SYMBOL_ACLASS_INDEX (sym) = (is_block
20963 ? dwarf2_locexpr_block_index
20964 : dwarf2_locexpr_index);
0d53c4c4
DJ
20965 SYMBOL_LOCATION_BATON (sym) = baton;
20966 }
4c2df51b 20967}
6502dd73 20968
9aa1f1e3
TT
20969/* Return the OBJFILE associated with the compilation unit CU. If CU
20970 came from a separate debuginfo file, then the master objfile is
20971 returned. */
ae0d2f24
UW
20972
20973struct objfile *
20974dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20975{
9291a0cd 20976 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
20977
20978 /* Return the master objfile, so that we can report and look up the
20979 correct file containing this variable. */
20980 if (objfile->separate_debug_objfile_backlink)
20981 objfile = objfile->separate_debug_objfile_backlink;
20982
20983 return objfile;
20984}
20985
96408a79
SA
20986/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20987 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20988 CU_HEADERP first. */
20989
20990static const struct comp_unit_head *
20991per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20992 struct dwarf2_per_cu_data *per_cu)
20993{
d521ce57 20994 const gdb_byte *info_ptr;
96408a79
SA
20995
20996 if (per_cu->cu)
20997 return &per_cu->cu->header;
20998
8a0459fd 20999 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21000
21001 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21002 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21003
21004 return cu_headerp;
21005}
21006
ae0d2f24
UW
21007/* Return the address size given in the compilation unit header for CU. */
21008
98714339 21009int
ae0d2f24
UW
21010dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21011{
96408a79
SA
21012 struct comp_unit_head cu_header_local;
21013 const struct comp_unit_head *cu_headerp;
c471e790 21014
96408a79
SA
21015 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21016
21017 return cu_headerp->addr_size;
ae0d2f24
UW
21018}
21019
9eae7c52
TT
21020/* Return the offset size given in the compilation unit header for CU. */
21021
21022int
21023dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21024{
96408a79
SA
21025 struct comp_unit_head cu_header_local;
21026 const struct comp_unit_head *cu_headerp;
9c6c53f7 21027
96408a79
SA
21028 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21029
21030 return cu_headerp->offset_size;
21031}
21032
21033/* See its dwarf2loc.h declaration. */
21034
21035int
21036dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21037{
21038 struct comp_unit_head cu_header_local;
21039 const struct comp_unit_head *cu_headerp;
21040
21041 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21042
21043 if (cu_headerp->version == 2)
21044 return cu_headerp->addr_size;
21045 else
21046 return cu_headerp->offset_size;
181cebd4
JK
21047}
21048
9aa1f1e3
TT
21049/* Return the text offset of the CU. The returned offset comes from
21050 this CU's objfile. If this objfile came from a separate debuginfo
21051 file, then the offset may be different from the corresponding
21052 offset in the parent objfile. */
21053
21054CORE_ADDR
21055dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21056{
bb3fa9d0 21057 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21058
21059 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21060}
21061
348e048f
DE
21062/* Locate the .debug_info compilation unit from CU's objfile which contains
21063 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21064
21065static struct dwarf2_per_cu_data *
b64f50a1 21066dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21067 unsigned int offset_in_dwz,
ae038cb0
DJ
21068 struct objfile *objfile)
21069{
21070 struct dwarf2_per_cu_data *this_cu;
21071 int low, high;
36586728 21072 const sect_offset *cu_off;
ae038cb0 21073
ae038cb0
DJ
21074 low = 0;
21075 high = dwarf2_per_objfile->n_comp_units - 1;
21076 while (high > low)
21077 {
36586728 21078 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21079 int mid = low + (high - low) / 2;
9a619af0 21080
36586728
TT
21081 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21082 cu_off = &mid_cu->offset;
21083 if (mid_cu->is_dwz > offset_in_dwz
21084 || (mid_cu->is_dwz == offset_in_dwz
21085 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21086 high = mid;
21087 else
21088 low = mid + 1;
21089 }
21090 gdb_assert (low == high);
36586728
TT
21091 this_cu = dwarf2_per_objfile->all_comp_units[low];
21092 cu_off = &this_cu->offset;
21093 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21094 {
36586728 21095 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21096 error (_("Dwarf Error: could not find partial DIE containing "
21097 "offset 0x%lx [in module %s]"),
b64f50a1 21098 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21099
b64f50a1
JK
21100 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21101 <= offset.sect_off);
ae038cb0
DJ
21102 return dwarf2_per_objfile->all_comp_units[low-1];
21103 }
21104 else
21105 {
21106 this_cu = dwarf2_per_objfile->all_comp_units[low];
21107 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21108 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21109 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21110 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21111 return this_cu;
21112 }
21113}
21114
23745b47 21115/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21116
9816fde3 21117static void
23745b47 21118init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21119{
9816fde3 21120 memset (cu, 0, sizeof (*cu));
23745b47
DE
21121 per_cu->cu = cu;
21122 cu->per_cu = per_cu;
21123 cu->objfile = per_cu->objfile;
93311388 21124 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21125}
21126
21127/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21128
21129static void
95554aad
TT
21130prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21131 enum language pretend_language)
9816fde3
JK
21132{
21133 struct attribute *attr;
21134
21135 /* Set the language we're debugging. */
21136 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21137 if (attr)
21138 set_cu_language (DW_UNSND (attr), cu);
21139 else
9cded63f 21140 {
95554aad 21141 cu->language = pretend_language;
9cded63f
TT
21142 cu->language_defn = language_def (cu->language);
21143 }
dee91e82
DE
21144
21145 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21146 if (attr)
21147 cu->producer = DW_STRING (attr);
93311388
DE
21148}
21149
ae038cb0
DJ
21150/* Release one cached compilation unit, CU. We unlink it from the tree
21151 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21152 the caller is responsible for that.
21153 NOTE: DATA is a void * because this function is also used as a
21154 cleanup routine. */
ae038cb0
DJ
21155
21156static void
68dc6402 21157free_heap_comp_unit (void *data)
ae038cb0
DJ
21158{
21159 struct dwarf2_cu *cu = data;
21160
23745b47
DE
21161 gdb_assert (cu->per_cu != NULL);
21162 cu->per_cu->cu = NULL;
ae038cb0
DJ
21163 cu->per_cu = NULL;
21164
21165 obstack_free (&cu->comp_unit_obstack, NULL);
21166
21167 xfree (cu);
21168}
21169
72bf9492 21170/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21171 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21172 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21173
21174static void
21175free_stack_comp_unit (void *data)
21176{
21177 struct dwarf2_cu *cu = data;
21178
23745b47
DE
21179 gdb_assert (cu->per_cu != NULL);
21180 cu->per_cu->cu = NULL;
21181 cu->per_cu = NULL;
21182
72bf9492
DJ
21183 obstack_free (&cu->comp_unit_obstack, NULL);
21184 cu->partial_dies = NULL;
ae038cb0
DJ
21185}
21186
21187/* Free all cached compilation units. */
21188
21189static void
21190free_cached_comp_units (void *data)
21191{
21192 struct dwarf2_per_cu_data *per_cu, **last_chain;
21193
21194 per_cu = dwarf2_per_objfile->read_in_chain;
21195 last_chain = &dwarf2_per_objfile->read_in_chain;
21196 while (per_cu != NULL)
21197 {
21198 struct dwarf2_per_cu_data *next_cu;
21199
21200 next_cu = per_cu->cu->read_in_chain;
21201
68dc6402 21202 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21203 *last_chain = next_cu;
21204
21205 per_cu = next_cu;
21206 }
21207}
21208
21209/* Increase the age counter on each cached compilation unit, and free
21210 any that are too old. */
21211
21212static void
21213age_cached_comp_units (void)
21214{
21215 struct dwarf2_per_cu_data *per_cu, **last_chain;
21216
21217 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21218 per_cu = dwarf2_per_objfile->read_in_chain;
21219 while (per_cu != NULL)
21220 {
21221 per_cu->cu->last_used ++;
21222 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21223 dwarf2_mark (per_cu->cu);
21224 per_cu = per_cu->cu->read_in_chain;
21225 }
21226
21227 per_cu = dwarf2_per_objfile->read_in_chain;
21228 last_chain = &dwarf2_per_objfile->read_in_chain;
21229 while (per_cu != NULL)
21230 {
21231 struct dwarf2_per_cu_data *next_cu;
21232
21233 next_cu = per_cu->cu->read_in_chain;
21234
21235 if (!per_cu->cu->mark)
21236 {
68dc6402 21237 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21238 *last_chain = next_cu;
21239 }
21240 else
21241 last_chain = &per_cu->cu->read_in_chain;
21242
21243 per_cu = next_cu;
21244 }
21245}
21246
21247/* Remove a single compilation unit from the cache. */
21248
21249static void
dee91e82 21250free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21251{
21252 struct dwarf2_per_cu_data *per_cu, **last_chain;
21253
21254 per_cu = dwarf2_per_objfile->read_in_chain;
21255 last_chain = &dwarf2_per_objfile->read_in_chain;
21256 while (per_cu != NULL)
21257 {
21258 struct dwarf2_per_cu_data *next_cu;
21259
21260 next_cu = per_cu->cu->read_in_chain;
21261
dee91e82 21262 if (per_cu == target_per_cu)
ae038cb0 21263 {
68dc6402 21264 free_heap_comp_unit (per_cu->cu);
dee91e82 21265 per_cu->cu = NULL;
ae038cb0
DJ
21266 *last_chain = next_cu;
21267 break;
21268 }
21269 else
21270 last_chain = &per_cu->cu->read_in_chain;
21271
21272 per_cu = next_cu;
21273 }
21274}
21275
fe3e1990
DJ
21276/* Release all extra memory associated with OBJFILE. */
21277
21278void
21279dwarf2_free_objfile (struct objfile *objfile)
21280{
21281 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21282
21283 if (dwarf2_per_objfile == NULL)
21284 return;
21285
21286 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21287 free_cached_comp_units (NULL);
21288
7b9f3c50
DE
21289 if (dwarf2_per_objfile->quick_file_names_table)
21290 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21291
fe3e1990
DJ
21292 /* Everything else should be on the objfile obstack. */
21293}
21294
dee91e82
DE
21295/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21296 We store these in a hash table separate from the DIEs, and preserve them
21297 when the DIEs are flushed out of cache.
21298
21299 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21300 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21301 or the type may come from a DWO file. Furthermore, while it's more logical
21302 to use per_cu->section+offset, with Fission the section with the data is in
21303 the DWO file but we don't know that section at the point we need it.
21304 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21305 because we can enter the lookup routine, get_die_type_at_offset, from
21306 outside this file, and thus won't necessarily have PER_CU->cu.
21307 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21308
dee91e82 21309struct dwarf2_per_cu_offset_and_type
1c379e20 21310{
dee91e82 21311 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21312 sect_offset offset;
1c379e20
DJ
21313 struct type *type;
21314};
21315
dee91e82 21316/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21317
21318static hashval_t
dee91e82 21319per_cu_offset_and_type_hash (const void *item)
1c379e20 21320{
dee91e82 21321 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21322
dee91e82 21323 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21324}
21325
dee91e82 21326/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21327
21328static int
dee91e82 21329per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21330{
dee91e82
DE
21331 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21332 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21333
dee91e82
DE
21334 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21335 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21336}
21337
21338/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21339 table if necessary. For convenience, return TYPE.
21340
21341 The DIEs reading must have careful ordering to:
21342 * Not cause infite loops trying to read in DIEs as a prerequisite for
21343 reading current DIE.
21344 * Not trying to dereference contents of still incompletely read in types
21345 while reading in other DIEs.
21346 * Enable referencing still incompletely read in types just by a pointer to
21347 the type without accessing its fields.
21348
21349 Therefore caller should follow these rules:
21350 * Try to fetch any prerequisite types we may need to build this DIE type
21351 before building the type and calling set_die_type.
e71ec853 21352 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21353 possible before fetching more types to complete the current type.
21354 * Make the type as complete as possible before fetching more types. */
1c379e20 21355
f792889a 21356static struct type *
1c379e20
DJ
21357set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21358{
dee91e82 21359 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21360 struct objfile *objfile = cu->objfile;
1c379e20 21361
b4ba55a1
JB
21362 /* For Ada types, make sure that the gnat-specific data is always
21363 initialized (if not already set). There are a few types where
21364 we should not be doing so, because the type-specific area is
21365 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21366 where the type-specific area is used to store the floatformat).
21367 But this is not a problem, because the gnat-specific information
21368 is actually not needed for these types. */
21369 if (need_gnat_info (cu)
21370 && TYPE_CODE (type) != TYPE_CODE_FUNC
21371 && TYPE_CODE (type) != TYPE_CODE_FLT
21372 && !HAVE_GNAT_AUX_INFO (type))
21373 INIT_GNAT_SPECIFIC (type);
21374
dee91e82 21375 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21376 {
dee91e82
DE
21377 dwarf2_per_objfile->die_type_hash =
21378 htab_create_alloc_ex (127,
21379 per_cu_offset_and_type_hash,
21380 per_cu_offset_and_type_eq,
21381 NULL,
21382 &objfile->objfile_obstack,
21383 hashtab_obstack_allocate,
21384 dummy_obstack_deallocate);
f792889a 21385 }
1c379e20 21386
dee91e82 21387 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21388 ofs.offset = die->offset;
21389 ofs.type = type;
dee91e82
DE
21390 slot = (struct dwarf2_per_cu_offset_and_type **)
21391 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21392 if (*slot)
21393 complaint (&symfile_complaints,
21394 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21395 die->offset.sect_off);
673bfd45 21396 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21397 **slot = ofs;
f792889a 21398 return type;
1c379e20
DJ
21399}
21400
02142a6c
DE
21401/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21402 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21403
21404static struct type *
b64f50a1 21405get_die_type_at_offset (sect_offset offset,
673bfd45 21406 struct dwarf2_per_cu_data *per_cu)
1c379e20 21407{
dee91e82 21408 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21409
dee91e82 21410 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21411 return NULL;
1c379e20 21412
dee91e82 21413 ofs.per_cu = per_cu;
673bfd45 21414 ofs.offset = offset;
dee91e82 21415 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21416 if (slot)
21417 return slot->type;
21418 else
21419 return NULL;
21420}
21421
02142a6c 21422/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21423 or return NULL if DIE does not have a saved type. */
21424
21425static struct type *
21426get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21427{
21428 return get_die_type_at_offset (die->offset, cu->per_cu);
21429}
21430
10b3939b
DJ
21431/* Add a dependence relationship from CU to REF_PER_CU. */
21432
21433static void
21434dwarf2_add_dependence (struct dwarf2_cu *cu,
21435 struct dwarf2_per_cu_data *ref_per_cu)
21436{
21437 void **slot;
21438
21439 if (cu->dependencies == NULL)
21440 cu->dependencies
21441 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21442 NULL, &cu->comp_unit_obstack,
21443 hashtab_obstack_allocate,
21444 dummy_obstack_deallocate);
21445
21446 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21447 if (*slot == NULL)
21448 *slot = ref_per_cu;
21449}
1c379e20 21450
f504f079
DE
21451/* Subroutine of dwarf2_mark to pass to htab_traverse.
21452 Set the mark field in every compilation unit in the
ae038cb0
DJ
21453 cache that we must keep because we are keeping CU. */
21454
10b3939b
DJ
21455static int
21456dwarf2_mark_helper (void **slot, void *data)
21457{
21458 struct dwarf2_per_cu_data *per_cu;
21459
21460 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21461
21462 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21463 reading of the chain. As such dependencies remain valid it is not much
21464 useful to track and undo them during QUIT cleanups. */
21465 if (per_cu->cu == NULL)
21466 return 1;
21467
10b3939b
DJ
21468 if (per_cu->cu->mark)
21469 return 1;
21470 per_cu->cu->mark = 1;
21471
21472 if (per_cu->cu->dependencies != NULL)
21473 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21474
21475 return 1;
21476}
21477
f504f079
DE
21478/* Set the mark field in CU and in every other compilation unit in the
21479 cache that we must keep because we are keeping CU. */
21480
ae038cb0
DJ
21481static void
21482dwarf2_mark (struct dwarf2_cu *cu)
21483{
21484 if (cu->mark)
21485 return;
21486 cu->mark = 1;
10b3939b
DJ
21487 if (cu->dependencies != NULL)
21488 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21489}
21490
21491static void
21492dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21493{
21494 while (per_cu)
21495 {
21496 per_cu->cu->mark = 0;
21497 per_cu = per_cu->cu->read_in_chain;
21498 }
72bf9492
DJ
21499}
21500
72bf9492
DJ
21501/* Trivial hash function for partial_die_info: the hash value of a DIE
21502 is its offset in .debug_info for this objfile. */
21503
21504static hashval_t
21505partial_die_hash (const void *item)
21506{
21507 const struct partial_die_info *part_die = item;
9a619af0 21508
b64f50a1 21509 return part_die->offset.sect_off;
72bf9492
DJ
21510}
21511
21512/* Trivial comparison function for partial_die_info structures: two DIEs
21513 are equal if they have the same offset. */
21514
21515static int
21516partial_die_eq (const void *item_lhs, const void *item_rhs)
21517{
21518 const struct partial_die_info *part_die_lhs = item_lhs;
21519 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21520
b64f50a1 21521 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21522}
21523
ae038cb0
DJ
21524static struct cmd_list_element *set_dwarf2_cmdlist;
21525static struct cmd_list_element *show_dwarf2_cmdlist;
21526
21527static void
21528set_dwarf2_cmd (char *args, int from_tty)
21529{
21530 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21531}
21532
21533static void
21534show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21535{
ae038cb0
DJ
21536 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21537}
21538
4bf44c1c 21539/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21540
21541static void
c1bd65d0 21542dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21543{
21544 struct dwarf2_per_objfile *data = d;
8b70b953 21545 int ix;
8b70b953 21546
626f2d1c
TT
21547 /* Make sure we don't accidentally use dwarf2_per_objfile while
21548 cleaning up. */
21549 dwarf2_per_objfile = NULL;
21550
59b0c7c1
JB
21551 for (ix = 0; ix < data->n_comp_units; ++ix)
21552 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21553
59b0c7c1 21554 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21555 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21556 data->all_type_units[ix]->per_cu.imported_symtabs);
21557 xfree (data->all_type_units);
95554aad 21558
8b70b953 21559 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21560
21561 if (data->dwo_files)
21562 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21563 if (data->dwp_file)
21564 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21565
21566 if (data->dwz_file && data->dwz_file->dwz_bfd)
21567 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21568}
21569
21570\f
ae2de4f8 21571/* The "save gdb-index" command. */
9291a0cd
TT
21572
21573/* The contents of the hash table we create when building the string
21574 table. */
21575struct strtab_entry
21576{
21577 offset_type offset;
21578 const char *str;
21579};
21580
559a7a62
JK
21581/* Hash function for a strtab_entry.
21582
21583 Function is used only during write_hash_table so no index format backward
21584 compatibility is needed. */
b89be57b 21585
9291a0cd
TT
21586static hashval_t
21587hash_strtab_entry (const void *e)
21588{
21589 const struct strtab_entry *entry = e;
559a7a62 21590 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21591}
21592
21593/* Equality function for a strtab_entry. */
b89be57b 21594
9291a0cd
TT
21595static int
21596eq_strtab_entry (const void *a, const void *b)
21597{
21598 const struct strtab_entry *ea = a;
21599 const struct strtab_entry *eb = b;
21600 return !strcmp (ea->str, eb->str);
21601}
21602
21603/* Create a strtab_entry hash table. */
b89be57b 21604
9291a0cd
TT
21605static htab_t
21606create_strtab (void)
21607{
21608 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21609 xfree, xcalloc, xfree);
21610}
21611
21612/* Add a string to the constant pool. Return the string's offset in
21613 host order. */
b89be57b 21614
9291a0cd
TT
21615static offset_type
21616add_string (htab_t table, struct obstack *cpool, const char *str)
21617{
21618 void **slot;
21619 struct strtab_entry entry;
21620 struct strtab_entry *result;
21621
21622 entry.str = str;
21623 slot = htab_find_slot (table, &entry, INSERT);
21624 if (*slot)
21625 result = *slot;
21626 else
21627 {
21628 result = XNEW (struct strtab_entry);
21629 result->offset = obstack_object_size (cpool);
21630 result->str = str;
21631 obstack_grow_str0 (cpool, str);
21632 *slot = result;
21633 }
21634 return result->offset;
21635}
21636
21637/* An entry in the symbol table. */
21638struct symtab_index_entry
21639{
21640 /* The name of the symbol. */
21641 const char *name;
21642 /* The offset of the name in the constant pool. */
21643 offset_type index_offset;
21644 /* A sorted vector of the indices of all the CUs that hold an object
21645 of this name. */
21646 VEC (offset_type) *cu_indices;
21647};
21648
21649/* The symbol table. This is a power-of-2-sized hash table. */
21650struct mapped_symtab
21651{
21652 offset_type n_elements;
21653 offset_type size;
21654 struct symtab_index_entry **data;
21655};
21656
21657/* Hash function for a symtab_index_entry. */
b89be57b 21658
9291a0cd
TT
21659static hashval_t
21660hash_symtab_entry (const void *e)
21661{
21662 const struct symtab_index_entry *entry = e;
21663 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21664 sizeof (offset_type) * VEC_length (offset_type,
21665 entry->cu_indices),
21666 0);
21667}
21668
21669/* Equality function for a symtab_index_entry. */
b89be57b 21670
9291a0cd
TT
21671static int
21672eq_symtab_entry (const void *a, const void *b)
21673{
21674 const struct symtab_index_entry *ea = a;
21675 const struct symtab_index_entry *eb = b;
21676 int len = VEC_length (offset_type, ea->cu_indices);
21677 if (len != VEC_length (offset_type, eb->cu_indices))
21678 return 0;
21679 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21680 VEC_address (offset_type, eb->cu_indices),
21681 sizeof (offset_type) * len);
21682}
21683
21684/* Destroy a symtab_index_entry. */
b89be57b 21685
9291a0cd
TT
21686static void
21687delete_symtab_entry (void *p)
21688{
21689 struct symtab_index_entry *entry = p;
21690 VEC_free (offset_type, entry->cu_indices);
21691 xfree (entry);
21692}
21693
21694/* Create a hash table holding symtab_index_entry objects. */
b89be57b 21695
9291a0cd 21696static htab_t
3876f04e 21697create_symbol_hash_table (void)
9291a0cd
TT
21698{
21699 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21700 delete_symtab_entry, xcalloc, xfree);
21701}
21702
21703/* Create a new mapped symtab object. */
b89be57b 21704
9291a0cd
TT
21705static struct mapped_symtab *
21706create_mapped_symtab (void)
21707{
21708 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21709 symtab->n_elements = 0;
21710 symtab->size = 1024;
21711 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21712 return symtab;
21713}
21714
21715/* Destroy a mapped_symtab. */
b89be57b 21716
9291a0cd
TT
21717static void
21718cleanup_mapped_symtab (void *p)
21719{
21720 struct mapped_symtab *symtab = p;
21721 /* The contents of the array are freed when the other hash table is
21722 destroyed. */
21723 xfree (symtab->data);
21724 xfree (symtab);
21725}
21726
21727/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
21728 the slot.
21729
21730 Function is used only during write_hash_table so no index format backward
21731 compatibility is needed. */
b89be57b 21732
9291a0cd
TT
21733static struct symtab_index_entry **
21734find_slot (struct mapped_symtab *symtab, const char *name)
21735{
559a7a62 21736 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
21737
21738 index = hash & (symtab->size - 1);
21739 step = ((hash * 17) & (symtab->size - 1)) | 1;
21740
21741 for (;;)
21742 {
21743 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21744 return &symtab->data[index];
21745 index = (index + step) & (symtab->size - 1);
21746 }
21747}
21748
21749/* Expand SYMTAB's hash table. */
b89be57b 21750
9291a0cd
TT
21751static void
21752hash_expand (struct mapped_symtab *symtab)
21753{
21754 offset_type old_size = symtab->size;
21755 offset_type i;
21756 struct symtab_index_entry **old_entries = symtab->data;
21757
21758 symtab->size *= 2;
21759 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21760
21761 for (i = 0; i < old_size; ++i)
21762 {
21763 if (old_entries[i])
21764 {
21765 struct symtab_index_entry **slot = find_slot (symtab,
21766 old_entries[i]->name);
21767 *slot = old_entries[i];
21768 }
21769 }
21770
21771 xfree (old_entries);
21772}
21773
156942c7
DE
21774/* Add an entry to SYMTAB. NAME is the name of the symbol.
21775 CU_INDEX is the index of the CU in which the symbol appears.
21776 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 21777
9291a0cd
TT
21778static void
21779add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 21780 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
21781 offset_type cu_index)
21782{
21783 struct symtab_index_entry **slot;
156942c7 21784 offset_type cu_index_and_attrs;
9291a0cd
TT
21785
21786 ++symtab->n_elements;
21787 if (4 * symtab->n_elements / 3 >= symtab->size)
21788 hash_expand (symtab);
21789
21790 slot = find_slot (symtab, name);
21791 if (!*slot)
21792 {
21793 *slot = XNEW (struct symtab_index_entry);
21794 (*slot)->name = name;
156942c7 21795 /* index_offset is set later. */
9291a0cd
TT
21796 (*slot)->cu_indices = NULL;
21797 }
156942c7
DE
21798
21799 cu_index_and_attrs = 0;
21800 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21801 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21802 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21803
21804 /* We don't want to record an index value twice as we want to avoid the
21805 duplication.
21806 We process all global symbols and then all static symbols
21807 (which would allow us to avoid the duplication by only having to check
21808 the last entry pushed), but a symbol could have multiple kinds in one CU.
21809 To keep things simple we don't worry about the duplication here and
21810 sort and uniqufy the list after we've processed all symbols. */
21811 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21812}
21813
21814/* qsort helper routine for uniquify_cu_indices. */
21815
21816static int
21817offset_type_compare (const void *ap, const void *bp)
21818{
21819 offset_type a = *(offset_type *) ap;
21820 offset_type b = *(offset_type *) bp;
21821
21822 return (a > b) - (b > a);
21823}
21824
21825/* Sort and remove duplicates of all symbols' cu_indices lists. */
21826
21827static void
21828uniquify_cu_indices (struct mapped_symtab *symtab)
21829{
21830 int i;
21831
21832 for (i = 0; i < symtab->size; ++i)
21833 {
21834 struct symtab_index_entry *entry = symtab->data[i];
21835
21836 if (entry
21837 && entry->cu_indices != NULL)
21838 {
21839 unsigned int next_to_insert, next_to_check;
21840 offset_type last_value;
21841
21842 qsort (VEC_address (offset_type, entry->cu_indices),
21843 VEC_length (offset_type, entry->cu_indices),
21844 sizeof (offset_type), offset_type_compare);
21845
21846 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21847 next_to_insert = 1;
21848 for (next_to_check = 1;
21849 next_to_check < VEC_length (offset_type, entry->cu_indices);
21850 ++next_to_check)
21851 {
21852 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21853 != last_value)
21854 {
21855 last_value = VEC_index (offset_type, entry->cu_indices,
21856 next_to_check);
21857 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21858 last_value);
21859 ++next_to_insert;
21860 }
21861 }
21862 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21863 }
21864 }
9291a0cd
TT
21865}
21866
21867/* Add a vector of indices to the constant pool. */
b89be57b 21868
9291a0cd 21869static offset_type
3876f04e 21870add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
21871 struct symtab_index_entry *entry)
21872{
21873 void **slot;
21874
3876f04e 21875 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
21876 if (!*slot)
21877 {
21878 offset_type len = VEC_length (offset_type, entry->cu_indices);
21879 offset_type val = MAYBE_SWAP (len);
21880 offset_type iter;
21881 int i;
21882
21883 *slot = entry;
21884 entry->index_offset = obstack_object_size (cpool);
21885
21886 obstack_grow (cpool, &val, sizeof (val));
21887 for (i = 0;
21888 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21889 ++i)
21890 {
21891 val = MAYBE_SWAP (iter);
21892 obstack_grow (cpool, &val, sizeof (val));
21893 }
21894 }
21895 else
21896 {
21897 struct symtab_index_entry *old_entry = *slot;
21898 entry->index_offset = old_entry->index_offset;
21899 entry = old_entry;
21900 }
21901 return entry->index_offset;
21902}
21903
21904/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21905 constant pool entries going into the obstack CPOOL. */
b89be57b 21906
9291a0cd
TT
21907static void
21908write_hash_table (struct mapped_symtab *symtab,
21909 struct obstack *output, struct obstack *cpool)
21910{
21911 offset_type i;
3876f04e 21912 htab_t symbol_hash_table;
9291a0cd
TT
21913 htab_t str_table;
21914
3876f04e 21915 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 21916 str_table = create_strtab ();
3876f04e 21917
9291a0cd
TT
21918 /* We add all the index vectors to the constant pool first, to
21919 ensure alignment is ok. */
21920 for (i = 0; i < symtab->size; ++i)
21921 {
21922 if (symtab->data[i])
3876f04e 21923 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
21924 }
21925
21926 /* Now write out the hash table. */
21927 for (i = 0; i < symtab->size; ++i)
21928 {
21929 offset_type str_off, vec_off;
21930
21931 if (symtab->data[i])
21932 {
21933 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21934 vec_off = symtab->data[i]->index_offset;
21935 }
21936 else
21937 {
21938 /* While 0 is a valid constant pool index, it is not valid
21939 to have 0 for both offsets. */
21940 str_off = 0;
21941 vec_off = 0;
21942 }
21943
21944 str_off = MAYBE_SWAP (str_off);
21945 vec_off = MAYBE_SWAP (vec_off);
21946
21947 obstack_grow (output, &str_off, sizeof (str_off));
21948 obstack_grow (output, &vec_off, sizeof (vec_off));
21949 }
21950
21951 htab_delete (str_table);
3876f04e 21952 htab_delete (symbol_hash_table);
9291a0cd
TT
21953}
21954
0a5429f6
DE
21955/* Struct to map psymtab to CU index in the index file. */
21956struct psymtab_cu_index_map
21957{
21958 struct partial_symtab *psymtab;
21959 unsigned int cu_index;
21960};
21961
21962static hashval_t
21963hash_psymtab_cu_index (const void *item)
21964{
21965 const struct psymtab_cu_index_map *map = item;
21966
21967 return htab_hash_pointer (map->psymtab);
21968}
21969
21970static int
21971eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21972{
21973 const struct psymtab_cu_index_map *lhs = item_lhs;
21974 const struct psymtab_cu_index_map *rhs = item_rhs;
21975
21976 return lhs->psymtab == rhs->psymtab;
21977}
21978
21979/* Helper struct for building the address table. */
21980struct addrmap_index_data
21981{
21982 struct objfile *objfile;
21983 struct obstack *addr_obstack;
21984 htab_t cu_index_htab;
21985
21986 /* Non-zero if the previous_* fields are valid.
21987 We can't write an entry until we see the next entry (since it is only then
21988 that we know the end of the entry). */
21989 int previous_valid;
21990 /* Index of the CU in the table of all CUs in the index file. */
21991 unsigned int previous_cu_index;
0963b4bd 21992 /* Start address of the CU. */
0a5429f6
DE
21993 CORE_ADDR previous_cu_start;
21994};
21995
21996/* Write an address entry to OBSTACK. */
b89be57b 21997
9291a0cd 21998static void
0a5429f6
DE
21999add_address_entry (struct objfile *objfile, struct obstack *obstack,
22000 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22001{
0a5429f6 22002 offset_type cu_index_to_write;
948f8e3d 22003 gdb_byte addr[8];
9291a0cd
TT
22004 CORE_ADDR baseaddr;
22005
22006 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22007
0a5429f6
DE
22008 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22009 obstack_grow (obstack, addr, 8);
22010 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22011 obstack_grow (obstack, addr, 8);
22012 cu_index_to_write = MAYBE_SWAP (cu_index);
22013 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22014}
22015
22016/* Worker function for traversing an addrmap to build the address table. */
22017
22018static int
22019add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22020{
22021 struct addrmap_index_data *data = datap;
22022 struct partial_symtab *pst = obj;
0a5429f6
DE
22023
22024 if (data->previous_valid)
22025 add_address_entry (data->objfile, data->addr_obstack,
22026 data->previous_cu_start, start_addr,
22027 data->previous_cu_index);
22028
22029 data->previous_cu_start = start_addr;
22030 if (pst != NULL)
22031 {
22032 struct psymtab_cu_index_map find_map, *map;
22033 find_map.psymtab = pst;
22034 map = htab_find (data->cu_index_htab, &find_map);
22035 gdb_assert (map != NULL);
22036 data->previous_cu_index = map->cu_index;
22037 data->previous_valid = 1;
22038 }
22039 else
22040 data->previous_valid = 0;
22041
22042 return 0;
22043}
22044
22045/* Write OBJFILE's address map to OBSTACK.
22046 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22047 in the index file. */
22048
22049static void
22050write_address_map (struct objfile *objfile, struct obstack *obstack,
22051 htab_t cu_index_htab)
22052{
22053 struct addrmap_index_data addrmap_index_data;
22054
22055 /* When writing the address table, we have to cope with the fact that
22056 the addrmap iterator only provides the start of a region; we have to
22057 wait until the next invocation to get the start of the next region. */
22058
22059 addrmap_index_data.objfile = objfile;
22060 addrmap_index_data.addr_obstack = obstack;
22061 addrmap_index_data.cu_index_htab = cu_index_htab;
22062 addrmap_index_data.previous_valid = 0;
22063
22064 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22065 &addrmap_index_data);
22066
22067 /* It's highly unlikely the last entry (end address = 0xff...ff)
22068 is valid, but we should still handle it.
22069 The end address is recorded as the start of the next region, but that
22070 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22071 anyway. */
22072 if (addrmap_index_data.previous_valid)
22073 add_address_entry (objfile, obstack,
22074 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22075 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22076}
22077
156942c7
DE
22078/* Return the symbol kind of PSYM. */
22079
22080static gdb_index_symbol_kind
22081symbol_kind (struct partial_symbol *psym)
22082{
22083 domain_enum domain = PSYMBOL_DOMAIN (psym);
22084 enum address_class aclass = PSYMBOL_CLASS (psym);
22085
22086 switch (domain)
22087 {
22088 case VAR_DOMAIN:
22089 switch (aclass)
22090 {
22091 case LOC_BLOCK:
22092 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22093 case LOC_TYPEDEF:
22094 return GDB_INDEX_SYMBOL_KIND_TYPE;
22095 case LOC_COMPUTED:
22096 case LOC_CONST_BYTES:
22097 case LOC_OPTIMIZED_OUT:
22098 case LOC_STATIC:
22099 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22100 case LOC_CONST:
22101 /* Note: It's currently impossible to recognize psyms as enum values
22102 short of reading the type info. For now punt. */
22103 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22104 default:
22105 /* There are other LOC_FOO values that one might want to classify
22106 as variables, but dwarf2read.c doesn't currently use them. */
22107 return GDB_INDEX_SYMBOL_KIND_OTHER;
22108 }
22109 case STRUCT_DOMAIN:
22110 return GDB_INDEX_SYMBOL_KIND_TYPE;
22111 default:
22112 return GDB_INDEX_SYMBOL_KIND_OTHER;
22113 }
22114}
22115
9291a0cd 22116/* Add a list of partial symbols to SYMTAB. */
b89be57b 22117
9291a0cd
TT
22118static void
22119write_psymbols (struct mapped_symtab *symtab,
987d643c 22120 htab_t psyms_seen,
9291a0cd
TT
22121 struct partial_symbol **psymp,
22122 int count,
987d643c
TT
22123 offset_type cu_index,
22124 int is_static)
9291a0cd
TT
22125{
22126 for (; count-- > 0; ++psymp)
22127 {
156942c7
DE
22128 struct partial_symbol *psym = *psymp;
22129 void **slot;
987d643c 22130
156942c7 22131 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22132 error (_("Ada is not currently supported by the index"));
987d643c 22133
987d643c 22134 /* Only add a given psymbol once. */
156942c7 22135 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22136 if (!*slot)
22137 {
156942c7
DE
22138 gdb_index_symbol_kind kind = symbol_kind (psym);
22139
22140 *slot = psym;
22141 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22142 is_static, kind, cu_index);
987d643c 22143 }
9291a0cd
TT
22144 }
22145}
22146
22147/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22148 exception if there is an error. */
b89be57b 22149
9291a0cd
TT
22150static void
22151write_obstack (FILE *file, struct obstack *obstack)
22152{
22153 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22154 file)
22155 != obstack_object_size (obstack))
22156 error (_("couldn't data write to file"));
22157}
22158
22159/* Unlink a file if the argument is not NULL. */
b89be57b 22160
9291a0cd
TT
22161static void
22162unlink_if_set (void *p)
22163{
22164 char **filename = p;
22165 if (*filename)
22166 unlink (*filename);
22167}
22168
1fd400ff
TT
22169/* A helper struct used when iterating over debug_types. */
22170struct signatured_type_index_data
22171{
22172 struct objfile *objfile;
22173 struct mapped_symtab *symtab;
22174 struct obstack *types_list;
987d643c 22175 htab_t psyms_seen;
1fd400ff
TT
22176 int cu_index;
22177};
22178
22179/* A helper function that writes a single signatured_type to an
22180 obstack. */
b89be57b 22181
1fd400ff
TT
22182static int
22183write_one_signatured_type (void **slot, void *d)
22184{
22185 struct signatured_type_index_data *info = d;
22186 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22187 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22188 gdb_byte val[8];
22189
22190 write_psymbols (info->symtab,
987d643c 22191 info->psyms_seen,
3e43a32a
MS
22192 info->objfile->global_psymbols.list
22193 + psymtab->globals_offset,
987d643c
TT
22194 psymtab->n_global_syms, info->cu_index,
22195 0);
1fd400ff 22196 write_psymbols (info->symtab,
987d643c 22197 info->psyms_seen,
3e43a32a
MS
22198 info->objfile->static_psymbols.list
22199 + psymtab->statics_offset,
987d643c
TT
22200 psymtab->n_static_syms, info->cu_index,
22201 1);
1fd400ff 22202
b64f50a1
JK
22203 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22204 entry->per_cu.offset.sect_off);
1fd400ff 22205 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22206 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22207 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22208 obstack_grow (info->types_list, val, 8);
22209 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22210 obstack_grow (info->types_list, val, 8);
22211
22212 ++info->cu_index;
22213
22214 return 1;
22215}
22216
95554aad
TT
22217/* Recurse into all "included" dependencies and write their symbols as
22218 if they appeared in this psymtab. */
22219
22220static void
22221recursively_write_psymbols (struct objfile *objfile,
22222 struct partial_symtab *psymtab,
22223 struct mapped_symtab *symtab,
22224 htab_t psyms_seen,
22225 offset_type cu_index)
22226{
22227 int i;
22228
22229 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22230 if (psymtab->dependencies[i]->user != NULL)
22231 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22232 symtab, psyms_seen, cu_index);
22233
22234 write_psymbols (symtab,
22235 psyms_seen,
22236 objfile->global_psymbols.list + psymtab->globals_offset,
22237 psymtab->n_global_syms, cu_index,
22238 0);
22239 write_psymbols (symtab,
22240 psyms_seen,
22241 objfile->static_psymbols.list + psymtab->statics_offset,
22242 psymtab->n_static_syms, cu_index,
22243 1);
22244}
22245
9291a0cd 22246/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22247
9291a0cd
TT
22248static void
22249write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22250{
22251 struct cleanup *cleanup;
22252 char *filename, *cleanup_filename;
1fd400ff
TT
22253 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22254 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22255 int i;
22256 FILE *out_file;
22257 struct mapped_symtab *symtab;
22258 offset_type val, size_of_contents, total_len;
22259 struct stat st;
987d643c 22260 htab_t psyms_seen;
0a5429f6
DE
22261 htab_t cu_index_htab;
22262 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22263
9291a0cd
TT
22264 if (dwarf2_per_objfile->using_index)
22265 error (_("Cannot use an index to create the index"));
22266
8b70b953
TT
22267 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22268 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22269
260b681b
DE
22270 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22271 return;
22272
4262abfb
JK
22273 if (stat (objfile_name (objfile), &st) < 0)
22274 perror_with_name (objfile_name (objfile));
9291a0cd 22275
4262abfb 22276 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22277 INDEX_SUFFIX, (char *) NULL);
22278 cleanup = make_cleanup (xfree, filename);
22279
614c279d 22280 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22281 if (!out_file)
22282 error (_("Can't open `%s' for writing"), filename);
22283
22284 cleanup_filename = filename;
22285 make_cleanup (unlink_if_set, &cleanup_filename);
22286
22287 symtab = create_mapped_symtab ();
22288 make_cleanup (cleanup_mapped_symtab, symtab);
22289
22290 obstack_init (&addr_obstack);
22291 make_cleanup_obstack_free (&addr_obstack);
22292
22293 obstack_init (&cu_list);
22294 make_cleanup_obstack_free (&cu_list);
22295
1fd400ff
TT
22296 obstack_init (&types_cu_list);
22297 make_cleanup_obstack_free (&types_cu_list);
22298
987d643c
TT
22299 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22300 NULL, xcalloc, xfree);
96408a79 22301 make_cleanup_htab_delete (psyms_seen);
987d643c 22302
0a5429f6
DE
22303 /* While we're scanning CU's create a table that maps a psymtab pointer
22304 (which is what addrmap records) to its index (which is what is recorded
22305 in the index file). This will later be needed to write the address
22306 table. */
22307 cu_index_htab = htab_create_alloc (100,
22308 hash_psymtab_cu_index,
22309 eq_psymtab_cu_index,
22310 NULL, xcalloc, xfree);
96408a79 22311 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22312 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22313 xmalloc (sizeof (struct psymtab_cu_index_map)
22314 * dwarf2_per_objfile->n_comp_units);
22315 make_cleanup (xfree, psymtab_cu_index_map);
22316
22317 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22318 work here. Also, the debug_types entries do not appear in
22319 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22320 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22321 {
3e43a32a
MS
22322 struct dwarf2_per_cu_data *per_cu
22323 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22324 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22325 gdb_byte val[8];
0a5429f6
DE
22326 struct psymtab_cu_index_map *map;
22327 void **slot;
9291a0cd 22328
92fac807
JK
22329 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22330 It may be referenced from a local scope but in such case it does not
22331 need to be present in .gdb_index. */
22332 if (psymtab == NULL)
22333 continue;
22334
95554aad
TT
22335 if (psymtab->user == NULL)
22336 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22337
0a5429f6
DE
22338 map = &psymtab_cu_index_map[i];
22339 map->psymtab = psymtab;
22340 map->cu_index = i;
22341 slot = htab_find_slot (cu_index_htab, map, INSERT);
22342 gdb_assert (slot != NULL);
22343 gdb_assert (*slot == NULL);
22344 *slot = map;
9291a0cd 22345
b64f50a1
JK
22346 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22347 per_cu->offset.sect_off);
9291a0cd 22348 obstack_grow (&cu_list, val, 8);
e254ef6a 22349 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22350 obstack_grow (&cu_list, val, 8);
22351 }
22352
0a5429f6
DE
22353 /* Dump the address map. */
22354 write_address_map (objfile, &addr_obstack, cu_index_htab);
22355
1fd400ff
TT
22356 /* Write out the .debug_type entries, if any. */
22357 if (dwarf2_per_objfile->signatured_types)
22358 {
22359 struct signatured_type_index_data sig_data;
22360
22361 sig_data.objfile = objfile;
22362 sig_data.symtab = symtab;
22363 sig_data.types_list = &types_cu_list;
987d643c 22364 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22365 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22366 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22367 write_one_signatured_type, &sig_data);
22368 }
22369
156942c7
DE
22370 /* Now that we've processed all symbols we can shrink their cu_indices
22371 lists. */
22372 uniquify_cu_indices (symtab);
22373
9291a0cd
TT
22374 obstack_init (&constant_pool);
22375 make_cleanup_obstack_free (&constant_pool);
22376 obstack_init (&symtab_obstack);
22377 make_cleanup_obstack_free (&symtab_obstack);
22378 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22379
22380 obstack_init (&contents);
22381 make_cleanup_obstack_free (&contents);
1fd400ff 22382 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22383 total_len = size_of_contents;
22384
22385 /* The version number. */
796a7ff8 22386 val = MAYBE_SWAP (8);
9291a0cd
TT
22387 obstack_grow (&contents, &val, sizeof (val));
22388
22389 /* The offset of the CU list from the start of the file. */
22390 val = MAYBE_SWAP (total_len);
22391 obstack_grow (&contents, &val, sizeof (val));
22392 total_len += obstack_object_size (&cu_list);
22393
1fd400ff
TT
22394 /* The offset of the types CU list from the start of the file. */
22395 val = MAYBE_SWAP (total_len);
22396 obstack_grow (&contents, &val, sizeof (val));
22397 total_len += obstack_object_size (&types_cu_list);
22398
9291a0cd
TT
22399 /* The offset of the address table from the start of the file. */
22400 val = MAYBE_SWAP (total_len);
22401 obstack_grow (&contents, &val, sizeof (val));
22402 total_len += obstack_object_size (&addr_obstack);
22403
22404 /* The offset of the symbol table from the start of the file. */
22405 val = MAYBE_SWAP (total_len);
22406 obstack_grow (&contents, &val, sizeof (val));
22407 total_len += obstack_object_size (&symtab_obstack);
22408
22409 /* The offset of the constant pool from the start of the file. */
22410 val = MAYBE_SWAP (total_len);
22411 obstack_grow (&contents, &val, sizeof (val));
22412 total_len += obstack_object_size (&constant_pool);
22413
22414 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22415
22416 write_obstack (out_file, &contents);
22417 write_obstack (out_file, &cu_list);
1fd400ff 22418 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22419 write_obstack (out_file, &addr_obstack);
22420 write_obstack (out_file, &symtab_obstack);
22421 write_obstack (out_file, &constant_pool);
22422
22423 fclose (out_file);
22424
22425 /* We want to keep the file, so we set cleanup_filename to NULL
22426 here. See unlink_if_set. */
22427 cleanup_filename = NULL;
22428
22429 do_cleanups (cleanup);
22430}
22431
90476074
TT
22432/* Implementation of the `save gdb-index' command.
22433
22434 Note that the file format used by this command is documented in the
22435 GDB manual. Any changes here must be documented there. */
11570e71 22436
9291a0cd
TT
22437static void
22438save_gdb_index_command (char *arg, int from_tty)
22439{
22440 struct objfile *objfile;
22441
22442 if (!arg || !*arg)
96d19272 22443 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22444
22445 ALL_OBJFILES (objfile)
22446 {
22447 struct stat st;
22448
22449 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22450 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22451 continue;
22452
22453 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22454 if (dwarf2_per_objfile)
22455 {
22456 volatile struct gdb_exception except;
22457
22458 TRY_CATCH (except, RETURN_MASK_ERROR)
22459 {
22460 write_psymtabs_to_index (objfile, arg);
22461 }
22462 if (except.reason < 0)
22463 exception_fprintf (gdb_stderr, except,
22464 _("Error while writing index for `%s': "),
4262abfb 22465 objfile_name (objfile));
9291a0cd
TT
22466 }
22467 }
dce234bc
PP
22468}
22469
9291a0cd
TT
22470\f
22471
9eae7c52
TT
22472int dwarf2_always_disassemble;
22473
22474static void
22475show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22476 struct cmd_list_element *c, const char *value)
22477{
3e43a32a
MS
22478 fprintf_filtered (file,
22479 _("Whether to always disassemble "
22480 "DWARF expressions is %s.\n"),
9eae7c52
TT
22481 value);
22482}
22483
900e11f9
JK
22484static void
22485show_check_physname (struct ui_file *file, int from_tty,
22486 struct cmd_list_element *c, const char *value)
22487{
22488 fprintf_filtered (file,
22489 _("Whether to check \"physname\" is %s.\n"),
22490 value);
22491}
22492
6502dd73
DJ
22493void _initialize_dwarf2_read (void);
22494
22495void
22496_initialize_dwarf2_read (void)
22497{
96d19272
JK
22498 struct cmd_list_element *c;
22499
dce234bc 22500 dwarf2_objfile_data_key
c1bd65d0 22501 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22502
1bedd215
AC
22503 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22504Set DWARF 2 specific variables.\n\
22505Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22506 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22507 0/*allow-unknown*/, &maintenance_set_cmdlist);
22508
1bedd215
AC
22509 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22510Show DWARF 2 specific variables\n\
22511Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22512 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22513 0/*allow-unknown*/, &maintenance_show_cmdlist);
22514
22515 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22516 &dwarf2_max_cache_age, _("\
22517Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22518Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22519A higher limit means that cached compilation units will be stored\n\
22520in memory longer, and more total memory will be used. Zero disables\n\
22521caching, which can slow down startup."),
2c5b56ce 22522 NULL,
920d2a44 22523 show_dwarf2_max_cache_age,
2c5b56ce 22524 &set_dwarf2_cmdlist,
ae038cb0 22525 &show_dwarf2_cmdlist);
d97bc12b 22526
9eae7c52
TT
22527 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22528 &dwarf2_always_disassemble, _("\
22529Set whether `info address' always disassembles DWARF expressions."), _("\
22530Show whether `info address' always disassembles DWARF expressions."), _("\
22531When enabled, DWARF expressions are always printed in an assembly-like\n\
22532syntax. When disabled, expressions will be printed in a more\n\
22533conversational style, when possible."),
22534 NULL,
22535 show_dwarf2_always_disassemble,
22536 &set_dwarf2_cmdlist,
22537 &show_dwarf2_cmdlist);
22538
73be47f5 22539 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22540Set debugging of the dwarf2 reader."), _("\
22541Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22542When enabled (non-zero), debugging messages are printed during dwarf2\n\
22543reading and symtab expansion. A value of 1 (one) provides basic\n\
22544information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22545 NULL,
22546 NULL,
22547 &setdebuglist, &showdebuglist);
22548
ccce17b0 22549 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22550Set debugging of the dwarf2 DIE reader."), _("\
22551Show debugging of the dwarf2 DIE reader."), _("\
22552When enabled (non-zero), DIEs are dumped after they are read in.\n\
22553The value is the maximum depth to print."),
ccce17b0
YQ
22554 NULL,
22555 NULL,
22556 &setdebuglist, &showdebuglist);
9291a0cd 22557
900e11f9
JK
22558 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22559Set cross-checking of \"physname\" code against demangler."), _("\
22560Show cross-checking of \"physname\" code against demangler."), _("\
22561When enabled, GDB's internal \"physname\" code is checked against\n\
22562the demangler."),
22563 NULL, show_check_physname,
22564 &setdebuglist, &showdebuglist);
22565
e615022a
DE
22566 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22567 no_class, &use_deprecated_index_sections, _("\
22568Set whether to use deprecated gdb_index sections."), _("\
22569Show whether to use deprecated gdb_index sections."), _("\
22570When enabled, deprecated .gdb_index sections are used anyway.\n\
22571Normally they are ignored either because of a missing feature or\n\
22572performance issue.\n\
22573Warning: This option must be enabled before gdb reads the file."),
22574 NULL,
22575 NULL,
22576 &setlist, &showlist);
22577
96d19272 22578 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22579 _("\
fc1a9d6e 22580Save a gdb-index file.\n\
11570e71 22581Usage: save gdb-index DIRECTORY"),
96d19272
JK
22582 &save_cmdlist);
22583 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22584
22585 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22586 &dwarf2_locexpr_funcs);
22587 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22588 &dwarf2_loclist_funcs);
22589
22590 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22591 &dwarf2_block_frame_base_locexpr_funcs);
22592 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22593 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22594}
This page took 3.467279 seconds and 4 git commands to generate.