Add end_psymtab_common, have all debug info readers call it.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
73869dc2
DE
127 asection *asection;
128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.asection and s.containing_section to use. */
143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
05cf31d1
JB
1527static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1528 struct dwarf2_cu *cu);
1529
e142c38c 1530static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1531
e142c38c 1532static struct die_info *die_specification (struct die_info *die,
f2f0e013 1533 struct dwarf2_cu **);
63d06c5c 1534
debd256d
JB
1535static void free_line_header (struct line_header *lh);
1536
3019eac3
DE
1537static struct line_header *dwarf_decode_line_header (unsigned int offset,
1538 struct dwarf2_cu *cu);
debd256d 1539
f3f5162e 1540static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1541 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1542 CORE_ADDR, int decode_mapping);
c906108c 1543
4d663531 1544static void dwarf2_start_subfile (const char *, const char *);
c906108c 1545
43f3e411
DE
1546static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1547 const char *, const char *,
1548 CORE_ADDR);
f4dc4d17 1549
a14ed312 1550static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1551 struct dwarf2_cu *);
c906108c 1552
34eaf542
TT
1553static struct symbol *new_symbol_full (struct die_info *, struct type *,
1554 struct dwarf2_cu *, struct symbol *);
1555
ff39bb5e 1556static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1557 struct dwarf2_cu *);
c906108c 1558
ff39bb5e 1559static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1560 struct type *type,
1561 const char *name,
1562 struct obstack *obstack,
12df843f 1563 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1564 const gdb_byte **bytes,
98bfdba5 1565 struct dwarf2_locexpr_baton **baton);
2df3850c 1566
e7c27a73 1567static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1568
b4ba55a1
JB
1569static int need_gnat_info (struct dwarf2_cu *);
1570
3e43a32a
MS
1571static struct type *die_descriptive_type (struct die_info *,
1572 struct dwarf2_cu *);
b4ba55a1
JB
1573
1574static void set_descriptive_type (struct type *, struct die_info *,
1575 struct dwarf2_cu *);
1576
e7c27a73
DJ
1577static struct type *die_containing_type (struct die_info *,
1578 struct dwarf2_cu *);
c906108c 1579
ff39bb5e 1580static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1581 struct dwarf2_cu *);
c906108c 1582
f792889a 1583static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1584
673bfd45
DE
1585static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1586
0d5cff50 1587static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1588
6e70227d 1589static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1590 const char *suffix, int physname,
1591 struct dwarf2_cu *cu);
63d06c5c 1592
e7c27a73 1593static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1594
348e048f
DE
1595static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1596
e7c27a73 1597static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1598
e7c27a73 1599static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1600
96408a79
SA
1601static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1602
ff013f42
JK
1603static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1604 struct dwarf2_cu *, struct partial_symtab *);
1605
a14ed312 1606static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1607 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1608 struct partial_symtab *);
c906108c 1609
fae299cd
DC
1610static void get_scope_pc_bounds (struct die_info *,
1611 CORE_ADDR *, CORE_ADDR *,
1612 struct dwarf2_cu *);
1613
801e3a5b
JB
1614static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1615 CORE_ADDR, struct dwarf2_cu *);
1616
a14ed312 1617static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1618 struct dwarf2_cu *);
c906108c 1619
a14ed312 1620static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1621 struct type *, struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1624 struct die_info *, struct type *,
e7c27a73 1625 struct dwarf2_cu *);
c906108c 1626
a14ed312 1627static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1628 struct type *,
1629 struct dwarf2_cu *);
c906108c 1630
134d01f1 1631static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1632
e7c27a73 1633static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1634
e7c27a73 1635static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1636
5d7cb8df
JK
1637static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1638
22cee43f
PMR
1639static struct using_direct **using_directives (enum language);
1640
27aa8d6a
SW
1641static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1642
74921315
KS
1643static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1644
f55ee35c
JK
1645static struct type *read_module_type (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
38d518c9 1648static const char *namespace_name (struct die_info *die,
e142c38c 1649 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1650
134d01f1 1651static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1652
e7c27a73 1653static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1654
6e70227d 1655static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1656 struct dwarf2_cu *);
1657
bf6af496 1658static struct die_info *read_die_and_siblings_1
d521ce57 1659 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1660 struct die_info *);
639d11d3 1661
dee91e82 1662static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1663 const gdb_byte *info_ptr,
1664 const gdb_byte **new_info_ptr,
639d11d3
DC
1665 struct die_info *parent);
1666
d521ce57
TT
1667static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1668 struct die_info **, const gdb_byte *,
1669 int *, int);
3019eac3 1670
d521ce57
TT
1671static const gdb_byte *read_full_die (const struct die_reader_specs *,
1672 struct die_info **, const gdb_byte *,
1673 int *);
93311388 1674
e7c27a73 1675static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1676
15d034d0
TT
1677static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1678 struct obstack *);
71c25dea 1679
15d034d0 1680static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1681
15d034d0 1682static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1683 struct die_info *die,
1684 struct dwarf2_cu *cu);
1685
ca69b9e6
DE
1686static const char *dwarf2_physname (const char *name, struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
e142c38c 1689static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1690 struct dwarf2_cu **);
9219021c 1691
f39c6ffd 1692static const char *dwarf_tag_name (unsigned int);
c906108c 1693
f39c6ffd 1694static const char *dwarf_attr_name (unsigned int);
c906108c 1695
f39c6ffd 1696static const char *dwarf_form_name (unsigned int);
c906108c 1697
a14ed312 1698static char *dwarf_bool_name (unsigned int);
c906108c 1699
f39c6ffd 1700static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1701
f9aca02d 1702static struct die_info *sibling_die (struct die_info *);
c906108c 1703
d97bc12b
DE
1704static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1705
1706static void dump_die_for_error (struct die_info *);
1707
1708static void dump_die_1 (struct ui_file *, int level, int max_level,
1709 struct die_info *);
c906108c 1710
d97bc12b 1711/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1712
51545339 1713static void store_in_ref_table (struct die_info *,
10b3939b 1714 struct dwarf2_cu *);
c906108c 1715
ff39bb5e 1716static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1717
ff39bb5e 1718static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1719
348e048f 1720static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1721 const struct attribute *,
348e048f
DE
1722 struct dwarf2_cu **);
1723
10b3939b 1724static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1725 const struct attribute *,
f2f0e013 1726 struct dwarf2_cu **);
c906108c 1727
348e048f 1728static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1729 const struct attribute *,
348e048f
DE
1730 struct dwarf2_cu **);
1731
ac9ec31b
DE
1732static struct type *get_signatured_type (struct die_info *, ULONGEST,
1733 struct dwarf2_cu *);
1734
1735static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1736 const struct attribute *,
ac9ec31b
DE
1737 struct dwarf2_cu *);
1738
e5fe5e75 1739static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1740
52dc124a 1741static void read_signatured_type (struct signatured_type *);
348e048f 1742
c906108c
SS
1743/* memory allocation interface */
1744
7b5a2f43 1745static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1746
b60c80d6 1747static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1748
43f3e411 1749static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1750
6e5a29e1 1751static int attr_form_is_block (const struct attribute *);
8e19ed76 1752
6e5a29e1 1753static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1754
6e5a29e1 1755static int attr_form_is_constant (const struct attribute *);
3690dd37 1756
6e5a29e1 1757static int attr_form_is_ref (const struct attribute *);
7771576e 1758
8cf6f0b1
TT
1759static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1760 struct dwarf2_loclist_baton *baton,
ff39bb5e 1761 const struct attribute *attr);
8cf6f0b1 1762
ff39bb5e 1763static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1764 struct symbol *sym,
f1e6e072
TT
1765 struct dwarf2_cu *cu,
1766 int is_block);
4c2df51b 1767
d521ce57
TT
1768static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1769 const gdb_byte *info_ptr,
1770 struct abbrev_info *abbrev);
4bb7a0a7 1771
72bf9492
DJ
1772static void free_stack_comp_unit (void *);
1773
72bf9492
DJ
1774static hashval_t partial_die_hash (const void *item);
1775
1776static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1777
ae038cb0 1778static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1779 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1780
9816fde3 1781static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1782 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1783
1784static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1785 struct die_info *comp_unit_die,
1786 enum language pretend_language);
93311388 1787
68dc6402 1788static void free_heap_comp_unit (void *);
ae038cb0
DJ
1789
1790static void free_cached_comp_units (void *);
1791
1792static void age_cached_comp_units (void);
1793
dee91e82 1794static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1795
f792889a
DJ
1796static struct type *set_die_type (struct die_info *, struct type *,
1797 struct dwarf2_cu *);
1c379e20 1798
ae038cb0
DJ
1799static void create_all_comp_units (struct objfile *);
1800
0e50663e 1801static int create_all_type_units (struct objfile *);
1fd400ff 1802
95554aad
TT
1803static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1804 enum language);
10b3939b 1805
95554aad
TT
1806static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1807 enum language);
10b3939b 1808
f4dc4d17
DE
1809static void process_full_type_unit (struct dwarf2_per_cu_data *,
1810 enum language);
1811
10b3939b
DJ
1812static void dwarf2_add_dependence (struct dwarf2_cu *,
1813 struct dwarf2_per_cu_data *);
1814
ae038cb0
DJ
1815static void dwarf2_mark (struct dwarf2_cu *);
1816
1817static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1818
b64f50a1 1819static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1820 struct dwarf2_per_cu_data *);
673bfd45 1821
f792889a 1822static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1823
9291a0cd
TT
1824static void dwarf2_release_queue (void *dummy);
1825
95554aad
TT
1826static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1827 enum language pretend_language);
1828
a0f42c21 1829static void process_queue (void);
9291a0cd
TT
1830
1831static void find_file_and_directory (struct die_info *die,
1832 struct dwarf2_cu *cu,
15d034d0 1833 const char **name, const char **comp_dir);
9291a0cd
TT
1834
1835static char *file_full_name (int file, struct line_header *lh,
1836 const char *comp_dir);
1837
d521ce57 1838static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1839 (struct comp_unit_head *header,
1840 struct dwarf2_section_info *section,
d521ce57 1841 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1842 int is_debug_types_section);
1843
fd820528 1844static void init_cutu_and_read_dies
f4dc4d17
DE
1845 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1846 int use_existing_cu, int keep,
3019eac3
DE
1847 die_reader_func_ftype *die_reader_func, void *data);
1848
dee91e82
DE
1849static void init_cutu_and_read_dies_simple
1850 (struct dwarf2_per_cu_data *this_cu,
1851 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1852
673bfd45 1853static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1854
3019eac3
DE
1855static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1856
57d63ce2
DE
1857static struct dwo_unit *lookup_dwo_unit_in_dwp
1858 (struct dwp_file *dwp_file, const char *comp_dir,
1859 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1860
1861static struct dwp_file *get_dwp_file (void);
1862
3019eac3 1863static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1864 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1865
1866static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1867 (struct signatured_type *, const char *, const char *);
3019eac3 1868
89e63ee4
DE
1869static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1870
3019eac3
DE
1871static void free_dwo_file_cleanup (void *);
1872
95554aad
TT
1873static void process_cu_includes (void);
1874
1b80a9fa 1875static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1876
1877static void free_line_header_voidp (void *arg);
4390d890
DE
1878\f
1879/* Various complaints about symbol reading that don't abort the process. */
1880
1881static void
1882dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1883{
1884 complaint (&symfile_complaints,
1885 _("statement list doesn't fit in .debug_line section"));
1886}
1887
1888static void
1889dwarf2_debug_line_missing_file_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line data without a file"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_end_sequence_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line "
1900 "program sequence without an end"));
1901}
1902
1903static void
1904dwarf2_complex_location_expr_complaint (void)
1905{
1906 complaint (&symfile_complaints, _("location expression too complex"));
1907}
1908
1909static void
1910dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1911 int arg3)
1912{
1913 complaint (&symfile_complaints,
1914 _("const value length mismatch for '%s', got %d, expected %d"),
1915 arg1, arg2, arg3);
1916}
1917
1918static void
1919dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1920{
1921 complaint (&symfile_complaints,
1922 _("debug info runs off end of %s section"
1923 " [in module %s]"),
a32a8923
DE
1924 get_section_name (section),
1925 get_section_file_name (section));
4390d890 1926}
1b80a9fa 1927
4390d890
DE
1928static void
1929dwarf2_macro_malformed_definition_complaint (const char *arg1)
1930{
1931 complaint (&symfile_complaints,
1932 _("macro debug info contains a "
1933 "malformed macro definition:\n`%s'"),
1934 arg1);
1935}
1936
1937static void
1938dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1939{
1940 complaint (&symfile_complaints,
1941 _("invalid attribute class or form for '%s' in '%s'"),
1942 arg1, arg2);
1943}
527f3840
JK
1944
1945/* Hash function for line_header_hash. */
1946
1947static hashval_t
1948line_header_hash (const struct line_header *ofs)
1949{
1950 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1951}
1952
1953/* Hash function for htab_create_alloc_ex for line_header_hash. */
1954
1955static hashval_t
1956line_header_hash_voidp (const void *item)
1957{
1958 const struct line_header *ofs = item;
1959
1960 return line_header_hash (ofs);
1961}
1962
1963/* Equality function for line_header_hash. */
1964
1965static int
1966line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1967{
1968 const struct line_header *ofs_lhs = item_lhs;
1969 const struct line_header *ofs_rhs = item_rhs;
1970
1971 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1972 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1973}
1974
4390d890 1975\f
9291a0cd
TT
1976#if WORDS_BIGENDIAN
1977
1978/* Convert VALUE between big- and little-endian. */
1979static offset_type
1980byte_swap (offset_type value)
1981{
1982 offset_type result;
1983
1984 result = (value & 0xff) << 24;
1985 result |= (value & 0xff00) << 8;
1986 result |= (value & 0xff0000) >> 8;
1987 result |= (value & 0xff000000) >> 24;
1988 return result;
1989}
1990
1991#define MAYBE_SWAP(V) byte_swap (V)
1992
1993#else
1994#define MAYBE_SWAP(V) (V)
1995#endif /* WORDS_BIGENDIAN */
1996
31aa7e4e
JB
1997/* Read the given attribute value as an address, taking the attribute's
1998 form into account. */
1999
2000static CORE_ADDR
2001attr_value_as_address (struct attribute *attr)
2002{
2003 CORE_ADDR addr;
2004
2005 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2006 {
2007 /* Aside from a few clearly defined exceptions, attributes that
2008 contain an address must always be in DW_FORM_addr form.
2009 Unfortunately, some compilers happen to be violating this
2010 requirement by encoding addresses using other forms, such
2011 as DW_FORM_data4 for example. For those broken compilers,
2012 we try to do our best, without any guarantee of success,
2013 to interpret the address correctly. It would also be nice
2014 to generate a complaint, but that would require us to maintain
2015 a list of legitimate cases where a non-address form is allowed,
2016 as well as update callers to pass in at least the CU's DWARF
2017 version. This is more overhead than what we're willing to
2018 expand for a pretty rare case. */
2019 addr = DW_UNSND (attr);
2020 }
2021 else
2022 addr = DW_ADDR (attr);
2023
2024 return addr;
2025}
2026
9291a0cd
TT
2027/* The suffix for an index file. */
2028#define INDEX_SUFFIX ".gdb-index"
2029
c906108c 2030/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2031 information and return true if we have enough to do something.
2032 NAMES points to the dwarf2 section names, or is NULL if the standard
2033 ELF names are used. */
c906108c
SS
2034
2035int
251d32d9
TG
2036dwarf2_has_info (struct objfile *objfile,
2037 const struct dwarf2_debug_sections *names)
c906108c 2038{
be391dca
TT
2039 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2040 if (!dwarf2_per_objfile)
2041 {
2042 /* Initialize per-objfile state. */
2043 struct dwarf2_per_objfile *data
2044 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 2045
be391dca
TT
2046 memset (data, 0, sizeof (*data));
2047 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2048 dwarf2_per_objfile = data;
6502dd73 2049
251d32d9
TG
2050 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2051 (void *) names);
be391dca
TT
2052 dwarf2_per_objfile->objfile = objfile;
2053 }
73869dc2
DE
2054 return (!dwarf2_per_objfile->info.is_virtual
2055 && dwarf2_per_objfile->info.s.asection != NULL
2056 && !dwarf2_per_objfile->abbrev.is_virtual
2057 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2058}
2059
2060/* Return the containing section of virtual section SECTION. */
2061
2062static struct dwarf2_section_info *
2063get_containing_section (const struct dwarf2_section_info *section)
2064{
2065 gdb_assert (section->is_virtual);
2066 return section->s.containing_section;
c906108c
SS
2067}
2068
a32a8923
DE
2069/* Return the bfd owner of SECTION. */
2070
2071static struct bfd *
2072get_section_bfd_owner (const struct dwarf2_section_info *section)
2073{
73869dc2
DE
2074 if (section->is_virtual)
2075 {
2076 section = get_containing_section (section);
2077 gdb_assert (!section->is_virtual);
2078 }
2079 return section->s.asection->owner;
a32a8923
DE
2080}
2081
2082/* Return the bfd section of SECTION.
2083 Returns NULL if the section is not present. */
2084
2085static asection *
2086get_section_bfd_section (const struct dwarf2_section_info *section)
2087{
73869dc2
DE
2088 if (section->is_virtual)
2089 {
2090 section = get_containing_section (section);
2091 gdb_assert (!section->is_virtual);
2092 }
2093 return section->s.asection;
a32a8923
DE
2094}
2095
2096/* Return the name of SECTION. */
2097
2098static const char *
2099get_section_name (const struct dwarf2_section_info *section)
2100{
2101 asection *sectp = get_section_bfd_section (section);
2102
2103 gdb_assert (sectp != NULL);
2104 return bfd_section_name (get_section_bfd_owner (section), sectp);
2105}
2106
2107/* Return the name of the file SECTION is in. */
2108
2109static const char *
2110get_section_file_name (const struct dwarf2_section_info *section)
2111{
2112 bfd *abfd = get_section_bfd_owner (section);
2113
2114 return bfd_get_filename (abfd);
2115}
2116
2117/* Return the id of SECTION.
2118 Returns 0 if SECTION doesn't exist. */
2119
2120static int
2121get_section_id (const struct dwarf2_section_info *section)
2122{
2123 asection *sectp = get_section_bfd_section (section);
2124
2125 if (sectp == NULL)
2126 return 0;
2127 return sectp->id;
2128}
2129
2130/* Return the flags of SECTION.
73869dc2 2131 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2132
2133static int
2134get_section_flags (const struct dwarf2_section_info *section)
2135{
2136 asection *sectp = get_section_bfd_section (section);
2137
2138 gdb_assert (sectp != NULL);
2139 return bfd_get_section_flags (sectp->owner, sectp);
2140}
2141
251d32d9
TG
2142/* When loading sections, we look either for uncompressed section or for
2143 compressed section names. */
233a11ab
CS
2144
2145static int
251d32d9
TG
2146section_is_p (const char *section_name,
2147 const struct dwarf2_section_names *names)
233a11ab 2148{
251d32d9
TG
2149 if (names->normal != NULL
2150 && strcmp (section_name, names->normal) == 0)
2151 return 1;
2152 if (names->compressed != NULL
2153 && strcmp (section_name, names->compressed) == 0)
2154 return 1;
2155 return 0;
233a11ab
CS
2156}
2157
c906108c
SS
2158/* This function is mapped across the sections and remembers the
2159 offset and size of each of the debugging sections we are interested
2160 in. */
2161
2162static void
251d32d9 2163dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2164{
251d32d9 2165 const struct dwarf2_debug_sections *names;
dc7650b8 2166 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2167
2168 if (vnames == NULL)
2169 names = &dwarf2_elf_names;
2170 else
2171 names = (const struct dwarf2_debug_sections *) vnames;
2172
dc7650b8
JK
2173 if ((aflag & SEC_HAS_CONTENTS) == 0)
2174 {
2175 }
2176 else if (section_is_p (sectp->name, &names->info))
c906108c 2177 {
73869dc2 2178 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2179 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2180 }
251d32d9 2181 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2182 {
73869dc2 2183 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2184 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2185 }
251d32d9 2186 else if (section_is_p (sectp->name, &names->line))
c906108c 2187 {
73869dc2 2188 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2189 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2190 }
251d32d9 2191 else if (section_is_p (sectp->name, &names->loc))
c906108c 2192 {
73869dc2 2193 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2194 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2195 }
251d32d9 2196 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2197 {
73869dc2 2198 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2199 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2200 }
cf2c3c16
TT
2201 else if (section_is_p (sectp->name, &names->macro))
2202 {
73869dc2 2203 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2204 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2205 }
251d32d9 2206 else if (section_is_p (sectp->name, &names->str))
c906108c 2207 {
73869dc2 2208 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2209 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2210 }
3019eac3
DE
2211 else if (section_is_p (sectp->name, &names->addr))
2212 {
73869dc2 2213 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2214 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2215 }
251d32d9 2216 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2217 {
73869dc2 2218 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2219 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2220 }
251d32d9 2221 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2222 {
73869dc2 2223 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2224 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2225 }
251d32d9 2226 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2227 {
73869dc2 2228 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2229 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2230 }
251d32d9 2231 else if (section_is_p (sectp->name, &names->types))
348e048f 2232 {
8b70b953
TT
2233 struct dwarf2_section_info type_section;
2234
2235 memset (&type_section, 0, sizeof (type_section));
73869dc2 2236 type_section.s.asection = sectp;
8b70b953
TT
2237 type_section.size = bfd_get_section_size (sectp);
2238
2239 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2240 &type_section);
348e048f 2241 }
251d32d9 2242 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2243 {
73869dc2 2244 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2245 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2246 }
dce234bc 2247
b4e1fd61 2248 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2249 && bfd_section_vma (abfd, sectp) == 0)
2250 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2251}
2252
fceca515
DE
2253/* A helper function that decides whether a section is empty,
2254 or not present. */
9e0ac564
TT
2255
2256static int
19ac8c2e 2257dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2258{
73869dc2
DE
2259 if (section->is_virtual)
2260 return section->size == 0;
2261 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2262}
2263
3019eac3
DE
2264/* Read the contents of the section INFO.
2265 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2266 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2267 of the DWO file.
dce234bc 2268 If the section is compressed, uncompress it before returning. */
c906108c 2269
dce234bc
PP
2270static void
2271dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2272{
a32a8923 2273 asection *sectp;
3019eac3 2274 bfd *abfd;
dce234bc 2275 gdb_byte *buf, *retbuf;
c906108c 2276
be391dca
TT
2277 if (info->readin)
2278 return;
dce234bc 2279 info->buffer = NULL;
be391dca 2280 info->readin = 1;
188dd5d6 2281
9e0ac564 2282 if (dwarf2_section_empty_p (info))
dce234bc 2283 return;
c906108c 2284
a32a8923 2285 sectp = get_section_bfd_section (info);
3019eac3 2286
73869dc2
DE
2287 /* If this is a virtual section we need to read in the real one first. */
2288 if (info->is_virtual)
2289 {
2290 struct dwarf2_section_info *containing_section =
2291 get_containing_section (info);
2292
2293 gdb_assert (sectp != NULL);
2294 if ((sectp->flags & SEC_RELOC) != 0)
2295 {
2296 error (_("Dwarf Error: DWP format V2 with relocations is not"
2297 " supported in section %s [in module %s]"),
2298 get_section_name (info), get_section_file_name (info));
2299 }
2300 dwarf2_read_section (objfile, containing_section);
2301 /* Other code should have already caught virtual sections that don't
2302 fit. */
2303 gdb_assert (info->virtual_offset + info->size
2304 <= containing_section->size);
2305 /* If the real section is empty or there was a problem reading the
2306 section we shouldn't get here. */
2307 gdb_assert (containing_section->buffer != NULL);
2308 info->buffer = containing_section->buffer + info->virtual_offset;
2309 return;
2310 }
2311
4bf44c1c
TT
2312 /* If the section has relocations, we must read it ourselves.
2313 Otherwise we attach it to the BFD. */
2314 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2315 {
d521ce57 2316 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2317 return;
dce234bc 2318 }
dce234bc 2319
4bf44c1c
TT
2320 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2321 info->buffer = buf;
dce234bc
PP
2322
2323 /* When debugging .o files, we may need to apply relocations; see
2324 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2325 We never compress sections in .o files, so we only need to
2326 try this when the section is not compressed. */
ac8035ab 2327 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2328 if (retbuf != NULL)
2329 {
2330 info->buffer = retbuf;
2331 return;
2332 }
2333
a32a8923
DE
2334 abfd = get_section_bfd_owner (info);
2335 gdb_assert (abfd != NULL);
2336
dce234bc
PP
2337 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2338 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2339 {
2340 error (_("Dwarf Error: Can't read DWARF data"
2341 " in section %s [in module %s]"),
2342 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2343 }
dce234bc
PP
2344}
2345
9e0ac564
TT
2346/* A helper function that returns the size of a section in a safe way.
2347 If you are positive that the section has been read before using the
2348 size, then it is safe to refer to the dwarf2_section_info object's
2349 "size" field directly. In other cases, you must call this
2350 function, because for compressed sections the size field is not set
2351 correctly until the section has been read. */
2352
2353static bfd_size_type
2354dwarf2_section_size (struct objfile *objfile,
2355 struct dwarf2_section_info *info)
2356{
2357 if (!info->readin)
2358 dwarf2_read_section (objfile, info);
2359 return info->size;
2360}
2361
dce234bc 2362/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2363 SECTION_NAME. */
af34e669 2364
dce234bc 2365void
3017a003
TG
2366dwarf2_get_section_info (struct objfile *objfile,
2367 enum dwarf2_section_enum sect,
d521ce57 2368 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2369 bfd_size_type *sizep)
2370{
2371 struct dwarf2_per_objfile *data
2372 = objfile_data (objfile, dwarf2_objfile_data_key);
2373 struct dwarf2_section_info *info;
a3b2a86b
TT
2374
2375 /* We may see an objfile without any DWARF, in which case we just
2376 return nothing. */
2377 if (data == NULL)
2378 {
2379 *sectp = NULL;
2380 *bufp = NULL;
2381 *sizep = 0;
2382 return;
2383 }
3017a003
TG
2384 switch (sect)
2385 {
2386 case DWARF2_DEBUG_FRAME:
2387 info = &data->frame;
2388 break;
2389 case DWARF2_EH_FRAME:
2390 info = &data->eh_frame;
2391 break;
2392 default:
2393 gdb_assert_not_reached ("unexpected section");
2394 }
dce234bc 2395
9e0ac564 2396 dwarf2_read_section (objfile, info);
dce234bc 2397
a32a8923 2398 *sectp = get_section_bfd_section (info);
dce234bc
PP
2399 *bufp = info->buffer;
2400 *sizep = info->size;
2401}
2402
36586728
TT
2403/* A helper function to find the sections for a .dwz file. */
2404
2405static void
2406locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2407{
2408 struct dwz_file *dwz_file = arg;
2409
2410 /* Note that we only support the standard ELF names, because .dwz
2411 is ELF-only (at the time of writing). */
2412 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2413 {
73869dc2 2414 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2415 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2418 {
73869dc2 2419 dwz_file->info.s.asection = sectp;
36586728
TT
2420 dwz_file->info.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2423 {
73869dc2 2424 dwz_file->str.s.asection = sectp;
36586728
TT
2425 dwz_file->str.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2428 {
73869dc2 2429 dwz_file->line.s.asection = sectp;
36586728
TT
2430 dwz_file->line.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2433 {
73869dc2 2434 dwz_file->macro.s.asection = sectp;
36586728
TT
2435 dwz_file->macro.size = bfd_get_section_size (sectp);
2436 }
2ec9a5e0
TT
2437 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2438 {
73869dc2 2439 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2440 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2441 }
36586728
TT
2442}
2443
4db1a1dc
TT
2444/* Open the separate '.dwz' debug file, if needed. Return NULL if
2445 there is no .gnu_debugaltlink section in the file. Error if there
2446 is such a section but the file cannot be found. */
36586728
TT
2447
2448static struct dwz_file *
2449dwarf2_get_dwz_file (void)
2450{
4db1a1dc
TT
2451 bfd *dwz_bfd;
2452 char *data;
36586728
TT
2453 struct cleanup *cleanup;
2454 const char *filename;
2455 struct dwz_file *result;
acd13123 2456 bfd_size_type buildid_len_arg;
dc294be5
TT
2457 size_t buildid_len;
2458 bfd_byte *buildid;
36586728
TT
2459
2460 if (dwarf2_per_objfile->dwz_file != NULL)
2461 return dwarf2_per_objfile->dwz_file;
2462
4db1a1dc
TT
2463 bfd_set_error (bfd_error_no_error);
2464 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2465 &buildid_len_arg, &buildid);
4db1a1dc
TT
2466 if (data == NULL)
2467 {
2468 if (bfd_get_error () == bfd_error_no_error)
2469 return NULL;
2470 error (_("could not read '.gnu_debugaltlink' section: %s"),
2471 bfd_errmsg (bfd_get_error ()));
2472 }
36586728 2473 cleanup = make_cleanup (xfree, data);
dc294be5 2474 make_cleanup (xfree, buildid);
36586728 2475
acd13123
TT
2476 buildid_len = (size_t) buildid_len_arg;
2477
f9d83a0b 2478 filename = (const char *) data;
36586728
TT
2479 if (!IS_ABSOLUTE_PATH (filename))
2480 {
4262abfb 2481 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2482 char *rel;
2483
2484 make_cleanup (xfree, abs);
2485 abs = ldirname (abs);
2486 make_cleanup (xfree, abs);
2487
2488 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2489 make_cleanup (xfree, rel);
2490 filename = rel;
2491 }
2492
dc294be5
TT
2493 /* First try the file name given in the section. If that doesn't
2494 work, try to use the build-id instead. */
36586728 2495 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2496 if (dwz_bfd != NULL)
36586728 2497 {
dc294be5
TT
2498 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2499 {
2500 gdb_bfd_unref (dwz_bfd);
2501 dwz_bfd = NULL;
2502 }
36586728
TT
2503 }
2504
dc294be5
TT
2505 if (dwz_bfd == NULL)
2506 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2507
2508 if (dwz_bfd == NULL)
2509 error (_("could not find '.gnu_debugaltlink' file for %s"),
2510 objfile_name (dwarf2_per_objfile->objfile));
2511
36586728
TT
2512 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2513 struct dwz_file);
2514 result->dwz_bfd = dwz_bfd;
2515
2516 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2517
2518 do_cleanups (cleanup);
2519
13aaf454 2520 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2521 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2522 return result;
2523}
9291a0cd 2524\f
7b9f3c50
DE
2525/* DWARF quick_symbols_functions support. */
2526
2527/* TUs can share .debug_line entries, and there can be a lot more TUs than
2528 unique line tables, so we maintain a separate table of all .debug_line
2529 derived entries to support the sharing.
2530 All the quick functions need is the list of file names. We discard the
2531 line_header when we're done and don't need to record it here. */
2532struct quick_file_names
2533{
094b34ac
DE
2534 /* The data used to construct the hash key. */
2535 struct stmt_list_hash hash;
7b9f3c50
DE
2536
2537 /* The number of entries in file_names, real_names. */
2538 unsigned int num_file_names;
2539
2540 /* The file names from the line table, after being run through
2541 file_full_name. */
2542 const char **file_names;
2543
2544 /* The file names from the line table after being run through
2545 gdb_realpath. These are computed lazily. */
2546 const char **real_names;
2547};
2548
2549/* When using the index (and thus not using psymtabs), each CU has an
2550 object of this type. This is used to hold information needed by
2551 the various "quick" methods. */
2552struct dwarf2_per_cu_quick_data
2553{
2554 /* The file table. This can be NULL if there was no file table
2555 or it's currently not read in.
2556 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2557 struct quick_file_names *file_names;
2558
2559 /* The corresponding symbol table. This is NULL if symbols for this
2560 CU have not yet been read. */
43f3e411 2561 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2562
2563 /* A temporary mark bit used when iterating over all CUs in
2564 expand_symtabs_matching. */
2565 unsigned int mark : 1;
2566
2567 /* True if we've tried to read the file table and found there isn't one.
2568 There will be no point in trying to read it again next time. */
2569 unsigned int no_file_data : 1;
2570};
2571
094b34ac
DE
2572/* Utility hash function for a stmt_list_hash. */
2573
2574static hashval_t
2575hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2576{
2577 hashval_t v = 0;
2578
2579 if (stmt_list_hash->dwo_unit != NULL)
2580 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2581 v += stmt_list_hash->line_offset.sect_off;
2582 return v;
2583}
2584
2585/* Utility equality function for a stmt_list_hash. */
2586
2587static int
2588eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2589 const struct stmt_list_hash *rhs)
2590{
2591 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2592 return 0;
2593 if (lhs->dwo_unit != NULL
2594 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2595 return 0;
2596
2597 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2598}
2599
7b9f3c50
DE
2600/* Hash function for a quick_file_names. */
2601
2602static hashval_t
2603hash_file_name_entry (const void *e)
2604{
2605 const struct quick_file_names *file_data = e;
2606
094b34ac 2607 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2608}
2609
2610/* Equality function for a quick_file_names. */
2611
2612static int
2613eq_file_name_entry (const void *a, const void *b)
2614{
2615 const struct quick_file_names *ea = a;
2616 const struct quick_file_names *eb = b;
2617
094b34ac 2618 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2619}
2620
2621/* Delete function for a quick_file_names. */
2622
2623static void
2624delete_file_name_entry (void *e)
2625{
2626 struct quick_file_names *file_data = e;
2627 int i;
2628
2629 for (i = 0; i < file_data->num_file_names; ++i)
2630 {
2631 xfree ((void*) file_data->file_names[i]);
2632 if (file_data->real_names)
2633 xfree ((void*) file_data->real_names[i]);
2634 }
2635
2636 /* The space for the struct itself lives on objfile_obstack,
2637 so we don't free it here. */
2638}
2639
2640/* Create a quick_file_names hash table. */
2641
2642static htab_t
2643create_quick_file_names_table (unsigned int nr_initial_entries)
2644{
2645 return htab_create_alloc (nr_initial_entries,
2646 hash_file_name_entry, eq_file_name_entry,
2647 delete_file_name_entry, xcalloc, xfree);
2648}
9291a0cd 2649
918dd910
JK
2650/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2651 have to be created afterwards. You should call age_cached_comp_units after
2652 processing PER_CU->CU. dw2_setup must have been already called. */
2653
2654static void
2655load_cu (struct dwarf2_per_cu_data *per_cu)
2656{
3019eac3 2657 if (per_cu->is_debug_types)
e5fe5e75 2658 load_full_type_unit (per_cu);
918dd910 2659 else
95554aad 2660 load_full_comp_unit (per_cu, language_minimal);
918dd910 2661
cc12ce38
DE
2662 if (per_cu->cu == NULL)
2663 return; /* Dummy CU. */
2dc860c0
DE
2664
2665 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2666}
2667
a0f42c21 2668/* Read in the symbols for PER_CU. */
2fdf6df6 2669
9291a0cd 2670static void
a0f42c21 2671dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2672{
2673 struct cleanup *back_to;
2674
f4dc4d17
DE
2675 /* Skip type_unit_groups, reading the type units they contain
2676 is handled elsewhere. */
2677 if (IS_TYPE_UNIT_GROUP (per_cu))
2678 return;
2679
9291a0cd
TT
2680 back_to = make_cleanup (dwarf2_release_queue, NULL);
2681
95554aad 2682 if (dwarf2_per_objfile->using_index
43f3e411 2683 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2684 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2685 {
2686 queue_comp_unit (per_cu, language_minimal);
2687 load_cu (per_cu);
89e63ee4
DE
2688
2689 /* If we just loaded a CU from a DWO, and we're working with an index
2690 that may badly handle TUs, load all the TUs in that DWO as well.
2691 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2692 if (!per_cu->is_debug_types
cc12ce38 2693 && per_cu->cu != NULL
89e63ee4
DE
2694 && per_cu->cu->dwo_unit != NULL
2695 && dwarf2_per_objfile->index_table != NULL
2696 && dwarf2_per_objfile->index_table->version <= 7
2697 /* DWP files aren't supported yet. */
2698 && get_dwp_file () == NULL)
2699 queue_and_load_all_dwo_tus (per_cu);
95554aad 2700 }
9291a0cd 2701
a0f42c21 2702 process_queue ();
9291a0cd
TT
2703
2704 /* Age the cache, releasing compilation units that have not
2705 been used recently. */
2706 age_cached_comp_units ();
2707
2708 do_cleanups (back_to);
2709}
2710
2711/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2712 the objfile from which this CU came. Returns the resulting symbol
2713 table. */
2fdf6df6 2714
43f3e411 2715static struct compunit_symtab *
a0f42c21 2716dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2717{
95554aad 2718 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2719 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2720 {
2721 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2722 increment_reading_symtab ();
a0f42c21 2723 dw2_do_instantiate_symtab (per_cu);
95554aad 2724 process_cu_includes ();
9291a0cd
TT
2725 do_cleanups (back_to);
2726 }
f194fefb 2727
43f3e411 2728 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2729}
2730
8832e7e3 2731/* Return the CU/TU given its index.
f4dc4d17
DE
2732
2733 This is intended for loops like:
2734
2735 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2736 + dwarf2_per_objfile->n_type_units); ++i)
2737 {
8832e7e3 2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2739
2740 ...;
2741 }
2742*/
2fdf6df6 2743
1fd400ff 2744static struct dwarf2_per_cu_data *
8832e7e3 2745dw2_get_cutu (int index)
1fd400ff
TT
2746{
2747 if (index >= dwarf2_per_objfile->n_comp_units)
2748 {
f4dc4d17 2749 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2750 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2751 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2752 }
2753
2754 return dwarf2_per_objfile->all_comp_units[index];
2755}
2756
8832e7e3
DE
2757/* Return the CU given its index.
2758 This differs from dw2_get_cutu in that it's for when you know INDEX
2759 refers to a CU. */
f4dc4d17
DE
2760
2761static struct dwarf2_per_cu_data *
8832e7e3 2762dw2_get_cu (int index)
f4dc4d17 2763{
8832e7e3 2764 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2765
1fd400ff
TT
2766 return dwarf2_per_objfile->all_comp_units[index];
2767}
2768
2ec9a5e0
TT
2769/* A helper for create_cus_from_index that handles a given list of
2770 CUs. */
2fdf6df6 2771
74a0d9f6 2772static void
2ec9a5e0
TT
2773create_cus_from_index_list (struct objfile *objfile,
2774 const gdb_byte *cu_list, offset_type n_elements,
2775 struct dwarf2_section_info *section,
2776 int is_dwz,
2777 int base_offset)
9291a0cd
TT
2778{
2779 offset_type i;
9291a0cd 2780
2ec9a5e0 2781 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2782 {
2783 struct dwarf2_per_cu_data *the_cu;
2784 ULONGEST offset, length;
2785
74a0d9f6
JK
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2788 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2789 cu_list += 2 * 8;
2790
2791 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct dwarf2_per_cu_data);
b64f50a1 2793 the_cu->offset.sect_off = offset;
9291a0cd
TT
2794 the_cu->length = length;
2795 the_cu->objfile = objfile;
8a0459fd 2796 the_cu->section = section;
9291a0cd
TT
2797 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2798 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2799 the_cu->is_dwz = is_dwz;
2800 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2801 }
9291a0cd
TT
2802}
2803
2ec9a5e0 2804/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2805 the CU objects for this objfile. */
2ec9a5e0 2806
74a0d9f6 2807static void
2ec9a5e0
TT
2808create_cus_from_index (struct objfile *objfile,
2809 const gdb_byte *cu_list, offset_type cu_list_elements,
2810 const gdb_byte *dwz_list, offset_type dwz_elements)
2811{
2812 struct dwz_file *dwz;
2813
2814 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2815 dwarf2_per_objfile->all_comp_units
2816 = obstack_alloc (&objfile->objfile_obstack,
2817 dwarf2_per_objfile->n_comp_units
2818 * sizeof (struct dwarf2_per_cu_data *));
2819
74a0d9f6
JK
2820 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2821 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2822
2823 if (dwz_elements == 0)
74a0d9f6 2824 return;
2ec9a5e0
TT
2825
2826 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2827 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2828 cu_list_elements / 2);
2ec9a5e0
TT
2829}
2830
1fd400ff 2831/* Create the signatured type hash table from the index. */
673bfd45 2832
74a0d9f6 2833static void
673bfd45 2834create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2835 struct dwarf2_section_info *section,
673bfd45
DE
2836 const gdb_byte *bytes,
2837 offset_type elements)
1fd400ff
TT
2838{
2839 offset_type i;
673bfd45 2840 htab_t sig_types_hash;
1fd400ff 2841
6aa5f3a6
DE
2842 dwarf2_per_objfile->n_type_units
2843 = dwarf2_per_objfile->n_allocated_type_units
2844 = elements / 3;
d467dd73 2845 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2846 = xmalloc (dwarf2_per_objfile->n_type_units
2847 * sizeof (struct signatured_type *));
1fd400ff 2848
673bfd45 2849 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2850
2851 for (i = 0; i < elements; i += 3)
2852 {
52dc124a
DE
2853 struct signatured_type *sig_type;
2854 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2855 void **slot;
2856
74a0d9f6
JK
2857 gdb_static_assert (sizeof (ULONGEST) >= 8);
2858 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2859 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2860 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2861 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2862 bytes += 3 * 8;
2863
52dc124a 2864 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2865 struct signatured_type);
52dc124a 2866 sig_type->signature = signature;
3019eac3
DE
2867 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2868 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2869 sig_type->per_cu.section = section;
52dc124a
DE
2870 sig_type->per_cu.offset.sect_off = offset;
2871 sig_type->per_cu.objfile = objfile;
2872 sig_type->per_cu.v.quick
1fd400ff
TT
2873 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct dwarf2_per_cu_quick_data);
2875
52dc124a
DE
2876 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2877 *slot = sig_type;
1fd400ff 2878
b4dd5633 2879 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2880 }
2881
673bfd45 2882 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2883}
2884
9291a0cd
TT
2885/* Read the address map data from the mapped index, and use it to
2886 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2887
9291a0cd
TT
2888static void
2889create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2890{
3e29f34a 2891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2892 const gdb_byte *iter, *end;
2893 struct obstack temp_obstack;
2894 struct addrmap *mutable_map;
2895 struct cleanup *cleanup;
2896 CORE_ADDR baseaddr;
2897
2898 obstack_init (&temp_obstack);
2899 cleanup = make_cleanup_obstack_free (&temp_obstack);
2900 mutable_map = addrmap_create_mutable (&temp_obstack);
2901
2902 iter = index->address_table;
2903 end = iter + index->address_table_size;
2904
2905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2906
2907 while (iter < end)
2908 {
2909 ULONGEST hi, lo, cu_index;
2910 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2911 iter += 8;
2912 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2913 iter += 8;
2914 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2915 iter += 4;
f652bce2 2916
24a55014 2917 if (lo > hi)
f652bce2 2918 {
24a55014
DE
2919 complaint (&symfile_complaints,
2920 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2921 hex_string (lo), hex_string (hi));
24a55014 2922 continue;
f652bce2 2923 }
24a55014
DE
2924
2925 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid CU number %u"),
2929 (unsigned) cu_index);
24a55014 2930 continue;
f652bce2 2931 }
24a55014 2932
3e29f34a
MR
2933 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2934 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2935 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2936 }
2937
2938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2939 &objfile->objfile_obstack);
2940 do_cleanups (cleanup);
2941}
2942
59d7bcaf
JK
2943/* The hash function for strings in the mapped index. This is the same as
2944 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2945 implementation. This is necessary because the hash function is tied to the
2946 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2947 SYMBOL_HASH_NEXT.
2948
2949 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2950
9291a0cd 2951static hashval_t
559a7a62 2952mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2953{
2954 const unsigned char *str = (const unsigned char *) p;
2955 hashval_t r = 0;
2956 unsigned char c;
2957
2958 while ((c = *str++) != 0)
559a7a62
JK
2959 {
2960 if (index_version >= 5)
2961 c = tolower (c);
2962 r = r * 67 + c - 113;
2963 }
9291a0cd
TT
2964
2965 return r;
2966}
2967
2968/* Find a slot in the mapped index INDEX for the object named NAME.
2969 If NAME is found, set *VEC_OUT to point to the CU vector in the
2970 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2971
9291a0cd
TT
2972static int
2973find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2974 offset_type **vec_out)
2975{
0cf03b49
JK
2976 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2977 offset_type hash;
9291a0cd 2978 offset_type slot, step;
559a7a62 2979 int (*cmp) (const char *, const char *);
9291a0cd 2980
0cf03b49
JK
2981 if (current_language->la_language == language_cplus
2982 || current_language->la_language == language_java
45280282
IB
2983 || current_language->la_language == language_fortran
2984 || current_language->la_language == language_d)
0cf03b49
JK
2985 {
2986 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2987 not contain any. */
a8719064 2988
72998fb3 2989 if (strchr (name, '(') != NULL)
0cf03b49 2990 {
72998fb3 2991 char *without_params = cp_remove_params (name);
0cf03b49 2992
72998fb3
DE
2993 if (without_params != NULL)
2994 {
2995 make_cleanup (xfree, without_params);
2996 name = without_params;
2997 }
0cf03b49
JK
2998 }
2999 }
3000
559a7a62 3001 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3002 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3003 simulate our NAME being searched is also lowercased. */
3004 hash = mapped_index_string_hash ((index->version == 4
3005 && case_sensitivity == case_sensitive_off
3006 ? 5 : index->version),
3007 name);
3008
3876f04e
DE
3009 slot = hash & (index->symbol_table_slots - 1);
3010 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3011 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3012
3013 for (;;)
3014 {
3015 /* Convert a slot number to an offset into the table. */
3016 offset_type i = 2 * slot;
3017 const char *str;
3876f04e 3018 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3019 {
3020 do_cleanups (back_to);
3021 return 0;
3022 }
9291a0cd 3023
3876f04e 3024 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3025 if (!cmp (name, str))
9291a0cd
TT
3026 {
3027 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3028 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3029 do_cleanups (back_to);
9291a0cd
TT
3030 return 1;
3031 }
3032
3876f04e 3033 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3034 }
3035}
3036
2ec9a5e0
TT
3037/* A helper function that reads the .gdb_index from SECTION and fills
3038 in MAP. FILENAME is the name of the file containing the section;
3039 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3040 ok to use deprecated sections.
3041
3042 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3043 out parameters that are filled in with information about the CU and
3044 TU lists in the section.
3045
3046 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3047
9291a0cd 3048static int
2ec9a5e0
TT
3049read_index_from_section (struct objfile *objfile,
3050 const char *filename,
3051 int deprecated_ok,
3052 struct dwarf2_section_info *section,
3053 struct mapped_index *map,
3054 const gdb_byte **cu_list,
3055 offset_type *cu_list_elements,
3056 const gdb_byte **types_list,
3057 offset_type *types_list_elements)
9291a0cd 3058{
948f8e3d 3059 const gdb_byte *addr;
2ec9a5e0 3060 offset_type version;
b3b272e1 3061 offset_type *metadata;
1fd400ff 3062 int i;
9291a0cd 3063
2ec9a5e0 3064 if (dwarf2_section_empty_p (section))
9291a0cd 3065 return 0;
82430852
JK
3066
3067 /* Older elfutils strip versions could keep the section in the main
3068 executable while splitting it for the separate debug info file. */
a32a8923 3069 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3070 return 0;
3071
2ec9a5e0 3072 dwarf2_read_section (objfile, section);
9291a0cd 3073
2ec9a5e0 3074 addr = section->buffer;
9291a0cd 3075 /* Version check. */
1fd400ff 3076 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3077 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3078 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3079 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3080 indices. */
831adc1f 3081 if (version < 4)
481860b3
GB
3082 {
3083 static int warning_printed = 0;
3084 if (!warning_printed)
3085 {
3086 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3087 filename);
481860b3
GB
3088 warning_printed = 1;
3089 }
3090 return 0;
3091 }
3092 /* Index version 4 uses a different hash function than index version
3093 5 and later.
3094
3095 Versions earlier than 6 did not emit psymbols for inlined
3096 functions. Using these files will cause GDB not to be able to
3097 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3098 indices unless the user has done
3099 "set use-deprecated-index-sections on". */
2ec9a5e0 3100 if (version < 6 && !deprecated_ok)
481860b3
GB
3101 {
3102 static int warning_printed = 0;
3103 if (!warning_printed)
3104 {
e615022a
DE
3105 warning (_("\
3106Skipping deprecated .gdb_index section in %s.\n\
3107Do \"set use-deprecated-index-sections on\" before the file is read\n\
3108to use the section anyway."),
2ec9a5e0 3109 filename);
481860b3
GB
3110 warning_printed = 1;
3111 }
3112 return 0;
3113 }
796a7ff8 3114 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3115 of the TU (for symbols coming from TUs),
3116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3117 Plus gold-generated indices can have duplicate entries for global symbols,
3118 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3119 These are just performance bugs, and we can't distinguish gdb-generated
3120 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3121
481860b3 3122 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3123 longer backward compatible. */
796a7ff8 3124 if (version > 8)
594e8718 3125 return 0;
9291a0cd 3126
559a7a62 3127 map->version = version;
2ec9a5e0 3128 map->total_size = section->size;
9291a0cd
TT
3129
3130 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3131
3132 i = 0;
2ec9a5e0
TT
3133 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3134 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3135 / 8);
1fd400ff
TT
3136 ++i;
3137
2ec9a5e0
TT
3138 *types_list = addr + MAYBE_SWAP (metadata[i]);
3139 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3140 - MAYBE_SWAP (metadata[i]))
3141 / 8);
987d643c 3142 ++i;
1fd400ff
TT
3143
3144 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3145 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3146 - MAYBE_SWAP (metadata[i]));
3147 ++i;
3148
3876f04e
DE
3149 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3150 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]))
3152 / (2 * sizeof (offset_type)));
1fd400ff 3153 ++i;
9291a0cd 3154
f9d83a0b 3155 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3156
2ec9a5e0
TT
3157 return 1;
3158}
3159
3160
3161/* Read the index file. If everything went ok, initialize the "quick"
3162 elements of all the CUs and return 1. Otherwise, return 0. */
3163
3164static int
3165dwarf2_read_index (struct objfile *objfile)
3166{
3167 struct mapped_index local_map, *map;
3168 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3169 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3170 struct dwz_file *dwz;
2ec9a5e0 3171
4262abfb 3172 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3173 use_deprecated_index_sections,
3174 &dwarf2_per_objfile->gdb_index, &local_map,
3175 &cu_list, &cu_list_elements,
3176 &types_list, &types_list_elements))
3177 return 0;
3178
0fefef59 3179 /* Don't use the index if it's empty. */
2ec9a5e0 3180 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3181 return 0;
3182
2ec9a5e0
TT
3183 /* If there is a .dwz file, read it so we can get its CU list as
3184 well. */
4db1a1dc
TT
3185 dwz = dwarf2_get_dwz_file ();
3186 if (dwz != NULL)
2ec9a5e0 3187 {
2ec9a5e0
TT
3188 struct mapped_index dwz_map;
3189 const gdb_byte *dwz_types_ignore;
3190 offset_type dwz_types_elements_ignore;
3191
3192 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3193 1,
3194 &dwz->gdb_index, &dwz_map,
3195 &dwz_list, &dwz_list_elements,
3196 &dwz_types_ignore,
3197 &dwz_types_elements_ignore))
3198 {
3199 warning (_("could not read '.gdb_index' section from %s; skipping"),
3200 bfd_get_filename (dwz->dwz_bfd));
3201 return 0;
3202 }
3203 }
3204
74a0d9f6
JK
3205 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3206 dwz_list_elements);
1fd400ff 3207
8b70b953
TT
3208 if (types_list_elements)
3209 {
3210 struct dwarf2_section_info *section;
3211
3212 /* We can only handle a single .debug_types when we have an
3213 index. */
3214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3215 return 0;
3216
3217 section = VEC_index (dwarf2_section_info_def,
3218 dwarf2_per_objfile->types, 0);
3219
74a0d9f6
JK
3220 create_signatured_type_table_from_index (objfile, section, types_list,
3221 types_list_elements);
8b70b953 3222 }
9291a0cd 3223
2ec9a5e0
TT
3224 create_addrmap_from_index (objfile, &local_map);
3225
3226 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3227 *map = local_map;
9291a0cd
TT
3228
3229 dwarf2_per_objfile->index_table = map;
3230 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3231 dwarf2_per_objfile->quick_file_names_table =
3232 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3233
3234 return 1;
3235}
3236
3237/* A helper for the "quick" functions which sets the global
3238 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3239
9291a0cd
TT
3240static void
3241dw2_setup (struct objfile *objfile)
3242{
3243 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3244 gdb_assert (dwarf2_per_objfile);
3245}
3246
dee91e82 3247/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3248
dee91e82
DE
3249static void
3250dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3251 const gdb_byte *info_ptr,
dee91e82
DE
3252 struct die_info *comp_unit_die,
3253 int has_children,
3254 void *data)
9291a0cd 3255{
dee91e82
DE
3256 struct dwarf2_cu *cu = reader->cu;
3257 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3258 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3259 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3260 struct line_header *lh;
9291a0cd 3261 struct attribute *attr;
dee91e82 3262 int i;
15d034d0 3263 const char *name, *comp_dir;
7b9f3c50
DE
3264 void **slot;
3265 struct quick_file_names *qfn;
3266 unsigned int line_offset;
9291a0cd 3267
0186c6a7
DE
3268 gdb_assert (! this_cu->is_debug_types);
3269
07261596
TT
3270 /* Our callers never want to match partial units -- instead they
3271 will match the enclosing full CU. */
3272 if (comp_unit_die->tag == DW_TAG_partial_unit)
3273 {
3274 this_cu->v.quick->no_file_data = 1;
3275 return;
3276 }
3277
0186c6a7 3278 lh_cu = this_cu;
7b9f3c50
DE
3279 lh = NULL;
3280 slot = NULL;
3281 line_offset = 0;
dee91e82
DE
3282
3283 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3284 if (attr)
3285 {
7b9f3c50
DE
3286 struct quick_file_names find_entry;
3287
3288 line_offset = DW_UNSND (attr);
3289
3290 /* We may have already read in this line header (TU line header sharing).
3291 If we have we're done. */
094b34ac
DE
3292 find_entry.hash.dwo_unit = cu->dwo_unit;
3293 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3294 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3295 &find_entry, INSERT);
3296 if (*slot != NULL)
3297 {
094b34ac 3298 lh_cu->v.quick->file_names = *slot;
dee91e82 3299 return;
7b9f3c50
DE
3300 }
3301
3019eac3 3302 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3303 }
3304 if (lh == NULL)
3305 {
094b34ac 3306 lh_cu->v.quick->no_file_data = 1;
dee91e82 3307 return;
9291a0cd
TT
3308 }
3309
7b9f3c50 3310 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3311 qfn->hash.dwo_unit = cu->dwo_unit;
3312 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3313 gdb_assert (slot != NULL);
3314 *slot = qfn;
9291a0cd 3315
dee91e82 3316 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3317
7b9f3c50
DE
3318 qfn->num_file_names = lh->num_file_names;
3319 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3320 lh->num_file_names * sizeof (char *));
9291a0cd 3321 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3322 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3323 qfn->real_names = NULL;
9291a0cd 3324
7b9f3c50 3325 free_line_header (lh);
7b9f3c50 3326
094b34ac 3327 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3328}
3329
3330/* A helper for the "quick" functions which attempts to read the line
3331 table for THIS_CU. */
3332
3333static struct quick_file_names *
e4a48d9d 3334dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3335{
0186c6a7
DE
3336 /* This should never be called for TUs. */
3337 gdb_assert (! this_cu->is_debug_types);
3338 /* Nor type unit groups. */
3339 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3340
dee91e82
DE
3341 if (this_cu->v.quick->file_names != NULL)
3342 return this_cu->v.quick->file_names;
3343 /* If we know there is no line data, no point in looking again. */
3344 if (this_cu->v.quick->no_file_data)
3345 return NULL;
3346
0186c6a7 3347 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3348
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351 return this_cu->v.quick->file_names;
9291a0cd
TT
3352}
3353
3354/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3355 real path for a given file name from the line table. */
2fdf6df6 3356
9291a0cd 3357static const char *
7b9f3c50
DE
3358dw2_get_real_path (struct objfile *objfile,
3359 struct quick_file_names *qfn, int index)
9291a0cd 3360{
7b9f3c50
DE
3361 if (qfn->real_names == NULL)
3362 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3363 qfn->num_file_names, const char *);
9291a0cd 3364
7b9f3c50
DE
3365 if (qfn->real_names[index] == NULL)
3366 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3367
7b9f3c50 3368 return qfn->real_names[index];
9291a0cd
TT
3369}
3370
3371static struct symtab *
3372dw2_find_last_source_symtab (struct objfile *objfile)
3373{
43f3e411 3374 struct compunit_symtab *cust;
9291a0cd 3375 int index;
ae2de4f8 3376
9291a0cd
TT
3377 dw2_setup (objfile);
3378 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3379 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3380 if (cust == NULL)
3381 return NULL;
3382 return compunit_primary_filetab (cust);
9291a0cd
TT
3383}
3384
7b9f3c50
DE
3385/* Traversal function for dw2_forget_cached_source_info. */
3386
3387static int
3388dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3389{
7b9f3c50 3390 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3391
7b9f3c50 3392 if (file_data->real_names)
9291a0cd 3393 {
7b9f3c50 3394 int i;
9291a0cd 3395
7b9f3c50 3396 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3397 {
7b9f3c50
DE
3398 xfree ((void*) file_data->real_names[i]);
3399 file_data->real_names[i] = NULL;
9291a0cd
TT
3400 }
3401 }
7b9f3c50
DE
3402
3403 return 1;
3404}
3405
3406static void
3407dw2_forget_cached_source_info (struct objfile *objfile)
3408{
3409 dw2_setup (objfile);
3410
3411 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3412 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3413}
3414
f8eba3c6
TT
3415/* Helper function for dw2_map_symtabs_matching_filename that expands
3416 the symtabs and calls the iterator. */
3417
3418static int
3419dw2_map_expand_apply (struct objfile *objfile,
3420 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3421 const char *name, const char *real_path,
f8eba3c6
TT
3422 int (*callback) (struct symtab *, void *),
3423 void *data)
3424{
43f3e411 3425 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3426
3427 /* Don't visit already-expanded CUs. */
43f3e411 3428 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3429 return 0;
3430
3431 /* This may expand more than one symtab, and we want to iterate over
3432 all of them. */
a0f42c21 3433 dw2_instantiate_symtab (per_cu);
f8eba3c6 3434
f5b95b50 3435 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3436 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3437}
3438
3439/* Implementation of the map_symtabs_matching_filename method. */
3440
9291a0cd 3441static int
f8eba3c6 3442dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3443 const char *real_path,
f8eba3c6
TT
3444 int (*callback) (struct symtab *, void *),
3445 void *data)
9291a0cd
TT
3446{
3447 int i;
c011a4f4 3448 const char *name_basename = lbasename (name);
9291a0cd
TT
3449
3450 dw2_setup (objfile);
ae2de4f8 3451
848e3e78
DE
3452 /* The rule is CUs specify all the files, including those used by
3453 any TU, so there's no need to scan TUs here. */
f4dc4d17 3454
848e3e78 3455 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3456 {
3457 int j;
8832e7e3 3458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3459 struct quick_file_names *file_data;
9291a0cd 3460
3d7bb9d9 3461 /* We only need to look at symtabs not already expanded. */
43f3e411 3462 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3463 continue;
3464
e4a48d9d 3465 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3466 if (file_data == NULL)
9291a0cd
TT
3467 continue;
3468
7b9f3c50 3469 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3470 {
7b9f3c50 3471 const char *this_name = file_data->file_names[j];
da235a7c 3472 const char *this_real_name;
9291a0cd 3473
af529f8f 3474 if (compare_filenames_for_search (this_name, name))
9291a0cd 3475 {
f5b95b50 3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3477 callback, data))
3478 return 1;
288e77a7 3479 continue;
4aac40c8 3480 }
9291a0cd 3481
c011a4f4
DE
3482 /* Before we invoke realpath, which can get expensive when many
3483 files are involved, do a quick comparison of the basenames. */
3484 if (! basenames_may_differ
3485 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3486 continue;
3487
da235a7c
JK
3488 this_real_name = dw2_get_real_path (objfile, file_data, j);
3489 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3490 {
da235a7c
JK
3491 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3492 callback, data))
3493 return 1;
288e77a7 3494 continue;
da235a7c 3495 }
9291a0cd 3496
da235a7c
JK
3497 if (real_path != NULL)
3498 {
af529f8f
JK
3499 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3500 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3501 if (this_real_name != NULL
af529f8f 3502 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3503 {
f5b95b50 3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3505 callback, data))
3506 return 1;
288e77a7 3507 continue;
9291a0cd
TT
3508 }
3509 }
3510 }
3511 }
3512
9291a0cd
TT
3513 return 0;
3514}
3515
da51c347
DE
3516/* Struct used to manage iterating over all CUs looking for a symbol. */
3517
3518struct dw2_symtab_iterator
9291a0cd 3519{
da51c347
DE
3520 /* The internalized form of .gdb_index. */
3521 struct mapped_index *index;
3522 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3523 int want_specific_block;
3524 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3525 Unused if !WANT_SPECIFIC_BLOCK. */
3526 int block_index;
3527 /* The kind of symbol we're looking for. */
3528 domain_enum domain;
3529 /* The list of CUs from the index entry of the symbol,
3530 or NULL if not found. */
3531 offset_type *vec;
3532 /* The next element in VEC to look at. */
3533 int next;
3534 /* The number of elements in VEC, or zero if there is no match. */
3535 int length;
8943b874
DE
3536 /* Have we seen a global version of the symbol?
3537 If so we can ignore all further global instances.
3538 This is to work around gold/15646, inefficient gold-generated
3539 indices. */
3540 int global_seen;
da51c347 3541};
9291a0cd 3542
da51c347
DE
3543/* Initialize the index symtab iterator ITER.
3544 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3545 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3546
9291a0cd 3547static void
da51c347
DE
3548dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3549 struct mapped_index *index,
3550 int want_specific_block,
3551 int block_index,
3552 domain_enum domain,
3553 const char *name)
3554{
3555 iter->index = index;
3556 iter->want_specific_block = want_specific_block;
3557 iter->block_index = block_index;
3558 iter->domain = domain;
3559 iter->next = 0;
8943b874 3560 iter->global_seen = 0;
da51c347
DE
3561
3562 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3563 iter->length = MAYBE_SWAP (*iter->vec);
3564 else
3565 {
3566 iter->vec = NULL;
3567 iter->length = 0;
3568 }
3569}
3570
3571/* Return the next matching CU or NULL if there are no more. */
3572
3573static struct dwarf2_per_cu_data *
3574dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3575{
3576 for ( ; iter->next < iter->length; ++iter->next)
3577 {
3578 offset_type cu_index_and_attrs =
3579 MAYBE_SWAP (iter->vec[iter->next + 1]);
3580 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3581 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3582 int want_static = iter->block_index != GLOBAL_BLOCK;
3583 /* This value is only valid for index versions >= 7. */
3584 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3585 gdb_index_symbol_kind symbol_kind =
3586 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3587 /* Only check the symbol attributes if they're present.
3588 Indices prior to version 7 don't record them,
3589 and indices >= 7 may elide them for certain symbols
3590 (gold does this). */
3591 int attrs_valid =
3592 (iter->index->version >= 7
3593 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3594
3190f0c6
DE
3595 /* Don't crash on bad data. */
3596 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3597 + dwarf2_per_objfile->n_type_units))
3598 {
3599 complaint (&symfile_complaints,
3600 _(".gdb_index entry has bad CU index"
4262abfb
JK
3601 " [in module %s]"),
3602 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3603 continue;
3604 }
3605
8832e7e3 3606 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3607
da51c347 3608 /* Skip if already read in. */
43f3e411 3609 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3610 continue;
3611
8943b874
DE
3612 /* Check static vs global. */
3613 if (attrs_valid)
3614 {
3615 if (iter->want_specific_block
3616 && want_static != is_static)
3617 continue;
3618 /* Work around gold/15646. */
3619 if (!is_static && iter->global_seen)
3620 continue;
3621 if (!is_static)
3622 iter->global_seen = 1;
3623 }
da51c347
DE
3624
3625 /* Only check the symbol's kind if it has one. */
3626 if (attrs_valid)
3627 {
3628 switch (iter->domain)
3629 {
3630 case VAR_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3632 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3633 /* Some types are also in VAR_DOMAIN. */
3634 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 case STRUCT_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3639 continue;
3640 break;
3641 case LABEL_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3643 continue;
3644 break;
3645 default:
3646 break;
3647 }
3648 }
3649
3650 ++iter->next;
3651 return per_cu;
3652 }
3653
3654 return NULL;
3655}
3656
43f3e411 3657static struct compunit_symtab *
da51c347
DE
3658dw2_lookup_symbol (struct objfile *objfile, int block_index,
3659 const char *name, domain_enum domain)
9291a0cd 3660{
43f3e411 3661 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3662 struct mapped_index *index;
3663
9291a0cd
TT
3664 dw2_setup (objfile);
3665
156942c7
DE
3666 index = dwarf2_per_objfile->index_table;
3667
da51c347 3668 /* index is NULL if OBJF_READNOW. */
156942c7 3669 if (index)
9291a0cd 3670 {
da51c347
DE
3671 struct dw2_symtab_iterator iter;
3672 struct dwarf2_per_cu_data *per_cu;
3673
3674 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3675
da51c347 3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3677 {
b2e2f908 3678 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3679 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3681 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3682
b2e2f908
DE
3683 sym = block_find_symbol (block, name, domain,
3684 block_find_non_opaque_type_preferred,
3685 &with_opaque);
3686
da51c347
DE
3687 /* Some caution must be observed with overloaded functions
3688 and methods, since the index will not contain any overload
3689 information (but NAME might contain it). */
da51c347 3690
b2e2f908
DE
3691 if (sym != NULL
3692 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3693 return stab;
3694 if (with_opaque != NULL
3695 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3696 stab_best = stab;
da51c347
DE
3697
3698 /* Keep looking through other CUs. */
9291a0cd
TT
3699 }
3700 }
9291a0cd 3701
da51c347 3702 return stab_best;
9291a0cd
TT
3703}
3704
3705static void
3706dw2_print_stats (struct objfile *objfile)
3707{
e4a48d9d 3708 int i, total, count;
9291a0cd
TT
3709
3710 dw2_setup (objfile);
e4a48d9d 3711 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3712 count = 0;
e4a48d9d 3713 for (i = 0; i < total; ++i)
9291a0cd 3714 {
8832e7e3 3715 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3716
43f3e411 3717 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3718 ++count;
3719 }
e4a48d9d 3720 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3721 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3722}
3723
779bd270
DE
3724/* This dumps minimal information about the index.
3725 It is called via "mt print objfiles".
3726 One use is to verify .gdb_index has been loaded by the
3727 gdb.dwarf2/gdb-index.exp testcase. */
3728
9291a0cd
TT
3729static void
3730dw2_dump (struct objfile *objfile)
3731{
779bd270
DE
3732 dw2_setup (objfile);
3733 gdb_assert (dwarf2_per_objfile->using_index);
3734 printf_filtered (".gdb_index:");
3735 if (dwarf2_per_objfile->index_table != NULL)
3736 {
3737 printf_filtered (" version %d\n",
3738 dwarf2_per_objfile->index_table->version);
3739 }
3740 else
3741 printf_filtered (" faked for \"readnow\"\n");
3742 printf_filtered ("\n");
9291a0cd
TT
3743}
3744
3745static void
3189cb12
DE
3746dw2_relocate (struct objfile *objfile,
3747 const struct section_offsets *new_offsets,
3748 const struct section_offsets *delta)
9291a0cd
TT
3749{
3750 /* There's nothing to relocate here. */
3751}
3752
3753static void
3754dw2_expand_symtabs_for_function (struct objfile *objfile,
3755 const char *func_name)
3756{
da51c347
DE
3757 struct mapped_index *index;
3758
3759 dw2_setup (objfile);
3760
3761 index = dwarf2_per_objfile->index_table;
3762
3763 /* index is NULL if OBJF_READNOW. */
3764 if (index)
3765 {
3766 struct dw2_symtab_iterator iter;
3767 struct dwarf2_per_cu_data *per_cu;
3768
3769 /* Note: It doesn't matter what we pass for block_index here. */
3770 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3771 func_name);
3772
3773 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3774 dw2_instantiate_symtab (per_cu);
3775 }
9291a0cd
TT
3776}
3777
3778static void
3779dw2_expand_all_symtabs (struct objfile *objfile)
3780{
3781 int i;
3782
3783 dw2_setup (objfile);
1fd400ff
TT
3784
3785 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3786 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3787 {
8832e7e3 3788 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3789
a0f42c21 3790 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3791 }
3792}
3793
3794static void
652a8996
JK
3795dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3796 const char *fullname)
9291a0cd
TT
3797{
3798 int i;
3799
3800 dw2_setup (objfile);
d4637a04
DE
3801
3802 /* We don't need to consider type units here.
3803 This is only called for examining code, e.g. expand_line_sal.
3804 There can be an order of magnitude (or more) more type units
3805 than comp units, and we avoid them if we can. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3808 {
3809 int j;
8832e7e3 3810 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3811 struct quick_file_names *file_data;
9291a0cd 3812
3d7bb9d9 3813 /* We only need to look at symtabs not already expanded. */
43f3e411 3814 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3815 continue;
3816
e4a48d9d 3817 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3818 if (file_data == NULL)
9291a0cd
TT
3819 continue;
3820
7b9f3c50 3821 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3822 {
652a8996
JK
3823 const char *this_fullname = file_data->file_names[j];
3824
3825 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3826 {
a0f42c21 3827 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3828 break;
3829 }
3830 }
3831 }
3832}
3833
9291a0cd 3834static void
ade7ed9e 3835dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3836 const char * name, domain_enum domain,
ade7ed9e 3837 int global,
40658b94
PH
3838 int (*callback) (struct block *,
3839 struct symbol *, void *),
2edb89d3
JK
3840 void *data, symbol_compare_ftype *match,
3841 symbol_compare_ftype *ordered_compare)
9291a0cd 3842{
40658b94 3843 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3844 current language is Ada for a non-Ada objfile using GNU index. As Ada
3845 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3846}
3847
3848static void
f8eba3c6
TT
3849dw2_expand_symtabs_matching
3850 (struct objfile *objfile,
206f2a57
DE
3851 expand_symtabs_file_matcher_ftype *file_matcher,
3852 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3853 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3854 enum search_domain kind,
3855 void *data)
9291a0cd
TT
3856{
3857 int i;
3858 offset_type iter;
4b5246aa 3859 struct mapped_index *index;
9291a0cd
TT
3860
3861 dw2_setup (objfile);
ae2de4f8
DE
3862
3863 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3864 if (!dwarf2_per_objfile->index_table)
3865 return;
4b5246aa 3866 index = dwarf2_per_objfile->index_table;
9291a0cd 3867
7b08b9eb 3868 if (file_matcher != NULL)
24c79950
TT
3869 {
3870 struct cleanup *cleanup;
3871 htab_t visited_found, visited_not_found;
3872
3873 visited_found = htab_create_alloc (10,
3874 htab_hash_pointer, htab_eq_pointer,
3875 NULL, xcalloc, xfree);
3876 cleanup = make_cleanup_htab_delete (visited_found);
3877 visited_not_found = htab_create_alloc (10,
3878 htab_hash_pointer, htab_eq_pointer,
3879 NULL, xcalloc, xfree);
3880 make_cleanup_htab_delete (visited_not_found);
3881
848e3e78
DE
3882 /* The rule is CUs specify all the files, including those used by
3883 any TU, so there's no need to scan TUs here. */
3884
3885 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3886 {
3887 int j;
8832e7e3 3888 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3889 struct quick_file_names *file_data;
3890 void **slot;
7b08b9eb 3891
61d96d7e
DE
3892 QUIT;
3893
24c79950 3894 per_cu->v.quick->mark = 0;
3d7bb9d9 3895
24c79950 3896 /* We only need to look at symtabs not already expanded. */
43f3e411 3897 if (per_cu->v.quick->compunit_symtab)
24c79950 3898 continue;
7b08b9eb 3899
e4a48d9d 3900 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3901 if (file_data == NULL)
3902 continue;
7b08b9eb 3903
24c79950
TT
3904 if (htab_find (visited_not_found, file_data) != NULL)
3905 continue;
3906 else if (htab_find (visited_found, file_data) != NULL)
3907 {
3908 per_cu->v.quick->mark = 1;
3909 continue;
3910 }
3911
3912 for (j = 0; j < file_data->num_file_names; ++j)
3913 {
da235a7c
JK
3914 const char *this_real_name;
3915
fbd9ab74 3916 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
da235a7c
JK
3921
3922 /* Before we invoke realpath, which can get expensive when many
3923 files are involved, do a quick comparison of the basenames. */
3924 if (!basenames_may_differ
3925 && !file_matcher (lbasename (file_data->file_names[j]),
3926 data, 1))
3927 continue;
3928
3929 this_real_name = dw2_get_real_path (objfile, file_data, j);
3930 if (file_matcher (this_real_name, data, 0))
3931 {
3932 per_cu->v.quick->mark = 1;
3933 break;
3934 }
24c79950
TT
3935 }
3936
3937 slot = htab_find_slot (per_cu->v.quick->mark
3938 ? visited_found
3939 : visited_not_found,
3940 file_data, INSERT);
3941 *slot = file_data;
3942 }
3943
3944 do_cleanups (cleanup);
3945 }
9291a0cd 3946
3876f04e 3947 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3948 {
3949 offset_type idx = 2 * iter;
3950 const char *name;
3951 offset_type *vec, vec_len, vec_idx;
8943b874 3952 int global_seen = 0;
9291a0cd 3953
61d96d7e
DE
3954 QUIT;
3955
3876f04e 3956 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3957 continue;
3958
3876f04e 3959 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3960
206f2a57 3961 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3962 continue;
3963
3964 /* The name was matched, now expand corresponding CUs that were
3965 marked. */
4b5246aa 3966 vec = (offset_type *) (index->constant_pool
3876f04e 3967 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3968 vec_len = MAYBE_SWAP (vec[0]);
3969 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3970 {
e254ef6a 3971 struct dwarf2_per_cu_data *per_cu;
156942c7 3972 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3973 /* This value is only valid for index versions >= 7. */
3974 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3975 gdb_index_symbol_kind symbol_kind =
3976 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3977 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3978 /* Only check the symbol attributes if they're present.
3979 Indices prior to version 7 don't record them,
3980 and indices >= 7 may elide them for certain symbols
3981 (gold does this). */
3982 int attrs_valid =
3983 (index->version >= 7
3984 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3985
8943b874
DE
3986 /* Work around gold/15646. */
3987 if (attrs_valid)
3988 {
3989 if (!is_static && global_seen)
3990 continue;
3991 if (!is_static)
3992 global_seen = 1;
3993 }
3994
3190f0c6
DE
3995 /* Only check the symbol's kind if it has one. */
3996 if (attrs_valid)
156942c7
DE
3997 {
3998 switch (kind)
3999 {
4000 case VARIABLES_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4002 continue;
4003 break;
4004 case FUNCTIONS_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4006 continue;
4007 break;
4008 case TYPES_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 default:
4013 break;
4014 }
4015 }
4016
3190f0c6
DE
4017 /* Don't crash on bad data. */
4018 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4019 + dwarf2_per_objfile->n_type_units))
4020 {
4021 complaint (&symfile_complaints,
4022 _(".gdb_index entry has bad CU index"
4262abfb 4023 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4024 continue;
4025 }
4026
8832e7e3 4027 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4028 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4029 {
4030 int symtab_was_null =
4031 (per_cu->v.quick->compunit_symtab == NULL);
4032
4033 dw2_instantiate_symtab (per_cu);
4034
4035 if (expansion_notify != NULL
4036 && symtab_was_null
4037 && per_cu->v.quick->compunit_symtab != NULL)
4038 {
4039 expansion_notify (per_cu->v.quick->compunit_symtab,
4040 data);
4041 }
4042 }
9291a0cd
TT
4043 }
4044 }
4045}
4046
43f3e411 4047/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4048 symtab. */
4049
43f3e411
DE
4050static struct compunit_symtab *
4051recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4052 CORE_ADDR pc)
9703b513
TT
4053{
4054 int i;
4055
43f3e411
DE
4056 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4057 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4058 return cust;
9703b513 4059
43f3e411 4060 if (cust->includes == NULL)
a3ec0bb1
DE
4061 return NULL;
4062
43f3e411 4063 for (i = 0; cust->includes[i]; ++i)
9703b513 4064 {
43f3e411 4065 struct compunit_symtab *s = cust->includes[i];
9703b513 4066
43f3e411 4067 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4068 if (s != NULL)
4069 return s;
4070 }
4071
4072 return NULL;
4073}
4074
43f3e411
DE
4075static struct compunit_symtab *
4076dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4077 struct bound_minimal_symbol msymbol,
4078 CORE_ADDR pc,
4079 struct obj_section *section,
4080 int warn_if_readin)
9291a0cd
TT
4081{
4082 struct dwarf2_per_cu_data *data;
43f3e411 4083 struct compunit_symtab *result;
9291a0cd
TT
4084
4085 dw2_setup (objfile);
4086
4087 if (!objfile->psymtabs_addrmap)
4088 return NULL;
4089
4090 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4091 if (!data)
4092 return NULL;
4093
43f3e411 4094 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4095 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4096 paddress (get_objfile_arch (objfile), pc));
4097
43f3e411
DE
4098 result
4099 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4100 pc);
9703b513
TT
4101 gdb_assert (result != NULL);
4102 return result;
9291a0cd
TT
4103}
4104
9291a0cd 4105static void
44b13c5a 4106dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4107 void *data, int need_fullname)
9291a0cd
TT
4108{
4109 int i;
24c79950
TT
4110 struct cleanup *cleanup;
4111 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4112 NULL, xcalloc, xfree);
9291a0cd 4113
24c79950 4114 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4115 dw2_setup (objfile);
ae2de4f8 4116
848e3e78
DE
4117 /* The rule is CUs specify all the files, including those used by
4118 any TU, so there's no need to scan TUs here.
4119 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4120
848e3e78 4121 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4122 {
8832e7e3 4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4124
43f3e411 4125 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4126 {
4127 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4128 INSERT);
4129
4130 *slot = per_cu->v.quick->file_names;
4131 }
4132 }
4133
848e3e78 4134 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4135 {
4136 int j;
8832e7e3 4137 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4138 struct quick_file_names *file_data;
24c79950 4139 void **slot;
9291a0cd 4140
3d7bb9d9 4141 /* We only need to look at symtabs not already expanded. */
43f3e411 4142 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4143 continue;
4144
e4a48d9d 4145 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4146 if (file_data == NULL)
9291a0cd
TT
4147 continue;
4148
24c79950
TT
4149 slot = htab_find_slot (visited, file_data, INSERT);
4150 if (*slot)
4151 {
4152 /* Already visited. */
4153 continue;
4154 }
4155 *slot = file_data;
4156
7b9f3c50 4157 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4158 {
74e2f255
DE
4159 const char *this_real_name;
4160
4161 if (need_fullname)
4162 this_real_name = dw2_get_real_path (objfile, file_data, j);
4163 else
4164 this_real_name = NULL;
7b9f3c50 4165 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4166 }
4167 }
24c79950
TT
4168
4169 do_cleanups (cleanup);
9291a0cd
TT
4170}
4171
4172static int
4173dw2_has_symbols (struct objfile *objfile)
4174{
4175 return 1;
4176}
4177
4178const struct quick_symbol_functions dwarf2_gdb_index_functions =
4179{
4180 dw2_has_symbols,
4181 dw2_find_last_source_symtab,
4182 dw2_forget_cached_source_info,
f8eba3c6 4183 dw2_map_symtabs_matching_filename,
9291a0cd 4184 dw2_lookup_symbol,
9291a0cd
TT
4185 dw2_print_stats,
4186 dw2_dump,
4187 dw2_relocate,
4188 dw2_expand_symtabs_for_function,
4189 dw2_expand_all_symtabs,
652a8996 4190 dw2_expand_symtabs_with_fullname,
40658b94 4191 dw2_map_matching_symbols,
9291a0cd 4192 dw2_expand_symtabs_matching,
43f3e411 4193 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4194 dw2_map_symbol_filenames
4195};
4196
4197/* Initialize for reading DWARF for this objfile. Return 0 if this
4198 file will use psymtabs, or 1 if using the GNU index. */
4199
4200int
4201dwarf2_initialize_objfile (struct objfile *objfile)
4202{
4203 /* If we're about to read full symbols, don't bother with the
4204 indices. In this case we also don't care if some other debug
4205 format is making psymtabs, because they are all about to be
4206 expanded anyway. */
4207 if ((objfile->flags & OBJF_READNOW))
4208 {
4209 int i;
4210
4211 dwarf2_per_objfile->using_index = 1;
4212 create_all_comp_units (objfile);
0e50663e 4213 create_all_type_units (objfile);
7b9f3c50
DE
4214 dwarf2_per_objfile->quick_file_names_table =
4215 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4216
1fd400ff 4217 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4218 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4219 {
8832e7e3 4220 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4221
e254ef6a
DE
4222 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4223 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4224 }
4225
4226 /* Return 1 so that gdb sees the "quick" functions. However,
4227 these functions will be no-ops because we will have expanded
4228 all symtabs. */
4229 return 1;
4230 }
4231
4232 if (dwarf2_read_index (objfile))
4233 return 1;
4234
9291a0cd
TT
4235 return 0;
4236}
4237
4238\f
4239
dce234bc
PP
4240/* Build a partial symbol table. */
4241
4242void
f29dff0a 4243dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4244{
c9bf0622 4245
f29dff0a 4246 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4247 {
4248 init_psymbol_list (objfile, 1024);
4249 }
4250
492d29ea 4251 TRY
c9bf0622
TT
4252 {
4253 /* This isn't really ideal: all the data we allocate on the
4254 objfile's obstack is still uselessly kept around. However,
4255 freeing it seems unsafe. */
4256 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4257
4258 dwarf2_build_psymtabs_hard (objfile);
4259 discard_cleanups (cleanups);
4260 }
492d29ea
PA
4261 CATCH (except, RETURN_MASK_ERROR)
4262 {
4263 exception_print (gdb_stderr, except);
4264 }
4265 END_CATCH
c906108c 4266}
c906108c 4267
1ce1cefd
DE
4268/* Return the total length of the CU described by HEADER. */
4269
4270static unsigned int
4271get_cu_length (const struct comp_unit_head *header)
4272{
4273 return header->initial_length_size + header->length;
4274}
4275
45452591
DE
4276/* Return TRUE if OFFSET is within CU_HEADER. */
4277
4278static inline int
b64f50a1 4279offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4280{
b64f50a1 4281 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4282 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4283
b64f50a1 4284 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4285}
4286
3b80fe9b
DE
4287/* Find the base address of the compilation unit for range lists and
4288 location lists. It will normally be specified by DW_AT_low_pc.
4289 In DWARF-3 draft 4, the base address could be overridden by
4290 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4291 compilation units with discontinuous ranges. */
4292
4293static void
4294dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4295{
4296 struct attribute *attr;
4297
4298 cu->base_known = 0;
4299 cu->base_address = 0;
4300
4301 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4302 if (attr)
4303 {
31aa7e4e 4304 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4305 cu->base_known = 1;
4306 }
4307 else
4308 {
4309 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4310 if (attr)
4311 {
31aa7e4e 4312 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4313 cu->base_known = 1;
4314 }
4315 }
4316}
4317
93311388
DE
4318/* Read in the comp unit header information from the debug_info at info_ptr.
4319 NOTE: This leaves members offset, first_die_offset to be filled in
4320 by the caller. */
107d2387 4321
d521ce57 4322static const gdb_byte *
107d2387 4323read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4324 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4325{
4326 int signed_addr;
891d2f0b 4327 unsigned int bytes_read;
c764a876
DE
4328
4329 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4330 cu_header->initial_length_size = bytes_read;
4331 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4332 info_ptr += bytes_read;
107d2387
AC
4333 cu_header->version = read_2_bytes (abfd, info_ptr);
4334 info_ptr += 2;
b64f50a1
JK
4335 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4336 &bytes_read);
613e1657 4337 info_ptr += bytes_read;
107d2387
AC
4338 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4339 info_ptr += 1;
4340 signed_addr = bfd_get_sign_extend_vma (abfd);
4341 if (signed_addr < 0)
8e65ff28 4342 internal_error (__FILE__, __LINE__,
e2e0b3e5 4343 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4344 cu_header->signed_addr_p = signed_addr;
c764a876 4345
107d2387
AC
4346 return info_ptr;
4347}
4348
36586728
TT
4349/* Helper function that returns the proper abbrev section for
4350 THIS_CU. */
4351
4352static struct dwarf2_section_info *
4353get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4354{
4355 struct dwarf2_section_info *abbrev;
4356
4357 if (this_cu->is_dwz)
4358 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4359 else
4360 abbrev = &dwarf2_per_objfile->abbrev;
4361
4362 return abbrev;
4363}
4364
9ff913ba
DE
4365/* Subroutine of read_and_check_comp_unit_head and
4366 read_and_check_type_unit_head to simplify them.
4367 Perform various error checking on the header. */
4368
4369static void
4370error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4371 struct dwarf2_section_info *section,
4372 struct dwarf2_section_info *abbrev_section)
9ff913ba 4373{
a32a8923
DE
4374 bfd *abfd = get_section_bfd_owner (section);
4375 const char *filename = get_section_file_name (section);
9ff913ba
DE
4376
4377 if (header->version != 2 && header->version != 3 && header->version != 4)
4378 error (_("Dwarf Error: wrong version in compilation unit header "
4379 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4380 filename);
4381
b64f50a1 4382 if (header->abbrev_offset.sect_off
36586728 4383 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4384 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4385 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4386 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4387 filename);
4388
4389 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4390 avoid potential 32-bit overflow. */
1ce1cefd 4391 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4392 > section->size)
4393 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4395 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4396 filename);
4397}
4398
4399/* Read in a CU/TU header and perform some basic error checking.
4400 The contents of the header are stored in HEADER.
4401 The result is a pointer to the start of the first DIE. */
adabb602 4402
d521ce57 4403static const gdb_byte *
9ff913ba
DE
4404read_and_check_comp_unit_head (struct comp_unit_head *header,
4405 struct dwarf2_section_info *section,
4bdcc0c1 4406 struct dwarf2_section_info *abbrev_section,
d521ce57 4407 const gdb_byte *info_ptr,
9ff913ba 4408 int is_debug_types_section)
72bf9492 4409{
d521ce57 4410 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4411 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4412
b64f50a1 4413 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4414
72bf9492
DJ
4415 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4416
460c1c54
CC
4417 /* If we're reading a type unit, skip over the signature and
4418 type_offset fields. */
b0df02fd 4419 if (is_debug_types_section)
460c1c54
CC
4420 info_ptr += 8 /*signature*/ + header->offset_size;
4421
b64f50a1 4422 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4423
4bdcc0c1 4424 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4425
4426 return info_ptr;
4427}
4428
348e048f
DE
4429/* Read in the types comp unit header information from .debug_types entry at
4430 types_ptr. The result is a pointer to one past the end of the header. */
4431
d521ce57 4432static const gdb_byte *
9ff913ba
DE
4433read_and_check_type_unit_head (struct comp_unit_head *header,
4434 struct dwarf2_section_info *section,
4bdcc0c1 4435 struct dwarf2_section_info *abbrev_section,
d521ce57 4436 const gdb_byte *info_ptr,
dee91e82
DE
4437 ULONGEST *signature,
4438 cu_offset *type_offset_in_tu)
348e048f 4439{
d521ce57 4440 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4441 bfd *abfd = get_section_bfd_owner (section);
348e048f 4442
b64f50a1 4443 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4444
9ff913ba 4445 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4446
9ff913ba
DE
4447 /* If we're reading a type unit, skip over the signature and
4448 type_offset fields. */
4449 if (signature != NULL)
4450 *signature = read_8_bytes (abfd, info_ptr);
4451 info_ptr += 8;
dee91e82
DE
4452 if (type_offset_in_tu != NULL)
4453 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4454 header->offset_size);
9ff913ba
DE
4455 info_ptr += header->offset_size;
4456
b64f50a1 4457 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4458
4bdcc0c1 4459 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4460
4461 return info_ptr;
348e048f
DE
4462}
4463
f4dc4d17
DE
4464/* Fetch the abbreviation table offset from a comp or type unit header. */
4465
4466static sect_offset
4467read_abbrev_offset (struct dwarf2_section_info *section,
4468 sect_offset offset)
4469{
a32a8923 4470 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4471 const gdb_byte *info_ptr;
f4dc4d17
DE
4472 unsigned int length, initial_length_size, offset_size;
4473 sect_offset abbrev_offset;
4474
4475 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4476 info_ptr = section->buffer + offset.sect_off;
4477 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4478 offset_size = initial_length_size == 4 ? 4 : 8;
4479 info_ptr += initial_length_size + 2 /*version*/;
4480 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4481 return abbrev_offset;
4482}
4483
aaa75496
JB
4484/* Allocate a new partial symtab for file named NAME and mark this new
4485 partial symtab as being an include of PST. */
4486
4487static void
d521ce57 4488dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4489 struct objfile *objfile)
4490{
4491 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4492
fbd9ab74
JK
4493 if (!IS_ABSOLUTE_PATH (subpst->filename))
4494 {
4495 /* It shares objfile->objfile_obstack. */
4496 subpst->dirname = pst->dirname;
4497 }
4498
aaa75496
JB
4499 subpst->textlow = 0;
4500 subpst->texthigh = 0;
4501
4502 subpst->dependencies = (struct partial_symtab **)
4503 obstack_alloc (&objfile->objfile_obstack,
4504 sizeof (struct partial_symtab *));
4505 subpst->dependencies[0] = pst;
4506 subpst->number_of_dependencies = 1;
4507
4508 subpst->globals_offset = 0;
4509 subpst->n_global_syms = 0;
4510 subpst->statics_offset = 0;
4511 subpst->n_static_syms = 0;
43f3e411 4512 subpst->compunit_symtab = NULL;
aaa75496
JB
4513 subpst->read_symtab = pst->read_symtab;
4514 subpst->readin = 0;
4515
4516 /* No private part is necessary for include psymtabs. This property
4517 can be used to differentiate between such include psymtabs and
10b3939b 4518 the regular ones. */
58a9656e 4519 subpst->read_symtab_private = NULL;
aaa75496
JB
4520}
4521
4522/* Read the Line Number Program data and extract the list of files
4523 included by the source file represented by PST. Build an include
d85a05f0 4524 partial symtab for each of these included files. */
aaa75496
JB
4525
4526static void
4527dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4528 struct die_info *die,
4529 struct partial_symtab *pst)
aaa75496 4530{
d85a05f0
DJ
4531 struct line_header *lh = NULL;
4532 struct attribute *attr;
aaa75496 4533
d85a05f0
DJ
4534 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4535 if (attr)
3019eac3 4536 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4537 if (lh == NULL)
4538 return; /* No linetable, so no includes. */
4539
c6da4cef 4540 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4541 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4542
4543 free_line_header (lh);
4544}
4545
348e048f 4546static hashval_t
52dc124a 4547hash_signatured_type (const void *item)
348e048f 4548{
52dc124a 4549 const struct signatured_type *sig_type = item;
9a619af0 4550
348e048f 4551 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4552 return sig_type->signature;
348e048f
DE
4553}
4554
4555static int
52dc124a 4556eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4557{
4558 const struct signatured_type *lhs = item_lhs;
4559 const struct signatured_type *rhs = item_rhs;
9a619af0 4560
348e048f
DE
4561 return lhs->signature == rhs->signature;
4562}
4563
1fd400ff
TT
4564/* Allocate a hash table for signatured types. */
4565
4566static htab_t
673bfd45 4567allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4568{
4569 return htab_create_alloc_ex (41,
52dc124a
DE
4570 hash_signatured_type,
4571 eq_signatured_type,
1fd400ff
TT
4572 NULL,
4573 &objfile->objfile_obstack,
4574 hashtab_obstack_allocate,
4575 dummy_obstack_deallocate);
4576}
4577
d467dd73 4578/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4579
4580static int
d467dd73 4581add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4582{
4583 struct signatured_type *sigt = *slot;
b4dd5633 4584 struct signatured_type ***datap = datum;
1fd400ff 4585
b4dd5633 4586 **datap = sigt;
1fd400ff
TT
4587 ++*datap;
4588
4589 return 1;
4590}
4591
c88ee1f0
DE
4592/* Create the hash table of all entries in the .debug_types
4593 (or .debug_types.dwo) section(s).
4594 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4595 otherwise it is NULL.
4596
4597 The result is a pointer to the hash table or NULL if there are no types.
4598
4599 Note: This function processes DWO files only, not DWP files. */
348e048f 4600
3019eac3
DE
4601static htab_t
4602create_debug_types_hash_table (struct dwo_file *dwo_file,
4603 VEC (dwarf2_section_info_def) *types)
348e048f 4604{
3019eac3 4605 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4606 htab_t types_htab = NULL;
8b70b953
TT
4607 int ix;
4608 struct dwarf2_section_info *section;
4bdcc0c1 4609 struct dwarf2_section_info *abbrev_section;
348e048f 4610
3019eac3
DE
4611 if (VEC_empty (dwarf2_section_info_def, types))
4612 return NULL;
348e048f 4613
4bdcc0c1
DE
4614 abbrev_section = (dwo_file != NULL
4615 ? &dwo_file->sections.abbrev
4616 : &dwarf2_per_objfile->abbrev);
4617
b4f54984 4618 if (dwarf_read_debug)
09406207
DE
4619 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4620 dwo_file ? ".dwo" : "",
a32a8923 4621 get_section_file_name (abbrev_section));
09406207 4622
8b70b953 4623 for (ix = 0;
3019eac3 4624 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4625 ++ix)
4626 {
3019eac3 4627 bfd *abfd;
d521ce57 4628 const gdb_byte *info_ptr, *end_ptr;
348e048f 4629
8b70b953
TT
4630 dwarf2_read_section (objfile, section);
4631 info_ptr = section->buffer;
348e048f 4632
8b70b953
TT
4633 if (info_ptr == NULL)
4634 continue;
348e048f 4635
3019eac3 4636 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4637 not present, in which case the bfd is unknown. */
4638 abfd = get_section_bfd_owner (section);
3019eac3 4639
dee91e82
DE
4640 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4641 because we don't need to read any dies: the signature is in the
4642 header. */
8b70b953
TT
4643
4644 end_ptr = info_ptr + section->size;
4645 while (info_ptr < end_ptr)
4646 {
b64f50a1 4647 sect_offset offset;
3019eac3 4648 cu_offset type_offset_in_tu;
8b70b953 4649 ULONGEST signature;
52dc124a 4650 struct signatured_type *sig_type;
3019eac3 4651 struct dwo_unit *dwo_tu;
8b70b953 4652 void **slot;
d521ce57 4653 const gdb_byte *ptr = info_ptr;
9ff913ba 4654 struct comp_unit_head header;
dee91e82 4655 unsigned int length;
348e048f 4656
b64f50a1 4657 offset.sect_off = ptr - section->buffer;
348e048f 4658
8b70b953 4659 /* We need to read the type's signature in order to build the hash
9ff913ba 4660 table, but we don't need anything else just yet. */
348e048f 4661
4bdcc0c1
DE
4662 ptr = read_and_check_type_unit_head (&header, section,
4663 abbrev_section, ptr,
3019eac3 4664 &signature, &type_offset_in_tu);
6caca83c 4665
1ce1cefd 4666 length = get_cu_length (&header);
dee91e82 4667
6caca83c 4668 /* Skip dummy type units. */
dee91e82
DE
4669 if (ptr >= info_ptr + length
4670 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4671 {
1ce1cefd 4672 info_ptr += length;
6caca83c
CC
4673 continue;
4674 }
8b70b953 4675
0349ea22
DE
4676 if (types_htab == NULL)
4677 {
4678 if (dwo_file)
4679 types_htab = allocate_dwo_unit_table (objfile);
4680 else
4681 types_htab = allocate_signatured_type_table (objfile);
4682 }
4683
3019eac3
DE
4684 if (dwo_file)
4685 {
4686 sig_type = NULL;
4687 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4688 struct dwo_unit);
4689 dwo_tu->dwo_file = dwo_file;
4690 dwo_tu->signature = signature;
4691 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4692 dwo_tu->section = section;
3019eac3
DE
4693 dwo_tu->offset = offset;
4694 dwo_tu->length = length;
4695 }
4696 else
4697 {
4698 /* N.B.: type_offset is not usable if this type uses a DWO file.
4699 The real type_offset is in the DWO file. */
4700 dwo_tu = NULL;
4701 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4702 struct signatured_type);
4703 sig_type->signature = signature;
4704 sig_type->type_offset_in_tu = type_offset_in_tu;
4705 sig_type->per_cu.objfile = objfile;
4706 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4707 sig_type->per_cu.section = section;
3019eac3
DE
4708 sig_type->per_cu.offset = offset;
4709 sig_type->per_cu.length = length;
4710 }
8b70b953 4711
3019eac3
DE
4712 slot = htab_find_slot (types_htab,
4713 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4714 INSERT);
8b70b953
TT
4715 gdb_assert (slot != NULL);
4716 if (*slot != NULL)
4717 {
3019eac3
DE
4718 sect_offset dup_offset;
4719
4720 if (dwo_file)
4721 {
4722 const struct dwo_unit *dup_tu = *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu = *slot;
4729
4730 dup_offset = dup_tu->per_cu.offset;
4731 }
b3c8eb43 4732
8b70b953 4733 complaint (&symfile_complaints,
c88ee1f0 4734 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4735 " the entry at offset 0x%x, signature %s"),
3019eac3 4736 offset.sect_off, dup_offset.sect_off,
4031ecc5 4737 hex_string (signature));
8b70b953 4738 }
3019eac3 4739 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4740
b4f54984 4741 if (dwarf_read_debug > 1)
4031ecc5 4742 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4743 offset.sect_off,
4031ecc5 4744 hex_string (signature));
348e048f 4745
dee91e82 4746 info_ptr += length;
8b70b953 4747 }
348e048f
DE
4748 }
4749
3019eac3
DE
4750 return types_htab;
4751}
4752
4753/* Create the hash table of all entries in the .debug_types section,
4754 and initialize all_type_units.
4755 The result is zero if there is an error (e.g. missing .debug_types section),
4756 otherwise non-zero. */
4757
4758static int
4759create_all_type_units (struct objfile *objfile)
4760{
4761 htab_t types_htab;
b4dd5633 4762 struct signatured_type **iter;
3019eac3
DE
4763
4764 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4765 if (types_htab == NULL)
4766 {
4767 dwarf2_per_objfile->signatured_types = NULL;
4768 return 0;
4769 }
4770
348e048f
DE
4771 dwarf2_per_objfile->signatured_types = types_htab;
4772
6aa5f3a6
DE
4773 dwarf2_per_objfile->n_type_units
4774 = dwarf2_per_objfile->n_allocated_type_units
4775 = htab_elements (types_htab);
d467dd73 4776 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4777 = xmalloc (dwarf2_per_objfile->n_type_units
4778 * sizeof (struct signatured_type *));
d467dd73
DE
4779 iter = &dwarf2_per_objfile->all_type_units[0];
4780 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4781 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4782 == dwarf2_per_objfile->n_type_units);
1fd400ff 4783
348e048f
DE
4784 return 1;
4785}
4786
6aa5f3a6
DE
4787/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4788 If SLOT is non-NULL, it is the entry to use in the hash table.
4789 Otherwise we find one. */
4790
4791static struct signatured_type *
4792add_type_unit (ULONGEST sig, void **slot)
4793{
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 int n_type_units = dwarf2_per_objfile->n_type_units;
4796 struct signatured_type *sig_type;
4797
4798 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4799 ++n_type_units;
4800 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4801 {
4802 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4803 dwarf2_per_objfile->n_allocated_type_units = 1;
4804 dwarf2_per_objfile->n_allocated_type_units *= 2;
4805 dwarf2_per_objfile->all_type_units
4806 = xrealloc (dwarf2_per_objfile->all_type_units,
4807 dwarf2_per_objfile->n_allocated_type_units
4808 * sizeof (struct signatured_type *));
4809 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4810 }
4811 dwarf2_per_objfile->n_type_units = n_type_units;
4812
4813 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4814 struct signatured_type);
4815 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4816 sig_type->signature = sig;
4817 sig_type->per_cu.is_debug_types = 1;
4818 if (dwarf2_per_objfile->using_index)
4819 {
4820 sig_type->per_cu.v.quick =
4821 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct dwarf2_per_cu_quick_data);
4823 }
4824
4825 if (slot == NULL)
4826 {
4827 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4828 sig_type, INSERT);
4829 }
4830 gdb_assert (*slot == NULL);
4831 *slot = sig_type;
4832 /* The rest of sig_type must be filled in by the caller. */
4833 return sig_type;
4834}
4835
a2ce51a0
DE
4836/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4837 Fill in SIG_ENTRY with DWO_ENTRY. */
4838
4839static void
4840fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4841 struct signatured_type *sig_entry,
4842 struct dwo_unit *dwo_entry)
4843{
7ee85ab1 4844 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4845 gdb_assert (! sig_entry->per_cu.queued);
4846 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4850 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4851 }
4852 else
4853 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4854 gdb_assert (sig_entry->signature == dwo_entry->signature);
4855 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4856 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4857 gdb_assert (sig_entry->dwo_unit == NULL);
4858
4859 sig_entry->per_cu.section = dwo_entry->section;
4860 sig_entry->per_cu.offset = dwo_entry->offset;
4861 sig_entry->per_cu.length = dwo_entry->length;
4862 sig_entry->per_cu.reading_dwo_directly = 1;
4863 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4864 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4865 sig_entry->dwo_unit = dwo_entry;
4866}
4867
4868/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4869 If we haven't read the TU yet, create the signatured_type data structure
4870 for a TU to be read in directly from a DWO file, bypassing the stub.
4871 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4872 using .gdb_index, then when reading a CU we want to stay in the DWO file
4873 containing that CU. Otherwise we could end up reading several other DWO
4874 files (due to comdat folding) to process the transitive closure of all the
4875 mentioned TUs, and that can be slow. The current DWO file will have every
4876 type signature that it needs.
a2ce51a0
DE
4877 We only do this for .gdb_index because in the psymtab case we already have
4878 to read all the DWOs to build the type unit groups. */
4879
4880static struct signatured_type *
4881lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4882{
4883 struct objfile *objfile = dwarf2_per_objfile->objfile;
4884 struct dwo_file *dwo_file;
4885 struct dwo_unit find_dwo_entry, *dwo_entry;
4886 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4887 void **slot;
a2ce51a0
DE
4888
4889 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4890
6aa5f3a6
DE
4891 /* If TU skeletons have been removed then we may not have read in any
4892 TUs yet. */
4893 if (dwarf2_per_objfile->signatured_types == NULL)
4894 {
4895 dwarf2_per_objfile->signatured_types
4896 = allocate_signatured_type_table (objfile);
4897 }
a2ce51a0
DE
4898
4899 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4900 Use the global signatured_types array to do our own comdat-folding
4901 of types. If this is the first time we're reading this TU, and
4902 the TU has an entry in .gdb_index, replace the recorded data from
4903 .gdb_index with this TU. */
a2ce51a0 4904
a2ce51a0 4905 find_sig_entry.signature = sig;
6aa5f3a6
DE
4906 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4907 &find_sig_entry, INSERT);
4908 sig_entry = *slot;
7ee85ab1
DE
4909
4910 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4911 read. Don't reassign the global entry to point to this DWO if that's
4912 the case. Also note that if the TU is already being read, it may not
4913 have come from a DWO, the program may be a mix of Fission-compiled
4914 code and non-Fission-compiled code. */
4915
4916 /* Have we already tried to read this TU?
4917 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4918 needn't exist in the global table yet). */
4919 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4920 return sig_entry;
4921
6aa5f3a6
DE
4922 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4923 dwo_unit of the TU itself. */
4924 dwo_file = cu->dwo_unit->dwo_file;
4925
a2ce51a0
DE
4926 /* Ok, this is the first time we're reading this TU. */
4927 if (dwo_file->tus == NULL)
4928 return NULL;
4929 find_dwo_entry.signature = sig;
4930 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4931 if (dwo_entry == NULL)
4932 return NULL;
4933
6aa5f3a6
DE
4934 /* If the global table doesn't have an entry for this TU, add one. */
4935 if (sig_entry == NULL)
4936 sig_entry = add_type_unit (sig, slot);
4937
a2ce51a0 4938 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4939 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4940 return sig_entry;
4941}
4942
a2ce51a0
DE
4943/* Subroutine of lookup_signatured_type.
4944 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4945 then try the DWP file. If the TU stub (skeleton) has been removed then
4946 it won't be in .gdb_index. */
a2ce51a0
DE
4947
4948static struct signatured_type *
4949lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4950{
4951 struct objfile *objfile = dwarf2_per_objfile->objfile;
4952 struct dwp_file *dwp_file = get_dwp_file ();
4953 struct dwo_unit *dwo_entry;
4954 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4955 void **slot;
a2ce51a0
DE
4956
4957 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4958 gdb_assert (dwp_file != NULL);
4959
6aa5f3a6
DE
4960 /* If TU skeletons have been removed then we may not have read in any
4961 TUs yet. */
4962 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4963 {
6aa5f3a6
DE
4964 dwarf2_per_objfile->signatured_types
4965 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4966 }
4967
6aa5f3a6
DE
4968 find_sig_entry.signature = sig;
4969 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4970 &find_sig_entry, INSERT);
4971 sig_entry = *slot;
4972
4973 /* Have we already tried to read this TU?
4974 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4975 needn't exist in the global table yet). */
4976 if (sig_entry != NULL)
4977 return sig_entry;
4978
a2ce51a0
DE
4979 if (dwp_file->tus == NULL)
4980 return NULL;
57d63ce2
DE
4981 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4982 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4983 if (dwo_entry == NULL)
4984 return NULL;
4985
6aa5f3a6 4986 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4987 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4988
a2ce51a0
DE
4989 return sig_entry;
4990}
4991
380bca97 4992/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4993 Returns NULL if signature SIG is not present in the table.
4994 It is up to the caller to complain about this. */
348e048f
DE
4995
4996static struct signatured_type *
a2ce51a0 4997lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4998{
a2ce51a0
DE
4999 if (cu->dwo_unit
5000 && dwarf2_per_objfile->using_index)
5001 {
5002 /* We're in a DWO/DWP file, and we're using .gdb_index.
5003 These cases require special processing. */
5004 if (get_dwp_file () == NULL)
5005 return lookup_dwo_signatured_type (cu, sig);
5006 else
5007 return lookup_dwp_signatured_type (cu, sig);
5008 }
5009 else
5010 {
5011 struct signatured_type find_entry, *entry;
348e048f 5012
a2ce51a0
DE
5013 if (dwarf2_per_objfile->signatured_types == NULL)
5014 return NULL;
5015 find_entry.signature = sig;
5016 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5017 return entry;
5018 }
348e048f 5019}
42e7ad6c
DE
5020\f
5021/* Low level DIE reading support. */
348e048f 5022
d85a05f0
DJ
5023/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5024
5025static void
5026init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5027 struct dwarf2_cu *cu,
3019eac3
DE
5028 struct dwarf2_section_info *section,
5029 struct dwo_file *dwo_file)
d85a05f0 5030{
fceca515 5031 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5032 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5033 reader->cu = cu;
3019eac3 5034 reader->dwo_file = dwo_file;
dee91e82
DE
5035 reader->die_section = section;
5036 reader->buffer = section->buffer;
f664829e 5037 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5038 reader->comp_dir = NULL;
d85a05f0
DJ
5039}
5040
b0c7bfa9
DE
5041/* Subroutine of init_cutu_and_read_dies to simplify it.
5042 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5043 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5044 already.
5045
5046 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5047 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5048 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5049 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5050 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5051 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5052 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5053 are filled in with the info of the DIE from the DWO file.
5054 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5055 provided an abbrev table to use.
5056 The result is non-zero if a valid (non-dummy) DIE was found. */
5057
5058static int
5059read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5060 struct dwo_unit *dwo_unit,
5061 int abbrev_table_provided,
5062 struct die_info *stub_comp_unit_die,
a2ce51a0 5063 const char *stub_comp_dir,
b0c7bfa9 5064 struct die_reader_specs *result_reader,
d521ce57 5065 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5066 struct die_info **result_comp_unit_die,
5067 int *result_has_children)
5068{
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070 struct dwarf2_cu *cu = this_cu->cu;
5071 struct dwarf2_section_info *section;
5072 bfd *abfd;
d521ce57 5073 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5074 ULONGEST signature; /* Or dwo_id. */
5075 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5076 int i,num_extra_attrs;
5077 struct dwarf2_section_info *dwo_abbrev_section;
5078 struct attribute *attr;
5079 struct die_info *comp_unit_die;
5080
b0aeadb3
DE
5081 /* At most one of these may be provided. */
5082 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5083
b0c7bfa9
DE
5084 /* These attributes aren't processed until later:
5085 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5086 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5087 referenced later. However, these attributes are found in the stub
5088 which we won't have later. In order to not impose this complication
5089 on the rest of the code, we read them here and copy them to the
5090 DWO CU/TU die. */
b0c7bfa9
DE
5091
5092 stmt_list = NULL;
5093 low_pc = NULL;
5094 high_pc = NULL;
5095 ranges = NULL;
5096 comp_dir = NULL;
5097
5098 if (stub_comp_unit_die != NULL)
5099 {
5100 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5101 DWO file. */
5102 if (! this_cu->is_debug_types)
5103 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5104 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5105 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5106 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5107 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5108
5109 /* There should be a DW_AT_addr_base attribute here (if needed).
5110 We need the value before we can process DW_FORM_GNU_addr_index. */
5111 cu->addr_base = 0;
5112 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5113 if (attr)
5114 cu->addr_base = DW_UNSND (attr);
5115
5116 /* There should be a DW_AT_ranges_base attribute here (if needed).
5117 We need the value before we can process DW_AT_ranges. */
5118 cu->ranges_base = 0;
5119 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5120 if (attr)
5121 cu->ranges_base = DW_UNSND (attr);
5122 }
a2ce51a0
DE
5123 else if (stub_comp_dir != NULL)
5124 {
5125 /* Reconstruct the comp_dir attribute to simplify the code below. */
5126 comp_dir = (struct attribute *)
5127 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5128 comp_dir->name = DW_AT_comp_dir;
5129 comp_dir->form = DW_FORM_string;
5130 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5131 DW_STRING (comp_dir) = stub_comp_dir;
5132 }
b0c7bfa9
DE
5133
5134 /* Set up for reading the DWO CU/TU. */
5135 cu->dwo_unit = dwo_unit;
5136 section = dwo_unit->section;
5137 dwarf2_read_section (objfile, section);
a32a8923 5138 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5139 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5140 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5141 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5142
5143 if (this_cu->is_debug_types)
5144 {
5145 ULONGEST header_signature;
5146 cu_offset type_offset_in_tu;
5147 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5148
5149 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5150 dwo_abbrev_section,
5151 info_ptr,
5152 &header_signature,
5153 &type_offset_in_tu);
a2ce51a0
DE
5154 /* This is not an assert because it can be caused by bad debug info. */
5155 if (sig_type->signature != header_signature)
5156 {
5157 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5158 " TU at offset 0x%x [in module %s]"),
5159 hex_string (sig_type->signature),
5160 hex_string (header_signature),
5161 dwo_unit->offset.sect_off,
5162 bfd_get_filename (abfd));
5163 }
b0c7bfa9
DE
5164 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5165 /* For DWOs coming from DWP files, we don't know the CU length
5166 nor the type's offset in the TU until now. */
5167 dwo_unit->length = get_cu_length (&cu->header);
5168 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5169
5170 /* Establish the type offset that can be used to lookup the type.
5171 For DWO files, we don't know it until now. */
5172 sig_type->type_offset_in_section.sect_off =
5173 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5174 }
5175 else
5176 {
5177 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr, 0);
5180 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5181 /* For DWOs coming from DWP files, we don't know the CU length
5182 until now. */
5183 dwo_unit->length = get_cu_length (&cu->header);
5184 }
5185
02142a6c
DE
5186 /* Replace the CU's original abbrev table with the DWO's.
5187 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5188 if (abbrev_table_provided)
5189 {
5190 /* Don't free the provided abbrev table, the caller of
5191 init_cutu_and_read_dies owns it. */
5192 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5193 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5194 make_cleanup (dwarf2_free_abbrev_table, cu);
5195 }
5196 else
5197 {
5198 dwarf2_free_abbrev_table (cu);
5199 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5200 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5201 }
5202
5203 /* Read in the die, but leave space to copy over the attributes
5204 from the stub. This has the benefit of simplifying the rest of
5205 the code - all the work to maintain the illusion of a single
5206 DW_TAG_{compile,type}_unit DIE is done here. */
5207 num_extra_attrs = ((stmt_list != NULL)
5208 + (low_pc != NULL)
5209 + (high_pc != NULL)
5210 + (ranges != NULL)
5211 + (comp_dir != NULL));
5212 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5213 result_has_children, num_extra_attrs);
5214
5215 /* Copy over the attributes from the stub to the DIE we just read in. */
5216 comp_unit_die = *result_comp_unit_die;
5217 i = comp_unit_die->num_attrs;
5218 if (stmt_list != NULL)
5219 comp_unit_die->attrs[i++] = *stmt_list;
5220 if (low_pc != NULL)
5221 comp_unit_die->attrs[i++] = *low_pc;
5222 if (high_pc != NULL)
5223 comp_unit_die->attrs[i++] = *high_pc;
5224 if (ranges != NULL)
5225 comp_unit_die->attrs[i++] = *ranges;
5226 if (comp_dir != NULL)
5227 comp_unit_die->attrs[i++] = *comp_dir;
5228 comp_unit_die->num_attrs += num_extra_attrs;
5229
b4f54984 5230 if (dwarf_die_debug)
bf6af496
DE
5231 {
5232 fprintf_unfiltered (gdb_stdlog,
5233 "Read die from %s@0x%x of %s:\n",
a32a8923 5234 get_section_name (section),
bf6af496
DE
5235 (unsigned) (begin_info_ptr - section->buffer),
5236 bfd_get_filename (abfd));
b4f54984 5237 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5238 }
5239
a2ce51a0
DE
5240 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5241 TUs by skipping the stub and going directly to the entry in the DWO file.
5242 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5243 to get it via circuitous means. Blech. */
5244 if (comp_dir != NULL)
5245 result_reader->comp_dir = DW_STRING (comp_dir);
5246
b0c7bfa9
DE
5247 /* Skip dummy compilation units. */
5248 if (info_ptr >= begin_info_ptr + dwo_unit->length
5249 || peek_abbrev_code (abfd, info_ptr) == 0)
5250 return 0;
5251
5252 *result_info_ptr = info_ptr;
5253 return 1;
5254}
5255
5256/* Subroutine of init_cutu_and_read_dies to simplify it.
5257 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5258 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5259
5260static struct dwo_unit *
5261lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5262 struct die_info *comp_unit_die)
5263{
5264 struct dwarf2_cu *cu = this_cu->cu;
5265 struct attribute *attr;
5266 ULONGEST signature;
5267 struct dwo_unit *dwo_unit;
5268 const char *comp_dir, *dwo_name;
5269
a2ce51a0
DE
5270 gdb_assert (cu != NULL);
5271
b0c7bfa9
DE
5272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5273 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5274 gdb_assert (attr != NULL);
5275 dwo_name = DW_STRING (attr);
5276 comp_dir = NULL;
5277 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5278 if (attr)
5279 comp_dir = DW_STRING (attr);
5280
5281 if (this_cu->is_debug_types)
5282 {
5283 struct signatured_type *sig_type;
5284
5285 /* Since this_cu is the first member of struct signatured_type,
5286 we can go from a pointer to one to a pointer to the other. */
5287 sig_type = (struct signatured_type *) this_cu;
5288 signature = sig_type->signature;
5289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5290 }
5291 else
5292 {
5293 struct attribute *attr;
5294
5295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5296 if (! attr)
5297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5298 " [in module %s]"),
4262abfb 5299 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5300 signature = DW_UNSND (attr);
5301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5302 signature);
5303 }
5304
b0c7bfa9
DE
5305 return dwo_unit;
5306}
5307
a2ce51a0 5308/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5309 See it for a description of the parameters.
5310 Read a TU directly from a DWO file, bypassing the stub.
5311
5312 Note: This function could be a little bit simpler if we shared cleanups
5313 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5314 to do, so we keep this function self-contained. Or we could move this
5315 into our caller, but it's complex enough already. */
a2ce51a0
DE
5316
5317static void
6aa5f3a6
DE
5318init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5319 int use_existing_cu, int keep,
a2ce51a0
DE
5320 die_reader_func_ftype *die_reader_func,
5321 void *data)
5322{
5323 struct dwarf2_cu *cu;
5324 struct signatured_type *sig_type;
6aa5f3a6 5325 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5326 struct die_reader_specs reader;
5327 const gdb_byte *info_ptr;
5328 struct die_info *comp_unit_die;
5329 int has_children;
5330
5331 /* Verify we can do the following downcast, and that we have the
5332 data we need. */
5333 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5334 sig_type = (struct signatured_type *) this_cu;
5335 gdb_assert (sig_type->dwo_unit != NULL);
5336
5337 cleanups = make_cleanup (null_cleanup, NULL);
5338
6aa5f3a6
DE
5339 if (use_existing_cu && this_cu->cu != NULL)
5340 {
5341 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5342 cu = this_cu->cu;
5343 /* There's no need to do the rereading_dwo_cu handling that
5344 init_cutu_and_read_dies does since we don't read the stub. */
5345 }
5346 else
5347 {
5348 /* If !use_existing_cu, this_cu->cu must be NULL. */
5349 gdb_assert (this_cu->cu == NULL);
5350 cu = xmalloc (sizeof (*cu));
5351 init_one_comp_unit (cu, this_cu);
5352 /* If an error occurs while loading, release our storage. */
5353 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5354 }
5355
5356 /* A future optimization, if needed, would be to use an existing
5357 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5358 could share abbrev tables. */
a2ce51a0
DE
5359
5360 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5361 0 /* abbrev_table_provided */,
5362 NULL /* stub_comp_unit_die */,
5363 sig_type->dwo_unit->dwo_file->comp_dir,
5364 &reader, &info_ptr,
5365 &comp_unit_die, &has_children) == 0)
5366 {
5367 /* Dummy die. */
5368 do_cleanups (cleanups);
5369 return;
5370 }
5371
5372 /* All the "real" work is done here. */
5373 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5374
6aa5f3a6 5375 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5376 but the alternative is making the latter more complex.
5377 This function is only for the special case of using DWO files directly:
5378 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5379 if (free_cu_cleanup != NULL)
a2ce51a0 5380 {
6aa5f3a6
DE
5381 if (keep)
5382 {
5383 /* We've successfully allocated this compilation unit. Let our
5384 caller clean it up when finished with it. */
5385 discard_cleanups (free_cu_cleanup);
a2ce51a0 5386
6aa5f3a6
DE
5387 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5388 So we have to manually free the abbrev table. */
5389 dwarf2_free_abbrev_table (cu);
a2ce51a0 5390
6aa5f3a6
DE
5391 /* Link this CU into read_in_chain. */
5392 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5393 dwarf2_per_objfile->read_in_chain = this_cu;
5394 }
5395 else
5396 do_cleanups (free_cu_cleanup);
a2ce51a0 5397 }
a2ce51a0
DE
5398
5399 do_cleanups (cleanups);
5400}
5401
fd820528 5402/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5403 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5404
f4dc4d17
DE
5405 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5406 Otherwise the table specified in the comp unit header is read in and used.
5407 This is an optimization for when we already have the abbrev table.
5408
dee91e82
DE
5409 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5410 Otherwise, a new CU is allocated with xmalloc.
5411
5412 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5413 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5414
5415 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5416 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5417
70221824 5418static void
fd820528 5419init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5420 struct abbrev_table *abbrev_table,
fd820528
DE
5421 int use_existing_cu, int keep,
5422 die_reader_func_ftype *die_reader_func,
5423 void *data)
c906108c 5424{
dee91e82 5425 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5426 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5427 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5428 struct dwarf2_cu *cu;
d521ce57 5429 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5430 struct die_reader_specs reader;
d85a05f0 5431 struct die_info *comp_unit_die;
dee91e82 5432 int has_children;
d85a05f0 5433 struct attribute *attr;
365156ad 5434 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5435 struct signatured_type *sig_type = NULL;
4bdcc0c1 5436 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5437 /* Non-zero if CU currently points to a DWO file and we need to
5438 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5439 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5440 int rereading_dwo_cu = 0;
c906108c 5441
b4f54984 5442 if (dwarf_die_debug)
09406207
DE
5443 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5444 this_cu->is_debug_types ? "type" : "comp",
5445 this_cu->offset.sect_off);
5446
dee91e82
DE
5447 if (use_existing_cu)
5448 gdb_assert (keep);
23745b47 5449
a2ce51a0
DE
5450 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5451 file (instead of going through the stub), short-circuit all of this. */
5452 if (this_cu->reading_dwo_directly)
5453 {
5454 /* Narrow down the scope of possibilities to have to understand. */
5455 gdb_assert (this_cu->is_debug_types);
5456 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5457 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5458 die_reader_func, data);
a2ce51a0
DE
5459 return;
5460 }
5461
dee91e82
DE
5462 cleanups = make_cleanup (null_cleanup, NULL);
5463
5464 /* This is cheap if the section is already read in. */
5465 dwarf2_read_section (objfile, section);
5466
5467 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5468
5469 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5470
5471 if (use_existing_cu && this_cu->cu != NULL)
5472 {
5473 cu = this_cu->cu;
42e7ad6c
DE
5474 /* If this CU is from a DWO file we need to start over, we need to
5475 refetch the attributes from the skeleton CU.
5476 This could be optimized by retrieving those attributes from when we
5477 were here the first time: the previous comp_unit_die was stored in
5478 comp_unit_obstack. But there's no data yet that we need this
5479 optimization. */
5480 if (cu->dwo_unit != NULL)
5481 rereading_dwo_cu = 1;
dee91e82
DE
5482 }
5483 else
5484 {
5485 /* If !use_existing_cu, this_cu->cu must be NULL. */
5486 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5487 cu = xmalloc (sizeof (*cu));
5488 init_one_comp_unit (cu, this_cu);
dee91e82 5489 /* If an error occurs while loading, release our storage. */
365156ad 5490 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5491 }
dee91e82 5492
b0c7bfa9 5493 /* Get the header. */
42e7ad6c
DE
5494 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5495 {
5496 /* We already have the header, there's no need to read it in again. */
5497 info_ptr += cu->header.first_die_offset.cu_off;
5498 }
5499 else
5500 {
3019eac3 5501 if (this_cu->is_debug_types)
dee91e82
DE
5502 {
5503 ULONGEST signature;
42e7ad6c 5504 cu_offset type_offset_in_tu;
dee91e82 5505
4bdcc0c1
DE
5506 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5507 abbrev_section, info_ptr,
42e7ad6c
DE
5508 &signature,
5509 &type_offset_in_tu);
dee91e82 5510
42e7ad6c
DE
5511 /* Since per_cu is the first member of struct signatured_type,
5512 we can go from a pointer to one to a pointer to the other. */
5513 sig_type = (struct signatured_type *) this_cu;
5514 gdb_assert (sig_type->signature == signature);
5515 gdb_assert (sig_type->type_offset_in_tu.cu_off
5516 == type_offset_in_tu.cu_off);
dee91e82
DE
5517 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5518
42e7ad6c
DE
5519 /* LENGTH has not been set yet for type units if we're
5520 using .gdb_index. */
1ce1cefd 5521 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5522
5523 /* Establish the type offset that can be used to lookup the type. */
5524 sig_type->type_offset_in_section.sect_off =
5525 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5526 }
5527 else
5528 {
4bdcc0c1
DE
5529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5530 abbrev_section,
5531 info_ptr, 0);
dee91e82
DE
5532
5533 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5534 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5535 }
5536 }
10b3939b 5537
6caca83c 5538 /* Skip dummy compilation units. */
dee91e82 5539 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5540 || peek_abbrev_code (abfd, info_ptr) == 0)
5541 {
dee91e82 5542 do_cleanups (cleanups);
21b2bd31 5543 return;
6caca83c
CC
5544 }
5545
433df2d4
DE
5546 /* If we don't have them yet, read the abbrevs for this compilation unit.
5547 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5548 done. Note that it's important that if the CU had an abbrev table
5549 on entry we don't free it when we're done: Somewhere up the call stack
5550 it may be in use. */
f4dc4d17
DE
5551 if (abbrev_table != NULL)
5552 {
5553 gdb_assert (cu->abbrev_table == NULL);
5554 gdb_assert (cu->header.abbrev_offset.sect_off
5555 == abbrev_table->offset.sect_off);
5556 cu->abbrev_table = abbrev_table;
5557 }
5558 else if (cu->abbrev_table == NULL)
dee91e82 5559 {
4bdcc0c1 5560 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5561 make_cleanup (dwarf2_free_abbrev_table, cu);
5562 }
42e7ad6c
DE
5563 else if (rereading_dwo_cu)
5564 {
5565 dwarf2_free_abbrev_table (cu);
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 }
af703f96 5568
dee91e82 5569 /* Read the top level CU/TU die. */
3019eac3 5570 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5571 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5572
b0c7bfa9
DE
5573 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5574 from the DWO file.
5575 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5576 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5577 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5578 if (attr)
5579 {
3019eac3 5580 struct dwo_unit *dwo_unit;
b0c7bfa9 5581 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5582
5583 if (has_children)
6a506a2d
DE
5584 {
5585 complaint (&symfile_complaints,
5586 _("compilation unit with DW_AT_GNU_dwo_name"
5587 " has children (offset 0x%x) [in module %s]"),
5588 this_cu->offset.sect_off, bfd_get_filename (abfd));
5589 }
b0c7bfa9 5590 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5591 if (dwo_unit != NULL)
3019eac3 5592 {
6a506a2d
DE
5593 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5594 abbrev_table != NULL,
a2ce51a0 5595 comp_unit_die, NULL,
6a506a2d
DE
5596 &reader, &info_ptr,
5597 &dwo_comp_unit_die, &has_children) == 0)
5598 {
5599 /* Dummy die. */
5600 do_cleanups (cleanups);
5601 return;
5602 }
5603 comp_unit_die = dwo_comp_unit_die;
5604 }
5605 else
5606 {
5607 /* Yikes, we couldn't find the rest of the DIE, we only have
5608 the stub. A complaint has already been logged. There's
5609 not much more we can do except pass on the stub DIE to
5610 die_reader_func. We don't want to throw an error on bad
5611 debug info. */
3019eac3
DE
5612 }
5613 }
5614
b0c7bfa9 5615 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5616 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5617
b0c7bfa9 5618 /* Done, clean up. */
365156ad 5619 if (free_cu_cleanup != NULL)
348e048f 5620 {
365156ad
TT
5621 if (keep)
5622 {
5623 /* We've successfully allocated this compilation unit. Let our
5624 caller clean it up when finished with it. */
5625 discard_cleanups (free_cu_cleanup);
dee91e82 5626
365156ad
TT
5627 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5628 So we have to manually free the abbrev table. */
5629 dwarf2_free_abbrev_table (cu);
dee91e82 5630
365156ad
TT
5631 /* Link this CU into read_in_chain. */
5632 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5633 dwarf2_per_objfile->read_in_chain = this_cu;
5634 }
5635 else
5636 do_cleanups (free_cu_cleanup);
348e048f 5637 }
365156ad
TT
5638
5639 do_cleanups (cleanups);
dee91e82
DE
5640}
5641
33e80786
DE
5642/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5643 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5644 to have already done the lookup to find the DWO file).
dee91e82
DE
5645
5646 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5647 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5648
5649 We fill in THIS_CU->length.
5650
5651 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5652 linker) then DIE_READER_FUNC will not get called.
5653
5654 THIS_CU->cu is always freed when done.
3019eac3
DE
5655 This is done in order to not leave THIS_CU->cu in a state where we have
5656 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5657
5658static void
5659init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5660 struct dwo_file *dwo_file,
dee91e82
DE
5661 die_reader_func_ftype *die_reader_func,
5662 void *data)
5663{
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5665 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5666 bfd *abfd = get_section_bfd_owner (section);
33e80786 5667 struct dwarf2_section_info *abbrev_section;
dee91e82 5668 struct dwarf2_cu cu;
d521ce57 5669 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5670 struct die_reader_specs reader;
5671 struct cleanup *cleanups;
5672 struct die_info *comp_unit_die;
5673 int has_children;
5674
b4f54984 5675 if (dwarf_die_debug)
09406207
DE
5676 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5677 this_cu->is_debug_types ? "type" : "comp",
5678 this_cu->offset.sect_off);
5679
dee91e82
DE
5680 gdb_assert (this_cu->cu == NULL);
5681
33e80786
DE
5682 abbrev_section = (dwo_file != NULL
5683 ? &dwo_file->sections.abbrev
5684 : get_abbrev_section_for_cu (this_cu));
5685
dee91e82
DE
5686 /* This is cheap if the section is already read in. */
5687 dwarf2_read_section (objfile, section);
5688
5689 init_one_comp_unit (&cu, this_cu);
5690
5691 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5692
5693 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5694 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5695 abbrev_section, info_ptr,
3019eac3 5696 this_cu->is_debug_types);
dee91e82 5697
1ce1cefd 5698 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5699
5700 /* Skip dummy compilation units. */
5701 if (info_ptr >= begin_info_ptr + this_cu->length
5702 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5703 {
dee91e82 5704 do_cleanups (cleanups);
21b2bd31 5705 return;
93311388 5706 }
72bf9492 5707
dee91e82
DE
5708 dwarf2_read_abbrevs (&cu, abbrev_section);
5709 make_cleanup (dwarf2_free_abbrev_table, &cu);
5710
3019eac3 5711 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5712 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5713
5714 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5715
5716 do_cleanups (cleanups);
5717}
5718
3019eac3
DE
5719/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5720 does not lookup the specified DWO file.
5721 This cannot be used to read DWO files.
dee91e82
DE
5722
5723 THIS_CU->cu is always freed when done.
3019eac3
DE
5724 This is done in order to not leave THIS_CU->cu in a state where we have
5725 to care whether it refers to the "main" CU or the DWO CU.
5726 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5727
5728static void
5729init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5730 die_reader_func_ftype *die_reader_func,
5731 void *data)
5732{
33e80786 5733 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5734}
0018ea6f
DE
5735\f
5736/* Type Unit Groups.
dee91e82 5737
0018ea6f
DE
5738 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5739 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5740 so that all types coming from the same compilation (.o file) are grouped
5741 together. A future step could be to put the types in the same symtab as
5742 the CU the types ultimately came from. */
ff013f42 5743
f4dc4d17
DE
5744static hashval_t
5745hash_type_unit_group (const void *item)
5746{
094b34ac 5747 const struct type_unit_group *tu_group = item;
f4dc4d17 5748
094b34ac 5749 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5750}
348e048f
DE
5751
5752static int
f4dc4d17 5753eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5754{
f4dc4d17
DE
5755 const struct type_unit_group *lhs = item_lhs;
5756 const struct type_unit_group *rhs = item_rhs;
348e048f 5757
094b34ac 5758 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5759}
348e048f 5760
f4dc4d17
DE
5761/* Allocate a hash table for type unit groups. */
5762
5763static htab_t
5764allocate_type_unit_groups_table (void)
5765{
5766 return htab_create_alloc_ex (3,
5767 hash_type_unit_group,
5768 eq_type_unit_group,
5769 NULL,
5770 &dwarf2_per_objfile->objfile->objfile_obstack,
5771 hashtab_obstack_allocate,
5772 dummy_obstack_deallocate);
5773}
dee91e82 5774
f4dc4d17
DE
5775/* Type units that don't have DW_AT_stmt_list are grouped into their own
5776 partial symtabs. We combine several TUs per psymtab to not let the size
5777 of any one psymtab grow too big. */
5778#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5779#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5780
094b34ac 5781/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5782 Create the type_unit_group object used to hold one or more TUs. */
5783
5784static struct type_unit_group *
094b34ac 5785create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5786{
5787 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5788 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5789 struct type_unit_group *tu_group;
f4dc4d17
DE
5790
5791 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5792 struct type_unit_group);
094b34ac 5793 per_cu = &tu_group->per_cu;
f4dc4d17 5794 per_cu->objfile = objfile;
f4dc4d17 5795
094b34ac
DE
5796 if (dwarf2_per_objfile->using_index)
5797 {
5798 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5800 }
5801 else
5802 {
5803 unsigned int line_offset = line_offset_struct.sect_off;
5804 struct partial_symtab *pst;
5805 char *name;
5806
5807 /* Give the symtab a useful name for debug purposes. */
5808 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5809 name = xstrprintf ("<type_units_%d>",
5810 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5811 else
5812 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5813
5814 pst = create_partial_symtab (per_cu, name);
5815 pst->anonymous = 1;
f4dc4d17 5816
094b34ac
DE
5817 xfree (name);
5818 }
f4dc4d17 5819
094b34ac
DE
5820 tu_group->hash.dwo_unit = cu->dwo_unit;
5821 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5822
5823 return tu_group;
5824}
5825
094b34ac
DE
5826/* Look up the type_unit_group for type unit CU, and create it if necessary.
5827 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5828
5829static struct type_unit_group *
ff39bb5e 5830get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5831{
5832 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5833 struct type_unit_group *tu_group;
5834 void **slot;
5835 unsigned int line_offset;
5836 struct type_unit_group type_unit_group_for_lookup;
5837
5838 if (dwarf2_per_objfile->type_unit_groups == NULL)
5839 {
5840 dwarf2_per_objfile->type_unit_groups =
5841 allocate_type_unit_groups_table ();
5842 }
5843
5844 /* Do we need to create a new group, or can we use an existing one? */
5845
5846 if (stmt_list)
5847 {
5848 line_offset = DW_UNSND (stmt_list);
5849 ++tu_stats->nr_symtab_sharers;
5850 }
5851 else
5852 {
5853 /* Ugh, no stmt_list. Rare, but we have to handle it.
5854 We can do various things here like create one group per TU or
5855 spread them over multiple groups to split up the expansion work.
5856 To avoid worst case scenarios (too many groups or too large groups)
5857 we, umm, group them in bunches. */
5858 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5859 | (tu_stats->nr_stmt_less_type_units
5860 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5861 ++tu_stats->nr_stmt_less_type_units;
5862 }
5863
094b34ac
DE
5864 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5865 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5866 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5867 &type_unit_group_for_lookup, INSERT);
5868 if (*slot != NULL)
5869 {
5870 tu_group = *slot;
5871 gdb_assert (tu_group != NULL);
5872 }
5873 else
5874 {
5875 sect_offset line_offset_struct;
5876
5877 line_offset_struct.sect_off = line_offset;
094b34ac 5878 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5879 *slot = tu_group;
5880 ++tu_stats->nr_symtabs;
5881 }
5882
5883 return tu_group;
5884}
0018ea6f
DE
5885\f
5886/* Partial symbol tables. */
5887
5888/* Create a psymtab named NAME and assign it to PER_CU.
5889
5890 The caller must fill in the following details:
5891 dirname, textlow, texthigh. */
5892
5893static struct partial_symtab *
5894create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5895{
5896 struct objfile *objfile = per_cu->objfile;
5897 struct partial_symtab *pst;
5898
18a94d75 5899 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5900 objfile->global_psymbols.next,
5901 objfile->static_psymbols.next);
5902
5903 pst->psymtabs_addrmap_supported = 1;
5904
5905 /* This is the glue that links PST into GDB's symbol API. */
5906 pst->read_symtab_private = per_cu;
5907 pst->read_symtab = dwarf2_read_symtab;
5908 per_cu->v.psymtab = pst;
5909
5910 return pst;
5911}
5912
b93601f3
TT
5913/* The DATA object passed to process_psymtab_comp_unit_reader has this
5914 type. */
5915
5916struct process_psymtab_comp_unit_data
5917{
5918 /* True if we are reading a DW_TAG_partial_unit. */
5919
5920 int want_partial_unit;
5921
5922 /* The "pretend" language that is used if the CU doesn't declare a
5923 language. */
5924
5925 enum language pretend_language;
5926};
5927
0018ea6f
DE
5928/* die_reader_func for process_psymtab_comp_unit. */
5929
5930static void
5931process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5932 const gdb_byte *info_ptr,
0018ea6f
DE
5933 struct die_info *comp_unit_die,
5934 int has_children,
5935 void *data)
5936{
5937 struct dwarf2_cu *cu = reader->cu;
5938 struct objfile *objfile = cu->objfile;
3e29f34a 5939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5940 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5941 struct attribute *attr;
5942 CORE_ADDR baseaddr;
5943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5944 struct partial_symtab *pst;
5945 int has_pc_info;
5946 const char *filename;
b93601f3 5947 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5948
b93601f3 5949 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5950 return;
5951
5952 gdb_assert (! per_cu->is_debug_types);
5953
b93601f3 5954 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5955
5956 cu->list_in_scope = &file_symbols;
5957
5958 /* Allocate a new partial symbol table structure. */
5959 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5960 if (attr == NULL || !DW_STRING (attr))
5961 filename = "";
5962 else
5963 filename = DW_STRING (attr);
5964
5965 pst = create_partial_symtab (per_cu, filename);
5966
5967 /* This must be done before calling dwarf2_build_include_psymtabs. */
5968 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5969 if (attr != NULL)
5970 pst->dirname = DW_STRING (attr);
5971
5972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5973
5974 dwarf2_find_base_address (comp_unit_die, cu);
5975
5976 /* Possibly set the default values of LOWPC and HIGHPC from
5977 `DW_AT_ranges'. */
5978 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5979 &best_highpc, cu, pst);
5980 if (has_pc_info == 1 && best_lowpc < best_highpc)
5981 /* Store the contiguous range if it is not empty; it can be empty for
5982 CUs with no code. */
5983 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5984 gdbarch_adjust_dwarf2_addr (gdbarch,
5985 best_lowpc + baseaddr),
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_highpc + baseaddr) - 1,
5988 pst);
0018ea6f
DE
5989
5990 /* Check if comp unit has_children.
5991 If so, read the rest of the partial symbols from this comp unit.
5992 If not, there's no more debug_info for this comp unit. */
5993 if (has_children)
5994 {
5995 struct partial_die_info *first_die;
5996 CORE_ADDR lowpc, highpc;
5997
5998 lowpc = ((CORE_ADDR) -1);
5999 highpc = ((CORE_ADDR) 0);
6000
6001 first_die = load_partial_dies (reader, info_ptr, 1);
6002
6003 scan_partial_symbols (first_die, &lowpc, &highpc,
6004 ! has_pc_info, cu);
6005
6006 /* If we didn't find a lowpc, set it to highpc to avoid
6007 complaints from `maint check'. */
6008 if (lowpc == ((CORE_ADDR) -1))
6009 lowpc = highpc;
6010
6011 /* If the compilation unit didn't have an explicit address range,
6012 then use the information extracted from its child dies. */
6013 if (! has_pc_info)
6014 {
6015 best_lowpc = lowpc;
6016 best_highpc = highpc;
6017 }
6018 }
3e29f34a
MR
6019 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6020 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6021
8763cede 6022 end_psymtab_common (objfile, pst);
0018ea6f
DE
6023
6024 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6025 {
6026 int i;
6027 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6028 struct dwarf2_per_cu_data *iter;
6029
6030 /* Fill in 'dependencies' here; we fill in 'users' in a
6031 post-pass. */
6032 pst->number_of_dependencies = len;
6033 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6034 len * sizeof (struct symtab *));
6035 for (i = 0;
6036 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6037 i, iter);
6038 ++i)
6039 pst->dependencies[i] = iter->v.psymtab;
6040
6041 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6042 }
6043
6044 /* Get the list of files included in the current compilation unit,
6045 and build a psymtab for each of them. */
6046 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6047
b4f54984 6048 if (dwarf_read_debug)
0018ea6f
DE
6049 {
6050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6051
6052 fprintf_unfiltered (gdb_stdlog,
6053 "Psymtab for %s unit @0x%x: %s - %s"
6054 ", %d global, %d static syms\n",
6055 per_cu->is_debug_types ? "type" : "comp",
6056 per_cu->offset.sect_off,
6057 paddress (gdbarch, pst->textlow),
6058 paddress (gdbarch, pst->texthigh),
6059 pst->n_global_syms, pst->n_static_syms);
6060 }
6061}
6062
6063/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6064 Process compilation unit THIS_CU for a psymtab. */
6065
6066static void
6067process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6068 int want_partial_unit,
6069 enum language pretend_language)
0018ea6f 6070{
b93601f3
TT
6071 struct process_psymtab_comp_unit_data info;
6072
0018ea6f
DE
6073 /* If this compilation unit was already read in, free the
6074 cached copy in order to read it in again. This is
6075 necessary because we skipped some symbols when we first
6076 read in the compilation unit (see load_partial_dies).
6077 This problem could be avoided, but the benefit is unclear. */
6078 if (this_cu->cu != NULL)
6079 free_one_cached_comp_unit (this_cu);
6080
6081 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6082 info.want_partial_unit = want_partial_unit;
6083 info.pretend_language = pretend_language;
0018ea6f
DE
6084 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6085 process_psymtab_comp_unit_reader,
b93601f3 6086 &info);
0018ea6f
DE
6087
6088 /* Age out any secondary CUs. */
6089 age_cached_comp_units ();
6090}
f4dc4d17
DE
6091
6092/* Reader function for build_type_psymtabs. */
6093
6094static void
6095build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6096 const gdb_byte *info_ptr,
f4dc4d17
DE
6097 struct die_info *type_unit_die,
6098 int has_children,
6099 void *data)
6100{
6101 struct objfile *objfile = dwarf2_per_objfile->objfile;
6102 struct dwarf2_cu *cu = reader->cu;
6103 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6104 struct signatured_type *sig_type;
f4dc4d17
DE
6105 struct type_unit_group *tu_group;
6106 struct attribute *attr;
6107 struct partial_die_info *first_die;
6108 CORE_ADDR lowpc, highpc;
6109 struct partial_symtab *pst;
6110
6111 gdb_assert (data == NULL);
0186c6a7
DE
6112 gdb_assert (per_cu->is_debug_types);
6113 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6114
6115 if (! has_children)
6116 return;
6117
6118 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6119 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6120
0186c6a7 6121 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6122
6123 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6124 cu->list_in_scope = &file_symbols;
6125 pst = create_partial_symtab (per_cu, "");
6126 pst->anonymous = 1;
6127
6128 first_die = load_partial_dies (reader, info_ptr, 1);
6129
6130 lowpc = (CORE_ADDR) -1;
6131 highpc = (CORE_ADDR) 0;
6132 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6133
8763cede 6134 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6135}
6136
73051182
DE
6137/* Struct used to sort TUs by their abbreviation table offset. */
6138
6139struct tu_abbrev_offset
6140{
6141 struct signatured_type *sig_type;
6142 sect_offset abbrev_offset;
6143};
6144
6145/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6146
6147static int
6148sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6149{
6150 const struct tu_abbrev_offset * const *a = ap;
6151 const struct tu_abbrev_offset * const *b = bp;
6152 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6153 unsigned int boff = (*b)->abbrev_offset.sect_off;
6154
6155 return (aoff > boff) - (aoff < boff);
6156}
6157
6158/* Efficiently read all the type units.
6159 This does the bulk of the work for build_type_psymtabs.
6160
6161 The efficiency is because we sort TUs by the abbrev table they use and
6162 only read each abbrev table once. In one program there are 200K TUs
6163 sharing 8K abbrev tables.
6164
6165 The main purpose of this function is to support building the
6166 dwarf2_per_objfile->type_unit_groups table.
6167 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6168 can collapse the search space by grouping them by stmt_list.
6169 The savings can be significant, in the same program from above the 200K TUs
6170 share 8K stmt_list tables.
6171
6172 FUNC is expected to call get_type_unit_group, which will create the
6173 struct type_unit_group if necessary and add it to
6174 dwarf2_per_objfile->type_unit_groups. */
6175
6176static void
6177build_type_psymtabs_1 (void)
6178{
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6181 struct cleanup *cleanups;
6182 struct abbrev_table *abbrev_table;
6183 sect_offset abbrev_offset;
6184 struct tu_abbrev_offset *sorted_by_abbrev;
6185 struct type_unit_group **iter;
6186 int i;
6187
6188 /* It's up to the caller to not call us multiple times. */
6189 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6190
6191 if (dwarf2_per_objfile->n_type_units == 0)
6192 return;
6193
6194 /* TUs typically share abbrev tables, and there can be way more TUs than
6195 abbrev tables. Sort by abbrev table to reduce the number of times we
6196 read each abbrev table in.
6197 Alternatives are to punt or to maintain a cache of abbrev tables.
6198 This is simpler and efficient enough for now.
6199
6200 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6201 symtab to use). Typically TUs with the same abbrev offset have the same
6202 stmt_list value too so in practice this should work well.
6203
6204 The basic algorithm here is:
6205
6206 sort TUs by abbrev table
6207 for each TU with same abbrev table:
6208 read abbrev table if first user
6209 read TU top level DIE
6210 [IWBN if DWO skeletons had DW_AT_stmt_list]
6211 call FUNC */
6212
b4f54984 6213 if (dwarf_read_debug)
73051182
DE
6214 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6215
6216 /* Sort in a separate table to maintain the order of all_type_units
6217 for .gdb_index: TU indices directly index all_type_units. */
6218 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6219 dwarf2_per_objfile->n_type_units);
6220 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6221 {
6222 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6223
6224 sorted_by_abbrev[i].sig_type = sig_type;
6225 sorted_by_abbrev[i].abbrev_offset =
6226 read_abbrev_offset (sig_type->per_cu.section,
6227 sig_type->per_cu.offset);
6228 }
6229 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6230 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6231 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6232
6233 abbrev_offset.sect_off = ~(unsigned) 0;
6234 abbrev_table = NULL;
6235 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6238 {
6239 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6240
6241 /* Switch to the next abbrev table if necessary. */
6242 if (abbrev_table == NULL
6243 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6244 {
6245 if (abbrev_table != NULL)
6246 {
6247 abbrev_table_free (abbrev_table);
6248 /* Reset to NULL in case abbrev_table_read_table throws
6249 an error: abbrev_table_free_cleanup will get called. */
6250 abbrev_table = NULL;
6251 }
6252 abbrev_offset = tu->abbrev_offset;
6253 abbrev_table =
6254 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6255 abbrev_offset);
6256 ++tu_stats->nr_uniq_abbrev_tables;
6257 }
6258
6259 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6260 build_type_psymtabs_reader, NULL);
6261 }
6262
73051182 6263 do_cleanups (cleanups);
6aa5f3a6 6264}
73051182 6265
6aa5f3a6
DE
6266/* Print collected type unit statistics. */
6267
6268static void
6269print_tu_stats (void)
6270{
6271 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6272
6273 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6274 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6275 dwarf2_per_objfile->n_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6277 tu_stats->nr_uniq_abbrev_tables);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6279 tu_stats->nr_symtabs);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6281 tu_stats->nr_symtab_sharers);
6282 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6283 tu_stats->nr_stmt_less_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6285 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6286}
6287
f4dc4d17
DE
6288/* Traversal function for build_type_psymtabs. */
6289
6290static int
6291build_type_psymtab_dependencies (void **slot, void *info)
6292{
6293 struct objfile *objfile = dwarf2_per_objfile->objfile;
6294 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6295 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6296 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6297 int len = VEC_length (sig_type_ptr, tu_group->tus);
6298 struct signatured_type *iter;
f4dc4d17
DE
6299 int i;
6300
6301 gdb_assert (len > 0);
0186c6a7 6302 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6303
6304 pst->number_of_dependencies = len;
6305 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6306 len * sizeof (struct psymtab *));
6307 for (i = 0;
0186c6a7 6308 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6309 ++i)
6310 {
0186c6a7
DE
6311 gdb_assert (iter->per_cu.is_debug_types);
6312 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6313 iter->type_unit_group = tu_group;
f4dc4d17
DE
6314 }
6315
0186c6a7 6316 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6317
6318 return 1;
6319}
6320
6321/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6322 Build partial symbol tables for the .debug_types comp-units. */
6323
6324static void
6325build_type_psymtabs (struct objfile *objfile)
6326{
0e50663e 6327 if (! create_all_type_units (objfile))
348e048f
DE
6328 return;
6329
73051182 6330 build_type_psymtabs_1 ();
6aa5f3a6 6331}
f4dc4d17 6332
6aa5f3a6
DE
6333/* Traversal function for process_skeletonless_type_unit.
6334 Read a TU in a DWO file and build partial symbols for it. */
6335
6336static int
6337process_skeletonless_type_unit (void **slot, void *info)
6338{
6339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6340 struct objfile *objfile = info;
6341 struct signatured_type find_entry, *entry;
6342
6343 /* If this TU doesn't exist in the global table, add it and read it in. */
6344
6345 if (dwarf2_per_objfile->signatured_types == NULL)
6346 {
6347 dwarf2_per_objfile->signatured_types
6348 = allocate_signatured_type_table (objfile);
6349 }
6350
6351 find_entry.signature = dwo_unit->signature;
6352 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6353 INSERT);
6354 /* If we've already seen this type there's nothing to do. What's happening
6355 is we're doing our own version of comdat-folding here. */
6356 if (*slot != NULL)
6357 return 1;
6358
6359 /* This does the job that create_all_type_units would have done for
6360 this TU. */
6361 entry = add_type_unit (dwo_unit->signature, slot);
6362 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6363 *slot = entry;
6364
6365 /* This does the job that build_type_psymtabs_1 would have done. */
6366 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6367 build_type_psymtabs_reader, NULL);
6368
6369 return 1;
6370}
6371
6372/* Traversal function for process_skeletonless_type_units. */
6373
6374static int
6375process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6376{
6377 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6378
6379 if (dwo_file->tus != NULL)
6380 {
6381 htab_traverse_noresize (dwo_file->tus,
6382 process_skeletonless_type_unit, info);
6383 }
6384
6385 return 1;
6386}
6387
6388/* Scan all TUs of DWO files, verifying we've processed them.
6389 This is needed in case a TU was emitted without its skeleton.
6390 Note: This can't be done until we know what all the DWO files are. */
6391
6392static void
6393process_skeletonless_type_units (struct objfile *objfile)
6394{
6395 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6396 if (get_dwp_file () == NULL
6397 && dwarf2_per_objfile->dwo_files != NULL)
6398 {
6399 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6400 process_dwo_file_for_skeletonless_type_units,
6401 objfile);
6402 }
348e048f
DE
6403}
6404
60606b2c
TT
6405/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6406
6407static void
6408psymtabs_addrmap_cleanup (void *o)
6409{
6410 struct objfile *objfile = o;
ec61707d 6411
60606b2c
TT
6412 objfile->psymtabs_addrmap = NULL;
6413}
6414
95554aad
TT
6415/* Compute the 'user' field for each psymtab in OBJFILE. */
6416
6417static void
6418set_partial_user (struct objfile *objfile)
6419{
6420 int i;
6421
6422 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6423 {
8832e7e3 6424 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6425 struct partial_symtab *pst = per_cu->v.psymtab;
6426 int j;
6427
36586728
TT
6428 if (pst == NULL)
6429 continue;
6430
95554aad
TT
6431 for (j = 0; j < pst->number_of_dependencies; ++j)
6432 {
6433 /* Set the 'user' field only if it is not already set. */
6434 if (pst->dependencies[j]->user == NULL)
6435 pst->dependencies[j]->user = pst;
6436 }
6437 }
6438}
6439
93311388
DE
6440/* Build the partial symbol table by doing a quick pass through the
6441 .debug_info and .debug_abbrev sections. */
72bf9492 6442
93311388 6443static void
c67a9c90 6444dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6445{
60606b2c
TT
6446 struct cleanup *back_to, *addrmap_cleanup;
6447 struct obstack temp_obstack;
21b2bd31 6448 int i;
93311388 6449
b4f54984 6450 if (dwarf_read_debug)
45cfd468
DE
6451 {
6452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6453 objfile_name (objfile));
45cfd468
DE
6454 }
6455
98bfdba5
PA
6456 dwarf2_per_objfile->reading_partial_symbols = 1;
6457
be391dca 6458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6459
93311388
DE
6460 /* Any cached compilation units will be linked by the per-objfile
6461 read_in_chain. Make sure to free them when we're done. */
6462 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6463
348e048f
DE
6464 build_type_psymtabs (objfile);
6465
93311388 6466 create_all_comp_units (objfile);
c906108c 6467
60606b2c
TT
6468 /* Create a temporary address map on a temporary obstack. We later
6469 copy this to the final obstack. */
6470 obstack_init (&temp_obstack);
6471 make_cleanup_obstack_free (&temp_obstack);
6472 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6473 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6474
21b2bd31 6475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6476 {
8832e7e3 6477 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6478
b93601f3 6479 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6480 }
ff013f42 6481
6aa5f3a6
DE
6482 /* This has to wait until we read the CUs, we need the list of DWOs. */
6483 process_skeletonless_type_units (objfile);
6484
6485 /* Now that all TUs have been processed we can fill in the dependencies. */
6486 if (dwarf2_per_objfile->type_unit_groups != NULL)
6487 {
6488 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6489 build_type_psymtab_dependencies, NULL);
6490 }
6491
b4f54984 6492 if (dwarf_read_debug)
6aa5f3a6
DE
6493 print_tu_stats ();
6494
95554aad
TT
6495 set_partial_user (objfile);
6496
ff013f42
JK
6497 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6498 &objfile->objfile_obstack);
60606b2c 6499 discard_cleanups (addrmap_cleanup);
ff013f42 6500
ae038cb0 6501 do_cleanups (back_to);
45cfd468 6502
b4f54984 6503 if (dwarf_read_debug)
45cfd468 6504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6505 objfile_name (objfile));
ae038cb0
DJ
6506}
6507
3019eac3 6508/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6509
6510static void
dee91e82 6511load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6512 const gdb_byte *info_ptr,
dee91e82
DE
6513 struct die_info *comp_unit_die,
6514 int has_children,
6515 void *data)
ae038cb0 6516{
dee91e82 6517 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6518
95554aad 6519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6520
ae038cb0
DJ
6521 /* Check if comp unit has_children.
6522 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6523 If not, there's no more debug_info for this comp unit. */
d85a05f0 6524 if (has_children)
dee91e82
DE
6525 load_partial_dies (reader, info_ptr, 0);
6526}
98bfdba5 6527
dee91e82
DE
6528/* Load the partial DIEs for a secondary CU into memory.
6529 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6530
dee91e82
DE
6531static void
6532load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6533{
f4dc4d17
DE
6534 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6535 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6536}
6537
ae038cb0 6538static void
36586728
TT
6539read_comp_units_from_section (struct objfile *objfile,
6540 struct dwarf2_section_info *section,
6541 unsigned int is_dwz,
6542 int *n_allocated,
6543 int *n_comp_units,
6544 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6545{
d521ce57 6546 const gdb_byte *info_ptr;
a32a8923 6547 bfd *abfd = get_section_bfd_owner (section);
be391dca 6548
b4f54984 6549 if (dwarf_read_debug)
bf6af496 6550 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6551 get_section_name (section),
6552 get_section_file_name (section));
bf6af496 6553
36586728 6554 dwarf2_read_section (objfile, section);
ae038cb0 6555
36586728 6556 info_ptr = section->buffer;
6e70227d 6557
36586728 6558 while (info_ptr < section->buffer + section->size)
ae038cb0 6559 {
c764a876 6560 unsigned int length, initial_length_size;
ae038cb0 6561 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6562 sect_offset offset;
ae038cb0 6563
36586728 6564 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6565
6566 /* Read just enough information to find out where the next
6567 compilation unit is. */
36586728 6568 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6569
6570 /* Save the compilation unit for later lookup. */
6571 this_cu = obstack_alloc (&objfile->objfile_obstack,
6572 sizeof (struct dwarf2_per_cu_data));
6573 memset (this_cu, 0, sizeof (*this_cu));
6574 this_cu->offset = offset;
c764a876 6575 this_cu->length = length + initial_length_size;
36586728 6576 this_cu->is_dwz = is_dwz;
9291a0cd 6577 this_cu->objfile = objfile;
8a0459fd 6578 this_cu->section = section;
ae038cb0 6579
36586728 6580 if (*n_comp_units == *n_allocated)
ae038cb0 6581 {
36586728
TT
6582 *n_allocated *= 2;
6583 *all_comp_units = xrealloc (*all_comp_units,
6584 *n_allocated
6585 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6586 }
36586728
TT
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
ae038cb0
DJ
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
36586728
TT
6592}
6593
6594/* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597static void
6598create_all_comp_units (struct objfile *objfile)
6599{
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6603 struct dwz_file *dwz;
36586728
TT
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = xmalloc (n_allocated
6608 * sizeof (struct dwarf2_per_cu_data *));
6609
6610 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6611 &n_allocated, &n_comp_units, &all_comp_units);
6612
4db1a1dc
TT
6613 dwz = dwarf2_get_dwz_file ();
6614 if (dwz != NULL)
6615 read_comp_units_from_section (objfile, &dwz->info, 1,
6616 &n_allocated, &n_comp_units,
6617 &all_comp_units);
ae038cb0
DJ
6618
6619 dwarf2_per_objfile->all_comp_units
6620 = obstack_alloc (&objfile->objfile_obstack,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6623 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6624 xfree (all_comp_units);
6625 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6626}
6627
5734ee8b 6628/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6629 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6630 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6631 DW_AT_ranges). See the comments of add_partial_subprogram on how
6632 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6633
72bf9492
DJ
6634static void
6635scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6636 CORE_ADDR *highpc, int set_addrmap,
6637 struct dwarf2_cu *cu)
c906108c 6638{
72bf9492 6639 struct partial_die_info *pdi;
c906108c 6640
91c24f0a
DC
6641 /* Now, march along the PDI's, descending into ones which have
6642 interesting children but skipping the children of the other ones,
6643 until we reach the end of the compilation unit. */
c906108c 6644
72bf9492 6645 pdi = first_die;
91c24f0a 6646
72bf9492
DJ
6647 while (pdi != NULL)
6648 {
6649 fixup_partial_die (pdi, cu);
c906108c 6650
f55ee35c 6651 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6652 children, so we need to look at them. Ditto for anonymous
6653 enums. */
933c6fe4 6654
72bf9492 6655 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6656 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6657 || pdi->tag == DW_TAG_imported_unit)
c906108c 6658 {
72bf9492 6659 switch (pdi->tag)
c906108c
SS
6660 {
6661 case DW_TAG_subprogram:
cdc07690 6662 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6663 break;
72929c62 6664 case DW_TAG_constant:
c906108c
SS
6665 case DW_TAG_variable:
6666 case DW_TAG_typedef:
91c24f0a 6667 case DW_TAG_union_type:
72bf9492 6668 if (!pdi->is_declaration)
63d06c5c 6669 {
72bf9492 6670 add_partial_symbol (pdi, cu);
63d06c5c
DC
6671 }
6672 break;
c906108c 6673 case DW_TAG_class_type:
680b30c7 6674 case DW_TAG_interface_type:
c906108c 6675 case DW_TAG_structure_type:
72bf9492 6676 if (!pdi->is_declaration)
c906108c 6677 {
72bf9492 6678 add_partial_symbol (pdi, cu);
c906108c
SS
6679 }
6680 break;
91c24f0a 6681 case DW_TAG_enumeration_type:
72bf9492
DJ
6682 if (!pdi->is_declaration)
6683 add_partial_enumeration (pdi, cu);
c906108c
SS
6684 break;
6685 case DW_TAG_base_type:
a02abb62 6686 case DW_TAG_subrange_type:
c906108c 6687 /* File scope base type definitions are added to the partial
c5aa993b 6688 symbol table. */
72bf9492 6689 add_partial_symbol (pdi, cu);
c906108c 6690 break;
d9fa45fe 6691 case DW_TAG_namespace:
cdc07690 6692 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6693 break;
5d7cb8df 6694 case DW_TAG_module:
cdc07690 6695 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6696 break;
95554aad
TT
6697 case DW_TAG_imported_unit:
6698 {
6699 struct dwarf2_per_cu_data *per_cu;
6700
f4dc4d17
DE
6701 /* For now we don't handle imported units in type units. */
6702 if (cu->per_cu->is_debug_types)
6703 {
6704 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6705 " supported in type units [in module %s]"),
4262abfb 6706 objfile_name (cu->objfile));
f4dc4d17
DE
6707 }
6708
95554aad 6709 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6710 pdi->is_dwz,
95554aad
TT
6711 cu->objfile);
6712
6713 /* Go read the partial unit, if needed. */
6714 if (per_cu->v.psymtab == NULL)
b93601f3 6715 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6716
f4dc4d17 6717 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6718 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6719 }
6720 break;
74921315
KS
6721 case DW_TAG_imported_declaration:
6722 add_partial_symbol (pdi, cu);
6723 break;
c906108c
SS
6724 default:
6725 break;
6726 }
6727 }
6728
72bf9492
DJ
6729 /* If the die has a sibling, skip to the sibling. */
6730
6731 pdi = pdi->die_sibling;
6732 }
6733}
6734
6735/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6736
72bf9492 6737 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6738 name is concatenated with "::" and the partial DIE's name. For
6739 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6740 Enumerators are an exception; they use the scope of their parent
6741 enumeration type, i.e. the name of the enumeration type is not
6742 prepended to the enumerator.
91c24f0a 6743
72bf9492
DJ
6744 There are two complexities. One is DW_AT_specification; in this
6745 case "parent" means the parent of the target of the specification,
6746 instead of the direct parent of the DIE. The other is compilers
6747 which do not emit DW_TAG_namespace; in this case we try to guess
6748 the fully qualified name of structure types from their members'
6749 linkage names. This must be done using the DIE's children rather
6750 than the children of any DW_AT_specification target. We only need
6751 to do this for structures at the top level, i.e. if the target of
6752 any DW_AT_specification (if any; otherwise the DIE itself) does not
6753 have a parent. */
6754
6755/* Compute the scope prefix associated with PDI's parent, in
6756 compilation unit CU. The result will be allocated on CU's
6757 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6758 field. NULL is returned if no prefix is necessary. */
15d034d0 6759static const char *
72bf9492
DJ
6760partial_die_parent_scope (struct partial_die_info *pdi,
6761 struct dwarf2_cu *cu)
6762{
15d034d0 6763 const char *grandparent_scope;
72bf9492 6764 struct partial_die_info *parent, *real_pdi;
91c24f0a 6765
72bf9492
DJ
6766 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6767 then this means the parent of the specification DIE. */
6768
6769 real_pdi = pdi;
72bf9492 6770 while (real_pdi->has_specification)
36586728
TT
6771 real_pdi = find_partial_die (real_pdi->spec_offset,
6772 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6773
6774 parent = real_pdi->die_parent;
6775 if (parent == NULL)
6776 return NULL;
6777
6778 if (parent->scope_set)
6779 return parent->scope;
6780
6781 fixup_partial_die (parent, cu);
6782
10b3939b 6783 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6784
acebe513
UW
6785 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6786 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6787 Work around this problem here. */
6788 if (cu->language == language_cplus
6e70227d 6789 && parent->tag == DW_TAG_namespace
acebe513
UW
6790 && strcmp (parent->name, "::") == 0
6791 && grandparent_scope == NULL)
6792 {
6793 parent->scope = NULL;
6794 parent->scope_set = 1;
6795 return NULL;
6796 }
6797
9c6c53f7
SA
6798 if (pdi->tag == DW_TAG_enumerator)
6799 /* Enumerators should not get the name of the enumeration as a prefix. */
6800 parent->scope = grandparent_scope;
6801 else if (parent->tag == DW_TAG_namespace
f55ee35c 6802 || parent->tag == DW_TAG_module
72bf9492
DJ
6803 || parent->tag == DW_TAG_structure_type
6804 || parent->tag == DW_TAG_class_type
680b30c7 6805 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6806 || parent->tag == DW_TAG_union_type
6807 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6808 {
6809 if (grandparent_scope == NULL)
6810 parent->scope = parent->name;
6811 else
3e43a32a
MS
6812 parent->scope = typename_concat (&cu->comp_unit_obstack,
6813 grandparent_scope,
f55ee35c 6814 parent->name, 0, cu);
72bf9492 6815 }
72bf9492
DJ
6816 else
6817 {
6818 /* FIXME drow/2004-04-01: What should we be doing with
6819 function-local names? For partial symbols, we should probably be
6820 ignoring them. */
6821 complaint (&symfile_complaints,
e2e0b3e5 6822 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6823 parent->tag, pdi->offset.sect_off);
72bf9492 6824 parent->scope = grandparent_scope;
c906108c
SS
6825 }
6826
72bf9492
DJ
6827 parent->scope_set = 1;
6828 return parent->scope;
6829}
6830
6831/* Return the fully scoped name associated with PDI, from compilation unit
6832 CU. The result will be allocated with malloc. */
4568ecf9 6833
72bf9492
DJ
6834static char *
6835partial_die_full_name (struct partial_die_info *pdi,
6836 struct dwarf2_cu *cu)
6837{
15d034d0 6838 const char *parent_scope;
72bf9492 6839
98bfdba5
PA
6840 /* If this is a template instantiation, we can not work out the
6841 template arguments from partial DIEs. So, unfortunately, we have
6842 to go through the full DIEs. At least any work we do building
6843 types here will be reused if full symbols are loaded later. */
6844 if (pdi->has_template_arguments)
6845 {
6846 fixup_partial_die (pdi, cu);
6847
6848 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6849 {
6850 struct die_info *die;
6851 struct attribute attr;
6852 struct dwarf2_cu *ref_cu = cu;
6853
b64f50a1 6854 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6855 attr.name = 0;
6856 attr.form = DW_FORM_ref_addr;
4568ecf9 6857 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6858 die = follow_die_ref (NULL, &attr, &ref_cu);
6859
6860 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6861 }
6862 }
6863
72bf9492
DJ
6864 parent_scope = partial_die_parent_scope (pdi, cu);
6865 if (parent_scope == NULL)
6866 return NULL;
6867 else
f55ee35c 6868 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6869}
6870
6871static void
72bf9492 6872add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6873{
e7c27a73 6874 struct objfile *objfile = cu->objfile;
3e29f34a 6875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6876 CORE_ADDR addr = 0;
15d034d0 6877 const char *actual_name = NULL;
e142c38c 6878 CORE_ADDR baseaddr;
15d034d0 6879 char *built_actual_name;
e142c38c
DJ
6880
6881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6882
15d034d0
TT
6883 built_actual_name = partial_die_full_name (pdi, cu);
6884 if (built_actual_name != NULL)
6885 actual_name = built_actual_name;
63d06c5c 6886
72bf9492
DJ
6887 if (actual_name == NULL)
6888 actual_name = pdi->name;
6889
c906108c
SS
6890 switch (pdi->tag)
6891 {
6892 case DW_TAG_subprogram:
3e29f34a 6893 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6894 if (pdi->is_external || cu->language == language_ada)
c906108c 6895 {
2cfa0c8d
JB
6896 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6897 of the global scope. But in Ada, we want to be able to access
6898 nested procedures globally. So all Ada subprograms are stored
6899 in the global scope. */
3e29f34a
MR
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6901 objfile); */
f47fb265 6902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6903 built_actual_name != NULL,
f47fb265
MS
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
3e29f34a 6906 0, addr, cu->language, objfile);
c906108c
SS
6907 }
6908 else
6909 {
3e29f34a
MR
6910 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6911 objfile); */
f47fb265 6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL,
f47fb265
MS
6914 VAR_DOMAIN, LOC_BLOCK,
6915 &objfile->static_psymbols,
3e29f34a 6916 0, addr, cu->language, objfile);
c906108c
SS
6917 }
6918 break;
72929c62
JB
6919 case DW_TAG_constant:
6920 {
6921 struct psymbol_allocation_list *list;
6922
6923 if (pdi->is_external)
6924 list = &objfile->global_psymbols;
6925 else
6926 list = &objfile->static_psymbols;
f47fb265 6927 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6928 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6929 list, 0, 0, cu->language, objfile);
72929c62
JB
6930 }
6931 break;
c906108c 6932 case DW_TAG_variable:
95554aad
TT
6933 if (pdi->d.locdesc)
6934 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6935
95554aad 6936 if (pdi->d.locdesc
caac4577
JG
6937 && addr == 0
6938 && !dwarf2_per_objfile->has_section_at_zero)
6939 {
6940 /* A global or static variable may also have been stripped
6941 out by the linker if unused, in which case its address
6942 will be nullified; do not add such variables into partial
6943 symbol table then. */
6944 }
6945 else if (pdi->is_external)
c906108c
SS
6946 {
6947 /* Global Variable.
6948 Don't enter into the minimal symbol tables as there is
6949 a minimal symbol table entry from the ELF symbols already.
6950 Enter into partial symbol table if it has a location
6951 descriptor or a type.
6952 If the location descriptor is missing, new_symbol will create
6953 a LOC_UNRESOLVED symbol, the address of the variable will then
6954 be determined from the minimal symbol table whenever the variable
6955 is referenced.
6956 The address for the partial symbol table entry is not
6957 used by GDB, but it comes in handy for debugging partial symbol
6958 table building. */
6959
95554aad 6960 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6961 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6962 built_actual_name != NULL,
f47fb265
MS
6963 VAR_DOMAIN, LOC_STATIC,
6964 &objfile->global_psymbols,
6965 0, addr + baseaddr,
6966 cu->language, objfile);
c906108c
SS
6967 }
6968 else
6969 {
ff908ebf
AW
6970 int has_loc = pdi->d.locdesc != NULL;
6971
6972 /* Static Variable. Skip symbols whose value we cannot know (those
6973 without location descriptors or constant values). */
6974 if (!has_loc && !pdi->has_const_value)
decbce07 6975 {
15d034d0 6976 xfree (built_actual_name);
decbce07
MS
6977 return;
6978 }
ff908ebf 6979
f47fb265 6980 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6981 mst_file_data, objfile); */
f47fb265 6982 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6983 built_actual_name != NULL,
f47fb265
MS
6984 VAR_DOMAIN, LOC_STATIC,
6985 &objfile->static_psymbols,
ff908ebf
AW
6986 0,
6987 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6988 cu->language, objfile);
c906108c
SS
6989 }
6990 break;
6991 case DW_TAG_typedef:
6992 case DW_TAG_base_type:
a02abb62 6993 case DW_TAG_subrange_type:
38d518c9 6994 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6995 built_actual_name != NULL,
176620f1 6996 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6997 &objfile->static_psymbols,
e142c38c 6998 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6999 break;
74921315 7000 case DW_TAG_imported_declaration:
72bf9492
DJ
7001 case DW_TAG_namespace:
7002 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7003 built_actual_name != NULL,
72bf9492
DJ
7004 VAR_DOMAIN, LOC_TYPEDEF,
7005 &objfile->global_psymbols,
7006 0, (CORE_ADDR) 0, cu->language, objfile);
7007 break;
530e8392
KB
7008 case DW_TAG_module:
7009 add_psymbol_to_list (actual_name, strlen (actual_name),
7010 built_actual_name != NULL,
7011 MODULE_DOMAIN, LOC_TYPEDEF,
7012 &objfile->global_psymbols,
7013 0, (CORE_ADDR) 0, cu->language, objfile);
7014 break;
c906108c 7015 case DW_TAG_class_type:
680b30c7 7016 case DW_TAG_interface_type:
c906108c
SS
7017 case DW_TAG_structure_type:
7018 case DW_TAG_union_type:
7019 case DW_TAG_enumeration_type:
fa4028e9
JB
7020 /* Skip external references. The DWARF standard says in the section
7021 about "Structure, Union, and Class Type Entries": "An incomplete
7022 structure, union or class type is represented by a structure,
7023 union or class entry that does not have a byte size attribute
7024 and that has a DW_AT_declaration attribute." */
7025 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7026 {
15d034d0 7027 xfree (built_actual_name);
decbce07
MS
7028 return;
7029 }
fa4028e9 7030
63d06c5c
DC
7031 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7032 static vs. global. */
38d518c9 7033 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7034 built_actual_name != NULL,
176620f1 7035 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7036 (cu->language == language_cplus
7037 || cu->language == language_java)
63d06c5c
DC
7038 ? &objfile->global_psymbols
7039 : &objfile->static_psymbols,
e142c38c 7040 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 7041
c906108c
SS
7042 break;
7043 case DW_TAG_enumerator:
38d518c9 7044 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7045 built_actual_name != NULL,
176620f1 7046 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7047 (cu->language == language_cplus
7048 || cu->language == language_java)
f6fe98ef
DJ
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
e142c38c 7051 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
7052 break;
7053 default:
7054 break;
7055 }
5c4e30ca 7056
15d034d0 7057 xfree (built_actual_name);
c906108c
SS
7058}
7059
5c4e30ca
DC
7060/* Read a partial die corresponding to a namespace; also, add a symbol
7061 corresponding to that namespace to the symbol table. NAMESPACE is
7062 the name of the enclosing namespace. */
91c24f0a 7063
72bf9492
DJ
7064static void
7065add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7067 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7068{
72bf9492 7069 /* Add a symbol for the namespace. */
e7c27a73 7070
72bf9492 7071 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7072
7073 /* Now scan partial symbols in that namespace. */
7074
91c24f0a 7075 if (pdi->has_children)
cdc07690 7076 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7077}
7078
5d7cb8df
JK
7079/* Read a partial die corresponding to a Fortran module. */
7080
7081static void
7082add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7083 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7084{
530e8392
KB
7085 /* Add a symbol for the namespace. */
7086
7087 add_partial_symbol (pdi, cu);
7088
f55ee35c 7089 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7090
7091 if (pdi->has_children)
cdc07690 7092 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7093}
7094
bc30ff58
JB
7095/* Read a partial die corresponding to a subprogram and create a partial
7096 symbol for that subprogram. When the CU language allows it, this
7097 routine also defines a partial symbol for each nested subprogram
cdc07690 7098 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7099 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7100 and highest PC values found in PDI.
6e70227d 7101
cdc07690
YQ
7102 PDI may also be a lexical block, in which case we simply search
7103 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7104 Again, this is only performed when the CU language allows this
7105 type of definitions. */
7106
7107static void
7108add_partial_subprogram (struct partial_die_info *pdi,
7109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7110 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7111{
7112 if (pdi->tag == DW_TAG_subprogram)
7113 {
7114 if (pdi->has_pc_info)
7115 {
7116 if (pdi->lowpc < *lowpc)
7117 *lowpc = pdi->lowpc;
7118 if (pdi->highpc > *highpc)
7119 *highpc = pdi->highpc;
cdc07690 7120 if (set_addrmap)
5734ee8b 7121 {
5734ee8b 7122 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 CORE_ADDR baseaddr;
7125 CORE_ADDR highpc;
7126 CORE_ADDR lowpc;
5734ee8b
DJ
7127
7128 baseaddr = ANOFFSET (objfile->section_offsets,
7129 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7130 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->lowpc + baseaddr);
7132 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7133 pdi->highpc + baseaddr);
7134 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7135 cu->per_cu->v.psymtab);
5734ee8b 7136 }
481860b3
GB
7137 }
7138
7139 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7140 {
bc30ff58 7141 if (!pdi->is_declaration)
e8d05480
JB
7142 /* Ignore subprogram DIEs that do not have a name, they are
7143 illegal. Do not emit a complaint at this point, we will
7144 do so when we convert this psymtab into a symtab. */
7145 if (pdi->name)
7146 add_partial_symbol (pdi, cu);
bc30ff58
JB
7147 }
7148 }
6e70227d 7149
bc30ff58
JB
7150 if (! pdi->has_children)
7151 return;
7152
7153 if (cu->language == language_ada)
7154 {
7155 pdi = pdi->die_child;
7156 while (pdi != NULL)
7157 {
7158 fixup_partial_die (pdi, cu);
7159 if (pdi->tag == DW_TAG_subprogram
7160 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7161 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7162 pdi = pdi->die_sibling;
7163 }
7164 }
7165}
7166
91c24f0a
DC
7167/* Read a partial die corresponding to an enumeration type. */
7168
72bf9492
DJ
7169static void
7170add_partial_enumeration (struct partial_die_info *enum_pdi,
7171 struct dwarf2_cu *cu)
91c24f0a 7172{
72bf9492 7173 struct partial_die_info *pdi;
91c24f0a
DC
7174
7175 if (enum_pdi->name != NULL)
72bf9492
DJ
7176 add_partial_symbol (enum_pdi, cu);
7177
7178 pdi = enum_pdi->die_child;
7179 while (pdi)
91c24f0a 7180 {
72bf9492 7181 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7182 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7183 else
72bf9492
DJ
7184 add_partial_symbol (pdi, cu);
7185 pdi = pdi->die_sibling;
91c24f0a 7186 }
91c24f0a
DC
7187}
7188
6caca83c
CC
7189/* Return the initial uleb128 in the die at INFO_PTR. */
7190
7191static unsigned int
d521ce57 7192peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7193{
7194 unsigned int bytes_read;
7195
7196 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7197}
7198
4bb7a0a7
DJ
7199/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7200 Return the corresponding abbrev, or NULL if the number is zero (indicating
7201 an empty DIE). In either case *BYTES_READ will be set to the length of
7202 the initial number. */
7203
7204static struct abbrev_info *
d521ce57 7205peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7206 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7207{
7208 bfd *abfd = cu->objfile->obfd;
7209 unsigned int abbrev_number;
7210 struct abbrev_info *abbrev;
7211
7212 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7213
7214 if (abbrev_number == 0)
7215 return NULL;
7216
433df2d4 7217 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7218 if (!abbrev)
7219 {
422b9917
DE
7220 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7221 " at offset 0x%x [in module %s]"),
7222 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7223 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7224 }
7225
7226 return abbrev;
7227}
7228
93311388
DE
7229/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7230 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7231 DIE. Any children of the skipped DIEs will also be skipped. */
7232
d521ce57
TT
7233static const gdb_byte *
7234skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7235{
dee91e82 7236 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7237 struct abbrev_info *abbrev;
7238 unsigned int bytes_read;
7239
7240 while (1)
7241 {
7242 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7243 if (abbrev == NULL)
7244 return info_ptr + bytes_read;
7245 else
dee91e82 7246 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7247 }
7248}
7249
93311388
DE
7250/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7251 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7252 abbrev corresponding to that skipped uleb128 should be passed in
7253 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7254 children. */
7255
d521ce57
TT
7256static const gdb_byte *
7257skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7258 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7259{
7260 unsigned int bytes_read;
7261 struct attribute attr;
dee91e82
DE
7262 bfd *abfd = reader->abfd;
7263 struct dwarf2_cu *cu = reader->cu;
d521ce57 7264 const gdb_byte *buffer = reader->buffer;
f664829e 7265 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7266 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7267 unsigned int form, i;
7268
7269 for (i = 0; i < abbrev->num_attrs; i++)
7270 {
7271 /* The only abbrev we care about is DW_AT_sibling. */
7272 if (abbrev->attrs[i].name == DW_AT_sibling)
7273 {
dee91e82 7274 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7275 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7276 complaint (&symfile_complaints,
7277 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7278 else
b9502d3f
WN
7279 {
7280 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7281 const gdb_byte *sibling_ptr = buffer + off;
7282
7283 if (sibling_ptr < info_ptr)
7284 complaint (&symfile_complaints,
7285 _("DW_AT_sibling points backwards"));
22869d73
KS
7286 else if (sibling_ptr > reader->buffer_end)
7287 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7288 else
7289 return sibling_ptr;
7290 }
4bb7a0a7
DJ
7291 }
7292
7293 /* If it isn't DW_AT_sibling, skip this attribute. */
7294 form = abbrev->attrs[i].form;
7295 skip_attribute:
7296 switch (form)
7297 {
4bb7a0a7 7298 case DW_FORM_ref_addr:
ae411497
TT
7299 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7300 and later it is offset sized. */
7301 if (cu->header.version == 2)
7302 info_ptr += cu->header.addr_size;
7303 else
7304 info_ptr += cu->header.offset_size;
7305 break;
36586728
TT
7306 case DW_FORM_GNU_ref_alt:
7307 info_ptr += cu->header.offset_size;
7308 break;
ae411497 7309 case DW_FORM_addr:
4bb7a0a7
DJ
7310 info_ptr += cu->header.addr_size;
7311 break;
7312 case DW_FORM_data1:
7313 case DW_FORM_ref1:
7314 case DW_FORM_flag:
7315 info_ptr += 1;
7316 break;
2dc7f7b3
TT
7317 case DW_FORM_flag_present:
7318 break;
4bb7a0a7
DJ
7319 case DW_FORM_data2:
7320 case DW_FORM_ref2:
7321 info_ptr += 2;
7322 break;
7323 case DW_FORM_data4:
7324 case DW_FORM_ref4:
7325 info_ptr += 4;
7326 break;
7327 case DW_FORM_data8:
7328 case DW_FORM_ref8:
55f1336d 7329 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7330 info_ptr += 8;
7331 break;
7332 case DW_FORM_string:
9b1c24c8 7333 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7334 info_ptr += bytes_read;
7335 break;
2dc7f7b3 7336 case DW_FORM_sec_offset:
4bb7a0a7 7337 case DW_FORM_strp:
36586728 7338 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7339 info_ptr += cu->header.offset_size;
7340 break;
2dc7f7b3 7341 case DW_FORM_exprloc:
4bb7a0a7
DJ
7342 case DW_FORM_block:
7343 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7344 info_ptr += bytes_read;
7345 break;
7346 case DW_FORM_block1:
7347 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7348 break;
7349 case DW_FORM_block2:
7350 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7351 break;
7352 case DW_FORM_block4:
7353 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7354 break;
7355 case DW_FORM_sdata:
7356 case DW_FORM_udata:
7357 case DW_FORM_ref_udata:
3019eac3
DE
7358 case DW_FORM_GNU_addr_index:
7359 case DW_FORM_GNU_str_index:
d521ce57 7360 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7361 break;
7362 case DW_FORM_indirect:
7363 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7364 info_ptr += bytes_read;
7365 /* We need to continue parsing from here, so just go back to
7366 the top. */
7367 goto skip_attribute;
7368
7369 default:
3e43a32a
MS
7370 error (_("Dwarf Error: Cannot handle %s "
7371 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7372 dwarf_form_name (form),
7373 bfd_get_filename (abfd));
7374 }
7375 }
7376
7377 if (abbrev->has_children)
dee91e82 7378 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7379 else
7380 return info_ptr;
7381}
7382
93311388 7383/* Locate ORIG_PDI's sibling.
dee91e82 7384 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7385
d521ce57 7386static const gdb_byte *
dee91e82
DE
7387locate_pdi_sibling (const struct die_reader_specs *reader,
7388 struct partial_die_info *orig_pdi,
d521ce57 7389 const gdb_byte *info_ptr)
91c24f0a
DC
7390{
7391 /* Do we know the sibling already? */
72bf9492 7392
91c24f0a
DC
7393 if (orig_pdi->sibling)
7394 return orig_pdi->sibling;
7395
7396 /* Are there any children to deal with? */
7397
7398 if (!orig_pdi->has_children)
7399 return info_ptr;
7400
4bb7a0a7 7401 /* Skip the children the long way. */
91c24f0a 7402
dee91e82 7403 return skip_children (reader, info_ptr);
91c24f0a
DC
7404}
7405
257e7a09 7406/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7407 not NULL. */
c906108c
SS
7408
7409static void
257e7a09
YQ
7410dwarf2_read_symtab (struct partial_symtab *self,
7411 struct objfile *objfile)
c906108c 7412{
257e7a09 7413 if (self->readin)
c906108c 7414 {
442e4d9c 7415 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7416 self->filename);
442e4d9c
YQ
7417 }
7418 else
7419 {
7420 if (info_verbose)
c906108c 7421 {
442e4d9c 7422 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7423 self->filename);
442e4d9c 7424 gdb_flush (gdb_stdout);
c906108c 7425 }
c906108c 7426
442e4d9c
YQ
7427 /* Restore our global data. */
7428 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7429
442e4d9c
YQ
7430 /* If this psymtab is constructed from a debug-only objfile, the
7431 has_section_at_zero flag will not necessarily be correct. We
7432 can get the correct value for this flag by looking at the data
7433 associated with the (presumably stripped) associated objfile. */
7434 if (objfile->separate_debug_objfile_backlink)
7435 {
7436 struct dwarf2_per_objfile *dpo_backlink
7437 = objfile_data (objfile->separate_debug_objfile_backlink,
7438 dwarf2_objfile_data_key);
9a619af0 7439
442e4d9c
YQ
7440 dwarf2_per_objfile->has_section_at_zero
7441 = dpo_backlink->has_section_at_zero;
7442 }
b2ab525c 7443
442e4d9c 7444 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7445
257e7a09 7446 psymtab_to_symtab_1 (self);
c906108c 7447
442e4d9c
YQ
7448 /* Finish up the debug error message. */
7449 if (info_verbose)
7450 printf_filtered (_("done.\n"));
c906108c 7451 }
95554aad
TT
7452
7453 process_cu_includes ();
c906108c 7454}
9cdd5dbd
DE
7455\f
7456/* Reading in full CUs. */
c906108c 7457
10b3939b
DJ
7458/* Add PER_CU to the queue. */
7459
7460static void
95554aad
TT
7461queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7462 enum language pretend_language)
10b3939b
DJ
7463{
7464 struct dwarf2_queue_item *item;
7465
7466 per_cu->queued = 1;
7467 item = xmalloc (sizeof (*item));
7468 item->per_cu = per_cu;
95554aad 7469 item->pretend_language = pretend_language;
10b3939b
DJ
7470 item->next = NULL;
7471
7472 if (dwarf2_queue == NULL)
7473 dwarf2_queue = item;
7474 else
7475 dwarf2_queue_tail->next = item;
7476
7477 dwarf2_queue_tail = item;
7478}
7479
89e63ee4
DE
7480/* If PER_CU is not yet queued, add it to the queue.
7481 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7482 dependency.
0907af0c 7483 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7484 meaning either PER_CU is already queued or it is already loaded.
7485
7486 N.B. There is an invariant here that if a CU is queued then it is loaded.
7487 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7488
7489static int
89e63ee4 7490maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7491 struct dwarf2_per_cu_data *per_cu,
7492 enum language pretend_language)
7493{
7494 /* We may arrive here during partial symbol reading, if we need full
7495 DIEs to process an unusual case (e.g. template arguments). Do
7496 not queue PER_CU, just tell our caller to load its DIEs. */
7497 if (dwarf2_per_objfile->reading_partial_symbols)
7498 {
7499 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7500 return 1;
7501 return 0;
7502 }
7503
7504 /* Mark the dependence relation so that we don't flush PER_CU
7505 too early. */
89e63ee4
DE
7506 if (dependent_cu != NULL)
7507 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7508
7509 /* If it's already on the queue, we have nothing to do. */
7510 if (per_cu->queued)
7511 return 0;
7512
7513 /* If the compilation unit is already loaded, just mark it as
7514 used. */
7515 if (per_cu->cu != NULL)
7516 {
7517 per_cu->cu->last_used = 0;
7518 return 0;
7519 }
7520
7521 /* Add it to the queue. */
7522 queue_comp_unit (per_cu, pretend_language);
7523
7524 return 1;
7525}
7526
10b3939b
DJ
7527/* Process the queue. */
7528
7529static void
a0f42c21 7530process_queue (void)
10b3939b
DJ
7531{
7532 struct dwarf2_queue_item *item, *next_item;
7533
b4f54984 7534 if (dwarf_read_debug)
45cfd468
DE
7535 {
7536 fprintf_unfiltered (gdb_stdlog,
7537 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7538 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7539 }
7540
03dd20cc
DJ
7541 /* The queue starts out with one item, but following a DIE reference
7542 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7544 {
cc12ce38
DE
7545 if ((dwarf2_per_objfile->using_index
7546 ? !item->per_cu->v.quick->compunit_symtab
7547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7548 /* Skip dummy CUs. */
7549 && item->per_cu->cu != NULL)
f4dc4d17
DE
7550 {
7551 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7552 unsigned int debug_print_threshold;
247f5c4f 7553 char buf[100];
f4dc4d17 7554
247f5c4f 7555 if (per_cu->is_debug_types)
f4dc4d17 7556 {
247f5c4f
DE
7557 struct signatured_type *sig_type =
7558 (struct signatured_type *) per_cu;
7559
7560 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7561 hex_string (sig_type->signature),
7562 per_cu->offset.sect_off);
7563 /* There can be 100s of TUs.
7564 Only print them in verbose mode. */
7565 debug_print_threshold = 2;
f4dc4d17 7566 }
247f5c4f 7567 else
73be47f5
DE
7568 {
7569 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7570 debug_print_threshold = 1;
7571 }
247f5c4f 7572
b4f54984 7573 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7574 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7575
7576 if (per_cu->is_debug_types)
7577 process_full_type_unit (per_cu, item->pretend_language);
7578 else
7579 process_full_comp_unit (per_cu, item->pretend_language);
7580
b4f54984 7581 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7582 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7583 }
10b3939b
DJ
7584
7585 item->per_cu->queued = 0;
7586 next_item = item->next;
7587 xfree (item);
7588 }
7589
7590 dwarf2_queue_tail = NULL;
45cfd468 7591
b4f54984 7592 if (dwarf_read_debug)
45cfd468
DE
7593 {
7594 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7595 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7596 }
10b3939b
DJ
7597}
7598
7599/* Free all allocated queue entries. This function only releases anything if
7600 an error was thrown; if the queue was processed then it would have been
7601 freed as we went along. */
7602
7603static void
7604dwarf2_release_queue (void *dummy)
7605{
7606 struct dwarf2_queue_item *item, *last;
7607
7608 item = dwarf2_queue;
7609 while (item)
7610 {
7611 /* Anything still marked queued is likely to be in an
7612 inconsistent state, so discard it. */
7613 if (item->per_cu->queued)
7614 {
7615 if (item->per_cu->cu != NULL)
dee91e82 7616 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7617 item->per_cu->queued = 0;
7618 }
7619
7620 last = item;
7621 item = item->next;
7622 xfree (last);
7623 }
7624
7625 dwarf2_queue = dwarf2_queue_tail = NULL;
7626}
7627
7628/* Read in full symbols for PST, and anything it depends on. */
7629
c906108c 7630static void
fba45db2 7631psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7632{
10b3939b 7633 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7634 int i;
7635
95554aad
TT
7636 if (pst->readin)
7637 return;
7638
aaa75496 7639 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7640 if (!pst->dependencies[i]->readin
7641 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7642 {
7643 /* Inform about additional files that need to be read in. */
7644 if (info_verbose)
7645 {
a3f17187 7646 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7647 fputs_filtered (" ", gdb_stdout);
7648 wrap_here ("");
7649 fputs_filtered ("and ", gdb_stdout);
7650 wrap_here ("");
7651 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7652 wrap_here (""); /* Flush output. */
aaa75496
JB
7653 gdb_flush (gdb_stdout);
7654 }
7655 psymtab_to_symtab_1 (pst->dependencies[i]);
7656 }
7657
e38df1d0 7658 per_cu = pst->read_symtab_private;
10b3939b
DJ
7659
7660 if (per_cu == NULL)
aaa75496
JB
7661 {
7662 /* It's an include file, no symbols to read for it.
7663 Everything is in the parent symtab. */
7664 pst->readin = 1;
7665 return;
7666 }
c906108c 7667
a0f42c21 7668 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7669}
7670
dee91e82
DE
7671/* Trivial hash function for die_info: the hash value of a DIE
7672 is its offset in .debug_info for this objfile. */
10b3939b 7673
dee91e82
DE
7674static hashval_t
7675die_hash (const void *item)
10b3939b 7676{
dee91e82 7677 const struct die_info *die = item;
6502dd73 7678
dee91e82
DE
7679 return die->offset.sect_off;
7680}
63d06c5c 7681
dee91e82
DE
7682/* Trivial comparison function for die_info structures: two DIEs
7683 are equal if they have the same offset. */
98bfdba5 7684
dee91e82
DE
7685static int
7686die_eq (const void *item_lhs, const void *item_rhs)
7687{
7688 const struct die_info *die_lhs = item_lhs;
7689 const struct die_info *die_rhs = item_rhs;
c906108c 7690
dee91e82
DE
7691 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7692}
c906108c 7693
dee91e82
DE
7694/* die_reader_func for load_full_comp_unit.
7695 This is identical to read_signatured_type_reader,
7696 but is kept separate for now. */
c906108c 7697
dee91e82
DE
7698static void
7699load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7700 const gdb_byte *info_ptr,
dee91e82
DE
7701 struct die_info *comp_unit_die,
7702 int has_children,
7703 void *data)
7704{
7705 struct dwarf2_cu *cu = reader->cu;
95554aad 7706 enum language *language_ptr = data;
6caca83c 7707
dee91e82
DE
7708 gdb_assert (cu->die_hash == NULL);
7709 cu->die_hash =
7710 htab_create_alloc_ex (cu->header.length / 12,
7711 die_hash,
7712 die_eq,
7713 NULL,
7714 &cu->comp_unit_obstack,
7715 hashtab_obstack_allocate,
7716 dummy_obstack_deallocate);
e142c38c 7717
dee91e82
DE
7718 if (has_children)
7719 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7720 &info_ptr, comp_unit_die);
7721 cu->dies = comp_unit_die;
7722 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7723
7724 /* We try not to read any attributes in this function, because not
9cdd5dbd 7725 all CUs needed for references have been loaded yet, and symbol
10b3939b 7726 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7727 or we won't be able to build types correctly.
7728 Similarly, if we do not read the producer, we can not apply
7729 producer-specific interpretation. */
95554aad 7730 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7731}
10b3939b 7732
dee91e82 7733/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7734
dee91e82 7735static void
95554aad
TT
7736load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7737 enum language pretend_language)
dee91e82 7738{
3019eac3 7739 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7740
f4dc4d17
DE
7741 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7742 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7743}
7744
3da10d80
KS
7745/* Add a DIE to the delayed physname list. */
7746
7747static void
7748add_to_method_list (struct type *type, int fnfield_index, int index,
7749 const char *name, struct die_info *die,
7750 struct dwarf2_cu *cu)
7751{
7752 struct delayed_method_info mi;
7753 mi.type = type;
7754 mi.fnfield_index = fnfield_index;
7755 mi.index = index;
7756 mi.name = name;
7757 mi.die = die;
7758 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7759}
7760
7761/* A cleanup for freeing the delayed method list. */
7762
7763static void
7764free_delayed_list (void *ptr)
7765{
7766 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7767 if (cu->method_list != NULL)
7768 {
7769 VEC_free (delayed_method_info, cu->method_list);
7770 cu->method_list = NULL;
7771 }
7772}
7773
7774/* Compute the physnames of any methods on the CU's method list.
7775
7776 The computation of method physnames is delayed in order to avoid the
7777 (bad) condition that one of the method's formal parameters is of an as yet
7778 incomplete type. */
7779
7780static void
7781compute_delayed_physnames (struct dwarf2_cu *cu)
7782{
7783 int i;
7784 struct delayed_method_info *mi;
7785 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7786 {
1d06ead6 7787 const char *physname;
3da10d80
KS
7788 struct fn_fieldlist *fn_flp
7789 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7790 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7791 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7792 = physname ? physname : "";
3da10d80
KS
7793 }
7794}
7795
a766d390
DE
7796/* Go objects should be embedded in a DW_TAG_module DIE,
7797 and it's not clear if/how imported objects will appear.
7798 To keep Go support simple until that's worked out,
7799 go back through what we've read and create something usable.
7800 We could do this while processing each DIE, and feels kinda cleaner,
7801 but that way is more invasive.
7802 This is to, for example, allow the user to type "p var" or "b main"
7803 without having to specify the package name, and allow lookups
7804 of module.object to work in contexts that use the expression
7805 parser. */
7806
7807static void
7808fixup_go_packaging (struct dwarf2_cu *cu)
7809{
7810 char *package_name = NULL;
7811 struct pending *list;
7812 int i;
7813
7814 for (list = global_symbols; list != NULL; list = list->next)
7815 {
7816 for (i = 0; i < list->nsyms; ++i)
7817 {
7818 struct symbol *sym = list->symbol[i];
7819
7820 if (SYMBOL_LANGUAGE (sym) == language_go
7821 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7822 {
7823 char *this_package_name = go_symbol_package_name (sym);
7824
7825 if (this_package_name == NULL)
7826 continue;
7827 if (package_name == NULL)
7828 package_name = this_package_name;
7829 else
7830 {
7831 if (strcmp (package_name, this_package_name) != 0)
7832 complaint (&symfile_complaints,
7833 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7834 (symbol_symtab (sym) != NULL
7835 ? symtab_to_filename_for_display
7836 (symbol_symtab (sym))
4262abfb 7837 : objfile_name (cu->objfile)),
a766d390
DE
7838 this_package_name, package_name);
7839 xfree (this_package_name);
7840 }
7841 }
7842 }
7843 }
7844
7845 if (package_name != NULL)
7846 {
7847 struct objfile *objfile = cu->objfile;
34a68019
TT
7848 const char *saved_package_name
7849 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7850 package_name,
7851 strlen (package_name));
a766d390 7852 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7853 saved_package_name, objfile);
a766d390
DE
7854 struct symbol *sym;
7855
7856 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7857
e623cf5d 7858 sym = allocate_symbol (objfile);
f85f34ed 7859 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7860 SYMBOL_SET_NAMES (sym, saved_package_name,
7861 strlen (saved_package_name), 0, objfile);
a766d390
DE
7862 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7863 e.g., "main" finds the "main" module and not C's main(). */
7864 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7865 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7866 SYMBOL_TYPE (sym) = type;
7867
7868 add_symbol_to_list (sym, &global_symbols);
7869
7870 xfree (package_name);
7871 }
7872}
7873
95554aad
TT
7874/* Return the symtab for PER_CU. This works properly regardless of
7875 whether we're using the index or psymtabs. */
7876
43f3e411
DE
7877static struct compunit_symtab *
7878get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7879{
7880 return (dwarf2_per_objfile->using_index
43f3e411
DE
7881 ? per_cu->v.quick->compunit_symtab
7882 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7883}
7884
7885/* A helper function for computing the list of all symbol tables
7886 included by PER_CU. */
7887
7888static void
43f3e411 7889recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7890 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7891 struct dwarf2_per_cu_data *per_cu,
43f3e411 7892 struct compunit_symtab *immediate_parent)
95554aad
TT
7893{
7894 void **slot;
7895 int ix;
43f3e411 7896 struct compunit_symtab *cust;
95554aad
TT
7897 struct dwarf2_per_cu_data *iter;
7898
7899 slot = htab_find_slot (all_children, per_cu, INSERT);
7900 if (*slot != NULL)
7901 {
7902 /* This inclusion and its children have been processed. */
7903 return;
7904 }
7905
7906 *slot = per_cu;
7907 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7908 cust = get_compunit_symtab (per_cu);
7909 if (cust != NULL)
ec94af83
DE
7910 {
7911 /* If this is a type unit only add its symbol table if we haven't
7912 seen it yet (type unit per_cu's can share symtabs). */
7913 if (per_cu->is_debug_types)
7914 {
43f3e411 7915 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7916 if (*slot == NULL)
7917 {
43f3e411
DE
7918 *slot = cust;
7919 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7920 if (cust->user == NULL)
7921 cust->user = immediate_parent;
ec94af83
DE
7922 }
7923 }
7924 else
f9125b6c 7925 {
43f3e411
DE
7926 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7927 if (cust->user == NULL)
7928 cust->user = immediate_parent;
f9125b6c 7929 }
ec94af83 7930 }
95554aad
TT
7931
7932 for (ix = 0;
796a7ff8 7933 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7934 ++ix)
ec94af83
DE
7935 {
7936 recursively_compute_inclusions (result, all_children,
43f3e411 7937 all_type_symtabs, iter, cust);
ec94af83 7938 }
95554aad
TT
7939}
7940
43f3e411 7941/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7942 PER_CU. */
7943
7944static void
43f3e411 7945compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7946{
f4dc4d17
DE
7947 gdb_assert (! per_cu->is_debug_types);
7948
796a7ff8 7949 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7950 {
7951 int ix, len;
ec94af83 7952 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7953 struct compunit_symtab *compunit_symtab_iter;
7954 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7955 htab_t all_children, all_type_symtabs;
43f3e411 7956 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7957
7958 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7959 if (cust == NULL)
95554aad
TT
7960 return;
7961
7962 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
ec94af83
DE
7964 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7965 NULL, xcalloc, xfree);
95554aad
TT
7966
7967 for (ix = 0;
796a7ff8 7968 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7969 ix, per_cu_iter);
95554aad 7970 ++ix)
ec94af83
DE
7971 {
7972 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7973 all_type_symtabs, per_cu_iter,
43f3e411 7974 cust);
ec94af83 7975 }
95554aad 7976
ec94af83 7977 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7978 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7979 cust->includes
95554aad 7980 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
666fcf91 7981 (len + 1) * sizeof (struct compunit_symtab *));
95554aad 7982 for (ix = 0;
43f3e411
DE
7983 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7984 compunit_symtab_iter);
95554aad 7985 ++ix)
43f3e411
DE
7986 cust->includes[ix] = compunit_symtab_iter;
7987 cust->includes[len] = NULL;
95554aad 7988
43f3e411 7989 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7990 htab_delete (all_children);
ec94af83 7991 htab_delete (all_type_symtabs);
95554aad
TT
7992 }
7993}
7994
7995/* Compute the 'includes' field for the symtabs of all the CUs we just
7996 read. */
7997
7998static void
7999process_cu_includes (void)
8000{
8001 int ix;
8002 struct dwarf2_per_cu_data *iter;
8003
8004 for (ix = 0;
8005 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8006 ix, iter);
8007 ++ix)
f4dc4d17
DE
8008 {
8009 if (! iter->is_debug_types)
43f3e411 8010 compute_compunit_symtab_includes (iter);
f4dc4d17 8011 }
95554aad
TT
8012
8013 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8014}
8015
9cdd5dbd 8016/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8017 already been loaded into memory. */
8018
8019static void
95554aad
TT
8020process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8021 enum language pretend_language)
10b3939b 8022{
10b3939b 8023 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8024 struct objfile *objfile = per_cu->objfile;
3e29f34a 8025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8026 CORE_ADDR lowpc, highpc;
43f3e411 8027 struct compunit_symtab *cust;
3da10d80 8028 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8029 CORE_ADDR baseaddr;
4359dff1 8030 struct block *static_block;
3e29f34a 8031 CORE_ADDR addr;
10b3939b
DJ
8032
8033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8034
10b3939b
DJ
8035 buildsym_init ();
8036 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8037 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8038
8039 cu->list_in_scope = &file_symbols;
c906108c 8040
95554aad
TT
8041 cu->language = pretend_language;
8042 cu->language_defn = language_def (cu->language);
8043
c906108c 8044 /* Do line number decoding in read_file_scope () */
10b3939b 8045 process_die (cu->dies, cu);
c906108c 8046
a766d390
DE
8047 /* For now fudge the Go package. */
8048 if (cu->language == language_go)
8049 fixup_go_packaging (cu);
8050
3da10d80
KS
8051 /* Now that we have processed all the DIEs in the CU, all the types
8052 should be complete, and it should now be safe to compute all of the
8053 physnames. */
8054 compute_delayed_physnames (cu);
8055 do_cleanups (delayed_list_cleanup);
8056
fae299cd
DC
8057 /* Some compilers don't define a DW_AT_high_pc attribute for the
8058 compilation unit. If the DW_AT_high_pc is missing, synthesize
8059 it, by scanning the DIE's below the compilation unit. */
10b3939b 8060 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8061
3e29f34a
MR
8062 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8063 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8064
8065 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8066 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8067 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8068 addrmap to help ensure it has an accurate map of pc values belonging to
8069 this comp unit. */
8070 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8071
43f3e411
DE
8072 cust = end_symtab_from_static_block (static_block,
8073 SECT_OFF_TEXT (objfile), 0);
c906108c 8074
43f3e411 8075 if (cust != NULL)
c906108c 8076 {
df15bd07 8077 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8078
8be455d7
JK
8079 /* Set symtab language to language from DW_AT_language. If the
8080 compilation is from a C file generated by language preprocessors, do
8081 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
8082 if (!(cu->language == language_c
8083 && COMPUNIT_FILETABS (cust)->language != language_c))
8084 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8085
8086 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8087 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8088 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8089 there were bugs in prologue debug info, fixed later in GCC-4.5
8090 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8091
8092 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8093 needed, it would be wrong due to missing DW_AT_producer there.
8094
8095 Still one can confuse GDB by using non-standard GCC compilation
8096 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8097 */
ab260dad 8098 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8099 cust->locations_valid = 1;
e0d00bc7
JK
8100
8101 if (gcc_4_minor >= 5)
43f3e411 8102 cust->epilogue_unwind_valid = 1;
96408a79 8103
43f3e411 8104 cust->call_site_htab = cu->call_site_htab;
c906108c 8105 }
9291a0cd
TT
8106
8107 if (dwarf2_per_objfile->using_index)
43f3e411 8108 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8109 else
8110 {
8111 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8112 pst->compunit_symtab = cust;
9291a0cd
TT
8113 pst->readin = 1;
8114 }
c906108c 8115
95554aad
TT
8116 /* Push it for inclusion processing later. */
8117 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8118
c906108c 8119 do_cleanups (back_to);
f4dc4d17 8120}
45cfd468 8121
f4dc4d17
DE
8122/* Generate full symbol information for type unit PER_CU, whose DIEs have
8123 already been loaded into memory. */
8124
8125static void
8126process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8127 enum language pretend_language)
8128{
8129 struct dwarf2_cu *cu = per_cu->cu;
8130 struct objfile *objfile = per_cu->objfile;
43f3e411 8131 struct compunit_symtab *cust;
f4dc4d17 8132 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8133 struct signatured_type *sig_type;
8134
8135 gdb_assert (per_cu->is_debug_types);
8136 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8137
8138 buildsym_init ();
8139 back_to = make_cleanup (really_free_pendings, NULL);
8140 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8141
8142 cu->list_in_scope = &file_symbols;
8143
8144 cu->language = pretend_language;
8145 cu->language_defn = language_def (cu->language);
8146
8147 /* The symbol tables are set up in read_type_unit_scope. */
8148 process_die (cu->dies, cu);
8149
8150 /* For now fudge the Go package. */
8151 if (cu->language == language_go)
8152 fixup_go_packaging (cu);
8153
8154 /* Now that we have processed all the DIEs in the CU, all the types
8155 should be complete, and it should now be safe to compute all of the
8156 physnames. */
8157 compute_delayed_physnames (cu);
8158 do_cleanups (delayed_list_cleanup);
8159
8160 /* TUs share symbol tables.
8161 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8162 of it with end_expandable_symtab. Otherwise, complete the addition of
8163 this TU's symbols to the existing symtab. */
43f3e411 8164 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8165 {
43f3e411
DE
8166 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8167 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8168
43f3e411 8169 if (cust != NULL)
f4dc4d17
DE
8170 {
8171 /* Set symtab language to language from DW_AT_language. If the
8172 compilation is from a C file generated by language preprocessors,
8173 do not set the language if it was already deduced by
8174 start_subfile. */
43f3e411
DE
8175 if (!(cu->language == language_c
8176 && COMPUNIT_FILETABS (cust)->language != language_c))
8177 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8178 }
8179 }
8180 else
8181 {
0ab9ce85 8182 augment_type_symtab ();
43f3e411 8183 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8184 }
8185
8186 if (dwarf2_per_objfile->using_index)
43f3e411 8187 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8188 else
8189 {
8190 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8191 pst->compunit_symtab = cust;
f4dc4d17 8192 pst->readin = 1;
45cfd468 8193 }
f4dc4d17
DE
8194
8195 do_cleanups (back_to);
c906108c
SS
8196}
8197
95554aad
TT
8198/* Process an imported unit DIE. */
8199
8200static void
8201process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8202{
8203 struct attribute *attr;
8204
f4dc4d17
DE
8205 /* For now we don't handle imported units in type units. */
8206 if (cu->per_cu->is_debug_types)
8207 {
8208 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8209 " supported in type units [in module %s]"),
4262abfb 8210 objfile_name (cu->objfile));
f4dc4d17
DE
8211 }
8212
95554aad
TT
8213 attr = dwarf2_attr (die, DW_AT_import, cu);
8214 if (attr != NULL)
8215 {
8216 struct dwarf2_per_cu_data *per_cu;
8217 struct symtab *imported_symtab;
8218 sect_offset offset;
36586728 8219 int is_dwz;
95554aad
TT
8220
8221 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8222 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8223 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8224
69d751e3 8225 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8226 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8227 load_full_comp_unit (per_cu, cu->language);
8228
796a7ff8 8229 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8230 per_cu);
8231 }
8232}
8233
adde2bff
DE
8234/* Reset the in_process bit of a die. */
8235
8236static void
8237reset_die_in_process (void *arg)
8238{
8239 struct die_info *die = arg;
8c3cb9fa 8240
adde2bff
DE
8241 die->in_process = 0;
8242}
8243
c906108c
SS
8244/* Process a die and its children. */
8245
8246static void
e7c27a73 8247process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8248{
adde2bff
DE
8249 struct cleanup *in_process;
8250
8251 /* We should only be processing those not already in process. */
8252 gdb_assert (!die->in_process);
8253
8254 die->in_process = 1;
8255 in_process = make_cleanup (reset_die_in_process,die);
8256
c906108c
SS
8257 switch (die->tag)
8258 {
8259 case DW_TAG_padding:
8260 break;
8261 case DW_TAG_compile_unit:
95554aad 8262 case DW_TAG_partial_unit:
e7c27a73 8263 read_file_scope (die, cu);
c906108c 8264 break;
348e048f
DE
8265 case DW_TAG_type_unit:
8266 read_type_unit_scope (die, cu);
8267 break;
c906108c 8268 case DW_TAG_subprogram:
c906108c 8269 case DW_TAG_inlined_subroutine:
edb3359d 8270 read_func_scope (die, cu);
c906108c
SS
8271 break;
8272 case DW_TAG_lexical_block:
14898363
L
8273 case DW_TAG_try_block:
8274 case DW_TAG_catch_block:
e7c27a73 8275 read_lexical_block_scope (die, cu);
c906108c 8276 break;
96408a79
SA
8277 case DW_TAG_GNU_call_site:
8278 read_call_site_scope (die, cu);
8279 break;
c906108c 8280 case DW_TAG_class_type:
680b30c7 8281 case DW_TAG_interface_type:
c906108c
SS
8282 case DW_TAG_structure_type:
8283 case DW_TAG_union_type:
134d01f1 8284 process_structure_scope (die, cu);
c906108c
SS
8285 break;
8286 case DW_TAG_enumeration_type:
134d01f1 8287 process_enumeration_scope (die, cu);
c906108c 8288 break;
134d01f1 8289
f792889a
DJ
8290 /* These dies have a type, but processing them does not create
8291 a symbol or recurse to process the children. Therefore we can
8292 read them on-demand through read_type_die. */
c906108c 8293 case DW_TAG_subroutine_type:
72019c9c 8294 case DW_TAG_set_type:
c906108c 8295 case DW_TAG_array_type:
c906108c 8296 case DW_TAG_pointer_type:
c906108c 8297 case DW_TAG_ptr_to_member_type:
c906108c 8298 case DW_TAG_reference_type:
c906108c 8299 case DW_TAG_string_type:
c906108c 8300 break;
134d01f1 8301
c906108c 8302 case DW_TAG_base_type:
a02abb62 8303 case DW_TAG_subrange_type:
cb249c71 8304 case DW_TAG_typedef:
134d01f1
DJ
8305 /* Add a typedef symbol for the type definition, if it has a
8306 DW_AT_name. */
f792889a 8307 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8308 break;
c906108c 8309 case DW_TAG_common_block:
e7c27a73 8310 read_common_block (die, cu);
c906108c
SS
8311 break;
8312 case DW_TAG_common_inclusion:
8313 break;
d9fa45fe 8314 case DW_TAG_namespace:
4d4ec4e5 8315 cu->processing_has_namespace_info = 1;
e7c27a73 8316 read_namespace (die, cu);
d9fa45fe 8317 break;
5d7cb8df 8318 case DW_TAG_module:
4d4ec4e5 8319 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8320 read_module (die, cu);
8321 break;
d9fa45fe 8322 case DW_TAG_imported_declaration:
74921315
KS
8323 cu->processing_has_namespace_info = 1;
8324 if (read_namespace_alias (die, cu))
8325 break;
8326 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8327 case DW_TAG_imported_module:
4d4ec4e5 8328 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8329 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8330 || cu->language != language_fortran))
8331 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8332 dwarf_tag_name (die->tag));
8333 read_import_statement (die, cu);
d9fa45fe 8334 break;
95554aad
TT
8335
8336 case DW_TAG_imported_unit:
8337 process_imported_unit_die (die, cu);
8338 break;
8339
c906108c 8340 default:
e7c27a73 8341 new_symbol (die, NULL, cu);
c906108c
SS
8342 break;
8343 }
adde2bff
DE
8344
8345 do_cleanups (in_process);
c906108c 8346}
ca69b9e6
DE
8347\f
8348/* DWARF name computation. */
c906108c 8349
94af9270
KS
8350/* A helper function for dwarf2_compute_name which determines whether DIE
8351 needs to have the name of the scope prepended to the name listed in the
8352 die. */
8353
8354static int
8355die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8356{
1c809c68
TT
8357 struct attribute *attr;
8358
94af9270
KS
8359 switch (die->tag)
8360 {
8361 case DW_TAG_namespace:
8362 case DW_TAG_typedef:
8363 case DW_TAG_class_type:
8364 case DW_TAG_interface_type:
8365 case DW_TAG_structure_type:
8366 case DW_TAG_union_type:
8367 case DW_TAG_enumeration_type:
8368 case DW_TAG_enumerator:
8369 case DW_TAG_subprogram:
08a76f8a 8370 case DW_TAG_inlined_subroutine:
94af9270 8371 case DW_TAG_member:
74921315 8372 case DW_TAG_imported_declaration:
94af9270
KS
8373 return 1;
8374
8375 case DW_TAG_variable:
c2b0a229 8376 case DW_TAG_constant:
94af9270
KS
8377 /* We only need to prefix "globally" visible variables. These include
8378 any variable marked with DW_AT_external or any variable that
8379 lives in a namespace. [Variables in anonymous namespaces
8380 require prefixing, but they are not DW_AT_external.] */
8381
8382 if (dwarf2_attr (die, DW_AT_specification, cu))
8383 {
8384 struct dwarf2_cu *spec_cu = cu;
9a619af0 8385
94af9270
KS
8386 return die_needs_namespace (die_specification (die, &spec_cu),
8387 spec_cu);
8388 }
8389
1c809c68 8390 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8391 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8392 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8393 return 0;
8394 /* A variable in a lexical block of some kind does not need a
8395 namespace, even though in C++ such variables may be external
8396 and have a mangled name. */
8397 if (die->parent->tag == DW_TAG_lexical_block
8398 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8399 || die->parent->tag == DW_TAG_catch_block
8400 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8401 return 0;
8402 return 1;
94af9270
KS
8403
8404 default:
8405 return 0;
8406 }
8407}
8408
98bfdba5
PA
8409/* Retrieve the last character from a mem_file. */
8410
8411static void
8412do_ui_file_peek_last (void *object, const char *buffer, long length)
8413{
8414 char *last_char_p = (char *) object;
8415
8416 if (length > 0)
8417 *last_char_p = buffer[length - 1];
8418}
8419
94af9270 8420/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8421 compute the physname for the object, which include a method's:
8422 - formal parameters (C++/Java),
8423 - receiver type (Go),
8424 - return type (Java).
8425
8426 The term "physname" is a bit confusing.
8427 For C++, for example, it is the demangled name.
8428 For Go, for example, it's the mangled name.
94af9270 8429
af6b7be1
JB
8430 For Ada, return the DIE's linkage name rather than the fully qualified
8431 name. PHYSNAME is ignored..
8432
94af9270
KS
8433 The result is allocated on the objfile_obstack and canonicalized. */
8434
8435static const char *
15d034d0
TT
8436dwarf2_compute_name (const char *name,
8437 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8438 int physname)
8439{
bb5ed363
DE
8440 struct objfile *objfile = cu->objfile;
8441
94af9270
KS
8442 if (name == NULL)
8443 name = dwarf2_name (die, cu);
8444
f55ee35c
JK
8445 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8446 compute it by typename_concat inside GDB. */
8447 if (cu->language == language_ada
8448 || (cu->language == language_fortran && physname))
8449 {
8450 /* For Ada unit, we prefer the linkage name over the name, as
8451 the former contains the exported name, which the user expects
8452 to be able to reference. Ideally, we want the user to be able
8453 to reference this entity using either natural or linkage name,
8454 but we haven't started looking at this enhancement yet. */
8455 struct attribute *attr;
8456
8457 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8458 if (attr == NULL)
8459 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8460 if (attr && DW_STRING (attr))
8461 return DW_STRING (attr);
8462 }
8463
94af9270
KS
8464 /* These are the only languages we know how to qualify names in. */
8465 if (name != NULL
f55ee35c 8466 && (cu->language == language_cplus || cu->language == language_java
45280282 8467 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8468 {
8469 if (die_needs_namespace (die, cu))
8470 {
8471 long length;
0d5cff50 8472 const char *prefix;
94af9270 8473 struct ui_file *buf;
34a68019
TT
8474 char *intermediate_name;
8475 const char *canonical_name = NULL;
94af9270
KS
8476
8477 prefix = determine_prefix (die, cu);
8478 buf = mem_fileopen ();
8479 if (*prefix != '\0')
8480 {
f55ee35c
JK
8481 char *prefixed_name = typename_concat (NULL, prefix, name,
8482 physname, cu);
9a619af0 8483
94af9270
KS
8484 fputs_unfiltered (prefixed_name, buf);
8485 xfree (prefixed_name);
8486 }
8487 else
62d5b8da 8488 fputs_unfiltered (name, buf);
94af9270 8489
98bfdba5
PA
8490 /* Template parameters may be specified in the DIE's DW_AT_name, or
8491 as children with DW_TAG_template_type_param or
8492 DW_TAG_value_type_param. If the latter, add them to the name
8493 here. If the name already has template parameters, then
8494 skip this step; some versions of GCC emit both, and
8495 it is more efficient to use the pre-computed name.
8496
8497 Something to keep in mind about this process: it is very
8498 unlikely, or in some cases downright impossible, to produce
8499 something that will match the mangled name of a function.
8500 If the definition of the function has the same debug info,
8501 we should be able to match up with it anyway. But fallbacks
8502 using the minimal symbol, for instance to find a method
8503 implemented in a stripped copy of libstdc++, will not work.
8504 If we do not have debug info for the definition, we will have to
8505 match them up some other way.
8506
8507 When we do name matching there is a related problem with function
8508 templates; two instantiated function templates are allowed to
8509 differ only by their return types, which we do not add here. */
8510
8511 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8512 {
8513 struct attribute *attr;
8514 struct die_info *child;
8515 int first = 1;
8516
8517 die->building_fullname = 1;
8518
8519 for (child = die->child; child != NULL; child = child->sibling)
8520 {
8521 struct type *type;
12df843f 8522 LONGEST value;
d521ce57 8523 const gdb_byte *bytes;
98bfdba5
PA
8524 struct dwarf2_locexpr_baton *baton;
8525 struct value *v;
8526
8527 if (child->tag != DW_TAG_template_type_param
8528 && child->tag != DW_TAG_template_value_param)
8529 continue;
8530
8531 if (first)
8532 {
8533 fputs_unfiltered ("<", buf);
8534 first = 0;
8535 }
8536 else
8537 fputs_unfiltered (", ", buf);
8538
8539 attr = dwarf2_attr (child, DW_AT_type, cu);
8540 if (attr == NULL)
8541 {
8542 complaint (&symfile_complaints,
8543 _("template parameter missing DW_AT_type"));
8544 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8545 continue;
8546 }
8547 type = die_type (child, cu);
8548
8549 if (child->tag == DW_TAG_template_type_param)
8550 {
79d43c61 8551 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8552 continue;
8553 }
8554
8555 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8556 if (attr == NULL)
8557 {
8558 complaint (&symfile_complaints,
3e43a32a
MS
8559 _("template parameter missing "
8560 "DW_AT_const_value"));
98bfdba5
PA
8561 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8562 continue;
8563 }
8564
8565 dwarf2_const_value_attr (attr, type, name,
8566 &cu->comp_unit_obstack, cu,
8567 &value, &bytes, &baton);
8568
8569 if (TYPE_NOSIGN (type))
8570 /* GDB prints characters as NUMBER 'CHAR'. If that's
8571 changed, this can use value_print instead. */
8572 c_printchar (value, type, buf);
8573 else
8574 {
8575 struct value_print_options opts;
8576
8577 if (baton != NULL)
8578 v = dwarf2_evaluate_loc_desc (type, NULL,
8579 baton->data,
8580 baton->size,
8581 baton->per_cu);
8582 else if (bytes != NULL)
8583 {
8584 v = allocate_value (type);
8585 memcpy (value_contents_writeable (v), bytes,
8586 TYPE_LENGTH (type));
8587 }
8588 else
8589 v = value_from_longest (type, value);
8590
3e43a32a
MS
8591 /* Specify decimal so that we do not depend on
8592 the radix. */
98bfdba5
PA
8593 get_formatted_print_options (&opts, 'd');
8594 opts.raw = 1;
8595 value_print (v, buf, &opts);
8596 release_value (v);
8597 value_free (v);
8598 }
8599 }
8600
8601 die->building_fullname = 0;
8602
8603 if (!first)
8604 {
8605 /* Close the argument list, with a space if necessary
8606 (nested templates). */
8607 char last_char = '\0';
8608 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8609 if (last_char == '>')
8610 fputs_unfiltered (" >", buf);
8611 else
8612 fputs_unfiltered (">", buf);
8613 }
8614 }
8615
94af9270
KS
8616 /* For Java and C++ methods, append formal parameter type
8617 information, if PHYSNAME. */
6e70227d 8618
94af9270
KS
8619 if (physname && die->tag == DW_TAG_subprogram
8620 && (cu->language == language_cplus
8621 || cu->language == language_java))
8622 {
8623 struct type *type = read_type_die (die, cu);
8624
79d43c61
TT
8625 c_type_print_args (type, buf, 1, cu->language,
8626 &type_print_raw_options);
94af9270
KS
8627
8628 if (cu->language == language_java)
8629 {
8630 /* For java, we must append the return type to method
0963b4bd 8631 names. */
94af9270
KS
8632 if (die->tag == DW_TAG_subprogram)
8633 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8634 0, 0, &type_print_raw_options);
94af9270
KS
8635 }
8636 else if (cu->language == language_cplus)
8637 {
60430eff
DJ
8638 /* Assume that an artificial first parameter is
8639 "this", but do not crash if it is not. RealView
8640 marks unnamed (and thus unused) parameters as
8641 artificial; there is no way to differentiate
8642 the two cases. */
94af9270
KS
8643 if (TYPE_NFIELDS (type) > 0
8644 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8645 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8646 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8647 0))))
94af9270
KS
8648 fputs_unfiltered (" const", buf);
8649 }
8650 }
8651
34a68019 8652 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8653 ui_file_delete (buf);
8654
8655 if (cu->language == language_cplus)
34a68019
TT
8656 canonical_name
8657 = dwarf2_canonicalize_name (intermediate_name, cu,
8658 &objfile->per_bfd->storage_obstack);
8659
8660 /* If we only computed INTERMEDIATE_NAME, or if
8661 INTERMEDIATE_NAME is already canonical, then we need to
8662 copy it to the appropriate obstack. */
8663 if (canonical_name == NULL || canonical_name == intermediate_name)
8664 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8665 intermediate_name,
8666 strlen (intermediate_name));
8667 else
8668 name = canonical_name;
9a619af0 8669
34a68019 8670 xfree (intermediate_name);
94af9270
KS
8671 }
8672 }
8673
8674 return name;
8675}
8676
0114d602
DJ
8677/* Return the fully qualified name of DIE, based on its DW_AT_name.
8678 If scope qualifiers are appropriate they will be added. The result
34a68019 8679 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8680 not have a name. NAME may either be from a previous call to
8681 dwarf2_name or NULL.
8682
0963b4bd 8683 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8684
8685static const char *
15d034d0 8686dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8687{
94af9270
KS
8688 return dwarf2_compute_name (name, die, cu, 0);
8689}
0114d602 8690
94af9270
KS
8691/* Construct a physname for the given DIE in CU. NAME may either be
8692 from a previous call to dwarf2_name or NULL. The result will be
8693 allocated on the objfile_objstack or NULL if the DIE does not have a
8694 name.
0114d602 8695
94af9270 8696 The output string will be canonicalized (if C++/Java). */
0114d602 8697
94af9270 8698static const char *
15d034d0 8699dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8700{
bb5ed363 8701 struct objfile *objfile = cu->objfile;
900e11f9
JK
8702 struct attribute *attr;
8703 const char *retval, *mangled = NULL, *canon = NULL;
8704 struct cleanup *back_to;
8705 int need_copy = 1;
8706
8707 /* In this case dwarf2_compute_name is just a shortcut not building anything
8708 on its own. */
8709 if (!die_needs_namespace (die, cu))
8710 return dwarf2_compute_name (name, die, cu, 1);
8711
8712 back_to = make_cleanup (null_cleanup, NULL);
8713
8714 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8715 if (!attr)
8716 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8717
8718 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8719 has computed. */
8720 if (attr && DW_STRING (attr))
8721 {
8722 char *demangled;
8723
8724 mangled = DW_STRING (attr);
8725
8726 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8727 type. It is easier for GDB users to search for such functions as
8728 `name(params)' than `long name(params)'. In such case the minimal
8729 symbol names do not match the full symbol names but for template
8730 functions there is never a need to look up their definition from their
8731 declaration so the only disadvantage remains the minimal symbol
8732 variant `long name(params)' does not have the proper inferior type.
8733 */
8734
a766d390
DE
8735 if (cu->language == language_go)
8736 {
8737 /* This is a lie, but we already lie to the caller new_symbol_full.
8738 new_symbol_full assumes we return the mangled name.
8739 This just undoes that lie until things are cleaned up. */
8740 demangled = NULL;
8741 }
8742 else
8743 {
8de20a37
TT
8744 demangled = gdb_demangle (mangled,
8745 (DMGL_PARAMS | DMGL_ANSI
8746 | (cu->language == language_java
8747 ? DMGL_JAVA | DMGL_RET_POSTFIX
8748 : DMGL_RET_DROP)));
a766d390 8749 }
900e11f9
JK
8750 if (demangled)
8751 {
8752 make_cleanup (xfree, demangled);
8753 canon = demangled;
8754 }
8755 else
8756 {
8757 canon = mangled;
8758 need_copy = 0;
8759 }
8760 }
8761
8762 if (canon == NULL || check_physname)
8763 {
8764 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8765
8766 if (canon != NULL && strcmp (physname, canon) != 0)
8767 {
8768 /* It may not mean a bug in GDB. The compiler could also
8769 compute DW_AT_linkage_name incorrectly. But in such case
8770 GDB would need to be bug-to-bug compatible. */
8771
8772 complaint (&symfile_complaints,
8773 _("Computed physname <%s> does not match demangled <%s> "
8774 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8775 physname, canon, mangled, die->offset.sect_off,
8776 objfile_name (objfile));
900e11f9
JK
8777
8778 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8779 is available here - over computed PHYSNAME. It is safer
8780 against both buggy GDB and buggy compilers. */
8781
8782 retval = canon;
8783 }
8784 else
8785 {
8786 retval = physname;
8787 need_copy = 0;
8788 }
8789 }
8790 else
8791 retval = canon;
8792
8793 if (need_copy)
34a68019
TT
8794 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8795 retval, strlen (retval));
900e11f9
JK
8796
8797 do_cleanups (back_to);
8798 return retval;
0114d602
DJ
8799}
8800
74921315
KS
8801/* Inspect DIE in CU for a namespace alias. If one exists, record
8802 a new symbol for it.
8803
8804 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8805
8806static int
8807read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8808{
8809 struct attribute *attr;
8810
8811 /* If the die does not have a name, this is not a namespace
8812 alias. */
8813 attr = dwarf2_attr (die, DW_AT_name, cu);
8814 if (attr != NULL)
8815 {
8816 int num;
8817 struct die_info *d = die;
8818 struct dwarf2_cu *imported_cu = cu;
8819
8820 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8821 keep inspecting DIEs until we hit the underlying import. */
8822#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8823 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8824 {
8825 attr = dwarf2_attr (d, DW_AT_import, cu);
8826 if (attr == NULL)
8827 break;
8828
8829 d = follow_die_ref (d, attr, &imported_cu);
8830 if (d->tag != DW_TAG_imported_declaration)
8831 break;
8832 }
8833
8834 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8835 {
8836 complaint (&symfile_complaints,
8837 _("DIE at 0x%x has too many recursively imported "
8838 "declarations"), d->offset.sect_off);
8839 return 0;
8840 }
8841
8842 if (attr != NULL)
8843 {
8844 struct type *type;
8845 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8846
8847 type = get_die_type_at_offset (offset, cu->per_cu);
8848 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8849 {
8850 /* This declaration is a global namespace alias. Add
8851 a symbol for it whose type is the aliased namespace. */
8852 new_symbol (die, type, cu);
8853 return 1;
8854 }
8855 }
8856 }
8857
8858 return 0;
8859}
8860
22cee43f
PMR
8861/* Return the using directives repository (global or local?) to use in the
8862 current context for LANGUAGE.
8863
8864 For Ada, imported declarations can materialize renamings, which *may* be
8865 global. However it is impossible (for now?) in DWARF to distinguish
8866 "external" imported declarations and "static" ones. As all imported
8867 declarations seem to be static in all other languages, make them all CU-wide
8868 global only in Ada. */
8869
8870static struct using_direct **
8871using_directives (enum language language)
8872{
8873 if (language == language_ada && context_stack_depth == 0)
8874 return &global_using_directives;
8875 else
8876 return &local_using_directives;
8877}
8878
27aa8d6a
SW
8879/* Read the import statement specified by the given die and record it. */
8880
8881static void
8882read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8883{
bb5ed363 8884 struct objfile *objfile = cu->objfile;
27aa8d6a 8885 struct attribute *import_attr;
32019081 8886 struct die_info *imported_die, *child_die;
de4affc9 8887 struct dwarf2_cu *imported_cu;
27aa8d6a 8888 const char *imported_name;
794684b6 8889 const char *imported_name_prefix;
13387711
SW
8890 const char *canonical_name;
8891 const char *import_alias;
8892 const char *imported_declaration = NULL;
794684b6 8893 const char *import_prefix;
32019081
JK
8894 VEC (const_char_ptr) *excludes = NULL;
8895 struct cleanup *cleanups;
13387711 8896
27aa8d6a
SW
8897 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8898 if (import_attr == NULL)
8899 {
8900 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8901 dwarf_tag_name (die->tag));
8902 return;
8903 }
8904
de4affc9
CC
8905 imported_cu = cu;
8906 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8907 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8908 if (imported_name == NULL)
8909 {
8910 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8911
8912 The import in the following code:
8913 namespace A
8914 {
8915 typedef int B;
8916 }
8917
8918 int main ()
8919 {
8920 using A::B;
8921 B b;
8922 return b;
8923 }
8924
8925 ...
8926 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8927 <52> DW_AT_decl_file : 1
8928 <53> DW_AT_decl_line : 6
8929 <54> DW_AT_import : <0x75>
8930 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8931 <59> DW_AT_name : B
8932 <5b> DW_AT_decl_file : 1
8933 <5c> DW_AT_decl_line : 2
8934 <5d> DW_AT_type : <0x6e>
8935 ...
8936 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8937 <76> DW_AT_byte_size : 4
8938 <77> DW_AT_encoding : 5 (signed)
8939
8940 imports the wrong die ( 0x75 instead of 0x58 ).
8941 This case will be ignored until the gcc bug is fixed. */
8942 return;
8943 }
8944
82856980
SW
8945 /* Figure out the local name after import. */
8946 import_alias = dwarf2_name (die, cu);
27aa8d6a 8947
794684b6
SW
8948 /* Figure out where the statement is being imported to. */
8949 import_prefix = determine_prefix (die, cu);
8950
8951 /* Figure out what the scope of the imported die is and prepend it
8952 to the name of the imported die. */
de4affc9 8953 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8954
f55ee35c
JK
8955 if (imported_die->tag != DW_TAG_namespace
8956 && imported_die->tag != DW_TAG_module)
794684b6 8957 {
13387711
SW
8958 imported_declaration = imported_name;
8959 canonical_name = imported_name_prefix;
794684b6 8960 }
13387711 8961 else if (strlen (imported_name_prefix) > 0)
12aaed36 8962 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8963 imported_name_prefix,
8964 (cu->language == language_d ? "." : "::"),
8965 imported_name, (char *) NULL);
13387711
SW
8966 else
8967 canonical_name = imported_name;
794684b6 8968
32019081
JK
8969 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8970
8971 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8972 for (child_die = die->child; child_die && child_die->tag;
8973 child_die = sibling_die (child_die))
8974 {
8975 /* DWARF-4: A Fortran use statement with a “rename list” may be
8976 represented by an imported module entry with an import attribute
8977 referring to the module and owned entries corresponding to those
8978 entities that are renamed as part of being imported. */
8979
8980 if (child_die->tag != DW_TAG_imported_declaration)
8981 {
8982 complaint (&symfile_complaints,
8983 _("child DW_TAG_imported_declaration expected "
8984 "- DIE at 0x%x [in module %s]"),
4262abfb 8985 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8986 continue;
8987 }
8988
8989 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8990 if (import_attr == NULL)
8991 {
8992 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8993 dwarf_tag_name (child_die->tag));
8994 continue;
8995 }
8996
8997 imported_cu = cu;
8998 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8999 &imported_cu);
9000 imported_name = dwarf2_name (imported_die, imported_cu);
9001 if (imported_name == NULL)
9002 {
9003 complaint (&symfile_complaints,
9004 _("child DW_TAG_imported_declaration has unknown "
9005 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9006 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9007 continue;
9008 }
9009
9010 VEC_safe_push (const_char_ptr, excludes, imported_name);
9011
9012 process_die (child_die, cu);
9013 }
9014
22cee43f
PMR
9015 add_using_directive (using_directives (cu->language),
9016 import_prefix,
9017 canonical_name,
9018 import_alias,
9019 imported_declaration,
9020 excludes,
9021 0,
9022 &objfile->objfile_obstack);
32019081
JK
9023
9024 do_cleanups (cleanups);
27aa8d6a
SW
9025}
9026
f4dc4d17 9027/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9028
cb1df416
DJ
9029static void
9030free_cu_line_header (void *arg)
9031{
9032 struct dwarf2_cu *cu = arg;
9033
9034 free_line_header (cu->line_header);
9035 cu->line_header = NULL;
9036}
9037
1b80a9fa
JK
9038/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9039 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9040 this, it was first present in GCC release 4.3.0. */
9041
9042static int
9043producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9044{
9045 if (!cu->checked_producer)
9046 check_producer (cu);
9047
9048 return cu->producer_is_gcc_lt_4_3;
9049}
9050
9291a0cd
TT
9051static void
9052find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9053 const char **name, const char **comp_dir)
9291a0cd
TT
9054{
9055 struct attribute *attr;
9056
9057 *name = NULL;
9058 *comp_dir = NULL;
9059
9060 /* Find the filename. Do not use dwarf2_name here, since the filename
9061 is not a source language identifier. */
9062 attr = dwarf2_attr (die, DW_AT_name, cu);
9063 if (attr)
9064 {
9065 *name = DW_STRING (attr);
9066 }
9067
9068 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9069 if (attr)
9070 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
9071 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9072 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9073 {
15d034d0
TT
9074 char *d = ldirname (*name);
9075
9076 *comp_dir = d;
9077 if (d != NULL)
9078 make_cleanup (xfree, d);
9291a0cd
TT
9079 }
9080 if (*comp_dir != NULL)
9081 {
9082 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9083 directory, get rid of it. */
9084 char *cp = strchr (*comp_dir, ':');
9085
9086 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9087 *comp_dir = cp + 1;
9088 }
9089
9090 if (*name == NULL)
9091 *name = "<unknown>";
9092}
9093
f4dc4d17
DE
9094/* Handle DW_AT_stmt_list for a compilation unit.
9095 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9096 COMP_DIR is the compilation directory. LOWPC is passed to
9097 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9098
9099static void
9100handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9101 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9102{
527f3840 9103 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9104 struct attribute *attr;
527f3840
JK
9105 unsigned int line_offset;
9106 struct line_header line_header_local;
9107 hashval_t line_header_local_hash;
9108 unsigned u;
9109 void **slot;
9110 int decode_mapping;
2ab95328 9111
f4dc4d17
DE
9112 gdb_assert (! cu->per_cu->is_debug_types);
9113
2ab95328 9114 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9115 if (attr == NULL)
9116 return;
9117
9118 line_offset = DW_UNSND (attr);
9119
9120 /* The line header hash table is only created if needed (it exists to
9121 prevent redundant reading of the line table for partial_units).
9122 If we're given a partial_unit, we'll need it. If we're given a
9123 compile_unit, then use the line header hash table if it's already
9124 created, but don't create one just yet. */
9125
9126 if (dwarf2_per_objfile->line_header_hash == NULL
9127 && die->tag == DW_TAG_partial_unit)
2ab95328 9128 {
527f3840
JK
9129 dwarf2_per_objfile->line_header_hash
9130 = htab_create_alloc_ex (127, line_header_hash_voidp,
9131 line_header_eq_voidp,
9132 free_line_header_voidp,
9133 &objfile->objfile_obstack,
9134 hashtab_obstack_allocate,
9135 dummy_obstack_deallocate);
9136 }
2ab95328 9137
527f3840
JK
9138 line_header_local.offset.sect_off = line_offset;
9139 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9140 line_header_local_hash = line_header_hash (&line_header_local);
9141 if (dwarf2_per_objfile->line_header_hash != NULL)
9142 {
9143 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9144 &line_header_local,
9145 line_header_local_hash, NO_INSERT);
9146
9147 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9148 is not present in *SLOT (since if there is something in *SLOT then
9149 it will be for a partial_unit). */
9150 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9151 {
527f3840
JK
9152 gdb_assert (*slot != NULL);
9153 cu->line_header = *slot;
9154 return;
dee91e82 9155 }
2ab95328 9156 }
527f3840
JK
9157
9158 /* dwarf_decode_line_header does not yet provide sufficient information.
9159 We always have to call also dwarf_decode_lines for it. */
9160 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9161 if (cu->line_header == NULL)
9162 return;
9163
9164 if (dwarf2_per_objfile->line_header_hash == NULL)
9165 slot = NULL;
9166 else
9167 {
9168 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9169 &line_header_local,
9170 line_header_local_hash, INSERT);
9171 gdb_assert (slot != NULL);
9172 }
9173 if (slot != NULL && *slot == NULL)
9174 {
9175 /* This newly decoded line number information unit will be owned
9176 by line_header_hash hash table. */
9177 *slot = cu->line_header;
9178 }
9179 else
9180 {
9181 /* We cannot free any current entry in (*slot) as that struct line_header
9182 may be already used by multiple CUs. Create only temporary decoded
9183 line_header for this CU - it may happen at most once for each line
9184 number information unit. And if we're not using line_header_hash
9185 then this is what we want as well. */
9186 gdb_assert (die->tag != DW_TAG_partial_unit);
9187 make_cleanup (free_cu_line_header, cu);
9188 }
9189 decode_mapping = (die->tag != DW_TAG_partial_unit);
9190 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9191 decode_mapping);
2ab95328
TT
9192}
9193
95554aad 9194/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9195
c906108c 9196static void
e7c27a73 9197read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9198{
dee91e82 9199 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9203 CORE_ADDR highpc = ((CORE_ADDR) 0);
9204 struct attribute *attr;
15d034d0
TT
9205 const char *name = NULL;
9206 const char *comp_dir = NULL;
c906108c
SS
9207 struct die_info *child_die;
9208 bfd *abfd = objfile->obfd;
e142c38c 9209 CORE_ADDR baseaddr;
6e70227d 9210
e142c38c 9211 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9212
fae299cd 9213 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9214
9215 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9216 from finish_block. */
2acceee2 9217 if (lowpc == ((CORE_ADDR) -1))
c906108c 9218 lowpc = highpc;
3e29f34a 9219 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9220
9291a0cd 9221 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9222
95554aad 9223 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9224
f4b8a18d
KW
9225 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9226 standardised yet. As a workaround for the language detection we fall
9227 back to the DW_AT_producer string. */
9228 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9229 cu->language = language_opencl;
9230
3019eac3
DE
9231 /* Similar hack for Go. */
9232 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9233 set_cu_language (DW_LANG_Go, cu);
9234
f4dc4d17 9235 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9236
9237 /* Decode line number information if present. We do this before
9238 processing child DIEs, so that the line header table is available
9239 for DW_AT_decl_file. */
c3b7b696 9240 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9241
9242 /* Process all dies in compilation unit. */
9243 if (die->child != NULL)
9244 {
9245 child_die = die->child;
9246 while (child_die && child_die->tag)
9247 {
9248 process_die (child_die, cu);
9249 child_die = sibling_die (child_die);
9250 }
9251 }
9252
9253 /* Decode macro information, if present. Dwarf 2 macro information
9254 refers to information in the line number info statement program
9255 header, so we can only read it if we've read the header
9256 successfully. */
9257 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9258 if (attr && cu->line_header)
9259 {
9260 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9261 complaint (&symfile_complaints,
9262 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9263
43f3e411 9264 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9265 }
9266 else
9267 {
9268 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9269 if (attr && cu->line_header)
9270 {
9271 unsigned int macro_offset = DW_UNSND (attr);
9272
43f3e411 9273 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9274 }
9275 }
9276
9277 do_cleanups (back_to);
9278}
9279
f4dc4d17
DE
9280/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9281 Create the set of symtabs used by this TU, or if this TU is sharing
9282 symtabs with another TU and the symtabs have already been created
9283 then restore those symtabs in the line header.
9284 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9285
9286static void
f4dc4d17 9287setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9288{
f4dc4d17
DE
9289 struct objfile *objfile = dwarf2_per_objfile->objfile;
9290 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9291 struct type_unit_group *tu_group;
9292 int first_time;
9293 struct line_header *lh;
3019eac3 9294 struct attribute *attr;
f4dc4d17 9295 unsigned int i, line_offset;
0186c6a7 9296 struct signatured_type *sig_type;
3019eac3 9297
f4dc4d17 9298 gdb_assert (per_cu->is_debug_types);
0186c6a7 9299 sig_type = (struct signatured_type *) per_cu;
3019eac3 9300
f4dc4d17 9301 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9302
f4dc4d17 9303 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9304 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9305 if (sig_type->type_unit_group == NULL)
9306 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9307 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9308
9309 /* If we've already processed this stmt_list there's no real need to
9310 do it again, we could fake it and just recreate the part we need
9311 (file name,index -> symtab mapping). If data shows this optimization
9312 is useful we can do it then. */
43f3e411 9313 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9314
9315 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9316 debug info. */
9317 lh = NULL;
9318 if (attr != NULL)
3019eac3 9319 {
f4dc4d17
DE
9320 line_offset = DW_UNSND (attr);
9321 lh = dwarf_decode_line_header (line_offset, cu);
9322 }
9323 if (lh == NULL)
9324 {
9325 if (first_time)
9326 dwarf2_start_symtab (cu, "", NULL, 0);
9327 else
9328 {
9329 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9330 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9331 }
f4dc4d17 9332 return;
3019eac3
DE
9333 }
9334
f4dc4d17
DE
9335 cu->line_header = lh;
9336 make_cleanup (free_cu_line_header, cu);
3019eac3 9337
f4dc4d17
DE
9338 if (first_time)
9339 {
43f3e411 9340 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9341
f4dc4d17
DE
9342 tu_group->num_symtabs = lh->num_file_names;
9343 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9344
f4dc4d17
DE
9345 for (i = 0; i < lh->num_file_names; ++i)
9346 {
d521ce57 9347 const char *dir = NULL;
f4dc4d17 9348 struct file_entry *fe = &lh->file_names[i];
3019eac3 9349
afa6c9ab 9350 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9351 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9352 dwarf2_start_subfile (fe->name, dir);
3019eac3 9353
f4dc4d17
DE
9354 if (current_subfile->symtab == NULL)
9355 {
9356 /* NOTE: start_subfile will recognize when it's been passed
9357 a file it has already seen. So we can't assume there's a
43f3e411 9358 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9359 lh->file_names may contain dups. */
43f3e411
DE
9360 current_subfile->symtab
9361 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9362 }
9363
9364 fe->symtab = current_subfile->symtab;
9365 tu_group->symtabs[i] = fe->symtab;
9366 }
9367 }
9368 else
3019eac3 9369 {
0ab9ce85 9370 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9371
9372 for (i = 0; i < lh->num_file_names; ++i)
9373 {
9374 struct file_entry *fe = &lh->file_names[i];
9375
9376 fe->symtab = tu_group->symtabs[i];
9377 }
3019eac3
DE
9378 }
9379
f4dc4d17
DE
9380 /* The main symtab is allocated last. Type units don't have DW_AT_name
9381 so they don't have a "real" (so to speak) symtab anyway.
9382 There is later code that will assign the main symtab to all symbols
9383 that don't have one. We need to handle the case of a symbol with a
9384 missing symtab (DW_AT_decl_file) anyway. */
9385}
3019eac3 9386
f4dc4d17
DE
9387/* Process DW_TAG_type_unit.
9388 For TUs we want to skip the first top level sibling if it's not the
9389 actual type being defined by this TU. In this case the first top
9390 level sibling is there to provide context only. */
3019eac3 9391
f4dc4d17
DE
9392static void
9393read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9394{
9395 struct die_info *child_die;
3019eac3 9396
f4dc4d17
DE
9397 prepare_one_comp_unit (cu, die, language_minimal);
9398
9399 /* Initialize (or reinitialize) the machinery for building symtabs.
9400 We do this before processing child DIEs, so that the line header table
9401 is available for DW_AT_decl_file. */
9402 setup_type_unit_groups (die, cu);
9403
9404 if (die->child != NULL)
9405 {
9406 child_die = die->child;
9407 while (child_die && child_die->tag)
9408 {
9409 process_die (child_die, cu);
9410 child_die = sibling_die (child_die);
9411 }
9412 }
3019eac3
DE
9413}
9414\f
80626a55
DE
9415/* DWO/DWP files.
9416
9417 http://gcc.gnu.org/wiki/DebugFission
9418 http://gcc.gnu.org/wiki/DebugFissionDWP
9419
9420 To simplify handling of both DWO files ("object" files with the DWARF info)
9421 and DWP files (a file with the DWOs packaged up into one file), we treat
9422 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9423
9424static hashval_t
9425hash_dwo_file (const void *item)
9426{
9427 const struct dwo_file *dwo_file = item;
a2ce51a0 9428 hashval_t hash;
3019eac3 9429
a2ce51a0
DE
9430 hash = htab_hash_string (dwo_file->dwo_name);
9431 if (dwo_file->comp_dir != NULL)
9432 hash += htab_hash_string (dwo_file->comp_dir);
9433 return hash;
3019eac3
DE
9434}
9435
9436static int
9437eq_dwo_file (const void *item_lhs, const void *item_rhs)
9438{
9439 const struct dwo_file *lhs = item_lhs;
9440 const struct dwo_file *rhs = item_rhs;
9441
a2ce51a0
DE
9442 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9443 return 0;
9444 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9445 return lhs->comp_dir == rhs->comp_dir;
9446 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9447}
9448
9449/* Allocate a hash table for DWO files. */
9450
9451static htab_t
9452allocate_dwo_file_hash_table (void)
9453{
9454 struct objfile *objfile = dwarf2_per_objfile->objfile;
9455
9456 return htab_create_alloc_ex (41,
9457 hash_dwo_file,
9458 eq_dwo_file,
9459 NULL,
9460 &objfile->objfile_obstack,
9461 hashtab_obstack_allocate,
9462 dummy_obstack_deallocate);
9463}
9464
80626a55
DE
9465/* Lookup DWO file DWO_NAME. */
9466
9467static void **
0ac5b59e 9468lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9469{
9470 struct dwo_file find_entry;
9471 void **slot;
9472
9473 if (dwarf2_per_objfile->dwo_files == NULL)
9474 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9475
9476 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9477 find_entry.dwo_name = dwo_name;
9478 find_entry.comp_dir = comp_dir;
80626a55
DE
9479 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9480
9481 return slot;
9482}
9483
3019eac3
DE
9484static hashval_t
9485hash_dwo_unit (const void *item)
9486{
9487 const struct dwo_unit *dwo_unit = item;
9488
9489 /* This drops the top 32 bits of the id, but is ok for a hash. */
9490 return dwo_unit->signature;
9491}
9492
9493static int
9494eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9495{
9496 const struct dwo_unit *lhs = item_lhs;
9497 const struct dwo_unit *rhs = item_rhs;
9498
9499 /* The signature is assumed to be unique within the DWO file.
9500 So while object file CU dwo_id's always have the value zero,
9501 that's OK, assuming each object file DWO file has only one CU,
9502 and that's the rule for now. */
9503 return lhs->signature == rhs->signature;
9504}
9505
9506/* Allocate a hash table for DWO CUs,TUs.
9507 There is one of these tables for each of CUs,TUs for each DWO file. */
9508
9509static htab_t
9510allocate_dwo_unit_table (struct objfile *objfile)
9511{
9512 /* Start out with a pretty small number.
9513 Generally DWO files contain only one CU and maybe some TUs. */
9514 return htab_create_alloc_ex (3,
9515 hash_dwo_unit,
9516 eq_dwo_unit,
9517 NULL,
9518 &objfile->objfile_obstack,
9519 hashtab_obstack_allocate,
9520 dummy_obstack_deallocate);
9521}
9522
80626a55 9523/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9524
19c3d4c9 9525struct create_dwo_cu_data
3019eac3
DE
9526{
9527 struct dwo_file *dwo_file;
19c3d4c9 9528 struct dwo_unit dwo_unit;
3019eac3
DE
9529};
9530
19c3d4c9 9531/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9532
9533static void
19c3d4c9
DE
9534create_dwo_cu_reader (const struct die_reader_specs *reader,
9535 const gdb_byte *info_ptr,
9536 struct die_info *comp_unit_die,
9537 int has_children,
9538 void *datap)
3019eac3
DE
9539{
9540 struct dwarf2_cu *cu = reader->cu;
9541 struct objfile *objfile = dwarf2_per_objfile->objfile;
9542 sect_offset offset = cu->per_cu->offset;
8a0459fd 9543 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9544 struct create_dwo_cu_data *data = datap;
3019eac3 9545 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9546 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9547 struct attribute *attr;
3019eac3
DE
9548
9549 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9550 if (attr == NULL)
9551 {
19c3d4c9
DE
9552 complaint (&symfile_complaints,
9553 _("Dwarf Error: debug entry at offset 0x%x is missing"
9554 " its dwo_id [in module %s]"),
9555 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9556 return;
9557 }
9558
3019eac3
DE
9559 dwo_unit->dwo_file = dwo_file;
9560 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9561 dwo_unit->section = section;
3019eac3
DE
9562 dwo_unit->offset = offset;
9563 dwo_unit->length = cu->per_cu->length;
9564
b4f54984 9565 if (dwarf_read_debug)
4031ecc5
DE
9566 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9567 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9568}
9569
19c3d4c9
DE
9570/* Create the dwo_unit for the lone CU in DWO_FILE.
9571 Note: This function processes DWO files only, not DWP files. */
3019eac3 9572
19c3d4c9
DE
9573static struct dwo_unit *
9574create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9575{
9576 struct objfile *objfile = dwarf2_per_objfile->objfile;
9577 struct dwarf2_section_info *section = &dwo_file->sections.info;
9578 bfd *abfd;
9579 htab_t cu_htab;
d521ce57 9580 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9581 struct create_dwo_cu_data create_dwo_cu_data;
9582 struct dwo_unit *dwo_unit;
3019eac3
DE
9583
9584 dwarf2_read_section (objfile, section);
9585 info_ptr = section->buffer;
9586
9587 if (info_ptr == NULL)
9588 return NULL;
9589
9590 /* We can't set abfd until now because the section may be empty or
9591 not present, in which case section->asection will be NULL. */
a32a8923 9592 abfd = get_section_bfd_owner (section);
3019eac3 9593
b4f54984 9594 if (dwarf_read_debug)
19c3d4c9
DE
9595 {
9596 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9597 get_section_name (section),
9598 get_section_file_name (section));
19c3d4c9 9599 }
3019eac3 9600
19c3d4c9
DE
9601 create_dwo_cu_data.dwo_file = dwo_file;
9602 dwo_unit = NULL;
3019eac3
DE
9603
9604 end_ptr = info_ptr + section->size;
9605 while (info_ptr < end_ptr)
9606 {
9607 struct dwarf2_per_cu_data per_cu;
9608
19c3d4c9
DE
9609 memset (&create_dwo_cu_data.dwo_unit, 0,
9610 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9611 memset (&per_cu, 0, sizeof (per_cu));
9612 per_cu.objfile = objfile;
9613 per_cu.is_debug_types = 0;
9614 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9615 per_cu.section = section;
3019eac3 9616
33e80786 9617 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9618 create_dwo_cu_reader,
9619 &create_dwo_cu_data);
9620
9621 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9622 {
9623 /* If we've already found one, complain. We only support one
9624 because having more than one requires hacking the dwo_name of
9625 each to match, which is highly unlikely to happen. */
9626 if (dwo_unit != NULL)
9627 {
9628 complaint (&symfile_complaints,
9629 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9630 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9631 break;
9632 }
9633
9634 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9635 *dwo_unit = create_dwo_cu_data.dwo_unit;
9636 }
3019eac3
DE
9637
9638 info_ptr += per_cu.length;
9639 }
9640
19c3d4c9 9641 return dwo_unit;
3019eac3
DE
9642}
9643
80626a55
DE
9644/* DWP file .debug_{cu,tu}_index section format:
9645 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9646
d2415c6c
DE
9647 DWP Version 1:
9648
80626a55
DE
9649 Both index sections have the same format, and serve to map a 64-bit
9650 signature to a set of section numbers. Each section begins with a header,
9651 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9652 indexes, and a pool of 32-bit section numbers. The index sections will be
9653 aligned at 8-byte boundaries in the file.
9654
d2415c6c
DE
9655 The index section header consists of:
9656
9657 V, 32 bit version number
9658 -, 32 bits unused
9659 N, 32 bit number of compilation units or type units in the index
9660 M, 32 bit number of slots in the hash table
80626a55 9661
d2415c6c 9662 Numbers are recorded using the byte order of the application binary.
80626a55 9663
d2415c6c
DE
9664 The hash table begins at offset 16 in the section, and consists of an array
9665 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9666 order of the application binary). Unused slots in the hash table are 0.
9667 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9668
d2415c6c
DE
9669 The parallel table begins immediately after the hash table
9670 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9671 array of 32-bit indexes (using the byte order of the application binary),
9672 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9673 table contains a 32-bit index into the pool of section numbers. For unused
9674 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9675
73869dc2
DE
9676 The pool of section numbers begins immediately following the hash table
9677 (at offset 16 + 12 * M from the beginning of the section). The pool of
9678 section numbers consists of an array of 32-bit words (using the byte order
9679 of the application binary). Each item in the array is indexed starting
9680 from 0. The hash table entry provides the index of the first section
9681 number in the set. Additional section numbers in the set follow, and the
9682 set is terminated by a 0 entry (section number 0 is not used in ELF).
9683
9684 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9685 section must be the first entry in the set, and the .debug_abbrev.dwo must
9686 be the second entry. Other members of the set may follow in any order.
9687
9688 ---
9689
9690 DWP Version 2:
9691
9692 DWP Version 2 combines all the .debug_info, etc. sections into one,
9693 and the entries in the index tables are now offsets into these sections.
9694 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9695 section.
9696
9697 Index Section Contents:
9698 Header
9699 Hash Table of Signatures dwp_hash_table.hash_table
9700 Parallel Table of Indices dwp_hash_table.unit_table
9701 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9702 Table of Section Sizes dwp_hash_table.v2.sizes
9703
9704 The index section header consists of:
9705
9706 V, 32 bit version number
9707 L, 32 bit number of columns in the table of section offsets
9708 N, 32 bit number of compilation units or type units in the index
9709 M, 32 bit number of slots in the hash table
9710
9711 Numbers are recorded using the byte order of the application binary.
9712
9713 The hash table has the same format as version 1.
9714 The parallel table of indices has the same format as version 1,
9715 except that the entries are origin-1 indices into the table of sections
9716 offsets and the table of section sizes.
9717
9718 The table of offsets begins immediately following the parallel table
9719 (at offset 16 + 12 * M from the beginning of the section). The table is
9720 a two-dimensional array of 32-bit words (using the byte order of the
9721 application binary), with L columns and N+1 rows, in row-major order.
9722 Each row in the array is indexed starting from 0. The first row provides
9723 a key to the remaining rows: each column in this row provides an identifier
9724 for a debug section, and the offsets in the same column of subsequent rows
9725 refer to that section. The section identifiers are:
9726
9727 DW_SECT_INFO 1 .debug_info.dwo
9728 DW_SECT_TYPES 2 .debug_types.dwo
9729 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9730 DW_SECT_LINE 4 .debug_line.dwo
9731 DW_SECT_LOC 5 .debug_loc.dwo
9732 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9733 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9734 DW_SECT_MACRO 8 .debug_macro.dwo
9735
9736 The offsets provided by the CU and TU index sections are the base offsets
9737 for the contributions made by each CU or TU to the corresponding section
9738 in the package file. Each CU and TU header contains an abbrev_offset
9739 field, used to find the abbreviations table for that CU or TU within the
9740 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9741 be interpreted as relative to the base offset given in the index section.
9742 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9743 should be interpreted as relative to the base offset for .debug_line.dwo,
9744 and offsets into other debug sections obtained from DWARF attributes should
9745 also be interpreted as relative to the corresponding base offset.
9746
9747 The table of sizes begins immediately following the table of offsets.
9748 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9749 with L columns and N rows, in row-major order. Each row in the array is
9750 indexed starting from 1 (row 0 is shared by the two tables).
9751
9752 ---
9753
9754 Hash table lookup is handled the same in version 1 and 2:
9755
9756 We assume that N and M will not exceed 2^32 - 1.
9757 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9758
d2415c6c
DE
9759 Given a 64-bit compilation unit signature or a type signature S, an entry
9760 in the hash table is located as follows:
80626a55 9761
d2415c6c
DE
9762 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9763 the low-order k bits all set to 1.
80626a55 9764
d2415c6c 9765 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9766
d2415c6c
DE
9767 3) If the hash table entry at index H matches the signature, use that
9768 entry. If the hash table entry at index H is unused (all zeroes),
9769 terminate the search: the signature is not present in the table.
80626a55 9770
d2415c6c 9771 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9772
d2415c6c 9773 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9774 to stop at an unused slot or find the match. */
80626a55
DE
9775
9776/* Create a hash table to map DWO IDs to their CU/TU entry in
9777 .debug_{info,types}.dwo in DWP_FILE.
9778 Returns NULL if there isn't one.
9779 Note: This function processes DWP files only, not DWO files. */
9780
9781static struct dwp_hash_table *
9782create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9783{
9784 struct objfile *objfile = dwarf2_per_objfile->objfile;
9785 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9786 const gdb_byte *index_ptr, *index_end;
80626a55 9787 struct dwarf2_section_info *index;
73869dc2 9788 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9789 struct dwp_hash_table *htab;
9790
9791 if (is_debug_types)
9792 index = &dwp_file->sections.tu_index;
9793 else
9794 index = &dwp_file->sections.cu_index;
9795
9796 if (dwarf2_section_empty_p (index))
9797 return NULL;
9798 dwarf2_read_section (objfile, index);
9799
9800 index_ptr = index->buffer;
9801 index_end = index_ptr + index->size;
9802
9803 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9804 index_ptr += 4;
9805 if (version == 2)
9806 nr_columns = read_4_bytes (dbfd, index_ptr);
9807 else
9808 nr_columns = 0;
9809 index_ptr += 4;
80626a55
DE
9810 nr_units = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812 nr_slots = read_4_bytes (dbfd, index_ptr);
9813 index_ptr += 4;
9814
73869dc2 9815 if (version != 1 && version != 2)
80626a55 9816 {
21aa081e 9817 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9818 " [in module %s]"),
21aa081e 9819 pulongest (version), dwp_file->name);
80626a55
DE
9820 }
9821 if (nr_slots != (nr_slots & -nr_slots))
9822 {
21aa081e 9823 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9824 " is not power of 2 [in module %s]"),
21aa081e 9825 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9826 }
9827
9828 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9829 htab->version = version;
9830 htab->nr_columns = nr_columns;
80626a55
DE
9831 htab->nr_units = nr_units;
9832 htab->nr_slots = nr_slots;
9833 htab->hash_table = index_ptr;
9834 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9835
9836 /* Exit early if the table is empty. */
9837 if (nr_slots == 0 || nr_units == 0
9838 || (version == 2 && nr_columns == 0))
9839 {
9840 /* All must be zero. */
9841 if (nr_slots != 0 || nr_units != 0
9842 || (version == 2 && nr_columns != 0))
9843 {
9844 complaint (&symfile_complaints,
9845 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9846 " all zero [in modules %s]"),
9847 dwp_file->name);
9848 }
9849 return htab;
9850 }
9851
9852 if (version == 1)
9853 {
9854 htab->section_pool.v1.indices =
9855 htab->unit_table + sizeof (uint32_t) * nr_slots;
9856 /* It's harder to decide whether the section is too small in v1.
9857 V1 is deprecated anyway so we punt. */
9858 }
9859 else
9860 {
9861 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9862 int *ids = htab->section_pool.v2.section_ids;
9863 /* Reverse map for error checking. */
9864 int ids_seen[DW_SECT_MAX + 1];
9865 int i;
9866
9867 if (nr_columns < 2)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, too few columns"
9870 " in section table [in module %s]"),
9871 dwp_file->name);
9872 }
9873 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9874 {
9875 error (_("Dwarf Error: bad DWP hash table, too many columns"
9876 " in section table [in module %s]"),
9877 dwp_file->name);
9878 }
9879 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9880 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9881 for (i = 0; i < nr_columns; ++i)
9882 {
9883 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9884
9885 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9888 " in section table [in module %s]"),
9889 id, dwp_file->name);
9890 }
9891 if (ids_seen[id] != -1)
9892 {
9893 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9894 " id %d in section table [in module %s]"),
9895 id, dwp_file->name);
9896 }
9897 ids_seen[id] = i;
9898 ids[i] = id;
9899 }
9900 /* Must have exactly one info or types section. */
9901 if (((ids_seen[DW_SECT_INFO] != -1)
9902 + (ids_seen[DW_SECT_TYPES] != -1))
9903 != 1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9906 " DWO info/types section [in module %s]"),
9907 dwp_file->name);
9908 }
9909 /* Must have an abbrev section. */
9910 if (ids_seen[DW_SECT_ABBREV] == -1)
9911 {
9912 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9913 " section [in module %s]"),
9914 dwp_file->name);
9915 }
9916 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9917 htab->section_pool.v2.sizes =
9918 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9919 * nr_units * nr_columns);
9920 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9921 * nr_units * nr_columns))
9922 > index_end)
9923 {
9924 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9925 " [in module %s]"),
9926 dwp_file->name);
9927 }
9928 }
80626a55
DE
9929
9930 return htab;
9931}
9932
9933/* Update SECTIONS with the data from SECTP.
9934
9935 This function is like the other "locate" section routines that are
9936 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9937 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9938
9939 The result is non-zero for success, or zero if an error was found. */
9940
9941static int
73869dc2
DE
9942locate_v1_virtual_dwo_sections (asection *sectp,
9943 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9944{
9945 const struct dwop_section_names *names = &dwop_section_names;
9946
9947 if (section_is_p (sectp->name, &names->abbrev_dwo))
9948 {
9949 /* There can be only one. */
73869dc2 9950 if (sections->abbrev.s.asection != NULL)
80626a55 9951 return 0;
73869dc2 9952 sections->abbrev.s.asection = sectp;
80626a55
DE
9953 sections->abbrev.size = bfd_get_section_size (sectp);
9954 }
9955 else if (section_is_p (sectp->name, &names->info_dwo)
9956 || section_is_p (sectp->name, &names->types_dwo))
9957 {
9958 /* There can be only one. */
73869dc2 9959 if (sections->info_or_types.s.asection != NULL)
80626a55 9960 return 0;
73869dc2 9961 sections->info_or_types.s.asection = sectp;
80626a55
DE
9962 sections->info_or_types.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->line_dwo))
9965 {
9966 /* There can be only one. */
73869dc2 9967 if (sections->line.s.asection != NULL)
80626a55 9968 return 0;
73869dc2 9969 sections->line.s.asection = sectp;
80626a55
DE
9970 sections->line.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->loc_dwo))
9973 {
9974 /* There can be only one. */
73869dc2 9975 if (sections->loc.s.asection != NULL)
80626a55 9976 return 0;
73869dc2 9977 sections->loc.s.asection = sectp;
80626a55
DE
9978 sections->loc.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9981 {
9982 /* There can be only one. */
73869dc2 9983 if (sections->macinfo.s.asection != NULL)
80626a55 9984 return 0;
73869dc2 9985 sections->macinfo.s.asection = sectp;
80626a55
DE
9986 sections->macinfo.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->macro_dwo))
9989 {
9990 /* There can be only one. */
73869dc2 9991 if (sections->macro.s.asection != NULL)
80626a55 9992 return 0;
73869dc2 9993 sections->macro.s.asection = sectp;
80626a55
DE
9994 sections->macro.size = bfd_get_section_size (sectp);
9995 }
9996 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9997 {
9998 /* There can be only one. */
73869dc2 9999 if (sections->str_offsets.s.asection != NULL)
80626a55 10000 return 0;
73869dc2 10001 sections->str_offsets.s.asection = sectp;
80626a55
DE
10002 sections->str_offsets.size = bfd_get_section_size (sectp);
10003 }
10004 else
10005 {
10006 /* No other kind of section is valid. */
10007 return 0;
10008 }
10009
10010 return 1;
10011}
10012
73869dc2
DE
10013/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10014 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10015 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10016 This is for DWP version 1 files. */
80626a55
DE
10017
10018static struct dwo_unit *
73869dc2
DE
10019create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10020 uint32_t unit_index,
10021 const char *comp_dir,
10022 ULONGEST signature, int is_debug_types)
80626a55
DE
10023{
10024 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10025 const struct dwp_hash_table *dwp_htab =
10026 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10027 bfd *dbfd = dwp_file->dbfd;
10028 const char *kind = is_debug_types ? "TU" : "CU";
10029 struct dwo_file *dwo_file;
10030 struct dwo_unit *dwo_unit;
73869dc2 10031 struct virtual_v1_dwo_sections sections;
80626a55
DE
10032 void **dwo_file_slot;
10033 char *virtual_dwo_name;
10034 struct dwarf2_section_info *cutu;
10035 struct cleanup *cleanups;
10036 int i;
10037
73869dc2
DE
10038 gdb_assert (dwp_file->version == 1);
10039
b4f54984 10040 if (dwarf_read_debug)
80626a55 10041 {
73869dc2 10042 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10043 kind,
73869dc2 10044 pulongest (unit_index), hex_string (signature),
80626a55
DE
10045 dwp_file->name);
10046 }
10047
19ac8c2e 10048 /* Fetch the sections of this DWO unit.
80626a55
DE
10049 Put a limit on the number of sections we look for so that bad data
10050 doesn't cause us to loop forever. */
10051
73869dc2 10052#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10053 (1 /* .debug_info or .debug_types */ \
10054 + 1 /* .debug_abbrev */ \
10055 + 1 /* .debug_line */ \
10056 + 1 /* .debug_loc */ \
10057 + 1 /* .debug_str_offsets */ \
19ac8c2e 10058 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10059 + 1 /* trailing zero */)
10060
10061 memset (&sections, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10063
73869dc2 10064 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10065 {
10066 asection *sectp;
10067 uint32_t section_nr =
10068 read_4_bytes (dbfd,
73869dc2
DE
10069 dwp_htab->section_pool.v1.indices
10070 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10071
10072 if (section_nr == 0)
10073 break;
10074 if (section_nr >= dwp_file->num_sections)
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, section number too large"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080
10081 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10082 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10083 {
10084 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10085 " [in module %s]"),
10086 dwp_file->name);
10087 }
10088 }
10089
10090 if (i < 2
a32a8923
DE
10091 || dwarf2_section_empty_p (&sections.info_or_types)
10092 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10093 {
10094 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10095 " [in module %s]"),
10096 dwp_file->name);
10097 }
73869dc2 10098 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10099 {
10100 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10101 " [in module %s]"),
10102 dwp_file->name);
10103 }
10104
10105 /* It's easier for the rest of the code if we fake a struct dwo_file and
10106 have dwo_unit "live" in that. At least for now.
10107
10108 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10109 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10110 file, we can combine them back into a virtual DWO file to save space
10111 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10112 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10113
2792b94d
PM
10114 virtual_dwo_name =
10115 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10116 get_section_id (&sections.abbrev),
10117 get_section_id (&sections.line),
10118 get_section_id (&sections.loc),
10119 get_section_id (&sections.str_offsets));
80626a55
DE
10120 make_cleanup (xfree, virtual_dwo_name);
10121 /* Can we use an existing virtual DWO file? */
0ac5b59e 10122 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10123 /* Create one if necessary. */
10124 if (*dwo_file_slot == NULL)
10125 {
b4f54984 10126 if (dwarf_read_debug)
80626a55
DE
10127 {
10128 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10129 virtual_dwo_name);
10130 }
10131 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10132 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10133 virtual_dwo_name,
10134 strlen (virtual_dwo_name));
10135 dwo_file->comp_dir = comp_dir;
80626a55
DE
10136 dwo_file->sections.abbrev = sections.abbrev;
10137 dwo_file->sections.line = sections.line;
10138 dwo_file->sections.loc = sections.loc;
10139 dwo_file->sections.macinfo = sections.macinfo;
10140 dwo_file->sections.macro = sections.macro;
10141 dwo_file->sections.str_offsets = sections.str_offsets;
10142 /* The "str" section is global to the entire DWP file. */
10143 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10144 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10145 there's no need to record it in dwo_file.
10146 Also, we can't simply record type sections in dwo_file because
10147 we record a pointer into the vector in dwo_unit. As we collect more
10148 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10149 for it, invalidating all copies of pointers into the previous
10150 contents. */
80626a55
DE
10151 *dwo_file_slot = dwo_file;
10152 }
10153 else
10154 {
b4f54984 10155 if (dwarf_read_debug)
80626a55
DE
10156 {
10157 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10158 virtual_dwo_name);
10159 }
10160 dwo_file = *dwo_file_slot;
10161 }
10162 do_cleanups (cleanups);
10163
10164 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10165 dwo_unit->dwo_file = dwo_file;
10166 dwo_unit->signature = signature;
8a0459fd
DE
10167 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10168 sizeof (struct dwarf2_section_info));
10169 *dwo_unit->section = sections.info_or_types;
57d63ce2 10170 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10171
10172 return dwo_unit;
10173}
10174
73869dc2
DE
10175/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10176 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10177 piece within that section used by a TU/CU, return a virtual section
10178 of just that piece. */
10179
10180static struct dwarf2_section_info
10181create_dwp_v2_section (struct dwarf2_section_info *section,
10182 bfd_size_type offset, bfd_size_type size)
10183{
10184 struct dwarf2_section_info result;
10185 asection *sectp;
10186
10187 gdb_assert (section != NULL);
10188 gdb_assert (!section->is_virtual);
10189
10190 memset (&result, 0, sizeof (result));
10191 result.s.containing_section = section;
10192 result.is_virtual = 1;
10193
10194 if (size == 0)
10195 return result;
10196
10197 sectp = get_section_bfd_section (section);
10198
10199 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10200 bounds of the real section. This is a pretty-rare event, so just
10201 flag an error (easier) instead of a warning and trying to cope. */
10202 if (sectp == NULL
10203 || offset + size > bfd_get_section_size (sectp))
10204 {
10205 bfd *abfd = sectp->owner;
10206
10207 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10208 " in section %s [in module %s]"),
10209 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10210 objfile_name (dwarf2_per_objfile->objfile));
10211 }
10212
10213 result.virtual_offset = offset;
10214 result.size = size;
10215 return result;
10216}
10217
10218/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10219 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10220 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10221 This is for DWP version 2 files. */
10222
10223static struct dwo_unit *
10224create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10225 uint32_t unit_index,
10226 const char *comp_dir,
10227 ULONGEST signature, int is_debug_types)
10228{
10229 struct objfile *objfile = dwarf2_per_objfile->objfile;
10230 const struct dwp_hash_table *dwp_htab =
10231 is_debug_types ? dwp_file->tus : dwp_file->cus;
10232 bfd *dbfd = dwp_file->dbfd;
10233 const char *kind = is_debug_types ? "TU" : "CU";
10234 struct dwo_file *dwo_file;
10235 struct dwo_unit *dwo_unit;
10236 struct virtual_v2_dwo_sections sections;
10237 void **dwo_file_slot;
10238 char *virtual_dwo_name;
10239 struct dwarf2_section_info *cutu;
10240 struct cleanup *cleanups;
10241 int i;
10242
10243 gdb_assert (dwp_file->version == 2);
10244
b4f54984 10245 if (dwarf_read_debug)
73869dc2
DE
10246 {
10247 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10248 kind,
10249 pulongest (unit_index), hex_string (signature),
10250 dwp_file->name);
10251 }
10252
10253 /* Fetch the section offsets of this DWO unit. */
10254
10255 memset (&sections, 0, sizeof (sections));
10256 cleanups = make_cleanup (null_cleanup, 0);
10257
10258 for (i = 0; i < dwp_htab->nr_columns; ++i)
10259 {
10260 uint32_t offset = read_4_bytes (dbfd,
10261 dwp_htab->section_pool.v2.offsets
10262 + (((unit_index - 1) * dwp_htab->nr_columns
10263 + i)
10264 * sizeof (uint32_t)));
10265 uint32_t size = read_4_bytes (dbfd,
10266 dwp_htab->section_pool.v2.sizes
10267 + (((unit_index - 1) * dwp_htab->nr_columns
10268 + i)
10269 * sizeof (uint32_t)));
10270
10271 switch (dwp_htab->section_pool.v2.section_ids[i])
10272 {
10273 case DW_SECT_INFO:
10274 case DW_SECT_TYPES:
10275 sections.info_or_types_offset = offset;
10276 sections.info_or_types_size = size;
10277 break;
10278 case DW_SECT_ABBREV:
10279 sections.abbrev_offset = offset;
10280 sections.abbrev_size = size;
10281 break;
10282 case DW_SECT_LINE:
10283 sections.line_offset = offset;
10284 sections.line_size = size;
10285 break;
10286 case DW_SECT_LOC:
10287 sections.loc_offset = offset;
10288 sections.loc_size = size;
10289 break;
10290 case DW_SECT_STR_OFFSETS:
10291 sections.str_offsets_offset = offset;
10292 sections.str_offsets_size = size;
10293 break;
10294 case DW_SECT_MACINFO:
10295 sections.macinfo_offset = offset;
10296 sections.macinfo_size = size;
10297 break;
10298 case DW_SECT_MACRO:
10299 sections.macro_offset = offset;
10300 sections.macro_size = size;
10301 break;
10302 }
10303 }
10304
10305 /* It's easier for the rest of the code if we fake a struct dwo_file and
10306 have dwo_unit "live" in that. At least for now.
10307
10308 The DWP file can be made up of a random collection of CUs and TUs.
10309 However, for each CU + set of TUs that came from the same original DWO
10310 file, we can combine them back into a virtual DWO file to save space
10311 (fewer struct dwo_file objects to allocate). Remember that for really
10312 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10313
10314 virtual_dwo_name =
10315 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10316 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10317 (long) (sections.line_size ? sections.line_offset : 0),
10318 (long) (sections.loc_size ? sections.loc_offset : 0),
10319 (long) (sections.str_offsets_size
10320 ? sections.str_offsets_offset : 0));
10321 make_cleanup (xfree, virtual_dwo_name);
10322 /* Can we use an existing virtual DWO file? */
10323 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10324 /* Create one if necessary. */
10325 if (*dwo_file_slot == NULL)
10326 {
b4f54984 10327 if (dwarf_read_debug)
73869dc2
DE
10328 {
10329 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10330 virtual_dwo_name);
10331 }
10332 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10333 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
b4f54984 10369 if (dwarf_read_debug)
73869dc2
DE
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
10374 dwo_file = *dwo_file_slot;
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10382 sizeof (struct dwarf2_section_info));
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391}
10392
57d63ce2
DE
10393/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
80626a55
DE
10395
10396static struct dwo_unit *
57d63ce2
DE
10397lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
80626a55 10399{
57d63ce2
DE
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10402 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10403 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
19ac8c2e
DE
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
80626a55
DE
10416
10417 if (*slot != NULL)
10418 return *slot;
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
57d63ce2 10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10427 if (signature_in_table == signature)
10428 {
57d63ce2
DE
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10432
73869dc2
DE
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
80626a55
DE
10445 return *slot;
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455}
10456
ab5088bf 10457/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
80626a55 10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
13aaf454
DE
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10466 If unable to find/open the file, return NULL.
3019eac3
DE
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469static bfd *
6ac97d4c 10470try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10471{
10472 bfd *sym_bfd;
80626a55 10473 int desc, flags;
3019eac3 10474 char *absolute_name;
9c02c129
DE
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
6ac97d4c
DE
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
9c02c129 10489 else
6ac97d4c 10490 search_path = xstrdup (debug_file_directory);
3019eac3 10491
492c0ab7 10492 flags = OPF_RETURN_REALPATH;
80626a55
DE
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10495 desc = openp (search_path, flags, file_name,
3019eac3 10496 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10497 xfree (search_path);
3019eac3
DE
10498 if (desc < 0)
10499 return NULL;
10500
bb397797 10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10502 xfree (absolute_name);
9c02c129
DE
10503 if (sym_bfd == NULL)
10504 return NULL;
3019eac3
DE
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
cbb099e8 10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10510 return NULL;
10511 }
10512
13aaf454
DE
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
3019eac3
DE
10519 return sym_bfd;
10520}
10521
ab5088bf 10522/* Try to open DWO file FILE_NAME.
3019eac3
DE
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529static bfd *
ab5088bf 10530open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10531{
10532 bfd *abfd;
3019eac3 10533
80626a55 10534 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
80626a55 10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
6ac97d4c 10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
6ac97d4c 10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10558}
10559
80626a55
DE
10560/* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563static void
10564dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565{
10566 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
73869dc2 10571 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
73869dc2 10576 dwo_sections->info.s.asection = sectp;
80626a55
DE
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
73869dc2 10581 dwo_sections->line.s.asection = sectp;
80626a55
DE
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
73869dc2 10586 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
73869dc2 10591 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
73869dc2 10596 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
73869dc2 10601 dwo_sections->str.s.asection = sectp;
80626a55
DE
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
73869dc2 10606 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
73869dc2 10614 type_section.s.asection = sectp;
80626a55
DE
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619}
10620
ab5088bf 10621/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10622 by PER_CU. This is for the non-DWP case.
80626a55 10623 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10624
10625static struct dwo_file *
0ac5b59e
DE
10626open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10628{
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
3019eac3
DE
10632 struct cleanup *cleanups;
10633
ab5088bf 10634 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10635 if (dbfd == NULL)
10636 {
b4f54984 10637 if (dwarf_read_debug)
80626a55
DE
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
80626a55 10644 dwo_file->dbfd = dbfd;
3019eac3
DE
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
80626a55 10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10649
19c3d4c9 10650 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
b4f54984 10657 if (dwarf_read_debug)
80626a55
DE
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
3019eac3
DE
10660 return dwo_file;
10661}
10662
80626a55 10663/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
3019eac3 10666
80626a55 10667static void
73869dc2
DE
10668dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
3019eac3 10670{
80626a55
DE
10671 struct dwp_file *dwp_file = dwp_file_ptr;
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10674
80626a55 10675 /* Record the ELF section number for later lookup: this is what the
73869dc2 10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10679
80626a55
DE
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
73869dc2 10683 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
73869dc2 10688 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
73869dc2 10693 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696}
3019eac3 10697
73869dc2
DE
10698/* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703static void
10704dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705{
10706 struct dwp_file *dwp_file = dwp_file_ptr;
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
10718 dwp_file->sections.abbrev.s.asection = sectp;
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
10723 dwp_file->sections.info.s.asection = sectp;
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
10728 dwp_file->sections.line.s.asection = sectp;
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
10733 dwp_file->sections.loc.s.asection = sectp;
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
10738 dwp_file->sections.macinfo.s.asection = sectp;
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
10743 dwp_file->sections.macro.s.asection = sectp;
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
10748 dwp_file->sections.str_offsets.s.asection = sectp;
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
10753 dwp_file->sections.types.s.asection = sectp;
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756}
10757
80626a55 10758/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10759
80626a55
DE
10760static hashval_t
10761hash_dwp_loaded_cutus (const void *item)
10762{
10763 const struct dwo_unit *dwo_unit = item;
3019eac3 10764
80626a55
DE
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
3019eac3
DE
10767}
10768
80626a55 10769/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10770
80626a55
DE
10771static int
10772eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10773{
80626a55
DE
10774 const struct dwo_unit *dua = a;
10775 const struct dwo_unit *dub = b;
3019eac3 10776
80626a55
DE
10777 return dua->signature == dub->signature;
10778}
3019eac3 10779
80626a55 10780/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10781
80626a55
DE
10782static htab_t
10783allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784{
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792}
3019eac3 10793
ab5088bf
DE
10794/* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800static bfd *
10801open_dwp_file (const char *file_name)
10802{
6ac97d4c
DE
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
ab5088bf
DE
10827}
10828
80626a55
DE
10829/* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
a766d390 10832
80626a55 10833static struct dwp_file *
ab5088bf 10834open_and_init_dwp_file (void)
80626a55
DE
10835{
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
82bf32bc
JK
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
ab5088bf 10847 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
80626a55
DE
10857 if (dbfd == NULL)
10858 {
b4f54984 10859 if (dwarf_read_debug)
80626a55
DE
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
3019eac3 10863 }
80626a55 10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10865 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
c906108c 10868
80626a55
DE
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
73869dc2 10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
73869dc2
DE
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10885 pretty bizarre. We use pulongest here because that's the established
4d65956b 10886 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
19ac8c2e
DE
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10899
b4f54984 10900 if (dwarf_read_debug)
80626a55
DE
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10907 }
10908
10909 return dwp_file;
3019eac3 10910}
c906108c 10911
ab5088bf
DE
10912/* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914static struct dwp_file *
10915get_dwp_file (void)
10916{
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923}
10924
80626a55
DE
10925/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
1c658ad5 10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10940
3019eac3 10941static struct dwo_unit *
80626a55
DE
10942lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
3019eac3
DE
10945{
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
3019eac3 10949 struct dwo_file *dwo_file;
80626a55 10950 struct dwp_file *dwp_file;
cb1df416 10951
6a506a2d
DE
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
cf2c3c16 10956
ab5088bf 10957 dwp_file = get_dwp_file ();
80626a55 10958 if (dwp_file != NULL)
cf2c3c16 10959 {
80626a55
DE
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
80626a55
DE
10968
10969 if (dwo_cutu != NULL)
10970 {
b4f54984 10971 if (dwarf_read_debug)
80626a55
DE
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
6a506a2d 10982 else
80626a55 10983 {
6a506a2d 10984 /* No DWP file, look for the DWO file. */
80626a55 10985
6a506a2d
DE
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
80626a55 10988 {
6a506a2d
DE
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10991 }
6a506a2d
DE
10992 /* NOTE: This will be NULL if unable to open the file. */
10993 dwo_file = *dwo_file_slot;
3019eac3 10994
6a506a2d 10995 if (dwo_file != NULL)
19c3d4c9 10996 {
6a506a2d
DE
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
11005 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
11006 }
11007 else if (!is_debug_types && dwo_file->cu)
80626a55 11008 {
6a506a2d
DE
11009 if (signature == dwo_file->cu->signature)
11010 dwo_cutu = dwo_file->cu;
11011 }
11012
11013 if (dwo_cutu != NULL)
11014 {
b4f54984 11015 if (dwarf_read_debug)
6a506a2d
DE
11016 {
11017 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11018 kind, dwo_name, hex_string (signature),
11019 host_address_to_string (dwo_cutu));
11020 }
11021 return dwo_cutu;
80626a55
DE
11022 }
11023 }
2e276125 11024 }
9cdd5dbd 11025
80626a55
DE
11026 /* We didn't find it. This could mean a dwo_id mismatch, or
11027 someone deleted the DWO/DWP file, or the search path isn't set up
11028 correctly to find the file. */
11029
b4f54984 11030 if (dwarf_read_debug)
80626a55
DE
11031 {
11032 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11033 kind, dwo_name, hex_string (signature));
11034 }
3019eac3 11035
6656a72d
DE
11036 /* This is a warning and not a complaint because it can be caused by
11037 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11038 {
11039 /* Print the name of the DWP file if we looked there, helps the user
11040 better diagnose the problem. */
11041 char *dwp_text = NULL;
11042 struct cleanup *cleanups;
11043
11044 if (dwp_file != NULL)
11045 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11046 cleanups = make_cleanup (xfree, dwp_text);
11047
11048 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11049 " [in module %s]"),
11050 kind, dwo_name, hex_string (signature),
11051 dwp_text != NULL ? dwp_text : "",
11052 this_unit->is_debug_types ? "TU" : "CU",
11053 this_unit->offset.sect_off, objfile_name (objfile));
11054
11055 do_cleanups (cleanups);
11056 }
3019eac3 11057 return NULL;
5fb290d7
DJ
11058}
11059
80626a55
DE
11060/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11061 See lookup_dwo_cutu_unit for details. */
11062
11063static struct dwo_unit *
11064lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11065 const char *dwo_name, const char *comp_dir,
11066 ULONGEST signature)
11067{
11068 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11069}
11070
11071/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11072 See lookup_dwo_cutu_unit for details. */
11073
11074static struct dwo_unit *
11075lookup_dwo_type_unit (struct signatured_type *this_tu,
11076 const char *dwo_name, const char *comp_dir)
11077{
11078 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11079}
11080
89e63ee4
DE
11081/* Traversal function for queue_and_load_all_dwo_tus. */
11082
11083static int
11084queue_and_load_dwo_tu (void **slot, void *info)
11085{
11086 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11087 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11088 ULONGEST signature = dwo_unit->signature;
11089 struct signatured_type *sig_type =
11090 lookup_dwo_signatured_type (per_cu->cu, signature);
11091
11092 if (sig_type != NULL)
11093 {
11094 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11095
11096 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11097 a real dependency of PER_CU on SIG_TYPE. That is detected later
11098 while processing PER_CU. */
11099 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11100 load_full_type_unit (sig_cu);
11101 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11102 }
11103
11104 return 1;
11105}
11106
11107/* Queue all TUs contained in the DWO of PER_CU to be read in.
11108 The DWO may have the only definition of the type, though it may not be
11109 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11110 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11111
11112static void
11113queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11114{
11115 struct dwo_unit *dwo_unit;
11116 struct dwo_file *dwo_file;
11117
11118 gdb_assert (!per_cu->is_debug_types);
11119 gdb_assert (get_dwp_file () == NULL);
11120 gdb_assert (per_cu->cu != NULL);
11121
11122 dwo_unit = per_cu->cu->dwo_unit;
11123 gdb_assert (dwo_unit != NULL);
11124
11125 dwo_file = dwo_unit->dwo_file;
11126 if (dwo_file->tus != NULL)
11127 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11128}
11129
3019eac3
DE
11130/* Free all resources associated with DWO_FILE.
11131 Close the DWO file and munmap the sections.
11132 All memory should be on the objfile obstack. */
348e048f
DE
11133
11134static void
3019eac3 11135free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11136{
3019eac3
DE
11137 int ix;
11138 struct dwarf2_section_info *section;
348e048f 11139
5c6fa7ab 11140 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11141 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11142
3019eac3
DE
11143 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11144}
348e048f 11145
3019eac3 11146/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11147
3019eac3
DE
11148static void
11149free_dwo_file_cleanup (void *arg)
11150{
11151 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11152 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11153
3019eac3
DE
11154 free_dwo_file (dwo_file, objfile);
11155}
348e048f 11156
3019eac3 11157/* Traversal function for free_dwo_files. */
2ab95328 11158
3019eac3
DE
11159static int
11160free_dwo_file_from_slot (void **slot, void *info)
11161{
11162 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11163 struct objfile *objfile = (struct objfile *) info;
348e048f 11164
3019eac3 11165 free_dwo_file (dwo_file, objfile);
348e048f 11166
3019eac3
DE
11167 return 1;
11168}
348e048f 11169
3019eac3 11170/* Free all resources associated with DWO_FILES. */
348e048f 11171
3019eac3
DE
11172static void
11173free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11174{
11175 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11176}
3019eac3
DE
11177\f
11178/* Read in various DIEs. */
348e048f 11179
d389af10
JK
11180/* qsort helper for inherit_abstract_dies. */
11181
11182static int
11183unsigned_int_compar (const void *ap, const void *bp)
11184{
11185 unsigned int a = *(unsigned int *) ap;
11186 unsigned int b = *(unsigned int *) bp;
11187
11188 return (a > b) - (b > a);
11189}
11190
11191/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11192 Inherit only the children of the DW_AT_abstract_origin DIE not being
11193 already referenced by DW_AT_abstract_origin from the children of the
11194 current DIE. */
d389af10
JK
11195
11196static void
11197inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11198{
11199 struct die_info *child_die;
11200 unsigned die_children_count;
11201 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11202 sect_offset *offsets;
11203 sect_offset *offsets_end, *offsetp;
d389af10
JK
11204 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11205 struct die_info *origin_die;
11206 /* Iterator of the ORIGIN_DIE children. */
11207 struct die_info *origin_child_die;
11208 struct cleanup *cleanups;
11209 struct attribute *attr;
cd02d79d
PA
11210 struct dwarf2_cu *origin_cu;
11211 struct pending **origin_previous_list_in_scope;
d389af10
JK
11212
11213 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11214 if (!attr)
11215 return;
11216
cd02d79d
PA
11217 /* Note that following die references may follow to a die in a
11218 different cu. */
11219
11220 origin_cu = cu;
11221 origin_die = follow_die_ref (die, attr, &origin_cu);
11222
11223 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11224 symbols in. */
11225 origin_previous_list_in_scope = origin_cu->list_in_scope;
11226 origin_cu->list_in_scope = cu->list_in_scope;
11227
edb3359d
DJ
11228 if (die->tag != origin_die->tag
11229 && !(die->tag == DW_TAG_inlined_subroutine
11230 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11231 complaint (&symfile_complaints,
11232 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11233 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11234
11235 child_die = die->child;
11236 die_children_count = 0;
11237 while (child_die && child_die->tag)
11238 {
11239 child_die = sibling_die (child_die);
11240 die_children_count++;
11241 }
11242 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11243 cleanups = make_cleanup (xfree, offsets);
11244
11245 offsets_end = offsets;
3ea89b92
PMR
11246 for (child_die = die->child;
11247 child_die && child_die->tag;
11248 child_die = sibling_die (child_die))
11249 {
11250 struct die_info *child_origin_die;
11251 struct dwarf2_cu *child_origin_cu;
11252
11253 /* We are trying to process concrete instance entries:
11254 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11255 it's not relevant to our analysis here. i.e. detecting DIEs that are
11256 present in the abstract instance but not referenced in the concrete
11257 one. */
11258 if (child_die->tag == DW_TAG_GNU_call_site)
11259 continue;
11260
c38f313d
DJ
11261 /* For each CHILD_DIE, find the corresponding child of
11262 ORIGIN_DIE. If there is more than one layer of
11263 DW_AT_abstract_origin, follow them all; there shouldn't be,
11264 but GCC versions at least through 4.4 generate this (GCC PR
11265 40573). */
3ea89b92
PMR
11266 child_origin_die = child_die;
11267 child_origin_cu = cu;
c38f313d
DJ
11268 while (1)
11269 {
cd02d79d
PA
11270 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11271 child_origin_cu);
c38f313d
DJ
11272 if (attr == NULL)
11273 break;
cd02d79d
PA
11274 child_origin_die = follow_die_ref (child_origin_die, attr,
11275 &child_origin_cu);
c38f313d
DJ
11276 }
11277
d389af10
JK
11278 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11279 counterpart may exist. */
c38f313d 11280 if (child_origin_die != child_die)
d389af10 11281 {
edb3359d
DJ
11282 if (child_die->tag != child_origin_die->tag
11283 && !(child_die->tag == DW_TAG_inlined_subroutine
11284 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11285 complaint (&symfile_complaints,
11286 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11287 "different tags"), child_die->offset.sect_off,
11288 child_origin_die->offset.sect_off);
c38f313d
DJ
11289 if (child_origin_die->parent != origin_die)
11290 complaint (&symfile_complaints,
11291 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11292 "different parents"), child_die->offset.sect_off,
11293 child_origin_die->offset.sect_off);
c38f313d
DJ
11294 else
11295 *offsets_end++ = child_origin_die->offset;
d389af10 11296 }
d389af10
JK
11297 }
11298 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11299 unsigned_int_compar);
11300 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11301 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11302 complaint (&symfile_complaints,
11303 _("Multiple children of DIE 0x%x refer "
11304 "to DIE 0x%x as their abstract origin"),
b64f50a1 11305 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11306
11307 offsetp = offsets;
11308 origin_child_die = origin_die->child;
11309 while (origin_child_die && origin_child_die->tag)
11310 {
11311 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11312 while (offsetp < offsets_end
11313 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11314 offsetp++;
b64f50a1
JK
11315 if (offsetp >= offsets_end
11316 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11317 {
adde2bff
DE
11318 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11319 Check whether we're already processing ORIGIN_CHILD_DIE.
11320 This can happen with mutually referenced abstract_origins.
11321 PR 16581. */
11322 if (!origin_child_die->in_process)
11323 process_die (origin_child_die, origin_cu);
d389af10
JK
11324 }
11325 origin_child_die = sibling_die (origin_child_die);
11326 }
cd02d79d 11327 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11328
11329 do_cleanups (cleanups);
11330}
11331
c906108c 11332static void
e7c27a73 11333read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11334{
e7c27a73 11335 struct objfile *objfile = cu->objfile;
3e29f34a 11336 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11337 struct context_stack *newobj;
c906108c
SS
11338 CORE_ADDR lowpc;
11339 CORE_ADDR highpc;
11340 struct die_info *child_die;
edb3359d 11341 struct attribute *attr, *call_line, *call_file;
15d034d0 11342 const char *name;
e142c38c 11343 CORE_ADDR baseaddr;
801e3a5b 11344 struct block *block;
edb3359d 11345 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11346 VEC (symbolp) *template_args = NULL;
11347 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11348
11349 if (inlined_func)
11350 {
11351 /* If we do not have call site information, we can't show the
11352 caller of this inlined function. That's too confusing, so
11353 only use the scope for local variables. */
11354 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11355 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11356 if (call_line == NULL || call_file == NULL)
11357 {
11358 read_lexical_block_scope (die, cu);
11359 return;
11360 }
11361 }
c906108c 11362
e142c38c
DJ
11363 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11364
94af9270 11365 name = dwarf2_name (die, cu);
c906108c 11366
e8d05480
JB
11367 /* Ignore functions with missing or empty names. These are actually
11368 illegal according to the DWARF standard. */
11369 if (name == NULL)
11370 {
11371 complaint (&symfile_complaints,
b64f50a1
JK
11372 _("missing name for subprogram DIE at %d"),
11373 die->offset.sect_off);
e8d05480
JB
11374 return;
11375 }
11376
11377 /* Ignore functions with missing or invalid low and high pc attributes. */
11378 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11379 {
ae4d0c03
PM
11380 attr = dwarf2_attr (die, DW_AT_external, cu);
11381 if (!attr || !DW_UNSND (attr))
11382 complaint (&symfile_complaints,
3e43a32a
MS
11383 _("cannot get low and high bounds "
11384 "for subprogram DIE at %d"),
b64f50a1 11385 die->offset.sect_off);
e8d05480
JB
11386 return;
11387 }
c906108c 11388
3e29f34a
MR
11389 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11390 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11391
34eaf542
TT
11392 /* If we have any template arguments, then we must allocate a
11393 different sort of symbol. */
11394 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11395 {
11396 if (child_die->tag == DW_TAG_template_type_param
11397 || child_die->tag == DW_TAG_template_value_param)
11398 {
e623cf5d 11399 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11400 templ_func->base.is_cplus_template_function = 1;
11401 break;
11402 }
11403 }
11404
fe978cb0
PA
11405 newobj = push_context (0, lowpc);
11406 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11407 (struct symbol *) templ_func);
4c2df51b 11408
4cecd739
DJ
11409 /* If there is a location expression for DW_AT_frame_base, record
11410 it. */
e142c38c 11411 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11412 if (attr)
fe978cb0 11413 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11414
e142c38c 11415 cu->list_in_scope = &local_symbols;
c906108c 11416
639d11d3 11417 if (die->child != NULL)
c906108c 11418 {
639d11d3 11419 child_die = die->child;
c906108c
SS
11420 while (child_die && child_die->tag)
11421 {
34eaf542
TT
11422 if (child_die->tag == DW_TAG_template_type_param
11423 || child_die->tag == DW_TAG_template_value_param)
11424 {
11425 struct symbol *arg = new_symbol (child_die, NULL, cu);
11426
f1078f66
DJ
11427 if (arg != NULL)
11428 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11429 }
11430 else
11431 process_die (child_die, cu);
c906108c
SS
11432 child_die = sibling_die (child_die);
11433 }
11434 }
11435
d389af10
JK
11436 inherit_abstract_dies (die, cu);
11437
4a811a97
UW
11438 /* If we have a DW_AT_specification, we might need to import using
11439 directives from the context of the specification DIE. See the
11440 comment in determine_prefix. */
11441 if (cu->language == language_cplus
11442 && dwarf2_attr (die, DW_AT_specification, cu))
11443 {
11444 struct dwarf2_cu *spec_cu = cu;
11445 struct die_info *spec_die = die_specification (die, &spec_cu);
11446
11447 while (spec_die)
11448 {
11449 child_die = spec_die->child;
11450 while (child_die && child_die->tag)
11451 {
11452 if (child_die->tag == DW_TAG_imported_module)
11453 process_die (child_die, spec_cu);
11454 child_die = sibling_die (child_die);
11455 }
11456
11457 /* In some cases, GCC generates specification DIEs that
11458 themselves contain DW_AT_specification attributes. */
11459 spec_die = die_specification (spec_die, &spec_cu);
11460 }
11461 }
11462
fe978cb0 11463 newobj = pop_context ();
c906108c 11464 /* Make a block for the local symbols within. */
fe978cb0 11465 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
4d663531 11466 lowpc, highpc);
801e3a5b 11467
df8a16a1 11468 /* For C++, set the block's scope. */
45280282
IB
11469 if ((cu->language == language_cplus
11470 || cu->language == language_fortran
11471 || cu->language == language_d)
4d4ec4e5 11472 && cu->processing_has_namespace_info)
195a3f6c
TT
11473 block_set_scope (block, determine_prefix (die, cu),
11474 &objfile->objfile_obstack);
df8a16a1 11475
801e3a5b
JB
11476 /* If we have address ranges, record them. */
11477 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11478
fe978cb0 11479 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11480
34eaf542
TT
11481 /* Attach template arguments to function. */
11482 if (! VEC_empty (symbolp, template_args))
11483 {
11484 gdb_assert (templ_func != NULL);
11485
11486 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11487 templ_func->template_arguments
11488 = obstack_alloc (&objfile->objfile_obstack,
11489 (templ_func->n_template_arguments
11490 * sizeof (struct symbol *)));
11491 memcpy (templ_func->template_arguments,
11492 VEC_address (symbolp, template_args),
11493 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11494 VEC_free (symbolp, template_args);
11495 }
11496
208d8187
JB
11497 /* In C++, we can have functions nested inside functions (e.g., when
11498 a function declares a class that has methods). This means that
11499 when we finish processing a function scope, we may need to go
11500 back to building a containing block's symbol lists. */
fe978cb0 11501 local_symbols = newobj->locals;
22cee43f 11502 local_using_directives = newobj->local_using_directives;
208d8187 11503
921e78cf
JB
11504 /* If we've finished processing a top-level function, subsequent
11505 symbols go in the file symbol list. */
11506 if (outermost_context_p ())
e142c38c 11507 cu->list_in_scope = &file_symbols;
c906108c
SS
11508}
11509
11510/* Process all the DIES contained within a lexical block scope. Start
11511 a new scope, process the dies, and then close the scope. */
11512
11513static void
e7c27a73 11514read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11515{
e7c27a73 11516 struct objfile *objfile = cu->objfile;
3e29f34a 11517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11518 struct context_stack *newobj;
c906108c
SS
11519 CORE_ADDR lowpc, highpc;
11520 struct die_info *child_die;
e142c38c
DJ
11521 CORE_ADDR baseaddr;
11522
11523 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11524
11525 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11526 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11527 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11528 be nasty. Might be easier to properly extend generic blocks to
af34e669 11529 describe ranges. */
d85a05f0 11530 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11531 return;
3e29f34a
MR
11532 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11533 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11534
11535 push_context (0, lowpc);
639d11d3 11536 if (die->child != NULL)
c906108c 11537 {
639d11d3 11538 child_die = die->child;
c906108c
SS
11539 while (child_die && child_die->tag)
11540 {
e7c27a73 11541 process_die (child_die, cu);
c906108c
SS
11542 child_die = sibling_die (child_die);
11543 }
11544 }
3ea89b92 11545 inherit_abstract_dies (die, cu);
fe978cb0 11546 newobj = pop_context ();
c906108c 11547
22cee43f 11548 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11549 {
801e3a5b 11550 struct block *block
fe978cb0
PA
11551 = finish_block (0, &local_symbols, newobj->old_blocks,
11552 newobj->start_addr, highpc);
801e3a5b
JB
11553
11554 /* Note that recording ranges after traversing children, as we
11555 do here, means that recording a parent's ranges entails
11556 walking across all its children's ranges as they appear in
11557 the address map, which is quadratic behavior.
11558
11559 It would be nicer to record the parent's ranges before
11560 traversing its children, simply overriding whatever you find
11561 there. But since we don't even decide whether to create a
11562 block until after we've traversed its children, that's hard
11563 to do. */
11564 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11565 }
fe978cb0 11566 local_symbols = newobj->locals;
22cee43f 11567 local_using_directives = newobj->local_using_directives;
c906108c
SS
11568}
11569
96408a79
SA
11570/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11571
11572static void
11573read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11574{
11575 struct objfile *objfile = cu->objfile;
11576 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11577 CORE_ADDR pc, baseaddr;
11578 struct attribute *attr;
11579 struct call_site *call_site, call_site_local;
11580 void **slot;
11581 int nparams;
11582 struct die_info *child_die;
11583
11584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11585
11586 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11587 if (!attr)
11588 {
11589 complaint (&symfile_complaints,
11590 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11591 "DIE 0x%x [in module %s]"),
4262abfb 11592 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11593 return;
11594 }
31aa7e4e 11595 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11596 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11597
11598 if (cu->call_site_htab == NULL)
11599 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11600 NULL, &objfile->objfile_obstack,
11601 hashtab_obstack_allocate, NULL);
11602 call_site_local.pc = pc;
11603 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11604 if (*slot != NULL)
11605 {
11606 complaint (&symfile_complaints,
11607 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11608 "DIE 0x%x [in module %s]"),
4262abfb
JK
11609 paddress (gdbarch, pc), die->offset.sect_off,
11610 objfile_name (objfile));
96408a79
SA
11611 return;
11612 }
11613
11614 /* Count parameters at the caller. */
11615
11616 nparams = 0;
11617 for (child_die = die->child; child_die && child_die->tag;
11618 child_die = sibling_die (child_die))
11619 {
11620 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11621 {
11622 complaint (&symfile_complaints,
11623 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11625 child_die->tag, child_die->offset.sect_off,
11626 objfile_name (objfile));
96408a79
SA
11627 continue;
11628 }
11629
11630 nparams++;
11631 }
11632
11633 call_site = obstack_alloc (&objfile->objfile_obstack,
11634 (sizeof (*call_site)
11635 + (sizeof (*call_site->parameter)
11636 * (nparams - 1))));
11637 *slot = call_site;
11638 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11639 call_site->pc = pc;
11640
11641 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11642 {
11643 struct die_info *func_die;
11644
11645 /* Skip also over DW_TAG_inlined_subroutine. */
11646 for (func_die = die->parent;
11647 func_die && func_die->tag != DW_TAG_subprogram
11648 && func_die->tag != DW_TAG_subroutine_type;
11649 func_die = func_die->parent);
11650
11651 /* DW_AT_GNU_all_call_sites is a superset
11652 of DW_AT_GNU_all_tail_call_sites. */
11653 if (func_die
11654 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11655 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11656 {
11657 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11658 not complete. But keep CALL_SITE for look ups via call_site_htab,
11659 both the initial caller containing the real return address PC and
11660 the final callee containing the current PC of a chain of tail
11661 calls do not need to have the tail call list complete. But any
11662 function candidate for a virtual tail call frame searched via
11663 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11664 determined unambiguously. */
11665 }
11666 else
11667 {
11668 struct type *func_type = NULL;
11669
11670 if (func_die)
11671 func_type = get_die_type (func_die, cu);
11672 if (func_type != NULL)
11673 {
11674 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11675
11676 /* Enlist this call site to the function. */
11677 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11678 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11679 }
11680 else
11681 complaint (&symfile_complaints,
11682 _("Cannot find function owning DW_TAG_GNU_call_site "
11683 "DIE 0x%x [in module %s]"),
4262abfb 11684 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11685 }
11686 }
11687
11688 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11689 if (attr == NULL)
11690 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11691 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11692 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11693 /* Keep NULL DWARF_BLOCK. */;
11694 else if (attr_form_is_block (attr))
11695 {
11696 struct dwarf2_locexpr_baton *dlbaton;
11697
11698 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11699 dlbaton->data = DW_BLOCK (attr)->data;
11700 dlbaton->size = DW_BLOCK (attr)->size;
11701 dlbaton->per_cu = cu->per_cu;
11702
11703 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11704 }
7771576e 11705 else if (attr_form_is_ref (attr))
96408a79 11706 {
96408a79
SA
11707 struct dwarf2_cu *target_cu = cu;
11708 struct die_info *target_die;
11709
ac9ec31b 11710 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11711 gdb_assert (target_cu->objfile == objfile);
11712 if (die_is_declaration (target_die, target_cu))
11713 {
9112db09
JK
11714 const char *target_physname = NULL;
11715 struct attribute *target_attr;
11716
11717 /* Prefer the mangled name; otherwise compute the demangled one. */
11718 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11719 if (target_attr == NULL)
11720 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11721 target_cu);
11722 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11723 target_physname = DW_STRING (target_attr);
11724 else
11725 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11726 if (target_physname == NULL)
11727 complaint (&symfile_complaints,
11728 _("DW_AT_GNU_call_site_target target DIE has invalid "
11729 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11730 die->offset.sect_off, objfile_name (objfile));
96408a79 11731 else
7d455152 11732 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11733 }
11734 else
11735 {
11736 CORE_ADDR lowpc;
11737
11738 /* DW_AT_entry_pc should be preferred. */
11739 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11740 complaint (&symfile_complaints,
11741 _("DW_AT_GNU_call_site_target target DIE has invalid "
11742 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11743 die->offset.sect_off, objfile_name (objfile));
96408a79 11744 else
3e29f34a
MR
11745 {
11746 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11747 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11748 }
96408a79
SA
11749 }
11750 }
11751 else
11752 complaint (&symfile_complaints,
11753 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11754 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11755 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11756
11757 call_site->per_cu = cu->per_cu;
11758
11759 for (child_die = die->child;
11760 child_die && child_die->tag;
11761 child_die = sibling_die (child_die))
11762 {
96408a79 11763 struct call_site_parameter *parameter;
1788b2d3 11764 struct attribute *loc, *origin;
96408a79
SA
11765
11766 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11767 {
11768 /* Already printed the complaint above. */
11769 continue;
11770 }
11771
11772 gdb_assert (call_site->parameter_count < nparams);
11773 parameter = &call_site->parameter[call_site->parameter_count];
11774
1788b2d3
JK
11775 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11776 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11777 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11778
24c5c679 11779 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11780 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11781 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11782 {
11783 sect_offset offset;
11784
11785 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11786 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11787 if (!offset_in_cu_p (&cu->header, offset))
11788 {
11789 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11790 binding can be done only inside one CU. Such referenced DIE
11791 therefore cannot be even moved to DW_TAG_partial_unit. */
11792 complaint (&symfile_complaints,
11793 _("DW_AT_abstract_origin offset is not in CU for "
11794 "DW_TAG_GNU_call_site child DIE 0x%x "
11795 "[in module %s]"),
4262abfb 11796 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11797 continue;
11798 }
1788b2d3
JK
11799 parameter->u.param_offset.cu_off = (offset.sect_off
11800 - cu->header.offset.sect_off);
11801 }
11802 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11803 {
11804 complaint (&symfile_complaints,
11805 _("No DW_FORM_block* DW_AT_location for "
11806 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11807 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11808 continue;
11809 }
24c5c679 11810 else
96408a79 11811 {
24c5c679
JK
11812 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11813 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11814 if (parameter->u.dwarf_reg != -1)
11815 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11816 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11817 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11818 &parameter->u.fb_offset))
11819 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11820 else
11821 {
11822 complaint (&symfile_complaints,
11823 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11824 "for DW_FORM_block* DW_AT_location is supported for "
11825 "DW_TAG_GNU_call_site child DIE 0x%x "
11826 "[in module %s]"),
4262abfb 11827 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11828 continue;
11829 }
96408a79
SA
11830 }
11831
11832 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11833 if (!attr_form_is_block (attr))
11834 {
11835 complaint (&symfile_complaints,
11836 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11839 continue;
11840 }
11841 parameter->value = DW_BLOCK (attr)->data;
11842 parameter->value_size = DW_BLOCK (attr)->size;
11843
11844 /* Parameters are not pre-cleared by memset above. */
11845 parameter->data_value = NULL;
11846 parameter->data_value_size = 0;
11847 call_site->parameter_count++;
11848
11849 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11850 if (attr)
11851 {
11852 if (!attr_form_is_block (attr))
11853 complaint (&symfile_complaints,
11854 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11855 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11856 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11857 else
11858 {
11859 parameter->data_value = DW_BLOCK (attr)->data;
11860 parameter->data_value_size = DW_BLOCK (attr)->size;
11861 }
11862 }
11863 }
11864}
11865
43039443 11866/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11867 Return 1 if the attributes are present and valid, otherwise, return 0.
11868 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11869
11870static int
11871dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11872 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11873 struct partial_symtab *ranges_pst)
43039443
JK
11874{
11875 struct objfile *objfile = cu->objfile;
3e29f34a 11876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11877 struct comp_unit_head *cu_header = &cu->header;
11878 bfd *obfd = objfile->obfd;
11879 unsigned int addr_size = cu_header->addr_size;
11880 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11881 /* Base address selection entry. */
11882 CORE_ADDR base;
11883 int found_base;
11884 unsigned int dummy;
d521ce57 11885 const gdb_byte *buffer;
43039443
JK
11886 CORE_ADDR marker;
11887 int low_set;
11888 CORE_ADDR low = 0;
11889 CORE_ADDR high = 0;
ff013f42 11890 CORE_ADDR baseaddr;
43039443 11891
d00adf39
DE
11892 found_base = cu->base_known;
11893 base = cu->base_address;
43039443 11894
be391dca 11895 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11896 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11897 {
11898 complaint (&symfile_complaints,
11899 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11900 offset);
11901 return 0;
11902 }
dce234bc 11903 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11904
11905 /* Read in the largest possible address. */
11906 marker = read_address (obfd, buffer, cu, &dummy);
11907 if ((marker & mask) == mask)
11908 {
11909 /* If we found the largest possible address, then
11910 read the base address. */
11911 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11912 buffer += 2 * addr_size;
11913 offset += 2 * addr_size;
11914 found_base = 1;
11915 }
11916
11917 low_set = 0;
11918
e7030f15 11919 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11920
43039443
JK
11921 while (1)
11922 {
11923 CORE_ADDR range_beginning, range_end;
11924
11925 range_beginning = read_address (obfd, buffer, cu, &dummy);
11926 buffer += addr_size;
11927 range_end = read_address (obfd, buffer, cu, &dummy);
11928 buffer += addr_size;
11929 offset += 2 * addr_size;
11930
11931 /* An end of list marker is a pair of zero addresses. */
11932 if (range_beginning == 0 && range_end == 0)
11933 /* Found the end of list entry. */
11934 break;
11935
11936 /* Each base address selection entry is a pair of 2 values.
11937 The first is the largest possible address, the second is
11938 the base address. Check for a base address here. */
11939 if ((range_beginning & mask) == mask)
11940 {
11941 /* If we found the largest possible address, then
11942 read the base address. */
11943 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11944 found_base = 1;
11945 continue;
11946 }
11947
11948 if (!found_base)
11949 {
11950 /* We have no valid base address for the ranges
11951 data. */
11952 complaint (&symfile_complaints,
11953 _("Invalid .debug_ranges data (no base address)"));
11954 return 0;
11955 }
11956
9277c30c
UW
11957 if (range_beginning > range_end)
11958 {
11959 /* Inverted range entries are invalid. */
11960 complaint (&symfile_complaints,
11961 _("Invalid .debug_ranges data (inverted range)"));
11962 return 0;
11963 }
11964
11965 /* Empty range entries have no effect. */
11966 if (range_beginning == range_end)
11967 continue;
11968
43039443
JK
11969 range_beginning += base;
11970 range_end += base;
11971
01093045
DE
11972 /* A not-uncommon case of bad debug info.
11973 Don't pollute the addrmap with bad data. */
11974 if (range_beginning + baseaddr == 0
11975 && !dwarf2_per_objfile->has_section_at_zero)
11976 {
11977 complaint (&symfile_complaints,
11978 _(".debug_ranges entry has start address of zero"
4262abfb 11979 " [in module %s]"), objfile_name (objfile));
01093045
DE
11980 continue;
11981 }
11982
9277c30c 11983 if (ranges_pst != NULL)
3e29f34a
MR
11984 {
11985 CORE_ADDR lowpc;
11986 CORE_ADDR highpc;
11987
11988 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11989 range_beginning + baseaddr);
11990 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11991 range_end + baseaddr);
11992 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11993 ranges_pst);
11994 }
ff013f42 11995
43039443
JK
11996 /* FIXME: This is recording everything as a low-high
11997 segment of consecutive addresses. We should have a
11998 data structure for discontiguous block ranges
11999 instead. */
12000 if (! low_set)
12001 {
12002 low = range_beginning;
12003 high = range_end;
12004 low_set = 1;
12005 }
12006 else
12007 {
12008 if (range_beginning < low)
12009 low = range_beginning;
12010 if (range_end > high)
12011 high = range_end;
12012 }
12013 }
12014
12015 if (! low_set)
12016 /* If the first entry is an end-of-list marker, the range
12017 describes an empty scope, i.e. no instructions. */
12018 return 0;
12019
12020 if (low_return)
12021 *low_return = low;
12022 if (high_return)
12023 *high_return = high;
12024 return 1;
12025}
12026
af34e669
DJ
12027/* Get low and high pc attributes from a die. Return 1 if the attributes
12028 are present and valid, otherwise, return 0. Return -1 if the range is
12029 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12030
c906108c 12031static int
af34e669 12032dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12033 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12034 struct partial_symtab *pst)
c906108c
SS
12035{
12036 struct attribute *attr;
91da1414 12037 struct attribute *attr_high;
af34e669
DJ
12038 CORE_ADDR low = 0;
12039 CORE_ADDR high = 0;
12040 int ret = 0;
c906108c 12041
91da1414
MW
12042 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12043 if (attr_high)
af34e669 12044 {
e142c38c 12045 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12046 if (attr)
91da1414 12047 {
31aa7e4e
JB
12048 low = attr_value_as_address (attr);
12049 high = attr_value_as_address (attr_high);
12050 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12051 high += low;
91da1414 12052 }
af34e669
DJ
12053 else
12054 /* Found high w/o low attribute. */
12055 return 0;
12056
12057 /* Found consecutive range of addresses. */
12058 ret = 1;
12059 }
c906108c 12060 else
af34e669 12061 {
e142c38c 12062 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12063 if (attr != NULL)
12064 {
ab435259
DE
12065 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12066 We take advantage of the fact that DW_AT_ranges does not appear
12067 in DW_TAG_compile_unit of DWO files. */
12068 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12069 unsigned int ranges_offset = (DW_UNSND (attr)
12070 + (need_ranges_base
12071 ? cu->ranges_base
12072 : 0));
2e3cf129 12073
af34e669 12074 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12075 .debug_ranges section. */
2e3cf129 12076 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12077 return 0;
43039443 12078 /* Found discontinuous range of addresses. */
af34e669
DJ
12079 ret = -1;
12080 }
12081 }
c906108c 12082
9373cf26
JK
12083 /* read_partial_die has also the strict LOW < HIGH requirement. */
12084 if (high <= low)
c906108c
SS
12085 return 0;
12086
12087 /* When using the GNU linker, .gnu.linkonce. sections are used to
12088 eliminate duplicate copies of functions and vtables and such.
12089 The linker will arbitrarily choose one and discard the others.
12090 The AT_*_pc values for such functions refer to local labels in
12091 these sections. If the section from that file was discarded, the
12092 labels are not in the output, so the relocs get a value of 0.
12093 If this is a discarded function, mark the pc bounds as invalid,
12094 so that GDB will ignore it. */
72dca2f5 12095 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12096 return 0;
12097
12098 *lowpc = low;
96408a79
SA
12099 if (highpc)
12100 *highpc = high;
af34e669 12101 return ret;
c906108c
SS
12102}
12103
b084d499
JB
12104/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12105 its low and high PC addresses. Do nothing if these addresses could not
12106 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12107 and HIGHPC to the high address if greater than HIGHPC. */
12108
12109static void
12110dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12111 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12112 struct dwarf2_cu *cu)
12113{
12114 CORE_ADDR low, high;
12115 struct die_info *child = die->child;
12116
d85a05f0 12117 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12118 {
12119 *lowpc = min (*lowpc, low);
12120 *highpc = max (*highpc, high);
12121 }
12122
12123 /* If the language does not allow nested subprograms (either inside
12124 subprograms or lexical blocks), we're done. */
12125 if (cu->language != language_ada)
12126 return;
6e70227d 12127
b084d499
JB
12128 /* Check all the children of the given DIE. If it contains nested
12129 subprograms, then check their pc bounds. Likewise, we need to
12130 check lexical blocks as well, as they may also contain subprogram
12131 definitions. */
12132 while (child && child->tag)
12133 {
12134 if (child->tag == DW_TAG_subprogram
12135 || child->tag == DW_TAG_lexical_block)
12136 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12137 child = sibling_die (child);
12138 }
12139}
12140
fae299cd
DC
12141/* Get the low and high pc's represented by the scope DIE, and store
12142 them in *LOWPC and *HIGHPC. If the correct values can't be
12143 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12144
12145static void
12146get_scope_pc_bounds (struct die_info *die,
12147 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12148 struct dwarf2_cu *cu)
12149{
12150 CORE_ADDR best_low = (CORE_ADDR) -1;
12151 CORE_ADDR best_high = (CORE_ADDR) 0;
12152 CORE_ADDR current_low, current_high;
12153
d85a05f0 12154 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12155 {
12156 best_low = current_low;
12157 best_high = current_high;
12158 }
12159 else
12160 {
12161 struct die_info *child = die->child;
12162
12163 while (child && child->tag)
12164 {
12165 switch (child->tag) {
12166 case DW_TAG_subprogram:
b084d499 12167 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12168 break;
12169 case DW_TAG_namespace:
f55ee35c 12170 case DW_TAG_module:
fae299cd
DC
12171 /* FIXME: carlton/2004-01-16: Should we do this for
12172 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12173 that current GCC's always emit the DIEs corresponding
12174 to definitions of methods of classes as children of a
12175 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12176 the DIEs giving the declarations, which could be
12177 anywhere). But I don't see any reason why the
12178 standards says that they have to be there. */
12179 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12180
12181 if (current_low != ((CORE_ADDR) -1))
12182 {
12183 best_low = min (best_low, current_low);
12184 best_high = max (best_high, current_high);
12185 }
12186 break;
12187 default:
0963b4bd 12188 /* Ignore. */
fae299cd
DC
12189 break;
12190 }
12191
12192 child = sibling_die (child);
12193 }
12194 }
12195
12196 *lowpc = best_low;
12197 *highpc = best_high;
12198}
12199
801e3a5b
JB
12200/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12201 in DIE. */
380bca97 12202
801e3a5b
JB
12203static void
12204dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12205 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12206{
bb5ed363 12207 struct objfile *objfile = cu->objfile;
3e29f34a 12208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12209 struct attribute *attr;
91da1414 12210 struct attribute *attr_high;
801e3a5b 12211
91da1414
MW
12212 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12213 if (attr_high)
801e3a5b 12214 {
801e3a5b
JB
12215 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12216 if (attr)
12217 {
31aa7e4e
JB
12218 CORE_ADDR low = attr_value_as_address (attr);
12219 CORE_ADDR high = attr_value_as_address (attr_high);
12220
12221 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12222 high += low;
9a619af0 12223
3e29f34a
MR
12224 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12225 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12226 record_block_range (block, low, high - 1);
801e3a5b
JB
12227 }
12228 }
12229
12230 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12231 if (attr)
12232 {
bb5ed363 12233 bfd *obfd = objfile->obfd;
ab435259
DE
12234 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12235 We take advantage of the fact that DW_AT_ranges does not appear
12236 in DW_TAG_compile_unit of DWO files. */
12237 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12238
12239 /* The value of the DW_AT_ranges attribute is the offset of the
12240 address range list in the .debug_ranges section. */
ab435259
DE
12241 unsigned long offset = (DW_UNSND (attr)
12242 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12243 const gdb_byte *buffer;
801e3a5b
JB
12244
12245 /* For some target architectures, but not others, the
12246 read_address function sign-extends the addresses it returns.
12247 To recognize base address selection entries, we need a
12248 mask. */
12249 unsigned int addr_size = cu->header.addr_size;
12250 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12251
12252 /* The base address, to which the next pair is relative. Note
12253 that this 'base' is a DWARF concept: most entries in a range
12254 list are relative, to reduce the number of relocs against the
12255 debugging information. This is separate from this function's
12256 'baseaddr' argument, which GDB uses to relocate debugging
12257 information from a shared library based on the address at
12258 which the library was loaded. */
d00adf39
DE
12259 CORE_ADDR base = cu->base_address;
12260 int base_known = cu->base_known;
801e3a5b 12261
d62bfeaf 12262 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12263 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12264 {
12265 complaint (&symfile_complaints,
12266 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12267 offset);
12268 return;
12269 }
d62bfeaf 12270 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12271
12272 for (;;)
12273 {
12274 unsigned int bytes_read;
12275 CORE_ADDR start, end;
12276
12277 start = read_address (obfd, buffer, cu, &bytes_read);
12278 buffer += bytes_read;
12279 end = read_address (obfd, buffer, cu, &bytes_read);
12280 buffer += bytes_read;
12281
12282 /* Did we find the end of the range list? */
12283 if (start == 0 && end == 0)
12284 break;
12285
12286 /* Did we find a base address selection entry? */
12287 else if ((start & base_select_mask) == base_select_mask)
12288 {
12289 base = end;
12290 base_known = 1;
12291 }
12292
12293 /* We found an ordinary address range. */
12294 else
12295 {
12296 if (!base_known)
12297 {
12298 complaint (&symfile_complaints,
3e43a32a
MS
12299 _("Invalid .debug_ranges data "
12300 "(no base address)"));
801e3a5b
JB
12301 return;
12302 }
12303
9277c30c
UW
12304 if (start > end)
12305 {
12306 /* Inverted range entries are invalid. */
12307 complaint (&symfile_complaints,
12308 _("Invalid .debug_ranges data "
12309 "(inverted range)"));
12310 return;
12311 }
12312
12313 /* Empty range entries have no effect. */
12314 if (start == end)
12315 continue;
12316
01093045
DE
12317 start += base + baseaddr;
12318 end += base + baseaddr;
12319
12320 /* A not-uncommon case of bad debug info.
12321 Don't pollute the addrmap with bad data. */
12322 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12323 {
12324 complaint (&symfile_complaints,
12325 _(".debug_ranges entry has start address of zero"
4262abfb 12326 " [in module %s]"), objfile_name (objfile));
01093045
DE
12327 continue;
12328 }
12329
3e29f34a
MR
12330 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12331 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12332 record_block_range (block, start, end - 1);
801e3a5b
JB
12333 }
12334 }
12335 }
12336}
12337
685b1105
JK
12338/* Check whether the producer field indicates either of GCC < 4.6, or the
12339 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12340
685b1105
JK
12341static void
12342check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12343{
12344 const char *cs;
38360086 12345 int major, minor;
60d5a603
JK
12346
12347 if (cu->producer == NULL)
12348 {
12349 /* For unknown compilers expect their behavior is DWARF version
12350 compliant.
12351
12352 GCC started to support .debug_types sections by -gdwarf-4 since
12353 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12354 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12355 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12356 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12357 }
b1ffba5a 12358 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12359 {
38360086
MW
12360 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12361 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12362 }
61012eef 12363 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12364 cu->producer_is_icc = 1;
12365 else
12366 {
12367 /* For other non-GCC compilers, expect their behavior is DWARF version
12368 compliant. */
60d5a603
JK
12369 }
12370
ba919b58 12371 cu->checked_producer = 1;
685b1105 12372}
ba919b58 12373
685b1105
JK
12374/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12375 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12376 during 4.6.0 experimental. */
12377
12378static int
12379producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12380{
12381 if (!cu->checked_producer)
12382 check_producer (cu);
12383
12384 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12385}
12386
12387/* Return the default accessibility type if it is not overriden by
12388 DW_AT_accessibility. */
12389
12390static enum dwarf_access_attribute
12391dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12392{
12393 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12394 {
12395 /* The default DWARF 2 accessibility for members is public, the default
12396 accessibility for inheritance is private. */
12397
12398 if (die->tag != DW_TAG_inheritance)
12399 return DW_ACCESS_public;
12400 else
12401 return DW_ACCESS_private;
12402 }
12403 else
12404 {
12405 /* DWARF 3+ defines the default accessibility a different way. The same
12406 rules apply now for DW_TAG_inheritance as for the members and it only
12407 depends on the container kind. */
12408
12409 if (die->parent->tag == DW_TAG_class_type)
12410 return DW_ACCESS_private;
12411 else
12412 return DW_ACCESS_public;
12413 }
12414}
12415
74ac6d43
TT
12416/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12417 offset. If the attribute was not found return 0, otherwise return
12418 1. If it was found but could not properly be handled, set *OFFSET
12419 to 0. */
12420
12421static int
12422handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12423 LONGEST *offset)
12424{
12425 struct attribute *attr;
12426
12427 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12428 if (attr != NULL)
12429 {
12430 *offset = 0;
12431
12432 /* Note that we do not check for a section offset first here.
12433 This is because DW_AT_data_member_location is new in DWARF 4,
12434 so if we see it, we can assume that a constant form is really
12435 a constant and not a section offset. */
12436 if (attr_form_is_constant (attr))
12437 *offset = dwarf2_get_attr_constant_value (attr, 0);
12438 else if (attr_form_is_section_offset (attr))
12439 dwarf2_complex_location_expr_complaint ();
12440 else if (attr_form_is_block (attr))
12441 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12442 else
12443 dwarf2_complex_location_expr_complaint ();
12444
12445 return 1;
12446 }
12447
12448 return 0;
12449}
12450
c906108c
SS
12451/* Add an aggregate field to the field list. */
12452
12453static void
107d2387 12454dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12455 struct dwarf2_cu *cu)
6e70227d 12456{
e7c27a73 12457 struct objfile *objfile = cu->objfile;
5e2b427d 12458 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12459 struct nextfield *new_field;
12460 struct attribute *attr;
12461 struct field *fp;
15d034d0 12462 const char *fieldname = "";
c906108c
SS
12463
12464 /* Allocate a new field list entry and link it in. */
12465 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12466 make_cleanup (xfree, new_field);
c906108c 12467 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12468
12469 if (die->tag == DW_TAG_inheritance)
12470 {
12471 new_field->next = fip->baseclasses;
12472 fip->baseclasses = new_field;
12473 }
12474 else
12475 {
12476 new_field->next = fip->fields;
12477 fip->fields = new_field;
12478 }
c906108c
SS
12479 fip->nfields++;
12480
e142c38c 12481 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12482 if (attr)
12483 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12484 else
12485 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12486 if (new_field->accessibility != DW_ACCESS_public)
12487 fip->non_public_fields = 1;
60d5a603 12488
e142c38c 12489 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12490 if (attr)
12491 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12492 else
12493 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12494
12495 fp = &new_field->field;
a9a9bd0f 12496
e142c38c 12497 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12498 {
74ac6d43
TT
12499 LONGEST offset;
12500
a9a9bd0f 12501 /* Data member other than a C++ static data member. */
6e70227d 12502
c906108c 12503 /* Get type of field. */
e7c27a73 12504 fp->type = die_type (die, cu);
c906108c 12505
d6a843b5 12506 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12507
c906108c 12508 /* Get bit size of field (zero if none). */
e142c38c 12509 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12510 if (attr)
12511 {
12512 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12513 }
12514 else
12515 {
12516 FIELD_BITSIZE (*fp) = 0;
12517 }
12518
12519 /* Get bit offset of field. */
74ac6d43
TT
12520 if (handle_data_member_location (die, cu, &offset))
12521 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12522 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12523 if (attr)
12524 {
5e2b427d 12525 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12526 {
12527 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12528 additional bit offset from the MSB of the containing
12529 anonymous object to the MSB of the field. We don't
12530 have to do anything special since we don't need to
12531 know the size of the anonymous object. */
f41f5e61 12532 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12533 }
12534 else
12535 {
12536 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12537 MSB of the anonymous object, subtract off the number of
12538 bits from the MSB of the field to the MSB of the
12539 object, and then subtract off the number of bits of
12540 the field itself. The result is the bit offset of
12541 the LSB of the field. */
c906108c
SS
12542 int anonymous_size;
12543 int bit_offset = DW_UNSND (attr);
12544
e142c38c 12545 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12546 if (attr)
12547 {
12548 /* The size of the anonymous object containing
12549 the bit field is explicit, so use the
12550 indicated size (in bytes). */
12551 anonymous_size = DW_UNSND (attr);
12552 }
12553 else
12554 {
12555 /* The size of the anonymous object containing
12556 the bit field must be inferred from the type
12557 attribute of the data member containing the
12558 bit field. */
12559 anonymous_size = TYPE_LENGTH (fp->type);
12560 }
f41f5e61
PA
12561 SET_FIELD_BITPOS (*fp,
12562 (FIELD_BITPOS (*fp)
12563 + anonymous_size * bits_per_byte
12564 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12565 }
12566 }
12567
12568 /* Get name of field. */
39cbfefa
DJ
12569 fieldname = dwarf2_name (die, cu);
12570 if (fieldname == NULL)
12571 fieldname = "";
d8151005
DJ
12572
12573 /* The name is already allocated along with this objfile, so we don't
12574 need to duplicate it for the type. */
12575 fp->name = fieldname;
c906108c
SS
12576
12577 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12578 pointer or virtual base class pointer) to private. */
e142c38c 12579 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12580 {
d48cc9dd 12581 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12582 new_field->accessibility = DW_ACCESS_private;
12583 fip->non_public_fields = 1;
12584 }
12585 }
a9a9bd0f 12586 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12587 {
a9a9bd0f
DC
12588 /* C++ static member. */
12589
12590 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12591 is a declaration, but all versions of G++ as of this writing
12592 (so through at least 3.2.1) incorrectly generate
12593 DW_TAG_variable tags. */
6e70227d 12594
ff355380 12595 const char *physname;
c906108c 12596
a9a9bd0f 12597 /* Get name of field. */
39cbfefa
DJ
12598 fieldname = dwarf2_name (die, cu);
12599 if (fieldname == NULL)
c906108c
SS
12600 return;
12601
254e6b9e 12602 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12603 if (attr
12604 /* Only create a symbol if this is an external value.
12605 new_symbol checks this and puts the value in the global symbol
12606 table, which we want. If it is not external, new_symbol
12607 will try to put the value in cu->list_in_scope which is wrong. */
12608 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12609 {
12610 /* A static const member, not much different than an enum as far as
12611 we're concerned, except that we can support more types. */
12612 new_symbol (die, NULL, cu);
12613 }
12614
2df3850c 12615 /* Get physical name. */
ff355380 12616 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12617
d8151005
DJ
12618 /* The name is already allocated along with this objfile, so we don't
12619 need to duplicate it for the type. */
12620 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12621 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12622 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12623 }
12624 else if (die->tag == DW_TAG_inheritance)
12625 {
74ac6d43 12626 LONGEST offset;
d4b96c9a 12627
74ac6d43
TT
12628 /* C++ base class field. */
12629 if (handle_data_member_location (die, cu, &offset))
12630 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12631 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12632 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12633 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12634 fip->nbaseclasses++;
12635 }
12636}
12637
98751a41
JK
12638/* Add a typedef defined in the scope of the FIP's class. */
12639
12640static void
12641dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12642 struct dwarf2_cu *cu)
6e70227d 12643{
98751a41 12644 struct objfile *objfile = cu->objfile;
98751a41
JK
12645 struct typedef_field_list *new_field;
12646 struct attribute *attr;
12647 struct typedef_field *fp;
12648 char *fieldname = "";
12649
12650 /* Allocate a new field list entry and link it in. */
12651 new_field = xzalloc (sizeof (*new_field));
12652 make_cleanup (xfree, new_field);
12653
12654 gdb_assert (die->tag == DW_TAG_typedef);
12655
12656 fp = &new_field->field;
12657
12658 /* Get name of field. */
12659 fp->name = dwarf2_name (die, cu);
12660 if (fp->name == NULL)
12661 return;
12662
12663 fp->type = read_type_die (die, cu);
12664
12665 new_field->next = fip->typedef_field_list;
12666 fip->typedef_field_list = new_field;
12667 fip->typedef_field_list_count++;
12668}
12669
c906108c
SS
12670/* Create the vector of fields, and attach it to the type. */
12671
12672static void
fba45db2 12673dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12674 struct dwarf2_cu *cu)
c906108c
SS
12675{
12676 int nfields = fip->nfields;
12677
12678 /* Record the field count, allocate space for the array of fields,
12679 and create blank accessibility bitfields if necessary. */
12680 TYPE_NFIELDS (type) = nfields;
12681 TYPE_FIELDS (type) = (struct field *)
12682 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12683 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12684
b4ba55a1 12685 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12686 {
12687 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12688
12689 TYPE_FIELD_PRIVATE_BITS (type) =
12690 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12691 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12692
12693 TYPE_FIELD_PROTECTED_BITS (type) =
12694 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12695 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12696
774b6a14
TT
12697 TYPE_FIELD_IGNORE_BITS (type) =
12698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12699 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12700 }
12701
12702 /* If the type has baseclasses, allocate and clear a bit vector for
12703 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12704 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12705 {
12706 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12707 unsigned char *pointer;
c906108c
SS
12708
12709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12710 pointer = TYPE_ALLOC (type, num_bytes);
12711 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12712 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12713 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12714 }
12715
3e43a32a
MS
12716 /* Copy the saved-up fields into the field vector. Start from the head of
12717 the list, adding to the tail of the field array, so that they end up in
12718 the same order in the array in which they were added to the list. */
c906108c
SS
12719 while (nfields-- > 0)
12720 {
7d0ccb61
DJ
12721 struct nextfield *fieldp;
12722
12723 if (fip->fields)
12724 {
12725 fieldp = fip->fields;
12726 fip->fields = fieldp->next;
12727 }
12728 else
12729 {
12730 fieldp = fip->baseclasses;
12731 fip->baseclasses = fieldp->next;
12732 }
12733
12734 TYPE_FIELD (type, nfields) = fieldp->field;
12735 switch (fieldp->accessibility)
c906108c 12736 {
c5aa993b 12737 case DW_ACCESS_private:
b4ba55a1
JB
12738 if (cu->language != language_ada)
12739 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12740 break;
c906108c 12741
c5aa993b 12742 case DW_ACCESS_protected:
b4ba55a1
JB
12743 if (cu->language != language_ada)
12744 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12745 break;
c906108c 12746
c5aa993b
JM
12747 case DW_ACCESS_public:
12748 break;
c906108c 12749
c5aa993b
JM
12750 default:
12751 /* Unknown accessibility. Complain and treat it as public. */
12752 {
e2e0b3e5 12753 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12754 fieldp->accessibility);
c5aa993b
JM
12755 }
12756 break;
c906108c
SS
12757 }
12758 if (nfields < fip->nbaseclasses)
12759 {
7d0ccb61 12760 switch (fieldp->virtuality)
c906108c 12761 {
c5aa993b
JM
12762 case DW_VIRTUALITY_virtual:
12763 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12764 if (cu->language == language_ada)
a73c6dcd 12765 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12766 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12767 break;
c906108c
SS
12768 }
12769 }
c906108c
SS
12770 }
12771}
12772
7d27a96d
TT
12773/* Return true if this member function is a constructor, false
12774 otherwise. */
12775
12776static int
12777dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12778{
12779 const char *fieldname;
fe978cb0 12780 const char *type_name;
7d27a96d
TT
12781 int len;
12782
12783 if (die->parent == NULL)
12784 return 0;
12785
12786 if (die->parent->tag != DW_TAG_structure_type
12787 && die->parent->tag != DW_TAG_union_type
12788 && die->parent->tag != DW_TAG_class_type)
12789 return 0;
12790
12791 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12792 type_name = dwarf2_name (die->parent, cu);
12793 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12794 return 0;
12795
12796 len = strlen (fieldname);
fe978cb0
PA
12797 return (strncmp (fieldname, type_name, len) == 0
12798 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12799}
12800
c906108c
SS
12801/* Add a member function to the proper fieldlist. */
12802
12803static void
107d2387 12804dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12805 struct type *type, struct dwarf2_cu *cu)
c906108c 12806{
e7c27a73 12807 struct objfile *objfile = cu->objfile;
c906108c
SS
12808 struct attribute *attr;
12809 struct fnfieldlist *flp;
12810 int i;
12811 struct fn_field *fnp;
15d034d0 12812 const char *fieldname;
c906108c 12813 struct nextfnfield *new_fnfield;
f792889a 12814 struct type *this_type;
60d5a603 12815 enum dwarf_access_attribute accessibility;
c906108c 12816
b4ba55a1 12817 if (cu->language == language_ada)
a73c6dcd 12818 error (_("unexpected member function in Ada type"));
b4ba55a1 12819
2df3850c 12820 /* Get name of member function. */
39cbfefa
DJ
12821 fieldname = dwarf2_name (die, cu);
12822 if (fieldname == NULL)
2df3850c 12823 return;
c906108c 12824
c906108c
SS
12825 /* Look up member function name in fieldlist. */
12826 for (i = 0; i < fip->nfnfields; i++)
12827 {
27bfe10e 12828 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12829 break;
12830 }
12831
12832 /* Create new list element if necessary. */
12833 if (i < fip->nfnfields)
12834 flp = &fip->fnfieldlists[i];
12835 else
12836 {
12837 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12838 {
12839 fip->fnfieldlists = (struct fnfieldlist *)
12840 xrealloc (fip->fnfieldlists,
12841 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12842 * sizeof (struct fnfieldlist));
c906108c 12843 if (fip->nfnfields == 0)
c13c43fd 12844 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12845 }
12846 flp = &fip->fnfieldlists[fip->nfnfields];
12847 flp->name = fieldname;
12848 flp->length = 0;
12849 flp->head = NULL;
3da10d80 12850 i = fip->nfnfields++;
c906108c
SS
12851 }
12852
12853 /* Create a new member function field and chain it to the field list
0963b4bd 12854 entry. */
c906108c 12855 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12856 make_cleanup (xfree, new_fnfield);
c906108c
SS
12857 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12858 new_fnfield->next = flp->head;
12859 flp->head = new_fnfield;
12860 flp->length++;
12861
12862 /* Fill in the member function field info. */
12863 fnp = &new_fnfield->fnfield;
3da10d80
KS
12864
12865 /* Delay processing of the physname until later. */
12866 if (cu->language == language_cplus || cu->language == language_java)
12867 {
12868 add_to_method_list (type, i, flp->length - 1, fieldname,
12869 die, cu);
12870 }
12871 else
12872 {
1d06ead6 12873 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12874 fnp->physname = physname ? physname : "";
12875 }
12876
c906108c 12877 fnp->type = alloc_type (objfile);
f792889a
DJ
12878 this_type = read_type_die (die, cu);
12879 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12880 {
f792889a 12881 int nparams = TYPE_NFIELDS (this_type);
c906108c 12882
f792889a 12883 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12884 of the method itself (TYPE_CODE_METHOD). */
12885 smash_to_method_type (fnp->type, type,
f792889a
DJ
12886 TYPE_TARGET_TYPE (this_type),
12887 TYPE_FIELDS (this_type),
12888 TYPE_NFIELDS (this_type),
12889 TYPE_VARARGS (this_type));
c906108c
SS
12890
12891 /* Handle static member functions.
c5aa993b 12892 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12893 member functions. G++ helps GDB by marking the first
12894 parameter for non-static member functions (which is the this
12895 pointer) as artificial. We obtain this information from
12896 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12897 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12898 fnp->voffset = VOFFSET_STATIC;
12899 }
12900 else
e2e0b3e5 12901 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12902 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12903
12904 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12905 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12906 fnp->fcontext = die_containing_type (die, cu);
c906108c 12907
3e43a32a
MS
12908 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12909 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12910
12911 /* Get accessibility. */
e142c38c 12912 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12913 if (attr)
aead7601 12914 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12915 else
12916 accessibility = dwarf2_default_access_attribute (die, cu);
12917 switch (accessibility)
c906108c 12918 {
60d5a603
JK
12919 case DW_ACCESS_private:
12920 fnp->is_private = 1;
12921 break;
12922 case DW_ACCESS_protected:
12923 fnp->is_protected = 1;
12924 break;
c906108c
SS
12925 }
12926
b02dede2 12927 /* Check for artificial methods. */
e142c38c 12928 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12929 if (attr && DW_UNSND (attr) != 0)
12930 fnp->is_artificial = 1;
12931
7d27a96d
TT
12932 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12933
0d564a31 12934 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12935 function. For older versions of GCC, this is an offset in the
12936 appropriate virtual table, as specified by DW_AT_containing_type.
12937 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12938 to the object address. */
12939
e142c38c 12940 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12941 if (attr)
8e19ed76 12942 {
aec5aa8b 12943 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12944 {
aec5aa8b
TT
12945 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12946 {
12947 /* Old-style GCC. */
12948 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12949 }
12950 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12951 || (DW_BLOCK (attr)->size > 1
12952 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12953 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12954 {
12955 struct dwarf_block blk;
12956 int offset;
12957
12958 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12959 ? 1 : 2);
12960 blk.size = DW_BLOCK (attr)->size - offset;
12961 blk.data = DW_BLOCK (attr)->data + offset;
12962 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12963 if ((fnp->voffset % cu->header.addr_size) != 0)
12964 dwarf2_complex_location_expr_complaint ();
12965 else
12966 fnp->voffset /= cu->header.addr_size;
12967 fnp->voffset += 2;
12968 }
12969 else
12970 dwarf2_complex_location_expr_complaint ();
12971
12972 if (!fnp->fcontext)
7e993ebf
KS
12973 {
12974 /* If there is no `this' field and no DW_AT_containing_type,
12975 we cannot actually find a base class context for the
12976 vtable! */
12977 if (TYPE_NFIELDS (this_type) == 0
12978 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12979 {
12980 complaint (&symfile_complaints,
12981 _("cannot determine context for virtual member "
12982 "function \"%s\" (offset %d)"),
12983 fieldname, die->offset.sect_off);
12984 }
12985 else
12986 {
12987 fnp->fcontext
12988 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12989 }
12990 }
aec5aa8b 12991 }
3690dd37 12992 else if (attr_form_is_section_offset (attr))
8e19ed76 12993 {
4d3c2250 12994 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12995 }
12996 else
12997 {
4d3c2250
KB
12998 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12999 fieldname);
8e19ed76 13000 }
0d564a31 13001 }
d48cc9dd
DJ
13002 else
13003 {
13004 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13005 if (attr && DW_UNSND (attr))
13006 {
13007 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13008 complaint (&symfile_complaints,
3e43a32a
MS
13009 _("Member function \"%s\" (offset %d) is virtual "
13010 "but the vtable offset is not specified"),
b64f50a1 13011 fieldname, die->offset.sect_off);
9655fd1a 13012 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13013 TYPE_CPLUS_DYNAMIC (type) = 1;
13014 }
13015 }
c906108c
SS
13016}
13017
13018/* Create the vector of member function fields, and attach it to the type. */
13019
13020static void
fba45db2 13021dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13022 struct dwarf2_cu *cu)
c906108c
SS
13023{
13024 struct fnfieldlist *flp;
c906108c
SS
13025 int i;
13026
b4ba55a1 13027 if (cu->language == language_ada)
a73c6dcd 13028 error (_("unexpected member functions in Ada type"));
b4ba55a1 13029
c906108c
SS
13030 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13031 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13032 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13033
13034 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13035 {
13036 struct nextfnfield *nfp = flp->head;
13037 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13038 int k;
13039
13040 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13041 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13042 fn_flp->fn_fields = (struct fn_field *)
13043 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13044 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13045 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13046 }
13047
13048 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13049}
13050
1168df01
JB
13051/* Returns non-zero if NAME is the name of a vtable member in CU's
13052 language, zero otherwise. */
13053static int
13054is_vtable_name (const char *name, struct dwarf2_cu *cu)
13055{
13056 static const char vptr[] = "_vptr";
987504bb 13057 static const char vtable[] = "vtable";
1168df01 13058
987504bb
JJ
13059 /* Look for the C++ and Java forms of the vtable. */
13060 if ((cu->language == language_java
61012eef
GB
13061 && startswith (name, vtable))
13062 || (startswith (name, vptr)
987504bb 13063 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13064 return 1;
13065
13066 return 0;
13067}
13068
c0dd20ea 13069/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13070 functions, with the ABI-specified layout. If TYPE describes
13071 such a structure, smash it into a member function type.
61049d3b
DJ
13072
13073 GCC shouldn't do this; it should just output pointer to member DIEs.
13074 This is GCC PR debug/28767. */
c0dd20ea 13075
0b92b5bb
TT
13076static void
13077quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13078{
09e2d7c7 13079 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13080
13081 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13082 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13083 return;
c0dd20ea
DJ
13084
13085 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13086 if (TYPE_FIELD_NAME (type, 0) == NULL
13087 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13088 || TYPE_FIELD_NAME (type, 1) == NULL
13089 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13090 return;
c0dd20ea
DJ
13091
13092 /* Find the type of the method. */
0b92b5bb 13093 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13094 if (pfn_type == NULL
13095 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13096 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13097 return;
c0dd20ea
DJ
13098
13099 /* Look for the "this" argument. */
13100 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13101 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13102 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13103 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13104 return;
c0dd20ea 13105
09e2d7c7 13106 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13107 new_type = alloc_type (objfile);
09e2d7c7 13108 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13109 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13110 TYPE_VARARGS (pfn_type));
0b92b5bb 13111 smash_to_methodptr_type (type, new_type);
c0dd20ea 13112}
1168df01 13113
685b1105
JK
13114/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13115 (icc). */
13116
13117static int
13118producer_is_icc (struct dwarf2_cu *cu)
13119{
13120 if (!cu->checked_producer)
13121 check_producer (cu);
13122
13123 return cu->producer_is_icc;
13124}
13125
c906108c 13126/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13127 (definition) to create a type for the structure or union. Fill in
13128 the type's name and general properties; the members will not be
83655187
DE
13129 processed until process_structure_scope. A symbol table entry for
13130 the type will also not be done until process_structure_scope (assuming
13131 the type has a name).
c906108c 13132
c767944b
DJ
13133 NOTE: we need to call these functions regardless of whether or not the
13134 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13135 structure or union. This gets the type entered into our set of
83655187 13136 user defined types. */
c906108c 13137
f792889a 13138static struct type *
134d01f1 13139read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13140{
e7c27a73 13141 struct objfile *objfile = cu->objfile;
c906108c
SS
13142 struct type *type;
13143 struct attribute *attr;
15d034d0 13144 const char *name;
c906108c 13145
348e048f
DE
13146 /* If the definition of this type lives in .debug_types, read that type.
13147 Don't follow DW_AT_specification though, that will take us back up
13148 the chain and we want to go down. */
45e58e77 13149 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13150 if (attr)
13151 {
ac9ec31b 13152 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13153
ac9ec31b 13154 /* The type's CU may not be the same as CU.
02142a6c 13155 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13156 return set_die_type (die, type, cu);
13157 }
13158
c0dd20ea 13159 type = alloc_type (objfile);
c906108c 13160 INIT_CPLUS_SPECIFIC (type);
93311388 13161
39cbfefa
DJ
13162 name = dwarf2_name (die, cu);
13163 if (name != NULL)
c906108c 13164 {
987504bb 13165 if (cu->language == language_cplus
45280282
IB
13166 || cu->language == language_java
13167 || cu->language == language_d)
63d06c5c 13168 {
15d034d0 13169 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13170
13171 /* dwarf2_full_name might have already finished building the DIE's
13172 type. If so, there is no need to continue. */
13173 if (get_die_type (die, cu) != NULL)
13174 return get_die_type (die, cu);
13175
13176 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13177 if (die->tag == DW_TAG_structure_type
13178 || die->tag == DW_TAG_class_type)
13179 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13180 }
13181 else
13182 {
d8151005
DJ
13183 /* The name is already allocated along with this objfile, so
13184 we don't need to duplicate it for the type. */
7d455152 13185 TYPE_TAG_NAME (type) = name;
94af9270
KS
13186 if (die->tag == DW_TAG_class_type)
13187 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13188 }
c906108c
SS
13189 }
13190
13191 if (die->tag == DW_TAG_structure_type)
13192 {
13193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13194 }
13195 else if (die->tag == DW_TAG_union_type)
13196 {
13197 TYPE_CODE (type) = TYPE_CODE_UNION;
13198 }
13199 else
13200 {
4753d33b 13201 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13202 }
13203
0cc2414c
TT
13204 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13205 TYPE_DECLARED_CLASS (type) = 1;
13206
e142c38c 13207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13208 if (attr)
13209 {
13210 TYPE_LENGTH (type) = DW_UNSND (attr);
13211 }
13212 else
13213 {
13214 TYPE_LENGTH (type) = 0;
13215 }
13216
422b1cb0 13217 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13218 {
13219 /* ICC does not output the required DW_AT_declaration
13220 on incomplete types, but gives them a size of zero. */
422b1cb0 13221 TYPE_STUB (type) = 1;
685b1105
JK
13222 }
13223 else
13224 TYPE_STUB_SUPPORTED (type) = 1;
13225
dc718098 13226 if (die_is_declaration (die, cu))
876cecd0 13227 TYPE_STUB (type) = 1;
a6c727b2
DJ
13228 else if (attr == NULL && die->child == NULL
13229 && producer_is_realview (cu->producer))
13230 /* RealView does not output the required DW_AT_declaration
13231 on incomplete types. */
13232 TYPE_STUB (type) = 1;
dc718098 13233
c906108c
SS
13234 /* We need to add the type field to the die immediately so we don't
13235 infinitely recurse when dealing with pointers to the structure
0963b4bd 13236 type within the structure itself. */
1c379e20 13237 set_die_type (die, type, cu);
c906108c 13238
7e314c57
JK
13239 /* set_die_type should be already done. */
13240 set_descriptive_type (type, die, cu);
13241
c767944b
DJ
13242 return type;
13243}
13244
13245/* Finish creating a structure or union type, including filling in
13246 its members and creating a symbol for it. */
13247
13248static void
13249process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13250{
13251 struct objfile *objfile = cu->objfile;
ca040673 13252 struct die_info *child_die;
c767944b
DJ
13253 struct type *type;
13254
13255 type = get_die_type (die, cu);
13256 if (type == NULL)
13257 type = read_structure_type (die, cu);
13258
e142c38c 13259 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13260 {
13261 struct field_info fi;
34eaf542 13262 VEC (symbolp) *template_args = NULL;
c767944b 13263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13264
13265 memset (&fi, 0, sizeof (struct field_info));
13266
639d11d3 13267 child_die = die->child;
c906108c
SS
13268
13269 while (child_die && child_die->tag)
13270 {
a9a9bd0f
DC
13271 if (child_die->tag == DW_TAG_member
13272 || child_die->tag == DW_TAG_variable)
c906108c 13273 {
a9a9bd0f
DC
13274 /* NOTE: carlton/2002-11-05: A C++ static data member
13275 should be a DW_TAG_member that is a declaration, but
13276 all versions of G++ as of this writing (so through at
13277 least 3.2.1) incorrectly generate DW_TAG_variable
13278 tags for them instead. */
e7c27a73 13279 dwarf2_add_field (&fi, child_die, cu);
c906108c 13280 }
8713b1b1 13281 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13282 {
0963b4bd 13283 /* C++ member function. */
e7c27a73 13284 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13285 }
13286 else if (child_die->tag == DW_TAG_inheritance)
13287 {
13288 /* C++ base class field. */
e7c27a73 13289 dwarf2_add_field (&fi, child_die, cu);
c906108c 13290 }
98751a41
JK
13291 else if (child_die->tag == DW_TAG_typedef)
13292 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13293 else if (child_die->tag == DW_TAG_template_type_param
13294 || child_die->tag == DW_TAG_template_value_param)
13295 {
13296 struct symbol *arg = new_symbol (child_die, NULL, cu);
13297
f1078f66
DJ
13298 if (arg != NULL)
13299 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13300 }
13301
c906108c
SS
13302 child_die = sibling_die (child_die);
13303 }
13304
34eaf542
TT
13305 /* Attach template arguments to type. */
13306 if (! VEC_empty (symbolp, template_args))
13307 {
13308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13309 TYPE_N_TEMPLATE_ARGUMENTS (type)
13310 = VEC_length (symbolp, template_args);
13311 TYPE_TEMPLATE_ARGUMENTS (type)
13312 = obstack_alloc (&objfile->objfile_obstack,
13313 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13314 * sizeof (struct symbol *)));
13315 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13316 VEC_address (symbolp, template_args),
13317 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13318 * sizeof (struct symbol *)));
13319 VEC_free (symbolp, template_args);
13320 }
13321
c906108c
SS
13322 /* Attach fields and member functions to the type. */
13323 if (fi.nfields)
e7c27a73 13324 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13325 if (fi.nfnfields)
13326 {
e7c27a73 13327 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13328
c5aa993b 13329 /* Get the type which refers to the base class (possibly this
c906108c 13330 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13331 class from the DW_AT_containing_type attribute. This use of
13332 DW_AT_containing_type is a GNU extension. */
c906108c 13333
e142c38c 13334 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13335 {
e7c27a73 13336 struct type *t = die_containing_type (die, cu);
c906108c 13337
ae6ae975 13338 set_type_vptr_basetype (type, t);
c906108c
SS
13339 if (type == t)
13340 {
c906108c
SS
13341 int i;
13342
13343 /* Our own class provides vtbl ptr. */
13344 for (i = TYPE_NFIELDS (t) - 1;
13345 i >= TYPE_N_BASECLASSES (t);
13346 --i)
13347 {
0d5cff50 13348 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13349
1168df01 13350 if (is_vtable_name (fieldname, cu))
c906108c 13351 {
ae6ae975 13352 set_type_vptr_fieldno (type, i);
c906108c
SS
13353 break;
13354 }
13355 }
13356
13357 /* Complain if virtual function table field not found. */
13358 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13359 complaint (&symfile_complaints,
3e43a32a
MS
13360 _("virtual function table pointer "
13361 "not found when defining class '%s'"),
4d3c2250
KB
13362 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13363 "");
c906108c
SS
13364 }
13365 else
13366 {
ae6ae975 13367 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13368 }
13369 }
f6235d4c 13370 else if (cu->producer
61012eef 13371 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13372 {
13373 /* The IBM XLC compiler does not provide direct indication
13374 of the containing type, but the vtable pointer is
13375 always named __vfp. */
13376
13377 int i;
13378
13379 for (i = TYPE_NFIELDS (type) - 1;
13380 i >= TYPE_N_BASECLASSES (type);
13381 --i)
13382 {
13383 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13384 {
ae6ae975
DE
13385 set_type_vptr_fieldno (type, i);
13386 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13387 break;
13388 }
13389 }
13390 }
c906108c 13391 }
98751a41
JK
13392
13393 /* Copy fi.typedef_field_list linked list elements content into the
13394 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13395 if (fi.typedef_field_list)
13396 {
13397 int i = fi.typedef_field_list_count;
13398
a0d7a4ff 13399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13400 TYPE_TYPEDEF_FIELD_ARRAY (type)
13401 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13402 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13403
13404 /* Reverse the list order to keep the debug info elements order. */
13405 while (--i >= 0)
13406 {
13407 struct typedef_field *dest, *src;
6e70227d 13408
98751a41
JK
13409 dest = &TYPE_TYPEDEF_FIELD (type, i);
13410 src = &fi.typedef_field_list->field;
13411 fi.typedef_field_list = fi.typedef_field_list->next;
13412 *dest = *src;
13413 }
13414 }
c767944b
DJ
13415
13416 do_cleanups (back_to);
eb2a6f42
TT
13417
13418 if (HAVE_CPLUS_STRUCT (type))
13419 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13420 }
63d06c5c 13421
bb5ed363 13422 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13423
90aeadfc
DC
13424 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13425 snapshots) has been known to create a die giving a declaration
13426 for a class that has, as a child, a die giving a definition for a
13427 nested class. So we have to process our children even if the
13428 current die is a declaration. Normally, of course, a declaration
13429 won't have any children at all. */
134d01f1 13430
ca040673
DE
13431 child_die = die->child;
13432
90aeadfc
DC
13433 while (child_die != NULL && child_die->tag)
13434 {
13435 if (child_die->tag == DW_TAG_member
13436 || child_die->tag == DW_TAG_variable
34eaf542
TT
13437 || child_die->tag == DW_TAG_inheritance
13438 || child_die->tag == DW_TAG_template_value_param
13439 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13440 {
90aeadfc 13441 /* Do nothing. */
134d01f1 13442 }
90aeadfc
DC
13443 else
13444 process_die (child_die, cu);
134d01f1 13445
90aeadfc 13446 child_die = sibling_die (child_die);
134d01f1
DJ
13447 }
13448
fa4028e9
JB
13449 /* Do not consider external references. According to the DWARF standard,
13450 these DIEs are identified by the fact that they have no byte_size
13451 attribute, and a declaration attribute. */
13452 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13453 || !die_is_declaration (die, cu))
c767944b 13454 new_symbol (die, type, cu);
134d01f1
DJ
13455}
13456
55426c9d
JB
13457/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13458 update TYPE using some information only available in DIE's children. */
13459
13460static void
13461update_enumeration_type_from_children (struct die_info *die,
13462 struct type *type,
13463 struct dwarf2_cu *cu)
13464{
13465 struct obstack obstack;
60f7655a 13466 struct die_info *child_die;
55426c9d
JB
13467 int unsigned_enum = 1;
13468 int flag_enum = 1;
13469 ULONGEST mask = 0;
13470 struct cleanup *old_chain;
13471
13472 obstack_init (&obstack);
13473 old_chain = make_cleanup_obstack_free (&obstack);
13474
60f7655a
DE
13475 for (child_die = die->child;
13476 child_die != NULL && child_die->tag;
13477 child_die = sibling_die (child_die))
55426c9d
JB
13478 {
13479 struct attribute *attr;
13480 LONGEST value;
13481 const gdb_byte *bytes;
13482 struct dwarf2_locexpr_baton *baton;
13483 const char *name;
60f7655a 13484
55426c9d
JB
13485 if (child_die->tag != DW_TAG_enumerator)
13486 continue;
13487
13488 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13489 if (attr == NULL)
13490 continue;
13491
13492 name = dwarf2_name (child_die, cu);
13493 if (name == NULL)
13494 name = "<anonymous enumerator>";
13495
13496 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13497 &value, &bytes, &baton);
13498 if (value < 0)
13499 {
13500 unsigned_enum = 0;
13501 flag_enum = 0;
13502 }
13503 else if ((mask & value) != 0)
13504 flag_enum = 0;
13505 else
13506 mask |= value;
13507
13508 /* If we already know that the enum type is neither unsigned, nor
13509 a flag type, no need to look at the rest of the enumerates. */
13510 if (!unsigned_enum && !flag_enum)
13511 break;
55426c9d
JB
13512 }
13513
13514 if (unsigned_enum)
13515 TYPE_UNSIGNED (type) = 1;
13516 if (flag_enum)
13517 TYPE_FLAG_ENUM (type) = 1;
13518
13519 do_cleanups (old_chain);
13520}
13521
134d01f1
DJ
13522/* Given a DW_AT_enumeration_type die, set its type. We do not
13523 complete the type's fields yet, or create any symbols. */
c906108c 13524
f792889a 13525static struct type *
134d01f1 13526read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13527{
e7c27a73 13528 struct objfile *objfile = cu->objfile;
c906108c 13529 struct type *type;
c906108c 13530 struct attribute *attr;
0114d602 13531 const char *name;
134d01f1 13532
348e048f
DE
13533 /* If the definition of this type lives in .debug_types, read that type.
13534 Don't follow DW_AT_specification though, that will take us back up
13535 the chain and we want to go down. */
45e58e77 13536 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13537 if (attr)
13538 {
ac9ec31b 13539 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13540
ac9ec31b 13541 /* The type's CU may not be the same as CU.
02142a6c 13542 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13543 return set_die_type (die, type, cu);
13544 }
13545
c906108c
SS
13546 type = alloc_type (objfile);
13547
13548 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13549 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13550 if (name != NULL)
7d455152 13551 TYPE_TAG_NAME (type) = name;
c906108c 13552
0626fc76
TT
13553 attr = dwarf2_attr (die, DW_AT_type, cu);
13554 if (attr != NULL)
13555 {
13556 struct type *underlying_type = die_type (die, cu);
13557
13558 TYPE_TARGET_TYPE (type) = underlying_type;
13559 }
13560
e142c38c 13561 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13562 if (attr)
13563 {
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13565 }
13566 else
13567 {
13568 TYPE_LENGTH (type) = 0;
13569 }
13570
137033e9
JB
13571 /* The enumeration DIE can be incomplete. In Ada, any type can be
13572 declared as private in the package spec, and then defined only
13573 inside the package body. Such types are known as Taft Amendment
13574 Types. When another package uses such a type, an incomplete DIE
13575 may be generated by the compiler. */
02eb380e 13576 if (die_is_declaration (die, cu))
876cecd0 13577 TYPE_STUB (type) = 1;
02eb380e 13578
0626fc76
TT
13579 /* Finish the creation of this type by using the enum's children.
13580 We must call this even when the underlying type has been provided
13581 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13582 update_enumeration_type_from_children (die, type, cu);
13583
0626fc76
TT
13584 /* If this type has an underlying type that is not a stub, then we
13585 may use its attributes. We always use the "unsigned" attribute
13586 in this situation, because ordinarily we guess whether the type
13587 is unsigned -- but the guess can be wrong and the underlying type
13588 can tell us the reality. However, we defer to a local size
13589 attribute if one exists, because this lets the compiler override
13590 the underlying type if needed. */
13591 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13592 {
13593 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13594 if (TYPE_LENGTH (type) == 0)
13595 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13596 }
13597
3d567982
TT
13598 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13599
f792889a 13600 return set_die_type (die, type, cu);
134d01f1
DJ
13601}
13602
13603/* Given a pointer to a die which begins an enumeration, process all
13604 the dies that define the members of the enumeration, and create the
13605 symbol for the enumeration type.
13606
13607 NOTE: We reverse the order of the element list. */
13608
13609static void
13610process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13611{
f792889a 13612 struct type *this_type;
134d01f1 13613
f792889a
DJ
13614 this_type = get_die_type (die, cu);
13615 if (this_type == NULL)
13616 this_type = read_enumeration_type (die, cu);
9dc481d3 13617
639d11d3 13618 if (die->child != NULL)
c906108c 13619 {
9dc481d3
DE
13620 struct die_info *child_die;
13621 struct symbol *sym;
13622 struct field *fields = NULL;
13623 int num_fields = 0;
15d034d0 13624 const char *name;
9dc481d3 13625
639d11d3 13626 child_die = die->child;
c906108c
SS
13627 while (child_die && child_die->tag)
13628 {
13629 if (child_die->tag != DW_TAG_enumerator)
13630 {
e7c27a73 13631 process_die (child_die, cu);
c906108c
SS
13632 }
13633 else
13634 {
39cbfefa
DJ
13635 name = dwarf2_name (child_die, cu);
13636 if (name)
c906108c 13637 {
f792889a 13638 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13639
13640 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13641 {
13642 fields = (struct field *)
13643 xrealloc (fields,
13644 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13645 * sizeof (struct field));
c906108c
SS
13646 }
13647
3567439c 13648 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13649 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13650 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13651 FIELD_BITSIZE (fields[num_fields]) = 0;
13652
13653 num_fields++;
13654 }
13655 }
13656
13657 child_die = sibling_die (child_die);
13658 }
13659
13660 if (num_fields)
13661 {
f792889a
DJ
13662 TYPE_NFIELDS (this_type) = num_fields;
13663 TYPE_FIELDS (this_type) = (struct field *)
13664 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13665 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13666 sizeof (struct field) * num_fields);
b8c9b27d 13667 xfree (fields);
c906108c 13668 }
c906108c 13669 }
134d01f1 13670
6c83ed52
TT
13671 /* If we are reading an enum from a .debug_types unit, and the enum
13672 is a declaration, and the enum is not the signatured type in the
13673 unit, then we do not want to add a symbol for it. Adding a
13674 symbol would in some cases obscure the true definition of the
13675 enum, giving users an incomplete type when the definition is
13676 actually available. Note that we do not want to do this for all
13677 enums which are just declarations, because C++0x allows forward
13678 enum declarations. */
3019eac3 13679 if (cu->per_cu->is_debug_types
6c83ed52
TT
13680 && die_is_declaration (die, cu))
13681 {
52dc124a 13682 struct signatured_type *sig_type;
6c83ed52 13683
c0f78cd4 13684 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13685 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13686 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13687 return;
13688 }
13689
f792889a 13690 new_symbol (die, this_type, cu);
c906108c
SS
13691}
13692
13693/* Extract all information from a DW_TAG_array_type DIE and put it in
13694 the DIE's type field. For now, this only handles one dimensional
13695 arrays. */
13696
f792889a 13697static struct type *
e7c27a73 13698read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13699{
e7c27a73 13700 struct objfile *objfile = cu->objfile;
c906108c 13701 struct die_info *child_die;
7e314c57 13702 struct type *type;
c906108c
SS
13703 struct type *element_type, *range_type, *index_type;
13704 struct type **range_types = NULL;
13705 struct attribute *attr;
13706 int ndim = 0;
13707 struct cleanup *back_to;
15d034d0 13708 const char *name;
dc53a7ad 13709 unsigned int bit_stride = 0;
c906108c 13710
e7c27a73 13711 element_type = die_type (die, cu);
c906108c 13712
7e314c57
JK
13713 /* The die_type call above may have already set the type for this DIE. */
13714 type = get_die_type (die, cu);
13715 if (type)
13716 return type;
13717
dc53a7ad
JB
13718 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13719 if (attr != NULL)
13720 bit_stride = DW_UNSND (attr) * 8;
13721
13722 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13723 if (attr != NULL)
13724 bit_stride = DW_UNSND (attr);
13725
c906108c
SS
13726 /* Irix 6.2 native cc creates array types without children for
13727 arrays with unspecified length. */
639d11d3 13728 if (die->child == NULL)
c906108c 13729 {
46bf5051 13730 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13731 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13732 type = create_array_type_with_stride (NULL, element_type, range_type,
13733 bit_stride);
f792889a 13734 return set_die_type (die, type, cu);
c906108c
SS
13735 }
13736
13737 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13738 child_die = die->child;
c906108c
SS
13739 while (child_die && child_die->tag)
13740 {
13741 if (child_die->tag == DW_TAG_subrange_type)
13742 {
f792889a 13743 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13744
f792889a 13745 if (child_type != NULL)
a02abb62 13746 {
0963b4bd
MS
13747 /* The range type was succesfully read. Save it for the
13748 array type creation. */
a02abb62
JB
13749 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13750 {
13751 range_types = (struct type **)
13752 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13753 * sizeof (struct type *));
13754 if (ndim == 0)
13755 make_cleanup (free_current_contents, &range_types);
13756 }
f792889a 13757 range_types[ndim++] = child_type;
a02abb62 13758 }
c906108c
SS
13759 }
13760 child_die = sibling_die (child_die);
13761 }
13762
13763 /* Dwarf2 dimensions are output from left to right, create the
13764 necessary array types in backwards order. */
7ca2d3a3 13765
c906108c 13766 type = element_type;
7ca2d3a3
DL
13767
13768 if (read_array_order (die, cu) == DW_ORD_col_major)
13769 {
13770 int i = 0;
9a619af0 13771
7ca2d3a3 13772 while (i < ndim)
dc53a7ad
JB
13773 type = create_array_type_with_stride (NULL, type, range_types[i++],
13774 bit_stride);
7ca2d3a3
DL
13775 }
13776 else
13777 {
13778 while (ndim-- > 0)
dc53a7ad
JB
13779 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13780 bit_stride);
7ca2d3a3 13781 }
c906108c 13782
f5f8a009
EZ
13783 /* Understand Dwarf2 support for vector types (like they occur on
13784 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13785 array type. This is not part of the Dwarf2/3 standard yet, but a
13786 custom vendor extension. The main difference between a regular
13787 array and the vector variant is that vectors are passed by value
13788 to functions. */
e142c38c 13789 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13790 if (attr)
ea37ba09 13791 make_vector_type (type);
f5f8a009 13792
dbc98a8b
KW
13793 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13794 implementation may choose to implement triple vectors using this
13795 attribute. */
13796 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13797 if (attr)
13798 {
13799 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13800 TYPE_LENGTH (type) = DW_UNSND (attr);
13801 else
3e43a32a
MS
13802 complaint (&symfile_complaints,
13803 _("DW_AT_byte_size for array type smaller "
13804 "than the total size of elements"));
dbc98a8b
KW
13805 }
13806
39cbfefa
DJ
13807 name = dwarf2_name (die, cu);
13808 if (name)
13809 TYPE_NAME (type) = name;
6e70227d 13810
0963b4bd 13811 /* Install the type in the die. */
7e314c57
JK
13812 set_die_type (die, type, cu);
13813
13814 /* set_die_type should be already done. */
b4ba55a1
JB
13815 set_descriptive_type (type, die, cu);
13816
c906108c
SS
13817 do_cleanups (back_to);
13818
7e314c57 13819 return type;
c906108c
SS
13820}
13821
7ca2d3a3 13822static enum dwarf_array_dim_ordering
6e70227d 13823read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13824{
13825 struct attribute *attr;
13826
13827 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13828
aead7601
SM
13829 if (attr)
13830 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13831
0963b4bd
MS
13832 /* GNU F77 is a special case, as at 08/2004 array type info is the
13833 opposite order to the dwarf2 specification, but data is still
13834 laid out as per normal fortran.
7ca2d3a3 13835
0963b4bd
MS
13836 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13837 version checking. */
7ca2d3a3 13838
905e0470
PM
13839 if (cu->language == language_fortran
13840 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13841 {
13842 return DW_ORD_row_major;
13843 }
13844
6e70227d 13845 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13846 {
13847 case array_column_major:
13848 return DW_ORD_col_major;
13849 case array_row_major:
13850 default:
13851 return DW_ORD_row_major;
13852 };
13853}
13854
72019c9c 13855/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13856 the DIE's type field. */
72019c9c 13857
f792889a 13858static struct type *
72019c9c
GM
13859read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13860{
7e314c57
JK
13861 struct type *domain_type, *set_type;
13862 struct attribute *attr;
f792889a 13863
7e314c57
JK
13864 domain_type = die_type (die, cu);
13865
13866 /* The die_type call above may have already set the type for this DIE. */
13867 set_type = get_die_type (die, cu);
13868 if (set_type)
13869 return set_type;
13870
13871 set_type = create_set_type (NULL, domain_type);
13872
13873 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13874 if (attr)
13875 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13876
f792889a 13877 return set_die_type (die, set_type, cu);
72019c9c 13878}
7ca2d3a3 13879
0971de02
TT
13880/* A helper for read_common_block that creates a locexpr baton.
13881 SYM is the symbol which we are marking as computed.
13882 COMMON_DIE is the DIE for the common block.
13883 COMMON_LOC is the location expression attribute for the common
13884 block itself.
13885 MEMBER_LOC is the location expression attribute for the particular
13886 member of the common block that we are processing.
13887 CU is the CU from which the above come. */
13888
13889static void
13890mark_common_block_symbol_computed (struct symbol *sym,
13891 struct die_info *common_die,
13892 struct attribute *common_loc,
13893 struct attribute *member_loc,
13894 struct dwarf2_cu *cu)
13895{
13896 struct objfile *objfile = dwarf2_per_objfile->objfile;
13897 struct dwarf2_locexpr_baton *baton;
13898 gdb_byte *ptr;
13899 unsigned int cu_off;
13900 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13901 LONGEST offset = 0;
13902
13903 gdb_assert (common_loc && member_loc);
13904 gdb_assert (attr_form_is_block (common_loc));
13905 gdb_assert (attr_form_is_block (member_loc)
13906 || attr_form_is_constant (member_loc));
13907
13908 baton = obstack_alloc (&objfile->objfile_obstack,
13909 sizeof (struct dwarf2_locexpr_baton));
13910 baton->per_cu = cu->per_cu;
13911 gdb_assert (baton->per_cu);
13912
13913 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13914
13915 if (attr_form_is_constant (member_loc))
13916 {
13917 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13918 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13919 }
13920 else
13921 baton->size += DW_BLOCK (member_loc)->size;
13922
13923 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13924 baton->data = ptr;
13925
13926 *ptr++ = DW_OP_call4;
13927 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13928 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13929 ptr += 4;
13930
13931 if (attr_form_is_constant (member_loc))
13932 {
13933 *ptr++ = DW_OP_addr;
13934 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13935 ptr += cu->header.addr_size;
13936 }
13937 else
13938 {
13939 /* We have to copy the data here, because DW_OP_call4 will only
13940 use a DW_AT_location attribute. */
13941 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13942 ptr += DW_BLOCK (member_loc)->size;
13943 }
13944
13945 *ptr++ = DW_OP_plus;
13946 gdb_assert (ptr - baton->data == baton->size);
13947
0971de02 13948 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13949 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13950}
13951
4357ac6c
TT
13952/* Create appropriate locally-scoped variables for all the
13953 DW_TAG_common_block entries. Also create a struct common_block
13954 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13955 is used to sepate the common blocks name namespace from regular
13956 variable names. */
c906108c
SS
13957
13958static void
e7c27a73 13959read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13960{
0971de02
TT
13961 struct attribute *attr;
13962
13963 attr = dwarf2_attr (die, DW_AT_location, cu);
13964 if (attr)
13965 {
13966 /* Support the .debug_loc offsets. */
13967 if (attr_form_is_block (attr))
13968 {
13969 /* Ok. */
13970 }
13971 else if (attr_form_is_section_offset (attr))
13972 {
13973 dwarf2_complex_location_expr_complaint ();
13974 attr = NULL;
13975 }
13976 else
13977 {
13978 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13979 "common block member");
13980 attr = NULL;
13981 }
13982 }
13983
639d11d3 13984 if (die->child != NULL)
c906108c 13985 {
4357ac6c
TT
13986 struct objfile *objfile = cu->objfile;
13987 struct die_info *child_die;
13988 size_t n_entries = 0, size;
13989 struct common_block *common_block;
13990 struct symbol *sym;
74ac6d43 13991
4357ac6c
TT
13992 for (child_die = die->child;
13993 child_die && child_die->tag;
13994 child_die = sibling_die (child_die))
13995 ++n_entries;
13996
13997 size = (sizeof (struct common_block)
13998 + (n_entries - 1) * sizeof (struct symbol *));
13999 common_block = obstack_alloc (&objfile->objfile_obstack, size);
14000 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14001 common_block->n_entries = 0;
14002
14003 for (child_die = die->child;
14004 child_die && child_die->tag;
14005 child_die = sibling_die (child_die))
14006 {
14007 /* Create the symbol in the DW_TAG_common_block block in the current
14008 symbol scope. */
e7c27a73 14009 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14010 if (sym != NULL)
14011 {
14012 struct attribute *member_loc;
14013
14014 common_block->contents[common_block->n_entries++] = sym;
14015
14016 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14017 cu);
14018 if (member_loc)
14019 {
14020 /* GDB has handled this for a long time, but it is
14021 not specified by DWARF. It seems to have been
14022 emitted by gfortran at least as recently as:
14023 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14024 complaint (&symfile_complaints,
14025 _("Variable in common block has "
14026 "DW_AT_data_member_location "
14027 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14028 child_die->offset.sect_off,
14029 objfile_name (cu->objfile));
0971de02
TT
14030
14031 if (attr_form_is_section_offset (member_loc))
14032 dwarf2_complex_location_expr_complaint ();
14033 else if (attr_form_is_constant (member_loc)
14034 || attr_form_is_block (member_loc))
14035 {
14036 if (attr)
14037 mark_common_block_symbol_computed (sym, die, attr,
14038 member_loc, cu);
14039 }
14040 else
14041 dwarf2_complex_location_expr_complaint ();
14042 }
14043 }
c906108c 14044 }
4357ac6c
TT
14045
14046 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14047 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14048 }
14049}
14050
0114d602 14051/* Create a type for a C++ namespace. */
d9fa45fe 14052
0114d602
DJ
14053static struct type *
14054read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14055{
e7c27a73 14056 struct objfile *objfile = cu->objfile;
0114d602 14057 const char *previous_prefix, *name;
9219021c 14058 int is_anonymous;
0114d602
DJ
14059 struct type *type;
14060
14061 /* For extensions, reuse the type of the original namespace. */
14062 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14063 {
14064 struct die_info *ext_die;
14065 struct dwarf2_cu *ext_cu = cu;
9a619af0 14066
0114d602
DJ
14067 ext_die = dwarf2_extension (die, &ext_cu);
14068 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14069
14070 /* EXT_CU may not be the same as CU.
02142a6c 14071 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14072 return set_die_type (die, type, cu);
14073 }
9219021c 14074
e142c38c 14075 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14076
14077 /* Now build the name of the current namespace. */
14078
0114d602
DJ
14079 previous_prefix = determine_prefix (die, cu);
14080 if (previous_prefix[0] != '\0')
14081 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14082 previous_prefix, name, 0, cu);
0114d602
DJ
14083
14084 /* Create the type. */
14085 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14086 objfile);
abee88f2 14087 TYPE_NAME (type) = name;
0114d602
DJ
14088 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14089
60531b24 14090 return set_die_type (die, type, cu);
0114d602
DJ
14091}
14092
22cee43f 14093/* Read a namespace scope. */
0114d602
DJ
14094
14095static void
14096read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14097{
14098 struct objfile *objfile = cu->objfile;
0114d602 14099 int is_anonymous;
9219021c 14100
5c4e30ca
DC
14101 /* Add a symbol associated to this if we haven't seen the namespace
14102 before. Also, add a using directive if it's an anonymous
14103 namespace. */
9219021c 14104
f2f0e013 14105 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14106 {
14107 struct type *type;
14108
0114d602 14109 type = read_type_die (die, cu);
e7c27a73 14110 new_symbol (die, type, cu);
5c4e30ca 14111
e8e80198 14112 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14113 if (is_anonymous)
0114d602
DJ
14114 {
14115 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14116
22cee43f
PMR
14117 add_using_directive (using_directives (cu->language),
14118 previous_prefix, TYPE_NAME (type), NULL,
14119 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14120 }
5c4e30ca 14121 }
9219021c 14122
639d11d3 14123 if (die->child != NULL)
d9fa45fe 14124 {
639d11d3 14125 struct die_info *child_die = die->child;
6e70227d 14126
d9fa45fe
DC
14127 while (child_die && child_die->tag)
14128 {
e7c27a73 14129 process_die (child_die, cu);
d9fa45fe
DC
14130 child_die = sibling_die (child_die);
14131 }
14132 }
38d518c9
EZ
14133}
14134
f55ee35c
JK
14135/* Read a Fortran module as type. This DIE can be only a declaration used for
14136 imported module. Still we need that type as local Fortran "use ... only"
14137 declaration imports depend on the created type in determine_prefix. */
14138
14139static struct type *
14140read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14141{
14142 struct objfile *objfile = cu->objfile;
15d034d0 14143 const char *module_name;
f55ee35c
JK
14144 struct type *type;
14145
14146 module_name = dwarf2_name (die, cu);
14147 if (!module_name)
3e43a32a
MS
14148 complaint (&symfile_complaints,
14149 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14150 die->offset.sect_off);
f55ee35c
JK
14151 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14152
14153 /* determine_prefix uses TYPE_TAG_NAME. */
14154 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14155
14156 return set_die_type (die, type, cu);
14157}
14158
5d7cb8df
JK
14159/* Read a Fortran module. */
14160
14161static void
14162read_module (struct die_info *die, struct dwarf2_cu *cu)
14163{
14164 struct die_info *child_die = die->child;
530e8392
KB
14165 struct type *type;
14166
14167 type = read_type_die (die, cu);
14168 new_symbol (die, type, cu);
5d7cb8df 14169
5d7cb8df
JK
14170 while (child_die && child_die->tag)
14171 {
14172 process_die (child_die, cu);
14173 child_die = sibling_die (child_die);
14174 }
14175}
14176
38d518c9
EZ
14177/* Return the name of the namespace represented by DIE. Set
14178 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14179 namespace. */
14180
14181static const char *
e142c38c 14182namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14183{
14184 struct die_info *current_die;
14185 const char *name = NULL;
14186
14187 /* Loop through the extensions until we find a name. */
14188
14189 for (current_die = die;
14190 current_die != NULL;
f2f0e013 14191 current_die = dwarf2_extension (die, &cu))
38d518c9 14192 {
96553a0c
DE
14193 /* We don't use dwarf2_name here so that we can detect the absence
14194 of a name -> anonymous namespace. */
14195 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14196
14197 if (attr != NULL)
14198 name = DW_STRING (attr);
38d518c9
EZ
14199 if (name != NULL)
14200 break;
14201 }
14202
14203 /* Is it an anonymous namespace? */
14204
14205 *is_anonymous = (name == NULL);
14206 if (*is_anonymous)
2b1dbab0 14207 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14208
14209 return name;
d9fa45fe
DC
14210}
14211
c906108c
SS
14212/* Extract all information from a DW_TAG_pointer_type DIE and add to
14213 the user defined type vector. */
14214
f792889a 14215static struct type *
e7c27a73 14216read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14217{
5e2b427d 14218 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14219 struct comp_unit_head *cu_header = &cu->header;
c906108c 14220 struct type *type;
8b2dbe47
KB
14221 struct attribute *attr_byte_size;
14222 struct attribute *attr_address_class;
14223 int byte_size, addr_class;
7e314c57
JK
14224 struct type *target_type;
14225
14226 target_type = die_type (die, cu);
c906108c 14227
7e314c57
JK
14228 /* The die_type call above may have already set the type for this DIE. */
14229 type = get_die_type (die, cu);
14230 if (type)
14231 return type;
14232
14233 type = lookup_pointer_type (target_type);
8b2dbe47 14234
e142c38c 14235 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14236 if (attr_byte_size)
14237 byte_size = DW_UNSND (attr_byte_size);
c906108c 14238 else
8b2dbe47
KB
14239 byte_size = cu_header->addr_size;
14240
e142c38c 14241 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14242 if (attr_address_class)
14243 addr_class = DW_UNSND (attr_address_class);
14244 else
14245 addr_class = DW_ADDR_none;
14246
14247 /* If the pointer size or address class is different than the
14248 default, create a type variant marked as such and set the
14249 length accordingly. */
14250 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14251 {
5e2b427d 14252 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14253 {
14254 int type_flags;
14255
849957d9 14256 type_flags = gdbarch_address_class_type_flags
5e2b427d 14257 (gdbarch, byte_size, addr_class);
876cecd0
TT
14258 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14259 == 0);
8b2dbe47
KB
14260 type = make_type_with_address_space (type, type_flags);
14261 }
14262 else if (TYPE_LENGTH (type) != byte_size)
14263 {
3e43a32a
MS
14264 complaint (&symfile_complaints,
14265 _("invalid pointer size %d"), byte_size);
8b2dbe47 14266 }
6e70227d 14267 else
9a619af0
MS
14268 {
14269 /* Should we also complain about unhandled address classes? */
14270 }
c906108c 14271 }
8b2dbe47
KB
14272
14273 TYPE_LENGTH (type) = byte_size;
f792889a 14274 return set_die_type (die, type, cu);
c906108c
SS
14275}
14276
14277/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14278 the user defined type vector. */
14279
f792889a 14280static struct type *
e7c27a73 14281read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14282{
14283 struct type *type;
14284 struct type *to_type;
14285 struct type *domain;
14286
e7c27a73
DJ
14287 to_type = die_type (die, cu);
14288 domain = die_containing_type (die, cu);
0d5de010 14289
7e314c57
JK
14290 /* The calls above may have already set the type for this DIE. */
14291 type = get_die_type (die, cu);
14292 if (type)
14293 return type;
14294
0d5de010
DJ
14295 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14296 type = lookup_methodptr_type (to_type);
7078baeb
TT
14297 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14298 {
14299 struct type *new_type = alloc_type (cu->objfile);
14300
14301 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14302 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14303 TYPE_VARARGS (to_type));
14304 type = lookup_methodptr_type (new_type);
14305 }
0d5de010
DJ
14306 else
14307 type = lookup_memberptr_type (to_type, domain);
c906108c 14308
f792889a 14309 return set_die_type (die, type, cu);
c906108c
SS
14310}
14311
14312/* Extract all information from a DW_TAG_reference_type DIE and add to
14313 the user defined type vector. */
14314
f792889a 14315static struct type *
e7c27a73 14316read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14317{
e7c27a73 14318 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14319 struct type *type, *target_type;
c906108c
SS
14320 struct attribute *attr;
14321
7e314c57
JK
14322 target_type = die_type (die, cu);
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 type = get_die_type (die, cu);
14326 if (type)
14327 return type;
14328
14329 type = lookup_reference_type (target_type);
e142c38c 14330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14331 if (attr)
14332 {
14333 TYPE_LENGTH (type) = DW_UNSND (attr);
14334 }
14335 else
14336 {
107d2387 14337 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14338 }
f792889a 14339 return set_die_type (die, type, cu);
c906108c
SS
14340}
14341
cf363f18
MW
14342/* Add the given cv-qualifiers to the element type of the array. GCC
14343 outputs DWARF type qualifiers that apply to an array, not the
14344 element type. But GDB relies on the array element type to carry
14345 the cv-qualifiers. This mimics section 6.7.3 of the C99
14346 specification. */
14347
14348static struct type *
14349add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14350 struct type *base_type, int cnst, int voltl)
14351{
14352 struct type *el_type, *inner_array;
14353
14354 base_type = copy_type (base_type);
14355 inner_array = base_type;
14356
14357 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14358 {
14359 TYPE_TARGET_TYPE (inner_array) =
14360 copy_type (TYPE_TARGET_TYPE (inner_array));
14361 inner_array = TYPE_TARGET_TYPE (inner_array);
14362 }
14363
14364 el_type = TYPE_TARGET_TYPE (inner_array);
14365 cnst |= TYPE_CONST (el_type);
14366 voltl |= TYPE_VOLATILE (el_type);
14367 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14368
14369 return set_die_type (die, base_type, cu);
14370}
14371
f792889a 14372static struct type *
e7c27a73 14373read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14374{
f792889a 14375 struct type *base_type, *cv_type;
c906108c 14376
e7c27a73 14377 base_type = die_type (die, cu);
7e314c57
JK
14378
14379 /* The die_type call above may have already set the type for this DIE. */
14380 cv_type = get_die_type (die, cu);
14381 if (cv_type)
14382 return cv_type;
14383
2f608a3a
KW
14384 /* In case the const qualifier is applied to an array type, the element type
14385 is so qualified, not the array type (section 6.7.3 of C99). */
14386 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14387 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14388
f792889a
DJ
14389 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14390 return set_die_type (die, cv_type, cu);
c906108c
SS
14391}
14392
f792889a 14393static struct type *
e7c27a73 14394read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14395{
f792889a 14396 struct type *base_type, *cv_type;
c906108c 14397
e7c27a73 14398 base_type = die_type (die, cu);
7e314c57
JK
14399
14400 /* The die_type call above may have already set the type for this DIE. */
14401 cv_type = get_die_type (die, cu);
14402 if (cv_type)
14403 return cv_type;
14404
cf363f18
MW
14405 /* In case the volatile qualifier is applied to an array type, the
14406 element type is so qualified, not the array type (section 6.7.3
14407 of C99). */
14408 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14409 return add_array_cv_type (die, cu, base_type, 0, 1);
14410
f792889a
DJ
14411 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14412 return set_die_type (die, cv_type, cu);
c906108c
SS
14413}
14414
06d66ee9
TT
14415/* Handle DW_TAG_restrict_type. */
14416
14417static struct type *
14418read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14419{
14420 struct type *base_type, *cv_type;
14421
14422 base_type = die_type (die, cu);
14423
14424 /* The die_type call above may have already set the type for this DIE. */
14425 cv_type = get_die_type (die, cu);
14426 if (cv_type)
14427 return cv_type;
14428
14429 cv_type = make_restrict_type (base_type);
14430 return set_die_type (die, cv_type, cu);
14431}
14432
a2c2acaf
MW
14433/* Handle DW_TAG_atomic_type. */
14434
14435static struct type *
14436read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14437{
14438 struct type *base_type, *cv_type;
14439
14440 base_type = die_type (die, cu);
14441
14442 /* The die_type call above may have already set the type for this DIE. */
14443 cv_type = get_die_type (die, cu);
14444 if (cv_type)
14445 return cv_type;
14446
14447 cv_type = make_atomic_type (base_type);
14448 return set_die_type (die, cv_type, cu);
14449}
14450
c906108c
SS
14451/* Extract all information from a DW_TAG_string_type DIE and add to
14452 the user defined type vector. It isn't really a user defined type,
14453 but it behaves like one, with other DIE's using an AT_user_def_type
14454 attribute to reference it. */
14455
f792889a 14456static struct type *
e7c27a73 14457read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14458{
e7c27a73 14459 struct objfile *objfile = cu->objfile;
3b7538c0 14460 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14461 struct type *type, *range_type, *index_type, *char_type;
14462 struct attribute *attr;
14463 unsigned int length;
14464
e142c38c 14465 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14466 if (attr)
14467 {
14468 length = DW_UNSND (attr);
14469 }
14470 else
14471 {
0963b4bd 14472 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14473 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14474 if (attr)
14475 {
14476 length = DW_UNSND (attr);
14477 }
14478 else
14479 {
14480 length = 1;
14481 }
c906108c 14482 }
6ccb9162 14483
46bf5051 14484 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14485 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14486 char_type = language_string_char_type (cu->language_defn, gdbarch);
14487 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14488
f792889a 14489 return set_die_type (die, type, cu);
c906108c
SS
14490}
14491
4d804846
JB
14492/* Assuming that DIE corresponds to a function, returns nonzero
14493 if the function is prototyped. */
14494
14495static int
14496prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14497{
14498 struct attribute *attr;
14499
14500 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14501 if (attr && (DW_UNSND (attr) != 0))
14502 return 1;
14503
14504 /* The DWARF standard implies that the DW_AT_prototyped attribute
14505 is only meaninful for C, but the concept also extends to other
14506 languages that allow unprototyped functions (Eg: Objective C).
14507 For all other languages, assume that functions are always
14508 prototyped. */
14509 if (cu->language != language_c
14510 && cu->language != language_objc
14511 && cu->language != language_opencl)
14512 return 1;
14513
14514 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14515 prototyped and unprototyped functions; default to prototyped,
14516 since that is more common in modern code (and RealView warns
14517 about unprototyped functions). */
14518 if (producer_is_realview (cu->producer))
14519 return 1;
14520
14521 return 0;
14522}
14523
c906108c
SS
14524/* Handle DIES due to C code like:
14525
14526 struct foo
c5aa993b
JM
14527 {
14528 int (*funcp)(int a, long l);
14529 int b;
14530 };
c906108c 14531
0963b4bd 14532 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14533
f792889a 14534static struct type *
e7c27a73 14535read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14536{
bb5ed363 14537 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14538 struct type *type; /* Type that this function returns. */
14539 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14540 struct attribute *attr;
14541
e7c27a73 14542 type = die_type (die, cu);
7e314c57
JK
14543
14544 /* The die_type call above may have already set the type for this DIE. */
14545 ftype = get_die_type (die, cu);
14546 if (ftype)
14547 return ftype;
14548
0c8b41f1 14549 ftype = lookup_function_type (type);
c906108c 14550
4d804846 14551 if (prototyped_function_p (die, cu))
a6c727b2 14552 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14553
c055b101
CV
14554 /* Store the calling convention in the type if it's available in
14555 the subroutine die. Otherwise set the calling convention to
14556 the default value DW_CC_normal. */
14557 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14558 if (attr)
14559 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14560 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14561 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14562 else
14563 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14564
743649fd
MW
14565 /* Record whether the function returns normally to its caller or not
14566 if the DWARF producer set that information. */
14567 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14568 if (attr && (DW_UNSND (attr) != 0))
14569 TYPE_NO_RETURN (ftype) = 1;
14570
76c10ea2
GM
14571 /* We need to add the subroutine type to the die immediately so
14572 we don't infinitely recurse when dealing with parameters
0963b4bd 14573 declared as the same subroutine type. */
76c10ea2 14574 set_die_type (die, ftype, cu);
6e70227d 14575
639d11d3 14576 if (die->child != NULL)
c906108c 14577 {
bb5ed363 14578 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14579 struct die_info *child_die;
8072405b 14580 int nparams, iparams;
c906108c
SS
14581
14582 /* Count the number of parameters.
14583 FIXME: GDB currently ignores vararg functions, but knows about
14584 vararg member functions. */
8072405b 14585 nparams = 0;
639d11d3 14586 child_die = die->child;
c906108c
SS
14587 while (child_die && child_die->tag)
14588 {
14589 if (child_die->tag == DW_TAG_formal_parameter)
14590 nparams++;
14591 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14592 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14593 child_die = sibling_die (child_die);
14594 }
14595
14596 /* Allocate storage for parameters and fill them in. */
14597 TYPE_NFIELDS (ftype) = nparams;
14598 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14599 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14600
8072405b
JK
14601 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14602 even if we error out during the parameters reading below. */
14603 for (iparams = 0; iparams < nparams; iparams++)
14604 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14605
14606 iparams = 0;
639d11d3 14607 child_die = die->child;
c906108c
SS
14608 while (child_die && child_die->tag)
14609 {
14610 if (child_die->tag == DW_TAG_formal_parameter)
14611 {
3ce3b1ba
PA
14612 struct type *arg_type;
14613
14614 /* DWARF version 2 has no clean way to discern C++
14615 static and non-static member functions. G++ helps
14616 GDB by marking the first parameter for non-static
14617 member functions (which is the this pointer) as
14618 artificial. We pass this information to
14619 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14620
14621 DWARF version 3 added DW_AT_object_pointer, which GCC
14622 4.5 does not yet generate. */
e142c38c 14623 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14624 if (attr)
14625 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14626 else
418835cc
KS
14627 {
14628 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14629
14630 /* GCC/43521: In java, the formal parameter
14631 "this" is sometimes not marked with DW_AT_artificial. */
14632 if (cu->language == language_java)
14633 {
14634 const char *name = dwarf2_name (child_die, cu);
9a619af0 14635
418835cc
KS
14636 if (name && !strcmp (name, "this"))
14637 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14638 }
14639 }
3ce3b1ba
PA
14640 arg_type = die_type (child_die, cu);
14641
14642 /* RealView does not mark THIS as const, which the testsuite
14643 expects. GCC marks THIS as const in method definitions,
14644 but not in the class specifications (GCC PR 43053). */
14645 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14646 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14647 {
14648 int is_this = 0;
14649 struct dwarf2_cu *arg_cu = cu;
14650 const char *name = dwarf2_name (child_die, cu);
14651
14652 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14653 if (attr)
14654 {
14655 /* If the compiler emits this, use it. */
14656 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14657 is_this = 1;
14658 }
14659 else if (name && strcmp (name, "this") == 0)
14660 /* Function definitions will have the argument names. */
14661 is_this = 1;
14662 else if (name == NULL && iparams == 0)
14663 /* Declarations may not have the names, so like
14664 elsewhere in GDB, assume an artificial first
14665 argument is "this". */
14666 is_this = 1;
14667
14668 if (is_this)
14669 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14670 arg_type, 0);
14671 }
14672
14673 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14674 iparams++;
14675 }
14676 child_die = sibling_die (child_die);
14677 }
14678 }
14679
76c10ea2 14680 return ftype;
c906108c
SS
14681}
14682
f792889a 14683static struct type *
e7c27a73 14684read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14685{
e7c27a73 14686 struct objfile *objfile = cu->objfile;
0114d602 14687 const char *name = NULL;
3c8e0968 14688 struct type *this_type, *target_type;
c906108c 14689
94af9270 14690 name = dwarf2_full_name (NULL, die, cu);
f792889a 14691 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14692 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14693 TYPE_NAME (this_type) = name;
f792889a 14694 set_die_type (die, this_type, cu);
3c8e0968
DE
14695 target_type = die_type (die, cu);
14696 if (target_type != this_type)
14697 TYPE_TARGET_TYPE (this_type) = target_type;
14698 else
14699 {
14700 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14701 spec and cause infinite loops in GDB. */
14702 complaint (&symfile_complaints,
14703 _("Self-referential DW_TAG_typedef "
14704 "- DIE at 0x%x [in module %s]"),
4262abfb 14705 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14706 TYPE_TARGET_TYPE (this_type) = NULL;
14707 }
f792889a 14708 return this_type;
c906108c
SS
14709}
14710
14711/* Find a representation of a given base type and install
14712 it in the TYPE field of the die. */
14713
f792889a 14714static struct type *
e7c27a73 14715read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14716{
e7c27a73 14717 struct objfile *objfile = cu->objfile;
c906108c
SS
14718 struct type *type;
14719 struct attribute *attr;
14720 int encoding = 0, size = 0;
15d034d0 14721 const char *name;
6ccb9162
UW
14722 enum type_code code = TYPE_CODE_INT;
14723 int type_flags = 0;
14724 struct type *target_type = NULL;
c906108c 14725
e142c38c 14726 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14727 if (attr)
14728 {
14729 encoding = DW_UNSND (attr);
14730 }
e142c38c 14731 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14732 if (attr)
14733 {
14734 size = DW_UNSND (attr);
14735 }
39cbfefa 14736 name = dwarf2_name (die, cu);
6ccb9162 14737 if (!name)
c906108c 14738 {
6ccb9162
UW
14739 complaint (&symfile_complaints,
14740 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14741 }
6ccb9162
UW
14742
14743 switch (encoding)
c906108c 14744 {
6ccb9162
UW
14745 case DW_ATE_address:
14746 /* Turn DW_ATE_address into a void * pointer. */
14747 code = TYPE_CODE_PTR;
14748 type_flags |= TYPE_FLAG_UNSIGNED;
14749 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14750 break;
14751 case DW_ATE_boolean:
14752 code = TYPE_CODE_BOOL;
14753 type_flags |= TYPE_FLAG_UNSIGNED;
14754 break;
14755 case DW_ATE_complex_float:
14756 code = TYPE_CODE_COMPLEX;
14757 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14758 break;
14759 case DW_ATE_decimal_float:
14760 code = TYPE_CODE_DECFLOAT;
14761 break;
14762 case DW_ATE_float:
14763 code = TYPE_CODE_FLT;
14764 break;
14765 case DW_ATE_signed:
14766 break;
14767 case DW_ATE_unsigned:
14768 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14769 if (cu->language == language_fortran
14770 && name
61012eef 14771 && startswith (name, "character("))
3b2b8fea 14772 code = TYPE_CODE_CHAR;
6ccb9162
UW
14773 break;
14774 case DW_ATE_signed_char:
6e70227d 14775 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14776 || cu->language == language_pascal
14777 || cu->language == language_fortran)
6ccb9162
UW
14778 code = TYPE_CODE_CHAR;
14779 break;
14780 case DW_ATE_unsigned_char:
868a0084 14781 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14782 || cu->language == language_pascal
14783 || cu->language == language_fortran)
6ccb9162
UW
14784 code = TYPE_CODE_CHAR;
14785 type_flags |= TYPE_FLAG_UNSIGNED;
14786 break;
75079b2b
TT
14787 case DW_ATE_UTF:
14788 /* We just treat this as an integer and then recognize the
14789 type by name elsewhere. */
14790 break;
14791
6ccb9162
UW
14792 default:
14793 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14794 dwarf_type_encoding_name (encoding));
14795 break;
c906108c 14796 }
6ccb9162 14797
0114d602
DJ
14798 type = init_type (code, size, type_flags, NULL, objfile);
14799 TYPE_NAME (type) = name;
6ccb9162
UW
14800 TYPE_TARGET_TYPE (type) = target_type;
14801
0114d602 14802 if (name && strcmp (name, "char") == 0)
876cecd0 14803 TYPE_NOSIGN (type) = 1;
0114d602 14804
f792889a 14805 return set_die_type (die, type, cu);
c906108c
SS
14806}
14807
80180f79
SA
14808/* Parse dwarf attribute if it's a block, reference or constant and put the
14809 resulting value of the attribute into struct bound_prop.
14810 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14811
14812static int
14813attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14814 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14815{
14816 struct dwarf2_property_baton *baton;
14817 struct obstack *obstack = &cu->objfile->objfile_obstack;
14818
14819 if (attr == NULL || prop == NULL)
14820 return 0;
14821
14822 if (attr_form_is_block (attr))
14823 {
14824 baton = obstack_alloc (obstack, sizeof (*baton));
14825 baton->referenced_type = NULL;
14826 baton->locexpr.per_cu = cu->per_cu;
14827 baton->locexpr.size = DW_BLOCK (attr)->size;
14828 baton->locexpr.data = DW_BLOCK (attr)->data;
14829 prop->data.baton = baton;
14830 prop->kind = PROP_LOCEXPR;
14831 gdb_assert (prop->data.baton != NULL);
14832 }
14833 else if (attr_form_is_ref (attr))
14834 {
14835 struct dwarf2_cu *target_cu = cu;
14836 struct die_info *target_die;
14837 struct attribute *target_attr;
14838
14839 target_die = follow_die_ref (die, attr, &target_cu);
14840 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14841 if (target_attr == NULL)
14842 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14843 target_cu);
80180f79
SA
14844 if (target_attr == NULL)
14845 return 0;
14846
df25ebbd 14847 switch (target_attr->name)
80180f79 14848 {
df25ebbd
JB
14849 case DW_AT_location:
14850 if (attr_form_is_section_offset (target_attr))
14851 {
14852 baton = obstack_alloc (obstack, sizeof (*baton));
14853 baton->referenced_type = die_type (target_die, target_cu);
14854 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14855 prop->data.baton = baton;
14856 prop->kind = PROP_LOCLIST;
14857 gdb_assert (prop->data.baton != NULL);
14858 }
14859 else if (attr_form_is_block (target_attr))
14860 {
14861 baton = obstack_alloc (obstack, sizeof (*baton));
14862 baton->referenced_type = die_type (target_die, target_cu);
14863 baton->locexpr.per_cu = cu->per_cu;
14864 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14865 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCEXPR;
14868 gdb_assert (prop->data.baton != NULL);
14869 }
14870 else
14871 {
14872 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14873 "dynamic property");
14874 return 0;
14875 }
14876 break;
14877 case DW_AT_data_member_location:
14878 {
14879 LONGEST offset;
14880
14881 if (!handle_data_member_location (target_die, target_cu,
14882 &offset))
14883 return 0;
14884
14885 baton = obstack_alloc (obstack, sizeof (*baton));
6ad395a7
JB
14886 baton->referenced_type = read_type_die (target_die->parent,
14887 target_cu);
df25ebbd
JB
14888 baton->offset_info.offset = offset;
14889 baton->offset_info.type = die_type (target_die, target_cu);
14890 prop->data.baton = baton;
14891 prop->kind = PROP_ADDR_OFFSET;
14892 break;
14893 }
80180f79
SA
14894 }
14895 }
14896 else if (attr_form_is_constant (attr))
14897 {
14898 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14899 prop->kind = PROP_CONST;
14900 }
14901 else
14902 {
14903 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14904 dwarf2_name (die, cu));
14905 return 0;
14906 }
14907
14908 return 1;
14909}
14910
a02abb62
JB
14911/* Read the given DW_AT_subrange DIE. */
14912
f792889a 14913static struct type *
a02abb62
JB
14914read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14915{
4c9ad8c2 14916 struct type *base_type, *orig_base_type;
a02abb62
JB
14917 struct type *range_type;
14918 struct attribute *attr;
729efb13 14919 struct dynamic_prop low, high;
4fae6e18 14920 int low_default_is_valid;
c451ebe5 14921 int high_bound_is_count = 0;
15d034d0 14922 const char *name;
43bbcdc2 14923 LONGEST negative_mask;
e77813c8 14924
4c9ad8c2
TT
14925 orig_base_type = die_type (die, cu);
14926 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14927 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14928 creating the range type, but we use the result of check_typedef
14929 when examining properties of the type. */
14930 base_type = check_typedef (orig_base_type);
a02abb62 14931
7e314c57
JK
14932 /* The die_type call above may have already set the type for this DIE. */
14933 range_type = get_die_type (die, cu);
14934 if (range_type)
14935 return range_type;
14936
729efb13
SA
14937 low.kind = PROP_CONST;
14938 high.kind = PROP_CONST;
14939 high.data.const_val = 0;
14940
4fae6e18
JK
14941 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14942 omitting DW_AT_lower_bound. */
14943 switch (cu->language)
6e70227d 14944 {
4fae6e18
JK
14945 case language_c:
14946 case language_cplus:
729efb13 14947 low.data.const_val = 0;
4fae6e18
JK
14948 low_default_is_valid = 1;
14949 break;
14950 case language_fortran:
729efb13 14951 low.data.const_val = 1;
4fae6e18
JK
14952 low_default_is_valid = 1;
14953 break;
14954 case language_d:
14955 case language_java:
14956 case language_objc:
729efb13 14957 low.data.const_val = 0;
4fae6e18
JK
14958 low_default_is_valid = (cu->header.version >= 4);
14959 break;
14960 case language_ada:
14961 case language_m2:
14962 case language_pascal:
729efb13 14963 low.data.const_val = 1;
4fae6e18
JK
14964 low_default_is_valid = (cu->header.version >= 4);
14965 break;
14966 default:
729efb13 14967 low.data.const_val = 0;
4fae6e18
JK
14968 low_default_is_valid = 0;
14969 break;
a02abb62
JB
14970 }
14971
e142c38c 14972 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14973 if (attr)
11c1ba78 14974 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14975 else if (!low_default_is_valid)
14976 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14977 "- DIE at 0x%x [in module %s]"),
4262abfb 14978 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14979
e142c38c 14980 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14981 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14982 {
14983 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14984 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14985 {
c451ebe5
SA
14986 /* If bounds are constant do the final calculation here. */
14987 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14988 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14989 else
14990 high_bound_is_count = 1;
c2ff108b 14991 }
e77813c8
PM
14992 }
14993
14994 /* Dwarf-2 specifications explicitly allows to create subrange types
14995 without specifying a base type.
14996 In that case, the base type must be set to the type of
14997 the lower bound, upper bound or count, in that order, if any of these
14998 three attributes references an object that has a type.
14999 If no base type is found, the Dwarf-2 specifications say that
15000 a signed integer type of size equal to the size of an address should
15001 be used.
15002 For the following C code: `extern char gdb_int [];'
15003 GCC produces an empty range DIE.
15004 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15005 high bound or count are not yet handled by this code. */
e77813c8
PM
15006 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15007 {
15008 struct objfile *objfile = cu->objfile;
15009 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15010 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15011 struct type *int_type = objfile_type (objfile)->builtin_int;
15012
15013 /* Test "int", "long int", and "long long int" objfile types,
15014 and select the first one having a size above or equal to the
15015 architecture address size. */
15016 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15017 base_type = int_type;
15018 else
15019 {
15020 int_type = objfile_type (objfile)->builtin_long;
15021 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15022 base_type = int_type;
15023 else
15024 {
15025 int_type = objfile_type (objfile)->builtin_long_long;
15026 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15027 base_type = int_type;
15028 }
15029 }
15030 }
a02abb62 15031
dbb9c2b1
JB
15032 /* Normally, the DWARF producers are expected to use a signed
15033 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15034 But this is unfortunately not always the case, as witnessed
15035 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15036 is used instead. To work around that ambiguity, we treat
15037 the bounds as signed, and thus sign-extend their values, when
15038 the base type is signed. */
6e70227d 15039 negative_mask =
43bbcdc2 15040 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15041 if (low.kind == PROP_CONST
15042 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15043 low.data.const_val |= negative_mask;
15044 if (high.kind == PROP_CONST
15045 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15046 high.data.const_val |= negative_mask;
43bbcdc2 15047
729efb13 15048 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15049
c451ebe5
SA
15050 if (high_bound_is_count)
15051 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15052
c2ff108b
JK
15053 /* Ada expects an empty array on no boundary attributes. */
15054 if (attr == NULL && cu->language != language_ada)
729efb13 15055 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15056
39cbfefa
DJ
15057 name = dwarf2_name (die, cu);
15058 if (name)
15059 TYPE_NAME (range_type) = name;
6e70227d 15060
e142c38c 15061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15062 if (attr)
15063 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15064
7e314c57
JK
15065 set_die_type (die, range_type, cu);
15066
15067 /* set_die_type should be already done. */
b4ba55a1
JB
15068 set_descriptive_type (range_type, die, cu);
15069
7e314c57 15070 return range_type;
a02abb62 15071}
6e70227d 15072
f792889a 15073static struct type *
81a17f79
JB
15074read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15075{
15076 struct type *type;
81a17f79 15077
81a17f79
JB
15078 /* For now, we only support the C meaning of an unspecified type: void. */
15079
0114d602
DJ
15080 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15081 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15082
f792889a 15083 return set_die_type (die, type, cu);
81a17f79 15084}
a02abb62 15085
639d11d3
DC
15086/* Read a single die and all its descendents. Set the die's sibling
15087 field to NULL; set other fields in the die correctly, and set all
15088 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15089 location of the info_ptr after reading all of those dies. PARENT
15090 is the parent of the die in question. */
15091
15092static struct die_info *
dee91e82 15093read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15094 const gdb_byte *info_ptr,
15095 const gdb_byte **new_info_ptr,
dee91e82 15096 struct die_info *parent)
639d11d3
DC
15097{
15098 struct die_info *die;
d521ce57 15099 const gdb_byte *cur_ptr;
639d11d3
DC
15100 int has_children;
15101
bf6af496 15102 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15103 if (die == NULL)
15104 {
15105 *new_info_ptr = cur_ptr;
15106 return NULL;
15107 }
93311388 15108 store_in_ref_table (die, reader->cu);
639d11d3
DC
15109
15110 if (has_children)
bf6af496 15111 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15112 else
15113 {
15114 die->child = NULL;
15115 *new_info_ptr = cur_ptr;
15116 }
15117
15118 die->sibling = NULL;
15119 die->parent = parent;
15120 return die;
15121}
15122
15123/* Read a die, all of its descendents, and all of its siblings; set
15124 all of the fields of all of the dies correctly. Arguments are as
15125 in read_die_and_children. */
15126
15127static struct die_info *
bf6af496 15128read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15129 const gdb_byte *info_ptr,
15130 const gdb_byte **new_info_ptr,
bf6af496 15131 struct die_info *parent)
639d11d3
DC
15132{
15133 struct die_info *first_die, *last_sibling;
d521ce57 15134 const gdb_byte *cur_ptr;
639d11d3 15135
c906108c 15136 cur_ptr = info_ptr;
639d11d3
DC
15137 first_die = last_sibling = NULL;
15138
15139 while (1)
c906108c 15140 {
639d11d3 15141 struct die_info *die
dee91e82 15142 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15143
1d325ec1 15144 if (die == NULL)
c906108c 15145 {
639d11d3
DC
15146 *new_info_ptr = cur_ptr;
15147 return first_die;
c906108c 15148 }
1d325ec1
DJ
15149
15150 if (!first_die)
15151 first_die = die;
c906108c 15152 else
1d325ec1
DJ
15153 last_sibling->sibling = die;
15154
15155 last_sibling = die;
c906108c 15156 }
c906108c
SS
15157}
15158
bf6af496
DE
15159/* Read a die, all of its descendents, and all of its siblings; set
15160 all of the fields of all of the dies correctly. Arguments are as
15161 in read_die_and_children.
15162 This the main entry point for reading a DIE and all its children. */
15163
15164static struct die_info *
15165read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15166 const gdb_byte *info_ptr,
15167 const gdb_byte **new_info_ptr,
bf6af496
DE
15168 struct die_info *parent)
15169{
15170 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15171 new_info_ptr, parent);
15172
b4f54984 15173 if (dwarf_die_debug)
bf6af496
DE
15174 {
15175 fprintf_unfiltered (gdb_stdlog,
15176 "Read die from %s@0x%x of %s:\n",
a32a8923 15177 get_section_name (reader->die_section),
bf6af496
DE
15178 (unsigned) (info_ptr - reader->die_section->buffer),
15179 bfd_get_filename (reader->abfd));
b4f54984 15180 dump_die (die, dwarf_die_debug);
bf6af496
DE
15181 }
15182
15183 return die;
15184}
15185
3019eac3
DE
15186/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15187 attributes.
15188 The caller is responsible for filling in the extra attributes
15189 and updating (*DIEP)->num_attrs.
15190 Set DIEP to point to a newly allocated die with its information,
15191 except for its child, sibling, and parent fields.
15192 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15193
d521ce57 15194static const gdb_byte *
3019eac3 15195read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15196 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15197 int *has_children, int num_extra_attrs)
93311388 15198{
b64f50a1
JK
15199 unsigned int abbrev_number, bytes_read, i;
15200 sect_offset offset;
93311388
DE
15201 struct abbrev_info *abbrev;
15202 struct die_info *die;
15203 struct dwarf2_cu *cu = reader->cu;
15204 bfd *abfd = reader->abfd;
15205
b64f50a1 15206 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15208 info_ptr += bytes_read;
15209 if (!abbrev_number)
15210 {
15211 *diep = NULL;
15212 *has_children = 0;
15213 return info_ptr;
15214 }
15215
433df2d4 15216 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15217 if (!abbrev)
348e048f
DE
15218 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15219 abbrev_number,
15220 bfd_get_filename (abfd));
15221
3019eac3 15222 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15223 die->offset = offset;
15224 die->tag = abbrev->tag;
15225 die->abbrev = abbrev_number;
15226
3019eac3
DE
15227 /* Make the result usable.
15228 The caller needs to update num_attrs after adding the extra
15229 attributes. */
93311388
DE
15230 die->num_attrs = abbrev->num_attrs;
15231
15232 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15233 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15234 info_ptr);
93311388
DE
15235
15236 *diep = die;
15237 *has_children = abbrev->has_children;
15238 return info_ptr;
15239}
15240
3019eac3
DE
15241/* Read a die and all its attributes.
15242 Set DIEP to point to a newly allocated die with its information,
15243 except for its child, sibling, and parent fields.
15244 Set HAS_CHILDREN to tell whether the die has children or not. */
15245
d521ce57 15246static const gdb_byte *
3019eac3 15247read_full_die (const struct die_reader_specs *reader,
d521ce57 15248 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15249 int *has_children)
15250{
d521ce57 15251 const gdb_byte *result;
bf6af496
DE
15252
15253 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15254
b4f54984 15255 if (dwarf_die_debug)
bf6af496
DE
15256 {
15257 fprintf_unfiltered (gdb_stdlog,
15258 "Read die from %s@0x%x of %s:\n",
a32a8923 15259 get_section_name (reader->die_section),
bf6af496
DE
15260 (unsigned) (info_ptr - reader->die_section->buffer),
15261 bfd_get_filename (reader->abfd));
b4f54984 15262 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15263 }
15264
15265 return result;
3019eac3 15266}
433df2d4
DE
15267\f
15268/* Abbreviation tables.
3019eac3 15269
433df2d4 15270 In DWARF version 2, the description of the debugging information is
c906108c
SS
15271 stored in a separate .debug_abbrev section. Before we read any
15272 dies from a section we read in all abbreviations and install them
433df2d4
DE
15273 in a hash table. */
15274
15275/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15276
15277static struct abbrev_info *
15278abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15279{
15280 struct abbrev_info *abbrev;
15281
15282 abbrev = (struct abbrev_info *)
15283 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15284 memset (abbrev, 0, sizeof (struct abbrev_info));
15285 return abbrev;
15286}
15287
15288/* Add an abbreviation to the table. */
c906108c
SS
15289
15290static void
433df2d4
DE
15291abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15292 unsigned int abbrev_number,
15293 struct abbrev_info *abbrev)
15294{
15295 unsigned int hash_number;
15296
15297 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15298 abbrev->next = abbrev_table->abbrevs[hash_number];
15299 abbrev_table->abbrevs[hash_number] = abbrev;
15300}
dee91e82 15301
433df2d4
DE
15302/* Look up an abbrev in the table.
15303 Returns NULL if the abbrev is not found. */
15304
15305static struct abbrev_info *
15306abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15307 unsigned int abbrev_number)
c906108c 15308{
433df2d4
DE
15309 unsigned int hash_number;
15310 struct abbrev_info *abbrev;
15311
15312 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15313 abbrev = abbrev_table->abbrevs[hash_number];
15314
15315 while (abbrev)
15316 {
15317 if (abbrev->number == abbrev_number)
15318 return abbrev;
15319 abbrev = abbrev->next;
15320 }
15321 return NULL;
15322}
15323
15324/* Read in an abbrev table. */
15325
15326static struct abbrev_table *
15327abbrev_table_read_table (struct dwarf2_section_info *section,
15328 sect_offset offset)
15329{
15330 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15331 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15332 struct abbrev_table *abbrev_table;
d521ce57 15333 const gdb_byte *abbrev_ptr;
c906108c
SS
15334 struct abbrev_info *cur_abbrev;
15335 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15336 unsigned int abbrev_form;
f3dd6933
DJ
15337 struct attr_abbrev *cur_attrs;
15338 unsigned int allocated_attrs;
c906108c 15339
70ba0933 15340 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15341 abbrev_table->offset = offset;
433df2d4
DE
15342 obstack_init (&abbrev_table->abbrev_obstack);
15343 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15344 (ABBREV_HASH_SIZE
15345 * sizeof (struct abbrev_info *)));
15346 memset (abbrev_table->abbrevs, 0,
15347 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15348
433df2d4
DE
15349 dwarf2_read_section (objfile, section);
15350 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15351 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15352 abbrev_ptr += bytes_read;
15353
f3dd6933
DJ
15354 allocated_attrs = ATTR_ALLOC_CHUNK;
15355 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15356
0963b4bd 15357 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15358 while (abbrev_number)
15359 {
433df2d4 15360 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15361
15362 /* read in abbrev header */
15363 cur_abbrev->number = abbrev_number;
aead7601
SM
15364 cur_abbrev->tag
15365 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15366 abbrev_ptr += bytes_read;
15367 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15368 abbrev_ptr += 1;
15369
15370 /* now read in declarations */
15371 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15372 abbrev_ptr += bytes_read;
15373 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15374 abbrev_ptr += bytes_read;
15375 while (abbrev_name)
15376 {
f3dd6933 15377 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15378 {
f3dd6933
DJ
15379 allocated_attrs += ATTR_ALLOC_CHUNK;
15380 cur_attrs
15381 = xrealloc (cur_attrs, (allocated_attrs
15382 * sizeof (struct attr_abbrev)));
c906108c 15383 }
ae038cb0 15384
aead7601
SM
15385 cur_attrs[cur_abbrev->num_attrs].name
15386 = (enum dwarf_attribute) abbrev_name;
15387 cur_attrs[cur_abbrev->num_attrs++].form
15388 = (enum dwarf_form) abbrev_form;
c906108c
SS
15389 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15390 abbrev_ptr += bytes_read;
15391 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15392 abbrev_ptr += bytes_read;
15393 }
15394
433df2d4 15395 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15396 (cur_abbrev->num_attrs
15397 * sizeof (struct attr_abbrev)));
15398 memcpy (cur_abbrev->attrs, cur_attrs,
15399 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15400
433df2d4 15401 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15402
15403 /* Get next abbreviation.
15404 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15405 always properly terminated with an abbrev number of 0.
15406 Exit loop if we encounter an abbreviation which we have
15407 already read (which means we are about to read the abbreviations
15408 for the next compile unit) or if the end of the abbreviation
15409 table is reached. */
433df2d4 15410 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15411 break;
15412 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
433df2d4 15414 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15415 break;
15416 }
f3dd6933
DJ
15417
15418 xfree (cur_attrs);
433df2d4 15419 return abbrev_table;
c906108c
SS
15420}
15421
433df2d4 15422/* Free the resources held by ABBREV_TABLE. */
c906108c 15423
c906108c 15424static void
433df2d4 15425abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15426{
433df2d4
DE
15427 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15428 xfree (abbrev_table);
c906108c
SS
15429}
15430
f4dc4d17
DE
15431/* Same as abbrev_table_free but as a cleanup.
15432 We pass in a pointer to the pointer to the table so that we can
15433 set the pointer to NULL when we're done. It also simplifies
73051182 15434 build_type_psymtabs_1. */
f4dc4d17
DE
15435
15436static void
15437abbrev_table_free_cleanup (void *table_ptr)
15438{
15439 struct abbrev_table **abbrev_table_ptr = table_ptr;
15440
15441 if (*abbrev_table_ptr != NULL)
15442 abbrev_table_free (*abbrev_table_ptr);
15443 *abbrev_table_ptr = NULL;
15444}
15445
433df2d4
DE
15446/* Read the abbrev table for CU from ABBREV_SECTION. */
15447
15448static void
15449dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15450 struct dwarf2_section_info *abbrev_section)
c906108c 15451{
433df2d4
DE
15452 cu->abbrev_table =
15453 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15454}
c906108c 15455
433df2d4 15456/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15457
433df2d4
DE
15458static void
15459dwarf2_free_abbrev_table (void *ptr_to_cu)
15460{
15461 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15462
a2ce51a0
DE
15463 if (cu->abbrev_table != NULL)
15464 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15465 /* Set this to NULL so that we SEGV if we try to read it later,
15466 and also because free_comp_unit verifies this is NULL. */
15467 cu->abbrev_table = NULL;
15468}
15469\f
72bf9492
DJ
15470/* Returns nonzero if TAG represents a type that we might generate a partial
15471 symbol for. */
15472
15473static int
15474is_type_tag_for_partial (int tag)
15475{
15476 switch (tag)
15477 {
15478#if 0
15479 /* Some types that would be reasonable to generate partial symbols for,
15480 that we don't at present. */
15481 case DW_TAG_array_type:
15482 case DW_TAG_file_type:
15483 case DW_TAG_ptr_to_member_type:
15484 case DW_TAG_set_type:
15485 case DW_TAG_string_type:
15486 case DW_TAG_subroutine_type:
15487#endif
15488 case DW_TAG_base_type:
15489 case DW_TAG_class_type:
680b30c7 15490 case DW_TAG_interface_type:
72bf9492
DJ
15491 case DW_TAG_enumeration_type:
15492 case DW_TAG_structure_type:
15493 case DW_TAG_subrange_type:
15494 case DW_TAG_typedef:
15495 case DW_TAG_union_type:
15496 return 1;
15497 default:
15498 return 0;
15499 }
15500}
15501
15502/* Load all DIEs that are interesting for partial symbols into memory. */
15503
15504static struct partial_die_info *
dee91e82 15505load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15506 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15507{
dee91e82 15508 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15509 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15510 struct partial_die_info *part_die;
15511 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15512 struct abbrev_info *abbrev;
15513 unsigned int bytes_read;
5afb4e99 15514 unsigned int load_all = 0;
72bf9492
DJ
15515 int nesting_level = 1;
15516
15517 parent_die = NULL;
15518 last_die = NULL;
15519
7adf1e79
DE
15520 gdb_assert (cu->per_cu != NULL);
15521 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15522 load_all = 1;
15523
72bf9492
DJ
15524 cu->partial_dies
15525 = htab_create_alloc_ex (cu->header.length / 12,
15526 partial_die_hash,
15527 partial_die_eq,
15528 NULL,
15529 &cu->comp_unit_obstack,
15530 hashtab_obstack_allocate,
15531 dummy_obstack_deallocate);
15532
15533 part_die = obstack_alloc (&cu->comp_unit_obstack,
15534 sizeof (struct partial_die_info));
15535
15536 while (1)
15537 {
15538 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15539
15540 /* A NULL abbrev means the end of a series of children. */
15541 if (abbrev == NULL)
15542 {
15543 if (--nesting_level == 0)
15544 {
15545 /* PART_DIE was probably the last thing allocated on the
15546 comp_unit_obstack, so we could call obstack_free
15547 here. We don't do that because the waste is small,
15548 and will be cleaned up when we're done with this
15549 compilation unit. This way, we're also more robust
15550 against other users of the comp_unit_obstack. */
15551 return first_die;
15552 }
15553 info_ptr += bytes_read;
15554 last_die = parent_die;
15555 parent_die = parent_die->die_parent;
15556 continue;
15557 }
15558
98bfdba5
PA
15559 /* Check for template arguments. We never save these; if
15560 they're seen, we just mark the parent, and go on our way. */
15561 if (parent_die != NULL
15562 && cu->language == language_cplus
15563 && (abbrev->tag == DW_TAG_template_type_param
15564 || abbrev->tag == DW_TAG_template_value_param))
15565 {
15566 parent_die->has_template_arguments = 1;
15567
15568 if (!load_all)
15569 {
15570 /* We don't need a partial DIE for the template argument. */
dee91e82 15571 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15572 continue;
15573 }
15574 }
15575
0d99eb77 15576 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15577 Skip their other children. */
15578 if (!load_all
15579 && cu->language == language_cplus
15580 && parent_die != NULL
15581 && parent_die->tag == DW_TAG_subprogram)
15582 {
dee91e82 15583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15584 continue;
15585 }
15586
5afb4e99
DJ
15587 /* Check whether this DIE is interesting enough to save. Normally
15588 we would not be interested in members here, but there may be
15589 later variables referencing them via DW_AT_specification (for
15590 static members). */
15591 if (!load_all
15592 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15593 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15594 && abbrev->tag != DW_TAG_enumerator
15595 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15596 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15597 && abbrev->tag != DW_TAG_variable
5afb4e99 15598 && abbrev->tag != DW_TAG_namespace
f55ee35c 15599 && abbrev->tag != DW_TAG_module
95554aad 15600 && abbrev->tag != DW_TAG_member
74921315
KS
15601 && abbrev->tag != DW_TAG_imported_unit
15602 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15603 {
15604 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15605 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15606 continue;
15607 }
15608
dee91e82
DE
15609 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15610 info_ptr);
72bf9492
DJ
15611
15612 /* This two-pass algorithm for processing partial symbols has a
15613 high cost in cache pressure. Thus, handle some simple cases
15614 here which cover the majority of C partial symbols. DIEs
15615 which neither have specification tags in them, nor could have
15616 specification tags elsewhere pointing at them, can simply be
15617 processed and discarded.
15618
15619 This segment is also optional; scan_partial_symbols and
15620 add_partial_symbol will handle these DIEs if we chain
15621 them in normally. When compilers which do not emit large
15622 quantities of duplicate debug information are more common,
15623 this code can probably be removed. */
15624
15625 /* Any complete simple types at the top level (pretty much all
15626 of them, for a language without namespaces), can be processed
15627 directly. */
15628 if (parent_die == NULL
15629 && part_die->has_specification == 0
15630 && part_die->is_declaration == 0
d8228535 15631 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15632 || part_die->tag == DW_TAG_base_type
15633 || part_die->tag == DW_TAG_subrange_type))
15634 {
15635 if (building_psymtab && part_die->name != NULL)
04a679b8 15636 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15637 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15638 &objfile->static_psymbols,
15639 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15640 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15641 continue;
15642 }
15643
d8228535
JK
15644 /* The exception for DW_TAG_typedef with has_children above is
15645 a workaround of GCC PR debug/47510. In the case of this complaint
15646 type_name_no_tag_or_error will error on such types later.
15647
15648 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15649 it could not find the child DIEs referenced later, this is checked
15650 above. In correct DWARF DW_TAG_typedef should have no children. */
15651
15652 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15653 complaint (&symfile_complaints,
15654 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15655 "- DIE at 0x%x [in module %s]"),
4262abfb 15656 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15657
72bf9492
DJ
15658 /* If we're at the second level, and we're an enumerator, and
15659 our parent has no specification (meaning possibly lives in a
15660 namespace elsewhere), then we can add the partial symbol now
15661 instead of queueing it. */
15662 if (part_die->tag == DW_TAG_enumerator
15663 && parent_die != NULL
15664 && parent_die->die_parent == NULL
15665 && parent_die->tag == DW_TAG_enumeration_type
15666 && parent_die->has_specification == 0)
15667 {
15668 if (part_die->name == NULL)
3e43a32a
MS
15669 complaint (&symfile_complaints,
15670 _("malformed enumerator DIE ignored"));
72bf9492 15671 else if (building_psymtab)
04a679b8 15672 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15673 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15674 (cu->language == language_cplus
15675 || cu->language == language_java)
bb5ed363
DE
15676 ? &objfile->global_psymbols
15677 : &objfile->static_psymbols,
15678 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15679
dee91e82 15680 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15681 continue;
15682 }
15683
15684 /* We'll save this DIE so link it in. */
15685 part_die->die_parent = parent_die;
15686 part_die->die_sibling = NULL;
15687 part_die->die_child = NULL;
15688
15689 if (last_die && last_die == parent_die)
15690 last_die->die_child = part_die;
15691 else if (last_die)
15692 last_die->die_sibling = part_die;
15693
15694 last_die = part_die;
15695
15696 if (first_die == NULL)
15697 first_die = part_die;
15698
15699 /* Maybe add the DIE to the hash table. Not all DIEs that we
15700 find interesting need to be in the hash table, because we
15701 also have the parent/sibling/child chains; only those that we
15702 might refer to by offset later during partial symbol reading.
15703
15704 For now this means things that might have be the target of a
15705 DW_AT_specification, DW_AT_abstract_origin, or
15706 DW_AT_extension. DW_AT_extension will refer only to
15707 namespaces; DW_AT_abstract_origin refers to functions (and
15708 many things under the function DIE, but we do not recurse
15709 into function DIEs during partial symbol reading) and
15710 possibly variables as well; DW_AT_specification refers to
15711 declarations. Declarations ought to have the DW_AT_declaration
15712 flag. It happens that GCC forgets to put it in sometimes, but
15713 only for functions, not for types.
15714
15715 Adding more things than necessary to the hash table is harmless
15716 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15717 wasted time in find_partial_die, when we reread the compilation
15718 unit with load_all_dies set. */
72bf9492 15719
5afb4e99 15720 if (load_all
72929c62 15721 || abbrev->tag == DW_TAG_constant
5afb4e99 15722 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15723 || abbrev->tag == DW_TAG_variable
15724 || abbrev->tag == DW_TAG_namespace
15725 || part_die->is_declaration)
15726 {
15727 void **slot;
15728
15729 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15730 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15731 *slot = part_die;
15732 }
15733
15734 part_die = obstack_alloc (&cu->comp_unit_obstack,
15735 sizeof (struct partial_die_info));
15736
15737 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15738 we have no reason to follow the children of structures; for other
98bfdba5
PA
15739 languages we have to, so that we can get at method physnames
15740 to infer fully qualified class names, for DW_AT_specification,
15741 and for C++ template arguments. For C++, we also look one level
15742 inside functions to find template arguments (if the name of the
15743 function does not already contain the template arguments).
bc30ff58
JB
15744
15745 For Ada, we need to scan the children of subprograms and lexical
15746 blocks as well because Ada allows the definition of nested
15747 entities that could be interesting for the debugger, such as
15748 nested subprograms for instance. */
72bf9492 15749 if (last_die->has_children
5afb4e99
DJ
15750 && (load_all
15751 || last_die->tag == DW_TAG_namespace
f55ee35c 15752 || last_die->tag == DW_TAG_module
72bf9492 15753 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15754 || (cu->language == language_cplus
15755 && last_die->tag == DW_TAG_subprogram
15756 && (last_die->name == NULL
15757 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15758 || (cu->language != language_c
15759 && (last_die->tag == DW_TAG_class_type
680b30c7 15760 || last_die->tag == DW_TAG_interface_type
72bf9492 15761 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15762 || last_die->tag == DW_TAG_union_type))
15763 || (cu->language == language_ada
15764 && (last_die->tag == DW_TAG_subprogram
15765 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15766 {
15767 nesting_level++;
15768 parent_die = last_die;
15769 continue;
15770 }
15771
15772 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15773 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15774
15775 /* Back to the top, do it again. */
15776 }
15777}
15778
c906108c
SS
15779/* Read a minimal amount of information into the minimal die structure. */
15780
d521ce57 15781static const gdb_byte *
dee91e82
DE
15782read_partial_die (const struct die_reader_specs *reader,
15783 struct partial_die_info *part_die,
15784 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15785 const gdb_byte *info_ptr)
c906108c 15786{
dee91e82 15787 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15788 struct objfile *objfile = cu->objfile;
d521ce57 15789 const gdb_byte *buffer = reader->buffer;
fa238c03 15790 unsigned int i;
c906108c 15791 struct attribute attr;
c5aa993b 15792 int has_low_pc_attr = 0;
c906108c 15793 int has_high_pc_attr = 0;
91da1414 15794 int high_pc_relative = 0;
c906108c 15795
72bf9492 15796 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15797
b64f50a1 15798 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15799
15800 info_ptr += abbrev_len;
15801
15802 if (abbrev == NULL)
15803 return info_ptr;
15804
c906108c
SS
15805 part_die->tag = abbrev->tag;
15806 part_die->has_children = abbrev->has_children;
c906108c
SS
15807
15808 for (i = 0; i < abbrev->num_attrs; ++i)
15809 {
dee91e82 15810 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15811
15812 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15813 partial symbol table. */
c906108c
SS
15814 switch (attr.name)
15815 {
15816 case DW_AT_name:
71c25dea
TT
15817 switch (part_die->tag)
15818 {
15819 case DW_TAG_compile_unit:
95554aad 15820 case DW_TAG_partial_unit:
348e048f 15821 case DW_TAG_type_unit:
71c25dea
TT
15822 /* Compilation units have a DW_AT_name that is a filename, not
15823 a source language identifier. */
15824 case DW_TAG_enumeration_type:
15825 case DW_TAG_enumerator:
15826 /* These tags always have simple identifiers already; no need
15827 to canonicalize them. */
15828 part_die->name = DW_STRING (&attr);
15829 break;
15830 default:
15831 part_die->name
15832 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15833 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15834 break;
15835 }
c906108c 15836 break;
31ef98ae 15837 case DW_AT_linkage_name:
c906108c 15838 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15839 /* Note that both forms of linkage name might appear. We
15840 assume they will be the same, and we only store the last
15841 one we see. */
94af9270
KS
15842 if (cu->language == language_ada)
15843 part_die->name = DW_STRING (&attr);
abc72ce4 15844 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15845 break;
15846 case DW_AT_low_pc:
15847 has_low_pc_attr = 1;
31aa7e4e 15848 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15849 break;
15850 case DW_AT_high_pc:
15851 has_high_pc_attr = 1;
31aa7e4e
JB
15852 part_die->highpc = attr_value_as_address (&attr);
15853 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15854 high_pc_relative = 1;
c906108c
SS
15855 break;
15856 case DW_AT_location:
0963b4bd 15857 /* Support the .debug_loc offsets. */
8e19ed76
PS
15858 if (attr_form_is_block (&attr))
15859 {
95554aad 15860 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15861 }
3690dd37 15862 else if (attr_form_is_section_offset (&attr))
8e19ed76 15863 {
4d3c2250 15864 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15865 }
15866 else
15867 {
4d3c2250
KB
15868 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15869 "partial symbol information");
8e19ed76 15870 }
c906108c 15871 break;
c906108c
SS
15872 case DW_AT_external:
15873 part_die->is_external = DW_UNSND (&attr);
15874 break;
15875 case DW_AT_declaration:
15876 part_die->is_declaration = DW_UNSND (&attr);
15877 break;
15878 case DW_AT_type:
15879 part_die->has_type = 1;
15880 break;
15881 case DW_AT_abstract_origin:
15882 case DW_AT_specification:
72bf9492
DJ
15883 case DW_AT_extension:
15884 part_die->has_specification = 1;
c764a876 15885 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15886 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15887 || cu->per_cu->is_dwz);
c906108c
SS
15888 break;
15889 case DW_AT_sibling:
15890 /* Ignore absolute siblings, they might point outside of
15891 the current compile unit. */
15892 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15893 complaint (&symfile_complaints,
15894 _("ignoring absolute DW_AT_sibling"));
c906108c 15895 else
b9502d3f
WN
15896 {
15897 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15898 const gdb_byte *sibling_ptr = buffer + off;
15899
15900 if (sibling_ptr < info_ptr)
15901 complaint (&symfile_complaints,
15902 _("DW_AT_sibling points backwards"));
22869d73
KS
15903 else if (sibling_ptr > reader->buffer_end)
15904 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15905 else
15906 part_die->sibling = sibling_ptr;
15907 }
c906108c 15908 break;
fa4028e9
JB
15909 case DW_AT_byte_size:
15910 part_die->has_byte_size = 1;
15911 break;
ff908ebf
AW
15912 case DW_AT_const_value:
15913 part_die->has_const_value = 1;
15914 break;
68511cec
CES
15915 case DW_AT_calling_convention:
15916 /* DWARF doesn't provide a way to identify a program's source-level
15917 entry point. DW_AT_calling_convention attributes are only meant
15918 to describe functions' calling conventions.
15919
15920 However, because it's a necessary piece of information in
15921 Fortran, and because DW_CC_program is the only piece of debugging
15922 information whose definition refers to a 'main program' at all,
15923 several compilers have begun marking Fortran main programs with
15924 DW_CC_program --- even when those functions use the standard
15925 calling conventions.
15926
15927 So until DWARF specifies a way to provide this information and
15928 compilers pick up the new representation, we'll support this
15929 practice. */
15930 if (DW_UNSND (&attr) == DW_CC_program
15931 && cu->language == language_fortran)
3d548a53 15932 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15933 break;
481860b3
GB
15934 case DW_AT_inline:
15935 if (DW_UNSND (&attr) == DW_INL_inlined
15936 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15937 part_die->may_be_inlined = 1;
15938 break;
95554aad
TT
15939
15940 case DW_AT_import:
15941 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15942 {
15943 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15944 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15945 || cu->per_cu->is_dwz);
15946 }
95554aad
TT
15947 break;
15948
c906108c
SS
15949 default:
15950 break;
15951 }
15952 }
15953
91da1414
MW
15954 if (high_pc_relative)
15955 part_die->highpc += part_die->lowpc;
15956
9373cf26
JK
15957 if (has_low_pc_attr && has_high_pc_attr)
15958 {
15959 /* When using the GNU linker, .gnu.linkonce. sections are used to
15960 eliminate duplicate copies of functions and vtables and such.
15961 The linker will arbitrarily choose one and discard the others.
15962 The AT_*_pc values for such functions refer to local labels in
15963 these sections. If the section from that file was discarded, the
15964 labels are not in the output, so the relocs get a value of 0.
15965 If this is a discarded function, mark the pc bounds as invalid,
15966 so that GDB will ignore it. */
15967 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15968 {
bb5ed363 15969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15970
15971 complaint (&symfile_complaints,
15972 _("DW_AT_low_pc %s is zero "
15973 "for DIE at 0x%x [in module %s]"),
15974 paddress (gdbarch, part_die->lowpc),
4262abfb 15975 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15976 }
15977 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15978 else if (part_die->lowpc >= part_die->highpc)
15979 {
bb5ed363 15980 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15981
15982 complaint (&symfile_complaints,
15983 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15984 "for DIE at 0x%x [in module %s]"),
15985 paddress (gdbarch, part_die->lowpc),
15986 paddress (gdbarch, part_die->highpc),
4262abfb 15987 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15988 }
15989 else
15990 part_die->has_pc_info = 1;
15991 }
85cbf3d3 15992
c906108c
SS
15993 return info_ptr;
15994}
15995
72bf9492
DJ
15996/* Find a cached partial DIE at OFFSET in CU. */
15997
15998static struct partial_die_info *
b64f50a1 15999find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16000{
16001 struct partial_die_info *lookup_die = NULL;
16002 struct partial_die_info part_die;
16003
16004 part_die.offset = offset;
b64f50a1
JK
16005 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
16006 offset.sect_off);
72bf9492 16007
72bf9492
DJ
16008 return lookup_die;
16009}
16010
348e048f
DE
16011/* Find a partial DIE at OFFSET, which may or may not be in CU,
16012 except in the case of .debug_types DIEs which do not reference
16013 outside their CU (they do however referencing other types via
55f1336d 16014 DW_FORM_ref_sig8). */
72bf9492
DJ
16015
16016static struct partial_die_info *
36586728 16017find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16018{
bb5ed363 16019 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16020 struct dwarf2_per_cu_data *per_cu = NULL;
16021 struct partial_die_info *pd = NULL;
72bf9492 16022
36586728
TT
16023 if (offset_in_dwz == cu->per_cu->is_dwz
16024 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16025 {
16026 pd = find_partial_die_in_comp_unit (offset, cu);
16027 if (pd != NULL)
16028 return pd;
0d99eb77
DE
16029 /* We missed recording what we needed.
16030 Load all dies and try again. */
16031 per_cu = cu->per_cu;
5afb4e99 16032 }
0d99eb77
DE
16033 else
16034 {
16035 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16036 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16037 {
16038 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16039 " external reference to offset 0x%lx [in module %s].\n"),
16040 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16041 bfd_get_filename (objfile->obfd));
16042 }
36586728
TT
16043 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16044 objfile);
72bf9492 16045
0d99eb77
DE
16046 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16047 load_partial_comp_unit (per_cu);
ae038cb0 16048
0d99eb77
DE
16049 per_cu->cu->last_used = 0;
16050 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16051 }
5afb4e99 16052
dee91e82
DE
16053 /* If we didn't find it, and not all dies have been loaded,
16054 load them all and try again. */
16055
5afb4e99
DJ
16056 if (pd == NULL && per_cu->load_all_dies == 0)
16057 {
5afb4e99 16058 per_cu->load_all_dies = 1;
fd820528
DE
16059
16060 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16061 THIS_CU->cu may already be in use. So we can't just free it and
16062 replace its DIEs with the ones we read in. Instead, we leave those
16063 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16064 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16065 set. */
dee91e82 16066 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16067
16068 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16069 }
16070
16071 if (pd == NULL)
16072 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16073 _("could not find partial DIE 0x%x "
16074 "in cache [from module %s]\n"),
b64f50a1 16075 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16076 return pd;
72bf9492
DJ
16077}
16078
abc72ce4
DE
16079/* See if we can figure out if the class lives in a namespace. We do
16080 this by looking for a member function; its demangled name will
16081 contain namespace info, if there is any. */
16082
16083static void
16084guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16085 struct dwarf2_cu *cu)
16086{
16087 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16088 what template types look like, because the demangler
16089 frequently doesn't give the same name as the debug info. We
16090 could fix this by only using the demangled name to get the
16091 prefix (but see comment in read_structure_type). */
16092
16093 struct partial_die_info *real_pdi;
16094 struct partial_die_info *child_pdi;
16095
16096 /* If this DIE (this DIE's specification, if any) has a parent, then
16097 we should not do this. We'll prepend the parent's fully qualified
16098 name when we create the partial symbol. */
16099
16100 real_pdi = struct_pdi;
16101 while (real_pdi->has_specification)
36586728
TT
16102 real_pdi = find_partial_die (real_pdi->spec_offset,
16103 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16104
16105 if (real_pdi->die_parent != NULL)
16106 return;
16107
16108 for (child_pdi = struct_pdi->die_child;
16109 child_pdi != NULL;
16110 child_pdi = child_pdi->die_sibling)
16111 {
16112 if (child_pdi->tag == DW_TAG_subprogram
16113 && child_pdi->linkage_name != NULL)
16114 {
16115 char *actual_class_name
16116 = language_class_name_from_physname (cu->language_defn,
16117 child_pdi->linkage_name);
16118 if (actual_class_name != NULL)
16119 {
16120 struct_pdi->name
34a68019 16121 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
16122 actual_class_name,
16123 strlen (actual_class_name));
abc72ce4
DE
16124 xfree (actual_class_name);
16125 }
16126 break;
16127 }
16128 }
16129}
16130
72bf9492
DJ
16131/* Adjust PART_DIE before generating a symbol for it. This function
16132 may set the is_external flag or change the DIE's name. */
16133
16134static void
16135fixup_partial_die (struct partial_die_info *part_die,
16136 struct dwarf2_cu *cu)
16137{
abc72ce4
DE
16138 /* Once we've fixed up a die, there's no point in doing so again.
16139 This also avoids a memory leak if we were to call
16140 guess_partial_die_structure_name multiple times. */
16141 if (part_die->fixup_called)
16142 return;
16143
72bf9492
DJ
16144 /* If we found a reference attribute and the DIE has no name, try
16145 to find a name in the referred to DIE. */
16146
16147 if (part_die->name == NULL && part_die->has_specification)
16148 {
16149 struct partial_die_info *spec_die;
72bf9492 16150
36586728
TT
16151 spec_die = find_partial_die (part_die->spec_offset,
16152 part_die->spec_is_dwz, cu);
72bf9492 16153
10b3939b 16154 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16155
16156 if (spec_die->name)
16157 {
16158 part_die->name = spec_die->name;
16159
16160 /* Copy DW_AT_external attribute if it is set. */
16161 if (spec_die->is_external)
16162 part_die->is_external = spec_die->is_external;
16163 }
16164 }
16165
16166 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16167
16168 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16169 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16170
abc72ce4
DE
16171 /* If there is no parent die to provide a namespace, and there are
16172 children, see if we can determine the namespace from their linkage
122d1940 16173 name. */
abc72ce4 16174 if (cu->language == language_cplus
8b70b953 16175 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16176 && part_die->die_parent == NULL
16177 && part_die->has_children
16178 && (part_die->tag == DW_TAG_class_type
16179 || part_die->tag == DW_TAG_structure_type
16180 || part_die->tag == DW_TAG_union_type))
16181 guess_partial_die_structure_name (part_die, cu);
16182
53832f31
TT
16183 /* GCC might emit a nameless struct or union that has a linkage
16184 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16185 if (part_die->name == NULL
96408a79
SA
16186 && (part_die->tag == DW_TAG_class_type
16187 || part_die->tag == DW_TAG_interface_type
16188 || part_die->tag == DW_TAG_structure_type
16189 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16190 && part_die->linkage_name != NULL)
16191 {
16192 char *demangled;
16193
8de20a37 16194 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16195 if (demangled)
16196 {
96408a79
SA
16197 const char *base;
16198
16199 /* Strip any leading namespaces/classes, keep only the base name.
16200 DW_AT_name for named DIEs does not contain the prefixes. */
16201 base = strrchr (demangled, ':');
16202 if (base && base > demangled && base[-1] == ':')
16203 base++;
16204 else
16205 base = demangled;
16206
34a68019
TT
16207 part_die->name
16208 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16209 base, strlen (base));
53832f31
TT
16210 xfree (demangled);
16211 }
16212 }
16213
abc72ce4 16214 part_die->fixup_called = 1;
72bf9492
DJ
16215}
16216
a8329558 16217/* Read an attribute value described by an attribute form. */
c906108c 16218
d521ce57 16219static const gdb_byte *
dee91e82
DE
16220read_attribute_value (const struct die_reader_specs *reader,
16221 struct attribute *attr, unsigned form,
d521ce57 16222 const gdb_byte *info_ptr)
c906108c 16223{
dee91e82 16224 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16225 struct objfile *objfile = cu->objfile;
16226 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16227 bfd *abfd = reader->abfd;
e7c27a73 16228 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16229 unsigned int bytes_read;
16230 struct dwarf_block *blk;
16231
aead7601 16232 attr->form = (enum dwarf_form) form;
a8329558 16233 switch (form)
c906108c 16234 {
c906108c 16235 case DW_FORM_ref_addr:
ae411497 16236 if (cu->header.version == 2)
4568ecf9 16237 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16238 else
4568ecf9
DE
16239 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16240 &cu->header, &bytes_read);
ae411497
TT
16241 info_ptr += bytes_read;
16242 break;
36586728
TT
16243 case DW_FORM_GNU_ref_alt:
16244 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16245 info_ptr += bytes_read;
16246 break;
ae411497 16247 case DW_FORM_addr:
e7c27a73 16248 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16249 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16250 info_ptr += bytes_read;
c906108c
SS
16251 break;
16252 case DW_FORM_block2:
7b5a2f43 16253 blk = dwarf_alloc_block (cu);
c906108c
SS
16254 blk->size = read_2_bytes (abfd, info_ptr);
16255 info_ptr += 2;
16256 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16257 info_ptr += blk->size;
16258 DW_BLOCK (attr) = blk;
16259 break;
16260 case DW_FORM_block4:
7b5a2f43 16261 blk = dwarf_alloc_block (cu);
c906108c
SS
16262 blk->size = read_4_bytes (abfd, info_ptr);
16263 info_ptr += 4;
16264 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16265 info_ptr += blk->size;
16266 DW_BLOCK (attr) = blk;
16267 break;
16268 case DW_FORM_data2:
16269 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16270 info_ptr += 2;
16271 break;
16272 case DW_FORM_data4:
16273 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16274 info_ptr += 4;
16275 break;
16276 case DW_FORM_data8:
16277 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16278 info_ptr += 8;
16279 break;
2dc7f7b3
TT
16280 case DW_FORM_sec_offset:
16281 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16282 info_ptr += bytes_read;
16283 break;
c906108c 16284 case DW_FORM_string:
9b1c24c8 16285 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16286 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16287 info_ptr += bytes_read;
16288 break;
4bdf3d34 16289 case DW_FORM_strp:
36586728
TT
16290 if (!cu->per_cu->is_dwz)
16291 {
16292 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16293 &bytes_read);
16294 DW_STRING_IS_CANONICAL (attr) = 0;
16295 info_ptr += bytes_read;
16296 break;
16297 }
16298 /* FALLTHROUGH */
16299 case DW_FORM_GNU_strp_alt:
16300 {
16301 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16302 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16303 &bytes_read);
16304
16305 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16306 DW_STRING_IS_CANONICAL (attr) = 0;
16307 info_ptr += bytes_read;
16308 }
4bdf3d34 16309 break;
2dc7f7b3 16310 case DW_FORM_exprloc:
c906108c 16311 case DW_FORM_block:
7b5a2f43 16312 blk = dwarf_alloc_block (cu);
c906108c
SS
16313 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16314 info_ptr += bytes_read;
16315 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16316 info_ptr += blk->size;
16317 DW_BLOCK (attr) = blk;
16318 break;
16319 case DW_FORM_block1:
7b5a2f43 16320 blk = dwarf_alloc_block (cu);
c906108c
SS
16321 blk->size = read_1_byte (abfd, info_ptr);
16322 info_ptr += 1;
16323 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16324 info_ptr += blk->size;
16325 DW_BLOCK (attr) = blk;
16326 break;
16327 case DW_FORM_data1:
16328 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16329 info_ptr += 1;
16330 break;
16331 case DW_FORM_flag:
16332 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16333 info_ptr += 1;
16334 break;
2dc7f7b3
TT
16335 case DW_FORM_flag_present:
16336 DW_UNSND (attr) = 1;
16337 break;
c906108c
SS
16338 case DW_FORM_sdata:
16339 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16340 info_ptr += bytes_read;
16341 break;
16342 case DW_FORM_udata:
16343 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16344 info_ptr += bytes_read;
16345 break;
16346 case DW_FORM_ref1:
4568ecf9
DE
16347 DW_UNSND (attr) = (cu->header.offset.sect_off
16348 + read_1_byte (abfd, info_ptr));
c906108c
SS
16349 info_ptr += 1;
16350 break;
16351 case DW_FORM_ref2:
4568ecf9
DE
16352 DW_UNSND (attr) = (cu->header.offset.sect_off
16353 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16354 info_ptr += 2;
16355 break;
16356 case DW_FORM_ref4:
4568ecf9
DE
16357 DW_UNSND (attr) = (cu->header.offset.sect_off
16358 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16359 info_ptr += 4;
16360 break;
613e1657 16361 case DW_FORM_ref8:
4568ecf9
DE
16362 DW_UNSND (attr) = (cu->header.offset.sect_off
16363 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16364 info_ptr += 8;
16365 break;
55f1336d 16366 case DW_FORM_ref_sig8:
ac9ec31b 16367 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16368 info_ptr += 8;
16369 break;
c906108c 16370 case DW_FORM_ref_udata:
4568ecf9
DE
16371 DW_UNSND (attr) = (cu->header.offset.sect_off
16372 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16373 info_ptr += bytes_read;
16374 break;
c906108c 16375 case DW_FORM_indirect:
a8329558
KW
16376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16377 info_ptr += bytes_read;
dee91e82 16378 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16379 break;
3019eac3
DE
16380 case DW_FORM_GNU_addr_index:
16381 if (reader->dwo_file == NULL)
16382 {
16383 /* For now flag a hard error.
16384 Later we can turn this into a complaint. */
16385 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16386 dwarf_form_name (form),
16387 bfd_get_filename (abfd));
16388 }
16389 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16390 info_ptr += bytes_read;
16391 break;
16392 case DW_FORM_GNU_str_index:
16393 if (reader->dwo_file == NULL)
16394 {
16395 /* For now flag a hard error.
16396 Later we can turn this into a complaint if warranted. */
16397 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16398 dwarf_form_name (form),
16399 bfd_get_filename (abfd));
16400 }
16401 {
16402 ULONGEST str_index =
16403 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16404
342587c4 16405 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16406 DW_STRING_IS_CANONICAL (attr) = 0;
16407 info_ptr += bytes_read;
16408 }
16409 break;
c906108c 16410 default:
8a3fe4f8 16411 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16412 dwarf_form_name (form),
16413 bfd_get_filename (abfd));
c906108c 16414 }
28e94949 16415
36586728 16416 /* Super hack. */
7771576e 16417 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16418 attr->form = DW_FORM_GNU_ref_alt;
16419
28e94949
JB
16420 /* We have seen instances where the compiler tried to emit a byte
16421 size attribute of -1 which ended up being encoded as an unsigned
16422 0xffffffff. Although 0xffffffff is technically a valid size value,
16423 an object of this size seems pretty unlikely so we can relatively
16424 safely treat these cases as if the size attribute was invalid and
16425 treat them as zero by default. */
16426 if (attr->name == DW_AT_byte_size
16427 && form == DW_FORM_data4
16428 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16429 {
16430 complaint
16431 (&symfile_complaints,
43bbcdc2
PH
16432 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16433 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16434 DW_UNSND (attr) = 0;
16435 }
28e94949 16436
c906108c
SS
16437 return info_ptr;
16438}
16439
a8329558
KW
16440/* Read an attribute described by an abbreviated attribute. */
16441
d521ce57 16442static const gdb_byte *
dee91e82
DE
16443read_attribute (const struct die_reader_specs *reader,
16444 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16445 const gdb_byte *info_ptr)
a8329558
KW
16446{
16447 attr->name = abbrev->name;
dee91e82 16448 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16449}
16450
0963b4bd 16451/* Read dwarf information from a buffer. */
c906108c
SS
16452
16453static unsigned int
a1855c1d 16454read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16455{
fe1b8b76 16456 return bfd_get_8 (abfd, buf);
c906108c
SS
16457}
16458
16459static int
a1855c1d 16460read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16461{
fe1b8b76 16462 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16463}
16464
16465static unsigned int
a1855c1d 16466read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16467{
fe1b8b76 16468 return bfd_get_16 (abfd, buf);
c906108c
SS
16469}
16470
21ae7a4d 16471static int
a1855c1d 16472read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16473{
16474 return bfd_get_signed_16 (abfd, buf);
16475}
16476
c906108c 16477static unsigned int
a1855c1d 16478read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16479{
fe1b8b76 16480 return bfd_get_32 (abfd, buf);
c906108c
SS
16481}
16482
21ae7a4d 16483static int
a1855c1d 16484read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16485{
16486 return bfd_get_signed_32 (abfd, buf);
16487}
16488
93311388 16489static ULONGEST
a1855c1d 16490read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16491{
fe1b8b76 16492 return bfd_get_64 (abfd, buf);
c906108c
SS
16493}
16494
16495static CORE_ADDR
d521ce57 16496read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16497 unsigned int *bytes_read)
c906108c 16498{
e7c27a73 16499 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16500 CORE_ADDR retval = 0;
16501
107d2387 16502 if (cu_header->signed_addr_p)
c906108c 16503 {
107d2387
AC
16504 switch (cu_header->addr_size)
16505 {
16506 case 2:
fe1b8b76 16507 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16508 break;
16509 case 4:
fe1b8b76 16510 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16511 break;
16512 case 8:
fe1b8b76 16513 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16514 break;
16515 default:
8e65ff28 16516 internal_error (__FILE__, __LINE__,
e2e0b3e5 16517 _("read_address: bad switch, signed [in module %s]"),
659b0389 16518 bfd_get_filename (abfd));
107d2387
AC
16519 }
16520 }
16521 else
16522 {
16523 switch (cu_header->addr_size)
16524 {
16525 case 2:
fe1b8b76 16526 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16527 break;
16528 case 4:
fe1b8b76 16529 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16530 break;
16531 case 8:
fe1b8b76 16532 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16533 break;
16534 default:
8e65ff28 16535 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16536 _("read_address: bad switch, "
16537 "unsigned [in module %s]"),
659b0389 16538 bfd_get_filename (abfd));
107d2387 16539 }
c906108c 16540 }
64367e0a 16541
107d2387
AC
16542 *bytes_read = cu_header->addr_size;
16543 return retval;
c906108c
SS
16544}
16545
f7ef9339 16546/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16547 specification allows the initial length to take up either 4 bytes
16548 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16549 bytes describe the length and all offsets will be 8 bytes in length
16550 instead of 4.
16551
f7ef9339
KB
16552 An older, non-standard 64-bit format is also handled by this
16553 function. The older format in question stores the initial length
16554 as an 8-byte quantity without an escape value. Lengths greater
16555 than 2^32 aren't very common which means that the initial 4 bytes
16556 is almost always zero. Since a length value of zero doesn't make
16557 sense for the 32-bit format, this initial zero can be considered to
16558 be an escape value which indicates the presence of the older 64-bit
16559 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16560 greater than 4GB. If it becomes necessary to handle lengths
16561 somewhat larger than 4GB, we could allow other small values (such
16562 as the non-sensical values of 1, 2, and 3) to also be used as
16563 escape values indicating the presence of the old format.
f7ef9339 16564
917c78fc
MK
16565 The value returned via bytes_read should be used to increment the
16566 relevant pointer after calling read_initial_length().
c764a876 16567
613e1657
KB
16568 [ Note: read_initial_length() and read_offset() are based on the
16569 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16570 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16571 from:
16572
f7ef9339 16573 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16574
613e1657
KB
16575 This document is only a draft and is subject to change. (So beware.)
16576
f7ef9339 16577 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16578 determined empirically by examining 64-bit ELF files produced by
16579 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16580
16581 - Kevin, July 16, 2002
613e1657
KB
16582 ] */
16583
16584static LONGEST
d521ce57 16585read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16586{
fe1b8b76 16587 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16588
dd373385 16589 if (length == 0xffffffff)
613e1657 16590 {
fe1b8b76 16591 length = bfd_get_64 (abfd, buf + 4);
613e1657 16592 *bytes_read = 12;
613e1657 16593 }
dd373385 16594 else if (length == 0)
f7ef9339 16595 {
dd373385 16596 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16597 length = bfd_get_64 (abfd, buf);
f7ef9339 16598 *bytes_read = 8;
f7ef9339 16599 }
613e1657
KB
16600 else
16601 {
16602 *bytes_read = 4;
613e1657
KB
16603 }
16604
c764a876
DE
16605 return length;
16606}
dd373385 16607
c764a876
DE
16608/* Cover function for read_initial_length.
16609 Returns the length of the object at BUF, and stores the size of the
16610 initial length in *BYTES_READ and stores the size that offsets will be in
16611 *OFFSET_SIZE.
16612 If the initial length size is not equivalent to that specified in
16613 CU_HEADER then issue a complaint.
16614 This is useful when reading non-comp-unit headers. */
dd373385 16615
c764a876 16616static LONGEST
d521ce57 16617read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16618 const struct comp_unit_head *cu_header,
16619 unsigned int *bytes_read,
16620 unsigned int *offset_size)
16621{
16622 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16623
16624 gdb_assert (cu_header->initial_length_size == 4
16625 || cu_header->initial_length_size == 8
16626 || cu_header->initial_length_size == 12);
16627
16628 if (cu_header->initial_length_size != *bytes_read)
16629 complaint (&symfile_complaints,
16630 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16631
c764a876 16632 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16633 return length;
613e1657
KB
16634}
16635
16636/* Read an offset from the data stream. The size of the offset is
917c78fc 16637 given by cu_header->offset_size. */
613e1657
KB
16638
16639static LONGEST
d521ce57
TT
16640read_offset (bfd *abfd, const gdb_byte *buf,
16641 const struct comp_unit_head *cu_header,
891d2f0b 16642 unsigned int *bytes_read)
c764a876
DE
16643{
16644 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16645
c764a876
DE
16646 *bytes_read = cu_header->offset_size;
16647 return offset;
16648}
16649
16650/* Read an offset from the data stream. */
16651
16652static LONGEST
d521ce57 16653read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16654{
16655 LONGEST retval = 0;
16656
c764a876 16657 switch (offset_size)
613e1657
KB
16658 {
16659 case 4:
fe1b8b76 16660 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16661 break;
16662 case 8:
fe1b8b76 16663 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16664 break;
16665 default:
8e65ff28 16666 internal_error (__FILE__, __LINE__,
c764a876 16667 _("read_offset_1: bad switch [in module %s]"),
659b0389 16668 bfd_get_filename (abfd));
613e1657
KB
16669 }
16670
917c78fc 16671 return retval;
613e1657
KB
16672}
16673
d521ce57
TT
16674static const gdb_byte *
16675read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16676{
16677 /* If the size of a host char is 8 bits, we can return a pointer
16678 to the buffer, otherwise we have to copy the data to a buffer
16679 allocated on the temporary obstack. */
4bdf3d34 16680 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16681 return buf;
c906108c
SS
16682}
16683
d521ce57
TT
16684static const char *
16685read_direct_string (bfd *abfd, const gdb_byte *buf,
16686 unsigned int *bytes_read_ptr)
c906108c
SS
16687{
16688 /* If the size of a host char is 8 bits, we can return a pointer
16689 to the string, otherwise we have to copy the string to a buffer
16690 allocated on the temporary obstack. */
4bdf3d34 16691 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16692 if (*buf == '\0')
16693 {
16694 *bytes_read_ptr = 1;
16695 return NULL;
16696 }
d521ce57
TT
16697 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16698 return (const char *) buf;
4bdf3d34
JJ
16699}
16700
d521ce57 16701static const char *
cf2c3c16 16702read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16703{
be391dca 16704 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16705 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16706 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16707 bfd_get_filename (abfd));
dce234bc 16708 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16709 error (_("DW_FORM_strp pointing outside of "
16710 ".debug_str section [in module %s]"),
16711 bfd_get_filename (abfd));
4bdf3d34 16712 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16713 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16714 return NULL;
d521ce57 16715 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16716}
16717
36586728
TT
16718/* Read a string at offset STR_OFFSET in the .debug_str section from
16719 the .dwz file DWZ. Throw an error if the offset is too large. If
16720 the string consists of a single NUL byte, return NULL; otherwise
16721 return a pointer to the string. */
16722
d521ce57 16723static const char *
36586728
TT
16724read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16725{
16726 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16727
16728 if (dwz->str.buffer == NULL)
16729 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16730 "section [in module %s]"),
16731 bfd_get_filename (dwz->dwz_bfd));
16732 if (str_offset >= dwz->str.size)
16733 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16734 ".debug_str section [in module %s]"),
16735 bfd_get_filename (dwz->dwz_bfd));
16736 gdb_assert (HOST_CHAR_BIT == 8);
16737 if (dwz->str.buffer[str_offset] == '\0')
16738 return NULL;
d521ce57 16739 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16740}
16741
d521ce57
TT
16742static const char *
16743read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16744 const struct comp_unit_head *cu_header,
16745 unsigned int *bytes_read_ptr)
16746{
16747 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16748
16749 return read_indirect_string_at_offset (abfd, str_offset);
16750}
16751
12df843f 16752static ULONGEST
d521ce57
TT
16753read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16754 unsigned int *bytes_read_ptr)
c906108c 16755{
12df843f 16756 ULONGEST result;
ce5d95e1 16757 unsigned int num_read;
c906108c
SS
16758 int i, shift;
16759 unsigned char byte;
16760
16761 result = 0;
16762 shift = 0;
16763 num_read = 0;
16764 i = 0;
16765 while (1)
16766 {
fe1b8b76 16767 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16768 buf++;
16769 num_read++;
12df843f 16770 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16771 if ((byte & 128) == 0)
16772 {
16773 break;
16774 }
16775 shift += 7;
16776 }
16777 *bytes_read_ptr = num_read;
16778 return result;
16779}
16780
12df843f 16781static LONGEST
d521ce57
TT
16782read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16783 unsigned int *bytes_read_ptr)
c906108c 16784{
12df843f 16785 LONGEST result;
77e0b926 16786 int i, shift, num_read;
c906108c
SS
16787 unsigned char byte;
16788
16789 result = 0;
16790 shift = 0;
c906108c
SS
16791 num_read = 0;
16792 i = 0;
16793 while (1)
16794 {
fe1b8b76 16795 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16796 buf++;
16797 num_read++;
12df843f 16798 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16799 shift += 7;
16800 if ((byte & 128) == 0)
16801 {
16802 break;
16803 }
16804 }
77e0b926 16805 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16806 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16807 *bytes_read_ptr = num_read;
16808 return result;
16809}
16810
3019eac3
DE
16811/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16812 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16813 ADDR_SIZE is the size of addresses from the CU header. */
16814
16815static CORE_ADDR
16816read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16817{
16818 struct objfile *objfile = dwarf2_per_objfile->objfile;
16819 bfd *abfd = objfile->obfd;
16820 const gdb_byte *info_ptr;
16821
16822 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16823 if (dwarf2_per_objfile->addr.buffer == NULL)
16824 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16825 objfile_name (objfile));
3019eac3
DE
16826 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16827 error (_("DW_FORM_addr_index pointing outside of "
16828 ".debug_addr section [in module %s]"),
4262abfb 16829 objfile_name (objfile));
3019eac3
DE
16830 info_ptr = (dwarf2_per_objfile->addr.buffer
16831 + addr_base + addr_index * addr_size);
16832 if (addr_size == 4)
16833 return bfd_get_32 (abfd, info_ptr);
16834 else
16835 return bfd_get_64 (abfd, info_ptr);
16836}
16837
16838/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16839
16840static CORE_ADDR
16841read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16842{
16843 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16844}
16845
16846/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16847
16848static CORE_ADDR
d521ce57 16849read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16850 unsigned int *bytes_read)
16851{
16852 bfd *abfd = cu->objfile->obfd;
16853 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16854
16855 return read_addr_index (cu, addr_index);
16856}
16857
16858/* Data structure to pass results from dwarf2_read_addr_index_reader
16859 back to dwarf2_read_addr_index. */
16860
16861struct dwarf2_read_addr_index_data
16862{
16863 ULONGEST addr_base;
16864 int addr_size;
16865};
16866
16867/* die_reader_func for dwarf2_read_addr_index. */
16868
16869static void
16870dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16871 const gdb_byte *info_ptr,
3019eac3
DE
16872 struct die_info *comp_unit_die,
16873 int has_children,
16874 void *data)
16875{
16876 struct dwarf2_cu *cu = reader->cu;
16877 struct dwarf2_read_addr_index_data *aidata =
16878 (struct dwarf2_read_addr_index_data *) data;
16879
16880 aidata->addr_base = cu->addr_base;
16881 aidata->addr_size = cu->header.addr_size;
16882}
16883
16884/* Given an index in .debug_addr, fetch the value.
16885 NOTE: This can be called during dwarf expression evaluation,
16886 long after the debug information has been read, and thus per_cu->cu
16887 may no longer exist. */
16888
16889CORE_ADDR
16890dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16891 unsigned int addr_index)
16892{
16893 struct objfile *objfile = per_cu->objfile;
16894 struct dwarf2_cu *cu = per_cu->cu;
16895 ULONGEST addr_base;
16896 int addr_size;
16897
16898 /* This is intended to be called from outside this file. */
16899 dw2_setup (objfile);
16900
16901 /* We need addr_base and addr_size.
16902 If we don't have PER_CU->cu, we have to get it.
16903 Nasty, but the alternative is storing the needed info in PER_CU,
16904 which at this point doesn't seem justified: it's not clear how frequently
16905 it would get used and it would increase the size of every PER_CU.
16906 Entry points like dwarf2_per_cu_addr_size do a similar thing
16907 so we're not in uncharted territory here.
16908 Alas we need to be a bit more complicated as addr_base is contained
16909 in the DIE.
16910
16911 We don't need to read the entire CU(/TU).
16912 We just need the header and top level die.
a1b64ce1 16913
3019eac3 16914 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16915 For now we skip this optimization. */
3019eac3
DE
16916
16917 if (cu != NULL)
16918 {
16919 addr_base = cu->addr_base;
16920 addr_size = cu->header.addr_size;
16921 }
16922 else
16923 {
16924 struct dwarf2_read_addr_index_data aidata;
16925
a1b64ce1
DE
16926 /* Note: We can't use init_cutu_and_read_dies_simple here,
16927 we need addr_base. */
16928 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16929 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16930 addr_base = aidata.addr_base;
16931 addr_size = aidata.addr_size;
16932 }
16933
16934 return read_addr_index_1 (addr_index, addr_base, addr_size);
16935}
16936
57d63ce2
DE
16937/* Given a DW_FORM_GNU_str_index, fetch the string.
16938 This is only used by the Fission support. */
3019eac3 16939
d521ce57 16940static const char *
342587c4 16941read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16942{
16943 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16944 const char *objf_name = objfile_name (objfile);
3019eac3 16945 bfd *abfd = objfile->obfd;
342587c4 16946 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16947 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16948 struct dwarf2_section_info *str_offsets_section =
16949 &reader->dwo_file->sections.str_offsets;
d521ce57 16950 const gdb_byte *info_ptr;
3019eac3 16951 ULONGEST str_offset;
57d63ce2 16952 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16953
73869dc2
DE
16954 dwarf2_read_section (objfile, str_section);
16955 dwarf2_read_section (objfile, str_offsets_section);
16956 if (str_section->buffer == NULL)
57d63ce2 16957 error (_("%s used without .debug_str.dwo section"
3019eac3 16958 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16959 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16960 if (str_offsets_section->buffer == NULL)
57d63ce2 16961 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16962 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16963 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16964 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16965 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16966 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16967 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16968 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16969 + str_index * cu->header.offset_size);
16970 if (cu->header.offset_size == 4)
16971 str_offset = bfd_get_32 (abfd, info_ptr);
16972 else
16973 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16974 if (str_offset >= str_section->size)
57d63ce2 16975 error (_("Offset from %s pointing outside of"
3019eac3 16976 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16977 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16978 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16979}
16980
3019eac3
DE
16981/* Return the length of an LEB128 number in BUF. */
16982
16983static int
16984leb128_size (const gdb_byte *buf)
16985{
16986 const gdb_byte *begin = buf;
16987 gdb_byte byte;
16988
16989 while (1)
16990 {
16991 byte = *buf++;
16992 if ((byte & 128) == 0)
16993 return buf - begin;
16994 }
16995}
16996
c906108c 16997static void
e142c38c 16998set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16999{
17000 switch (lang)
17001 {
17002 case DW_LANG_C89:
76bee0cc 17003 case DW_LANG_C99:
0cfd832f 17004 case DW_LANG_C11:
c906108c 17005 case DW_LANG_C:
d1be3247 17006 case DW_LANG_UPC:
e142c38c 17007 cu->language = language_c;
c906108c
SS
17008 break;
17009 case DW_LANG_C_plus_plus:
0cfd832f
MW
17010 case DW_LANG_C_plus_plus_11:
17011 case DW_LANG_C_plus_plus_14:
e142c38c 17012 cu->language = language_cplus;
c906108c 17013 break;
6aecb9c2
JB
17014 case DW_LANG_D:
17015 cu->language = language_d;
17016 break;
c906108c
SS
17017 case DW_LANG_Fortran77:
17018 case DW_LANG_Fortran90:
b21b22e0 17019 case DW_LANG_Fortran95:
f7de9aab
MW
17020 case DW_LANG_Fortran03:
17021 case DW_LANG_Fortran08:
e142c38c 17022 cu->language = language_fortran;
c906108c 17023 break;
a766d390
DE
17024 case DW_LANG_Go:
17025 cu->language = language_go;
17026 break;
c906108c 17027 case DW_LANG_Mips_Assembler:
e142c38c 17028 cu->language = language_asm;
c906108c 17029 break;
bebd888e 17030 case DW_LANG_Java:
e142c38c 17031 cu->language = language_java;
bebd888e 17032 break;
c906108c 17033 case DW_LANG_Ada83:
8aaf0b47 17034 case DW_LANG_Ada95:
bc5f45f8
JB
17035 cu->language = language_ada;
17036 break;
72019c9c
GM
17037 case DW_LANG_Modula2:
17038 cu->language = language_m2;
17039 break;
fe8e67fd
PM
17040 case DW_LANG_Pascal83:
17041 cu->language = language_pascal;
17042 break;
22566fbd
DJ
17043 case DW_LANG_ObjC:
17044 cu->language = language_objc;
17045 break;
c906108c
SS
17046 case DW_LANG_Cobol74:
17047 case DW_LANG_Cobol85:
c906108c 17048 default:
e142c38c 17049 cu->language = language_minimal;
c906108c
SS
17050 break;
17051 }
e142c38c 17052 cu->language_defn = language_def (cu->language);
c906108c
SS
17053}
17054
17055/* Return the named attribute or NULL if not there. */
17056
17057static struct attribute *
e142c38c 17058dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17059{
a48e046c 17060 for (;;)
c906108c 17061 {
a48e046c
TT
17062 unsigned int i;
17063 struct attribute *spec = NULL;
17064
17065 for (i = 0; i < die->num_attrs; ++i)
17066 {
17067 if (die->attrs[i].name == name)
17068 return &die->attrs[i];
17069 if (die->attrs[i].name == DW_AT_specification
17070 || die->attrs[i].name == DW_AT_abstract_origin)
17071 spec = &die->attrs[i];
17072 }
17073
17074 if (!spec)
17075 break;
c906108c 17076
f2f0e013 17077 die = follow_die_ref (die, spec, &cu);
f2f0e013 17078 }
c5aa993b 17079
c906108c
SS
17080 return NULL;
17081}
17082
348e048f
DE
17083/* Return the named attribute or NULL if not there,
17084 but do not follow DW_AT_specification, etc.
17085 This is for use in contexts where we're reading .debug_types dies.
17086 Following DW_AT_specification, DW_AT_abstract_origin will take us
17087 back up the chain, and we want to go down. */
17088
17089static struct attribute *
45e58e77 17090dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17091{
17092 unsigned int i;
17093
17094 for (i = 0; i < die->num_attrs; ++i)
17095 if (die->attrs[i].name == name)
17096 return &die->attrs[i];
17097
17098 return NULL;
17099}
17100
05cf31d1
JB
17101/* Return non-zero iff the attribute NAME is defined for the given DIE,
17102 and holds a non-zero value. This function should only be used for
2dc7f7b3 17103 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17104
17105static int
17106dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17107{
17108 struct attribute *attr = dwarf2_attr (die, name, cu);
17109
17110 return (attr && DW_UNSND (attr));
17111}
17112
3ca72b44 17113static int
e142c38c 17114die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17115{
05cf31d1
JB
17116 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17117 which value is non-zero. However, we have to be careful with
17118 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17119 (via dwarf2_flag_true_p) follows this attribute. So we may
17120 end up accidently finding a declaration attribute that belongs
17121 to a different DIE referenced by the specification attribute,
17122 even though the given DIE does not have a declaration attribute. */
17123 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17124 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17125}
17126
63d06c5c 17127/* Return the die giving the specification for DIE, if there is
f2f0e013 17128 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17129 containing the return value on output. If there is no
17130 specification, but there is an abstract origin, that is
17131 returned. */
63d06c5c
DC
17132
17133static struct die_info *
f2f0e013 17134die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17135{
f2f0e013
DJ
17136 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17137 *spec_cu);
63d06c5c 17138
edb3359d
DJ
17139 if (spec_attr == NULL)
17140 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17141
63d06c5c
DC
17142 if (spec_attr == NULL)
17143 return NULL;
17144 else
f2f0e013 17145 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17146}
c906108c 17147
debd256d 17148/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17149 refers to.
17150 NOTE: This is also used as a "cleanup" function. */
17151
debd256d
JB
17152static void
17153free_line_header (struct line_header *lh)
17154{
17155 if (lh->standard_opcode_lengths)
a8bc7b56 17156 xfree (lh->standard_opcode_lengths);
debd256d
JB
17157
17158 /* Remember that all the lh->file_names[i].name pointers are
17159 pointers into debug_line_buffer, and don't need to be freed. */
17160 if (lh->file_names)
a8bc7b56 17161 xfree (lh->file_names);
debd256d
JB
17162
17163 /* Similarly for the include directory names. */
17164 if (lh->include_dirs)
a8bc7b56 17165 xfree (lh->include_dirs);
debd256d 17166
a8bc7b56 17167 xfree (lh);
debd256d
JB
17168}
17169
527f3840
JK
17170/* Stub for free_line_header to match void * callback types. */
17171
17172static void
17173free_line_header_voidp (void *arg)
17174{
17175 struct line_header *lh = arg;
17176
17177 free_line_header (lh);
17178}
17179
debd256d 17180/* Add an entry to LH's include directory table. */
ae2de4f8 17181
debd256d 17182static void
d521ce57 17183add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17184{
27e0867f
DE
17185 if (dwarf_line_debug >= 2)
17186 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17187 lh->num_include_dirs + 1, include_dir);
17188
debd256d
JB
17189 /* Grow the array if necessary. */
17190 if (lh->include_dirs_size == 0)
c5aa993b 17191 {
debd256d
JB
17192 lh->include_dirs_size = 1; /* for testing */
17193 lh->include_dirs = xmalloc (lh->include_dirs_size
17194 * sizeof (*lh->include_dirs));
17195 }
17196 else if (lh->num_include_dirs >= lh->include_dirs_size)
17197 {
17198 lh->include_dirs_size *= 2;
17199 lh->include_dirs = xrealloc (lh->include_dirs,
17200 (lh->include_dirs_size
17201 * sizeof (*lh->include_dirs)));
c5aa993b 17202 }
c906108c 17203
debd256d
JB
17204 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17205}
6e70227d 17206
debd256d 17207/* Add an entry to LH's file name table. */
ae2de4f8 17208
debd256d
JB
17209static void
17210add_file_name (struct line_header *lh,
d521ce57 17211 const char *name,
debd256d
JB
17212 unsigned int dir_index,
17213 unsigned int mod_time,
17214 unsigned int length)
17215{
17216 struct file_entry *fe;
17217
27e0867f
DE
17218 if (dwarf_line_debug >= 2)
17219 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17220 lh->num_file_names + 1, name);
17221
debd256d
JB
17222 /* Grow the array if necessary. */
17223 if (lh->file_names_size == 0)
17224 {
17225 lh->file_names_size = 1; /* for testing */
17226 lh->file_names = xmalloc (lh->file_names_size
17227 * sizeof (*lh->file_names));
17228 }
17229 else if (lh->num_file_names >= lh->file_names_size)
17230 {
17231 lh->file_names_size *= 2;
17232 lh->file_names = xrealloc (lh->file_names,
17233 (lh->file_names_size
17234 * sizeof (*lh->file_names)));
17235 }
17236
17237 fe = &lh->file_names[lh->num_file_names++];
17238 fe->name = name;
17239 fe->dir_index = dir_index;
17240 fe->mod_time = mod_time;
17241 fe->length = length;
aaa75496 17242 fe->included_p = 0;
cb1df416 17243 fe->symtab = NULL;
debd256d 17244}
6e70227d 17245
83769d0b 17246/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17247
17248static struct dwarf2_section_info *
17249get_debug_line_section (struct dwarf2_cu *cu)
17250{
17251 struct dwarf2_section_info *section;
17252
17253 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17254 DWO file. */
17255 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17256 section = &cu->dwo_unit->dwo_file->sections.line;
17257 else if (cu->per_cu->is_dwz)
17258 {
17259 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17260
17261 section = &dwz->line;
17262 }
17263 else
17264 section = &dwarf2_per_objfile->line;
17265
17266 return section;
17267}
17268
debd256d 17269/* Read the statement program header starting at OFFSET in
3019eac3 17270 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17271 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17272 Returns NULL if there is a problem reading the header, e.g., if it
17273 has a version we don't understand.
debd256d
JB
17274
17275 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17276 the returned object point into the dwarf line section buffer,
17277 and must not be freed. */
ae2de4f8 17278
debd256d 17279static struct line_header *
3019eac3 17280dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17281{
17282 struct cleanup *back_to;
17283 struct line_header *lh;
d521ce57 17284 const gdb_byte *line_ptr;
c764a876 17285 unsigned int bytes_read, offset_size;
debd256d 17286 int i;
d521ce57 17287 const char *cur_dir, *cur_file;
3019eac3
DE
17288 struct dwarf2_section_info *section;
17289 bfd *abfd;
17290
36586728 17291 section = get_debug_line_section (cu);
3019eac3
DE
17292 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17293 if (section->buffer == NULL)
debd256d 17294 {
3019eac3
DE
17295 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17296 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17297 else
17298 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17299 return 0;
17300 }
17301
fceca515
DE
17302 /* We can't do this until we know the section is non-empty.
17303 Only then do we know we have such a section. */
a32a8923 17304 abfd = get_section_bfd_owner (section);
fceca515 17305
a738430d
MK
17306 /* Make sure that at least there's room for the total_length field.
17307 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17308 if (offset + 4 >= section->size)
debd256d 17309 {
4d3c2250 17310 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17311 return 0;
17312 }
17313
17314 lh = xmalloc (sizeof (*lh));
17315 memset (lh, 0, sizeof (*lh));
17316 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17317 (void *) lh);
17318
527f3840
JK
17319 lh->offset.sect_off = offset;
17320 lh->offset_in_dwz = cu->per_cu->is_dwz;
17321
3019eac3 17322 line_ptr = section->buffer + offset;
debd256d 17323
a738430d 17324 /* Read in the header. */
6e70227d 17325 lh->total_length =
c764a876
DE
17326 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17327 &bytes_read, &offset_size);
debd256d 17328 line_ptr += bytes_read;
3019eac3 17329 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17330 {
4d3c2250 17331 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17332 do_cleanups (back_to);
debd256d
JB
17333 return 0;
17334 }
17335 lh->statement_program_end = line_ptr + lh->total_length;
17336 lh->version = read_2_bytes (abfd, line_ptr);
17337 line_ptr += 2;
cd366ee8
DE
17338 if (lh->version > 4)
17339 {
17340 /* This is a version we don't understand. The format could have
17341 changed in ways we don't handle properly so just punt. */
17342 complaint (&symfile_complaints,
17343 _("unsupported version in .debug_line section"));
17344 return NULL;
17345 }
c764a876
DE
17346 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17347 line_ptr += offset_size;
debd256d
JB
17348 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17349 line_ptr += 1;
2dc7f7b3
TT
17350 if (lh->version >= 4)
17351 {
17352 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17353 line_ptr += 1;
17354 }
17355 else
17356 lh->maximum_ops_per_instruction = 1;
17357
17358 if (lh->maximum_ops_per_instruction == 0)
17359 {
17360 lh->maximum_ops_per_instruction = 1;
17361 complaint (&symfile_complaints,
3e43a32a
MS
17362 _("invalid maximum_ops_per_instruction "
17363 "in `.debug_line' section"));
2dc7f7b3
TT
17364 }
17365
debd256d
JB
17366 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17367 line_ptr += 1;
17368 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17369 line_ptr += 1;
17370 lh->line_range = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 lh->opcode_base = read_1_byte (abfd, line_ptr);
17373 line_ptr += 1;
17374 lh->standard_opcode_lengths
fe1b8b76 17375 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17376
17377 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17378 for (i = 1; i < lh->opcode_base; ++i)
17379 {
17380 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17381 line_ptr += 1;
17382 }
17383
a738430d 17384 /* Read directory table. */
9b1c24c8 17385 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17386 {
17387 line_ptr += bytes_read;
17388 add_include_dir (lh, cur_dir);
17389 }
17390 line_ptr += bytes_read;
17391
a738430d 17392 /* Read file name table. */
9b1c24c8 17393 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17394 {
17395 unsigned int dir_index, mod_time, length;
17396
17397 line_ptr += bytes_read;
17398 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
17400 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17401 line_ptr += bytes_read;
17402 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17403 line_ptr += bytes_read;
17404
17405 add_file_name (lh, cur_file, dir_index, mod_time, length);
17406 }
17407 line_ptr += bytes_read;
6e70227d 17408 lh->statement_program_start = line_ptr;
debd256d 17409
3019eac3 17410 if (line_ptr > (section->buffer + section->size))
4d3c2250 17411 complaint (&symfile_complaints,
3e43a32a
MS
17412 _("line number info header doesn't "
17413 "fit in `.debug_line' section"));
debd256d
JB
17414
17415 discard_cleanups (back_to);
17416 return lh;
17417}
c906108c 17418
c6da4cef
DE
17419/* Subroutine of dwarf_decode_lines to simplify it.
17420 Return the file name of the psymtab for included file FILE_INDEX
17421 in line header LH of PST.
17422 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17423 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17424 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17425
17426 The function creates dangling cleanup registration. */
c6da4cef 17427
d521ce57 17428static const char *
c6da4cef
DE
17429psymtab_include_file_name (const struct line_header *lh, int file_index,
17430 const struct partial_symtab *pst,
17431 const char *comp_dir)
17432{
17433 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17434 const char *include_name = fe.name;
17435 const char *include_name_to_compare = include_name;
17436 const char *dir_name = NULL;
72b9f47f
TT
17437 const char *pst_filename;
17438 char *copied_name = NULL;
c6da4cef
DE
17439 int file_is_pst;
17440
afa6c9ab 17441 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17442 dir_name = lh->include_dirs[fe.dir_index - 1];
17443
17444 if (!IS_ABSOLUTE_PATH (include_name)
17445 && (dir_name != NULL || comp_dir != NULL))
17446 {
17447 /* Avoid creating a duplicate psymtab for PST.
17448 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17449 Before we do the comparison, however, we need to account
17450 for DIR_NAME and COMP_DIR.
17451 First prepend dir_name (if non-NULL). If we still don't
17452 have an absolute path prepend comp_dir (if non-NULL).
17453 However, the directory we record in the include-file's
17454 psymtab does not contain COMP_DIR (to match the
17455 corresponding symtab(s)).
17456
17457 Example:
17458
17459 bash$ cd /tmp
17460 bash$ gcc -g ./hello.c
17461 include_name = "hello.c"
17462 dir_name = "."
17463 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17464 DW_AT_name = "./hello.c"
17465
17466 */
c6da4cef
DE
17467
17468 if (dir_name != NULL)
17469 {
d521ce57
TT
17470 char *tem = concat (dir_name, SLASH_STRING,
17471 include_name, (char *)NULL);
17472
17473 make_cleanup (xfree, tem);
17474 include_name = tem;
c6da4cef 17475 include_name_to_compare = include_name;
c6da4cef
DE
17476 }
17477 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17478 {
d521ce57
TT
17479 char *tem = concat (comp_dir, SLASH_STRING,
17480 include_name, (char *)NULL);
17481
17482 make_cleanup (xfree, tem);
17483 include_name_to_compare = tem;
c6da4cef
DE
17484 }
17485 }
17486
17487 pst_filename = pst->filename;
17488 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17489 {
72b9f47f
TT
17490 copied_name = concat (pst->dirname, SLASH_STRING,
17491 pst_filename, (char *)NULL);
17492 pst_filename = copied_name;
c6da4cef
DE
17493 }
17494
1e3fad37 17495 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17496
72b9f47f
TT
17497 if (copied_name != NULL)
17498 xfree (copied_name);
c6da4cef
DE
17499
17500 if (file_is_pst)
17501 return NULL;
17502 return include_name;
17503}
17504
d9b3de22
DE
17505/* State machine to track the state of the line number program. */
17506
17507typedef struct
17508{
17509 /* These are part of the standard DWARF line number state machine. */
17510
17511 unsigned char op_index;
17512 unsigned int file;
17513 unsigned int line;
17514 CORE_ADDR address;
17515 int is_stmt;
17516 unsigned int discriminator;
17517
17518 /* Additional bits of state we need to track. */
17519
17520 /* The last file that we called dwarf2_start_subfile for.
17521 This is only used for TLLs. */
17522 unsigned int last_file;
17523 /* The last file a line number was recorded for. */
17524 struct subfile *last_subfile;
17525
17526 /* The function to call to record a line. */
17527 record_line_ftype *record_line;
17528
17529 /* The last line number that was recorded, used to coalesce
17530 consecutive entries for the same line. This can happen, for
17531 example, when discriminators are present. PR 17276. */
17532 unsigned int last_line;
17533 int line_has_non_zero_discriminator;
17534} lnp_state_machine;
17535
17536/* There's a lot of static state to pass to dwarf_record_line.
17537 This keeps it all together. */
17538
17539typedef struct
17540{
17541 /* The gdbarch. */
17542 struct gdbarch *gdbarch;
17543
17544 /* The line number header. */
17545 struct line_header *line_header;
17546
17547 /* Non-zero if we're recording lines.
17548 Otherwise we're building partial symtabs and are just interested in
17549 finding include files mentioned by the line number program. */
17550 int record_lines_p;
17551} lnp_reader_state;
17552
c91513d8
PP
17553/* Ignore this record_line request. */
17554
17555static void
17556noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17557{
17558 return;
17559}
17560
a05a36a5
DE
17561/* Return non-zero if we should add LINE to the line number table.
17562 LINE is the line to add, LAST_LINE is the last line that was added,
17563 LAST_SUBFILE is the subfile for LAST_LINE.
17564 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17565 had a non-zero discriminator.
17566
17567 We have to be careful in the presence of discriminators.
17568 E.g., for this line:
17569
17570 for (i = 0; i < 100000; i++);
17571
17572 clang can emit four line number entries for that one line,
17573 each with a different discriminator.
17574 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17575
17576 However, we want gdb to coalesce all four entries into one.
17577 Otherwise the user could stepi into the middle of the line and
17578 gdb would get confused about whether the pc really was in the
17579 middle of the line.
17580
17581 Things are further complicated by the fact that two consecutive
17582 line number entries for the same line is a heuristic used by gcc
17583 to denote the end of the prologue. So we can't just discard duplicate
17584 entries, we have to be selective about it. The heuristic we use is
17585 that we only collapse consecutive entries for the same line if at least
17586 one of those entries has a non-zero discriminator. PR 17276.
17587
17588 Note: Addresses in the line number state machine can never go backwards
17589 within one sequence, thus this coalescing is ok. */
17590
17591static int
17592dwarf_record_line_p (unsigned int line, unsigned int last_line,
17593 int line_has_non_zero_discriminator,
17594 struct subfile *last_subfile)
17595{
17596 if (current_subfile != last_subfile)
17597 return 1;
17598 if (line != last_line)
17599 return 1;
17600 /* Same line for the same file that we've seen already.
17601 As a last check, for pr 17276, only record the line if the line
17602 has never had a non-zero discriminator. */
17603 if (!line_has_non_zero_discriminator)
17604 return 1;
17605 return 0;
17606}
17607
252a6764
DE
17608/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17609 in the line table of subfile SUBFILE. */
17610
17611static void
d9b3de22
DE
17612dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17613 unsigned int line, CORE_ADDR address,
17614 record_line_ftype p_record_line)
252a6764
DE
17615{
17616 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17617
27e0867f
DE
17618 if (dwarf_line_debug)
17619 {
17620 fprintf_unfiltered (gdb_stdlog,
17621 "Recording line %u, file %s, address %s\n",
17622 line, lbasename (subfile->name),
17623 paddress (gdbarch, address));
17624 }
17625
d5962de5 17626 (*p_record_line) (subfile, line, addr);
252a6764
DE
17627}
17628
17629/* Subroutine of dwarf_decode_lines_1 to simplify it.
17630 Mark the end of a set of line number records.
d9b3de22 17631 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17632 If SUBFILE is NULL the request is ignored. */
17633
17634static void
17635dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17636 CORE_ADDR address, record_line_ftype p_record_line)
17637{
27e0867f
DE
17638 if (subfile == NULL)
17639 return;
17640
17641 if (dwarf_line_debug)
17642 {
17643 fprintf_unfiltered (gdb_stdlog,
17644 "Finishing current line, file %s, address %s\n",
17645 lbasename (subfile->name),
17646 paddress (gdbarch, address));
17647 }
17648
d9b3de22
DE
17649 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17650}
17651
17652/* Record the line in STATE.
17653 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17654
17655static void
17656dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17657 int end_sequence)
17658{
17659 const struct line_header *lh = reader->line_header;
17660 unsigned int file, line, discriminator;
17661 int is_stmt;
17662
17663 file = state->file;
17664 line = state->line;
17665 is_stmt = state->is_stmt;
17666 discriminator = state->discriminator;
17667
17668 if (dwarf_line_debug)
17669 {
17670 fprintf_unfiltered (gdb_stdlog,
17671 "Processing actual line %u: file %u,"
17672 " address %s, is_stmt %u, discrim %u\n",
17673 line, file,
17674 paddress (reader->gdbarch, state->address),
17675 is_stmt, discriminator);
17676 }
17677
17678 if (file == 0 || file - 1 >= lh->num_file_names)
17679 dwarf2_debug_line_missing_file_complaint ();
17680 /* For now we ignore lines not starting on an instruction boundary.
17681 But not when processing end_sequence for compatibility with the
17682 previous version of the code. */
17683 else if (state->op_index == 0 || end_sequence)
17684 {
17685 lh->file_names[file - 1].included_p = 1;
17686 if (reader->record_lines_p && is_stmt)
17687 {
e815d2d2 17688 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17689 {
17690 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17691 state->address, state->record_line);
17692 }
17693
17694 if (!end_sequence)
17695 {
17696 if (dwarf_record_line_p (line, state->last_line,
17697 state->line_has_non_zero_discriminator,
17698 state->last_subfile))
17699 {
17700 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17701 line, state->address,
17702 state->record_line);
17703 }
17704 state->last_subfile = current_subfile;
17705 state->last_line = line;
17706 }
17707 }
17708 }
17709}
17710
17711/* Initialize STATE for the start of a line number program. */
17712
17713static void
17714init_lnp_state_machine (lnp_state_machine *state,
17715 const lnp_reader_state *reader)
17716{
17717 memset (state, 0, sizeof (*state));
17718
17719 /* Just starting, there is no "last file". */
17720 state->last_file = 0;
17721 state->last_subfile = NULL;
17722
17723 state->record_line = record_line;
17724
17725 state->last_line = 0;
17726 state->line_has_non_zero_discriminator = 0;
17727
17728 /* Initialize these according to the DWARF spec. */
17729 state->op_index = 0;
17730 state->file = 1;
17731 state->line = 1;
17732 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17733 was a line entry for it so that the backend has a chance to adjust it
17734 and also record it in case it needs it. This is currently used by MIPS
17735 code, cf. `mips_adjust_dwarf2_line'. */
17736 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17737 state->is_stmt = reader->line_header->default_is_stmt;
17738 state->discriminator = 0;
252a6764
DE
17739}
17740
924c2928
DE
17741/* Check address and if invalid nop-out the rest of the lines in this
17742 sequence. */
17743
17744static void
d9b3de22 17745check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17746 const gdb_byte *line_ptr,
17747 CORE_ADDR lowpc, CORE_ADDR address)
17748{
17749 /* If address < lowpc then it's not a usable value, it's outside the
17750 pc range of the CU. However, we restrict the test to only address
17751 values of zero to preserve GDB's previous behaviour which is to
17752 handle the specific case of a function being GC'd by the linker. */
17753
17754 if (address == 0 && address < lowpc)
17755 {
17756 /* This line table is for a function which has been
17757 GCd by the linker. Ignore it. PR gdb/12528 */
17758
17759 struct objfile *objfile = cu->objfile;
17760 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17761
17762 complaint (&symfile_complaints,
17763 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17764 line_offset, objfile_name (objfile));
d9b3de22
DE
17765 state->record_line = noop_record_line;
17766 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17767 until we see DW_LNE_end_sequence. */
17768 }
17769}
17770
f3f5162e 17771/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17772 Process the line number information in LH.
17773 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17774 program in order to set included_p for every referenced header. */
debd256d 17775
c906108c 17776static void
43f3e411
DE
17777dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17778 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17779{
d521ce57
TT
17780 const gdb_byte *line_ptr, *extended_end;
17781 const gdb_byte *line_end;
a8c50c1f 17782 unsigned int bytes_read, extended_len;
699ca60a 17783 unsigned char op_code, extended_op;
e142c38c
DJ
17784 CORE_ADDR baseaddr;
17785 struct objfile *objfile = cu->objfile;
f3f5162e 17786 bfd *abfd = objfile->obfd;
fbf65064 17787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17788 /* Non-zero if we're recording line info (as opposed to building partial
17789 symtabs). */
17790 int record_lines_p = !decode_for_pst_p;
17791 /* A collection of things we need to pass to dwarf_record_line. */
17792 lnp_reader_state reader_state;
e142c38c
DJ
17793
17794 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17795
debd256d
JB
17796 line_ptr = lh->statement_program_start;
17797 line_end = lh->statement_program_end;
c906108c 17798
d9b3de22
DE
17799 reader_state.gdbarch = gdbarch;
17800 reader_state.line_header = lh;
17801 reader_state.record_lines_p = record_lines_p;
17802
c906108c
SS
17803 /* Read the statement sequences until there's nothing left. */
17804 while (line_ptr < line_end)
17805 {
d9b3de22
DE
17806 /* The DWARF line number program state machine. */
17807 lnp_state_machine state_machine;
c906108c 17808 int end_sequence = 0;
d9b3de22
DE
17809
17810 /* Reset the state machine at the start of each sequence. */
17811 init_lnp_state_machine (&state_machine, &reader_state);
17812
17813 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17814 {
aaa75496 17815 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17816 /* lh->include_dirs and lh->file_names are 0-based, but the
17817 directory and file name numbers in the statement program
17818 are 1-based. */
d9b3de22 17819 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17820 const char *dir = NULL;
a738430d 17821
afa6c9ab 17822 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17823 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17824
4d663531 17825 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17826 }
17827
a738430d 17828 /* Decode the table. */
d9b3de22 17829 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17830 {
17831 op_code = read_1_byte (abfd, line_ptr);
17832 line_ptr += 1;
9aa1fe7e 17833
debd256d 17834 if (op_code >= lh->opcode_base)
6e70227d 17835 {
8e07a239 17836 /* Special opcode. */
699ca60a 17837 unsigned char adj_opcode;
3e29f34a 17838 CORE_ADDR addr_adj;
a05a36a5 17839 int line_delta;
8e07a239 17840
debd256d 17841 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17842 addr_adj = (((state_machine.op_index
17843 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17844 / lh->maximum_ops_per_instruction)
17845 * lh->minimum_instruction_length);
d9b3de22
DE
17846 state_machine.address
17847 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17848 state_machine.op_index = ((state_machine.op_index
17849 + (adj_opcode / lh->line_range))
17850 % lh->maximum_ops_per_instruction);
a05a36a5 17851 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17852 state_machine.line += line_delta;
a05a36a5 17853 if (line_delta != 0)
d9b3de22
DE
17854 state_machine.line_has_non_zero_discriminator
17855 = state_machine.discriminator != 0;
17856
17857 dwarf_record_line (&reader_state, &state_machine, 0);
17858 state_machine.discriminator = 0;
9aa1fe7e
GK
17859 }
17860 else switch (op_code)
c906108c
SS
17861 {
17862 case DW_LNS_extended_op:
3e43a32a
MS
17863 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17864 &bytes_read);
473b7be6 17865 line_ptr += bytes_read;
a8c50c1f 17866 extended_end = line_ptr + extended_len;
c906108c
SS
17867 extended_op = read_1_byte (abfd, line_ptr);
17868 line_ptr += 1;
17869 switch (extended_op)
17870 {
17871 case DW_LNE_end_sequence:
d9b3de22 17872 state_machine.record_line = record_line;
c906108c 17873 end_sequence = 1;
c906108c
SS
17874 break;
17875 case DW_LNE_set_address:
d9b3de22
DE
17876 {
17877 CORE_ADDR address
17878 = read_address (abfd, line_ptr, cu, &bytes_read);
17879
17880 line_ptr += bytes_read;
17881 check_line_address (cu, &state_machine, line_ptr,
17882 lowpc, address);
17883 state_machine.op_index = 0;
17884 address += baseaddr;
17885 state_machine.address
17886 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17887 }
c906108c
SS
17888 break;
17889 case DW_LNE_define_file:
debd256d 17890 {
d521ce57 17891 const char *cur_file;
debd256d 17892 unsigned int dir_index, mod_time, length;
6e70227d 17893
3e43a32a
MS
17894 cur_file = read_direct_string (abfd, line_ptr,
17895 &bytes_read);
debd256d
JB
17896 line_ptr += bytes_read;
17897 dir_index =
17898 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17899 line_ptr += bytes_read;
17900 mod_time =
17901 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17902 line_ptr += bytes_read;
17903 length =
17904 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17905 line_ptr += bytes_read;
17906 add_file_name (lh, cur_file, dir_index, mod_time, length);
17907 }
c906108c 17908 break;
d0c6ba3d
CC
17909 case DW_LNE_set_discriminator:
17910 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17911 just ignore it. We still need to check its value though:
17912 if there are consecutive entries for the same
17913 (non-prologue) line we want to coalesce them.
17914 PR 17276. */
d9b3de22
DE
17915 state_machine.discriminator
17916 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17917 state_machine.line_has_non_zero_discriminator
17918 |= state_machine.discriminator != 0;
a05a36a5 17919 line_ptr += bytes_read;
d0c6ba3d 17920 break;
c906108c 17921 default:
4d3c2250 17922 complaint (&symfile_complaints,
e2e0b3e5 17923 _("mangled .debug_line section"));
debd256d 17924 return;
c906108c 17925 }
a8c50c1f
DJ
17926 /* Make sure that we parsed the extended op correctly. If e.g.
17927 we expected a different address size than the producer used,
17928 we may have read the wrong number of bytes. */
17929 if (line_ptr != extended_end)
17930 {
17931 complaint (&symfile_complaints,
17932 _("mangled .debug_line section"));
17933 return;
17934 }
c906108c
SS
17935 break;
17936 case DW_LNS_copy:
d9b3de22
DE
17937 dwarf_record_line (&reader_state, &state_machine, 0);
17938 state_machine.discriminator = 0;
c906108c
SS
17939 break;
17940 case DW_LNS_advance_pc:
2dc7f7b3
TT
17941 {
17942 CORE_ADDR adjust
17943 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17944 CORE_ADDR addr_adj;
2dc7f7b3 17945
d9b3de22 17946 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17947 / lh->maximum_ops_per_instruction)
17948 * lh->minimum_instruction_length);
d9b3de22
DE
17949 state_machine.address
17950 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17951 state_machine.op_index = ((state_machine.op_index + adjust)
17952 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17953 line_ptr += bytes_read;
17954 }
c906108c
SS
17955 break;
17956 case DW_LNS_advance_line:
a05a36a5
DE
17957 {
17958 int line_delta
17959 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17960
d9b3de22 17961 state_machine.line += line_delta;
a05a36a5 17962 if (line_delta != 0)
d9b3de22
DE
17963 state_machine.line_has_non_zero_discriminator
17964 = state_machine.discriminator != 0;
a05a36a5
DE
17965 line_ptr += bytes_read;
17966 }
c906108c
SS
17967 break;
17968 case DW_LNS_set_file:
d9b3de22
DE
17969 {
17970 /* The arrays lh->include_dirs and lh->file_names are
17971 0-based, but the directory and file name numbers in
17972 the statement program are 1-based. */
17973 struct file_entry *fe;
17974 const char *dir = NULL;
17975
17976 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17977 &bytes_read);
17978 line_ptr += bytes_read;
17979 if (state_machine.file == 0
17980 || state_machine.file - 1 >= lh->num_file_names)
17981 dwarf2_debug_line_missing_file_complaint ();
17982 else
17983 {
17984 fe = &lh->file_names[state_machine.file - 1];
17985 if (fe->dir_index && lh->include_dirs != NULL)
17986 dir = lh->include_dirs[fe->dir_index - 1];
17987 if (record_lines_p)
17988 {
17989 state_machine.last_subfile = current_subfile;
17990 state_machine.line_has_non_zero_discriminator
17991 = state_machine.discriminator != 0;
17992 dwarf2_start_subfile (fe->name, dir);
17993 }
17994 }
17995 }
c906108c
SS
17996 break;
17997 case DW_LNS_set_column:
0ad93d4f 17998 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17999 line_ptr += bytes_read;
18000 break;
18001 case DW_LNS_negate_stmt:
d9b3de22 18002 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18003 break;
18004 case DW_LNS_set_basic_block:
c906108c 18005 break;
c2c6d25f
JM
18006 /* Add to the address register of the state machine the
18007 address increment value corresponding to special opcode
a738430d
MK
18008 255. I.e., this value is scaled by the minimum
18009 instruction length since special opcode 255 would have
b021a221 18010 scaled the increment. */
c906108c 18011 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18012 {
18013 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18014 CORE_ADDR addr_adj;
2dc7f7b3 18015
d9b3de22 18016 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18017 / lh->maximum_ops_per_instruction)
18018 * lh->minimum_instruction_length);
d9b3de22
DE
18019 state_machine.address
18020 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18021 state_machine.op_index = ((state_machine.op_index + adjust)
18022 % lh->maximum_ops_per_instruction);
2dc7f7b3 18023 }
c906108c
SS
18024 break;
18025 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18026 {
18027 CORE_ADDR addr_adj;
18028
18029 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18030 state_machine.address
18031 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18032 state_machine.op_index = 0;
3e29f34a
MR
18033 line_ptr += 2;
18034 }
c906108c 18035 break;
9aa1fe7e 18036 default:
a738430d
MK
18037 {
18038 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18039 int i;
a738430d 18040
debd256d 18041 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18042 {
18043 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18044 line_ptr += bytes_read;
18045 }
18046 }
c906108c
SS
18047 }
18048 }
d9b3de22
DE
18049
18050 if (!end_sequence)
18051 dwarf2_debug_line_missing_end_sequence_complaint ();
18052
18053 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18054 in which case we still finish recording the last line). */
18055 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18056 }
f3f5162e
DE
18057}
18058
18059/* Decode the Line Number Program (LNP) for the given line_header
18060 structure and CU. The actual information extracted and the type
18061 of structures created from the LNP depends on the value of PST.
18062
18063 1. If PST is NULL, then this procedure uses the data from the program
18064 to create all necessary symbol tables, and their linetables.
18065
18066 2. If PST is not NULL, this procedure reads the program to determine
18067 the list of files included by the unit represented by PST, and
18068 builds all the associated partial symbol tables.
18069
18070 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18071 It is used for relative paths in the line table.
18072 NOTE: When processing partial symtabs (pst != NULL),
18073 comp_dir == pst->dirname.
18074
18075 NOTE: It is important that psymtabs have the same file name (via strcmp)
18076 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18077 symtab we don't use it in the name of the psymtabs we create.
18078 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18079 A good testcase for this is mb-inline.exp.
18080
527f3840
JK
18081 LOWPC is the lowest address in CU (or 0 if not known).
18082
18083 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18084 for its PC<->lines mapping information. Otherwise only the filename
18085 table is read in. */
f3f5162e
DE
18086
18087static void
18088dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18089 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18090 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18091{
18092 struct objfile *objfile = cu->objfile;
18093 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18094
527f3840
JK
18095 if (decode_mapping)
18096 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18097
18098 if (decode_for_pst_p)
18099 {
18100 int file_index;
18101
18102 /* Now that we're done scanning the Line Header Program, we can
18103 create the psymtab of each included file. */
18104 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18105 if (lh->file_names[file_index].included_p == 1)
18106 {
d521ce57 18107 const char *include_name =
c6da4cef
DE
18108 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18109 if (include_name != NULL)
aaa75496
JB
18110 dwarf2_create_include_psymtab (include_name, pst, objfile);
18111 }
18112 }
cb1df416
DJ
18113 else
18114 {
18115 /* Make sure a symtab is created for every file, even files
18116 which contain only variables (i.e. no code with associated
18117 line numbers). */
43f3e411 18118 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18119 int i;
cb1df416
DJ
18120
18121 for (i = 0; i < lh->num_file_names; i++)
18122 {
d521ce57 18123 const char *dir = NULL;
f3f5162e 18124 struct file_entry *fe;
9a619af0 18125
cb1df416 18126 fe = &lh->file_names[i];
afa6c9ab 18127 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18128 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18129 dwarf2_start_subfile (fe->name, dir);
cb1df416 18130
cb1df416 18131 if (current_subfile->symtab == NULL)
43f3e411
DE
18132 {
18133 current_subfile->symtab
18134 = allocate_symtab (cust, current_subfile->name);
18135 }
cb1df416
DJ
18136 fe->symtab = current_subfile->symtab;
18137 }
18138 }
c906108c
SS
18139}
18140
18141/* Start a subfile for DWARF. FILENAME is the name of the file and
18142 DIRNAME the name of the source directory which contains FILENAME
4d663531 18143 or NULL if not known.
c906108c
SS
18144 This routine tries to keep line numbers from identical absolute and
18145 relative file names in a common subfile.
18146
18147 Using the `list' example from the GDB testsuite, which resides in
18148 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18149 of /srcdir/list0.c yields the following debugging information for list0.c:
18150
c5aa993b 18151 DW_AT_name: /srcdir/list0.c
4d663531 18152 DW_AT_comp_dir: /compdir
357e46e7 18153 files.files[0].name: list0.h
c5aa993b 18154 files.files[0].dir: /srcdir
357e46e7 18155 files.files[1].name: list0.c
c5aa993b 18156 files.files[1].dir: /srcdir
c906108c
SS
18157
18158 The line number information for list0.c has to end up in a single
4f1520fb
FR
18159 subfile, so that `break /srcdir/list0.c:1' works as expected.
18160 start_subfile will ensure that this happens provided that we pass the
18161 concatenation of files.files[1].dir and files.files[1].name as the
18162 subfile's name. */
c906108c
SS
18163
18164static void
4d663531 18165dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18166{
d521ce57 18167 char *copy = NULL;
4f1520fb 18168
4d663531 18169 /* In order not to lose the line information directory,
4f1520fb
FR
18170 we concatenate it to the filename when it makes sense.
18171 Note that the Dwarf3 standard says (speaking of filenames in line
18172 information): ``The directory index is ignored for file names
18173 that represent full path names''. Thus ignoring dirname in the
18174 `else' branch below isn't an issue. */
c906108c 18175
d5166ae1 18176 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18177 {
18178 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18179 filename = copy;
18180 }
c906108c 18181
4d663531 18182 start_subfile (filename);
4f1520fb 18183
d521ce57
TT
18184 if (copy != NULL)
18185 xfree (copy);
c906108c
SS
18186}
18187
f4dc4d17
DE
18188/* Start a symtab for DWARF.
18189 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18190
43f3e411 18191static struct compunit_symtab *
f4dc4d17 18192dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18193 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18194{
43f3e411
DE
18195 struct compunit_symtab *cust
18196 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18197
f4dc4d17
DE
18198 record_debugformat ("DWARF 2");
18199 record_producer (cu->producer);
18200
18201 /* We assume that we're processing GCC output. */
18202 processing_gcc_compilation = 2;
18203
4d4ec4e5 18204 cu->processing_has_namespace_info = 0;
43f3e411
DE
18205
18206 return cust;
f4dc4d17
DE
18207}
18208
4c2df51b
DJ
18209static void
18210var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18211 struct dwarf2_cu *cu)
4c2df51b 18212{
e7c27a73
DJ
18213 struct objfile *objfile = cu->objfile;
18214 struct comp_unit_head *cu_header = &cu->header;
18215
4c2df51b
DJ
18216 /* NOTE drow/2003-01-30: There used to be a comment and some special
18217 code here to turn a symbol with DW_AT_external and a
18218 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18219 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18220 with some versions of binutils) where shared libraries could have
18221 relocations against symbols in their debug information - the
18222 minimal symbol would have the right address, but the debug info
18223 would not. It's no longer necessary, because we will explicitly
18224 apply relocations when we read in the debug information now. */
18225
18226 /* A DW_AT_location attribute with no contents indicates that a
18227 variable has been optimized away. */
18228 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18229 {
f1e6e072 18230 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18231 return;
18232 }
18233
18234 /* Handle one degenerate form of location expression specially, to
18235 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18236 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18237 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18238
18239 if (attr_form_is_block (attr)
3019eac3
DE
18240 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18241 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18242 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18243 && (DW_BLOCK (attr)->size
18244 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18245 {
891d2f0b 18246 unsigned int dummy;
4c2df51b 18247
3019eac3
DE
18248 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18249 SYMBOL_VALUE_ADDRESS (sym) =
18250 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18251 else
18252 SYMBOL_VALUE_ADDRESS (sym) =
18253 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18254 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18255 fixup_symbol_section (sym, objfile);
18256 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18257 SYMBOL_SECTION (sym));
4c2df51b
DJ
18258 return;
18259 }
18260
18261 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18262 expression evaluator, and use LOC_COMPUTED only when necessary
18263 (i.e. when the value of a register or memory location is
18264 referenced, or a thread-local block, etc.). Then again, it might
18265 not be worthwhile. I'm assuming that it isn't unless performance
18266 or memory numbers show me otherwise. */
18267
f1e6e072 18268 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18269
f1e6e072 18270 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18271 cu->has_loclist = 1;
4c2df51b
DJ
18272}
18273
c906108c
SS
18274/* Given a pointer to a DWARF information entry, figure out if we need
18275 to make a symbol table entry for it, and if so, create a new entry
18276 and return a pointer to it.
18277 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18278 used the passed type.
18279 If SPACE is not NULL, use it to hold the new symbol. If it is
18280 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18281
18282static struct symbol *
34eaf542
TT
18283new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18284 struct symbol *space)
c906108c 18285{
e7c27a73 18286 struct objfile *objfile = cu->objfile;
3e29f34a 18287 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18288 struct symbol *sym = NULL;
15d034d0 18289 const char *name;
c906108c
SS
18290 struct attribute *attr = NULL;
18291 struct attribute *attr2 = NULL;
e142c38c 18292 CORE_ADDR baseaddr;
e37fd15a
SW
18293 struct pending **list_to_add = NULL;
18294
edb3359d 18295 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18296
18297 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18298
94af9270 18299 name = dwarf2_name (die, cu);
c906108c
SS
18300 if (name)
18301 {
94af9270 18302 const char *linkagename;
34eaf542 18303 int suppress_add = 0;
94af9270 18304
34eaf542
TT
18305 if (space)
18306 sym = space;
18307 else
e623cf5d 18308 sym = allocate_symbol (objfile);
c906108c 18309 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18310
18311 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18312 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18313 linkagename = dwarf2_physname (name, die, cu);
18314 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18315
f55ee35c
JK
18316 /* Fortran does not have mangling standard and the mangling does differ
18317 between gfortran, iFort etc. */
18318 if (cu->language == language_fortran
b250c185 18319 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18320 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18321 dwarf2_full_name (name, die, cu),
29df156d 18322 NULL);
f55ee35c 18323
c906108c 18324 /* Default assumptions.
c5aa993b 18325 Use the passed type or decode it from the die. */
176620f1 18326 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18327 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18328 if (type != NULL)
18329 SYMBOL_TYPE (sym) = type;
18330 else
e7c27a73 18331 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18332 attr = dwarf2_attr (die,
18333 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18334 cu);
c906108c
SS
18335 if (attr)
18336 {
18337 SYMBOL_LINE (sym) = DW_UNSND (attr);
18338 }
cb1df416 18339
edb3359d
DJ
18340 attr = dwarf2_attr (die,
18341 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18342 cu);
cb1df416
DJ
18343 if (attr)
18344 {
18345 int file_index = DW_UNSND (attr);
9a619af0 18346
cb1df416
DJ
18347 if (cu->line_header == NULL
18348 || file_index > cu->line_header->num_file_names)
18349 complaint (&symfile_complaints,
18350 _("file index out of range"));
1c3d648d 18351 else if (file_index > 0)
cb1df416
DJ
18352 {
18353 struct file_entry *fe;
9a619af0 18354
cb1df416 18355 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18356 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18357 }
18358 }
18359
c906108c
SS
18360 switch (die->tag)
18361 {
18362 case DW_TAG_label:
e142c38c 18363 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18364 if (attr)
3e29f34a
MR
18365 {
18366 CORE_ADDR addr;
18367
18368 addr = attr_value_as_address (attr);
18369 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18370 SYMBOL_VALUE_ADDRESS (sym) = addr;
18371 }
0f5238ed
TT
18372 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18373 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18374 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18375 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18376 break;
18377 case DW_TAG_subprogram:
18378 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18379 finish_block. */
f1e6e072 18380 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18381 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18382 if ((attr2 && (DW_UNSND (attr2) != 0))
18383 || cu->language == language_ada)
c906108c 18384 {
2cfa0c8d
JB
18385 /* Subprograms marked external are stored as a global symbol.
18386 Ada subprograms, whether marked external or not, are always
18387 stored as a global symbol, because we want to be able to
18388 access them globally. For instance, we want to be able
18389 to break on a nested subprogram without having to
18390 specify the context. */
e37fd15a 18391 list_to_add = &global_symbols;
c906108c
SS
18392 }
18393 else
18394 {
e37fd15a 18395 list_to_add = cu->list_in_scope;
c906108c
SS
18396 }
18397 break;
edb3359d
DJ
18398 case DW_TAG_inlined_subroutine:
18399 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18400 finish_block. */
f1e6e072 18401 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18402 SYMBOL_INLINED (sym) = 1;
481860b3 18403 list_to_add = cu->list_in_scope;
edb3359d 18404 break;
34eaf542
TT
18405 case DW_TAG_template_value_param:
18406 suppress_add = 1;
18407 /* Fall through. */
72929c62 18408 case DW_TAG_constant:
c906108c 18409 case DW_TAG_variable:
254e6b9e 18410 case DW_TAG_member:
0963b4bd
MS
18411 /* Compilation with minimal debug info may result in
18412 variables with missing type entries. Change the
18413 misleading `void' type to something sensible. */
c906108c 18414 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18415 SYMBOL_TYPE (sym)
46bf5051 18416 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18417
e142c38c 18418 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18419 /* In the case of DW_TAG_member, we should only be called for
18420 static const members. */
18421 if (die->tag == DW_TAG_member)
18422 {
3863f96c
DE
18423 /* dwarf2_add_field uses die_is_declaration,
18424 so we do the same. */
254e6b9e
DE
18425 gdb_assert (die_is_declaration (die, cu));
18426 gdb_assert (attr);
18427 }
c906108c
SS
18428 if (attr)
18429 {
e7c27a73 18430 dwarf2_const_value (attr, sym, cu);
e142c38c 18431 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18432 if (!suppress_add)
34eaf542
TT
18433 {
18434 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18435 list_to_add = &global_symbols;
34eaf542 18436 else
e37fd15a 18437 list_to_add = cu->list_in_scope;
34eaf542 18438 }
c906108c
SS
18439 break;
18440 }
e142c38c 18441 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18442 if (attr)
18443 {
e7c27a73 18444 var_decode_location (attr, sym, cu);
e142c38c 18445 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18446
18447 /* Fortran explicitly imports any global symbols to the local
18448 scope by DW_TAG_common_block. */
18449 if (cu->language == language_fortran && die->parent
18450 && die->parent->tag == DW_TAG_common_block)
18451 attr2 = NULL;
18452
caac4577
JG
18453 if (SYMBOL_CLASS (sym) == LOC_STATIC
18454 && SYMBOL_VALUE_ADDRESS (sym) == 0
18455 && !dwarf2_per_objfile->has_section_at_zero)
18456 {
18457 /* When a static variable is eliminated by the linker,
18458 the corresponding debug information is not stripped
18459 out, but the variable address is set to null;
18460 do not add such variables into symbol table. */
18461 }
18462 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18463 {
f55ee35c
JK
18464 /* Workaround gfortran PR debug/40040 - it uses
18465 DW_AT_location for variables in -fPIC libraries which may
18466 get overriden by other libraries/executable and get
18467 a different address. Resolve it by the minimal symbol
18468 which may come from inferior's executable using copy
18469 relocation. Make this workaround only for gfortran as for
18470 other compilers GDB cannot guess the minimal symbol
18471 Fortran mangling kind. */
18472 if (cu->language == language_fortran && die->parent
18473 && die->parent->tag == DW_TAG_module
18474 && cu->producer
61012eef 18475 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18476 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18477
1c809c68
TT
18478 /* A variable with DW_AT_external is never static,
18479 but it may be block-scoped. */
18480 list_to_add = (cu->list_in_scope == &file_symbols
18481 ? &global_symbols : cu->list_in_scope);
1c809c68 18482 }
c906108c 18483 else
e37fd15a 18484 list_to_add = cu->list_in_scope;
c906108c
SS
18485 }
18486 else
18487 {
18488 /* We do not know the address of this symbol.
c5aa993b
JM
18489 If it is an external symbol and we have type information
18490 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18491 The address of the variable will then be determined from
18492 the minimal symbol table whenever the variable is
18493 referenced. */
e142c38c 18494 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18495
18496 /* Fortran explicitly imports any global symbols to the local
18497 scope by DW_TAG_common_block. */
18498 if (cu->language == language_fortran && die->parent
18499 && die->parent->tag == DW_TAG_common_block)
18500 {
18501 /* SYMBOL_CLASS doesn't matter here because
18502 read_common_block is going to reset it. */
18503 if (!suppress_add)
18504 list_to_add = cu->list_in_scope;
18505 }
18506 else if (attr2 && (DW_UNSND (attr2) != 0)
18507 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18508 {
0fe7935b
DJ
18509 /* A variable with DW_AT_external is never static, but it
18510 may be block-scoped. */
18511 list_to_add = (cu->list_in_scope == &file_symbols
18512 ? &global_symbols : cu->list_in_scope);
18513
f1e6e072 18514 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18515 }
442ddf59
JK
18516 else if (!die_is_declaration (die, cu))
18517 {
18518 /* Use the default LOC_OPTIMIZED_OUT class. */
18519 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18520 if (!suppress_add)
18521 list_to_add = cu->list_in_scope;
442ddf59 18522 }
c906108c
SS
18523 }
18524 break;
18525 case DW_TAG_formal_parameter:
edb3359d
DJ
18526 /* If we are inside a function, mark this as an argument. If
18527 not, we might be looking at an argument to an inlined function
18528 when we do not have enough information to show inlined frames;
18529 pretend it's a local variable in that case so that the user can
18530 still see it. */
18531 if (context_stack_depth > 0
18532 && context_stack[context_stack_depth - 1].name != NULL)
18533 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18534 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18535 if (attr)
18536 {
e7c27a73 18537 var_decode_location (attr, sym, cu);
c906108c 18538 }
e142c38c 18539 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18540 if (attr)
18541 {
e7c27a73 18542 dwarf2_const_value (attr, sym, cu);
c906108c 18543 }
f346a30d 18544
e37fd15a 18545 list_to_add = cu->list_in_scope;
c906108c
SS
18546 break;
18547 case DW_TAG_unspecified_parameters:
18548 /* From varargs functions; gdb doesn't seem to have any
18549 interest in this information, so just ignore it for now.
18550 (FIXME?) */
18551 break;
34eaf542
TT
18552 case DW_TAG_template_type_param:
18553 suppress_add = 1;
18554 /* Fall through. */
c906108c 18555 case DW_TAG_class_type:
680b30c7 18556 case DW_TAG_interface_type:
c906108c
SS
18557 case DW_TAG_structure_type:
18558 case DW_TAG_union_type:
72019c9c 18559 case DW_TAG_set_type:
c906108c 18560 case DW_TAG_enumeration_type:
f1e6e072 18561 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18562 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18563
63d06c5c 18564 {
987504bb 18565 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18566 really ever be static objects: otherwise, if you try
18567 to, say, break of a class's method and you're in a file
18568 which doesn't mention that class, it won't work unless
18569 the check for all static symbols in lookup_symbol_aux
18570 saves you. See the OtherFileClass tests in
18571 gdb.c++/namespace.exp. */
18572
e37fd15a 18573 if (!suppress_add)
34eaf542 18574 {
34eaf542
TT
18575 list_to_add = (cu->list_in_scope == &file_symbols
18576 && (cu->language == language_cplus
18577 || cu->language == language_java)
18578 ? &global_symbols : cu->list_in_scope);
63d06c5c 18579
64382290
TT
18580 /* The semantics of C++ state that "struct foo {
18581 ... }" also defines a typedef for "foo". A Java
18582 class declaration also defines a typedef for the
18583 class. */
18584 if (cu->language == language_cplus
18585 || cu->language == language_java
45280282
IB
18586 || cu->language == language_ada
18587 || cu->language == language_d)
64382290
TT
18588 {
18589 /* The symbol's name is already allocated along
18590 with this objfile, so we don't need to
18591 duplicate it for the type. */
18592 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18593 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18594 }
63d06c5c
DC
18595 }
18596 }
c906108c
SS
18597 break;
18598 case DW_TAG_typedef:
f1e6e072 18599 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18600 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18601 list_to_add = cu->list_in_scope;
63d06c5c 18602 break;
c906108c 18603 case DW_TAG_base_type:
a02abb62 18604 case DW_TAG_subrange_type:
f1e6e072 18605 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18606 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18607 list_to_add = cu->list_in_scope;
c906108c
SS
18608 break;
18609 case DW_TAG_enumerator:
e142c38c 18610 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18611 if (attr)
18612 {
e7c27a73 18613 dwarf2_const_value (attr, sym, cu);
c906108c 18614 }
63d06c5c
DC
18615 {
18616 /* NOTE: carlton/2003-11-10: See comment above in the
18617 DW_TAG_class_type, etc. block. */
18618
e142c38c 18619 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18620 && (cu->language == language_cplus
18621 || cu->language == language_java)
e142c38c 18622 ? &global_symbols : cu->list_in_scope);
63d06c5c 18623 }
c906108c 18624 break;
74921315 18625 case DW_TAG_imported_declaration:
5c4e30ca 18626 case DW_TAG_namespace:
f1e6e072 18627 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18628 list_to_add = &global_symbols;
5c4e30ca 18629 break;
530e8392
KB
18630 case DW_TAG_module:
18631 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18632 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18633 list_to_add = &global_symbols;
18634 break;
4357ac6c 18635 case DW_TAG_common_block:
f1e6e072 18636 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18637 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18638 add_symbol_to_list (sym, cu->list_in_scope);
18639 break;
c906108c
SS
18640 default:
18641 /* Not a tag we recognize. Hopefully we aren't processing
18642 trash data, but since we must specifically ignore things
18643 we don't recognize, there is nothing else we should do at
0963b4bd 18644 this point. */
e2e0b3e5 18645 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18646 dwarf_tag_name (die->tag));
c906108c
SS
18647 break;
18648 }
df8a16a1 18649
e37fd15a
SW
18650 if (suppress_add)
18651 {
18652 sym->hash_next = objfile->template_symbols;
18653 objfile->template_symbols = sym;
18654 list_to_add = NULL;
18655 }
18656
18657 if (list_to_add != NULL)
18658 add_symbol_to_list (sym, list_to_add);
18659
df8a16a1
DJ
18660 /* For the benefit of old versions of GCC, check for anonymous
18661 namespaces based on the demangled name. */
4d4ec4e5 18662 if (!cu->processing_has_namespace_info
94af9270 18663 && cu->language == language_cplus)
a10964d1 18664 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18665 }
18666 return (sym);
18667}
18668
34eaf542
TT
18669/* A wrapper for new_symbol_full that always allocates a new symbol. */
18670
18671static struct symbol *
18672new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18673{
18674 return new_symbol_full (die, type, cu, NULL);
18675}
18676
98bfdba5
PA
18677/* Given an attr with a DW_FORM_dataN value in host byte order,
18678 zero-extend it as appropriate for the symbol's type. The DWARF
18679 standard (v4) is not entirely clear about the meaning of using
18680 DW_FORM_dataN for a constant with a signed type, where the type is
18681 wider than the data. The conclusion of a discussion on the DWARF
18682 list was that this is unspecified. We choose to always zero-extend
18683 because that is the interpretation long in use by GCC. */
c906108c 18684
98bfdba5 18685static gdb_byte *
ff39bb5e 18686dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18687 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18688{
e7c27a73 18689 struct objfile *objfile = cu->objfile;
e17a4113
UW
18690 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18691 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18692 LONGEST l = DW_UNSND (attr);
18693
18694 if (bits < sizeof (*value) * 8)
18695 {
18696 l &= ((LONGEST) 1 << bits) - 1;
18697 *value = l;
18698 }
18699 else if (bits == sizeof (*value) * 8)
18700 *value = l;
18701 else
18702 {
18703 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18704 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18705 return bytes;
18706 }
18707
18708 return NULL;
18709}
18710
18711/* Read a constant value from an attribute. Either set *VALUE, or if
18712 the value does not fit in *VALUE, set *BYTES - either already
18713 allocated on the objfile obstack, or newly allocated on OBSTACK,
18714 or, set *BATON, if we translated the constant to a location
18715 expression. */
18716
18717static void
ff39bb5e 18718dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18719 const char *name, struct obstack *obstack,
18720 struct dwarf2_cu *cu,
d521ce57 18721 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18722 struct dwarf2_locexpr_baton **baton)
18723{
18724 struct objfile *objfile = cu->objfile;
18725 struct comp_unit_head *cu_header = &cu->header;
c906108c 18726 struct dwarf_block *blk;
98bfdba5
PA
18727 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18728 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18729
18730 *value = 0;
18731 *bytes = NULL;
18732 *baton = NULL;
c906108c
SS
18733
18734 switch (attr->form)
18735 {
18736 case DW_FORM_addr:
3019eac3 18737 case DW_FORM_GNU_addr_index:
ac56253d 18738 {
ac56253d
TT
18739 gdb_byte *data;
18740
98bfdba5
PA
18741 if (TYPE_LENGTH (type) != cu_header->addr_size)
18742 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18743 cu_header->addr_size,
98bfdba5 18744 TYPE_LENGTH (type));
ac56253d
TT
18745 /* Symbols of this form are reasonably rare, so we just
18746 piggyback on the existing location code rather than writing
18747 a new implementation of symbol_computed_ops. */
7919a973 18748 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18749 (*baton)->per_cu = cu->per_cu;
18750 gdb_assert ((*baton)->per_cu);
ac56253d 18751
98bfdba5 18752 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18753 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18754 (*baton)->data = data;
ac56253d
TT
18755
18756 data[0] = DW_OP_addr;
18757 store_unsigned_integer (&data[1], cu_header->addr_size,
18758 byte_order, DW_ADDR (attr));
18759 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18760 }
c906108c 18761 break;
4ac36638 18762 case DW_FORM_string:
93b5768b 18763 case DW_FORM_strp:
3019eac3 18764 case DW_FORM_GNU_str_index:
36586728 18765 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18766 /* DW_STRING is already allocated on the objfile obstack, point
18767 directly to it. */
d521ce57 18768 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18769 break;
c906108c
SS
18770 case DW_FORM_block1:
18771 case DW_FORM_block2:
18772 case DW_FORM_block4:
18773 case DW_FORM_block:
2dc7f7b3 18774 case DW_FORM_exprloc:
c906108c 18775 blk = DW_BLOCK (attr);
98bfdba5
PA
18776 if (TYPE_LENGTH (type) != blk->size)
18777 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18778 TYPE_LENGTH (type));
18779 *bytes = blk->data;
c906108c 18780 break;
2df3850c
JM
18781
18782 /* The DW_AT_const_value attributes are supposed to carry the
18783 symbol's value "represented as it would be on the target
18784 architecture." By the time we get here, it's already been
18785 converted to host endianness, so we just need to sign- or
18786 zero-extend it as appropriate. */
18787 case DW_FORM_data1:
3aef2284 18788 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18789 break;
c906108c 18790 case DW_FORM_data2:
3aef2284 18791 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18792 break;
c906108c 18793 case DW_FORM_data4:
3aef2284 18794 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18795 break;
c906108c 18796 case DW_FORM_data8:
3aef2284 18797 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18798 break;
18799
c906108c 18800 case DW_FORM_sdata:
98bfdba5 18801 *value = DW_SND (attr);
2df3850c
JM
18802 break;
18803
c906108c 18804 case DW_FORM_udata:
98bfdba5 18805 *value = DW_UNSND (attr);
c906108c 18806 break;
2df3850c 18807
c906108c 18808 default:
4d3c2250 18809 complaint (&symfile_complaints,
e2e0b3e5 18810 _("unsupported const value attribute form: '%s'"),
4d3c2250 18811 dwarf_form_name (attr->form));
98bfdba5 18812 *value = 0;
c906108c
SS
18813 break;
18814 }
18815}
18816
2df3850c 18817
98bfdba5
PA
18818/* Copy constant value from an attribute to a symbol. */
18819
2df3850c 18820static void
ff39bb5e 18821dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18822 struct dwarf2_cu *cu)
2df3850c 18823{
98bfdba5
PA
18824 struct objfile *objfile = cu->objfile;
18825 struct comp_unit_head *cu_header = &cu->header;
12df843f 18826 LONGEST value;
d521ce57 18827 const gdb_byte *bytes;
98bfdba5 18828 struct dwarf2_locexpr_baton *baton;
2df3850c 18829
98bfdba5
PA
18830 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18831 SYMBOL_PRINT_NAME (sym),
18832 &objfile->objfile_obstack, cu,
18833 &value, &bytes, &baton);
2df3850c 18834
98bfdba5
PA
18835 if (baton != NULL)
18836 {
98bfdba5 18837 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18838 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18839 }
18840 else if (bytes != NULL)
18841 {
18842 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18843 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18844 }
18845 else
18846 {
18847 SYMBOL_VALUE (sym) = value;
f1e6e072 18848 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18849 }
2df3850c
JM
18850}
18851
c906108c
SS
18852/* Return the type of the die in question using its DW_AT_type attribute. */
18853
18854static struct type *
e7c27a73 18855die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18856{
c906108c 18857 struct attribute *type_attr;
c906108c 18858
e142c38c 18859 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18860 if (!type_attr)
18861 {
18862 /* A missing DW_AT_type represents a void type. */
46bf5051 18863 return objfile_type (cu->objfile)->builtin_void;
c906108c 18864 }
348e048f 18865
673bfd45 18866 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18867}
18868
b4ba55a1
JB
18869/* True iff CU's producer generates GNAT Ada auxiliary information
18870 that allows to find parallel types through that information instead
18871 of having to do expensive parallel lookups by type name. */
18872
18873static int
18874need_gnat_info (struct dwarf2_cu *cu)
18875{
18876 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18877 of GNAT produces this auxiliary information, without any indication
18878 that it is produced. Part of enhancing the FSF version of GNAT
18879 to produce that information will be to put in place an indicator
18880 that we can use in order to determine whether the descriptive type
18881 info is available or not. One suggestion that has been made is
18882 to use a new attribute, attached to the CU die. For now, assume
18883 that the descriptive type info is not available. */
18884 return 0;
18885}
18886
b4ba55a1
JB
18887/* Return the auxiliary type of the die in question using its
18888 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18889 attribute is not present. */
18890
18891static struct type *
18892die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18893{
b4ba55a1 18894 struct attribute *type_attr;
b4ba55a1
JB
18895
18896 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18897 if (!type_attr)
18898 return NULL;
18899
673bfd45 18900 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18901}
18902
18903/* If DIE has a descriptive_type attribute, then set the TYPE's
18904 descriptive type accordingly. */
18905
18906static void
18907set_descriptive_type (struct type *type, struct die_info *die,
18908 struct dwarf2_cu *cu)
18909{
18910 struct type *descriptive_type = die_descriptive_type (die, cu);
18911
18912 if (descriptive_type)
18913 {
18914 ALLOCATE_GNAT_AUX_TYPE (type);
18915 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18916 }
18917}
18918
c906108c
SS
18919/* Return the containing type of the die in question using its
18920 DW_AT_containing_type attribute. */
18921
18922static struct type *
e7c27a73 18923die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18924{
c906108c 18925 struct attribute *type_attr;
c906108c 18926
e142c38c 18927 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18928 if (!type_attr)
18929 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18930 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18931
673bfd45 18932 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18933}
18934
ac9ec31b
DE
18935/* Return an error marker type to use for the ill formed type in DIE/CU. */
18936
18937static struct type *
18938build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18939{
18940 struct objfile *objfile = dwarf2_per_objfile->objfile;
18941 char *message, *saved;
18942
18943 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18944 objfile_name (objfile),
ac9ec31b
DE
18945 cu->header.offset.sect_off,
18946 die->offset.sect_off);
18947 saved = obstack_copy0 (&objfile->objfile_obstack,
18948 message, strlen (message));
18949 xfree (message);
18950
18951 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18952}
18953
673bfd45 18954/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18955 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18956 DW_AT_containing_type.
673bfd45
DE
18957 If there is no type substitute an error marker. */
18958
c906108c 18959static struct type *
ff39bb5e 18960lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18961 struct dwarf2_cu *cu)
c906108c 18962{
bb5ed363 18963 struct objfile *objfile = cu->objfile;
f792889a
DJ
18964 struct type *this_type;
18965
ac9ec31b
DE
18966 gdb_assert (attr->name == DW_AT_type
18967 || attr->name == DW_AT_GNAT_descriptive_type
18968 || attr->name == DW_AT_containing_type);
18969
673bfd45
DE
18970 /* First see if we have it cached. */
18971
36586728
TT
18972 if (attr->form == DW_FORM_GNU_ref_alt)
18973 {
18974 struct dwarf2_per_cu_data *per_cu;
18975 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18976
18977 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18978 this_type = get_die_type_at_offset (offset, per_cu);
18979 }
7771576e 18980 else if (attr_form_is_ref (attr))
673bfd45 18981 {
b64f50a1 18982 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18983
18984 this_type = get_die_type_at_offset (offset, cu->per_cu);
18985 }
55f1336d 18986 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18987 {
ac9ec31b 18988 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18989
ac9ec31b 18990 return get_signatured_type (die, signature, cu);
673bfd45
DE
18991 }
18992 else
18993 {
ac9ec31b
DE
18994 complaint (&symfile_complaints,
18995 _("Dwarf Error: Bad type attribute %s in DIE"
18996 " at 0x%x [in module %s]"),
18997 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18998 objfile_name (objfile));
ac9ec31b 18999 return build_error_marker_type (cu, die);
673bfd45
DE
19000 }
19001
19002 /* If not cached we need to read it in. */
19003
19004 if (this_type == NULL)
19005 {
ac9ec31b 19006 struct die_info *type_die = NULL;
673bfd45
DE
19007 struct dwarf2_cu *type_cu = cu;
19008
7771576e 19009 if (attr_form_is_ref (attr))
ac9ec31b
DE
19010 type_die = follow_die_ref (die, attr, &type_cu);
19011 if (type_die == NULL)
19012 return build_error_marker_type (cu, die);
19013 /* If we find the type now, it's probably because the type came
3019eac3
DE
19014 from an inter-CU reference and the type's CU got expanded before
19015 ours. */
ac9ec31b 19016 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19017 }
19018
19019 /* If we still don't have a type use an error marker. */
19020
19021 if (this_type == NULL)
ac9ec31b 19022 return build_error_marker_type (cu, die);
673bfd45 19023
f792889a 19024 return this_type;
c906108c
SS
19025}
19026
673bfd45
DE
19027/* Return the type in DIE, CU.
19028 Returns NULL for invalid types.
19029
02142a6c 19030 This first does a lookup in die_type_hash,
673bfd45
DE
19031 and only reads the die in if necessary.
19032
19033 NOTE: This can be called when reading in partial or full symbols. */
19034
f792889a 19035static struct type *
e7c27a73 19036read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19037{
f792889a
DJ
19038 struct type *this_type;
19039
19040 this_type = get_die_type (die, cu);
19041 if (this_type)
19042 return this_type;
19043
673bfd45
DE
19044 return read_type_die_1 (die, cu);
19045}
19046
19047/* Read the type in DIE, CU.
19048 Returns NULL for invalid types. */
19049
19050static struct type *
19051read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19052{
19053 struct type *this_type = NULL;
19054
c906108c
SS
19055 switch (die->tag)
19056 {
19057 case DW_TAG_class_type:
680b30c7 19058 case DW_TAG_interface_type:
c906108c
SS
19059 case DW_TAG_structure_type:
19060 case DW_TAG_union_type:
f792889a 19061 this_type = read_structure_type (die, cu);
c906108c
SS
19062 break;
19063 case DW_TAG_enumeration_type:
f792889a 19064 this_type = read_enumeration_type (die, cu);
c906108c
SS
19065 break;
19066 case DW_TAG_subprogram:
19067 case DW_TAG_subroutine_type:
edb3359d 19068 case DW_TAG_inlined_subroutine:
f792889a 19069 this_type = read_subroutine_type (die, cu);
c906108c
SS
19070 break;
19071 case DW_TAG_array_type:
f792889a 19072 this_type = read_array_type (die, cu);
c906108c 19073 break;
72019c9c 19074 case DW_TAG_set_type:
f792889a 19075 this_type = read_set_type (die, cu);
72019c9c 19076 break;
c906108c 19077 case DW_TAG_pointer_type:
f792889a 19078 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19079 break;
19080 case DW_TAG_ptr_to_member_type:
f792889a 19081 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19082 break;
19083 case DW_TAG_reference_type:
f792889a 19084 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19085 break;
19086 case DW_TAG_const_type:
f792889a 19087 this_type = read_tag_const_type (die, cu);
c906108c
SS
19088 break;
19089 case DW_TAG_volatile_type:
f792889a 19090 this_type = read_tag_volatile_type (die, cu);
c906108c 19091 break;
06d66ee9
TT
19092 case DW_TAG_restrict_type:
19093 this_type = read_tag_restrict_type (die, cu);
19094 break;
c906108c 19095 case DW_TAG_string_type:
f792889a 19096 this_type = read_tag_string_type (die, cu);
c906108c
SS
19097 break;
19098 case DW_TAG_typedef:
f792889a 19099 this_type = read_typedef (die, cu);
c906108c 19100 break;
a02abb62 19101 case DW_TAG_subrange_type:
f792889a 19102 this_type = read_subrange_type (die, cu);
a02abb62 19103 break;
c906108c 19104 case DW_TAG_base_type:
f792889a 19105 this_type = read_base_type (die, cu);
c906108c 19106 break;
81a17f79 19107 case DW_TAG_unspecified_type:
f792889a 19108 this_type = read_unspecified_type (die, cu);
81a17f79 19109 break;
0114d602
DJ
19110 case DW_TAG_namespace:
19111 this_type = read_namespace_type (die, cu);
19112 break;
f55ee35c
JK
19113 case DW_TAG_module:
19114 this_type = read_module_type (die, cu);
19115 break;
a2c2acaf
MW
19116 case DW_TAG_atomic_type:
19117 this_type = read_tag_atomic_type (die, cu);
19118 break;
c906108c 19119 default:
3e43a32a
MS
19120 complaint (&symfile_complaints,
19121 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19122 dwarf_tag_name (die->tag));
c906108c
SS
19123 break;
19124 }
63d06c5c 19125
f792889a 19126 return this_type;
63d06c5c
DC
19127}
19128
abc72ce4
DE
19129/* See if we can figure out if the class lives in a namespace. We do
19130 this by looking for a member function; its demangled name will
19131 contain namespace info, if there is any.
19132 Return the computed name or NULL.
19133 Space for the result is allocated on the objfile's obstack.
19134 This is the full-die version of guess_partial_die_structure_name.
19135 In this case we know DIE has no useful parent. */
19136
19137static char *
19138guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19139{
19140 struct die_info *spec_die;
19141 struct dwarf2_cu *spec_cu;
19142 struct die_info *child;
19143
19144 spec_cu = cu;
19145 spec_die = die_specification (die, &spec_cu);
19146 if (spec_die != NULL)
19147 {
19148 die = spec_die;
19149 cu = spec_cu;
19150 }
19151
19152 for (child = die->child;
19153 child != NULL;
19154 child = child->sibling)
19155 {
19156 if (child->tag == DW_TAG_subprogram)
19157 {
19158 struct attribute *attr;
19159
19160 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
19161 if (attr == NULL)
19162 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19163 if (attr != NULL)
19164 {
19165 char *actual_name
19166 = language_class_name_from_physname (cu->language_defn,
19167 DW_STRING (attr));
19168 char *name = NULL;
19169
19170 if (actual_name != NULL)
19171 {
15d034d0 19172 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19173
19174 if (die_name != NULL
19175 && strcmp (die_name, actual_name) != 0)
19176 {
19177 /* Strip off the class name from the full name.
19178 We want the prefix. */
19179 int die_name_len = strlen (die_name);
19180 int actual_name_len = strlen (actual_name);
19181
19182 /* Test for '::' as a sanity check. */
19183 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19184 && actual_name[actual_name_len
19185 - die_name_len - 1] == ':')
abc72ce4 19186 name =
34a68019 19187 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
19188 actual_name,
19189 actual_name_len - die_name_len - 2);
abc72ce4
DE
19190 }
19191 }
19192 xfree (actual_name);
19193 return name;
19194 }
19195 }
19196 }
19197
19198 return NULL;
19199}
19200
96408a79
SA
19201/* GCC might emit a nameless typedef that has a linkage name. Determine the
19202 prefix part in such case. See
19203 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19204
19205static char *
19206anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19207{
19208 struct attribute *attr;
19209 char *base;
19210
19211 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19212 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19213 return NULL;
19214
19215 attr = dwarf2_attr (die, DW_AT_name, cu);
19216 if (attr != NULL && DW_STRING (attr) != NULL)
19217 return NULL;
19218
19219 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19220 if (attr == NULL)
19221 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19222 if (attr == NULL || DW_STRING (attr) == NULL)
19223 return NULL;
19224
19225 /* dwarf2_name had to be already called. */
19226 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19227
19228 /* Strip the base name, keep any leading namespaces/classes. */
19229 base = strrchr (DW_STRING (attr), ':');
19230 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19231 return "";
19232
34a68019 19233 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 19234 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
19235}
19236
fdde2d81 19237/* Return the name of the namespace/class that DIE is defined within,
0114d602 19238 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19239
0114d602
DJ
19240 For example, if we're within the method foo() in the following
19241 code:
19242
19243 namespace N {
19244 class C {
19245 void foo () {
19246 }
19247 };
19248 }
19249
19250 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19251
0d5cff50 19252static const char *
e142c38c 19253determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19254{
0114d602
DJ
19255 struct die_info *parent, *spec_die;
19256 struct dwarf2_cu *spec_cu;
19257 struct type *parent_type;
96408a79 19258 char *retval;
63d06c5c 19259
f55ee35c 19260 if (cu->language != language_cplus && cu->language != language_java
45280282 19261 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19262 return "";
19263
96408a79
SA
19264 retval = anonymous_struct_prefix (die, cu);
19265 if (retval)
19266 return retval;
19267
0114d602
DJ
19268 /* We have to be careful in the presence of DW_AT_specification.
19269 For example, with GCC 3.4, given the code
19270
19271 namespace N {
19272 void foo() {
19273 // Definition of N::foo.
19274 }
19275 }
19276
19277 then we'll have a tree of DIEs like this:
19278
19279 1: DW_TAG_compile_unit
19280 2: DW_TAG_namespace // N
19281 3: DW_TAG_subprogram // declaration of N::foo
19282 4: DW_TAG_subprogram // definition of N::foo
19283 DW_AT_specification // refers to die #3
19284
19285 Thus, when processing die #4, we have to pretend that we're in
19286 the context of its DW_AT_specification, namely the contex of die
19287 #3. */
19288 spec_cu = cu;
19289 spec_die = die_specification (die, &spec_cu);
19290 if (spec_die == NULL)
19291 parent = die->parent;
19292 else
63d06c5c 19293 {
0114d602
DJ
19294 parent = spec_die->parent;
19295 cu = spec_cu;
63d06c5c 19296 }
0114d602
DJ
19297
19298 if (parent == NULL)
19299 return "";
98bfdba5
PA
19300 else if (parent->building_fullname)
19301 {
19302 const char *name;
19303 const char *parent_name;
19304
19305 /* It has been seen on RealView 2.2 built binaries,
19306 DW_TAG_template_type_param types actually _defined_ as
19307 children of the parent class:
19308
19309 enum E {};
19310 template class <class Enum> Class{};
19311 Class<enum E> class_e;
19312
19313 1: DW_TAG_class_type (Class)
19314 2: DW_TAG_enumeration_type (E)
19315 3: DW_TAG_enumerator (enum1:0)
19316 3: DW_TAG_enumerator (enum2:1)
19317 ...
19318 2: DW_TAG_template_type_param
19319 DW_AT_type DW_FORM_ref_udata (E)
19320
19321 Besides being broken debug info, it can put GDB into an
19322 infinite loop. Consider:
19323
19324 When we're building the full name for Class<E>, we'll start
19325 at Class, and go look over its template type parameters,
19326 finding E. We'll then try to build the full name of E, and
19327 reach here. We're now trying to build the full name of E,
19328 and look over the parent DIE for containing scope. In the
19329 broken case, if we followed the parent DIE of E, we'd again
19330 find Class, and once again go look at its template type
19331 arguments, etc., etc. Simply don't consider such parent die
19332 as source-level parent of this die (it can't be, the language
19333 doesn't allow it), and break the loop here. */
19334 name = dwarf2_name (die, cu);
19335 parent_name = dwarf2_name (parent, cu);
19336 complaint (&symfile_complaints,
19337 _("template param type '%s' defined within parent '%s'"),
19338 name ? name : "<unknown>",
19339 parent_name ? parent_name : "<unknown>");
19340 return "";
19341 }
63d06c5c 19342 else
0114d602
DJ
19343 switch (parent->tag)
19344 {
63d06c5c 19345 case DW_TAG_namespace:
0114d602 19346 parent_type = read_type_die (parent, cu);
acebe513
UW
19347 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19348 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19349 Work around this problem here. */
19350 if (cu->language == language_cplus
19351 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19352 return "";
0114d602
DJ
19353 /* We give a name to even anonymous namespaces. */
19354 return TYPE_TAG_NAME (parent_type);
63d06c5c 19355 case DW_TAG_class_type:
680b30c7 19356 case DW_TAG_interface_type:
63d06c5c 19357 case DW_TAG_structure_type:
0114d602 19358 case DW_TAG_union_type:
f55ee35c 19359 case DW_TAG_module:
0114d602
DJ
19360 parent_type = read_type_die (parent, cu);
19361 if (TYPE_TAG_NAME (parent_type) != NULL)
19362 return TYPE_TAG_NAME (parent_type);
19363 else
19364 /* An anonymous structure is only allowed non-static data
19365 members; no typedefs, no member functions, et cetera.
19366 So it does not need a prefix. */
19367 return "";
abc72ce4 19368 case DW_TAG_compile_unit:
95554aad 19369 case DW_TAG_partial_unit:
abc72ce4
DE
19370 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19371 if (cu->language == language_cplus
8b70b953 19372 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19373 && die->child != NULL
19374 && (die->tag == DW_TAG_class_type
19375 || die->tag == DW_TAG_structure_type
19376 || die->tag == DW_TAG_union_type))
19377 {
19378 char *name = guess_full_die_structure_name (die, cu);
19379 if (name != NULL)
19380 return name;
19381 }
19382 return "";
3d567982
TT
19383 case DW_TAG_enumeration_type:
19384 parent_type = read_type_die (parent, cu);
19385 if (TYPE_DECLARED_CLASS (parent_type))
19386 {
19387 if (TYPE_TAG_NAME (parent_type) != NULL)
19388 return TYPE_TAG_NAME (parent_type);
19389 return "";
19390 }
19391 /* Fall through. */
63d06c5c 19392 default:
8176b9b8 19393 return determine_prefix (parent, cu);
63d06c5c 19394 }
63d06c5c
DC
19395}
19396
3e43a32a
MS
19397/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19398 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19399 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19400 an obconcat, otherwise allocate storage for the result. The CU argument is
19401 used to determine the language and hence, the appropriate separator. */
987504bb 19402
f55ee35c 19403#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19404
19405static char *
f55ee35c
JK
19406typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19407 int physname, struct dwarf2_cu *cu)
63d06c5c 19408{
f55ee35c 19409 const char *lead = "";
5c315b68 19410 const char *sep;
63d06c5c 19411
3e43a32a
MS
19412 if (suffix == NULL || suffix[0] == '\0'
19413 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19414 sep = "";
19415 else if (cu->language == language_java)
19416 sep = ".";
45280282
IB
19417 else if (cu->language == language_d)
19418 {
19419 /* For D, the 'main' function could be defined in any module, but it
19420 should never be prefixed. */
19421 if (strcmp (suffix, "D main") == 0)
19422 {
19423 prefix = "";
19424 sep = "";
19425 }
19426 else
19427 sep = ".";
19428 }
f55ee35c
JK
19429 else if (cu->language == language_fortran && physname)
19430 {
19431 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19432 DW_AT_MIPS_linkage_name is preferred and used instead. */
19433
19434 lead = "__";
19435 sep = "_MOD_";
19436 }
987504bb
JJ
19437 else
19438 sep = "::";
63d06c5c 19439
6dd47d34
DE
19440 if (prefix == NULL)
19441 prefix = "";
19442 if (suffix == NULL)
19443 suffix = "";
19444
987504bb
JJ
19445 if (obs == NULL)
19446 {
3e43a32a
MS
19447 char *retval
19448 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19449
f55ee35c
JK
19450 strcpy (retval, lead);
19451 strcat (retval, prefix);
6dd47d34
DE
19452 strcat (retval, sep);
19453 strcat (retval, suffix);
63d06c5c
DC
19454 return retval;
19455 }
987504bb
JJ
19456 else
19457 {
19458 /* We have an obstack. */
f55ee35c 19459 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19460 }
63d06c5c
DC
19461}
19462
c906108c
SS
19463/* Return sibling of die, NULL if no sibling. */
19464
f9aca02d 19465static struct die_info *
fba45db2 19466sibling_die (struct die_info *die)
c906108c 19467{
639d11d3 19468 return die->sibling;
c906108c
SS
19469}
19470
71c25dea
TT
19471/* Get name of a die, return NULL if not found. */
19472
15d034d0
TT
19473static const char *
19474dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19475 struct obstack *obstack)
19476{
19477 if (name && cu->language == language_cplus)
19478 {
19479 char *canon_name = cp_canonicalize_string (name);
19480
19481 if (canon_name != NULL)
19482 {
19483 if (strcmp (canon_name, name) != 0)
10f0c4bb 19484 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19485 xfree (canon_name);
19486 }
19487 }
19488
19489 return name;
c906108c
SS
19490}
19491
96553a0c
DE
19492/* Get name of a die, return NULL if not found.
19493 Anonymous namespaces are converted to their magic string. */
9219021c 19494
15d034d0 19495static const char *
e142c38c 19496dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19497{
19498 struct attribute *attr;
19499
e142c38c 19500 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19501 if ((!attr || !DW_STRING (attr))
96553a0c 19502 && die->tag != DW_TAG_namespace
53832f31
TT
19503 && die->tag != DW_TAG_class_type
19504 && die->tag != DW_TAG_interface_type
19505 && die->tag != DW_TAG_structure_type
19506 && die->tag != DW_TAG_union_type)
71c25dea
TT
19507 return NULL;
19508
19509 switch (die->tag)
19510 {
19511 case DW_TAG_compile_unit:
95554aad 19512 case DW_TAG_partial_unit:
71c25dea
TT
19513 /* Compilation units have a DW_AT_name that is a filename, not
19514 a source language identifier. */
19515 case DW_TAG_enumeration_type:
19516 case DW_TAG_enumerator:
19517 /* These tags always have simple identifiers already; no need
19518 to canonicalize them. */
19519 return DW_STRING (attr);
907af001 19520
96553a0c
DE
19521 case DW_TAG_namespace:
19522 if (attr != NULL && DW_STRING (attr) != NULL)
19523 return DW_STRING (attr);
19524 return CP_ANONYMOUS_NAMESPACE_STR;
19525
418835cc
KS
19526 case DW_TAG_subprogram:
19527 /* Java constructors will all be named "<init>", so return
19528 the class name when we see this special case. */
19529 if (cu->language == language_java
19530 && DW_STRING (attr) != NULL
19531 && strcmp (DW_STRING (attr), "<init>") == 0)
19532 {
19533 struct dwarf2_cu *spec_cu = cu;
19534 struct die_info *spec_die;
19535
19536 /* GCJ will output '<init>' for Java constructor names.
19537 For this special case, return the name of the parent class. */
19538
cdc07690 19539 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19540 If so, use the name of the specified DIE. */
19541 spec_die = die_specification (die, &spec_cu);
19542 if (spec_die != NULL)
19543 return dwarf2_name (spec_die, spec_cu);
19544
19545 do
19546 {
19547 die = die->parent;
19548 if (die->tag == DW_TAG_class_type)
19549 return dwarf2_name (die, cu);
19550 }
95554aad
TT
19551 while (die->tag != DW_TAG_compile_unit
19552 && die->tag != DW_TAG_partial_unit);
418835cc 19553 }
907af001
UW
19554 break;
19555
19556 case DW_TAG_class_type:
19557 case DW_TAG_interface_type:
19558 case DW_TAG_structure_type:
19559 case DW_TAG_union_type:
19560 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19561 structures or unions. These were of the form "._%d" in GCC 4.1,
19562 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19563 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19564 if (attr && DW_STRING (attr)
61012eef
GB
19565 && (startswith (DW_STRING (attr), "._")
19566 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19567 return NULL;
53832f31
TT
19568
19569 /* GCC might emit a nameless typedef that has a linkage name. See
19570 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19571 if (!attr || DW_STRING (attr) == NULL)
19572 {
df5c6c50 19573 char *demangled = NULL;
53832f31
TT
19574
19575 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19576 if (attr == NULL)
19577 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19578
19579 if (attr == NULL || DW_STRING (attr) == NULL)
19580 return NULL;
19581
df5c6c50
JK
19582 /* Avoid demangling DW_STRING (attr) the second time on a second
19583 call for the same DIE. */
19584 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19585 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19586
19587 if (demangled)
19588 {
96408a79
SA
19589 char *base;
19590
53832f31 19591 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19592 DW_STRING (attr)
19593 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19594 demangled, strlen (demangled));
53832f31
TT
19595 DW_STRING_IS_CANONICAL (attr) = 1;
19596 xfree (demangled);
96408a79
SA
19597
19598 /* Strip any leading namespaces/classes, keep only the base name.
19599 DW_AT_name for named DIEs does not contain the prefixes. */
19600 base = strrchr (DW_STRING (attr), ':');
19601 if (base && base > DW_STRING (attr) && base[-1] == ':')
19602 return &base[1];
19603 else
19604 return DW_STRING (attr);
53832f31
TT
19605 }
19606 }
907af001
UW
19607 break;
19608
71c25dea 19609 default:
907af001
UW
19610 break;
19611 }
19612
19613 if (!DW_STRING_IS_CANONICAL (attr))
19614 {
19615 DW_STRING (attr)
19616 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19617 &cu->objfile->per_bfd->storage_obstack);
907af001 19618 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19619 }
907af001 19620 return DW_STRING (attr);
9219021c
DC
19621}
19622
19623/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19624 is none. *EXT_CU is the CU containing DIE on input, and the CU
19625 containing the return value on output. */
9219021c
DC
19626
19627static struct die_info *
f2f0e013 19628dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19629{
19630 struct attribute *attr;
9219021c 19631
f2f0e013 19632 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19633 if (attr == NULL)
19634 return NULL;
19635
f2f0e013 19636 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19637}
19638
c906108c
SS
19639/* Convert a DIE tag into its string name. */
19640
f39c6ffd 19641static const char *
aa1ee363 19642dwarf_tag_name (unsigned tag)
c906108c 19643{
f39c6ffd
TT
19644 const char *name = get_DW_TAG_name (tag);
19645
19646 if (name == NULL)
19647 return "DW_TAG_<unknown>";
19648
19649 return name;
c906108c
SS
19650}
19651
19652/* Convert a DWARF attribute code into its string name. */
19653
f39c6ffd 19654static const char *
aa1ee363 19655dwarf_attr_name (unsigned attr)
c906108c 19656{
f39c6ffd
TT
19657 const char *name;
19658
c764a876 19659#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19660 if (attr == DW_AT_MIPS_fde)
19661 return "DW_AT_MIPS_fde";
19662#else
19663 if (attr == DW_AT_HP_block_index)
19664 return "DW_AT_HP_block_index";
c764a876 19665#endif
f39c6ffd
TT
19666
19667 name = get_DW_AT_name (attr);
19668
19669 if (name == NULL)
19670 return "DW_AT_<unknown>";
19671
19672 return name;
c906108c
SS
19673}
19674
19675/* Convert a DWARF value form code into its string name. */
19676
f39c6ffd 19677static const char *
aa1ee363 19678dwarf_form_name (unsigned form)
c906108c 19679{
f39c6ffd
TT
19680 const char *name = get_DW_FORM_name (form);
19681
19682 if (name == NULL)
19683 return "DW_FORM_<unknown>";
19684
19685 return name;
c906108c
SS
19686}
19687
19688static char *
fba45db2 19689dwarf_bool_name (unsigned mybool)
c906108c
SS
19690{
19691 if (mybool)
19692 return "TRUE";
19693 else
19694 return "FALSE";
19695}
19696
19697/* Convert a DWARF type code into its string name. */
19698
f39c6ffd 19699static const char *
aa1ee363 19700dwarf_type_encoding_name (unsigned enc)
c906108c 19701{
f39c6ffd 19702 const char *name = get_DW_ATE_name (enc);
c906108c 19703
f39c6ffd
TT
19704 if (name == NULL)
19705 return "DW_ATE_<unknown>";
c906108c 19706
f39c6ffd 19707 return name;
c906108c 19708}
c906108c 19709
f9aca02d 19710static void
d97bc12b 19711dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19712{
19713 unsigned int i;
19714
d97bc12b
DE
19715 print_spaces (indent, f);
19716 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19717 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19718
19719 if (die->parent != NULL)
19720 {
19721 print_spaces (indent, f);
19722 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19723 die->parent->offset.sect_off);
d97bc12b
DE
19724 }
19725
19726 print_spaces (indent, f);
19727 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19728 dwarf_bool_name (die->child != NULL));
c906108c 19729
d97bc12b
DE
19730 print_spaces (indent, f);
19731 fprintf_unfiltered (f, " attributes:\n");
19732
c906108c
SS
19733 for (i = 0; i < die->num_attrs; ++i)
19734 {
d97bc12b
DE
19735 print_spaces (indent, f);
19736 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19737 dwarf_attr_name (die->attrs[i].name),
19738 dwarf_form_name (die->attrs[i].form));
d97bc12b 19739
c906108c
SS
19740 switch (die->attrs[i].form)
19741 {
c906108c 19742 case DW_FORM_addr:
3019eac3 19743 case DW_FORM_GNU_addr_index:
d97bc12b 19744 fprintf_unfiltered (f, "address: ");
5af949e3 19745 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19746 break;
19747 case DW_FORM_block2:
19748 case DW_FORM_block4:
19749 case DW_FORM_block:
19750 case DW_FORM_block1:
56eb65bd
SP
19751 fprintf_unfiltered (f, "block: size %s",
19752 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19753 break;
2dc7f7b3 19754 case DW_FORM_exprloc:
56eb65bd
SP
19755 fprintf_unfiltered (f, "expression: size %s",
19756 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19757 break;
4568ecf9
DE
19758 case DW_FORM_ref_addr:
19759 fprintf_unfiltered (f, "ref address: ");
19760 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19761 break;
36586728
TT
19762 case DW_FORM_GNU_ref_alt:
19763 fprintf_unfiltered (f, "alt ref address: ");
19764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19765 break;
10b3939b
DJ
19766 case DW_FORM_ref1:
19767 case DW_FORM_ref2:
19768 case DW_FORM_ref4:
4568ecf9
DE
19769 case DW_FORM_ref8:
19770 case DW_FORM_ref_udata:
d97bc12b 19771 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19772 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19773 break;
c906108c
SS
19774 case DW_FORM_data1:
19775 case DW_FORM_data2:
19776 case DW_FORM_data4:
ce5d95e1 19777 case DW_FORM_data8:
c906108c
SS
19778 case DW_FORM_udata:
19779 case DW_FORM_sdata:
43bbcdc2
PH
19780 fprintf_unfiltered (f, "constant: %s",
19781 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19782 break;
2dc7f7b3
TT
19783 case DW_FORM_sec_offset:
19784 fprintf_unfiltered (f, "section offset: %s",
19785 pulongest (DW_UNSND (&die->attrs[i])));
19786 break;
55f1336d 19787 case DW_FORM_ref_sig8:
ac9ec31b
DE
19788 fprintf_unfiltered (f, "signature: %s",
19789 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19790 break;
c906108c 19791 case DW_FORM_string:
4bdf3d34 19792 case DW_FORM_strp:
3019eac3 19793 case DW_FORM_GNU_str_index:
36586728 19794 case DW_FORM_GNU_strp_alt:
8285870a 19795 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19796 DW_STRING (&die->attrs[i])
8285870a
JK
19797 ? DW_STRING (&die->attrs[i]) : "",
19798 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19799 break;
19800 case DW_FORM_flag:
19801 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19802 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19803 else
d97bc12b 19804 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19805 break;
2dc7f7b3
TT
19806 case DW_FORM_flag_present:
19807 fprintf_unfiltered (f, "flag: TRUE");
19808 break;
a8329558 19809 case DW_FORM_indirect:
0963b4bd
MS
19810 /* The reader will have reduced the indirect form to
19811 the "base form" so this form should not occur. */
3e43a32a
MS
19812 fprintf_unfiltered (f,
19813 "unexpected attribute form: DW_FORM_indirect");
a8329558 19814 break;
c906108c 19815 default:
d97bc12b 19816 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19817 die->attrs[i].form);
d97bc12b 19818 break;
c906108c 19819 }
d97bc12b 19820 fprintf_unfiltered (f, "\n");
c906108c
SS
19821 }
19822}
19823
f9aca02d 19824static void
d97bc12b 19825dump_die_for_error (struct die_info *die)
c906108c 19826{
d97bc12b
DE
19827 dump_die_shallow (gdb_stderr, 0, die);
19828}
19829
19830static void
19831dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19832{
19833 int indent = level * 4;
19834
19835 gdb_assert (die != NULL);
19836
19837 if (level >= max_level)
19838 return;
19839
19840 dump_die_shallow (f, indent, die);
19841
19842 if (die->child != NULL)
c906108c 19843 {
d97bc12b
DE
19844 print_spaces (indent, f);
19845 fprintf_unfiltered (f, " Children:");
19846 if (level + 1 < max_level)
19847 {
19848 fprintf_unfiltered (f, "\n");
19849 dump_die_1 (f, level + 1, max_level, die->child);
19850 }
19851 else
19852 {
3e43a32a
MS
19853 fprintf_unfiltered (f,
19854 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19855 }
19856 }
19857
19858 if (die->sibling != NULL && level > 0)
19859 {
19860 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19861 }
19862}
19863
d97bc12b
DE
19864/* This is called from the pdie macro in gdbinit.in.
19865 It's not static so gcc will keep a copy callable from gdb. */
19866
19867void
19868dump_die (struct die_info *die, int max_level)
19869{
19870 dump_die_1 (gdb_stdlog, 0, max_level, die);
19871}
19872
f9aca02d 19873static void
51545339 19874store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19875{
51545339 19876 void **slot;
c906108c 19877
b64f50a1
JK
19878 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19879 INSERT);
51545339
DJ
19880
19881 *slot = die;
c906108c
SS
19882}
19883
b64f50a1
JK
19884/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19885 required kind. */
19886
19887static sect_offset
ff39bb5e 19888dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19889{
4568ecf9 19890 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19891
7771576e 19892 if (attr_form_is_ref (attr))
b64f50a1 19893 return retval;
93311388 19894
b64f50a1 19895 retval.sect_off = 0;
93311388
DE
19896 complaint (&symfile_complaints,
19897 _("unsupported die ref attribute form: '%s'"),
19898 dwarf_form_name (attr->form));
b64f50a1 19899 return retval;
c906108c
SS
19900}
19901
43bbcdc2
PH
19902/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19903 * the value held by the attribute is not constant. */
a02abb62 19904
43bbcdc2 19905static LONGEST
ff39bb5e 19906dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19907{
19908 if (attr->form == DW_FORM_sdata)
19909 return DW_SND (attr);
19910 else if (attr->form == DW_FORM_udata
19911 || attr->form == DW_FORM_data1
19912 || attr->form == DW_FORM_data2
19913 || attr->form == DW_FORM_data4
19914 || attr->form == DW_FORM_data8)
19915 return DW_UNSND (attr);
19916 else
19917 {
3e43a32a
MS
19918 complaint (&symfile_complaints,
19919 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19920 dwarf_form_name (attr->form));
19921 return default_value;
19922 }
19923}
19924
348e048f
DE
19925/* Follow reference or signature attribute ATTR of SRC_DIE.
19926 On entry *REF_CU is the CU of SRC_DIE.
19927 On exit *REF_CU is the CU of the result. */
19928
19929static struct die_info *
ff39bb5e 19930follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19931 struct dwarf2_cu **ref_cu)
19932{
19933 struct die_info *die;
19934
7771576e 19935 if (attr_form_is_ref (attr))
348e048f 19936 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19937 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19938 die = follow_die_sig (src_die, attr, ref_cu);
19939 else
19940 {
19941 dump_die_for_error (src_die);
19942 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19943 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19944 }
19945
19946 return die;
03dd20cc
DJ
19947}
19948
5c631832 19949/* Follow reference OFFSET.
673bfd45
DE
19950 On entry *REF_CU is the CU of the source die referencing OFFSET.
19951 On exit *REF_CU is the CU of the result.
19952 Returns NULL if OFFSET is invalid. */
f504f079 19953
f9aca02d 19954static struct die_info *
36586728
TT
19955follow_die_offset (sect_offset offset, int offset_in_dwz,
19956 struct dwarf2_cu **ref_cu)
c906108c 19957{
10b3939b 19958 struct die_info temp_die;
f2f0e013 19959 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19960
348e048f
DE
19961 gdb_assert (cu->per_cu != NULL);
19962
98bfdba5
PA
19963 target_cu = cu;
19964
3019eac3 19965 if (cu->per_cu->is_debug_types)
348e048f
DE
19966 {
19967 /* .debug_types CUs cannot reference anything outside their CU.
19968 If they need to, they have to reference a signatured type via
55f1336d 19969 DW_FORM_ref_sig8. */
348e048f 19970 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19971 return NULL;
348e048f 19972 }
36586728
TT
19973 else if (offset_in_dwz != cu->per_cu->is_dwz
19974 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19975 {
19976 struct dwarf2_per_cu_data *per_cu;
9a619af0 19977
36586728
TT
19978 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19979 cu->objfile);
03dd20cc
DJ
19980
19981 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19982 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19983 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19984
10b3939b
DJ
19985 target_cu = per_cu->cu;
19986 }
98bfdba5
PA
19987 else if (cu->dies == NULL)
19988 {
19989 /* We're loading full DIEs during partial symbol reading. */
19990 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19991 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19992 }
c906108c 19993
f2f0e013 19994 *ref_cu = target_cu;
51545339 19995 temp_die.offset = offset;
b64f50a1 19996 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19997}
10b3939b 19998
5c631832
JK
19999/* Follow reference attribute ATTR of SRC_DIE.
20000 On entry *REF_CU is the CU of SRC_DIE.
20001 On exit *REF_CU is the CU of the result. */
20002
20003static struct die_info *
ff39bb5e 20004follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20005 struct dwarf2_cu **ref_cu)
20006{
b64f50a1 20007 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20008 struct dwarf2_cu *cu = *ref_cu;
20009 struct die_info *die;
20010
36586728
TT
20011 die = follow_die_offset (offset,
20012 (attr->form == DW_FORM_GNU_ref_alt
20013 || cu->per_cu->is_dwz),
20014 ref_cu);
5c631832
JK
20015 if (!die)
20016 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20017 "at 0x%x [in module %s]"),
4262abfb
JK
20018 offset.sect_off, src_die->offset.sect_off,
20019 objfile_name (cu->objfile));
348e048f 20020
5c631832
JK
20021 return die;
20022}
20023
d83e736b
JK
20024/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20025 Returned value is intended for DW_OP_call*. Returned
20026 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20027
20028struct dwarf2_locexpr_baton
8b9737bf
TT
20029dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20030 struct dwarf2_per_cu_data *per_cu,
20031 CORE_ADDR (*get_frame_pc) (void *baton),
20032 void *baton)
5c631832 20033{
918dd910 20034 struct dwarf2_cu *cu;
5c631832
JK
20035 struct die_info *die;
20036 struct attribute *attr;
20037 struct dwarf2_locexpr_baton retval;
20038
8cf6f0b1
TT
20039 dw2_setup (per_cu->objfile);
20040
918dd910
JK
20041 if (per_cu->cu == NULL)
20042 load_cu (per_cu);
20043 cu = per_cu->cu;
cc12ce38
DE
20044 if (cu == NULL)
20045 {
20046 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20047 Instead just throw an error, not much else we can do. */
20048 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20049 offset.sect_off, objfile_name (per_cu->objfile));
20050 }
918dd910 20051
36586728 20052 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20053 if (!die)
20054 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20055 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20056
20057 attr = dwarf2_attr (die, DW_AT_location, cu);
20058 if (!attr)
20059 {
e103e986
JK
20060 /* DWARF: "If there is no such attribute, then there is no effect.".
20061 DATA is ignored if SIZE is 0. */
5c631832 20062
e103e986 20063 retval.data = NULL;
5c631832
JK
20064 retval.size = 0;
20065 }
8cf6f0b1
TT
20066 else if (attr_form_is_section_offset (attr))
20067 {
20068 struct dwarf2_loclist_baton loclist_baton;
20069 CORE_ADDR pc = (*get_frame_pc) (baton);
20070 size_t size;
20071
20072 fill_in_loclist_baton (cu, &loclist_baton, attr);
20073
20074 retval.data = dwarf2_find_location_expression (&loclist_baton,
20075 &size, pc);
20076 retval.size = size;
20077 }
5c631832
JK
20078 else
20079 {
20080 if (!attr_form_is_block (attr))
20081 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20082 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20083 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20084
20085 retval.data = DW_BLOCK (attr)->data;
20086 retval.size = DW_BLOCK (attr)->size;
20087 }
20088 retval.per_cu = cu->per_cu;
918dd910 20089
918dd910
JK
20090 age_cached_comp_units ();
20091
5c631832 20092 return retval;
348e048f
DE
20093}
20094
8b9737bf
TT
20095/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20096 offset. */
20097
20098struct dwarf2_locexpr_baton
20099dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20100 struct dwarf2_per_cu_data *per_cu,
20101 CORE_ADDR (*get_frame_pc) (void *baton),
20102 void *baton)
20103{
20104 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20105
20106 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20107}
20108
b6807d98
TT
20109/* Write a constant of a given type as target-ordered bytes into
20110 OBSTACK. */
20111
20112static const gdb_byte *
20113write_constant_as_bytes (struct obstack *obstack,
20114 enum bfd_endian byte_order,
20115 struct type *type,
20116 ULONGEST value,
20117 LONGEST *len)
20118{
20119 gdb_byte *result;
20120
20121 *len = TYPE_LENGTH (type);
20122 result = obstack_alloc (obstack, *len);
20123 store_unsigned_integer (result, *len, byte_order, value);
20124
20125 return result;
20126}
20127
20128/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20129 pointer to the constant bytes and set LEN to the length of the
20130 data. If memory is needed, allocate it on OBSTACK. If the DIE
20131 does not have a DW_AT_const_value, return NULL. */
20132
20133const gdb_byte *
20134dwarf2_fetch_constant_bytes (sect_offset offset,
20135 struct dwarf2_per_cu_data *per_cu,
20136 struct obstack *obstack,
20137 LONGEST *len)
20138{
20139 struct dwarf2_cu *cu;
20140 struct die_info *die;
20141 struct attribute *attr;
20142 const gdb_byte *result = NULL;
20143 struct type *type;
20144 LONGEST value;
20145 enum bfd_endian byte_order;
20146
20147 dw2_setup (per_cu->objfile);
20148
20149 if (per_cu->cu == NULL)
20150 load_cu (per_cu);
20151 cu = per_cu->cu;
cc12ce38
DE
20152 if (cu == NULL)
20153 {
20154 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20155 Instead just throw an error, not much else we can do. */
20156 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20157 offset.sect_off, objfile_name (per_cu->objfile));
20158 }
b6807d98
TT
20159
20160 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20161 if (!die)
20162 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20163 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20164
20165
20166 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20167 if (attr == NULL)
20168 return NULL;
20169
20170 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20171 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20172
20173 switch (attr->form)
20174 {
20175 case DW_FORM_addr:
20176 case DW_FORM_GNU_addr_index:
20177 {
20178 gdb_byte *tem;
20179
20180 *len = cu->header.addr_size;
20181 tem = obstack_alloc (obstack, *len);
20182 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20183 result = tem;
20184 }
20185 break;
20186 case DW_FORM_string:
20187 case DW_FORM_strp:
20188 case DW_FORM_GNU_str_index:
20189 case DW_FORM_GNU_strp_alt:
20190 /* DW_STRING is already allocated on the objfile obstack, point
20191 directly to it. */
20192 result = (const gdb_byte *) DW_STRING (attr);
20193 *len = strlen (DW_STRING (attr));
20194 break;
20195 case DW_FORM_block1:
20196 case DW_FORM_block2:
20197 case DW_FORM_block4:
20198 case DW_FORM_block:
20199 case DW_FORM_exprloc:
20200 result = DW_BLOCK (attr)->data;
20201 *len = DW_BLOCK (attr)->size;
20202 break;
20203
20204 /* The DW_AT_const_value attributes are supposed to carry the
20205 symbol's value "represented as it would be on the target
20206 architecture." By the time we get here, it's already been
20207 converted to host endianness, so we just need to sign- or
20208 zero-extend it as appropriate. */
20209 case DW_FORM_data1:
20210 type = die_type (die, cu);
20211 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20212 if (result == NULL)
20213 result = write_constant_as_bytes (obstack, byte_order,
20214 type, value, len);
20215 break;
20216 case DW_FORM_data2:
20217 type = die_type (die, cu);
20218 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20219 if (result == NULL)
20220 result = write_constant_as_bytes (obstack, byte_order,
20221 type, value, len);
20222 break;
20223 case DW_FORM_data4:
20224 type = die_type (die, cu);
20225 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20226 if (result == NULL)
20227 result = write_constant_as_bytes (obstack, byte_order,
20228 type, value, len);
20229 break;
20230 case DW_FORM_data8:
20231 type = die_type (die, cu);
20232 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20233 if (result == NULL)
20234 result = write_constant_as_bytes (obstack, byte_order,
20235 type, value, len);
20236 break;
20237
20238 case DW_FORM_sdata:
20239 type = die_type (die, cu);
20240 result = write_constant_as_bytes (obstack, byte_order,
20241 type, DW_SND (attr), len);
20242 break;
20243
20244 case DW_FORM_udata:
20245 type = die_type (die, cu);
20246 result = write_constant_as_bytes (obstack, byte_order,
20247 type, DW_UNSND (attr), len);
20248 break;
20249
20250 default:
20251 complaint (&symfile_complaints,
20252 _("unsupported const value attribute form: '%s'"),
20253 dwarf_form_name (attr->form));
20254 break;
20255 }
20256
20257 return result;
20258}
20259
8a9b8146
TT
20260/* Return the type of the DIE at DIE_OFFSET in the CU named by
20261 PER_CU. */
20262
20263struct type *
b64f50a1 20264dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20265 struct dwarf2_per_cu_data *per_cu)
20266{
b64f50a1
JK
20267 sect_offset die_offset_sect;
20268
8a9b8146 20269 dw2_setup (per_cu->objfile);
b64f50a1
JK
20270
20271 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20272 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20273}
20274
ac9ec31b 20275/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20276 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20277 On exit *REF_CU is the CU of the result.
20278 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20279
20280static struct die_info *
ac9ec31b
DE
20281follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20282 struct dwarf2_cu **ref_cu)
348e048f
DE
20283{
20284 struct objfile *objfile = (*ref_cu)->objfile;
20285 struct die_info temp_die;
348e048f
DE
20286 struct dwarf2_cu *sig_cu;
20287 struct die_info *die;
20288
ac9ec31b
DE
20289 /* While it might be nice to assert sig_type->type == NULL here,
20290 we can get here for DW_AT_imported_declaration where we need
20291 the DIE not the type. */
348e048f
DE
20292
20293 /* If necessary, add it to the queue and load its DIEs. */
20294
95554aad 20295 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20296 read_signatured_type (sig_type);
348e048f 20297
348e048f 20298 sig_cu = sig_type->per_cu.cu;
69d751e3 20299 gdb_assert (sig_cu != NULL);
3019eac3
DE
20300 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20301 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20302 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20303 temp_die.offset.sect_off);
348e048f
DE
20304 if (die)
20305 {
796a7ff8
DE
20306 /* For .gdb_index version 7 keep track of included TUs.
20307 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20308 if (dwarf2_per_objfile->index_table != NULL
20309 && dwarf2_per_objfile->index_table->version <= 7)
20310 {
20311 VEC_safe_push (dwarf2_per_cu_ptr,
20312 (*ref_cu)->per_cu->imported_symtabs,
20313 sig_cu->per_cu);
20314 }
20315
348e048f
DE
20316 *ref_cu = sig_cu;
20317 return die;
20318 }
20319
ac9ec31b
DE
20320 return NULL;
20321}
20322
20323/* Follow signatured type referenced by ATTR in SRC_DIE.
20324 On entry *REF_CU is the CU of SRC_DIE.
20325 On exit *REF_CU is the CU of the result.
20326 The result is the DIE of the type.
20327 If the referenced type cannot be found an error is thrown. */
20328
20329static struct die_info *
ff39bb5e 20330follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20331 struct dwarf2_cu **ref_cu)
20332{
20333 ULONGEST signature = DW_SIGNATURE (attr);
20334 struct signatured_type *sig_type;
20335 struct die_info *die;
20336
20337 gdb_assert (attr->form == DW_FORM_ref_sig8);
20338
a2ce51a0 20339 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20340 /* sig_type will be NULL if the signatured type is missing from
20341 the debug info. */
20342 if (sig_type == NULL)
20343 {
20344 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20345 " from DIE at 0x%x [in module %s]"),
20346 hex_string (signature), src_die->offset.sect_off,
4262abfb 20347 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20348 }
20349
20350 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20351 if (die == NULL)
20352 {
20353 dump_die_for_error (src_die);
20354 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20355 " from DIE at 0x%x [in module %s]"),
20356 hex_string (signature), src_die->offset.sect_off,
4262abfb 20357 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20358 }
20359
20360 return die;
20361}
20362
20363/* Get the type specified by SIGNATURE referenced in DIE/CU,
20364 reading in and processing the type unit if necessary. */
20365
20366static struct type *
20367get_signatured_type (struct die_info *die, ULONGEST signature,
20368 struct dwarf2_cu *cu)
20369{
20370 struct signatured_type *sig_type;
20371 struct dwarf2_cu *type_cu;
20372 struct die_info *type_die;
20373 struct type *type;
20374
a2ce51a0 20375 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20376 /* sig_type will be NULL if the signatured type is missing from
20377 the debug info. */
20378 if (sig_type == NULL)
20379 {
20380 complaint (&symfile_complaints,
20381 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20382 " from DIE at 0x%x [in module %s]"),
20383 hex_string (signature), die->offset.sect_off,
4262abfb 20384 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20385 return build_error_marker_type (cu, die);
20386 }
20387
20388 /* If we already know the type we're done. */
20389 if (sig_type->type != NULL)
20390 return sig_type->type;
20391
20392 type_cu = cu;
20393 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20394 if (type_die != NULL)
20395 {
20396 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20397 is created. This is important, for example, because for c++ classes
20398 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20399 type = read_type_die (type_die, type_cu);
20400 if (type == NULL)
20401 {
20402 complaint (&symfile_complaints,
20403 _("Dwarf Error: Cannot build signatured type %s"
20404 " referenced from DIE at 0x%x [in module %s]"),
20405 hex_string (signature), die->offset.sect_off,
4262abfb 20406 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20407 type = build_error_marker_type (cu, die);
20408 }
20409 }
20410 else
20411 {
20412 complaint (&symfile_complaints,
20413 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20414 " from DIE at 0x%x [in module %s]"),
20415 hex_string (signature), die->offset.sect_off,
4262abfb 20416 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20417 type = build_error_marker_type (cu, die);
20418 }
20419 sig_type->type = type;
20420
20421 return type;
20422}
20423
20424/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20425 reading in and processing the type unit if necessary. */
20426
20427static struct type *
ff39bb5e 20428get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20429 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20430{
20431 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20432 if (attr_form_is_ref (attr))
ac9ec31b
DE
20433 {
20434 struct dwarf2_cu *type_cu = cu;
20435 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20436
20437 return read_type_die (type_die, type_cu);
20438 }
20439 else if (attr->form == DW_FORM_ref_sig8)
20440 {
20441 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20442 }
20443 else
20444 {
20445 complaint (&symfile_complaints,
20446 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20447 " at 0x%x [in module %s]"),
20448 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20449 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20450 return build_error_marker_type (cu, die);
20451 }
348e048f
DE
20452}
20453
e5fe5e75 20454/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20455
20456static void
e5fe5e75 20457load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20458{
52dc124a 20459 struct signatured_type *sig_type;
348e048f 20460
f4dc4d17
DE
20461 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20462 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20463
6721b2ec
DE
20464 /* We have the per_cu, but we need the signatured_type.
20465 Fortunately this is an easy translation. */
20466 gdb_assert (per_cu->is_debug_types);
20467 sig_type = (struct signatured_type *) per_cu;
348e048f 20468
6721b2ec 20469 gdb_assert (per_cu->cu == NULL);
348e048f 20470
52dc124a 20471 read_signatured_type (sig_type);
348e048f 20472
6721b2ec 20473 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20474}
20475
dee91e82
DE
20476/* die_reader_func for read_signatured_type.
20477 This is identical to load_full_comp_unit_reader,
20478 but is kept separate for now. */
348e048f
DE
20479
20480static void
dee91e82 20481read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20482 const gdb_byte *info_ptr,
dee91e82
DE
20483 struct die_info *comp_unit_die,
20484 int has_children,
20485 void *data)
348e048f 20486{
dee91e82 20487 struct dwarf2_cu *cu = reader->cu;
348e048f 20488
dee91e82
DE
20489 gdb_assert (cu->die_hash == NULL);
20490 cu->die_hash =
20491 htab_create_alloc_ex (cu->header.length / 12,
20492 die_hash,
20493 die_eq,
20494 NULL,
20495 &cu->comp_unit_obstack,
20496 hashtab_obstack_allocate,
20497 dummy_obstack_deallocate);
348e048f 20498
dee91e82
DE
20499 if (has_children)
20500 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20501 &info_ptr, comp_unit_die);
20502 cu->dies = comp_unit_die;
20503 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20504
20505 /* We try not to read any attributes in this function, because not
9cdd5dbd 20506 all CUs needed for references have been loaded yet, and symbol
348e048f 20507 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20508 or we won't be able to build types correctly.
20509 Similarly, if we do not read the producer, we can not apply
20510 producer-specific interpretation. */
95554aad 20511 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20512}
348e048f 20513
3019eac3
DE
20514/* Read in a signatured type and build its CU and DIEs.
20515 If the type is a stub for the real type in a DWO file,
20516 read in the real type from the DWO file as well. */
dee91e82
DE
20517
20518static void
20519read_signatured_type (struct signatured_type *sig_type)
20520{
20521 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20522
3019eac3 20523 gdb_assert (per_cu->is_debug_types);
dee91e82 20524 gdb_assert (per_cu->cu == NULL);
348e048f 20525
f4dc4d17
DE
20526 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20527 read_signatured_type_reader, NULL);
7ee85ab1 20528 sig_type->per_cu.tu_read = 1;
c906108c
SS
20529}
20530
c906108c
SS
20531/* Decode simple location descriptions.
20532 Given a pointer to a dwarf block that defines a location, compute
20533 the location and return the value.
20534
4cecd739
DJ
20535 NOTE drow/2003-11-18: This function is called in two situations
20536 now: for the address of static or global variables (partial symbols
20537 only) and for offsets into structures which are expected to be
20538 (more or less) constant. The partial symbol case should go away,
20539 and only the constant case should remain. That will let this
20540 function complain more accurately. A few special modes are allowed
20541 without complaint for global variables (for instance, global
20542 register values and thread-local values).
c906108c
SS
20543
20544 A location description containing no operations indicates that the
4cecd739 20545 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20546 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20547 callers will only want a very basic result and this can become a
21ae7a4d
JK
20548 complaint.
20549
20550 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20551
20552static CORE_ADDR
e7c27a73 20553decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20554{
e7c27a73 20555 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20556 size_t i;
20557 size_t size = blk->size;
d521ce57 20558 const gdb_byte *data = blk->data;
21ae7a4d
JK
20559 CORE_ADDR stack[64];
20560 int stacki;
20561 unsigned int bytes_read, unsnd;
20562 gdb_byte op;
c906108c 20563
21ae7a4d
JK
20564 i = 0;
20565 stacki = 0;
20566 stack[stacki] = 0;
20567 stack[++stacki] = 0;
20568
20569 while (i < size)
20570 {
20571 op = data[i++];
20572 switch (op)
20573 {
20574 case DW_OP_lit0:
20575 case DW_OP_lit1:
20576 case DW_OP_lit2:
20577 case DW_OP_lit3:
20578 case DW_OP_lit4:
20579 case DW_OP_lit5:
20580 case DW_OP_lit6:
20581 case DW_OP_lit7:
20582 case DW_OP_lit8:
20583 case DW_OP_lit9:
20584 case DW_OP_lit10:
20585 case DW_OP_lit11:
20586 case DW_OP_lit12:
20587 case DW_OP_lit13:
20588 case DW_OP_lit14:
20589 case DW_OP_lit15:
20590 case DW_OP_lit16:
20591 case DW_OP_lit17:
20592 case DW_OP_lit18:
20593 case DW_OP_lit19:
20594 case DW_OP_lit20:
20595 case DW_OP_lit21:
20596 case DW_OP_lit22:
20597 case DW_OP_lit23:
20598 case DW_OP_lit24:
20599 case DW_OP_lit25:
20600 case DW_OP_lit26:
20601 case DW_OP_lit27:
20602 case DW_OP_lit28:
20603 case DW_OP_lit29:
20604 case DW_OP_lit30:
20605 case DW_OP_lit31:
20606 stack[++stacki] = op - DW_OP_lit0;
20607 break;
f1bea926 20608
21ae7a4d
JK
20609 case DW_OP_reg0:
20610 case DW_OP_reg1:
20611 case DW_OP_reg2:
20612 case DW_OP_reg3:
20613 case DW_OP_reg4:
20614 case DW_OP_reg5:
20615 case DW_OP_reg6:
20616 case DW_OP_reg7:
20617 case DW_OP_reg8:
20618 case DW_OP_reg9:
20619 case DW_OP_reg10:
20620 case DW_OP_reg11:
20621 case DW_OP_reg12:
20622 case DW_OP_reg13:
20623 case DW_OP_reg14:
20624 case DW_OP_reg15:
20625 case DW_OP_reg16:
20626 case DW_OP_reg17:
20627 case DW_OP_reg18:
20628 case DW_OP_reg19:
20629 case DW_OP_reg20:
20630 case DW_OP_reg21:
20631 case DW_OP_reg22:
20632 case DW_OP_reg23:
20633 case DW_OP_reg24:
20634 case DW_OP_reg25:
20635 case DW_OP_reg26:
20636 case DW_OP_reg27:
20637 case DW_OP_reg28:
20638 case DW_OP_reg29:
20639 case DW_OP_reg30:
20640 case DW_OP_reg31:
20641 stack[++stacki] = op - DW_OP_reg0;
20642 if (i < size)
20643 dwarf2_complex_location_expr_complaint ();
20644 break;
c906108c 20645
21ae7a4d
JK
20646 case DW_OP_regx:
20647 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20648 i += bytes_read;
20649 stack[++stacki] = unsnd;
20650 if (i < size)
20651 dwarf2_complex_location_expr_complaint ();
20652 break;
c906108c 20653
21ae7a4d
JK
20654 case DW_OP_addr:
20655 stack[++stacki] = read_address (objfile->obfd, &data[i],
20656 cu, &bytes_read);
20657 i += bytes_read;
20658 break;
d53d4ac5 20659
21ae7a4d
JK
20660 case DW_OP_const1u:
20661 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20662 i += 1;
20663 break;
20664
20665 case DW_OP_const1s:
20666 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20667 i += 1;
20668 break;
20669
20670 case DW_OP_const2u:
20671 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20672 i += 2;
20673 break;
20674
20675 case DW_OP_const2s:
20676 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20677 i += 2;
20678 break;
d53d4ac5 20679
21ae7a4d
JK
20680 case DW_OP_const4u:
20681 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20682 i += 4;
20683 break;
20684
20685 case DW_OP_const4s:
20686 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20687 i += 4;
20688 break;
20689
585861ea
JK
20690 case DW_OP_const8u:
20691 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20692 i += 8;
20693 break;
20694
21ae7a4d
JK
20695 case DW_OP_constu:
20696 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20697 &bytes_read);
20698 i += bytes_read;
20699 break;
20700
20701 case DW_OP_consts:
20702 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20703 i += bytes_read;
20704 break;
20705
20706 case DW_OP_dup:
20707 stack[stacki + 1] = stack[stacki];
20708 stacki++;
20709 break;
20710
20711 case DW_OP_plus:
20712 stack[stacki - 1] += stack[stacki];
20713 stacki--;
20714 break;
20715
20716 case DW_OP_plus_uconst:
20717 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20718 &bytes_read);
20719 i += bytes_read;
20720 break;
20721
20722 case DW_OP_minus:
20723 stack[stacki - 1] -= stack[stacki];
20724 stacki--;
20725 break;
20726
20727 case DW_OP_deref:
20728 /* If we're not the last op, then we definitely can't encode
20729 this using GDB's address_class enum. This is valid for partial
20730 global symbols, although the variable's address will be bogus
20731 in the psymtab. */
20732 if (i < size)
20733 dwarf2_complex_location_expr_complaint ();
20734 break;
20735
20736 case DW_OP_GNU_push_tls_address:
20737 /* The top of the stack has the offset from the beginning
20738 of the thread control block at which the variable is located. */
20739 /* Nothing should follow this operator, so the top of stack would
20740 be returned. */
20741 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20742 address will be bogus in the psymtab. Make it always at least
20743 non-zero to not look as a variable garbage collected by linker
20744 which have DW_OP_addr 0. */
21ae7a4d
JK
20745 if (i < size)
20746 dwarf2_complex_location_expr_complaint ();
585861ea 20747 stack[stacki]++;
21ae7a4d
JK
20748 break;
20749
20750 case DW_OP_GNU_uninit:
20751 break;
20752
3019eac3 20753 case DW_OP_GNU_addr_index:
49f6c839 20754 case DW_OP_GNU_const_index:
3019eac3
DE
20755 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20756 &bytes_read);
20757 i += bytes_read;
20758 break;
20759
21ae7a4d
JK
20760 default:
20761 {
f39c6ffd 20762 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20763
20764 if (name)
20765 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20766 name);
20767 else
20768 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20769 op);
20770 }
20771
20772 return (stack[stacki]);
d53d4ac5 20773 }
3c6e0cb3 20774
21ae7a4d
JK
20775 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20776 outside of the allocated space. Also enforce minimum>0. */
20777 if (stacki >= ARRAY_SIZE (stack) - 1)
20778 {
20779 complaint (&symfile_complaints,
20780 _("location description stack overflow"));
20781 return 0;
20782 }
20783
20784 if (stacki <= 0)
20785 {
20786 complaint (&symfile_complaints,
20787 _("location description stack underflow"));
20788 return 0;
20789 }
20790 }
20791 return (stack[stacki]);
c906108c
SS
20792}
20793
20794/* memory allocation interface */
20795
c906108c 20796static struct dwarf_block *
7b5a2f43 20797dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20798{
20799 struct dwarf_block *blk;
20800
20801 blk = (struct dwarf_block *)
7b5a2f43 20802 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20803 return (blk);
20804}
20805
c906108c 20806static struct die_info *
b60c80d6 20807dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20808{
20809 struct die_info *die;
b60c80d6
DJ
20810 size_t size = sizeof (struct die_info);
20811
20812 if (num_attrs > 1)
20813 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20814
b60c80d6 20815 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20816 memset (die, 0, sizeof (struct die_info));
20817 return (die);
20818}
2e276125
JB
20819
20820\f
20821/* Macro support. */
20822
233d95b5
JK
20823/* Return file name relative to the compilation directory of file number I in
20824 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20825 responsible for freeing it. */
233d95b5 20826
2e276125 20827static char *
233d95b5 20828file_file_name (int file, struct line_header *lh)
2e276125 20829{
6a83a1e6
EZ
20830 /* Is the file number a valid index into the line header's file name
20831 table? Remember that file numbers start with one, not zero. */
20832 if (1 <= file && file <= lh->num_file_names)
20833 {
20834 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20835
afa6c9ab
SL
20836 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20837 || lh->include_dirs == NULL)
6a83a1e6 20838 return xstrdup (fe->name);
233d95b5
JK
20839 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20840 fe->name, NULL);
6a83a1e6 20841 }
2e276125
JB
20842 else
20843 {
6a83a1e6
EZ
20844 /* The compiler produced a bogus file number. We can at least
20845 record the macro definitions made in the file, even if we
20846 won't be able to find the file by name. */
20847 char fake_name[80];
9a619af0 20848
8c042590
PM
20849 xsnprintf (fake_name, sizeof (fake_name),
20850 "<bad macro file number %d>", file);
2e276125 20851
6e70227d 20852 complaint (&symfile_complaints,
6a83a1e6
EZ
20853 _("bad file number in macro information (%d)"),
20854 file);
2e276125 20855
6a83a1e6 20856 return xstrdup (fake_name);
2e276125
JB
20857 }
20858}
20859
233d95b5
JK
20860/* Return the full name of file number I in *LH's file name table.
20861 Use COMP_DIR as the name of the current directory of the
20862 compilation. The result is allocated using xmalloc; the caller is
20863 responsible for freeing it. */
20864static char *
20865file_full_name (int file, struct line_header *lh, const char *comp_dir)
20866{
20867 /* Is the file number a valid index into the line header's file name
20868 table? Remember that file numbers start with one, not zero. */
20869 if (1 <= file && file <= lh->num_file_names)
20870 {
20871 char *relative = file_file_name (file, lh);
20872
20873 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20874 return relative;
20875 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20876 }
20877 else
20878 return file_file_name (file, lh);
20879}
20880
2e276125
JB
20881
20882static struct macro_source_file *
20883macro_start_file (int file, int line,
20884 struct macro_source_file *current_file,
43f3e411 20885 struct line_header *lh)
2e276125 20886{
233d95b5
JK
20887 /* File name relative to the compilation directory of this source file. */
20888 char *file_name = file_file_name (file, lh);
2e276125 20889
2e276125 20890 if (! current_file)
abc9d0dc 20891 {
fc474241
DE
20892 /* Note: We don't create a macro table for this compilation unit
20893 at all until we actually get a filename. */
43f3e411 20894 struct macro_table *macro_table = get_macro_table ();
fc474241 20895
abc9d0dc
TT
20896 /* If we have no current file, then this must be the start_file
20897 directive for the compilation unit's main source file. */
fc474241
DE
20898 current_file = macro_set_main (macro_table, file_name);
20899 macro_define_special (macro_table);
abc9d0dc 20900 }
2e276125 20901 else
233d95b5 20902 current_file = macro_include (current_file, line, file_name);
2e276125 20903
233d95b5 20904 xfree (file_name);
6e70227d 20905
2e276125
JB
20906 return current_file;
20907}
20908
20909
20910/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20911 followed by a null byte. */
20912static char *
20913copy_string (const char *buf, int len)
20914{
20915 char *s = xmalloc (len + 1);
9a619af0 20916
2e276125
JB
20917 memcpy (s, buf, len);
20918 s[len] = '\0';
2e276125
JB
20919 return s;
20920}
20921
20922
20923static const char *
20924consume_improper_spaces (const char *p, const char *body)
20925{
20926 if (*p == ' ')
20927 {
4d3c2250 20928 complaint (&symfile_complaints,
3e43a32a
MS
20929 _("macro definition contains spaces "
20930 "in formal argument list:\n`%s'"),
4d3c2250 20931 body);
2e276125
JB
20932
20933 while (*p == ' ')
20934 p++;
20935 }
20936
20937 return p;
20938}
20939
20940
20941static void
20942parse_macro_definition (struct macro_source_file *file, int line,
20943 const char *body)
20944{
20945 const char *p;
20946
20947 /* The body string takes one of two forms. For object-like macro
20948 definitions, it should be:
20949
20950 <macro name> " " <definition>
20951
20952 For function-like macro definitions, it should be:
20953
20954 <macro name> "() " <definition>
20955 or
20956 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20957
20958 Spaces may appear only where explicitly indicated, and in the
20959 <definition>.
20960
20961 The Dwarf 2 spec says that an object-like macro's name is always
20962 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20963 the space when the macro's definition is the empty string.
2e276125
JB
20964
20965 The Dwarf 2 spec says that there should be no spaces between the
20966 formal arguments in a function-like macro's formal argument list,
20967 but versions of GCC around March 2002 include spaces after the
20968 commas. */
20969
20970
20971 /* Find the extent of the macro name. The macro name is terminated
20972 by either a space or null character (for an object-like macro) or
20973 an opening paren (for a function-like macro). */
20974 for (p = body; *p; p++)
20975 if (*p == ' ' || *p == '(')
20976 break;
20977
20978 if (*p == ' ' || *p == '\0')
20979 {
20980 /* It's an object-like macro. */
20981 int name_len = p - body;
20982 char *name = copy_string (body, name_len);
20983 const char *replacement;
20984
20985 if (*p == ' ')
20986 replacement = body + name_len + 1;
20987 else
20988 {
4d3c2250 20989 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20990 replacement = body + name_len;
20991 }
6e70227d 20992
2e276125
JB
20993 macro_define_object (file, line, name, replacement);
20994
20995 xfree (name);
20996 }
20997 else if (*p == '(')
20998 {
20999 /* It's a function-like macro. */
21000 char *name = copy_string (body, p - body);
21001 int argc = 0;
21002 int argv_size = 1;
21003 char **argv = xmalloc (argv_size * sizeof (*argv));
21004
21005 p++;
21006
21007 p = consume_improper_spaces (p, body);
21008
21009 /* Parse the formal argument list. */
21010 while (*p && *p != ')')
21011 {
21012 /* Find the extent of the current argument name. */
21013 const char *arg_start = p;
21014
21015 while (*p && *p != ',' && *p != ')' && *p != ' ')
21016 p++;
21017
21018 if (! *p || p == arg_start)
4d3c2250 21019 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21020 else
21021 {
21022 /* Make sure argv has room for the new argument. */
21023 if (argc >= argv_size)
21024 {
21025 argv_size *= 2;
21026 argv = xrealloc (argv, argv_size * sizeof (*argv));
21027 }
21028
21029 argv[argc++] = copy_string (arg_start, p - arg_start);
21030 }
21031
21032 p = consume_improper_spaces (p, body);
21033
21034 /* Consume the comma, if present. */
21035 if (*p == ',')
21036 {
21037 p++;
21038
21039 p = consume_improper_spaces (p, body);
21040 }
21041 }
21042
21043 if (*p == ')')
21044 {
21045 p++;
21046
21047 if (*p == ' ')
21048 /* Perfectly formed definition, no complaints. */
21049 macro_define_function (file, line, name,
6e70227d 21050 argc, (const char **) argv,
2e276125
JB
21051 p + 1);
21052 else if (*p == '\0')
21053 {
21054 /* Complain, but do define it. */
4d3c2250 21055 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21056 macro_define_function (file, line, name,
6e70227d 21057 argc, (const char **) argv,
2e276125
JB
21058 p);
21059 }
21060 else
21061 /* Just complain. */
4d3c2250 21062 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21063 }
21064 else
21065 /* Just complain. */
4d3c2250 21066 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21067
21068 xfree (name);
21069 {
21070 int i;
21071
21072 for (i = 0; i < argc; i++)
21073 xfree (argv[i]);
21074 }
21075 xfree (argv);
21076 }
21077 else
4d3c2250 21078 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21079}
21080
cf2c3c16
TT
21081/* Skip some bytes from BYTES according to the form given in FORM.
21082 Returns the new pointer. */
2e276125 21083
d521ce57
TT
21084static const gdb_byte *
21085skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21086 enum dwarf_form form,
21087 unsigned int offset_size,
21088 struct dwarf2_section_info *section)
2e276125 21089{
cf2c3c16 21090 unsigned int bytes_read;
2e276125 21091
cf2c3c16 21092 switch (form)
2e276125 21093 {
cf2c3c16
TT
21094 case DW_FORM_data1:
21095 case DW_FORM_flag:
21096 ++bytes;
21097 break;
21098
21099 case DW_FORM_data2:
21100 bytes += 2;
21101 break;
21102
21103 case DW_FORM_data4:
21104 bytes += 4;
21105 break;
21106
21107 case DW_FORM_data8:
21108 bytes += 8;
21109 break;
21110
21111 case DW_FORM_string:
21112 read_direct_string (abfd, bytes, &bytes_read);
21113 bytes += bytes_read;
21114 break;
21115
21116 case DW_FORM_sec_offset:
21117 case DW_FORM_strp:
36586728 21118 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21119 bytes += offset_size;
21120 break;
21121
21122 case DW_FORM_block:
21123 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21124 bytes += bytes_read;
21125 break;
21126
21127 case DW_FORM_block1:
21128 bytes += 1 + read_1_byte (abfd, bytes);
21129 break;
21130 case DW_FORM_block2:
21131 bytes += 2 + read_2_bytes (abfd, bytes);
21132 break;
21133 case DW_FORM_block4:
21134 bytes += 4 + read_4_bytes (abfd, bytes);
21135 break;
21136
21137 case DW_FORM_sdata:
21138 case DW_FORM_udata:
3019eac3
DE
21139 case DW_FORM_GNU_addr_index:
21140 case DW_FORM_GNU_str_index:
d521ce57 21141 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21142 if (bytes == NULL)
21143 {
21144 dwarf2_section_buffer_overflow_complaint (section);
21145 return NULL;
21146 }
cf2c3c16
TT
21147 break;
21148
21149 default:
21150 {
21151 complain:
21152 complaint (&symfile_complaints,
21153 _("invalid form 0x%x in `%s'"),
a32a8923 21154 form, get_section_name (section));
cf2c3c16
TT
21155 return NULL;
21156 }
2e276125
JB
21157 }
21158
cf2c3c16
TT
21159 return bytes;
21160}
757a13d0 21161
cf2c3c16
TT
21162/* A helper for dwarf_decode_macros that handles skipping an unknown
21163 opcode. Returns an updated pointer to the macro data buffer; or,
21164 on error, issues a complaint and returns NULL. */
757a13d0 21165
d521ce57 21166static const gdb_byte *
cf2c3c16 21167skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21168 const gdb_byte **opcode_definitions,
21169 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21170 bfd *abfd,
21171 unsigned int offset_size,
21172 struct dwarf2_section_info *section)
21173{
21174 unsigned int bytes_read, i;
21175 unsigned long arg;
d521ce57 21176 const gdb_byte *defn;
2e276125 21177
cf2c3c16 21178 if (opcode_definitions[opcode] == NULL)
2e276125 21179 {
cf2c3c16
TT
21180 complaint (&symfile_complaints,
21181 _("unrecognized DW_MACFINO opcode 0x%x"),
21182 opcode);
21183 return NULL;
21184 }
2e276125 21185
cf2c3c16
TT
21186 defn = opcode_definitions[opcode];
21187 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21188 defn += bytes_read;
2e276125 21189
cf2c3c16
TT
21190 for (i = 0; i < arg; ++i)
21191 {
aead7601
SM
21192 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21193 (enum dwarf_form) defn[i], offset_size,
f664829e 21194 section);
cf2c3c16
TT
21195 if (mac_ptr == NULL)
21196 {
21197 /* skip_form_bytes already issued the complaint. */
21198 return NULL;
21199 }
21200 }
757a13d0 21201
cf2c3c16
TT
21202 return mac_ptr;
21203}
757a13d0 21204
cf2c3c16
TT
21205/* A helper function which parses the header of a macro section.
21206 If the macro section is the extended (for now called "GNU") type,
21207 then this updates *OFFSET_SIZE. Returns a pointer to just after
21208 the header, or issues a complaint and returns NULL on error. */
757a13d0 21209
d521ce57
TT
21210static const gdb_byte *
21211dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21212 bfd *abfd,
d521ce57 21213 const gdb_byte *mac_ptr,
cf2c3c16
TT
21214 unsigned int *offset_size,
21215 int section_is_gnu)
21216{
21217 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21218
cf2c3c16
TT
21219 if (section_is_gnu)
21220 {
21221 unsigned int version, flags;
757a13d0 21222
cf2c3c16
TT
21223 version = read_2_bytes (abfd, mac_ptr);
21224 if (version != 4)
21225 {
21226 complaint (&symfile_complaints,
21227 _("unrecognized version `%d' in .debug_macro section"),
21228 version);
21229 return NULL;
21230 }
21231 mac_ptr += 2;
757a13d0 21232
cf2c3c16
TT
21233 flags = read_1_byte (abfd, mac_ptr);
21234 ++mac_ptr;
21235 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21236
cf2c3c16
TT
21237 if ((flags & 2) != 0)
21238 /* We don't need the line table offset. */
21239 mac_ptr += *offset_size;
757a13d0 21240
cf2c3c16
TT
21241 /* Vendor opcode descriptions. */
21242 if ((flags & 4) != 0)
21243 {
21244 unsigned int i, count;
757a13d0 21245
cf2c3c16
TT
21246 count = read_1_byte (abfd, mac_ptr);
21247 ++mac_ptr;
21248 for (i = 0; i < count; ++i)
21249 {
21250 unsigned int opcode, bytes_read;
21251 unsigned long arg;
21252
21253 opcode = read_1_byte (abfd, mac_ptr);
21254 ++mac_ptr;
21255 opcode_definitions[opcode] = mac_ptr;
21256 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21257 mac_ptr += bytes_read;
21258 mac_ptr += arg;
21259 }
757a13d0 21260 }
cf2c3c16 21261 }
757a13d0 21262
cf2c3c16
TT
21263 return mac_ptr;
21264}
757a13d0 21265
cf2c3c16 21266/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21267 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21268
21269static void
d521ce57
TT
21270dwarf_decode_macro_bytes (bfd *abfd,
21271 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21272 struct macro_source_file *current_file,
43f3e411 21273 struct line_header *lh,
cf2c3c16 21274 struct dwarf2_section_info *section,
36586728 21275 int section_is_gnu, int section_is_dwz,
cf2c3c16 21276 unsigned int offset_size,
8fc3fc34 21277 htab_t include_hash)
cf2c3c16 21278{
4d663531 21279 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21280 enum dwarf_macro_record_type macinfo_type;
21281 int at_commandline;
d521ce57 21282 const gdb_byte *opcode_definitions[256];
757a13d0 21283
cf2c3c16
TT
21284 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21285 &offset_size, section_is_gnu);
21286 if (mac_ptr == NULL)
21287 {
21288 /* We already issued a complaint. */
21289 return;
21290 }
757a13d0
JK
21291
21292 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21293 GDB is still reading the definitions from command line. First
21294 DW_MACINFO_start_file will need to be ignored as it was already executed
21295 to create CURRENT_FILE for the main source holding also the command line
21296 definitions. On first met DW_MACINFO_start_file this flag is reset to
21297 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21298
21299 at_commandline = 1;
21300
21301 do
21302 {
21303 /* Do we at least have room for a macinfo type byte? */
21304 if (mac_ptr >= mac_end)
21305 {
f664829e 21306 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21307 break;
21308 }
21309
aead7601 21310 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21311 mac_ptr++;
21312
cf2c3c16
TT
21313 /* Note that we rely on the fact that the corresponding GNU and
21314 DWARF constants are the same. */
757a13d0
JK
21315 switch (macinfo_type)
21316 {
21317 /* A zero macinfo type indicates the end of the macro
21318 information. */
21319 case 0:
21320 break;
2e276125 21321
cf2c3c16
TT
21322 case DW_MACRO_GNU_define:
21323 case DW_MACRO_GNU_undef:
21324 case DW_MACRO_GNU_define_indirect:
21325 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21326 case DW_MACRO_GNU_define_indirect_alt:
21327 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21328 {
891d2f0b 21329 unsigned int bytes_read;
2e276125 21330 int line;
d521ce57 21331 const char *body;
cf2c3c16 21332 int is_define;
2e276125 21333
cf2c3c16
TT
21334 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21335 mac_ptr += bytes_read;
21336
21337 if (macinfo_type == DW_MACRO_GNU_define
21338 || macinfo_type == DW_MACRO_GNU_undef)
21339 {
21340 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21341 mac_ptr += bytes_read;
21342 }
21343 else
21344 {
21345 LONGEST str_offset;
21346
21347 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21348 mac_ptr += offset_size;
2e276125 21349
36586728 21350 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21351 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21352 || section_is_dwz)
36586728
TT
21353 {
21354 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21355
21356 body = read_indirect_string_from_dwz (dwz, str_offset);
21357 }
21358 else
21359 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21360 }
21361
21362 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21363 || macinfo_type == DW_MACRO_GNU_define_indirect
21364 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21365 if (! current_file)
757a13d0
JK
21366 {
21367 /* DWARF violation as no main source is present. */
21368 complaint (&symfile_complaints,
21369 _("debug info with no main source gives macro %s "
21370 "on line %d: %s"),
cf2c3c16
TT
21371 is_define ? _("definition") : _("undefinition"),
21372 line, body);
757a13d0
JK
21373 break;
21374 }
3e43a32a
MS
21375 if ((line == 0 && !at_commandline)
21376 || (line != 0 && at_commandline))
4d3c2250 21377 complaint (&symfile_complaints,
757a13d0
JK
21378 _("debug info gives %s macro %s with %s line %d: %s"),
21379 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21380 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21381 line == 0 ? _("zero") : _("non-zero"), line, body);
21382
cf2c3c16 21383 if (is_define)
757a13d0 21384 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21385 else
21386 {
21387 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21388 || macinfo_type == DW_MACRO_GNU_undef_indirect
21389 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21390 macro_undef (current_file, line, body);
21391 }
2e276125
JB
21392 }
21393 break;
21394
cf2c3c16 21395 case DW_MACRO_GNU_start_file:
2e276125 21396 {
891d2f0b 21397 unsigned int bytes_read;
2e276125
JB
21398 int line, file;
21399
21400 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21401 mac_ptr += bytes_read;
21402 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21403 mac_ptr += bytes_read;
21404
3e43a32a
MS
21405 if ((line == 0 && !at_commandline)
21406 || (line != 0 && at_commandline))
757a13d0
JK
21407 complaint (&symfile_complaints,
21408 _("debug info gives source %d included "
21409 "from %s at %s line %d"),
21410 file, at_commandline ? _("command-line") : _("file"),
21411 line == 0 ? _("zero") : _("non-zero"), line);
21412
21413 if (at_commandline)
21414 {
cf2c3c16
TT
21415 /* This DW_MACRO_GNU_start_file was executed in the
21416 pass one. */
757a13d0
JK
21417 at_commandline = 0;
21418 }
21419 else
43f3e411 21420 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21421 }
21422 break;
21423
cf2c3c16 21424 case DW_MACRO_GNU_end_file:
2e276125 21425 if (! current_file)
4d3c2250 21426 complaint (&symfile_complaints,
3e43a32a
MS
21427 _("macro debug info has an unmatched "
21428 "`close_file' directive"));
2e276125
JB
21429 else
21430 {
21431 current_file = current_file->included_by;
21432 if (! current_file)
21433 {
cf2c3c16 21434 enum dwarf_macro_record_type next_type;
2e276125
JB
21435
21436 /* GCC circa March 2002 doesn't produce the zero
21437 type byte marking the end of the compilation
21438 unit. Complain if it's not there, but exit no
21439 matter what. */
21440
21441 /* Do we at least have room for a macinfo type byte? */
21442 if (mac_ptr >= mac_end)
21443 {
f664829e 21444 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21445 return;
21446 }
21447
21448 /* We don't increment mac_ptr here, so this is just
21449 a look-ahead. */
aead7601
SM
21450 next_type
21451 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21452 mac_ptr);
2e276125 21453 if (next_type != 0)
4d3c2250 21454 complaint (&symfile_complaints,
3e43a32a
MS
21455 _("no terminating 0-type entry for "
21456 "macros in `.debug_macinfo' section"));
2e276125
JB
21457
21458 return;
21459 }
21460 }
21461 break;
21462
cf2c3c16 21463 case DW_MACRO_GNU_transparent_include:
36586728 21464 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21465 {
21466 LONGEST offset;
8fc3fc34 21467 void **slot;
a036ba48
TT
21468 bfd *include_bfd = abfd;
21469 struct dwarf2_section_info *include_section = section;
21470 struct dwarf2_section_info alt_section;
d521ce57 21471 const gdb_byte *include_mac_end = mac_end;
a036ba48 21472 int is_dwz = section_is_dwz;
d521ce57 21473 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21474
21475 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21476 mac_ptr += offset_size;
21477
a036ba48
TT
21478 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21479 {
21480 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21481
4d663531 21482 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21483
a036ba48 21484 include_section = &dwz->macro;
a32a8923 21485 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21486 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21487 is_dwz = 1;
21488 }
21489
21490 new_mac_ptr = include_section->buffer + offset;
21491 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21492
8fc3fc34
TT
21493 if (*slot != NULL)
21494 {
21495 /* This has actually happened; see
21496 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21497 complaint (&symfile_complaints,
21498 _("recursive DW_MACRO_GNU_transparent_include in "
21499 ".debug_macro section"));
21500 }
21501 else
21502 {
d521ce57 21503 *slot = (void *) new_mac_ptr;
36586728 21504
a036ba48 21505 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21506 include_mac_end, current_file, lh,
36586728 21507 section, section_is_gnu, is_dwz,
4d663531 21508 offset_size, include_hash);
8fc3fc34 21509
d521ce57 21510 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21511 }
cf2c3c16
TT
21512 }
21513 break;
21514
2e276125 21515 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21516 if (!section_is_gnu)
21517 {
21518 unsigned int bytes_read;
21519 int constant;
2e276125 21520
cf2c3c16
TT
21521 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21522 mac_ptr += bytes_read;
21523 read_direct_string (abfd, mac_ptr, &bytes_read);
21524 mac_ptr += bytes_read;
2e276125 21525
cf2c3c16
TT
21526 /* We don't recognize any vendor extensions. */
21527 break;
21528 }
21529 /* FALLTHROUGH */
21530
21531 default:
21532 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21533 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21534 section);
21535 if (mac_ptr == NULL)
21536 return;
21537 break;
2e276125 21538 }
757a13d0 21539 } while (macinfo_type != 0);
2e276125 21540}
8e19ed76 21541
cf2c3c16 21542static void
09262596 21543dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21544 int section_is_gnu)
cf2c3c16 21545{
bb5ed363 21546 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21547 struct line_header *lh = cu->line_header;
21548 bfd *abfd;
d521ce57 21549 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21550 struct macro_source_file *current_file = 0;
21551 enum dwarf_macro_record_type macinfo_type;
21552 unsigned int offset_size = cu->header.offset_size;
d521ce57 21553 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21554 struct cleanup *cleanup;
21555 htab_t include_hash;
21556 void **slot;
09262596
DE
21557 struct dwarf2_section_info *section;
21558 const char *section_name;
21559
21560 if (cu->dwo_unit != NULL)
21561 {
21562 if (section_is_gnu)
21563 {
21564 section = &cu->dwo_unit->dwo_file->sections.macro;
21565 section_name = ".debug_macro.dwo";
21566 }
21567 else
21568 {
21569 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21570 section_name = ".debug_macinfo.dwo";
21571 }
21572 }
21573 else
21574 {
21575 if (section_is_gnu)
21576 {
21577 section = &dwarf2_per_objfile->macro;
21578 section_name = ".debug_macro";
21579 }
21580 else
21581 {
21582 section = &dwarf2_per_objfile->macinfo;
21583 section_name = ".debug_macinfo";
21584 }
21585 }
cf2c3c16 21586
bb5ed363 21587 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21588 if (section->buffer == NULL)
21589 {
fceca515 21590 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21591 return;
21592 }
a32a8923 21593 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21594
21595 /* First pass: Find the name of the base filename.
21596 This filename is needed in order to process all macros whose definition
21597 (or undefinition) comes from the command line. These macros are defined
21598 before the first DW_MACINFO_start_file entry, and yet still need to be
21599 associated to the base file.
21600
21601 To determine the base file name, we scan the macro definitions until we
21602 reach the first DW_MACINFO_start_file entry. We then initialize
21603 CURRENT_FILE accordingly so that any macro definition found before the
21604 first DW_MACINFO_start_file can still be associated to the base file. */
21605
21606 mac_ptr = section->buffer + offset;
21607 mac_end = section->buffer + section->size;
21608
21609 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21610 &offset_size, section_is_gnu);
21611 if (mac_ptr == NULL)
21612 {
21613 /* We already issued a complaint. */
21614 return;
21615 }
21616
21617 do
21618 {
21619 /* Do we at least have room for a macinfo type byte? */
21620 if (mac_ptr >= mac_end)
21621 {
21622 /* Complaint is printed during the second pass as GDB will probably
21623 stop the first pass earlier upon finding
21624 DW_MACINFO_start_file. */
21625 break;
21626 }
21627
aead7601 21628 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21629 mac_ptr++;
21630
21631 /* Note that we rely on the fact that the corresponding GNU and
21632 DWARF constants are the same. */
21633 switch (macinfo_type)
21634 {
21635 /* A zero macinfo type indicates the end of the macro
21636 information. */
21637 case 0:
21638 break;
21639
21640 case DW_MACRO_GNU_define:
21641 case DW_MACRO_GNU_undef:
21642 /* Only skip the data by MAC_PTR. */
21643 {
21644 unsigned int bytes_read;
21645
21646 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21647 mac_ptr += bytes_read;
21648 read_direct_string (abfd, mac_ptr, &bytes_read);
21649 mac_ptr += bytes_read;
21650 }
21651 break;
21652
21653 case DW_MACRO_GNU_start_file:
21654 {
21655 unsigned int bytes_read;
21656 int line, file;
21657
21658 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21659 mac_ptr += bytes_read;
21660 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21661 mac_ptr += bytes_read;
21662
43f3e411 21663 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21664 }
21665 break;
21666
21667 case DW_MACRO_GNU_end_file:
21668 /* No data to skip by MAC_PTR. */
21669 break;
21670
21671 case DW_MACRO_GNU_define_indirect:
21672 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21673 case DW_MACRO_GNU_define_indirect_alt:
21674 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21675 {
21676 unsigned int bytes_read;
21677
21678 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21679 mac_ptr += bytes_read;
21680 mac_ptr += offset_size;
21681 }
21682 break;
21683
21684 case DW_MACRO_GNU_transparent_include:
f7a35f02 21685 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21686 /* Note that, according to the spec, a transparent include
21687 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21688 skip this opcode. */
21689 mac_ptr += offset_size;
21690 break;
21691
21692 case DW_MACINFO_vendor_ext:
21693 /* Only skip the data by MAC_PTR. */
21694 if (!section_is_gnu)
21695 {
21696 unsigned int bytes_read;
21697
21698 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21699 mac_ptr += bytes_read;
21700 read_direct_string (abfd, mac_ptr, &bytes_read);
21701 mac_ptr += bytes_read;
21702 }
21703 /* FALLTHROUGH */
21704
21705 default:
21706 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21707 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21708 section);
21709 if (mac_ptr == NULL)
21710 return;
21711 break;
21712 }
21713 } while (macinfo_type != 0 && current_file == NULL);
21714
21715 /* Second pass: Process all entries.
21716
21717 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21718 command-line macro definitions/undefinitions. This flag is unset when we
21719 reach the first DW_MACINFO_start_file entry. */
21720
8fc3fc34
TT
21721 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21722 NULL, xcalloc, xfree);
21723 cleanup = make_cleanup_htab_delete (include_hash);
21724 mac_ptr = section->buffer + offset;
21725 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21726 *slot = (void *) mac_ptr;
8fc3fc34 21727 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21728 current_file, lh, section,
4d663531 21729 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21730 do_cleanups (cleanup);
cf2c3c16
TT
21731}
21732
8e19ed76 21733/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21734 if so return true else false. */
380bca97 21735
8e19ed76 21736static int
6e5a29e1 21737attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21738{
21739 return (attr == NULL ? 0 :
21740 attr->form == DW_FORM_block1
21741 || attr->form == DW_FORM_block2
21742 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21743 || attr->form == DW_FORM_block
21744 || attr->form == DW_FORM_exprloc);
8e19ed76 21745}
4c2df51b 21746
c6a0999f
JB
21747/* Return non-zero if ATTR's value is a section offset --- classes
21748 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21749 You may use DW_UNSND (attr) to retrieve such offsets.
21750
21751 Section 7.5.4, "Attribute Encodings", explains that no attribute
21752 may have a value that belongs to more than one of these classes; it
21753 would be ambiguous if we did, because we use the same forms for all
21754 of them. */
380bca97 21755
3690dd37 21756static int
6e5a29e1 21757attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21758{
21759 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21760 || attr->form == DW_FORM_data8
21761 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21762}
21763
3690dd37
JB
21764/* Return non-zero if ATTR's value falls in the 'constant' class, or
21765 zero otherwise. When this function returns true, you can apply
21766 dwarf2_get_attr_constant_value to it.
21767
21768 However, note that for some attributes you must check
21769 attr_form_is_section_offset before using this test. DW_FORM_data4
21770 and DW_FORM_data8 are members of both the constant class, and of
21771 the classes that contain offsets into other debug sections
21772 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21773 that, if an attribute's can be either a constant or one of the
21774 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21775 taken as section offsets, not constants. */
380bca97 21776
3690dd37 21777static int
6e5a29e1 21778attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21779{
21780 switch (attr->form)
21781 {
21782 case DW_FORM_sdata:
21783 case DW_FORM_udata:
21784 case DW_FORM_data1:
21785 case DW_FORM_data2:
21786 case DW_FORM_data4:
21787 case DW_FORM_data8:
21788 return 1;
21789 default:
21790 return 0;
21791 }
21792}
21793
7771576e
SA
21794
21795/* DW_ADDR is always stored already as sect_offset; despite for the forms
21796 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21797
21798static int
6e5a29e1 21799attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21800{
21801 switch (attr->form)
21802 {
21803 case DW_FORM_ref_addr:
21804 case DW_FORM_ref1:
21805 case DW_FORM_ref2:
21806 case DW_FORM_ref4:
21807 case DW_FORM_ref8:
21808 case DW_FORM_ref_udata:
21809 case DW_FORM_GNU_ref_alt:
21810 return 1;
21811 default:
21812 return 0;
21813 }
21814}
21815
3019eac3
DE
21816/* Return the .debug_loc section to use for CU.
21817 For DWO files use .debug_loc.dwo. */
21818
21819static struct dwarf2_section_info *
21820cu_debug_loc_section (struct dwarf2_cu *cu)
21821{
21822 if (cu->dwo_unit)
21823 return &cu->dwo_unit->dwo_file->sections.loc;
21824 return &dwarf2_per_objfile->loc;
21825}
21826
8cf6f0b1
TT
21827/* A helper function that fills in a dwarf2_loclist_baton. */
21828
21829static void
21830fill_in_loclist_baton (struct dwarf2_cu *cu,
21831 struct dwarf2_loclist_baton *baton,
ff39bb5e 21832 const struct attribute *attr)
8cf6f0b1 21833{
3019eac3
DE
21834 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21835
21836 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21837
21838 baton->per_cu = cu->per_cu;
21839 gdb_assert (baton->per_cu);
21840 /* We don't know how long the location list is, but make sure we
21841 don't run off the edge of the section. */
3019eac3
DE
21842 baton->size = section->size - DW_UNSND (attr);
21843 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21844 baton->base_address = cu->base_address;
f664829e 21845 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21846}
21847
4c2df51b 21848static void
ff39bb5e 21849dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21850 struct dwarf2_cu *cu, int is_block)
4c2df51b 21851{
bb5ed363 21852 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21853 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21854
3690dd37 21855 if (attr_form_is_section_offset (attr)
3019eac3 21856 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21857 the section. If so, fall through to the complaint in the
21858 other branch. */
3019eac3 21859 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21860 {
0d53c4c4 21861 struct dwarf2_loclist_baton *baton;
4c2df51b 21862
bb5ed363 21863 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21864 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21865
8cf6f0b1 21866 fill_in_loclist_baton (cu, baton, attr);
be391dca 21867
d00adf39 21868 if (cu->base_known == 0)
0d53c4c4 21869 complaint (&symfile_complaints,
3e43a32a
MS
21870 _("Location list used without "
21871 "specifying the CU base address."));
4c2df51b 21872
f1e6e072
TT
21873 SYMBOL_ACLASS_INDEX (sym) = (is_block
21874 ? dwarf2_loclist_block_index
21875 : dwarf2_loclist_index);
0d53c4c4
DJ
21876 SYMBOL_LOCATION_BATON (sym) = baton;
21877 }
21878 else
21879 {
21880 struct dwarf2_locexpr_baton *baton;
21881
bb5ed363 21882 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21883 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21884 baton->per_cu = cu->per_cu;
21885 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21886
21887 if (attr_form_is_block (attr))
21888 {
21889 /* Note that we're just copying the block's data pointer
21890 here, not the actual data. We're still pointing into the
6502dd73
DJ
21891 info_buffer for SYM's objfile; right now we never release
21892 that buffer, but when we do clean up properly this may
21893 need to change. */
0d53c4c4
DJ
21894 baton->size = DW_BLOCK (attr)->size;
21895 baton->data = DW_BLOCK (attr)->data;
21896 }
21897 else
21898 {
21899 dwarf2_invalid_attrib_class_complaint ("location description",
21900 SYMBOL_NATURAL_NAME (sym));
21901 baton->size = 0;
0d53c4c4 21902 }
6e70227d 21903
f1e6e072
TT
21904 SYMBOL_ACLASS_INDEX (sym) = (is_block
21905 ? dwarf2_locexpr_block_index
21906 : dwarf2_locexpr_index);
0d53c4c4
DJ
21907 SYMBOL_LOCATION_BATON (sym) = baton;
21908 }
4c2df51b 21909}
6502dd73 21910
9aa1f1e3
TT
21911/* Return the OBJFILE associated with the compilation unit CU. If CU
21912 came from a separate debuginfo file, then the master objfile is
21913 returned. */
ae0d2f24
UW
21914
21915struct objfile *
21916dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21917{
9291a0cd 21918 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21919
21920 /* Return the master objfile, so that we can report and look up the
21921 correct file containing this variable. */
21922 if (objfile->separate_debug_objfile_backlink)
21923 objfile = objfile->separate_debug_objfile_backlink;
21924
21925 return objfile;
21926}
21927
96408a79
SA
21928/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21929 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21930 CU_HEADERP first. */
21931
21932static const struct comp_unit_head *
21933per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21934 struct dwarf2_per_cu_data *per_cu)
21935{
d521ce57 21936 const gdb_byte *info_ptr;
96408a79
SA
21937
21938 if (per_cu->cu)
21939 return &per_cu->cu->header;
21940
8a0459fd 21941 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21942
21943 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21944 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21945
21946 return cu_headerp;
21947}
21948
ae0d2f24
UW
21949/* Return the address size given in the compilation unit header for CU. */
21950
98714339 21951int
ae0d2f24
UW
21952dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21953{
96408a79
SA
21954 struct comp_unit_head cu_header_local;
21955 const struct comp_unit_head *cu_headerp;
c471e790 21956
96408a79
SA
21957 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21958
21959 return cu_headerp->addr_size;
ae0d2f24
UW
21960}
21961
9eae7c52
TT
21962/* Return the offset size given in the compilation unit header for CU. */
21963
21964int
21965dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21966{
96408a79
SA
21967 struct comp_unit_head cu_header_local;
21968 const struct comp_unit_head *cu_headerp;
9c6c53f7 21969
96408a79
SA
21970 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21971
21972 return cu_headerp->offset_size;
21973}
21974
21975/* See its dwarf2loc.h declaration. */
21976
21977int
21978dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21979{
21980 struct comp_unit_head cu_header_local;
21981 const struct comp_unit_head *cu_headerp;
21982
21983 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21984
21985 if (cu_headerp->version == 2)
21986 return cu_headerp->addr_size;
21987 else
21988 return cu_headerp->offset_size;
181cebd4
JK
21989}
21990
9aa1f1e3
TT
21991/* Return the text offset of the CU. The returned offset comes from
21992 this CU's objfile. If this objfile came from a separate debuginfo
21993 file, then the offset may be different from the corresponding
21994 offset in the parent objfile. */
21995
21996CORE_ADDR
21997dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21998{
bb3fa9d0 21999 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22000
22001 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22002}
22003
348e048f
DE
22004/* Locate the .debug_info compilation unit from CU's objfile which contains
22005 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22006
22007static struct dwarf2_per_cu_data *
b64f50a1 22008dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22009 unsigned int offset_in_dwz,
ae038cb0
DJ
22010 struct objfile *objfile)
22011{
22012 struct dwarf2_per_cu_data *this_cu;
22013 int low, high;
36586728 22014 const sect_offset *cu_off;
ae038cb0 22015
ae038cb0
DJ
22016 low = 0;
22017 high = dwarf2_per_objfile->n_comp_units - 1;
22018 while (high > low)
22019 {
36586728 22020 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22021 int mid = low + (high - low) / 2;
9a619af0 22022
36586728
TT
22023 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22024 cu_off = &mid_cu->offset;
22025 if (mid_cu->is_dwz > offset_in_dwz
22026 || (mid_cu->is_dwz == offset_in_dwz
22027 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22028 high = mid;
22029 else
22030 low = mid + 1;
22031 }
22032 gdb_assert (low == high);
36586728
TT
22033 this_cu = dwarf2_per_objfile->all_comp_units[low];
22034 cu_off = &this_cu->offset;
22035 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22036 {
36586728 22037 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22038 error (_("Dwarf Error: could not find partial DIE containing "
22039 "offset 0x%lx [in module %s]"),
b64f50a1 22040 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22041
b64f50a1
JK
22042 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22043 <= offset.sect_off);
ae038cb0
DJ
22044 return dwarf2_per_objfile->all_comp_units[low-1];
22045 }
22046 else
22047 {
22048 this_cu = dwarf2_per_objfile->all_comp_units[low];
22049 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22050 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22051 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22052 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22053 return this_cu;
22054 }
22055}
22056
23745b47 22057/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22058
9816fde3 22059static void
23745b47 22060init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22061{
9816fde3 22062 memset (cu, 0, sizeof (*cu));
23745b47
DE
22063 per_cu->cu = cu;
22064 cu->per_cu = per_cu;
22065 cu->objfile = per_cu->objfile;
93311388 22066 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22067}
22068
22069/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22070
22071static void
95554aad
TT
22072prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22073 enum language pretend_language)
9816fde3
JK
22074{
22075 struct attribute *attr;
22076
22077 /* Set the language we're debugging. */
22078 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22079 if (attr)
22080 set_cu_language (DW_UNSND (attr), cu);
22081 else
9cded63f 22082 {
95554aad 22083 cu->language = pretend_language;
9cded63f
TT
22084 cu->language_defn = language_def (cu->language);
22085 }
dee91e82
DE
22086
22087 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
22088 if (attr)
22089 cu->producer = DW_STRING (attr);
93311388
DE
22090}
22091
ae038cb0
DJ
22092/* Release one cached compilation unit, CU. We unlink it from the tree
22093 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22094 the caller is responsible for that.
22095 NOTE: DATA is a void * because this function is also used as a
22096 cleanup routine. */
ae038cb0
DJ
22097
22098static void
68dc6402 22099free_heap_comp_unit (void *data)
ae038cb0
DJ
22100{
22101 struct dwarf2_cu *cu = data;
22102
23745b47
DE
22103 gdb_assert (cu->per_cu != NULL);
22104 cu->per_cu->cu = NULL;
ae038cb0
DJ
22105 cu->per_cu = NULL;
22106
22107 obstack_free (&cu->comp_unit_obstack, NULL);
22108
22109 xfree (cu);
22110}
22111
72bf9492 22112/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22113 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22114 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22115
22116static void
22117free_stack_comp_unit (void *data)
22118{
22119 struct dwarf2_cu *cu = data;
22120
23745b47
DE
22121 gdb_assert (cu->per_cu != NULL);
22122 cu->per_cu->cu = NULL;
22123 cu->per_cu = NULL;
22124
72bf9492
DJ
22125 obstack_free (&cu->comp_unit_obstack, NULL);
22126 cu->partial_dies = NULL;
ae038cb0
DJ
22127}
22128
22129/* Free all cached compilation units. */
22130
22131static void
22132free_cached_comp_units (void *data)
22133{
22134 struct dwarf2_per_cu_data *per_cu, **last_chain;
22135
22136 per_cu = dwarf2_per_objfile->read_in_chain;
22137 last_chain = &dwarf2_per_objfile->read_in_chain;
22138 while (per_cu != NULL)
22139 {
22140 struct dwarf2_per_cu_data *next_cu;
22141
22142 next_cu = per_cu->cu->read_in_chain;
22143
68dc6402 22144 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22145 *last_chain = next_cu;
22146
22147 per_cu = next_cu;
22148 }
22149}
22150
22151/* Increase the age counter on each cached compilation unit, and free
22152 any that are too old. */
22153
22154static void
22155age_cached_comp_units (void)
22156{
22157 struct dwarf2_per_cu_data *per_cu, **last_chain;
22158
22159 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22160 per_cu = dwarf2_per_objfile->read_in_chain;
22161 while (per_cu != NULL)
22162 {
22163 per_cu->cu->last_used ++;
b4f54984 22164 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22165 dwarf2_mark (per_cu->cu);
22166 per_cu = per_cu->cu->read_in_chain;
22167 }
22168
22169 per_cu = dwarf2_per_objfile->read_in_chain;
22170 last_chain = &dwarf2_per_objfile->read_in_chain;
22171 while (per_cu != NULL)
22172 {
22173 struct dwarf2_per_cu_data *next_cu;
22174
22175 next_cu = per_cu->cu->read_in_chain;
22176
22177 if (!per_cu->cu->mark)
22178 {
68dc6402 22179 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22180 *last_chain = next_cu;
22181 }
22182 else
22183 last_chain = &per_cu->cu->read_in_chain;
22184
22185 per_cu = next_cu;
22186 }
22187}
22188
22189/* Remove a single compilation unit from the cache. */
22190
22191static void
dee91e82 22192free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22193{
22194 struct dwarf2_per_cu_data *per_cu, **last_chain;
22195
22196 per_cu = dwarf2_per_objfile->read_in_chain;
22197 last_chain = &dwarf2_per_objfile->read_in_chain;
22198 while (per_cu != NULL)
22199 {
22200 struct dwarf2_per_cu_data *next_cu;
22201
22202 next_cu = per_cu->cu->read_in_chain;
22203
dee91e82 22204 if (per_cu == target_per_cu)
ae038cb0 22205 {
68dc6402 22206 free_heap_comp_unit (per_cu->cu);
dee91e82 22207 per_cu->cu = NULL;
ae038cb0
DJ
22208 *last_chain = next_cu;
22209 break;
22210 }
22211 else
22212 last_chain = &per_cu->cu->read_in_chain;
22213
22214 per_cu = next_cu;
22215 }
22216}
22217
fe3e1990
DJ
22218/* Release all extra memory associated with OBJFILE. */
22219
22220void
22221dwarf2_free_objfile (struct objfile *objfile)
22222{
22223 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22224
22225 if (dwarf2_per_objfile == NULL)
22226 return;
22227
22228 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22229 free_cached_comp_units (NULL);
22230
7b9f3c50
DE
22231 if (dwarf2_per_objfile->quick_file_names_table)
22232 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22233
527f3840
JK
22234 if (dwarf2_per_objfile->line_header_hash)
22235 htab_delete (dwarf2_per_objfile->line_header_hash);
22236
fe3e1990
DJ
22237 /* Everything else should be on the objfile obstack. */
22238}
22239
dee91e82
DE
22240/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22241 We store these in a hash table separate from the DIEs, and preserve them
22242 when the DIEs are flushed out of cache.
22243
22244 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22245 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22246 or the type may come from a DWO file. Furthermore, while it's more logical
22247 to use per_cu->section+offset, with Fission the section with the data is in
22248 the DWO file but we don't know that section at the point we need it.
22249 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22250 because we can enter the lookup routine, get_die_type_at_offset, from
22251 outside this file, and thus won't necessarily have PER_CU->cu.
22252 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22253
dee91e82 22254struct dwarf2_per_cu_offset_and_type
1c379e20 22255{
dee91e82 22256 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22257 sect_offset offset;
1c379e20
DJ
22258 struct type *type;
22259};
22260
dee91e82 22261/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22262
22263static hashval_t
dee91e82 22264per_cu_offset_and_type_hash (const void *item)
1c379e20 22265{
dee91e82 22266 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 22267
dee91e82 22268 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22269}
22270
dee91e82 22271/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22272
22273static int
dee91e82 22274per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22275{
dee91e82
DE
22276 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22277 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 22278
dee91e82
DE
22279 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22280 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22281}
22282
22283/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22284 table if necessary. For convenience, return TYPE.
22285
22286 The DIEs reading must have careful ordering to:
22287 * Not cause infite loops trying to read in DIEs as a prerequisite for
22288 reading current DIE.
22289 * Not trying to dereference contents of still incompletely read in types
22290 while reading in other DIEs.
22291 * Enable referencing still incompletely read in types just by a pointer to
22292 the type without accessing its fields.
22293
22294 Therefore caller should follow these rules:
22295 * Try to fetch any prerequisite types we may need to build this DIE type
22296 before building the type and calling set_die_type.
e71ec853 22297 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22298 possible before fetching more types to complete the current type.
22299 * Make the type as complete as possible before fetching more types. */
1c379e20 22300
f792889a 22301static struct type *
1c379e20
DJ
22302set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22303{
dee91e82 22304 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22305 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22306 struct attribute *attr;
22307 struct dynamic_prop prop;
1c379e20 22308
b4ba55a1
JB
22309 /* For Ada types, make sure that the gnat-specific data is always
22310 initialized (if not already set). There are a few types where
22311 we should not be doing so, because the type-specific area is
22312 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22313 where the type-specific area is used to store the floatformat).
22314 But this is not a problem, because the gnat-specific information
22315 is actually not needed for these types. */
22316 if (need_gnat_info (cu)
22317 && TYPE_CODE (type) != TYPE_CODE_FUNC
22318 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22319 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22320 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22321 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22322 && !HAVE_GNAT_AUX_INFO (type))
22323 INIT_GNAT_SPECIFIC (type);
22324
3cdcd0ce
JB
22325 /* Read DW_AT_data_location and set in type. */
22326 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22327 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22328 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22329
dee91e82 22330 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22331 {
dee91e82
DE
22332 dwarf2_per_objfile->die_type_hash =
22333 htab_create_alloc_ex (127,
22334 per_cu_offset_and_type_hash,
22335 per_cu_offset_and_type_eq,
22336 NULL,
22337 &objfile->objfile_obstack,
22338 hashtab_obstack_allocate,
22339 dummy_obstack_deallocate);
f792889a 22340 }
1c379e20 22341
dee91e82 22342 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22343 ofs.offset = die->offset;
22344 ofs.type = type;
dee91e82
DE
22345 slot = (struct dwarf2_per_cu_offset_and_type **)
22346 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22347 if (*slot)
22348 complaint (&symfile_complaints,
22349 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22350 die->offset.sect_off);
673bfd45 22351 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 22352 **slot = ofs;
f792889a 22353 return type;
1c379e20
DJ
22354}
22355
02142a6c
DE
22356/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22357 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22358
22359static struct type *
b64f50a1 22360get_die_type_at_offset (sect_offset offset,
673bfd45 22361 struct dwarf2_per_cu_data *per_cu)
1c379e20 22362{
dee91e82 22363 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22364
dee91e82 22365 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22366 return NULL;
1c379e20 22367
dee91e82 22368 ofs.per_cu = per_cu;
673bfd45 22369 ofs.offset = offset;
dee91e82 22370 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22371 if (slot)
22372 return slot->type;
22373 else
22374 return NULL;
22375}
22376
02142a6c 22377/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22378 or return NULL if DIE does not have a saved type. */
22379
22380static struct type *
22381get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22382{
22383 return get_die_type_at_offset (die->offset, cu->per_cu);
22384}
22385
10b3939b
DJ
22386/* Add a dependence relationship from CU to REF_PER_CU. */
22387
22388static void
22389dwarf2_add_dependence (struct dwarf2_cu *cu,
22390 struct dwarf2_per_cu_data *ref_per_cu)
22391{
22392 void **slot;
22393
22394 if (cu->dependencies == NULL)
22395 cu->dependencies
22396 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22397 NULL, &cu->comp_unit_obstack,
22398 hashtab_obstack_allocate,
22399 dummy_obstack_deallocate);
22400
22401 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22402 if (*slot == NULL)
22403 *slot = ref_per_cu;
22404}
1c379e20 22405
f504f079
DE
22406/* Subroutine of dwarf2_mark to pass to htab_traverse.
22407 Set the mark field in every compilation unit in the
ae038cb0
DJ
22408 cache that we must keep because we are keeping CU. */
22409
10b3939b
DJ
22410static int
22411dwarf2_mark_helper (void **slot, void *data)
22412{
22413 struct dwarf2_per_cu_data *per_cu;
22414
22415 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22416
22417 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22418 reading of the chain. As such dependencies remain valid it is not much
22419 useful to track and undo them during QUIT cleanups. */
22420 if (per_cu->cu == NULL)
22421 return 1;
22422
10b3939b
DJ
22423 if (per_cu->cu->mark)
22424 return 1;
22425 per_cu->cu->mark = 1;
22426
22427 if (per_cu->cu->dependencies != NULL)
22428 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22429
22430 return 1;
22431}
22432
f504f079
DE
22433/* Set the mark field in CU and in every other compilation unit in the
22434 cache that we must keep because we are keeping CU. */
22435
ae038cb0
DJ
22436static void
22437dwarf2_mark (struct dwarf2_cu *cu)
22438{
22439 if (cu->mark)
22440 return;
22441 cu->mark = 1;
10b3939b
DJ
22442 if (cu->dependencies != NULL)
22443 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22444}
22445
22446static void
22447dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22448{
22449 while (per_cu)
22450 {
22451 per_cu->cu->mark = 0;
22452 per_cu = per_cu->cu->read_in_chain;
22453 }
72bf9492
DJ
22454}
22455
72bf9492
DJ
22456/* Trivial hash function for partial_die_info: the hash value of a DIE
22457 is its offset in .debug_info for this objfile. */
22458
22459static hashval_t
22460partial_die_hash (const void *item)
22461{
22462 const struct partial_die_info *part_die = item;
9a619af0 22463
b64f50a1 22464 return part_die->offset.sect_off;
72bf9492
DJ
22465}
22466
22467/* Trivial comparison function for partial_die_info structures: two DIEs
22468 are equal if they have the same offset. */
22469
22470static int
22471partial_die_eq (const void *item_lhs, const void *item_rhs)
22472{
22473 const struct partial_die_info *part_die_lhs = item_lhs;
22474 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22475
b64f50a1 22476 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22477}
22478
b4f54984
DE
22479static struct cmd_list_element *set_dwarf_cmdlist;
22480static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22481
22482static void
b4f54984 22483set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22484{
b4f54984 22485 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22486 gdb_stdout);
ae038cb0
DJ
22487}
22488
22489static void
b4f54984 22490show_dwarf_cmd (char *args, int from_tty)
6e70227d 22491{
b4f54984 22492 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22493}
22494
4bf44c1c 22495/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22496
22497static void
c1bd65d0 22498dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22499{
22500 struct dwarf2_per_objfile *data = d;
8b70b953 22501 int ix;
8b70b953 22502
626f2d1c
TT
22503 /* Make sure we don't accidentally use dwarf2_per_objfile while
22504 cleaning up. */
22505 dwarf2_per_objfile = NULL;
22506
59b0c7c1
JB
22507 for (ix = 0; ix < data->n_comp_units; ++ix)
22508 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22509
59b0c7c1 22510 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22511 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22512 data->all_type_units[ix]->per_cu.imported_symtabs);
22513 xfree (data->all_type_units);
95554aad 22514
8b70b953 22515 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22516
22517 if (data->dwo_files)
22518 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22519 if (data->dwp_file)
22520 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22521
22522 if (data->dwz_file && data->dwz_file->dwz_bfd)
22523 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22524}
22525
22526\f
ae2de4f8 22527/* The "save gdb-index" command. */
9291a0cd
TT
22528
22529/* The contents of the hash table we create when building the string
22530 table. */
22531struct strtab_entry
22532{
22533 offset_type offset;
22534 const char *str;
22535};
22536
559a7a62
JK
22537/* Hash function for a strtab_entry.
22538
22539 Function is used only during write_hash_table so no index format backward
22540 compatibility is needed. */
b89be57b 22541
9291a0cd
TT
22542static hashval_t
22543hash_strtab_entry (const void *e)
22544{
22545 const struct strtab_entry *entry = e;
559a7a62 22546 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22547}
22548
22549/* Equality function for a strtab_entry. */
b89be57b 22550
9291a0cd
TT
22551static int
22552eq_strtab_entry (const void *a, const void *b)
22553{
22554 const struct strtab_entry *ea = a;
22555 const struct strtab_entry *eb = b;
22556 return !strcmp (ea->str, eb->str);
22557}
22558
22559/* Create a strtab_entry hash table. */
b89be57b 22560
9291a0cd
TT
22561static htab_t
22562create_strtab (void)
22563{
22564 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22565 xfree, xcalloc, xfree);
22566}
22567
22568/* Add a string to the constant pool. Return the string's offset in
22569 host order. */
b89be57b 22570
9291a0cd
TT
22571static offset_type
22572add_string (htab_t table, struct obstack *cpool, const char *str)
22573{
22574 void **slot;
22575 struct strtab_entry entry;
22576 struct strtab_entry *result;
22577
22578 entry.str = str;
22579 slot = htab_find_slot (table, &entry, INSERT);
22580 if (*slot)
22581 result = *slot;
22582 else
22583 {
22584 result = XNEW (struct strtab_entry);
22585 result->offset = obstack_object_size (cpool);
22586 result->str = str;
22587 obstack_grow_str0 (cpool, str);
22588 *slot = result;
22589 }
22590 return result->offset;
22591}
22592
22593/* An entry in the symbol table. */
22594struct symtab_index_entry
22595{
22596 /* The name of the symbol. */
22597 const char *name;
22598 /* The offset of the name in the constant pool. */
22599 offset_type index_offset;
22600 /* A sorted vector of the indices of all the CUs that hold an object
22601 of this name. */
22602 VEC (offset_type) *cu_indices;
22603};
22604
22605/* The symbol table. This is a power-of-2-sized hash table. */
22606struct mapped_symtab
22607{
22608 offset_type n_elements;
22609 offset_type size;
22610 struct symtab_index_entry **data;
22611};
22612
22613/* Hash function for a symtab_index_entry. */
b89be57b 22614
9291a0cd
TT
22615static hashval_t
22616hash_symtab_entry (const void *e)
22617{
22618 const struct symtab_index_entry *entry = e;
22619 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22620 sizeof (offset_type) * VEC_length (offset_type,
22621 entry->cu_indices),
22622 0);
22623}
22624
22625/* Equality function for a symtab_index_entry. */
b89be57b 22626
9291a0cd
TT
22627static int
22628eq_symtab_entry (const void *a, const void *b)
22629{
22630 const struct symtab_index_entry *ea = a;
22631 const struct symtab_index_entry *eb = b;
22632 int len = VEC_length (offset_type, ea->cu_indices);
22633 if (len != VEC_length (offset_type, eb->cu_indices))
22634 return 0;
22635 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22636 VEC_address (offset_type, eb->cu_indices),
22637 sizeof (offset_type) * len);
22638}
22639
22640/* Destroy a symtab_index_entry. */
b89be57b 22641
9291a0cd
TT
22642static void
22643delete_symtab_entry (void *p)
22644{
22645 struct symtab_index_entry *entry = p;
22646 VEC_free (offset_type, entry->cu_indices);
22647 xfree (entry);
22648}
22649
22650/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22651
9291a0cd 22652static htab_t
3876f04e 22653create_symbol_hash_table (void)
9291a0cd
TT
22654{
22655 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22656 delete_symtab_entry, xcalloc, xfree);
22657}
22658
22659/* Create a new mapped symtab object. */
b89be57b 22660
9291a0cd
TT
22661static struct mapped_symtab *
22662create_mapped_symtab (void)
22663{
22664 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22665 symtab->n_elements = 0;
22666 symtab->size = 1024;
22667 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22668 return symtab;
22669}
22670
22671/* Destroy a mapped_symtab. */
b89be57b 22672
9291a0cd
TT
22673static void
22674cleanup_mapped_symtab (void *p)
22675{
22676 struct mapped_symtab *symtab = p;
22677 /* The contents of the array are freed when the other hash table is
22678 destroyed. */
22679 xfree (symtab->data);
22680 xfree (symtab);
22681}
22682
22683/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22684 the slot.
22685
22686 Function is used only during write_hash_table so no index format backward
22687 compatibility is needed. */
b89be57b 22688
9291a0cd
TT
22689static struct symtab_index_entry **
22690find_slot (struct mapped_symtab *symtab, const char *name)
22691{
559a7a62 22692 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22693
22694 index = hash & (symtab->size - 1);
22695 step = ((hash * 17) & (symtab->size - 1)) | 1;
22696
22697 for (;;)
22698 {
22699 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22700 return &symtab->data[index];
22701 index = (index + step) & (symtab->size - 1);
22702 }
22703}
22704
22705/* Expand SYMTAB's hash table. */
b89be57b 22706
9291a0cd
TT
22707static void
22708hash_expand (struct mapped_symtab *symtab)
22709{
22710 offset_type old_size = symtab->size;
22711 offset_type i;
22712 struct symtab_index_entry **old_entries = symtab->data;
22713
22714 symtab->size *= 2;
22715 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22716
22717 for (i = 0; i < old_size; ++i)
22718 {
22719 if (old_entries[i])
22720 {
22721 struct symtab_index_entry **slot = find_slot (symtab,
22722 old_entries[i]->name);
22723 *slot = old_entries[i];
22724 }
22725 }
22726
22727 xfree (old_entries);
22728}
22729
156942c7
DE
22730/* Add an entry to SYMTAB. NAME is the name of the symbol.
22731 CU_INDEX is the index of the CU in which the symbol appears.
22732 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22733
9291a0cd
TT
22734static void
22735add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22736 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22737 offset_type cu_index)
22738{
22739 struct symtab_index_entry **slot;
156942c7 22740 offset_type cu_index_and_attrs;
9291a0cd
TT
22741
22742 ++symtab->n_elements;
22743 if (4 * symtab->n_elements / 3 >= symtab->size)
22744 hash_expand (symtab);
22745
22746 slot = find_slot (symtab, name);
22747 if (!*slot)
22748 {
22749 *slot = XNEW (struct symtab_index_entry);
22750 (*slot)->name = name;
156942c7 22751 /* index_offset is set later. */
9291a0cd
TT
22752 (*slot)->cu_indices = NULL;
22753 }
156942c7
DE
22754
22755 cu_index_and_attrs = 0;
22756 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22757 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22758 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22759
22760 /* We don't want to record an index value twice as we want to avoid the
22761 duplication.
22762 We process all global symbols and then all static symbols
22763 (which would allow us to avoid the duplication by only having to check
22764 the last entry pushed), but a symbol could have multiple kinds in one CU.
22765 To keep things simple we don't worry about the duplication here and
22766 sort and uniqufy the list after we've processed all symbols. */
22767 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22768}
22769
22770/* qsort helper routine for uniquify_cu_indices. */
22771
22772static int
22773offset_type_compare (const void *ap, const void *bp)
22774{
22775 offset_type a = *(offset_type *) ap;
22776 offset_type b = *(offset_type *) bp;
22777
22778 return (a > b) - (b > a);
22779}
22780
22781/* Sort and remove duplicates of all symbols' cu_indices lists. */
22782
22783static void
22784uniquify_cu_indices (struct mapped_symtab *symtab)
22785{
22786 int i;
22787
22788 for (i = 0; i < symtab->size; ++i)
22789 {
22790 struct symtab_index_entry *entry = symtab->data[i];
22791
22792 if (entry
22793 && entry->cu_indices != NULL)
22794 {
22795 unsigned int next_to_insert, next_to_check;
22796 offset_type last_value;
22797
22798 qsort (VEC_address (offset_type, entry->cu_indices),
22799 VEC_length (offset_type, entry->cu_indices),
22800 sizeof (offset_type), offset_type_compare);
22801
22802 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22803 next_to_insert = 1;
22804 for (next_to_check = 1;
22805 next_to_check < VEC_length (offset_type, entry->cu_indices);
22806 ++next_to_check)
22807 {
22808 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22809 != last_value)
22810 {
22811 last_value = VEC_index (offset_type, entry->cu_indices,
22812 next_to_check);
22813 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22814 last_value);
22815 ++next_to_insert;
22816 }
22817 }
22818 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22819 }
22820 }
9291a0cd
TT
22821}
22822
22823/* Add a vector of indices to the constant pool. */
b89be57b 22824
9291a0cd 22825static offset_type
3876f04e 22826add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22827 struct symtab_index_entry *entry)
22828{
22829 void **slot;
22830
3876f04e 22831 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22832 if (!*slot)
22833 {
22834 offset_type len = VEC_length (offset_type, entry->cu_indices);
22835 offset_type val = MAYBE_SWAP (len);
22836 offset_type iter;
22837 int i;
22838
22839 *slot = entry;
22840 entry->index_offset = obstack_object_size (cpool);
22841
22842 obstack_grow (cpool, &val, sizeof (val));
22843 for (i = 0;
22844 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22845 ++i)
22846 {
22847 val = MAYBE_SWAP (iter);
22848 obstack_grow (cpool, &val, sizeof (val));
22849 }
22850 }
22851 else
22852 {
22853 struct symtab_index_entry *old_entry = *slot;
22854 entry->index_offset = old_entry->index_offset;
22855 entry = old_entry;
22856 }
22857 return entry->index_offset;
22858}
22859
22860/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22861 constant pool entries going into the obstack CPOOL. */
b89be57b 22862
9291a0cd
TT
22863static void
22864write_hash_table (struct mapped_symtab *symtab,
22865 struct obstack *output, struct obstack *cpool)
22866{
22867 offset_type i;
3876f04e 22868 htab_t symbol_hash_table;
9291a0cd
TT
22869 htab_t str_table;
22870
3876f04e 22871 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22872 str_table = create_strtab ();
3876f04e 22873
9291a0cd
TT
22874 /* We add all the index vectors to the constant pool first, to
22875 ensure alignment is ok. */
22876 for (i = 0; i < symtab->size; ++i)
22877 {
22878 if (symtab->data[i])
3876f04e 22879 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22880 }
22881
22882 /* Now write out the hash table. */
22883 for (i = 0; i < symtab->size; ++i)
22884 {
22885 offset_type str_off, vec_off;
22886
22887 if (symtab->data[i])
22888 {
22889 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22890 vec_off = symtab->data[i]->index_offset;
22891 }
22892 else
22893 {
22894 /* While 0 is a valid constant pool index, it is not valid
22895 to have 0 for both offsets. */
22896 str_off = 0;
22897 vec_off = 0;
22898 }
22899
22900 str_off = MAYBE_SWAP (str_off);
22901 vec_off = MAYBE_SWAP (vec_off);
22902
22903 obstack_grow (output, &str_off, sizeof (str_off));
22904 obstack_grow (output, &vec_off, sizeof (vec_off));
22905 }
22906
22907 htab_delete (str_table);
3876f04e 22908 htab_delete (symbol_hash_table);
9291a0cd
TT
22909}
22910
0a5429f6
DE
22911/* Struct to map psymtab to CU index in the index file. */
22912struct psymtab_cu_index_map
22913{
22914 struct partial_symtab *psymtab;
22915 unsigned int cu_index;
22916};
22917
22918static hashval_t
22919hash_psymtab_cu_index (const void *item)
22920{
22921 const struct psymtab_cu_index_map *map = item;
22922
22923 return htab_hash_pointer (map->psymtab);
22924}
22925
22926static int
22927eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22928{
22929 const struct psymtab_cu_index_map *lhs = item_lhs;
22930 const struct psymtab_cu_index_map *rhs = item_rhs;
22931
22932 return lhs->psymtab == rhs->psymtab;
22933}
22934
22935/* Helper struct for building the address table. */
22936struct addrmap_index_data
22937{
22938 struct objfile *objfile;
22939 struct obstack *addr_obstack;
22940 htab_t cu_index_htab;
22941
22942 /* Non-zero if the previous_* fields are valid.
22943 We can't write an entry until we see the next entry (since it is only then
22944 that we know the end of the entry). */
22945 int previous_valid;
22946 /* Index of the CU in the table of all CUs in the index file. */
22947 unsigned int previous_cu_index;
0963b4bd 22948 /* Start address of the CU. */
0a5429f6
DE
22949 CORE_ADDR previous_cu_start;
22950};
22951
22952/* Write an address entry to OBSTACK. */
b89be57b 22953
9291a0cd 22954static void
0a5429f6
DE
22955add_address_entry (struct objfile *objfile, struct obstack *obstack,
22956 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22957{
0a5429f6 22958 offset_type cu_index_to_write;
948f8e3d 22959 gdb_byte addr[8];
9291a0cd
TT
22960 CORE_ADDR baseaddr;
22961
22962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22963
0a5429f6
DE
22964 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22965 obstack_grow (obstack, addr, 8);
22966 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22967 obstack_grow (obstack, addr, 8);
22968 cu_index_to_write = MAYBE_SWAP (cu_index);
22969 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22970}
22971
22972/* Worker function for traversing an addrmap to build the address table. */
22973
22974static int
22975add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22976{
22977 struct addrmap_index_data *data = datap;
22978 struct partial_symtab *pst = obj;
0a5429f6
DE
22979
22980 if (data->previous_valid)
22981 add_address_entry (data->objfile, data->addr_obstack,
22982 data->previous_cu_start, start_addr,
22983 data->previous_cu_index);
22984
22985 data->previous_cu_start = start_addr;
22986 if (pst != NULL)
22987 {
22988 struct psymtab_cu_index_map find_map, *map;
22989 find_map.psymtab = pst;
22990 map = htab_find (data->cu_index_htab, &find_map);
22991 gdb_assert (map != NULL);
22992 data->previous_cu_index = map->cu_index;
22993 data->previous_valid = 1;
22994 }
22995 else
22996 data->previous_valid = 0;
22997
22998 return 0;
22999}
23000
23001/* Write OBJFILE's address map to OBSTACK.
23002 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23003 in the index file. */
23004
23005static void
23006write_address_map (struct objfile *objfile, struct obstack *obstack,
23007 htab_t cu_index_htab)
23008{
23009 struct addrmap_index_data addrmap_index_data;
23010
23011 /* When writing the address table, we have to cope with the fact that
23012 the addrmap iterator only provides the start of a region; we have to
23013 wait until the next invocation to get the start of the next region. */
23014
23015 addrmap_index_data.objfile = objfile;
23016 addrmap_index_data.addr_obstack = obstack;
23017 addrmap_index_data.cu_index_htab = cu_index_htab;
23018 addrmap_index_data.previous_valid = 0;
23019
23020 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23021 &addrmap_index_data);
23022
23023 /* It's highly unlikely the last entry (end address = 0xff...ff)
23024 is valid, but we should still handle it.
23025 The end address is recorded as the start of the next region, but that
23026 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23027 anyway. */
23028 if (addrmap_index_data.previous_valid)
23029 add_address_entry (objfile, obstack,
23030 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23031 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23032}
23033
156942c7
DE
23034/* Return the symbol kind of PSYM. */
23035
23036static gdb_index_symbol_kind
23037symbol_kind (struct partial_symbol *psym)
23038{
23039 domain_enum domain = PSYMBOL_DOMAIN (psym);
23040 enum address_class aclass = PSYMBOL_CLASS (psym);
23041
23042 switch (domain)
23043 {
23044 case VAR_DOMAIN:
23045 switch (aclass)
23046 {
23047 case LOC_BLOCK:
23048 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23049 case LOC_TYPEDEF:
23050 return GDB_INDEX_SYMBOL_KIND_TYPE;
23051 case LOC_COMPUTED:
23052 case LOC_CONST_BYTES:
23053 case LOC_OPTIMIZED_OUT:
23054 case LOC_STATIC:
23055 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23056 case LOC_CONST:
23057 /* Note: It's currently impossible to recognize psyms as enum values
23058 short of reading the type info. For now punt. */
23059 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23060 default:
23061 /* There are other LOC_FOO values that one might want to classify
23062 as variables, but dwarf2read.c doesn't currently use them. */
23063 return GDB_INDEX_SYMBOL_KIND_OTHER;
23064 }
23065 case STRUCT_DOMAIN:
23066 return GDB_INDEX_SYMBOL_KIND_TYPE;
23067 default:
23068 return GDB_INDEX_SYMBOL_KIND_OTHER;
23069 }
23070}
23071
9291a0cd 23072/* Add a list of partial symbols to SYMTAB. */
b89be57b 23073
9291a0cd
TT
23074static void
23075write_psymbols (struct mapped_symtab *symtab,
987d643c 23076 htab_t psyms_seen,
9291a0cd
TT
23077 struct partial_symbol **psymp,
23078 int count,
987d643c
TT
23079 offset_type cu_index,
23080 int is_static)
9291a0cd
TT
23081{
23082 for (; count-- > 0; ++psymp)
23083 {
156942c7
DE
23084 struct partial_symbol *psym = *psymp;
23085 void **slot;
987d643c 23086
156942c7 23087 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23088 error (_("Ada is not currently supported by the index"));
987d643c 23089
987d643c 23090 /* Only add a given psymbol once. */
156942c7 23091 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23092 if (!*slot)
23093 {
156942c7
DE
23094 gdb_index_symbol_kind kind = symbol_kind (psym);
23095
23096 *slot = psym;
23097 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23098 is_static, kind, cu_index);
987d643c 23099 }
9291a0cd
TT
23100 }
23101}
23102
23103/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23104 exception if there is an error. */
b89be57b 23105
9291a0cd
TT
23106static void
23107write_obstack (FILE *file, struct obstack *obstack)
23108{
23109 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23110 file)
23111 != obstack_object_size (obstack))
23112 error (_("couldn't data write to file"));
23113}
23114
23115/* Unlink a file if the argument is not NULL. */
b89be57b 23116
9291a0cd
TT
23117static void
23118unlink_if_set (void *p)
23119{
23120 char **filename = p;
23121 if (*filename)
23122 unlink (*filename);
23123}
23124
1fd400ff
TT
23125/* A helper struct used when iterating over debug_types. */
23126struct signatured_type_index_data
23127{
23128 struct objfile *objfile;
23129 struct mapped_symtab *symtab;
23130 struct obstack *types_list;
987d643c 23131 htab_t psyms_seen;
1fd400ff
TT
23132 int cu_index;
23133};
23134
23135/* A helper function that writes a single signatured_type to an
23136 obstack. */
b89be57b 23137
1fd400ff
TT
23138static int
23139write_one_signatured_type (void **slot, void *d)
23140{
23141 struct signatured_type_index_data *info = d;
23142 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23143 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23144 gdb_byte val[8];
23145
23146 write_psymbols (info->symtab,
987d643c 23147 info->psyms_seen,
3e43a32a
MS
23148 info->objfile->global_psymbols.list
23149 + psymtab->globals_offset,
987d643c
TT
23150 psymtab->n_global_syms, info->cu_index,
23151 0);
1fd400ff 23152 write_psymbols (info->symtab,
987d643c 23153 info->psyms_seen,
3e43a32a
MS
23154 info->objfile->static_psymbols.list
23155 + psymtab->statics_offset,
987d643c
TT
23156 psymtab->n_static_syms, info->cu_index,
23157 1);
1fd400ff 23158
b64f50a1
JK
23159 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23160 entry->per_cu.offset.sect_off);
1fd400ff 23161 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23162 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23163 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23164 obstack_grow (info->types_list, val, 8);
23165 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23166 obstack_grow (info->types_list, val, 8);
23167
23168 ++info->cu_index;
23169
23170 return 1;
23171}
23172
95554aad
TT
23173/* Recurse into all "included" dependencies and write their symbols as
23174 if they appeared in this psymtab. */
23175
23176static void
23177recursively_write_psymbols (struct objfile *objfile,
23178 struct partial_symtab *psymtab,
23179 struct mapped_symtab *symtab,
23180 htab_t psyms_seen,
23181 offset_type cu_index)
23182{
23183 int i;
23184
23185 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23186 if (psymtab->dependencies[i]->user != NULL)
23187 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23188 symtab, psyms_seen, cu_index);
23189
23190 write_psymbols (symtab,
23191 psyms_seen,
23192 objfile->global_psymbols.list + psymtab->globals_offset,
23193 psymtab->n_global_syms, cu_index,
23194 0);
23195 write_psymbols (symtab,
23196 psyms_seen,
23197 objfile->static_psymbols.list + psymtab->statics_offset,
23198 psymtab->n_static_syms, cu_index,
23199 1);
23200}
23201
9291a0cd 23202/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23203
9291a0cd
TT
23204static void
23205write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23206{
23207 struct cleanup *cleanup;
23208 char *filename, *cleanup_filename;
1fd400ff
TT
23209 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23210 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23211 int i;
23212 FILE *out_file;
23213 struct mapped_symtab *symtab;
23214 offset_type val, size_of_contents, total_len;
23215 struct stat st;
987d643c 23216 htab_t psyms_seen;
0a5429f6
DE
23217 htab_t cu_index_htab;
23218 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23219
9291a0cd
TT
23220 if (dwarf2_per_objfile->using_index)
23221 error (_("Cannot use an index to create the index"));
23222
8b70b953
TT
23223 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23224 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23225
260b681b
DE
23226 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23227 return;
23228
4262abfb
JK
23229 if (stat (objfile_name (objfile), &st) < 0)
23230 perror_with_name (objfile_name (objfile));
9291a0cd 23231
4262abfb 23232 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23233 INDEX_SUFFIX, (char *) NULL);
23234 cleanup = make_cleanup (xfree, filename);
23235
614c279d 23236 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23237 if (!out_file)
23238 error (_("Can't open `%s' for writing"), filename);
23239
23240 cleanup_filename = filename;
23241 make_cleanup (unlink_if_set, &cleanup_filename);
23242
23243 symtab = create_mapped_symtab ();
23244 make_cleanup (cleanup_mapped_symtab, symtab);
23245
23246 obstack_init (&addr_obstack);
23247 make_cleanup_obstack_free (&addr_obstack);
23248
23249 obstack_init (&cu_list);
23250 make_cleanup_obstack_free (&cu_list);
23251
1fd400ff
TT
23252 obstack_init (&types_cu_list);
23253 make_cleanup_obstack_free (&types_cu_list);
23254
987d643c
TT
23255 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23256 NULL, xcalloc, xfree);
96408a79 23257 make_cleanup_htab_delete (psyms_seen);
987d643c 23258
0a5429f6
DE
23259 /* While we're scanning CU's create a table that maps a psymtab pointer
23260 (which is what addrmap records) to its index (which is what is recorded
23261 in the index file). This will later be needed to write the address
23262 table. */
23263 cu_index_htab = htab_create_alloc (100,
23264 hash_psymtab_cu_index,
23265 eq_psymtab_cu_index,
23266 NULL, xcalloc, xfree);
96408a79 23267 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
23268 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23269 xmalloc (sizeof (struct psymtab_cu_index_map)
23270 * dwarf2_per_objfile->n_comp_units);
23271 make_cleanup (xfree, psymtab_cu_index_map);
23272
23273 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23274 work here. Also, the debug_types entries do not appear in
23275 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23276 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23277 {
3e43a32a
MS
23278 struct dwarf2_per_cu_data *per_cu
23279 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23280 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23281 gdb_byte val[8];
0a5429f6
DE
23282 struct psymtab_cu_index_map *map;
23283 void **slot;
9291a0cd 23284
92fac807
JK
23285 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23286 It may be referenced from a local scope but in such case it does not
23287 need to be present in .gdb_index. */
23288 if (psymtab == NULL)
23289 continue;
23290
95554aad
TT
23291 if (psymtab->user == NULL)
23292 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23293
0a5429f6
DE
23294 map = &psymtab_cu_index_map[i];
23295 map->psymtab = psymtab;
23296 map->cu_index = i;
23297 slot = htab_find_slot (cu_index_htab, map, INSERT);
23298 gdb_assert (slot != NULL);
23299 gdb_assert (*slot == NULL);
23300 *slot = map;
9291a0cd 23301
b64f50a1
JK
23302 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23303 per_cu->offset.sect_off);
9291a0cd 23304 obstack_grow (&cu_list, val, 8);
e254ef6a 23305 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23306 obstack_grow (&cu_list, val, 8);
23307 }
23308
0a5429f6
DE
23309 /* Dump the address map. */
23310 write_address_map (objfile, &addr_obstack, cu_index_htab);
23311
1fd400ff
TT
23312 /* Write out the .debug_type entries, if any. */
23313 if (dwarf2_per_objfile->signatured_types)
23314 {
23315 struct signatured_type_index_data sig_data;
23316
23317 sig_data.objfile = objfile;
23318 sig_data.symtab = symtab;
23319 sig_data.types_list = &types_cu_list;
987d643c 23320 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23321 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23322 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23323 write_one_signatured_type, &sig_data);
23324 }
23325
156942c7
DE
23326 /* Now that we've processed all symbols we can shrink their cu_indices
23327 lists. */
23328 uniquify_cu_indices (symtab);
23329
9291a0cd
TT
23330 obstack_init (&constant_pool);
23331 make_cleanup_obstack_free (&constant_pool);
23332 obstack_init (&symtab_obstack);
23333 make_cleanup_obstack_free (&symtab_obstack);
23334 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23335
23336 obstack_init (&contents);
23337 make_cleanup_obstack_free (&contents);
1fd400ff 23338 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23339 total_len = size_of_contents;
23340
23341 /* The version number. */
796a7ff8 23342 val = MAYBE_SWAP (8);
9291a0cd
TT
23343 obstack_grow (&contents, &val, sizeof (val));
23344
23345 /* The offset of the CU list from the start of the file. */
23346 val = MAYBE_SWAP (total_len);
23347 obstack_grow (&contents, &val, sizeof (val));
23348 total_len += obstack_object_size (&cu_list);
23349
1fd400ff
TT
23350 /* The offset of the types CU list from the start of the file. */
23351 val = MAYBE_SWAP (total_len);
23352 obstack_grow (&contents, &val, sizeof (val));
23353 total_len += obstack_object_size (&types_cu_list);
23354
9291a0cd
TT
23355 /* The offset of the address table from the start of the file. */
23356 val = MAYBE_SWAP (total_len);
23357 obstack_grow (&contents, &val, sizeof (val));
23358 total_len += obstack_object_size (&addr_obstack);
23359
23360 /* The offset of the symbol table from the start of the file. */
23361 val = MAYBE_SWAP (total_len);
23362 obstack_grow (&contents, &val, sizeof (val));
23363 total_len += obstack_object_size (&symtab_obstack);
23364
23365 /* The offset of the constant pool from the start of the file. */
23366 val = MAYBE_SWAP (total_len);
23367 obstack_grow (&contents, &val, sizeof (val));
23368 total_len += obstack_object_size (&constant_pool);
23369
23370 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23371
23372 write_obstack (out_file, &contents);
23373 write_obstack (out_file, &cu_list);
1fd400ff 23374 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23375 write_obstack (out_file, &addr_obstack);
23376 write_obstack (out_file, &symtab_obstack);
23377 write_obstack (out_file, &constant_pool);
23378
23379 fclose (out_file);
23380
23381 /* We want to keep the file, so we set cleanup_filename to NULL
23382 here. See unlink_if_set. */
23383 cleanup_filename = NULL;
23384
23385 do_cleanups (cleanup);
23386}
23387
90476074
TT
23388/* Implementation of the `save gdb-index' command.
23389
23390 Note that the file format used by this command is documented in the
23391 GDB manual. Any changes here must be documented there. */
11570e71 23392
9291a0cd
TT
23393static void
23394save_gdb_index_command (char *arg, int from_tty)
23395{
23396 struct objfile *objfile;
23397
23398 if (!arg || !*arg)
96d19272 23399 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23400
23401 ALL_OBJFILES (objfile)
23402 {
23403 struct stat st;
23404
23405 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23406 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23407 continue;
23408
23409 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23410 if (dwarf2_per_objfile)
23411 {
9291a0cd 23412
492d29ea 23413 TRY
9291a0cd
TT
23414 {
23415 write_psymtabs_to_index (objfile, arg);
23416 }
492d29ea
PA
23417 CATCH (except, RETURN_MASK_ERROR)
23418 {
23419 exception_fprintf (gdb_stderr, except,
23420 _("Error while writing index for `%s': "),
23421 objfile_name (objfile));
23422 }
23423 END_CATCH
9291a0cd
TT
23424 }
23425 }
dce234bc
PP
23426}
23427
9291a0cd
TT
23428\f
23429
b4f54984 23430int dwarf_always_disassemble;
9eae7c52
TT
23431
23432static void
b4f54984
DE
23433show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23434 struct cmd_list_element *c, const char *value)
9eae7c52 23435{
3e43a32a
MS
23436 fprintf_filtered (file,
23437 _("Whether to always disassemble "
23438 "DWARF expressions is %s.\n"),
9eae7c52
TT
23439 value);
23440}
23441
900e11f9
JK
23442static void
23443show_check_physname (struct ui_file *file, int from_tty,
23444 struct cmd_list_element *c, const char *value)
23445{
23446 fprintf_filtered (file,
23447 _("Whether to check \"physname\" is %s.\n"),
23448 value);
23449}
23450
6502dd73
DJ
23451void _initialize_dwarf2_read (void);
23452
23453void
23454_initialize_dwarf2_read (void)
23455{
96d19272
JK
23456 struct cmd_list_element *c;
23457
dce234bc 23458 dwarf2_objfile_data_key
c1bd65d0 23459 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23460
b4f54984
DE
23461 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23462Set DWARF specific variables.\n\
23463Configure DWARF variables such as the cache size"),
23464 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23465 0/*allow-unknown*/, &maintenance_set_cmdlist);
23466
b4f54984
DE
23467 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23468Show DWARF specific variables\n\
23469Show DWARF variables such as the cache size"),
23470 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23471 0/*allow-unknown*/, &maintenance_show_cmdlist);
23472
23473 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23474 &dwarf_max_cache_age, _("\
23475Set the upper bound on the age of cached DWARF compilation units."), _("\
23476Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23477A higher limit means that cached compilation units will be stored\n\
23478in memory longer, and more total memory will be used. Zero disables\n\
23479caching, which can slow down startup."),
2c5b56ce 23480 NULL,
b4f54984
DE
23481 show_dwarf_max_cache_age,
23482 &set_dwarf_cmdlist,
23483 &show_dwarf_cmdlist);
d97bc12b 23484
9eae7c52 23485 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23486 &dwarf_always_disassemble, _("\
9eae7c52
TT
23487Set whether `info address' always disassembles DWARF expressions."), _("\
23488Show whether `info address' always disassembles DWARF expressions."), _("\
23489When enabled, DWARF expressions are always printed in an assembly-like\n\
23490syntax. When disabled, expressions will be printed in a more\n\
23491conversational style, when possible."),
23492 NULL,
b4f54984
DE
23493 show_dwarf_always_disassemble,
23494 &set_dwarf_cmdlist,
23495 &show_dwarf_cmdlist);
23496
23497 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23498Set debugging of the DWARF reader."), _("\
23499Show debugging of the DWARF reader."), _("\
23500When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23501reading and symtab expansion. A value of 1 (one) provides basic\n\
23502information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23503 NULL,
23504 NULL,
23505 &setdebuglist, &showdebuglist);
23506
b4f54984
DE
23507 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23508Set debugging of the DWARF DIE reader."), _("\
23509Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23510When enabled (non-zero), DIEs are dumped after they are read in.\n\
23511The value is the maximum depth to print."),
ccce17b0
YQ
23512 NULL,
23513 NULL,
23514 &setdebuglist, &showdebuglist);
9291a0cd 23515
27e0867f
DE
23516 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23517Set debugging of the dwarf line reader."), _("\
23518Show debugging of the dwarf line reader."), _("\
23519When enabled (non-zero), line number entries are dumped as they are read in.\n\
23520A value of 1 (one) provides basic information.\n\
23521A value greater than 1 provides more verbose information."),
23522 NULL,
23523 NULL,
23524 &setdebuglist, &showdebuglist);
23525
900e11f9
JK
23526 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23527Set cross-checking of \"physname\" code against demangler."), _("\
23528Show cross-checking of \"physname\" code against demangler."), _("\
23529When enabled, GDB's internal \"physname\" code is checked against\n\
23530the demangler."),
23531 NULL, show_check_physname,
23532 &setdebuglist, &showdebuglist);
23533
e615022a
DE
23534 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23535 no_class, &use_deprecated_index_sections, _("\
23536Set whether to use deprecated gdb_index sections."), _("\
23537Show whether to use deprecated gdb_index sections."), _("\
23538When enabled, deprecated .gdb_index sections are used anyway.\n\
23539Normally they are ignored either because of a missing feature or\n\
23540performance issue.\n\
23541Warning: This option must be enabled before gdb reads the file."),
23542 NULL,
23543 NULL,
23544 &setlist, &showlist);
23545
96d19272 23546 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23547 _("\
fc1a9d6e 23548Save a gdb-index file.\n\
11570e71 23549Usage: save gdb-index DIRECTORY"),
96d19272
JK
23550 &save_cmdlist);
23551 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23552
23553 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23554 &dwarf2_locexpr_funcs);
23555 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23556 &dwarf2_loclist_funcs);
23557
23558 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23559 &dwarf2_block_frame_base_locexpr_funcs);
23560 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23561 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23562}
This page took 4.086017 seconds and 4 git commands to generate.